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ABSTRACT

A primary concern in the operation of Wireless Sensor Network (WSN) is the issue of

balancing energy consumption and lifetime maximization. This dissertation addresses

the problem of unbalanced energy consumption in WSNs by designing traffic load

balancing geographical routing protocols. In order to provide energy balance; two

decentralized, scalable and stable routing protocols are proposed: Game Theoretic

Energy Balanced (GTEB) routing protocol for WSNs and three dimensional (3D)

Game Theoretic Energy Balance (3D-GTEB) routing protocol for WSNs. GTEB

were designed to fit with WSNs deployed in 2D space, while 3D-GTEB designed to

work with WSNs deployed in 3D terrain.

Both protocols are built based on balancing energy consumption into region level

and node level using different game theory in each level. In the first level, evolutionary

game theory was used to balance the energy consumption in various packet forwarding

sub-regions, while in the second level classical game theory was used to balance the

energy consumption in forwarding sub-region nodes. 3D-GTEB benefits from utilizing

the third coordinate of nodes’ locations to achieve better and accurate routing decision

with low network overhead.

The protocols where evaluated analytically and experimentally under realistic sim-

ulation environment. Thus, the results show not only combining evolutionary and
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classical game theories are applicable to WSNs, but also they achieve significantly

better performance in terms of energy usage, load spreading, and packet delivery

ratio under different network scenarios when compared to the state-of-art protocols.

Moreover, further investigation is made to evaluate the effectiveness of using game

theories by comparing GTEB with three random test protocols. The results demon-

strated that the GTEB and 3D-GTEB are prolonged the network lifetime from 33%

to 85%, and provided better delivery ratio form 26% to 52% as compared with other

three random test protocols and three similar state-of-art routing algorithms.
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Ẋ Replicator dynamics
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Wireless Sensor Networks (WSNs) will be very prevalent technology in the near future

due to their unique characteristics and to their great number of applications. WSNs

consist of a large number of autonomous micro-sensors that are deployed in remote

and inaccessible areas to monitor physical or environmental conditions. Although the

sizes of sensors are very small, they have their own on-board processor, as well as com-

munication, mobilizing, position finding, and storage capabilities. Sensor nodes have

the ability to collect and route data, through one or multi hops, to other nodes, or ex-

ternal base stations. Coordination and cooperation among sensor nodes will provide

essential network information collected from monitored physical phenomena. Base

Station (BS) basically acts as a gateway between sensor network and end user by re-

ceiving the data from sensor nodes and forwarding it to the server hence, it is required

to have more computational, energy, and communication resources than sensor nodes.

Routing data in WSNs very challenging task due to infrastructure-less communi-

cations and frequent topology changes. The main drawbacks of the WSNs are the

limitation of storage capacity, bandwidth, communication range and power resources.
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This chapter presents examples of WSNs applications, challenges in WSNs, problem

statement, and contributions of this work.

1.1.1 Applications of wireless sensor networks (WSNs)

WSN applications can be classified into three categories based on sensing and report-

ing mechanisms [1, 2].

1. Periodic reporting applications: in these applications, the sensor nodes will

sample the collected data periodically, store and transmit collected data to the

base station. This type of scenario is commonly used in monitoring applications

such as automatic irrigation systems [3], habitat surveillance [4], and military

operations [5]. The main advantage of this category is that data generation rate

and traffic volume is predictable.

2. Event driven applications [6–8]: In these applications each sensor has the abil-

ity to sense and evaluate the usefulness of information. If the detected information

is useful the information will be transmitted to the base station for evaluation. The

main property of this type of application is the randomness of event occurrence,

which correlates with the time and place. Therefore, time and packet traffic load

is unpredicted. The surveillance applications, disaster relief applications, intrusion

detection applications, and patients monitoring applications are a few examples of

such event driven applications.

3. Query based applications [9]: In these applications, the sensory data are regu-

larly sampled and stored in senor nodes. The base station sends request messages

to the specific senors to fetch the data directly. The main challenge in this category

is that the data management process due to the limitation of the storage capacity

of the sensors.

The following subsection will present a brief discussion of WSNs challenges.
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1.1.2 Challenges in Wireless Sensor Network (WSNs)

The limitation in WSNs resources make it necessary to design new routing protocols

that differ from regular routing protocols designed for other wireless communication

systems. Some of the limitations in WSNs are as following:

1. Energy restriction: Wireless sensors are powered with a limited power supply

such as batteries and capacitors. These limited energy resources have a direct

impact on the network lifetime [10]. The network lifetime is the duration from

the deployment time until the time when the first sensor runs out of energy. In

unattended and remote environments, replacing or charging batteries is not cost

effective and practical. Hence, good utilization of the limited power resources is

important to prolong the network lifetime.

Geographical Routing Protocols (GRPs) due to their low network overhead can

increase energy utilization and improve network lifetime. In this dissertation, I

focused on energy balance challenge to prolong the network lifetime by evenly

distributing traffic load in the network using GRP.

2. Mobility: Due to the sensor node’s mobility, the topology of the network may

change frequently, which may cause route failure, high collision rate, blockage rout-

ing information, and increase energy consumption [11]. Thus, network mobility

must be addressed in a data propagation protocol design.

3. Network deployment: Network deployment is another challenge in WSNs, spe-

cially when a WSN deployed in remote or inaccessible areas. It is very difficult

or even impossible to determine their location in advance. For example, sensors

that are serving to monitor battlefields or disaster areas are usually randomly

thrown from airplanes over areas of interest and these sensors must be able to

determine their own locations, initiate their sensing, and communicate with their

neighbors [12]. Therefore, any routing protocol design must be able to adapt with

3



random network deployment scenarios and various network densities.

4. Scalability [13]: Due to the increasing number of sensors in a network, the mes-

sages that must be routed to the base station increase. Therefore, data propagation

protocol must be able to scale with changes in a network; such as changes in net-

work density, network connectivity, and/or sensing operations. Decentralized and

localized algorithms, where sensor nodes usually employ, are often used to satisfy

the scalability requirements.

5. Fault tolerance [14]: WSNs are inherently prone to failure due to the low cost

hardware and limitation of the energy supplies. A failure of a sensor node should

not influence the overall functionality of the network. So in such cases, a network

must have the ability to accommodate a new route to the base station. This may

need actively rerouting packets through a more reliable part of the network that

has more resources (available energy).

6. Location dependent contention [15]: The traffic load on a wireless channel

varies with the number of sensor nodes that are present in a given region. The

contention over the usage of a channel will increase with the increase in the number

of sensor nodes. The high contention over the channel causes a large number of

collisions and consequently inefficient utilization of energy and bandwidth. There-

fore, any reliable data propagation protocol must have the property of preventing

or minimizing high channel contention.

7. Security [9, 16, 17]: Normally, the traffic routing in the sensor network is con-

nectionless, consequently making it highly susceptible to security threats. The

shared wireless medium makes the network subject to various attacks such as de-

nial service attacks. Therefore, WSNs require security solutions that fit with their

wireless communication and limited resources.

8. Quality of service [16, 18]: The quality of service challenge varies depend-
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ing on WSNs applications. For example, disaster field monitoring entails reliable

minimum delay delivery of sensory information for ensuring fast response by a

corresponding authority. In contrast, agricultural monitoring and animal-borne

applications require balancing energy consumption in sensor nodes and long net-

work lifetime to minimize maintenance effort and cost.

The main goal of this dissertation is to extend the network lifetime by distributing

traffic load in WSNs. This gaol is achieved by employing a decentralized, scalable and

energy-balanced geographical routing protocol called GTEB and three dimensional

routing protocol called 3D-GTEB. Both routing protocols utilize a combination of

evolutionary and classical game theories.

1.2 Problem Statement

This dissertation provides solution to problems associated with GRPs to achieve

global balanced energy consumption in order to extend the lifetime of network. These

problems are discussed hereunder:

Problem 1. Unbalanced energy consumption: uneven energy dissipation in the Ge-

ographical Routing Protocols (GRPs) can result in premature network failures,

which shorten the lifetime of the network, accelerate network partitioning, and

generate energy hole problem [19–23]. Therefore, utilizing routing protocol for

fair traffic load distribution among wide range of sensors is one of the key meth-

ods to prolong operations of the network.

Problem 2. Unbalanced traffic load and redundant transmission: GRPs forward the

packets toward the destination based on one of the following techniques:

A. Shortest path forwarding (SPF) approach [24–26]: Where, a packet travels

from source to destination through the shortest straight path. That leads to

an overuse of the nodes along this path. These overused nodes deplete their
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energy faster than other nodes, which creates network partitions and failures.

Hence, the traffic load must be spread on large number of sensor nodes to

evenly deplete energy consumption and improve the network lifetime.

B. Region Based Forwarding (RBF) approach [27–29]: A packet is broadcasted

to a set of nodes located in the same region and all sensors transmit the re-

ceived packet toward the destination. That causes redundant transmissions.

These redundant transmissions can increase energy consumption. Therefore,

a new innovative routing protocol is required to improve energy utilization

to prolong the network lifetime.

Problem 3. 3D network deployment [30–32]: sensor networks are deployed in a 3D

space. Utilizing 2D geographical routing protocols for 3D wireless networks

may not provide an accurate solution and in some cases it is not possible such

as Unmanned Aerial Vehicles (UAV) communication. Thus, there is a strong

desire to use 3D GRP to improve accuracy and energy efficiency of the net-

work. Therefore, by including third coordinate of nodes’ position is decreased

the number of dropped packets, while energy efficiency and the lifetime of the

network is increased. For this reason, it is important to consider the third coor-

dinate of nodes’ location in order to avoid route description errors, transmission

redundancies, and high packet miss ratio.

Problem 4. Energy hole problem [22, 33]: Energy hole problem is associated with

GRPs due to over utilization of some nodes over other nodes. For instance, in

case of SPF the nodes that are located along the straight line between source

and destination will deplete their energy sooner than outer sub-regions nodes.

Moreover, nodes near the sink will suffer from high traffic load and deplete

their energy because these nodes send their own data as well as forwarding

other nodes’ data to the base station. This rapid energy depletion of some

nodes generate energy holes problem, which can significantly reduce the life
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span of the network.

In this work, GRPs will be used because they have lower network overhead than

topological routing protocols because they do not require route discovery and route

maintenance. Additionally, decentralized routing algorithms can be implemented

in GRP efficiently where, each node makes its forwarding decision based on its local

information only. These positive attributes of GRPs make them promising candidates

for WSNs. In this dissertation, GRPs are designed to enhance the network lifetime

by using game theory [26,34].

In this dissertation, two novel decentralized, scalable and energy balanced routing

protocols are proposed:

A. Game theoretic energy balanced (GTEB) routing protocols for WSNs. GTEB is

designed and implemented in WSN deployed in 2D space.

B. Three dimensional game theoretic energy balanced (3D-GTEB) for WSNs. 3D-

GTEB is designed and implemented in WSN deployed in 3D space.

The protocol operations are verified via a combination of evolutionary game theory

(EGT) and classical game theory (CGT), an extensive simulation as well as analytical

evaluations which have been conducted to verify their validity.

1.3 Contributions

The primary contributions of this dissertation are:

1. A novel energy balanced geographical routing protocol is proposed and exten-

sively evaluated theoretically and in simulation, which is called: Game Theoretic

Energy Balanced Routing Protocol (GTEB). GTEB protocol was designed based

on a combination of evolutionary game theory (EGT) and classical game theory

(CGT). GTEB was compared to two competing GRPs and to a probabilistic for-

warding protocol. GTEB shows a promising performance compared to other two
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competing protocols in terms of prolonging network lifetime, packet delivery rate,

and energy consumption per packet. Moreover, GTEB is compared to three other

advised geographical routing protocols which are designed to evaluate the reliabil-

ity of GTEB in terms of region forwarding selection and forwarding node selection

techniques.

2. Energy balance is achieved in the region level by balancing the traffic load over a

set of packet forwarding regions around every sender and/or relay node between

the source and destinations. In order to minimize the energy consumption per

region and to delay the network partitioning at the region level, evolutionary game

theory (EGT) was applied to balance the traffic load among these forwarding

regions. Energy balance was achieved, in the node level, by distributing the traffic

load evenly among the nodes in the forwarding region in order to delay network

partitioning at the node level. The classical game theory (CGT) was used to

balance the traffic load among a number of nodes in the forwarding region to

minimizing the energy consumption per node. By combining region level energy

balanced (RLEB) with node level energy balance (NLEB) the ultimate objective

of this work, maximizing network lifetime, was achieved.

