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a b s t r a c t

Stereo-based 3D distributed smart camera networks are useful in a broad range of applications. Knowl-
edge of the relative locations and orientations of nodes in the network is an essential prerequisite for true
3D sensing. A novel spatial calibration method for a network of pre-calibrated stereo smart cameras is
presented, which obtains pose estimates suitable for collaborative 3D vision in a distributed fashion using
two stages of registration on robust 3D point sets. The method is initially described in a geometrical
sense, then presented in a practical implementation using existing vision and registration algorithms.
Experiments using both software simulations and physical devices are designed and executed to demon-
strate performance.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Most distributed smart camera (DSC) network applications
make use of three-dimensional scene information to some extent.
This is not surprising; the fundamental purpose of any multi-cam-
era system is to view more than is possible with a single camera,
and this almost always implies taking advantage of space in the
same sense that a video takes advantage of time. DSC networks
may, for example, simply use multiple views to augment human
pose analysis, or perform tracking between non-overlapping
views; in more direct cases, they may track by triangulation among
overlapping views, or even perform full scene reconstructions. True
3D sensing networks provide this information naturally, replacing
the traditional basic primitive of 2D images with 3D scene struc-
ture. It is our belief that such networks offer potential improve-
ments to a variety of existing applications and open entirely new
possibilities for exploration.

The bulk of research in DSC networks to date has focused on the
fusion of data from multiple monocular camera nodes. While a

number of distributed partial and full 3D reconstruction ap-
proaches using monocular nodes and wide-baseline multi-camera
geometry have been proposed, the obvious approach for a robust
system in the general case is to employ short-baseline stereo cam-
era pairs at each node. For the associated costs of one additional
imaging sensor per node, full 3D information is available locally
prior to any distributed analysis. This greatly simplifies the 3D
reconstruction problem and generally yields more robust results,
in turn simplifying and relaxing constraints on subsequent
tasks.

The basic common data object in monocular smart camera net-
works is the 2D image captured by a node. While many applica-
tions share similarities in the subsequent distributed analysis,
there is no universal ‘‘next step” and thus no higher-level data
common to all applications. In a direct structural comparison, the
analog to the image in a 3D sensing network is the local 3D struc-
ture estimated by a node (based on short-baseline stereo recon-
struction of its own field of view). While this is a useful starting
point in itself, the nature of the data lends itself to a further step.
A global reconstruction of the scene, or at least a partial one, is a
natural precursor to virtually every conceivable application. While
calibration is certainly possible in the monocular case (see Section
2.2 for a survey of methods), the benefits of knowing the locations
and orientations of the cameras are somewhat limited when the
data itself and its associated operations are still rooted in two-
dimensional projections. By contrast, in the stereo case, the data
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and operations are inherently three-dimensional, and therefore
naturally benefit from global structure information.

Thus, the 3D visual sensor network paradigm does not simply
replace local 2D images with local 3D reconstructions, but in fact
extends the underlying data to a single space-time model of the
scene. This shifts the focus of distributed processing to a more nat-
ural content-centric approach.

We present here a novel method for automatic spatial self-cali-
bration of 3D visual sensor networks composed of stereo smart cam-
era nodes. The algorithm itself is fully distributed and scalable, and
as it operates purely on geometric data, it makes only the most basic
explicit assumptions about node deployment and environment.

This work is organized in the following fashion. Prior related
work is discussed in Section 2. Section 3 covers the basic concepts
and mathematical definitions used throughout the work. In Section
4, we define and analyze the problem in geometric terms, and pres-
ent the conceptual construction of the solution. Section 5 presents
an overview of our final algorithm. Details of an actual hardware
and software implementation are given in Section 6, and some
experiments demonstrating its performance are discussed in Sec-
tion 7. Concluding remarks are given in Section 8.

2. Related work

2.1. 3D (stereo) DSC networks

While the volume of distributed smart camera research has
grown markedly over the past several years, monocular nodes
are the dominant paradigm [2]. Jannotti and Mao [7], Heath and
Guibas [4], Malik and Bajcsy [6], and Englebienne et al. [5] present
cases where fusion of 3D data from multiple short-baseline stereo
cameras has advantages over analogous methods using 2D monoc-
ular data. Notably, in [4,6], several issues unique to stereo camera
nodes are discussed.

Here, we are further interested in the fundamentally different
model of 3D visual sensor networks largely made possible by ste-
reo camera nodes. Akdere et al. [3] elucidate this concept in pre-
senting a distributed query mechanism for the space-time scene
abstraction.

