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Abstract

In order to protect at-risk communities and critical infrastructure, hazard managers use sensor 

networks to monitor the landscapes and phenomena associated with potential hazards. This 

strategy can produce large amounts of data, but when investigating an often unstructured problem 

such as hazard detection it can be beneficial to apply automated analysis routines and artificial 

intelligence techniques such as reasoning. Current sensor web infrastructure, however, is not 

designed to support this information-centric monitoring perspective. A generalized methodology to 

transform typical sensor data representations into a form that enables these analysis techniques has 

been created and is demonstrated through an implementation that bridges geospatial standards for 

sensor data and descriptions with an ontology-based monitoring environment. An ontology that 

describes sensors and measurements so they may be understood by an SDSS has also been 

developed. These tools have been integrated into a monitoring environment, allowing the hazard 

manager to thoroughly investigate potential hazards.
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1. Introduction

l . l .  P r o b l e m

The identification of impending natural hazards is a worthwhile research objective for many reasons. 

The early detection of a hazard has the potential to protect physical infrastructure, conserve natural 

resources, and save lives. Methods to detect hazards vary depending on the type of hazard, but are 

often built around the concept of using expert criteria for the identification of hazards or the 

determination of hazard potential based on analyzing field data collected from site(s) of interest. If it is 

determined from this analysis that hazards are likely, then it is up to administrators and decision makers 

to plan the next course of action based on this information. For example, when a forest is dry, the 

potential for wildfires to occur increases, and appropriate precautions can be taken to avoid the 

creation of sparks that may trigger a fire. The hazard manager is able to decide on an appropriate 

course of action (such as fire remediation), based on the most recent information (moisture levels). 

These determinations are made using a combination of accurate information and expert knowledge.

The crux of any hazard monitoring problem, then, is to gather and analyze relevant information in a 

timely fashion using domain expertise. This presents two distinct, but related problems with their own 

unique challenges: the collection of data and the analysis of those data.

Before examining these problems, a distinction must be made between two terms that are often 

used interchangeably: data and information. Data are some observations or facts without context, 

whereas information is a collection of data organized in some logical manner that is relevant to a 

problem. The difference between these two states of knowledge is subtle, but when dealing with 

knowledge representation it is fundamental to know exactly what the intended use of the knowledge is 

so that it may be structured correctly. The tools and methodologies to make the transition from data to 

information in an intelligent, automated fashion form a large part of this thesis.

The collection of relevant data can be done using various methods such as manual collection using 

probes and in-situ sensors, remote sensing, field observation, and the use of automated sensor 

networks. Manual collection of data through sampling, probing, or other methods may be useful for the 

analysis of a very specific problem or when semi-quantitative or qualitative information is needed. The 

use of sensors to collect quantitative data that are relevant to a problem is a more fruitful endeavour, 

but retrieving data from the sensors can be costly, dangerous, and time-consuming if the sensors are

1
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placed in a remote or hazardous area. Further, when decision makers wish to do hazard monitoring by 

detecting small changes over long periods of time, manual sampling is inefficient when compared to 

automated sampling methods. Automated methods provide the long-term collection capabilities that 

are needed by decision makers to monitor hazards, and to support simulation as a method of problem  

exploration. Automated methods also reduce the number of field excursions needed by making use of 

automated data collection and dissemination methods. The use of automated collection methods does 

not, however, eliminate the need for validation of the collected data. Employing strategies to verify the  

incoming data as correct is perhaps more important when using automated collection methods, as there  

is no first-hand verification o f the data as there would be with a manual collection routine.

Analyzing relevant information is what allows decision makers to draw conclusions about the state 

of the system under consideration, and ultimately make decisions. Using problem-specific knowledge as 

context, expert users can look at the information presented to them  and make informed decisions. This 

is what occurred in the wildfire scenario above. The domain knowledge can be considered as an 

ontology, or a model of the im portant concepts and relationships in that domain, which is discussed in 

Section 4. Any problem we wish to automatically monitor must be understood in some measurable, 

quantifiable manner, or in a way that can be qualitatively modeled using symbols. We must be able to 

model our problem space accurately enough that we can feed numerical measurements to our 

representative model and get reliable and usable results. The problem of hazard monitoring is often  

somewhat unstructured and relies on more symbolic or qualitative modeling and heuristic reasoning. 

This approach mimics w hat the expert user does; only in this case the role of domain expert is supported 

by software which has domain knowledge encoded in its knowledge base.

Relevant data are not always readily available, and can often be buried within massive data stores, 

so locating and identifying relevant data can be an issue. There is also a gap between the collection of 

the data and their usage, as there must be some infrastructure in place that takes the data in their 

collected form and delivers it as useful information to the decision maker. Domain experts must be able 

to retrieve the information in a form that is useful for problem solving, not just simple number 

crunching, allowing the decision maker to apply the information to their problem assessment. In all of 

these cases, the expert's ontology that models the problem domain is a key element in finding and 

filtering the data and transforming them into relevant information. The same data problems must be 

addressed in automated reasoning. Therefore an ontology-based decision support system and data

2
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infrastructure can help support automated reasoning and hazard identification. These are some of the 

major issues which must be addressed to create a knowledge-based approach to hazard monitoring, all 

of which are addressed in some way in this thesis. The remainder of this chapter will demonstrate the 

rationale behind solving these problems as well as a generalized architecture used to build and integrate 

these solutions.

1.2. T h e s is  O b j e c t iv e s

The main objective of this thesis is to use sensor data collected by sensor networks for real-time 

hazard monitoring in a spatial decision support system (SDSS), and to investigate the use of ontologies 

as a means of increasing the usable information content of the data so an SDSS can be a more effective 

automated reasoning tool. The objective is approached with the operative hypothesis that: i) a 

machine-usable representation of the ontologies that model both the sensor and problem domains can 

be used to automate the data-to-information transformation and the reasoning process; and ii) the 

sensor ontology can be automatically produced from sensor descriptions in existing sensor web and 

geospatial infrastructure standards. To do this we must provide problem domain-specific context for 

sensor data and present that information in a form that is machine readable and understandable. This 

requires a series of sub-objectives to be met. First, the ontological needs of the sensor network domain 

must be investigated. This involves a thorough review of the sensor domain to find all of the key 

concepts that can be used to provide context to sensor data. From this information, an ontology must 

be created and made accessible to the systems using the sensor data. Various ontology development 

methodologies must be explored to ensure that the end result is a useful one. Tools must then be 

developed to take sensor data from typical geospatial storage infrastructure and convert: it into an 

ontological form. This needs to be done in an automated way so that existing monitoring workflows are 

minimally affected. This information must then be integrated with an ontology-based spatial decision 

support system. This will allow the information to be analyzed within the context of the problem using 

advanced problem solving methods. The work will extend the capabilities of the REASON spatial 

decision support framework (Rozic, 2006), a system that provides expert users the ability to create a 

spatial decision support system that uses spatial- and knowledge-based analysis to aid expert users in 

analyzing problems. The extensions of REASON will allow it to automatically discover and use sensor 

data found through the sensor web infrastructure in a way that enables these types of analysis. All of 

these tools must be integrated and the entire workflow must be tested to ensure that the results of the

3
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analysis based on the new ontology are reliable. Once this workflow is created, analysis routines can be 

created that will make use of the ontological information. The system must demonstrate usability in a 

hazard monitoring and detection application and show the benefits of ontology usage for hazard 

detection. It must also demonstrate usability and interoperability with distributed spatial databases and 

the standards that make up the current sensor web and geospatial infrastructure.

1 .3 . S ig n if ic a n c e  o f  R esea r c h

This research is aimed at filling a gap that exists between advanced problem solving methods and 

the data which are currently used to feed more traditional analysis methods. Artificial intelligence 

techniques used to analyze and solve problems are continually advancing, and while they are powerful 

ways to solve problems, they typically need to use specialized information structures to represent the 

inputs to their problem. Through the use customized software tools that exploit common, open data 

standards, this work will show that it is possible to automate much of the work that needs to be done to 

take data that are more typically suited to conventional data-centric analysis and transform them so 

that they can be used in more information-centric analysis problems. It will show the benefits of using 

ontologies to structure knowledge and how the use of different levels of knowledge representation for 

different tasks can help the organizational aspect of hazard monitoring. Creating a specific 

transformation engine to bridge this gap would be feasible, but by generalizing some of the various 

levels of knowledge representation and moving between them in an automated way it becomes more 

feasible to apply these advanced methods to more traditional problem spaces, regardless of the specific 

architecture of a given monitoring workflow. The software produced in this thesis consists of a spatial 

decision support framework, a data transformation engine, and connections to the standard geospatial 

infrastructure. This software and demonstration application provide the foundation to build live 

monitoring systems in the future that use this new information-centric approach for the detection of 

hazards.

1 .4 . C h a pte r  O u t l in e

The remainder of this thesis is organized as follows. Chapter 2 introduces the key domains that 

apply to this project, specifically by examining the literature and some of the relevant technologies 

associated with geotechnical hazard monitoring, spatial decisions support systems, sensor webs, data 

encodings for knowledge representation, and ontologies. Chapter 3 explains how data encodings are

4
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applied in this work. It also presents a classification scheme for these and other encodings based on 

their purpose in a typical monitoring workflow. It details the creation of a transformation engine based 

on this encoding classification, and explains how the transformation can be generalized so it can be 

applied to other monitoring workflows. Chapter 4 presents a general methodology for the development 

of an ontology. This methodology is illustrated through the development of a sensor ontology to be 

used in our reasoning engine. Chapter 5 explores our monitoring environment, and the additions that 

have been made to it over the course of this project. It explains the purpose and creation of the 

software tools that were created to enhance the capabilities of the monitoring environment and how 

the various tools have been integrated. It finishes by exploring the entire monitoring workflow from  

data to information to analysis. Chapter 6 presents a case study of how this system works in a 

geotechnical domain with the use of realistic geotechnical models for slope failure. Chapter 7 contains 

some concluding remarks about the research as well as some future directions that could be pursued.
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2. Background

2 .1 . G e o t e c h n ic a l  H a z a r d  M o n it o r in g  a n d  Sp a t ia l  D e c is io n  Su p p o r t  Sy s t e m s

To manage hazard risk, we must consider two important aspects of the problem of hazard 

assessment. The first is identifying what the likelihood of the hazard is, and the second is identifying 

who and/or what is vulnerable to the hazard. A large population centre with no corresponding 

likelihood of the hazard occurring does not pose a risk. Likewise, high likelihood of a hazardous event in 

completely unpopulated areas does not pose a risk. Only when there is a likelihood of a hazard 

occurring in areas where there are people and/or infrastructure that are vulnerable to that hazard does 

the hazard warrant monitoring. Using this principle we can direct our monitoring efforts and resources 

to the areas that are the most susceptible to hazard risks.

It is important, then, to be able to detect the potential for a hazard to occur based on available data 

so that the responsible parties can then plan response, mitigation and/or recovery strategies based on 

their evaluation of the potential effect of the hazard. Various studies have examined how this may be 

achieved by examining specific sites that have experienced slope failure of some form and trying to 

learn what the cause of the slope failure was and how it could be detected on other similar sites. As an 

example, Polemio and Petrucci (2001) investigated a mudslide that occurred in southern Italy and used 

the results from that investigation to determine the best course of action to evaluate landslide hazard 

potential based on remotely sensed data. Similarly, Zourmpakis e ta l. (2006) studied a site in 

southeastern England that was primarily composed of loess by subjecting it to controlled flooding and 

surface pressures. The site was monitored both geotechnically and geophysically, and the results of the 

geophysical monitoring were used to reinforce and verify the results of the geotechnical monitoring. 

Studies such as this serve not only to find better ways to combine instruments for a given monitoring 

task, but also act as a case study for similar sites so that the properties of hazard features can be 

understood. In an information-centric monitoring system these case studies can be described in ways 

that are understandable by a software system, which makes it possible for that system to compare the 

status of a monitored slope to a library of case studies that can be used to support or refute a 

hypothesis generated by the system regarding the hazard (Aamodt and Plaza, 1994). Crosta et al.

(2006) provide another detailed study of landslide potential. In this case they did not examine a 

landslide that had occurred, but rather an area that is known to be susceptible to landslides. They 

integrated data from geological surveys and other field work, the study of triggering mechanisms, and

6
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the results of other nearby landslide events to generate a risk factor to various areas with conditions 

analogous to those observed in the field and monitored with instrumentation.

Having this type of expertise available in a machine-usable form serves to reinforce any conclusions 

that a monitoring system may draw. Many natural and anthropogenic hazards can be detected through 

simple arithmetic methods. For example, rising water levels indicate that flooding may be occurring 

(Wassmann et a!., 2004), and the sudden motion of a slope can signify a slope failure (Hutchinson et al., 

2004). Being able to perform this kind of detection is important so that we may better understand a 

hazard, however by the time these simple conditions are seen it is often too late to enact adequate 

counter-measures or take the necessary actions to warn populations and protect infrastructure.

For these reasons an intelligent hazard monitoring system (or any intelligent monitoring system) 

should use its available knowledge to try and detect the potential for hazardous conditions, and any 

precursors to these conditions that may be identified by a domain expert. In other words, an intelligent 

flood monitoring system must monitor both rainfall and w ater levels so that rainfall can be used to 

predict future w ater levels or focus the monitoring efforts on certain locations. An intelligent slope 

monitoring system must monitor not only slope movement, but also the behaviour of the water table 

relative to the active areas of a slope. Monitoring of the water table and its proximity to landslide-prone 

areas can help predict when a slope is at risk of failure (Iverson, 2000). Like any data-driven problem, 

the quality of the analysis is directly related to the quality and quantity of the data being analyzed. The 

determination of what data to use and how confident one can be in the results is ultimately the 

responsibility of the expert user, however by looking for precursor phenomena and conditions that are 

known to trigger hazardous events, valuable time can be gained before the onset of a hazard, leaving 

the hazard manager with more preparation time.

A spatial decision support system (SDSS) is a typical way that this type of monitoring is done. A 

decision support system (DSS) can be defined as a computer-based information system that combines 

models and data in an attem pt to solve unstructured or semi-structured problems with extensive user 

involvement through a friendly user interface (Turban et al., 2005). An SDSS takes the DSS concept and 

applies it in a spatial context. An SDSS can take either the data-centric or the information-centric 

approach to hazard monitoring, depending on the intended purpose of the monitoring system. A 

system built to look for simple conditions and provide an alert when those conditions are violated can

7
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be very effective data-centric systems. SCADA (Supervisory Control and Data Acquisition) systems take 

this approach and are used with great effect in the several industries, such as manufacturing, facility 

management, and infrastructure management (Kokai et al., 1997). If a system is to be used to model a 

problem, run simulations of an environment, interact with and adjust the instruments providing the 

measurements, integrate multiple data sources, and for thorough problem investigation, then it should 

be built in an information-centric manner.

Yu et al. (2007) give an example of a system that uses data-centric methods to perform geotechnical 

hazard monitoring with positive results. It is a web-based system that uses real-time monitoring of 

rainfall combined with expert knowledge of where torrential rains are most likely to occur and the 

location of unstable slopes. The system is a tool for monitoring and problem exploration to determine 

where landslides and debris flow into creeks is most likely to occur on the main island of Taiwan. Their 

system integrates data from rain gauges, estimations from radar, water levels, and hazards information. 

In a browser-based GIS various risk parameters can be mapped, including rainfall levels, and landslide 

and debris flow potential estimations. Cheng et al. (2002) describe the development and use of a 

computer-based decision support system to monitor construction sites in which geotechnical stability is 

a concern. In this setting activities such as excavation, dredging, and other small- or large- scale 

construction activities are represented as GIS data within an integrated relational database. This 

information is passed through some analysis algorithms that apply fuzzy set theory in order to identify 

the possible cause of unexpected behaviour detected by geotechnical instrumentation. Harris et al. 

(2001) investigates the use of permafrost monitoring combined with climate monitoring stations to aid 

in learning more about how permafrost affects the movement of potentially unstable slopes and how 

permafrost behaviour can be used to help predict the motion of a slope.

These various examples show that a key factor when performing geotechnical hazard monitoring is 

to make use of, and integrate, data from several sources. The approach this project takes to this part of 

the problem is addressed in Chapter 3. The source of data that is most effective for our purposes of 

real-time or near-real-time evaluation and monitoring are field instruments that automatically measure 

areas of interest for the phenomena we wish to detect. This idea is embodied in the concept of sensor 

webs.

8
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2.1.1  REASON

The REASON Spatial Decision Support Framework (Rozic, 2006) will provide the backbone of the 

demonstration system described later in the thesis. REASON can be used to develop rule-driven spatial 

decision support systems using an ontology based approach. It was developed using the ArcAgents 

extension (Ball and Harrap, described in Rozic 2006) to ArcGIS which embeds a CLIPS engine into ArcGIS. 

REASON builds on this connection by providing a CLIPS expert system that makes use of the spatial 

analysis capability of ArcGIS. The REASON architecture can be seen in Figure 1.

Ontology
Hierarchy

ES (CLIPS)GIS (ArcGIS)
User Interface

'SDSS Arc

Core
SDSS

Engine

Inference
Engine

Knowledge 
Base (KB)DB AccessEnd

4 « 4 k W e a k  Connection 

4 — ►Strong Connection
Spatial

DB
Table

DB

Figure 1 - REASON Expert System Architecture (Rozic, 2006)

Expert knowledge is partitioned into a series of ontologies to allow for customization across fields 

while maintaining portability of the source code, limiting changes to only application-specific concepts. 

The CLIPS reasoning engine provides facilities to reason on the knowledge stored in the system and 

ArcGIS provides the spatial analysis capability, making systems built on this framework powerful 

information-centric monitoring systems. REASON'S abstracted data source mechanism allows it to make 

use of many different types of data; however the data binding is somewhat rigid in the sense that data

9
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coming into the system must be structured in an expected way so that an appropriate data source 

handler can be created.

This work will improve on this aspect of the system by providing a sensor ontology that stores all of 

the measurement data in the context of the sensors that made the measurements. Software tools will 

be created that can transform the typically rigid data structures into more dynamic ontological data.

This will in turn improve the analysis capabilities of the decision support system by providing the context 

for the incoming data.

2 .2 .  Se n s o r  W ebs

There are many perspectives regarding sensor webs, typically focusing on a particular aspect of the 

technology that corresponds to a given research group's area of expertise. For example, NASA's Jet 

Propulsion Laboratory1 defines a sensor web as "a new type of Geographical Information System (GIS) 

that can be embedded into an environment to monitor and control it. It is a spatially distributed, 

synchronous instrument that can react and adapt to changing environmental conditions." Their 

research tends to focus on environmental monitoring applications, and their definition reflects that 

focus.

Sensor webs are tools used for automated collection and storage of sensor observations, either 

integrating data from several separate sensor networks or acting in a coordinated fashion to generate 

aggregate or 'macro' observations. M ore generally, they are structures which move measurement data 

through a structured network from the sensors which collect the data to the applications which use 

them. They facilitate the collection, distribution, and dissemination of large amounts of spatially 

significant data, turning the Earth's surface, subsurface, oceans, and atmosphere into sensible entities 

(Gross, 1999). Initial sensor web implementations began as very basic networks, with a few sensors 

hard-wired together.

