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On-line Scheduling Method of manufacturing system based on VS
algorithm for reference pattern

Jesús Trujillo and Clemente Cárdenas and Zbigniew J. Pasek and Enrique Baeyens

Abstract— In this paper, a Scheduling method is developed
to provide planning for Manufacturing plants with multiple
coordinating cells. The controls for reconfigurable manufac-
turing systems have to be capable not only of identifying
exceptions on-line, but also simultaneously developing on-line
strategies for unpredictable customer orders or inaccurate
estimate of processing times. The approach exploits a com-
plementary algorithm for (VS) reference pattern and Virtual
Supervisor (VS), which has access to all system information
during program execution and thus can readily monitor the
overall system performance. The goal is to minimize expected
part tardiness and earliness cost. A solution methodology
based on a combined Lagrangian relaxation, VS-Patterns,
Maxwell equations and temporal difference is developed to
reduce the computation requirements for large problems.
Sequences pattern shows that near optimal schedules can be
obtained a dual solution for on-line implementation.

I. I NTRODUCTION

Many manufacturing systems are organized in cells, and
product flows across cells for processing. These cells require
be reconfigurated such as a reconfigurable manufacturing
system (RMS), scheduling decisions and exception handling
polices become more complex since multiple reconfigura-
tion strategies have to be considered. The reconfigurability
feature turns out to be a new technological factor enabling
novel strategies for handling out-of-order events of the pro-
duction process (machine breakdowns, job priority changes,
unexpected job arrivals or cancellations, etc.) [7], [1]. This
paper presents a new case based similarity assessment
approach which addresses these problems.

II. PROBLEM FORMULATION

The generic job-shop problem is extremely complex [1],
and a complete solution algorithm for solving it does not
exist. The problem involvesN discrete time units, ranging
from 0 to N − 1, R machine types andJ parts to be
processed. Let the indexesr and s denote the type of
machine. The available number ofr-type machines(1 ≤
r ≤ R) at timen is given and denoted byηnr. The number
of r-type machines that could be substituted bys-type
machines is denoted byηnrs. Partj (1 ≤ j ≤ J) has arrival
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time Γj , due dateDj , and priority (weight)Wj . In RMS
some machines can change their configuration [3]. LetP
denote the number of redundant lines. The available number
of p-type (1 ≤ p ≤ P ) redundant lines at timen is given
and denoted byLnp. Processing partj requires a set ofIj

operations for completion without assembly requirements.
Let {j, i} denotes operationi (1 ≤ i ≤ I) on partj. The
first operation on partj, {j, 1}, can only be started after the
arrival of an order or when the raw materials are available.
Operation{j, i} has to be performed on a machine type r for
a specified processing timetjir and the operation may start
only after operation immdediately it has been completed.
For some parts, the arrival timeΓj , processing timetjir , due
dateDj, and priorityWj , are not exactly known in advance.
These parameters are modelled as independent random
variables with known discrete probability distributions.The
machine availability is assumed to be deterministic. The
objective is to maximize on-time delivery of parts and to
reduce work in process (WIP) inventory. The problem is
characterized as follows with a list of symbols provided in
Table I for easy reference.

1) Arrival time constraints:the first operation of partn
cannot be started until the arrival of an order or the
appropriate raw material is available, i.e.,

Γj ≤ Bj1, j = 1, · · · , J (1)

whereBj1 is the beginning time of(j, 1).
2) Operation precedence constraints:The operation

precedence constraints state that operation(i + 1)
of part j cannot be started before the completion of
operationI of part j plus a deadtimeOji,

kji + Oji ≤ Bj,i+1,

j = 1, · · · , J, i = 1, · · · , Ij−1 (2)

wherekji is the completion time of(j, i), andBj,i+1

is the beginning time of(j, i + 1).
3) Processing time requirements:An operationi of part

j must be assigned the required amount of processing
time tjir , i.e.,

kji = Bji + Tji + tjir ≤ Bj,i+1,

j = 1, · · · , J, i = 1, · · · , Ij (3)

