
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2007

One-operator two-machine flow shop scheduling with setup times One-operator two-machine flow shop scheduling with setup times

for machines and total completion time objective for machines and total completion time objective

Yawei Li
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Li, Yawei, "One-operator two-machine flow shop scheduling with setup times for machines and total
completion time objective" (2007). Electronic Theses and Dissertations. 4713.
https://scholar.uwindsor.ca/etd/4713

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4713?utm_source=scholar.uwindsor.ca%2Fetd%2F4713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Using Sensor O ntologies to create Reasoning-Ready Sensor Data fo r R eal-tim e Hazard

M o n ito rin g in a Spatial Decision Support System

by

James D w ight M cC arthy

A Thesis

S ubm itted to th e Faculty o f G raduate Studies

through th e D ep artm en t o f Earth and Environm ental Sciences

in Partial Fu lfillm ent o f th e Requirem ents for

th e Degree o f M as te r o f Science at th e

University o f W indsor

W indsor, O ntario , Canada

2007

© 2007 James D w ight M cC arthy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives C anada

Bibliotheque et
Archives C anada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-34970-0
Our file Notre reference
ISBN: 978-0-494-34970-0

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In order to protect at-risk communities and critical infrastructure, hazard managers use sensor

networks to monitor the landscapes and phenomena associated with potential hazards. This

strategy can produce large amounts of data, but when investigating an often unstructured problem

such as hazard detection it can be beneficial to apply automated analysis routines and artificial

intelligence techniques such as reasoning. Current sensor web infrastructure, however, is not

designed to support this information-centric monitoring perspective. A generalized methodology to

transform typical sensor data representations into a form that enables these analysis techniques has

been created and is demonstrated through an implementation that bridges geospatial standards for

sensor data and descriptions with an ontology-based monitoring environment. An ontology that

describes sensors and measurements so they may be understood by an SDSS has also been

developed. These tools have been integrated into a monitoring environment, allowing the hazard

manager to thoroughly investigate potential hazards.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication
To the family, friends, and teachers who have supported my life as a student for the last twenty

years, thank you.

I wish to dedicate this work to my parents, Jim and Wendy. Their unending and unconditional love

and encouragement have contributed more to this work than they will ever know, and for that I am truly

grateful.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements
While this work may have a single name as an author, it is the support of many people that has

made it possible. First, I would like to thank Dr. Phil Graniero, who gave me the opportunity to embark

on this challenge and supported me every step of the way. His passion for what we do is infectious and

pushed me when I needed it most. I wish to thank my fellow researchers in the Geotechnical In-Situ

Sensor Technology Network as well as the Sensor Web Automation Network for their support. To my

friends in the Multi-purpose Environmental Modelling Facility, especially Steve Rozic, Nafaa Jabeur, Dan

D'Alimonte, and Xitao Xing, thank you for your support and for reminding me that I'm not the only

person in the world who finds this stuff interesting. I would like to thank Dr. Alan Trenhaile and Dr.

Edwin Tam for serving on my thesis committee, Dr. Aaron Fisk for chairing my defense, as well as the

staff and faculty of the Department of Earth and Environmental Sciences for their support. A special

thank you also goes to all of the teachers and classmates I've had over the years as well as the students

and professors I've had the pleasure of working with. I would also like to acknowledge the generous

financial support of GEOIDE and OCE.

Finally, I would like to extend a heartfelt thank you to my family and friends. To my parents Jim and

Wendy for their unwavering and eternal support, to my brothers Scott and Joe for always being there

for me and for being great role models to aspire to, and to the rest of my family, your support has not

gone unnoticed and has made this work possible. To my friends, especially M att, Jay, and Dani, we've

been through many adventures together, and this is one adventure I would not have completed had it

not been for all o f you.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents
Abstract___ iii
Dedication__ iv
Acknowledgements___ v
List of Figures___ vii
List of Code Listings___ vii
List of Abbreviations__ viii
1. Introduction___ 1

1 .1 . Pr o b l e m ___ 1

1 .2 . T h esis O bjectives__3

1 .3 . S ig n if ic a n c e o f Research __4

1 .4 . C h a p t e r O u t l in e __4

2.___Background___ 6
2 .1 . G e o t e c h n ic a l H a z a r d M o n it o r in g a n d Sp a t ia l D e c is io n Su p p o r t Sy s t e m s __________________________6

2 .2 . Se n s o r W ebs___1 0

2 .3 . D a t a En c o d in g s a n d R e p r e s e n t a t io n s ___ 12

2 .4 . O n t o l o g ie s __ 1 5

3. Classification and Transformation of Data Encodings________________ 20
3 .1 . D a t a D e s c r ip t io n La n g u a g e s __ 2 1

3 .2 . C o n c e p t u a l O n t o l o g ie s __22

3 .3 . O p e r a t io n a l O n t o l o g ie s ________________________________ 2 3

3 .4 . T r a n s f o r m a t io n o f En c o d e d Kn o w l e d g e ___ 2 3

3 .5 . O t h e r C o m p o n e n t s ___ 2 4

3 .6 . T a r g e t A r c h it e c t u r e __ 2 5

3 .7 . C l a s s if ic a t io n Ra t io n a l e a n d G e n e r a lize d T r a n s f o r m a t io n _______________________________________ 2 7

3 .8 . D o c u m e n t Co n v e r s io n C h a in Im p l e m e n t a t io n __ 3 0

3 .9 . S E N S O R M L /0 8 tM TO O W L __ 3 2

3 .1 0 . O W L t o C L IP S ___ 3 8

3 .1 1 . Se m a n t ic Re p a ir ___ 4 1

3 .1 2 . Su m m a r y ___ 4 2

4. Ontology Development___ 43
4 .1 . M e t h o d o l o g y ___ 4 3

4 .2 . D e v e l o p m e n t ___ 4 5

4 .3 . Su m m a r y ___ 5 2

5. Monitoring Suite and System Integration____________________________54
5 .1 . In t e g r a t io n ___6 0

6. Case Study__ 64
7. Conclusions__74
References___ 77
Appendix A: Ontology Specification____________________________________85
Appendix B: Fact-Function Syntax______________________________ 99
Appendix C: Contents of Companion CD________________________________102
Vita Auctoris___ 103

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures
Figure 1 - REASON Expert System Architecture (Rozic, 2 0 0 6)_____________________________________9
Figure 2 - a) Data-centric representation of a sensor observation; b) Ontological (information-
centric) representation of a sensor observation___ 17
Figure 3 - General Monitoring Environment Architecture_______________________________________ 26
Figure 4 - Initial Monitoring System Design Alternatives__ 27
Figure 5 - Generalized Transformation Steps to Move from data to inform ation__________________28
Figure 6 - Transformation steps to move from SOS data to CLIPS data______________ 30
Figure 7 - SOS Operations Perspective for Sensor Data Consumer (Left) and Producer (Right) -
Reproduced from Na and Priest (2 0 0 6)__31
Figure 8 - A subset of the knowledge glossary__48
Figure 9 - The Protege Ontology E d ito r_____________________ 51
Figure 10 - GIST DSS Conceptual Framework (from Harrap et al., 2006)__________________________ 55
Figure 11 - REASON Ontology H ierarchy__ 56
Figure 12 - REASON Evaluation Loop___________________________ ,______________________________ 57
Figure 13 - Expanded version of the REASON evaluation loop _________________________________58
Figure 14 - Sequence diagram for a sensor request___ 59
Figure 15 - Integrated Monitoring System Architecture __ 62
Figure 16 - Initial Slope M o d e l__ 65
Figure 17 - Initial Geotechnical Monitoring Decision Tree_______________________________________ 66
Figure 18 - Observation Collection with associated Observations________________________________ 68
Figure 19 - Observation instance with matching procedure and tim ePosition____________________ 69
Figure 20 - Observation instance showing a result__ 69
Figure 21 - Expanded REASON Decision T ree___ 70
Figure 22 - Revised Slope Model___72

List of Code Listings
Listing 1 - XSLT Template S tructure___ 3 3

Listing 2 - Sample Conversion Tem plate__3 4

Listing 3 - M aster Stylesheet__ 3 7

Listing 4 - CLIPS representation of Sensor and Station classes________________________ 3 9

Listing 5 - An instance of the Station class___ 4 0

Listing 6 - SamplePosition CLIPS Instance__ 4 1

Listing 7 - SOS-DATA-SOURCE Message H an d ler___ 6 7

Listing 8 - SOS-DATA-SOURCE next-cycle message-handier______________________________________ 68

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Abbreviations
AJAX: Asynchronous JavaScript and XML
CLIPS: C Language Integrated Production System
COOL: CLIPS Object Oriented Language
CSV: Comma Separated Values
CVS: Concurrent Versions System
DSS: Decision Support System
ECO-COSM: Extensible Component Objects for Constructing Observable Simulation Models
ESRI: Environmental Systems Research Institute
GIS: Geographic Information System
GIST: Geotechnical In-Situ Sensor Technology
GML: Geography Markup Language
GRASS: Geographic Resources Analysis Support System
IEEE: Institute of Electrical and Electronics Engineers
MEMF: Multipurpose Environmental Modelling Facility
O&M: Observations and Measurements
OGC: Open Geospatial Consortium
OWL: Web Ontology Language
RDF: Resource Description Framework
REASON: Real-time Evaluation Applying Sensor Ontologies
SAR: Synthetic Aperture Radar
SCADA: Supervisory Control and Data Acquisition
SensorML: Sensor Model Language
SDL: Semantic Data Language
SDSS: Spatial Decision Support System
SOS: Sensor Observation Service
SQL: Structured Query Language
SUMO: Suggested Upper Merged Ontology
SWE: Sensor Web Enablement
UML: Unified Modelling Language
VBA: Visual Basic for Applications
W3C: World Wide Web Consortium
XHTML: Extensible HyperText Markup Language
XML: Extensible Markup Language
XSLT: Extensible Stylesheet Language Transformation
XST: Extensible Set Theory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction

l . l . P r o b l e m

The identification of impending natural hazards is a worthwhile research objective for many reasons.

The early detection of a hazard has the potential to protect physical infrastructure, conserve natural

resources, and save lives. Methods to detect hazards vary depending on the type of hazard, but are

often built around the concept of using expert criteria for the identification of hazards or the

determination of hazard potential based on analyzing field data collected from site(s) of interest. If it is

determined from this analysis that hazards are likely, then it is up to administrators and decision makers

to plan the next course of action based on this information. For example, when a forest is dry, the

potential for wildfires to occur increases, and appropriate precautions can be taken to avoid the

creation of sparks that may trigger a fire. The hazard manager is able to decide on an appropriate

course of action (such as fire remediation), based on the most recent information (moisture levels).

These determinations are made using a combination of accurate information and expert knowledge.

The crux of any hazard monitoring problem, then, is to gather and analyze relevant information in a

timely fashion using domain expertise. This presents two distinct, but related problems with their own

unique challenges: the collection of data and the analysis of those data.

Before examining these problems, a distinction must be made between two terms that are often

used interchangeably: data and information. Data are some observations or facts without context,

whereas information is a collection of data organized in some logical manner that is relevant to a

problem. The difference between these two states of knowledge is subtle, but when dealing with

knowledge representation it is fundamental to know exactly what the intended use of the knowledge is

so that it may be structured correctly. The tools and methodologies to make the transition from data to

information in an intelligent, automated fashion form a large part of this thesis.

The collection of relevant data can be done using various methods such as manual collection using

probes and in-situ sensors, remote sensing, field observation, and the use of automated sensor

networks. Manual collection of data through sampling, probing, or other methods may be useful for the

analysis of a very specific problem or when semi-quantitative or qualitative information is needed. The

use of sensors to collect quantitative data that are relevant to a problem is a more fruitful endeavour,

but retrieving data from the sensors can be costly, dangerous, and time-consuming if the sensors are

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

placed in a remote or hazardous area. Further, when decision makers wish to do hazard monitoring by

detecting small changes over long periods of time, manual sampling is inefficient when compared to

automated sampling methods. Automated methods provide the long-term collection capabilities that

are needed by decision makers to monitor hazards, and to support simulation as a method of problem

exploration. Automated methods also reduce the number of field excursions needed by making use of

automated data collection and dissemination methods. The use of automated collection methods does

not, however, eliminate the need for validation of the collected data. Employing strategies to verify the

incoming data as correct is perhaps more important when using automated collection methods, as there

is no first-hand verification o f the data as there would be with a manual collection routine.

Analyzing relevant information is what allows decision makers to draw conclusions about the state

of the system under consideration, and ultimately make decisions. Using problem-specific knowledge as

context, expert users can look at the information presented to them and make informed decisions. This

is what occurred in the wildfire scenario above. The domain knowledge can be considered as an

ontology, or a model of the im portant concepts and relationships in that domain, which is discussed in

Section 4. Any problem we wish to automatically monitor must be understood in some measurable,

quantifiable manner, or in a way that can be qualitatively modeled using symbols. We must be able to

model our problem space accurately enough that we can feed numerical measurements to our

representative model and get reliable and usable results. The problem of hazard monitoring is often

somewhat unstructured and relies on more symbolic or qualitative modeling and heuristic reasoning.

This approach mimics w hat the expert user does; only in this case the role of domain expert is supported

by software which has domain knowledge encoded in its knowledge base.

Relevant data are not always readily available, and can often be buried within massive data stores,

so locating and identifying relevant data can be an issue. There is also a gap between the collection of

the data and their usage, as there must be some infrastructure in place that takes the data in their

collected form and delivers it as useful information to the decision maker. Domain experts must be able

to retrieve the information in a form that is useful for problem solving, not just simple number

crunching, allowing the decision maker to apply the information to their problem assessment. In all of

these cases, the expert's ontology that models the problem domain is a key element in finding and

filtering the data and transforming them into relevant information. The same data problems must be

addressed in automated reasoning. Therefore an ontology-based decision support system and data

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

infrastructure can help support automated reasoning and hazard identification. These are some of the

major issues which must be addressed to create a knowledge-based approach to hazard monitoring, all

of which are addressed in some way in this thesis. The remainder of this chapter will demonstrate the

rationale behind solving these problems as well as a generalized architecture used to build and integrate

these solutions.

1.2. T h e s is O b j e c t iv e s

The main objective of this thesis is to use sensor data collected by sensor networks for real-time

hazard monitoring in a spatial decision support system (SDSS), and to investigate the use of ontologies

as a means of increasing the usable information content of the data so an SDSS can be a more effective

automated reasoning tool. The objective is approached with the operative hypothesis that: i) a

machine-usable representation of the ontologies that model both the sensor and problem domains can

be used to automate the data-to-information transformation and the reasoning process; and ii) the

sensor ontology can be automatically produced from sensor descriptions in existing sensor web and

geospatial infrastructure standards. To do this we must provide problem domain-specific context for

sensor data and present that information in a form that is machine readable and understandable. This

requires a series of sub-objectives to be met. First, the ontological needs of the sensor network domain

must be investigated. This involves a thorough review of the sensor domain to find all of the key

concepts that can be used to provide context to sensor data. From this information, an ontology must

be created and made accessible to the systems using the sensor data. Various ontology development

methodologies must be explored to ensure that the end result is a useful one. Tools must then be

developed to take sensor data from typical geospatial storage infrastructure and convert: it into an

ontological form. This needs to be done in an automated way so that existing monitoring workflows are

minimally affected. This information must then be integrated with an ontology-based spatial decision

support system. This will allow the information to be analyzed within the context of the problem using

advanced problem solving methods. The work will extend the capabilities of the REASON spatial

decision support framework (Rozic, 2006), a system that provides expert users the ability to create a

spatial decision support system that uses spatial- and knowledge-based analysis to aid expert users in

analyzing problems. The extensions of REASON will allow it to automatically discover and use sensor

data found through the sensor web infrastructure in a way that enables these types of analysis. All of

these tools must be integrated and the entire workflow must be tested to ensure that the results of the

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

analysis based on the new ontology are reliable. Once this workflow is created, analysis routines can be

created that will make use of the ontological information. The system must demonstrate usability in a

hazard monitoring and detection application and show the benefits of ontology usage for hazard

detection. It must also demonstrate usability and interoperability with distributed spatial databases and

the standards that make up the current sensor web and geospatial infrastructure.

1 .3 . S ig n if ic a n c e o f R esea r c h

This research is aimed at filling a gap that exists between advanced problem solving methods and

the data which are currently used to feed more traditional analysis methods. Artificial intelligence

techniques used to analyze and solve problems are continually advancing, and while they are powerful

ways to solve problems, they typically need to use specialized information structures to represent the

inputs to their problem. Through the use customized software tools that exploit common, open data

standards, this work will show that it is possible to automate much of the work that needs to be done to

take data that are more typically suited to conventional data-centric analysis and transform them so

that they can be used in more information-centric analysis problems. It will show the benefits of using

ontologies to structure knowledge and how the use of different levels of knowledge representation for

different tasks can help the organizational aspect of hazard monitoring. Creating a specific

transformation engine to bridge this gap would be feasible, but by generalizing some of the various

levels of knowledge representation and moving between them in an automated way it becomes more

feasible to apply these advanced methods to more traditional problem spaces, regardless of the specific

architecture of a given monitoring workflow. The software produced in this thesis consists of a spatial

decision support framework, a data transformation engine, and connections to the standard geospatial

infrastructure. This software and demonstration application provide the foundation to build live

monitoring systems in the future that use this new information-centric approach for the detection of

hazards.

1 .4 . C h a pte r O u t l in e

The remainder of this thesis is organized as follows. Chapter 2 introduces the key domains that

apply to this project, specifically by examining the literature and some of the relevant technologies

associated with geotechnical hazard monitoring, spatial decisions support systems, sensor webs, data

encodings for knowledge representation, and ontologies. Chapter 3 explains how data encodings are

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applied in this work. It also presents a classification scheme for these and other encodings based on

their purpose in a typical monitoring workflow. It details the creation of a transformation engine based

on this encoding classification, and explains how the transformation can be generalized so it can be

applied to other monitoring workflows. Chapter 4 presents a general methodology for the development

of an ontology. This methodology is illustrated through the development of a sensor ontology to be

used in our reasoning engine. Chapter 5 explores our monitoring environment, and the additions that

have been made to it over the course of this project. It explains the purpose and creation of the

software tools that were created to enhance the capabilities of the monitoring environment and how

the various tools have been integrated. It finishes by exploring the entire monitoring workflow from

data to information to analysis. Chapter 6 presents a case study of how this system works in a

geotechnical domain with the use of realistic geotechnical models for slope failure. Chapter 7 contains

some concluding remarks about the research as well as some future directions that could be pursued.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Background

2 .1 . G e o t e c h n ic a l H a z a r d M o n it o r in g a n d Sp a t ia l D e c is io n Su p p o r t Sy s t e m s

To manage hazard risk, we must consider two important aspects of the problem of hazard

assessment. The first is identifying what the likelihood of the hazard is, and the second is identifying

who and/or what is vulnerable to the hazard. A large population centre with no corresponding

likelihood of the hazard occurring does not pose a risk. Likewise, high likelihood of a hazardous event in

completely unpopulated areas does not pose a risk. Only when there is a likelihood of a hazard

occurring in areas where there are people and/or infrastructure that are vulnerable to that hazard does

the hazard warrant monitoring. Using this principle we can direct our monitoring efforts and resources

to the areas that are the most susceptible to hazard risks.

It is important, then, to be able to detect the potential for a hazard to occur based on available data

so that the responsible parties can then plan response, mitigation and/or recovery strategies based on

their evaluation of the potential effect of the hazard. Various studies have examined how this may be

achieved by examining specific sites that have experienced slope failure of some form and trying to

learn what the cause of the slope failure was and how it could be detected on other similar sites. As an

example, Polemio and Petrucci (2001) investigated a mudslide that occurred in southern Italy and used

the results from that investigation to determine the best course of action to evaluate landslide hazard

potential based on remotely sensed data. Similarly, Zourmpakis e ta l. (2006) studied a site in

southeastern England that was primarily composed of loess by subjecting it to controlled flooding and

surface pressures. The site was monitored both geotechnically and geophysically, and the results of the

geophysical monitoring were used to reinforce and verify the results of the geotechnical monitoring.

Studies such as this serve not only to find better ways to combine instruments for a given monitoring

task, but also act as a case study for similar sites so that the properties of hazard features can be

understood. In an information-centric monitoring system these case studies can be described in ways

that are understandable by a software system, which makes it possible for that system to compare the

status of a monitored slope to a library of case studies that can be used to support or refute a

hypothesis generated by the system regarding the hazard (Aamodt and Plaza, 1994). Crosta et al.

(2006) provide another detailed study of landslide potential. In this case they did not examine a

landslide that had occurred, but rather an area that is known to be susceptible to landslides. They

integrated data from geological surveys and other field work, the study of triggering mechanisms, and

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the results of other nearby landslide events to generate a risk factor to various areas with conditions

analogous to those observed in the field and monitored with instrumentation.

Having this type of expertise available in a machine-usable form serves to reinforce any conclusions

that a monitoring system may draw. Many natural and anthropogenic hazards can be detected through

simple arithmetic methods. For example, rising water levels indicate that flooding may be occurring

(Wassmann et a!., 2004), and the sudden motion of a slope can signify a slope failure (Hutchinson et al.,

2004). Being able to perform this kind of detection is important so that we may better understand a

hazard, however by the time these simple conditions are seen it is often too late to enact adequate

counter-measures or take the necessary actions to warn populations and protect infrastructure.

For these reasons an intelligent hazard monitoring system (or any intelligent monitoring system)

should use its available knowledge to try and detect the potential for hazardous conditions, and any

precursors to these conditions that may be identified by a domain expert. In other words, an intelligent

flood monitoring system must monitor both rainfall and w ater levels so that rainfall can be used to

predict future w ater levels or focus the monitoring efforts on certain locations. An intelligent slope

monitoring system must monitor not only slope movement, but also the behaviour of the water table

relative to the active areas of a slope. Monitoring of the water table and its proximity to landslide-prone

areas can help predict when a slope is at risk of failure (Iverson, 2000). Like any data-driven problem,

the quality of the analysis is directly related to the quality and quantity of the data being analyzed. The

determination of what data to use and how confident one can be in the results is ultimately the

responsibility of the expert user, however by looking for precursor phenomena and conditions that are

known to trigger hazardous events, valuable time can be gained before the onset of a hazard, leaving

the hazard manager with more preparation time.

A spatial decision support system (SDSS) is a typical way that this type of monitoring is done. A

decision support system (DSS) can be defined as a computer-based information system that combines

models and data in an attem pt to solve unstructured or semi-structured problems with extensive user

involvement through a friendly user interface (Turban et al., 2005). An SDSS takes the DSS concept and

applies it in a spatial context. An SDSS can take either the data-centric or the information-centric

approach to hazard monitoring, depending on the intended purpose of the monitoring system. A

system built to look for simple conditions and provide an alert when those conditions are violated can

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be very effective data-centric systems. SCADA (Supervisory Control and Data Acquisition) systems take

this approach and are used with great effect in the several industries, such as manufacturing, facility

management, and infrastructure management (Kokai et al., 1997). If a system is to be used to model a

problem, run simulations of an environment, interact with and adjust the instruments providing the

measurements, integrate multiple data sources, and for thorough problem investigation, then it should

be built in an information-centric manner.

