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ABSTRACT 

The incidence of cancer worldwide is continuously on the rise, and the death toll 

associated with cancer, is constantly increasing. Available cancer therapy is 

unable to combat this ever-changing disease, and the severe side effects 

associated with various forms of therapy, indicate a serious need for the 

development of more effective and safer alternatives to currently available 

treatment. 

The use of natural health products in disease treatment has contributed to the 

development of over 75% of available chemotherapy. In this thesis, we study the 

potential anti-cancer effect of two natural health products, dandelion root and 

long pepper extracts. 

The major objectives of this work were to; 

- Evaluate the efficacy and mechanism of these extracts in various cancer 

models,  

- Assess any potential safety and toxicity issues associated with the use of 

these extracts and, 

- De-convolute and identify the pharmacologically active components that 

contribute to the anti-cancer activity of these extract 

Using standard biochemical and morphological assays, the induction of various 

programmed cell death processes was assessed, following treatment in cancer 

and non-cancer cell models, as well as in animal models. 

The results obtained indicate that dandelion root and long pepper extracts were 

efficacious in selectively inducing apoptosis and pro-death autophagy in various 



 vii 

cancer cell models. Dandelion root extract rapidly activated the extrinsic pathway 

of apoptosis, a situation that was crucial to apoptosis induction in leukemia cells, 

but not required for colorectal cancer cells. Gene expression analysis showed 

that dandelion root extract efficiently targets multiple pathways to promote its 

anti-cancer activity.  

The generation of reactive oxygen species by long pepper extract treatment, 

appeared to be partially responsible for the induction of apoptosis in cancer cells. 

Furthermore, the lack of toxicity observed in animal models, on oral 

administration regimens of dandelion root and long pepper extracts, further 

confirm the safety of these extracts. Interestingly, the same regimen of oral 

administration of these extracts was successful in halting the growth of colon 

tumors in xenograft models. 

These findings provide scientific validation concerning the safe and effective use 

of natural health products as non-toxic and potentially more efficacious forms of 

therapy.  
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GENERAL INTRODUCTION 
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CANCER 
 

Cancer is mainly characterized a disease characterized by uncontrolled 

cell growth and proliferation, however, it is a term that describes over a hundred 

forms the disease, as almost every body tissue is capable of developing tumors 

(Weinberg, 1996).  Cancer arises from one cell, usually initiated by a program of 

inappropriate cell division, with cells that have accumulated multiple mutations, 

specifically in classes of genes (proto-oncogenes and tumor suppressors), 

usually meant to control the cell growth and division processes; for instance 

mutations in proto-oncogenes encourage their conversion to overly active 

oncogenes, which drive excessive growth and multiplication, while mutations in 

tumor suppressors are inactivating mutations, preventing their ability to halt 

excessive growth and multiplication of cells with mutations. These mutations 

result in uncontrolled cell proliferation, the very definition of cancer, and as these 

cells continually divide, they accumulate more mutations that confer further 

proliferative advantages, as well as safeguards against growth suppression 

(Weinberg, 1996; Hanahan & Weinberg, 2000). This thesis will focus on targeting 

some of the major ―hallmarks‖ of cancer cells that enhance their proliferative 

signaling, especially in leukemia, pancreatic cancers and colorectal cancers. 

According to the World Health Organization, in 2012, cancer led the 

charge as the second leading cause of death worldwide, with 8.2 million cancer-

related deaths in that year alone, a rise from 2008, which saw 7.6 million deaths 

(Jemal et al., 2011; Siegel et al., 2014). Canada alone saw a 3700 increase in the 

incidence of cancer from 2013 to 2014; in 2013, there were 187,600 new cases 

versus 191,300 in 2014. Along with this increase in the incidence of cancer, a 
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corresponding increase in cancer related deaths were observed, with 76,600 

deaths estimated in 2014, compared to 75,500 deaths in 2013 (Statistics 

Canada, 2013; Statistics Canada, 2014).  

Not only is cancer a personal burden (on patients and loved ones), it also 

has major economic consequences. The costs associated with cancer care, 

including healthcare costs (physicians and hospital expenses) as well as costs 

associated with lost productivity and premature death, have steadily increased 

over the years and due to the rising increase in cancer incidence and related 

death, these costs are predicted to continue to rise (Statistics Canada, 2014). 

This begs the dire need to develop non-toxic, preventative and therapeutic 

regimens for cancer. 

HALLMARKS OF CANCER 

The hurdles associated with finding an effective mode of chemotherapy 

are generally caused by the acquired capabilities that define a cancer cell. These 

hallmarks are essential to cancer cell growth and survival and enable cancer cells 

evade routine safeguard mechanisms and therapeutic agents. The multistep 

theory governing the process of tumorigenesis reflects the genetic alterations that 

promote progressive transformation of normal human cells into their malignant 

counterparts and the hallmarks of cancer can be associated with each step 

(Hanahan & Weinberg, 2000). In 2000, Hanahan and Weinberg outlined the basic 

hallmarks that are associated with cancer cell survival and this list was modified 

in later years (Hanahan & Weinberg, 2000; Hanahan & Weinberg, 2011). The 

hallmarks are outlined below and in figure 1. They include; 
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i. The ability to sustain growth signals by generating many oncogenes, which 

act as growth signals and remove dependence on normal cell signaling, as 

observed in the up-regulation of growth factors and growth factor receptors 

(Hanahan & Weinberg, 2000; Hanahan & Weinberg, 2011). 

ii. The ability to evade growth suppressive signals, for instance, in the 

disruption of the retinoblastoma (Rb) signaling pathway, which allows the 

liberation of E2F to promote cell proliferation and render cancer cells 

insensitive to anti-growth stimuli (Hanahan & Weinberg, 2000; Hanahan & 

Weinberg, 2011). 

iii. The ability to metastasize and invade surrounding tissues, allowing tumor 

cells escape primary site to a secondary site, where they can take up 

residence. This is usually due to altered protein functions of proteins like 

the cell - cell adhesion molecules (CAMs), which are involved in securing 

cells to their surroundings (Hanahan & Weinberg, 2000; Hanahan & 

Weinberg, 2011). Processes like anoikis, a form of cell death caused by 

loss of contact with the extracellular matrix and/or neighboring cells, are 

usually down-regulated in cancer cells, due to up-regulation of proteins, 

such as TrkB (Liotta & Kohn, 2004). Such alterations provide cancer cells 

with the ability to metastasize from their primary location to a distant site, 

without the accompanying cell death. 

iv. The ability of cancer cells to maintain replicative signaling, usually as a 

result of up-regulating the expression of the telomerase enzyme, so as to 

inhibit telomere shortening and maintain telomere length (Hanahan & 

Weinberg, 2000; Hanahan & Weinberg, 2011). 
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v. The ability to develop new blood vessels (angiogenesis), which allows for 

the continuous supply of oxygen and nutrients, required for the survival of 

tumor cells. Angiogenesis signals include the up-regulation of proteins like 

the vascular endothelial growth factor (VEGF) (Hanahan & Weinberg, 

2000; Hanahan & Weinberg, 2011). 

vi. The ability to bypass cell death signal, such as apoptosis, anoikis and 

autophagic cell death. This is usually observed in collaboration with the 

overexpression of pro-survival proteins, such as the pro-survival members 

of the Bcl-2 family (Frankin & McCubrey, 2000; Ghobrial et al., 2005). 

Further research into the hallmarks of cancer cells that provide growth 

advantage  led to the introduction of new enabling characteristics and additional 

hallmarks (Figure 1). These emerging hallmarks have been shown to be involved 

in the development and progression of some, perhaps all cancers. The first newly 

emerging hallmark is one that involves the ability of cancer cells to reprogram 

their cellular metabolism, by deregulating cellular energetics, in order to 

continuously promote cell proliferation and the other allows cancer cells evade 

immune destruction, where the T and B lymphocytes, as well as macrophages 

and natural killer cells would normally identify cancer cells and target them for 

destruction. These hallmarks are still under investigation but however, are 

supported by the emerging characteristics of genomic instability (which allows 

multiple genetic alterations drive tumor progression) and inflammatory response 

by innate immune cells, normally designed to fight infections and heal wounds. 

These emerging characteristics and hallmarks therefore supports the previously 
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described hallmarks of cancer cells and have proven to promote tumor 

progression (Hanahan and Weinberg, 2011). 
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Figure 1: The Hallmarks of Cancer that encourage the process of 

carcinogenesis, the promotion of proliferation and the enhanced ability to escape 

safeguard mechanisms of cell death programs and growth suppression. The 

early onset mutations in proto-oncogenes and tumor suppressor genes are 

enabling characteristics that promote cell proliferative signaling, evade growth 

suppressors and enable replictive immortality. These mutations and further 

replicative ability promote more mutations and metabolic changes in these cells, 

promoting invasion, metastasis, the induction of angiogenesis and the evasion of 

cell death programs. These hallmarks provide targets for the development of 

future cancer therapies. (Adapted from Hanahan & Weinberg, 2000; Hanahan & 

Weinberg, 2011). 
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CANCER METABOLISM 

Originally thought to be the root cause of carcinogenesis, the ―Warburg 

effect‖ has gained a lot of notoriety, as a key metabolic hallmark of cancer cells 

(Warburg, 1956; Hsu & Sabatini, 2008). The Warburg effect focuses on the ability 

of cancer cells to bypass regular mitochondrial oxidative phosphorylation 

(OXPHOS) for less favorable energy production by aerobic glycolysis (Warburg, 

1956). Several studies have further explored the various aspects of cancer cell 

metabolism and how it affects cancer cell proliferation and survival. Generally, 

proliferating cancer cells have two main metabolic challenges to overcome; the 

―challenge of meeting the bioenergetics and biosynthetic demands of increased 

cell proliferation‖ and the ―challenge of surviving environmental fluctuations in 

nutrients and oxygen availability‖ when tumor growth exceeds the delivery 

capacities of existing structures. Evidence has shown that many mutated genes, 

through oncogenic activation, loss of tumor suppression function, as well as 

altered cellular metabolism, lead to the induction of the Warburg effect and all of 

these mutations combined, are intricately involved in carcinogenesis and 

metabolic regulation (Jones & Thompson, 2009; Chandel, 2014). 

In agreement with the Warburg hypothesis, one of the primary metabolic 

changes associated with rapidly proliferating cancer cells is the induction of 

aerobic glycolysis, instead of OXPHOS for the generation of ATP (Figure 2), 

while providing essential carbon sources for the biosynthesis of other essential 

macromolecules. Over 90% of the pyruvate produced from aerobic glycolysis in 

cancer cells is converted to lactate by lactate dehydrogenase (LDHA), to recover 

NAD+ required for continuous glycolytic process, a step that has been shown to 
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be necessary for the continuous proliferation of tumor cells (Cairns et al., 2011). 

Although the glycolytic process is less favorable for the generation of ATP 

molecules, it does have the ability to produce ATP at a faster rate, while 

generating metabolic intermediates that promote cell growth and proliferation, 

such as 3-phosphoglycerate (3-PG), which serves as a carbon source for amino 

acid and lipid synthesis. The remaining 10% of produced pyruvate (which does 

not get converted to lactate) can be transported into the mitochondria but forced 

out of the tricarboxylic acid cycle (TCA), which leads to a partial loss of 

mitochondrial integrity, making the mitochondria a viable target for mitochondria 

targeting drugs, MITOCANS (Kroemer, 2006; D’Souza et al., 2011). 

It has been established that this deregulated cellular metabolism is 

associated with drug resistance to some of the available cancer therapies (Zhao 

et al., 2013). A common regulator of cell metabolism, both transformed and non-

transformed cells, is the lipid kinase, phosphatidylinositol-3-kinase (PI3K), which 

regulates levels of phosphorylated phosphatidylinositol (PIP3) at the plasma 

membrane and downstream signaling cascade involved in metabolic processes 

that promote cell proliferation. Non-transformed cells have a tight control on this 

signaling pathway by dephosphorylation and thereby, inactivation of PIP3, by the 

tumor suppressor, phosphate tensin homolog 10, PTEN. In transformed cancer 

cells, however, mutations in PTEN support over-activation of the PI3K pathway 

and the promotion of cell proliferation (Jones & Thompson, 2009). These findings 

suggest that the mitochondria and the differential metabolic activity of cancer 

cells, present potential viable and selective targets in cancer therapy (Zhao et al., 

2013). 
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Figure 2: The metabolism of a Cancer vs. Non-Cancer cell show the 

differences between cancer cell and a normal cells that could contribute to the 

strengths and vulnerabilities of cancer cells, compared to that of their normal cell 

counterparts. Cancer cells up-regulate the expression of hexokinase II to promote 

glycolysis and even under normal aerobic conditions, cancer cells convert most 

of the product formed from glycolysis, pyruvate, into the lactate. Lactate promotes 

cancer environment acidification, evasion of growth suppressors, invasion and 

metastasis and the evasion of cell death programs. Furthermore, the dependence 

of cancer cells on glycolysis leads to a reduction in the rate of mitochondrial ATP 

production through the electron transport chain (OXPHOS), leading to the 

hyperpolarization of the mitochondria in cancer cells, a vulnerability that could be 

targeted for cancer therapy. (Adapted from Kroemer, 2006; D’Souza et al., 2011). 
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PROGRAMMED CELL DEATH (PCD) 

Cell death programs occur naturally in multicellular organisms as a way to 

maintain tissue homeostasis (Ziegler, 2004). Therefore, it can be inferred that a 

disruption in cell death processes can play a role in the development of various 

diseases. One of the main hallmarks of cancer cells is their ability to evade 

programmed cell death programs, even in the face of severe cellular damage 

(Hanahan & Weinberg, 2011). These damaged cells are still able to replicate and 

proliferate, leading to an increase in the amount of damaged cells. As these cells 

continuously replicate, they accumulate more mutations allowing survival of 

cancer cells, their translocation to a different location in the body (metastasis), 

and the development of other characteristics found in cancer cells (Weinberg, 

1996; Hanahan & Weinberg, 2011). These findings indicate that PCD play a 

significant role in preventing carcinogenesis, and that defects in such processes 

contribute significantly to the development of cancers, as well as other diseases.  

Initially, necrosis and apoptosis were the major forms of cell death studied, 

with apoptosis being distinguished from necrosis, as apoptosis was considered 

physiological, programmed and inconspicuous, while necrosis was considered 

pathological, and a response to traumatic situations and external injury (Ziegler, 

2004; Ghobrial et al., 2005). More recently, other forms of PCD have been 

discovered, including autophagy, necroptosis and oncosis, to name a few (Fadeel 

& Orrenius, 2005; Coates et al., 2010). The introduction of new forms of PCD 

have enabled further understanding of the role of cell death in the development of 

diseases, especially cancer. This thesis focuses on the two main forms of PCD, 

apoptosis and autophagy, and their roles in carcinogenesis. 
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APOPTOSIS (PROGRAMMED CELL DEATH TYPE I) -  

The significance of PCD to cancer initiation and progression has being a 

major hot button in cancer research. Kerr and colleagues studied a distinct mode 

of cell death, separate from necrosis, and have shown that this process plays a 

significant role in cancer. As with the hallmarks of cancers, they observed a 

distinct lack of apoptosis, also known as ―cellular suicide‖ or PCD in cancer cells, 

which was reversed when these cells were exposed to cytotoxic agents and/or 

irradiation (Kerr et al., 1994). The morphological characteristics of this mode of 

cell death were characterized and by the end of the 20th century, much was 

known about the process of apoptosis (Ziegler, 2004). 

Apoptosis, a term derived from the Greek word that describes the ―falling 

off of petals from a flower or leaves from a tree‖, was coined in order to describe 

a physiological, energy-dependent and highly regulated process of controlled 

cellular self-destruction. This is distinct from necrosis, which is a passive, 

degradative and energy-independent mode of cell death (Gewis, 2003; Fadeel & 

Orrenius, 2005; Elmore, 2007). It is a process that occurs normally during 

development and aging, and as a defense mechanism against immune reactions 

and damage to the cell, induced by noxious agents, such as ionizing radiation 

and some of the available forms of chemotherapy (Elmore, 2007). 

Although both apoptosis and necrosis can occur independently, 

sequentially or simultaneously, the identification of the morphological 

characteristics of both forms of cell death can be used to distinguish apoptosis 

from necrosis and other forms of PCD (Elmore, 2007). Apoptosis occurs in a 
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highly established sequence of events, often seen with the condensation of the 

nuclear and cytoplasmic material, the activation of cysteine-dependent aspartic 

proteases (caspases) and the reorganization and blebbing of the cell membrane 

to externalize phopshatidylserine. This externalized phosphatidylserine (PS) is 

essential in the apoptotic process, as it aids in the recognition of compact 

membrane-enclosed structures, called apoptotic bodies, by phagocytes or 

neighboring cells (Fadeel & Orrenius, 2005; Coates et al., 2010). The taking up of 

the apoptotic bodies prevents the triggering of an inflammatory response, which 

is also a distinguishing characteristic from necrosis. During necrosis, the swelling 

of the plasma membrane and its eventual disruption, allows the release of the 

cytoplasmic content into the surrounding tissue, eventually leading to the 

recruitment of pro-inflammatory signals and inflammatory cells (Gewis, 2003; 

Elmore, 2007).  

There have been conflicting reports on the reversibility of apoptosis, 

following apoptotic stimuli receipt and induction. Studies have shown that, 

although thought to be a reversible process, blocking the engulfment of apoptotic 

bodies by phagocytic cells in C. elegans, can enhance cell survival (Elmore, 

2007). This is in direct contrast to other findings that show that once apoptotic 

stimuli are received, the downstream cascade of events inevitably leads to the 

permeabilization of the mitochondrial membrane, which leads to the release of 

pro-apoptotic factors and the activation of caspases. The activated caspases 

cleave downstream molecules, including the caspase activating DNase (CAD), 

which cleaves DNA into fragments, and poly (ADP-ribose) polymerase (PARP), 

which is involved in DNA repair, caused by cleavage. The cleavage of PARP 
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prevents its repair mechanism and the process of apoptosis remains ongoing 

(Wyllie, 2010). Once these events occur, the cell is usually committed to 

apoptosis, hence no reversal in the process of apoptosis is possible (Coates et 

al., 2010). The focus of cancer therapy is therefore aimed at providing enough of 

an apoptotic stimulus that would cause the permeabilization of the mitochondrial 

membrane, the release of apoptogenic factors and the downstream caspase 

cascade in cancer cells. 

For any of the aforementioned morphological characteristics to be 

observed, the downstream signaling cascade of apoptosis has to commence, 

following the receipt of apoptotic stimulus. There are two major pathways of 

apoptosis; the first being the extrinsic (cytoplasmic) pathway, which is triggered 

through receptors belonging to the Tumor Necrosis Factor (TNF) superfamily of 

receptors and the second is the intrinsic (mitochondrial) pathways, which is 

triggered by internal stress, such as irradiation or noxious agents (Figure 3). Both 

pathways are linked by several factors and, as such, inhibitors of apoptosis tend 

to inhibit both pathways (Ghobrial et al., 2005). These pathways involved in 

apoptosis are discussed below; 

THE EXTRINSIC PATHWAY OF APOPTOSIS 

The extrinsic pathway, also known as the death receptor mediated 

pathway of apoptosis, involves proteins in the TNF receptor superfamily (Figure 

3). These proteins share a cysteine-rich extracellular domain, as well as a 

cytoplasmic domain of about 80 amino acids, called the death domain (Elmore, 

2007). These death domains play a significant role in transmitting the death 

signal from the cell surface to intracellular signaling pathways (Ghobrial et al., 
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2005). This process commences with the binding of a specific death ligand to its 

corresponding death receptors (e.g. Fatty acid synthetase [FasL/FasR]; Tumor 

Necrosis Factor [TNF-/TNFR1] and TNF-related Apoptosis Inducing Ligand 

[TRAIL/TRAIL-R1, R2]) (Fulda & Debatin, 2006). Once the ligand is bound to its 

receptor, cytoplasmic adapter domains with corresponding death domains that 

bind the receptors, such as the Fas-associated death domain (FADD) and the 

TNF receptor type-1 associated death domain (TRADD), are recruited to the 

cytoplasmic side. This interaction recruits pro-caspase-8, an initiator caspase, by 

its death effector domain (DED) to the death inducing signaling complex (DISC), 

which is a complex of the membrane receptor, death domains and pro-caspase-

8. Once bound, several pro-caspase-8 molecules are in close proximity to one 

another, resulting in the auto-catalytic cleavage and activation of caspase-8. The 

activated caspase-8 then triggers the execution phase of apoptosis, by the 

cleavage of downstream effector caspases, such as caspase-3 (Ghobrial et al., 

2005; Fulda & Debatin, 2006; Coates et al., 2010). If the activating signal in 

extrinsic apoptosis is strong enough, the activated caspase-8 will can directly 

activate the effector caspase-3, however if this signal is not strong enough for the 

execution of apoptosis, the signal is usually amplified by linking the extrinsic 

pathway to the intrinsic pathway. This occurs when the activated caspase-8 

cleaves a member of the Bcl-2 family of proteins, Bid (BH3 interacting domain 

death agonist), to its truncated form, tBID. tBID translocates to the mitochondria 

and activates intrinsic apoptosis (Gewis, 2003). 
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THE INTRINSIC PATHWAY OF APOPTOSIS  

In apoptosis regulation, the mitochondria are not only effective in the 

induction of apoptosis following Bid cleavage, but also plays an integral role in 

the transmission of positive or negative death signals, following apoptotic stimuli. 

The positive signals for mitochondrial apoptosis include radiation, toxins, some 

chemotherapeutic agents, hypoxia, hyperthermia, viral infections, and free 

radicals, while the negative signals include loss of growth factors and starvation 

(Gewis, 2003; Elmore, 2007). These non-receptor mediated stimuli produce 

intracellular signals that act on the Bcl-2 family of proteins, which then directly on 

the mitochondria, to disrupt the mitochondrial inner transmembrane potential 

(Δψm) and the mitochondrial permeability transition pore (Fadeel & Orrenius, 

2005). The Bcl-2 family of proteins includes pro-survival members, such as Bcl-

XL, Bcl-w, A1, and Mcl-1, which all possess the domains BH1, BH2, BH3, and 

BH4, and pro-apoptotic members, including Bax, Bak, and Bok, all with the BH1, 

BH2 and BH3 domains, whereas Bid, Bim, Bik, Bad, Bmf, Hrk, Noxa, Puma, Blk 

only possess the BH3 domains, which is sufficient for its apoptotic inducing 

activity (Gewis, 2003; Fulda & Debatin, 2006; Plötz et al., 2013). 

Upon activation of the pro-apoptotic Bcl-2 members and the disruption of 

the mitochondrial membrane potential, a series of biochemical events occur, 

which include the halting of ATP synthesis, the oxidation of NADH, NADPH and 

glutathione, the generation of reactive oxygen species (ROS) and the release of 

pro-apoptotic factors from the inner mitochondrial membrane into the cytosol 

(Ghobrial et al., 2005). These factors include cytochrome c, Smac/Diablo, 

Omi/HtrA2, AIF and Endonuclease G and once released into the cytosol, can 
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trigger caspase-mediated or caspase-independent apoptosis. Cytochrome c 

release from the mitochondria has been extensively studied. Once this protein is 

released, it binds to an adaptor molecule, Apoptotic Protease Activating Factor 1 

(APAF1), which then oligomerizes and recruits pro-caspase-9, in the presence of 

ATP, through the caspase recruitment domain (CARD); this allows auto-

activation of caspase-9 and this complex is known as the apoptosome, which is 

essential for the activation of downstream effector caspases, like caspase-3 

(Fulda & Debatin, 2005; Elmore, 2007).  

Intrinsic apoptosis is able to follow a caspase-independent pathway, 

following the release of the apoptosis-inducing factor (AIF) and the endonuclease 

G (EndoG) from the inner mitochondrial space. AIF translocates to the nucleus, 

where it participates in DNA degradation, while EndoG triggers caspase-

independent DNA fragmentation in cells following apoptotic stimuli (Ghobrial et 

al., 2005; Fulda & Debatin, 2006). Both pathways have various inhibitors that 

prevent the downstream signaling involved in apoptosis, including inhibitors of 

apoptosis proteins (IAPs) and Flice inhibitory proteins (FLIPs) (Fadeel & 

Orrenius, 2005). 

Evasion of apoptosis is considered a major hallmark of cancer cells and 

therefore the understanding of this process has enabled the development of 

several forms of therapy. However, as cancer cells are notorious for developing 

resistance mechanisms (Rebucci & Michiels, 2013), it is also essential to further 

assess other forms of PCD, in the hopes of better developing better forms of 

cancer therapeutics. 
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Figure 3: The Pathways of Apoptosis that can be induced, following differential 

apoptotic stimuli. The two main pathways of apoptosis include the intrinsic 

pathway that requires an internal stimulus, such as toxins and DNA damaging 

agents. The stimulus promotes the expression of proteins like p53, which lead to 

downstream signaling that permeabilizes the mitochondrial membrane and allows 

the release of pro-apoptotic factors, such as cytochrome c, the activation of 

caspase-9 and the subsequent activation of caspase-3. In the extrinsic pathway, 

a death ligand binds to its specific death receptor, recruits n adaptor domain and 

leads to the activation of caspase-8. Active caspase-8 could directly activate 

caspase-3 or could link to the intrinsic pathway through the cleavage of pro-

apoptotic Bid, which ultimately leads to the permeabilization of the mitochondrial 

membrane. Cancer cells overexpress inhibitors of both apoptotic pathways, 

including IAPs (XIAP) and FLIPs (cFLIP). (Adapted from Ghobrial et al., 2005; 

Fulda & Debatin, 2006; Coates et al., 2010) 
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AUTOPHAGY (PROGRAMMED CELL DEATH TYPE II) 

Autophagy, the process of ―self-eating,‖ is a lysosomal degradative 

process, known to play a significant role as a tumor suppressive mechanism in 

the development and progression of cancer, as defective autophagy has been 

shown to be one of the numerous causes of tumorigenesis (Hippert et al., 2006). 

Along with apoptosis, autophagy is involved in maintaining cellular homeostasis, 

as it functions in nutrient recycling, energy generation, and the clearance of 

damaged proteins and organelles (He et al., 2013).  

The ability of cancer cells to evade apoptosis is one of the true hallmarks 

of cancer and this property is vital to chemotherapeutic and radiotherapeutic 

resistance as characterized by the most aggressive forms of human cancers 

(McKenzie  & Kyprianou, 2006). The introduction of autophagy in research has 

introduced an alternative way to induce cell death in cancers that are resistant to 

apoptosis and therefore chemotherapy. Autophagy is induced by a variety of 

stimuli, including stress, starvation and the inhibition of the mTOR pathway and is 

responsible for non-selective degradation of long-lived proteins, large aggregates 

and defective organelles (Kim et al., 2008). This process involves the formation of 

a double membrane vesicle around the protein/organelle to be degraded. This 

double membrane vesicle, known as the autophagosome, then fuses with the 

lysosome and the contents of the autophagosome are degraded (Figure 4) 

(Hippert et al., 2006). This formation of the autophagosome and the subsequent 

degradation of proteins and organelles are dependent on the selective 

combination of several Atg (AuTophaGy) proteins. Some of these proteins play 

similar roles to the enzymes in the ubiquitination cascade (Lee et al., 2012), 
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suggesting that the autophagic process and the ubiquitination process are not 

mutually exclusive. 

The emergence of the process of autophagy is controversial. Depending 

on the cell type and conditions, autophagy is believed to have dual roles (Hippert 

et al., 2006; Dalby et al., 2010). Autophagy is a catabolic process that serves as 

both a quality control process and a mechanism to replenish intracellular 

nutrients and provide materials needed for protein synthesis, under conditions of 

poor nutrient availability (Dalby et al., 2010; Yecies & Manning, 2011). These 

suggest a pro-survival role in normal homeostasis and that autophagy could also 

play a similar role in cancer, protecting tumor cells under stressful conditions (like 

hypoxia and acidity, through overproduction of lactate), by providing the 

necessary materials needed for required protein synthesis.  For instance, there 

are known anticancer agents, like tamoxifen and etoposide, which induce pro-

survival autophagy (Dalby et al., 2010). This pro-survival form of autophagy is 

usually accompanied by an inhibition of other forms of cell death, including 

apoptosis (Hippert et al., 2006; Thorburn, 2008). On the other hand, many 

studies have focused on the pro-death role of autophagy, especially in cancer 

cells, as it has been observed that defects in autophagic processes promote 

carcinogenesis (Yecies & Manning, 2011). 

Furthermore, important connections between apoptosis and autophagy 

have been identified, indicating an important link between the two main forms of 

PCD (Figure 5) (Rosenfeldt & Ryan, 2011). For instance, p62 (also known as 

sequestosome-1, SQSTM-1) has been found to interact with death receptors, 

DR4 and DR5, for the activation of TRAIL induced extrinsic apoptosis. The fact 
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that it also interacts with the autophagy regulator, Atg8/LC3, through its LC3-

interacting region, also indicates its importance in autophagy. The involvement of 

p62 in the process of autophagy has been well established, and although 

autophagic degradation is considered non-selective, the ability of p62 to 

specifically recognize polyubiquitinated, misfolded and aggregated proteins and 

organelles for selective autophagic degradation points to the importance of this 

protein in autophagy. These findings provide substantial evidence of a molecular 

link between autophagy and apoptosis, through the modulation of p62 (Moscat & 

Diaz-Meco, 2009).  

The Bcl-2 family of proteins not only have important roles in the 

progression of apoptosis, but they also play a role in autophagic initiation and 

progression (Thorburn, 2008). Pro-survival Bcl-2 interacts with pro-apoptotic Bax 

to inhibit the induction of apoptosis and it has also been found to interact with 

Beclin 1, to inhibit its role in the formation of the autophagosome (Figure 5). 

Furthermore, the autophagic protein, Atg5, an E3 ubiquitin ligase-like protein, 

involved in the elongation of the autophagosome, has also been found to interact 

with FADD, resulting in apoptotic cell death through extrinsic apoptosis. Cleavage 

of Atg5 by calpain leads to the translocation of the truncated Atg5 to the 

mitochondria, where it promotes the release of cytochrome c (Thorburn, 2008; 

Zhivotovsky & Orrenius, 2010; Kuang, Qi, & Ronai, 2013).  

Overall, there is overwhelming evidence that autophagy functions as PCD 

type II in some cancer cells where apoptosis is defective and, as such, it is not 

difficult to infer that the induction of pro-death autophagy selectively in cancer 

cells could be used as an anti-cancer therapeutic strategy. 
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Figure 4: The Process of Autophagy that leads to autophagic degradation, 

through the interaction with the lysosome. Cellular stresses, such as ER stress 

and starvation, lead to the inhibition of the mammalian target of rapamycin 

(mTOR), which leads to the induction of autophagy. The AuTophaGy related 

proteins (ATGs) and Beclin-1 and Beclin-2 trigger downstream events that leads 

to the complex assembly of the membrane structure of the phagophore. The 

formation of this complex facilitates the conjugation of LC3-I onto 

phosphatidylethanolamine in the lipid bilayer of the membrane, converting it to 

LC3-II, and allowing the phagophore elongate and engulf target proteins and 

organelles, via adaptor proteins like p62 and form the autophagosome. The 

autophagosome fuses with the lysosome and acidic compartment that promotes 

the fusion and degradation of the contents, through the aid of lysosomal 

enzymes, such as cathepsins. (Adapted from Hippert et al., 2006). 
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Figure 5: The Connections Between Apoptosis & Autophagy: Regulation of 

apoptosis and autophagy is required to prevent deregulation of these processes 

and their roles in disease initiation and progression. A) The Bcl-2 family of 

proteins regulate both autophagy and apoptosis, where Bcl-2, MCl-1 and Bcl-xL 

inhibit apoptosis by blocking Bax activation to prevent mitochondrial 

permeabilization and the release of pro-apoptotic factors. Alternatively, these 

proteins interact with Beclin-1’s BH3 domain to inhibit mTOR and activate 

autophagy. B) Several key players in autophagy (ATG5, Beclin-1 and p62) also 

play a significant role in apoptotic induction, through the activation of caspases 

and the permeabilization of the mitochondrial membrane. Some death ligands, 

like TRAIL have also shown significant effect in targeting the autophagic 

pathways for the induction of autophagic degradation. (Adapted from Thorburn, 

2008; Moscat & Diaz-Meco, 2009; Rosenfeldt & Ryan, 2011). 
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THE ROLE OF PROGRAMMED CELL DEATH IN CANCER 

Both apoptosis and autophagy have been implicated in the initiation and 

progression of carcinogenesis. Cancer cells are notorious for up-regulating pro-

survival signaling pathways that inhibit the induction of apoptosis, while mutations 

in tumor suppressors, e.g. p53, and pro-apoptotic proteins are rampant 

(Zhivotsovsky & Orrenius, 2010). Although it has been recognized that autophagy 

could play dual roles, as a pro-survival or pro-death mechanism, it has been well 

established that pro-survival autophagy plays an integral role in carcinogenesis, 

providing cancer cells with the nutrients and energy they require for survival. 

Furthermore, this form of autophagy has been correlated with a decrease in the 

levels of other forms of PCD, especially apoptosis (Hippert et al., 2006). 

The importance of both forms of PCD, especially in carcinogenesis is well 

established. Various anti-cancer therapies have been shown to, not only induce 

apoptosis in cancer cells, but to be efficacious in the induction of autophagy; for 

instance, tamoxifen induces pro-survival autophagy in breast cancer cells in in-

vitro models and ionization radiation has been found to induce pro-death 

autophagy in various cancer cell type, to name a few (Coates et al., 2010). This 

suggests that further understanding of PCD processes (type I and II) could be 

beneficial anti-cancer strategies. 

PCD, especially apoptosis, is designed as a safeguard against 

carcinogenesis in normal cells. Most chemotherapeutic treatments attempt to re-

ignite apoptosis in cancer cells. Unfortunately, available therapies also target 

non-cancerous cells (as described below) and as such, there is a need to 

develop more selective and thus safer forms of therapy.  
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CURRENT CANCER THERAPY 

The incidence of cancer is constantly increasing as the aging population 

increases (Jemal et al., 2011). Substantial research has gone into developing 

effective forms of treatments to halt the progression of cancer, usually by 

stimulating the induction of various forms of programmed cell death (PCD) in 

cancer cells by targeting mitotic machinery (Chabner & Roberts, 2005, Zhou & 

Giannakakou, 2005); in more recent years, the focus has shifted to targeting 

cancer cell metabolism (Zhao et al., 2013). Advances in research have 

successfully introduced various forms of therapy into cancer care and their 

effectiveness and drawbacks will be discussed further below; 

SURGERY 

Currently, cancer therapy designs are usually based on the organ in which 

the cancer originates and the localization of that organ or cancer in the body 

(Cortés et al., 2013). In the case of solid tumors, early detection is essential for 

successful treatment, as it enables surgical removal, as primary treatment, of the 

tumor or the organ in which it is located (if possible). Over the past decade, 

substantial advances have been made to improve the early detection of various 

cancers, thereby improving the outcome of surgical resection of tumors, as has 

been observed with improved colorectal cancer screenings (Desantis et al., 

2014). Studies show that survival rates for non-small cell lung cancer (NSCLC) 

greatly decrease as the cancer stages increase, going from 80% at stage I to less 

than a 20% 2-year survival rate at stage III (Hussain & Nguyen, 2014).  

Although surgery is associated with an increase in the survival rate of 

some cancer patients, there are still cases where surgery, as a mode of therapy, 
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is still not effective. Surgical resection is limited to patients in the early detection 

category, usually before the tumor has invaded and metastasized into other 

tissue locations. Furthermore, surgery is not without adverse effects. Long-term 

side effects include tingling and tightness at the site of surgery along with later 

development of chronic pain; although in some cases, this pain is not considered 

severe. In prostate cancer patients, surgery is associated with urinary 

incontinence, erectile dysfunction and bowel complications, while in thyroid 

tissues, surgery can damage the nerves in the larynx. Furthermore, it has been 

established that cancer recurrence is common in patients that underwent surgery, 

with almost half the patients having a recurrence within 3 years of surgery; hence 

many cancer patients usually undergo some other form of therapy, usually 

chemotherapy and radiation therapy, alongside surgery (Desantis et al., 2014). 

RADIATION THERAPY 

Due to the aggressiveness and poor prognosis associated with many 

cancers, the addition of other therapeutic forms, before or after surgical resection, 

has been implemented in several cancer types. Radiation therapy has often been 

employed to improve response and survival rates in cancer patients (Shaw et al., 

2002; Desantis et al., 2014). This form of therapy, along with surgery, improves 

survival of cancer patients by potentially inhibiting further implantation of 

metastasized tumors, allowing for better focused treatment to the localized site of 

the primary tumor (Jagsi, 2014).  

Normally, double stranded DNA breaks (for instance, as caused by 

radiation, hypoxia and the presence of free radical scavengers), induces cell 

cycle arrest and an enzymatic repair program for the repair of DNA damage. 
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Inability to repair this damage leads to one of two pathways, the induction of 

senescence and the induction of apoptosis or necrosis, through the up-regulation 

of the tumor suppressor, p53 (Ross, 1999). Rapidly dividing cancer cells are 

targeted by increasing doses of ionizing radiation, triggering apoptotic induction. 