4) Replacement machine requirements:For any r-type
machine substitution by ans-type machine, the com-
pletion time of partkji plus deadtimeOji is less that
beginning timeBj1 plus arrival timeΓji. Substitution



TABLE I

SYMBOLS FOR JOB-SHOP PROBLEM

Symbol Description
n Time index
kj Completion time
N Total scheduling time
δ Dual cost
r Machine type index

Dj Due date of partj
R Set of machine types
Ej Earliness partj
Γj Arrival time of partj
Tj Tardiness of partj
tj Processing time of partj
Bj Initial time of part j
Oj Time out of partj
s Substitute machine

ηnr Number ofr-type machines
ηnrs Number ofr-type machines that

can be substituted bys-type machines
P Redundant line
ξj Cumulative cost
Wj Weight of tardiness
̟j Weight of earliness
πj Lagrangian Multiplier

Lnp Available number of
p-type redundant lines

|x| Planning function
Cj The samples from a known class set

p(y = cj) The probabilities
ρ(x/cj , wj) The density function

wj The unknown values are parameters forc
p∗(ci) The sample fraction ofci

m∗

i The measures of samples
C∗

i
The covariance matrix of samples

is only carried out when priority is maximal.

If Wji ≥ Wmax, and

kji + Oji ≤ Bj,i+1 + Γji,

j = 1, · · · , J, i = 1, · · · , Ij−1 (4)

5) Machine capacity constrains:The number of opera-
tions assigned to anr-type machine at timen should
be less than or equal toηnrs (the number of machines
available at that time),

∑

ji

θjinrs ≤ ηnrs, n = 0, · · · , N − 1,

r ∈ R (5)

where θjinrs is a boolean variable. It equals one if
task {j, i} is assigned to anr-type machine at time
n, and zero otherwise. For random arrival processing
times, handling machine capacity constrains (4) for
all possible instances of random events is very diffi-
cult because of complexity. The feasible model is a
schedule satisfying (1)-(6)

E





∑

ji

θjinrs



 ≤ ηnrs ≤ Lnp,

on redundant line case,

n = 0, · · · , N − 1, r ∈ R, s ∈ S (6)

6) Objective function: The objective function is a
weighted sum of penalties for parts tardinessTj and
raw materials earlinessEj . Therefore, the following
optimization problem is formulated

min
{Bji,rji}

I,

whereI = E





J
∑

j=1

(WjT
2
j + ̟iE

2
i )



 (7)

subject to constraints (1)-(6)
In the next section, a heuristic scheduling list is used to dy-
namically construct the schedule based on the optimization
solution and the realization of random actions (events).

III. SOLUTION APPROACH

A. Gradient Projection Method

This numeric method for obtaining the minimum keep
under to equality restrictions can be applied after introduc-
ing Lagrange multipliers to hold expected machine capacity
constraints (6). The following problem is obtained

min
{Bji,rji}

L, where

L = E





∑

j

(WjT
2
j + ̟jE

2
j )



 +

∑

nrs

πnrs







E





∑

ji

θjinrs



 − θnrs







(8)

By using the conditions imposed on capacity constraints
in (5) and regrouping relevant terms, the problem can be
decomposed into the following part-level subproblems:

min
{Bji,rji}

Lj , where

Lj = E



WjT
2
j + ̟jE

2
j +

Ij
∑

i=1

kji
∑

n=Bji

πnrs



 ,

j = 1, · · · , J (9)

subject to (1)-(6). Let denote the resulting minimal subprob-
lem cost. The dual problem is then obtained as,

max
{πnrs}

δ, where

δ =
∑

j

Lj −
∑

nrs

πnrsηnrs (10)

B. Temporal-Difference Method (TD)

TD method can learn directly from patterns (reference
set structures) without a model of the environment [5].
This method updates estimates partially based on other
learned references, without waiting for the final outcome.
In this paper, backward stochastic dynamic programming is
used on part subproblems (9) to manage uncertainties. In
this procedure, each TD/DP (dynamic programming) stage
corresponds to an operation. At each stage, the positions



are the possible operation beginning times. The subgradient
componentE[

∑

θjinrs − ηnrs] which is required to update
the multipliers, is calculated based on subproblem results.
Next, the TD-DP procedure is illustrated for the determin-
istic case.