3. GTEB which is designed for 2D WSN was extended to 3D-GTEB to provide a

solution to 3D WSN. The network lifetime, packet delivery ratio, and average

energy consumption per packet were further improved by in-cooperating third

coordinate of node locations.

4. The energy hole problem was solved by reflecting dynamic changes in the network

by detecting the dynamic changes in the network conditions using evolutionary

game theory.

The results were promising and the protocols exhibited exactly the desired prop-

erties: localized forwarding decision, flexible when an energy hole problem occurs,
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optimal routing solution for minimizing energy consumption in sensor nodes, highly

reliable (delivery rate), highly scalable, fits with any network size, and significantly

extended network lifetime.

In RLEB, the analysis of the region level evolutionary game modeling has reached

stable traffic load distribution over a set of forwarding regions using the concept of

replicator dynamics. Such analysis was applied to 2D and 3D-forwarding regions.

This work shows that if the traffic load distribution was disturbed, the traffic distri-

bution would return to its original stable distribution. The analytical study in the

NLEB proves that the effectiveness of using classical game theory in NLEB problem

modeling and shows that all nodes play their role as a forwarder/or not at equilibrium

satisfactory point. In summary, the routing protocol frameworks designed in this dis-

sertation not only support the WSNs quality of services requirements, but also able

to minimize energy consumption in sensor nodes, provide high reliability (delivery

rate), and avoid energy hole problem.

1.4 Research Objectives

All problems that discussed in 1.2 are investigated and solved throughout this dis-

sertation. In this work, network conditions and sensor node behavior were studied

and it is found that designing a decentralized decision making routing algorithm can

extend the network lifetime. The use of the EGT to balance the energy dissipation

over the set of forwarding regions was proven, and also this study shows that the

CGT can be used to balance the energy consumption in senor nodes that are located

in the same forwarding region. Therefore, to achieve such wide energy balance both

EGT and CGT were combined in one protocol. The objectives of the research have

achieved throughout five steps as following:

Step 1. In this phase, a routing algorithm for 2D WSN was developed to balance

traffic load over a set of forwarding regions around the senders/relays. This
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protocol was designed to make all forwarding regions consume their energy at

the same time. The routing protocol is investigated in OMNeT++, and it was

implemented using an evolutionary game.

Step 2. In this phase, the routing protocol in step 1 was enhanced by balancing the

traffic load among nodes that were located in the same forwarding regions. This

enhancement was investigated in OMNeT++, and it was implemented using a

classical game.

Step 3. Both phases were combined together to form one game theoretical energy

balance routing protocol; named GTEB. GTEB was evaluated based on an

analytical analysis and compared to three state-of-art geographical routing pro-

tocols: RTLD [29], RPAR [35], and probabilistic forwarding protocols. This

routing protocol was designed to fit with WSNs deployed in 2D space and is

applicable to any network topology with various traffic loads.

The proposed protocol also evaluated with the three advised random forwarding

protocols.

Step 4. In this step, a new 3D-GTEB routing protocol was designed by enhanc-

ing GTEB by including the third coordinates of node locations in the routing

calculation. This protocol was investigated in OMNeT++, and evaluated by

comparing the network lifetime and the packet delivery ratio in 3D-GTEB to

GTEB.

Step 5. The stability in GTEB and 3D-GTEB was mathematically analyzed and

the results proved that the protocols reach a stable state and all sensor nodes

deplete their energy approximately at the same time.
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1.5 Dissertation Organization

A background and literature review is given in Chapter 2. Chapter 3 identifies the

solution for data propagation protocol and presents the results of Game Theoretic

Energy Balanced (GTEB) Routing Protocol for Wireless Sensor Networks. Chap-

ter 4 describes the design of Game Theoretic Energy Balancing Routing in Three

Dimensional (3D-GETB) for Wireless Sensor Networks. The evaluation details of the

proposed protocols are presented in Chapter 5. In Chapter 6, the conclusions of the

proposed research in this dissertation is summarized and some recommendations for

future work are presented.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

The process of establishing paths from a given sensor node to any base station through

a single or multiple hop is called routing. Routing establishment is the main re-

sponsibility of the network layer of the communication protocol stack. Finding and

maintaining routes in WSNs are not trivial tasks because energy restrictions and unre-

liability of the wireless medium cause unpredictable topological changes. Since WSNs

applications require a large number of sensor nodes to be deployed in large geograph-

ical areas, thus the multi-hop communication approach is necessary. In multi-hop

routing approach, nodes must not only generate and transmit the data which they

sense, but also act as relays and forward the data of other nodes. However, when

the nodes are deployed in harsh and inaccessible areas, usually they are deployed in

a randomized way and the resulting topologies are non-uniform and unpredictable.

In such case, it is important for the sensor nodes to have the ability to cooperate

in order to determine their positions, learn about their neighbors, and explore the

route to the base station. Thus, designing routing protocol that can adapt to topo-

logical changes and is able to fit to WSNs limited resources is essential to extend

the network lifetime. Moreover, reliable routing protocols have various influences on
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packet delivery ratio (PDR), quality of service (QoS), fault resistance, and energy

dissipation fairness [26, 36, 37]. Therefore, WSNs require routing solutions that are

light weighted, adaptive, scalable, and flexible.

2.2 Wireless Sensor Network Routing Metrics

The routing protocol metrics are used to express various objectives of the routing

protocols with respect to the limited resources of WSNs. This section provides a

brief overview of the routing protocol metrics that are related to this study:

A. Network lifetime: The network lifetime is defined as the duration before any

sensor node in the network becomes inoperative due to energy depletion [24, 38].

Thus, it is important to balance energy dissipation in wide range of sensor nodes

to prevent premature network failure. In such balance, it has to ensure the average

energy usage per node is the same in all sensors to prolong the network lifetime.

B. Average energy consumption per packet: The average energy consumption

per packet refers to the average amount of energy spent by all nodes to successfully

deliver a packet to the destination [10,39]. The goal of this metric is to minimize

the total amount of energy dissipation for broadcasting a packet from the source

node to the base station (sink). Average energy consumption per packet metric

is the basic concept to evaluate the energy efficiency in routing protocols.

C. Packet delivery ratio: The packet delivery ratio refers to the ratio of delivered

packets to the base station out of the total number of generated packets by the

sender node [40, 41]. The main objective of using this metric is to assess the

network performance and protocol reliability.
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2.3 Routing Protocol Classification

In literatures, a wide range of routing protocols has been proposed to solve multi-hop

routing problem [36]. In general, the routing protocol algorithms can be classified into

two categories: topological routing protocols and geographical routing protocols.

A. Topological Routing Protocols:

Topological routing protocols (TRPs) were designed on the basis of routing al-

gorithms that engineered for mobile ad hoc networks (MANETs) [37, 42]. In the

topological routing approach, a route is usually pre-defined among nodes and

stored in a routing table before initiating a packet transmission, where every node

has its own routing table [43]. The main advantage of this approach is that a route

is readily available whenever a node requires sending a message to any other node.

On the other hand, it is not adaptable to the dynamic changes in the network

and has high network overhead due to the route discovery and route maintenance

procedures, which were very costly in the energy constrained WSNs networks.

In [37] a survey on multi-path routing and their challenges is presented.

B. Geographical Routing Protocols in WSNs:

Geographical routing protocols (GRPs) benefit from location knowledge of the

sensor nodes to send data from any given node to the destination. This is done

without the need to build up a routing table [26, 36]. Hence, the sender does

not need to check the route availability or breakage as the packets travel from the

sender to the destination they may take different routes depending on the network

status. Furthermore, eliminating the reliance on topological information makes

GRPs suitable to handle dynamic conditions that often present in WSNs. This

makes geographical routings a valuable option to devise decentralized and scal-

able routing protocols which can balance energy utilization in WSNs. However,

GRPs require location information. This information can be provided via Global
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Positioning System (GPS) in outdoor deployments, and signal strength and time

of arrival based location estimation techniques in indoor deployments [27]. More-

over, GRPs can be applied in WSNs deployed in two dimensional (2D) terrain or

deployed in three dimensional (3D) terrain [44].

2.4 Energy Balanced in WSN

The main goal of energy balance in WSNs is to prolong network lifetime. Energy

balance is commonly achieved through routing protocols by evenly distributing traffic

load among nodes to ensure that the average energy expenditure in all nodes is the

same [24, 45]. In GRP, there are two common energy balance routing techniques:

route level energy balance [46,47] and region level energy balance [23,28,48].

2.4.1 Route level energy balance

Route level energy balance is aiming to prolong the network lifetime by optimizing

the energy usage in the senor nodes that belong to a set of pre-defined routes. In this

approach, a higher traffic load is observed around the line between the source and

destination node [49, 50]. Additionally, more traffic will be passing through one hop

nodes away from the destination causing quick energy depletion and early network

partitioning. That is why, considering balancing energy in route level is not enough

to achieve network wide energy balance.

2.4.2 Region level energy balance

In this approach, the energy balance can be achieved using region based forwarding

techniques [22,50]. The terrain of network is divided into a set of geographical regions

and all the nodes that are located in those regions will forward the received packets

causing redundant transmissions [27,28,40]. For that reason, the imbalance will still
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exist in the region nodes in this approach. This imbalance can lead to premature

network partitioning as some nodes in a forwarding region are used for packet for-

warding more often.

Accordingly, both route level energy balance and region level energy were combined

in this dissertation to achieve an effective and wide energy balance routing protocols.

2.5 Game Theory An Overview

Game theory is the study of the conflict and cooperation among a set of players.

The players can be any kind of decision makers such as individuals, groups, firms, or

combination of these. The concepts of game theory provide a method to formulate,

analyze, and understand strategic interactions. In general, game theory can be classi-

fied into two classes of theories [51]. These classes are: classical game theory (CGT),

and evolutionary game theory (EGT).

2.5.1 Classical game theory

Classical game theory (CGT) is a part of applied mathematics that describes and

studies interactive decision making processes, this is where several players make their

decisions based on the potential effect of the interest of other players [52, 53]. Game

theory was firstly introduced by Von Neumann and Oskar Morgenstern in their work

“Theory of Games and Economic Behavior”, published in 1944 [54]. The classical

game theory comprises two types of games: cooperative and non-cooperative games.

In the cooperative game the player selects his/her strategies based on the coordination

along with other the players in the game, while in non-cooperative games each player

selects his/her strategies without any interference from other players. In this study,

I considered non-cooperative game of N players with mixed strategies.

Normally, any a classical game comprises of three basic components:
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1. Players: The decision makers in the modeled scenario are players and denoted

by a finite set, N = {1, ..., N}, where N ≥ 2. A player is said to be rational

when he/she can choose an action in a way to magnify his/her own payoff.

2. Strategies: A strategy is one of the given possible actions of a player and each

player has a finite set of K strategies denoted by Si = {s1, s2, ..., sK}, where Si
represents the strategy space for player i.

The strategy is defined as pure strategy when the player plays one of his/her

strategies without any probability and has no uncertainty about the payoff that

result from playing any strategy. In contrast, when the player chooses one of

his/her strategies with certain probability without knowing exact payoff that

result from playing any strategy it is called mixed strategy. In this dissertation,

I considered N -player non-cooperative game with mixed strategies.

3. Payoff function: The function that quantifies a player’s preferences for a

given strategy is called payoff function and is denoted by Un(si, s−i), where si

represents the strategy that is selected by player i and s−i represents strategies

that are selected by other opponents. The received payoff by any player depends

on the strategy he/she picked and the strategies which all the other players

picked.

In a game, every player tries to maximize his/her payoff by choosing his/her own

best response strategy to what other opponents choose. Such strategy is denoted by

s∗i ∈ Si and opponent strategies are denoted by s−i ∈ S−i. The best response strategy

is mathematically defined as follows,

(∀si ∈ Si) ui(s
∗
i , s−i) ≥ ui(si, s−i). (2.1)

When all players choose their best response strategies, the resulting strategy combi-

nation is called Nash equilibrium strategies [55]. Nash equilibrium is considered the
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solution that satisfies all the players in the game. When the game reaches Nash equi-

librium state no player can increase his/her payoff by deviating from current strategy

unilaterally. Nash equilibrium condition is expressed as:

∀i ∈ N (∀si ∈ Si) ui(s
∗
i , s
∗
−i) ≥ ui(si, s

∗
−i) (2.2)

It is worth mentioning that the condition in (2.2) is held in every N -player non-

cooperative game whenever mixed strategies are allowed [52].