Due to the common target that is DNA and other mitotic machinery, however, 

ionizing radiation also causes DNA damage in normal, non-cancerous cells, 

leading to severe side effects observed in cancer patients in this treatment 

regimen. As radiation therapy does not trigger cell death programs immediately 

following treatment, it has been shown to induce cell death programs days or 

even weeks following treatment. Slow growing tissues can remain unaffected for 

weeks or months following treatment and, as such, the side effects in these 

tissues are only observed months after the treatment regimen has been 

concluded (Pawlik & Keyomarsi, 2004).  

Genomic instability, as a result of DNA damage, is usually a contributing 

factor to carcinogenesis. Coupled with the fact that cancer cells are notorious for 

having mutations in the tumor suppressor p53, it can be concluded that DNA 

damage and the inability to repair the damage and evade PCD processes 

contributes to the process of carcinogenesis (Gorgoulis et al., 2005). As 

ionization radiation induces DNA damage in order to trigger these cell death 

processes, it can therefore be inferred that a resulting effect of ionizing radiation 

is the accumulation of new tumors in a patient already undergoing treatment. This 

suggests that a more effective mode of therapy is required, one that does not 

come with the chances of inducing further carcinogenesis. 
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CHEMOTHERAPY  

Prior to the 1940’s, surgery and radiation therapies dominated the world of 

cancer therapy. Since the beginning of the 20th century, various forms of 

chemotherapy have also been in play (Chabner & Roberts, 2005; DeVita & Chu, 

2008). Chemotherapy began with the use of nitrogen mustards and anti-folates, 

the latter of which was used to inhibit the effect of folic acid on the proliferation of 

leukemia cells; and over the years, has evolved to include several classes of 

drugs (Chabner & Robert, 2005).  

Cancer chemotherapy was developed to circumvent some of the side 

effects observed in patients undergoing radiation therapy, particularly the DNA 

damaging aspect that leads to PCD or development of secondary malignancies. 

Newer chemotherapy introduced agents that target microtubules, which are a 

major component of all eukaryotic cells and are vital for the maintenance of cell 

shape, polarity, cell division and intracellular transport. Vinca alkaloids (e.g. 

vincristine) and taxanes (e.g. paclitaxel) are the major groups of microtubule 

targeting drugs, obtained from natural products, that have shown success as 

microtubule destabilizing agents (Vinca alkaloids) and microtubule stabilizing 

agents (taxanes). Both classes of microtubule targeting agents inhibit the 

progression of cells through the cell cycle, inhibit mitosis and lead to the induction 

of PCD. Besides their abilities to affect microtubule formation, these agents have 

also been found to inhibit the formation of new blood vessels, a process known 

as angiogenesis (Zhou & Giannakakou, 2005).  

Although there have been major advances in the development of these 

chemotherapies, the principles and limitations that have governed the discovery 
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of new chemotherapeutic agents still apply today (Chabner & Robert, 2005).  For 

instance, neurological and hematological side effects are usually observed in a 

dose-dependent effect in patients undergoing treatment with microtubule 

targeting agents. Immunosuppression, the development of secondary 

malignancies, and even death resulting from other side effects is usually 

associated with majority of the currently available chemotherapies (Zhou & 

Giannakakou, 2005; Desantis et al., 2014). Altogether, this information indicates 

that a better target for cancer therapy is needed, in order to bypass some of the 

severe side effects that are observed in cancer patients undergoing treatment. 

TARGETED THERAPY  

The limitations associated with the previously discussed forms of cancer 

therapy, along with the many molecular defects in cancer cells, led to the 

introduction of targeted therapies. These therapies were introduced in a bid to 

target the multiple hallmarks of cancer (Hanahan & Weinberg, 2011), as well as 

the metabolic changes within cancer cells (Zhao et al., 2013), in order to develop 

more effective treatment regimens that do not come with such severe side 

effects. These targeted therapies include targets such as growth factors, 

signaling molecules and pathways, cell-cycle proteins, modulators of apoptosis 

and proteins involved in angiogenesis (Chabner & Robert, 2005).  

One of the most famous examples of targeted therapy was the 

development of the Bcr-Abl tyrosine kinase inhibitor, imatinib (Gleevec), for the 

treatment of chronic myeloid leukemia, with the characteristic Philadelphia 

chromosome (Chabner & Robert, 2005; DeVita & Chu, 2008). This innovation 

was a stepping-stone for the introduction of monoclonal antibodies against 
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receptors and growth factors in cancer therapy, such as those against the 

epidermal growth factor receptor (EGFR), like cetuximab (Martinelli et al., 2009). 

Unfortunately, targeted therapies are not without their own obstacles.  Cancer cell 

resistance to chemotherapy is still a major limitation to cancer therapy 

development; intrinsic and acquired resistance is usually observed following 

numerous genetic and epigenetic changes in cancer cells (Rebucci & Michiels, 

2013). Common resistance mechanisms involve drug efflux, using the multidrug 

resistance (MDR) transporter, changes in DNA damage responses and mutations 

in several pathways, allowing cancer cells develop the previously discussed 

hallmarks of cancer (Chabner & Robert, 2005; Rebucci & Michiels, 2013). Cancer 

cell resistance to targeted therapies have led to the introduction of combination 

therapies, in a bid to overcome the resistance associated with targeted therapies, 

while still attempting to reduce therapy-associated toxicity (Li et al., 2014). 

The huge toxicity associated with cancer cell therapy is due to non-

selective targets and the ―by-stander‖ effects. Emerging evidence indicates a role 

of natural health products in the possible development of non-toxic alternatives 

for cancer therapy. This begs further research and scientific validation of such 

products for cancer treatment. 
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NATURAL HEALTH PRODUCTS (NHPs) 

Natural health products (NHPs) and natural products (NPs) play a leading 

role in the discovery and the development of drugs for the treatment of human 

diseases. Traditional medicines in the Native American, Chinese, and Indian 

cultures have utilized numerous natural products, including dozens of spices and 

plant extracts. NHPs are becoming increasingly popular and are used widely for 

their promising therapeutic effects and fewer side effects. Scientific research into 

the validity of these traditional products has shown that many do indeed have 

potent anticancer effects (Zhi et al., 2007; Ganesan, 2008; Newman & Cragg, 

2012). For instance, an extract from the Mayapple, Podophyllum peltatum, was 

traditionally used by Native Americans to combat skin cancers and other 

malignant neoplasms, as well as a host of other ailments. The major component 

of this extract was podophyllotoxin, which was the first in a series of effective 

anticancer agents called podophyllins (Mann, 2002). Likewise, numerous natural 

products used by traditional Indian Ayurvedic medicine have been shown to have 

strong anti-inflammatory and anticancer properties.  

Even with all the incoming evidence, herbal drugs and other NHPs and 

NPs are usually shunned during systemic therapy because of herb–drug 

interaction and exaggeration of therapy-related toxicity. Current research is 

focused on the development of new and more effective therapeutic agents that 

have little to no associated toxicity to the patient. Lately, this focus has been 

centered on NHPs and herbal formulations, mainly in the form of plants and other 

biological sources around the world. NHPs have been used for centuries by a 

variety of cultural backgrounds for various illnesses, some of which continually 
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provide new medicinal applications and intriguing anecdotal evidence, which 

merit further investigation.  Today, there are numerous natural products that fall 

under the umbrella of alternative medicine (Aggarwal et al., 2007; Ganesan, 

2008; Kumar et al., 2011). 

NHPs, from various traditional medicines, have been used for centuries for 

the treatment of various diseases and anecdotal evidence suggests that there is 

some benefit to the claims that have been reported. Furthermore, the use of 

these NHPs and NPs have not been associated with many side effects and 

toxicities (Aggarwal et al., 2006; Efferth et al., 2007). NHPs are complex 

mixtures, containing multiple components that could potentially have bioactivity in 

the face of different diseases. The complexity of NHPs makes them a viable 

option for the treatment of diseases, especially chronic diseases like cancer, as 

they might be able to target multiple pathways in a disease, while acting together 

to potentially reduce any toxicities associated with the use of the NHP or NP 

(Mishra et al., 2000; Tabas & Glass, 2013). 

Studies on various natural products have shown some efficacy and lack of 

toxicities associated with the use of these herbal formulations. However, as with 

many other forms of therapies, combinations of NHPs have also been studied, 

focusing on the combination of NHPs and NPs at lower doses, to further reduce 

chances of toxicities and improve efficacy (Huang et al., 2003; Mueller et al., 

2004). Such studies provide sufficient evidence for the introduction of NHPs to 

the public, in order to provide safer and cheaper complementary treatments for 

diseases, especially in chronic diseases like cancer. 
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NATURAL HEALTH PRODUCTS IN CANCER 

The toll of cancer on the population is continuously on the rise and the 

efficacy and safety of available anti-cancer therapies has not yet caught up. The 

role of NHPs in cancer treatment has been evaluated in several scientific studies, 

leading to the development of a total of 27 anti-cancer drugs from natural sources 

between 1940 and 2010 (Figure 6) (Newman & Cragg, 2012). A common 

example is Camptothecin, a quinolone alkaloid, has been studied and used for its 

anti-tumour activity in targeting and inhibiting DNA topoisomerase I. This 

compound was isolated from extracts of the Camptotheca acuminate, which has 

been used for years in traditional medicine. In the last decade, this NP has been 

found to possess anti-cancer activity, and its derivatives, topotecan and 

irinotecan, are routinely used in the treatment of ovarian and colon cancers 

(Efferth et al., 2007). 

The discovery of the anticancer activities of so many traditional medicines 

and natural products has been supported by scientific evidence and validation. 

This was in part successful due to the initiation of the Cancer Chemotherapy 

National Service Center (CCNSC) in 1955, by the National Cancer Institute (NCI). 

The mandate of this program was to ―screen for anti-tumor agents on a larger 

scale by establishing a strict standardized protocol‖ for testing potential 

anticancer compounds (DeVita et al., 2008).  

Since the 1980s, research into the anti-cancer effects of natural products 

has yielded many promising results. For example, resveratrol, a polyphenol 

present in grapes, has been under investigation for years and these studies show 

the potential of resveratrol as both a preventative and an anti-tumor agent (Lu et 
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al., 1999; Kallantari & Das, 2010). Similarly, piperlongumine, extracted from Piper 

longum and identified in the 1960s around the same time as Taxol, was found to 

selectively induce generation of reactive oxygen species in cancerous cells by 

targeting the oxidative stress response and leading to apoptotic cell death (Raj et 

al., 2011). In the 1980s, Kenneth Bagshawe and Peter Senter developed a novel 

use for natural products: the antibody-directed enzyme-prodrug therapy 

(ADEPT). This technique used tumor-specific antibodies bound to an enzyme 

that would convert non-cytotoxic prodrugs into their cytotoxic forms once in 

contact with the tumor. Many natural products were successfully used as 

prodrugs, including doxorubicin and Taxol (Mann, 2002).  

The different hallmarks of cancer and tumor cells, which include evading 

growth suppression signals, evading programmed cell death processes, inducing 

angiogenesis and sustaining proliferative signaling, to name a few (Hanahan & 

Weinberg, 2001; Hanahan & Weinberg, 2011), provide multiple means to target 

cancer cells selectively. The study of NHPs against cancer cells and xenograft 

models has therefore focused on identifying NHPs that can target pathways that 

convey survival protection to cancer cells, so as to selectively and effectively 

eradicate cancer cells. 

  These earlier studies have paved the way for the introduction of more 

NHPs from traditional medicine to the forefront of modern medicine and 

anecdotal evidence indicate that these NHPs merit further investigation and 

scientific validation. The scientific validation of these NHPs in terms of their 

efficacy, safety and mechanism of actions will seal their position in modern 

medicine, especially in the field of cancer research and therapy.  
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Figure 6: Sources of Anticancer Drugs from the 1940s to 2010.  

* Legend: Natural product (N); Derived from a natural product-usually a synthetic 

derivative (ND); Natural product ―Botanical (NB); Natural product mimic (NM); 

Totally Synthetic Drug (S); Made by total synthesis, but the pharmacophore is/ 

was from a natural product (S*). (Adapted from Ganesan, 2008; Newman & 

Cragg, 2012). 
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DANDELIONS (TARAXACUM spp.) 

Dandelions are perennial ―weeds‖ that belong to the Asteraceae family of 

plants and are widespread throughout warmer temperate zones. This plant has 

been used for centuries as a form of remedy for various diseases, including 

treating abscesses, reducing inflammation and promoting diuresis in traditional 

Chinese medicine (TCM). These health benefits are not only limited to Chinese 

medicine; folk use and traditional medicinal uses for dandelions extend across 

Europe and Africa (Sigstedt et al., 2008; Yarnell & Abascal, 2009). The various 

health benefits attributed to the use of dandelions has been credited to specific 

Taraxacum species, including T. japonicum, T. monogolicum, T. coreanum and 

T. officinale (Sigstedt et al., 2008). Various parts of this plant have been used in 

the treatment of different ailments, with the root having been used in 

gastrointestinal diseases and the leaves, as a diuretic and digestive stimulant. 

The whole plant has been taken as a cure for hepatitis and anorexia as well, 

although some of the claims associated with this weed have gone 

unsubstantiated (Schütz et al., 2006; Yarnell & Abascal, 2009).  

Some preclinical research on dandelion has introduced this plant with 

numerous properties to the scientific community. Research has shown the anti-

inflammatory, prebiotic, anti-angiogenic and anti-neoplastic properties of 

dandelion root (Zhi et al., 2007; Yarnell & Abascal, 2009). Some of these studies 

contradict each other, leading to the publication of conflicting reports on the 

efficacy of dandelions, however, the one thing all these studies agree on is that 

dandelions can induce cytotoxicity in several types of cell types, due to its effect 

on oxidative stress, inflammatory response, the secretion and expression of TNF-
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 and IL-the down-regulation of nitric oxide (NO) and cyclooxygenase-2 (COX-

2) (Hu & Kitts, 2003; Koo et al., 2004; Hu & kitts, 2005; Schütz et al., 2006; Jeon 

et al., 2008). The flower extract of T. officinale was found to be both pro-oxidant 

and anti-oxidant, as at low doses, anti-oxidant behaviour was observed, and 

attributed to the presence of luteolin and luteolin-7-glucoside, while at higher 

doses, this extract possess pro-oxidant activities in colon cancer cells (Hu & Kitts, 

2003). It is essential to note that the production of ROS can have both pro-

apoptotic and anti-apoptotic effects, depending on the conditions of the cells, as 

well as the cell types (Simon et al., 2000). The investigation of the mechanism of 

action of dandelion root extract in cancer cells is under study, with focus on the 

identification of the possible apoptotic pathway in which this extract is selective to 

cancer cells. The mechanistic efficacy of DRE will be discussed in later chapters 

of this thesis.  

The selective anticancer efficacy of dandelion root extract has been 

attributed to its ability to induce death-receptor mediated extrinsic apoptosis in 

cancer cells selectively, and this activity can be attributed to the presence of 

sesquiterpene lactones (Zhang et al., 2005; Ghantous et al., 2010), and the 

suppression of cellular FLICE- like inhibitory protein (cFLIP), which is highly 

expressed in several cancer cell types, including pancreatic cancer cells, by the 

triterpene, lupeol (Murtaza et al., 2009). This compound is one of the bioactive 

components of dandelion extracts (Hata et al., 2000; Chatterjee et al., 2011). This 

inhibition of cFLIP has been shown to render TRAIL-resistant cancer cells 

sensitive to TRAIL therapy (Murtaza et al., 2009). 
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These are important findings that show the versatility of natural health 

products, especially dandelion root extract, in targeting several cellular pathways 

and under different situations and conditions; they also provide significant 

evidence for the efficacy use of NHPs, especially dandelions, in the fight against 

cancer.  

LONG PEPPER (PIPER Spp.) 

Long pepper, from the Piperaceae family, have been used for centuries, 

for the treatment of various diseases. The identification of several bioactive 

species of long pepper have been identified and they include P. longum, P. betle 

and P. retrofactum. A long list of benefits have been attributed to the extracts of 

the different Piper spp, with reports indicating their efficacy in different ailments 

(Kumar et al., 2011).  Historically, long pepper has been used as a topical 

treatment for muscle inflammation but has shown efficacy in a number of 

diseases and conditions including diabetes, cancer and obesity, as well as its use 

as an analgesic, and digestive stimulant, without having any toxic effects (Kumar 

et al., 2011; Bao et al., 2013). More recently, the plant has been studied as an 

anti-inflammatory for Carrageenan-induced paw edema in rats, where 

researchers found significant decrease in paw inflammation of rats treated with 

long pepper indicating its efficacy in acute and sub-acute inflammation (Kumari et 

al., 2012).  

In addition to this study, other work has been done on Piperlongumine 

(PL), an important component of the long pepper fruit, as a therapy against 

atherosclerosis. This study found that the anti-inflammatory and anti-platelet 

aggregation properties of PL prevented artherosclerotic plaque formation in mice, 
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demonstrating the efficacy of PL as a possible therapy for this inflammatory 

disease (Iwashita et al., 2007; Tabas & Glass, 2013). Furthermore, studies in 

various cancer cell lines showed the anticancer effect of PL in these cells, where 

PL targeted the oxidative stress response of these cells, increased the levels of 

reactive oxygen species (ROS) and activated the expression of several key pro-

apoptotic proteins; PL’s effect on the oxidative stress response in cancer cells led 

to its ability to induce apoptosis in these cancer cells, in a dose and time 

dependent manner This anticancer effect was confirmed in in vivo models of 

breast adenocarcinoma (Raj et al., 2011). More importantly, this effect on ROS 

generation and oxidative stress pathway targeting was not observed in the non-

cancerous cells, suggesting a dependence on the oxidative stress response 

pathway in cancer cells. These results confirm what has been previously known: 

that targeting the mitochondria could provide a better selective target in cancer 

cells (D’Souza et al., 2011) for more efficacious treatment. 

Further studies have also shown the ability of PL to target receptors, 

including the platelet derived growth factor (PDGF) receptors, for the inhibition of 

angiogenesis, and treatment with this compound led to the depletion of androgen 

receptor in prostate cancer cells, through a proteasome-mediated ROS 

dependent pathway (Bezerra et al., 2012; Golovine et al., 2013). The results from 

these studies not only suggests a role of PL as a receptor antagonist, but also 

provides a link between oxidative stress and receptor targeting, for an alternative 

path to cancer cell specific targeting, proving this usefulness of NHPs and NPs in 

the fight against cancer. 

The anti-inflammatory response associated with the use of long pepper 
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extract is attributed to the presence of PL; however, the effect of this compound 

alone is significantly decreased, when compared to the efficacy of the whole plant 

extract in reducing inflammatory response. Some reports indicate that the use of 

the whole extract of long pepper show better efficacy, when used at lower 

concentrations, compared to individual components of the extract, like PL, which 

had an effective concentration ≥ 10 μM (Vedhanayaki et al., 2003; Iwashita et al., 

2007; Raj et al., 2011).  

There are, however, very few scientific validation studies to prove the 

benefits associated with the use of long pepper extracts; most of these studies 

have been carried out on the components present within the extract, including 

piperines. Piperines have been shown to inhibit many enzymatic drug bio-

transforming reactions and plays a significant and specific role in the metabolic 

activation of carcinogens, as well as in metabolic and mitochondrial energy 

production (Golovine et al., 2013; Jarvius et al., 2013; Meghwal & Goswami, 

2013). The presence of piperidine alkaloids show potent fungicidal activity (Lee et 

al., 2001; Bao et al., 2013). Some of these compounds, including PL, have shown 

potent anti-cancer activity (Bezerra et al., 2007), suggesting that long pepper 

extract contains multiple bioactive components that could be beneficial in the 

development of more efficacious therapies for the treatment of various diseases, 

including cancer. 
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HYPOTHESIS  

There is sufficient evidence indicating the importance of NHPs in the 

development of drugs. Anecdotal evidence, bring to the forefront, a need for 

scientific validation of more NHPs. This research focused on scientifically 

validating the mechanistic efficacy of two NHPs, Dandelion Root Extract (DRE) 

and Long Pepper extract (PLX) in cancer cells.  

Our hypothesis is that natural health products (NHPs), such as DRE and 

PLX, contains multiple bioactive components that can efficiently target multiple 

vulnerable aspects of cancer cells to act as a selective treatment against cancer 

and possibly improve the quality of life (QoL) of diagnosed patients. 

OBJECTIVES 

To study this hypothesis, three major objectives were put forward; 

• Evaluation of the selective efficacy of Dandelion Root Extract (DRE) and 

Long Pepper extract (PLX) in several in-vitro, in-vivo and ex-vivo models 

• Investigation into the mechanism of action and selectivity of DRE and PLX 

in cancer cell models 

• Fractionation & phytochemical analysis of DRE and PLX to identify the 

bioactive compound(s) involved in providing the selectivity and efficacy. 

OVERALL SIGNIFICANCE 

The toll of cancer on the human body and the society as a whole, indicates 

a serious need for a better selective, more effective and relatively cheaper mode 

of treatment. Unfortunately, at this time, most of the available forms of therapy 

induce apoptosis or other forms of programmed cell death in both cancer and 

non-cancer cell types. The purpose of this study is to identify NHPs with better 
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selective efficacy against cancer cells, while attempting to provide a stepping 

stone for further validation studies of NHPs. The scientific studies carried out with 

dandelion root and long pepper extracts, as natural health products, will provide 

evidence for introduction of these NHPs to the public, in order to provide 

alternative, safer and cheaper complementary treatments for cancer therapy and 

improve QoL in cancer patients.  
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ABSTRACT 
 

Dandelion extracts have been used in traditional Native American 

Medicine and Traditional Chinese Medicine (TCM) for treatment of leukemia and 

breast cancer; however, the mechanism of action remains unknown. Today, DRE 

is mainly marketed for management of gastrointestinal and liver disorders. The 

current study aims to determine the anti-cancer activity of dandelion root extract 

(DRE) against human leukemia, and to evaluate the specificity and mechanism of 

DRE-induced apoptosis. 

The effect of DRE on cell viability was evaluated using the colorimetric-

based WST-1 assay. Apoptotic cell death was monitored by nuclear 

condensation and confirmed by exposure of phosphatidylserine to outer leaflet of 

plasma membrane. Activation of caspases was detected using a fluorogenic 

substrate specific to either caspase-8 or -3. Loss of mitochondrial membrane 

potential was observed by microscopy using JC-1 dye. The apoptotic effect of 

DRE was also evaluated on a dominant negative FADD (Fas-associated death 

domain) cell line and non-cancerous peripheral blood mononuclear cells 

(PBMCs). 

Aqueous DRE effectively induces apoptosis in human leukemia cell lines 

in a dose and time dependent manner. Very early activation of caspase-8 and the 

subsequent activation of caspase-3 indicate that DRE may be inducing extrinsic 

or receptor-mediated apoptosis. Caspase inhibition rendered this extract 

ineffective, thus DRE-induced apoptosis is caspase-dependent. Moreover, the 

dominant-negative FADD cells that are unable to form a complete DISC (death-

inducing signaling complex) were resistant to DRE treatment, which further 



 52 

confirms our hypothesis that DRE induces receptor-mediated apoptosis. 

Interestingly, non-cancerous peripheral blood mononuclear cells (PBMCs) 

exposed to aqueous DRE under the same treatment conditions as leukemia cells 

were not significantly affected. 

Our results suggest that aqueous DRE contains components that act to 

induce apoptosis selectively in cultured leukemia cells, emphasizing the 

importance of this traditional medicine and thus presents a potential novel non-

toxic alternative to conventional leukemia therapy. 
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INTRODUCTION 

 Dandelions are one of the most common and recognizable weeds and are 

found in almost every part of the world (Koo et al., 2004; Yarnell and Abascal, 

2009). The Taraxacum spp. includes the species Taraxacum japonicum, 

Taraxacum mongolicum and Taraxacum officinale, although the differences in 

composition of each of these species remain vague (Jeon et al., 2008). This plant 

has been used in Traditional Chinese Medicine (TCM) and traditional Native 

American Medicine for its medicinal activity as treatment of diseases ranging 

from diarrhea and digestive diseases to hepatitis and cancer (Jeon et al., 2008; 

Yarnell and Abascal, 2009). More specifically, they have traditionally been used 

for treatment of breast cancer and leukemia (Sweeney et al., 2005).  

Dandelions are perennial weeds composed of a variety of chemical 

compounds that are thought to act alone or in combination to increase the activity 

of the plant extracts (Schutz et al., 2006). The chemical composition of dandelion 

extracts has been observed and some of the important components of the extract 

include sesquiterpene lactones and phenylpropanoids, which are believed to 

have anti-inflammatory, anti-oxidative and anti-cancer properties leading to the 

diverse observed effects of dandelion extracts (Yarnell and Abascal, 2009). Other 

components have not been fully characterized and therefore their activities 

remain unknown (Schutz et al., 2006).  

There are limited scientific studies investigating the anti-cancer activity of 

dandelion extracts and very little is known about the mechanism of action; reports 

on the effect of dandelion extracts and the production of cytokines have remained 

ambiguous to date (Kim et al., 2000; Koo et al., 2004). 
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Recently research has been focused on developing anti-cancer drugs that 

interfere with metabolic pathways of cancer cells to induce apoptosis, a highly 

regulated physiological process of cell death that has a wide range of implications 

in disease (Kekre et al., 2005; Ghobrial et al., 2005). It is an important 

mechanism by which cells undergo cell death to control cell proliferation (Kerr et 

al., 1972; Gewies, 2003; Fadeel and Orrneius, 2005). Apoptosis is characterized 

by DNA fragmentation, cell shrinkage and nuclear condensation, and 

phosphatidylserine flipping from the inner to the outer leaflet of the plasma 

membrane (Kekre et al., 2005).  

Development of an effective chemotherapy that selectively induces 

apoptosis in cancer cells is of great importance. One major pitfall of current 

chemotherapeutics is that the majority cause severe side effects in non-

cancerous cells. In the current study, the activity of dandelion root extract (DRE) 

against a human acute T-cell leukemia cell line (Jurkat) was evaluated in parallel 

to its effect on non-cancerous peripheral blood mononuclear cells (PBMCs). 

Our novel findings indicate that DRE is capable of inducing apoptosis at 

low concentrations specifically in cancer cells with no toxicity to PBMCs. DRE 

treatment caused very early activation of caspase-8 and subsequent activation of 

caspase-3. Moreover, it was observed that Jurkat cells expressing a dominant-

negative FADD (Fas-associated death domain) protein were insensitive to 

apoptosis induced by DRE, indicating involvement of the extrinsic pathway of cell 

death (Hueber et al., 2000). 
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MATERIALS & METHODS 

Standardized dandelion root extraction 

Freshly obtained dandelion roots (from open grassy areas) were 

thoroughly and repeatedly washed with water; final wash with distilled water. 

Dandelion roots (100 g) were homogenized in 200 ml of distilled water at 25 ◦C 

using a domestic blender. Total homogenate was filtered through a NITEX nylon 

mesh filter (LAB PAK; Sefar BDH Inc., Chicoutimi, QC, CA) and the filtrate was 

centrifuged at 8000 x g for 5min at 25°C. The supernatant was filtered using 0.45 

μm filters, followed by filtration through 0.22 μm filters. The final filtrate was used 

directly or lyophilized and reconstituted as needed into stock solutions of 100 

mg/ml in water. 

Cell culture 

The Human acute T-cell leukemia (Jurkat clone E6-1) cell line and 

dominant-negative FADD Jurkat cells (clone I 2.1) were purchased from ATCC 

(Manassas, VA, USA). These cells were cultured in RPMI-1640 medium 

supplemented with 15% fetal bovine serum (FBS) and 40 mg/ml gentamicin (Life 

Technologies, Mississauga, ON, CA). These cells were maintained at 37◦C and 

5% CO2. Nucleated blood cells were isolated from peripheral blood obtained 

from healthy volunteers (University of Windsor REB# 04-060). Whole blood (12 

ml) was collected a BD Vacutainer CPT Tube (Becton Dickinson, Franklin Lakes, 

NJ, USA) and centrifuged at 2900 x g for 30 minutes at 25°C. Mononuclear cells, 

platelets and plasma was collected and cultured in a 1:1 dilution of RPMI media, 

supplemented and maintained in similar conditions as the Jurkat cell lines. 
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Cell treatment 

Cells were grown to 70% confluence and then treated with freshly 

prepared water extract or lyophilized extract at concentrations ranging from 0.2 

mg/ml, the lowest dose with minimal activity, to 1mg/ml, the most effective dose. 

Cell staining and viability assay 

Viability of Jurkat cells after DRE treatment was examined by Trypan Blue 

Exclusion assay. Trypan Blue stain (Life Technologies, Carlsbad, CA, USA) was 

added to cell Suspension and live cells (Trypan negative) were counted using a 

Fisher Hemacytometer. Percent viability was calculated as the number of live 

cells per ml. Cell proliferation was determined in Jurkat cells following exposure 

to DRE using the colorimetric WST-1 assay (Roche, Laval, QC, Canada) 

according to previously published protocols (Maekawa et al., 2003; 

Ngamwongsatit et al., 2008). Absorbance readings were obtained using a Perkin 

Elmer Victor Spectrophotometry machine; a decrease in absorbance indicates 

reduced proliferation. To examine apoptotic morphology, cells were treated with 

DRE and stained with cell-permeable Hoechst 33342 dye (Molecular Probes, 

Eugene, OR, USA), at a final concentration of 10 M and incubated for 10 

minutes at 37°C. Nuclei were examined using a fluorescent microscope (Leica 

DM IRB, Germany) and corresponding phase-contrast and fluorescence images 

were taken. 

Annexin-V binding assay 

To observe phosphatidylserine exposure, an early marker of apoptosis, 

Jurkat cells were treated and collected after indicated periods then washed 2X 
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with PBS and resuspended in Annexin-V binding buffer (10mM HEPES/NaOH pH 

7.5, 140mM NaCl, 2.5mM CaCl2), containing 1:50 Annexin-V Alexa Fluor 488 

conjugate (Molecular Probes) for 15 minutes at 25°C. Cells were then examined 

under a fluorescent microscope; cells that bind Annexin-V in a calcium-

dependent manner are considered apoptotic. 

Apopercentage apoptosis assay 

Apoptosis was also detected using the apopercentage Apoptosis Kit 

(Biocolor Life Science Assays, County Antrim, United Kingdom). This is an 

additional assay based on the surface exposure of phosphatidylserine, which 

permits the uptake of the apopercentage dye into the apoptotic cell. Cells were 

grown in a gelatin layer and then treated as described above. After treatment of 

Jurkat cells, cells were collected, washed in PBS and incubated with the 

apopercentage dye for 30 minutes and multiple representative pictures were 

taken for each well using a light microscope. 

Measurement of mitochondrial membrane potential 

To monitor mitochondrial membrane depolarization in cells following DRE 

treatment, JC-1 dye (5,5’ 6,6’ -tetrachloro-1,1’ 3,3’ 

tetraethylbenzimidazolylcarbocyanine iodide from Invitrogen, Burlington, ON, CA) 

was used. JC-1 forms aggregates in healthy mitochondria, and fluoresces red. In 

apoptotic and necrotic cells, JC-1 does not aggregate and the monomeric form 

(green fluorescence) indicates loss of mitochondrial membrane potential. Jurkat 

cells were incubated with 2 μL/ml JC-1 dye for 15 minutes at 37°C and examined 

with a fluorescent microscope. 

Caspase activity 
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Caspase-8 and -3 activity assays were performed using a previously 

published method (Naderi et al., 2003). Briefly, total protein from Jurkat cell 

lysates was incubated with fluorogenic substrates corresponding to the substrate 

cleavage site specific for each caspase (DEVD-AFC for caspase-3 and IETD-

AFC for caspase-8). Fluorescence was measured at Ex. 400nm and Em. 505nm 

with a Spectra Max Gemini XS fluorometer (Molecular Devices, Sunnyvale, CA, 

USA). Caspase activity was calculated per μg protein and protein concentration 

was determined with BioRad protein reagent (BioRad, Mississauga, ON, CA) 

using bovine serum albumin as a standard. 

Statistical analysis 

All experiments were performed in triplicates and the results expressed as 

mean ± S.D. Statistical analysis was performed with GraphPad Prism 5.0 288 

software. 
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RESULTS 

Induction of Apoptosis in Human Leukemia Cells by Aqueous Dandelion 

Root Extract in A Dose and Time Dependent Manner 

 

In order to determine the effect of DRE on cancer cells, human leukemia 

(Jurkat) cells were exposed to increasing concentrations of dandelion extract 

(either as freshly prepared extract or lyophilized powder dissolved in water), for 

48 h. Hoechst dye was used to detect apoptotic nuclei, which are condensed and 

brightly stained. Increasing percentage of apoptosis corresponded with 

increasing concentrations of DRE (Figure 1A and B). The fresh water extract 

showed better efficiency at inducing apoptosis in Jurkat cells than the lyophilized 

extract, although the lyophilized extract had a significant effect on these cells 

even at 0.2 mg/ml (Figure 1B). For further confirmation of the ability of DRE to 

induce apoptosis in Jurkat cells, WST-1 cell proliferation assay was carried out at 

0.4 mg/ml and 0.6 mg/ml DRE after 48 h (Figure 1D). DRE was effective in 

reducing cellular viability by approximately 60% of the control untreated cells at 

0.6 mg/ml. Figure 2A indicates that at 96 h treatment, ∼70% of Jurkat cells had 

undergone apoptosis. In order to study the time course of the DRE effect, Jurkat 

cells were exposed to 0.6 mg/ml DRE. As shown in Figure 2A and B, there was 

increased apoptosis with ∼80% of cells were apoptotic after 96 h with DRE.  

To address whether non-apoptotic cells remaining after 48 h DRE 

treatment are able to resume cell division after removal of DRE, Jurkat cells were 

exposed to 0.6 mg/ml DRE over 48 h then washed and incubated with fresh 

media (without DRE) for another 48 h. Figure 3 shows that cells initially exposed 

to DRE were unable to grow after media refreshment. 
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Figure 1: Induction of apoptosis by DRE in Jurkat cells. (A) Jurkat cells 

stained with Hoechst and Annexin V after 48 h treatment with increasing 

concentrations of dandelion root extract. (B) Increasing concentrations of 

lyophilized dandelion extract induced more marked apoptosis in Jurkat cells after 

48 h treatment. (C) Crude dandelion extract 100 L induced apoptosis in 

approximately 50% of the cells as determined by manual counting of Hoechst 

images. (D) The effect of DRE on the viability of Jurkat cells at 0.4 and 0.6 mg/ml 

as determined by WST-1 cell proliferation assay, as a measure of absorbance at 

450 nm. Decreased cell metabolic viability (as a % of control) is observed with 

increasing concentrations of DRE. 
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Figure 2: Effect of dandelion extract on Jurkat cells over time. (A) Effect of 

dandelion extract on morphology of Jurkat cells exposed to DRE as can be seen 

by fluorescence and phase contrast pictures after incubation with 0.6 mg/ml DRE 

for extended periods. (B) Apoptosis increased with time from 3 to 96 h with ∼40% 

of cells being apoptotic after 48 h and almost 80% after 96 h. Cell death was 

quantified using the Trypan Blue exclusion assay.  
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Figure 3: Exposure of Jurkat cells to DRE for 48 h inhibits growth even after 

removal of DRE. Jurkat cells were exposed to 0.4 mg/ml and 0.6 mg/ml DRE for 

48 h. The cells were then incubated in DRE free media and were allowed to grow 

for 48 h. Trypan Blue exclusion assay was used to quantify the growth of Jurkat 

cells after fresh media replacement for 48 h. 
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Confirmation of Apoptosis by Annexin-V and Apopercentage Assays 

 

In order to further confirm the apoptotic mode of cell death, additional 

biochemical characteristics were monitored. During apoptosis, there is 

reorganization of the cell membrane, which leads to the flipping of 

phosphatidylserine from the inner to the outer leaflet of the cell membrane (Martin 

et al., 1995). This feature of apoptotic cells enabled us detect and confirm the 

induction of apoptosis after exposure to DRE. Jurkat cells were exposed to 0.6 

mg/ml DRE for 48 h and were either assayed using Annexin-V binding or 

apopercentage dye, both of which take advantage of membrane reorganization. 

Annexin-V binds with high affinity to exposed phosphatidylserine on apoptotic 

cells (Martin et al., 1995). Apopercentage dye is selectively imported into the cells 

undergoing apoptosis. Results shown in Figure 4 indicates that indeed, there is 

an increased number of Annexin-V and apopercentage positive cells after DRE 

exposure compared to control, thus further confirming that DRE induced 

apoptosis in Jurkat cells. 
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Figure 4: Confirmation of apoptosis by Annexin-V and apopercentage. 