1) TD deterministic case: In this case, all parameters of
part j are deterministic. The gradient-descent proce-
dure was applied, although for effectiveness reasons it
has been parametrically combined with conventional
TD methods. The algorithm starts at the last stage
having the following terminal cost:

ςji(Bji, rji, sji) =

WjT
2
j +

kjIj
∑

n=BjIj

πnrjIj
sjIj

(11)

The cumulative cost when moving backward is then
obtained recursively as follows,

ςji(Bji, rji, sji) =

min
{Bj,i+1,rj,i+1,sj,i+1}

̟jE
2
j Aji +

kjIj
∑

n=BjIj

πnrjIj
sjIj

+

ςji+1(Bj,i+1, rj,i+1, sj,i+1) (12)

where Aji is an integer variable that equals one if
operation{j, i} is the first operation of partj, and
zero otherwise. The optimalL is obtained as the
minimal cumulative cost at the first stage, subject
to the arrival time constraint. Finally the optimal
beginning times and the corresponding machine types
can be obtained by tracing the stages forward.
The TD algorithm for the uncertain case is similar
to the deterministic case. The terminal cost for the
stochastic case is given by (13), where the expectation
is taken with respect to all possible processing times
of the last operation and weights.

2) Solving subproblems with uncertain processing times:
When the processing timestjnr are random and other
parameters of partj are deterministic, the terminal
cost is the expected value of all these possible costs,

ςji(Bji, rji, sji) =

E



WjT
2
j +

kjIj
∑

n=BjIj

πnrjIj
sjIj



 (13)

The associated cost is obtained as in (11). Thus, the
cumulative costs of the positions are then the expected
value of all the above costs. The intermediate position
shows level corresponds to diagram VS, in (1). The
level 5 in y2 is refereed at position 0, level 4 at
position 1, similar way still level 0 that is corre-
sponding at position 5. Levels are representing to

the control actions and these are produced between
positions shown aty1 axis.

ςji(Bji, rji, sji) =

E



̟jE
2
j Aji +

kjIj
∑

n=BjIj

πnrjIj
sjIj

+ ς∗ji+1





(14)

where

ς∗ji+1 =

min
{Bj,i+1,rj,i+1,sj,i+1}

ςji+1(Bj,i+1, rj,i+1, sj,i+1)

(15)

This procedure continues until the cumulative costs
for all the positions at the first stage are obtained.

Fig. 1. Dynamic programming TD. Regular transitions between nodes

3) Obtaining subgradients: The subgradient,

E
[

[
∑

ji θjirns] − ηnrs

]

The multiplicators have to be updated in short peri-
ods, where quantifiable changes are produced under
known periods. An important step in obtaining the
subgradient is calculation of the expected machine
utilization E[θjinrs] for stagei of piecej. If it can
be obtained, every intermediate positions are located
in optimal way TD for piecej, and the probabilities
that they are chosen as beginning times are deter-
mined. An intermediate position node, in optimal
way at piecej, the machine utilizationθjinrs can
be calculated for the optimal machine type and each
processing possible time. The machine utilization
E[θjinrs] associated with the node, then it will be the
probability, where this node will be the expected value
of all theseθjinrs multiplied by probability when the
intermediate position is chosen.
Finally, expected machine utilizationE[θjinrs] for
this stagej is the addition of machine utilization
E[θjinrs] for all these intermediate positions. This
procedure is illustrated as follows: LetP (1) show
the all intermediates positions set on the optimal
path corresponding to stage 1. For any intermediate
position p(1) ∈ P (1), given TΓ(p1) denote the all



possible arriving time set having position(p1), and
thus optimal beginning time.
The probabilityρ(p1), where intermediate position be
chosen as beginning time is the sum of probabilities
ρΓ associated with all these possible arrival times, as
follows:

ρp1
=

∑

Γ∈TΓ(p1)

ρΓ, p1 ∈ P (1) (16)

When moving from stagei to stagei + 1(1 ≤ i ≤
Ij − 1), let P (i + 1) denotes the set of all interme-
diate positions on the optimal path(i + 1). For any
intermediate positionρi+1 ∈ P (i + 1), let PT (ρi+1)
show all pairs ofρi ∈ Pi and possible processing
times t having ρi+1 as the optimal beginning time
for operationi + 1. The probabilityρpi+1

, where the
intermediate positionpi+1 is chosen as beginning
time from all probabilities sumρpi+1

ρt associated
with these pairs(pi, t), is as follows:

ρpi+1
=

∑

ρpi
ρt, pi+1 ∈ P (i + 1) (17)

Finally the subgradient is calculated by:

E





∑

ij

θijnrs



− ηnrs =
∑

ij

E[θijnrs]− ηnrs (18)

The calculation complexity E[
∑

i θijnrs] es
O(C

∑

i |Tjins|) because intermediate position
numbers at a stage is the sumC. When this method
is used to calculate subgradient for deterministic
case. The complexity is equal to the deterministic
method [1].

C. Overload problem

All terms are taking inL and it binds to overload
resource, this is used such as leader guide of sequences
to next overload problems:

min
{fnr}

, whereFnr = (W f
r .f2

r n−πrn.frn), frn ≥ 0. (19)

The solution of these subproblems is given by expression:

fnrs = (
πnrs/(2.W f

r )

m
).m (20)

Wherem is smallest unit to be adjustedfnrs and | x | is
the planning function.

D. The Dual Problem

The dual cost function in (10) is concave, piece-wise
linear, and consists of many phases [4]. Each phase cor-
responds to a possible scheduling policy of the problem.
The number of possible scheduling policies significantly
increases with the problem size. The reasons are the com-
binatorial nature of discrete optimization and the presence
of uncertain factors.

A conjugate gradient method is used to iteratively solve
the high level dual problem (10), but using subgradients
instead of gradients. Through a given set of multipliers,
subproblems are solved to obtain the optimal subproblem
solutions, and multipliers are then updated based on de-
grees of constraint violation using the conjugate subgradient
method. This iterative procedure is repeated until some
stopping criteria are met. Computation of the objective
function (7) for a single dual solution involves simulation
and is very time consuming. The idea of optimization is
employed to perform short simulation runs on selected
candidate dual solutions to determine the ranking of their
expected costs. A winner (substituted) of the short tryout is
then the dual solution selected to generate pattern schedules,
and feasible simulation runs are then accomplished to obtain
performance statistics. Figure 2 shows a block diagram of
the algorithm.

E. Building Pattern Schedules

In our work several heuristic methods were developed
in view of the existence of resource overload. The method
extends the approach of [10] by adding overload problem
solution to the original resource capacities. These methods
are carried out alternatively during the multiplier update
iterations, and the schedule with the lowest cost is recorded
as a pattern schedule. The relative difference between this
pattern costi and the maximum dual value D is the relative
gap (J − D)/Dx100%, and it quantifies the quality of
the schedule obtained. The scheduling must be usually
performed periodically at the beginning of a shift based on
a snapshotof the factory status. Scheduling update might
a be needed after the arrival of major orders or breakdown
of critical resources. Since the status of the factory may
not change drastically, rescheduling can then be initial-
ized by using multipliers patterns (obtained from previous
schedules). This initialization provides a better starting point
for the optimization process, and significantly reduces the
computational requirements as will be illustrated in next
section.