Yu et al. (2007) give an example of a system that uses data-centric methods to perform geotechnical

hazard monitoring with positive results. It is a web-based system that uses real-time monitoring of

rainfall combined with expert knowledge of where torrential rains are most likely to occur and the

location of unstable slopes. The system is a tool for monitoring and problem exploration to determine

where landslides and debris flow into creeks is most likely to occur on the main island of Taiwan. Their

system integrates data from rain gauges, estimations from radar, water levels, and hazards information.

In a browser-based GIS various risk parameters can be mapped, including rainfall levels, and landslide

and debris flow potential estimations. Cheng et al. (2002) describe the development and use of a

computer-based decision support system to monitor construction sites in which geotechnical stability is

a concern. In this setting activities such as excavation, dredging, and other small- or large- scale

construction activities are represented as GIS data within an integrated relational database. This

information is passed through some analysis algorithms that apply fuzzy set theory in order to identify

the possible cause of unexpected behaviour detected by geotechnical instrumentation. Harris et al.

(2001) investigates the use of permafrost monitoring combined with climate monitoring stations to aid

in learning more about how permafrost affects the movement of potentially unstable slopes and how

permafrost behaviour can be used to help predict the motion of a slope.

These various examples show that a key factor when performing geotechnical hazard monitoring is

to make use of, and integrate, data from several sources. The approach this project takes to this part of

the problem is addressed in Chapter 3. The source of data that is most effective for our purposes of

real-time or near-real-time evaluation and monitoring are field instruments that automatically measure

areas of interest for the phenomena we wish to detect. This idea is embodied in the concept of sensor

webs.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.1 REASON

The REASON Spatial Decision Support Framework (Rozic, 2006) will provide the backbone of the

demonstration system described later in the thesis. REASON can be used to develop rule-driven spatial

decision support systems using an ontology based approach. It was developed using the ArcAgents

extension (Ball and Harrap, described in Rozic 2006) to ArcGIS which embeds a CLIPS engine into ArcGIS.

REASON builds on this connection by providing a CLIPS expert system that makes use of the spatial

analysis capability of ArcGIS. The REASON architecture can be seen in Figure 1.

Ontology
Hierarchy

ES (CLIPS)GIS (ArcGIS)
User Interface

'SDSS Arc

Core
SDSS

Engine

Inference
Engine

Knowledge
Base (KB)DB AccessEnd

4 « 4 k W e a k Connection

4 — ►Strong Connection
Spatial

DB
Table

DB

Figure 1 - REASON Expert System Architecture (Rozic, 2006)

Expert knowledge is partitioned into a series of ontologies to allow for customization across fields

while maintaining portability of the source code, limiting changes to only application-specific concepts.

The CLIPS reasoning engine provides facilities to reason on the knowledge stored in the system and

ArcGIS provides the spatial analysis capability, making systems built on this framework powerful

information-centric monitoring systems. REASON'S abstracted data source mechanism allows it to make

use of many different types of data; however the data binding is somewhat rigid in the sense that data

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coming into the system must be structured in an expected way so that an appropriate data source

handler can be created.

This work will improve on this aspect of the system by providing a sensor ontology that stores all of

the measurement data in the context of the sensors that made the measurements. Software tools will

be created that can transform the typically rigid data structures into more dynamic ontological data.

This will in turn improve the analysis capabilities of the decision support system by providing the context

for the incoming data.

2 .2 . Se n s o r W ebs

There are many perspectives regarding sensor webs, typically focusing on a particular aspect of the

technology that corresponds to a given research group's area of expertise. For example, NASA's Jet

Propulsion Laboratory1 defines a sensor web as "a new type of Geographical Information System (GIS)

that can be embedded into an environment to monitor and control it. It is a spatially distributed,

synchronous instrument that can react and adapt to changing environmental conditions." Their

research tends to focus on environmental monitoring applications, and their definition reflects that

focus.

Sensor webs are tools used for automated collection and storage of sensor observations, either

integrating data from several separate sensor networks or acting in a coordinated fashion to generate

aggregate or 'macro' observations. M ore generally, they are structures which move measurement data

through a structured network from the sensors which collect the data to the applications which use

them. They facilitate the collection, distribution, and dissemination of large amounts of spatially

significant data, turning the Earth's surface, subsurface, oceans, and atmosphere into sensible entities

(Gross, 1999). Initial sensor web implementations began as very basic networks, with a few sensors

hard-wired together.

Quite often when a sensor web is deployed, having a traditional wired network is simply not

possible. In recent years, the advent of mobile computing (Datta et al., 1999) and low-power wireless

communication technologies (Cetintemel et al., 2003); (Kim and Yoo, 2005) has allowed sensor webs to

be feasible in more realistic field settings. The methods used to transmit the data may vary, though

1 http://www.jpl.nasa.gov/ Last Accessed August 20, 2007
10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.jpl.nasa.gov/

most implementations tend to go through a data aggregation process which involves collecting several

measurements and compacting them into messages so they can be sent more efficiently (Royer and

Chai-Keong, 1999); (Madden e ta l., 2002); (Heidemann e ta l., 2001); (Krishnamachari e ta l., 2004). This

is especially important when using low-power wireless networks since capacity is always an issue (Gupta

and Kumar, 2000); (Li et al., 2001). All collected data must be sent completely and reliably, and in as

small a message as possible so that the real-time arrival of data at the repository can be preserved.

With the continual advancement of sensor technology and wireless technology (Cetintemel, 2003),

as well as growing support from the developer community, sensor webs have become a very useful and

practical mechanism for automated data collection. As would be expected, this process can result in the

collection of large amounts of data which can be used to feed analysis within a specified problem

domain. Since the aim for any information-driven decision support system is to provide an expert user

with relevant information that helps them to make informed decisions, sensor webs prove extremely

valuable in providing data that may be transformed into timely information that is relevant to the

problem.

Sensor networks can intelligently monitor their surroundings and are growing to be more responsive

to external commands and control. Recent works have pushed to increase the intelligence in the way

sensor networks are controlled. Jabeur and Graniero (Submitted) proposed a virtual layer of software

agents that would sit on top of the sensor layer to manage much of the control and management of the

network, taking advantage of higher processing capabilities to control functionality in a more intelligent

manner while also extending the life of the power cells used by the sensors. Jabeur et al. (Submitted)

shows how evaluation of incoming sensor data can be used to adjust the sampling behaviour of

individual sensors to increase the relevance of the data. Stavroulaki et al. (2006) have worked to make

sensor web services reconfigurable on the fly through the use of an overarching framework for

distributed systems. They aim to take the many software tools that have been developed for sensor

control and configuration and organize them into a high-level architecture to support the integration of

these various tools. Fukatsu et al. (2006) describe an agent-based system to operate sensor nodes in

the field via a web-based interface. The concept, design, and implementation of their system are

discussed, as is the idea of how management of these types of web-based systems should be

approached. A unique feature of their system is that the agents themselves generate web pages that

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be used to view the data collected by the sensors they are associated with, so not only do the

agents control the behaviour of the system but they also help with data dissemination and presentation.

Measurement of slope motion and hazard potential can be accomplished in several ways, including

the use of remote sensing and interferometry, and sensor networks. Colesanti and Wasowski (2006)

explore how Synthetic Aperture Radar (SAR) can be used to monitor the potential size of slides, identify

the amount of vegetation on the surface of a slope, measure the inclination of the slope, measure the

movement of a slope, and determine the velocity and displacement of a slide event. Bovenga et al.

(2006) use multi-temporal differential interferometry (an SAR technique) to investigate slope instability,

(Meisina et al., 2006) uses a similar SAR technique to analyze ground deformation. Terzis et al. (2006)

apply wireless sensor networks to the prediction of landslides. By monitoring displacements of the

sensor nodes, they calculate an estimated slip plane. This slip plane is used to feed an analysis routine

that predicts the likelihood of a landslide. Sheth et al. (2007) have constructed SenSlide, a distributed

sensor system used to predict landslides. Their focus was on making the system robust enough to

withstand a slope failure while handling the typical wireless sensor network issues of connectivity and

environmental variability.

Sensor webs and SDSS can be used not only for hazard detection, but also to plan sensor network

deployment and manage the sensor network. The decision of which sites to monitor and what

monitoring strategies to use are generally specific to the hazard being investigated, but there must be

some suspicion that a hazard may occur before a monitoring strategy is employed. This suspicion may

be based on the opinion of a domain expert, the results of simulation models, or the analysis of similar

sites that have experienced a hazardous event.

2 .3 . D a t a En c o d in g s a n d Re p r e s e n t a t io n s

All of the studies noted in the last section rely on getting sensor data from the field to some remote

analysis routine in a usable form. Finding effective methods to encode sensor data for different

purposes is critical to providing a usable infrastructure for hazard monitoring. There are two

approaches that may be taken: either a single encoding for all purposes, or some combination of

encodings. If the single encoding approach is used, the encoding must be robust enough to account for

all states of knowledge the system may encounter. Finding such a targeted encoding can be difficult,

but if possible can decrease the complexity of the system. In many cases, the use of a single encoding is

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not feasible, so a multiple encoding strategy must be used (such as in Bonnet et al., 2004). When this is

the case then there is often a need to convert between the different encodings. This section will

examine some of the relevant encodings for hazard monitoring.

Knowledge representation methods span a wide range of complexity. Some are tailored to specific

tasks while others are of a more generalized form. Semantic networks (Lehmann, 1992) can be used for

knowledge representation when complex networks of concepts need to be represented. These

networks are represented as nodes with relationships, similar to an ontology (see Section 2.4).

Semantic networks were initially developed to aid in transforming human-readable information into

machine-readable information. This idea has grown over decades of refinement into a practical method

of both storing and presenting information for retrieval by computer programs. The use of semantic

networks has grown to the point that researchers are now trying to enable the Semantic Web (Berners-

Lee et al., 2001). Semantic Web development aims to take the human-readable information content

presented by the Internet and make it machine-readable. This would enable software programs to

begin to understand the information stored on the World Wide Web, making it possible for agents or

other programs to make intelligent use of the information.

Frames (Minsky, 1974) are another common way of representing knowledge. They take the

approach that a frame can be used to represent an entity, and that the entity is described using

attributes called slots. This again is a style that has been mimicked by the development of many

ontological representations of knowledge. No m atter the conceptual architecture used to structure the

information, it must be rendered in some machine-readable form at to be useful to software tools.

XML2 has emerged as one of the standard and most common ways of cataloguing and exchanging

information via the Internet. Its extensibility and scalability have made it a popular choice to represent

everything from database records to web pages. Because XML is simply a specification of how data

should be encoded, and not an implementation standard, its standardized way of encoding data can be

applied to any representation task. Spatial information, for example, can be represented using the

Geography Markup Language (GML) (Cox et al., 2004). Its extensibility can be seen through the recent

development of CityGML (Groger et al., 2006), an extension on GML used specifically to represent

information about the objects and features found in cities and other urban areas. This demonstrates

2 http://www.w3.org/XML/ Last Accessed August 20, 2007
13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/XML/

one of the major advantages of using XML. If an existing encoding is close to what is needed for a given

application, it can be extended for that application. This allows users to build on a given knowledge

base while applying their own additions to it. Reuse is encouraged as opposed to having every encoding

constructed from scratch. It is also easy to ignore information stored in an XML document, allowing the

consumer of the document to target only the information they need. Since the form at of the document

is standardized, there exist many parsers that make extracting information simple (e.g., Expat3 and

Xerces4). Most programming languages have either a built in XML parser, or one which can be added on

via external libraries, so interoperability between programming languages and software tools is rarely an

issue when working with XML.

One disadvantage of XML is the size of a typical document. The documents are often verbose

because all of the data elements are structured as a tree, and the beginning and ending of each node of

the tree and the relationships between nodes are explicitly defined using tags. Because of this, XML

documents often take up quite a bit of space when compared with database records or other

proprietary formats. In modern server and desktop computing environments where high-bandwidth

connections are normal, this is rarely an issue. For example, the recent development of more dynamic

web pages and web based applications has been driven by the use of AJAX (Asynchronous JavaScript and

XML) technology (Garrett, 2005); showing how XML can be used in a high-bandwidth environment with

great effect. However, for sensors with limited processing power and communication bandwidth, large

file sizes are a problem. Sending an entire XML document over a low-bandwidth modem would cause

massive backlogs of information due to the time it would take to send each document. To avoid this

problem, XML can be generated by the server after it has received the data in a more compact format

like a database record, or it can be generated after a request from a client that wishes to have the data

returned as XML. The latter is the approach that 52° North5 takes in generating Observations and

Measurements (Cox, 2006) documents in its Sensor Observation Service (SOS) (Na and Priest, 2006)

software. Measurement records are stored to a database with a schema based on the O&M

specification. When a request is made of that database from a client who needs the data, the SOS

server pulls the relevant record(s) from the database and automatically generates the O&M document

in XML format based on a tem plate that is stored on the server. This way the sensors which publish the

3 http://expat.sourceforge.net/ Last Accessed August 21, 2007
4 http://xerces.apache.org/ Last Accessed August 21, 2007
5 http://52north.org/ Last Accessed August 23, 2007

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://expat.sourceforge.net/
http://xerces.apache.org/
http://52north.org/

measurements can do so w ithout the extra overhead that XML carries, while the client can make use of

the extended descriptions that O&M provides.

Wagner et al. (2005) use an irregular wavelet transform for transmitting sensor data within and

from a sensor network. It adapts to the hierarchy of the existing sensor network implementation rather

than imposing its own structure so that it may best route its data. It is also possible to use lessons

learned from other fields with similar constraints and problems. As an example, the field of genetics

must deal with storing and representing extremely large amounts of data. Ontologies and databases are

paired together (Stoeckert Jr. et al., 2002) for use in this field. They apply microarray databases to store

the massive amounts data that DNA and RNA stores, and recognize that there is a need for data

management and transfer systems to make using these data possible.

Using the growing number of knowledge representation methods and tools to support decision

support efforts, it is becoming simpler to integrate intelligent analysis methods into monitoring

applications. Choosing the proper encoding(s) is a vital step in setting up any knowledge-driven system,

but it is highly problem-dependent. The constraints and needs of the problem must be thoroughly

explored before a decision can be made about how knowledge can best be represented.

2 .4 . O n t o l o g ie s

Often when people with different areas of expertise attem pt to collaborate, one of the biggest

stumbling blocks is the vocabulary they use. An expert in one field may use jargon that is common

knowledge to colleagues, but is unfamiliar to those who work outside that field. A similar problem also

occurs when the same term has different meanings in different contexts, or when different fields use

different terms to describe the same concept (the problem of semantic heterogeneity). However, if

common terminology is agreed upon and understood by all parties, collaboration can continue with

better understanding. This is, in a sense, the purpose of an ontology. An ontology can be considered

broadly as a "specification of a conceptualization" (Gruber, 1993), in that the knowledge of a given

domain or area of interest is explicitly defined and expressed in an organized way. An ontology specifies

the important concepts in a domain and how they are related, giving structure to the knowledge about a

certain domain. And in much the same way as a domain expert explaining terms can allow another

person to understand the domain they are discussing, an ontology which is properly created can allow a

piece of software to "understand" the domain it describes. A detailed discussion on the nature of the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

term ontology and its roots can be found in (0hrstr0m et al., 2005). In this paper they discuss the

origins of the term in philosophy to describe the study of being, and how it has since been applied in

computer science. Figure 2 shows an example of how an ontological representation can be used to

model concepts and relationships in a way that illustrates the utility of this approach. Figure 2a shows

the data-centric approach to the representation of a sensor observation. The measurement (0.014) has

attributes that are implicitly related to it, and by looking at the structure and content of these attributes

one can interpret what they represent (a unit of measure, a time stamp, and a position). However a

reasoning system does not have the tacit knowledge to draw on that an expert user has, and as such

may not be able to interpret these attributes correctly. Figure 2b shows the application of an ontology

to the representation of the sensor observation in an information-centric way. In this case the sensor

observation (0.014) is related to its measurement attributes (such as the measurement location and

time), the sensor that made the measurement (sensor 1), the attributes of that sensor (type,

phenomenon measured, accuracy), and the other sensors that are connected to the network (sensors 4,

8 ,1 5 ,1 6 , 23, and 42), through explicitly defined relationships that connect the concepts that are

important to the domain. Information regarding the details of the other sensors can also be stored, as

can further detail about seemingly simple attributes such as the measurement location. When this

model is explicitly encoded in a machine-readable form, these concepts and relationships can be

analyzed by appropriate software in order to better interpret the information stored within it.

Ontologies can, and have been, applied to many problems that deal with the management and

representation of knowledge. Wang et al. (2007) use an ontology to verify feature models for use in

domain engineering. Features of a given domain are represented as classes in the ontology and valid

relationships between those features are also represented. Verification can then be done through

reasoning or other processes to identify if a given configuration of features is valid or not according to

the rules of the domain, or if inconsistencies in the configuration exist. Dietrich and Elgar (2007) make

use of ontologies to detect and analyze design patterns within Java programs. Their ideal is to enable a

web of design patterns and refactoring so that design improvements could automatically be applied to a

system based on successful pattern usage in other similar cases. Chau (2007) uses an ontology-based

knowledge management system to model the flow and quality of water. The study uses an ontology

structure similar to the one used in our decision support engine, incorporating a domain ontology and

an information ontology to partition its knowledge. It is used as part of a knowledge-based system that

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

incorporates Artificial Intelligence (Al) technology to assist with model selection and knowledge

acquisition.

a) in 0.014

32.5

09-12-2007110:00:00

62.1

15 0 ©
©

b> ©

©
o°v sensorType

1 ; ^

me^suredBy

0.014

Acme
Inclinometer

phenomenon

accuracy

Cumulative
distance

±0.001

hasUOM

m hasTjme

 hasX

hasY

measures

32.5 hasUOM Degrees
longitude

62.1 IrasLlQM Degrees
latitude

09-12-2007T10:00;00

DOWNS 10 PE
MOTION

Figure 2 - a) Data-centric representation of a sensor observation; b) Ontological (information-centric) representation of

a sensor observation

Some examples of how ontologies are used in a monitoring framework include the work of Pundt

and Bishr (2002). They make ontologies available that describe their data in the environmental

monitoring domain, making it possible for those not directly associated with the collection of the data to

use the data in a proper manner. Their goal is to enable data sharing to support environmental

monitoring in the hope that ontologies will provide the bridge needed to overcome the problem of

semantic interoperability. In a much different domain, Zimmerman et al. (2005) describe the use of

ontologies and agents to monitor supply chains. Ontologies provide a common language that enables

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the agents to communicate in order to improve efficiency when tracking orders and handling inventory.

Athanasiadis and Mitkas (2004) describe an agent-based system that uses ontologies for environmental

monitoring. Their system uses meteorological data to monitor air quality and communicate the results

to those in need of the information. An ontology is used to model the domain as well as provide

guidelines for agent communications.

In many of these approaches, ontologies are either used in support of or as the backbone of the

monitoring system. To apply ontologies to our monitoring problem, we can make use of sensor

ontologies. A sensor ontology is a description of the domain of sensors. It explains what sensors are,

the different types o f sensors, how they operate, what their properties are, and how they are related. It

allows specific sensors to be defined in the context of their domain and in a machine-readable format.

Since the main goal of a sensor is to make measurements, then the concepts surrounding measurement

processes and results should also be taken into account.

One example of a sensor ontology is OntoSensor (Russomanno et a!., 2005), a sensor ontology which

makes use of both the Open Geospatial Consortium (OGC) and International Standards Organization

(ISO) models for sensors. This is an approach that bridges these models for the purposes of embedding

sensor knowledge into applications which need to reason on this information. Other ontologies used

with sensor networks include Avancha eto l. (2004) where ontologies are used to aid adaptation in the

behaviour of sensor networks that are responsive to external phenomena. The ontology ensures that

any adaptations made are valid and will not interrupt the monitoring tasks of the sensor network. In

Santanche et al. (2006), Microsoft's SenseWeb project is introduced including the use of sensor

ontologies for data discovery, fusion, and visualization. The ontology helps client applications properly

interpret the data gathered from sensor networks.

The use of ontologies to represent knowledge has grown over the last decade in part because of a

parallel growth in artificial intelligence research and also because of the increased storage and

processing power of modern computing systems. However, since ontologies are still a single view of a

complex world, they are only as expressive as their creators allow them to be. There are efforts to push

towards more generalized high-level ontologies under which more targeted ontologies should fall,

including IEEE's Suggested Upper Merged Ontology (SUMO) (Niles and Pease, 2001) and Cyc (Lenat,

1995), however, managing the cataloguing of thousands of domains leads to many problems such as

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conflicting viewpoints, semantic heterogeneity, and logistical concerns. To achieve a vast, multi-domain,

interconnected knowledge base is a massive undertaking that will take time to evolve, but as more

projects begin to apply ontologies to the representation of knowledge in their domain there will be a

larger set of examples and starting points to draw from when the time comes to merge these resources.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Classification and Transformation of Data Encodings

Sensor webs have the potential to collect very large amounts of data about a geographic region, and

as the number of sensor web installations grow so will the amount of data available for problem

solving. However organizing, discovering, and exchanging such large amounts of data can be a

challenging task. It is this problem that has led many organizations, such as the Open Geospatial

Consortium (OGC)6 and World Wide Web Consortium (W3C)7 to develop standards and encodings to

represent various types of data. The aim of these initiatives is to enable the discovery and interchange

of data so that people can find relevant data and apply them to their problem.

Data representation tends to be focused on representing individual data elements, such as a

number or a name, in a structured way. This style of representation is worthwhile when trying to

answer simple questions, but to answer complex questions we need more information about our data.

Expressing the meaning of the data we are using and how they relate to other data, and doing so in an

organized way can lead to more useful data. We could express the relationships by using symbolic links

within our data that point at related data, or we could make use of metadata to express some of the

meaning of the data, but the use of ontologies integrates all of our concepts into a single realm of

knowledge. Using an ontology that defines all of the important concepts and relationships in our

monitoring domain means software applications can be built which 'understand' it (Guarino, 1998). This

subsequently results in an increased ability for the application to derive knowledge from sensor data as

the ontology can provide context for the measurements that typically doesn't exist when using raw

numerical values. This leads to applications that can use not just the data but the meaning of those

data.

Nonetheless, many styles of representation exist for different purposes. The encodings relevant to

the problem at hand can be broken down into three categories: data description languages, conceptual

ontologies, and operational ontologies. This classification scheme is based on the typical use of these

representations as well as how they would be applied to a monitoring problem.