Annexin-V and apopercentage assays were carried out to confirm apoptosis by 

the flipping of the phosphatidylserine to the outer leaflet of the cell membrane 

during apoptosis as described in the materials and methods. Both assays 

indicate that DRE treatment caused externalization of phosphatidylserine as 

observed by Annexin V (green fluorescence) and apopercentage (pink cells). 
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Dandelion Root Extract Induces Activation of Caspase-8 Followed by 

Caspase-3 in Jurkat Cells 

 

Activation of aspartate-specific cysteine proteases also known as 

caspases, is an important biochemical event of apoptosis (Fadeel and Orrneius, 

2005; Kekre et al., 2005). Different caspases are activated at the initiation and 

execution phases of apoptosis. To determine the effect of DRE on the activation 

of caspases, the activities of caspase-8 and caspase-3 were assayed in Jurkat 

cellular extracts at different time periods following DRE treatment. Results shown 

in Figure 5A indicates that DRE treatment caused very early activation of 

caspase-8 at 6 minutes following DRE exposure followed by subsequent 

activation of caspase-3 at 6h (Figure 5B).  

Generally caspase-8 is activated following assembly of death inducing 

signaling complex (DISC) in receptor-mediated apoptosis and thus our result 

indicated that receptor-mediated apoptotic pathway might be involved in DRE-

induced apoptosis. The Fas associated death domain (FADD) is a cytosolic 

adaptor protein that binds to Fas-receptor following its engagement with Fas 

ligand, and recruits pro-caspase-8 leading to activation of caspase-8. Dominant-

negative FADD Jurkat cells are unable to assemble functional DISC, and thus are 

resistant to receptor-mediated apoptosis. To determine if DRE requires the FADD 

receptor for activation of caspase-8, we tested dominant-negative FADD Jurkat 

cells under the same conditions as wild-type Jurkat cells. Results indicated that 

there was no response to increasing concentrations of DRE at 48 h compared to 

the control untreated cells (see figure 5, chapter 4). This suggested that indeed, 

DRE-induced apoptosis is receptor mediated. 
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Figure 5: Dandelion root extract induces early activation of caspases in 

Jurkat cells. Fluorometric caspase activity assay using caspase-3 (A) and 

caspase-8 (B) specific peptide was performed as described in the methods 

section. The results here are reported as activity per g of protein (in fold) and 

the average of three experiments are shown. Early activation of caspase-8 and 

ensuing activation of caspase-3 in Jurkat cells upon exposure to DRE at various 

time intervals. 
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Destabilization of Mitochondrial Membrane Potential by Dandelion Root 

Extract 

 

The mitochondria are known as the powerhouse of the cell and play an 

essential role in apoptosis (Armstrong, 2006). Recent research has been focused 

on mitochondria as a target for chemotherapy because destabilization of 

mitochondria membrane potential leads to the release of apoptotic factors 

thereby allowing apoptosis to occur (Bell et al., 2008; Ralph and Neuzil, 2009). 

To determine the effect of DRE on Jurkat mitochondria, we exposed these cells 

to 0.4 mg/ml DRE for 48 h. Mitochondrial destabilization was observed by JC-1 

staining with increasing concentrations of DRE (Figure 6). 
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Figure 6: Destabilization of mitochondrial membrane potential by dandelion 

extract. Jurkat cells were treated with DRE at 0.4 mg/ml and incubated with JC-1 

dye. Red fluorescence indicates cells with intact mitochondrial potential. 

Exposure to 0.4 mg/ml DRE led to the loss of mitochondrial membrane potential. 
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Dandelion Root Extract is Non-Toxic to Non-Cancerous Peripheral Blood 

Mononuclear Cells (PBMCs) 

 

Dandelion extracts have been traditionally used for various ailments and 

no toxic effects have been reported; we wanted to investigate its effect on non-

cancerous peripheral blood mononuclear cells (PBMCs). PBMCs were incubated 

with various concentrations of DRE for 48 h, under the same conditions as Jurkat 

cells and apoptotic nuclei were monitored by Hoechst staining. 

Results indicated that there were no differences between control untreated cells 

and DRE treated cells (Figure 7). 
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Figure 7: Effect of DRE on non-cancerous peripheral mononuclear blood 

cells (ncPBMCs). ncPBMCs, from healthy volunteers, were treated at the 

indicated concentrations for 48 hours before being stained with Hoechst 33342 

dye and imaged on a fluorescence microscope (A). (B) Nontoxic effect of DRE on 

PBMCs. PBMCs treated in (A) were quantified by manual counting of brightly 

stained apoptotic nuclei. 
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DISCUSSION 

The major setbacks of most available chemotherapies are that they cause 

severe side effects due to toxicity of non-cancerous tissue, and often become 

ineffectual due to chemo-resistance (Kekre et al., 2005; Ma et al., 2009). The 

holy grail of cancer therapy is to develop a novel alternative that has high 

specificity to induce apoptosis in cancer cells. In the last decade there has been a 

surge of anti-cancer drugs introduced, with about half of them derived from 

natural sources (Koo et al., 2004; Lee, 1999).  

Although aqueous dandelion extracts have been used in traditional 

medicine throughout Asia, Europe, and North America (Yarnell and Abascal, 

2009) for treatment of many diseases including leukemia and breast cancer, the 

mechanism by which the root extract acts is unknown. Most of the components of 

dandelion extract have been isolated and identified but their functions remain 

uncharacterized (Schutz et al., 2006). Reports on the scientific use of this extract 

in the treatment of cancer have been unclear and/or conflicting (Sweeney et al., 

2005). In a study conducted by Koo et al. (2004), dandelion extract was shown to 

induce cytotoxicity in the HepG2 human hepatocellular carcinoma cell line by 

inducing production of cytokines such as TNF-α and IL-1β. Conversely, Kim et al. 

(2000) reported that dandelion extract has anti-inflammatory activity in astrocytes 

through inhibition of IL-1β and TNF-α production. In a recent study by Sigstedt et 

al. (2008) both dandelion leaf and root extracts were shown to inhibit proliferation 

and invasiveness of cancer cell lines by decreasing MMP-2 and MMP-9 

expression, indicating a possible mechanism by which dandelions act to inhibit 

the progression of cancer. 
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Here we report the cancer-specific apoptosis activity of dandelion root 

extract (DRE) and the possible mechanism by which this extract works. A 

previous study has shown some effect on the viability of HepG2 cells, with 

minimum effect using 0.2 mg/ml (Koo et al., 2004). We used a range of 

concentrations between 0.2 mg/ml and 1.0 mg/ml for the induction of apoptosis in 

Jurkat cells and the EC50 was observed at 0.6 mg/ml DRE. Apoptosis was 

evident within 48 h at 0.6 mg/ml of DRE by chromatin condensation and 

exposure of phosphatidylserine on the outer leaflet of the cell membrane (Figures 

1 and 4). Increase in apoptosis, confirmed by a WST cell viability assay, was 

observed in a dose and time-dependent manner (Figures 2 and 3).  

Interestingly, we observed very rapid activation of initiator caspase-8 

(within minutes) in Jurkat cells treated with DRE (Figure 5A), which was followed 

by activation of executioner caspase-3 within 12 h of treatment (Figure 5B). This 

indicated that DRE induces the death receptor mediated extrinsic pathway of 

apoptosis (Figure 5A). To confirm this mechanistic hypothesis dominant-negative 

FADD Jurkat cells, which have a truncated non-functional FADD protein, were 

exposed to DRE. These cells were found to be resistant to DRE-induced 

apoptosis; DnFADD cells are unable to assemble the death-inducing signaling 

complex responsible for activation of caspase-8 and thus unable to undergo 

extrinsic apoptosis (see figure 5, chapter 4; Marini et al., 2003). 

Furthermore, we demonstrated that DRE-induced apoptosis is caspase 

dependent as pre-treatment with the pan-caspase inhibitor ZVAD-fmk inhibited 

cell death in Jurkat cells (Malyshev et al., 2004). Exposure to DRE (0.4 and 0.6 

mg/ml) for 48 h led to the destabilization of mitochondrial membrane potential, as 
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observed by a decrease in JC-1 dye accumulation (Figure 6). Decreased 

mitochondrial membrane potential is thought to result from truncation and 

activation of the pro-apoptotic protein Bid caused by activated caspase-8 (Belka 

et al., 2000). Truncated BID protein binds to pro-apoptotic protein Bax, which 

inserts into the mitochondrial outer membrane causing collapse of the 

mitochondrial membrane potential (Li et al., 1998). 

Over the years there has been no report of toxicity in people taking 

dandelion extracts. To test the selectivity of our aqueous dandelion root extract, 

non-cancerous peripheral blood mononuclear cells were treated with DRE under 

the same conditions as Jurkat cells and examined for apoptotic morphology. 

Interestingly, these normal non-cancerous cells were unaffected by DRE 

treatment (Figure 7). This outcome may be due to the fact that the expression of 

Fas receptors is far greater in human leukemia cells than in normal cells (Kekre 

et al., 2005). This increased expression in leukemia cells may be the sensitizing 

factor for apoptosis induction in Jurkat cells by DRE, which is consistent with our 

results that DRE induces the death-receptor mediated pathway of apoptosis.  

Our results clearly indicate that components of dandelion root extract act 

either alone or in combination with each other to induce formation of the death 

inducing signaling complex and subsequent extrinsic apoptosis selectively in 

human leukemia cells (Figure 8). The mechanism by which this extract induces 

apoptosis is being studied further to determine possible genomic interactions and 

to delineate the active component of DRE. These in-vitro results are a stepping-

stone for the development of a more efficient mode of therapy and present a 

novel non-toxic alternative to conventional leukemia therapy. 



 74 

 

 

 

Figure 8: Graphical Representation of the Mechanism of Action of DRE in 

Human T Cell Leukemia (JURKAT). Following DRE treatment, there was rapid 

activation of caspase-8 in Jurkat cells, indicating the targeting of the death 

ligand/receptor dynamic. This presence of the Fas-Associated Death Domain 

(FADD) was required for the activation of caspase-8, which led to the activation 

of caspase-3 (directly or indirectly, through the truncation of Bid and the 

destabilization of the mitochondrial membrane). The subsequent activation of 

caspase-3 preceded the induction of apoptosis, characterized by known 

morphological and biochemical features of apoptosis. 
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ABSTRACT 
 

Pancreatic cancer has a 100% mortality rate; the aim of this study is to 

evaluate the efficacy of Dandelion Root Extract (DRE) in inducing apoptosis and 

autophagy in aggressive and resistant pancreatic cancer cells. The effect of DRE 

was evaluated using WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-

tetrazolio]-1,3-benzene disulfonate) assay. Apoptotic cell death was confirmed by 

nuclear condensation by Hoechst staining, and externalization of 

phosphatidylserine to the outer leaflet of the plasma membrane by Annexin-V 

binding assay. Loss of mitochondrial membrane potential was observed using the 

JC-1 (5, 5’, 6, 6’-tetrachloro-1,1’, 3,3’ tetraethylbenzimidazolylcarbocyanine 

iodide) dye. The induction of autophagy was detected using an MDC assay and 

this was confirmed by immunofluorescence for LC3-II. 

BXPC3 and PANC-1 pancreatic cells were sensitive to aqueous DRE. This 

extract induces selective apoptosis in a dose and time-dependent manner.  DRE 

caused the collapse of the mitochondrial membrane potential, leading to pro-

death autophagy. Normal Human and Fetal Fibroblasts were resistant at similar 

doses.  

In this study, we demonstrate that DRE has the potential to induce 

apoptosis and autophagy in human pancreatic cancer cells with no significant 

effect on non-cancerous cells.  This will provide a basis upon which further 

research in the field of cancer treatment through DRE can be executed.   
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INTRODUCTION 
 

In Canada, it is estimated that approximately 173 800 new cases of cancer 

will be diagnosed and 76 200 Canadians will die of cancer in 2010 (Canadian 

Cancer Society, 2010). The risk of developing this disease increases with age; 

nonetheless it can affect all ages. Pancreatic cancer, a very aggressive and 

highly resistant form of cancer, is a cancer that originates in the pancreas 

(Canadian Cancer Society, 2010). It is the fourth leading cause of cancer-related 

deaths in the world today (Castellanos et al., 2011).  In 2010, it was estimated 

that 4000 new cases would be diagnosed and 3900 deaths due to pancreatic 

cancer in Canada.  

Treatment for pancreatic cancers include the already known forms of 

chemotherapeutics such as 5-fluorouracil and gemicitabin (Skinner, 2010), 

surgery and radiation therapy. Although they show initial efficacy, these 

treatments do not remain effective for extended periods of time and are usually 

accompanied by severe side effects (Poplin et al., 2009; Kindler et al., 2010).  

Furthermore, in the early stages of pancreatic cancer there are no clear signs or 

symptoms (Tuvesan & Hanahan, 2011).  Depending on the location of the tumour 

in the pancreas, signs and symptoms begin to appear once surrounding tissues 

become affected and surgical resection of the tumour is only successful if the 

disease is diagnosed in its early stages when the cancer has not metastasized 

(Castellanos et al., 2011). Early prognosis is therefore one of the leading areas of 

research in this field due to its difficult identification (Canadian Cancer Society, 

2010). Most commonly, pancreatic cancer is diagnosed in very late stages and 

survival is dismal at best. With one of the highest mortality to incidence rate ratios 
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(Tempero et al., 2011), there is an important need to introduce a safe and 

effective mode of targeting both early and late stage pancreatic cancers. 

One of the most common hallmarks of cancer involves the ability to evade 

the physiological process of programmed cell death, also known as apoptosis 

(Johnstone et al., 2002; Hanahan & Weinberg, 2011). Cancer cells have also 

been found to utilize autophagy, a catabolic process used to degrade cytoplasmic 

materials, as a pro-survival technique to overcome stressors such as starvation 

and chemotherapy (Rosenfeldt & Ryan, 2011). There has been a lot of 

controversy surrounding the field of autophagy, where it has been shown to play 

dual roles, as both a pro-survival and pro-death phenomenon (Rosenfeldt & 

Ryan, 2011). Recent studies have shown that pro-death autophagy and 

apoptosis have interconnected pathways and can be regulated by the same 

proteins, including the pro-apoptotic Bcl-2 family of proteins (Thorburn, 2008). It 

is therefore necessary to investigate these pro-death pathways so as to harness 

their properties for targeting various types of cancers.  

In current cancer therapies, natural compounds such as Taxol (Paclitaxel) 

and Navelbine, have been widely utilized.  However, many of these compounds 

are genotoxic or non-selective and therefore cause damage to normal cells as 

well (Mukherjee et al., 2001). Dandelions are very common weeds found in 

almost every part of the world (Koo et al., 2004), the leaves and root of which, 

have been studied for their effects on digestion and gastrointestinal diseases 

(Yarnell and Abascal, 2009). Recent investigations have shown that dandelion 

root extract (DRE) has the ability to selectively induce apoptosis in human 

melanoma and leukemia cells, with no toxicity to non-cancerous peripheral blood 
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mononuclear cells (Chatterjee et al., 2011; Ovadje et al., 2011). Whether DRE 

can induce programmed cell death in highly aggressive and resistant human 

pancreatic carcinoma cell lines remains unknown.  

In this study, we show the efficacy of Dandelion Root Extract in inducing 

apoptosis in a dose and time dependent manner in aggressive human pancreatic 

cell lines (BxPC-3 and PANC-1). In parallel, similar experiments in non-

cancerous Normal Human Fetal Fibroblasts indicate that DRE selectively targets 

human pancreatic cancer cells, confirming results from previous studies 

(Chatterjee et al., 2011; Ovadje et al., 2011). Early activation of caspase-8 and 

subsequent activation of caspase-3 indicate that apoptosis induction by DRE is 

due to activation of the extrinsic pathway of apoptosis. Interestingly, we observed 

that DRE induced a pro-death form of autophagy in human pancreatic cancer 

cells. This induction of autophagy corresponds with the destabilization of the 

mitochondrial membrane potential, which was observed after treatment with 

DRE.  Through revival experiments, it was shown that the signal to commit 

suicide was retained once the cells had been exposed to DRE. Although we are 

unsure of the active ingredients in DRE responsible for the induction of cell death, 

our work provides novel evidence of the selective anti-cancer effects of DRE in 

human pancreatic cancer cells. 
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MATERIALS & METHODS 

Dandelion Root Extraction and Cell Treatment 

Dandelion root extract (DRE) was prepared from the roots of collected 

dandelion weeds found in localized open grasslands.  Following repeated 

washing with water, the roots were air dried and ground to a fine powder.  The 

powder was then homogenized in 200 mL of distilled water and filtered at room 

temperate using NITEX nylon mesh filters (LAB PAK; Sefar BDH Inc., Chicoutimi, 

Quebec, Canada).  The filtrate was then spun down at 8000 x g at 25°C for 5 

minutes and the supernatant was filtered by 0.45 μm and 0.22 μm filters.  The 

final filtrate was lyophilized and 100mg/ml stock aqueous extract was prepared.   

Cell Lines and Cell Culture Maintenance   

The cancer cell line used this study was human pancreatic cancer BxPC3 

and PANC-1which were purchased from the American Type Culture Collection 

(ATCC), Manassas, VA, USA.  The normal cell line used were normal human 

fibroblasts (NHF) cells, which were obtained from Coriell Institute for Medical 

Research, USA.  BxPC3 cells were grown in RPMI-1640 media supplemented 

with 15% fetal bovine serum (FBS) and 10 mg/mL Gentamicin (Gibco BRL, VWR, 

Mississauga, ON, Canada).  The normal human fibroblasts were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) obtained from Sigma Chemical 

Company, Mississauga, Ontario, Canada, supplemented with 10% FBS, 2mM L-

Glutamine, and 10 mg/mL Gentamicin (Gibco BRL, VWR, Mississauga, ON, 

Canada).  PANC-1 cells were grown in DMEM media supplemented with 15% 

fetal bovine serum (FBS) and 10 mg/mL Gentamicin (Gibco BRL, VWR, 

Mississauga, ON, Canada).  All cell lines were grown and maintained at 37°C, 
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95% humidity, and 5% CO2 in a Forma Scientific CO2 incubator equipped with a 

HEPA filter (Forma Scientific Inc., Marietta, Ohio, USA). All cell lines were grown 

to approximately 50% confluence and were treated with either Fresh water 

Dandelion Root Extract or lyophilized extract (0.5 mg/mL to 7.5 mg/mL). Treated 

cells were allowed to grow over time up to 96 hours after treatment and was 

examined using several staining assays as described below. 

CELL STAINING 

Hoechst Staining 

To visualize apoptosis in the cells, a photosensitive DNA-binding stain 

called Hoechst 33342 (Sigma Chemical Company, Mississauga, Ontario, 

Canada) was incubated with a final concentration of 10 μM with cells at room 

temperature for approximately 10 minutes.  Following incubation, the cells were 

viewed with a Leica DM IRB inverted fluorescence microscope (Wetzlar, 

Germany) and Northern Eclipse Version 8.0 Imaging software at 100X and 400X 

objective.  Apoptotic cells are characterized by brightly stained, condensed nuclei 

as compared to larger, round and less-brightly stained non-apoptotic cells.  The 

average percent apoptosis was calculated by counting and averaging the number 

of brightly condensed nuclei over the total number of cells observed over 5 fields 

at 400X objective.   

Annexin-V Binding Assay 

An early marker of apoptosis is the flipping of phosphatidylserine from the 

inner leaflet to the outer leaflet of the plasma membrane, which can be visualized 

through the use of an Annexin-V binding assay.  Cells treated with various doses 

of DRE were scraped using a rubber policeman to removed adherent cells from 
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the plate bottom and washed twice in phosphate buffered saline (PBS).  

Following washing with PBS, the cellular pellet was resuspended in Annexin-V 

binding buffer (10mM HEPES, 10mM NaOH pH 7.5, 140mM NaCl, 2.5mM CaCl2, 

50 nM Sucrose), along with the Annexin-V Alexa Fluor® 488 conjugate (Sigma 

Chemical Company, Mississauga, Ontario, Canada), which binds to 

phosphatidylserine, at 1:50 with respect to the buffer. This was allowed to 

incubate in low light conditions at room temperature for approximately 15 

minutes.  Hoechst 33342 dye was also incubated with the cells for the final 10 

minutes in order to visualize nuclear morphology of positively stained Annexin-V 

cells.  The cells were then visualized and images were taken using a 

fluorescence microscope (Leica DM IRB) at 400X objective. 

Trypan Blue Exclusion assay 

In order to quantify the number of viable Pancreatic Cancer cells, Trypan 

blue staining was used to visualize the cells.  Trypan blue is a dye, which stains 

only dead cells whose plasma membranes are permeable to the dye.  A 1:1 

mixture of cell suspension and 0.4% Trypan blue dye (Sigma Chemical 

Company, Mississauga, Ontario, Canada) was loaded onto a haemocytometer 

(Hausser Scientific, USA) where non-viable blue-stained cells and viable 

unstained cells were counted.  The average number of viable cells was 

expressed as number of cells/mL. 

Cell Viability Assay 

In order to determine cell viability, a colorimetric dye called WST-1 ([2-(4-

Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, Roche 

diagnostics, Mannheim, Germany) was used.  In metabolically active, viable cells, 
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WST-1 produces formazan, which can be measured for absorbance.  First, a 

Trypan blue count was done in order to seed equal number of cells into 96 well 

plates.  Approximately 5000 cells were seeded with a total volume of 200μL in 

each well and treated following attachment of the cells overnight.  Following 

treatment, WST-1 dye was added to each well (20µL per 200 µL) and incubated 

at 37°C for 4 hours.  Absorbance was read at 590nm with a Victor™ Plate 

Reader (Wallac, Turku, Finland).  Absorbance values of the treated cells were 

calculated as a percentage of absorbance values of control. 

Mitochondrial Membrane Potential 

In order to visualize mitochondrial membrane permeability in BxPC-3 cells, 

JC-1 dye (5, 5, 6, 6-tetrachloro-1, 1, tetraethylbenzimidazolocarbo-cyanine 

iodide, Sigma Chemical Company, Mississauga, Ontario, Canada) was incubated 

with treated the cells.  JC-1 forms aggregates in mitochondria with intact 

membrane potential.  The dye was diluted 2:50 in PBS to a concentration of 0.5 

μM and was incubated with treated cells for 45 minutes at 37°C.  During the final 

10 minutes of incubation, Hoechst dye was added to the cells.  Following 

incubation, the cells were then visualized and images were taken using a 

fluorescence microscope at 400x objective. Tetramethylrhodamine methyl ester 

(TMRM) (Gibco BRL, VWR, Mississauga, ON, Canada) was used for PANC-1 

cells to measure Mitochondrial Membrane Potential. PANC-1cells were grown on 

coverslips. After treatment period, the cells were incubated for 45 minutes with 

200 nM TMRM at 37°C.  The coverslips were then placed on microscope slide 

and pictures were taken at 40x objective using inverted fluorescence microscope 

(Leica DM IRB). 
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MDC Assay 

To detect autophagy, an MDC (monodansylcadaverine, Sigma Chemical 

Company, Mississauga, Ontario, Canada) assay was preformed.  MDC is a 

fluorescent compound that is incorporated into autophagic vacuoles and 

produces a bright punctate stain.  Propidium iodide (PI) is used as a co-stain with 

MDC to visualize dead cells.  First, 100μM MDC is diluted 1:25 in PBS and added 

to the cells along with PI, then incubated at 37°C for 15 minutes.  Following 

incubation, the cells were visualized and images were taken using a fluorescence 

microscope at 400X objective. 

Immunocytochemical Analysis 

BxPC3 cells were plated on poly-l-lysine coated coverslips and treated 

with DRE for 48 hours to stimulate the induction of autophagy. Treated cells were 

fixed in cold methanol, then cold acetone for 5 seconds and allowed to air dry. 

Following fixation, the cells on the coverslips were incubated with PBS containing 

0.05% Tween 20 and 5% Normal Goat Serum for 10 minutes. Cells were then 

incubated with anti-LC3 antibody (1:500 dilution) (Novus Biologicals, Cat. No. 

NB100-2220, Littleton, CO, USA), overnight at 4°C. The following day the cells 

were subjected to two five-minute washes with PBS containing 0.05% Tween20 

and then incubated with anti-rabbit antibody, Alexa Fluor® 488 conjugate (1:1000) 

(Cell signaling Technologies, Cat. No. 4412, Pickering, ON. CA), for an hour at 

room temperature. Following two washes with PBS-Tween20 for 5 minutes, cells 

were counterstained with Hoechst for 10 minutes and visualized and images 

were taken using a fluorescence microscope at 400x objective. 
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Caspase Activity 

The Caspase assays were performed using a previously published method 

(Naderi et al., 2003). To determine caspase activity, the total protein from BXPC-

3 and PANC-1 cell lysates were incubated with the fluorogenic substrates 

corresponding to the substrate cleavage site, specific for each caspase, DEVD-

AFC for Caspase-3 and IETD-AFC for Caspase-8 and 9. The fluorescence was 

measured at an excitation wavelength of 400 nm and emission wavelength of 505 

nm using a Spectra Max Gemini XS (Molecular Devices, Sunnyvale, California). 

Caspase activity was calculated as activity per µg protein and protein 

concentration was determined with BioRad protein assay reagent (BioRad, 

Mississauga, Ontario) using bovine serum albumin (BSA) as a standard. 

Readings were analyzed using GraphPad Prism 5.0 288 software.  

Statistical analysis: 
 

All experiments were performed in triplicates and the results expressed as 

mean ± S.D. Statistical analysis was performed with GraphPad Prism 5.0 288 

software. 
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RESULTS 
 
Effect of Dandelion Root Extract on Highly Aggressive Pancreatic Cancer 

Cells.  

 

In order to determine the effect of DRE on pancreatic cancer cells, two 

different pancreatic cancer cell lines (BxPC-3 and PANC-1) were treated with 

DRE at doses of 0.5, 1, 2.5, 5, and 7.5 mg/mL and examined at different time 

points. To visualize morphological features of apoptosis induction in BxPC3 and 

PANC-1 following DRE treatment, Hoechst, a dye that binds to the minor groove 

of DNA, was used to observe nuclear condensation. An increase in nuclear 

condensation was observed with an increase in concentration, as well as an 

increase in the time of exposure to DRE (Figure 1A). Apoptotic cells and non-

apoptotic cells were manually counted and quantified as average percentage 

apoptosis in both cell lines. The average percent apoptosis was found to increase 

with increasing concentration of DRE over time (Figure 1B).   

An early marker of apoptosis is the reorganization of the cell’s membrane, 

which leads to externalization of the phosphatidylserine from the inner leaflet to 

the outer leaflet of the cell membrane. This can be observed with Annexin V 

binding assay. Following 72-hour treatment with DRE, there is an increase in 

bright green fluorescence indicative of apoptosis in a dose and time dependent 

manner in DRE treated BxPC-3 cells. Annexin-V positive staining was observed 

as early as 24 hours in DRE treated PANC-1 cells (Figure 1C). 

Quantitative cell viability as a function of cell metabolism was assessed 

through WST-1 assay. DRE led to a 60% decrease in cell viability 48 hours 

following treatment with only 20% of BxPC-3 cells remaining viable after 96 hours 
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of exposure to DRE. Similar results were observed in PANC-1 cells; with a 

gradual decrease in cell viability with an increase in dose of DRE compared to 

untreated control cells (Figure 1D).   

According to results of both qualitative and quantitative analyses, the EC50 

for both pancreatic cancer cell lines is around 5.0 mg/mL. 

In order to investigate the fate of cells exposed to DRE but show no 

apoptotic morphology following treatment for 48 hours (40%), BxPC-3 cells were 

plated and treated for 48 hours at 5.0mg/ml and 7.5mg/ml DRE. After 48 hours, 

equal numbers of BxPC-3 cells were seeded and allowed to grow in drug-free 

media, with growth observed every 24 hours by trypan blue exclusion assay.  The 

untreated control cells were able to maintain constant growth over time. However, 

the DRE treated cells were unable to revive growth in fresh media as time 

progressed.  Analysis reveals a significant decrease in the number of cells per 

mL at 96 hours post-treatment from 700 000 to 10 000 cells between the 

untreated control cells and the cells treated with DRE, respectively (Figure 1E). 

Similar results were observed for the PANC-1 cell line following revival after 

treatment with DRE for 48 hours.  

These results indicate that DRE led to the loss of cell viability and 

effectively induced apoptosis in human pancreatic cancer cells in a dose and time 

dependent manner. More importantly, cells that had been exposed to DRE 

retained the signal to commit suicide even after the removal of DRE.  
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Figure 1: Efficacy of Dandelion Root Extract in inducing apoptosis in 

human Pancreatic cancer cells. (A). An increase in brightly stained, condensed 

nuclei indicative of apoptosis, is seen with increasing doses and time periods 

following treatment with DRE.  (B). Manual quantification of Hoechst pictures. In 

comparison to the results seen in A, there is an increase in the average % 

apoptosis in a dose and time dependent manner. 

 

 

 

 

A 

B 



 93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Efficacy of Dandelion Root Extract in inducing apoptosis in 

human Pancreatic cancer cells. (C). Brightly stained apoptotic cells seen in 

Hoechst images are visualized by Annexin-V binding to exposed 

phosphatidylserine in the lower panel of images in both BxPC-3 and PANC-1 

cells.  (D). Treatment with DRE led to a drastic decrease in the percent of 

metabolically viable cells  (as a % of control) after treatment at the indicated time 

points; (i) BxPC-3 (*p<0.05; *#p<0.0001)  and (ii) PANC-1 (*p<0.05; **p<0.0001) 

hours with DRE.   (E). Exposure to of BxPC-3 cells to DRE for 48 hours halted 

the cell growth following removal of treatment. Cells were unable to revive growth 

after exposure to DRE and retained the signal to commit suicide after removal of 

DRE (**, #@p<0.0001). 
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Repeated Doses of DRE at Lower Concentrations is More Effective than a 

Single Low/High Dose in Inducing Apoptosis in Human Pancreatic Cancer 

Cells 

 

Any treatment at high doses can be toxic and as can be observed from our 

previous results in figure 1, higher doses of DRE were required to induce 

apoptosis in both pancreatic cancer cell lines. Treatment of these cells with 

repeated doses of low concentrations of DRE showed a higher efficacy than one 

single high dose. Exposure of BxPC3 (Figure 2A) and PANC-1 (Figure 2B) to low 

concentration (0.5, 1.0, and 2.5mg/mL) of DRE for 48 hours and then a second 

treatment for another 48 hours reveals that two treatments are more effective 

than treating once with a high dose.  Comparing the control and 2.5mg/mL 

treated phase images shows a drastic difference in the number of dead cells 

following the second 48 hour treatment (Figure 2). These results indicate multiple 

doses of low concentrations of DRE are more effective in inducing apoptosis than 

one single high dose in human pancreatic cancer cells. 
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Figure 2: Repeated doses of DRE at lower concentrations in human 

pancreatic cancer cells: Treating BxPC-3 (A) and PANC-1 (B) twice for 48 

hours at doses of 0.5, 1, and 2.5mg/mL has a significantly higher effect than a 

single treatment for 48 hours. Following the second 48 hour treatment, cells were 

stained with Hoechst 33342 and fluorescence images were obtained at 400X 

magnification. 
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DRE Destabilizes the Mitochondrial Membrane Potential in Human 

Pancreatic Cancer Cell Lines 

 

In order to determine the mechanism of action of DRE, we wanted to 

observe the effect of DRE on the mitochondria of human pancreatic cancer cells.  

Both the extrinsic and intrinsic pathways of apoptosis converge on and 

permeabilize the mitochondria leading to the release of pro-apoptotic factors 

(Fadeel & Orrenius, 2005).  Evaluation of mitochondrial membrane potential is 

done through visualization of red fluorescence of JC-1 or TMRM mitochondria 

permeable dyes in healthy, intact mitochondria.  DRE led to the destabilization of 

the mitochondrial membrane potential in BxPC-3 cells as observed by the loss of 

red aggregates of JC-1 dye in DRE treated cells after 48 hours of treatment 

(Figure 3A). Similar results were observed in DRE treated PANC-1 cells, stained 

with TMRM (Figure 3B). These results indicate that the mitochondria of highly 

aggressive pancreatic cells are vulnerable to DRE, leading to permeabilzation of 

the mitochondrial membrane potential, characteristic of apoptosis.  
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Figure 3: DRE destabilized the mitochondrial membrane potential of human 

pancreatic cancer cells. Pancreatic cancer cells were grown on coverslips and 

treated with DRE for 48hours and stained with either JC-1 (A) or TMRM (B), 

which are mitochondrial permeable dyes that aggregate in healthy mitochondria 

and fluoresce red or remain in the cytosol in their monomeric form (Green). 

Fluorescence microscopy was used to assess membrane potential. The loss of 

dye aggregation is observed in DRE-treated BxPC-3 (A) and PANC-1 (B) cells.  
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DRE activates the death-receptor mediated extrinsic pathway of apoptosis 

The loss of mitochondrial membrane potential in itself does not provide us 

with information regarding the pathway of apoptosis induction. In order to get 

more information on the pathway of apoptosis induction, which would shed more 

light on the mechanism of induction of apoptosis by DRE, we analyzed the 

chronological activation of caspases. BxPC-3 cells were treated with 2.5 mg/ml 

DRE, at the indicated time points, and subsequently analyzed for the activation of 

caspases, using substrates specific to each type of caspase. Our results show 

that there is a very rapid activation of caspase 8 in BxPC-3 cells (Figure 4), 

suggesting an extrinsic mode of cell death. Similar results were observed in 

PANC-1 cells. 
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Figure 4: DRE induces extrinsic apoptosis in human pancreatic cancer 

cells. BxPC-3 cells were treated with DRE at the indicated time points. 

Subsequently, cells were collected, washed and incubated with lysis buffer to 

obtain cell lysate. The cell lysate was incubated with caspase substrates, specific 

to each caspase (3, 8 and 9) and incubated for an hour. Fluorescence readings 

were obtained using a spectrofluorometer. An average of 6 readings per well and 

a minimum of three wells were run per experiment. The results here are reported 

as activity per µg of protein (in fold) and the average of three experiments are 

shown 
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DRE Induces Pro-Death Autophagy in Human Pancreatic Cells 

Along with apoptosis, autophagy is a physiological process of cell death 

involved in the maintenance of cellular homeostasis (Gottlieb et al., 2009). Cells 

undergoing autophagy form autophagic vacuoles, which can be visualized 

through the use of MonoDansylCadaverine stain (Niemann et al., 2000).  The 

corresponding PI stains reveals which of the autophagic cells are dead, 

suggesting a pro-death capacity of DRE in pancreatic cancer cells.  

Tamoxifen is known to induce pro-survival autophagy (Qadir et al., 2008), 

and therefore is used as a positive control.  We observed a clear induction of 

autophagy in the treated cells at increasing doses of DRE over time as compared 

to the positive tamoxifen control in BxPC-3 cells. (Figure 5A). When autophagy is 

induced, microtubule-associated protein 1 light chain 3 (LC3-I), usually localized 

in the cytosol, is conjugated to phosphatidylethanolamine. This conjugation 

results in the lipidated protein LC3-II that is recruited to autophagosomal 

membranes and can be used as another marker for autophagy detection (Ma et 

al., 2011).  

To confirm the results of autophagy seen by MDC staining, 

immunocytochemical analysis was used to detect the conversion of LC3-I to LC3-

II.  BxPC-3 treated with DRE at 2.5mg/mL had a similar effect on the conversion 

of LC3-I to LC3-II, compared to the tamoxifen treated cells. Both the tamoxifen 

and DRE treated cells incubated with antibody against LC3-II gave positive 

results, which confirmed the autophagy observed in 5a (Figure 5B). Treated 

PANC-1 cells with DRE doses of 2.5 mg/mL showed similar results.  
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Figure 5. DRE induces pro-death autophagy in human pancreatic cancer 

cells. (A). BxPC-3 cells were seeded onto coverslips in six-well plates and 

treated with DRE at 2.5mg/mL for 48 hours. Tamoxifen is a known inducer of pro-

survival autophagy and was used as a positive control for autophagic induction in 

pancreatic cancer cells. Following treatment, cells were stained with 

monodansylcadaverine and counterstained with Propidium Iodide to indicate the 

dead cells. (B). BxPC-3 cells were plated on coverslips and treated with DRE or 

Tamoxifen for 48 hours. Following treatment, coverslips were incubated with 

primary antibody specific to LC3-II overnight at 4°C, then incubated with 

appropriate secondary antibody for an hour at room temperature. The cells were 

counterstained with Hoechst and imaged.  
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DRE is not Toxic to Non-Cancerous Normal Human Fibroblasts  

Dandelions have been used as an herbal medicine for centuries and there 

has been no reported evidence of toxicity (Kemper et al., 1999). In order to 

further investigate whether DRE selectively targets cancerous cells, Normal 

Human Fibroblasts (NHFs) were treated with DRE under the same conditions as 

the pancreatic cancer cells. Treatment of non-cancerous NHFs with DRE at 

doses of 1.0, 2.5 and 5 mg/mL for 96 hours reveals no morphological signs or 

characteristic of apoptosis as seen by Hoechst staining (Figure 6; top panel). In 

comparison to pancreatic cancer cells treated with DRE, NHFs retain their 

viability in the presence of DRE as seen through WST-1 cell viability assay 

(Figure 6; bottom panel).  However, the treated cells are not as viable as the 

untreated control cells and plateaus at approximately 70% cell viability.  The non-

cancerous NHF cells do not undergo apoptosis in the presence of DRE. These 

results reveal that DRE is non-toxic to non-cancerous cells and selectively targets 

cancerous cells. 
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Figure 6: DRE has selective toxicity to human pancreatic cancer cells: 

Normal Human Fibroblasts were treated with DRE at increasing concentrations 

(1.0 to 5.0 mg/ml) for 96 hours. The cells were then stained with Hoechst dye for 

nuclear morphology and fluorescent images were obtained. No nuclear 

condensation, characteristic of apoptosis, is observed in NHF treated cells (Top 

panel). NHFs were seeded in a 96-well plate at 4000 cells/well and treated with 

increasing concentrations of DRE, before incubating with the WST-1 viability dye. 