IV. SYSTEM OPERATION MONITORING VIA
VIRTUAL SUPERVISOR

A. Monitoring methods

VS through setup pattern [6] and inductive Maxwel
method [7] is capable of monitoring the manufacturing
process at the plant, machine, and device level. It updates
the equivalent model at each clock interval. Thus, the
manufacturing plant is checked on line against the model
generated in a virtual space, where it is also compared with
the reference setup pattern sequence.

B. Real time processing

The process works as follows: each machine, process and
parts are assigned a level of resistance using coefficients
and previously described conditions, see the details in [7].
The potential induced by each machine depends on these



Fig. 2. Overall system for Job-Shop Scheduling via VS

coefficients and conditions,e.g. for a machine on a path
of critical flow, since a critical path has high priority, the
induced potential will be higher.

Rec =

∑

k

∑

j vkj

In
((1 + ς)(1 + ζ)(1 + x))e−(x+1)2

k = 1, 2, · · · , n, j = 1, 2, · · · , 2n (21)

The coefficientς reflects the path criticality and its value
depends on priority level. The inductor is a manufactured
workpiece affected by other coefficients:

v0 =

∑

k

∑

j vkj

n
(1 + Wj)(1 + ̟j)(1 + sj)e

−(x+1)

k = 1, 2, · · · , n j = 1, 2, · · · , 2n (22)

whereWj and ̟j are the priority or weight of tardiness
and earliness penalty for partj, respectively, andsj is the
index of the possible substituted machines.

C. On Estimating maximum similarity criteria

Our similarity approach exploits the case library of pat-
terns that are ready to be used. Such a method is appealing
for a number of reasons. It simplifies knowledge schedules
for similarity criteria, because similarity judgments are
based on experience with adaptation rather than a priori
analysis that may be hard to connect to actual performance
on specific schedules or process sequences. It provides a
finer-grained method for estimating adaptation costs, reflect-
ing knowledge of individual prior problem. It also provide a
simple way to refine similarity criteria as new schedules are
learned. The method begins performing next considerations:

i. It is considered a setX = x1, · · · , xn of n samples
ii. The samples are from a known class set,Cj

iii. The probabilities priorp(y = cj) of pertinence to
a specific class are known,j = 1, · · · , c

iv. The density function forms are a conditional prob-
ability ρ(x/cj , wj) are known,j = 1. · · ·N

v. The just unknown values are parameterswj for c
arrays.

The patterns are obtained selecting a classcj with prob-
ability p(y = cj), and subsequently it is selected ax as
much as probability rulep(x/cj , wj) [2]. The probability
density function for the samples came given as follows:

ρ(x/w) =

c
∑

j=1

ρ(x/cj , wj)p(y = cj) (23)

wherew = (w1, w2, · · · , wc). A density function of this
form is denoted asmixture density. The conditional prob-
ability densityρ(x/cj , wj) previously are the components
density and probabilitiesp(y = cj) are mixture parame-
ters. These parameters can be included between unknown
parameters. The unknown parameters are representing the
unknown schedules.

Let maximum similarity, where it is supposed that there
is a setX = x1, x2, · · · , xn of n no market samples and
the density is considered as mixture Eq. 23. The observed
samples similarity is by definition

p(X/w) =

n
∏

k=1

ρ(xk, w) (24)

The maximum similarity estimatedw∗ is the value of w
that maximizesp(X/w). The main concepts are contained
in [11] and supposing thatp(X/w) is a differential function
in w,

The maximum similarity estimatedw∗ is value w that
maximizesp(X/w). Consideringp(X/w) is a differentiable
function tow [11],

l =

n
∑

k=1

lnρ(xk/w) (25)

and

∇wi
l =

n
∑

k=1

1

ρ(xk/w)
∇wi

[

c
∑

j=1

ρ(xk/cj, wj)p(cj)] (26)

where l represents similarity logarithm and∇wi
l gradi-

ent of l respect towi; by notational simplicity has been
substituted expressionp(y = cj) by p(cj).