6 http://www.opengeospatial.org/ Last Accessed August 20, 2007
7 http://www.w3.org/ Last Accessed August 20, 2007

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.opengeospatial.org/
http://www.w3.org/

3 .1 . D a t a D e s c r ip t io n La n g u a g e s

Data description languages are those languages and encodings used to provide a defined

representation for a given entity, but do not provide any explicit information regarding the relationships

that the entities have, or how they relate to other entities (Wuwongse et a!., 2001). This is considered a

'data-centric' viewpoint on data storage. Database systems tend to take this data-centric approach.

Relationships between entities can be implied by the structure of the records, or inferred from the

structure of the database, but are not explicitly defined in a way that is fully understood by a software

tool. Other examples include SensorML (Botts, 2005) and Observations and Measurements (Cox, 2006),

as well as GIS metadata standards such as those supported by the International Standards Organization

(ISO, 2003) and the Federal Geographic Data Committee's (FGDC)8 core metadata framework.

In a typical monitoring system, these languages can serve several purposes. They can be used for

archival of specification documents, measurements, and other pertinent information. These encodings

also work well for data exchange and discovery since they provide information in a more human-

readable format making them useful to catalogue data to be browsed by others. It is also good for

efficient data mining since the data are not typically cluttered with extraneous information. Finding a

specific piece of information in a structured way is typically quite simple and efficient since the queries

are generally targeted directly to the language and there is very little ambiguity in the information

declared in the document.

The lack of additional information about the meaning of the data does pose problems when the

data are to be used in a reasoning-based system. The lack of explicitly defined relationships between

concepts results in reasoning tools having to infer relationships from the structure of the documents.

This can be problematic as it relies on the creator of the documents to structure their data a certain

way, and that the structure is consistent with the way others do it. This also limits the interchange of

data as the level of implied knowledge may not be the same by different data producers. This can lead

to problems of misinterpretation as well as semantic heterogeneity. Also, w ithout explicitly defining the

relationships the implied relationships may be leaving out some tacit knowledge that may be obvious to

a domain expert but not to a software tool. Both of these situations open up the possibility that a

reasoning system could misinterpret the data. For example, a geologist would recognize that the

8 http://www.fgdc.gov/ Last Accessed August 23, 2007
21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.fgdc.gov/

adjacency of rock units implies something about the relative ages of the units. However a reasoning

system that understood the topological relationship between the units would not be able to infer that

there is also a temporal relationship. This is why reasoning systems function best when relationships

are explicitly defined.

3 .2 . C o n c e p t u a l O n t o l o g ie s

Conceptual ontologies are representations that are used to provide an 'information-centric'

viewpoint of the entities which they describe, allowing for the description of concepts associated with a

certain domain of interest. They express not only data, but the characteristics associated with those

data, as well as the relationships between the concepts described within. Examples of languages that

can be used to represent Conceptual Ontologies include the Web Ontology Language (OWL) and the

Semantic Data Language (D.S. Mackay, unpubl. software)9.

Benefits of these encodings in a monitoring environment center on the expressivity of the

information. Relationships between concepts are explicitly defined and do not need to be inferred.

They also provide a starting point from which others can build their own reasoning workflows.

Expressing the concepts and relationships in a structured form at allows others to take that information

and permute it in a way that makes the most sense for their purposes. The specific instances of the

concept within a data set must still be linked to the concept, at which point all the relationships

associated with the concept become associated with the instances.

The main issues with these encoding types are that the amount of information encoded within is

much larger than that of the Data Description Languages so finding a specific piece of information can

sometimes be difficult for a human. The information is not as human-readable in its raw form, though

with additional applications (such as Protege10) can be made more human-friendly. The conceptual

ontology is meant to be a reference model and while it can be more machine-readable than the Data

Description Languages it can also be harder to build a monitoring application around a conceptual

ontology, depending on the choice of representation and the tools available.

9 http://water.geog.buffalo.edu/mackay/ Last Accessed August 22, 2007
10 http://protege.stanford.edu Last Accessed August 21, 2007

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://water.geog.buffalo.edu/mackay/
http://protege.stanford.edu

3 .3 . O p e r a t io n a l O n t o l o g ie s

The role of an operational ontology is to represent an information-centric view in a format typically

used by a reasoning engine, such as those written in programming languages like CLIPS11. The

information in this representation closely resembles that which is found in Conceptual Ontologies.

Often the information is identical, and only the syntax changes. It is represented in a manner more

suited to reasoning engines, typically as source code in a programming language.

These ontologies have the same benefits as the Conceptual Ontologies with the added benefit that

it is targeted to a specific application. This does, however, reduce the potential of reusing the

information since those wishing to use the Operational Ontology for their reasoning purposes must

build their system to work with whatever encoding is used in the target reasoning system. This is why

the Conceptual Ontology proves useful as a starting point for the information-centric view, allowing

others to 'spin-off their own versions of the ontology encoded in a way that enables their monitoring

system while still maintaining consistency with the information presented in the ontology. This is a

highly desirable outcome that provides a common understanding between completely different

reasoning systems.

It should be noted that a given ontology or encoding may in some instances act as both the

Conceptual and Operational Ontology depending on the role it plays in the monitoring workflow. For

example, an OWL ontology used for archival and reference purposes would be a Conceptual Ontology,

but if that same ontology is paired with an application capable of reasoning on OWL documents, such as

Pellet (Sirin et al., in press) or FaCT++ (Tsarkov and Horrocks, 2006), and a monitoring system is built

around that reasoning engine then it also functions as an Operational Ontology. This would of course

still allow the spin-off concept to work as others could build on the OWL Conceptual Ontology in order

to create an Operational Ontology that works for their environment.

3.4. T r a n s f o r m a t io n o f En c o d e d Kn o w l e d g e

One of the aims of classifying the various encodings is to create a method to move between them in

some organized manner. By grouping individual representation styles into categories, the chain of

transformation steps can be abstracted. While this does not provide information on how to transform a

11 http:// www.ghg.net/clips/CLIPS.html Last Accessed August 23, 2007
23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ghg.net/clips/CLIPS.html

specific encoding to another specific encoding, it does provide some general insight into how such a

transformation could be achieved. For example, to transform from a Data Description Language to a

Conceptual Ontology will typically require a change in the structure and organization of the data, and

potentially a change in syntax as well. A conversion from a Conceptual Ontology to an Operation

Ontology will typically only require a change in syntax as the organization of the information should

remain the same with such a conversion. So while this abstraction is not necessary to create a

transformation chain it is certainly useful in guiding its development. Varro and Pataricza (2003)

demonstrate how this type of abstraction can be useful in not only guiding transformation routine

development, but also how the transformation routines can be automatically generated through the use

of very high levels of abstraction. While this thesis does not strive to achieve this level of automation, it

does demonstrate that automation of conversion between representations without the loss of

semantics is possible, and that the semantics of the information can actually be reinforced and even

increased (see Section 3.11).

3 .5 . O t h e r Co m p o n e n t s

While not actually data encodings, there are other pieces of the transformation chain which must be

considered. These are Data Sources, Applications, and Services. Data sources are the suppliers of the

data that feed the transformation engine. In the case of a monitoring environment they may feed live

or archived sensor data, results from simulations, landscape models, GIS data, or any other source of

data that can be used as input to the analysis routines. They supply data that represent some real or

simulated condition or phenomenon in the field. Applications are the target software tools that will

make use of the data after they are converted. This is typically a decision support system of some form

built to use ontological data. They have facilities to load and use the information stored in the

Operational Ontology and often manage the various transformation steps as well. Services are the tools

which assist in moving the data from one stage of the chain to the next. They typically take the form of

either a conversion tool or a data access tool. For example, a conversion tool may take database

records (a Data Description Language) and convert them into OWL instances that conform to a

Conceptual Ontology (Zellwegger, 2005). A data access tool would be used to retrieve the database

records and pass them on to the conversion tool (likely through the use of SQL or some other database

access tool).

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 .6 . T a r g e t A r c h it e c t u r e

A system built to monitor sensor data must have, at a minimum, access to sensor data and some

analysis capability. These analysis methods may be simple data-driven algorithms or more knowledge-

based approaches. The data that drive the analysis may be stored locally, however this limits the reuse

of the data and the long-term archival possibilities. Database systems are typically used to store these

types of data, and typical desktop computing environments used for analysis are rarely equipped to

handle anything beyond small- to medium-scale databases efficiently. When dealing with anywhere

from tens of thousands to even millions of records, multiple concurrent connections, and potentially

sensitive data that should be stored in a secure manner, a large-scale distributed database system

should be used. A database server (a computer or group of computers dedicated solely to storing and

serving the contents of the database) is an ideal choice for this situation. In our case a central server to

handle all of the sensor measurements, making them accessible to client applications such as expert

systems, is what is needed. Several commercial and free solutions exist to serve database records. The

most well known include Microsoft Access12, Oracle13, MySQL14, IBM's DB215, and PostgreSQL16. In

choosing a database implementation, we must also consider that the data being served are spatial in

nature, and that this poses special challenges. Databases such as Oracle, PostgreSQL, and MySQL have

realized this and developed spatial additions to their database offerings. As an added benefit

PostgreSQL, some versions of MySQL, and their spatial extensions are freely available. The decision was

made to use PostgreSQL as the database implementation for a few reasons, mostly dealing with ease of

setup and configuration of an SOS server to serve the sensor observations (see Chapter 5 for more

information on this). A Linux distribution called HostGIS Linux17 is available that comes preconfigured

with Apache and Apache Tomcat for web services, PostgreSQL with the PostGIS18 spatial extension for

building spatial databases, as well as other common spatial technologies such as MapServer19 and

GRASS20. All of the applications chosen for the server side are free as well as cross-platform, meaning

they could be used in any Linux distribution as well as on Windows to create a free SOS server. Many

12 http://office.microsoft.com/access Last Accessed August 20, 2007
13 http://www.oracle.com/ Last Accessed August 20, 2007
14 http://www.mysql.com/ Last Accessed August 20, 2007
15 http://www.ibm.com/db2 Last Accessed August 20, 2007
16 http://www.postgresql.org Last Accessed August 20, 2007
17 http://www.hostgis.com/linux Last Accessed August 23, 2007
18 http://postgis.refractions.net Last Accessed August 20, 2007
19 http://mapserver.gis.umn.edu Last Accessed August 20, 2007
20 http://grass.itc.it Last Accessed August 20, 2007

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://office.microsoft.com/access
http://www.oracle.com/
http://www.mysql.com/
http://www.ibm.com/db2
http://www.postgresql.org
http://www.hostgis.com/linux
http://postgis.refractions.net
http://mapserver.gis.umn.edu
http://grass.itc.it

are also open-source, meaning they may be customized as needed through modification of their source

code.

The intended general architecture surrounding the database server is shown in Figure 3. To

enhance usability, several helper applications may exist on the client side and the server side to aid in

the discovery, access, and manipulation of the sensor data for various purposes. For our purposes, the

helper tools have been limited to the client side to keep the server as strictly a means to publish and

retrieve sensor data and descriptions, allowing those with no need for the extra helper tools to bypass

those steps.

Sensor Data
Server

Sensor Network

Helper Applications

Expert System

Figure 3 - General Monitoring Environment Architecture

Based on the general architecture, specific choices needed to be made about implementation

standards and software for various components. In making these decisions, two design goals were

followed. First, existing monitoring workflows should be minimally affected. It is necessary to meld this

work into existing monitoring infrastructures, allowing these infrastructures to continue to be used in

their traditional manner. This is done using an integration of tools and standards that are commonly

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applied to sensor web implementations and infrastructures. Second, automation should occur for as

many procedures as possible. This is because those working with the data will typically be well informed

in the field being monitored, and are not likely to be well versed in knowledge representation and

transformation routines. The time of the domain expert should be spent exploring problems and

working on other monitoring tasks, not doing document conversion and validation. The automated

conversion frees the expert user to spend their time analyzing the problem at hand.

3 .7 . C la s s if ic a t io n Ra t io n a l e a n d G e n e r a l iz e d T r a n s f o r m a t io n

The classification described was created based on a pattern that emerged when examining various

architectural options for the improved monitoring environment. The initial alternatives can be seen in

Figure 4. As the alternatives were evaluated, an implicit classification scheme started to appear. It

became clear that regardless of the implementation standards, the number of transformations and the

style of transformations would stay the same. The general transformation chain can be seen in Figure 5

where the arrows represent the services used to move between steps. By chaining the various levels of

representation together using transformations we can move from the data-centric to the information-

centric viewpoint on using these data. This chain is intended to be independent of the languages or

representations chosen for each phase. This classification can be seen implicitly in several cases, and

most standards and encodings can be classified according to this scheme.

DATA
SOURCES

DATA
DESCRIPTION
LANGUAGE

CONCEPTUAL
ONTOLOGY

OPERATIONAL
ONTOLOGY

l a n d s c a p e
s im u l a t io n
(ECO-COSM)

STANDARDS

SENSOR

WEB ONTOLOGY
LANGUAGE

(OWL)
PROLOG

SEMANTIC DATA
LANGUAGE

(SDL)
CLIPS

APPLICATION

REASON

Figure 4 - Initial Monitoring System Design Alternatives

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONCEPTUAL
ONTOLOGY APPLICATIONDATA SOURCE

DATA
DESCRIPTION
LANGUAGE

OPERATIONAL
ONTOLOGY

Figure 5 - Generalized Transformation Steps to Move from data to information

The ArcHydro system (Maidm ent, 2002) is an example that fits this classification system. ArcHydro

is a combination of a data model and an associated extension for ESRI's ArcGIS. The extension provides

a suite of tools that can be used to investigate and work with hydrologic data. The data that are used

with these tools must be structured in a certain way to allow the tools to 'understand' the structure and

content of the data. To help achieve this ArcHydro also supplies tools to impose this structure onto

existing hydrologic databases. The typical workflow for an ArcHydro project is to take ari existing

database of hydrologic features, apply the data model, and then do analysis. This is analogous to the

transformation chain presented in this thesis. The initial database plays the role of the Data Source,

while the database schema acts as the Data Description Language, supplying the individual features that

will be used for analysis purposes. Once the ArcHydro tools (a Service) have been used to apply the

ArcHydro data model to the database we now have a database that contains domain-specific

information and relationships, making the jump from a Data Description Language (the relational

database model, the database schema, and any associated GIS metadata) to an Ontology (the newly

formatted database). The ArcHydro data model acts as the Conceptual Ontology while the database

itself is the Operational Ontology that allows the domain-specific analysis tools to be used on the

information within them.

As shown in Figures 4 and 5, a general transformation process is the target with replaceable

processes to target specific representations at each stage. For the purpose of demonstration in the

scope of this thesis, one representation was chosen for each stage. To determine the appropriate path

for the transformations to take, it was necessary to see how each transformation would be achieved and

what the benefits and detriments of each step would be. Once that information was recorded, the

appropriate transformation path would be clearer. The first decision that had to be made was the

target application that would be used for the monitoring environment, as the representations chosen

must ultimately lead to an encoding that is compatible with this environment. The REASON engine

(Rozic, 2006) has proved successful in the past for the types of monitoring problems that this engine

wished to examine (Hutchinson et a!., 2007; McCarthy et a!., 2007). REASON requires that CLIPS is used

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for representation of the final (operational) ontology and sensor data, and since CLIPS is not a well-

known language, this may become a barrier for some uses of the system. Alternatively, Prolog is a

better known rule-based programming environment, and is more likely to be familiar to a developer.

The disadvantage to Prolog in this scenario, however, was the lack of an existing decision support engine

to feed the information to. Ultimately the familiarity of Prolog was sacrificed in order to reuse an

existing decision support engine that had proved useful in the past. This meant that CLIPS would be

used as our operational ontology representation, and that REASON would be used as the application.

The service for bringing the CLIPS data into REASON is ArcAgents (Ball and Harrap, described in Rozic

2006).

Once CLIPS was chosen as the operational ontology representation, the next step was to determine

if OWL or SDL (Semantic Data Language) would be used as the conceptual ontology representation.

Here, the advantages of OWL clearly outweighed those of SDL. OWL is a well-known ontology

implementation language, meaning that those who wished to use the data in their own monitoring

application that is not based on CLIPS would have an easier time integrating the data into their workflow

using a reasoner such as Pellet or FaCT++. It would be easier for them to find support tools and

conversion tools to enable this transformation, and if a tool didn't exist it would be easier to develop

since OWL is XML-based and there are a plethora of XML parsers in existence. SDL was developed more

specifically for landscapes and spatial data, so in that regard it is slightly better suited, but its lack of

exposure makes it less likely that someone will want to use the data. Also, SDL works with a concept

compiler that takes the SDL statements and produces corresponding Prolog code. Since CLIPS was our

target operational ontology language a new concept compiler would need to be written to output CLIPS

code. Alternatively, the open-source Protege ontology editor has the ability to work with both CLIPS

code and OWL documents, so it was an easier task to automate this conversion using Protege libraries

than to build a concept compiler from scratch.

There were no data description language alternatives to the OGC encodings that were strongly

considered since these encodings represented exactly what was needed from a data description

language. The OGC Sensor W eb Enablement (SWE) suite of standards is quickly becoming the de facto

standard for geospatial and sensor web data, making it a good target for wide use. Further, they are

geared towards the representation of sensor data and sensor descriptions, something that was very

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

desirable since those are precisely the data we wished to represent. The transformation from the OGC

encodings into OWL is an XML to XML transformation, a transformation paradigm that is well supported.

Since either a landscape simulation or a sensor database could be used to generate the OGC

documents, the choice of which to use was made based on ease of implementation. Since an existing

SOS Server implementation is freely available from 52° North, it was used to implement the sensor

database. It would also be possible to generate the SensorML and/or O&M documents from the ECO-

COSM (Graniero and Robinson, 2006) simulation framework; however this would have been more time-

consuming since appropriate data-drivers would need to be written, and example simulations models

created. It would be very beneficial for this functionality to be added to ECO-COSM as it would allow

landscape simulations to be tied directly into this workflow with almost no modification upstream.

3.8. D o c u m e n t C o n v e r s i o n C h a i n I m p l e m e n t a t i o n

To execute this chain of transformations, a series of services must be used to move between the

steps. The services are indicated in Figure 6 as callout boxes. The retrieval and storage of the sensor

data and sensor descriptions are done through a Sensor Observation Service database utilizing the

predefined messages that an SOS provides to store and retrieve sensor descriptions and observations.

The perspectives on how an SOS functions from both the sensor data producer and consumer

perspective are shown in Figure 7. The sensor data producer must register its sensors with an SOS and

make their details available. It can then insert observations into the SOS that correspond to the sensors

that have been registered. The sensor data consumer uses whatever methods are made available by

the SOS to discover the data stored within, and based on that it can retrieve sensor metadata and

observations and use them as needed.

sos
DATABASE

— E D XSLT Java/Protege ArcAgents

OWL REASONCUPSSENSORML
O&M

Figure 6 - Transformation steps to move from SOS data to CLIPS data

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This architecture is used to provide the SensorML and O&M documents from the SOS to begin the

conversion process. These documents are then converted into OWL and aligned to the ontology

developed specifically for this engine (see Chapter 4). When the data are aligned with the ontology it

can then be understood by a reasoning system. At first glance, it appears that the use of OWL as an

intermediate step is excessive and without merit. However, to move from a basic data encoding such as

those provided by the OGC into an ontological structure which is ready to be reasoned upon requires a

great deal of change to both the structure and the content of the documents. Converting the

documents to OWL first allows our documents to take on an ontological structure while still remaining in

an XML-based syntax. Since most (but not all) concepts in OWL have an equivalent in CLIPS, the task of

converting from one syntax (XML) to another (a CLIPS knowledge base) is much simpler since the

restructuring has already been handled by the first conversion. There are some concepts in OWL that

the version of CLIPS ArcAgents is based on does not support, such as constraints on the cardinality and

ranges of relationships. The use of OWL validation lets us know that our CLIPS code will conform to our

ontology even though the constraints cannot be explicitly enforced in CLIPS.

Start

Discover
Services

Discover
Observations

Get Sensor
Metadata

Get
Observations

Start

Discover
Services

Insert New
Sensor

Insert New
Observation

Figure 7 - SOS Operations Perspective for Sensor Data Consumer (Left) and Producer (Right) - Reproduced from Na

and Priest (2006)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This two-step process gives more opportunity in a generalized workflow to move between a Data

Description Language and an Operational Ontology that have considerably more difficult translations

than from an SOS to OWL and then CLIPS.

The specifics of how each Service is used to perform each conversion are detailed in the following

sections. The conversions were implemented as separate tools, all of which can be controlled and

chained together from the monitoring environment. This automated transformation ontologizes the

base OGC data and enables reasoning to be done on them.

3.9. SensorML/O&M TO OWL

To move from strictly data-centric encodings such as SensorML and O & M into an information-

centric encoding such as OWL, we must map the concepts in our data-centric encodings to concepts in

our ontology. Once the mapping from one encoding to another has been conceptualized, it can then be

formalized through the development of a conversion tool.

When moving from one XML-based encoding to another, there are typically two technologies which

are used. The first is XQuery21, which is an SQL-like language used primarily to navigate an XML

document and extracting pertinent information. The second is XSLT (extensible Stylesheet Language

Transformation)22. XSLT was created initially to change XML into XHTML, though it has since expanded

its usage to any general XML-to-XML conversions. Both technologies were considered, however XSLT

was deemed more appropriate for this task since it is better suited to convert entire XML documents.

Conversion of documents using XSLT is based on the use of templates, an idea which draws on the

roots of XSLT as a language to render XML data in a format suitable for web browsers. Templates are

matched against the various elements of a source document and, depending on what those elements

are, appropriate action is taken. In the case of converting the OGC-based encodings to OWL, templates

were created to match the various concepts defined in the specifications of the OGC encodings

regarding sensors and their measurements that output the OWL code which corresponded to those

concepts. In general, XSLT templates take the following form:

21 http://www.w3.org/TR/xquery/ Last Accessed August 20, 2007
22 http://www.w3.org/TR/xslt/ Last Accessed August 20, 2007

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xslt/

<xsl:template nam e="templateNam e" match="xpath-expression">

...output...

</xsl:template>

Listing 1 - XSLT Template Structure

Each template has associated with it a name attribute and/or a match attribute. The name attribute

allows other templates to call the template by name. The match attribute takes an XPath23 expression,

which is a standard way of navigating the various nodes of an XML document. Templates which make

use of the match attribute will search the source document for nodes which match the expression

given. If a matching node is found, the template is called and executed. If not, then the template is

ignored. The use of the name attribute is useful when we have a clearly defined set of steps which must

be followed in the stylesheet, allowing these templates to be called under specific circumstances, much

the same way that methods and functions are used in typical programming languages. However, the

problem of converting these sensor descriptions and observations into OWL is much more dynamic, and

since the way in which the document is handled depends largely on its contents, we must make use of

the matching functionality provided by XSLT.