WST-1 cell viability assay was then used to monitor the viability of NHFs after 

treatment with DRE every 24 hours, to a maximum of 96 hours subsequent to 

treatment (Bottom panel). Unlike in pancreatic cancer cells, increasing doses of 

DRE did not drastically affect the viability of normal human fibroblasts.  
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DISCUSSION 

Natural compounds have shown significant anti-cancer activity, with 

reports showing their potential to inhibit the progression of several cancers by 

interfering with several key mechanisms employed by cancer cells (Boik, 2000). 

In this study, we have shown that the root extract of the very common weed, 

dandelions, have the ability to selectively induce apoptosis and autophagy in very 

aggressive human pancreatic cancer cells. 

The high mortality rate of pancreatic cancer patients is most likely due to 

the fact that the disease is usually asymptomatic until it metastasizes and 

becomes invasive, at which point it is incurable (Koostra et al., 2008; Maitra & 

Hruban, 2008).  Therefore, a majority of pancreatic cancer patients presented in 

this state of advanced and/or metastatic condition are inoperable (Maitra & 

Hruban, 2008). A lot of chemotherapeutic agents have been tested for their 

efficacy in treating this disease but only a few of them have shown moderate 

activity and produce very little survival benefit and severe side effects (Longo et 

al., 2008).  

We observed that the exposure of pancreatic cancer cells to Dandelion 

Root Extract (DRE) led to the loss of cell viability followed by the induction of 

apoptosis in a dose and time dependent manner. More importantly, we looked at 

the effect of initial exposure to DRE on the ability of these cells to revive growth. 

After treatment for 48 hours, cells were removed from the treated media and re-

plated in fresh, drug-free media and allowed to grow. We observed that this initial 

exposure to DRE halted the ability of the cells to revive growth, indicating that 

these aggressive pancreatic cells retained the signal to commit suicide, induced 
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by DRE  (Figure 1).  

Over the ages, people have relied on dandelions for therapeutic benefits in 

the treatment of various diseases ranging from diarrhea and other gastrointestinal 

diseases to more serious diseases, like hepatitis. To date, there has been no 

report of toxicity linked to usage of dandelion extracts (Sigstedt et al., 2008; 

Yarnell & Abascal, 2009). Previous studies in our lab have shown that DRE is 

non-toxic to non-cancerous peripheral blood mononuclear cells obtained from 

healthy volunteers (Chatterjee et al., 2011). To confirm these results, as well as 

corroborate what has been seen for centuries, we tested DRE on non-cancerous 

Normal Fetal Fibroblasts (NFF) in parallel experiments. As expected, there was 

no significant effect on the viability of NFFs. These cells did not show apoptotic 

morphology, characterized by nuclear condensation and fragmentation (Figure 

6).  These results indicate that DRE is specific in its targeting of human cancer 

cells, without affecting the normal cells tested. 

It is very well known that a lot of chemotherapies have very severe side 

effects, mostly due to the fact that these drugs are not specific to cancer cells and 

are sometimes only effective at very high doses. Also, cancer cells, especially 

pancreatic cancer cells, develop resistance to conventional chemotherapies 

(Maitra & Hruban, 2008). As mentioned earlier, the EC50 for DRE in highly 

aggressive pancreatic cancer cells is between 1.0 (BxPC-3) and 2.5 mg/mL 

(PANC-1) between 24 and 48 hours. Interestingly, we found that repeated 

treatment of pancreatic cancer cells with lower doses of DRE led to a greater 

induction of apoptosis than the single high dose (Figure 2A and B). This might 

indicate that the active ingredient in the extract are not stable or effective for long 
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periods in the cells and a second dose may be required to effectively induce 

apoptosis in the cells that remain after the first treatment. In this way, repeated 

treatment with low dose may overcome the aggressiveness and resistance of 

these cells to DRE. Although DRE has shown no significant toxicity to non-

cancerous cells, these results indicate that giving a repeated dose of DRE at 

lower concentrations is more effective as well as reducing the chance of side 

effects (if any) seen in high dose chemotherapies. 

Not many studies have been done to elucidate the mechanism of action of 

natural extracts, specifically DRE, for their efficacy for disease treatment. We 

have previously shown that DRE targets the death receptor mediated pathway of 

apoptosis in human leukemia (Ovadje et al., 2011) and aggressive human 

melanoma cells (Chatterjee et al., 2011). Previously, pancreatic cancer cells have 

been shown to express Fas and TRAIL receptors (Hasel et al., 2001; Siegmund 

et al., 2007). We hypothesize that some components of DRE may imitate death 

ligands and might interact with the death receptors, activating the extrinsic 

pathway of apoptosis. In this study, we also confirmed this by observing the 

activation of caspases after DRE treatment (Figure 4). These results corroborate 

the previous results obtained. Both the extrinsic and intrinsic pathway of 

apoptosis converges on the mitochondria (Fulda & Debatin, 2006).  

The activation of both pathways leads to the permeabilization of the 

mitochondrial membrane for the release of pro-apoptotic factors such as 

apoptosis inducing factor (AIF), cytochrome C and endonuclease G, which are 

involved in the execution of apoptosis (Fulda & Debatin, 2006). In this study, we 

observe the loss of mitochondrial membrane potential after caspase-8 activation, 
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following treatment with DRE (Figure 3A and B). This loss was seen as early as 

48 hours, before we see the bulk of apoptotic cells, indicating that DRE may 

indirectly involve mitochondria destabilization in pancreatic cancer cells for the 

execution of apoptosis. Mitochondrial destabilization could lead to increased 

Reactive Oxygen Species (ROS) (Fulda & Debatin, 2006). 

Autophagy could be induced by the presence of such dysfunctional 

mitochondria, a process of ―self-eating‖ activated under conditions of starvation 

and stress. Under these conditions, the cells attempt to deal with stress (such as 

damaged organelles and proteins) by engulfing and degrading these organelles 

and proteins and recycling the materials obtained from the degradation. 

Prolonged exposure to stressors lead to prolonged degradation of organelles and 

proteins eventually leading to cell death caused by autophagy (Rosenfeldt & 

Ryan, 2011). There are also studies that have shown that molecular pathways 

involved in programmed cell death type I (apoptosis) and type II (autophagy) are 

interconnected and proteins involved in one pathway, could be involved in the 

other (Thorburn, 2008). Indeed, we observed the induction of autophagy by DRE 

in both pancreatic cancer cells, concurrent with mitochondrial membrane 

destabilization (Figure 5).  

We therefore hypothesize that components found in DRE activate the 

death receptor mediated extrinsic pathway of apoptosis, which involves the early 

activation of caspase-8, followed by activation of the executioner caspase-3 as 

well as cleavage of BID and mitochondrial destabilization. Damaged mitochondria 

and the generation of ROS could therefore lead to the induction of pro-death 

autophagy, coupled with apoptosis for the cell death we observe 96 hours after 
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exposure of highly aggressive and resistant human pancreatic cancer cells to 

DRE.  

At this point of the study, we are aware of some limitations to this work.  

The active ingredient responsible for the anticancer activity in DRE has not yet 

been identified; although natural products are usually considered to be complex 

botanicals and activity is not due to a single active ingredient (Foster et al., 2005).  

It is possible that the crude aqueous dandelion root extract contains multiple 

compounds working together in unison to promote its selective anticancer 

activity. We have standardized a protocol for extraction and after every extraction 

process, we assay for activity of the extract. The different batches of root 

extracted have shown similar activity throughout. More importantly, preliminary 

HPLC analysis of our extract has shown the presence of compounds (triterpenes 

and sesquiterpenes) previously reported to be present in dandelions (data not 

shown). Since natural aqueous DRE has been used as a traditional medicine for 

other ailments, and is not associated with any toxicity, it represents a safer 

potential form of therapy for pancreatic cancer treatment.   In an attempt to 

ensure that our experiments are well controlled, we have standardized an 

extraction procedure so as to ensure we have approximately equal amounts of 

extracts in each treatment.  Enrichment of the apoptosis inducing fraction of DRE, 

characterization of compounds in this fraction and evaluating its efficacy in an in-

vivo model of pancreatic cancer, are the obvious next steps currently in progress 

in our laboratory. 
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ABSTRACT 
 

Chronic Myelomonocytic Leukemia (CMML) is a heterogeneous disease 

that is not only hard to diagnose and classify, but is also highly resistant to 

treatment. Available forms of therapy for this disease have not shown significant 

effects and patients rapidly develop resistance early on in therapy. These factors 

lead to the very poor prognosis observed with CMML patients, with median 

survival duration between 12 and 24 months after diagnosis. This study is 

therefore centered around evaluating the selective efficacy of a natural extract 

from dandelion roots, in inducing programmed cell death in aggressive and 

resistant CMML cell lines. 

To confirm the induction of programmed cell death in three human CMML 

cell lines, nuclear condensation and externalization of the phosphatidylserine, two 

main characteristics of apoptosis, were detected using Hoechst staining and 

annexin-V binding assay. The induction of another mode of cell death, 

autophagy, was determined using a monodansylcadaverine (MDC) stain, to 

detect the formation of autophagy vacuoles.  

The results from this study indicate that Dandelion Root Extract (DRE) is 

able to efficiently and selectively induce apoptosis and autophagy in these cell 

lines in a dose and time dependent manner, with no significant toxicity on non-

cancerous peripheral blood mononuclear cells. More importantly, we observed 

early activation of initiator caspase-8, which led to mitochondrial destabilization 

and the induction of autophagy, suggesting that DRE acts through the extrinsic 

pathway of apoptosis. The inability of DRE to induce apoptosis in dominant-

negative FADD cells, confirms the mechanism of action of DRE in in vitro models 
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of CMML. 

The results from this study indicate that natural products, in particular 

Dandelion Root Extract, have great potential, as non-toxic and effective 

alternatives to conventional modes of chemotherapy available today. 
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INTRODUCTION 

The risk of developing cancer increases with age; nonetheless it can affect 

all ages (Attia et al., 2008). Chronic Myelomonocytic Leukemia (CMML) is a 

highly aggressive and resistant form of leukemia with a highly variable natural 

course of progression. The difficulty in diagnosing this disease contributes to its 

aggressive and resistant nature. In recent years, the World Health Organization 

(WHO) has classified this disease as both a myeloproliferative disease (MPD) 

and a myelodysplastic syndrome (MDS) (Ramshaw et al., 2002; Foucar, 2009). 

This classification system has improved diagnosis of CMML, although it can still 

prove difficult.  

Even with advances in chemotherapy research, the prognosis for CMML 

still remains very poor with median survival of 12 to 24 months (Foucar, 2009). 

The available forms of treatment come with very severe side effects, with patients 

developing resistance early on during treatment. The only effective form of 

treatment that has shown significant success in CMML patients is Hematopoietic 

Stem Cell Transplantation, although very few studies have been done with CMML 

MDS/MPD (Steensma & Bennett, 2006). It is therefore of utmost importance to 

develop more modes of treatment that are not only safe, but also effective in 

targeting CMML cells specifically. 

Natural products have been used for centuries as a source of nutrition, 

nourishment and for various forms of therapy for a wide range of diseases. 

Recent reports indicate that over the past sixty years, more than 60% of the 

approved anti-cancer drugs have been either natural or derived from natural 

products (Gordaliza, 2008).  
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Taraxacum officinale, commonly known as Dandelions, are perennial 

weeds of the Asteracaea family, thought to have originated in central Asia, but 

now known to grow almost anywhere in the world today. Traditional medicine, 

especially Traditional Chinese Medicine, has encouraged the use of dandelion 

extracts for the treatment of various diseases, ranging from diarrhoea and 

digestive diseases to more serious ailments like hepatitis and anorexia (Schütz et 

al., 2006; Yarnell & Abascal, 2009). There have been very few scientific studies 

to ascertain many claims of the use of dandelion extracts in the treatment of 

diseases, but recently, studies indicate this plant has anti-inflammatory, anti-

oxidant and anti-carcinogenic activities (Schütz et al., 2006).  

Our group is studying the anticancer effects of dandelion root extract 

(DRE), by evaluating its ability to induce physiological programs of cell death in 

aggressive, resistant CMML cells. Previous work done by our group showed that 

DRE effectively induced apoptosis in human T cell leukemia (Jurkat) and 

melanoma cells, by rapidly activating the death-receptor mediated extrinsic 

pathway of apoptosis (Chatterjee et al., 2011; Ovadje et al., 2011).  

In this study, the efficacy of DRE in more aggressive leukemia cell lines 

was assessed to determine its selectivity and efficacy in inducing 

apoptosis/autophagy in CMML cells. Results indicate that DRE effectively 

induces apoptosis and autophagy in a dose and time dependent manner. The 

rapid activation of caspase-8, through the activation of the extrinsic pathway of 

apoptosis, was observed in these cells, comparable to levels found in Jurkat cells 

(Ovadje et al., 2011). Non-cancerous peripheral blood mononuclear cells 

(ncPBMCs), treated with dandelion root extract in parallel, were not susceptible to 
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apoptosis, demonstrating the selectivity of dandelion root extract in cell culture. 

Results from this study indicate that dandelion root extract could potentially 

represent a novel non-toxic alternative to conventional cancer therapy available 

today. 
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MATERIALS & METHODS 

Standardized Dandelion Root Extraction 

Freshly obtained Dandelion roots (from open grassy areas) were 

processed according to a previously published protocol (Ovadje et al., 2011). The 

roots were thoroughly washed with distilled water several times. One hundred 

grams of dandelion roots were homogenized in 200 ml of distilled water at room 

temperature using a domestic blender. Total homogenate was filtered through a 

NITEX nylon mesh filter (LAB PAK; Sefar BDH Inc. Chicoutimi, Quebec CA) and 

the filtrate was spun down, 8000 x g for 5 mins at 25°C. The supernatant was 

filtered using 0.45 μm filters, followed by lyophilisation. The dry powder (% yield: 

7.34%) was reconstituted in water to give a stock solution of 100 mg/ml DRE. 

This was then filtered through 0.22 μm filters and used in the treatment of 

Chronic Myelomonocytic leukemia cells. 

Cell Culture and Treatment 

Human CMML cell lines (MV-4-11, HL-60 and U-937 cells), as well as a 

dominant negative FADD Jurkat cell line was purchased from ATCC (Manassas, 

VA.). MV-4-11 and HL-60 cells were cultured in Iscove’s Modified Dulbecco’s 

Medium, supplemented with 15% fetal bovine serum (FBS) and 40 mg/ml 

gentamicin (Life Technologies, Mississauga, Ontario). The DnFADD cells were 

cultured in RPMI-1640 medium supplemented with 15% FBS and 40 mg/ml 

gentamicin. These cells were grown and maintained in an incubator set at 37°C 

with an atmosphere containing 5% CO2 and 95% humidity.  

Human nucleated blood cells were purified from whole blood obtained 

from healthy volunteers, modified from a previously published protocol (Griffin et 
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al., 2010), and as approved by the University of Windsor ethical committee, 

REB# 04-060. Whole blood (12 ml) was collected into a BD Vacutainer CPT Tube 

(Cell Preparation Tube) obtained from Becton Dickinson (Franklin Lakes, N.J.). 

The whole blood was spun down in a tabletop lowspeed centrifuge at 2900 x g for 

30 mins at 25°C. The red blood cells went through the polyester gel and the top 

layer containing mononuclear cells, platelets and plasma was collected. These 

cells were cultured under the same conditions as the CMML cells (37°C, 5% CO2 

and 95% humidity) and cultured in AIM-V medium from Invitrogen (Burlington, 

ON). For the induction of apoptosis and autophagy by treatment with Dandelion 

Root Extract (DRE), cells were grown to 50–70% confluence and then treated 

either with different concentrations of lyophilized extract (0.6 mg/ml to 5.0 mg/ml). 

At different times after treatment, cells were analyzed for apoptotic markers as 

described below. 

Trypan Blue Exclusion Assay 

To examine the ability of MV-4-11 cells to revive growth after previous 

exposure to DRE, these cells were treated with DRE for 48 hours, after which the 

cells were removed from media containing extract and equal number of cells 

were re-plated and examined every day. After treatment, a cell suspension was 

added (1:1) to Trypan Blue stain (Life Technologies, Mississauga, ON). Using a 

hemacytometer (Fisher Scientific, Horsham, PA.), live cells (trypan blue negative) 

were counted three times, calculated and tabulated as number of cells per ml 

using GraphPad Prism 5.0 288 software. 

Hoechst Staining 

Cells were grown and treated, and then stained with cell-permeable 
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Hoechst 33342 (Molecular Probes, Eugene, Ore.), at a final concentration of 10 

mM and incubated for 10 mins at 37°C. The cells were then examined under a 

fluorescent microscope (Leica DM IRB, Germany) and fluorescent pictures were 

taken. Five fields of fluorescent pictures were used to count apoptotic versus live 

cells (where brightly stained cells with condensed nuclei were considered 

apoptotic). These results were then calculated and tabulated as percentage of 

apoptotic cells using GraphPad Prism 5.0 288 software. 

Annexin-V Binding Assay 

To confirm the induction of apoptosis by staining for phosphotidylserine 

exposed on the outer leaflet of the plasma membrane (a characteristic feature of 

apoptosis), CMML cells were grown and treated with different concentrations of 

DRE. The cells were collected after given periods as indicated, washed in 

phosphate-buffered saline (PBS) and resuspended in annexin-V binding buffer 

(10 mM HEPES/NaOH pH 7.5, 140 mM NaCl, 2.5 mM CaCl2), containing 1:50 

annexin-V Alexa Fluor 488 conjugate (catalog no. A13201, Molecular Probes) for 

15 mins at room temperature. Cells were then examined under a fluorescent 

microscope (Leica DM IRB), and pictures were taken. All pictures were 

processed using Adobe Photoshop 7.0 software. 

Assessing Mitochondrial Membrane potential 

JC-1 Mitochondrial Membrane Potential Detection Kit was applied to 

monitor mitochondrial membrane destabilization in cells undergoing apoptosis. In 

non-apoptotic cells with healthy mitochondria, JC-1 (5, 5’ 6, 6’-tetrachloro-1, 1’, 3, 

3’ tetraethylbenzimidazolylcarbocyanine iodide) (Catalog. No. M34152, 

Burlington, ON) exists as a monomer in the cytosol and also accumulates as 
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aggregates in the mitochondria which fluoresce red. In apoptotic and necrotic 

cells, JC-1 exists in its monomeric form, diffused in the cytosol where it 

fluoresces green. MV-4-11 and DnFADD cells were collected after treatment and 

incubated with 100 μL per ml JC-1 dye for 15 min at 37°C. The cells were 

examined under fluorescent microscope (Leica DM IRB, Germany) and 

fluorescent pictures (six fields per sample) were taken. All pictures were 

processed using Adobe Photoshop 7.0 software. 

Monodansylcadaverine (MDC) Staining 

Monodansylcadaverine (MDC) (Sigma-Aldrich Canada, Mississauga, ON, 

Canada) was used to visualize autophagic vacuoles. CMML cells were plated in 

six-well plates and treated with different concentrations of DRE for 48 hours. After 

treatment, cells were incubated with 0.1 mM MDC for 30 minutes. Fluorescent 

pictures were acquired at 400X magnification on a Leica DM IRB inverted 

fluorescence microscope. 

Propidium Iodide Staining 

Cell death was detected by cell lysis observed by staining with propidium 

iodide (PI) dye (Sigma Aldrich, Canada, Missisauga, ON. Canada). After 

incubating with 

MDC dye for 30 minutes, cells also co-stained with PI at a concentration of 1.0 

mg/mL for the last 15 minutes of incubation with MDC. Following incubation, the 

cells were visualized and images were taken using a fluorescence microscope at 

400X objective. 

TUNEL staining 

After treating MV-4-11 cells with DRE for the indicated time points, the 



 123 

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay 

was performed according to the manufacturer’s protocol (Molecular Probes, 

Eugene, OR) and a previously published protocol (Negoescu et al., 1996), in 

order to detect DNA damage. Cells were treated with DRE or VP-16 (as a 

positive control) at indicated concentrations and time points and analyzed for the 

fragmentation of DNA. Following treatment, cells were fixed by suspending them 

in 70% (v/v) ethanol and stored at -20°C overnight. The sample was then 

incubated with a DNA labeling solution (10 μL reaction buffer, 0.75 μL TdT 

enzyme, 8 μL BrdUTP, 31.25 μL of dH2O) for 1 hour at 25°C. Each sample was 

exposed to an antibody solution (5 μL Alexa Fluor 488 labeled anti-BrdU antibody 

and 95 μL rinse solution). The cells were incubated with the antibody solution for 

20 minutes and pictures were taken using a fluorescent microscope (Leica DM 

IRB, Germany). 

Cell viability Assay 

To examine the viability of CMML cells after treatment, cells were 

incubated with cell proliferation reagent WST-1 (Catalog No. 05 015 944 001, 

Roche Diagnostics) for 4 h at 37°C, following treatment with DRE at indicated 

doses and time points, using manufacturers protocol. WST-1 works by reacting 

with the mitochondrial succinate-tetrazolium reductase forming the formazan dye. 

The WST-1 reagent produces a water-soluble formazan product (Ngamwongsatit 

et al., 2008). Fluorescence readings were obtained at 450 nm using a Perkin 

Elmer Victor Fluorescence instrument. Viability readings were analyzed using 

GraphPad Prism 5.0 288 software and expressed as percentages of the control 

untreated groups. 
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Assessment of Caspase Activity 

The Caspase assays were performed using a previously published method 

(Naderi et al., 2003). To determine caspase activity, the total protein from MV-4-

11, HL-60 and DnFADD cell lysates were incubated with the fluorogenic 

substrates corresponding to the substrate cleavage site, specific for each 

caspase, DEVD-AFC for Caspase-3 and IETD-AFC for Caspase-8. The 

fluorescence was measured at an excitation wavelength of 400 nm and emission 

wavelength of 505 nm using a Spectra Max Gemini XS (Molecular Devices, 

Sunnyvale, California). 

Caspase activity was calculated as activity per μg protein and protein 

concentration was determined with BioRad protein assay reagent (BioRad, 

Mississauga, Ontario) using bovine serum albumin (BSA) as a standard. 

Readings were analyzed using GraphPad Prism 5.0 288 software.  

To further confirm the role of caspases in apoptosis induction by DRE, the 

broad caspase inhibitor, ZVAD-fmk (Catalog No. 219007, EMD4Biosciences, San 

Diego, California), was incubated with MV-4-11 cells an hour before treatment, as 

described above. Some cells were collected, washed in PBS and stained with 

Hoechst 33342 and annexin V. Others were analyzed for the activation of 

caspases, using fluorogenic substrates described above, after DRE treatment. 

Mitochondrial Isolation and Measurement of ROS Production 

Mitochondria were isolated from untreated MV-4-11 and HL-60 cells for 

analysis of ROS production. Cells were washed twice in cold PBS, resuspended 

in hypotonic buffer (1 mM EDTA, 5 mM Tris–HCl, 210 mM mannitol, 70 mM 

sucrose, 10 mM Leu-pep, 10 mM Pep-A, and 100 μM PMSF) and immediately 
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homogenized, and centrifuged at 600 x g for 5 minutes at 4°C. The supernatant 

was centrifuged at 15,000 x g for 15 minutes at 4°C. The resulting cytosolic 

supernatant was discarded and the mitochondrial pellet was resuspended in cold 

hypotonic buffer. 

To measure the production of ROS, Amplex Red (Molecular Probes, 

Eugene, OR) was used. The isolated mitochondria were resuspended in cold 

hypotonic buffer and ≥ 20 μg of protein was added to wells of a 96-well opaque 

plate. The isolated mitochondria was treated with 1.0 mg/ml DRE and as a 

positive control, 250 μM paraquat (PQ) (Sigma Aldrich, Mississauga, ON. 

Canada) was used.  Amplex Red reagent was added to each well for a final 

concentration of 50 μM; horseradish peroxidase (HRP) was added in the ratio of 

6units per 200 μL. Fluorescence readings were taken every 5 minutes for a total 

time of 4 hours at Ex. 560 nm and Em. 590 nm.  
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RESULTS 

DRE effectively induces apoptosis in Chronic Myelomonocytic Leukemia 

cells: 

 

To assess the effect of Dandelion Root Extract in aggressive and resistant 

human chronic myelomonocytic leukemia cells, MV-4- 11, HL-60 and U-937 cells 

were treated with increasing concentrations of DRE for increasing time points. 

These cells were analyzed for the induction of apoptosis, using Hoechst and 

Annexin-V binding assay. Apoptosis was characterized by condensation of the 

nuclear chromatin and the externalization of the phosphatidylserine to the outer 

leaflet of the cell’s membrane (Ziegler, 2004). Results indicate that DRE 

efficiently induced apoptosis in these highly aggressive and resistant leukemia 

cells in a dose- and time-dependent manner (Figure 1), as an increase in the 

percentage of apoptotic cells corresponded to an increase in the dose and time of 

exposure.  

Another characteristic feature of apoptosis is nuclear DNA fragmentation 

that can be observed after cleavage of caspase-3 (Fadeel & Orrenius, 2005). To 

further confirm the induction of apoptosis, TUNEL assay was used to quantify 

DNA fragmentation in these cells after exposure to DRE. Etoposide, a known 

chemotherapy that targets topoisomerase II to induce double stranded DNA 

breaks (Ziegler, 2004), was used as a positive control for DNA fragmentation. 

Results indicate that DRE activated the apoptotic pathways leading to late stage 

DNA fragmentation, compared to etoposide, which caused DNA fragmentation 

that led to the induction of apoptosis (Figure 2).  

For a more quantitative assessment of the effect of DRE on CMML cells, 
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these cells were treated with DRE and analyzed for the effect of this extract on 

the viability of these cells in a time-dependent manner. Results observed indicate 

that treatment with DRE led to a decrease in the viability of MV-4-11 cells as a 

function of metabolic activity, using a WST-1 cell proliferation assay (Figure 3A). 

This extract led to a 60% decrease in the viability of treated cells compared to the 

control, untreated cells, indicating that DRE could potentially affect the metabolic 

activity of CMML cells, ultimately leading to cell death observed in figure 1A. 

Since we observed an approximate decrease in metabolic activity of 60% of MV-

4-11 cells 96 hours after treatment with DRE, the next step was to determine if 

DRE has any effect on the other 40% of cells that did not show any apoptotic 

morphology 96 hours after treatment. MV-4-11 cells were treated with DRE and 

after 48 hours the cells were removed, from media containing DRE, washed and 

equal numbers of cells (200,000 cells/sample) were re-plated (for control and 

treated cells) in fresh media without the extract. These cells were then analyzed 

for their ability to revive growth after previous exposure to DRE. 

Although MV-4-11 cells continued to grow in the absence of DRE, it was 

observed that cells previously treated with DRE had reduced ability to revive 

growth and therefore grew at a slower pace than the cells not treated with DRE 

for 48 hours. More importantly, it was observed that treatment with a second 

dose of DRE, after 48 hours, could induce apoptosis successfully in all the cells 

that do not show apoptotic morphology after the first treatment (Figure 3B). 
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Figure 1. DRE induces apoptosis in CMML cells in a dose dependent 

manner: MV-4-11, HL-60 and U-937 cells were treated with increasing doses of 

DRE and analyzed for the induction of apoptosis. (A) Hoechst and Annexin-V 

staining of DRE-treated CMML cells 48 hours after treatment. Magnification 

400X. (B) Manual quantification of three individual experiments of DRE-treated 

cells, 48 hours after. 6 pictures were obtained for every sample and live versus 

dead cells were counted to ascertain the percent apoptotic cell count for every 

sample. Experiment was performed three times and the mean and standard 

deviation of the three experiments were obtained 
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Figure 2. DRE induces late stage DNA damage in MV-4-11 cells: MV-4-11 

cells were treated with 1.0 mg/ml DRE and 10 µM VP-16 at the indicated time 

points to determine if DNA damage was the cause or effect of apoptosis 

observed in CMML cells. Following treatment, cells were fixed and 

immunostained with anti-BrdU antibody to observe DNA damage. Increase in 

TUNEL positive staining corresponds with an increase in levels of DNA damage 

following treatment. More positively stained cells are observed in the final stages 

of apoptosis caused by DRE, compared to the DNA targeting drug, VP-16. 

Magnification: 200X 
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Figure 3. DRE reduces the viability of MV-4-11 cells in a time dependent 

manner: (A). MV-4-11 cells were plated in 96-well clear bottom plates and 

treated with DRE at indicated time points and analyzed for the ability of DRE to 

reduce the metabolic viability of these cells, measured by a decrease in 

metabolic activity. Following treatment, the WST-1 reagent was added to each 

well, the absorbance readings were taken at 450 nm, and expressed at a 

percentage of the control. The absorbance readings were analyzed using 

GraphPad Prism version5.0 and values are expressed as mean ± SD from 

quadruplicates of 3 independent experiments. (b). Following treatment with DRE 

for 48 hours, MV-4-11 cells were removed from media containing DRE and equal 

number of cells were replated in fresh media, with no extract and allowed to grow 

for 96 hours, observing growth every 24 hours by trypan blue exclusion assay 

(left). As a single dose of DRE slowed down growth of MV-4-11 cells but did not 

completely halt this growth, MV-4-11 cells were treated with DRE for 48 hours, 

then treated with a second dose of DRE after the first 48 hours. Subsequent to 

the second treatment, cells were observed for growth ability (right), using trypan 

blue exclusion assay. 



 131 

DRE activates the extrinsic pathway of apoptosis in CMML cells 

The first step in determining the mechanism of DRE-induced apoptosis in 

human CMML was to assess the chronological activation of caspases in DRE-

treated cells. This should give some insight to the pathway by which apoptosis is 

induced in these cells. In order to observe the activation of caspases, MV-4-11 

cells were treated with DRE for various time points, following which, caspase 

activity was assayed, using substrates specific to caspases-3, -8 and -9. Results 

indicate that DRE rapidly activates caspase-8, followed by subsequent activation 

of caspase-3 at later time points (Figure 4A and B) similar results were observed 

in HL-60 cells.  

In order to determine if caspase activation is required for the induction of 

DRE-induced cell death in CMML cells, a pan-caspase inhibitor, ZVAD-fmk, was 

used to pre-treat the cells for an hour and then the cells were treated with DRE 

for different time points and assayed for caspase-8 activation. Figure 4C confirms 

the inhibition of caspase-8 activation by ZVAD-fmk and this inhibition correlates 

with the inability of DRE to induce apoptosis in MV-4-11 cells following pre-

treatment with the pan-caspase inhibitor (Figure 4D). These results indicate that 

caspases are required for the apoptosis-inducing effects of DRE, more 

importantly, caspase-8 and -3. 

From these results, we hypothesize that DRE activates the extrinsic 

pathway of apoptosis and that the activation of caspases (caspase-8 and 

subsequent activation of caspase-3) are required for this process. To confirm this 

effect on the activation of the extrinsic pathway of apoptosis, we wanted to 
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observe the effect of DRE on cells with a dominant-negative mutation in the Fas-

Associated Death Domain (FADD) protein, an essential component of the death 

inducing signaling complex (DISC) (Fulda & Debatin, 2006). Dominant negative 

FADD (DnFADD) cells were treated with DRE for 96 hours at increasing 

concentrations and analyzed for the induction of apoptosis by nuclear 

condensation and change in morphology. Results show that DRE did not induce 

apoptosis in cells with a mutant FADD domain, nor did it lead to a change in the 

morphology of these cells (Figure 5A). A trypan blue exclusion assay was used to 

evaluate the effect of DRE on the number of cells after exposure to this extract, 

compared to cells not treated with DRE. In figure 5B, we observe no significant 

difference between the control untreated cells and the DRE-treated cells. 

Furthermore, activation of caspase-8 and 3 were not observed in DRE treated 

DnFADD cells (Figure 5D). These results indicate that DRE requires the Fas-

Associated Death Domain for its activation of the extrinsic pathway of apoptosis. 
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Figure 4. DRE activates the death-receptor-mediated extrinsic pathway of 

apoptosis: Following treatment with DRE, at indicated time points and 

concentrations, MV-4-11 cells were collected, washed and incubated with lysis 

buffer to obtain cell lysate. The cell lysate was incubated with caspase 

substrates, specific to each caspase (3,8 and 9) and incubated for an hour. 

Fluorescence readings were obtained using a spectrofluorometer. An average of 

6 readings per well and a minimum of three wells were run per experiment. The 

results here are reported as activity per µg of protein (in fold) and the average of 

three experiments are shown (a,b). (c). Prior to DRE treatment, MV-4-11 cells 

were pre-treated with a pan-caspase inhibitor, Z-VAD-fmk for an hour and then 

treated with DRE at the indicated concentration for indicated time points. These 

cells were then incubated with caspase-8 substrate and fluorescence readings 

were obtained. These cells were also analyzed for the induction of apoptosis by 

Hoechst and annexin-V staining (d). Magnification: 400X. 
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Figure 5. DRE required the Fas-Associated Death Domain (FADD) for its 

activity: (A). Dominant-negative FADD (DnFADD) cells were treated with DRE at 

indicated concentrations, for 96 hours and analyzed for the induction of apoptosis 

by nuclear condensation (Hoechst) and change in morphology (Phase contrast). 

Magnification: 400X. (B). Following treatment with DRE, DnFADD cells were 

collected and cell number was obtained using the trypan blue exclusion assay. 

Live cells were impermeable to the trypan blue dye. (C). DnFADD cells were 

treated with DRE for the indicated time points and analyzed for the activation of 

caspase-8, using caspase-8 specific substrate and fluorescence readings were 

obtained. An average of 6 readings per well and a minimum of three wells were 

run per experiment. The results here are reported as activity per µg of protein (in 

fold) and the average of three experiments are shown. 
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DRE destabilizes the mitochondrial membrane of CMML cells 

Due to the fact that the two different pathways of apoptosis can target the 

mitochondria, the next step was to observe the effect of DRE on the mitochondria 

of CMML cells affected by DRE. MV-4-11 cells were treated with DRE for 24 

hours and analyzed for the destabilization of the mitochondrial membrane 

potential, using a cationic lipophilic dye, JC-1, which aggregates in healthy 

mitochondria with intact potential, to give off red fluorescence. A loss or decrease 

in red fluorescence is therefore indicative of a loss of mitochondrial membrane 

potential (MMP). Figure 6A shows the effect of DRE on the mitochondrial 

membrane of MV-4-11 cells.  

Here, we observed a loss of red fluorescence, indicative of a loss of intact 

mitochondrial membrane potential, indicating that DRE has an indirect effect on 

the mitochondria of CMML cells, by causing the dissipation of MMP. To further 

implicate the extrinsic pathway of apoptosis in DRE-induced apoptosis, we 

wanted to observe the effect on the mitochondria of DnFADD cells treated with 

DRE. Figure 6B shows the effect of DRE on the mitochondria of DnFADD cells. 

Here, we observed a consistency in the red fluorescence, indicating that the 

mitochondria of DnFADD cells remained intact and were unaffected by treatment 

with DRE. These results confirm that DRE does require FADD for its induction of 

apoptosis. 

Mitochondria are considered the major players in the production of 

reactive oxygen species (ROS) under physiological conditions. The levels of the 

ROS increase drastically under pathological conditions, thereby leading to the 

induction of cell death (Adam-Visi & Chinopoulos, 2006). Furthermore, the 
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production of ROS is known to have dual roles; it could be the cause or effect of 

the induction of apoptosis. ROS has been shown to induce the activation of 

certain death receptors, such as Fas and TNF (Simon et al., 2000). Therefore, 

these points of evidence implicate the mitochondria in the initiation and/or 

execution of apoptosis.  

To further assess the effect of DRE on the mitochondria of CMML cells, 

the production of ROS was studied. To do this, the mitochondria were isolated 

from MV-4-11 and HL-60 cells and were treated directly with DRE. ROS 

production was assessed by incubation with Amplex Red dye over 4 hours, with 

readings taken at 5-minute intervals. Paraquat (PQ), is a known inducer of ROS 

production in the mitochondria [14] and this was used as a positive control of 

ROS production in both MV-4-11 and HL-60 cells. In both cell lines, it can be 

observed that there is an increase in the production of ROS in DRE-treated cells 

compared to the control untreated cells; in the MV-4-11 cells, this increase 

surpasses that of the PQ treated cells (Figure 7A and B). Therefore, these results 

are indicative of the mitochondria as an indirect target of DRE. 
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Figure 6. DRE destabilizes the mitochondria membrane potential of MV-4-11 

cells: (A). Following treatment with DRE, MV-4-11 cells were incubated with JC-1 

dye to detect the loss of mitochondrial potential (ref to Materials and Methods). 