Let’s suppose that elementswi y wj are functionally in-
dependent ifi 6= j, and the probability would be introduced
afterward,

p(ci/xk, w) =
ρ(xk/ci, wi)p(cj)

ρ(xk/w)
(27)



with this expression, the logarithm gradient can be writ-
ing as follows:

∇wi
l =

n
∑

k=1

p(ci/xk, w)∇wi
lnρ(xk/ci, wi) (28)

since the gradient must be zero inwi that this maximize
l, the maximum similarity estimatedw∗

i must satisfy the
conditions:

n
∑

k=1

p(ci/xk, w∗)∇wi
lnρ(xk/ci, w

∗
i ) = 0, i = 1, · · · , c

(29)
Back form between the solutions to these equations by

w∗
i where is founded the maximum similarity solution.
The obtained results can be generalized to include the

probabilities priorp(cj) as unknown parameters. In this case
the search of maximum value ofp(X/w) is extended tow
andp(cj) with restrictions,

p(ci) ≥ 0
c

∑

i=l

p(ci) = l i = l, · · · c (30)

Let p∗(ci) and w∗
i the maximum similarity estimations

by P (cj) andwi. If the similarity function is differentiable
and if p∗(ci) 6= 0 for anyi, thenp∗(ci) andw∗

i must satisfy,

p∗(cj) =
1

n

n
∑

k=1

p∗(cj/xk, w∗) (31)

n
∑

k=1

p∗(ci/xk, w∗)∇wi
lnρ(xk/ci, w

∗) = 0 (32)

where

p∗(ci/xk, w∗) =
ρ(xk/ci, w

∗
i )P ∗(ci)

∑c

j=1 ρ(xk/cj, w∗
j )P ∗(cj)

(33)

There are two different case [8] with a normal density.
In the first case is considered that unknown parameters are
the average arrays. In the second case are all parameters,
and the prior probabilitiesp(cj) are unknown. The measures
arraymi and the covariance matrixC〉. In this last case the
maximum similarity estimations can be as follows:

p∗(ci) =
1

n

n
∑

k=1

p∗(ci/xk, w∗) (34)

m∗
i =

∑n

k=1 p∗(ci/xk, w∗)xk
∑n

k=1 p∗(ci/xk, w∗)
(35)

C∗
i =

∑n

k=1 p∗(ci/xk, w∗)(xk − m∗
i )(xk − m∗

i )
t

∑n

k=1 p∗(ci/xk, w∗)
(36)

where

p∗(ci/xk, w∗) =
ρ(xk/ci, w

∗
i )p∗(ci)

∑c

k=1 ρ∗(xk/cj, w∗
j )p∗(ci)

(37)

This expression is really complex, although its main part
is fairly elementary. It can be found also in this second
case an important reference in [9], [11]. In the extreme
casep∗(ci/xk, w∗) take the value one whenxk is of class
ci and zero to another case. The equationp∗(ci) is the
sample fraction ofci, m∗

i is the measures of these samples
and C∗

i is the covariance matrix of samples. On general
form, p∗(ci/xk, w∗) takes values between zero to one and
all samples take any sequence on the estimation.

This method can identify the maximum similarity of
schedule, and taking the pattern, thus the process will be
a feasible and optimized process. Manufacturing system
represents cyclical process that allows their identification
and comparing can be obtained their schedule rapidly. The
schedule can be subdivide by others smaller structures such
as modular blocs. This blocs adequately composed can be
form a feasible and optimized schedule.