Quite often when a sensor web is deployed, having a traditional wired network is simply not 

possible. In recent years, the advent of mobile computing (Datta et al., 1999) and low-power wireless 

communication technologies (Cetintemel et al., 2003); (Kim and Yoo, 2005) has allowed sensor webs to 

be feasible in more realistic field settings. The methods used to transmit the data may vary, though

1 http://www.jpl.nasa.gov/ Last Accessed August 20, 2007
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most implementations tend to go through a data aggregation process which involves collecting several 

measurements and compacting them into messages so they can be sent more efficiently (Royer and 

Chai-Keong, 1999); (Madden e ta l., 2002); (Heidemann e ta l., 2001); (Krishnamachari e ta l., 2004). This 

is especially important when using low-power wireless networks since capacity is always an issue (Gupta 

and Kumar, 2000); (Li et al., 2001). All collected data must be sent completely and reliably, and in as 

small a message as possible so that the real-time arrival of data at the repository can be preserved.

With the continual advancement of sensor technology and wireless technology (Cetintemel, 2003), 

as well as growing support from the developer community, sensor webs have become a very useful and 

practical mechanism for automated data collection. As would be expected, this process can result in the 

collection of large amounts of data which can be used to feed analysis within a specified problem 

domain. Since the aim for any information-driven decision support system is to provide an expert user 

with relevant information that helps them to make informed decisions, sensor webs prove extremely 

valuable in providing data that may be transformed into timely information that is relevant to the 

problem.

Sensor networks can intelligently monitor their surroundings and are growing to be more responsive 

to external commands and control. Recent works have pushed to increase the intelligence in the way 

sensor networks are controlled. Jabeur and Graniero (Submitted) proposed a virtual layer of software 

agents that would sit on top of the sensor layer to manage much of the control and management of the 

network, taking advantage of higher processing capabilities to control functionality in a more intelligent 

manner while also extending the life of the power cells used by the sensors. Jabeur et al. (Submitted) 

shows how evaluation of incoming sensor data can be used to adjust the sampling behaviour of 

individual sensors to increase the relevance of the data. Stavroulaki et al. (2006) have worked to make 

sensor web services reconfigurable on the fly through the use of an overarching framework for 

distributed systems. They aim to take the many software tools that have been developed for sensor 

control and configuration and organize them into a high-level architecture to support the integration of 

these various tools. Fukatsu et al. (2006) describe an agent-based system to operate sensor nodes in 

the field via a web-based interface. The concept, design, and implementation of their system are 

discussed, as is the idea of how management of these types of web-based systems should be 

approached. A unique feature of their system is that the agents themselves generate web pages that
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can be used to view the data collected by the sensors they are associated with, so not only do the 

agents control the behaviour of the system but they also help with data dissemination and presentation.

Measurement of slope motion and hazard potential can be accomplished in several ways, including 

the use of remote sensing and interferometry, and sensor networks. Colesanti and Wasowski (2006) 

explore how Synthetic Aperture Radar (SAR) can be used to monitor the potential size of slides, identify 

the amount of vegetation on the surface of a slope, measure the inclination of the slope, measure the 

movement of a slope, and determine the velocity and displacement of a slide event. Bovenga et al. 

(2006) use multi-temporal differential interferometry (an SAR technique) to investigate slope instability, 

(Meisina et al., 2006) uses a similar SAR technique to analyze ground deformation. Terzis et al. (2006) 

apply wireless sensor networks to the prediction of landslides. By monitoring displacements of the 

sensor nodes, they calculate an estimated slip plane. This slip plane is used to feed an analysis routine 

that predicts the likelihood of a landslide. Sheth et al. (2007) have constructed SenSlide, a distributed 

sensor system used to predict landslides. Their focus was on making the system robust enough to 

withstand a slope failure while handling the typical wireless sensor network issues of connectivity and 

environmental variability.

Sensor webs and SDSS can be used not only for hazard detection, but also to plan sensor network 

deployment and manage the sensor network. The decision of which sites to monitor and what 

monitoring strategies to use are generally specific to the hazard being investigated, but there must be 

some suspicion that a hazard may occur before a monitoring strategy is employed. This suspicion may 

be based on the opinion of a domain expert, the results of simulation models, or the analysis of similar 

sites that have experienced a hazardous event.

2 .3 . D a t a  En c o d in g s  a n d  Re p r e s e n t a t io n s

All of the studies noted in the last section rely on getting sensor data from the field to some remote 

analysis routine in a usable form. Finding effective methods to encode sensor data for different 

purposes is critical to providing a usable infrastructure for hazard monitoring. There are two  

approaches that may be taken: either a single encoding for all purposes, or some combination of 

encodings. If the single encoding approach is used, the encoding must be robust enough to account for 

all states of knowledge the system may encounter. Finding such a targeted encoding can be difficult, 

but if possible can decrease the complexity of the system. In many cases, the use of a single encoding is
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not feasible, so a multiple encoding strategy must be used (such as in Bonnet et al., 2004). When this is 

the case then there is often a need to convert between the different encodings. This section will 

examine some of the relevant encodings for hazard monitoring.

Knowledge representation methods span a wide range of complexity. Some are tailored to specific 

tasks while others are of a more generalized form. Semantic networks (Lehmann, 1992) can be used for 

knowledge representation when complex networks of concepts need to be represented. These 

networks are represented as nodes with relationships, similar to an ontology (see Section 2.4).

Semantic networks were initially developed to aid in transforming human-readable information into 

machine-readable information. This idea has grown over decades of refinement into a practical method 

of both storing and presenting information for retrieval by computer programs. The use of semantic 

networks has grown to the point that researchers are now trying to enable the Semantic Web (Berners- 

Lee et al., 2001). Semantic Web development aims to take the human-readable information content 

presented by the Internet and make it machine-readable. This would enable software programs to 

begin to understand the information stored on the World Wide Web, making it possible for agents or 

other programs to make intelligent use of the information.

Frames (Minsky, 1974) are another common way of representing knowledge. They take the 

approach that a frame can be used to represent an entity, and that the entity is described using 

attributes called slots. This again is a style that has been mimicked by the development of many 

ontological representations of knowledge. No m atter the conceptual architecture used to structure the 

information, it must be rendered in some machine-readable form at to be useful to software tools.

XML2 has emerged as one of the standard and most common ways of cataloguing and exchanging 

information via the Internet. Its extensibility and scalability have made it a popular choice to represent 

everything from database records to web pages. Because XML is simply a specification of how data 

should be encoded, and not an implementation standard, its standardized way of encoding data can be 

applied to any representation task. Spatial information, for example, can be represented using the 

Geography Markup Language (GML) (Cox et al., 2004). Its extensibility can be seen through the recent 

development of CityGML (Groger et al., 2006), an extension on GML used specifically to represent 

information about the objects and features found in cities and other urban areas. This demonstrates

2 http://www.w3.org/XML/ Last Accessed August 20, 2007
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one of the major advantages of using XML. If an existing encoding is close to what is needed for a given 

application, it can be extended for that application. This allows users to build on a given knowledge 

base while applying their own additions to it. Reuse is encouraged as opposed to having every encoding 

constructed from scratch. It is also easy to ignore information stored in an XML document, allowing the 

consumer of the document to target only the information they need. Since the form at of the document 

is standardized, there exist many parsers that make extracting information simple (e.g., Expat3 and 

Xerces4). Most programming languages have either a built in XML parser, or one which can be added on 

via external libraries, so interoperability between programming languages and software tools is rarely an 

issue when working with XML.

One disadvantage of XML is the size of a typical document. The documents are often verbose 

because all of the data elements are structured as a tree, and the beginning and ending of each node of 

the tree and the relationships between nodes are explicitly defined using tags. Because of this, XML 

documents often take up quite a bit of space when compared with database records or other 

proprietary formats. In modern server and desktop computing environments where high-bandwidth 

connections are normal, this is rarely an issue. For example, the recent development of more dynamic 

web pages and web based applications has been driven by the use of AJAX (Asynchronous JavaScript and 

XML) technology (Garrett, 2005); showing how XML can be used in a high-bandwidth environment with 

great effect. However, for sensors with limited processing power and communication bandwidth, large 

file sizes are a problem. Sending an entire XML document over a low-bandwidth modem would cause 

massive backlogs of information due to the time it would take to send each document. To avoid this 

problem, XML can be generated by the server after it has received the data in a more compact format 

like a database record, or it can be generated after a request from a client that wishes to have the data 

returned as XML. The latter is the approach that 52° North5 takes in generating Observations and 

Measurements (Cox, 2006) documents in its Sensor Observation Service (SOS) (Na and Priest, 2006) 

software. Measurement records are stored to a database with a schema based on the O&M  

specification. When a request is made of that database from a client who needs the data, the SOS 

server pulls the relevant record(s) from the database and automatically generates the O&M  document 

in XML format based on a tem plate that is stored on the server. This way the sensors which publish the

3 http://expat.sourceforge.net/ Last Accessed August 21, 2007
4 http://xerces.apache.org/ Last Accessed August 21, 2007
5 http://52north.org/ Last Accessed August 23, 2007
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measurements can do so w ithout the extra overhead that XML carries, while the client can make use of 

the extended descriptions that O&M  provides.

Wagner et al. (2005) use an irregular wavelet transform for transmitting sensor data within and 

from a sensor network. It adapts to the hierarchy of the existing sensor network implementation rather 

than imposing its own structure so that it may best route its data. It is also possible to use lessons 

learned from other fields with similar constraints and problems. As an example, the field of genetics 

must deal with storing and representing extremely large amounts of data. Ontologies and databases are 

paired together (Stoeckert Jr. et al., 2002) for use in this field. They apply microarray databases to store 

the massive amounts data that DNA and RNA stores, and recognize that there is a need for data 

management and transfer systems to make using these data possible.

Using the growing number of knowledge representation methods and tools to support decision 

support efforts, it is becoming simpler to integrate intelligent analysis methods into monitoring 

applications. Choosing the proper encoding(s) is a vital step in setting up any knowledge-driven system, 

but it is highly problem-dependent. The constraints and needs of the problem must be thoroughly 

explored before a decision can be made about how knowledge can best be represented.

2 .4 . O n t o l o g ie s

Often when people with different areas of expertise attem pt to collaborate, one of the biggest 

stumbling blocks is the vocabulary they use. An expert in one field may use jargon that is common 

knowledge to colleagues, but is unfamiliar to those who work outside that field. A similar problem also 

occurs when the same term  has different meanings in different contexts, or when different fields use 

different terms to describe the same concept (the problem of semantic heterogeneity). However, if 

common terminology is agreed upon and understood by all parties, collaboration can continue with 

better understanding. This is, in a sense, the purpose of an ontology. An ontology can be considered 

broadly as a "specification of a conceptualization" (Gruber, 1993), in that the knowledge of a given 

domain or area of interest is explicitly defined and expressed in an organized way. An ontology specifies 

the important concepts in a domain and how they are related, giving structure to the knowledge about a 

certain domain. And in much the same way as a domain expert explaining terms can allow another 

person to understand the domain they are discussing, an ontology which is properly created can allow a 

piece of software to "understand" the domain it describes. A detailed discussion on the nature of the
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term  ontology and its roots can be found in (0hrstr0m  et al., 2005). In this paper they discuss the 

origins of the term in philosophy to describe the study of being, and how it has since been applied in 

computer science. Figure 2 shows an example of how an ontological representation can be used to 

model concepts and relationships in a way that illustrates the utility of this approach. Figure 2a shows 

the data-centric approach to the representation of a sensor observation. The measurement (0.014) has 

attributes that are implicitly related to it, and by looking at the structure and content of these attributes 

one can interpret what they represent (a unit of measure, a time stamp, and a position). However a 

reasoning system does not have the tacit knowledge to draw on that an expert user has, and as such 

may not be able to interpret these attributes correctly. Figure 2b shows the application of an ontology 

to the representation of the sensor observation in an information-centric way. In this case the sensor 

observation (0.014) is related to its measurement attributes (such as the measurement location and 

time), the sensor that made the measurement (sensor 1), the attributes of that sensor (type, 

phenomenon measured, accuracy), and the other sensors that are connected to the network (sensors 4, 

8 ,1 5 ,1 6 , 23, and 42), through explicitly defined relationships that connect the concepts that are 

important to the domain. Information regarding the details of the other sensors can also be stored, as 

can further detail about seemingly simple attributes such as the measurement location. When this 

model is explicitly encoded in a machine-readable form, these concepts and relationships can be 

analyzed by appropriate software in order to better interpret the information stored within it.

Ontologies can, and have been, applied to many problems that deal with the management and 

representation of knowledge. Wang et al. (2007) use an ontology to verify feature models for use in 

domain engineering. Features of a given domain are represented as classes in the ontology and valid 

relationships between those features are also represented. Verification can then be done through 

reasoning or other processes to identify if a given configuration of features is valid or not according to 

the rules of the domain, or if inconsistencies in the configuration exist. Dietrich and Elgar (2007) make 

use of ontologies to detect and analyze design patterns within Java programs. Their ideal is to enable a 

web of design patterns and refactoring so that design improvements could automatically be applied to a 

system based on successful pattern usage in other similar cases. Chau (2007) uses an ontology-based 

knowledge management system to model the flow and quality of water. The study uses an ontology 

structure similar to the one used in our decision support engine, incorporating a domain ontology and 

an information ontology to partition its knowledge. It is used as part of a knowledge-based system that
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incorporates Artificial Intelligence (Al) technology to assist with model selection and knowledge 

acquisition.
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Figure 2 -  a) Data-centric representation of a sensor observation; b) Ontological (information-centric) representation of

a sensor observation

Some examples of how ontologies are used in a monitoring framework include the work of Pundt 

and Bishr (2002). They make ontologies available that describe their data in the environmental 

monitoring domain, making it possible for those not directly associated with the collection of the data to 

use the data in a proper manner. Their goal is to enable data sharing to support environmental 

monitoring in the hope that ontologies will provide the bridge needed to overcome the problem of 

semantic interoperability. In a much different domain, Zimmerman et al. (2005) describe the use of 

ontologies and agents to monitor supply chains. Ontologies provide a common language that enables
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the agents to communicate in order to improve efficiency when tracking orders and handling inventory. 

Athanasiadis and Mitkas (2004) describe an agent-based system that uses ontologies for environmental 

monitoring. Their system uses meteorological data to monitor air quality and communicate the results 

to those in need of the information. An ontology is used to model the domain as well as provide 

guidelines for agent communications.

In many of these approaches, ontologies are either used in support of or as the backbone of the 

monitoring system. To apply ontologies to our monitoring problem, we can make use of sensor 

ontologies. A sensor ontology is a description of the domain of sensors. It explains what sensors are, 

the different types o f sensors, how they operate, what their properties are, and how they are related. It 

allows specific sensors to be defined in the context of their domain and in a machine-readable format. 

Since the main goal of a sensor is to make measurements, then the concepts surrounding measurement 

processes and results should also be taken into account.

One example of a sensor ontology is OntoSensor (Russomanno et a!., 2005), a sensor ontology which 

makes use of both the Open Geospatial Consortium (OGC) and International Standards Organization 

(ISO) models for sensors. This is an approach that bridges these models for the purposes of embedding 

sensor knowledge into applications which need to reason on this information. Other ontologies used 

with sensor networks include Avancha eto l. (2004) where ontologies are used to aid adaptation in the 

behaviour of sensor networks that are responsive to external phenomena. The ontology ensures that 

any adaptations made are valid and will not interrupt the monitoring tasks of the sensor network. In 

Santanche et al. (2006), Microsoft's SenseWeb project is introduced including the use of sensor 

ontologies for data discovery, fusion, and visualization. The ontology helps client applications properly 

interpret the data gathered from sensor networks.

The use of ontologies to represent knowledge has grown over the last decade in part because of a 

parallel growth in artificial intelligence research and also because of the increased storage and 

processing power of modern computing systems. However, since ontologies are still a single view of a 

complex world, they are only as expressive as their creators allow them to be. There are efforts to push 

towards more generalized high-level ontologies under which more targeted ontologies should fall, 

including IEEE's Suggested Upper Merged Ontology (SUMO) (Niles and Pease, 2001) and Cyc (Lenat, 

1995), however, managing the cataloguing of thousands of domains leads to many problems such as
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conflicting viewpoints, semantic heterogeneity, and logistical concerns. To achieve a vast, multi-domain, 

interconnected knowledge base is a massive undertaking that will take time to evolve, but as more 

projects begin to apply ontologies to the representation of knowledge in their domain there will be a 

larger set of examples and starting points to draw from when the time comes to merge these resources.
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3. Classification and Transformation of Data Encodings

Sensor webs have the potential to collect very large amounts of data about a geographic region, and 

as the number of sensor web installations grow so will the amount of data available for problem  

solving. However organizing, discovering, and exchanging such large amounts of data can be a 

challenging task. It is this problem that has led many organizations, such as the Open Geospatial 

Consortium (OGC)6 and World Wide Web Consortium (W3C)7 to develop standards and encodings to 

represent various types of data. The aim of these initiatives is to enable the discovery and interchange 

of data so that people can find relevant data and apply them to their problem.

Data representation tends to be focused on representing individual data elements, such as a 

number or a name, in a structured way. This style of representation is worthwhile when trying to 

answer simple questions, but to answer complex questions we need more information about our data. 

Expressing the meaning of the data we are using and how they relate to other data, and doing so in an 

organized way can lead to more useful data. We could express the relationships by using symbolic links 

within our data that point at related data, or we could make use of metadata to express some of the 

meaning of the data, but the use of ontologies integrates all of our concepts into a single realm of 

knowledge. Using an ontology that defines all of the important concepts and relationships in our 

monitoring domain means software applications can be built which 'understand' it (Guarino, 1998). This 

subsequently results in an increased ability for the application to derive knowledge from sensor data as 

the ontology can provide context for the measurements that typically doesn't exist when using raw 

numerical values. This leads to applications that can use not just the data but the meaning of those 

data.

Nonetheless, many styles of representation exist for different purposes. The encodings relevant to 

the problem at hand can be broken down into three categories: data description languages, conceptual 

ontologies, and operational ontologies. This classification scheme is based on the typical use of these 

representations as well as how they would be applied to a monitoring problem.

6 http://www.opengeospatial.org/ Last Accessed August 20, 2007
7 http://www.w3.org/ Last Accessed August 20, 2007
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3 .1 . D a t a  D e s c r ip t io n  La n g u a g e s

Data description languages are those languages and encodings used to provide a defined 

representation for a given entity, but do not provide any explicit information regarding the relationships 

that the entities have, or how they relate to other entities (Wuwongse et a!., 2001). This is considered a 

'data-centric' viewpoint on data storage. Database systems tend to take this data-centric approach. 

Relationships between entities can be implied by the structure of the records, or inferred from the 

structure of the database, but are not explicitly defined in a way that is fully understood by a software 

tool. Other examples include SensorML (Botts, 2005) and Observations and Measurements (Cox, 2006), 

as well as GIS metadata standards such as those supported by the International Standards Organization 

(ISO, 2003) and the Federal Geographic Data Committee's (FGDC)8 core metadata framework.

In a typical monitoring system, these languages can serve several purposes. They can be used for 

archival of specification documents, measurements, and other pertinent information. These encodings 

also work well for data exchange and discovery since they provide information in a more human- 

readable format making them useful to catalogue data to be browsed by others. It is also good for 

efficient data mining since the data are not typically cluttered with extraneous information. Finding a 

specific piece of information in a structured way is typically quite simple and efficient since the queries 

are generally targeted directly to the language and there is very little ambiguity in the information 

declared in the document.