2.5.2 Evolutionary game theory

Evolutionary game theory (EGT) was originally developed by J. Maynard Smith

and G.R Price [56] to study the evolutionary and animals conflict in nature. In

particular, EGT is used to make reliable predications about population dynamics,

where individuals in the populations are repeatedly engaged in strategic interactions.

Evolutionary games are also useful to find the stable balance in the distribution of

the proportions of population competing for resources in absence of a global view

of the resources and the total size of population [56]. The proportion distribution

of population λ over a set of different geographical regions is called the population

state and denoted by, X = [X1, .., XK ], where Xk = λk
λ

and λk is the number of

individuals that uses region k. A balance is achieved when an individual in a portion

of population X receives the same fitness (payoff) in all geographical regions K. This

balance evolves over time based on the resource consumption rate and the availability

of residual resources at various regions. An evolutionary game consists of five main

components:

1. Player: Any individual in the population is considered a player.

2. Population: The set of players that engage in strategic interactions are con-

sidered as population of players.
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3. Strategies: The variations of selections from a set of K geographical regions

by a player are considered as the set of strategies.

4. Fitness function: The function that quantifies the expected payoff that is

received by the player when he/she plays one of his elementary strategies against

the mean strategy of the population in the conflicting field is called fitness

function.

5. Replicator dynamics: The set of differential equations that captures the in-

flow and outflow of players from one region to other regions represents Replicator

dynamics.

In this study, the fitness function is defined as a decreasing function of population,

which depends on the players’ density that follows various strategies. On that account,

the fitness function is expressed as follows,

Fk(X) = Bk −Hk(Xkλ), (2.3)

where, Fk(X) represents the fitness function of the player when it uses region k and B

represents the available resources for the player in region Rk, and Hk is an increasing

function of players’ density in the conflict field.

The evolution of proportions of a population that adopt different strategies (re-

gions) over time can be modeled through the replicator dynamics [57], which can be

given as follows,

Ẋk = Xk[Fk(X)− F̄ (X)], (2.4)
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where, Ẋ = [Ẋ1, .., ẊK ] represents the vector of the players’ distribution over all

regions and F̄ (X) represents the mean fitness for the population and given by:

F̄ (X) =
K∑
k=1

XkFk(X). (2.5)

Ideally, such distribution would converge to a stable state, where the proportions do

not change with time and even if they change, they would return to the stable state

after a period of time. Such equilibrium proportion distribution is given by the vec-

tor, X∗ = [X∗1 , ..., X
∗
K ].

At this moment the strategies that are followed by the players are called evolu-

tionary stable strategies (ESSs), whenever the following conditions are hold:

A. The fitness function for a player must be the same in all regions.

B. The player cannot increase its fitness by moving to any other region.

These two conditions are robust and a refined version of the Nash equilibrium. The

mathematical expressions of ESS is given hereunder:

XF (X∗) ≤ X∗F (X∗) (2.6a)

XF (X) ≤ X∗F (X) (2.6b)

Equation (2.6a), represents the Nash equilibrium condition and (2.6b), represents the

evolutionary stability condition.
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2.6 Literature Review

The research work in this dissertation is related to the energy balance in WSNs. The

literatures reviewed throughout this dissertation is divided into the following three

sub-sections.

2.6.1 Review of energy balance in 2D WSNs

Maximizing network lifetime can be achieved using different methods such as altering

transmission power as in [23], designing power aware routing protocol as in [24], and

distributing traffic load among least power routes as in [49,50]. Although each of these

methods offers benefits, the most plausible is the load balancing. However, there is no

globally applicable load balancing solution for extending the network lifetime in GRPs

This dissertation provides a globally applicable solution to extend network lifetime by

balancing traffic load over regions and nodes, with scalable and distributed manner

using GT and GRP.

GRPs are gaining popularity and are being employed for industrial applications

such as advanced metering infrastructures for smart grids [26]. Geographical forward-

ing does not require routing overhead and every node is able to make its forwarding

decision distributively and locally. GRPs have also been proposed to balance en-

ergy in the WSNs to prolong the network lifetime. Ahmed and Fisal [29] proposed

a quadrant based directional forwarding scheme, called Real-time Load Balance Dis-

tribution protocol (RTLD), which limits the forwarding task to a quadrant of the

forwarding nodes. However, redundant transmissions in the selected quadrant may

occur and some quadrants could be utilized more than others, depending on the loca-

tion of the source. Jinnan et al. [23] presented heuristic routing scheme to solve the

problem of uneven energy consumption around energy hole in GRPs. This scheme

cannot be generalized to achieve load balancing in the entire network. Charilaos E.
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et. al [21] presented a solution to the problem of condensing a traffic load around the

base station (sink) by adjusting the transmission power of the nodes to by-pass these

vulnerable nodes around sinks, and transmitting directly to the sink with certain

probability. Although using a larger transmission power is more energy expensive, it

helps extending the lifetime of the network. Petrioli et. al [22] presented ALBA-R

localized and distributed GRP for balancing traffic load on nodes that are located

around energy holes so that those nodes do not run out of energy too early. In our

case, GTEB can detect the energy hole problem areas and does not forward any traffic

toward such areas. Chipara et. al [35], suggested a real-time power aware routing

protocol (RPAR) to find balance between end-to-end delay and energy consumption

using transmission power adjustment. RPAR is compared to the proposed protocol

in this dissertation.

2.6.2 Review of energy balance in 3D WSNs

As a part of this dissertation is related to the energy balance in 3D WSNs, therefore

some of the related papers are discussed in this subsection. In order to overcome pre-

mature energy depletions in 3D WSNs different methods have been proposed [58,59].

For instance, proposals such as [30] and [31] offer to balance traffic load by mapping

2D network on a sphere and by routing packets on the surface of the sphere using

virtual spherical coordinates. Particularly in [30], Circular Sailing Routing (CSR) is

proposed to reduce congestion of the hot spots at the center of the network, which

extended the lifetime of the whole network. Balanced energy consumption in a set of

predefined routes was investigated in [60]. However, that approach requires a large

number of routes to achieve a global load balance in order to provide a feasible solu-

tion [19]. Nonetheless, most of the available literatures offer solutions to 2D networks

or assume the networks are 2D to reduce the complexity [60, 61]. Realizing impor-

tance of 3D, a number of protocols are emerging in the literature for 3D WSNs [32].
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Ellipsoid geographical 3D greedy-face based routing protocol was proposed to extend

the network lifetime [44]. Greedy based routing algorithm, called ALFA+, was pro-

posed to balance traffic load in a 3D network by forwarding packets toward regions

that experience minimum traffic load [62].

2.6.3 Review of game theory in WSNs

A. Review of classical game theory in WSNs:

Game theory was proven to provide versatile solutions for dynamic and distributed

networking problems [63]. CGT is used in GRPs for various problems related to

the end-to-end delay optimization, task allocation, relay selection, and network

congestion [64,65]. Tekinay [66] had presented a survey for game theory applica-

tions in security and energy efficiency with different formulations of these problem

based on the approach of game theory. Behzadan et al. [48] proposed a game the-

oretic heterogeneous balanced data routing (HBDR) algorithm for WSNs with

tree topology. In this protocol, a hierarchical network is constructed using CGT

to provide a load balanced tree that maximizes the lifetime of network.

Kamhoua et al. [67]proposed a GT based congestion avoidance mechanism for a

GRP around the line between the source and destination. Naserian and Tepe [68]

used game theoretic routing to reduce routing overhead by selecting forwarding

nodes to provide connection without network partitioning. Neda et al. [65] applied

forwarding task allocation problem to classical game in order to optimize energy

consumption among sensor nodes to extend network lifetime. Huang et al. [69]

proposed to use CGT in base stations for relay selection and transmission power

allocation for the network.

B. Review of evolutionary game theory in WSNs:
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EGT is emerging as an important tool to solve dynamic networking problems due

to changes in energy state, channel state, and topology [70]. For example, Niy-

ato and Hossain [71] used EGT to allocate bandwidth for the users based on the

service cost of various wireless networks. Anastasopoulos et al. [72] employed an

evolutionary game to optimize traffic routing over multi-path wireless back-haul

networks experiencing rain attenuation. Khan et al. [63] applied EGT to fairly

distribute users to various wireless access network technologies for bandwidth

and cost. Altman et al. [70] designed EGT based routing protocol for WSNs to

control congestion and reliability influenced by the wireless channel’s characteris-

tics. In [73], EGT is implemented to solve the packet forwarding problem when

a network consists of heterogeneous nodes operated in networks with different

authorities. This shows that the forwarding cooperation among authorities can

evolve and provide stable communication. In this dissertation, load balancing

based on available energy levels in the surrounding nodes was performed using

EGT.

2.7 Summary

In this chapter the routing protocol definition, routing protocol metrics, routing al-

gorithms classification, and the related techniques that are used to balance energy

consumption in WSNs are discussed. It showed that geographical routing protocol

provides a better energy solution than topological protocols. Introductions to the

classical and evolutionary game theories were also provided. The literature review

of energy balanced in 2D WSN, 3D WSN, and game theory in WSNs are presented.

The combination of the two levels of game theories decision making will be presented

in the next chapter as the core of the protocol design in this dissertation.
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CHAPTER 3

GAME THEORETIC ENERGY BALANCED (GTEB) ROUTING

PROTOCOL FOR WIRELESS SENSOR NETWORKS

3.1 Introduction

Extending network lifetime and sensor functionality is crucial for successful utilization

of wireless sensor networks (WSNs) in a number of challenging applications, where

replacing or charging energy storage units (i.e. batteries) in the sensor devices is

impractical or not cost effective. For example, ARGO project deploys thousands of

floating sensors to gather hydro-graphic data from oceans and their energy supply

cannot be replaced or recharged [74] after they are released to the environment. Pro-

longing sensors lifetime can significantly reduce the cost of ARGO project and help us

to understand health of the oceans better. There are many similar large data gather-

ing projects for which expansion of WSNs lifetime is extremely important. Different

approaches have been used to extend the lifetime of sensor nodes. One prominent

approach is to balance the WSN communication in the network in order to deplete

energy at similar time or rate [21,29,49]. In theses approaches, routing decisions play

an important role in selecting candidate paths for balancing energy [20,33,38,50].

Geographical routing protocols (GRPs) ) seem to be more suitable for WSNs be-
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cause they do not need routing tables, and therefore, do not require route discovery

and route maintenance mechanisms which incur large overhead. However, GRPs re-

quire location information. This can be provided using Global Positioning System

(GPS) in outdoor deployments, and signal strength and time of arrival based loca-

tion estimation techniques in indoor deployments. Although these may increase the

complexity of the GRPs for networks where nodes do not move, and data gathering

applications where location of sinks are fixed, the benefits of simplicity of GRPs ex-

ceeds this extra complexity of obtaining location information. For this reason routing

protocol for low power and lossy networks (RPL) as a GRP is adapted for smart grid

applications [75]. One problem with GRPs, is that they do not have a global view of

the network, including energy information at regions and nodes, and providing this

information can incur large overhead and increase complexity. This issue is addressed

by adopting distributed and relatively simple algorithms to balance energy in order

to extend WSN lifetime.

This dissertation uses a game theoretic (GT) approach to build a viable load

balancing solution to extend WSNs lifetime. GT offers interesting decision making

mechanism in distributed and dynamic environment in absence of global view and

certainty. For this reason GRP combined with GT was used in this work to take

advantage of inherent benefits of this combination. In this work, the energy balance

problem is solved at both region level and node level. In RLEB, the objective is to

balance the energy consumption around a sender such that all sub-regions around

the sender will participate fairly and deplete their energy approximately at the same

time. After selecting the participating region, NLEB is required to select the most

favorable forwarder node in this sub-region. Because of the objectives of RLEB and

NLEB are different, RLEB employs evolutionary game theory (EGT), and NLEB

employs classical game theory (CGT). EGT captures the dynamic energy changes in

the sub-regions while CGT captures the selfish behavior of the nodes to preserve their

26



energy in the selected sub-region.