2.2. Distributed calibration

Functional calibration methods for monocular distributed smart
cameras are presented by Devarajan and Radke [8] and by Mantzel
et al. [9]. These are based on wide-baseline stereo methods, which
are generally not robust due to the matching problem [23], and re-
quire unwieldy initialization schemes or dictate deployment con-
straints. Funiak et al. [10] use the motion of objects in the scene
for more robust matching. The method of Medeiros et al. [15] also
uses a moving object of known geometry to find correspondences;
this method also uses a grouping scheme similar to that presented
here. Yu and Sharma [16] present a robust feature descriptor
acknowledging the network constraints of distributed smart cam-
eras, but their calibration method requires central processing.
Potentially more robust methods are presented by Beall and Qi
[11], by Taylor and Shirmohammadi [12], by Barton-Sweeney
et al. [13], and by Kurillo et al. [14]; however, these require the
use of markers or beacons placed in the environment, which is
infeasible in many cases and may constrain deployment or exten-
sion to dynamic calibration.

Jannotti and Mao [7] present a calibration method for stereo
DSC networks called Lighthouse, which uses 3D point sets and geo-
graphic hash tables (GHTs) [17] to localize and orient nodes. Their
method is conceptually similar to ours, up to the grouping process:
it matches ‘‘point packs” constructed from 3D points, categorizing

them according to a geometric hash function (similar to our geo-
metric descriptor) via the GHT, and then merges the nodes into
ever-larger groups by propagating point packs to other groups.
Our method has two key advantages over Lighthouse. First, we
use a more efficient grouping scheme which allows composition
of poses within groups, thereby eliminating much redundant
matching and pose computation (important for scalability). Sec-
ond, we provide a full pairwise pose refinement stage, which is
non-trivial yet absent from the description of Lighthouse.

2.3. Graph model

The concept of the vision graph was originally put forth by Dev-
arajan and Radke [8] to model their multi-camera calibration algo-
rithm. Kurillo et al. [14] later used it for this purpose as well. The
idea was refined by Cheng et al. [18] recently, and is becoming a
useful general tool for describing the directionality of nodes in dis-
tributed smart camera networks. Lobaton et al. [19] present a clo-
sely-related algebraic model for representing camera network
topology, though no explicit graph formalism is employed. It is
worth noting that similar graph formalisms have been used in
other computer vision work; for example, by Huber [20] and by
Stamos and Leordanu [21].

3. Preliminary concepts

It is useful at this point to formally define some core concepts
used throughout the remainder of this work. In some cases, the
purpose may not be immediately clear, but we will refer back to
this section as they are further developed and employed.

3.1. Nodes and groups

A node is the abstract or physical smart stereo camera device it-
self; nodes shall be denoted by sequential capital letters (A, B, and
so forth). The set of all nodes in the network shall be denoted N

(where jNj represents the total number of nodes). A group is a set
of nodes which agree on a single leader node; a group led by node
A shall be denoted GA (where jGAj represents the number of nodes
in the group). Every group is a subset of the full set of nodes
ðGA # NÞ, and every node is a member of exactly one group (so, if
GA and GB are two separate groups, jGA \ GBj ¼ 0).

3.2. Point sets and point packs

A point set is the full set of 3D interest points detected locally at
a node; the point set of node A shall be denoted SA. The overlap be-
tween point sets SA and SB refers to the size of the intersection of
the two sets jSA \ SBj, said intersection occurring where a point in
SA corresponds to the same physical point as a point in SB. The per-
cent overlap is defined as follows:

%OðSA; SBÞ ¼
jSA \ SBj

maxðjSAj; jSBjÞ
� 100% ð1Þ

A point pack is any subset of the point set of fixed size (determined
by a parameter of the algorithm); when discussing a single arbitrary
point pack from node A, it shall be denoted FA, where FA # SA. Two
point packs FA and FB, from nodes A and B, respectively, are consid-
ered to match (denoted FA � FB) if each point in FA corresponds to
the same physical point as a point in FB.

In the context of the algorithm, it is impossible to ascertain this
correspondence, so the term match implies rather a presumed
match based on a criterion of geometrical similarity.
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3.3. Pose

Each node is considered to have its own local coordinate sys-
tem. The relative pose of node A with respect to node B is denoted
PAB, and is the rigid transformation in 3D Euclidean space from the
coordinate system of A to that of B. The inverse of pose PAB, denoted
P�1

AB , reverses the pose transformation (so that P�1
AB ¼ PBA). A succes-

sion of pose transformations PBCðPABðxÞÞ can be composed into a
single pose, denoted ðPAB � PBCÞðxÞ ¼ PACðxÞ.

The error between two poses PA and PB is denoted EðPA; PBÞ. The
actual value for this error depends on the method of computation,
as it is used for comparison only; see Section 7.1.2 for a practical
case.