The lack of additional information about the meaning of the data does pose problems when the 

data are to be used in a reasoning-based system. The lack of explicitly defined relationships between 

concepts results in reasoning tools having to infer relationships from the structure of the documents. 

This can be problematic as it relies on the creator of the documents to structure their data a certain 

way, and that the structure is consistent with the way others do it. This also limits the interchange of 

data as the level of implied knowledge may not be the same by different data producers. This can lead 

to problems of misinterpretation as well as semantic heterogeneity. Also, w ithout explicitly defining the 

relationships the implied relationships may be leaving out some tacit knowledge that may be obvious to 

a domain expert but not to a software tool. Both of these situations open up the possibility that a 

reasoning system could misinterpret the data. For example, a geologist would recognize that the

8 http://www.fgdc.gov/ Last Accessed August 23, 2007
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adjacency of rock units implies something about the relative ages of the units. However a reasoning 

system that understood the topological relationship between the units would not be able to infer that 

there is also a temporal relationship. This is why reasoning systems function best when relationships 

are explicitly defined.

3 .2 .  C o n c e p t u a l  O n t o l o g ie s

Conceptual ontologies are representations that are used to provide an 'information-centric' 

viewpoint of the entities which they describe, allowing for the description of concepts associated with a 

certain domain of interest. They express not only data, but the characteristics associated with those 

data, as well as the relationships between the concepts described within. Examples of languages that 

can be used to represent Conceptual Ontologies include the Web Ontology Language (OWL) and the 

Semantic Data Language (D.S. Mackay, unpubl. software)9.

Benefits of these encodings in a monitoring environment center on the expressivity of the 

information. Relationships between concepts are explicitly defined and do not need to be inferred. 

They also provide a starting point from which others can build their own reasoning workflows. 

Expressing the concepts and relationships in a structured form at allows others to take that information 

and permute it in a way that makes the most sense for their purposes. The specific instances of the 

concept within a data set must still be linked to the concept, at which point all the relationships 

associated with the concept become associated with the instances.

The main issues with these encoding types are that the amount of information encoded within is 

much larger than that of the Data Description Languages so finding a specific piece of information can 

sometimes be difficult for a human. The information is not as human-readable in its raw form, though 

with additional applications (such as Protege10) can be made more human-friendly. The conceptual 

ontology is meant to be a reference model and while it can be more machine-readable than the Data 

Description Languages it can also be harder to build a monitoring application around a conceptual 

ontology, depending on the choice of representation and the tools available.

9 http://water.geog.buffalo.edu/mackay/ Last Accessed August 22, 2007
10 http://protege.stanford.edu Last Accessed August 21, 2007
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3 .3 . O p e r a t io n a l  O n t o l o g ie s

The role of an operational ontology is to represent an information-centric view in a format typically 

used by a reasoning engine, such as those written in programming languages like CLIPS11. The 

information in this representation closely resembles that which is found in Conceptual Ontologies.

Often the information is identical, and only the syntax changes. It is represented in a manner more 

suited to reasoning engines, typically as source code in a programming language.

These ontologies have the same benefits as the Conceptual Ontologies with the added benefit that 

it is targeted to a specific application. This does, however, reduce the potential of reusing the 

information since those wishing to use the Operational Ontology for their reasoning purposes must 

build their system to work with whatever encoding is used in the target reasoning system. This is why 

the Conceptual Ontology proves useful as a starting point for the information-centric view, allowing 

others to 'spin-off their own versions of the ontology encoded in a way that enables their monitoring 

system while still maintaining consistency with the information presented in the ontology. This is a 

highly desirable outcome that provides a common understanding between completely different 

reasoning systems.

It should be noted that a given ontology or encoding may in some instances act as both the 

Conceptual and Operational Ontology depending on the role it plays in the monitoring workflow. For 

example, an OWL ontology used for archival and reference purposes would be a Conceptual Ontology, 

but if that same ontology is paired with an application capable of reasoning on OWL documents, such as 

Pellet (Sirin et al., in press) or FaCT++ (Tsarkov and Horrocks, 2006), and a monitoring system is built 

around that reasoning engine then it also functions as an Operational Ontology. This would of course 

still allow the spin-off concept to work as others could build on the OWL Conceptual Ontology in order 

to create an Operational Ontology that works for their environment.

3.4. T r a n s f o r m a t io n  o f  En c o d e d  Kn o w l e d g e

One of the aims of classifying the various encodings is to create a method to move between them in 

some organized manner. By grouping individual representation styles into categories, the chain of 

transformation steps can be abstracted. While this does not provide information on how to transform a

11 http:// www.ghg.net/clips/CLIPS.html Last Accessed August 23, 2007
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specific encoding to another specific encoding, it does provide some general insight into how such a 

transformation could be achieved. For example, to transform from a Data Description Language to a 

Conceptual Ontology will typically require a change in the structure and organization of the data, and 

potentially a change in syntax as well. A conversion from a Conceptual Ontology to an Operation 

Ontology will typically only require a change in syntax as the organization of the information should 

remain the same with such a conversion. So while this abstraction is not necessary to create a 

transformation chain it is certainly useful in guiding its development. Varro and Pataricza (2003) 

demonstrate how this type of abstraction can be useful in not only guiding transformation routine 

development, but also how the transformation routines can be automatically generated through the use 

of very high levels of abstraction. While this thesis does not strive to achieve this level of automation, it 

does demonstrate that automation of conversion between representations without the loss of 

semantics is possible, and that the semantics of the information can actually be reinforced and even 

increased (see Section 3.11).

3 .5 .  O t h e r  Co m p o n e n t s

While not actually data encodings, there are other pieces of the transformation chain which must be 

considered. These are Data Sources, Applications, and Services. Data sources are the suppliers of the 

data that feed the transformation engine. In the case of a monitoring environment they may feed live 

or archived sensor data, results from simulations, landscape models, GIS data, or any other source of 

data that can be used as input to the analysis routines. They supply data that represent some real or 

simulated condition or phenomenon in the field. Applications are the target software tools that will 

make use of the data after they are converted. This is typically a decision support system of some form  

built to use ontological data. They have facilities to load and use the information stored in the 

Operational Ontology and often manage the various transformation steps as well. Services are the tools 

which assist in moving the data from one stage of the chain to the next. They typically take the form of 

either a conversion tool or a data access tool. For example, a conversion tool may take database 

records (a Data Description Language) and convert them into OWL instances that conform to a 

Conceptual Ontology (Zellwegger, 2005). A data access tool would be used to retrieve the database 

records and pass them on to the conversion tool (likely through the use of SQL or some other database 

access tool).
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3 .6 . T a r g e t  A r c h it e c t u r e

A system built to monitor sensor data must have, at a minimum, access to sensor data and some 

analysis capability. These analysis methods may be simple data-driven algorithms or more knowledge- 

based approaches. The data that drive the analysis may be stored locally, however this limits the reuse 

of the data and the long-term archival possibilities. Database systems are typically used to store these 

types of data, and typical desktop computing environments used for analysis are rarely equipped to 

handle anything beyond small- to medium-scale databases efficiently. When dealing with anywhere 

from tens of thousands to even millions of records, multiple concurrent connections, and potentially 

sensitive data that should be stored in a secure manner, a large-scale distributed database system 

should be used. A database server (a computer or group of computers dedicated solely to storing and 

serving the contents of the database) is an ideal choice for this situation. In our case a central server to 

handle all of the sensor measurements, making them accessible to client applications such as expert 

systems, is what is needed. Several commercial and free solutions exist to serve database records. The 

most well known include Microsoft Access12, Oracle13, MySQL14, IBM's DB215, and PostgreSQL16. In 

choosing a database implementation, we must also consider that the data being served are spatial in 

nature, and that this poses special challenges. Databases such as Oracle, PostgreSQL, and MySQL have 

realized this and developed spatial additions to their database offerings. As an added benefit 

PostgreSQL, some versions of MySQL, and their spatial extensions are freely available. The decision was 

made to use PostgreSQL as the database implementation for a few reasons, mostly dealing with ease of 

setup and configuration of an SOS server to serve the sensor observations (see Chapter 5 for more 

information on this). A Linux distribution called HostGIS Linux17 is available that comes preconfigured 

with Apache and Apache Tomcat for web services, PostgreSQL with the PostGIS18 spatial extension for 

building spatial databases, as well as other common spatial technologies such as MapServer19 and 

GRASS20. All of the applications chosen for the server side are free as well as cross-platform, meaning 

they could be used in any Linux distribution as well as on Windows to create a free SOS server. Many

12 http://office.microsoft.com/access Last Accessed August 20, 2007
13 http://www.oracle.com/ Last Accessed August 20, 2007
14 http://www.mysql.com/ Last Accessed August 20, 2007
15 http://www.ibm.com/db2 Last Accessed August 20, 2007
16 http://www.postgresql.org Last Accessed August 20, 2007
17 http://www.hostgis.com/linux Last Accessed August 23, 2007
18 http://postgis.refractions.net Last Accessed August 20, 2007
19 http://mapserver.gis.umn.edu Last Accessed August 20, 2007
20 http://grass.itc.it Last Accessed August 20, 2007
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are also open-source, meaning they may be customized as needed through modification of their source 

code.

The intended general architecture surrounding the database server is shown in Figure 3. To 

enhance usability, several helper applications may exist on the client side and the server side to aid in 

the discovery, access, and manipulation of the sensor data for various purposes. For our purposes, the 

helper tools have been limited to the client side to keep the server as strictly a means to publish and 

retrieve sensor data and descriptions, allowing those with no need for the extra helper tools to bypass 

those steps.

Sensor Data 
Server

Sensor Network

Helper Applications

Expert System

Figure 3 - General Monitoring Environment Architecture

Based on the general architecture, specific choices needed to be made about implementation 

standards and software for various components. In making these decisions, two design goals were 

followed. First, existing monitoring workflows should be minimally affected. It is necessary to meld this 

work into existing monitoring infrastructures, allowing these infrastructures to continue to be used in 

their traditional manner. This is done using an integration of tools and standards that are commonly
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applied to sensor web implementations and infrastructures. Second, automation should occur for as 

many procedures as possible. This is because those working with the data will typically be well informed 

in the field being monitored, and are not likely to be well versed in knowledge representation and 

transformation routines. The time of the domain expert should be spent exploring problems and 

working on other monitoring tasks, not doing document conversion and validation. The automated 

conversion frees the expert user to spend their time analyzing the problem at hand.

3 .7 . C la s s if ic a t io n  Ra t io n a l e  a n d  G e n e r a l iz e d  T r a n s f o r m a t io n

The classification described was created based on a pattern that emerged when examining various 

architectural options for the improved monitoring environment. The initial alternatives can be seen in 

Figure 4. As the alternatives were evaluated, an implicit classification scheme started to appear. It 

became clear that regardless of the implementation standards, the number of transformations and the 

style of transformations would stay the same. The general transformation chain can be seen in Figure 5 

where the arrows represent the services used to move between steps. By chaining the various levels of 

representation together using transformations we can move from the data-centric to the information- 

centric viewpoint on using these data. This chain is intended to be independent of the languages or 

representations chosen for each phase. This classification can be seen implicitly in several cases, and 

most standards and encodings can be classified according to this scheme.

DATA
SOURCES

DATA
DESCRIPTION
LANGUAGE

CONCEPTUAL
ONTOLOGY

OPERATIONAL
ONTOLOGY

l a n d s c a p e
s im u l a t io n
(ECO-COSM)

STANDARDS

SENSOR

WEB ONTOLOGY 
LANGUAGE 

(OWL)
PROLOG

SEMANTIC DATA 
LANGUAGE 

(SDL)
CLIPS

APPLICATION

REASON

Figure 4 - Initial Monitoring System Design Alternatives
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CONCEPTUAL
ONTOLOGY APPLICATIONDATA SOURCE

DATA
DESCRIPTION
LANGUAGE

OPERATIONAL
ONTOLOGY

Figure 5 - Generalized Transformation Steps to Move from data to information

The ArcHydro system (Maidm ent, 2002) is an example that fits this classification system. ArcHydro 

is a combination of a data model and an associated extension for ESRI's ArcGIS. The extension provides 

a suite of tools that can be used to investigate and work with hydrologic data. The data that are used 

with these tools must be structured in a certain way to allow the tools to 'understand' the structure and 

content of the data. To help achieve this ArcHydro also supplies tools to impose this structure onto 

existing hydrologic databases. The typical workflow for an ArcHydro project is to take ari existing 

database of hydrologic features, apply the data model, and then do analysis. This is analogous to the 

transformation chain presented in this thesis. The initial database plays the role of the Data Source, 

while the database schema acts as the Data Description Language, supplying the individual features that 

will be used for analysis purposes. Once the ArcHydro tools (a Service) have been used to apply the 

ArcHydro data model to the database we now have a database that contains domain-specific 

information and relationships, making the jump from a Data Description Language (the relational 

database model, the database schema, and any associated GIS metadata) to an Ontology (the newly 

formatted database). The ArcHydro data model acts as the Conceptual Ontology while the database 

itself is the Operational Ontology that allows the domain-specific analysis tools to be used on the 

information within them.

As shown in Figures 4 and 5, a general transformation process is the target with replaceable 

processes to target specific representations at each stage. For the purpose of demonstration in the 

scope of this thesis, one representation was chosen for each stage. To determine the appropriate path 

for the transformations to take, it was necessary to see how each transformation would be achieved and 

what the benefits and detriments of each step would be. Once that information was recorded, the 

appropriate transformation path would be clearer. The first decision that had to be made was the 

target application that would be used for the monitoring environment, as the representations chosen 

must ultimately lead to an encoding that is compatible with this environment. The REASON engine 

(Rozic, 2006) has proved successful in the past for the types of monitoring problems that this engine 

wished to examine (Hutchinson et a!., 2007; McCarthy et a!., 2007). REASON requires that CLIPS is used
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for representation of the final (operational) ontology and sensor data, and since CLIPS is not a well- 

known language, this may become a barrier for some uses of the system. Alternatively, Prolog is a 

better known rule-based programming environment, and is more likely to be familiar to a developer.

The disadvantage to Prolog in this scenario, however, was the lack of an existing decision support engine 

to feed the information to. Ultimately the familiarity of Prolog was sacrificed in order to reuse an 

existing decision support engine that had proved useful in the past. This meant that CLIPS would be 

used as our operational ontology representation, and that REASON would be used as the application.

The service for bringing the CLIPS data into REASON is ArcAgents (Ball and Harrap, described in Rozic 

2006).

Once CLIPS was chosen as the operational ontology representation, the next step was to determine 

if OWL or SDL (Semantic Data Language) would be used as the conceptual ontology representation.

Here, the advantages of OWL clearly outweighed those of SDL. OWL is a well-known ontology 

implementation language, meaning that those who wished to use the data in their own monitoring 

application that is not based on CLIPS would have an easier time integrating the data into their workflow  

using a reasoner such as Pellet or FaCT++. It would be easier for them to find support tools and 

conversion tools to enable this transformation, and if a tool didn't exist it would be easier to develop 

since OWL is XML-based and there are a plethora of XML parsers in existence. SDL was developed more 

specifically for landscapes and spatial data, so in that regard it is slightly better suited, but its lack of 

exposure makes it less likely that someone will want to use the data. Also, SDL works with a concept 

compiler that takes the SDL statements and produces corresponding Prolog code. Since CLIPS was our 

target operational ontology language a new concept compiler would need to be written to output CLIPS 

code. Alternatively, the open-source Protege ontology editor has the ability to work with both CLIPS 

code and OWL documents, so it was an easier task to automate this conversion using Protege libraries 

than to build a concept compiler from scratch.

There were no data description language alternatives to the OGC encodings that were strongly 

considered since these encodings represented exactly what was needed from a data description 

language. The OGC Sensor W eb Enablement (SWE) suite of standards is quickly becoming the de facto 

standard for geospatial and sensor web data, making it a good target for wide use. Further, they are 

geared towards the representation of sensor data and sensor descriptions, something that was very
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desirable since those are precisely the data we wished to represent. The transformation from the OGC 

encodings into OWL is an XML to XML transformation, a transformation paradigm that is well supported.

Since either a landscape simulation or a sensor database could be used to generate the OGC 

documents, the choice of which to use was made based on ease of implementation. Since an existing 

SOS Server implementation is freely available from 52° North, it was used to implement the sensor 

database. It would also be possible to generate the SensorML and/or O&M  documents from the ECO- 

COSM (Graniero and Robinson, 2006) simulation framework; however this would have been more time- 

consuming since appropriate data-drivers would need to be written, and example simulations models 

created. It would be very beneficial for this functionality to be added to ECO-COSM as it would allow 

landscape simulations to be tied directly into this workflow with almost no modification upstream.

3.8. D o c u m e n t  C o n v e r s i o n  C h a i n  I m p l e m e n t a t i o n

To execute this chain of transformations, a series of services must be used to move between the 

steps. The services are indicated in Figure 6 as callout boxes. The retrieval and storage of the sensor 

data and sensor descriptions are done through a Sensor Observation Service database utilizing the 

predefined messages that an SOS provides to store and retrieve sensor descriptions and observations. 

The perspectives on how an SOS functions from both the sensor data producer and consumer 

perspective are shown in Figure 7. The sensor data producer must register its sensors with an SOS and 

make their details available. It can then insert observations into the SOS that correspond to the sensors 

that have been registered. The sensor data consumer uses whatever methods are made available by 

the SOS to discover the data stored within, and based on that it can retrieve sensor metadata and 

observations and use them as needed.

sos
DATABASE

— E D XSLT Java/Protege ArcAgents

OWL REASONCUPSSENSORML
O&M

Figure 6 - Transformation steps to move from SOS data to CLIPS data
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This architecture is used to provide the SensorML and O&M  documents from the SOS to begin the 

conversion process. These documents are then converted into OWL and aligned to the ontology 

developed specifically for this engine (see Chapter 4). When the data are aligned with the ontology it 

can then be understood by a reasoning system. At first glance, it appears that the use of OWL as an 

intermediate step is excessive and without merit. However, to move from a basic data encoding such as 

those provided by the OGC into an ontological structure which is ready to be reasoned upon requires a 

great deal of change to both the structure and the content of the documents. Converting the 

documents to OWL first allows our documents to take on an ontological structure while still remaining in 

an XML-based syntax. Since most (but not all) concepts in OWL have an equivalent in CLIPS, the task of 

converting from one syntax (XML) to another (a CLIPS knowledge base) is much simpler since the 

restructuring has already been handled by the first conversion. There are some concepts in OWL that 

the version of CLIPS ArcAgents is based on does not support, such as constraints on the cardinality and 

ranges of relationships. The use of OWL validation lets us know that our CLIPS code will conform to our 

ontology even though the constraints cannot be explicitly enforced in CLIPS.

Start

Discover
Services

Discover
Observations

Get Sensor 
Metadata

Get
Observations

Start

Discover
Services

Insert New 
Sensor

Insert New 
Observation

Figure 7 - SOS Operations Perspective for Sensor Data Consumer (Left) and Producer (Right) -  Reproduced from Na

and Priest (2006)
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This two-step process gives more opportunity in a generalized workflow to move between a Data 

Description Language and an Operational Ontology that have considerably more difficult translations 

than from an SOS to OWL and then CLIPS.

The specifics of how each Service is used to perform each conversion are detailed in the following 

sections. The conversions were implemented as separate tools, all of which can be controlled and 

chained together from the monitoring environment. This automated transformation ontologizes the 

base OGC data and enables reasoning to be done on them.