The main contribution of this dissertation is twofold. First, a new method is de-

veloped for extending the network lifetime by balancing traffic load at two levels, over

regions and at the nodes in those regions. Second, the energy hole problem in WSN

geographical routing is mitigated using EGT [23]. The energy hole problem occurs

due to an uneven traffic load distribution. For instance nodes closer to the sink have

to take heavier traffic load leading to deplete of their energy faster and partitioning

of the network. In this dissertation, the energy hole problem is mitigated by using an

evolutionary game.

In this chapter a description of the protocol with is presented in Section 3.2. Sub-

section 3.2.1 provides a detailed region level energy balance while Sub-section 3.2.5

presents the detailed of node level energy balance of the proposed protocol. Sec-

tion 3.3 presents the results and discussion. Finally, conclusions are drawn and further

research is suggested in Section 3.4.

3.2 Protocol Description

The proposed game theoretic energy balanced (GTEB) routing protocol is designed

to provide energy balance to randomly deploy multi-hop WSNs withM homogeneous

nodes with transmission range is r. Initial energy of a node is E Joules. The nodes

know their locations and the location of the destination node (base station). In the

network, any node can be a source and can report events periodically or when they

occur. The problem of achieving network wide energy balance is broken down into

the following two sub-problems:

A. RLEB at sub-regions.
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Figure 3.1. Subregion and node selection in the proposed protocol.

B. NLEB within the sub-region.

The energy balance at region level is achieved using EGT and the energy balance at

node level will be achieved using CGT. The transmission range of a sender is divided

into K forwarding sub-regions based on network density ρ. Figure 3.1 illustrates this

scenario. In the figure, the selected sub-region is shaded and the selected forwarding

node is shown.

Based on an EGT, a sender forwards a packet to one of its neighborhood with the

following information:

1. Angle, θ, which is bounding the selected forwarding sub-region.

2. Nk, number of neighbors in this sub-region.

3. Sender’s location (x, y).

4. Proportion of packets, λk assigned to this sub-region.
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Figure 3.2. GTEB’s functional diagram.

This information, provided by the packet, will allow surrounding nodes to identify

whether they are in the forwarding sub-region. Then the nodes in the selected sub-

region will play N -player non-cooperative classical game to identify which one will

be potential forwarding node (PFN). One of the PFNs, in that sub-region who wins

the game becomes a sender node, and its turn, plays it’s own evolutionary game to

select the next forwarding region in order to balance energy consumption in its own

surrounding.

Figure 3.2 shows a schematic functional diagram of the distributed decision making

processes in GTEB protocol. The node neighbor discovery function depicted in the

figure is executed once at the deployment time of the network in order to allow nodes

to learn the number of one hop neighbors. Other functions will be executed whenever

a node receives a new packet from one of its neighbors. The node drops a received

packet, if it is not located in the designated forwarding sub-region or if the packet

has been forwarded before.
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3.2.1 Region level energy balance (RLEB)

The objective of RLEB is to spread the forwarding task around the sender node fairly

such that surrounding nodes deplete their energy at the same time. EGT is employed

to achieve this objective. We assume total number of packets λ sent by a sender is S

or any relay, which represents the total population of region level evolutionary game

(RLEG). This population of packets is distributed to K sub-regions throughout the

operation. Hence a sub-region k will forward λk packets and, consequently the total

number of packets that are forwarded by all sub-regions is λ =
∑K

k=1 λk. The task

of RLEG is to define the proportion of packets that can be forwarded by each sub-

region in every game interval. Senders play the RLEG on behalf of the packet, and

the set of strategies for the packet is the selection of sub-regions, which is denoted by

R = {R1, R2, ..., RK}. Every packet has set of K strategies to play. The proportion

of the packets forwarded through k th sub-region is specified by Xk, which is given by

λk
λ

. Thus, the packet population distribution vector X over all sub-regions is given

by X = [X1, X2, ..., XK ]. The goal of employing EGT is to find the stable packet

proportions distribution of population in all sub-regions in order to make all regions

consume their energy approximately at the same time. Such stable vector is called

equilibrium packet proportions distribution vector or stable state X∗.

This vector can be obtained by modeling the energy balance problem into a set of

differential equations, which will be the replicator dynamics of the RLEG. The most

important part of evolutionary game is to design a fitness function that captures

the energy consumption in the network. The fitness function will be used to identify

switching probability from one region to another region. Both of these will be utilized

to obtain replicator dynamics to find the equilibrium solution for the game. The

fitness function Fk(X) for a packet is expressed in term of gain and cost of utilizing a

region for forwarding. The gain, Ek, represents the available remaining energy in the

sub-region k. The cost of sending a packet through a sub-region depends on following
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parameters:

1. Packet transmission and reception energies.

2. Number of nodes in that sub-region Nk.

3. Number of packets sent through this sub-region λk.

Consequently, the fitness function is given by

Fk(X) = Ek − [λ ∗Xk ∗ (2 ∗Nk ∗ Etr + Etx)], (3.1)

where Etr and Etx are the energy consumed by a node while receiving and transmitting

a packet respectively. Etr and Etx are both dependent on the packet length of m bits,

the transmission radius of d meters, and few hardware parameters. Then, energy

consumption by a node for transmitting a packet can be expresses as

Etx(m, d) = m ∗ (etc + eta ∗ dα), (3.2)

where the energy spent by transmitter electronics is denoted by etc, and transmitter

amplifier by eta. These are hardware dependent parameters related to the processing,

sending the packets, and α is the path loss exponent whose value is larger than 2 in

sensor networking applications.

The energy consumption by a node for receiving a packet is given by

Etr(m) = m ∗ erc, (3.3)

where erc is the transceiver effeteness during the start-up time, which is ignored due

to its dependence on the type of MAC protocol used.

All nodes located in the same sub-region (in transmission range of forwarding/sender

node) will spend the receiving energy cost as they all receive the packets. After sub-

region selection, one node only will be selected based on N -player non-cooperative
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game to forward the packet in NLEB, and the forwarding node will spend the trans-

mission cost. The values of transmission and receiving cost can be obtained from any

sensor node’s data-sheet. For example, the energy consumption for transmission and

reception of an IRIS sensor node is 51 and 24 milliwatts, respectively [76]. During

the protocol run time, packets forwarded in sub-region k will be further forwarding

by next hop neighbor in a given game interval.

The fitness function in (3.1) expresses that a packet will be forwarded to a sub-region

as long as the available energy in that sub-region Ek is more than energy threshold

value given by

Ek/(λ ∗Xk) ≥ (Etx + Etr), (3.4)

which represents the required energy to receive and forward a packet. That is why the

packet’s share of energy will be decreased with the increase in the number of packets

in a forwarding sub-region. Hence, a sub-region is considered dead if its residual

energy drops below the energy threshold value.

3.2.2 Replicator Dynamics

The replicator dynamics provide packet population distribution over different sub-

regions. Selection of a sub-region is considered a strategy for a packet. In every game

interval, a sender decides the proportions of packets to be forwarded through various

forwarding sub-regions based on their residual energies. The switching probability

Pk,l(X), from sub-region l to sub-region k is associated with region fitness values

Fl(X) and Fk(X), respectively. This switching probability can be defined as,
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Pk,l(X) =



βXk[Fk(X)−Fl(X)]if Fk(X)>Fl(X), k 6= l

0 if Fk(X)>Fl(X), k 6= l

1−
∑

i 6=k,i∈K βXl[Fi(X)−Fk(X)] if k = l,

(3.5)

where Xl is the proportion of packets in the sub-region l and β is the normalization

factor for the total energy in all sub-regions and given by,

β =
1∑K
i=1 Ei

. (3.6)

where Ei is the initial energy in node i. The rate of the change in the number

of packets that forwarded through sub-region k represents the difference between the

inflow and outflow packets. The expected number of inflow packets that might switch

from another region to the region k is expressed as,

∑
l 6=k

XlPk,l(X), (3.7)

and the expected number of outflow packets that might switch from region k to the

other sub-regions is given by,
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∑
l 6=k

XkPl,k(X). (3.8)

The summation of all probabilities of switching from sub-region k to all other sub-

regions including the sub-region itself must be one, which is reflected by the following

equation,

Pk,k(X) +
∑
l 6=k

Pk,l(X) = 1. (3.9)

Accordingly, the differential equations of the replicator dynamics that captures the

net change in the number of packets in game interval (unit time) in sub-region k, and

can be given as follows,

Ẋk =
∑
l 6=k

XlPk,l(X)−
∑
l 6=k

XkPl,k(X)

Ẋk =
∑
l 6=k

XlPk,l(X)−Xk

∑
l 6=k

Pl,k(X)

Ẋk =
∑
l 6=k

XlPk,l(X)−Xk[1− Pk,k(X)]

Ẋk =
∑
l 6=k

XlPk,l(X) +XkPk,k(X)−Xk

Hence, the replicator dynamics can be given by,
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Ẋk =
K∑
l=1

XlPk,l(X)−Xk (3.10)

Using (3.5) the transition probability matrix P for a scenario with two sub-regions is

provided by,

P (X) =

1 βX1[F1(X)− F2(X)]

0 1− βX1[F1(X)− F2(X)]

 (3.11)

The change in packet proportions over all sub-regions for a sender is obtained substi-

tuting (3.11) in (3.10), can be written in a matrix form as follows,

Ẋ = P (X)X −X. (3.12)

When the number of inflow and outflow packets from all sub-regions are equals then

the system is in the stability state.

3.2.3 Evolutionary equilibrium

RLEG reaches the equilibrium state when the rate of change in the proportions of

packets in all sub-regions, Ẋ becomes zero vector. At this state, the proportion of

packets is represented by X∗. In order to find the equilibrium state, the solution of

the set of system equations in (3.12) must be obtained as in below,
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 Ẋ1

Ẋ2

 =

 1 βX1[F1(X)− F2(X)]

0 1− βX1[F1(X)− F2(X)]

 ·
 X1

X2

−
 X1

X2

 =

 0

0


(3.13)

Where,

X1 > 0,

X2 > 0

and

K∑
k=1

Xk = 1 (3.14)

According to Brouwer fixed point theorem [77], there will be at least one fixed point

(Nash equilibrium) for any continuous function over a closed interval. In this work,

the set of equations in (3.13) depend on the switching probability in (3.5). The

witching probability is a continuous function of X on the closed interval [0,1]. Conse-

quently, (3.13) have fixed points, which are denoted by X∗. From (3.13) and (3.14),

the net changes in proportions of packets in the two sub-regions are given by

Ẋ1 = X1 + βX2X1[F1(X)− F2(X)]−X1 = 0

Ẋ2 = X2 − βX2X1[F1(X)− F2(X)]−X2 = 0

(3.15)

Simplifying the above equation in (3.15) leads to:
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Ẋ1 = βX1X2.[F1(X)− F2(X)] = 0

Ẋ2 = −βX1X2.[F1(X)− F2(X)] = 0

(3.16)

By solving (3.13) and (3.14) using (3.1), setting Ck = 2NkETR − ETX , substitute

X2 = 1−X1 in (3.16) and βX1X2 > 0 the equation (3.16) can be solved as follows,

(E1 − λC1X1)− (E2 − λC2(1−X1)) = 0

E1 − λC1X1 − E2 + λC2(1−X1) = 0

E1 − λC1X1 − E2 + λC2 − λC2X1 = 0

E1 − E2 −X1λ(C1 + C2) + λC2 = 0

X1 =
E1 − E2 + λC2

λ(C1 + C2)
(3.17)

Hence, the elements of equilibrium vector are specified by

X∗1 =
E1 − E2 + λC2

λ(C1 + C2)
,

X∗2 = 1− E1 − E2 + λC2

λ(C1 + C2)

(3.18)

At the equilibrium state, a packet’s fitness will be the same in all sub-regions, that
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is F1(X) = F2(X) = ... = Fk(X) and no packet can increase its fitness by moving to

another sub-region (strategy).

3.2.4 Stability analysis

In this section of analysis, the stability of the equilibrium state X∗ is examined.

To prove the population distribution stability, Equation (3.12) is linearized at X∗,

whereas F1(X) = F2(X), and Eigenvalues of Jacobian matrix J(X1, X2) are obtained.