3.4. Graph model

We make extensive use of a graph-based model in describing
the calibration problem, our algorithm, and our experimental re-
sults. It consists of three undirected simple graphs, each containing
vertices representing the nodes in the DSC network. The important
interrelations between these graphs are mentioned here, but will
become more clear in Section 4.

3.4.1. Vision graph
In the vision graph CV ¼ ðN; EV Þ, an edge e 2 EV indicates overlap

between the fields of view of the endpoint nodes. The term overlap
implies that sufficient information – the nature and extent of
which is application-specific – is measurable by both nodes.

In our case, an edge represents a sufficient point set overlap for
both the matching and fine registration components of our algo-
rithm to yield results. We do not actually determine this graph
quantitatively here; it is rather discussed as a qualitative guideline
for deployment (see the shared view assumption, Section 4.2.2)
and as a theoretical upper bound for the connectivity of the group-
ing and calibration graphs.

3.4.2. Grouping graph
In the grouping graph CG ¼ ðN; EGÞ, an edge e 2 EG indicates the

availability of a direct coarse pose estimate between the endpoint
nodes. Each component (maximally connected subgraph) of the
grouping graph constitutes a group as defined in Section 3.1.

In our algorithm, CG # CV , since direct coarse pose estimates can
only be obtained between nodes sharing scene points.

3.4.3. Calibration graph
In the calibration graph CC ¼ ðN; ECÞ, an edge e 2 EC indicates the

availability of a direct fine pose estimate between the endpoint
nodes. The weight of an edge is a function of the error in the asso-
ciated pose estimate; this allows one to construct, via pose compo-
sition, the most accurate pose estimate for a given pair nodes using
a weighted shortest path algorithm (such as Dijkstra’s algorithm
[31]).

In our algorithm, similarly to CG; CC # CV . Also, our algorithm
performs pairwise calibration within groups; therefore, a mini-
mum condition for an edge to exist between two nodes in CC is
mutual reachability in CG.

4. Problem analysis

4.1. Problem statement

The overall objective is to spatially calibrate a series of homoge-
neous smart stereo camera nodes, with no a priori knowledge and
using only the nodes’ 3D visual data, in a distributed fashion.
Assuming the visual data consists of a set of 3D points triangulated

from stereo images of the environment, the problem may be re-
duced to geometrical terms:

Given a set of nodes N, each node X 2 N having a point set SX ,
estimate the pose PXY for enough node pairs ðX;YÞ such that
the calibration graph for N is connected.

In other words, for convergence, we seek at least a spanning
tree in CC . Finding additional edges, up to the theoretical limit of
isomorphism with CV , will generally improve accuracy (see Section
7.1.2); thus, in actuality, we pursue as many direct pairwise pose
estimates as possible.

4.2. Assumptions

We make the following basic assumptions about the DSC net-
work to be calibrated.

4.2.1. Pre-deployment offline access
It is assumed that, prior to deployment of the network, there is a

period during which each node may be accessed without restric-
tion in a controlled environment, in order to perform certain essen-
tial modifications to software (such as assignment of a unique
identifier, network configuration, and intrinsic/stereo calibration
of the cameras).

4.2.2. Shared view
For full convergence, it is assumed that CV is connected. This

imposes a minimum qualitative constraint on node deployment
that the shared field of view of the entire network be continuous
and have substantial internal pairwise overlap.

4.2.3. Fixed nodes
It is assumed that each node is fixed in its location and orienta-

tion relative to all other nodes. It is also assumed that, once inter-
nally calibrated for stereo vision, no node changes the relative
motion between its cameras or the internal parameters (e.g. focal
length) of either of its cameras.

4.2.4. Static scene
It is assumed that the contents of the scene are fully static for

the purposes of acquiring calibration point sets. This is solely for
simplicity, and could easily be relaxed by employing background
estimation techniques or accurate temporal synchronization.

4.2.5. Abstract network
It is assumed that the nodes are capable of autonomously form-

ing an ad-hoc network of some kind, wherein each node can be ad-
dressed by a unique identifier. From the algorithm’s point of view,
the network is assumed to be fully connected [32], or in other
words, the communication graph is assumed to be complete. Addi-
tionally, it is assumed that arbitrary amounts of data can be sent
with assured delivery.

4.3. Two-stage registration

Bringing the point sets, and thereby the node coordinate sys-
tems, into alignment with one another can be accomplished by reg-
istration. Registration algorithms may be divided into two types:
coarse registration, which can align points without an initial esti-
mate but are generally not very accurate; and fine registration,
which require an initial estimate to align points but are very accu-
rate [28].

For our purposes, no alignment estimate is initially available,
yet high accuracy is desirable. The typical solution when pre-
sented with such a problem is a two-stage approach, using coarse
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registration to initialize fine registration. However, there is more to
the problem in our case: it is not even known which point sets
overlap or to what degree. We use a process of point pack matching
to determine how to proceed with registration between nodes.