3.9. SensorML/O&M TO OWL

To move from strictly data-centric encodings such as SensorML and O & M  into an information- 

centric encoding such as OWL, we must map the concepts in our data-centric encodings to concepts in 

our ontology. Once the mapping from one encoding to another has been conceptualized, it can then be 

formalized through the development of a conversion tool.

When moving from one XML-based encoding to another, there are typically two technologies which 

are used. The first is XQuery21, which is an SQL-like language used primarily to navigate an XML 

document and extracting pertinent information. The second is XSLT (extensible Stylesheet Language 

Transformation)22. XSLT was created initially to change XML into XHTML, though it has since expanded 

its usage to any general XML-to-XML conversions. Both technologies were considered, however XSLT 

was deemed more appropriate for this task since it is better suited to convert entire XML documents.

Conversion of documents using XSLT is based on the use of templates, an idea which draws on the 

roots of XSLT as a language to render XML data in a format suitable for web browsers. Templates are 

matched against the various elements of a source document and, depending on what those elements 

are, appropriate action is taken. In the case of converting the OGC-based encodings to OWL, templates 

were created to match the various concepts defined in the specifications of the OGC encodings 

regarding sensors and their measurements that output the OWL code which corresponded to those 

concepts. In general, XSLT templates take the following form:

21 http://www.w3.org/TR/xquery/ Last Accessed August 20, 2007
22 http://www.w3.org/TR/xslt/ Last Accessed August 20, 2007
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<xsl:template nam e="templateNam e" match="xpath-expression"> 

...output...

</xsl:template>

Listing 1 - XSLT Template Structure

Each template has associated with it a name attribute and/or a match attribute. The name attribute 

allows other templates to call the template by name. The match attribute takes an XPath23 expression, 

which is a standard way of navigating the various nodes of an XML document. Templates which make 

use of the match attribute will search the source document for nodes which match the expression 

given. If a matching node is found, the template is called and executed. If not, then the template is 

ignored. The use of the name attribute is useful when we have a clearly defined set of steps which must 

be followed in the stylesheet, allowing these templates to be called under specific circumstances, much 

the same way that methods and functions are used in typical programming languages. However, the 

problem of converting these sensor descriptions and observations into OWL is much more dynamic, and 

since the way in which the document is handled depends largely on its contents, we must make use of 

the matching functionality provided by XSLT.

Listing 2 shows an example tem plate that takes what is typically the root element of a SensorML 

document (System) and converts it into a concept in the ontology. Most directives in the template are 

prefixed with a namespace. This namespace prefix indicates what namespace the directive comes from, 

and thus how it should be interpreted. In this template, lines prefixed with xsl: come from the XSLT 

namespace and teil the XSLT processor, Saxon24, to treat the directive as an XSLT command. The memf: 

prefix is used to indicate the statements that will be printed to the output OWL document as all 

statements in the OWL ontology are in the m em f namespace, representing those created by MEMF Lab, 

our research group. The SensML: prefix is used to match against the input document and to find 

SensorML concepts in that document.

23 http://www.w3.org/TR/xpath/ Last Accessed August 20, 2007
24 http://saxon.sourceforge.net/ Last Accessed August 27, 2007
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<xsl:tem plate nam e="System " m atch="SensML:System ">

<xsl:choose>
<xsl:when test="current()//S ensM L:positions">

<m em f:Station>
<xsl:for-each se lec t="cu rren t()/*">

<xsl:apply-tem plates select="current()"/>  

</xsl:for-each>
< /m em f:S tation >

< /xs l:w hen>
<xsl:otherwise>

<m em f:Sensor>
<xsl:for-each se lec t="cu rren t()/*">

<xsl:apply-tem plates se lect="current()"/>  

</xsl:for-each>
</m em f:S ensor>

</xsl:otherw ise>
</xsl:choose>

</xs l:tem plate>

Listing 2 - Sample Conversion Template

The first line of the tem plate starts the template and defines the two ways in which a template may 

be called: by name and by match pattern. The name is used when other templates wish to call this 

template like a function. The template is also called when a node in the input document matches the 

match pattern. In this case the tem plate will be called when a <System> tag in the SensML namespace is 

encountered in the input document. The next line is an <xsl:choose> statement, similar to a switch or 

case statement in common programming languages. This statement directs the XSLT processor to look 

at the choices it presents and evaluate them in order. If the first choice evaluates to being true, it is 

executed and the remaining statements in the choose block are ignored. If the first statement is not 

true then the rest of the statements are evaluated the same way until a true statement is found. In 

XSLT, this is done using the <xsl:when> directive. The <xs\:when> directive shown tells the XSLT 

processor to execute its containing code if a given test (current()//SensML:positions) is passed. In this 

case the test is to see if the current node in the input document (the <System> node) has a child node of 

type <positions>. If it does, the code in the xs!:when block is executed. In the SensorML specification, a 

System can represent a sensor or an actual measuring station installed in the field. In the sensor 

ontology that was developed, these are different concepts, and need to be represented as such. They 

are differentiated by the tem plate by looking for a position. If no position is given in the input 

document, then it is interpreted as a Sensor, whereas if a position is given it is represented as a Station, 

meaning that the sensor is installed at a given location in the field. So when the SensorML document
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contains a statement that gives the position of the System, the code within the when directive is 

executed. First the statement <memf:Station> is printed to the output document, then the XSLT 

processor is told that for each child node of the <System> node (the current node), apply the templates  

to that node, and if a match is found the template will be executed. The results of the execution will be 

output within the <memf:Station> block. This process continues recursively until there are no more 

nodes left to match on. At that point, the </memf:Station> statement is printed to the OWL document 

to signify the end of that particular Station. Because nodes are addressed in the order they appear in 

the input document, any nodes that are children to the <System> node will be handled and have their 

output printed within the <memf:Station> block.

If a situation arises where the <System> node does not contain a child node describing its position, 

then the <xsl:when> statement fails and the next alternative is tested. In this case there are no 

<xsl:when> statements left to test. When this happens, two choices are possible. The first is tha t the 

<xsl:choose> statement is terminated. The second occurs if an <xsl:otherwise> element has been 

defined at the end of the <xsl:choose> statement. The <xsl:otherwise> element defines what actions 

should be taken if none of the <xsl:when> tests evaluate to true. In this template, if the single 

<xsl:when> statement fails, then the <xsl:otherwise> statement directs the XSLT processor to print 

<memf:Sensor> to the output OWL document and continue searching the child nodes in the same 

manner as the <xsl:when> block would. W hat this ultimately means is that the template examined the 

contents of the input document and, based on the contents of that document (the existence o f a 

<System> tag and the possible existence of a <positions> tag), took an action (printing a statem ent to 

the output document). This is the structure that the vast majority of the templates took, though many 

are simpler than this as there is no decision logic involved. This particular template shows that not only 

is the information restructured as it is converted from the data-centric to the information-centric 

perspective, it can also be enriched and clarified so that the meaning associated with the data is clearer 

when they are consumed.

Initially, this conversion step was divided into two separate tools: a SensorML-to-OWL converter 

which would handle sensor descriptions, and an O&M-to-OW L converter to handle sensor observations. 

The concepts in SensorML and O &M  were mapped to those found in the ontology, and templates were 

created which echoed this mapping. It was quickly discovered, however, that there were several 

concepts that were used by both SensorML and O&M . For example, both SensorML and O &M  use the
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Geography Markup Language (GML) (Cox et a i,  2004) to describe basic geographic concepts such as 

position and time. Also, both SensorML and O&M make use of common encodings for various data 

types which are managed by the OGC's Sensor Web Enablement Working Group (Botts et al., 2006). 

Because of the potential for overlap and duplication of work, it was decided that instead of two  

conversion utilities, a single conversion utility which handled not only SensorML and O&M  data but also 

many of the shared encodings such as GML and SWE was needed. This conversion tool was created 

using a series of XSLT stylesheets, each focusing on a given encoding. These stylesheets are then 

imported into a master stylesheet which is the starting point for any transformation.

The stylesheets for the different standards are implemented to varying degrees of detail. O&M , 

SensorML, and SWE are all relatively well detailed, the key concepts of space and tim e have been 

implemented from GML, and the XST (an XML schema that handles set theory) and SA (an XML schema 

that handles sampling) encodings have one or two common concepts implemented.

The conversion tool makes great use of the nested nature of XML in deciding how to  proceed with 

its conversion task. It essentially walks the tree of the input document in a recursive manner, starting 

with the root node. This is made possible by the ability to match based on patterns. Almost the entire 

engine is written using these templates, with the exception of the master stylesheet (shown in Listing 3).

This stylesheet begins by defining its namespace prefixes and the output method to be used by the 

document (in this case, the stylesheet will output XML). Following that is a series of <xsl:include> 

statements which tells the XSLT processor to include all of the templates from the indicated stylesheets 

into this transformation, effectively creating one large stylesheet from several smaller ones. The benefit 

to this approach is that it is modular, and could be modified to only include the stylesheets that are 

needed for the conversion or to add additional stylesheets without interfering with the existing logic. 

After the include directives, a single template is used to launch the conversion. This template matches 

on the first node (the root node, indicated by the " /") of the input document. It then writes several 

statements to the top of the new document. The first set indicate that this new document will be a 

Resource Description Framework (RDF) document (OWL is actually an extension of RDF) and specifies 

the resource that can be used to see what the document is intending to store. The second set indicates 

that the document is to import an OWL document located at the indicated path and that this should
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serve as the base ontology for the resulting document. The imported document contains the ontology, 

and the result of the conversion will be instances of that ontology.

When combined this will represent the complete knowledge base with respect to the given 

sensor(s) or observation(s). The final directive tells the XSLT processor to begin matching templates by 

using the first node it sees (indicated by the parameter), this node will typically be a <System> node 

for a SensorML document or some type of Observation or Measurement, or a collection of these in the 

case of an O&M document. Once the first node is matched, that node's tem plate will match on its child 

nodes recursively until all nodes have been examined. The conversion results in an OWL document that 

contains ontology instances.

<xsl:stylesheet version="2.0" xm lns:SensML="h ttp : //w w w .opengis.net/sensorM L" 
xm lns:m em f="h ttp ://m a tr ix .m e m f.u w in d s o r.c a /o n t/m e m f/" xmlns:xsl="h ttp ://w w w .w 3.o rg /1 999 /X S L /T iran sfo rm " 
xm lns :xs -’h ttp ://w w w .w 3 .o rg /2 0 0 1 /X M L S c h e m a " xm lns:fn="h ttp ://w w w .w 3 .o rg /2 0 0 5 /x p a th -fu n c tio n s " 
xm lns:rdf="h ttp ://w w w .w 3 .o rg /1 9 9 9 /0 2 /2 2 -rd f-s y n ta x -n s # " xmlns:xsi="h ttp ://w w w .w 3 .o rg /2 001 /X M L S ch em a -in s ta n ce" 

xm ln s :o w l-’h t tp : //w w w .w 3 .o rg /2 0 0 2 /0 7 /o w l# " xm lns:udt="h ttp ://m a trix .m e m f.u w in d s o r.c a /o n t/u d t# ">
<xsl:output m ethod="xm l" version="1.0" encoding="UTF-8" indent="yes"/>

<xsl:include href="sm l2ow l.xslt"/>
<xsl:include href="sw e2ow l.xs lt"/>
<xsl:include href="om 2ow l.xs lt"/>
<xsl:include href="gm l2ow l.xslt"/>

<xsl:include href="sa2ow l.xslt"/>
<xsl:include href="xst2ow l.xslt"/>

<xsl:tem plate m atch ="/">
<rdf:RDF>

<rdf d e scrip tio n  rdf:about="h ttp ://m atrix .m em f.u w in d so r.ca /o n t/S en so rW eb .o w l">
<rdf:type rdf:resource="h ttp ://w w w .w 3 .o rg /2 0 0 2 /0 7 /o w l# O n to lo g y " />

</rdf:D escrip tion>
<o w l:0n to lo g y  rdf:about="">

<ow l:im ports rdf:resource="h ttp ://m atrix .m em f.u w in d so r.ca /o n t/S en s o rW e b .o w l"/> 
< /ow l:O nto logy>
<xsl:apply-tem plates se lec t="*" />

</rdf:RDF>
< /xs l:tem plate>

</xsl:stylesheet>

Listing 3 - Master Stylesheet
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3.10. OWL.TOCLIPS

Once an OWL document is created and validated, it is possible to convert it into CLIPS code, making 

it ready for our reasoning system. This conversion was automated through the use of Protege25, an 

open source tool developed at Stanford University which is used for the development of ontologies. 

Protege stores its ontologies in a file form at modelled after CLIPS, though with a few small differences. 

Protege also provides support for OWL ontologies, and can export them into its CLIPS-like format. Since 

the Protege project is open source, a Java program was created for this thesis which would load an OWL 

document into Protege and export it into the CLIPS-style format. Once the documents are created, 

some post-processing is applied that makes the documents conform to the CLIPS syntax, making it easier 

to load the files into our reasoning engine using ArcAgents, as well as to make them  more easily 

readable.

The CLIPS Object Oriented Language (COOL) is used to store the ontology and its associated 

instances. The object-oriented approach blends well with the hierarchical approach used in the 

ontology. The concepts in the ontology are represented as classes, and the relationships are 

represented as slots of the classes. The facets of the slots are represented using CLIPS constructs which 

place restrictions on the slots. Listing 4 shows two classes from the ontology represented as CLIPS code. 

CLIPS represents all of its statements such as facts, rules, and classes within brackets. An opening 

parenthesis signifies the beginning of a statement, and a matching closing parenthesis signifies the end 

of that statement. Statements are typically nested within other statements. Both of the examples in 

Listing 4 are classes, as signified by the defclass keyword. Following that is the name of the class and a 

series of statements about that class. For example, the memf:Sensor class has three types of statements 

which describe it. The first statement is (is-a memf:lnstrument). This is how inheritance is specified in 

CLIPS, meaning that any member of the memf:Sensor class is also a member of the memf:lnstrument 

class (defined elsewhere). Another way to describe this is to say that a Sensor "inherits" its attributes 

from an Instrument, meaning that a Sensor is a specific kind of Instrument that has all of the properties 

an Instrument has, plus some of its own properties. The Station class contains a similar statement, (is-a 

m em f -.Sensor), stating that a Station inherits attributes from a Sensor, or that a Station is a specific type 

of Sensor. Inheritance propagates from one class to the next in CLIPS, so since a Station is a Sensor, and 

a Sensor is an Instrument, therefore a Station is also an Instrument.

25 http://protege.stanford.edu
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(defclass m emf:Sensor (defclass m em f:Station

(is-a m em f:lnstrum ent) (is-a m emf:Sensor)
(role concrete) (role concrete)
(m ultislot rdf:type (m ultislot rdfrtype

(type SYMBOL) (type SYMBOL)

(create-accessor read -w rite)) (create-accessor read -w rite))

(m ultislot m em fihasConnections (m ultislot m emf:hasSensor

(type INSTANCE) (type INSTANCE)

(allowed-classes m em f:Connections) (allowed-classes m emf:Sensor)
(create-accessor read -w rite)) (create-accessor read -w rite))

(m ultislot memf:hasClassification (m ultislot m em f:hasSam plePosition
(type INSTANCE) (type INSTANCE)
(allowed-classes memf:Classification) (allowed-classes m em f:Sam plePosition

(create-accessor read -w rite)) (create-accessor read -w rite))

(m ultislot m em f:isFeatureO fln terestO f (m ultislot m em fihostsProcedure

(type INSTANCE) (type INSTANCE)

(allowed-classes m em f:Result) (allowed-classes m em f:Procedure)
(create-accessor read -w rite)) (create-accessor read -w rite))

(m ultislot m emf:hasProcesses (m ultislot m em f:id
(type INSTANCE) (type STRING)
(allowed-classes memf:Processes) (create-accessor read -w rite )))

(create-accessor read -w rite )))

Listing 4 - CLIPS representation of Sensor and Station classes

The next statement about both classes is (role concrete). This specifies that the classes are concrete 

as opposed to abstract. A concrete class is one which is able to have instances (i.e. specific usable 

objects that conform to the class definition), while an abstract class cannot have instances. Aside from  

some high-level classes, all of the classes in the sensor ontology are concrete. The remaining statements 

that describe the classes take the form of multislots. In CLIPS, a slot is an attribute that a class can have. 

For instance, a class "Student" would have slots such as "Name", "Age", and "Grade". In the case of the 

sensor ontology, these slots represent the relationships that the class can have with other classes. For 

example, the Station class has the slot hasSensor. This is the name of a relationship defined in the 

sensor ontology which specifies that a Station has a Sensor associated with it. The term multislot simply 

means that the slot can hold more than one value of the specified type. This slot also contains 

statements that describe it. These are equivalent to the facets of the ontology. The hasSensor 

relationship has two facets. The first, (type INSTANCE), specifies that the value of this slot must be an 

instance of some class as opposed to a primitive data type such as a string or an integer. The second, 

(allowed-classes memf-.Sensor), specifies that the instance must be of type memf:Sensor. This facet 

helps validate the contents of the ontology, ensuring that it is structured properly. If something other 

than a Sensor is placed in this slot the ontology will be marked as invalid upon loading. The final
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assertion about the hasSensor slot is the statement (create-accessor read-write). This statement tells 

CLIPS to define message-handlers that can set or retrieve the value of the slot during program 

execution. In this way all of the relationships and classes in the OWL ontology are defined and 

organized.

This class hierarchy definition is used to give structure to the instances which represent the actual 

objects of interest, in this case sensors and observations. It describes how sensors and observations are 

structured, what kind of properties they have, and what the relationships are between them. The 

instances of the hierarchy will represent individual sensors and observations that are governed by this 

hierarchy. Listing 5 shows an example of a Station instance as part of the CLIPS make-instance function.

(make-instance [@ 1179243727343_:A0] of memf:Station

(memf:hasClassification [@ 1179243727343_:A11])
(memf:hasConnections [@1179243727343_:A73])
(memf:hasldentification [@ 1179243727343_:A1])
(memf:haslnputs [@ 1179243727343_:A24])
(memf:hasOutputs [@1179243727343_:A28])
(memf:hasProcesses [@ 1179243727343_:A35])
(memf:hasReferenceFrame [@ 1179243727343_:A21])
(memf:hasSamplePosition [@ 1179243727343_:A71])

, (memf:hostsProcedure [@ 1179243727343_:A74])
(rdf:type memf:Station))

Listing 5 - An instance of the Station class

When this function is loaded, the instance will be created and added to the knowledge base. This 

funciton will direct CLIPS to create an instance of the class memfrStation. The [@ 1179243727343_:A0] 

label is a unique name that is used internally to differentiate and keep track of individual instances. 

CLIPS provides functions to work with these data so that the user never has to handle these labels. The 

remaining lines specify the slots that are defined for this Station, each of which are filled with an 

instance of the appropriate class. For example, the (memf:hasSamplePosition

[@ 1179243727343_:A71]) statement indicates that this station has a SamplePosition that is specified by 

the instance with the label [@ 1179243727343_:A71], This instance is shown in Listing 6 with its own 

slots that define the coordinate frame, units of measurement, and the coordinates of the Station.

For a typical project, hundreds of instances of various classes are created to represent sensors and

observations as well as their properties. The relationships between the various instances are
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automatically generated and maintained because of the class-based ontology that provides the context 

for the information contained in the instances.