Jacobian matrix for two forwarding sub-regions is given by

J(X1, X2) =

 βX1X2
∂F1(X)
∂X1

+ β[F1(X)− F2(X)]X2 −βX1X2
∂F2(X)
∂X2

− [F1(X)− F2(X)]X1

−βX1X2
∂F1(X)
∂X1

− β[F1(X)− F2(X)]X2 βX1X2
∂F2(X)
∂X2

+ β[F1(X)− F2(X)]X2


(3.19)

Since F1(X) = F2(X) at the equilibrium points X∗, Jacobian matrix of the system

will be

J(X1, X2) =

 βX1X2
∂F1(X)
∂X1

−βX1X2
∂F2(X)
∂X2

−βX1X2
∂F1(X)
∂X1

βX1X2
∂F2(X)
∂X2

 (3.20)

Hence,

J(X1, X2) =

−βλC1X1X2 βλC2X1X2

βλC1X1X2 −βλC2X1X2

 (3.21)

Eigenvalues γ of Jacobian matrix can be found by solving the following equation,

det(J(X1, X2)− Iγ) = 0 (3.22)
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where I is the identity matrix. The solution of (3.22) shows that Eigenvalues are

−λC1βX1X2−λC2βX1X2 and zero. Since the real part of Eigenvalue is negative, the

ESSs condition is satisfied based on [78]. This proves that RLEB evolutionary game

reach stable state. The region is considered dead when it does not have enough energy

for transmission. Analysis and proof of the stability of X∗ for K packet forwarding

sub-regions are provides in appendix A.
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Table 3.1. THE PAYOFF MATRIX OF N-PLAYER NON-COOPERATIVE GAME.

aaaaaaaaaaaa
Player A

N − 1 Players 1− (1− q)N−1

T

(1− q)N−1

T̄

q T −δ −∆,−δ −∆ v − δ,0
1− q T̄ 0,v − δ 0,0

3.2.5 Node level energy balance (NLEB)

The objective of NLEB game is to balance the energy consumption in a sub-region

by selecting one forwarding node from N nodes in the sub-region k. This game is

formulated as an N -player non-cooperative game of the following three components:

1. Players: The set of nodes in the same forwarding sub-region are consider as

players and denoted by N = {n1, n2, ..., nN}, where N ≥ 2.

If there is only one node in a sub-region, then this node will forward the packet

without playing any game.

2. Strategies: Each node has two mixed strategies, represented by a set S =

{T, T̄}, where T represents transmission and T̄ represents no-transmission. Be-

ing a mixed strategy game, nodeA plays one of available strategies against N−1

opponent nodes. Other players play their strategies with their corresponding

probabilities as shown in Table 3.1. Let the probability of transmission by a

node is q, and no-transmission is 1− q, then the probability of transmission by

at least another node is 1 − (1 − q)N−1; hence, the probability that all other

nodes may not transmit is (1− q)N−1.

3. Expected payoff: the expected payoff for node i is denoted by Ui(s), quantifies

the award for node i when it plays one of its available strategy against other

N − 1 players.
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The matrix norm formulation that describes the game scenario is given in Table 3.1.

In this game, if two or more nodes are playing transmission strategy simultaneously,

all of the nodes will incur a collision cost of ∆ and a transmission cost of δ, where

∆ is greater than δ. If one node plays transmission strategy and other nodes play

no-transmission strategy, the first node will receive reward value of v and incurs a

transmission cost δ, v will be greater than δ. If no node plays transmission, then the

payoff will be zero for all nodes.

The expected payoff calculated using Table 3.1 for a node ni to forward a packet

is given by

E[Ui] = q[(−∆− δ)(1− (1− q)N−1) + (v − δ)(1− q)N−1] (3.23)

Correspondingly, the expected payoff for no-transmission is zero. Therefore, equating

E[Ui] to zero will give probability q∗ of mixed strategy Nash equilibrium as:

[(−∆− δ)(1− (1− q)N−1) + (v − δ)(1− q)N−1] = 0

(−∆− δ)− (−∆− δ)(1− q)N−1 + (v − δ)(1− q)N−1 = 0

−(−∆− δ) = −(−∆− δ)(1− q)N−1 + (v − δ)(1− q)N−1

(∆ + δ) = [(∆ + δ) + (v − δ)](1− q)N−1

∆ + δ

∆ + v
= (1− q)N−1
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(1− q) = (
∆ + δ

∆ + v
)

1
N−1

q∗ = 1− [(δ + ∆)/(∆ + v)]
1

N−1 (3.24)

The number of player nodes in a region is N , the transmission cost δ = 51milliwatts

and collision cost of ∆ = 2×δ are known and can be extracted from IRIS datasheet [76].

Each node uses its Nash equilibrium as a decision criteria to forward or drop the packet

using its own forwarding probability in (3.26).

However, reducing the number of forwarding nodes may lead to network dis-

connectivity. Nash equilibrium in equation (3.24) depends on the number of neighbors

in forwarding sub-region N , and the reward value v. Hence, it is essential to determine

the range of v and N , such that satisfy the following two conditions:

1. The number of players N must be greater than or equal to two [52].

2. The network connectivity is maintained with minimum routing overhead [79].

Previous studies in [80] and [79] showed that the required number of neighbors

to maintain overall connectivity is at least four.

When the value of v is low, then the probability in (3.24) will be low, which

might result in network dis-connectivity. However, for a high reward value that

means the nodes have high their forwarding probability, and when v →∞ all nodes

will forward the received packets causing redundant transmissions. For successfully

forwarding a packet, the number of neighbors for each node should be on average of

four, and the forwarding probability will be 0.9 6 q 6 0.99. By using (3.24) with

δ = 51milliwatts [76], where the a node transmits with 3dBm the value of v can be
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calculated as follows,

(N − 1) log q∗ = log(
∆ + δ

∆ + v
)

log(0.01) ≤ 1

N − 1
log(

∆ + δ

∆ + v
) ≤ log(0.1)

−4 ≤ log(
∆ + δ

∆ + v
) ≤ −1

−4 ≤ log(∆ + δ)− log(∆ + v) ≤ −1

−4 ≤ log(2δ + δ)− log(2δ + v) ≤ −1

1 ≤ log(2δ + v)− log(3δ) ≤ 4

1 ≤ log(
2δ + v

3δ
) ≤ 4

e1 ≤ (
2δ + v

3δ
) ≤ e4

2.7 ≤ (
2δ + v

3δ
) ≤ 10.8

8.15δ ≤ 2δ + v ≤ 32.16δ
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Table 3.2. NASH EQUILIBRIUM WITH DIFFERENT REWARD VALUE AND
NUMBER OF NEIGHBORS

Number of neighbors q∗ with v = 30.16δ q∗ with v = 20δ q∗ with v = 6.16δ
2 0.910045528 0.875 0.641157085
3 0.70007589 0.646446609 0.400965014
4 0.551935104 0.5 0.289384311
5 0.452346724 0.405396442 0.226026495
6 0.382261667 0.340246045 0.185331592
7 0.330623502 0.292893219 0.157019757
8 0.291116807 0.257002855 0.136196597
9 0.259964004 0.228894587 0.12024236
10 0.234790582 0.206299474 0.107630064
11 0.214036685 0.187747604 0.097410166
12 0.196638232 0.17224672 0.088961435
13 0.181845676 0.159103585 0.081860445
14 0.169116352 0.147819604 0.075808702
15 0.158047986 0.138027179 0.070589755
16 0.148336208 0.129449437 0.066042835
17 0.139746551 0.12187392 0.062046035
18 0.132095526 0.115134914 0.058505246
19 0.125237508 0.109101282 0.055346658
20 0.119055464 0.103667904 0.052511572
21 0.113454279 0.098749537 0.04995272

Hence, the value of v will be in the range of,

6.15δ ≤ v ≤ 30.16δ (3.25)

In order to find the best value of v a set of experiments were conducted as depicted in

Table 3.2. Figure 3.3 shows that Nash equilibrium forwarding probability versus the

number of neighboring nodes in forwarding sub-region, when v is 30.16δ both above

conditions are maintained.

Once the nodes in a selected forwarding region k receive a packet, those nodes

will start N -player non-cooperative game, and each node i calculates its forwarding

probability, pik, per equation (3.26) in order to make a forwarding decision. The

44



2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

Number of neighbors in a forwarding sub−region

N
as

h 
eq

ui
lib

riu
m

 p
ro

ba
bi

lit
y 

(q
*)

 

 

q* with  v= 30.16×δ
q* with v= 20×δ
q* with v=6.15×δ

Figure 3.3. Nash equilibrium q∗ versus changes in reward value v with different
number of neighbors.

received packet will be forwarded only when the value of pi,k is less than the Nash

equilibrium q∗ in equation (3.24). This forwarding probability is calculated based on

the following three factors:

1. The ideal share of packets that must be forwarded by every node in a selected

forwarding region, ( (Ci−Ći)
Ci

) .

2. The ratio of the residual energy in a forwarding node, ( Éi
Ei

) .

3. The share of packets that is assigned to a selected forwarding sub-region by a

sender, ( (λk−λ́k)
λk

).

Hence the forwarding probability is given by

pi,k = 1− [(
(Ci − Ći)

Ci
)(
Éi
Ei

)(
(λk − λ́k)

λk
)], (3.26)

45



2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of received packets per time unit

P
ro

b
a
b

il
it

y
 (

P
)

 

 

Power Ratio

Probability (p)

Figure 3.4. Forwarding probability versus number of forwarded packets and node’s
residual energy.

where Ci given by λk/Nk is the number of packets that must be ideally forwarded by

the node i in the selected sub-region and Ći is the number of packets that are already

forwarded by node i. The residual energy of the node i, Éi with initial energy Ei,

λ́k is the number of packets out of a total number of packets, λk that have already

been assigned to all nodes in the sub-region k. Any node, which decides to forward

a packet based on the N -player non-cooperative forwarding game, will play its own

evolutionary game to balance the energy in its surrounding sub-regions.

Figure 3.4 shows that the forwarding probability pi,k increases as the number of

forwarded packets by the node increase. A node will not forward a packet when the

forwarding probability is greater than its Nash equilibrium, and will wait for a round

trip time (RTT) or until it overhears the forwarded packet by other nodes. If the node

does not overhear the packet, it will gradually decrease its forwarding probability until
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Table 3.3. SIMULATION PARAMETERS

Parameter Value
MAC IEEE802.15.4

Path loss exponent Log-normal Shadowing
Shadowing deviation (dB) 2.5

Data packet size 128 bytes
Data rate 200 kbps

Initial energy 3.3J
Transmission power 1mW

Traffic type CBR

the packet is forwarded either by the node itself or by any other node. A sensor node

is considered dead when it does not have enough energy for transmission.

3.3 Results and Discussion

The performance of the proposed routing protocol, GTEB, has been evaluated using

OMNET++4.2.2 network simulator with MiXiM framework [81]. The simulation pa-

rameters are given in Table 3.3. WSN was deployed in two-dimensional (2D) terrain

of 100 × 100m2 dimensions, in which 121 homogeneous sensor nodes were randomly

deployed. A converge-cast traffic pattern with four sources was used and one des-

tination node or base station. Although the data rate was large, when the number

of sources and hops were increased, the available bandwidth (200 kbps) could be

easily consumed. The performance of GTEB was analyzed based on three routing

performance metrics. These metrics are :

1. The network lifetime.

2. Average energy consumption per packet.

3. Packet delivery ratio.
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The performance of GTEB was evaluated in comparison with three other compet-

ing GRPs. These protocols are:

1. A real-time routing protocol with load distribution in wireless sensor networks

(RTLD) [29].

2. Real-time power-aware routing in sensor networks (RPAR) [35].

3. Probabilistic forwarding geographical routing protocols: This protocol is de-

signed to verify if the proposed game theoretic approach was better than some

simple probabilistic approach. In the probabilistic approach, an eligible for-

warding node will forward a packet with a probability of 0.5, instead of using

the Nash equilibrium.

This comparison was evaluation based on three scenarios: i) the first scenario con-

cerns the lifetime of network with different network densities, while ii) the second

scenario concerns the energy consumption per packet and finally iii) the third sce-

nario concern the packet delivery ratio.
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Figure 3.5. Network lifetime with different packet generation rates.