4.4. Point pack categorization

We wish to evenly distribute the processing and storage of the
data throughout the network based on some metric of the data it-
self, a process known as data-centric storage. Our scheme is in-
tended to work with the generic network implied by our
assumptions in Section 4.2.5; better routing efficiency and redun-
dancy may be achievable in practice on some networks using
GHT [17] or other methods.

To describe the data, we define a continuous, deterministic geo-
metric descriptor function as follows:

gðFÞ ¼
Xf

i¼1

kFi � Fck ð2Þ

where Fi is the ith point in the point pack, Fc is the centroid of the
pack, and k � k denotes the Euclidean norm.

The solution space of this descriptor function is divided as
evenly as possible among the nodes in the network, with some
overlap (see below), and point packs detected locally at each node
are sent to the appropriate node for matching to other geometri-
cally similar point packs.

The difference between the descriptors of two point packs FA

and FB describes the degree of difference d between those point
packs:

dðFA; FBÞ ¼ jgðFAÞ � gðFBÞj ð3Þ

Based on the measurement accuracy of a node and the specific
coarse registration algorithm used, there is a similarity threshold
td, such that it is necessary to compare two point packs FA and FB

if dðFA; FBÞ < td, and unnecessary otherwise; this will be termed
the similarity condition. The desirable overlap for categorization,
then, is td=2 in each direction.

Note that categorization, and thus the nodes where point packs
are matched, does not depend on which nodes originated the point
packs. When a match is found, the result is returned to one of the
two source nodes, based on the following selection function:

WðA;BÞ ¼
A if eB � eA ¼ 1 mod 2 and eB > eA;

or eB � eA ¼ 0 mod 2 and eB < eA

B otherwise

8><
>: ð4Þ

where eX is a sequential integer enumeration of the node ID X. This
function has been chosen to deterministically choose between two
nodes in as unbiased a fashion as possible, so as to evenly distribute
processing.

4.5. Point pack matching

The matching process itself compares point packs by attempt-
ing to apply the coarse registration algorithm (e.g. fully-contained
DARCES [29], see Section 6.3.1); if the registration error falls below
a certain threshold tec , the point packs are considered to match. The
actual registration result may then be used as a coarse pose esti-
mate between the source nodes.

4.5.1. Point pack size
Consider point sets from two nodes, SA and SB, from which,

according to the coarse matching algorithm, each node randomly
selects a point pack of size f P 3 (since at least 3 points are
required to fix a rigid pose in 3D Euclidean space), resulting in

FA # SA and FB # SB where jFAj ¼ jFBj ¼ f 6 jSA \ SBj. The perfor-
mance of the matching scheme depends on the probability of a
match between FA and FB; PðFA � FBÞ, which can be calculated as
follows (a full derivation is given in Appendix A):

PðFA � FBÞ ¼
jSA \ SBj!f !ðjSAj � f Þ!ðjSBj � f Þ!
jSAj!jSBj!ðjSA \ SBj � f Þ! ð5Þ

It is therefore desirable to increase jSA \ SBj relative to jSAj and jSBj
(i.e., increase the percent overlap), which translates into repeatabil-
ity in interest point detection (see Section 6.2.1). There is a trade-off
in the value of f, where a lower value yields more matches and im-
proved speed, but a higher value reduces the occurrence of false
positives; generally, a relatively low value such as f ¼ 4 is adequate.

4.6. Grouping

In order to allow all node pairs adjacent in CV to attempt pair-
wise pose refinement without the need for exhaustive point pack
matching, we introduce a grouping scheme wherein nodes are
merged into ever-larger groups within the same coordinate sys-
tem, albeit with only coarse estimates. Through pose composition
on CG, any node in a group can determine its coarse pose with re-
spect to any other node.

Each node is aware of its current group leader and the set of
nodes comprising its group. Within a group (Section 3.1), each
node has a coarse pose estimate relative to the group leader, called
its group coarse pose estimate, and denoted CA for a node A. Relative
coarse pose estimates (e.g. CAB for node A relative to node B) can be
computed from these, either directly or through one or more com-
positions. Initially, each node begins in a singleton group, of which
it is the leader, with its group coarse pose estimate initialized to PI .