Red fluorescence indicates only cells that have healthy mitochondria. The 

mitochondria of MV-4-11 cells are completely destabilized by DRE treatment. On 

the other hand, the mitochondria of DnFADD cells remained unaffected by DRE 

treatment (B). Magnification: 400X 
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Figure 7. DRE increases ROS production in isolated mitochondria from 

CMML cells: Isolated mitochondria from (A) MV-4-11 and (B) HL-60 cells were 

treated directly with 1.0 mg/ml DRE and ROS production was measured using 

Amplex Red substrate in the presence of horseradish peroxidase (HRP). Results 

were compared to control untreated mitochondria and positive control, paraquat 

(PQ). Fluorescence readings were taken in 5 min intervals for 4 h at Ex. 560 nm 

and Em.590 nm and expressed as relative fluorescence units (RFU). Analyses of 

results were performed using GraphPad Prism version 5.0 and results shown are 

representative of 3 independent experiments demonstrating similar trends. 
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DRE induces pro-death autophagy in MV-4-11 cells 

Autophagy, also known as ―self-eating‖, is an evolutionary conserved 

process that is known to play a significant role in the maintenance of cellular 

homeostasis. It is the primary degradation process by which cells can get rid of 

long-lived or defective proteins, as well as, defective organelles (Thorburn, 2008). 

It is reported to play a dual role, as it supports cell survival and cell death (in 

extreme cases of ―self-eating‖) (Rosenfeldt & Ryan, 2011). Various cellular 

stressors, such as hypoxia, starvation, protein aggregation and ROS production, 

usually induce this process. The presence of these stressors leads to the 

formation of the autophagosome, a double membrane vesicle, around the protein 

or organelle to be degraded. The autophagosome will fuse to the lysosome and 

its contents can be degraded (Liu & Lenardo, 2007; Dalby et al., 2010).  

In order to assess the induction of autophagy in CMML cells, MV-4-11 

cells were treated with DRE for 48 hours, then stained with 

monodansylcadaverine (MDC) dye and counterstained with propidium iodide to 

observe cell death. Tamoxifen (TAM), a known inducer of pro-survival autophagy 

(Qadir et al., 2008), was used as a positive control. Results indicate that, unlike 

TAM, DRE does induce a pro-death form of autophagy, as characterized by the 

bright punctate MDC staining, as well as the propidium iodide positive staining, in 

DRE-treated cells, comparable to the TAM-treated cells. These cells were more 

brightly stained than the control untreated cells (Figure 8). 
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Figure 8. DRE triggers pro-death autophagy in MV-4-11 cells but not in non-

cancerous Peripheral blood mononuclear cells (ncPBMCs): MV-4-11 and 

ncPBMCs cells were treated with DRE for 48 hours and analyzed for the 

induction of autophagy; Tamoxifen (TAM) was used as a positive control for the 

induction of pro-survival autophagy. Following treatment, the cells were stained 

with MDC to detect autophagic vacuoles and counterstained with PI to detect cell 

death. Fluorescence images were captured. Magnification: 400X. 
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DRE is selective to CMML cells, with little toxicity on normal, non-

cancerous cells 

 

Dandelions have been used for centuries for nourishment and therapy, 

with few reports of little to no toxicity, due to the lack of toxins and alkaloids 

present in this plant. High doses have been reported to cause allergic contact 

dermatitis, although this was shown in studies using dandelion extract as a 

topical treatment [6]. In order to assess toxicity of DRE in the lab, non-cancerous 

peripheral blood mononuclear cells (ncPBMCs) were isolated from the blood of 

apparently healthy volunteers, according to a previously published protocol (Fuss 

et al., 2009).  

In assessing for the induction of autophagy in CMML cells, we observed a 

distinct lack of autophagic vacuole in ncPBMCs, as well as a corresponding lack 

of propidium iodide positive cells in these treated samples, compared to MV-4-11 

cells, where we observed the induction of pro-death autophagy (Figure 7). 

Following this comparison, we wanted to confirm this selectivity, by assessing for 

the induction of apoptosis. Following isolation of PBMCs from healthy volunteers, 

cells were plated into six-well culture plates and treated with DRE at increasing 

concentrations for 96 hours, then analyzed for the induction of apoptosis. Results 

show that DRE does not induce apoptosis in ncPBMCs, even at high doses 

(Figure 9A and B). As ncPBMCs are not actively proliferating in culture, some 

isolated PBMCs were pre-incubated with concanavalin A (conA), a plant mitogen 

known to stimulate T cell proliferation in-vitro (Dwyer & Johnson, 1981). These 

cells were then exposed to DRE treatment and analyzed for the induction of 

apoptosis. As with the ncPBMCs not pre-treated with conA, those pre-incubated 
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with conA and subsequently treated with DRE remained unsusceptible to DRE-

induced apoptosis (data not shown). These results have also been shown in 

other non-cancerous cell lines, for example, normal human fibroblasts (NHFs) 

(Chatterjee et al., 2011).  

To further evaluate the selective induction of cell death in ncPBMCs, these 

cells were treated with DRE for 48 hours and stained with MDC and PI to assess 

the induction of pro-death autophagy, using tamoxifen as a positive inducer of 

autophagy. Figure 8 (bottom panel) indicates that tamoxifen effectively induced 

autophagy in ncPBMCs, ultimately leading to the cell death, observed with 

propidium iodide staining. Importantly, there was no induction of autophagy in 

these cells, as compared to the control, untreated cells. These DRE treated cells 

were also impermeable to propidium iodide, confirming the lack of cell death in 

ncPBMCs treated with DRE. These results suggest that DRE is non-toxic to non-

cancerous blood cells, making it selective to CMML cells. 
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Figure 9. DRE does not target normal non-cancerous peripheral blood 

mononuclear cells (ncPBMCs): (A). ncPBMCs were isolated from healthy 

volunteers and plated in six-well plates. These cells were treated with DRE at 

increasing concentrations for 96 hours and analyzed for the induction of 

apoptosis by nuclear condensation (Hoechst) and externalization of the 

phosphatidylserine (Annexin-V binding). Magnification: 400X. (B). Results from 

three different experiments were quantified to determine the percentage of 

apoptosis occurring in ncPBMCs treated with DRE. 
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DISCUSSION 

The poor prognosis for Chronic Myelomonocytic Leukemia (CMML) 

patients is a major indication that there is a serious need for a more effective and 

non-toxic alternative to the conventionally available forms of chemotherapy and 

surgical procedures (Steensma & Bennett, 2006). With the introduction of natural 

products, not only as sources of nourishment, but also for their therapeutic 

benefits, it is therefore necessary to study the vast array of natural products as 

non-toxic and less expensive alternatives for the treatment of CMML. Apoptosis 

and autophagy, two necessary modes of programmed cell death, are important 

mechanisms, which cells utilize for the maintenance of cellular homeostasis 

(Zhivotovsky & Orrenius, 2010). Cancer cells, however, have developed 

mechanisms to evade these programs, so as to enable enhanced proliferation, 

aggressiveness and resistance (Hanahan & Weinberg, 2000; Ghobrial et al., 

2005). In this study, we demonstrate the selective efficacy of dandelion root 

extract in inducing apoptosis and autophagy in highly aggressive and resistant 

CMML cell lines. We observed the induction of apoptosis in three of the CMML 

cell lines used for this study (Fig. 1). More importantly, this effect was selective, 

as non-cancerous PBMCs and NHFs remained unsusceptible to DRE-induced 

apoptosis (Figure 9A and B). 

Although various extracts of dandelions have been used for centuries for 

the treatment of various diseases, there have been very few scientific studies 

done to ascertain the mechanism by which these extracts act and although some 

of the compounds present in dandelion extracts have been isolated and 

identified, they still are not fully characterized (Schu¨tz et al., 2006; Yarnell & 



 145 

Abascal, 2009). The major aim of the study was therefore to determine the 

mechanism of DRE-induced cell death in CMML cells. 

In this study, we report a rapid activation of caspase-8 (within minutes) 

and subsequent activation of caspase-3 in human CMML cells, indicative of a 

rapid activation of the death receptor mediated extrinsic pathway of apoptosis 

(Figure 4A and B). This activation has been shown to be necessary for the 

induction of apoptosis observed after DRE treatment, as the inhibition of caspase 

activity, using a pan-caspase inhibitor, ZVAD-fmk, prevented the induced cell 

death observed (Figure 4C and D). These results suggest that caspases, more 

importantly, caspase-8 and 3, are required for the induction of apoptosis by DRE. 

The Fas-Associated Death Domain (FADD), as well as other death domains, are 

highly important for activation of caspase-8 through extrinsic apoptosis (Elmore, 

2007). The binding of the death ligand to its corresponding death receptor leads 

to the recruitment of specific receptor death domains for the formation of the 

death inducing signaling complex (DISC) (Fulda & Debatin, 2006). The absence 

of FADD should therefore prevent the activation of the extrinsic pathway of 

apoptosis through inhibition of the activation of caspase-8 (Shakibaei et al., 

2010).  

To further confirm the effect of DRE on the extrinsic pathway of apoptosis, 

DnFADD cells were treated with DRE and analyzed for apoptosis induction. 

According to our results, no nuclear condensation and morphological changes 

were observed with the treatment of DRE. There was no change in the number of 

cells treated with DRE, compared to the control untreated cells, suggesting that 

DRE did not have a significant effect on the cells with a truncated FADD protein 
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(Figure 5A and B). Furthermore, these cells were not susceptible to DRE-induced 

rapid activation of caspases, specifically caspase-8 (Figure 5C). As we observed 

late activation of caspase-3, we wanted to observe the connection between the 

intrinsic and the extrinsic pathway of apoptosis.  

It is known that the activation of caspase-8 could yield two main results. 

First, the activated caspase-8 could lead directly to the activation of the effector 

caspase, caspase-3 or it could lead to mitochondrial changes, through the 

cleavage of pro-apoptotic protein, Bid. The truncation of Bid causes mitochondrial 

membrane destabilization, which leads to the release of pro-apoptotic proteins for 

the activation of caspase-3 [26]. In this study, we observed the destabilization of 

the mitochondrial membrane potential 24 hours after treatment with DRE. This 

destabilization of mitochondrial membrane potential was only observed in MV-4-

11 cells, not in DnFADD cells (Figure 6A and B). These results suggest that DRE 

indirectly targets the mitochondria after the activation of the extrinsic pathway of 

apoptosis. It confirms the requirement of the adapter domain for DRE-induced 

apoptosis, as we do not observe a similar loss of mitochondrial membrane 

potential in DnFADD cells treated with DRE. As the mitochondria are major 

players in the production of ROS (Chen et al., 2003), the next step was to 

observe the effect of DRE on the production of ROS. Results confirm the 

production of ROS from isolated mitochondria (Figure 7A and B), further 

confirming the effect of DRE on the mitochondria of CMML cells. 

The integrity of the mitochondria is essential for the maintenance of 

cellular homeostasis and defects in the mitochondria caused by treatment with 

DRE could provide sufficient signals for the induction of programmed cell death 
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type II, also known as Autophagy, a process induced by the presence of 

defective organelles, proteins and starvation (Gottlieb & Carreira, 2010). 

Autophagy has been shown to play a significant role in cancer survival and 

its role in programmed cell death has been controversial. In response to 

stressors, cells undergo ―self-digestion‖ as a means of temporary survival, where 

macromolecules are digested in order to provide an alternate energy source. 

However, excessive exposure to stressors could lead to excessive autophagy, 

ultimately resulting in cell death (Yu et al., 2006; Dalby et al., 2010). The loss of 

mitochondrial membrane potential, observed after treatment with DRE, therefore 

led us to determine if the stress induced by our extract, leading to mitochondrial 

membrane destabilization was a sufficient signal for the induction of autophagy. 

Our results indicate that treatment with DRE triggered the induction of a 

pro-death form of autophagy in MV-4-11 cells (Figure 8; top panel). Comparing 

this to treatment with tamoxifen, which is known to induce pro-survival autophagy 

in cancer cells, treatment with DRE not only triggered autophagy, comparable to 

TAM, the cells were also propidium iodide positive, indicative of cell death. 

Moreover, ncPBMCs stained with MDC and PI showed no induction of autophagy 

in these cells after DRE treatment (Figure 8; bottom panel). These results 

suggest that DRE is effective in selectively inducing both forms of programmed 

cell death in human CMML cells. 

In conclusion, Dandelion Root Extract has shown selective efficacy in 

inducing two forms of programmed cell death in highly aggressive and resistant 

CMML cell lines. The rapid activation of caspase-8 not only activated the extrinsic 

pathway of apoptosis, but also triggered pro-death autophagy selectively in these 
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cells, suggesting that this extract has components that enhance its selective 

efficacy in targeting CMML cells. These results indicate that within the vast array 

of available natural products and compounds, there are non-toxic alternatives to 

conventional chemotherapy that are safe and effective. 
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ABSTRACT 

Natural health products have formed the basis for the introduction of many 

identified drugs in the treatment of various diseases, especially as anti-cancer 

agents. Dandelion extracts have been studied extensively in recent years for its 

anti-depressant and anti-inflammatory activity. Recent work in our lab, with in-

vitro systems, have shown the anti-cancer potential of an aqueous extract of 

dandelion root in several cancer cell models, with no toxicity to non-cancer cells. 

The detailed analyses of the efficacy and toxicity of this extract in in-vivo and ex-

vivo models, as well as, the mechanism(s) of action remains unexplored. 

Furthermore, the pharmacologically active components within this extract, 

involved in the anti-cancer activity are unknown. 

In this study, we examine the role of an aqueous extract of dandelion root 

in highly aggressive colon cancer cell lines, as well as its anti-cancer efficacy in 

patient-derived ex-vivo samples of leukemia. Aqueous DRE induced significant 

and selective programmed cell death (apoptosis) in colon cancer cells, 

irrespective of their p53 status (HT-29 – p53 mutant and HCT116 – p53 wild 

type). The anti-cancer efficacy of this extract was confirmed in in-vivo studies, 

where the oral administration of DRE-supplemented drinking water halted the 

continued growth of human colon tumors in xenograft models. More importantly, 

we observed this cell death inducing ability of DRE in peripheral blood 

mononuclear cells (PBMCs), isolated from the blood of newly diagnosed 

leukemia patients in the Windsor-Essex area. 

In this study, we also hypothesized that the complexity of this natural 

extract is able to target more than one signaling pathway, and hence, more than 
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one cancer cell vulnerability, in order to have a potent anti-cancer effect. We 

determined the presence of bioactive ingredients, including -amyrin, -amyrin 

and lupeol in bioactive fractions of aqueous DRE. This anti-cancer effect of DRE 

hinged on the activation of multiple pathways, including the rapid activation of 

extrinsic apoptosis, the destabilization of the mitochondrial membrane potential 

and the induction of pro-death autophagy, following an increase in the expression 

of genes involved in programmed cell death type I and II (apoptosis and 

autophagy, respectively). 

Our results show that aqueous DRE can potentially represent a non-toxic, 

effective alternative, which could possibly reduce the occurrence of cancer cells 

resistance, as it contains multiple bioactive components that can target multiple 

signaling pathways, specifically in cancer cells. Furthermore, these findings have 

led to the approval of dandelion root extract, as the first NHP in Canada, for 

Phase I clinical trials, for hematological cancers in Canada. 
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INTRODUCTION 

The increase in the world’s aging population, as well as the adoption of 

cancer-causing behaviours, are the major contributors to an escalation in the 

incidence of different forms of cancers globally. There are over 12 million new 

cancer cases arising annually and over 7 million cancer-related deaths 

worldwide, and even with the introduction of many chemotherapy and 

chemopreventative approaches, cancer is still one of the leading causes of 

deaths in the world today, with a statistic of one in four deaths being attributed to 

cancer alone (Jemal et al., 2011; Siegel et al., 2013). 

Despite the progress made in the development and introduction of many 

chemotherapy agents, the accompanying toxicities and side effects (Jemal et al., 

2011), indicate that further research is required to reduce the incidence of cancer 

rates, and the amount of cancer-related deaths, as well as improve the quality of 

life of patients already diagnosed with the disease. 

Natural health products (NHPs) and natural products (NPs) have been 

essential in the development of many drugs, with over 75% of the currently 

available chemotherapies having been derive from natural sources (plants, 

microbes and marine sources), with the common example being paclitaxel 

(Mann, 2002). These NHPs have been used in various traditional medicines and 

recent scientific studies in the use of these NHPs for specific diseases have 

yielded some scientific validation to the use of these products (Ganesan, 2008; 

Newmann & Cragg, 2012). Even with all the incoming evidence, herbal drugs and 

other NHPs and NPs are usually shunned during systemic chemotherapy 
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because of herb-drug interaction and the exaggeration of chemotherapy-related 

toxicity (Foster et al., 2005; Nobili et al., 2009). 

Dandelions (Taraxacum spp) have been used for centuries for the 

treatment of various ailments; surprisingly enough, it has received little research 

attention. Some scientific studies have shown the efficacy of various parts of this 

plant as anti-inflammatory, anti-oxidative and as a diuretic agent (Yarnell & 

Abascal, 2009).  

Recent studies in our lab have shown the anti-cancer activity of an 

aqueous extract of dandelion root, selectively in cancer cells. In these studies, we 

show that dandelion root extract (DRE) is able to selectively induce the rapid 

activation of the death-receptor mediated extrinsic pathway of apoptosis in a 

dose and time dependent manner, in several cancer cell types (Chatterjee et al., 

2011; Ovadje et al., 2011; Ovadje et al., 2012a; Ovadje et al., 2012b). 

Furthermore, we observed a caspase-8 dependence, following DRE treatment. 

This result showed that, following the inhibition of caspase activation, using a 

pan-caspase inhibitor, zVAD-fmk, in chronic myelomonocytic leukemia cells, 

there was a corresponding inhibition of the induction of apoptosis (Ovadje et al., 

2012b). These findings have led us to further investigate the mechanism of DRE 

in cancer cells that enhance its selectivity, as evidenced by the lack of toxicity in 

non-cancer cells. 

In this study, we hypothesize that there are bioactive component(s) within 

aqueous DRE that are able to target multiple vulnerabilities within a cancer cell, 

in order to induce selective programmed cell death processes. In this study, we 

delve further into the mechanism of action of DRE in highly aggressive, drug 
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resistance colon cancer cells, where we observe the activation and localization of 

active caspase-8 to the mitochondria and the peri-nuclear space. However, this 

caspase-8 activation was not essential to the mechanistic efficacy of DRE in 

colon cancer cells, as inhibition of caspase-8 activation did not have an effect on 

the apoptosis inducing activity of DRE in these cell types, demonstrating the 

versatility of this extract in in-vitro models. Further assessment of DRE in in-vivo 

and ex-vivo models (with patient-derived samples of leukemia) suggests that this 

extract could potentially represent a novel non-toxic alternative to conventional 

cancer therapy available today, as it was well-tolerated in mice models but was 

efficient in inducing apoptosis in ex-vivo samples. More importantly, we have 

been able to identify three bioactive components, α-amyrin,β-amyrin and lupeol, 

within this extract that could contribute to its overall bioactivity, demonstrating the 

benefits of utilizing the whole complex extract of dandelion root.  

These results further scientifically validate the use of NHPs, especially the 

dandelion root species, as a potential anti-cancer agent, worthy of further 

investigation.  
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MATERIALS & METHODS 

Dandelion Root Extraction & Preparation 

 The dandelion roots used for this study were obtained from Premier Herbal 

Inc. (Lot No. 318121). The root extract was prepared, modified from a previously 

published protocol (Ovadje et al., 2011). Dried dandelion root was immersed in 

liquid nitrogen for about 5 to 10 minutes, until thoroughly frozen. The frozen 

pieces were ground up in an impingement grinder to an average particle size of ≤ 

45 μm. Following grinding, dandelion root powder was extracted in boiling water 

on low heat for 3 hours. The total extracted material was filtered through a NITEX 

nylon mesh filter (LAB PAK; Sefar BDH Inc. Chicoutini, Quebec CA) and the 

filtrate was spun down at 800 x g for 5 minutes at room temperature. The 

supernatant was filtered through a 0.45 μm filter, followed by lyophilzation. The 

dried extracted material was reconstituted in water to give a final stock solution of 

100 mg/ml and then passed through a 0.22 μm filter, in a biological safety cabinet 

and stored at 4°C. this material was used for the experiments described in this 

study. 

Cell Culture and Treatment 

Human colon cancer cell lines (HT-29, p53 mutant and HCT116, p53 WT 

(Muller et al., 2013) were purchased from ATCC (Manassas, VA). These cells 

were cultured in McCoy’s 5a medium (ATCC, Catalog no. 30-2007), 

supplemented with 10% fetal bovine serum (FBS) and 40 μg/ml gentamicin (Life 

Technologies, Mississauga, ON). Normal human colon mucosal epithelial cell line 

(NCM460, Incell Corporation, LLC, San Antonio TX) were subcultured in RPMI 

1640 medium (Sigma Aldrich, Mississauga, ON), supplemented with 10% FBS 
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and 40 μg/ml gentamicin. These cells were grown and maintained in an 

incubator, set at 37°C, with an atmosphere containing 5% CO2 and 95% 

humidity.  

Peripheral blood mononuclear cells (PBMCs) were purified from whole 

blood samples, obtained from either healthy volunteers (non-cancerous PBMCs – 

ncPBMCs) or from newly diagnosed leukemia patients (prior to the administration 

of chemotherapy). These cells were prepared according to a previously published 

protocol (Griffin et al., 2010; Ovadje et al., 2012b) and as approved by the 

University of Windsor’s research ethical committee, REB# 04-060. Whole blood 

(~12ml) was collected into a BD Vacutainer CP Tube (Cell Preparation Tube) 

obtained from Becton Dickinson (Franklin Lakes, NJ). The whole blood was spun 

down by density gradient centrifugation in a tabletop lowspeed centrifuge at 2900 

x g for 30 minutes at 25°C. The red blood cells went through the polyester gel 

and the top layer containing mononuclear cells, platelets and plasma was 

collected. These cells were washed twice in AIM-V medium (Invitrogen, 

Burlington, ON), following which, cells were maintained in an incubator set at 

37°C with an atmosphere containing 5% CO2 and 95% humidity. The cells were 

cultured in AIM-V medium. 

To assess the efficacy of DRE in our cell culture models, cells were plated 

and grown to 50 – 70% confluence prior to treatment with dandelion root extract 

(DRE), at increasing concentration (0.5 mg/ml – 6.0 mg/ml). Subsequent to 

treatment, cells were analyzed for efficacy of DRE, as described below. All cells 

were cultured for ≤ 4 months, before being discarded and fresh frozen cells were 

used to continue studies, lasting longer than the 4-month period. 
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Assessment of Cellular Metabolic Activity & Viability 

To examine the viability of colon cancer and normal colon mucosal 

epithelial cells after treatment, cells were incubated with cell proliferation reagent 

WST-1 (Catalog No. 05 015 944 001, Roche Diagnostics) for 4 hours at 37°C, 

following treatment with DRE at indicated doses and time points, using the 

manufacturers protocol. WST-1 works by reacting with the mitochondrial 

succinate-tetrazolium reductase, forming the water-soluble formazan product 

(Ngamwongsatit et al., 2008). Fluorescence readings were obtained 450 nm 

using a Perkin Elmer Victor Fluorescence instrument and viability readings were 

analyzed using GraphPad Prism 6.0 288 software and expressed as a 

percentage of the control untreated groups. 

Assessment of Programmed Cell Death Induction 

An early marker of apoptosis is the reorganization of the cell membrane to 

expose phosphatidylserine fro the inner leaflet of the cell membrane to the outer 

leaflet. This allows apoptotic cells to be taken up by phagocytic cells (Fadeel & 

Orrenius, 2005). This characteristic can also be exploited to assess the induction 

of apoptosis, according to a previously published protocol (Rieger et al., 2011). 

Following treatment with DRE, cells were trypsinized (0.15% trypsin) to lift 

adherent cells from the plates. The cells were washed twice in phosphate 

buffered saline (PBS). After washes with PBS, the pellet was resuspended in 

Annexin-V binding buffer (10 mM HEPES, 10 mM NaOH, PH 7,5, 140 mM NaCl, 

2.5 mM CaCl2 and 50nM sucrose) and Annexin-V Alexa Fluor 488 conjugate 

(Catalog No. A13201, Life Technologies, Burlington, ON), which binds to the 

exposed phosphatidylserine, at a 1:50 ratio, with respect to the binding buffer. 
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This reaction was incubated at room temperature for 15 minutes. Hoechst 33342, 

a photosensitive DNA binding dye (Molecular Probes, Eugene, OR), was used as 

a counterstain, at a final concentration of 10 μM, in the last 10 minutes of the 

incubation at room temperature. Apoptotic cells will be characterized by brightly 

stained, condensed nuclei, as compared to the larger, rounder and less brightly 

stained non-apoptotic cells. At the time of Hoechst staining, cells were 

counterstained with propidium iodide, a cell impermeable photosensitive DNA 

binding dye (Sigma Aldrich, Mississauga, ON), at a final concentration of 1 μg/ml 

(added at the same time as Hoechst 33342). Following the incubation, cells were 

visualized and images were obtained using a fluorescence microscope (Leica 

DMI 6000 fluorescence microscope, with a Leica DFC 360FX camera and Leica 

STP6000 control board).  

The images were obtained at 400X magnification and fluorescence 

quantification was also carried out using a TALI image-based cytometer (Catalog 

No. T10796, Life Technologies, Burlington ON), using a previously published 

protocol (Remple & Stone, 2011; Chan et al., 2012). 

Evaluation of Mitochondrial Membrane Potential 

JC-1 Mitochondrial Membrane Potential Detection Kit was used to monitor 

membrane destabilization in cells undergoing apoptosis. In non-apoptotic cells, 

with healthy mitochondria, JC-1 (5,5’, 6,6’-tetrachloro-1,1’,3,3’-

tetraethylbenzamidazolylcarbocyanine iodide) (Catalog No. M34152, Life 

Technologies, Burlington ON) exists as a monomer, which fluoresces green, in 

the cytosol and also accumulates as aggregates in the mitochondria, which 

fluoresces red. In apoptotic and necrotic cells, with defective mitochondria, JC-1 
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only exists in its monomeric form, diffused in the cytosol, with no accumulation in 

the mitochondria, leading to a distinct lack of red fluorescence. Treated cells were 

incubated with JC-1 dye, at a final concentration of 200 nM, for 45 minutes at 

37°C. the cells were counterstained with Hoechst staining and were examined by 

fluorescent microscopy and fluorescent images were taken at 400X 

magnification. Samples were also observed using image-based cytometry. 

Mitochondrial Isolation and Measurement of ROS Production 

Mitochondria were isolated from untreated HT-29 and NCM460 cells for 

analysis of reactive oxygen species (ROS) production. Cells were washed twice 

in cold PBS, resuspended in hypotonic buffer (1 mM EDTA, 5 mM Tris-HCl, 210 

mM mannitol, 70 mM sucrose, 10 μM Leu-pep, 10 μM Pep-A and 100 μM PMSF) 

and immediately homogenized, before centrifuging at 600 x g for 5 minutes, at 

4°C to get rid of nuclear pellet and unbroken cell debris. The resulting cytosolic 

supernatant was discarded and the mitochondrial pellet was resuspended in cold 

hypotonic buffer.  

To measure the production of ROS, Amplex Red (Molecular Probes, 

Eugene, OR) was used. Following resuspension in cold hypotonic buffer, ≥ 20 μg 

of protein was added to wells of a 96-well opaque plate. Treatment was done with 

2.5 mg/ml DRE, a positive control, 250 μM paraquat (PQ) (Sigma Aldrich, 

Mississauga ON) and a negative control, 3 mM N-Acetylcysteine (N-AC) (Sigma 

Aldrich, Mississauga ON). Amplex Red reagent was added to each well fro a final 

concentration of 50 μM; horseradish peroxidase (HRP) was added in the ratio of 

6units per 200 μL. Fluorescence readings were taken every 5 minutes for a total 

time of 5 hours at Ex. 560 and Em. 590 nm on a spectrofluorometer (SpectraMax 
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Gemini XS, Molecular Devices, Sunnyvale, CA). The readings were analyzed on 

GraphPad Prism 6.0 288 software and expressed as relative fluorescence units 

(RFU) per μg protein. 

Evaluation of Caspase Activation  

Cysteine-Aspartic Proteases (Caspases) are a major player in the initiation 

and execution of apoptosis (Fadeel & Orrenius, 2005). The caspase assays were 

performed and modified from a previously published method (Naderi et al., 2003). 

Caspase activation was confirmed using an Image-iT Live caspase detection kit 

(Catalog No. I35105, Life Technologies, Mississauga ON). Following treatment 

for an hour with DRE, cells were stained  with a cell permeable FLICA dye for the 

detection of active caspases, at 150X dilution and incubated for 45 minutes at 

37°C. Following incubation with the dye, cells were washed in 1X wash buffer 

and counterstained with propidium iodide. The stained cells were visualized by 

TALI image-based cytometry. To further confirm the role of caspases in apoptosis 

induction by DRE, a caspase-8 specific inhibitor, IETD-fmk (Catalog No. 218759, 

EMD4Biosciences, San Diego, CA) or a pan-caspase inhibitor, ZVAD-fmk 

(Catalog No. 219007, EMD4Biosciences) were incubated with HT-29 cells, an 

hour before DRE treatment, as described above. Cells were analyzed for 

metabolic viability by the WST-1 viability assay. 

Immunocytochemical Analysis of Caspase Activation 

To confirm the activation of caspases and their localization upon 

activation, HT-29 cells were plated onto poly-L-lysine (Sigma Aldrich, Canada) 

coated coverslips in a 6-well plate and allowed to attach to the coverslips for 24 

hours. These cells were then treated with DRE for different time points, ranging 
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from 30 minutes to 24 hours, following which the cells were incubated with a 

mitochondrial specific due, MitoTracker (Invitrogen, Canada) for 45 minutes, 

before the cells were obtained for immunocytochemical analysis. Cells were fixed 

in 3.7% paraformaldehyde (PFA) solution for 5 minutes at room temperature, 

followed by a 1.4% formaldehyde/0.1% NP-40 solution for 1.5 minutes at room 

temperature. Subsequent to fixation, cells were incubated with a blocking solution 

of 5% goat serum in PBS, followed by incubation overnight at 4°C with anti-

mouse primary antibody, specific to active caspase-8 (Santa Cruz Biotechnology, 

CA). The following day, coverslips were incubated with a goat anti-mouse 

secondary antibody, conjugated to AlexaFluor 488 (CellSignalling Technology, 

MA) for an hour at room temperature. The coverslips were washed in PBS and 

incubated with Hoechst 33342 for 10 minutes, at a final concentration of 10 μM 

and mounted on slides, using 80% glycerol. The slides were stored at 4°C until 

ready for visualization by fluorescent microscopy. 

Gene Expression Profiling of DRE Treated Cells: 

RNA extraction and cDNA synthesis 

Following treatment of chronic myelomonocytic leukemia (CMML) cells, 

HT-29 and NCM460 cells, with DRE, total cellular RNA was extracted using the 

Qiagen RNeasy Mini Kit (Qiagen, Inc.), according to the manufacturer’s protocol. 

The RNA quality was examined using gel electrophoresis and measuring the 

A280/A260 ratio (NanoDrop 2000). The cDNA was synthesized from 500 ng of 

total RNA by using the RE3 Reverse Transcriptase Mix first-strand synthesis 

system. Following a denaturation step of 5 minutes at 42°C, RNA was reverse 

transcribed to a single stranded cDNA using oligo(dT) primers (Qiagen, Inc.). The 
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reverse transcription reaction was performed in a total volume of 20 μL at 42°C 

for 15 minutes, immediately followed by 95°C for 180 minutes. 

PCR Array (Cell Death Signaling Pathway). 

The polymerase chain reaction (PCR) for the cell death signaling pathway 

was performed, following the reverse transcription of isolated RNA, using the 

RT2Proiler PCR array system from Qiagen, Inc. The PCR array was performed to 

combine the quantitative performance of the SYBR Green based system, with 

multiple profiling abilities of the pathway-focused gene expression (Ornatowska 

et al., 2007). 384-well (4 x 96-well) plates containing gene-specific primer sets fr 

84 relevant genes in the major programmed cell death pathways (Apoptosis, 

Autophagy and Necrosis), 5 housekeeping genes, a positive control and a 

negative control gene set was used (Catalog No. PAHS-212Z, Qiagen, Inc. 

Toronto, ON).  

Amplification of specific gene products was detected using the SYBR 

Green PCR mastermix and the real time amplification data was gathered using 

the ABI 7900HT software. The samples were amplified for 40 cycles for 15 s at 

95°C and 60 c at 60°C. each curve was completed with a melting curve analysis, 

to confirm the specificity of amplification. Gene expression was normalized to 

internal controls (housekeeping genes) to establish fold change in gene 

expression between the controls and treated samples by CT method (Qiagen RT2 

Profiler PCR Array Analysis program).  
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Fractionation & Phytochemical Analysis of Dandelion Root Extract 

Analyses were carried out in collaboration with Dr. JT. Arnason and his 

group, at the University of Ottawa, Ottawa ON. The protocol was carried out 

following a previously published protocol (Guerrero et al., 2010). Ground 

dandelion root (1.5 kg) was extracted twice in ethanol (95% in H2O) with a 24- 

hour incubation for both extractions, at room temperature. The first extraction was 

made using 10 L of solvent and the second extraction, using 8.0 L. the combined 

extracts were evaporated in a vacuo and lyophilized to yield 93.3 g of a brown 

residue (crude extract; 6.2% yield). Dried extract was chromatographed on a 

glass column packed with silica gel (1.0 kg) eluting with 5% increments of polarity 

gradients, starting from 100% hexane, to 100% ethylacetate, to 100% methanol 

(hexanes-EtOAc (1:0 f 0:1) and EtOAc-MeOH (1:0 f 9:1). This yielded 210 

fraction, which were then pooled to yield 25 primary fraction, by thin-layer 

chromatography (TLC) analyses performed on a silica gel 60 F254 plate (Merck), 

an visualization of plates was carried out using a ceric sulfate (10%) solution in 

H2S. Bioactivity analyses led to the identification of 5 bioactive fractions. 

Secondary fractionation yielded 24 secondary subfractions. Pre-fractionation of 

secondary fractions with significant bioactivity was carried out and separated on a 

preparative scale 1200 series Agilent preparative scale HPLC using a reversed-

phase Gemini Axia 250 x 21.2 mm column, particle size 10 μm (Phenomenex 

Inc., Torrance CA), using an isocratic mobile phase composition of 45% THF in 

55% water at 37.5mL.min to afford uvaol (12.0 mg, 0.0008%), botulin, (100 mg, 

0.007%), α-amyrin (6.5 mg, 0.0004%), and betulinic acid (5.0 mg, 0.0003%) at 

the monitoring wavelength of 210 nm, bandwith 4, reference off. 
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The final preparative scale isolation of the phytochemicals was undertaken 

using a reversed-phase Gemini Axia 250 x 21.2 mm column, particle size 10 μm 

(Phenomenex Inc., Torrance CA), on an Agilent 1200 Series preparative HPLC 

system comprising a binary pump, an autosampler with a 2 mL loop, a diode 

array detector, with a flow cell (Path length 3 mm and maximum pressure limit, 

120 bar), and a fraction collector (40 μL collection tubes). IR spectra were 

recorded on a Shimadzu 8400-S FT/IR spectrometer. Optical rotations were 

registered on a Perkin Elmer 241 digital polarimeter. NMR spectra were recorded 

on a Bruker Avance 400 spectrometer in C5D5N, at either 400 MHz (1H) or 100 

(13C) MHz, using tetramethylsilane (TMS) as an internal standard. EIMS and 

HREIMS were obtained on a Kratos Concept IIH mass spectrometer. 

Western Blotting Analysis 

SDS-PAGE was performed on the protein samples. Treated cells were 

lysed in lysis buffer (0.1% NP40, 20 mM Tris-HCl, 100 mM NaCl and 5 mM 

EDTA), following which, the total protein was measured by Bradford assay. 

Proteins were separated on a 10% gel and then transferred to a nitrocellulose 

membrane. Following transfer, the membranes were blocked in a milk solution 

(5% w/v milk in Tris-Buffered Saline with Tween-20 (TBST)) for 90 minutes. 

Subsequent to the blocking step, membranes were probed with primary 

antibodies, overnight at 4°C; anti-cFLIP, raised in rabbit (1:1000), (Catalog No. 

GTX28421, GeneTex Inc. Irvin, CA) and anti-actin, raised in mouse (1:1000), 

(Catalog No. sc-81178, Santa Cruz Biotechnology, CA). Following incubation with 

the primary antibodies, membranes were washed in TBST (1X – 15 minute wash 

and 2X – 5 minute wash) and following the washes, membranes were incubated 
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with anti-mouse or anti-rabbit horseradish peroxidase conjugated secondary 

antibody (1:1000) – (Catalog No. ab6728 and ab6802, respectively, Abcam, 

Cambridge MA) for an hour at room temperature. The membranes were then 

washed for 3 X 5 minutes in TBST, followed by band visualization with a Visiglo 

Select HRP chemiluminescent substrate kit (Catalog No. CA11027-138, VWR 

International, Mississauga ON). Densitometry analyses were performed using 

Image J software. 