(make-instance [@ 1179243727343_:A71] of memfiSamplePosition

(memf:hasLocalCoordinateFrame [@1179243727343_:A72])
(memf:x "934.538")
(memf:XUOM "urn:ogc:def:uom:OGC:1.0.30:m")
(memf:y "81.102")
(memf:YUOM "urn:ogc:def:uom:OGC:1.0.30:m")
(rdfitype memfiSamplePosition))

Listing 6 - SamptePosition CLIPS Instance

CLIPS provides several functions which are intended to work on COOL structures, which enables the 

navigation and usage of these data and ensures that the data will be usable by an expert system. The 

potential usage of the data is broad and is explained and illustrated throughout Chapters 5 and 6.

3.11. S e m a n t i c  R e p a ir

Not only does this ontological structure allow us to validate our results, it also allows us to perform

some tests on the semantic validity of the data; we can then ensure that pertinent information is

expressed in the data. This can be done in a step that detects "semantic errors" and repairs the

semantics of the document, providing an extra layer of quality control on the document that simple

validation does not. This repair step requires reasoning on the incoming data along with related data

and the ontology's conceptual structure to try and detect any inconsistencies or problems that may

arise. Whenever changes in representations like these are undertaken there is a possibility of data loss

or inconsistency (Gannod and Cheng, 1999). To help detect when this has happened we can validate the

data against the ontology, but we can also use the reasoning process to examine the data and look for

semantic errors beyond those enforced by the ontology. For example, suppose we have an O&M

document representing a set of observations made by a sensor as a time series, and that one of the

measurements is missing a time stamp. This may be legal according to the ontology (which specifies

that a measurement can have a time, not that it must have a time), but not having a time associated

with the measurement makes the measurement far less useful to a real-time monitoring problem.

However, with the use of reasoning tools this problem can be ameliorated. A reasoning tool can be

used to flag these kinds of errors and force the user to deal with them or at least inform them of the
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problem. Depending on the severity of the error the reasoner could decide whether the appropriate 

course of action is to flag the error, hold it in a cache until it has been dealt with, or try to fix it based on 

other available data. Using the time series example, the reasoner may be able to infer what the missing 

tim e stamp is based on the interval of other similar measurements. It may look at recent measurements 

from that sensor and see what the measurement interval has been and make an estimate based on any 

gaps in the measurement record. Alternatively it could simply look at the sequence of the 

measurements and note the time stamps of the measurements made before and after the affected 

record and then mark that the measurement was made between those two times. This can be done 

either by setting a specific value, or instance the midpoint of the time range, or by setting a range 

bounded by the times on the measurements found before and after. In this way reasoning can be used 

to repair and enrich the content of the data by detecting errors of omission and commission as well as 

other more complex and application-specific problems.

3 .1 2 .  S u m m a r y

This chapter has shown how the use of targeted knowledge representation standards for specific 

tasks can ensure that the meaning of information can be captured in a form that enables reasoning and 

knowledge-based analysis of sensor data. This is achieved through a carefully constructed set of 

transformations that take data-centric representations of data such as basic XML structures and 

database records and transform them into an ontological structure for use within a knowledge-oriented 

analysis system. The next chapter will explain how the ontology used to provide the context for the 

information was developed and presents a methodology that can be used for other similar attempts to 

build an ontology.
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4. Ontology Development

4 .1 .  M e t h o d o l o g y

Development of a thorough sensor ontology to be used within REASON was fundamental in 

increasing the reasoning capabilities of the system. The sensor ontology built in the initial system 

expressed the most basic concepts that were necessary to operate and demonstrate the system. The 

new sensor ontology expresses these concepts along with much more contextual information about 

how a sensor behaves, the various properties it has, how it makes measurements, what types of 

measurements it makes, and how all of these concepts are related. This allows the reasoning system (or 

an expert user) to have much more knowledge about how their particular sensor network is operating, 

providing context to the measurements it produces.

Many methodologies for the development of domain-specific ontologies exist (e.g. Sure et o l, 2002; 

Lambrix et al., 2003). There are also methodologies that have been developed that are less domain- 

specific (e.g. Lopez e ta !., 1999). Based on a hybrid approach from Mizen e ta l. (2005) (Steps 1, 2, 3, 5, 9, 

and 10 as shown below) and Noy and McGuinness (2001) (Steps 1, 2, 4, 6, 8 ,1 1  as shown below), as well 

as some additional steps, the following methodology was developed to create the sensor ontology.

Phase 1 details creation of the "pencil and paper" version of the ontology, and Phase 2 details the 

formal computer implementation of that ontology.

Phase 1 of Ontology Development Process

1) Create a set o f competency questions. These questions place demands on the ontology. They 

represent the requirements that the ontology needs to satisfy. These requirements are 

represented as questions that can, and likely will, be asked of the ontology. (Gruninger and Fox, 

1995)

2) Scope the ontology. Determine the domain, purpose, and potential users of the ontology. This 

scope should be kept in mind during the entire creation process.

3) Collect data about the domain. Identify any documentation that captures the knowledge that 

needs to be in the ontology (keeping in mind the scope).

4) Enumerate im portant terms. Compile a list of all terms and sentences we would like to either 

make statements about or explain to a user. For all terms consider what properties they have 

and what needs to be said about them.
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5) Populate a knowledge glossary. Using the list of important terms and the semi-structured 

sentences, build a knowledge glossary. The knowledge glossary should capture the reasoning 

behind the selection of the various terms, the properties of those terms, and any description of 

the terms or assumptions that are made about them.

6) Examine existing ontologies. Explore other ontologies in the domain to see if they meet the 

requirements defined in the previous steps, or if they can be extended to do so. If so, decide if it 

is possible to reuse and/or extend the existing ontologies.

7) Choose language(s) o f implementation. Note any restrictions the chosen language(s) may place 

on the ontology's design. While the ontology is initially created using a "pencil and paper" style, 

the representation used to implement the operational ontology should be decided on before the 

creation of the actual ontology. Ensure that any restrictions placed on the ontology by the 

chosen language are acceptable both now and in the future of the ontology, and insure that it 

can represent any information the ontology may need.

8) Build the ontology.

•  Define classes and class hierarchy: use the knowledge glossary to find terms which describe

objects having independent existence rather than terms that describe these objects. These 

terms become classes in the ontology and will become anchors in the class hierarchy. 

Organize the classes into a hierarchical taxonomy by asking if, by being an instance of one

class, the object will necessarily be an instance of some other class.

•  Define the properties of the classes (slots): keep in mind that there are different types of 

properties, such as intrinsic properties, extrinsic properties, parts, and relationships to other 

individuals. The terms remaining in the knowledge glossary after the previous step (defining 

classes) are likely to be properties.

•  Define the facets of the slots: Slots can have different facets describing the value type, 

allowed values, the number of the values (cardinality), and other features of or restrictions 

on a slot's value.

9) Evaluate the conceptual ontology. Check whether all information captured in the glossary has

been captured in the ontology. Check the ontology for: logical consistency (cycles, repetition, 

omission); conceptual accuracy (with respect to the domain); minimal ontological commitment 

(ontology has been limited to the original scope); information loss being recorded; and 

acceptable answers to competency questions.
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10) Document the conceptual model. Conceptual ontology documentation must include the 

knowledge glossary (from Step 5), the concept and relationship networks (from Step 8), recorded 

information loss, and any defined rules and assumptions made throughout the modelling 

process.

11) Create instances to test the ontology. Instances should be created in order to test the ontology 

and its effectiveness. This will ensure that all information that was intended for representation 

can actually be represented.

Phase 2 of Ontology Development Process

12) Implement the ontology in the chosen language. The ontology should be implemented using the 

language(s) identified in Step 7 to assure that the design does indeed work for the given 

language.

13) Use instances to test the implemented ontology. Ensure that the implemented ontology can 

handle the instances created in Step 11. If changes are needed to the ontology, they should be 

performed iteratively. Evaluation should occur after each iteration, until the ontology satisfies 

all requirements laid out in previous steps. This step is only finished when these requirements 

are met or a decision is made to ignore those requirements.

14) Document the ontology. Ensure documentation is written completely and clearly to enable 

reuse. Perform a final evaluation cycle on the implemented ontology and assure that the results 

match those from Step 11. Document any changes in scope, requirements, or any other 

pertinent information.

4 .2 .  D e v e l o p m e n t

This section will explain how each of the steps from Section 4.1 was carried out during the 

development of the sensor ontology. It also details what the results of the steps were, any problems 

that were encountered, and any other information that may be relevant to those who want to apply this 

methodology to their own ontology development problem. For the purposes of brevity, the complete 

results of each step have been made available on the companion CD for this thesis.

4.2.1 Competency Questions

A set of competency questions was created which would be used to evaluate the ontology at the 

end of the design cycle. These questions are essentially tests that the ontology must pass in order to be
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considered useful for our purposes. The questions are broken down into two groups, those regarding 

the evaluation of the ontology and its expressiveness, and those related to more domain-specific needs.

Ontology Evaluation Questions

•  Is there a strong distinction between sensors and objects which are not sensors?

•  Is there a distinction between sensors and transducers?

•  Are the terms used for classes and properties the same as those that would be used by experts 
in the field?

•  Do the relationship names accurately describe the relationships between objects?

•  Does the ontology sufficiently describe the domain?

•  Can any redundancy be aggregated?

Domain-specific Questions

•  Can a sensor's suitability for a certain purpose be determined with the ontology?

•  Can improper use of a sensor be detected?

•  Can any sensor be represented as an instance of the ontology without losing any key
information?

4.2.2 Scope

The scope of the ontology encompasses four factors: the purpose of the ontology, a definition of 

what an ontology is so that it can be used to guide development, the domain the ontology will be used 

in, and an idea of who will use and maintain the ontology. The intended purpose of this ontology is to 

provide the information necessary for high-level reasoning on geotechnical (and other) sensor data to 

be performed by a spatial decision support system. The intended domain of use is slope hazard 

monitoring with geotechnical sensors, but should be broad enough to encompass all in situ sensors. The 

ontology will be used by geotechnical engineers who wish to monitor slopes and maintained by domain 

experts and those well versed in knowledge representation. For the purposes of this development 

effort an ontology will be defined as a specification o f the important concepts and relationships between 

these concepts within a particular domain.

4.2.3 Collect Data about Domain
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The data collected about the domain were collected from the OGC's SensorML and Observations 

and Measurements specifications. As these specifications are intended to specify details of sensors and 

their measurements, they provided excellent operational descriptions of these topics. Dunnicliff (1993) 

was used to gather information on geotechnical instrumentation, including the concepts of how 

geotechnical instrumentation is utilized in typical monitoring scenarios, and the common types of 

geotechnical sensors and transducers.

4.2.4 Enumerate Im portant Terms

Based on the information collected in Step 3, a list of almost 600 terms was created, These terms 

were chosen because they represent the important concepts and relationships that needled to be 

represented in the ontology. The documentation resources were scoured for relevant terms and 

concepts, building a foundation for the knowledge that would need to be captured in the ontology. At 

this point in the development process it was important to capture all knowledge which may be relevant. 

The later steps in the ontology development process would be used to pare down the knowledge to the 

most important concepts and to eliminate any duplication in concepts.

4.2.5 Populate Knowledge Glossary

From the list generated in the previous step, a knowledge glossary was created. This glossary is 

used to enumerate and organize the terms from the list into a consistent format. The information 

recorded about each term was a list of synonyms that were found in the original list or any other 

synonyms that may have been missed; a natural language definition such as one that would be found in 

a dictionary; the part of speech of the term (noun, phrase, or verb); the anticipated usage in the 

ontology (concept, relationship, or characteristic); the importance of the term  (core/secondary); 

characteristics that the term may possess (for core concepts only); the value and units associated with 

the term (if applicable); and any rules, constraints, or assumptions that needed to be recorded. This 

glossary formed the basis of the first draft of the ontology.

A subset of this glossary can be seen in Figure 8. The glossary was organized into a spreadsheet and 

was set up with filters to aid in rapid visualization of relevant data. This step may take several days to 

complete based on the size of the ontology and the level of detail required. This glossary will typically
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contain more information than the final ontology will as similar concepts are merged and less important 

concepts are dropped. The glossary provides the first organized view of all of the collected information.

Term Synonym Term Nature! Language Text Linguistic Conceptual 
Definition Term Ontology

Term
1 y  k . l  I .T . I  k

CoreiSecondary Core Concept 
Characteristics

Value and Rules,
Units Constraints,

and
j | *  | Asaumptiof »

Sensor

Precision

Accuracy

Measurement

Sensor Type

Geotechnical 
Instrument (for 
the purposes of 
the ontology; 
"'sensor* is 
typciaHy a more 
broad term)

Reliability,
Repeatability

Error

Observation

A physical device capable Noun 
of measuring a specific 
phenomenon, consists of 
a transducer, data 
acquisition system, and a 
communication system 
between the two

Concept Core

The extent to which a Noun
measuring procedure 
yields the same results on 
repeated trials
The closeness of a Noun
measurement to the true 
value of the quantity 
measured
A value describing a Noun
certain phenomenon
obtained through
measuring methods
The class of the Noun
instrument, representing
its intended use

Characteristic Secondary

Characteristic Secondary

Concept Core

Characteristic Secondary

is a device, has 
reliability, has 
accuracy, has type, 
has target 
phenomenon, has 
conformance, has 
precision, has 
measurement, has 
resolution, has 
sensitivity, has 
transducer, has input, 
has output, has 
linearity, has maximum 
error, has hysteresis, 
has suitability, has 
data acquisition 
system, has 
communication 
system

Specific to 
individual 
sensor types

± units of 
measurment

± units of 
measurment

has unit of units and
measurement, has value vary
value, has location, based on
has time sensor type

Figure 8 - A subset of the knowledge glossary

4.2.6 Examine Existing Ontologies

Now that there is some idea of the information that needs to be represented in the ontology, a 

thorough examination of existing ontologies can be done. Before this step, exploring the existing 

ontologies could only have resulted in broad comparisons. Once the knowledge glossary is populated, 

though, a detailed comparison can be done to see if any existing ontologies m eet the needs defined by 

the competency questions and the knowledge glossary. An existing ontology developed for sensor 

observations (Probst et al., 2006) was used to provide a base for the new ontology. The decision was 

made to create the sensor portion of the ontology from scratch based on the SensorML specification 

and later merge it with the aforementioned sensor observation ontology that was based on 

Observations and Measurements. Other sensor ontologies were considered, such as OntoSensor
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(Russomanno et a l,  2005), however merging two existing ontologies developed in a disjoint manner and 

for different purposes would have been difficult and much of the ontology would likely have been 

rewritten.

4.2.7  Choose Implementation Languages

For this ontology, several choices of ontology implementation languages were explored. Also, 

because of the need for multiple representation styles for various stages of knowledge (see Chapter 3), 

it was important to identify multiple possibilities for the various stages in the transformation. CLIPS was 

chosen as the operational ontology implementation language because the target application built in 

REASON expects CLIPS code. The conceptual ontology was built in OWL instead of the Semantic Data 

Language because OWL is a more common way of representing ontological information. Also, the 

conversion between OWL and CLIPS could be automated using Protege, and since similar tools exist to 

convert OWL into other formats it became clear that OWL would be the best language to enable sharing 

of data. This also meant that only one conversion tool would need to be built from scratch. The species 

of OWL chosen was OWL-DL. OWL-DL is the middle-tier of the three OWL species, the other two are 

OWL Lite and OWL Full. OWL Lite is a very basic version of OWL that allows minimal expressiveness but 

also minimal computational complexity. OWL Full allows for maximum expressivity, however there is no 

guarantee that an OWL Full ontology will be computationally complete or decidable. This implies that 

queries on an OWL Full document may not return results in a reasonable amount of time, or at all. 

OWL-DL is a blend between the other two species. It guarantees that the ontology will be 

computationally complete and decidable, however it must place some minimal restrictions on the 

ontology to make this claim. In return there is more computational complexity in OWL-DL ontologies 

than in OWL Lite ontologies. In this case the restrictions would not limit the ontology in any way, and so 

OWL-DL was deemed the most appropriate species of OWL to use.

4.2.8 Build the Ontology

The ontology was built initially using pseudo-UML notation to graph the ontology in Microsoft 

Visio26. The initial version of the ontology focused largely on geotechnical sensor types. As other 

related work began to develop further, the focus shifted to a more general ontology with clear places to 

store domain specific knowledge.

26 http://office.microsoft.com/visio/ Last Accessed August 20, 2007
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4.2.9 Evaluate the Conceptual Ontology

After several iterations of refinement, the ontology was deemed to be conceptually accurate and 

logically consistent. This was based on the examination of the ontology and a thorough comparison 

with the original knowledge glossary. It was limited to the initial scope of geotechnical sensors, though 

this scope was later enlarged and generalized.

4.2.10 Document the Conceptual Ontology

All of the documents used in creating the ontology were examined for correctness and accuracy, 

ensuring they documented the ontology that was created and any deviations from the original design of 

the ontology. Since the ontology was built in Visio, it was largely self-documented.

4.2.11 Create Instances to Test Conceptual Ontology

Instances of the ontology were created that represented inclinometers and piezometers. The 

relevant information about these instances was laid out in advance and was then made to fit the 

ontology. All of the information that was considered relevant was able to be placed in the ontology, and 

so the tests were considered successful.

4.2.12 Implement the Ontology

The ontology was implemented using the Protege ontology editor (Figure 9) in the OWL language. 

Protege-OWL27 is a graphical front-end to OWL ontology development that is available as an add-on to 

the Protege Frames28 editor. This editor makes the organization and management of ontologies, 

especially large ones, much simpler than writing XML. The final ontology had almost 200 classes and 

150 relationships, which would have been very difficult to manage strictly using XML. Protege enabled 

both ontology-wide refactoring and simple adjustments to be done with a few  simple commands.

Figure 9 shows Protege being used to edit a relationship of the Sensor class. This illustrates the ease of 

modifying classes and relationships across various classes.

Since OWL is based on the Resource Description Framework (RDF), all of the information in the 

ontologies is represented as triples of subjects, predicates, and objects. The subject is the entity that is

27 http://protege.stanford.edu/plugins/owl/ Last Accessed August 20, 2007
28 http://protege.stanford.edu/overview/protege-frames.html Last Accessed August 20, 2007
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being described, and the predicate expresses some characteristic that the subject has that is described 

by a relationship to the object. The OWL approach dictates that the subject is a class, and that 

predicates are represented as properties of the class. These properties take two forms: Object 

Properties and Datatype Properties. Object properties relate individuals of one class to individuals of 

another class. An example of this would be the relation that a member of the class "Teacher" would be 

related to a member of the class "Student" with the relationship "Teaches", so the triple would be 

"Teacher-Teaches-Student". The second type of property used in OWL relates an individual of a class to 

a typed value such as a string or a number. An example of this type of relationship would be that a 

member of the class "Student" is related to the number "24" using the relationship "Age", so the triple 

would be "Student-Age-24". The only real difference between Object properties and Datatype 

properties is the type of value in the object position.
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51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



OWL properties are not limited to one-to-one relationships. Often a property will have multiple 

classes allowed in the subject and/or object positions. The terminology OWL uses for this is to say that a 

given property has a domain and a range. The domain of a property is the group of classes that are 

allowed to take on the subject position, while the range is the group of classes that may take the object 

position. This restriction on class types makes it possible to validate an ontology to ensure that the 

individuals used in the ontology are organized in a legal manner according to the ontology 

specifications.