A merge is initiated when two nodes have detected a certain
minimum number tm of consistent matches with each other. Con-
sistency is enforced via a threshold tc specifying the minimum
Euclidean distance between the pose estimates’ mappings of a gi-
ven point (such as the centroid lS of the computing node’s point
set). Once a node has stored at least tm matches with a particular
other node, each time a new match is detected for that node, an
average coarse pose estimate is computed for every combination
Mi of matches containing the new match, and checked for
consistency:

kCmðlSÞ � CavgðlSÞk 6 tc; 8 m 2 Mi ð6Þ

If a consistent average is found, it is considered a reliable relative
coarse pose estimate, and is forwarded to the source nodes’ group
leaders and composed as necessary to merge the nodes’ respective
groups (see Fig. 1).

Fig. 2 illustrates a typical group merge. Node D, of group GA, and
node G, of group GF , find a relative coarse pose estimate through
point pack matching, and initiate a merge. The nodes in group GA

do not modify their group coarse pose information, while those
formerly of group GF now honor A as their group leader and modify
their pose information accordingly. Node G’s new group coarse
pose estimate ðC0GÞ is the composition of its estimated pose relative
to node D with node D’s group coarse pose estimate:

Fig. 1. Vision graph.
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C 0G ¼ CGD � CD ð7Þ

The new group coarse pose estimates for the merging group’s leader
ðC0FÞ and any other nodes in the merging group (in this case, C0H) can
similarly be calculated as compositions of known pose estimates:

C 0F ¼ C�1
G � ðCGD � CDÞ ð8Þ

C 0H ¼ CH � ðC�1
G � ðCGD � CDÞÞ ð9Þ

Since merging consists of composition operations, it is a transitive
operation which can occur based on matches (and the resultant rel-
ative coarse pose estimates) between any pair of nodes in different
groups. Fig. 2 illustrates this by showing the actual history of
merges leading to the groups as arrows between the node pairs;
in reality, of course, every node in the group has a direct pose esti-
mate to the leader (group coarse pose estimate).

4.7. Pairwise pose refinement

Once a given pair of nodes belong to the same group, those
nodes can use their coarse relative pose estimate, computed by
composition on the walk between them in CG, as a starting point
for pose refinement. This is achieved by applying a fine registration
algorithm (e.g. TrICP [30], see Section 6.3.1) to a large number of
points initialized into coarse alignment.

As shown in Fig. 3, the actual point sets used for fine registra-
tion are selected, at each node, as those falling within the intersec-
tion of the two nodes’ fields of view, as approximated by a cone of a
certain angle and length extending along the positive z-axis of each
node’s coordinate system (via the coarse pose estimate). If there
are fewer than a specified minimum number of points, which in-
cludes the case where there is no intersection at all, the nodes do
not attempt pose refinement.

4.8. Indirect pose estimation

If a node B is reachable from a node A in CC ; PAB may be esti-
mated as the composition of the poses represented by the edges
in the shortest walk from A to B.

A practical distributed implementation would involve each
node having a copy of the current CC . A node attempting to find
a pose estimate would compute the shortest path to the destina-
tion node via Dijkstra’s algorithm [31], yielding an approximation
of the total composition of pose errors. It would then request the

appropriate pairwise pose estimates from each node in the se-
quence, and compose them to obtain an indirect pose estimate,
caching the result for future access.

5. Calibration algorithm

Our calibration method is embodied by a completely distrib-
uted and asynchronous event-based algorithm. It is split into ten
different processes at each node, six for coarse grouping and four
for pairwise pose refinement. The processes execute within the
context of their respective nodes’ data spaces. Calibration is com-
plete at a node when all ten processes at that node have
terminated.

There are four necessary parameters to the algorithm itself: the
point pack size f, the similarity threshold td, the match threshold
tm, and the consistency threshold tc. Certain other parameters are
also required depending on the implementation, notably the coarse
and fine registration error thresholds tec and tef . The values of these
parameters are, of course, common to all nodes.

The point pack selection process (Fig. 4) periodically – on an
interval determined by practical limitations of the devices and net-
work – selects a point pack of f points from the point set, computes
its descriptor, and sends it to the destination node according to the
binning function.

The point pack matching process (Fig. 5) maintains a database of
received point packs. Each time a new point pack is received, it is
compared to all previous point packs meeting the similarity condi-
tion via the coarse registration algorithm. For each matching point
pack (where registration error e < tec), the match result is sent to
one of the source nodes based on an unbiased, deterministic selec-
tion process.

The match processing process (Fig. 6) maintains an array of
matches to each other node, to which incoming matches are added
(provided that the other node is not already in this node’s group). If

Fig. 2. Group merging.

Fig. 3. Field of view cone approximation.

Fig. 4. Point pack selection process.

Fig. 5. Point pack matching process.

Fig. 6. Match processing process.
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there are at least tm matches, an average pose transformation is
computed, and each match is checked for consistency by ensuring
the Euclidean distance of a point projected through both poses is
no more than tc . If successful, a message is sent to the group merge
initiator process of this node’s group leader.