Listing 2 shows an example tem plate that takes what is typically the root element of a SensorML

document (System) and converts it into a concept in the ontology. Most directives in the template are

prefixed with a namespace. This namespace prefix indicates what namespace the directive comes from,

and thus how it should be interpreted. In this template, lines prefixed with xsl: come from the XSLT

namespace and teil the XSLT processor, Saxon24, to treat the directive as an XSLT command. The memf:

prefix is used to indicate the statements that will be printed to the output OWL document as all

statements in the OWL ontology are in the m em f namespace, representing those created by MEMF Lab,

our research group. The SensML: prefix is used to match against the input document and to find

SensorML concepts in that document.

23 http://www.w3.org/TR/xpath/ Last Accessed August 20, 2007
24 http://saxon.sourceforge.net/ Last Accessed August 27, 2007

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/xpath/
http://saxon.sourceforge.net/

<xsl:tem plate nam e="System " m atch="SensML:System ">

<xsl:choose>
<xsl:when test="current()//S ensM L:positions">

<m em f:Station>
<xsl:for-each se lec t="cu rren t()/*">

<xsl:apply-tem plates select="current()"/>

</xsl:for-each>
< /m em f:S tation >

< /xs l:w hen>
<xsl:otherwise>

<m em f:Sensor>
<xsl:for-each se lec t="cu rren t()/*">

<xsl:apply-tem plates se lect="current()"/>

</xsl:for-each>
</m em f:S ensor>

</xsl:otherw ise>
</xsl:choose>

</xs l:tem plate>

Listing 2 - Sample Conversion Template

The first line of the tem plate starts the template and defines the two ways in which a template may

be called: by name and by match pattern. The name is used when other templates wish to call this

template like a function. The template is also called when a node in the input document matches the

match pattern. In this case the tem plate will be called when a <System> tag in the SensML namespace is

encountered in the input document. The next line is an <xsl:choose> statement, similar to a switch or

case statement in common programming languages. This statement directs the XSLT processor to look

at the choices it presents and evaluate them in order. If the first choice evaluates to being true, it is

executed and the remaining statements in the choose block are ignored. If the first statement is not

true then the rest of the statements are evaluated the same way until a true statement is found. In

XSLT, this is done using the <xsl:when> directive. The <xs\:when> directive shown tells the XSLT

processor to execute its containing code if a given test (current()//SensML:positions) is passed. In this

case the test is to see if the current node in the input document (the <System> node) has a child node of

type <positions>. If it does, the code in the xs!:when block is executed. In the SensorML specification, a

System can represent a sensor or an actual measuring station installed in the field. In the sensor

ontology that was developed, these are different concepts, and need to be represented as such. They

are differentiated by the tem plate by looking for a position. If no position is given in the input

document, then it is interpreted as a Sensor, whereas if a position is given it is represented as a Station,

meaning that the sensor is installed at a given location in the field. So when the SensorML document

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contains a statement that gives the position of the System, the code within the when directive is

executed. First the statement <memf:Station> is printed to the output document, then the XSLT

processor is told that for each child node of the <System> node (the current node), apply the templates

to that node, and if a match is found the template will be executed. The results of the execution will be

output within the <memf:Station> block. This process continues recursively until there are no more

nodes left to match on. At that point, the </memf:Station> statement is printed to the OWL document

to signify the end of that particular Station. Because nodes are addressed in the order they appear in

the input document, any nodes that are children to the <System> node will be handled and have their

output printed within the <memf:Station> block.

If a situation arises where the <System> node does not contain a child node describing its position,

then the <xsl:when> statement fails and the next alternative is tested. In this case there are no

<xsl:when> statements left to test. When this happens, two choices are possible. The first is tha t the

<xsl:choose> statement is terminated. The second occurs if an <xsl:otherwise> element has been

defined at the end of the <xsl:choose> statement. The <xsl:otherwise> element defines what actions

should be taken if none of the <xsl:when> tests evaluate to true. In this template, if the single

<xsl:when> statement fails, then the <xsl:otherwise> statement directs the XSLT processor to print

<memf:Sensor> to the output OWL document and continue searching the child nodes in the same

manner as the <xsl:when> block would. W hat this ultimately means is that the template examined the

contents of the input document and, based on the contents of that document (the existence o f a

<System> tag and the possible existence of a <positions> tag), took an action (printing a statem ent to

the output document). This is the structure that the vast majority of the templates took, though many

are simpler than this as there is no decision logic involved. This particular template shows that not only

is the information restructured as it is converted from the data-centric to the information-centric

perspective, it can also be enriched and clarified so that the meaning associated with the data is clearer

when they are consumed.

Initially, this conversion step was divided into two separate tools: a SensorML-to-OWL converter

which would handle sensor descriptions, and an O&M-to-OW L converter to handle sensor observations.

The concepts in SensorML and O &M were mapped to those found in the ontology, and templates were

created which echoed this mapping. It was quickly discovered, however, that there were several

concepts that were used by both SensorML and O&M . For example, both SensorML and O &M use the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Geography Markup Language (GML) (Cox et a i, 2004) to describe basic geographic concepts such as

position and time. Also, both SensorML and O&M make use of common encodings for various data

types which are managed by the OGC's Sensor Web Enablement Working Group (Botts et al., 2006).

Because of the potential for overlap and duplication of work, it was decided that instead of two

conversion utilities, a single conversion utility which handled not only SensorML and O&M data but also

many of the shared encodings such as GML and SWE was needed. This conversion tool was created

using a series of XSLT stylesheets, each focusing on a given encoding. These stylesheets are then

imported into a master stylesheet which is the starting point for any transformation.

The stylesheets for the different standards are implemented to varying degrees of detail. O&M ,

SensorML, and SWE are all relatively well detailed, the key concepts of space and tim e have been

implemented from GML, and the XST (an XML schema that handles set theory) and SA (an XML schema

that handles sampling) encodings have one or two common concepts implemented.

The conversion tool makes great use of the nested nature of XML in deciding how to proceed with

its conversion task. It essentially walks the tree of the input document in a recursive manner, starting

with the root node. This is made possible by the ability to match based on patterns. Almost the entire

engine is written using these templates, with the exception of the master stylesheet (shown in Listing 3).

This stylesheet begins by defining its namespace prefixes and the output method to be used by the

document (in this case, the stylesheet will output XML). Following that is a series of <xsl:include>

statements which tells the XSLT processor to include all of the templates from the indicated stylesheets

into this transformation, effectively creating one large stylesheet from several smaller ones. The benefit

to this approach is that it is modular, and could be modified to only include the stylesheets that are

needed for the conversion or to add additional stylesheets without interfering with the existing logic.

After the include directives, a single template is used to launch the conversion. This template matches

on the first node (the root node, indicated by the " /") of the input document. It then writes several

statements to the top of the new document. The first set indicate that this new document will be a

Resource Description Framework (RDF) document (OWL is actually an extension of RDF) and specifies

the resource that can be used to see what the document is intending to store. The second set indicates

that the document is to import an OWL document located at the indicated path and that this should

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

serve as the base ontology for the resulting document. The imported document contains the ontology,

and the result of the conversion will be instances of that ontology.

When combined this will represent the complete knowledge base with respect to the given

sensor(s) or observation(s). The final directive tells the XSLT processor to begin matching templates by

using the first node it sees (indicated by the parameter), this node will typically be a <System> node

for a SensorML document or some type of Observation or Measurement, or a collection of these in the

case of an O&M document. Once the first node is matched, that node's tem plate will match on its child

nodes recursively until all nodes have been examined. The conversion results in an OWL document that

contains ontology instances.

<xsl:stylesheet version="2.0" xm lns:SensML="h ttp : //w w w .opengis.net/sensorM L"
xm lns:m em f="h ttp ://m a tr ix .m e m f.u w in d s o r.c a /o n t/m e m f/" xmlns:xsl="h ttp ://w w w .w 3.o rg /1 999 /X S L /T iran sfo rm "
xm lns :xs -’h ttp ://w w w .w 3 .o rg /2 0 0 1 /X M L S c h e m a " xm lns:fn="h ttp ://w w w .w 3 .o rg /2 0 0 5 /x p a th -fu n c tio n s "
xm lns:rdf="h ttp ://w w w .w 3 .o rg /1 9 9 9 /0 2 /2 2 -rd f-s y n ta x -n s # " xmlns:xsi="h ttp ://w w w .w 3 .o rg /2 001 /X M L S ch em a -in s ta n ce"

xm ln s :o w l-’h t tp : //w w w .w 3 .o rg /2 0 0 2 /0 7 /o w l# " xm lns:udt="h ttp ://m a trix .m e m f.u w in d s o r.c a /o n t/u d t# ">
<xsl:output m ethod="xm l" version="1.0" encoding="UTF-8" indent="yes"/>

<xsl:include href="sm l2ow l.xslt"/>
<xsl:include href="sw e2ow l.xs lt"/>
<xsl:include href="om 2ow l.xs lt"/>
<xsl:include href="gm l2ow l.xslt"/>

<xsl:include href="sa2ow l.xslt"/>
<xsl:include href="xst2ow l.xslt"/>

<xsl:tem plate m atch ="/">
<rdf:RDF>

<rdf d e scrip tio n rdf:about="h ttp ://m atrix .m em f.u w in d so r.ca /o n t/S en so rW eb .o w l">
<rdf:type rdf:resource="h ttp ://w w w .w 3 .o rg /2 0 0 2 /0 7 /o w l# O n to lo g y " />

</rdf:D escrip tion>
<o w l:0n to lo g y rdf:about="">

<ow l:im ports rdf:resource="h ttp ://m atrix .m em f.u w in d so r.ca /o n t/S en s o rW e b .o w l"/>
< /ow l:O nto logy>
<xsl:apply-tem plates se lec t="*" />

</rdf:RDF>
< /xs l:tem plate>

</xsl:stylesheet>

Listing 3 - Master Stylesheet

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.opengis.net/sensorML
http://matrix.memf.uwindsor.ca/ont/memf/
http://www.w3.org/1999/XSL/Tiransform
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2005/xpath-functions
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2002/07/owl%23
http://matrix.memf.uwindsor.ca/ont/udt%23
http://matrix.memf.uwindsor.ca/ont/SensorWeb.owl
http://www.w3.org/2002/07/owl%23Ontology%22/
http://matrix.memf.uwindsor.ca/ont/SensorWeb.owl%22/

3.10. OWL.TOCLIPS

Once an OWL document is created and validated, it is possible to convert it into CLIPS code, making

it ready for our reasoning system. This conversion was automated through the use of Protege25, an

open source tool developed at Stanford University which is used for the development of ontologies.

Protege stores its ontologies in a file form at modelled after CLIPS, though with a few small differences.

Protege also provides support for OWL ontologies, and can export them into its CLIPS-like format. Since

the Protege project is open source, a Java program was created for this thesis which would load an OWL

document into Protege and export it into the CLIPS-style format. Once the documents are created,

some post-processing is applied that makes the documents conform to the CLIPS syntax, making it easier

to load the files into our reasoning engine using ArcAgents, as well as to make them more easily

readable.

The CLIPS Object Oriented Language (COOL) is used to store the ontology and its associated

instances. The object-oriented approach blends well with the hierarchical approach used in the

ontology. The concepts in the ontology are represented as classes, and the relationships are

represented as slots of the classes. The facets of the slots are represented using CLIPS constructs which

place restrictions on the slots. Listing 4 shows two classes from the ontology represented as CLIPS code.

CLIPS represents all of its statements such as facts, rules, and classes within brackets. An opening

parenthesis signifies the beginning of a statement, and a matching closing parenthesis signifies the end

of that statement. Statements are typically nested within other statements. Both of the examples in

Listing 4 are classes, as signified by the defclass keyword. Following that is the name of the class and a

series of statements about that class. For example, the memf:Sensor class has three types of statements

which describe it. The first statement is (is-a memf:lnstrument). This is how inheritance is specified in

CLIPS, meaning that any member of the memf:Sensor class is also a member of the memf:lnstrument

class (defined elsewhere). Another way to describe this is to say that a Sensor "inherits" its attributes

from an Instrument, meaning that a Sensor is a specific kind of Instrument that has all of the properties

an Instrument has, plus some of its own properties. The Station class contains a similar statement, (is-a

m em f -.Sensor), stating that a Station inherits attributes from a Sensor, or that a Station is a specific type

of Sensor. Inheritance propagates from one class to the next in CLIPS, so since a Station is a Sensor, and

a Sensor is an Instrument, therefore a Station is also an Instrument.

25 http://protege.stanford.edu
38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://protege.stanford.edu

(defclass m emf:Sensor (defclass m em f:Station

(is-a m em f:lnstrum ent) (is-a m emf:Sensor)
(role concrete) (role concrete)
(m ultislot rdf:type (m ultislot rdfrtype

(type SYMBOL) (type SYMBOL)

(create-accessor read -w rite)) (create-accessor read -w rite))

(m ultislot m em fihasConnections (m ultislot m emf:hasSensor

(type INSTANCE) (type INSTANCE)

(allowed-classes m em f:Connections) (allowed-classes m emf:Sensor)
(create-accessor read -w rite)) (create-accessor read -w rite))

(m ultislot memf:hasClassification (m ultislot m em f:hasSam plePosition
(type INSTANCE) (type INSTANCE)
(allowed-classes memf:Classification) (allowed-classes m em f:Sam plePosition

(create-accessor read -w rite)) (create-accessor read -w rite))

(m ultislot m em f:isFeatureO fln terestO f (m ultislot m em fihostsProcedure

(type INSTANCE) (type INSTANCE)

(allowed-classes m em f:Result) (allowed-classes m em f:Procedure)
(create-accessor read -w rite)) (create-accessor read -w rite))

(m ultislot m emf:hasProcesses (m ultislot m em f:id
(type INSTANCE) (type STRING)
(allowed-classes memf:Processes) (create-accessor read -w rite)))

(create-accessor read -w rite)))

Listing 4 - CLIPS representation of Sensor and Station classes

The next statement about both classes is (role concrete). This specifies that the classes are concrete

as opposed to abstract. A concrete class is one which is able to have instances (i.e. specific usable

objects that conform to the class definition), while an abstract class cannot have instances. Aside from

some high-level classes, all of the classes in the sensor ontology are concrete. The remaining statements

that describe the classes take the form of multislots. In CLIPS, a slot is an attribute that a class can have.

For instance, a class "Student" would have slots such as "Name", "Age", and "Grade". In the case of the

sensor ontology, these slots represent the relationships that the class can have with other classes. For

example, the Station class has the slot hasSensor. This is the name of a relationship defined in the

sensor ontology which specifies that a Station has a Sensor associated with it. The term multislot simply

means that the slot can hold more than one value of the specified type. This slot also contains

statements that describe it. These are equivalent to the facets of the ontology. The hasSensor

relationship has two facets. The first, (type INSTANCE), specifies that the value of this slot must be an

instance of some class as opposed to a primitive data type such as a string or an integer. The second,

(allowed-classes memf-.Sensor), specifies that the instance must be of type memf:Sensor. This facet

helps validate the contents of the ontology, ensuring that it is structured properly. If something other

than a Sensor is placed in this slot the ontology will be marked as invalid upon loading. The final

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assertion about the hasSensor slot is the statement (create-accessor read-write). This statement tells

CLIPS to define message-handlers that can set or retrieve the value of the slot during program

execution. In this way all of the relationships and classes in the OWL ontology are defined and

organized.

This class hierarchy definition is used to give structure to the instances which represent the actual

objects of interest, in this case sensors and observations. It describes how sensors and observations are

structured, what kind of properties they have, and what the relationships are between them. The

instances of the hierarchy will represent individual sensors and observations that are governed by this

hierarchy. Listing 5 shows an example of a Station instance as part of the CLIPS make-instance function.

(make-instance [@ 1179243727343_:A0] of memf:Station

(memf:hasClassification [@ 1179243727343_:A11])
(memf:hasConnections [@1179243727343_:A73])
(memf:hasldentification [@ 1179243727343_:A1])
(memf:haslnputs [@ 1179243727343_:A24])
(memf:hasOutputs [@1179243727343_:A28])
(memf:hasProcesses [@ 1179243727343_:A35])
(memf:hasReferenceFrame [@ 1179243727343_:A21])
(memf:hasSamplePosition [@ 1179243727343_:A71])

, (memf:hostsProcedure [@ 1179243727343_:A74])
(rdf:type memf:Station))

Listing 5 - An instance of the Station class

When this function is loaded, the instance will be created and added to the knowledge base. This

funciton will direct CLIPS to create an instance of the class memfrStation. The [@ 1179243727343_:A0]

label is a unique name that is used internally to differentiate and keep track of individual instances.

CLIPS provides functions to work with these data so that the user never has to handle these labels. The

remaining lines specify the slots that are defined for this Station, each of which are filled with an

instance of the appropriate class. For example, the (memf:hasSamplePosition

[@ 1179243727343_:A71]) statement indicates that this station has a SamplePosition that is specified by

the instance with the label [@ 1179243727343_:A71], This instance is shown in Listing 6 with its own

slots that define the coordinate frame, units of measurement, and the coordinates of the Station.

For a typical project, hundreds of instances of various classes are created to represent sensors and

observations as well as their properties. The relationships between the various instances are

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

automatically generated and maintained because of the class-based ontology that provides the context

for the information contained in the instances.

(make-instance [@ 1179243727343_:A71] of memfiSamplePosition

(memf:hasLocalCoordinateFrame [@1179243727343_:A72])
(memf:x "934.538")
(memf:XUOM "urn:ogc:def:uom:OGC:1.0.30:m")
(memf:y "81.102")
(memf:YUOM "urn:ogc:def:uom:OGC:1.0.30:m")
(rdfitype memfiSamplePosition))

Listing 6 - SamptePosition CLIPS Instance

CLIPS provides several functions which are intended to work on COOL structures, which enables the

navigation and usage of these data and ensures that the data will be usable by an expert system. The

potential usage of the data is broad and is explained and illustrated throughout Chapters 5 and 6.

3.11. S e m a n t i c R e p a ir

Not only does this ontological structure allow us to validate our results, it also allows us to perform

some tests on the semantic validity of the data; we can then ensure that pertinent information is

expressed in the data. This can be done in a step that detects "semantic errors" and repairs the

semantics of the document, providing an extra layer of quality control on the document that simple

validation does not. This repair step requires reasoning on the incoming data along with related data

and the ontology's conceptual structure to try and detect any inconsistencies or problems that may

arise. Whenever changes in representations like these are undertaken there is a possibility of data loss

or inconsistency (Gannod and Cheng, 1999). To help detect when this has happened we can validate the

data against the ontology, but we can also use the reasoning process to examine the data and look for

semantic errors beyond those enforced by the ontology. For example, suppose we have an O&M

document representing a set of observations made by a sensor as a time series, and that one of the

measurements is missing a time stamp. This may be legal according to the ontology (which specifies

that a measurement can have a time, not that it must have a time), but not having a time associated

with the measurement makes the measurement far less useful to a real-time monitoring problem.

However, with the use of reasoning tools this problem can be ameliorated. A reasoning tool can be

used to flag these kinds of errors and force the user to deal with them or at least inform them of the

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem. Depending on the severity of the error the reasoner could decide whether the appropriate

course of action is to flag the error, hold it in a cache until it has been dealt with, or try to fix it based on

other available data. Using the time series example, the reasoner may be able to infer what the missing

tim e stamp is based on the interval of other similar measurements. It may look at recent measurements

from that sensor and see what the measurement interval has been and make an estimate based on any

gaps in the measurement record. Alternatively it could simply look at the sequence of the

measurements and note the time stamps of the measurements made before and after the affected

record and then mark that the measurement was made between those two times. This can be done

either by setting a specific value, or instance the midpoint of the time range, or by setting a range

bounded by the times on the measurements found before and after. In this way reasoning can be used

to repair and enrich the content of the data by detecting errors of omission and commission as well as

other more complex and application-specific problems.

3 .1 2 . S u m m a r y

This chapter has shown how the use of targeted knowledge representation standards for specific

tasks can ensure that the meaning of information can be captured in a form that enables reasoning and

knowledge-based analysis of sensor data. This is achieved through a carefully constructed set of

transformations that take data-centric representations of data such as basic XML structures and

database records and transform them into an ontological structure for use within a knowledge-oriented

analysis system. The next chapter will explain how the ontology used to provide the context for the

information was developed and presents a methodology that can be used for other similar attempts to

build an ontology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Ontology Development

4 .1 . M e t h o d o l o g y

Development of a thorough sensor ontology to be used within REASON was fundamental in

increasing the reasoning capabilities of the system. The sensor ontology built in the initial system

expressed the most basic concepts that were necessary to operate and demonstrate the system. The

new sensor ontology expresses these concepts along with much more contextual information about

how a sensor behaves, the various properties it has, how it makes measurements, what types of

measurements it makes, and how all of these concepts are related. This allows the reasoning system (or

an expert user) to have much more knowledge about how their particular sensor network is operating,

providing context to the measurements it produces.

Many methodologies for the development of domain-specific ontologies exist (e.g. Sure et o l, 2002;

Lambrix et al., 2003). There are also methodologies that have been developed that are less domain-

specific (e.g. Lopez e ta !., 1999). Based on a hybrid approach from Mizen e ta l. (2005) (Steps 1, 2, 3, 5, 9,

and 10 as shown below) and Noy and McGuinness (2001) (Steps 1, 2, 4, 6, 8 ,1 1 as shown below), as well

as some additional steps, the following methodology was developed to create the sensor ontology.

Phase 1 details creation of the "pencil and paper" version of the ontology, and Phase 2 details the

formal computer implementation of that ontology.

Phase 1 of Ontology Development Process

1) Create a set o f competency questions. These questions place demands on the ontology. They

represent the requirements that the ontology needs to satisfy. These requirements are

represented as questions that can, and likely will, be asked of the ontology. (Gruninger and Fox,

1995)

2) Scope the ontology. Determine the domain, purpose, and potential users of the ontology. This

scope should be kept in mind during the entire creation process.

3) Collect data about the domain. Identify any documentation that captures the knowledge that

needs to be in the ontology (keeping in mind the scope).

4) Enumerate im portant terms. Compile a list of all terms and sentences we would like to either

make statements about or explain to a user. For all terms consider what properties they have

and what needs to be said about them.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5) Populate a knowledge glossary. Using the list of important terms and the semi-structured

sentences, build a knowledge glossary. The knowledge glossary should capture the reasoning

behind the selection of the various terms, the properties of those terms, and any description of

the terms or assumptions that are made about them.

6) Examine existing ontologies. Explore other ontologies in the domain to see if they meet the

requirements defined in the previous steps, or if they can be extended to do so. If so, decide if it

is possible to reuse and/or extend the existing ontologies.