4.2.13 Create Instances to Test Implemented Ontology

The instances created in Step 11 were recreated within the Protege Ontology Editor. All of the 

important concepts and properties were able to be represented within the implemented ontology. The 

ontology was passed through an OWL validation application29 that confirmed that the ontology was 

indeed a valid OWL document. Further, it confirmed that the ontology was of the OWL-DL species, 

meaning that it was computationally complete and decidable. This was necessary to prove that the 

information contained in the ontology could be used to perform reasoning in a practical way.

4.2.14 Document the Ontology

The final step of ontology development was to ensure that all documentation was completely 

written and that it documented all of the steps that were taken to complete the ontology.

4 .3 .  Su m m a r y

The sensor ontology does not focus on sensors from a single problem space. There is room for 

further domain-specific additions to be made to the ontology, however these are best left to experts in 

specific fields. The ontology was developed in the Web Ontology Language (OWL), using the Protege 

Ontology Editor. The ontology underwent several iterations before being finalized and made web 

accessible. The management of these versions of the ontology was done using the Concurrent Versions 

System (CVS)30. CVS allows developers of computer code or other documents to track changes and 

development across multiple versions of their documents, giving them the option of rolling back to 

previous versions should the need arise. Initially the ontology was created as many pieces, each

29 http://www.mygrid.org.uk/OWL/Validator Last Accessed August 20, 2007
30 http://www.nongnu.org/cvs/ Last Accessed August 20, 2007
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corresponding to the specifications from which the concepts were drawn. Eventually, these ontologies 

were aligned and duplicate concepts were merged for simplicity. Dozens of versions of the integrated 

ontology were created, so management of these versions was essential. The final version of the 

ontology used to test and integrate with the monitoring system contained 192 classes and 148 

relationships.
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5. Monitoring Suite and System Integration

A monitoring system that handles spatial data is an essential tool for hazard managers. Being able 

to analyze incoming real-time data is a must to monitor any hazard which does not provide much lead 

time. In these cases it is also a good idea to examine similar events that may have occurred and use 

them to forecast what may occur when familiar conditions are seen. For any system of this type, the 

more knowledge it can draw on, the more useful it is.

This work was developed to integrate with the REASON overall decision support system framework 

developed by our research group within the Geotechnical In-Situ Sensor Technology (GIST) Network, a 

GEOIDE-funded collaborative network. This framework is designed with geotechnical hazard monitoring 

in mind, but could be applied with only minor changes to monitoring problems in other domains as well. 

The overall structure of the fram ework can be seen in Figure 10. The framework provides a guide to the 

integration of not only the various parts of this system but how those parts will fit into the overall 

workflow of a geotechnical hazard monitoring problem. This work addresses several aspects of this 

framework.

The Sensor Observation Service Database provides the Spatial Data in the form of Observations and 

Measurements Documents and the Instrumentation Sources as SensorML Documents. The 

transformation engine is used to feed the data into the monitoring system as well as to manage those 

data. The domain-specific knowledge expressed by the ontology along with the associated 

measurements provides part of the knowledge base for use by any analysis methods. The GIS Interface 

and Rule Sets are provided by a Spatial Decision Support System built earlier in the GIST project.

The REASON Spatial Decision Support Framework (Rozic, 2006) is a tool which can be used to 

develop spatial decision support systems. It was developed using the ArcAgents tool (Ball and Harrap, 

described in Rozic, 2006) which bridges CLIPS, a programming language geared toward the development 

of expert systems, and ESRI's ArcGIS. REASON makes use of ontologies to partition the various 

knowledge it has about a given problem. Ontologies are often used where knowledge definition is a key 

component of the problem-solving process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



es
t 

M
od

e
Landslide
Process
Model! Case Archive 

Interface
Model

V . Management

Spatial Data 
Sources

GIS Interlace 
and'Tools

a k /  " • " " “ IT ' v  a k
— J  < Engine & >

I Instnnncntation
Souices

Data 
Management Interface

^ --------  Dialogue ~ ' \

R u l e s * /  ’ '

Analysis and 
Query 

Interface .. /

Figure 10 - GIST DSS Conceptual Framework {from Harrap et al., 2006)

The ontological structure used is a variant of the hierarchy proposed by O'Brien and Gahegan 

(2004), in which there are four separate but related ontologies which are used to contain most of the 

knowledge required for the operation of the system (see Figure 11). These ontologies contain both facts 

which describe the various concepts and objects, and rules which govern their behaviour. The "Spatial- 

Temporal Ontology" is the top-level ontology used to define foundational concepts such as geometrical, 

topological, and temporal relationships. Two mid-level ontologies build on the concepts from this 

ontology: the "Domain Ontology" and the "Sensor Ontology". The domain ontology is used to describe 

the concepts related to the domain being observed, such as the hydrological or geotechnical domains. 

The sensor ontology describes the sensors which are used to perform the observation. Finally, the 

bottom level "Application Ontology" contains the concepts related to the execution and capabilities of 

our given monitoring application, such as flood monitoring or slope monitoring. This includes the 

decision trees which govern the analysis of incoming sensor data. The application ontology builds on 

the knowledge from the two mid-level ontologies, and thus from the spatial-temporal ontology as well.
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Figure 11 - REASON Ontology Hierarchy

When it comes to spatial data there are a myriad of possible data types, so it is important to be able 

to use as many as possible in a manner that is transparent to the analysis logic of the system. Some 

sensor data may be archived, while real-time data may be streamed directly to the system without an 

intermediate database. The decision of what data are archived and what data are streamed in real-time 

is made by the designer of the monitoring infrastructure based on the needs of the problem. Likely, the 

most pertinent data are streamed directly into the system (and also archived for future use) while less 

imperative data are archived until it is needed. Simulation data may take the form of Excel tables, CSV 

files, XML files, or some other implementation-specific format. The constraints of the monitoring 

problem may also dictate how the data are stored. For example, low-power sensor networks will 

require short messages with minimal transmitted information, whereas higher power, wired networks 

may be able to transmit messages with more complex structures. Supporting the many variants of 

spatial data infrastructure is a necessity as we move towards a more interoperable sensor web (Gorman 

et al., 2005). Therefore, one of the key design features of REASON is that the mechanism to bring data 

into the system has been abstracted. This abstraction, along with the supporting ontologies, allows 

various types of data to be used with the system in a common way.

When an SDSS is built upon the REASON framework, it defines the data source(s) it will use and 

provides an implementation of the abstract DATA-SOURCE class for each type of data source. This 

defines how the SDSS should connect to and disconnect from the data source, as well as how the data 

are updated and how the next update cycle is handled. In this way, any data source can be used within

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a REASON SDSS. Figure 12 shows the main workflow of the REASON SDSS engine. Once data sources 

are bound to the objects in our SDSS and to the GIS layers which will be used for any spatial analysis, the 

objects are updated with new values at every regular time step (or as otherwise defined by the data- 

source implementation). Evaluation is then carried out on the new values as defined in the application 

ontology. When evaluation is completed, new values are acquired from the data source and the process 

repeats itself until the system is told to release the data source resources and term inate.

E V A L U A T IO N

B IN D  D A T A  
S O U R C E S

R E L E A S E

U P D A T E

IN IT IA L IZ E

Figure 12 - REASON Evaluation Loop

Since the REASON data-source mechanism is abstracted, observations can be drawn from Excel or 

database tables to generate facts which correspond to a template-based ontology, or encodings from 

geospatial standards such as a Sensor Observation Service (discussed in Section 3) can be used to 

generate instances of an object-oriented ontology, with minimal changes to the actual decision-making 

logic. The knowledge of the domain is separated from the other knowledge in the system, so creating a 

monitoring system to work in a different domain only involves changing the domain ontology to one 

which describes our new domain of interest, and creating a new rule set which governs what we are 

interested in monitoring. Figure 13 shows the detailed methodology behind the updated version of the 

REASON slope monitoring system that interacts with the SOS server. It makes use of the abstracted 

data-source mechanism to connect to an SOS server to retrieve its values while making use of the 

ontology hierarchy to divide its knowledge.
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Figure 13 - Expanded version of the REASON evaluation loop

When the system is initialized, the ontologies are loaded into the CLIPS knowledge base. These 

ontologies contain the majority of the code that will be used to operate the system. A MAIN module is 

also loaded which initializes the SDSS and controls the evaluation loop. For details on how this is done, 

see (Rozic, 2006). The main changes to the system have been expansion of the sensor ontology and 

addition of a new data-source implementation that interacts with an SOS server. The new data source 

class (Beacon-SOS-DATA-SOURCE) is built dynamically during the binding process. An instance of this 

class is created that can be called on to retrieve data for any Beacon during the update cycle. To 

accomplish this, the data-source class actually interacts with an interface object exposed by ArcAgents 

for use in Visual Basic for Applications (VBA). This allows VBA code to handle the communication with
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the SOS server, passing the results of these interactions back to the CLIPS knowledge base where they 

can be evaluated. Figure 14 shows a sequence diagram of a typical request for a sensor description. 

Requests for observations are identical in terms of the components and order of the messages, only the 

messages themselves differ.

Initialize

Load S D SS  Engine

GetSensors
DescribeSensor

SensorML

Convert To OW L

OW L

Convert to CLIPS

C LIPS Code (Sensors) 
_ L __________________ _CLIPS Code (Sensors)

REASON SO S  Server

ArcAaents Interface
XM L to OW L Converter

OW L to CLIPS  Converter

Figure 14 - Sequence diagram for a sensor request

The control of the overall system is coordinated by REASON. REASON initializes the ArcAgents 

Interface object when a document with the appropriate template is loaded. When the AircAgents 

Interface has loaded successfully, it requests that REASON load its SDSS engine. Once the engine is 

loaded, it can make requests of the ArcAgents Interface object which is persistent as long as REASON is 

running. For example, it can send a request for sensor descriptions to the ArcAgents Interface that 

launches a chain of instructions that results in CLIPS code being returned to REASON that describes 

those sensors. The ArcAgents Interface retrieves the SensorML document from the SOS Server. It then 

passes that document to the XML to OWL Converter which returns an OWL document. The OWL
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document is passed to the OWL to CLIPS converter that returns CLIPS code which is then returned to 

REASON. The specifics of these operations are described in Chapter 6.

Once the next set of observations is retrieved, they are used to update the GIS layers representing 

the observations as well as any of the facts in the CLIPS knowledge base that may be relevant. At this 

point evaluation can be performed on the new data as well as any historical data. Analysis methods are 

domain- and application- specific but will generally rely on the most recent data and possibly archived 

data to examine for some predefined conditions that have been determined to be of interest.

5 .1 .  In t e g r a t io n

The integrated monitoring system closely resembles Figure 3 in terms o f overall architecture. Figure 

15 shows the complete architecture of the system, broken into three main layers: the servers, the 

helper tools, and the expert system. The sensor network components were left out of the diagram as 

they are not the focus of this thesis. Testing was done using simulated sensor data based on a slope 

failure scenario model (Hutchinson et o/., 2007). The sensor data were extracted from Excel 

spreadsheets and inserted into an SOS server that was built using an implementation developed by the 

52° North Initiative31. This same server implementation was tested with live hydrologic and 

temperature sensors, with the results being transparent from the sensor data consumer’s perspective. 

This has enabled our reasoning system to be hooked up to live sensor data. Figure 14 shows a UML 

sequence diagram of how the various components interact during a given request. These requests are 

initiated in the SOS-DATA-SOURCE implementation for a given sensor. The abstract data-source 

mechanism created in the initial system forces any implementation to define three methods: get-data, 

next-cycle, and close-data-source. The get-data and close-data-source methods are unchanged from  

their initial implementations; it is only the next-cycle method which needed to be rewritten to work with 

an SOS server. The next-cycle handler is responsible for fetching the newest set of sensor observations 

from the data source, in this case a sensor data server. To accomplish this, the handler interacts with an 

ArcAgents interface object defined in an ArcMap template using Visual Basic for Applications (VBA). The 

interface is capable of watching certain aspects of the CLIPS engine's functionality and taking action 

when certain events occur. The key functionality that was used was the interface's ability to listen for 

facts to be posted and take action when they meet certain criteria. In this case, whenever a fact with a

31 http://52north.org Last Accessed August 20, 2007
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specific name was posted, action could be taken. A set of facts were created which could be used to 

launch external commands simply by being asserted. The facts were treated as functions, where the 

name of the fact would act as the function name, and the value(s) of the fact would be tihe arguments. 

These "fact-functions" ranged in use from simply dealing with time stamps to initiating database 

transactions. The simplest of the functions are:

•  (print-text <text>): prints the contents of <text> to a console, this is used to print important 

notifications to a separate console from the simple diagnostic and procedural information

•  (first-cycle-time <date>): sets the timestamp for the first cycle to the date and time specified by 

<date>, this allows for data that are not real-time in nature to be used

•  (cycle-time-interval <time>): sets the time interval that the current time would be incremented 

each cycle

A more complex function was needed to handle the database queries. The (send-SOS-request) fact 

was created for this purpose. A summary of the fact's functionality is given below. The complete syntax 

and list of options for this function are given in Appendix B. The form at of the fact is (send-SOS-request 

<operation> <options>) where <operation> is one of "obs", "cap", "des", "mro", "sen". These are 

abbreviations for GetObservation, GetCapabilities, DescribeSensor, Most Recent Observation, and 

Sensors. The first three correspond directly to SOS operations that retrieve observations, SOS server 

capabilities, and sensor descriptions respectively. The <options> section takes different parameters 

based on the type of operation. For the "obs" function, these options specify the offering, procedure 

(actually a sensor name), and observed property (phenomenon) that the user wishes to retrieve 

observations for. These observations can also be filtered with spatial and temporal filters (such as 

bounding boxes and time ranges), as well as numeric filters on the observations themselves. The "cap" 

function takes options which specify the specific sections that are needed from the SOS server's 

capabilities document. The "des" function takes a procedure (actually a sensor name) and returns the 

SensorML document which describes that procedure. The "mro" function makes a GetObservation 

request with the time values tailored specifically to retrieving the most recent observation for each 

sensor. The "sen" function makes a GetCapabilities request which returns only sensor descriptions and 

details. This information is used to create an ESRI shapefile that contains spatial features representing 

the sensors provided by a given offering.
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Figure 15 - Integrated Monitoring System Architecture

For all of these operations, the ArcAgents interface object parses the fact string and generates the 

XML required to make the request of the SOS server. It then makes the request and gets the return 

value as either a SensorML or O&M  document. Once the document is retrieved, it then passes it to the 

SensorML/O&M to OWL Conversion tool. This tool uses the methods described in Section 5.2 to 

generate an OWL document. This OWL document is read by the ArcAgents interface object and then 

passed to the OWL to CLIPS conversion tool. This tool uses the methods described in Section 5.3 to 

generate CLIPS code which contains the instances of the ontology that represent sensors or 

observations, depending on the operation requested.

Applying this layered framework to integrate the components required for hazard monitoring using 

sensor networks provides several benefits. Modularity is achieved through the separation of 

components based on intended usage, and communication interfaces between these components are 

structured in a way that would minimize the impact of changing components. For example, using a 

different SOS implementation will only affect the interaction with REASON (specifically the ArcAgents
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Interface Object). Similarly, a different transformation engine could be used in place of the one that was 

implemented, as it would still have access to the OWL ontology from the web server and the ability to 

pass its results to the expert system. Having this framework in place before the design and 

implementation of individual components guides the creation of those components as well as the 

interfaces between them. This inter-component communication is quite often a difficult problem to 

overcome when collaboration between system objects is needed. This hurdle is best dealt with at the 

beginning of design so that the individual components are designed in a way that enables 

communication between them.

This thesis has so far shown how the various system components have been developed and 

integrated, and has detailed the impetus for doing so. The next chapter will examine how the system 

works in practice and how it can be used for geotechnical hazard monitoring on a simulated slope with 

realistic movement driven by the movement of an associated water table. It will show how the creation 

of the new components such as the transformation engine aid the decision making process. It is 

anticipated that the use of a concrete example will better illustrate how this system improves on the 

current state of hazard monitoring systems.
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6. Case Study

This chapter will illustrate how the tools developed during the course of this thesis can be applied to 

a realistic hazard monitoring problem, as the tools are applied to the problem of slope monitoring.

Slope monitoring was chosen as an example case because of the availability of a realistic slope model 

and associated data. None of the tools that are applied are specific to a given hazard, and as such can 

be used for any monitoring problem provided that appropriate analysis logic can be created and that 

data is available to drive the analysis. The problem of slope monitoring makes an interesting case 

because the onset of the hazard is rapid, and so it is important to detect the conditions that are likely to 

trigger the hazard rather than the hazard itself. The system directs the hazard manager to investigate 

areas of concern based on domain knowledge and context-enhanced information delivered by the 

transformation engine. This system may also be used outside of the hazard management domain. For 

example monitoring the climatic conditions of vineyards could be done through this infrastructure, and 

the use of reasoning software could enable analysis methods such as case-based comparisons to 

previous years' conditions and the use of climate models for forecasting future weather conditions. 

Another possibility would be to monitor the sediment flow and nutrient flushing in a watershed after a 

rainfall to explore how these parameters affect the health of the vegetation in the watershed.