The group merge initiator process (Fig. 7) initiates a merge with
the other node in a merge message by messaging its group merge
responder process. These processes employ a merge lock to prevent
other asynchronous merges from occurring simultaneously, which
would otherwise put the group in an indeterminate state. When it
receives acknowledgment, it sends a group update message to all
nodes in the group, updating them to the new group leader and
composition as well as their new group coarse pose estimates.

The group merge responder process (Fig. 8) responds to a merge
message with an acknowledgment. It then sends a group update
message to all nodes in the group, updating only their group
composition.

The group update process (Fig. 9) simply awaits group update
messages and applies them to local group information in the prop-
er order.

The pose refinement initiator process (Fig. 10) activates whenever
the local group information is updated. For each new node in the
group, it performs an unbiased, deterministic selection, and sends
an initiation message containing its group coarse pose estimate to
each selected node.

The pose refinement responder process (Fig. 11) uses the group
coarse pose estimate of the initiating node to select a subset of can-
didate points from its point set, based on a cone approximation of
the node’s field of view. If there are at least 3 points in the subset, it
sends them back to the initiating node for fine registration.

The fine registration process (Fig. 12) attempts to compute an
accurate relative pose estimate with the responding node via fine
registration of its point set with the responder’s point subset. If
the registration error e < tef , the result is stored and an update
(containing the inverse of the pose) is sent to the responding node.

The pose update process (Fig. 13) simply awaits pose update
messages and stores the results.

6. Implementation

6.1. Apparatus

The physical stereo smart camera ‘‘nodes” in our experimental
implementation are pairs of 1.4-megapixel CCD cameras, mounted
in a short-baseline stereo configuration and connected to a PC via
a IEEE-1394 (Firewire) interface. These cameras are calibrated for
stereo vision using Bouguet’s method [33] through its implementa-
tion in the OpenCV computer vision library. The PC to which any gi-
ven pair is attached performs local smart camera functionality as
well as its processes in the distributed calibration algorithm. The
network is a pre-arranged set of TCP/IP hosts representing the PCs.

6.2. Local point detection

Detection of 3D interest points at each node, while not actually
part of the calibration algorithm itself, is a very important compo-

Fig. 7. Group merge initiator process.

Fig. 8. Group merge responder process.

Fig. 9. Group update process.

Fig. 10. Pose refinement initiator process.

Fig. 11. Pose refinement responder process.

Fig. 12. Fine registration process.

Fig. 13. Pose update process.
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nent of the overall process. In order to achieve the goal of calibration
in a completely automatic fashion, we have implemented software
which detects and triangulates a set of 3D interest points from a ste-
reo pair of images, to be run at each node. Section 6.2.1 expands on
the actual process and its impact on our calibration method.

The software itself is implemented in C, using the open-source
OpenCV computer vision library.

6.2.1. Interest point detection
The algorithm described in this work relies heavily on stable

(repeatable) interest point detection invariant to 3D Euclidean
transformations in the viewpoint, as the percent overlap (Eq. (1))
between nodes’ point sets must be significant to achieve good re-
sults. Most current methods are scale- and affine-invariant [23]
and thus do not achieve this directly.

Our current implementation detects Harris corners [24] (the Shi
and Tomasi [25] variant; in previous experiments we used FAST
[26,27]) in each image of the stereo pair, then uses epipolar-con-
strained ZNCC (zero-normalized cross-correlation) to match them,
and finally employs epipolar geometry to triangulate their 3D posi-
tions [22]. We employ some thresholding on the 2D interest points
as well as the matching function to limit the results to a relatively
small number (on the order of 30–80) of 3D interest points.

This scheme unfortunately does not yield the necessary repeat-
ability for calibration against an arbitrary scene. We therefore cur-
rently use one or more calibration targets, which are simply
objects with strong, easily detected interest points placed within
the visible scene.

6.3. PyDSSCC

We provide a full implementation of the algorithm itself as a
Python module, called PyDSSCC (Python Distributed Smart Stereo
Camera Calibrator). It implements each of the ten processes de-
scribed in Section 5 as a thread, and uses thread-safe message
queues for input and output messages.

PyDSSCC is free software licensed under the GNU General Public
License and may be obtained online.

6.3.1. Registration
PyDSSCC also includes implementations of the necessary regis-

tration algorithms. For coarse registration, a fully-contained DAR-
CES [29] implementation is employed, as the point packs in this
stage consist of small numbers of points and must match com-
pletely. For fine registration, an implementation of the Trimmed
Iterative Closest Point algorithm [30] is used, which works well
for the varying degrees of point overlap one expects to obtain (as
discussed in Section 6.2.1).