7) Choose language(s) o f implementation. Note any restrictions the chosen language(s) may place

on the ontology's design. While the ontology is initially created using a "pencil and paper" style,

the representation used to implement the operational ontology should be decided on before the

creation of the actual ontology. Ensure that any restrictions placed on the ontology by the

chosen language are acceptable both now and in the future of the ontology, and insure that it

can represent any information the ontology may need.

8) Build the ontology.

• Define classes and class hierarchy: use the knowledge glossary to find terms which describe

objects having independent existence rather than terms that describe these objects. These

terms become classes in the ontology and will become anchors in the class hierarchy.

Organize the classes into a hierarchical taxonomy by asking if, by being an instance of one

class, the object will necessarily be an instance of some other class.

• Define the properties of the classes (slots): keep in mind that there are different types of

properties, such as intrinsic properties, extrinsic properties, parts, and relationships to other

individuals. The terms remaining in the knowledge glossary after the previous step (defining

classes) are likely to be properties.

• Define the facets of the slots: Slots can have different facets describing the value type,

allowed values, the number of the values (cardinality), and other features of or restrictions

on a slot's value.

9) Evaluate the conceptual ontology. Check whether all information captured in the glossary has

been captured in the ontology. Check the ontology for: logical consistency (cycles, repetition,

omission); conceptual accuracy (with respect to the domain); minimal ontological commitment

(ontology has been limited to the original scope); information loss being recorded; and

acceptable answers to competency questions.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10) Document the conceptual model. Conceptual ontology documentation must include the

knowledge glossary (from Step 5), the concept and relationship networks (from Step 8), recorded

information loss, and any defined rules and assumptions made throughout the modelling

process.

11) Create instances to test the ontology. Instances should be created in order to test the ontology

and its effectiveness. This will ensure that all information that was intended for representation

can actually be represented.

Phase 2 of Ontology Development Process

12) Implement the ontology in the chosen language. The ontology should be implemented using the

language(s) identified in Step 7 to assure that the design does indeed work for the given

language.

13) Use instances to test the implemented ontology. Ensure that the implemented ontology can

handle the instances created in Step 11. If changes are needed to the ontology, they should be

performed iteratively. Evaluation should occur after each iteration, until the ontology satisfies

all requirements laid out in previous steps. This step is only finished when these requirements

are met or a decision is made to ignore those requirements.

14) Document the ontology. Ensure documentation is written completely and clearly to enable

reuse. Perform a final evaluation cycle on the implemented ontology and assure that the results

match those from Step 11. Document any changes in scope, requirements, or any other

pertinent information.

4 .2 . D e v e l o p m e n t

This section will explain how each of the steps from Section 4.1 was carried out during the

development of the sensor ontology. It also details what the results of the steps were, any problems

that were encountered, and any other information that may be relevant to those who want to apply this

methodology to their own ontology development problem. For the purposes of brevity, the complete

results of each step have been made available on the companion CD for this thesis.

4.2.1 Competency Questions

A set of competency questions was created which would be used to evaluate the ontology at the

end of the design cycle. These questions are essentially tests that the ontology must pass in order to be

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

considered useful for our purposes. The questions are broken down into two groups, those regarding

the evaluation of the ontology and its expressiveness, and those related to more domain-specific needs.

Ontology Evaluation Questions

• Is there a strong distinction between sensors and objects which are not sensors?

• Is there a distinction between sensors and transducers?

• Are the terms used for classes and properties the same as those that would be used by experts
in the field?

• Do the relationship names accurately describe the relationships between objects?

• Does the ontology sufficiently describe the domain?

• Can any redundancy be aggregated?

Domain-specific Questions

• Can a sensor's suitability for a certain purpose be determined with the ontology?

• Can improper use of a sensor be detected?

• Can any sensor be represented as an instance of the ontology without losing any key
information?

4.2.2 Scope

The scope of the ontology encompasses four factors: the purpose of the ontology, a definition of

what an ontology is so that it can be used to guide development, the domain the ontology will be used

in, and an idea of who will use and maintain the ontology. The intended purpose of this ontology is to

provide the information necessary for high-level reasoning on geotechnical (and other) sensor data to

be performed by a spatial decision support system. The intended domain of use is slope hazard

monitoring with geotechnical sensors, but should be broad enough to encompass all in situ sensors. The

ontology will be used by geotechnical engineers who wish to monitor slopes and maintained by domain

experts and those well versed in knowledge representation. For the purposes of this development

effort an ontology will be defined as a specification o f the important concepts and relationships between

these concepts within a particular domain.

4.2.3 Collect Data about Domain

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The data collected about the domain were collected from the OGC's SensorML and Observations

and Measurements specifications. As these specifications are intended to specify details of sensors and

their measurements, they provided excellent operational descriptions of these topics. Dunnicliff (1993)

was used to gather information on geotechnical instrumentation, including the concepts of how

geotechnical instrumentation is utilized in typical monitoring scenarios, and the common types of

geotechnical sensors and transducers.

4.2.4 Enumerate Im portant Terms

Based on the information collected in Step 3, a list of almost 600 terms was created, These terms

were chosen because they represent the important concepts and relationships that needled to be

represented in the ontology. The documentation resources were scoured for relevant terms and

concepts, building a foundation for the knowledge that would need to be captured in the ontology. At

this point in the development process it was important to capture all knowledge which may be relevant.

The later steps in the ontology development process would be used to pare down the knowledge to the

most important concepts and to eliminate any duplication in concepts.

4.2.5 Populate Knowledge Glossary

From the list generated in the previous step, a knowledge glossary was created. This glossary is

used to enumerate and organize the terms from the list into a consistent format. The information

recorded about each term was a list of synonyms that were found in the original list or any other

synonyms that may have been missed; a natural language definition such as one that would be found in

a dictionary; the part of speech of the term (noun, phrase, or verb); the anticipated usage in the

ontology (concept, relationship, or characteristic); the importance of the term (core/secondary);

characteristics that the term may possess (for core concepts only); the value and units associated with

the term (if applicable); and any rules, constraints, or assumptions that needed to be recorded. This

glossary formed the basis of the first draft of the ontology.

A subset of this glossary can be seen in Figure 8. The glossary was organized into a spreadsheet and

was set up with filters to aid in rapid visualization of relevant data. This step may take several days to

complete based on the size of the ontology and the level of detail required. This glossary will typically

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contain more information than the final ontology will as similar concepts are merged and less important

concepts are dropped. The glossary provides the first organized view of all of the collected information.

Term Synonym Term Nature! Language Text Linguistic Conceptual
Definition Term Ontology

Term
1 y k . l I .T . I k

CoreiSecondary Core Concept
Characteristics

Value and Rules,
Units Constraints,

and
j | * | Asaumptiof »

Sensor

Precision

Accuracy

Measurement

Sensor Type

Geotechnical
Instrument (for
the purposes of
the ontology;
"'sensor* is
typciaHy a more
broad term)

Reliability,
Repeatability

Error

Observation

A physical device capable Noun
of measuring a specific
phenomenon, consists of
a transducer, data
acquisition system, and a
communication system
between the two

Concept Core

The extent to which a Noun
measuring procedure
yields the same results on
repeated trials
The closeness of a Noun
measurement to the true
value of the quantity
measured
A value describing a Noun
certain phenomenon
obtained through
measuring methods
The class of the Noun
instrument, representing
its intended use

Characteristic Secondary

Characteristic Secondary

Concept Core

Characteristic Secondary

is a device, has
reliability, has
accuracy, has type,
has target
phenomenon, has
conformance, has
precision, has
measurement, has
resolution, has
sensitivity, has
transducer, has input,
has output, has
linearity, has maximum
error, has hysteresis,
has suitability, has
data acquisition
system, has
communication
system

Specific to
individual
sensor types

± units of
measurment

± units of
measurment

has unit of units and
measurement, has value vary
value, has location, based on
has time sensor type

Figure 8 - A subset of the knowledge glossary

4.2.6 Examine Existing Ontologies

Now that there is some idea of the information that needs to be represented in the ontology, a

thorough examination of existing ontologies can be done. Before this step, exploring the existing

ontologies could only have resulted in broad comparisons. Once the knowledge glossary is populated,

though, a detailed comparison can be done to see if any existing ontologies m eet the needs defined by

the competency questions and the knowledge glossary. An existing ontology developed for sensor

observations (Probst et al., 2006) was used to provide a base for the new ontology. The decision was

made to create the sensor portion of the ontology from scratch based on the SensorML specification

and later merge it with the aforementioned sensor observation ontology that was based on

Observations and Measurements. Other sensor ontologies were considered, such as OntoSensor

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Russomanno et a l, 2005), however merging two existing ontologies developed in a disjoint manner and

for different purposes would have been difficult and much of the ontology would likely have been

rewritten.

4.2.7 Choose Implementation Languages

For this ontology, several choices of ontology implementation languages were explored. Also,

because of the need for multiple representation styles for various stages of knowledge (see Chapter 3),

it was important to identify multiple possibilities for the various stages in the transformation. CLIPS was

chosen as the operational ontology implementation language because the target application built in

REASON expects CLIPS code. The conceptual ontology was built in OWL instead of the Semantic Data

Language because OWL is a more common way of representing ontological information. Also, the

conversion between OWL and CLIPS could be automated using Protege, and since similar tools exist to

convert OWL into other formats it became clear that OWL would be the best language to enable sharing

of data. This also meant that only one conversion tool would need to be built from scratch. The species

of OWL chosen was OWL-DL. OWL-DL is the middle-tier of the three OWL species, the other two are

OWL Lite and OWL Full. OWL Lite is a very basic version of OWL that allows minimal expressiveness but

also minimal computational complexity. OWL Full allows for maximum expressivity, however there is no

guarantee that an OWL Full ontology will be computationally complete or decidable. This implies that

queries on an OWL Full document may not return results in a reasonable amount of time, or at all.

OWL-DL is a blend between the other two species. It guarantees that the ontology will be

computationally complete and decidable, however it must place some minimal restrictions on the

ontology to make this claim. In return there is more computational complexity in OWL-DL ontologies

than in OWL Lite ontologies. In this case the restrictions would not limit the ontology in any way, and so

OWL-DL was deemed the most appropriate species of OWL to use.

4.2.8 Build the Ontology

The ontology was built initially using pseudo-UML notation to graph the ontology in Microsoft

Visio26. The initial version of the ontology focused largely on geotechnical sensor types. As other

related work began to develop further, the focus shifted to a more general ontology with clear places to

store domain specific knowledge.

26 http://office.microsoft.com/visio/ Last Accessed August 20, 2007
49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://office.microsoft.com/visio/

4.2.9 Evaluate the Conceptual Ontology

After several iterations of refinement, the ontology was deemed to be conceptually accurate and

logically consistent. This was based on the examination of the ontology and a thorough comparison

with the original knowledge glossary. It was limited to the initial scope of geotechnical sensors, though

this scope was later enlarged and generalized.

4.2.10 Document the Conceptual Ontology

All of the documents used in creating the ontology were examined for correctness and accuracy,

ensuring they documented the ontology that was created and any deviations from the original design of

the ontology. Since the ontology was built in Visio, it was largely self-documented.

4.2.11 Create Instances to Test Conceptual Ontology

Instances of the ontology were created that represented inclinometers and piezometers. The

relevant information about these instances was laid out in advance and was then made to fit the

ontology. All of the information that was considered relevant was able to be placed in the ontology, and

so the tests were considered successful.

4.2.12 Implement the Ontology

The ontology was implemented using the Protege ontology editor (Figure 9) in the OWL language.

Protege-OWL27 is a graphical front-end to OWL ontology development that is available as an add-on to

the Protege Frames28 editor. This editor makes the organization and management of ontologies,

especially large ones, much simpler than writing XML. The final ontology had almost 200 classes and

150 relationships, which would have been very difficult to manage strictly using XML. Protege enabled

both ontology-wide refactoring and simple adjustments to be done with a few simple commands.

Figure 9 shows Protege being used to edit a relationship of the Sensor class. This illustrates the ease of

modifying classes and relationships across various classes.

Since OWL is based on the Resource Description Framework (RDF), all of the information in the

ontologies is represented as triples of subjects, predicates, and objects. The subject is the entity that is

27 http://protege.stanford.edu/plugins/owl/ Last Accessed August 20, 2007
28 http://protege.stanford.edu/overview/protege-frames.html Last Accessed August 20, 2007

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://protege.stanford.edu/plugins/owl/
http://protege.stanford.edu/overview/protege-frames.html

being described, and the predicate expresses some characteristic that the subject has that is described

by a relationship to the object. The OWL approach dictates that the subject is a class, and that

predicates are represented as properties of the class. These properties take two forms: Object

Properties and Datatype Properties. Object properties relate individuals of one class to individuals of

another class. An example of this would be the relation that a member of the class "Teacher" would be

related to a member of the class "Student" with the relationship "Teaches", so the triple would be

"Teacher-Teaches-Student". The second type of property used in OWL relates an individual of a class to

a typed value such as a string or a number. An example of this type of relationship would be that a

member of the class "Student" is related to the number "24" using the relationship "Age", so the triple

would be "Student-Age-24". The only real difference between Object properties and Datatype

properties is the type of value in the object position.

La» £tw £«ols ygjralow Ueip

?H jC*!. < •

Outclasses t W Properties f ♦ initMrtuals s Kums ow l VizV M B iam ia u w uvvwLutsse* i ■■ r 'fuperues ▼ inuiviHueis j « ro im s ; g ̂ u w lv

ESSE? I M H f t l l M I
« Proiew; • SonsoiWeb Sar - i/‘ s % Ŝensor

»■->» a;
(instance of owliCUiss) i ; inferred view 1

V •

VHlbiw.ti'chy

CaiuootyObseivation

CoinmonObseivation

t$ L urnpiecOoseivaHoii

SimpleObservaltori

i§ Value
? # Complex

DataAiray

DalaOroup

? # Record

0 NumencReeoril

<f t# QiiniileD/ita

Boolean

Dale

^ Date I'irne

9 $ Nunwir,

Float

0 integer
sstrnji

v t@ Time
T im insla iH

? #T im sPosit!on

0 BeainPosition

0 EndPoetiton

:;ierisoiNHf'~or«Ctincept

Connection

5 # LcyicalConnection

0 A rijybnk

Link

y # Relationship

Restriction

PhysitaiConrecliori

SemanticCormertion

Irsirumeni

9 # Sensor

* i*
, rtffsxommetrt

<*. * ^ •*= *
DR nat>«. laseiiication :mi

M hasconnections -'mu.

W hasPrcicc-sses

M fsFeetureOflntereatQT
, saidoscnption C'n:n-:;-;.:- •:

. M jhas lc

IMj hasP

p i nasReferenceF rame

I Properties ami ft

!«.: isfeatureOf InlereslO# (Instance o f je tfP ro g e tftf

PROpitrv s o w 1 y.
ii Piofwrtv' n jisFeatureOflnierestOf

-lal xi

* % * ...
M Instrument

* *? t-a Property...
:">■ rdfstcomment

I # LayerOflnierest
Sensor

!# Featumonritorc-st
SensorColiection

(instance of owLObjectProporty)

uy. Annulanwts

.. • LangT

% «.
I# Observation
i # Measurement

1 ntncOonal

; inversoFimctlanai

< w innetrlc

i Transitive

0 Pr<

? TranscMcei
(fore

3 Pafka<}eciPi'Ocedt.ife
I SequencedProcecluie
I St rri fj l eP r 0 c e c(u re..........

rfx5.n1.
I nasFeatuieOfintens

i A
Figure 9 - The Prot6g6 Ontology Editor

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OWL properties are not limited to one-to-one relationships. Often a property will have multiple

classes allowed in the subject and/or object positions. The terminology OWL uses for this is to say that a

given property has a domain and a range. The domain of a property is the group of classes that are

allowed to take on the subject position, while the range is the group of classes that may take the object

position. This restriction on class types makes it possible to validate an ontology to ensure that the

individuals used in the ontology are organized in a legal manner according to the ontology

specifications.

4.2.13 Create Instances to Test Implemented Ontology

The instances created in Step 11 were recreated within the Protege Ontology Editor. All of the

important concepts and properties were able to be represented within the implemented ontology. The

ontology was passed through an OWL validation application29 that confirmed that the ontology was

indeed a valid OWL document. Further, it confirmed that the ontology was of the OWL-DL species,

meaning that it was computationally complete and decidable. This was necessary to prove that the

information contained in the ontology could be used to perform reasoning in a practical way.

4.2.14 Document the Ontology

The final step of ontology development was to ensure that all documentation was completely

written and that it documented all of the steps that were taken to complete the ontology.

4 .3 . Su m m a r y

The sensor ontology does not focus on sensors from a single problem space. There is room for

further domain-specific additions to be made to the ontology, however these are best left to experts in

specific fields. The ontology was developed in the Web Ontology Language (OWL), using the Protege

Ontology Editor. The ontology underwent several iterations before being finalized and made web

accessible. The management of these versions of the ontology was done using the Concurrent Versions

System (CVS)30. CVS allows developers of computer code or other documents to track changes and

development across multiple versions of their documents, giving them the option of rolling back to

previous versions should the need arise. Initially the ontology was created as many pieces, each

29 http://www.mygrid.org.uk/OWL/Validator Last Accessed August 20, 2007
30 http://www.nongnu.org/cvs/ Last Accessed August 20, 2007

5 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mygrid.org.uk/OWL/Validator
http://www.nongnu.org/cvs/

corresponding to the specifications from which the concepts were drawn. Eventually, these ontologies

were aligned and duplicate concepts were merged for simplicity. Dozens of versions of the integrated

ontology were created, so management of these versions was essential. The final version of the

ontology used to test and integrate with the monitoring system contained 192 classes and 148

relationships.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Monitoring Suite and System Integration

A monitoring system that handles spatial data is an essential tool for hazard managers. Being able

to analyze incoming real-time data is a must to monitor any hazard which does not provide much lead

time. In these cases it is also a good idea to examine similar events that may have occurred and use

them to forecast what may occur when familiar conditions are seen. For any system of this type, the

more knowledge it can draw on, the more useful it is.

This work was developed to integrate with the REASON overall decision support system framework

developed by our research group within the Geotechnical In-Situ Sensor Technology (GIST) Network, a

GEOIDE-funded collaborative network. This framework is designed with geotechnical hazard monitoring

in mind, but could be applied with only minor changes to monitoring problems in other domains as well.

The overall structure of the fram ework can be seen in Figure 10. The framework provides a guide to the

integration of not only the various parts of this system but how those parts will fit into the overall

workflow of a geotechnical hazard monitoring problem. This work addresses several aspects of this

framework.

The Sensor Observation Service Database provides the Spatial Data in the form of Observations and

Measurements Documents and the Instrumentation Sources as SensorML Documents. The

transformation engine is used to feed the data into the monitoring system as well as to manage those

data. The domain-specific knowledge expressed by the ontology along with the associated

measurements provides part of the knowledge base for use by any analysis methods. The GIS Interface

and Rule Sets are provided by a Spatial Decision Support System built earlier in the GIST project.

The REASON Spatial Decision Support Framework (Rozic, 2006) is a tool which can be used to

develop spatial decision support systems. It was developed using the ArcAgents tool (Ball and Harrap,

described in Rozic, 2006) which bridges CLIPS, a programming language geared toward the development

of expert systems, and ESRI's ArcGIS. REASON makes use of ontologies to partition the various

knowledge it has about a given problem. Ontologies are often used where knowledge definition is a key

component of the problem-solving process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

es
t

M
od

e
Landslide
Process
Model! Case Archive

Interface
Model

V . Management

Spatial Data
Sources

GIS Interlace
and'Tools

a k / " • " " “ IT ' v a k
— J < Engine & >

I Instnnncntation
Souices

Data
Management Interface

^ -------- Dialogue ~ ' \

R u l e s * / ’ '

Analysis and
Query

Interface .. /

Figure 10 - GIST DSS Conceptual Framework {from Harrap et al., 2006)

The ontological structure used is a variant of the hierarchy proposed by O'Brien and Gahegan

(2004), in which there are four separate but related ontologies which are used to contain most of the

knowledge required for the operation of the system (see Figure 11). These ontologies contain both facts

which describe the various concepts and objects, and rules which govern their behaviour. The "Spatial-

Temporal Ontology" is the top-level ontology used to define foundational concepts such as geometrical,

topological, and temporal relationships. Two mid-level ontologies build on the concepts from this

ontology: the "Domain Ontology" and the "Sensor Ontology". The domain ontology is used to describe

the concepts related to the domain being observed, such as the hydrological or geotechnical domains.

The sensor ontology describes the sensors which are used to perform the observation. Finally, the

bottom level "Application Ontology" contains the concepts related to the execution and capabilities of

our given monitoring application, such as flood monitoring or slope monitoring. This includes the

decision trees which govern the analysis of incoming sensor data. The application ontology builds on

the knowledge from the two mid-level ontologies, and thus from the spatial-temporal ontology as well.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S E N S O R
O N T O L O G Y

D O M A IN
O N T O L O G Y

S P A T IA L -
T E M P O R A L
ONTOLOGY

A P P L IC A T IO N
O N T O L O G Y

Figure 11 - REASON Ontology Hierarchy

When it comes to spatial data there are a myriad of possible data types, so it is important to be able

to use as many as possible in a manner that is transparent to the analysis logic of the system. Some

sensor data may be archived, while real-time data may be streamed directly to the system without an

intermediate database. The decision of what data are archived and what data are streamed in real-time

is made by the designer of the monitoring infrastructure based on the needs of the problem. Likely, the

most pertinent data are streamed directly into the system (and also archived for future use) while less

imperative data are archived until it is needed. Simulation data may take the form of Excel tables, CSV

files, XML files, or some other implementation-specific format. The constraints of the monitoring

problem may also dictate how the data are stored. For example, low-power sensor networks will

require short messages with minimal transmitted information, whereas higher power, wired networks

may be able to transmit messages with more complex structures. Supporting the many variants of

spatial data infrastructure is a necessity as we move towards a more interoperable sensor web (Gorman

et al., 2005). Therefore, one of the key design features of REASON is that the mechanism to bring data

into the system has been abstracted. This abstraction, along with the supporting ontologies, allows

various types of data to be used with the system in a common way.

When an SDSS is built upon the REASON framework, it defines the data source(s) it will use and

provides an implementation of the abstract DATA-SOURCE class for each type of data source. This

defines how the SDSS should connect to and disconnect from the data source, as well as how the data

are updated and how the next update cycle is handled. In this way, any data source can be used within

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a REASON SDSS. Figure 12 shows the main workflow of the REASON SDSS engine. Once data sources

are bound to the objects in our SDSS and to the GIS layers which will be used for any spatial analysis, the

objects are updated with new values at every regular time step (or as otherwise defined by the data-

source implementation). Evaluation is then carried out on the new values as defined in the application

ontology. When evaluation is completed, new values are acquired from the data source and the process

repeats itself until the system is told to release the data source resources and term inate.