The use of REASON as the basis for a spatial decision support system for geotechnical hazard 

monitoring was initially detailed in Rozic (2006). However additions have been made to the 

demonstration system to illustrate the enhancements developed over the course of this thesis. The 

additions related to interaction with the SOS Server, the integration of the new sensor and 

measurement ontology, and the new data source class to manage these have all been detailed in 

previous chapters. There have also been enhancements in the decision-making logic as well as the 

addition of water table data to provide a context for the behaviour of the slope. The original slope 

model can be seen in Figure 16, showing the positions of the seventy-two inclinometer sensors, the 

active portions of the slope (shear zones) and the material layers.
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Figure 16 - Initial Slope Model

REASON uses a decision tree structure (Quinlan, 1990) to perform an evaluation at each cycle based 

on the newest data as well as the data from previous cycles. The decision tree that was used in the 

initial prototype system can be seen in Figure 17. In this system, the position of each Data Collection 

Location (or sensor) was used to determine various parameters for the motion of the slope. First, the 

boreholes are identified based on the horizontal coordinates of the sensor. The sensors with similar 

horizontal coordinates are grouped together into boreholes. Then each sensor is examined for activity 

according to a set of rules that define what is considered relevant motion (increasing in displacement 

with an increment greater than one percent of the current cumulative displacement). This ensures that 

even though a sensor moves it is not necessarily considered active, since all inclinometers are expected 

to exhibit some downslope motion. Active sensors are then categorized according to the rock mass to 

which they belong. Finally, active zones of the slope are determined based on whether or not the zone 

contains active sensors.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D C L

2. Active 
Points1. Borehole

3. Rockmass

4. Moving 
Zones

Figure 17 - Initial Geotechnical Monitoring Decision Tree

This simple decision tree illustrated REASON'S ability to capture domain knowledge in an SDSS and 

to aid in the monitoring tasks of an expert user by alerting them to areas of interest. The decision tree is 

executed after each set of new measurements is retrieved from the SOS server, and the output is 

printed to a console so that the user may be notified of the results. The control of the system can be 

seen by examining the next-cycle handler of the new SOS-DATA-SOURCE class that was created for this 

system. The code for this message-handier is shown in Listing 8. Note that in the source code of the 

system, this code is written as part of the CLIPS "eval" function that takes a string as an argument and 

converts it into CLIPS code at runtime. This allows the code to be dynamic in nature so that certain parts 

of the source code are actually generated at runtime in order to match the parameters of the given 

monitoring task. The handler is called like a function during each cycle of execution, and is passed three 

arguments: a template name, a sensor type, and the current cycle. The tem plate name is used to make 

an association between a tem plate and a shapefile in the GIS environment. This association tells 

REASON which shapefile should be updated when a given template receives new values. The sensor 

type indicates what kinds of measurements are expected from the sensor: absolute, cumulative, or 

incremental. This information ensures that the sensor values are interpreted properly. The final 

argument tells the handler what cycle is currently executing. The REASON system is based on cycles 

rather than the system clock, so the actual time of the measurement is not specified here.
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(defmessage-handler MAIN::Beacon-SOS-DATA-SOURCE next-cycle (?template-name ?sensor-type ?cyde)
(if (not ?self;layer-logical-name)
then (send ?self get-table ?templ3te-name)
)
(bind ?busy (assert (busy-SOS true)))
(assert (send-SOS-request “ mro" “ DOWNSLOPE_MOTION" "urn:ogc:phenomenon:distance"))
(bind ?pairs (find-all-instances ((?proc-time-pair PROC-TIME-PAIR)) (= 11)))
(acSelectByLayer ?self:layer-logical-name new)
(bind PnumSelected (acGetNumSelectedByLayer ?self:layer-logical-name))
(bind $?values (create$))
(progn$ (?pair ?pairs)

(bind ?procedure (send ?pair get--procedure))
(bind ?time (send ?pair get-time))
(bind ?msr_ins (nth$ 1 (find-instance ((?msr memf:Measurement))

(and
(= (str-compare (nth$ 1 (send (nth$ 1 (send ?msr get-memf:hasProcedure)) get- 
memfrhasURI)) Pprocedure) 0)
(= (str-compare (nth$ 1 (send (nth$ 1 (send (nth$ 1 (send ?msr get-memf:hasTime)) get- 
memf:hasTimePosition)) get-memf:timePosition)) ?time) 0)

)

)
)

)
(bind ?whereClause (str-cat B e a c o n J D -? p ro c e d u re  "'"))
(acSelectByAttribute ?self:iayer-loglcal-name PwhereClause New)
(bind PselectedFeature (acGetLayerSelection ?self:layer-logical-name))
(bind ?feature-fid (nth$ 2 PselectedFeature))
(bind Pvalue (implode? (create? (nth? 1 (explode? (nth? 1 (send (nth? 1 (send Pmsrjns get-memf:hasResult)) get-memfrvaiue))))))) 
(bind ??values ??values (implode? (create? Pprocedure)) (implode? (create? Pfeature-fid)) "0" Pvalue)
(acClearSelection)
(send Ppair delete)
(bind ??values (eval"(" Absolute ?self:layer-logical-name (implode? ??values)")"))

(bind Pld-one (nth? 1 ??va!ues))
(bind Pfid (nth? 2 ??values))
(bind ?X (nth? 3 ??values))
(bind ?Y (nth? 4 ??values))
(bind PM (nth? 5 ??values))
(bind PR (nth? 6 ??values))

(if (eq Pid-one “done") 
then

(return close)
)

(bind ??slots (create?))

(while (> (length? ??values) 0)
(send Pself put-values Pid-one Pfid (create? ?X ?Y PM PR))

(bind ??values (delete? ??values 16))

(bind Pid-one (nth? 1 ??values))
(bind Pfid (nth? 2 ??values))
(bind PX (nth? 3 ??values))

(bind ?Y (nth? 4 ??values))
(bind PM (nth? 5 ??values))
(bind PR (nth? 6 ??values))

)
(acClearSelection)
(acRefreshMap)
(acSelectByLayer Pself:layer-logical-name new)
(return more)

Listing 7 - SOS-DATA-SOURCE Message Handler 

The message handler begins its execution by checking if the template has been bound to a layer in 

the GIS. If it has not, the handler will call a function (get-table) that will prompt the user to specify the
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shapefile that will be updated. It then asserts the fact (busy-SOS true) that indicates to other parts of 

the system that the SOS is currently being accessed. It then asserts a 'fact-function' (see Chapter 5) that 

initiates an SOS request (assert (send-SOS-request "mro" "DOWNSLOPE_MOTION" 

"urn:ogc:phenomenon:distance")). This fact requests the most recent observation from the SOS for the 

offering DOWNSLOPE_MOTION and the distance phenomenon. The VBA code in the ArcMap template 

parses this fact and makes the request of the SOS in the manner described in Chapter 5. The result of 

the request will be a set of CLIPS objects that are loaded into the knowledge base. These objects are 

instances of the sensor and measurement ontology, specifically an ObservationCollection instance with 

several Observation instances (Figure 18).

Observation
Collection

hasObservation hasObservation
hasObservation

ObservationObservation Observation

Figure 18 - Observation Collection with associated Observations

To rapidly retrieve this information, the ArcAgents interface object also creates a set of PROC-TIME- 

PAIR objects that pair a sensor name with the updated timestamp of the newest observations. Once the 

SOS operations are complete, control of the system is passed back to the message-handier which 

searches for all of these PROC-TIME-PAIR objects and stores them in a variable (?pairs). The number of 

features in the layer is determined by selecting and counting them and an empty multifield value 

($?values) is created to store a list of the updated values that will be retrieved from the Observation 

instances. The message handler then iterates through the PROC-TIME-PAIR objects, retrieving the 

Observation object which has matching procedure and time values (Figure 19). Then, it must match that 

observation object against the appropriate feature in the associated layer by selecting the feature from  

that layer that has the same procedure value as the Observation currently being examined. Once this 

match has been made the new sensor value is retrieved from the Observation object (Figure 20) and 

added to the $?values variable.
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hasProcedure hasTimePosition

Procedure TimePosition

hasURI timePosition

| urn:ogc:def:procedure:inclinometer-12 | 2007-05-02T 13; 15:00

Figure 19 - Observation instance with matching procedure and timePosition

When all of the observations have been matched with their associated features in the layer, the 

$?values variable will contain a record of all of the updated values. This record is passed to a function 

that updates the records in the table based on the sensor type (absolute, incremental, cumulative). The 

data are then used to update various critical parameters of the fact that represents the sensor such as 

its position and ID values. Some housekeeping tasks are done to make sure all o f the fields of the 

template are up to date, and finally a value of "more" is returned, indicating that this data source has 

not expired.

The values retrieved from the SOS and updated using the ontology are used by the decision tree to 

evaluate the state of the slope at the given time step. Once the decision tree has executed the 

ev a lu atio n  continues a t th e  n e x t t im e  step  and th e  process repeats  itse lf as long as n e w  d ata  exist th a t  

can be accessed by the system.

Observation

hasResult

Result

value

0.00314 I

Figure 20 - Observation instance showing a result
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The original decision tree identifies active areas of the slope at every tim e step, however it would be 

beneficial to explore the problem more thoroughly should there be data available to do this. Figure 21 

shows an expanded version of the decision tree that was implemented as part of this current thesis to 

demonstrate the extended REASON system's ability to interact with an SOS server and make use of the 

expanded sensor ontology

Incl

2. Active 
Points1. Borehole No

No

Water Table 
Data Loaded3. Rockmass Active ■Yet •Yes— ►

4. Moving 
Zones

■Pasi

Pail

No

■Pass

Fail

rest if the water 
table is rising

rest If the water 
table is rising .

rest if water table* 
intersects active 
_ rockmass ^

v'Test if water tabidv. 
Intersects the rock mass 

below the active 
rockmass /

Level

Level

Level

Level

Level

Level

Fetch data 
from SOS

Pass to 
Engine

Load into 
CLIPS
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Borehole

Rockmass

Sort 
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locations by 
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Find the rock 
mass below the 

active rock mass

Interpolate water table 
position at active borehole

Figure 21 - Expanded REASON Decision Tree 
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The decision tree classifies all rock masses at every time step as having an alert level from one to six, 

with six being the most severe. The conditions for these alert levels are as follows:

Alert Level 6: The rock mass is active, the water table currently intersects the rock mass, and the 

water table is rising.

Alert Level 5: The rock mass is active, the water table currently intersects the rock mass, and the 

water table is falling.

Alert Level 4: The rock mass is active, the water table currently intersects the rock mass below the 

active rock mass, and the w ater table is rising.

Alert Level 3: The rock mass is active, the water table currently intersects the rock mass below the 

active rock mass, and the w ater table is falling.

A lert Level 2: The rock mass is active, and the water table does not intersect the active rock mass or 

the rock mass below.

A lert Level 1: The rock mass is not active.

The decision tree specifies the steps that are taken to identify alert levels based on the above 

criteria. These rules capture basic slope mechanics (Lee and Jones 2004), and were chosen based on the 

ability to rapidly implement them as well as the need to demonstrate the newest capabilities of the 

system. The system also checks the quality of incoming data by ensuring that the values used for 

analysis are reasonable. The standpipe measurements were simulated to include measurement errors 

such as missing values, and these are detected during the execution of the decision tree. When a 

missing value is detected, interpolation of the water table position is performed using the next closest 

standpipe reading, provided that it is reasonable. Figure 22 shows the result of a cycle of execution 

under the new decision tree. This shows how the addition of water level data from another sensor 

offering can enhance the information content delivered by the model, providing a visual representation 

of where the most hazardous areas of the slope are. The two sensor offerings do not need to come 

from the same data set or the same sensor network to be combined in a useful way. By relating the 

position of the water table with the activity of the individual rock masses the objective of integrating 

different data sources for the purposes of analyzing sensor data in a problem-specific manner is 

achieved.
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It should be noted that the efficiency of the system is decreased when the extra decision logic is 

added. Each ArcAgents operation that occurs usually requires several internal steps, including inter

process and cross-system communication, so minimizing the number of these operations is the key to 

decreasing the operating tim e of each analysis cycle. The tw o main controls on this are the number of 

features that need to be updated each cycle, and the number of spatial operations that need to be 

performed. In this demonstration system, seventy-eight sensor locations (seventy-two inclinometer 

locations and six piezometer locations) are updated during each cycle, and several spatial queries are 

also needed each time the extended decision tree is executed (once per active rock mass). The system 

currently takes approximately three to four minutes to execute an analysis cycle.

Legend

DOWNSLOPEJVIOTION Materials ALERT

•  Active ^ [ . 3 3  2

O  STANDPIPE llllIIISIII 3 [ ]  3

Figure 22 - Revised Slope Model

For the purposes of this demonstration, this was an acceptable timeframe in which to receive 

results, as the simulated measurements occur once per day. In a situation where new data are being fed 

to the system every few  minutes, four minutes per analysis cycle may not be sufficient. However, the 

analysis time could be reduced by creating a simpler decision tree, or only focusing on specific sensors of 

interest in order to reduce the amount of data being handled during each cycle. Ultimately the 

suitability of this approach to any hazard monitoring problem would be largely dependent on the scope 

and complexity of the analysis to be performed, factors that must be considered at design time.
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Other design approaches are being considered to connect rule-based analysis methods with ArcGIS, 

as well as alternate GIS packages to use instead of ArcGIS, in order to remove the performance 

bottleneck. This would potentially allow more complex decision trees with shorter evaluation times. 

Also, as ArcAgents continues to develop its own efficiency may be improved.

i
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7. Conclusions

The growing number of sensor network installations has resulted in an increased amount of data for 

hazard managers to use when exploring a potentially dangerous site. These data can be useful for data- 

centric problem solving approaches, but to answer more complex problems richer more detailed 

information is needed, a viewpoint that motivated this thesis work. While much development has been 

done on sensor network infrastructure to support monitoring, it has been traditionally focused on the 

data-centric perspective. This is largely due to the constraints that exist in sensor hardware and typical 

messaging protocols, as well as by the types of problems that the data have been used to solve. 

Encoding geospatial information in a way that supports an information-centric perspective on sensor 

data within spatial decision support tools has been explored in previous work, however this is not the 

typical approach that sensor networks take when collecting and disseminating sensor data. Therefore a 

need exists to enable the information-centric perspective on sensor data while supporting the 

traditional data-centric perspective associated with current monitoring strategies. This thesis combines 

a spatial decision support system, common sensor web infrastructure, a sensor web ontology, and an 

engine for transforming geospatial information to achieve this goal.

Several different approaches to knowledge representation can be seen in various examples of 

hazard monitoring infrastructure. The examination of these different approaches has led to their 

classification based on characteristics such as the level of detail they contain, the structure used to 

model the data, and the functionality of the approach for use in a reasoning system. The integration of 

a sensor monitoring system with ontology-based knowledge representation and domain-specific 

knowledge encoding has resulted in a spatial decision support system that can be used to monitor 

sensors. By encoding problem-related knowledge into the system, expert users can ensure they are 

interpreting the information properly, and the software system can also derive meaning from the 

information. This domain knowledge can also be used to reinforce conclusions drawn by the software.

Hazard managers traditionally work with spatial data, not spatial information; however the use of 

spatial information enables more advanced problem investigation methods, including reasoning and 

other artificial intelligence techniques that are well suited to unstructured and semi-structured 

problems such as hazard monitoring. These methods are not commonly supported from the geospatial 

perspective, and when they are it is typically done in a very application-specific manner. The creation of 

a conceptual framework for the transformation of sensor data and sensor descriptions aims to bridge
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this gap. The transformation chain is based on the classification of knowledge representation styles and 

is intended to serve as a guide to creating a transformation engine that minimizes the risk of information 

loss while enabling the enrichment of sensor data with contextual information. The generalized nature 

of the transformation engine allows the concepts to be applied to any monitoring problem, and an 

implementation of this engine that transforms common sensor data representations into CLIPS code 

that can be used within the ArcAgents environment to monitor hazards has been created. These 

supporting tools have been developed to automate the conversion of sensor data from common 

geospatial standards into an ontological form at. This automation is important because the target user 

base of this system is not typically going to be well versed in knowledge representation. The user of the 

system should be focused on problem exploration, not knowledge representation. Beyond that, the 

automation ensures that the conversions are done in a consistent way, reducing the chances of 

ambiguity in the results of the conversion or inconsistencies between conversions.

The generalized design of the system allows multiple data sources to be integrated into the same 

representation style, ensuring that regardless of the type of data being used with the system it can feed 

knowledge-based analysis and drive simulation and hypothesis testing. The demonstration system 

integrates sensor data from tw o types of sensors measuring different phenomena. By analyzing this 

information the system is able to classify the hazard level at any given time by applying domain logic in 

much the same way that a domain expert would use their expertise. The target users for a system such 

as this are expert users and hazard managers who wish to monitor a sensor network installation or 

explore various 'w hat-if scenarios by using simulation results in place of sensor data, as well as those 

who are planning sensor network installations and wish to model various configurations of sensor types, 

placements, triggers, and sampling rates to see how the different configurations affect the collection of 

relevant data.

The end result is a monitoring program that can be merged with existing monitoring infrastructure 

and workflows. Advanced reasoning techniques based on artificial intelligence methods are supported 

by a sensor and measurement ontology, and are automated using tools that make use of existing spatial 

data  in frastruc ture. This en ab les  e x p e rt users to  app ly th e ir  o w n  expertise  to  th e ir  m o n ito rin g  p rob lem  

while making use of existing monitoring infrastructure. This system can also be tied to simulation 

engines and mock sensor data to perform hypothesis and scenario testing. Advanced domain ontologies 

can be plugged in to the system to enhance the conclusions that can be drawn, and knowledge reuse is
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promoted by the use of ontologies to partition system knowledge. This thesis has demonstrated that 

existing sensor and monitoring infrastructures can be bridged in a way that supports information-centric 

analysis of a monitoring problem with the use of real-time sensor data. Approaching the problem in a 

generalized way has created the potential for this framework to be applied as a supplement to a hazard 

manager's current practices in order to improve the quality of their results and to allow deeper and 

more thorough problem investigation so that they may better protect people and infrastructure from  

potential hazards.
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Appendix A: Ontology Specification
This appendix details the new sensor ontology. Figures A -l to A-5 show the hierarchical relationship

of all concepts in the sensor ontology. Table A -l shows all relationships within the ontology as triples.

CO eogtaphicSpaceConceptJfr

(^ResultConcept )|

owhThing DfO- — DataDefinitionConcept |
  ....

C SensorNetwoikConoeptjl

EventConeept ^  

Figure A - l :  High level ontology concepts

( Semantics

---
1  G ,aPh i c /

f
O b je c t J<1—  

k Fea tu reO fln te rest

s''"’" ""\ ,
_J, S pa ce  X ~

/
/  /

/ / //  /  ^/ /  /  h  /  /,11/ y life r    —
4  G eo g ra ph icS pa e eC o n cep t J X ]--------

\ \ \  v

\\>
\  \

D atum  j

(  R e ferenceF ram e

-------------( T h e m a tic L a y e r )

r^C o o rd ina teR e fe re nce S ys te m  y

’"'X
Laye rO fln te rest )

-fe S e n s it iv ity ^

(  G eom etry  '!< } -  

“ {^C o o rd in a te s  )

( P o in t y~ .\----------- ( P os ition  K-1---------- \  S am ple P os ition

L ine

\

( A rea j

P olygon  X I  { Shape

v-  v'~ - x

E n ve lo p e  )

Loca lC  oord ina teF ram #

N a m e dP la ce  )

Figure A - 2: Geographic space ontology concepts

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(  ProcessMethod ) /
  /

DataSources

; DataComponents )
. Capabilities

i Processes

/  (  Im plem entation )

Destination i
[ Parameter

{ Source ,

InternalPhenomenon >0 Eve nt

D ataSourceust
x

i( Identifier J
i. Processust )

i Output I

EventConeept Phenomenon .,
\  x   — - 
\  \  1 ResponsibleParty ")

( ExtemalPhenomenon )

\  ( Classifier

V Characteristics ,i

( ObseivedProperty )

^  DataDefinition )

X
i DataSource j

CompoundPhenomenon

Figure A - 3: Event ontology concepts

(  Connection K J -

 ~

Responsible }

4 SensorNetworkConcept .
. . •  * r t  „

- .......
\  "

f'h---
i Procedure

 '

^ Subnet j  

(  SensorNetwoik ^

Sem anticConnection )

P hysicalC onnecticn  j

.... "
(. Log loa lC onnection *1,

 S e n s o r  _

f  Transducer )

' PackafledProcedure )  

SequencedProcedure 

(  SimpleProeedure

ArrayLink )

R elationship / -0 ~

~"7 S tation >

Calcu lationProcedure

"T SurveyProcedure " j

—( Restriction

Figure A - 4: Sensor Network ontology concepts 

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



«e«ityUn

Steamy
rieptAy

TimeStamp

UeaiCenstuintt

UsajeCeMtralnt

OutputtJM

conneetlonuat ,

CUuffltiUst }

StnseiUetadata KJ-

,  TimePtiiotf )  \ \

RespansibltPafty

Outputs

RacordDtfJnman*1 MA,.

(ItmDt.finitieii )

4 DateDeflMtienConeept

’ Component ; 

RtiuftOfflnitlon j  

"f InputUst 

: Identlfioatien ) 

TupltVeluet ) 

AbstiaetEneodlng 

_ Obs«rv»Uof>Coll*oti8fi / 

•’ Paiamtttst '

'(  Binary ^ ...

Cenntctiont > 

\  Caitgeiy )

NeimalttedCwve ;

 ̂ StenderdFofmat 

■ CompeilltOlmiu'ttlon

- SlnatyOioup /

 1 BlnaryAuey >

. BlnaryValue .