7. Experimental results

7.1. Performance metrics

We have selected three general performance metrics which
may quantify the usefulness of any distributed smart camera cali-
bration method. These are fairly straightforward when used for de-
sign, as our interpretation of each is directly related to some
relevant characteristic of the calibrated 3D DSC network. Quantita-
tive comparisons with other algorithms prove more difficult, as the
interpretations of the metrics vary somewhat depending on the
fundamental nature of the algorithm.

7.1.1. Convergence
Convergence is the measure of the algorithm’s ability to bring

nodes into a common reference frame and its time performance

in doing so. For our purposes, there are actually two levels to
consider:

1. The ability of coarse grouping to merge into a minimum num-
ber of groups.

2. The ability of pairwise pose refinement to establish a maximum
number of pairwise estimates.

Calibration is considered successful in terms of convergence
when CG and CC are connected.

7.1.2. Accuracy
Accuracy is the measure of the error in the algorithm’s resulting

pose estimates. With a direct pairwise pose estimate, the accuracy
is simply the inverse of the error in the estimate. For any pair of
nodes mutually reachable in CC , then, the accuracy is approxi-
mately the inverse of the total error (weight) along the shortest
path.

The global average of error accumulated between two arbitrary
nodes will generally increase with the size of the network, and is
also subject to various other topological influences. A more useful
metric is the local accuracy of 3D reconstructions up to a certain
distance in terms of field of view (i.e., walk length in CV ). We define
the n-hop error at a node A as follows:

EnðAÞ ¼
X

X

EðPA; PXÞ
jNnðAÞj

; 8 X 2 NnðAÞ ð10Þ

where NnðAÞ is the set of all nodes within a walk of length n or
shorter of node A in a qualitative estimation of CV . This is computed
for all nodes in N and averaged to obtain the overall error.

The mean error in a pose estimate can be determined by aver-
aging the Euclidean distance between a number of points with
ground-truth correspondence, detected and triangulated at the
nodes separately from those used for calibration.

7.1.3. Scalability
Scalability is the measure of the effect on the algorithm’s perfor-

mance of the number of nodes in the network. The three primary re-
sources to consider are node-local computing resources (i.e., CPU
and memory), node-local data storage, and network bandwidth.

In order to properly evaluate scalability, it is necessary to exam-
ine individual factors arising from the algorithm itself. The most
significant of these can be summarized in terms of the number of
nodes in the network jNj as follows:

� Point pack dissemination requires bandwidth resources in jNj
per node.
� Point pack matching requires computing and storage resources

in jNj.

This assumes that each node maintains a more or less constant
number of pairwise edges in CV regardless of jNj, as would be the
case with most applications. In cases where this assumption does
not hold, it is necessary to add a third factor:

� Pairwise pose refinement computation requires computing
resources in jNj.

Scalability in all three resources can be quantized experimen-
tally in terms of the above factors.

7.2. Manual point set

In order to test the capabilities of the calibration algorithm
and tune its parameters under controlled conditions, the first
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experiment series is designed to operate on manually selected
points with full correspondences across all four nodes. The primary
purpose of this experiment type, once suitable parameters are
found, is to test the effects of different point set sizes and overlap
characteristics on convergence and accuracy.

7.2.1. Procedure
A total of 22 point subsets are extracted from the data, and each

is tested using the distributed calibration software, with all four
nodes running locally on the same workstation. This procedure is
repeated twice for each subset, and the average results for conver-
gence time and mean error are calculated and recorded.

7.2.2. Results
Fig. 14 shows the trends in the results from the manual point

set experiments, within the ranges where calibration yielded rea-
sonable results. As n increases, the accuracy increases as there
are more points for fine registration. However, convergence time
also increases because more point packs must be tested for match-
ing. As % O decreases, convergence time increases and accuracy
decreases.

7.3. Automatic point set

Having established some criteria for reasonably timely conver-
gence in the manual point set experiments, the next step is to test

real automatic calibration of the network. The purpose of these
experiments is to test the convergence and accuracy performance
of the algorithm in real conditions.

7.3.1. Procedure
Four instances of the software stack are run on the PCs to which

four physical stereo camera rigs are connected. Convergence time
and the final CC are recorded. A ground truth point set is manually
selected for each camera rig, and the mean error is calculated and
recorded.

7.3.2. Results
The mean error and convergence time of a typical experiment

from this series is shown below. Fig. 15 shows the final CC ,
Fig. 16 shows the physical deployment of the nodes for the exper-
iment, and Fig. 17 shows the visualization of the resultant pose
estimates (which can be seen to match the configuration in
Fig. 16).

� Mean error: 2.7666 mm
� Convergence time: 159 s

We note that actual convergence time depends heavily on a
number of system-specific details, so these results are presented
here to demonstrate feasibility and for internal comparison.