3.3.1 Network lifetime

This set of experiments was conducted to evaluated the effectiveness of packet for-

warding probability mechanism, in GTEB, which depends on Nash equilibrium as

a decision criteria. Moreover, the experiments evaluate the effect of two levels of

game theories balancing technique on the lifetime of WSNs. Figure 3.5 represents a

comparison of the lifetime of GTEB and probabilistic forwarding. This figure proves

that using forwarding probability provided by Nash equilibrium condition and fit-

ness function in game theoretic approaches allows better utilization of energy in each

sensor network compared to the probabilistic forwarding protocol. GTEB integrates

the accumulated energy in various sub-regions and the remaining energy in every

individual node in sub-region in forwarding decision, while probabilistic forwarding

protocol does not consider the energy factor in their forwarding decision and only

forward based on a fixed probability. Another reason for the shorter network lifetime

in probabilistic forwarding is that there could be more than one forwarding node in
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Figure 3.6. Average energy consumption per packet with different packet generation
rates.

one hop neighborhood, which increases redundant broadcasts and increases energy

consumption in the network. GTEB prolongs the network lifetime by approximately

33 to 58%, for packet generation rates of 1 to 14 packet per second, respectively when

compared to the probabilistic forwarding protocol.

3.3.2 Energy consumption per packet

This experiments show the effectiveness of balancing energy in a set of forwarding sub-

regions and in nodes in the sub-regions in GTEB and balancing energy consumption in

regions only in RTLD protocol and in a set of pre-defined routes in RPAR protocol.

The average energy consumption per packet for various packet generation rates is

depicted in Figure 3.6. This figure shows that GTEB consumes 20 to 40% less energy

as compared to the other protocols examined in this experiment. This less energy
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Figure 3.7. Packet delivery ratio with different packet generation rates.

consumption in GTEB in comparison to RTLD and RPAR is because GTEBs game

theoretic forwarding decision making mechanism reduces redundant transmission and

spread traffic load over large number of sensor nodes. Also, GTEB has no explicit

exchange of control messages for exchanging neighbor information, which is generally

a requirement in other GRPs.

3.3.3 Packet delivery ratio

The packet delivery ratio was measured with packet generation rate of 1 to 10 packet

per second in this set of experiments. Figure 3.7 presents the results of this experi-

ment. GTEB provides 25 to 30% higher packet delivery ratio than the other GRPs

compared in this simulation study. The reason for the higher delivery ratio in GTEB

is that it reduces redundant transmissions and avoids congested areas using its energy

balanced forwarding mechanism.
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3.4 Summary

In this research, it was observed that game theory is an efficient tool, which can be

used to balance energy consumption. It is also observed that the combination of two

different types of games are crucial to achieve a network wide energy balance. In

particular, evolutionary games are useful to model the phenomenon in which every

node tries to spread a population of data packets to achieve energy balance in its

neighborhood without a defined global energy profile. Additionally, it was shown

that classical games are necessary to avoid redundant transmissions among a finite

number of nodes in a contention domain. The simulation study demonstrates that

a game theoretic approach provides longer network lifetime, lower average energy

per packet, and higher packet delivery ratio then other comparable protocols. Of

particular note, the proposed protocol increases the network lifetime by 33% to 58%

when compared to a probabilistic forwarding based on GRP. In a practical WSN

deployment, GTEB can improve both operation time and cost.
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CHAPTER 4

GAME THEORETIC ENERGY BALANCING ROUTING IN THREE

DIMENSIONAL WIRELESS SENSOR NETWORKS

4.1 Introduction

Energy balance in WSNs is very important issue for extending the network lifetime,

since nodes are generally powered with limited energy sources. The process of replac-

ing or recharging these energy sources is very difficult, and even can be impossible

after they are distributed. Balancing energy usage is one of the key methods to pro-

long operation of the networks. That is why many energy balancing protocols have

been proposed in the literature. However one of the commonly made assumptions is

that the network is deployed in two dimensional (2D) space. In many real-life appli-

cations however, WSNs are actually deployed in three dimensional (3D) space [32].

For example, sensors used to monitor the giant redwoods in California are deployed at

various heights on the trees [82]. Another example of 3D deployment of WSNs is drone

or unmanned aerial vehicle networks [83]. In such cases, discarding third coordinate

results in errors in finding the most desirable route and causes inefficient energy usage

due to overhead and redundancies [32]. Accordingly, considering the third dimension

in routing decisions is an important factor to improve energy efficiency and energy

balance in WSNs.
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In addition to energy balance, reducing protocol overhead associated with route

discovery and maintenance messaging can further improve network lifetime. For-

tunately, geographical routing protocols (GRPs) eliminate overhead associated with

route discovery or route maintenance [26] at an expense of location information. Pro-

viding location information to nodes and destination location to packets are easier

in a number of scenarios than route discovery and maintenance. That is why GRPs

are emerging as a valuable option for WSN routing problems. However, there still

redundancies in GRPs, which may increase energy consumption such as region based

forwarding techniques used in some GRPs [28,84]. For this reason, designing a simple

efficient GRP is essential to balance energy consumption to prolong the lifetime of

WSNs. Another drawback associated with GRPs is the lack of global information in

the nodes. That is why there is a need for a highly decentralized yet efficient protocols

to optimize network resources. Game theory can be employed in network protocols

to provide decentralized, scalable, and stable solutions. Game theory can capture

the selfish behavior of nodes and dynamic energy changes in different regions of the

network and can allow GRPs to achieve desired energy balance in the network. Addi-

tionally, game theory offers an intelligent decision making mechanism in distributed

and dynamic environment under uncertainty. For these reasons, game theoretic en-

ergy balance routing protocol was proposed to extend the network lifetime [64,85,86].

In this chapter, unbalanced energy consumption problem in 3D WSN is modeled

using two different game levels (sub-problems) which are:

1. Wedge level energy balance (WLEB). An evolutionary game theory (EGT) is ap-

plied to evenly distribute traffic load among a set of forwarding wedges (FWs)

such that surrounding nodes of the sender will deplete their energy approxi-

mately at the same time.

2. Node level energy balance (NLEB). A classical game theory (CGT) is applied

to balance energy consumption in sensor nodes in the selected wedge such that
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all nodes deplete their energy approximately at the same time in that wedge.

The third coordinate of nodes “locations” was included using the above two different

game levels. This coordinate will provide an accurate route description which enable

more reliable energy balance solution to 3D network. The main contributions of this

chapter are:

1. Two levels game theoretic decision making are employed to extend the network

lifetime by balancing traffic load and reducing redundant transmissions in the

network.

2. The approach is designed to work with WSN deployed in 3D space.

3. The energy hole problems, commonly associated with geographical routing, is

solved by reflecting dynamic changes in the network.

4. By including the third coordinate, the redundant transmissions will be reduced

as the forwarding nodes are limited by the the 3D space.

A description of the routing protocol with evolutionary game model for wedge

level energy balance and N -player non-cooperative game model for node level en-

ergy balance will be discussed in Section 4.2. Section 4.3 presents the results and

discussion. Finally, the conclusion is presented in the summary Section 4.4.

4.2 Protocol Description

A network of M homogeneous wireless sensors is considered to be deployed in 3D

terrain of volume Ω, which is a rectangular prism with dimensions w × h × d (m3).

It is assumed that the position information is aquaired using either embedded GPS

receiver or other techniques such as signal strength or location services. By using a

single hop neighborhood exchange, each node can learn the location information of

its neighbors at the deployment time. The nodes have a spherical transmission range
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Figure 4.1. Illustration of 3D-GTEB scenario.

of radius r and initial energy E Joules. In this network, any node can be considerd

as a source, and reports events periodically or after a triggering mechanism, or the

nodes can be act as a relay to forward the reports of othe sensors. The problem of

extending lifetime of WSN is achieved through traffic load balance by breaking down

the problem into the obve two sub-problems WLEB and NLEB.

Similar to the 2D WSNs approach described in Chapter 2, the energy balance in

WLEB is modeled as an evolutionary game and in the NLEB is modeled as N -player

non-cooperative game. In WLEB, evolutionary game was applied to capture the

dynamic energy changes in the forwarding wedges and prevents traffic condensing to

a certain region. In NLEB, N -player non-cooperative game was applied to capture

the selfish behavior of the sensor nodes when they are trying to preserve their energy,

by not forwarding, and motivate them to participate in the forwarding process.

The spherical transmission range r of a sensor node is divided into K forwarding

wedges (FWs) based on the network’s density. Figure 4.1 illustrates the selected for-

warding wedge (FW) “the shaded part in the figure”. One of the nodes in this wedge
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will perform the forwarding task based on the N−player non-cooperative game. In

WLEB, every sender/forwarder located in the selected FW will try to fairly distribute

the generated-or-received traffic over its own FWs. Such traffic distribution were

achieved using an evolutionary game based on the residual energy in these wedges.

The sender or relay in those wedges will attaches the information of the following

parameters to each transmitted packet:

1. The angle, θ, that bounds a selected FW .

2. The number of neighbor nodes N in this wedge.

3. The location of sender which is represented by three coordinates (x, y, z).

4. The proportion of packets, λk assigned to kth FW.

Those parameters then utilized by the wedges nodes to identify if they are in the

selected FW or not, using the following criteria,

arctan 2[(
−→
SA× SD)× (SD × SO) ·

−→
SD

‖ SD ‖
,

(SA× SD)× (
−→
SD ×

−→
SO)] ∈ θ (4.1)

where SA represents the vector from sender S to the node A, SD is the vector from

sender to the destination D, and SO is the vector from the sender to the polar of

transmission sphere O.

The node drops the received packet, if the node is not in the designated FW or

if the packet has already been forwarded. Then the nodes in the selected FW will

play N -player non-cooperative game to determine the optimal node that is capable

to forward the received packet. One of the nodes will win the game and become

a new sender. Then, the the sender node will play it’s own evolutionary game to

distribute it’s traffic load (population) over its surrounding wedges in order to balance

the energy consumption among its neighborhood. However, every node executes a
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neighbor discovery procedure at the deployment time to acquire the number of it’s

neighbors to identify how many nodes are in each wedge which will also be used in

the next stage to determine the number of players in the next game. Then, a sender

runs the WLEB game of the protocol, which balances the energy consumption in the

FWs.

4.2.1 Wedge level energy balance (WLEB)

WLEB was modeled as a dynamic evolutionary game, in which the transmission

range of a sensor node is divided into a set of K FWs. These FWs have different

number of nodes N . Hence, the available energy in these wedges are different. For

any particular time interval, each node can be used as a generator or a receiver

of a packet population λ (except the source and destination nodes). In order to

extend the network lifetime and to prevent network traffic from condensing into a

particular region, those nodes will evenly distribute the packet populations among its

surrounding neighborhood nodes. Since the evolutionary game can capture the energy

dynamic changes in different FWs, it was utilized to achieve a well distributed traffic

loads over the FWs. The variation of wedges energy informations are acquired based

on the proportion of packets Xk = λk/λ which are forwarded through these wedges,

where λk is the number of packets forwarded through a wedge k. The evolution of

changes in the proportions of packets, X = [X1, ..., XK ], among FWs was calculated

according to the fitness function (payoff) as long as the fitness for all packets in all

wedges are unequal. When these proportions become stable and do not change with

time the system reaches the equilibrium state or stability. For this evolutionary game

the equilibrium vector X∗ = [X∗1 , ..., X
∗
K ] is considered as a proper solution for the

wedge level evolutionary game. This vector was used as a gauge to determine the

identical fitness (payoff) for a packet in all FWs. In this study the main components

of WLEB evolutionary game can be described as follows:
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1. Player: A packet is considered as a player while the sender plays the game on

behalf of the packets.

2. Population: The packets that are generated or received by a node are consid-

ered as a population of players λ.

3. Strategies: The variation of FWs selection are considered as a packet strategies

which is denoted by: S = [W1,W2, ...,WK ].

4. Fitness function: The amount of energy assigned to each packet when it is

forwarded through a certain wedge is quantified by the fitness function, where

the fitness function represents a packet’s satisfaction of energy usage in any

region and is defined in term of gain and cost.

In this game the net fitness for the packet that is forwarded through wedge k is

given by equation (3.1). In order to obtain the equilibrium packet distribution vector

X∗ the sender node evolves variation of packet proportions by switching these packets

among different FWs based on the residual energy in theses wedges. Replicator dy-

namics uses switching probability in equation (3.5) to determine the changes in inflow∑
l 6=kXlPk,l(X) and outflow

∑
l 6=kXkPl,k(X) of packets from one FW to another.

When the difference between the expected inflow of the packets and the expected

number of outflow of the packets through a wedge become equal, the system is said to

be at the stable state. This state of stability is reflected in the concept of replicator

dynamics which is given in equation (3.12).