Figure A - 5: Data Definition ontology concepts 

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table A - l  - Ontology property descriptions

Datatvoe (Di or Prooertv Name Domain Range
Object (O)
Prooertv

D SRSName LocalCoordinateFrame OR Envelope string
D UOM Area OR Value OR Component OR Axis string

XUOM SamplePosition string
D YUOM SamplePosition string

l a i g g g s i i i s i l anchorPoint Datum string
D area Polygon float
0 arrayMap owl:Thing Array
0 axis Coordinates Axis

S a l i a S i K S M j g base Value OR Restriction string
D beginPosition BeginPosition string

boolean Boolean boolean
0 booleanData owl:Thing boolean

boundedBy
D classification SimpleData string

codeSpace
»i®S^XS®®S^j3reS%«8§6wS a!f®i wslillSS

Identifier OR Category OR Value string
-r ■< * * *. n ■* v"> s. 4 »~rv» -a ’  *  ■* M •«-* jw** ~e-e^Sr- «*»reus* **• >.iw» »« >

D date Date date
M 8 S 8 S a i i f t » l g dateTime DateTime dateTime

D definition Category OR Value OR FeatureOflnterest 
OR ResultDefinition OR Component OR Axis

string

D description ObservationCollection OR Instrument OR 
Solid OR Value

string

D doubleData owI.Thing float
0 duration owl:Thing string
D endPosition EndPosition string
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D float

D frame

O generates
O hasAddress

D hasAdministrativeArea

D hasAffiliation

D hasAlgorithm

D hasAnchorPoint

. O . hasArea

O hasArrayComponent

D hasArraySize

O hasAsciiBlock

D hasAxis

D hasAxisName

D hasAxisType

O hasBeginPosition

D hasBitLength

D hasBitOffset

D hasByteEncoding

D hasByteLength

D hasByteOffset

D hasByteOrder

D hasCS

O hasCapabilities

O hasCategory

O hasCharacteristics
D hasCity

O hasClassification

O . . hasClassifier

Float float

SimpleData string

Procedure Result

owhThing Address

owl:Thing string

owhThing string

owhThing string

owhThing string

LayerOflnterest Area

owhThing BinaryArray

Curve OR DataArray

owhThing AsciiBlock

owh.Thing string
owhThing string

owhThing string

TimePeriod BeginPosition

owhThing

owhThing int

owhThing string

owhThing int

owhThing g g i a i i a t s a j ^ ^
owhThing string

owhThing string

owhThing Capabilities

DataComponents Category

owhThing Characteristics

owhThing string
Sensor Classification

Classifierlist Classifier
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0  hasClassifierList Classification ClassifierList

0  hasComponent DataGroup OR DataArray Component

0  hasComponentPhenomena ItemDefinition RecordSchema

D hasCompression owhThing string

0  hasConnection ConnectionList Connection

0  hasConnections Sensor Connections

0  hasConnectionList Connections ConnectionList

0  hasConstraints owl:Thing Constraints

0  hasContact ow!:Thing Contact

O hasContactGroup 

0  hasContactlnfo

owhThing ContactGroup 

owhThing Contactlnfo

D hasContactlnstructions owhThing string

0  hasCoordinateReferenceSystem owl:Thing Coo rd i na te Ref e re nceSy ste m

0  hasCoordinates Definition Coordinates

D hasCopyRights owhThing boolean

D hasCountry owhThing string
O hasCurve NormalizedCurve Curve

0  hasDataArray owhThing 

0  hasDataComponents DataDefinition
DataArray
DataComponents

0  hasDataDefinition owhThing DataDefinition
0  hasDataGroup owhThing DataGroup
0  hasDataSource owhThing DataSource

0  hasDataSourceList owhThing DataSourceList

0  hasDataSources owhThing DataSource OR DataSources
D hasDataType owhThing string

0  hasDatum owhThing......  .......... ....... .. ............ .... ......................  ■.... .......... ........ Datum
D hasDatumName owhThing string
D hasDecimalSeparator Ascii Block string
O hasDefinition Curve Definition
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D hasDeliveryPoint

O hasDescription
O hasDestination

O hasDestinationArray
D hasDimension
O hasDiscussion

O ( hasDocumentation
D hasDoubleList

D hasEiectronicMailAddress

O hasElement

D hasEmail

0  hasEncoding

D hasEncryption

O hasEndPosition

O hasEvent

O hasEventList

hasFacsimile

hasFeatureOflnterest

hasFileLocation
O hasFollowingEvent

a g iiiii iB s S ii hasFormat
0 hasFunction

hasGenerallnfo
0 hasGroupComponent

, hasHistory
0 hasHistoryGroup
D hasHoursOfService

owl:Thing

owhThing

Link
owhThing

CompoundPhenomenon

owhThing

owhThing

owhThing

owhThing

PackagedProcedure 

owhThing

owhThing 

owhThing 

TimePeriod 

owhThing 

owhThing 

ing

Observation OR Measurement

owhThing

Event

owhThing

owhThing

owhThing

owhThing

owhThing

owhThing

owhThing

string
Description

Destination
DestinationArray

string
Discussion

Documentation

string

Procedure

string

AbstractEncoding

string
EndPosition

Eventlnfo

EventList

string
LayerOflnterst OR Sensor OR 
FeatureOflnterest OR 
SensorCollection

FileLocation

Event

string

Curve

Generallnfo

BinaryGroup

History

HistoryGroup

string
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0 hasISM

0 hasldentification
o hasldentifier
o hasldentifierUst
0 haslmplementation
D haslndexDestination
D haslndexSource
D haslndividualName
0 haslnput
D haslnputBias

D haslnputGain

0 haslnputList

0 haslnputs

haslntegerList
0 haslntellectualPropertyRights

hasltemDefinition
0 hasLegalConstraints

° hasLink
D hasLinkRef

0 hasLocalCoordinateFrame
0 hasLocation
0 hasMetadata
0 hasMethod
0 hasMimeType
0 hasName

0 hasNormalizedCurve
0 hasObservation

° hasObserved Property

hasOnlineResource

owl:Thing ISM

Instrument Identification

ObservedProperty OR IdentifierList Identifier

Identification IdentifierList

owhThing Implementation

owhThing

owhThing int
owhThing string

InputList Input

NormalizedCurve string

NormalizedCurve string

Inputs InputList

Instrument Inputs

owhThing string

owhThing boolean

Component ItemDefinition

owhThing LegalConstraints

owhThing

owhThing string

ReferenceFrame OR SamplePosition LocalCoordinateFrame

Result OR Event GeographicSpaceConcept

owhThing MetadataGroup

owhThing ProcessMethod

owhThing string

owhThing string

owhThing NormalizedCurve

ObservationCollection Observation

Observation OR Measurement ObservedProperty

owhThing OnlineResource
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0 hasOrganizationName
D hasOrientation
0 hasOutput
D ■hasOutputBias
D hasOutputGain
0 hasOutputList

0 hasOutputs
0 hasParameter

0 hasParameterList
0 hasParameters
0 hasPerson
D hasPhenomenonProperty
0 hasPhone
D hasPhoneNumber
0 hasPoint
0 hasPositionElement

D hasPositionName
0 hasPosition
D hasPostalCode
0 hasPrecedingEvent
D hasPrivacyAct
0 hasProcedure
0 hasProcess
0 hasProcessChain
0 hasProcessList
0 , . hasProcessMethod
0 hasProcesses

owhThing

Datum

OutputList
NormalizedCurve

NormalizedCurve

Outputs

Instrument

ParameterList

Parameters

Instrument

owl:Thing

ItemDefinition 

owhThing 

owhThing 

SamplePosition 

owhThing 

LThing

owhThing

owhThing

owhThing

Event

owhThing

Observation OR Measurement

ProcessList

owhThing

Processes

owhThing

Sensor

string

string

Output
string

string

OutputList

Outputs

Parameter OR Curve OR 
NormalizedCurve

ParameterList

Parameters

Person

string

Phone
string

Point

Position
PositionList

string

Point
string

Event

boolean

Procedure

Process

Process
ProcessList

ProcessMethod

Processes
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O hasProcessingStep
0 hasProperties
0 hasProperty
0 hasPropertyList
D hasQualifier
0 hasRecordDefComponent

ic IS ilS i^ S iilig hasRecordltem
D hasRecordLength

hasReferenceFrame
0 hasReferences

hasResponsibleParty
0 hasRestriction

hasResult
0 hasResultDefinition

hasRights
D hasRole
D hasSRSName
0 hasSamplePosition
D hasScale
0 hasSecurity

hasSecurityConstraints
0 hasSensor
0 hasShape
0 hasSolid
0 hasSource

hasSourceArray
0 hasSpatiallnfo
0 hasStructure
D hasSurname

SequencedProcedure

owhThing
PropertyList
owhThing

Value
RecordSchema

Record

owhThing

Instrument

owhThing

owhThing
SimpleData

Result OR Component

owhThing

owhThing

Contact OR Value OR FeatureOflnterest 

Station

Component OR Axis

owhThing

owhThing

SensorCollection OR Station

LayerOflnterest

Result OR Event

owhThing

Definition

owhThing

owhThing

Procedure

Properties

Property
PropertyList

string
ItemDefinition

Value

int

ReferenceFrame

References

SensorResponsibleParty

Restriction

Value
ResultDefimtion 

Rights 

string 

strine
SSSBa®

SamplePosition

float

Security

SecurityConstraints

Sensor

Shape

Solid

Source

Source Array

GeographicSpaceConcept

Binary

string
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O hasTerm

D hasTermQualifier
D hasTermValue

O hasTime

O hasTimePosition

O hasTimeStamp

D hasTokenSeparator

D hasTopic

O hasTransducer

O hasTupleMap

D hasTupleSeparator

D hasTupleType
D hasTupleValues

D hasUserlD

O hasVaiidTime

O hasValue

D hasVoice

O hasXMLTuple

O. hostsProcedure

Classifier OR Identifier

Term
Term
ObservationCollection OR 
CoordinateReferenceSystem OR 
Observation OR Measurement OR Event

Timelnstant 

owhThing 

AsciiBlock 

owl:Thi 

Process 

owhThing 

AsciiBlock 

owhThing 

Curve

Procedure OR Shape OR Com pone 

owhThing 

owhThing

Term

string

string

DateTime

TimePosition 

TimeStamp 

string 

string 

Transducer 

RecordSchema 

string 

string 

string 

string 

string
■ H B S i

ItemDefinition OR Parmaeter OR Record OR 
Observation OR Measurem ent OR Output 
OR Input

owhThing 

owl-.Thing

LayerOflnterest OR Station

ValidTime 

Value

string

string

Procedure
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D id

D identifier

D indeterminatePosition

D integer

D integerData

O isElementOf

O isFeatureOflnterestOf

D isFixed

O isFollowingEventOf

O isGeneratedBy
O isHostedBy

O isLocationOf

O isObservedPropertyOf

O isPrecedingEventOf
O isProcedureOf

O isProcessingStepOf

0  isPropertyOf

O isResponsibleFor

O isResultOf

Timelnstant OR Point OR Measurement OR 
DataGroup OR LocalCoordinateFrame OR 
Station OR Restriction OR 
ObservationCollection OR LayerOflnterest 
OR RecordSchema OR 
CompoundPhenomenon OR Transducer OR 
Solid OR SensorCollection OR TimePeriod

Identifier

TimePosition

Integer

owhThing

Procedure

LayerOflnterest OR Sensor OR 
FeatureOfInterest OR SensorCollection

owhThing

Event

Procedure

GeographicSpaceConcept

ObservedProperty

Event

Procedure

Procedure

Property

ResponsibleParty

Value

string

string

string

int

PackagedProcedure 

Observation OR Measurem ent

boolean

Event

Procedure
LayerOflnterest OR Station 

Result OR Event 
Observation OR Measurement 

Event
Observation OR Measurement

SequencedProcedure

PropertyList

Event

Result OR Component
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isTimeOf DateTime

D

D

D

D

D

D

D

D

0

D

D

O

isTupleMapOf
linkRef

lowerCorner

maxlnclusive

member

method

mimeType

minlnclusive

name

position

recordLength

referenceSystem

serialNumber
string

stringData

time

timeDefinition

timePosition

tokenData

type

underResponsibilityOf

owhThing

Source OR Destination 

Envelope

Range OR Restriction 

owhThing 

Transducer 

Value

Range OR Restriction 

ObservationCollection OR Classifier OR 
Process OR Identifier OR Output OR 
Connection OR Input OR Component OR 
Datum OR Axis

owhThing

Record Definition
Value

owhThing
String

owhThing

Time

Component

TimePosition

owhThing

Value

Event

ObservationCollection OR 
CoordinateReferenceSystem  
OR Observation OR 
Measurement OR Event

GridDefimtion

string

Point

string

string

S L
string 

string

string

ittla

ResponsibleParty
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Appendix B: Fact-Function Syntax
This appendix details the syntax for using "fact-functions", introduced in Section 5.1. The following 

items should be noted when using these commands:

•  Items written in angle brackets (< >) are placeholders that are defined later on in the syntax
•  Quotation marks (" ")are part of the syntax wherever shown
•  Not all combinations of <filter> <structure> may be used together. Spatial filters and spatial

structures should be paired, as should Temporal filters and temporal structures. The spatial 
filters are: BBOX, Contains, Intersects, Overlaps. The Temporal filters are: After, Before, During, 
TEquals. The spatial structures are: env and pt. The temporal structures are a time instant value 
or a pair of time instants representing a range.

•  Any number of <featureOflnterest> and <ResultFilters> may be used, they are chained together 
with a logical AND operation. Contradictory filters are allowed. For example, limiting results to 
those above 10 and below 5 would be perfectly valid syntactically, but would never yield results 
since a value cannot be greater than 10 and less than 5 at the same time. Likewise, searching 
for all features contained within two disjoint bounding boxes is a valid request, but will not 
return any results.

SYNTAX for (send-SOS-request) command

(send-SOS-request "obs" <OFFERING> <PROCEDURE> <OBSERVEDPROPERTY> 
[<FEATUREOFINTEREST> <RESULTFILTERS>])

(send-SOS-request "cap" <SECTIONS>)

(send-SOS-request "des" <PROCEDURE>)

(send-SOS-request "sen")

(send-SOS-request "mro" <OFFERING> <OBSERVEDPROPERTY>)

"obs" Creates an SOS GetObservation request
"cap" Creates an SOS GetCapabilities request
"des" Creates an SOS DescribeSensor request
"sen" Creates an SOS GetCapabilities request that is equivalent to (send- 

SOS-request "cap" "c")
"mro" Creates an SOS GetObservation request for retrieving the most 

recent set of sensor measurements for a given offering and 
phenomenon

<SECTIONS> Describes the sections of the SOS Capabilities document that should 
be returned by a GetCapabilities request. Can either be "all" or any 
combination of:

•  "si" (Service Identification)
•  "sp" (Service Provider)
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•  "om" (Operations Metadata)
•  "fc" (Filter Capabilities)
•  "c" (Contents)

<OFFERING> A string that represents the SOS Offering that observations are being 
requested from. Ex, "DOWNSLOPE_MOTION"

<PROCEDURE> A string that represents a procedure (sensor name). Ex, 
"urn:ogc:def:procedure:inclinometer-4"

<OBSERVEDPROPERTY> A string that represents the phenomena being measured by a given 
procedure. Ex, "urn:ogc:phenomenon:distance"

<FEATUREOFINTEREST> A collection of options that defines a spatial or temporal filter on the 
results of the query. Takes the form <FILTER> <STRUCTURE>.

<RESULTFILTERS> A collection of options that defines a numerical filter on the results 
of the query. Takes the form <OPERATOR> <VALUE>.

<FILTER> A spatial or temporal operator. One of: BBOX, Contains, Intersects, 
Overlaps, After, Before, During, TEquals

<STRUCTURE> A spatial or temporal structure that serves as an operand for a 
<FILTER>. One of:

•  env <SRSNAME> (<LOWERCORNERX>,<LOWERCORMERY>) 
(<UPPERCORNERX>,<UPPERCORNERY>)

•  pt <SRSNAME> (<X>,<Y>)
•  <TIME>
•  <STARTTIME> <ENDTIME>

<SRSNAME> A string denoting the Spatial Reference System used by the 
coordinates supplied. Ex, EPSG:4326

<LOWERCORNERX> A number representing the x-coordinate of the lower-left corner of 
an envelope. Ex, 23.54

<LOWERCORNERY> A number representing the y-coordinate of the lower-left corner of 
an envelope. Ex, 23.54

<UPPERCORNERX> A number representing the x-coordinate of the upper-right corner of 
an envelope. Ex, 23.54

<UPPERCORNERY> A number representing the y-coordinate of the upper-right corner of 
an envelope. Ex, 23.54

<X> A number representing the x-coordinate of a point. Ex, 23.54
<Y> A number representing the y-coordinate of a point. Ex, 23.54
<TIME> A time stamp representing an instant in time. Ex, 2007-05- 

12T16:25:00
<STARTTIME> A time stamp representing the beginning of a time range. Ex, 2007- 

05-12T16:25:00
<ENDTIME> A time stamp representing the end of a time range. Ex, 2007-05- 

12T16:25:00
<OPERATOR> A comparative operator that filters the results of a query using 

Boolean logic. Objects that pass the query are returned as part of the 
result set while objects that fail are not. One of:

•  Between <LOWERVALUE> <UNIT> <UPPERVALUE> <UNIT>
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•  EqualTo <VALUE> <UNIT>
•  NotEqualTo <VALUE> <UNIT>
•  LessThan <VALUE> <UNIT>
•  LessThanEqualTo <VALUE> <UNIT>
•  GreaterThan <VALUE> <UNIT>
•  GreaterThanEqualTo <VALUE> <UNIT>
•  Like <VALUE>

<VALUE> The operand of a ResultFilter's Operator. Is a numerical value with 
all operators except Like. The Like operator must have a String as its 
operand. Ex, 23.54

<UNIT> The unit of measure for a numerical value. Ex, m
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Appendix C: Contents of Companion CD
The software, tools, and documentation developed over the course of this thesis have been

collected onto a CD that supplements the contents of this document. The contents of the CD are broken 

down by directory in this Appendix. If the CD did not accompany the thesis contact Phil Graniero, 

Department of Earth and Environmental Sciences, University of Windsor, graniero@uwindsor.ca

2owl: XSLT stylesheets that automate the transformation of SensorML and O&M  documents into 

OWL documents

conversionControl: A Visual Basic application that can be used to run OGC to OWL, OGC to CLIPS, 

and OWL to CLIPS transformations

ontology: The sensor ontology as an OWL document

Ontology Design: Notes on the development methodology used to create the ontology, as well as 

the results of various steps of the development process

owl2clips: Java code and design notes for the OWL to CLIPS conversion tool

REASON: The REASON system as used in the slope monitoring demo in Chapter 6. Includes CLIPS 

code, sample data, an ArcMap document, and the ArcMap template that contains the VBA code 

needed to interact with the SOS.

semanticRepair: Design notes and partial implementation of a semantic error detection and report 

generation program.

SOS: SQL files containing the statements used to populate a 52°North SOS server with sample 

sensors and measurements. The "Sensors" subdirectory contains SensorML files that correspond to 

the contents of the SOS.

thesis_proposal: A PDF version of the thesis proposal and presentation

thesis: A PDF version of this thesis and the defense presentation

visio: Visio diagrams associated with the design and development of the various software 

components
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