In-vivo Assessment of Dandelion Root Extract: 

Toxicity Assessment 

Six week old Balb/C mice were obtained from Charles River Laboratories 

and housed in constant laboratory conditions of 12-hour light/dark cycle, in 

accordance with the animal protocols outlined in the University of Windsor 

research ethics board (AUPP #10-17). Following acclimatization, mice were 

divided into two groups (4 animals/control (untreated) and 4 animals/treatment 

group). The control untreated group was given plain filtered water, while the 

second group was given 5 mg/ml dandelion root in drinking water, resulting in 

approximately 40 mg/kg/day of DRE in their drinking water, respectively for 75 

days. During the period of the study, toxicity was measure by weighing mice 

twice a week and urine was collected for protein urinalysis by urine dipstick and 

Bradford assays. Following the duration of the study, mice were sacrificed and 

their organs (Livers, kidneys and hearts) were obtained for immunohistochemical 

and toxicological analysis by Dr. Brooke at the University of Guelph. 
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Efficacy of DRE in Tumor Xenograft Models of Immunocompromised Mice 

Six week old make CD-1 nu/nu mice were obtained from Charles River 

Laboratories and housed in constant laboratory conditions of 12-hour light/dark 

cycle, in accordance with the animal protocols outlined in the University of 

Windsor research ethics board (AUPP #10-17). Following acclimatization, mice 

were subcutaneously injected in the right and left hind flanks with a colon cancer 

cell suspension (in PBS) at a concentration of 2 * 106 cells/ mouse (HT-29, p53-/- 

in the left flank and HCT116, p53+/+ in the right flank). Tumors were allowed to 

develop (approximately a week), following which, the animals were randomized 

into treatment groups of 4 mice per group, as outlined in the toxicity studies 

above. The mice were allowed to drink ad libidum, and treatment was replaced 

everyday. All mice were assessed for toxicity, as well as efficacy of oral 

administration on the growth of tumors. The tumors were assessed every other 

day by measuring the length, width and height, using a standard caliper and the 

tumor volume was calculated according to the formula π/6*length*width. The 

mice were also assessed for any weight loss for the duration of the study, which 

also lasted 75 day. Following the study, mice were sacrificed and their organs 

and tissues (livers, kidneys, hearts and tumors) were obtained and stored in 

formaldehyde for immunohistochemical and toxicological analysis. 

Hematoxylin & Eosin (H & E) Staining 

Mice organs were fixed in 10% formaldehyde, following which the organs 

were cryosectioned into 10-micron sections and placed on a superfrost/Plus 

microscope slides (Fisherbrand, Fisher Scientific). Sections of organs were 

stained according to a standardized H & E protocol (Fischer et al., 2008). 
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Statistical Analyses 

All experiments were repeated at least three independent times. Statistical 

analysis was performed using GraphPad Prism 6.0 288 software. Statistical tests 

included the Students T-test, one- and two-way Anova. 
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RESULTS 

Efficacy of Dandelion Root Extract in Various Cancer Cell Models: 

Dandelion Root Extract Induces Apoptosis in Aggressive Colorectal Cancer 

Cells 

 

Previous results with dandelion root extract (DRE) have implicated this 

extract as a possible anti-cancer agent in various leukemia, melanoma and 

pancreatic cancer cell models (Chatterjee et al., 2011; Ovadje et al. 2011; Ovadje 

et al., 2012a; Ovadje et al., 2012b). The capacity of DRE’s apoptosis-inducing 

activity prompted further studies into the efficacy of this aqueous extract in highly 

aggressive colorectal cancer cells.  

To determine if this water extract of dandelion root shows potency against 

colon cancer cells, HT-29 and HCT116, were used in this study. Along with these 

cell types, normal mucosal colon epithelial cells (NCM460) were used to assess 

any levels of toxicity associated with DRE treatment. Following treatment with 

DRE, at increasing concentrations and time points, we observed a resultant 

decrease in the viability of both HT-29 and HCT116 colorectal cancer cells, 

irrespective of p53 status (Figure 1A). Employing the WST-1 cell viability assay, 

we determined the EC50 of DRE in both colon cancer cell lines; 2.0 mg/ml in 

HCT116 cells and 3.5 mg/ml in HT-29 cells. The selectivity of DRE to caner cells 

was once again confirmed, as we did not observe as similar trend in the response 

of NCM460 cells, treated in parallel with the colon cancer cells. (Figure 1A). 

Further investigation into the anti-cancer efficacy of DRE in colon cancer 

cells indicates that DRE efficiently induces apoptosis in colon cancer cells 

selectively. Following treatment, cells were stained with Hoechst 33342, 
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propidium iodide and Annexin V dye to observe the nuclear morphology, cell 

membrane integrity and externalization of phosphatidylserine respectively. 

Following DRE treatment, we observed a corresponding increase in propidium 

iodide and Annexin V positive staining, by fluorescence microscopy, indicative of 

apoptosis in colon cancer cells, while NCM460 cells again remained unaffected 

(Figure 1B). Image- based cytometry was used to quantify the amount of 

apoptosis induced by DRE. Treatment with DRE led to an approximately 40% 

increase in Annexin V positive cells and a corresponding 97% increase in 

propidium iodide cells (Figure 1C). These results confirm the anti-cancer potential 

of dandelion root extract and demonstrates its efficacy in aggressive colorectal 

cancer cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 173 

 

 



 174 

 

Figure 1: Dandelion Root Extract Induces Apoptosis in Aggressive 

Colorectal Cancer Cells: Colon Cancer cells (HT-29 [p53-/-] and HCT116 

[p53+/+]) and normal colon mucosal epithelial cells (NCM460) were treated with 

increasing doses of DRE and analyzed for anticancer effects. A) Cells were 

plated in 96-well clear bottom plates and treated with DRE at indicated time 

points and analyzed for the ability of DRE to reduce the viability of these cells, 

measured by a decrease in metabolic activity. Following treatment, the WST-1 

reagent was added to each well, the absorbance readings were taken at 450 nm, 

and expressed at a percentage of the control. The absorbance readings were 

analyzed using GraphPad Prism version5.0 and values are expressed as mean ± 

SD from quadruplicates of 3 independent experiments. B) Hoechst (Blue), 

Annexin V (Green) and Propidium Iodide (PI) (Red) staining of DRE-treated cells, 

48 hours after treatment. Fluorescence images were obtained at 400X 

magnification. 
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Figure 1: Dandelion Root Extract Induces Apoptosis in Aggressive 

Colorectal Cancer Cells: Colon Cancer cells (HT-29 [p53-/-] and HCT116 

[p53+/+]) and normal colon mucosal epithelial cells (NCM460) were treated with 

increasing doses of DRE and analyzed for anticancer effects. C) Following 

treatment, cells were stained with Annexin V and PI and image-based cytometry 

was used to assess the induction of apoptosis apoptosis. Experiments were 

repeated three independent times and the data was quantified to determine the 

percentage of apoptotic and necrotic cells, as measured by annexin V and PI. 
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Dandelion Root Extract Can Halt the Growth of Colon Tumors in Xenograft 

Models 

 

  As alluded to previously, the anticancer efficacy of DRE has been 

observed in various cancer cell types, including the reported colorectal cancer 

cell types mentioned above. The in-vitro results indicated a need for further 

studies into the anticancer efficacy of DRE. Dandelions have been used for 

centuries for the treatment of various diseases; and the different parts of the plant 

have been used to treat ailments, including dyspepsia, spleen and liver 

complaints, hepatitis and anorexia (Schütz et al., 2006; Yarnell & Abascal, 2009). 

These reports also outline a lot of the anecdotal evidence surrounding the use of 

various parts of the plant. However, there is a distinct lack of reports indicating 

toxicities associated with its use. Our in-vitro studies further prove that DRE is 

able to distinguish between cancer and non-cancerous cells to cause a decrease 

in the viability of cancer cells and induce apoptosis, with no toxicity to non-

cancerous cells.  

To further scientifically evaluate and validate the safety of DRE, the first 

step was to assess the toxicity to regular mice in a toxicological study. Balb/c 

mice were orally administered DRE, at a dose of 40 mg/kg/day, in their drinking 

water and allowed to drink ad libidum, for a period of 75 days; these mice were 

observed for signs of toxicity for the duration of the study. To measure toxicity, 

mice were weighed twice a week and urine was collected, for protein urinalysis 

studies, to determine any damage to the kidneys of the animals on DRE regimen. 

Results showed no significant difference between the control, untreated group 

and the DRE supplemented water group in terms of weight of the mice in each 
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group. No significant difference was observed between the control and DRE-fed 

groups, suggesting a lack of toxicity (Figure 2A). These results were further 

confirmed by a distinct lack of difference in protein levels in the urine of mice 

collected from each group in the last four weeks of the study. The protein 

urinalysis was performed using a urine dipstick kit, as well as a Bradford protein 

concentration assay. The results indicate that there were trace amounts of 

protein in the urine of mice from both groups (Figure 2B).  

Following the duration of the study, mice were sacrificed and their organs 

were obtained for histopathological analysis, by a certified pathologist at the 

University of Guelph. Hematoxylin and eosin staining of the hearts, livers and 

kidneys showed no gross morphological differences in tissue slices between the 

control and the DRE treated group (Figure 2C). These results indicate a lack of 

toxicity associated with DRE, through oral administration in our animal studies 

and results from the pathologist further confirmed our results. The results from 

the pathologist were accompanied by a statement, indicated that the presence of 

any lesions in the tissues are minimal or mild and interpreted as either 

background or incidental lesions and the lack of lesion type and frequency was 

sufficient to conclude no toxicological effect of DRE to the balb/c mice (Table 1). 
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Table 1: Summary of Histological Lesions in Balb/C Mice on DRE regimen 
 

 
No Treatment 

(Plain-filtered water) 

Treatment group 
(DRE-Supplemented 

water) 

M1 M2 M3 M4 M5 M1 M2 M3 M4  
Liver: 

-Infiltration, leukocyte, 
predominantly mononuclear, 
minimal 

 X X  X     

-Focal mineralization, minimal      X    

-Hepatocyte necrosis, minimal          

-Focus of cellular alteration, 
eosinophilic, minimal   X X  X    

-Hepatocyte vacuolation, lipid 
type, minimal   X X    X  

- Hepatocyte vacuolation, lipid 
type, mild X   X  X   X 

Fibrin thrombus   X       

 
Heart:          

-Infiltration, leukocyte, 
predominantly mononuclear, 
minimal 

 X    X    

Myofiber separation and 
vaculation, minimal (suspect 
artifact) 

 X X     X  

 
Kidney:  

- Infiltration, leukocyte, 
predominantly mononuclear, 
minimal 

X X  X    X X 

Tubule vacuolation, minimal     X  X  X 

Fibrin or other extracellular 
matrix, glomerulus          
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Figure 2: Dandelion Root Extract is Well Tolerated in Animal Models: Balb/C 

mice were separated into two groups, one group on plain filtered water and the 

other, on DRE-supplemented water (40 mg/kg/day) for a period of 75 days. Mice 

were assessed for toxicity of DRE. A) Weight of mice in each group for the 

duration of the study. B) Urine was obtained from mice every week for the last 4 

weeks of the study. Protein urinalysis was carried out using urine dipstick and the 

Bradford protein assay. C) Following the period of the study, mice were sacrificed 

and their tissues (hearts, kidneys and livers) obtained for histopathological 

studies; Hematoxylin and Eosin staining of tissues. Images were obtained on a 

brightfield microscope at 63X Objective. 
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Following toxicity studies, we wanted to further evaluate the efficacy of 

DRE in animal tumor models. For this part of the study, CD-1 nu/nu 

immunocompromised mice were subcutaneously injected with HT-29 cells (left 

flank) and HCT116 cells (right flank). Following the establishment of colon 

tumors, mice were separated into two groups (same as the toxicity study). Mice 

were observed for the duration of 75 days, while the weights and tumor volumes 

were measured twice a week. The results obtained demonstrate that oral 

administration of 40 mg/kg/day of DRE in the drinking water did not have an 

effect on the weights of the mice (as observed in the toxicity studies) and was 

efficient in suppressing the growth of both p53 WT (HCT116) and p53 mutant 

(HT-29) tumors in-vivo (Figure 3A – C). Additionally, H & E staining revealed less 

nuclei in the DRE treated group, compared to the control group, however, as 

observed in the toxicity studies, there were no gross morphological differences in 

the livers, kidneys and hearts of the control and DRE treated groups (Figure 3D). 

These results not only indicate that oral administration of DRE is not toxic to 

animal models, but is efficacious in halting the growth of colon tumors in 

xenograft models. 
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Figure 3: Dandelion Root Extract Halts the Growth of Colon Tumor 

Xenografts: Following the toxicity studies, immunocompromised CD-1 nu/nu 

mice were subcutaneously injected with 2*106 colon cancer cells (HT-29 on the 

left flank and HCT116 on the right flank). Following the establishment of tumors, 

mice were separated into the same groups, as described in the toxicity studies. 

A) Mice were weighed every other day for the duration of the study. B) The tumor 

volumes were measured using a standard caliper and the tumor volumes were 

calculated according to the formula π/6*length*width. C) Images of mice tumors 

week 9 of the study, showing differences in the tumor sizes between the control, 

untreated group and the DRE group. D) Following the period of the study, mice 

were sacrificed and their tissues (hearts, kidneys and livers), as well as tumors, 

were excised for histopathological studies; Hematoxylin and Eosin staining of 

tissues. Images were obtained on a brightfield microscope at 63X Objective. 
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Dandelion Root Extract Induces Apoptosis in Clinical Samples of Patient-

Derived Peripheral Blood Mononuclear Cells 

 

The next phase of this study was to determine if DRE could be taken 

further, as a potential anticancer agent in a clinical setting. Blood samples were 

obtained from newly diagnosed leukemia patients. Table 2 provides details about 

patient age, leukemia type at time of diagnosis, along with their response to DRE 

treatment in ex-vivo conditions. All of the diagnoses are first occurrence, unless 

otherwise stated. Patients were diagnosed in the clinic with: Acute Myeloid 

Leukemia (AML), subtyped as M0 - M7 or MDS (myelo- dysplastic syndrome); 

Acute Lymphoblastic Leukemia (ALL), sub- typed as Burkitt's (L3); Chronic 

Myelogenous Leukemia (CML); or Chronic Myelomonocytic Leukemia (CMML) 

and Chronic Lymphocytic Leukemia (CLL). All samples (n = 11) showed an 

increase in apoptosis (by Hoechst, Annexin-V and propidium iodide staining in 

fluorescence microscopy and image-based cytometry) in a dose and time-

dependent manner, with > 80% of apoptotic cells at the highest dose of 5.0 mg/ml 

DRE at 48 hours (Figure 4A-C). These results were distinctly dissimilar to results 

obtained with ncPBMCs, which showed no influence on apoptotic induction by 

DRE treatment (Ovadje et al., 2012b). These results demonstrate that DRE is 

selectively toxic to cancer cells in in-vitro, in-vivo and ex-vivo models, irrespective 

of cancer type, with little to no associated toxicity to non-cancerous cell models. 
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Table 2: Patient-Derived Samples of Leukemia, with Response to DRE 
Treatment 
 

Patient # Age Clinical 
Diagnosis 

Time of 
Exposure to 

DRE 

% Apoptosis 

1 
 

42 CLL 48 H 44 ± 10.2 

2 
 

72 AML 48 H 56 ± 7.8 

3 
 

78  48 H 97.9 ± 1.1 

4 
 

58 ALL 48 H 70 ± 3.9 

5 
 

56 AML – M4 48 H 37.7 ± 5.3 

6 
 

69  48 H 39.03 ± 5.4 

7 
 

52 ALL 48 H 76 ± 10.4 

8 
 

 AML 48 H 57.9 ± 3.6 

9 
 

  48 H 87.2 ± 13.7 

10 
 

  48 H 66.4 ± 3.2 

11 
 

  48 H 89.3 ± 4.5 

 
**Spaces; Information was withheld.  
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Figure 4: Dandelion Root Extract Induces Apoptosis in Clinical Samples of 

Patient-Derived Peripheral Blood Mononuclear Cells (PBMCs): PBMCs were 

isolated from the blood of newly diagnosed patients. Cells were treated with 

increasing concentrations of DRE and analyzed for the induction of apoptosis. A) 

Representative Hoechst (white), Annexin V (Green) staining of DRE-treated cells, 

48 hours after treatment. Fluorescence images were obtained at 400X 

magnification. B) Quantification of apoptotic cell death in PBMCs treated DRE (n 

= 11). C) Following treatment of PBMCs, cells were stained with PI and analyzed 

by image-based cytometry. Representative results are shown here. 

 
 
 
 
 
 
 
 
 

N = 11 
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Mechanism of Dandelion Root Extract in Selectively Targeting Cancer Cell: 

Dandelion Root Extract Targets the Mitochondria of Colon Cancer Cells  

Few scientific studies have attempted to delineate the mechanism of 

dandelion extracts, especially in cancer cells. Some studies have suggest that 

dandelion flower extracts (DFE) have antioxidant, pro-oxidant and cytotoxic 

activity in colon adenocarcinoma cells, Caco-2, while being able to scavenge 

reactive oxygen species in mouse macrophage cells, RAW264.7 (Hu & Kitts, 

2003; Hu & Kitts, 2005). These effects have been attributed to the presence of 

flavonoids within the water and ethylacetate extracts of the flower. However, there 

is still a lot to be done regarding the presence of other compounds within these 

extracts and how they influence the activities. Previous studies in our lab have 

shown that aqueous DRE does not induce its cytotoxicity by inducing double 

stranded DNA breaks, by TUNEL labeling, in chronic myelomonocytic leukemia 

(CMML) cells, in order to induce apoptosis in these cell types (Ovadje et al., 

2012b). These results have a confirmation in already published work, by other 

groups, indicating that DFE was efficient at reducing DNA damage, by decreasing 

the breakage of supercoiled DNA strands, even in the presence of oxidative 

stress (Hu & Kitts, 2003). These results therefore suggest a lack of genotoxicity 

associated with DRE use. However, as with previous studies, we observed a 

disruption of the mitochondrial membrane potential following DRE treatment, by 

JC-1 staining, in HT-29 cells. On the other hand, the mitochondria of NCM460 

cells remained unaffected (Figure 5A). These results were quantified and 

confirmed by image-based cytometry, where we observed a decrease in the 

intensity of red fluorescence, indicative of a loss of mitochondrial membrane 
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potential in HT-29 cells, with no difference between the control and DRE treated 

samples in NCM460 (Figure 5B). These data suggest that DRE is able to target 

multiple significant vulnerabilities in cancer cells selectively and that such targets 

might include the mitochondria. To further investigate the role of the mitochondria 

in DRE induced PCD, mitochondria was isolated from HT-29 and NCM460 cells 

and the isolated mitochondria was directly treated with 2.5 mg/ml DRE. In the 

presence of Amplex Red and HRP, fluorescence readings were obtained every 5 

minutes. Results obtained showed that DRE treatment led to a significant 

increase in the levels of reactive oxygen species (ROS) produced in HT-29 cells, 

compared to the control, untreated mitochondria. In parallel, it can be observed 

that treatment of isolated mitochondria from NCM460 cells, with DRE, did not 

lead to the same increase in the levels of ROS (Figure 5C), further confirming 

that DRE has multiple targets in cancer cells, leading to the selective targeting to 

self-destructive processes. These results further suggest that, like DFE, DRE 

might also contain both antioxidant and pro-oxidant properties (Hu & Kitts, 2003).  
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Figure 5: Dandelion Root Extract Targets the Mitochondria of Colon Cancer 

Cells: Following treatment with DRE, HT-29 and NCM460 cells were incubated 

with JC-1 dye. Red fluorescence intensity was measured by fluorescence 

microscopy (Magnification: 400X) (A) and image based cytometry (B) to detect 

the loss of the mitochondrial membrane potential. The mitochondria of HT-29 

cells were completely destabilized, while those of the NCM460 cells remained 

intact. 
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Figure 5: Dandelion Root Extract Targets the Mitochondria of Colon Cancer 

Cells: C) Isolated mitochondria from HT-29 and NCM460 were treated directly 

with DRE; ROS production was measured using Amplex Red substrate in the 

presence of horseradish peroxidase (HRP). Results were compared to the 

control, untreated mitochondria, the positive control, Paraquat (PQ) and the 

negative control, N-Acetylcysteine (N-Ac). Fluorescence readings were taken in 

5-minute intervals for 5 hours at Ex. 560 nm and Em. 590 nm and expressed as 

relative fluorescence units (RFU) per μg protein. Analyses of results were 

performed using Graphpad Prism and results shown are a representative of 3 

independent experiments. 
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Dandelion Root Extract Activates Caspase-8 in Human Colorectal Cancer 

Cells 

 

Previous studies in our lab have shown that DRE efficiently and rapidly 

activates the extrinsic pathway of apoptosis in leukemia and pancreatic cancer 

cells, with a dependence on the activation of caspase-8 for the subsequent 

induction of apoptosis, as cells with a dominant-negative Fas-Associated Death 

Domain (Dn-FADD) were unresponsive to DRE treatment (Ovadje et al., 2012b). 

This part of this study was aimed at further investigating the role of the extrinsic 

pathway in DRE-induced apoptosis. Using substrates specific fluorescent labeled 

inhibitors of caspases (FLICA) for each caspase (DEVD – Caspase-3; IETD – 

Caspase-8), the chronological activation of caspases could be monitored in HT-

29 and NCM460 cells that had been treated with DRE for increasing time points, 

ranging from 15 minutes to 48 hours. Our results by image-based cytometry 

show that DRE induced a 68% increase in caspase-8 activation in HT-29 cells 

treated with 2.5 mg/ml DRE for an hour, with a corresponding 30% increase in 

propidium iodide staining. Furthermore, these results were specific to HT-29 

cancer cells, as NCM460 normal cells did not respond to DRE treatment in the 

same manner (Figure 6A). Our results show that NCM460 cells had no increase 

in caspase-8 activation or propidium iodide staining, confirming the selectivity of 

DRE to cancer cells. These results also further confirm that DRE acts through the 

extrinsic pathway of apoptosis in cancer cells.  

To further investigate the role of extrinsic apoptosis in DRE’s mechanism 

of action, the localization of activated caspases, following DRE treatment, was 

studied. Caspases are crucial for the initiation, propagation and execution of 
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apoptosis (Loo et al., 2002), and therefore their activation and localization has 

been a focus of much research, with many conflicting reports. Some reports 

suggest that before activation, pro-caspases are located in the cytosol, and 

following apoptotic stimuli and activation, these caspases remain in the cytosol 

(Loo et al., 2002). Some other reports on the other hand have determined that 

following activation, caspases localize to the mitochondria, where they interact 

with other pro-apoptotic proteins for the progression of apoptosis (Chandra et al., 

2004). A third option also indicates that inactive caspases are kept in the 

mitochondria, and following apoptotic stimuli and activation, these caspases are 

released out of the mitochondria into the cytoplasm and surround the peri-nuclear 

space (Qin et al., 2001). The aim of this part of the study was to confirm the 

activation of caspase-8, following DRE treatment and to determine the 

localization of caspase-8, before and after apoptotic stimuli and activation.   

 In order to do this cells that were plated onto coverslips were treated with 

DRE for 30, 60, 180 and 360 minutes and assessed for the activation and 

localization of caspase-8. These cells were incubated with MitoTracker dye for 45 

minutes, prior to immunocytochemical analysis, described in the materials and 

methods. The results show that there was a progressive destabilization of the 

mitochondrial membrane following treatment of DRE, as early as 30 minutes, but 

more importantly, it was observed that pro-caspase-8 (green) localized with the 

mitochondrial dye (red) in the control untreated samples and following activation 

after DRE treatment, the now active caspase-8 was released out of the 

mitochondria as indicated by the dispersed green dye associated with caspase-8 

(Figure 6B). These results indicate that, not only is DRE able to efficiently 
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activate the extrinsic pathway of apoptosis, by the rapid activation of caspase-8, it 

is also leads to the destabilization of the mitochondrial membrane in treated 

samples.  

In our previous studies, we show that the activation of caspases was 

essential to the induction of apoptosis by DRE. To confirm this dependence of 

caspase activation, cells were pre-incubated with either a pan-caspase inhibitor, 

Z-VAD-fmk or a caspase-8 specific inhibitor, IETD-fmk for an hour, before DRE 

treatment. Following treatment, cells were analyzed by WST-1 viability assay. 

Results show that in the presence of caspase inhibitors, Z-VAD-fmk (results not 

shown) and IETD-fmk, there was still a corresponding decrease in the viability of 

HT-29 cells, in response to an increase in dose and time of exposure to DRE 

treatment. These results were comparable to the same studies carried out in the 

absence of caspase inhibitors (Figure 6C), suggesting that in HT-29 colorectal 

cancer cells, DRE’s mechanism of action is caspase independent.   
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Figure 6: Dandelion Root Extract Triggers the Activation of Caspase-8: A) 

Following DRE treatment, HT-29 and NCM460 cells were incubate with FLICA 

substrates specific to caspase-8 and incubated for an hour and counterstained 

with propidium iodide. Fluorescence intensity was measured with image-based 

cytometry. 
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Figure 6: Dandelion Root Extract Triggers the Activation of Caspase-8: B) 

To determine the localization of caspase-8 following activation, treated cells were 

incubated with MitoTracker (Red), fixed and then incubated with the anti-

caspase-8 antibody, followed by a secondary antibody conjugated to AlexaFluor 

488 (Green). Cells were also counterstained with Hoechst 33342 (blue) to detect 

the nuclear morphology. Images were obtained at 63X objective. White arrows 

indicate the dispersion of MitoTracker Red, indicative of a loss of mitochondrial 

membrane potential and the magenta arrows show the presence of active 

caspase-8 in the nucleus following DRE treatment. Scale bars = 20 m. C). Prior 

to DRE treatment, HT-29 cells were pre-treated with a caspase-8 specific 

inhibitor, IETD-fmk, for an hour at indicated concentrations and analyzed for cell 

viability, using the WST-1 assay as a measure of absorbance at 450 nm. 

Decreased cell metabolic viability (as a % of control) is observed with increasing 

concentrations of DRE. 
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Dandelion Root Extract Promotes the Expression of Cell Death Genes in 

Cancer Cells 

 

Due to the inability of caspase-8 specific inhibitors to prevent the 

anticancer activity of DRE in HT-29 colon cancer cells, which was contrary to the 

results observed in our previous studies with leukemia and pancreatic cancer 

cells, the next step was to further investigate the different aspects of cell death 

processes that could be induced/activated, following DRE treatment. Using the 

RT2 Profiler Cell Death Pathway Finder PCR system, we were able to profile the 

expression of 84 key genes in the central mechanisms for apoptotic, autophagic 

and necrotic cell death. In CMML cells, we observed that DRE treatment led to 

high expression of several cell death genes, with ≥ 70% of genes being 

expressed before cycle 30 in the treatment group, compared to ≥90% of genes 

over cycle 30 (Figure 7A). Further analysis of the data showed 22 genes with 

over a 10-fold increase in expression, following DRE treatment (Table 3; Figure 

7B). Table 3 further lists the gene functions of these highly expressed genes. It is 

important to note that treatment of CMML cells with DRE led to increased 

expression of ≥ 70% of genes (≥ 59 out of 84 genes) in this cell death pathway 

finder. The results reported in this study are for the genes that had over a 5-fold 

increase in gene expression, as compared to the control untreated sample. This 

increase in gene expression was not confined to one major pathway, however, 

we observed increases in expressions of genes involved in apoptosis and 

autophagy, indicating that DRE has multiple targets in cancer cells, especially 

leukemia cells. This further confirms the connections between the programmed 

cell death processes of apoptosis and autophagy. 



 197 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Fold Change in Expression of Cell Death Genes in Chronic 
Myelomonocytic Leukemia (CMML) Cells – (MV-4-11): The effect of DRE on 
cell death gene expression in CMML cells were evaluated using the RT2 profiler 
PCR assay. Following treatment of CMML cells with DRE, RNA was isolated, 
converted to cDNA and incubated with oligodT primers. PCR microarray analysis 
was carried out on an ABI 7900HT. A) Percentage of genes highly expressed or 
not detected in the control and DRE treated samples of CMML cells. B) Fold 
change in gene expression of cell death genes in CMML cells treated with DRE, 
compare to the control untreated cells (Fold expressions in control are set at 1 
and treated samples are expressed as fold increases from the control). 
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Table 3: Fold Change in Expression of Cell Death Genes in Chronic 
Myelomonocytic Leukemia (CMML) Cells – (MV-4-11) 
 

Gene Fold 
Change 

Gene Function 

APAF 1 (Apoptotic 
Protease Activating 

Factor 1) 
38.54 

A central component of the intrinsic pathway of 
apoptosis. Forms the apoptosome with 
cytochrome c and pro-caspase-9 (Yoshida et al., 
1998; Gu et al., 2014) 

APP (Amyloid beta 
(A4) Precursor 

Protein) 
26.02 

Increased expression of APP is involved in 
caspase-3 dependent and independent 
apoptosis (Nishimura et al., 2002) 

ATG12 (Autophagy 
related 12) 

12.41 

Plays a distinct role in the early steps of 
autophagosome formation during autophagic 
degradation, especially mitophagy (Radoshevich 
et al., 2010) 

ATG16L1 
(Autophagy related 

16-like 1) 
15.72 

Essential for the elongation of isolation 
membranes during autophagy; interacts with 
ATG12-ATG5 to determine the site of LC3 
lipidation (Fujita et al., 2008; Ishibashi et al., 
2011) 

ATG5 (Autophagy 
related 5) 

27.70 

Interacts with ATG12 and ATG16L1 for the 
formation of the autophagosome in autophagic 
degradation (Fujita et al., 2008; Radoshevich et 
al., 2010; Ishibashi et al., 2011) 

ATG7 (Autophagy 
related 7) 

24.09 

An E1-like enzyme; Activates ATG12 and ATG8; 
Essential for the ATG conjugation system and 
the formation of the autophagosome (Xue et al., 
2010) 

BAX (BCL-2 
Associated X-

Protein) 
308.06 

Pro-apoptotic member of the Bcl-2 family; 
interacts with the mitochondrial voltage-
dependent anion channel (VDAC), leading to the 
loss of membrane potential. (Pawlowski et al., 
2000) 

BCL2L1 (Bcl-2 like 
1) 

7.00 

Also known as Bcl-xL; Considered an anti-
apoptotic member of Bcl-2 family. Its 
phosphorylation (as a result of increase in ROS) 
is associated with a decrease in its anti-apoptotic 
and anti-autophagic activity (Song et al., 2012; 
Kim et al., 2014) 

BCL2L11 (Bcl-2 
like 1) 

18.57 

Apoptosis facilitator, also known as Bim; 
Activates Bax and Bad (other pro-apoptotic 
proteins); Can override apoptotic resistance 
caused by overexpression of anti-apoptotic Bcl-2 
members (Plötz et al., 2013) 

BECN1 (Beclin 1) 43.44 Caspase-mediated cleavage of BECN1 is 
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involved in the cross-talk between apoptosis and 
autophagy; dysfunction is BECN1 is implicated 
in many disorders, including cancer (Kang et al., 
2011). 

CASP1 (Caspase-
1) 

27.30 

Cleaves a variety of substrates (121 substrates), 
including pro-inflammatory cytokine pro-

interleukin (IL)-1 to induce apoptosis 
(pyroptosis) (Denes et al., 2012) 

CASP2 (Caspase-
2) 

51.48 

Can be activated in the absence of extrinsic and 
intrinsic apoptotic stimuli, although it is also a 
direct downstream target of caspase-8, even 
though it is an initiator caspase (Olsson et al., 
2009; Soo-Hyun & Crispin, 2012) 

CASP3 (Caspase-
3) 

41.10 
Effector caspase; involved in the cleavage of 
Poly-(ADP-ribose) Polymerase (PARP) (Olsson 
et al., 2009) 

CASP6 (Caspase-
6) 

122.45 

Considered an effector caspase of the extrinsic 
pathway, but could also be an activator of 
caspase-8 for a positive feedback loop (Cowling 
& Downward, 2002; Olsson et al., 2009) 

CASP9 (Caspase-
9) 

9.45 

Initiator caspase in the intrinsic pathway of 
apoptosis; forms the apoptosome with APAF1 
and cytochrome c; activates effector caspases, 
such as caspase-3 (Yoshida et al., 1998; Olsson 
et al., 2009) 

COMMD4 (COMM 
domain containing 

4) 
133.81 

Inhibits NF-B activation (Jin et al., 2012) 

FAS (Fatty acid 
synthetase 
receptor) 

12.34 
The extrinsic pathway of apoptosis requires the 
binding of death ligands, e.g. Fas ligand, to its 
specific death receptor, triggering downstream 
effects, which include the activation of initiator 
caspase (e.g. caspase-8) and the subsequent 
activation of effector caspases (Elmore, 2007) 

FASLG (Fatty acid 
synthetase ligand) 

1 

GRB2 (Growth 
factor receptor-
bound protein 2) 

192.01 

Has a dual role in receptor kinase signaling. Can 
actively inhibit the phosphorylation of receptor 
tyrosine kinases involved in cell proliferation 
(Belov & Mohammadi, 2013) 

MAPK8 (Mitogen 
Activated Protein 

Kinase 8) 
22.60 

Also known as BCL2-associated agonist of cell 
death; involved in a variety of cell processes, 
including cell proliferation and apoptosis, 
especially in intrinsic apoptosis (Show et al., 
2008; Bjørkøy et al., 2009) 

MCL1 (Myeloid 
Cell Leukemia 1) 

44.70 
Alternative splicing results in multiple variants; a 
longer variant which is anti-apoptotic and a 
shorter variant, which promotes apoptosis 
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RefSeq, Oct 2010 

SQSTM1 (p62) 
(Sequestosome 1) 

345.39 

Autophagy receptor; shown to activate caspase-
8 mediated apoptosis; interacts with 
ubiquitinated proteins/organelles and facilitates 
that translocation to the lysosome for autophagic 
degradation (Zhang et al., 2013) 
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To further determine the differences in how colorectal cancer cells respond 

to DRE, and to further investigate the selectivity of DRE to cancer cells, the gene 

expression study was carried out in HT-29 and NCM460 cells. Table 4 outlines 

the results obtained from this part of the study, emphasizing the differential 

expression of genes between HT-29 colon cancer cells and NCM460 normal 

colon epithelial cells. It was observed that treatment with DRE had opposite 

effects in cancer and non-cancerous cells, when it came to how they express cell 

death genes, as cell death genes overexpressed in HT-29 cells, following 

treatment, with down-regulated in NCM460 cells, under the same conditions and 

vice versa (Figure 8). These results further show that DRE is able to distinguish 

between cancer and non-cancer cells (colon) in order to induce selective 

cytotoxicity to cancer cells, without associated toxicity to the non-cancer cells. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 202 

Table 4: Differential Fold Change in Expression of Cell Death Genes in 
Human Colorectal Cancer (HT-29) Versus Normal Colon Mucosal Epithelia 
Cells (NCM460) 
 

Gene Fold 
Change 
(HT-29) 

Fold 
Change 

(NCM460) 

Gene Function 

Bcl-2 (B-Cell 
Lymphoma 
2) 

-2.2 ± 0.23 +3.2 ± 0.44 An integral outer mitochondrial 
membrane protein that blocks the 
apoptotic death by interacting and 
inhibiting pro-apoptotic proteins, e.g. 
BAX, APAF1 (Tsujimoto & Croce, 
1986) 

Bcl-2A1 (Bcl-
2 related 
protein A1) 

-1.5 ± 0.21 +15.5 ± 1.1 BCL2A1 is a target of NF-kB 
activation, in response to 
inflammatory signals. This gene 
exerts pro-survival functions and is 
generally overexpressed in several 
cancers (Vogler, 2012) 

CD40LG -1.4 ± 0.11 +11.2 ± 0.7 An integral membrane protein and a 
member of the TNF superfamily, 
overexpressed in several 
carcinomas. Enhances cytokine 
production and promotion of cell 
proliferation (Banchereau et al., 
1994) 

GALNT5 
(polypeptide 
N-
acetylgalacto
saminyltransf
erase 5) 

-1.8 ± 0.23 +8.5 ± 0.75 A member of the TNF 
superfamily.  They are responsible 
for the altered O-linked 
glycosylation occurring during the 
development of various cancers and 
their progression via altering O-
glycan biosynthesis (He et al., 2014) 

PARP2 (poly 
(ADP-ribose) 
polymerase 2 

-1.2 ± 0.15 +2.2 ± 0.25 Induced by double stranded DNA 
breaks, as a cellular response to 
DNA damage. It is involved in DNA 
repair and transcriptional regulation. 
PARP inhibitors are an emerging 
field in cancer therapy (Liang et al., 
2013; Yelamos et al., 2014) 

SYCP2 
(Synaptonem
al Complex 
2) 

-1.3 ± 0.16 +2.0 ± 0.22 A major component of synaptic 
complexes during meiosis 
(prophase). May be involved in the 
organization of chromatin by 
temporarily binding to DNA scaffold 
attachment regions (Schalk et al., 
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1999) 

TMEM57 
(Transmembr
ane Protein 
57) 

-1.4 ± 0.25 +1.6 ± 0.25 A target of Jun Kinase signaling. 
Has been shown to interact with 
several proteins, including the 
transcription regulators HTT and 
SMAD9). Its function is still being 
studied  

ULK1 (Unc-
51 Like 
Autophagy 
Activating 
Kinase 1)/ 
ATG1 

-1.3 ± 0.16 +3.1 ± 0.2 A serine/threonine protein kinase 
involved in autophagy in response 
to starvation by phosphorylating 
Beclin-1. Transcriptional activation 
of ULK1 is involved in cancer cell 
survival (Pike et al., 2013; Russell et 
al., 2013) 

 

BMF (Bcl-2 
modifying 
factor) 

+1.4 ± 0.23 +7.2 ± 0.55 A Bcl-2 family membrane that might 
activate apoptosis and anoikis. 
Interacts with other members of the 
Bcl-2 family for apoptosis induction 
(Grespi et al., 2010; Hausmann et 
al., 2011) 

DEFB1 
(Defensin, 
Beta 1) 

+1.3 ± 0.09 -40 ± 7.54 Found to be down-regulated in 
several cancer types and plays a 
significant role in innate and 
adaptive immune response to 
promote cytotoxicity (Donald et al., 
2003) 

GAA (Acid 
alpha 
glucosidase) 

+1.2 ± 0.22 +9.9 ± 0.34 Active in the lysosomes for the 
breakdown of glycogen into 
glucose. Plays a role in autophagic 
induction by encouraging the 
degradation of p62 conjugated 
cargo (Nascimbeni et al., 2012) 

HSPBAP1 
(Heat shock 
protein 
27kDa 
associated 
protein 1) 

+1.1 ± 0.11 +2.5 ± 0.3 May play a role in cellular stress 
response. Knockdown of this gene 
is associated with an increase in 
caspase-3/7 activation (Smirnov et 
al., 2012) 

IFNG 
(Interferon 
Gamma) 

+3.3 ± 0.25 +1.5 ± 0.5 Coordinate various cell response 
programs, including macrophage 
activation, inhibition of cell 
proliferation and activation of 
apoptosis (Schroder et al., 2004) 

NFKB1 
(Nuclear 

+1.1 ± 0.11 -2.3 ± 0.3 Has both pro- and anti-apoptotic 
activities; a major transcription 
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factor kappa 
B) 

factor in various cell signaling 
pathways (Kaltschmidt et al., 2000; 
Stark et al., 2007) 

TNFRSF1A 
(Tumor 
Necrosis 
Factor 
Receptor 
Superfamily, 
Member 1A) 

+1.5 ± 0.15 -2.2 ± 0.3 Member of the TNF superfamily. 
Recruits adapter domains such as 
FADD and TRADD for activation of 
extrinsic apoptosis (Schall et al., 
2014) 

CASP1 
(Caspase-1) 

+12.3 ± 2.1 -2.5 ± 0.25 Cleaves a variety of substrates (121 
substrates), including pro-
inflammatory cytokine pro-

interleukin (IL)-1 to induce 
apoptosis (pyroptosis) (Denes et al., 
2014) 

SNCA (Alpha 
synuclein) 

+3.0 ± 0.14 -4.8 ± 0.45 A biomarker of colorectal cancer, 
and overexpressed in various other 
cancers; might be involved in cell 
death activation in certain cell types 
(Devine et al., 2011; Bethge et al., 
2014) 

TNF +8.3 ± 0.32 -7.5 ± 0.55 A cytokine that binds to its receptors 
(TNFR1, TNFRSF1A) and promotes 
extrinsic apoptosis under ideal 
conditions (Hassan et al., 2014) 
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Figure 8: Differential Fold Change in Expression of Cell Death Genes in 

Human Colorectal Cancer (HT-29) Versus Normal Colon Mucosal Epithelial 

Cells (NCM460): The differential effect on gene expression in colon cancer and 

normal colon epithelial cells was evaluated using the RT2 profiler array. Following 

48-hour treatment with DRE, RNA was isolated from HT-29 and NCM46 cells, 

converted into cDNA and incubated with oligodT primers. Following PCR 

analysis, data was analyzed, using Qiagen PCR data analysis software. A) Cell 

death genes down-regulated in HT-29 cells and up-regulated in NCM460 cells, 

following treatment. B) Cell death genes, with no significant change in fold 

expression in HT-29 cells, with a corresponding increase or decrease in fold 

expression in NCM460 cells. C) Cell death genes overexpressed in HT-29 cells, 

but down regulated or unchanged in fold expression in NCM460 cells.               