E V A L U A T IO N

B IN D D A T A
S O U R C E S

R E L E A S E

U P D A T E

IN IT IA L IZ E

Figure 12 - REASON Evaluation Loop

Since the REASON data-source mechanism is abstracted, observations can be drawn from Excel or

database tables to generate facts which correspond to a template-based ontology, or encodings from

geospatial standards such as a Sensor Observation Service (discussed in Section 3) can be used to

generate instances of an object-oriented ontology, with minimal changes to the actual decision-making

logic. The knowledge of the domain is separated from the other knowledge in the system, so creating a

monitoring system to work in a different domain only involves changing the domain ontology to one

which describes our new domain of interest, and creating a new rule set which governs what we are

interested in monitoring. Figure 13 shows the detailed methodology behind the updated version of the

REASON slope monitoring system that interacts with the SOS server. It makes use of the abstracted

data-source mechanism to connect to an SOS server to retrieve its values while making use of the

ontology hierarchy to divide its knowledge.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Load ontologies
and other

initialization
code

Bind sensor
instances to
SOS-DATA-

SOURCE

Create an
instance of the

SOS-DATA-
SOURCE class

Retrieve newest
observations for

each sensor from
SOS

Create SOS-
DATA-SOURCE

class

Retrieve sensor
information from
SOS and create

instances

Update sensor
instance and
associated
shapefile

Evaluate new
sensor data for

slope hazard
potential

EVALUATION

INITIALIZE

U P D A T E

BIND DATA SOURCES

Figure 13 - Expanded version of the REASON evaluation loop

When the system is initialized, the ontologies are loaded into the CLIPS knowledge base. These

ontologies contain the majority of the code that will be used to operate the system. A MAIN module is

also loaded which initializes the SDSS and controls the evaluation loop. For details on how this is done,

see (Rozic, 2006). The main changes to the system have been expansion of the sensor ontology and

addition of a new data-source implementation that interacts with an SOS server. The new data source

class (Beacon-SOS-DATA-SOURCE) is built dynamically during the binding process. An instance of this

class is created that can be called on to retrieve data for any Beacon during the update cycle. To

accomplish this, the data-source class actually interacts with an interface object exposed by ArcAgents

for use in Visual Basic for Applications (VBA). This allows VBA code to handle the communication with

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the SOS server, passing the results of these interactions back to the CLIPS knowledge base where they

can be evaluated. Figure 14 shows a sequence diagram of a typical request for a sensor description.

Requests for observations are identical in terms of the components and order of the messages, only the

messages themselves differ.

Initialize

Load S D SS Engine

GetSensors
DescribeSensor

SensorML

Convert To OW L

OW L

Convert to CLIPS

C LIPS Code (Sensors)
_ L __________________ _CLIPS Code (Sensors)

REASON SO S Server

ArcAaents Interface
XM L to OW L Converter

OW L to CLIPS Converter

Figure 14 - Sequence diagram for a sensor request

The control of the overall system is coordinated by REASON. REASON initializes the ArcAgents

Interface object when a document with the appropriate template is loaded. When the AircAgents

Interface has loaded successfully, it requests that REASON load its SDSS engine. Once the engine is

loaded, it can make requests of the ArcAgents Interface object which is persistent as long as REASON is

running. For example, it can send a request for sensor descriptions to the ArcAgents Interface that

launches a chain of instructions that results in CLIPS code being returned to REASON that describes

those sensors. The ArcAgents Interface retrieves the SensorML document from the SOS Server. It then

passes that document to the XML to OWL Converter which returns an OWL document. The OWL

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

document is passed to the OWL to CLIPS converter that returns CLIPS code which is then returned to

REASON. The specifics of these operations are described in Chapter 6.

Once the next set of observations is retrieved, they are used to update the GIS layers representing

the observations as well as any of the facts in the CLIPS knowledge base that may be relevant. At this

point evaluation can be performed on the new data as well as any historical data. Analysis methods are

domain- and application- specific but will generally rely on the most recent data and possibly archived

data to examine for some predefined conditions that have been determined to be of interest.

5 .1 . In t e g r a t io n

The integrated monitoring system closely resembles Figure 3 in terms o f overall architecture. Figure

15 shows the complete architecture of the system, broken into three main layers: the servers, the

helper tools, and the expert system. The sensor network components were left out of the diagram as

they are not the focus of this thesis. Testing was done using simulated sensor data based on a slope

failure scenario model (Hutchinson et o/., 2007). The sensor data were extracted from Excel

spreadsheets and inserted into an SOS server that was built using an implementation developed by the

52° North Initiative31. This same server implementation was tested with live hydrologic and

temperature sensors, with the results being transparent from the sensor data consumer’s perspective.

This has enabled our reasoning system to be hooked up to live sensor data. Figure 14 shows a UML

sequence diagram of how the various components interact during a given request. These requests are

initiated in the SOS-DATA-SOURCE implementation for a given sensor. The abstract data-source

mechanism created in the initial system forces any implementation to define three methods: get-data,

next-cycle, and close-data-source. The get-data and close-data-source methods are unchanged from

their initial implementations; it is only the next-cycle method which needed to be rewritten to work with

an SOS server. The next-cycle handler is responsible for fetching the newest set of sensor observations

from the data source, in this case a sensor data server. To accomplish this, the handler interacts with an

ArcAgents interface object defined in an ArcMap template using Visual Basic for Applications (VBA). The

interface is capable of watching certain aspects of the CLIPS engine's functionality and taking action

when certain events occur. The key functionality that was used was the interface's ability to listen for

facts to be posted and take action when they meet certain criteria. In this case, whenever a fact with a

31 http://52north.org Last Accessed August 20, 2007
60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://52north.org

specific name was posted, action could be taken. A set of facts were created which could be used to

launch external commands simply by being asserted. The facts were treated as functions, where the

name of the fact would act as the function name, and the value(s) of the fact would be tihe arguments.

These "fact-functions" ranged in use from simply dealing with time stamps to initiating database

transactions. The simplest of the functions are:

• (print-text <text>): prints the contents of <text> to a console, this is used to print important

notifications to a separate console from the simple diagnostic and procedural information

• (first-cycle-time <date>): sets the timestamp for the first cycle to the date and time specified by

<date>, this allows for data that are not real-time in nature to be used

• (cycle-time-interval <time>): sets the time interval that the current time would be incremented

each cycle

A more complex function was needed to handle the database queries. The (send-SOS-request) fact

was created for this purpose. A summary of the fact's functionality is given below. The complete syntax

and list of options for this function are given in Appendix B. The form at of the fact is (send-SOS-request

<operation> <options>) where <operation> is one of "obs", "cap", "des", "mro", "sen". These are

abbreviations for GetObservation, GetCapabilities, DescribeSensor, Most Recent Observation, and

Sensors. The first three correspond directly to SOS operations that retrieve observations, SOS server

capabilities, and sensor descriptions respectively. The <options> section takes different parameters

based on the type of operation. For the "obs" function, these options specify the offering, procedure

(actually a sensor name), and observed property (phenomenon) that the user wishes to retrieve

observations for. These observations can also be filtered with spatial and temporal filters (such as

bounding boxes and time ranges), as well as numeric filters on the observations themselves. The "cap"

function takes options which specify the specific sections that are needed from the SOS server's

capabilities document. The "des" function takes a procedure (actually a sensor name) and returns the

SensorML document which describes that procedure. The "mro" function makes a GetObservation

request with the time values tailored specifically to retrieving the most recent observation for each

sensor. The "sen" function makes a GetCapabilities request which returns only sensor descriptions and

details. This information is used to create an ESRI shapefile that contains spatial features representing

the sensors provided by a given offering.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SERVER LAYER

SOS ServerWeb Server (Ontology)
EXPERT SYSTEM LAYERTRANSFORMATION

LAYER

REASONSensorML/O&M to OWL

<•><•>
ES (CLIPS)CtSCAwCB)

C«n
SDSSEHtMOWL TO CLIPS Converter

<•> >
„ TabU

DB
Spatial

DB

Figure 15 - Integrated Monitoring System Architecture

For all of these operations, the ArcAgents interface object parses the fact string and generates the

XML required to make the request of the SOS server. It then makes the request and gets the return

value as either a SensorML or O&M document. Once the document is retrieved, it then passes it to the

SensorML/O&M to OWL Conversion tool. This tool uses the methods described in Section 5.2 to

generate an OWL document. This OWL document is read by the ArcAgents interface object and then

passed to the OWL to CLIPS conversion tool. This tool uses the methods described in Section 5.3 to

generate CLIPS code which contains the instances of the ontology that represent sensors or

observations, depending on the operation requested.

Applying this layered framework to integrate the components required for hazard monitoring using

sensor networks provides several benefits. Modularity is achieved through the separation of

components based on intended usage, and communication interfaces between these components are

structured in a way that would minimize the impact of changing components. For example, using a

different SOS implementation will only affect the interaction with REASON (specifically the ArcAgents

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interface Object). Similarly, a different transformation engine could be used in place of the one that was

implemented, as it would still have access to the OWL ontology from the web server and the ability to

pass its results to the expert system. Having this framework in place before the design and

implementation of individual components guides the creation of those components as well as the

interfaces between them. This inter-component communication is quite often a difficult problem to

overcome when collaboration between system objects is needed. This hurdle is best dealt with at the

beginning of design so that the individual components are designed in a way that enables

communication between them.

This thesis has so far shown how the various system components have been developed and

integrated, and has detailed the impetus for doing so. The next chapter will examine how the system

works in practice and how it can be used for geotechnical hazard monitoring on a simulated slope with

realistic movement driven by the movement of an associated water table. It will show how the creation

of the new components such as the transformation engine aid the decision making process. It is

anticipated that the use of a concrete example will better illustrate how this system improves on the

current state of hazard monitoring systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Case Study

This chapter will illustrate how the tools developed during the course of this thesis can be applied to

a realistic hazard monitoring problem, as the tools are applied to the problem of slope monitoring.

Slope monitoring was chosen as an example case because of the availability of a realistic slope model

and associated data. None of the tools that are applied are specific to a given hazard, and as such can

be used for any monitoring problem provided that appropriate analysis logic can be created and that

data is available to drive the analysis. The problem of slope monitoring makes an interesting case

because the onset of the hazard is rapid, and so it is important to detect the conditions that are likely to

trigger the hazard rather than the hazard itself. The system directs the hazard manager to investigate

areas of concern based on domain knowledge and context-enhanced information delivered by the

transformation engine. This system may also be used outside of the hazard management domain. For

example monitoring the climatic conditions of vineyards could be done through this infrastructure, and

the use of reasoning software could enable analysis methods such as case-based comparisons to

previous years' conditions and the use of climate models for forecasting future weather conditions.

Another possibility would be to monitor the sediment flow and nutrient flushing in a watershed after a

rainfall to explore how these parameters affect the health of the vegetation in the watershed.

The use of REASON as the basis for a spatial decision support system for geotechnical hazard

monitoring was initially detailed in Rozic (2006). However additions have been made to the

demonstration system to illustrate the enhancements developed over the course of this thesis. The

additions related to interaction with the SOS Server, the integration of the new sensor and

measurement ontology, and the new data source class to manage these have all been detailed in

previous chapters. There have also been enhancements in the decision-making logic as well as the

addition of water table data to provide a context for the behaviour of the slope. The original slope

model can be seen in Figure 16, showing the positions of the seventy-two inclinometer sensors, the

active portions of the slope (shear zones) and the material layers.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Inclinometer DCL Materials

Shear Zones Y/A 1

m Above 2

Below 3

Middle 4

Figure 16 - Initial Slope Model

REASON uses a decision tree structure (Quinlan, 1990) to perform an evaluation at each cycle based

on the newest data as well as the data from previous cycles. The decision tree that was used in the

initial prototype system can be seen in Figure 17. In this system, the position of each Data Collection

Location (or sensor) was used to determine various parameters for the motion of the slope. First, the

boreholes are identified based on the horizontal coordinates of the sensor. The sensors with similar

horizontal coordinates are grouped together into boreholes. Then each sensor is examined for activity

according to a set of rules that define what is considered relevant motion (increasing in displacement

with an increment greater than one percent of the current cumulative displacement). This ensures that

even though a sensor moves it is not necessarily considered active, since all inclinometers are expected

to exhibit some downslope motion. Active sensors are then categorized according to the rock mass to

which they belong. Finally, active zones of the slope are determined based on whether or not the zone

contains active sensors.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D C L

2. Active
Points1. Borehole

3. Rockmass

4. Moving
Zones

Figure 17 - Initial Geotechnical Monitoring Decision Tree

This simple decision tree illustrated REASON'S ability to capture domain knowledge in an SDSS and

to aid in the monitoring tasks of an expert user by alerting them to areas of interest. The decision tree is

executed after each set of new measurements is retrieved from the SOS server, and the output is

printed to a console so that the user may be notified of the results. The control of the system can be

seen by examining the next-cycle handler of the new SOS-DATA-SOURCE class that was created for this

system. The code for this message-handier is shown in Listing 8. Note that in the source code of the

system, this code is written as part of the CLIPS "eval" function that takes a string as an argument and

converts it into CLIPS code at runtime. This allows the code to be dynamic in nature so that certain parts

of the source code are actually generated at runtime in order to match the parameters of the given

monitoring task. The handler is called like a function during each cycle of execution, and is passed three

arguments: a template name, a sensor type, and the current cycle. The tem plate name is used to make

an association between a tem plate and a shapefile in the GIS environment. This association tells

REASON which shapefile should be updated when a given template receives new values. The sensor

type indicates what kinds of measurements are expected from the sensor: absolute, cumulative, or

incremental. This information ensures that the sensor values are interpreted properly. The final

argument tells the handler what cycle is currently executing. The REASON system is based on cycles

rather than the system clock, so the actual time of the measurement is not specified here.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(defmessage-handler MAIN::Beacon-SOS-DATA-SOURCE next-cycle (?template-name ?sensor-type ?cyde)
(if (not ?self;layer-logical-name)
then (send ?self get-table ?templ3te-name)
)
(bind ?busy (assert (busy-SOS true)))
(assert (send-SOS-request “ mro" “ DOWNSLOPE_MOTION" "urn:ogc:phenomenon:distance"))
(bind ?pairs (find-all-instances ((?proc-time-pair PROC-TIME-PAIR)) (= 11)))
(acSelectByLayer ?self:layer-logical-name new)
(bind PnumSelected (acGetNumSelectedByLayer ?self:layer-logical-name))
(bind $?values (create$))
(progn$ (?pair ?pairs)

(bind ?procedure (send ?pair get--procedure))
(bind ?time (send ?pair get-time))
(bind ?msr_ins (nth$ 1 (find-instance ((?msr memf:Measurement))

(and
(= (str-compare (nth$ 1 (send (nth$ 1 (send ?msr get-memf:hasProcedure)) get-
memfrhasURI)) Pprocedure) 0)
(= (str-compare (nth$ 1 (send (nth$ 1 (send (nth$ 1 (send ?msr get-memf:hasTime)) get-
memf:hasTimePosition)) get-memf:timePosition)) ?time) 0)

)

)
)

)
(bind ?whereClause (str-cat B e a c o n J D -? p ro c e d u re "'"))
(acSelectByAttribute ?self:iayer-loglcal-name PwhereClause New)
(bind PselectedFeature (acGetLayerSelection ?self:layer-logical-name))
(bind ?feature-fid (nth$ 2 PselectedFeature))
(bind Pvalue (implode? (create? (nth? 1 (explode? (nth? 1 (send (nth? 1 (send Pmsrjns get-memf:hasResult)) get-memfrvaiue)))))))
(bind ??values ??values (implode? (create? Pprocedure)) (implode? (create? Pfeature-fid)) "0" Pvalue)
(acClearSelection)
(send Ppair delete)
(bind ??values (eval"(" Absolute ?self:layer-logical-name (implode? ??values)")"))

(bind Pld-one (nth? 1 ??va!ues))
(bind Pfid (nth? 2 ??values))
(bind ?X (nth? 3 ??values))
(bind ?Y (nth? 4 ??values))
(bind PM (nth? 5 ??values))
(bind PR (nth? 6 ??values))

(if (eq Pid-one “done")
then

(return close)
)

(bind ??slots (create?))

(while (> (length? ??values) 0)
(send Pself put-values Pid-one Pfid (create? ?X ?Y PM PR))

(bind ??values (delete? ??values 16))

(bind Pid-one (nth? 1 ??values))
(bind Pfid (nth? 2 ??values))
(bind PX (nth? 3 ??values))

(bind ?Y (nth? 4 ??values))
(bind PM (nth? 5 ??values))
(bind PR (nth? 6 ??values))

)
(acClearSelection)
(acRefreshMap)
(acSelectByLayer Pself:layer-logical-name new)
(return more)

Listing 7 - SOS-DATA-SOURCE Message Handler

The message handler begins its execution by checking if the template has been bound to a layer in

the GIS. If it has not, the handler will call a function (get-table) that will prompt the user to specify the

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shapefile that will be updated. It then asserts the fact (busy-SOS true) that indicates to other parts of

the system that the SOS is currently being accessed. It then asserts a 'fact-function' (see Chapter 5) that

initiates an SOS request (assert (send-SOS-request "mro" "DOWNSLOPE_MOTION"

"urn:ogc:phenomenon:distance")). This fact requests the most recent observation from the SOS for the

offering DOWNSLOPE_MOTION and the distance phenomenon. The VBA code in the ArcMap template

parses this fact and makes the request of the SOS in the manner described in Chapter 5. The result of

the request will be a set of CLIPS objects that are loaded into the knowledge base. These objects are

instances of the sensor and measurement ontology, specifically an ObservationCollection instance with

several Observation instances (Figure 18).

Observation
Collection

hasObservation hasObservation
hasObservation

ObservationObservation Observation

Figure 18 - Observation Collection with associated Observations

To rapidly retrieve this information, the ArcAgents interface object also creates a set of PROC-TIME-

PAIR objects that pair a sensor name with the updated timestamp of the newest observations. Once the

SOS operations are complete, control of the system is passed back to the message-handier which

searches for all of these PROC-TIME-PAIR objects and stores them in a variable (?pairs). The number of

features in the layer is determined by selecting and counting them and an empty multifield value

($?values) is created to store a list of the updated values that will be retrieved from the Observation

instances. The message handler then iterates through the PROC-TIME-PAIR objects, retrieving the

Observation object which has matching procedure and time values (Figure 19). Then, it must match that

observation object against the appropriate feature in the associated layer by selecting the feature from

that layer that has the same procedure value as the Observation currently being examined. Once this

match has been made the new sensor value is retrieved from the Observation object (Figure 20) and

added to the $?values variable.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hasProcedure hasTimePosition

Procedure TimePosition

hasURI timePosition

| urn:ogc:def:procedure:inclinometer-12 | 2007-05-02T 13; 15:00

Figure 19 - Observation instance with matching procedure and timePosition

When all of the observations have been matched with their associated features in the layer, the

$?values variable will contain a record of all of the updated values. This record is passed to a function

that updates the records in the table based on the sensor type (absolute, incremental, cumulative). The

data are then used to update various critical parameters of the fact that represents the sensor such as

its position and ID values. Some housekeeping tasks are done to make sure all o f the fields of the

template are up to date, and finally a value of "more" is returned, indicating that this data source has

not expired.

The values retrieved from the SOS and updated using the ontology are used by the decision tree to

evaluate the state of the slope at the given time step. Once the decision tree has executed the

ev a lu atio n continues a t th e n e x t t im e step and th e process repeats itse lf as long as n e w d ata exist th a t

can be accessed by the system.

Observation

hasResult

Result

value

0.00314 I

Figure 20 - Observation instance showing a result

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The original decision tree identifies active areas of the slope at every tim e step, however it would be

beneficial to explore the problem more thoroughly should there be data available to do this. Figure 21

shows an expanded version of the decision tree that was implemented as part of this current thesis to

demonstrate the extended REASON system's ability to interact with an SOS server and make use of the

expanded sensor ontology

Incl

2. Active
Points1. Borehole No

No

Water Table
Data Loaded3. Rockmass Active ■Yet •Yes— ►

4. Moving
Zones

■Pasi

Pail

No

■Pass

Fail

rest if the water
table is rising

rest If the water
table is rising .

rest if water table*
intersects active
_ rockmass ^

v'Test if water tabidv.
Intersects the rock mass

below the active
rockmass /

Level

Level

Level

Level

Level

Level

Fetch data
from SOS

Pass to
Engine

Load into
CLIPS

Find active
Borehole

Rockmass

Sort
Piezometer
locations by
x-coordinate

Find the rock
mass below the

active rock mass

Interpolate water table
position at active borehole

Figure 21 - Expanded REASON Decision Tree

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The decision tree classifies all rock masses at every time step as having an alert level from one to six,

with six being the most severe. The conditions for these alert levels are as follows:

Alert Level 6: The rock mass is active, the water table currently intersects the rock mass, and the

water table is rising.

Alert Level 5: The rock mass is active, the water table currently intersects the rock mass, and the

water table is falling.

Alert Level 4: The rock mass is active, the water table currently intersects the rock mass below the

active rock mass, and the w ater table is rising.

Alert Level 3: The rock mass is active, the water table currently intersects the rock mass below the

active rock mass, and the w ater table is falling.

A lert Level 2: The rock mass is active, and the water table does not intersect the active rock mass or

the rock mass below.

A lert Level 1: The rock mass is not active.

The decision tree specifies the steps that are taken to identify alert levels based on the above

criteria. These rules capture basic slope mechanics (Lee and Jones 2004), and were chosen based on the

ability to rapidly implement them as well as the need to demonstrate the newest capabilities of the

system. The system also checks the quality of incoming data by ensuring that the values used for

analysis are reasonable. The standpipe measurements were simulated to include measurement errors

such as missing values, and these are detected during the execution of the decision tree. When a

missing value is detected, interpolation of the water table position is performed using the next closest

standpipe reading, provided that it is reasonable. Figure 22 shows the result of a cycle of execution

under the new decision tree. This shows how the addition of water level data from another sensor

offering can enhance the information content delivered by the model, providing a visual representation

of where the most hazardous areas of the slope are. The two sensor offerings do not need to come

from the same data set or the same sensor network to be combined in a useful way. By relating the

position of the water table with the activity of the individual rock masses the objective of integrating

different data sources for the purposes of analyzing sensor data in a problem-specific manner is

achieved.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It should be noted that the efficiency of the system is decreased when the extra decision logic is

added. Each ArcAgents operation that occurs usually requires several internal steps, including inter

process and cross-system communication, so minimizing the number of these operations is the key to

decreasing the operating tim e of each analysis cycle. The tw o main controls on this are the number of

features that need to be updated each cycle, and the number of spatial operations that need to be

performed. In this demonstration system, seventy-eight sensor locations (seventy-two inclinometer

locations and six piezometer locations) are updated during each cycle, and several spatial queries are

also needed each time the extended decision tree is executed (once per active rock mass). The system

currently takes approximately three to four minutes to execute an analysis cycle.