The evolutionary equilibrium of the game is given in Subsection 3.2.3 and the

stability analysis which is given in Subsection 3.2.4 are also applicable on this WLEB

evolutionary game for 3D forwarding wedges. However, the number of nodes in

3D FW is different than in 2D forwarding sub-region because of discarding third

dimensional coordinate in 2D WSN. The wedge is considered dead when it does not

have enough energy for transmission.
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4.2.2 Node level energy balance (NLEB)

The objective of NLEB game is to balance the energy consumption in nodes in a FW

by making all nodes fairly participate in forwarding task. In this phase of 3D-GTEB,

the problem of forwarding packets through a certain FW is modeled as N -player

non-cooperative game. The N -player non-cooperative game is utilized to capture the

selfish behavior of the sensor nodes in WSN since every node tries not to participate

in forwarding in aim of preserve its energy.

This game modeling tries to motivate nodes to cooperate and participate in for-

warding tasks fairly based on the Nash equilibrium (NE). NE is considered as the

optimal solution for the game where all players are satisfied. The normal form game

formulation which is denoted by, G = {Nk, S, Ui,i∈Nk} is given in Table 3.1.

NLEB N -player non-cooperative game consists of three main components:

1. Players: A set of Nk nodes in the same FW is considered as players and Nk ≥ 2.

2. Strategies: Each player has a set of two mixed-strategies, S = [B, B̄], where B

and B̄ represents broadcasting and no broadcasting respectively. A node plays

strategy B with a probability q, and plays strategy B̄ with probability 1− q.

3. Expected payoff: The expected payoff function Ui(s) quantifies the award for

node i when it plays one of its available strategies against other N−1 opponents.

Once nodes in a selected FW receive a packet, they start N -player non-cooperative

game. Then each node calculates its own expected payoff per equation (3.23) and

determines its NE strategy, q∗i based on the payoff matrix given in Table 3.1. The

NES for node i in Equation (3.24). As q∗i depends on the reward value v, a set

of experiments were conducted to determine v. The value of 30.16δ was found to

satisfy the network connectivity requirement [79] and a number of players to formulate

a game [52]. Based on NE strategy given in Equation (3.24), a node makes its
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forwarding decision if its forwarding probability, pi,k, is less than q∗i . The forwarding

probability, pi,k, of node i in Equation 3.26 which is calculated based on the following

three factors:

1. The ideal share of packets, which must be forwarded by every node in a selected

forwarding region, ( (Ci−Ći)
Ci

).

2. The ratio of the residual energy in a node to it’s initial energy, ( Éi
Ei

).

3. The share of packets which is assigned to a selected FW by the sender, ( (λk−λ́k)
λk

).

Then, the node compares it’s own pi,k with q∗i and it forwards if pi,k ≤ q∗i otherwise

waits for round trip time (RTT) of a packet and drops it if it does not overhear the

packet. However, a sensor node is considered dead when it does not have enough

energy for transmission.

4.3 Results and Discussion

In this section, a set of experiments have been conducted to evaluate the performance

of 3D-GTEB. OMNeT++ 4.2.2 with MiXiM framework was used to simulate the

network. The simulation parameters used to configure WSN scenario are given in

Table 3.3. The sensors in the network were randomly deployed in a 3D space with

dimensions of 100×100×100 m3. In this network, four sensor nodes were considered

as sources and they can report to the base station. converge-cast traffic pattern was

used. The transmission power, in sensor nodes, was set to achieve successful delivery

to nodes within a distance equal to the chosen transmission range. In this study, a

WSN with M sensor nodes, where the number of sensors is varied from 120 to 520

nodes, was considered. All results have been acquired by averaging the outcomes of

10 simulation runs with different network topologies. The performance of 3D-GTEB

was investigated based on three metrics:
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1. Network lifetime.

2. Average energy consumption per packet.

3. Packet delivery ratio.

The performance of 3D-GTEB protocol was evaluated in comparison with 2D-GTEB

in three scenarios. These scenarios are:

1. The first scenario concerns the lifetime of network with moderately network

density of 120 sensor nodes with various packet generation rates (PGR).

2. The second scenario concerns the lifetime of network with various network densi-

ties, where the number of sensors varied from 120 to 520 sensors and generation

rate of two packets per second. On the other hand, 2D-GTEB network was

deployed in 2D terrain of 100× 100 m2.

3. The third scenario concerns the packet delivery ratio with different packet gen-

eration rates.
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Figure 4.2. Network lifetime versus different densities.

4.3.1 Network lifetime

In this experiment, 3D-GTEB was compared with 2D-GTEB routing protocol to

evaluate the effect of considering the third dimension on the network performance.

The experiment was conducted based on packet generation of two packets per second

with varied number of sensors from 120 to 520 nodes. Figure 4.2 presents the network

lifetime of both protocols versus the various number of sensors. In 3D-GTEB, the

network lifetime was prolonged longer by 2% to 25% in comparison with 2D-GTEB.

This performance of network in 3D-GTEB is due to considering the third dimension

by nodes in forwarding decision. Although the increase in the network density causes

more redundant transmissions, 3D-GTEB limits the number of participated nodes

better than 2D-GTEB.

Figure 4.3 shows the network lifetime versus various packet generation rates, which
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Figure 4.3. Network lifetime versus different packet generation rates.

varies between 1 to 14 packets per second. The lifetime provided by 3D-GTEB is

longer than 2D-GTEB even with increased traffic loads.

4.3.2 Average energy consumption per packet

This set of experiments concerns about the performance of 3D-GTEB in term of av-

erage energy required to successfully deliver a packet with increase in the number of

sensor nodes in the network. Figure 4.4 depicts the average energy consumption per

packet versus different number of deployed sensors. In this experiment the obtained

results are collected based on a network with different number of nodes and packet

generation rate of two packets per second. The figure shows that a packet requires

less energy per packet in 3D-GTEB than in 2D-GTEB by 4% to 21%. This is because

3D-GTEB utilizes less number of sensors to forward the packet.
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Figure 4.4. Energy per packet versus different densities.

Figure 4.5 shows the energy consumption per packet versus different packet gener-

ation rate. The figure shows the impact of the increase in traffic load in the network

on the average energy consumed per packet. Despite of this traffic increase 3D-

GTEB performance is better than 2D-GTEB because less number of nodes in 3D

space may be located in the same forwarding region in comparison with 2D space.

In 2D-GTEB deployment, the node density in forwarding region is high because all

nodes are distributed on flat surface while in 3D-GTEB the nodes are distributed in

3D space.Therefore, in 2D space the packet passes through more nodes in comparison

with 3D space, causing longer queuing delay and higher congestion.
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Figure 4.5. Energy per packet versus different packet generation rates.

4.3.3 Packet delivery ratio

In this set of experiments the packet delivery ratio is evaluated based on packet

generation rate of two packet per seconds and the different network densities. In

both protocol the deal-line was set to be 0.250 second. Figure 4.6 depicts the packet

delivery ratio versus different number of sensor nodes. The figure shows the delivery

ratio of 3D-GETB increase with the increase in the number of sensor nodes in the

deployment area. This is because, more nodes are required to be deployed to fill 3D

space in comparison with 2D space and with less number leads to to dis-connectivity

or sparse network.

This increase in empty regions makes more packet miss their deadlines. However,

when more nodes deployed in 3D terrain the delivery ratio increase due to considering

third dimension in routing decision, while in 2D more nodes will forward packets even
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Figure 4.6. Packet delivery ratio versus different network densities.

if they are not located in the forwarding region because of nodes projection on a flat

surface.

4.4 Summary

This chapter proposes a decentralized and scalable routing protocol, called three

dimensional game theoretic energy balance (3D-GTEB). This protocol utilizes 3D

information in geographical routing to enhance the routing decisions and to mini-

mize the network overhead. Additionally, energy balance in the protocol was further

improved by using two levels of game theoretic decision making. The first level is

called wedge level energy balance, which employs evolutionary game theory to bal-

ance traffic load over a set of forwarding wedges. EGT shows effective improvement

in network lifetime and energy consumption per packet. The second level is called
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node level energy balance. This technique utilizes the advantage of classical game

theory to capture the selfish behavior of nodes, where they tend not to participate in

forwarding to preserve their energy, and to encourage them to participate in forward-

ing. The simulation results shows that 3D-GTEB provides significant improvement

in network lifetime over similar 2D-GTEB. Moreover, considering third dimension in

3D-GTEB can further extend the network lifetime.
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CHAPTER 5

PROTOCOL EVALUATION AND ANALYSIS

5.1 Introduction

The effectiveness of combined RLEB evolutionary game and NLEB N -player non-

cooperative game in GTEB was tested against three random test protocols. These

three random test protocols are labeled as: Random-Random, Random-CGT, and

EGT-Random. In these labeling, the first label indicates the decision making mech-

anism of packet forwarding sub-region selection and traffic load assignment and the

second label indicates the decision making mechanism of forwarding node selection

in a sub-region.

Table 3.3 shows the simulation parameters that are used to configure WSNs.

Random test protocols and GTEB protocol have been evaluated using OMNET++

4.2.2 network simulator with MiXiM framework [81].

In this analysis study, the transmission range of a sender/relay node is divided into

K packet forwarding sub-regions. Different network scenarios in term of the number

of deployed sensors and traffic generation rates were considered. Every random test

protocol was designed to evaluate the effectiveness of using one of the game theoretic

decision making in one level on the network performance. Additionally, the influence

of different sizes of packet forwarding regions on network lifetime was also evaluated.
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The performance of the proposed protocol, GTEB, was analyzed for the following

three routing matrices: network lifetime, average energy consumption per packet, and

packet delivery ratio. The three random test protocols will be discussed in Section 5.4,

the evaluation and analysis study presented in Section 5.3. In Section 5.4, the influ-

ence of different sizes of packet forwarding regions is analyzed. Finally, the summary

of the chapter is presented in Section 5.5.

5.2 Random Test Protocols

5.2.1 Random-Random protocol

The objective of this test protocol is to evaluate the influence of applying two levels

of game theoretic decision making on the network performance. In this scenario, the

forwarding region were choose randomly and the forwarding node in a forwarding

region was also selected randomly. The amount of the proportions of the packets that

assigned to the forwarding sub-regions and the nodes in the sub-region were randomly

determined regardless the amount of residual energy in the nodes and regions. In this

forwarding routing algorithm, the sender spreads it’s traffic load randomly on it’s

neighborhood and a potential forwarding node generates a random number either 0

and 1 and if the this number is 1 the node forwards the packet otherwise drops it.

5.2.2 Random-CGT protocol

The objective of this random test protocol is to assess the performance of the network

when the traffic load is randomly distributing over the set of packet forwarding sub-

regions, while in the forwarding subregion one node is selected to perform the packet

forwarding task based on the classical game theory. In the region level, the sender

randomly distributes its traffic population over the forwarding sub-regions, while in

the node level N -player non-cooperative game was used to distribute the traffic load
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among the region nodes. Every node in forwarding subregion forward or drop the

received packet on it’s forwarding probability as given in (3.26) and Nash equilibrium

in equation (3.24). The detail of N -player non-cooperative game is discussed in

Section 3.2.5.

5.2.3 EGT-Random protocol

This protocol is used to evaluate influence of EGT utilization on the network life-

time and packet delivery ratio. In this test scenario, the sender spreads it’s packet

population over a set of packet forwarding sub-regions based on their residual energy

using the concepts of replicator dynamics in EGT, while a forwarding node in the

sub-region was chosen randomly. The detail of the RLEB evolutionary game is stated

in Section 3.2.1. The findings of this experiment signifies the effectiveness of combin-

ing two different games in GTEB in comparison with one game in EGT-Random on

the network performance. The results of these studies are presented and discussed in

the next section.

5.3 Network Performance Analysis

5.3.1 The effect of network density on network lifetime

In this set of experiments, the packet generation rate was chosen to be two packets

per second whereas the number of sensor nodes is varied from 120 to 520 nodes. Fig-

ure 5.1 presents the network lifetime versus the number of nodes in deployment space.