**** P<0.0001 
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Fractionation and Phytochemical Analysis of Dandelion Root Extract: 

Identification of Bioactive Fractions & Components within Dandelion Root 

Extract 

 

To commence the phytochemical analysis, dandelion root was extracted 

twice in anhydrous ethanol and rotor evaporated to obtain the extracted material 

and analysis was carried out according to the flowchart (Figure 9A). Some of this 

material was kept aside for bioactivity testing, while the rest of the extracted 

material was fractionated in a glass column packed with silica gel. The primary 

fractions (210) obtained were pooled together by thin-layer chromatography, 

based on similarities in their profiles to obtain 26 fractions. These fractions were 

then tested for bioactivity, by WST-1 cell viability assay. The results from the 

fraction studies were compared to those obtained from the bioactivity testing of 

the ethanolic extract of dandelion root. Bioactivity testing identified 6 out of 26 

fractions with significant activity, comparable to the whole ethanolic extract 

(Figure 9B – shows results from two of the bioactive fractions and results from a 

fraction with barely adequate bioactivity).  

Following the identification of bioactive fractions, these active fractions were 

further fractionated to obtain secondary fractions (25) by a preparative HPLC 

column. Further bioactivity testing narrowed down the number of bioactive 

fractions. The identified bioactive fractions were analyzed by HPLC-MS, using a 

standard mix, to identify the different compounds within the fractions (Figure 9C-

D). This led to the identification of three major components within two of the 

bioactive fractions (Fraction #5 and #6); -amyrin, -amyrin and lupeol (Figure 

10A). These data confirms the presence of multiple pharmacologically active 
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components within DRE. Assessment with WST-1 indicate that further analysis is 

essential to determine if any of the identified components could potentiate the 

anti-cancer activity of DRE observed with the whole complex mixture in cancer 

cells.   
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Figure 9: Identification of Bioactive Fractions & Components within 

Dandelion Root Extract: A) Flowchart of the steps outlining the fractionation and 

phytochemical analysis of DRE. Following ethanolic extraction of DRE, 

fractionation, followed by chromatographic analyses, were carried out to identify 

bioactive compounds within DRE. B) Effect of crude ethanolic extracts and 

secondary fractions on the metabolic viability of HT-29 colon cancer cells. 5 

active fractions were further analyzed to identify the components within. C) 

UPLC-DAD-MS chromatogram of bioactive fraction #5 and #6, along with a 

standard mix of known compounds. 
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Anticancer Activity of Identified Bioactive Compounds within Dandelion 

Root Extract 

 

To test the hypothesis that DRE contains multiple bioactive compounds 

that could potentiate its cytotoxicity, and following the identification of 3 

compounds, within 2 of the bioactive fractions, the next phase of this study was to 

determine if any of these compounds had significant cytotoxicity to cancer cells, 

comparable to DRE as a whole. Each compound was tested alone in HT-29 cells, 

at increasing concentrations and for increasing time points, and the viability of 

these cells, as a function of their metabolism was measured, using the WST-1 

viability assay. We observed a decrease in the viability of cells treated with -

amyrin, with 10 M as the most effective concentration. At the concentrations 

used (≤ 10 μM), β-amyrin and lupeol did not show significant viability reducing 

properties (Figure 10B). To further test our hypothesis that the components within 

DRE are able to act in synergy to provide better efficacy at lower doses, we 

tested these components, in combination studies (α-amyrin + β-amyrin; α-amyrin 

+ lupeol; β-amyrin + lupeol). Results show that α-amyrin and β-amyrin, when 

used in combination, showed a combined additive effect on the ability to affect 

the metabolic activity of HT-29 cells, than when used individually (Figure 10C). 

These results strongly suggest that the multiple bioactive components within DRE 

could act in synergy to show better anticancer efficacy, especially in highly 

aggressive cancer cell types 
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Figure 10: Anticancer Activity of Identified Bioactive Compounds within 

Dandelion Root Extract: A) Identified compounds (by ChemDraw) in bioactive 

fractions #5 and #6. These triterpenes are isomers (MW = 427 g/mol). B) 

Following treatment, HT-29 cells were analyzed for the ability of α-

amyrin,βamyrin and lupeol to reduce the viability of these cells, measured by a 

decrease in metabolic activity. Following treatment, the WST-1 reagent was 

added to each well, the absorbance readings were taken at 450 nm, and 

expressed at a percentage of the control. C) Compounds were analyzed alone 

and in combination with each other to assess combined effect in cancer cells. α-

amyrin and β-amyrin showed an additive effect at slightly lower doses than the 

effective concentrations.  
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Effect of Dandelion Root Extract on the Expression of cFLIP  

 

Although lupeol did not show any significant effect on the viability of HT-29 

cells (and BxPC-3 cells [data not shown]), there have been studies that indicate 

that lupeol plays a role in TRAIL-mediated apoptosis (Murtaza et al., 2009). This 

study showed that lupeol, at 40 M, suppressed the expression of cellular FLICE-

like inhibitory protein (cFLIP), an inhibitor of the extrinsic pathway of apoptosis, 

which prevents the formation of the death inducing signaling complex (DISC) and 

the subsequent activation of caspase-8 (Safa, 2012). To further confirm the role 

of extrinsic pathway in DRE mediated apoptosis, we compared the effect of DRE 

to that of lupeol, in terms of their abilities to suppress the expression of cFLIP. 

Western blotting analysis showed that DRE, at 2.5 mg/ml, was sufficient to inhibit 

the expression of cFLIP in cancer cells. There was a slight additive effect when 

DRE was combined with the lower dose of lupeol, at 10 M, again confirming the 

beneficial effect of multiple components within DRE, compared to the use of 

individual components. These results further confirm the activity of DRE through 

the extrinsic pathway of apoptosis. 
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Figure 11: Effect of Dandelion Root Extract on the Expression of cFLIP: 

Comparing the effect of DRE and lupeol on the expression of cFLIP. Following 

treatment, cell lysates were obtained and proteins were separated on a gel. The 

proteins were transferred onto a PVDF membrane and probed for cFLIP levels, 

using β-actin as a loading control. A) Imaged blot of cFLIP expression levels. B) 

Densitometry analysis of expression levels, compared to β-actin loading control. 
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DISCUSSION 

Over 38% of Canadians diagnosed with colorectal cancer will succumb to 

death from it. This is the third leading cause of cancer related deaths, only 

surpassed by lung and prostate cancers (Sigstedt et al., 2008). The lack of safer, 

non-toxic modes of therapy reveals a need for better alternatives. The use of 

dandelion extracts has been documented, as anecdotal evidence, for centuries. It 

has been used in traditional medicine in various cases of diseases, especially as 

a detoxifying agent in digestive disorders (Sigstedt et al., 2008), implying that it 

does not have significant toxic effects associated with its use. The results 

presented in this study, along with our previous published work, back the 

conclusion that an aqueous extract of dandelion root, still under the umbrella of a 

natural health product (NHP), can provide a safer, more efficacious mode of 

treatment, to current chemotherapy. In this study, we show that DRE can 

selectively and effectively reduce the viability of aggressive colon cancer cells, 

irrespective of p53 status. Furthermore, treatment of these cells with DRE 

triggered the process of apoptosis in colon cancer cells, without having a similar 

effect on the viability and survival of non-cancerous colon mucosal epithelial cells 

(Figure 1), confirming the lack of reports of toxicity. Further confirmation of the 

lack of toxicity associated with DRE use was done in animal models of toxicity 

and efficacy.  

In this study, we show that there is no toxicity associated with the use of 

DRE, as animals on oral administration of DRE for over a 3-month period, 

showed no decrease/significant change in their body weights, no kidney damage, 

as measured by protein urinalysis and no gross morphological changes in tissue 
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appearance (Figure 2). This lack of toxicity permitted further investigation into the 

anticancer potential of DRE in animal xenograft models of colon tumors. 

Following the establishment of tumors, mice were provided with DRE in their 

drinking water, at a final concentration of approximately 40 mg/kg/day, and 

allowed to drink ad libidum, for the duration of the study. We found that mice in 

the treatment group had much slower tumor growth than those in the control, 

untreated group (Figure 3). More importantly, we show the efficacy of DRE in ex-

vivo samples of leukemia, from newly diagnosed patients.  

We report novel findings that DRE selectively triggers apoptosis in clinical 

samples in a dose and time dependent manner, based on nuclear morphology 

and reorganization of the cell membrane to expose phosphatidylserine (Figure 4), 

with no effect on non-cancerous peripheral blood mononuclear cells, from healthy 

volunteers (Ovadje et al., 2012b). Interestingly, the differences in the clinical 

diagnosis of each leukemia type did not have a deterrent effect on the activity of 

DRE. Further investigations into the different sub-populations of the different 

leukemia blood samples is needed. These results therefore provide sufficient 

evidence for the anticancer potential of DRE and therefore a need for further 

studies in the understanding of this extract, and its benefits as a potential 

anticancer agent. 

Our previous work aimed at understanding the mechanism of action of 

DRE in cancer cells, to better understand how this extract is able to distinguish 

between a cancer cell and a non-cancer cell, in order to selectively trigger 

programmed cell death programs. This study was designed to delve further into 

the mechanism of action of DRE, as well as identify the components responsible 
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for its anti-cancer activity. As with our previous works, we observed that DRE is 

able to target the vulnerable mitochondria in cancer cells, which may be due to 

reduced oxidative phosphorylation and reduced flux through the electron 

transport chain (Ralph & Neuzil, 2009). Treatment with DRE led to a decrease in 

the mitochondrial membrane potential (Figure 5A) and an increase in ROS levels, 

from isolated mitochondria (Figure 5B). These results further confirm our 

hypothesis that DRE is able to target the vulnerable aspects of cancer cells, like 

the mitochondria, in order to induce the selective cytotoxicity we have observed. 

In this study, we further established the rapid activation of the extrinsic 

pathway of apoptosis selectively in colon cancer cells, following DRE treatment 

(Figure 6A). To further understand the mechanism of extrinsic apoptosis, 

following the activation of caspase-8 and look at the effect of DRE on the 

mitochondria, HT-29 cells were incubated with MitoTracker dye, as well as 

stained with an anti-caspase-8 antibody for immunocytochemical analysis. The 

results confirm the activation of caspase-8 by fluorescence microscopy, while 

showing the destabilization of the mitochondrial membrane, indicated by the 

dispersion of the red cationic dye that will normally aggregate around the 

mitochondrial membrane in healthy mitochondria. More importantly, due to the 

controversy surrounding the localization of caspases, both the inactive zymogens 

and the active forms, this staining was used to determine the localization of 

caspase-8 before apoptotic stimuli and following activation. In the control 

untreated cells, it was observed that pro-caspase-8 localized in the membrane of 

the mitochondria, where the green fluorescence co-localized with the MitoTracker 

red in the healthy mitochondria. Following treatment and activation of caspase-8, 
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it was observed that the now active caspase-8 was released from mitochondrial 

membrane space into the rest of the cells, as was observed with the co-

localization of the nuclear stain with the caspase-8 staining under fluorescence. 

This result suggests that pro-caspase-8, and possibly other caspases, reside in 

the mitochondria and upon activation, translocate to other locations in the cells, 

where they lead to the progression of apoptosis. These results correspond to the 

results published by Qin and colleagues, where they showed the localization of 

caspases to the mitochondria before activation and their release from the 

mitochondria, following activation (Qin et al., 2001).  

However, unlike our previous study, where we show that the activation of 

caspases was essential to DRE’s mechanism in leukemia cells (Ovadje et al., 

2012b), our colon data suggests otherwise. In this study, we find that the 

inhibition of caspase activation through a broad caspase inhibitor, Z-VAD-fmk 

(data not shown) and a caspase-8 specific inhibitor, IETD-fmk did not discourage 

the viability reducing ability of DRE in these cells (Figure 6C). This differential 

requirement of caspase-8 activation in the mechanism of DRE’s activity follows in 

line with our hypothesis that DRE can target multiple pathways in a cancer cell. 

To further assess the effect of DRE in cancer cells, we studied the gene 

profiles, using a pathway finder RT2 Profiler assay, it was observed that DRE 

treatment in both CMML and HT-29 cells, induced the expression of several cell 

death genes, involved in both the apoptotic and autophagic cell death pathways 

(Figure 7 and 8). More importantly, there was clear differential gene expression 

observed in normal NCM460 cells, as genes that were up-regulated in cancer 

cells, were down-regulated or not expressed in normal cells and vice versa. It is 
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also observed that the gene expression in the leukemia and the colon cancer cell, 

following DRE treatment, overlapped slightly. However, these results reveal that 

DRE is able to target multiple cell death inducing pathways in several cancer 

cells, while having the opposite effects in non-cancer cell models. There was no 

major difference between the control, untreated gene expression and the DRE 

treated gene expression in NCM460 cells, further confirming that DRE is able to 

selectively target cancer cells, activate multiple pathways and induce cytotoxicity 

in cancer cells alone. 

To further study our hypothesis of the complexity of DRE and the multiple 

components that could target the multiple vulnerable aspects of cancer cells, we 

carried out fractionation and phytochemical analysis of an ethanolic extract of 

dandelion root, in order to identify the bioactive components within DRE. 

Following primary and secondary fractionation, we identified three of the bioactive 

compounds, found in two out of the six fractions, with significant bioactivity, 

comparable to that of the ethanolic DRE (Figure 9B). These compounds include 

α-amyrin, β-amyrin and lupeol (Figure 9C, 10A). At high doses, ≥ 10 μM, α-

amyrin efficiently reduced the viability of colon cancer cells; however, β-amyrin 

and lupeol did not show similar bioactivity at these doses (Figure 10B). Continued 

studies using the identified compounds, in combination with each other, showed 

an additive effect of α- and β-amyrin, when used in combination, than individually 

(Figure 10C). Such an effect was not observed in the combinations with lupeol, 

therefore indicating that the multiple components, within this complex extract of 

dandelion root, can act together, in synergy or in addition, to trigger the 

cytotoxicity that we observe in cancer cells, following treatment.  
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A previous study with lupeol shows that this compound, albeit at high 

doses of 40 μM, was able to sensitize pancreatic cancer cells to TRAIL induced 

apoptosis, by inhibiting the expression of cFLIP (Murtaza et al., 2009), which is 

an inhibitor of the extrinsic pathway of apoptosis. Studying DRE further, we found 

that DRE, as a whole complex mixture, has a better effect on reducing the 

expression of cFLIP in both HT-29 (Figure 11), and BxPc-3 pancreatic cancer 

cells (data not shown). This was a dose and time dependent response, as by 48 

hours following treatment, there was a significant reduction in the expression of 

cFLIP, in the treated cells, compared to the control, untreated cells. These results 

further confirm that DRE does activate the extrinsic pathway of apoptosis and 

that, even though its mechanism of action is cell type specific, the complex 

mixture of this extract efficiently and selectively imparts its cytotoxicity to various 

cancer cell types, in a dose and time dependent response. 

 

CONCLUSIONS 

Our results show that a complex mixture of aqueous dandelion root extract (DRE) 

is capable of efficiently and selectively triggering multiple programmed cell death 

pathways in a variety of cancer cells. These results further confirm our hypothesis 

that DRE contains multiple bioactive components, not limited to -amyrin, -

amyrin and lupeol that could target the multiple vulnerable aspects of cancer 

cells, such as the vulnerability of cancer cell mitochondria. Overall, these findings 

indicate that a complex mixture of an NHP, such as dandelion root extract, could 

provide an alternative to currently available chemotherapy, to improve the quality 
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of life of cancer patients and possibly provide a more efficacious mode of 

treatment while doing so. 
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ABSTRACT 

Currently chemotherapy is limited mostly to genotoxic drugs that are 

associated with severe side effects due to non-selective targeting of normal 

tissue. Natural products play a significant role in the development of most 

chemotherapeutic agents, with 74.8% of all available chemotherapy being 

derived from natural products. To scientifically assess and validate the anticancer 

potential of an ethanolic extract of Long pepper (PLX), a plant of the piperaceae 

family that has been used in traditional medicine, especially Ayurveda and 

investigate the anticancer mechanism of action of PLX against cancer cells. 

Following treatment with ethanolic long pepper extract, cell viability was 

assessed using a water-soluble tetrazolium salt; apoptosis induction was 

observed following nuclear staining by Hoechst, binding of annexin V to the 

externalized phosphatidyl serine and phase contrast microscopy. Image-based 

cytometry was used to detect the effect of long pepper extract on the production 

of reactive oxygen species and the dissipation of the mitochondrial membrane 

potential following Tetramethylrhodamine or 5,5’,6,6'-tetrachloro-1,1',3,3'-

tetraethylbenzimidazolylcarbocyanine chloride staining (JC-1). Assessment of 

PLX in-vivo was carried out using Balb/C mice (toxicity) and CD-1 nu/nu 

immunocompromised mice (efficacy). HPLC analysis enabled detection of some 

primary compounds present within our long pepper extract. 

Our results indicated that an ethanolic long pepper extract selectively 

induces caspase-independent apoptosis in cancer cells, without affecting non-

cancerous cells, by targeting the mitochondria, leading to dissipation of the 

mitochondrial membrane potential and increase in ROS production. Release of 
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the AIF and endonuclease G from isolated mitochondria confirms the 

mitochondria as a potential target of long pepper. The efficacy of PLX in in-vivo 

studies indicates that oral administration is able to halt the growth of colon cancer 

tumors in immunocompromised mice, with no associated toxicity. These results 

demonstrate the potentially safe and non-toxic alternative that is long pepper 

extract for cancer therapy.  
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INTRODUCTION 

The continuing increase in the incidence of cancer signifies a need for 

further research into more effective and less toxic alternatives to current 

treatments. In Canada alone, it was estimated that 267,700 new cases of cancer 

will arise, with 76,020 deaths occurring in 2012 alone. The global statistics are 

even more dire, with 12.7 million cancer cases and 7.6 million cancer deaths 

arising in 2008 (Jemal et al., 2011; Canadian Cancer Statistics, 2012). The 

hallmarks of cancer cells uncover the difficulty in targeting cancer cells 

selectively. Cancer cells are notorious for sustaining proliferative signaling, 

evading growth suppression, activating invasion and metastasis and resisting cell 

death among other characteristics (Hanahan & Weinberg, 2011). These 

characteristics pose various challenges in the development of successful 

anticancer therapies. The ability of cancer cells to evade cell death events has 

been the center of attention of much research, with focus centered on targeting 

the various vulnerable aspects of cancer cells to induce different forms of 

Programmed Cell Death (PCD) in cancer cells, with no associated toxicities to 

non-cancerous cells.  

Apoptosis (PCD type I) has been studied for decades, the understanding 

of which will enhance the possible development of more effective cancer 

therapies. This is a form of cell death that is required for regular cell development 

and homeostasis, as well as a defense mechanism to get rid of damaged cells; 

cells undergoing apoptosis invest energy in their own demise so as not to 

become a nuisance (Canadian Cancer Statistics, 2012). Cancer cells evade 

apoptosis in order to confer added growth advantage and sustenance, therefore 
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current anticancer therapies endeavour to exploit the various vulnerabilities of 

cancer cells in order to trigger the activation of apoptosis through either the 

extrinsic or intrinsic pathways (Fadeel & Orrenius, 2005; Elmore, 2007). The 

challenges facing some of the available cancer therapies are their abilities to 

induce apoptosis in cancer cells by inducing genomic DNA damage. Although 

this is initially effective, as they target rapidly dividing cells (Fulda & Debatin, 

2006), they are usually accompanied by severe side effects caused by the non-

selective targeting of normal non-cancerous cells, suggesting a need for other 

non-common targets for apoptosis induction without the associated toxicities. 

Natural health products (NHPs) have shown great promise in the field of 

cancer research. The past 70 years have introduced various natural products as 

the source of many drugs in cancer therapy. Approximately 75% of the approved 

anticancer therapies have been derived from natural products, an expected 

statistic considering that more than 80% of the developing world’s population is 

dependent on the natural products for therapy (Davidson et al., 2013). Plant 

products especially contain many bioactive chemicals that are able to play 

specific roles in the treatment of various diseases. Considering the complex 

mixtures and pharmacological properties of many natural products, it becomes 

difficult to establish a specific target and mechanism of action of many NHPs. 

With NHPs gaining momentum, especially in the field of cancer research, there 

are numerous new studies on the mechanistic efficacy and safety of NHPs as 

potential anticancer agents (Newman & Cragg, 2012).  

Long pepper, from the Piperaceae family, has been used for centuries for 

the treatment of various diseases. Several species of long pepper have been 
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identified, including Piper longum, Piper betle, Piper retrofactum, extracts of 

which have been used for years in the treatment of various diseases. A long list 

of uses and benefits are associated with extracts of different Piper spp, with 

reports indicating their effectiveness as good digestive agents and pain and 

inflammatory suppressants (Bao et al., 2013). However, there is little to no 

scientific validation, only anecdotal evidence, for the benefits associated with the 

use of long pepper extracts. There are scientific studies have been carried out on 

several compounds present in extracts of long pepper, including piperines, which 

has been shown to inhibit many enzymatic drug bio-transforming reactions and 

play specific roles in metabolic activation of carcinogens and mitochondrial 

energy production (Raj et al., 2012; Golovine et al., 2013; Jarvius et al., 2013; 

Megwal & Goswami, 2013) and various piperidine alkaloids, with fungicidal 

activity (Lee et al., 2001; Bao et al., 2013). Some of these compounds have 

shown potent anticancer activity (Bezerra et al., 2007), suggesting that Long 

pepper extracts could represent a new NHP, with better selective efficacy against 

cancer cells.  

In this study, we examine the efficacy of an ethanolic extract of Long 

Pepper (PLX) against various cancer cells, as well as attempt to elucidate the 

mechanism of action, following treatment. Results from this study demonstrate 

that PLX reduced the viability of various cancer cell types in a dose and time 

dependent manner, where apoptosis induction was observed following 

mitochondrial targeting. Due to the low doses of PLX required to induce 

apoptosis in cancer cell, it was easy to find the therapeutic window of this extract. 

The induction of apoptosis was found to be caspase-independent, although there 
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was activation of both the extrinsic and intrinsic pathways and the production of 

ROS was not essential to the mechanism of cell death induction by PLX. The 

ability of PLX to target multiple vulnerabilities of cancer cells and still act to 

induce apoptosis in the presence of different types of inhibitors suggest the 

potential application of PLX in safe and efficacious cancer therapy.  
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MATERIALS & METHODS 

Cell Culture 

A malignant melanoma cell line G-361, human colorectal cancer cell lines 

HT-29 and HCT116 (American Type Culture Collection, Manassas, VA, USA Cat. 

No.CRL-1687, CCL-218 & CCL-247, respectively) were cultured with McCoy’s 

Medium 5a (Gibco BRL, VWR, Mississauga, ON, Canada) supplemented with 

10% (v/v) FBS (Thermo Scientific, Waltham, MA, USA) and 40 mg/ml gentamicin 

(Gibco, BRL, VWR). The ovarian adenocarcinoma cell line OVCAR-3 (American 

Type Culture Collection, Cat. No. HTB-161) was cultured in RPMI-1640 media 

(Sigma-Aldrich Canada, Mississauga, ON, Canada) supplemented with 0.01 

mg/mL bovine insulin, 20% (v/v) fetal bovine serum (FBS) standard (Thermo 

Scientific, Waltham, MA, USA) and 10 mg/mL gentamicin. The pancreatic 

adenocarcinoma cell line BxPC-3 (American Type Culture Collection, Cat. No. 

CRL-1424) was cultured in RPMI-1640 medium, supplemented with 10% (v/v) 

fetal bovine serum (FBS) standard and 40 mg/mL gentamicin. Normal-derived 

colon mucosa NCM460 cell line (INCELL Corporation, LLC., San Antonio, TX, 

USA) was grown in INCELL’s M3BaseTM medium (INCELL Corporation, LLC., 

Cat. No. M300A500) supplemented with 10 % (v/v) FBS and 10 mg/mL 

gentamicin.  

All cells were grown in optimal growth conditions of 37°C and 5 % CO2. 

Furthermore, all cells were passaged for ≤ 6 months. 

Long Pepper Extraction 

Indian long pepper seeds were obtained from Quality Natural Foods 

limited, Toronto Ontario. The plant material was ground up and extracted in 
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anhydrous ethanol (100%) in a ratio of 1:10 (1g plant material to 10 ml ethanol). 

The extraction was carried out overnight on a shaker at room temperature. The 

extract was passed through a P8 coarse filter, followed by a 0.45 m filter. The 

solvent was evaporated using a RotorVap at 40°C and the dried extracted 

material was reconstituted in dimethylsulfoxide (Me2SO) at a stock concentration 

of 450 mg/ml.  

Cell Treatment 

Cells were plated and grown to 60-70% confluence, before being treated 

with Long Pepper Extracts (PLX), N-Acetyl-L-cysteine (NAC) (Sigma-Aldrich 

Canada, Cat. No. A7250), and broad-spectrum caspase inhibitor, Z-VAD-FMK 

(EMD Chemicals, Gibbstown, NJ, USA) at the indicated doses and durations. 

NAC was dissolved in sterile water. Z-VAD-FMK was dissolved in 

dimethylsulfoxide (Me2SO). PLX was extracted as previously described, 

reconstituted in Me2SO and cells were treated either crude long pepper extract, 

before evaporation or Me2SO reconstituted extract and control cells were treated 

with corresponding concentrations of  Me2SO. 

ASSESSING THE EFFICACY OF LONG PEPPER EXTRACT (PLX) IN 
CANCER CELLS: 
 
WST-1 Assay for Cell Viability 

To assess the effect of PLX on cancer cells, a water-soluble tetrazolium 

salt (WST-1) based colorimetric assay was carried out as per manufacturer’s 

protocol (Roche Applied Science, Indianapolis, IN, USA), to quantify cell viability 

as a function of cellular metabolism. Equal number of cells were seeded onto 96-

well clear bottom tissue culture plates then treated with the indicated treatments 
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at the indicated concentrations and durations. Following treatment, cells were 

incubated with the WST-1 reagent for 4 hours at 37° C with 5 % CO2. The WST-

1 reagent is cleaved to formazan by cellular enzymes in actively metabolizing 

cells. The formazan product was quantified by taking absorbance readings at 450 

nm on a Wallac Victor3 TM 1420 Multilabel Counter (PerkinElmer, Woodbridge, 

ON, Canada). Cellular viability was expressed as percentages of the solvent 

control groups. 

Nuclear Staining 

Subsequent to treatment, the nuclei of cells were stained with 10 M 

Hoechst 33342 dye (Molecular Probes, Eugene, OR, USA) to monitor nuclear 

morphology for apoptosis induction at designated time points. Cells were 

incubated with 10 μM Hoechst dye for 10 minutes and micrographs were taken 

with a Leica DM IRB inverted fluorescence microscope (Wetzlar, Germany) at 

400X magnification. 

Annexin V Binding Assay 

To confirm the induction of apoptosis, the binding of Annexin V to 

externalized phosphatidylserine on the outer cellular surface, was assessed. 

Following treatment with PLX, cells were washed twice in phosphate buffer saline 

(PBS). Subsequently, cells were resuspended and incubated in Annexin V 

binding buffer (10 mM HEPES, 10 mM NaOH, 140 mM NaCl, 1 mM CaCl2, pH 

7.6) with Annexin V AlexaFluor-488 (1:50) (Invitrogen, Canada, Cat No. A13201) 

for 15 minutes. Micrographs were taken at 400X magnification on a Leica DM 

IRB inverted microscope (Wetzlar, Germany). 
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Whole Cell ROS Generation 

Following treatment with PLX, cells were incubated with 2′,7′-

Dichlorofluorescin diacetate H2DCFDA (Catalog No. D6883, Sigma Aldrich, 

Mississauga ON. Canada) for 45 minutes. Cells were collected, washed twice in 

PBS and green fluorescence was observed using a TALI image-based cytometer 

(Invitrogen, Canada). NAC was used to assess the dependence of PLX on ROS 

generation and viability. 

ASSESSMENT OF MITOCHONDRIAL FUNCTION FOLLOWING PLX 
TREATMENT: 
 
Tetramethylrhodamine Methyl Ester (TMRM) Staining 
 

To monitor mitochondrial membrane potential (MMP), 

tetramethylrhodamine methyl ester (TMRM) (Gibco BRL, VWR, Mississauga, ON, 

Canada) or 5,5,6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine 

chloride (JC-1) (Invitrogen, Canada) were used. Cells were grown on coverslips, 

treated with the indicated concentrations of treatments at the indicated time 

points, and incubated with 200 nM TMRM for 45 minutes at 37° C. Micrographs 

were obtained at 400X magnification on a Leica DM IRB inverted fluorescence 

microscope (Wetzlar, Germany). To confirm the results obtained by fluorescence 

microscopy, image-based cytometry was used to detect red fluorescence. Cells 

were seeded in 6-well plates and following treatment, cells were incubated with 

TMRM for 45 minutes, washed twice in PBS and placed in TALI slides. Red 

fluorescence was obtained using a TALI image-based cytometer (Invitrogen, 

Canada). 
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Mitochondrial Isolation to Assess Mitochondrial Targeting 

Cells were collected by trypsin, washed once in cold PBS, resuspended in 

cold hypotonic buffer (1 mM EDTA, 5 mM Tris–HCl, 210 mM mannitol, 70 mM 

sucrose, 10 μM Leu-pep and Pep-A, 100 μM PMSF), and manually 

homogenized. The homogenized cell solution was centrifuged at 3000 rpm for 5 

minutes at 4 °C. The supernatant was centrifuged at 12,000 rpm for 15 minutes 

at 4 °C and the mitochondrial pellet was resuspended in cold reaction buffer (2.5 

mM malate, 10 mM succinate, 10 μM Leu-pep and Pep-A, 100 μM PMSF in 

PBS). The isolated mitochondria were treated with PLX at the indicated 

concentrations and incubated for 2 hours in cold reaction buffer. The control 

group was treated with solvent (ethanol). Following 2 hour incubation with extract, 

mitochondrial samples were vortexed and centrifuged at 12,000 rpm for 15 

minutes at 4°C. The resulting supernatant and mitochondrial pellets 

(resuspended in cold reaction buffer) were subjected to Western Blot analysis to 

assess for the mitochondrial release/retention of pro-apoptotic factors. 

Western Blot Analyses 

Protein samples were subjected to SDS-PAGE, transferred onto a 

nitrocellulose membrane, and blocked with 5% w/v milk TBST (Tris-Buffered 

Saline Tween-20) solution for 1 hour. Membranes were incubated overnight at 

4°C with an anti-endonuclease G (EndoG) antibody (1:1000) raised in rabbits 

(Abcam, Cat. No. ab9647, Cambridge, MA, USA), an anti-succinate 

dehydrogenase subunit A (SDHA) antibody (1:1000) raised in mice (Santa Cruz 

Biotechnology, Inc., sc-59687, Paso Robles, CA, USA), or an anti-apoptosis 

inducing factor (AIF) antibody raised in rabbits (1:1000) (Abcam, Cat. No. 
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ab1998, Cambridge, MA, USA). After primary antibody incubation, the membrane 

was washed once for 15 minutes and twice for 5 minutes in TBST. Membranes 

were incubated for 1 hour at room temperature with an anti-mouse or an anti-

rabbit horseradish peroxidase-conjugated secondary antibody (1:2000) (Abcam, 

ab6728, ab6802, Cambridge, MA, USA) followed by three 5-minute washes in 

TBST. Chemiluminescence reagent (Sigma-Aldrich, CPS160, Mississauga, ON, 

Canada) was used to visualize protein bands and densitometry analysis was 

performed using ImageJ software. 

 
IN-VIVO ASSESSMENT OF LONG PEPPER EXTRACT: 
 
Toxicity Assessment 
 

Six week old Balb/C mice were obtained from Charles River Laboratories 

and housed in constant laboratory conditions of a 12-hour light/dark cycle, in 

accordance with the animal protocols outlined in the University of Windsor 

Research Ethics Board- AUPP 10-17). Following acclimatization, mice were 

divided into three groups (3 animals/control (untreated), 3 animals/gavage control 

(vehicle treatment) and 4 animals/treatment group). The control untreated group 

was given plain filtered water, while the second and third group was given 50 

mg/kg/day vehicle (DMSO) or PLX, by gavage, respectively for 75 days. During 

the period of study, toxicity was measured by weighing mice twice a week and 

urine was collected for protein urinalysis by urine dipstick and Bradford assays. 