Legend

DOWNSLOPEJVIOTION Materials ALERT

• Active ^ [. 3 3 2

O STANDPIPE llllIIISIII 3 [] 3

Figure 22 - Revised Slope Model

For the purposes of this demonstration, this was an acceptable timeframe in which to receive

results, as the simulated measurements occur once per day. In a situation where new data are being fed

to the system every few minutes, four minutes per analysis cycle may not be sufficient. However, the

analysis time could be reduced by creating a simpler decision tree, or only focusing on specific sensors of

interest in order to reduce the amount of data being handled during each cycle. Ultimately the

suitability of this approach to any hazard monitoring problem would be largely dependent on the scope

and complexity of the analysis to be performed, factors that must be considered at design time.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Other design approaches are being considered to connect rule-based analysis methods with ArcGIS,

as well as alternate GIS packages to use instead of ArcGIS, in order to remove the performance

bottleneck. This would potentially allow more complex decision trees with shorter evaluation times.

Also, as ArcAgents continues to develop its own efficiency may be improved.

i

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Conclusions

The growing number of sensor network installations has resulted in an increased amount of data for

hazard managers to use when exploring a potentially dangerous site. These data can be useful for data-

centric problem solving approaches, but to answer more complex problems richer more detailed

information is needed, a viewpoint that motivated this thesis work. While much development has been

done on sensor network infrastructure to support monitoring, it has been traditionally focused on the

data-centric perspective. This is largely due to the constraints that exist in sensor hardware and typical

messaging protocols, as well as by the types of problems that the data have been used to solve.

Encoding geospatial information in a way that supports an information-centric perspective on sensor

data within spatial decision support tools has been explored in previous work, however this is not the

typical approach that sensor networks take when collecting and disseminating sensor data. Therefore a

need exists to enable the information-centric perspective on sensor data while supporting the

traditional data-centric perspective associated with current monitoring strategies. This thesis combines

a spatial decision support system, common sensor web infrastructure, a sensor web ontology, and an

engine for transforming geospatial information to achieve this goal.

Several different approaches to knowledge representation can be seen in various examples of

hazard monitoring infrastructure. The examination of these different approaches has led to their

classification based on characteristics such as the level of detail they contain, the structure used to

model the data, and the functionality of the approach for use in a reasoning system. The integration of

a sensor monitoring system with ontology-based knowledge representation and domain-specific

knowledge encoding has resulted in a spatial decision support system that can be used to monitor

sensors. By encoding problem-related knowledge into the system, expert users can ensure they are

interpreting the information properly, and the software system can also derive meaning from the

information. This domain knowledge can also be used to reinforce conclusions drawn by the software.

Hazard managers traditionally work with spatial data, not spatial information; however the use of

spatial information enables more advanced problem investigation methods, including reasoning and

other artificial intelligence techniques that are well suited to unstructured and semi-structured

problems such as hazard monitoring. These methods are not commonly supported from the geospatial

perspective, and when they are it is typically done in a very application-specific manner. The creation of

a conceptual framework for the transformation of sensor data and sensor descriptions aims to bridge

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this gap. The transformation chain is based on the classification of knowledge representation styles and

is intended to serve as a guide to creating a transformation engine that minimizes the risk of information

loss while enabling the enrichment of sensor data with contextual information. The generalized nature

of the transformation engine allows the concepts to be applied to any monitoring problem, and an

implementation of this engine that transforms common sensor data representations into CLIPS code

that can be used within the ArcAgents environment to monitor hazards has been created. These

supporting tools have been developed to automate the conversion of sensor data from common

geospatial standards into an ontological form at. This automation is important because the target user

base of this system is not typically going to be well versed in knowledge representation. The user of the

system should be focused on problem exploration, not knowledge representation. Beyond that, the

automation ensures that the conversions are done in a consistent way, reducing the chances of

ambiguity in the results of the conversion or inconsistencies between conversions.

The generalized design of the system allows multiple data sources to be integrated into the same

representation style, ensuring that regardless of the type of data being used with the system it can feed

knowledge-based analysis and drive simulation and hypothesis testing. The demonstration system

integrates sensor data from tw o types of sensors measuring different phenomena. By analyzing this

information the system is able to classify the hazard level at any given time by applying domain logic in

much the same way that a domain expert would use their expertise. The target users for a system such

as this are expert users and hazard managers who wish to monitor a sensor network installation or

explore various 'w hat-if scenarios by using simulation results in place of sensor data, as well as those

who are planning sensor network installations and wish to model various configurations of sensor types,

placements, triggers, and sampling rates to see how the different configurations affect the collection of

relevant data.

The end result is a monitoring program that can be merged with existing monitoring infrastructure

and workflows. Advanced reasoning techniques based on artificial intelligence methods are supported

by a sensor and measurement ontology, and are automated using tools that make use of existing spatial

data in frastruc ture. This en ab les e x p e rt users to app ly th e ir o w n expertise to th e ir m o n ito rin g p rob lem

while making use of existing monitoring infrastructure. This system can also be tied to simulation

engines and mock sensor data to perform hypothesis and scenario testing. Advanced domain ontologies

can be plugged in to the system to enhance the conclusions that can be drawn, and knowledge reuse is

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

promoted by the use of ontologies to partition system knowledge. This thesis has demonstrated that

existing sensor and monitoring infrastructures can be bridged in a way that supports information-centric

analysis of a monitoring problem with the use of real-time sensor data. Approaching the problem in a

generalized way has created the potential for this framework to be applied as a supplement to a hazard

manager's current practices in order to improve the quality of their results and to allow deeper and

more thorough problem investigation so that they may better protect people and infrastructure from

potential hazards.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological

variations, and system approaches. Al Communications, 7 (1), 39-59.

Athanasiadis, I. N., & Mitkas, P. A. (2004). An agent-based intelligent environmental monitoring

system. Managem ent o f Environmental Quality, 15 (3), 238-250.

Avancha, S., Patel, C., & Joshi, A. (2004). Ontology-driven adaptive sensor networks. MobiQuitous

2004, Proceedings (pp. 194-202). Cambridge, MA, USA: IEEE Computer Society.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web, Scientific Am erican, 284 (5) , 28-

37. CDS Communications Data Services.

Bonnet, P., Gehrke, J., & Seshadri, P. (2001). Towards sensor database systems. In K.-L. Tan, M. J.

Franklin, & J. C.-S. Lui (Ed.), Mobile Data Management: Second International Conference (pp. 3-14). Hong

Kong, China: Springer-Verlag.

Botts, M. (2005). OpenGIS Sensor Model Language (SensorML) Open Geospatial Consortium Best

Practices Document. Open Geospatial Consortium.

Botts, M., Percivall, G., Reed, C., & Davidson, J. (2006). OGC Sensor W eb Enablement: Overview And

High Level Architecture. Open Geospatial Consortium Whitepaper. Open Geospatial Consortium.

Bovenga, F., Nutricato, R., Refice, A., & Wasowski, J. (2006). Application of multi-temporal

differential interferometry to slope instability detection in urban/peri-urban areas. Engineering Geology

, 88 (3-4), 218-239.

Centintemel, U., Flinders, A., & Sun, Y. (2003). Power-efficient data dissemination in wireless sensor

networks. Proceedings o f the 3rd ACM International Workshop on Data Engineering fo r Wireless and

Mobile Access (pp. 1-8). New York: ACM Press.

Chau, K. W. (2007). An ontology-based knowledge management system for flow and water quality

modeling. Advances in Engineering Softw are, 38 (3), 172-181.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cheng, M.-Y., Chien-Ho, K., & Chang, C.-H. (2002). Computer-aided DSS for safety monitoring of

geotechnical construction. Automation in Construction, 11 (4), 375-390.

Colesanti, C., & Wasowski, J. (2006). Investigating landslides with space-borne synthetic aperture

radar (SAR) interferometry. Engineering Geology, 88 (3-4), 173-199.

Cox, S. (2006). Observations and measurements. OpenGIS Discussion Paper. Open Geospatial

Consortium.

Cox, S., Daisey, P., Lake, R., Portele, C., & Whiteside, A. (2004). OpenGIS geography markup language

(GML) implementation specification. OpenGIS Recommendation Paper. Open Geospatial Consortium.

Crosta, G. B., Chen, H., & Frattini, P. (2006). Forecasting hazard scenarios and im plicaitonsforthe

evaluation of countermeasure efficiency for large debris avalanches. Engineering Geology, 83 (1-3), 236-

253.

Datta, A., Vandermeer, D. E., Celik, A., & Kumar, V. (1999). Broadcast protocols to support efficient

retrieval from databases by mobile users. ACM Transactions on Database Systems, 24 (1), 1-79.

Dietrich, J., & Elgar, C. (2007). Towards a web of patterns. Web Semantics: Science, Services, and

Agents on the World Wide W eb, 5 , 108-116.

Dunnicliff, J. (1993). Geotechnical Instrumentation fo r Monitoring Field Performance. New York:

Wiley-lnterscience.

Fukatsu, T., Hirafuji, M ., & Kiura, T. (2006). An agent system for operating web-based sensor nodes

via the internet. Journal o f Robotics and Mechatronics, 18 (2), 186-194.

Gannod, G. C., & Cheng, B. H. (1999). A framework for classifying and comparing software reverse

engineering and design recovery techniques. Sixth Working Conference on Reverse Engineering (pp. 77-

88). Washington, DC: IEEE Computer Society.

Garrett, J. J. (2005, February 18). Ajax: a new approach to web applications. Retrieved August 20,

2007, from Adaptive Path: http://www.adaptivepath.com/publications/essays/archives/000385.php

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.adaptivepath.com/publications/essays/archives/000385.php

Gorman, B. L., Mallikarjun, S., & Smith, C. M . (2005, April 1). Advancing sensor web interoperability.

Sensors M agazine, 22 (4) , 14-19.

Graniero, P. A., & Robinson, V. B. (2006). A probe mechanism to couple spatially explicit agents and

landscape models in an integrated modelling framework. International Journal of Geographical

Information Science, 20 (9), 965-990.

Groger, G., Kolbe, T., & Czerwinski, A. (2006, July 28). Candidate OpenGIS CityGML Implementation

Specification. Open Geospatial Consortium.

Gross, N. (1999, August 30). 21 ideas for the 21st century: the Earth will don an electronic skin.

BusinessWeek Online , 68-70. McGraw-Hill.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge

Acquisition, 5 (2), 199-220.

Gruninger, M., & Fox, M. S. (1995). Methodology for the design and evaluation of ontologies.

Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing, IJCAI-95 (pp. 1-10). San

Mateo, CA: Morgan Kaufmann Pub.

Guarino, N. (1998). Formal Ontology in Information Systems: Proceedings o f the 1st International

Conference. Amsterdam: IOS Press.

Gupta, P., & Kumar, P. R. (2000). The capacity of wireless sensor networks. IEEE Transactions on

Information Theory, 46 (2), 388-404.

Harrap, R. M ., Hutchinson, D. J., Graniero, P., Diederichs, M ., Moulin, B., & Martin, D. (2006). The

GIST-II project - decision support strategies for natural hazards monitoring and analysis. GEOIDE8th

Annual Scientific Conference, Poster Session . Banff, Alberta, Canada.

Harris, C., Haeberli, W ., Vonder Muhll, D., & King, L. (2001). Permafrost monitoring in the high

mountains of Europe: the PACE project in its global context. Permafrost and Periglacial Processes, 12

(1), 3-11.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Heidemann, J., Silva, F., Intanagonwiwat, C., Govindan, R., Estrin, D., & Ganesan, D. (2001). Building

efficient wireless sensor networks with low-level naming. Proceedings of the Eighteenth ACM

Symposium on Operating Systems Principles (pp. 146-159). New York: ACM Press.

Hutchinson, D. J., Diederichs, M . S., & Harrap, R. (2004). Landslide monitoring and analysis using GIS

technology. 57th Canadian Geotechnical Conference, Proceedings, (6 pp.).

Hutchinson, D. J., Diederichs, M . S., Carranza-Torres, C., Harrap, R., Rozic, S., & Graniero, P. (2007).

Four dimensional considerations in forensic and predictive simulation of hazardous slope movement. In

E. Eberhardt, D. Stead, & T. Morrison (Ed.), Proceedings o f the 1st Canada-US Rock Mechanics

Symposium (8 pp.). Taylor & Francis, Ltd.

ISO, (2003, May 8). ISO 19115 - An international metadata standard for geographic information.

International Organization for Standardization.

Iverson, R. M. (2000). Landslide triggering by rain infiltration. W ater Resources Research, 36 (7),

1897-1910.

Jabeur, N., & Graniero, P. A. (Submitted). Creating an intelligent wireless sensor web from

conventional sensor networks using a 'virtual wireless sensor network' concept. International Journal of

Systems Science.

Jabeur, N., McCarthy, J. D., Xing, X., & Graniero, P. A. (Submitted). A knowledge-oriented meta

framework for integrating sensor network infrastructures. Computers and Geosciences .

Kim, K. J., & Yoo, S. J. (2005). Power-efficient reliable routing protocol for mobile ad-hoc networks.

IEICE Transactions on Communications, E88B (12), 4588-4597.

Kokai, Y., Masuda, F., Horiike, S., & Sekine, Y. (1997). Recent development in open systems for

EMS/SCADA. International Journal o f Electrical Power & Energy Systems, 20 (2), 111-123.

Krishnamachari, B., & Estrin, D. W. (2004). The impact of data aggregation in wireless sensor

networks. Proceedings o f the 22nd International Conference on Distributed Computing Systems (pp. 457-

459). Washington, DC: IEEE Computer Society.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lambrix, P., Habbouche, M ., & Perez, M. (2003). Evaluation of ontology development tools for

bioinformatics. Bioinformatics, 19 (12), 1564-1571.

Lee, E. M., & Jones, D. K. (2004). Landslide risk assessment. London: Thomas Telford.

Lehmann, F. (1992). Semantic networks. Computers and Mathematics with Applications, 23 (2-5), 1-

50.

Lenat, D. B. (1995). CYC: a large-scale investment in knowledge infrastructure. Communications of

the A C M , 38 {11), 33-38.

Li, J., Blake, C., de Couto, D. S., Lee, H. I., & Morris, R. (2001). Capacity of ad hoc wireless networks.

Proceedings o f the 7th Annual International Conference on Mobile Computing and Networking (pp. 61-

69). ACM Press: New York.

Lopez, M. F., Gomez-Perez, A., Sierra, J. P., & Sierra, A. P. (1999). Building a chemical ontology using

Methontology and the OntologyDesign environment. IEEE Intelligent Systems and Their Applications, 14

(1), 37-46.

Madden, S., Franklin, M . J., Hellerstein, J. M ., & Hong, W. (2002). TAG: a tiny aggregation service for

ad-hoc sensor networks. Proceedings o f the 5th Symposium on Operating Systems Design and

Implementation (pp. 131-146). New York: ACM Press.

Maidment, D. (2002). Arc Hydro: GISfor W ater Resources. Redlands, California: ESRI Press.

McCarthy, J. D., Graniero, P. A., & Rozic, S. M. (2007). An Integrated GIS-Expert System Framework

for Live Hazard Monitoring and Detection. Proceedings o f the Joint CIG/ISPRS Conference on Geomatics

fo r Disaster and Risk M anagem ent (11 pp.). CD-ROM.

Meisina, C., Zucca, F., Fossati, D., Ceriani, M ., & Allievi, J. (2006). Ground deformation monitoring by

using the permanent scatterers technique: the example of the Oltrepo Pavese (Lombardia, Italy).

Engineering Geology, 88 (3-4), 240-249.

Minsky, M . (1974). A fram ew ork fo r representing knowledge. Cambridge, MA, USA: Massachusetts

Institute of Technology.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mizen, H., Dolbear, C., & Hart, G. (2005). Ontology ontogeny: understanding how an ontology is

created and developed. Geospatial Semantics, Proceedings. Lecture Notes in Computer Science, 3799,

pp. 15-29.

Na, A., & Priest, M . (2006). OpenGIS Sensor Observation Service Implementation Specification. Open

Geospatial Consortium.

Niles, I., & Pease, A. (2001). Towards a standard upper ontology. Proceedings o f the 2nd

international Conference on Formal Ontology in Information Systems (pp. 2-9). New York: ACM Press.

Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: a guide to creating your first

ontology. Stanford, CA: Knoledge Systems Laboratory.

O'Brien, J., & Gahegan, M . (2004). A knowledge framework for representing, manipulating and

reasoning with geographic semantics. In P. Fisher (Ed.), Developments in Spatial Data Handling: 11th

International Symposium on Spatial Data Handling (pp. 585-603). Berlin: Springer.

0hrstr0m, P., Andersen, J., & Scharfe, H. (2005). W hat has happened to ontology? Lecture Notes in

Artificial Intelligence, 3596, 425-438.

Polemio, M ., & Petrucci, O. (2001). Hydrogeological monitoring and image analysis of a mudslide in

southern Italy. Physics and Chemistry o f the Earth Part C-Solar-Terrestrial and Planetary Science, 26 (9),

689-695.

Probst, F., Gordon, A., & Dornelas, I. (2004). OGC discussion paper: ontology-based representation

of the OGC observations and measurements model. Open Geospatial Consortium.

Pundt, H., & Bishr, Y. (2002). Domain ontologies for data sharing - an example from environmental

monitoring using field GIS. Computers and Geosciences, 28, 95-102.

Quinlan, J. R. (1990). Decision trees and decision-making. IEEE Transactions on Systems, M an and

Cybernetics, 20 (2), 339-346.

Royer, E. M., & Chai-Keong, T. (1999). A review of current routing protocols for ad hoc mobile

wireless networks. Personal Communications, IEEE, 6, 46-55.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rozic, S. M. (2006). Representing spatial and domain knowledge within a spatial decision support

framework. M.Sc. Thesis, University of Windsor.

Russomanno, D. J., Kothari, C., & Thomas, 0 . (2005). Building a sensor ontology: a practical approach

leveraging ISO and OGC models. In H. R. Arabnia, & R. Joshua (Ed.), The 2005 International Conference

on Artificial Intelligence, Proceedings (pp. 637-643). CSREA Press.

Santanche, A., Nath, S., Liu, J., Priyantha, B., & Zhao, F. (2006). SenseWeb: browsing the physical

world in real time. Redmond, WA: Microsoft Research Report.

Sheth, A., Thekkath, C. A., Mehta, P., Tejaswi, K., Parekh, C., Singh, T. N., et al. (2007). Senslide: a

distributed landslide predicition system. ACMSIGOPS Operating Systems Review, 41 (2), 75-87.

Sirin, E., Parisa, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (In Press). Pellet: a practical OWL-DL

reasoner. Journal o f Web Semantics .

Stavroulaki, V., Demestichas, K., Adamopoulou, E., & Demesticahas, P. (2006). Distributed web-

based management framework for ambient reconfigurable services in the intelligent environment.

Mobile Networks and Applications, 11, 889-900.

Stoeckert Jr., C. J., Causton, H. C., & Ball, C. A. (2002). Microarray databases: standards and

ontologies. Nature Genetics, 32, 469-473.

Sure, Y., Erdmann, M ., Angele, J., Staab, S., Studer, R., & Wenke, D. (2002). OntoEdit: collaborative

ontology development for the semantic web. First International Semantic Web Conference. 2342, pp.

2.21-235. Berlin: Springer.

Terzis, A., Anandaraja, A., Moore, K., 8t Wang, l.-J. (2006). Slip surface localization in wireless sensor

networks for landslide prediction. Proceedings o f the fifth international conference on Information

processing in sensor networks (pp. 109-116). New York: ACM Press.

Tsarkov, D., & Horrocks, I. (2006). FaCT++ description logic reasoner: system description. In U.

Furbach, & N. Shankar (Ed.), Proceedings o f the 3rd International Joint Conference on Automated

Reasoning (pp. 292-297). Berlin: Springer.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Turban, E., Aronson, J. E., & Liang, T.-P. (2005). Decision Support Systems and Intelligent Systems

(7th ed.). Upper Saddle River, New Jersey: Pearson Education, Inc.

Varro, A., & Pataricza, A. (2003). UML action semantics for model transformation systems. Periodica

Polytechnica Electrical Engineering, 47 (3 /4), 167-186.

Wagner, R., Sarvotham, S., & Baraniuk, R. (2005). A multiscale data representation for distributed

sensor networks. IEEE Conference on Acoustics, Speech, and Signal Processing, 2005. Proceedings. 4, pp.

5 4 9 -5 52 .IEEE.

Wang, H. H., Li, Y. F., Sun, J., Zhang, H., & Pan, J. (2007). Verifying feature models using OWL. Web

Semantics: Science, Services, and Agents on the World Wide W eb, 5 , 117-129.

Wassmann, R., Hien, N. X., Hoanh, C. T., & Tuong, T. P. (2004). Sea level rise affecting the

Vietnamese Mekong delta: w ater elevation in the flood season and implications for rice production.

Climatic Change, 66 (1), 89-107.

Wuwongse, V., Anutariya, C., Akama, K., & Nantajeewarawat, E. (2001). XML declarative description:

a language for the Semantic Web. Intelligent Systems, 16 (3), 54-65.

Yu, F. C., Chen, C. Y., Lin, S. C., Lin, Y. C., Wu, S. Y., &. Cheung, K. W . (2007). A web-based decision

support system for slopeland hazard warning. Environmental Monitoring Assessment, 127 (1-3), 419-

428.

Zellweger, P. (2005). A database taxonomy based on data-driven knowledge modeling. In C.

Thompson, & H. Hexmoor (Ed.), International Conference on Integration o f Knowledge Intensive Multi-

Agent Systems (pp. 469-474). IEEE.

Zimmerman, R., Kas, S., Butscher, R., & Bodendorf, F. (2005). An ontology for agent-based

monitoring of fulfillment processes. In Whitestein Series in Software Agent Technologies and Autonomic

Computing (pp. 323-345). Basel, Switzerland: Birkhauser.

Zourmpakis, A., Boardman, D. I., Rogers, C. D., Jefferson, I., Gunn, D. A., Jackson, P. D., et al. (2006).

Case Study of a Loess Collapse Field Trial in Kent, SE England. Quarterly Journal of Engineering Geology

and Hydrogeology, 3 9 ,131-150.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A: Ontology Specification
This appendix details the new sensor ontology. Figures A -l to A-5 show the hierarchical relationship

of all concepts in the sensor ontology. Table A -l shows all relationships within the ontology as triples.