D. Learning of new conditions

The induction method combined with the reference pat-
tern contains enough information to deal with the conflict.
The new sequence will have a new order imposed by the
position determined by induction. This way the potential
provides the order and priority magnitudes required by the
controller to drive the control action.vk1 >> vk2 >>
· · · >> vkn, {k1, · · · , kn} ⊆ [

∑

n En,
∑

n Xn,
∑

n Vn]
where (En, Xn, Vn are pattern events, states, and times
respectively) [7], [6], wherekn becomes established by
sequence imposed by the value ofνkn. The exceptionSne is
integrated as a new reference pattern after being optimized
and verifiedSne ⊆

∑

n Hn, where
∑

n Hn is a setup
state-event-time pattern. The relation of pattern references
contains the list of operations, and the process, part and
machine can be obtained from it. Thus, the algorithm can
take the order and identify the exact position required by
VS to simulate on line the scenario for job-shop scheduling.

V. EXAMPLE. INDUCTIVE METHOD

This example is to demonstrate using the value of
resource overload, and to see that low overload can be
achieved by properly selecting the overload penalty co-
efficients. There are eleven cells each one unit of a key
resource. Twelve products each with three operation are to
be scheduled, and the processing is required to be finished
before time unit 60. For all the products, due dates and
weights are 1 and 11 respectively and there is no earliness
or lead time penalty.

There is no optimal schedule if resource overload is
not allowed. By allowing overload, optimal schedules are
generated in less than 60s for different values of overload
penalty coefficientswk. The optimal cost and overload of
the schedules are shown in sequence by patterns VS in
Figure 3. Very large penalty coefficients, which are similar
to the no overload allowed case, result in small overload but
large tardiness. If coefficient are very small , the schedule
is similar to that in MRPmaterial requirement planing



with infinite capacity, resulting in large overload and small
optimal costJ . There are several possible sequence can
achieve optimal schedule. These schedule has a corresponds
pattern plans for each cell. Induction method allows decide
which is the possible interaction with all plans possible.
Better pattern plan dependent of realized sequence. This
form multiplicators could be selecting which pattern family
is optimal and induction method is allowing with of all
pattern is the optimal schedule. In figure Figure 4 show the
machine with maximum priority before the sequence task
be selected.

In this chart a series of operations marked with red line
form a critical path, where the machineM3 breaks down
after operation2 in J2 for half a time unit. (The repair
time for the machine is known in advance). The on-line
supervisor is showing the scenario represented in Fig. 2
Using the proposed method is possible to automatically
recognize what machines produce a conflict and obtain the
priority order of a new scheduling.

A. Interpretation of results

VS can build in advance the estimated situation in a
virtual space, where it recognizes by induction how each
machine is working, and it can preview what the situation
is for a given workpiece arrival at specific machines. The
Gantt charts of the resulting schedules are shown in Fig. 3
with a 15% lower expected cost than that of the conflict
scenario in Fig. 2. The reason can be explained as follows.
In the conflict scenario the delay produced at machine
M3 provokes future delays in the operations where this
machine has part process, affecting toM2, M5, M9 shows
become overloaded. The priority for each process, part, and
what machine could absorb the overload created byM3 in
a new job-shop scheduling is obtained from patterns and
TD algorithm. Thus Fig. 3 shows the tending evolution to
balance the line for overall vs system. Obtaining a real on
line predictive state space, where the controller can get the
information required to perform an exception decision.

VI. CONCLUSIONS AND FUTURE WORKS

A novel methodology that balances modelling accuracy
and solution methodology complexity is presented. Satisfac-
tion of arrival time constraints and operation precedence are
effectively managed. Simulated testing results demonstrate
that the method can be substantially better than those
used today, and near optimal schedules are generated for
problems of practical size. The handling of unpredictable
machine breakdowns is also an important issue, this falls
directly into the current framework. These strategies allow
to observe performance results during simulation and, auto-
matically terminate a simulation when accurate results are
obtained.
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Fig. 3. Sequences patterns for workcell schedule

Fig. 4. The selector of priority select machine m20 with maximum priority
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