The figure shows GTEB provided 9% to 38% longer network operation compared to

other three random forwarding algorithms. This superior performance is because of

balancing the energy consumption in nodes surrounding the senders/relays using evo-

lutionary game and eliminating redundant transmissions in the forwarding sub-regions
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Figure 5.1. The effect of network density on lifetime in GTEB and the three
protocols.

using N -player non-cooperative game. However, EGT-Random curve shows similar

trend as GTEB but with relatively lower lifetime, since at node level, the random node

selection algorithm does perform as good as game theoretic approach. On the other

hand, for the two other approaches, namely Random-CGT and Random-Random,

the packets are randomly distributed to the regions, and lifetime is significantly re-

duced as a result. That confirms unfair packet distribution over forwarding regions

significantly shorten the lifetime. Although, the increased node density may cause

more redundant transmissions, GTEB effectively managed forwarding decisions to

distribute the packets among the nodes and achieved the best result.
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Figure 5.2. The effect of traffic load on the network lifetime in GTEB and the three
protocols.

5.3.2 The effect of traffic load on network lifetime

This set of experiments was conducted to check GTEB’s ability to deal with various

traffic load amounts when the network size is fixed. Figure 5.2 illustrates the perfor-

mance of GTEB with increasing the packet generation rate in a fixed network size of

120 nodes. This figure shows that the GTEB protocol performance is better than the

other three random protocols even with increased traffic load by 30% to 78%, due to

intelligent forwarding decision making.

This figure proofs that using forwarding probability provided by Nash equilibrium

condition and fitness function in game theoretic approaches will allows better utiliza-

tion of energy in each sensor network compared with other random protocols. GTEB

integrates the accumulated energy in various sub-regions and the remaining energy

in every individual node in sub-region in forwarding decision, while for other random

protocols at least one level does not consider the energy factor in their forwarding

decision and forwards the packet randomly.
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Figure 5.3. The effect of network density on energy per packet in GTEB and three
random protocols.

5.3.3 The effect of network density on average energy con-

sumption per packet

The energy that is required for successfully delivering a packet to the destination is

evaluated in this section. In this scenario, GTEB is evaluated with three random

protocols. Figure 5.3 shows that the average consumed energy per packet in GTEB,

is better than other random algorithms by 1.12% to 60%. In this figure, the results

are obtained based on different network densities with packet generation rate of two

packets per second. The figure shows that the increase in the number of sensor nodes

increases the energy consumed per packet, because random protocols do not consider

the residual energy or do not considered ideal number of packets to be forwarded by

each node and forwarding region.
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Figure 5.4. The effect of traffic load on energy per packet in GTEB and three random
protocols.

5.3.4 The effect of the traffic load on average energy con-

sumption per packet

This set of experiments measures the effect of varied traffic load on the energy con-

sumed per packet. Figure 5.4 illustrates the energy consumption per packet in GTEB

and other three random protocols with different packet generation rates. The figure

shows that increased traffic in the network impacts on the average energy consumed

per packet. However, despite of this traffic increase GTEB still has better perfor-

mance because of every node makes ideal forwarding decision based on combination

of Nash equilibrium and its forwarding probability which considered node’s residual
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Figure 5.5. Packet delivery ratio in GTEB and three test cases.

energy, its share of the packet forwarding and the share of packets that is assigned

to it’s own forwarding sub-region. Besides that, GTEB traffic distribution mecha-

nism prevents the traffic load from condense in some parts of the network. GTEB

performance is better than other random algorithms in average 1.12% to 87.13%. On

the contrary, the randomness of forwarding tasks and unfair traffic distribution, in

other protocols, causes this difference in energy depletion between them and GTEB

protocol.

5.3.5 The effect of the traffic load on packet delivery ratio

In this set of experiments the packet delivery ratio of GTEB is evaluated with other

random three random protocols with different packet generation rates varied from
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Figure 5.6. GTEB lifetime evaluation using two, four and eight packet forwarding
regions.

1 to 14 packets per second. In Figure 5.5, the packet delivery ratio, in GTEB, is

compared to three random test protocols. In this figure, GTEB shows better packet

delivery rate by 2% to 52% in comparison with other random test protocols despite

of increasing traffic load in the network. This promising results are obtained due to

avoiding the congested areas in the network and region with low node density.

5.4 The effect of Packet Forwarding Region’s Size

on Network Lifetime

The objective of this experiments is to evaluate the effect of the size of forwarding

sub-regions on the lifetime of the network. In these set of experiments, the network
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lifetime is evaluated with different number and sizes of packet forwarding regions

around sender/relay nodes. Figure 5.6 illustrates GTEB lifetime evaluation with

two, four and eight forwarding regions. The figure shows that with the increase in

the number of forwarding regions the network lifetime is significantly increased. This

improvement is correlated with the size of forwarding regions, because with small size

of regions there will be smaller number of nodes, which can participate in forwarding

task, consequently more nodes preserve their energy. While with large regions, more

nodes spent their energy for receiving and manipulating the packets. The figure shows

that the average lifetime extension is from 8% to 44% in case of eight forwarding sub-

regions.

5.5 Summary

In this analysis study, it is observed that employing two levels of game theoretic

decision making is more effective than employing only one level to improve the net-

work’s performance. The simulation results showed that GTEB provided significant

improvement in term of extending network lifetime and packet delivery ratio over a

number of random test protocols (when only one level of game theoretic decision is

used). Moreover, dividing the transmission range of a sender/relay node into smaller

forwarding regions prolonged the network operation even further. The results also

confirmed that GTEB is adaptive to different network factors including: network

density variation, traffic load variation and asymmetric energy use.
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CHAPTER 6

DISSERTATION CONCLUSION

6.1 Contributions

This dissertation has presented two adaptive, scalable, and energy balance routing

protocols that utilize the location information of sensor nodes to provide wide en-

ergy balance in order to extend the network lifetime. In this dissertation two games

theoretic: energy balanced routing geographical protocols for WSNs deployed in 2D

space and 3D space were presented. In both protocols, the effectiveness of proposed

methods was demonstrated through a set of numerical simulations. The results pro-

vided confirm that these protocols can be successfully implemented in many WSN

application scenarios, to balance energy consumption and to extend WSN lifetime.

Both proposed protocols were designed based on the concept of an even distribu-

tion of the traffic load over a large section of the sensor network. The first protocol

GTEB routing protocol for WSNs is designed to be implemented in 2D WSNs, while

the second protocol, three dimensional 3D-GTEB is designed to work with a network

that deployed in 3D space.

In GTEB and 3D-GTEB, the problem of energy balance is divided into two sub-

problems, which are RLEB and NLEB. In RLEB, an evolutionary game was utilized

to provide energy balance on a set of forwarding sub-regions around every sensor node
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between source and destinations. The results proveded in this dissertation shows that,

the using of EGT was useful to balance the energy on a set of packet forwarding sub-

regions because of its ability to capture the dynamic changes in the energy in those

regions. In NLEB, N -player non-cooperative game was used to balance energy con-

sumption in nodes that are located in the sub-regions. The evaluation experiments

proved that N -player non-cooperative game will provide a good balance hence, the

network lifetime was extended. A simulation study was conducted to compare GTEB

proposed algorithm with RTLD [29], RPAR [35] and probabilistic forwarding proto-

cols in term of network lifetime, energy consumption per packet and packet delivery

ratio. The proposed protocol made the network function is longer than the function

of other competing GRPs with better packet delivery ratio.

3D-GTEB was designed to benefit from the advantages of considering the third

coordinate of the nodes’ locations to provide an accurate routing calculation and

lowering the network overhead. This protocol was named 3D-GTEB and designed

to work with WSNs deployed in 3D terrain when the third coordinate can not be

discarded. The simulation results showed that by considering the third coordinate

in the routing algorithm will provide a better packet delivery ratio and the network

operation will last longer than the GTEB, which was designed to work with WSNs

deployed in 2D space.

The effectiveness of implementing evolutionary game theory and classical game

theory on the network performance was evaluated based on various scenarios. GTEB

was compared to three random test protocols: Random-Random, Random-CGT and

EGT-Random. These random test protocols were employed by considering only one

level game theoretic decision making either in region level or node level. The results

confirm that GTEB will prolonged the network lifetime more than in other three

protocols, less energy consumed per packet, and the ratio of delivered packets was

higher than in comparison to other three random protocols.
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6.2 Future Research Directions

In this dissertation, it assumed that the WSN is static and sensor node mobility is

not inspected. Thus, it would be interesting to consider the network mobility to the

improved version of both protocols GTEB and 3D-GTEB. However, it is expected

that, with some minor modifications, the protocols would improve the performance

of the 2D-WSNs and 3D-WSNs dynamic. Finally, the findings of this dissertation

were conducted on the basis of numerical analysis using simulation tests. It would

be interesting to implement the proposed GTEB and 3D-GTEB protocols in real

sensors and evaluate the performance (network lifetime, average energy consumption

per packet and packet delivery ratio) of the protocols in real life applications.
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APPENDIX A

APPENDIX A: STABILITY ANALYSIS OF RLEB

A.1 Stability Analysis of RLEB Evolutionary Game

Over K Regions

To provide stability analysis of RLEB evolutionary game over a set of K packet

forwarding sub-regions, the set of differential equations of replicator dynamics is given

by,

Ẋ = P (X)X −X, (A.1)

which must have ESSs that satisfy the conditions in (2.6a) and (2.6b). In (A.1), X =

{X1, ..., XK} packet proportion distribution over K sub-regions and P (X) represents

the transition probability matrix for a packet to move from one sub-region to any

other sub-regions. The transition probability matrix is given by:
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P (X) =



1 βX1(F1(X) − F2(X) βX1(F1(X) − F3(X) · · · βX1(F1(X) − Fk(X)

0 1 − βX1(F1(X) − F2(X) βX2(F2(X) − F3(X) · · · βX2(F2(X) − Fk(X)

.

.

.

.

.

.
. .
.

.

.

.

0 0 0 1 − βX2(F2(X) − Fk(X)



Hence, in order to find the equilibrium vector X∗, the set of equations in (A.1)

must be equated to zero and solved where the following two conditions are satisfied,

Xk ≥ 0 and, (A.2)

K∑
k=1

Xk = 1. (A.3)

Since the replicator dynamics in (A.1) depend on P (X), which is a continuous

function over the closed interval [0, 1]. Then the function f(X) which is defined

on the space of all X by f(X) = P (X)X is also continuous on the same interval.

Consequently, as proven by Brouwer fixed point theorem [87], there will be at least

one fixed point for f(X). This fixed point represents the equilibrium state of (A.1)

and denoted by X∗. Since P (X) has positive entries then the vector X∗ = P (X∗)X∗

is positive.

In order to proof that X∗ is ESSs, the system of equation (A.1) is linearized around

X∗ and Eigenvalues in Jacboain Matrix of (A.1) must have negative real parts. The

linearization of (A.1) around X∗ is given by,

Ẋ = (X∗P (X∗)−X∗) +
K∑
j=1

(Jk,j(X
∗)(Xj −X∗j )) (A.4)
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(A.4) can be simplified as,

Ẋk =
K∑
j=1

(Jk,j(X
∗)(Xj −X∗j )), (A.5)

where J(X) = [Jk,j(X
∗)] is Jacobian Matrix and can be defined as below equation,

J(X) =



X1β
K∑

j=2

X1
∂F1(X)

∂X1

−X1X2β
∂F2(X)

∂X2

−X1X3β
∂F3(X)

∂X3

· · · −X1Xkβ
∂Fk(X)

∂Xk

−X2X1β
∂F1(X)

∂X1

X2X1β
∂F2(X)

∂X2

+X2β

k∑
j=3

Xj
∂F2(X)

∂X2

−X2X3β
∂F3(X)

∂X3

· · · −X2Xkβ
∂Fk(X)

∂Xk

.

.

.

.

.

.

.

.

.

.

.

.

−XkX1β
∂F1(X)

∂X1

−XkX2β
∂F2(X)

X2

−XkX3β
∂F3(X)

∂X3

· · · Xkβ

k−1∑
i=1

Xj
∂Xk(X)

∂Xk



Since the summation of the columns’ elements in J(X) are zeroes then Jacobian

matrix has Eigenvalues of zeroes. Furthermore, the diagonal elements Ji,i(X) are

negative because ∂Fi(X)
∂Xi

< 0 and J(X) is diagonally dominant in a way such that

Ji,i(X) +
∑

j 6=i |Jj,i(X)| = 0 ∀i. Greshgorin circle theorem [88] implies that all other

Eigenvalues in J(X) have negative real parts and this proves that X∗ is ESSs [78].
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