CO eogtaphicSpaceConceptJfr

(^ResultConcept)|

owhThing DfO- — DataDefinitionConcept |

C SensorNetwoikConoeptjl

EventConeept ^

Figure A - l : High level ontology concepts

(Semantics

1 G ,aPh i c /

f
O b je c t J<1—

k Fea tu reO fln te rest

s''"’" ""\ ,
_J, S pa ce X ~

/
/ /

/ / // / ^/ / / h / /,11/ y life r —
4 G eo g ra ph icS pa e eC o n cep t J X]--------

\ \ \ v

\\>
\ \

D atum j

(R e ferenceF ram e

-------------(T h e m a tic L a y e r)

r^C o o rd ina teR e fe re nce S ys te m y

’"'X
Laye rO fln te rest)

-fe S e n s it iv ity ^

(G eom etry '!< } -

“ {^C o o rd in a te s)

(P o in t y~ .\----------- (P os ition K-1---------- \ S am ple P os ition

L ine

\

(A rea j

P olygon X I { Shape

v- v'~ - x

E n ve lo p e)

Loca lC oord ina teF ram #

N a m e dP la ce)

Figure A - 2: Geographic space ontology concepts

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(ProcessMethod) /
 /

DataSources

; DataComponents)
. Capabilities

i Processes

/ (Im plem entation)

Destination i
[Parameter

{ Source ,

InternalPhenomenon >0 Eve nt

D ataSourceust
x

i(Identifier J
i. Processust)

i Output I

EventConeept Phenomenon .,
\ x — -
\ \ 1 ResponsibleParty ")

(ExtemalPhenomenon)

\ (Classifier

V Characteristics ,i

(ObseivedProperty)

^ DataDefinition)

X
i DataSource j

CompoundPhenomenon

Figure A - 3: Event ontology concepts

(Connection K J -

 ~

Responsible }

4 SensorNetworkConcept .
. . • * r t „

-
\ "

f'h---
i Procedure

 '

^ Subnet j

(SensorNetwoik ^

Sem anticConnection)

P hysicalC onnecticn j

.... "
(. Log loa lC onnection *1,

 S e n s o r _

f Transducer)

' PackafledProcedure)

SequencedProcedure

(SimpleProeedure

ArrayLink)

R elationship / -0 ~

~"7 S tation >

Calcu lationProcedure

"T SurveyProcedure " j

—(Restriction

Figure A - 4: Sensor Network ontology concepts

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

«e«ityUn

Steamy
rieptAy

TimeStamp

UeaiCenstuintt

UsajeCeMtralnt

OutputtJM

conneetlonuat ,

CUuffltiUst }

StnseiUetadata KJ-

, TimePtiiotf) \ \

RespansibltPafty

Outputs

RacordDtfJnman*1 MA,.

(ItmDt.finitieii)

4 DateDeflMtienConeept

’ Component ;

RtiuftOfflnitlon j

"f InputUst

: Identlfioatien)

TupltVeluet)

AbstiaetEneodlng

_ Obs«rv»Uof>Coll*oti8fi /

•’ Paiamtttst '

'(Binary ^ ...

Cenntctiont >

\ Caitgeiy)

NeimalttedCwve ;

 ̂ StenderdFofmat

■ CompeilltOlmiu'ttlon

- SlnatyOioup /

 1 BlnaryAuey >

. BlnaryValue .

Figure A - 5: Data Definition ontology concepts

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table A - l - Ontology property descriptions

Datatvoe (Di or Prooertv Name Domain Range
Object (O)
Prooertv

D SRSName LocalCoordinateFrame OR Envelope string
D UOM Area OR Value OR Component OR Axis string

XUOM SamplePosition string
D YUOM SamplePosition string

l a i g g g s i i i s i l anchorPoint Datum string
D area Polygon float
0 arrayMap owl:Thing Array
0 axis Coordinates Axis

S a l i a S i K S M j g base Value OR Restriction string
D beginPosition BeginPosition string

boolean Boolean boolean
0 booleanData owl:Thing boolean

boundedBy
D classification SimpleData string

codeSpace
»i®S^XS®®S^j3reS%«8§6wS a!f®i wslillSS

Identifier OR Category OR Value string
-r ■< * * *. n ■* v"> s. 4 »~rv» -a ’ * ■* M •«-* jw** ~e-e^Sr- «*»reus* **• >.iw» »« >

D date Date date
M 8 S 8 S a i i f t » l g dateTime DateTime dateTime

D definition Category OR Value OR FeatureOflnterest
OR ResultDefinition OR Component OR Axis

string

D description ObservationCollection OR Instrument OR
Solid OR Value

string

D doubleData owI.Thing float
0 duration owl:Thing string
D endPosition EndPosition string

8 8

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

D float

D frame

O generates
O hasAddress

D hasAdministrativeArea

D hasAffiliation

D hasAlgorithm

D hasAnchorPoint

. O . hasArea

O hasArrayComponent

D hasArraySize

O hasAsciiBlock

D hasAxis

D hasAxisName

D hasAxisType

O hasBeginPosition

D hasBitLength

D hasBitOffset

D hasByteEncoding

D hasByteLength

D hasByteOffset

D hasByteOrder

D hasCS

O hasCapabilities

O hasCategory

O hasCharacteristics
D hasCity

O hasClassification

O . . hasClassifier

Float float

SimpleData string

Procedure Result

owhThing Address

owl:Thing string

owhThing string

owhThing string

owhThing string

LayerOflnterest Area

owhThing BinaryArray

Curve OR DataArray

owhThing AsciiBlock

owh.Thing string
owhThing string

owhThing string

TimePeriod BeginPosition

owhThing

owhThing int

owhThing string

owhThing int

owhThing g g i a i i a t s a j ^ ^
owhThing string

owhThing string

owhThing Capabilities

DataComponents Category

owhThing Characteristics

owhThing string
Sensor Classification

Classifierlist Classifier

89

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

0 hasClassifierList Classification ClassifierList

0 hasComponent DataGroup OR DataArray Component

0 hasComponentPhenomena ItemDefinition RecordSchema

D hasCompression owhThing string

0 hasConnection ConnectionList Connection

0 hasConnections Sensor Connections

0 hasConnectionList Connections ConnectionList

0 hasConstraints owl:Thing Constraints

0 hasContact ow!:Thing Contact

O hasContactGroup

0 hasContactlnfo

owhThing ContactGroup

owhThing Contactlnfo

D hasContactlnstructions owhThing string

0 hasCoordinateReferenceSystem owl:Thing Coo rd i na te Ref e re nceSy ste m

0 hasCoordinates Definition Coordinates

D hasCopyRights owhThing boolean

D hasCountry owhThing string
O hasCurve NormalizedCurve Curve

0 hasDataArray owhThing

0 hasDataComponents DataDefinition
DataArray
DataComponents

0 hasDataDefinition owhThing DataDefinition
0 hasDataGroup owhThing DataGroup
0 hasDataSource owhThing DataSource

0 hasDataSourceList owhThing DataSourceList

0 hasDataSources owhThing DataSource OR DataSources
D hasDataType owhThing string

0 hasDatum owhThing...... ■.... Datum
D hasDatumName owhThing string
D hasDecimalSeparator Ascii Block string
O hasDefinition Curve Definition

90

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

D hasDeliveryPoint

O hasDescription
O hasDestination

O hasDestinationArray
D hasDimension
O hasDiscussion

O (hasDocumentation
D hasDoubleList

D hasEiectronicMailAddress

O hasElement

D hasEmail

0 hasEncoding

D hasEncryption

O hasEndPosition

O hasEvent

O hasEventList

hasFacsimile

hasFeatureOflnterest

hasFileLocation
O hasFollowingEvent

a g iiiii iB s S ii hasFormat
0 hasFunction

hasGenerallnfo
0 hasGroupComponent

, hasHistory
0 hasHistoryGroup
D hasHoursOfService

owl:Thing

owhThing

Link
owhThing

CompoundPhenomenon

owhThing

owhThing

owhThing

owhThing

PackagedProcedure

owhThing

owhThing

owhThing

TimePeriod

owhThing

owhThing

ing

Observation OR Measurement

owhThing

Event

owhThing

owhThing

owhThing

owhThing

owhThing

owhThing

owhThing

string
Description

Destination
DestinationArray

string
Discussion

Documentation

string

Procedure

string

AbstractEncoding

string
EndPosition

Eventlnfo

EventList

string
LayerOflnterst OR Sensor OR
FeatureOflnterest OR
SensorCollection

FileLocation

Event

string

Curve

Generallnfo

BinaryGroup

History

HistoryGroup

string

91

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

0 hasISM

0 hasldentification
o hasldentifier
o hasldentifierUst
0 haslmplementation
D haslndexDestination
D haslndexSource
D haslndividualName
0 haslnput
D haslnputBias

D haslnputGain

0 haslnputList

0 haslnputs

haslntegerList
0 haslntellectualPropertyRights

hasltemDefinition
0 hasLegalConstraints

° hasLink
D hasLinkRef

0 hasLocalCoordinateFrame
0 hasLocation
0 hasMetadata
0 hasMethod
0 hasMimeType
0 hasName

0 hasNormalizedCurve
0 hasObservation

° hasObserved Property

hasOnlineResource

owl:Thing ISM

Instrument Identification

ObservedProperty OR IdentifierList Identifier

Identification IdentifierList

owhThing Implementation

owhThing

owhThing int
owhThing string

InputList Input

NormalizedCurve string

NormalizedCurve string

Inputs InputList

Instrument Inputs

owhThing string

owhThing boolean

Component ItemDefinition

owhThing LegalConstraints

owhThing

owhThing string

ReferenceFrame OR SamplePosition LocalCoordinateFrame

Result OR Event GeographicSpaceConcept

owhThing MetadataGroup

owhThing ProcessMethod

owhThing string

owhThing string

owhThing NormalizedCurve

ObservationCollection Observation

Observation OR Measurement ObservedProperty

owhThing OnlineResource

92

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

0 hasOrganizationName
D hasOrientation
0 hasOutput
D ■hasOutputBias
D hasOutputGain
0 hasOutputList

0 hasOutputs
0 hasParameter

0 hasParameterList
0 hasParameters
0 hasPerson
D hasPhenomenonProperty
0 hasPhone
D hasPhoneNumber
0 hasPoint
0 hasPositionElement

D hasPositionName
0 hasPosition
D hasPostalCode
0 hasPrecedingEvent
D hasPrivacyAct
0 hasProcedure
0 hasProcess
0 hasProcessChain
0 hasProcessList
0 , . hasProcessMethod
0 hasProcesses

owhThing

Datum

OutputList
NormalizedCurve

NormalizedCurve

Outputs

Instrument

ParameterList

Parameters

Instrument

owl:Thing

ItemDefinition

owhThing

owhThing

SamplePosition

owhThing

LThing

owhThing

owhThing

owhThing

Event

owhThing

Observation OR Measurement

ProcessList

owhThing

Processes

owhThing

Sensor

string

string

Output
string

string

OutputList

Outputs

Parameter OR Curve OR
NormalizedCurve

ParameterList

Parameters

Person

string

Phone
string

Point

Position
PositionList

string

Point
string

Event

boolean

Procedure

Process

Process
ProcessList

ProcessMethod

Processes

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

O hasProcessingStep
0 hasProperties
0 hasProperty
0 hasPropertyList
D hasQualifier
0 hasRecordDefComponent

ic IS ilS i^ S iilig hasRecordltem
D hasRecordLength

hasReferenceFrame
0 hasReferences

hasResponsibleParty
0 hasRestriction

hasResult
0 hasResultDefinition

hasRights
D hasRole
D hasSRSName
0 hasSamplePosition
D hasScale
0 hasSecurity

hasSecurityConstraints
0 hasSensor
0 hasShape
0 hasSolid
0 hasSource

hasSourceArray
0 hasSpatiallnfo
0 hasStructure
D hasSurname

SequencedProcedure

owhThing
PropertyList
owhThing

Value
RecordSchema

Record

owhThing

Instrument

owhThing

owhThing
SimpleData

Result OR Component

owhThing

owhThing

Contact OR Value OR FeatureOflnterest

Station

Component OR Axis

owhThing

owhThing

SensorCollection OR Station

LayerOflnterest

Result OR Event

owhThing

Definition

owhThing

owhThing

Procedure

Properties

Property
PropertyList

string
ItemDefinition

Value

int

ReferenceFrame

References

SensorResponsibleParty

Restriction

Value
ResultDefimtion

Rights

string

strine
SSSBa®

SamplePosition

float

Security

SecurityConstraints

Sensor

Shape

Solid

Source

Source Array

GeographicSpaceConcept

Binary

string

94

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

O hasTerm

D hasTermQualifier
D hasTermValue

O hasTime

O hasTimePosition

O hasTimeStamp

D hasTokenSeparator

D hasTopic

O hasTransducer

O hasTupleMap

D hasTupleSeparator

D hasTupleType
D hasTupleValues

D hasUserlD

O hasVaiidTime

O hasValue

D hasVoice

O hasXMLTuple

O. hostsProcedure

Classifier OR Identifier

Term
Term
ObservationCollection OR
CoordinateReferenceSystem OR
Observation OR Measurement OR Event

Timelnstant

owhThing

AsciiBlock

owl:Thi

Process

owhThing

AsciiBlock

owhThing

Curve

Procedure OR Shape OR Com pone

owhThing

owhThing

Term

string

string

DateTime

TimePosition

TimeStamp

string

string

Transducer

RecordSchema

string

string

string

string

string
■ H B S i

ItemDefinition OR Parmaeter OR Record OR
Observation OR Measurem ent OR Output
OR Input

owhThing

owl-.Thing

LayerOflnterest OR Station

ValidTime

Value

string

string

Procedure

95

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

D id

D identifier

D indeterminatePosition

D integer

D integerData

O isElementOf

O isFeatureOflnterestOf

D isFixed

O isFollowingEventOf

O isGeneratedBy
O isHostedBy

O isLocationOf

O isObservedPropertyOf

O isPrecedingEventOf
O isProcedureOf

O isProcessingStepOf

0 isPropertyOf

O isResponsibleFor

O isResultOf

Timelnstant OR Point OR Measurement OR
DataGroup OR LocalCoordinateFrame OR
Station OR Restriction OR
ObservationCollection OR LayerOflnterest
OR RecordSchema OR
CompoundPhenomenon OR Transducer OR
Solid OR SensorCollection OR TimePeriod

Identifier

TimePosition

Integer

owhThing

Procedure

LayerOflnterest OR Sensor OR
FeatureOfInterest OR SensorCollection

owhThing

Event

Procedure

GeographicSpaceConcept

ObservedProperty

Event

Procedure

Procedure

Property

ResponsibleParty

Value

string

string

string

int

PackagedProcedure

Observation OR Measurem ent

boolean

Event

Procedure
LayerOflnterest OR Station

Result OR Event
Observation OR Measurement

Event
Observation OR Measurement

SequencedProcedure

PropertyList

Event

Result OR Component

96

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

isTimeOf DateTime

D

D

D

D

D

D

D

D

0

D

D

O

isTupleMapOf
linkRef

lowerCorner

maxlnclusive

member

method

mimeType

minlnclusive

name

position

recordLength

referenceSystem

serialNumber
string

stringData

time

timeDefinition

timePosition

tokenData

type

underResponsibilityOf

owhThing

Source OR Destination

Envelope

Range OR Restriction

owhThing

Transducer

Value

Range OR Restriction

ObservationCollection OR Classifier OR
Process OR Identifier OR Output OR
Connection OR Input OR Component OR
Datum OR Axis

owhThing

Record Definition
Value

owhThing
String

owhThing

Time

Component

TimePosition

owhThing

Value

Event

ObservationCollection OR
CoordinateReferenceSystem
OR Observation OR
Measurement OR Event

GridDefimtion

string

Point

string

string

S L
string

string

string

ittla

ResponsibleParty

97

up
pe

rC
or

ne
r

En
ve

lo
pe

P

oi
nt

us
es

CS

Lo
ca

lC
oo

rd
in

at
eF

ra
m

e
st

ri
ng

us
es

Da
tu

m

Lo
ca

lC
oo

rd
in

at
eF

ra
m

e
D

at
um

va
lu

e
Va

lu
e

st
ri

ng

x
Po

in
t

st
ri

ng

oo qo
c c
"C '»-
tt tt

o o a. cl

0001

> ■ N J

o a o a a a a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B: Fact-Function Syntax
This appendix details the syntax for using "fact-functions", introduced in Section 5.1. The following

items should be noted when using these commands:

• Items written in angle brackets (< >) are placeholders that are defined later on in the syntax
• Quotation marks (" ")are part of the syntax wherever shown
• Not all combinations of <filter> <structure> may be used together. Spatial filters and spatial

structures should be paired, as should Temporal filters and temporal structures. The spatial
filters are: BBOX, Contains, Intersects, Overlaps. The Temporal filters are: After, Before, During,
TEquals. The spatial structures are: env and pt. The temporal structures are a time instant value
or a pair of time instants representing a range.

• Any number of <featureOflnterest> and <ResultFilters> may be used, they are chained together
with a logical AND operation. Contradictory filters are allowed. For example, limiting results to
those above 10 and below 5 would be perfectly valid syntactically, but would never yield results
since a value cannot be greater than 10 and less than 5 at the same time. Likewise, searching
for all features contained within two disjoint bounding boxes is a valid request, but will not
return any results.

SYNTAX for (send-SOS-request) command

(send-SOS-request "obs" <OFFERING> <PROCEDURE> <OBSERVEDPROPERTY>
[<FEATUREOFINTEREST> <RESULTFILTERS>])

(send-SOS-request "cap" <SECTIONS>)

(send-SOS-request "des" <PROCEDURE>)

(send-SOS-request "sen")

(send-SOS-request "mro" <OFFERING> <OBSERVEDPROPERTY>)

"obs" Creates an SOS GetObservation request
"cap" Creates an SOS GetCapabilities request
"des" Creates an SOS DescribeSensor request
"sen" Creates an SOS GetCapabilities request that is equivalent to (send-

SOS-request "cap" "c")
"mro" Creates an SOS GetObservation request for retrieving the most

recent set of sensor measurements for a given offering and
phenomenon

<SECTIONS> Describes the sections of the SOS Capabilities document that should
be returned by a GetCapabilities request. Can either be "all" or any
combination of:

• "si" (Service Identification)
• "sp" (Service Provider)

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• "om" (Operations Metadata)
• "fc" (Filter Capabilities)
• "c" (Contents)

<OFFERING> A string that represents the SOS Offering that observations are being
requested from. Ex, "DOWNSLOPE_MOTION"

<PROCEDURE> A string that represents a procedure (sensor name). Ex,
"urn:ogc:def:procedure:inclinometer-4"

<OBSERVEDPROPERTY> A string that represents the phenomena being measured by a given
procedure. Ex, "urn:ogc:phenomenon:distance"

<FEATUREOFINTEREST> A collection of options that defines a spatial or temporal filter on the
results of the query. Takes the form <FILTER> <STRUCTURE>.

<RESULTFILTERS> A collection of options that defines a numerical filter on the results
of the query. Takes the form <OPERATOR> <VALUE>.

<FILTER> A spatial or temporal operator. One of: BBOX, Contains, Intersects,
Overlaps, After, Before, During, TEquals

<STRUCTURE> A spatial or temporal structure that serves as an operand for a
<FILTER>. One of:

• env <SRSNAME> (<LOWERCORNERX>,<LOWERCORMERY>)
(<UPPERCORNERX>,<UPPERCORNERY>)

• pt <SRSNAME> (<X>,<Y>)
• <TIME>
• <STARTTIME> <ENDTIME>

<SRSNAME> A string denoting the Spatial Reference System used by the
coordinates supplied. Ex, EPSG:4326

<LOWERCORNERX> A number representing the x-coordinate of the lower-left corner of
an envelope. Ex, 23.54

<LOWERCORNERY> A number representing the y-coordinate of the lower-left corner of
an envelope. Ex, 23.54

<UPPERCORNERX> A number representing the x-coordinate of the upper-right corner of
an envelope. Ex, 23.54

<UPPERCORNERY> A number representing the y-coordinate of the upper-right corner of
an envelope. Ex, 23.54

<X> A number representing the x-coordinate of a point. Ex, 23.54
<Y> A number representing the y-coordinate of a point. Ex, 23.54
<TIME> A time stamp representing an instant in time. Ex, 2007-05-

12T16:25:00
<STARTTIME> A time stamp representing the beginning of a time range. Ex, 2007-

05-12T16:25:00
<ENDTIME> A time stamp representing the end of a time range. Ex, 2007-05-

12T16:25:00
<OPERATOR> A comparative operator that filters the results of a query using

Boolean logic. Objects that pass the query are returned as part of the
result set while objects that fail are not. One of:

• Between <LOWERVALUE> <UNIT> <UPPERVALUE> <UNIT>

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• EqualTo <VALUE> <UNIT>
• NotEqualTo <VALUE> <UNIT>
• LessThan <VALUE> <UNIT>
• LessThanEqualTo <VALUE> <UNIT>
• GreaterThan <VALUE> <UNIT>
• GreaterThanEqualTo <VALUE> <UNIT>
• Like <VALUE>

<VALUE> The operand of a ResultFilter's Operator. Is a numerical value with
all operators except Like. The Like operator must have a String as its
operand. Ex, 23.54

<UNIT> The unit of measure for a numerical value. Ex, m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: Contents of Companion CD
The software, tools, and documentation developed over the course of this thesis have been

collected onto a CD that supplements the contents of this document. The contents of the CD are broken

down by directory in this Appendix. If the CD did not accompany the thesis contact Phil Graniero,

Department of Earth and Environmental Sciences, University of Windsor, graniero@uwindsor.ca

2owl: XSLT stylesheets that automate the transformation of SensorML and O&M documents into

OWL documents

conversionControl: A Visual Basic application that can be used to run OGC to OWL, OGC to CLIPS,

and OWL to CLIPS transformations

ontology: The sensor ontology as an OWL document

Ontology Design: Notes on the development methodology used to create the ontology, as well as

the results of various steps of the development process

owl2clips: Java code and design notes for the OWL to CLIPS conversion tool

REASON: The REASON system as used in the slope monitoring demo in Chapter 6. Includes CLIPS

code, sample data, an ArcMap document, and the ArcMap template that contains the VBA code

needed to interact with the SOS.

semanticRepair: Design notes and partial implementation of a semantic error detection and report

generation program.

SOS: SQL files containing the statements used to populate a 52°North SOS server with sample

sensors and measurements. The "Sensors" subdirectory contains SensorML files that correspond to

the contents of the SOS.

thesis_proposal: A PDF version of the thesis proposal and presentation

thesis: A PDF version of this thesis and the defense presentation

visio: Visio diagrams associated with the design and development of the various software

components

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:graniero@uwindsor.ca

Vita Auctoris

James Dwight McCarthy was born in 1982 in Windsor, Ontario. He graduated from Assumption High

School in 2001. From there he studied in the Urban Planning program at the University of Waterloo for

a year before transferring to the Geoinformatics program at the University of Windsor from which he

graduated with Honours in 2005 with a Bachelor of Science. He graduated with a Master of Science

degree in Earth Sciences from the Department of Earth and Environmental Sciences at the University of

Windsor in September of 2007.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	One-operator two-machine flow shop scheduling with setup times for machines and total completion time objective
	Recommended Citation

	tmp.1620054343.pdf.d71io