7.4. Virtual point set

Since only four physical camera rigs are available, testing scala-
bility to larger networks is impossible in an automatic experiment
and difficult to control using the manual methods. Instead, con-
trolled virtual point sets are supplied to the same calibration algo-
rithm implementation to test the scalability metric.

7.4.1. Procedure
Point sets are generated for 5, 10, 15, 20, and 25 nodes. The total

outgoing bandwidth in kilobytes, final size of the matching data-
base in point packs, and total number of coarse and fine registra-
tion executions are recorded.

Fig. 16. Camera deployment for automatic experiment.

Fig. 15. Calibration graph for automatic experiment.

1

1

Fig. 14. Manual experiment results.
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7.4.2. Results
As expected, total bandwidth usage per node increases approx-

imately linearly in relation to the number of nodes in the network
(Fig. 18). This affects different networks in different ways. In a net-
work where the physical medium is shared by all nodes – the
worst-case scenario – the total network bandwidth usage is the
relevant factor. In that case, the bandwidth usage increases non-
linearly, potentially at up to jNj3. However, many routing methods
used in sensor networks are much more efficient and therefore
mitigate this effect.

The number of point packs stored at each node increases
approximately linearly in relation to the number of nodes
(Fig. 19). Point packs are very small data (a series of f 3-tuples,
an identifier, and a geometric descriptor value), but when scaling
to extremely large networks it must be ensured that adequate stor-
age is provided at each node for these point packs.

The number of coarse registration operations performed at each
node increases approximately linearly in relation to the number of
nodes (Fig. 20); as expected, this is proportional to the number of
point packs stored. If processing throughput is the limiting factor,
this increase will cause the convergence time to increase linearly
with the number of nodes.

Since, in this network, the number of vision graph edges per
node does not generally increase as its total number of nodes in-
creases, the number of fine registrations per node is approximately
constant.

8. Conclusions

A feature-based calibration method for distributed smart stereo
camera networks has been developed which converges well, pro-
vides accurate pairwise orientation, and scales well with network
size within the scope of our investigation. This provides a base
upon which to build a full 3D visual sensor network providing
primitive data-centric queries, upon which in turn a variety of
high-level applications can be developed. We have provided both
a general theoretical development (Section 4), and a description
of an asynchronous distributed algorithm (Section 5) with imple-
mentation (Section 6).

Fig. 19. Node-local storage in jNj (average and maximum).

Fig. 18. Bandwidth usage in jNj (average and maximum).

Fig. 17. Pose visualization for automatic experiment.
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Due to our implementation’s reliance on the repeatability of lo-
cal interest point detection, which has been shown to be poor over
large general Euclidean transformations of the viewpoint [23], it is
currently necessary to control the scene somewhat (e.g. using cal-
ibration targets) to ensure convergence. However, as this is a lim-
itation of interest point detection and is not inherent to our
algorithm, direct substitution of feature detection methods may
easily improve this in future implementations.

Appendix A. Derivation of point pack matching probability (Eq.
(5))

First, the individual probabilities that FA and FB will be within
the set of shared points SA \ SB are found. Let PðQÞ ¼ PðFA # SA\
SBÞ and PðRÞ ¼ PðFB # SA \ SBÞ, and let Cðn; kÞ represent the binomial
coefficient, indicating the number of possible non-repeating com-
binations of size k chosen from a set of size n.

PðQÞ ¼ CðjSA \ SBj; f Þ
CðjSAj; f Þ

ð11Þ

PðRÞ ¼ CðjSA \ SBj; f Þ
CðjSBj; f Þ

ð12Þ

PðQ \ RÞ ¼ PðQÞPðRÞ

¼ CðjSA \ SBj; f Þ2

CðjSAj; f ÞCðjSBj; f Þ
ð13Þ

Assuming that conditions Q and R are satisfied (that is, all points in
packs FA and FB are shared in SA \ SB), for a given FA, only one com-
bination FB will match it.

PðFA � FBjQ \ RÞ ¼ 1
CðjSA \ SBj; f Þ

ð14Þ

From Eqs. 13 and 14, PðFA � FBÞ can be calculated as

PðFA � FBÞ ¼ PðFA � FBjQ \ RÞPðQ \ RÞ

¼ 1
CðjSA \ SBj; f Þ

� �
CðjSA \ SBj; f Þ2

CðjSAj; f ÞCðjSBj; f Þ

" #

¼ CðjSA \ SBj; f Þ
CðjSAj; f ÞCðjSBj; f Þ

¼ jSA \ SBj!f !ðjSAj � f Þ!ðjSBj � f Þ!
jSAj!jSBj!ðjSA \ SBj � f Þ! ð15Þ
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