Following the duration of study, mice were sacrificed and their organs (livers, 

kidneys and hearts) were obtained for immunohistochemical and toxicological 

analysis by Dr. Brooke at the University of Guelph.  
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Efficacy of PLX in Tumor Xenograft Models of Immunocompromised Mice 

Six week old male CD-1 nu/nu mice were obtained from Charles River 

Laboratories and housed in constant laboratory conditions of a 12-hour light/dark 

cycle, in accordance with the animal protocols outlined in the University of 

Windsor Research Ethics Board- AUPP 10-17). Following acclimatization, the 

mice were injected subcutaneously in the right and left hind flanks with a colon 

cancer cell suspension (in Phosphate buffered saline) at a concentration of 2 * 

106 cells/mouse (HT-29, p53-/-, in the left flank and HCT116, p53+/+, in the right 

flank). Tumors were allowed to develop (approximately a week), following which 

the animals were randomized into treatment groups of 4 mice per group, a control 

group, a gavage control group given plain filtered sterile water, as well as gavage 

regimen of the vehicle (5 µL Me2SO in PBS) twice a week. The final group was 

given filtered water supplemented with long pepper extract at a concentration of 

100 µg/ mL, as well as gavage regimen of long pepper extract (5 µL extract in 

PBS), twice a week, corresponding to 50 mg/kg/day. The tumors were assessed 

every other day by measuring the length, width and height, using a standard 

caliper and the tumor volume was calculated according to the formula 

π/6*length*width. The mice were also assessed for any weight loss every other 

day for the duration of the study, which lasted 75 days, following which the 

animals were sacrificed and their organs and tissues (liver, kidneys, heart and 

tumors) were obtained and stored in 10% formaldehyde for immunohistochemical 

and toxicological analysis. 

Hematoxylin & Eosin (H & E) Staining 

Mice organs were fixed in 10% formaldehyde, following which they were 
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slides (Fisherbrand, Fisher Scientific). Sections of organs were stained according 

to a standardized H & E protocol25.   

Analysis of Long Pepper Extract by HPLC 

HPLC analysis of the long pepper crude extract was carried out at 

University of Ottawa in the Arnason lab. A total of five well-known piperamides 

were analyzed and compared to the crude long pepper extract. The extracts and 

piperamide standards were analyzed on a Luna C18-5u-250 x 4.6 mm column at 

45ºC at a flow rate of 1.0 mL/min with a mobile phase constituted of H2O and 

methanol as outlined below; 

Time 

(mins) 

H20 

(%) 

MeOH 

(%) 

0.0 37.5 62.5 

15.0 35.0 65.0 

 35.0 0.0 100.0 

45.0 0.0 100.0 

46.0 37.5 62.5 

 

Chromatogram profiles were used to detect the any differences between a 

sample standard of known piperamides in the crude long pepper extracts. 
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RESULTS 

Ethanolic Extract of Long Pepper (PLX) Effectively and Selectively Reduces 

the Viability of & Induces Apoptosis in Cancer cells in a Dose & Time 

Dependent Manner 

 

The first step in understanding the effect of long pepper extract in this 

study was to assess the effect of PLX on the viability of cancer cells. Following 

treatment with increasing concentration of PLX at increasing time points, cells 

were incubated with a water soluble tetrazolium salt, which gets metabolized to a 

red formazan product by viable cells with active metabolism. This product can 

then be quantified by absorbance spectrometry. We observed the efficacy of 

crude PLX in reducing the viability of cancer cells, including colon (HCT116), 

pancreatic (BxPC-3), ovarian cancer (OVCAR-3) and melanoma cells. This effect 

was dose and time dependent (Figure 1).  

To further evaluate the anticancer activity of PLX, we wanted to assess its 

role in cell death and its selectivity to cancer cells. Our results demonstrate that 

PLX is able to selectively induce cell death in cancer cells (colon, pancreatic and 

leukemia) in a dose and time dependent manner, as characterized by the 

increase in propidium iodide positive cells in cancer cells treated with PLX (Figure 

2). Furthermore, this effect was selective, as normal colon epithelial cells 

remained unaffected by this treatment, at the same concentrations and time-

points (Figure 2B). Additionally, apoptosis induction in various cancer cells, 

melanoma (G-361), ovarian and colon cancer (HT-29) cells, was confirmed by 

Annexin-V binding assay. This induction of apoptosis was confirmed to be 

selective to cancer cells, as normal colon cells (NCM460) remained unaffected by 
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PLX treatment. This was indicated by nuclear condensation, cell morphology and 

externalization of phosphatidyl serine to the outer leaflet of the cell membrane, as 

indicated by Hoechst staining, phase contrast images and binding of annexin V 

dye respectively (Figure 3A and B).  

The selectivity of PLX to cancer cells was further confirmed by the WST-1 

cell viability assay that showed that PLX was highly effective at low doses, a 

therapeutic window was easily observed (Figure 3C). Treatment of HT-29 with 

0.20 mg/ml effectively reduced the viability by approximately 90%, while NCM460 

cells remained at 100% viability at the same dose. This indicates that PLX can be 

more effective at low doses, further reducing the chances of toxicity associated 

with treatment.  
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Figure 1: Crude Ethanolic Extract of Long Pepper (PLX) Effectively Reduces 

the Percentage of Viable Cancer cells in a Dose & Time Dependent Manner: 

Colon (HCT116), Ovarian (OVCAR-3), Pancreatic (BxPC-3) cancer and 

Melanoma (G-361) cells were treated with a crude ethanolic extract of long 

pepper (PLX), following which they were incubated with WST-1 cell viability dye 

for 4 hours. Absorbance was read at 450nm and expressed as a percent of the 

control. Values are expressed as mean ± SD from quadruplicates of 3 

independent experiments. **P<0.0001 
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Figure 2: PLX Selectively Induces Cell Death in Human Cancer Cells in a 

Dose & Time Dependent Manner: (A) Following treatment of Human pancreatic 

(BxPc-3) cancer and T cell leukemia cells with PLX, at indicated time points, cells 

were incubated with propidium iodide and assessed for the induction of cell death 

by image-based cytometry. (B) Similar experiments were carried out in human 

colon cancer cells (HT-29) and normal colon epithelial cells (NCM460). 

Fluorescence microscopy was used to assess the induction of cell death as 

characterized by presence of propidium iodide positive cells. Images were taken 

at 400x magnification on a fluorescent microscope. Scale bar = 15 μm 
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Figure 3: PLX Selectively Targets Cancer Cells for Apoptosis Induction: 

Subsequent to treatment with PLX, cells (Ovarian; OVCAR-3, Melanoma; G-361 

and Normal Colon Epithelia cells (NCM460) were stained with Hoechst to 

characterize nuclear morphology and Annexin-V to detect apoptotic cells (A) and 

cellular morphology by phase contrast microscopy (B); Images were taken at 

400x magnification on a fluorescent microscope. Scale bar = 15 μm. (C) 

Following PLX treatment, HT-29 colorectal cancer cells and non-cancerous 

NCM460 cells were incubated with WST-1 cell viability dye for 4 hours and 

absorbance was read at 450nm and expressed as a percent of the control. 

Values are expressed as mean ± SD from quadruplicates of 3 independent 

experiments. **P<0.0001.  
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PLX Induces Caspase-Independent Apoptosis in Human Cancer Cells 

Caspases are cysteine aspartic proteases that play a predominant role as 

death proteases (Earnshaw et al., 1999). Their roles in various cell death 

processes remains controversial, as their activation or inhibition could be 

essential to the progression of inhibition of cell death pathways (Thorburn, 2008; 

Zhivotovsky & Orrenius, 2010).  

To assess the role of caspases in our study, BxPc-3 cells treated with PLX 

at 0.10 mg/ml at indicated time points. Following treatment,  cells were collected, 

washed and incubated with lysis buffer to obtain cell lysate. The cell lysate was 

incubated with caspase substrates, specific to each caspase (3, 8 and 9) and 

incubated for an hour. Fluorescence readings were obtained using a 

spectrofluorometer. Our results indicate that PLX is able to activate both 

pathways (extrinsic and intrinsic apoptosis) in a time dependent manner. This 

was observed as rapid activation of caspases-3, 8 and 9 were observed as early 

as an hour, following treatment (Figure 4A).  

To determine the importance of these activated caspases to the apoptosis-

inducing effect of PLX, colon (HCT116) and pancreatic (BxPc-3) cancer cells 

were pre-treated with a pan-caspase inhibitor, Z-VAD-fmk (20 M), for an hour 

before treatment with PLX. Following treatments, the WST-1 cell viability assay 

was used to assess for viability and efficacy of PLX. Our results indicate that the 

inhibition of caspases could not prevent the reduction of viability (Figure 4B), 

signifying that the effect of PLX in cancer cells is caspase independent.  

 



 252 

Figure 4: Long Pepper Extract (PLX) Activates the Extrinsic & Intrinsic 

Pathways of Apoptosis: Following treatment with 0.10 mg/ml PLX, at indicated 

time points, BxPc-3 cells were collected, washed and incubated with lysis buffer 

to obtain cell lysate. The cell lysate was incubated with caspase substrates, 

specific to each caspase (3, 8 and 9) and incubated for an hour. Fluorescence 

readings were obtained using a spectrofluorometer. An average of 6 readings per 

well and a minimum of three wells were run per experiment. The results here are 

reported as activity per µg of protein (in fold) and the average of three 

independent experiments is shown. (B) The reduction in viability was caspase 

independent, as a pan-caspase inhibitor, Z-VAD-fmk could not prevent the loss of 

viability induced by PLX treatment in colon and pancreatic cancer cells. 

Absorbance was read at 450 nm and expressed as a percent of the control. 

Values are expressed as mean ± SD from quadruplicates of 3 independent 

experiments. **P<0.0001 
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Long Pepper Extract Induces Oxidative Stress and Targets the 

Mitochondria of Cancer Cells 

 

Generation of oxidative stress has been well established as a major player 

in the induction of several cell death processes, especially apoptosis (Simon et 

al., 2000; Madesh & Hajnóczky, 2001). The next part of our study focused on the 

role of oxidative stress in PLX induced apoptosis. Following treatment with PLX 

for 48 hours, cells were incubated with 2′,7′-Dichlorofluorescin diacetate 

H2DCFDA for 45 minutes. The resulting green fluorescence histograms were 

obtained using a TALI image-based cytometer. From the results, it was observed 

that PLX induced extensive generation of whole cell reactive oxygen species 

(ROS) in HT-29 colon cancer cells, while acting to suppress any ROS present in 

the non-cancerous cell lines, NCM460 and normal human fibroblasts (NHF) 

(Figure 6A & B). This confirms our results of selectivity and indicates that PLX 

might act as a pro-oxidant in cancer cells in order to induce apoptosis.  

To determine if this oxidative stress was essential to PLX activity, HCT116 

colon cancer cells were pre-treated with N-acetyl-L-cysteine (NAC), a well-

established anti-oxidant, used extensively in vitro studies (Dekhuijzen, 2004; 

Dodd et al., 2008), before treatment with PLX. Subsequent to PLX treatment, 

cells were analyzed for effect of PLX on viability, using the WST-1 viability assay. 

The results suggest that although PLX acts to induce oxidative stress to cause 

apoptosis, this oxidative stress is not essential to its activity. Both the cells 

treated with PLX alone and NAC followed by PLX showed a reduction in their 

viability (Figure 6C).   

The mitochondria have also been shown to play a major role in the 
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progression and execution of apoptosis. The permeabilization of the 

mitochondrial membrane usually leads to the release of pro-apoptotic factors, 

including cytochrome c, apoptosis inducing factor (AIF) and endonuclease G 

(EndoG) (Earnshaw, 1999; Elmore, 2007). These factors cause a caspase-

independent pathway for apoptosis to pass through and could bypass the 

antioxidant effects of NAC observed in figure 6C.  

To assess the efficacy of PLX on the mitochondria of cancer cells, 

OVCAR-3, HT-29 and NCM460 cells were stained with TMRM, a cationic dye 

that accumulates in healthy mitochondria. Mitochondrial membrane potential 

(MMP) dissipation was only observed in OVCAR-3 and HT-29 cells as seen with 

the dissipation of red TMRM fluorescence, by fluorescence microscopy and 

image-based cytometry (Figure 5A, B & C). Following mitochondrial membrane 

collapse, we wanted to determine if there was release of some pro-apoptotic 

factors. Western blot analysis was used to monitor for the release of AIF and 

EndoG from isolated OVCAR-3 mitochondria. Results demonstrate that PLX 

directly caused the release of both AIF and EndoG from the mitochondria of 

OVCAR-3 cells (Fig 5D). These results provide an insight to the mechanism of 

PLX action, where the mitochondria appears to be a direct target of PLX for the 

reduction of viability and the induction of apoptosis 
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Figure 5: PLX Destabilizes the Mitochondrial Membrane of Cancer Cells: 

Colon cancer (HT-29), Ovarian cancer (OVCAR-3) and Normal Colon Epithelial 

(NCM460) cells were treated for 48 hours with PLX, following which, they were 

incubated with JC-1 (A) or TMRM (C) cationic mitochondrial membrane 

permeable dyes. Fluorescence readings were obtained using image based 

cytometry (A) and fluorescence microscopy; corresponding Hoechst dye images 

are also shown (C). Images were taken at 400x magnification on a fluorescent 

microscope. Scale bar = 15 μm. (D) Isolated mitochondria of OVCAR-3 cells 

were treated directly with PLX or solvent control (ethanol) for 2 hours. Following 

treatment, samples were centrifuged, to obtain mitochondrial supernatants, which 

were examined for the release of pro-apoptotic factors, AIF and EndoG via 

western blot analyses, and mitochondrial pellets which were probed for SDHA to 

serve as loading controls. Image is representative of 3 independent experiments 

demonstrating similar trends. Values are expressed as mean ± SD of 

quadruplicates of 1 independent experiment; *p<0.01 versus solvent control 

(ethanol). 
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Figure 6: PLX Causes but is Not Dependent on the Production of Reactive 

Oxygen Species (ROS): (A) Colon cancer (HT-29), Normal Colon Epithelial 

(NCM460) and Normal Human Fibroblast (NHF) cells were treated with PLX for 

48 hours, following which, they were incubated with H2DCFDA and fluorescence 

results were obtained using an image based cytometer. Results were quantified 

using Graphpad prism 6.0 (B). (C) HCT116 colon cancer cells were treated with 3 

mM N-acetylcysteine for an hour prior to PLX treatment. Cells were then treated 

PLX at indicated concentrations for 72 hours, following which the WST-1 assay 

was performed. Absorbance readings were taken at 450 nm and expressed as a 

percent of the control. Values are expressed as mean ± SD from quadruplicates 

of 3 independent experiments. *p<0.05  
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Long Pepper Extract is Well-Tolerated in Animal Models 

Long pepper extracts (mainly water extracts) have been used for centuries 

and have been associated with various benefits (Bao et al., 2013). With all these 

anecdotal reports of benefits, there have been no reports of toxicities associated 

with its use.  To further scientifically evaluate and validate the safety of PLX, 

balb/c mice were orally gavaged with 50 mg/kg/day vehicle (DMSO) or PLX for 

75 days and the mice were observed for signs of toxicity. To assess for toxicity, 

mice were weighed twice a week, urine was collected for protein urinalysis 

studies and following period of treatment, mice were sacrificed and their organs 

were obtained for pathological analysis by a certified pathologist at the University 

of Guelph (Dr. Brooke). Results from this part of the study demonstrate that there 

was no weight loss overall in mice that were given PLX supplemented water 

(Figure 7B).  

To further assess toxicity, urine was collected from mice once a week and 

protein urinalysis was performed using a urine dipstick and a Bradford protein 

concentration assay. Protein urinalysis results indicate that there were trace 

amounts of protein in the urine of mice both from the control and the PLX group, 

with trace readings corresponding to protein concentrations between 5 and 20 

mg/dL. Bradford assays confirm the results obtained by dipstick urinalysis (Figure 

7A). There was no major difference between the control group and PLX group, 

confirming the lack of toxicity associated with oral administration of PLX in 

drinking water.  

Furthermore, the hearts, livers and kidneys were obtained following the 

toxicity study, sliced and stained with hematoxylin and eosin. Results show no 
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gross morphologic difference between the control and the treatment group, 

confirming the lack of toxicity associated with PLX treatment. Results from the 

pathologist indicate that the presence of any lesions in the tissues are minimal or 

mild and interpreted as either background or incidental lesions and the lack of 

lesion type and frequency was enough to conclude no toxicological effect of PLX 

to the balb/c mice (Table 1). 
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Table 1: Summary of Histological Lesions in Balb/C Mice on PLX regimen 
 

 
No 
Treatment 

Vehicle 
(Gavage 
Control) 

Long Pepper Extract 
(Treatment group) 

M1 M2 M1 M2 M3 M1 M2 M3 M4  
Liver: 

-Infiltration, leukocyte, 
predominantly 
mononuclear, minimal 

 X X  X X   X 

-Focal mineralization, 
minimal 

         

-Hepatocyte necrosis, 
minimal 

        X 

-Focus of cellular 
alteration, eosinophilic, 
minimal 

  X X    X  

-Hepatocyte 
vacuolation, lipid type, 
minimal 

  X X   X   

- Hepatocyte 
vacuolation, lipid type, 
mild 

X   X    X X 

Fibrin thrombus   X       

 
Heart: 

         

-Infiltration, leukocyte, 
predominantly 
mononuclear, minimal 

 X    X   X 

Myofiber separation 
and vaculation, minimal 
(suspect artifact) 

 X X      X 

 
Kidney: 

 

- Infiltration, leukocyte, 
predominantly 
mononuclear, minimal 

X X  X  X  X  

Tubule vacuolation, 
minimal 

    X    X 

Fibrin or other 
extracellular matrix, 
glomerulus 

       X  
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Figure 7: PLX is Well-Tolerated in Mice Models: Balb/C mice were divided into 

three groups (3 animals/control (untreated), 3 animals/gavage control (vehicle 

treatment) and 4 animals/treatment group). The control untreated group was 

given plain filtered water, while the second and third group was given 50 

mg/kg/day vehicle (DMSO) or PLX, respectively. Mice were assessed for toxicity 

with protein urinalysis by Bradford Assay and dipstick analysis (A) and weight 

changes (B). (C) Hematoxylin and Eosin stained tissue sections of the liver, heart 

and kidney of control versus PLX treated group. Images were obtained on a 

bright field microscope at 63X objective. 
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Oral Administration of Long Pepper Extract Halts the Growth of Human 

Colon Cancer Xenografts in Immunocompromised Mice 

 

Following efficacy studies, we wanted to further study the efficacy of PLX. 

For this study, CD-1nu/nu immunocompromised mice were subcutaneously 

injected with HT-29 cells (left) and HCT116 cells (right). Following the 

establishment of tumors, mice were separated into three groups, a control group, 

a vehicle (Me2SO) group and a PLX treated group. Mice were observed for 75 

days, with weights and tumor volumes measured twice a week. Results 

demonstrate that oral administration of PLX could suppress the growth of both 

p53 WT (HCT116) and p53 mutant (HT-29) tumors in-vivo. There were no signs 

of toxicity, as indicated by increasing weights during the study (Figure 8A & B). 

Furthermore, H & E staining revealed less nuclei in the PLX treated group, 

compared to the control group, however, as observed in the toxicity studies, there 

were no gross morphological differences in the livers, kidneys and hearts of the 

control and PLX groups (Figure 8C). 
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Figure 8: PLX Halts Growth of Colon Tumors in Xenograft Models: CD-1 

nu/nu mice were subcutaneously injected with colon cancer cells; HT-29 (p53-/-) 

on the left flank and HCT116 (p53+/+) on the right flank. (A) Representative tumor 

size control mice and 50 mg/kg/day vehicle or PLX treated mice, respectively. 

PLX halted the growth of both HT-29 and HCT116 tumors in-vivo. (B) Average 

body weights of control and PLX treated mice. The body weights did not vary 

significantly during the study. Tumor volumes were measured and tumor curve 

shows the efficacy of 50 mg/kg/day oral administration of PLX. (C) 

Histopathological analysis of tissue samples obtained from control and PLX-

treated animals. Hematoxylin and Eosin stained tissue sections of the livers, 

hearts, kidneys and tumors. Images were obtained on a bright field microscope at 

10X and 63X objective. 
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Analysis of Long Pepper Extract  

The availability of several species of long pepper and the host of 

compounds present within them make it essential to characterize the long pepper 

extract that has shown potent anticancer activity, both in in-vitro and in-vivo 

studies. HPLC profile studies were carried out on the crude ethanolic extracts, 

compared with a piperamide standard mix. The chromatogram profile show that 

our PLX extract contained several classes of compounds known to be present in 

piper species, including piperines and dihydropiperlongumine, with a peak 

corresponding to the presence of piperlongumine(Figure 9A & B). We 

hypothesize that the presence of this compound, along with the other compounds 

observed in this profile, could lend to the anti-cancer activity of PLX that we 

observe in the various cancer cell models. Further studies and characterization 

would provide more information about the roles of these compounds in cancer 

cell death induction.  
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Figure 9: HPLC Analysis of PLX: Chromatograms of Long pepper crude extract 

(PLX) used for this study (10mg/mL at 2 L/Sample) (B) compared to 

Piperamides Standard mix (1mg/mL at 1 L/standard) (A). 
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DISCUSSION 

In this report we demonstrate for the first time, the selective anti-cancer 

potential of an ethanolic extract of long pepper (PLX) in several cancer cell lines. 

PLX effectively reduced the viability of cancer cells and induced apoptosis in a 

dose- and time-dependent manner, at low doses, allowing for a greater 

therapeutic window in in-vitro studies (Figure 1 – 3). This apoptosis inducing 

effect was found to be independent of caspases, cysteine aspartic proteases that 

play a role in the progression and execution of apoptosis (Figure 4B). These 

results suggest that PLX is not toxic to non-cancerous cells at such low doses, as 

was observed in the cancer cells. Selectivity and lack of toxicity was confirmed 

with in-vivo toxicological studies. Damage to the kidneys is a common occurrence 

during various types to toxic therapies. This damage to the kidney results in large 

amounts of protein (>3.5 g/day) leaking into the urine (Bleske et al., 2013; Fang 

et al., 2013), and this can be measured by various assays. Lack of toxicity was 

confirmed by the lack of increased protein concentration in the urine samples 

collected from both the control group and PLX treated group, by two different 

assays. The urine dipstick method indicated that all urine samples from the 

control and PLX groups had trace amounts of protein, corresponding to 

concentrations between 5 mg/dL and 20 mg/dL, well within the acceptable 

concentration range. Bradford protein assay showed a concentration of 

approximately 30 mg/dL most days urine was collected (Figure 7A). This is still 

within the acceptable range of protein concentration in urine. These results 

confirm anecdotal studies that suggest no associated toxicity or side effects 

observed with take long pepper extracts. The efficacy of PLX in in-vivo models 



 267 

also showed that not only was PLX well-tolerated, it was also effective at halting 

the growth of human tumor xenografts of colon cancer in nude mice (Figure 7A 

and B).  

The next step in understanding the effect of PLX on cell death induction in 

cancer cells was to identify the mechanism of apoptosis induction observed 

following PLX treatment.  

The role of oxidative stress in cell death processes has been well 

characterized. It is well established the reactive oxygen species (ROS) could be 

the cause or effect of apoptosis induction in cells (Simon et al., 2000). Some 

studies have suggested cancer cells to be more dependent on cellular response 

mechanisms against oxidative stress and have exploited this feature to 

selectively target cancer cells (Raj et al., 2012). The role of ROS generation in 

PLX-induced apoptosis was assessed following treatment. In this study, we found 

that PLX induced whole cell ROS production in a dose dependent manner, as 

indicated by the increase in green fluorescence of H2DCFDA dye, cleaved by 

intracellular esterases and oxidized by ROS present (Figure 6A & B). However, 

we observed that ROS generation was not completely essential to PLX activity, 

as the presence of N-acetylcysteine could not entirely hamper the ability of PLX 

to reduce the viability of colon cancer cells (Figure 6C). 

The caspase-independence observed in figure 4B, suggest that PLX is 

acting through pro-apoptotic factors other than caspases. The mitochondria play 

a major role in the progression and execution of apoptosis. The permeabilization 

of the mitochondrial membrane usually leads to the release of pro-apoptotic 

factors, including cytochrome c, apoptosis inducing factor (AIF) and 
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endonuclease G (EndoG) (Earnshaw, 1999; Elmore, 2007). AIF and EndoG 

execute apoptosis in a caspase-independent possibly leading to the caspase- 

and partial ROS-independence observed. We show here that PLX caused MMP 

dissipation in cancer cells, while non-cancerous NCM460 cell mitochondria 

remained intact following treatment (Figure 5A – C). The dissipation of the 

mitochondrial membrane led to the release of AIF and EndoG (Figure 5D), 

allowing for the progression and execution of apoptosis in the absence of 

caspases and oxidative stress, providing insight to the mechanism of PLX action 

in cancer cells.  Cancer cells differ from non-cancerous cells in variety of ways, 

which could enhance the selectivity of PLX to cancer cells. The Warburg effect is 

characterized by the high dependence of cancer cells on glycolysis and low 

dependence on mitochondria for energy production in cancer cells, therefore 

creating a more vulnerable target in cancer cell mitochondria (Warburg, 1956). 

Moreover, various anti-apoptotic proteins associated to the mitochondria have 

been reported to be highly expressed in cancer cells. Such proteins could serve 

as targets for selective cancer (Mathupala, 1997; Casellas et al., 2002; Green & 

Kroemer, 2004).  

Unlike isolated natural compounds, there are usually more benefits to 

using a whole plant extract than the isolated compound. Multiple components 

within extracts have many different intracellular targets, which may act in a 

synergistic way to enhance specific activities (including anticancer activities), 

while inhibiting any toxic effects of one compound alone. Additionally, the 

presence of multiple components may possibly decrease the chances of 

developing chemoresistance (Foster et al., 2005). Moreover, natural extracts can 
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be administered orally to patients, as a safe mode of administration. Some known 

compounds of the long pepper plants have been isolated and studied for their 

various activities (Lee et al., 2001; Raj et al., 2012; Bao et al., 2013; Golovine et 

al., 2013; Jarvius et al., 2013; Megwal & Goswami, 2013).  

In this study, we show some signature compounds that are present in our 

PLX extract, including piperlongumine, dihydropiperlongumine and piperine. 

Notably, piperlongumine, a compound from the Piper longum plant, has 

previously been shown to have selective anticancer activity (Raj et al., 2011). The 

small peak of piperlongumine observed in the HPLC chromatogram in Figure 9, 

as piperlongumine may be due to the reduction of piperlongumine to the larger 

dihyropiperlongumine peak that we observe. In a previous study that showed the 

efficacy of piperlongumine, high concentrations of 10 M was required for 

significant cell death induction in cancer cells (Raj et al., 2012). In this study, a 

very low amount of the complex mixture of the ethanolic extract of long pepper 

(that contains many bioactive compounds) was sufficient in inducing apoptosis in 

cancer cells selectively. This indicates that the individual bioactive compounds 

(present in nanomolar concentrations within the extract) could act synergistically 

to induce apoptosis in cancer cells at very low concentrations. These findings 

highlights that the Piper spp. contain novel compounds with potent anticancer 

activity, in addition to piperlongumine.     

In conclusion, our results demonstrate that long pepper extract (PLX), with 

a long historical use in traditional medicine, is selective in inducing cell death in 

cancer cells by targeting non-genomic targets. It is well tolerated in mice models 
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and effective in reducing the growth of human tumor xenotransplants in animal 

models, when delivered orally. This could open a window of opportunity to 

develop a novel, safer cancer treatment, using complex natural health products 

from the Long Pepper.  
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The distinct lack of readily available, efficacious and non-toxic cancer 

therapies prompts further investigation and research into other available forms of 

treatment, in a bid to promote better quality of life for cancer patients. Natural 

health products (NHPs) and natural products (NPs) have been a major focus of 

many forms of therapies for centuries, in various traditional medicines and are 

often regarded as low risk due to their long history of human use. Anecdotal and 

literature reports are inconclusive and sometimes contradictory, therefore, these 

reports are not very useful for clinicians and patients (Foster et al., 2005; Jain, 

2013). Although NHPs and herbal products are not considered toxic, because of 

their long use, there are some reports of adverse drug events (ADEs), as these 

are not single-active ingredients (SAIs), but contain multiple pharmacologically 

active components that could affect multiple signaling pathways within the 

system.  

The bioactive components of complex natural products may be associated 

with low inherent risks of usage or a higher risk, when there is drug interaction 

with pharmacologically active compounds or enzymes that could affect drug 

disposition (Foster et al., 2005). Thus, there is a lack of rigorous scientific 

investigation into the use of many NHPs, and as such, diligent and rigorous 

assessment of potentially efficacious NHPs, NPs and herbal products are 

required. This is in a bid to ensure the safe and effective use of these products by 

potential users. Over 75% of the anticancer drugs approved since the 1940’s 

have been obtained from natural products or are synthetic derivatives of natural 

products (both plants and marine/biological sources) (Mann, 2002; Newman & 

Cragg, 2012). This signifies that within the vast array of health and herbal 
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products, there are pharmacologically active components and whole complex 

mixtures that could show better efficacy, while lacking toxicity or reducing 

toxicities associated with other treatment options. 

The major accomplishment of my work was the identification of natural 

health products (NHPs) with significant anti-cancer activity, the determination of 

the mode of action, contributing to their anti-cancer activities and the assessment 

of the safety of these NHPs in preclinical settings, which led to the clinical 

development of one NHP. My work focuses on two NHPs, the water extract of 

dandelion root (DRE) and the ethanolic extract of long pepper (PLX), and the 

stepwise characterization of their anti-cancer activities and potential toxicities.  

Dandelions have been used for centuries, with the first reported evidence 

of the therapeutic use of dandelions mentioned by Arabian physicians during the 

10th and 11th centuries in the treatment of liver and spleen diseases (Schütz et 

al., 2006). Anecdotal evidence shows the efficacy of various parts of this plant for 

the treatment of various diseases. For instance, the roots are used as a 

gastrointestinal remedy to support digestion and liver function, while the leaves 

are used as a diuretic and a bitter digestive stimulant. The roots have been 

investigated for demulcent and immune-modulating effects, while the leaves have 

been investigated for its role in inflammation (Yarnell & Abascal, 2009). There are 

various classes of pharmacologically active compounds within dandelions that 

have been predicted to lend to its therapeutic activity (Table 1), but the most 

important classes are triterpenoids and sesquiterpene lactones (SLs) (Takasaki 

et al., 1999; Schütz et al., 2006; Yarnell & Abascal). Biological studies on 11 

triterpenoids found in various Taraxacum species and other plant sources show 
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that this class of compounds have significant anti-carcinogenic activity, with 

taraxasterol having the best anticancer activity (Takasaki et al., 1999). Studies on 

SLs have shown that this class of compounds have both anti-inflammatory and 

anti-cancer effects. This class of compounds was originally identified in an initial 

screen by the National Cancer Institute (NCI), the same screening that led to the 

identification of Taxol, and SLs have proven themselves worthy of continuous 

investigations, up to the levels of clinical trials, as anti-inflammatory and anti-

cancer agents (Zhang et al., 2005; Ghantous et al., 2010). Owing to these 

characteristics, plant extracts, such as dandelions, with high amounts of SLs are 

becoming more important and are being given considerable interest, especially in 

cancer and inflammatory diseases. They have been shown to selectively target 

cancer stem cells and some have proceeded successfully to Phase I and II 

clinical trials (Jeon et al., 2008; Ghantous et al., 2010). All of these findings, along 

with the fact that dandelion extracts are complex mixtures, containing both 

triterpenoids and SLs, along with other classes of compounds, suggest the 

importance of this NHP in the fight against cancer. 

The use of long pepper extract is not as well documented as that of 

dandelions. Of more interest are some of the components of long pepper, for 

instance, piperlongumine (PL), and its role in oxidative stress response, 

especially in cancer cells (Raj et al., 2011). PL was also found to induce cell cycle 

arrest, induce apoptosis by down-regulating the expression of pro-survival 

proteins and up-regulating the expression of pro-apoptotic proteins, as well as 

inducing DNA damage in cancer cells (Bezerra et al., 2012). There are other 

pharmacologically active compounds, within long pepper extract that have been 
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studied for their various activities. Piperidine alkaloids have shown fungicidal 

activities, while piperines affect enzymatic drug bio-transforming reactions and 

plays specific roles in metabolic activation of carcinogens and mitochondrial 

energy production (Jarvius et al., 2013; Megwal & Goswami, 2013). These 

studies provide sufficient substantiation that the whole complex mixture of long 

pepper extract, as well as dandelion root extract, could provide safer, non-toxic 

alternative to conventional modes of treatment, as a potential anti-cancer agent. 

In light of this information, my findings of the complex mixture of DRE and 

PLX, with very clear anti-cancer activities, are novel and extremely important. 

During the period of this work, we found that aqueous dandelion root extract 

selectively induced apoptosis (PCD type I) and autophagy (PCD type II) in a 

variety of cancer cell models (Table 2). These results were significant, as we 

observed the versatility of a simple water extract of dandelion root in different 

cancer cell types, each with different and multiple mutations that promote their 

ability to proliferate in cell culture. Using various biochemical and morphological 

markers, we confirmed the induction of different modes of cell death in cancer 

cells. The induction of apoptosis was observed, following the rapid activation the 

death receptor mediated extrinsic pathway and the destabilization of the 

mitochondrial membrane potential, right before the formation of apoptotic bodies 

and the externalization of phosphatidylserine, indicative of apoptosis. The 

induction of pro-death autophagy in some of these cell types confirms the 

connection between autophagy and apoptosis (Chapter 1, Figure 5), as well as 

indicating the versatility of DRE in targeting multiple pathways in a cancer cells 

selectively. 
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Compound class Examples Comments 

Sesquiterpene 

Lactones 

Taraxacosides, taraxinic 

acid, ainsliosides 

Generally believed to have anti-

inflammatory and anti-cancer 

activity. Has antioxidant effects 

Triterpenes Taraxasterol, alpha- and 

beta- amyrin 

Also believed to have anti-

inflammatory and anti-tumor 

activity 

Phytosterols Β-sitosterol Thought to be useful in cancer 

prevention 

Phenylpropanoids Monocaffeoyltartaric 

acid, caffeic acid 

Has inflammation modulatory 

effects 

Table 1: Classification of Pharmacologically Active Components in DRE 

 

 

Cancer cells Non-cancerous cells 

Human T cell leukemia (Jurkat) 

(Ovadje et al., 2011) 

Normal human fibroblasts 

Chronic myelomonocytic leukemia  

(Ovadje et al., 2012a) 

Peripheral blood mononuclear cells 

(from apparently healthy volunteers) 

Pancreatic cancer 

(Ovadje et al., 2012b) 

Human Umbilical Vein Endothelial 

Cells  

Colon cancer Normal colon epithelial cells 

Melanoma  

(Chatterjee et al., 2011) 

Normal colon fibroblasts 

Patient-derived leukemia samples  

Breast cancer (SUM149 & MCF-7)  

Table 2: List of Cancer and Non-cancer Cell Lines Analyzed for the Anti-

cancer Efficacy of DRE 
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Following further studies, we observed that DRE efficiently targets multiple 

pathways in cancer cells, and is able to distinguish between cancer and non-

cancerous cells in this ability. We observed this differential targeting in colorectal 

cancer cells, compared to non-cancerous colon mucosal epithelial cells, by gene 

expression analysis. These analyses, combined with fractionation and 

phytochemical analysis, suggest the ability of DRE to target multiple cell death 

pathways, in a dose and time dependent manner, due to the presence of multiple 

components within the extract (discussed in Chapter 5).  The identification of 

three triterpenoids in DRE, -amyrin, -amyrin and lupeol, aid in further 

understanding of the mechanism of DRE in cancer cells.  

Previous studies have attributed the anticancer activity to some of these 

triterpenoids, although the main triterpenoid with the anti-cancer effect, 

taraxasterol (Takasaki et al., 1999), has not yet been identified in our extract of 

dandelion root. On their own, it was observed that -amyrin, -amyrin and lupeol 

had a minimal cytotoxic effect on colon cancer cell proliferation, at the doses 

used. However, a study by Murtaza and colleagues provided evidence that 

lupeol, at 40 M, induced apoptosis in pancreatic cancer cells, by inhibiting the 

expression of cFLIP, thereby activating the extrinsic pathway of apoptosis. This 

was a confirmation of another study by Hata and colleagues, showing the efficacy 

of lupeol as an anti-cancer agent by activating extrinsic apoptosis (Hata et al., 

2000; Murtaza et al., 2009). Furthermore, sesquiterpene lactones have also been 

implicated in the activation of the extrinsic pathway of apoptosis (Zhang et al., 

2005; Ghantous et al., 2010). These reports supports our recent findings that 
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dandelion root extract, even at low doses, efficiently and rapidly activates 

caspase-8, which is essential for the induction of apoptosis in leukemia cells 

(Ovadje et al., 2012a), while in colon cancer cells, this activation was not required 

for apoptosis induction, as inhibition of caspase-8 activation did not deter the 

induction of PCD by DRE treatment (Chapter 5, Figure 6C). This activation of 

extrinsic pathway of apoptosis also corresponded to the inhibition of cFLIP 

following DRE treatment in a dose and time dependent manner. The drawback of 

the anti-cancer effect of the purified compounds is the requirement of significantly 

high concentrations, which may not be achievable physiologically and could be 

toxic at such levels. In contrast, DRE as a complex mixture of many of these 

compounds, and some yet unidentified components, where the individual 

concentrations of these compounds will be very low (potentially sub-micromolar 

concentrations), show very high efficacy. This indicates that, in DRE, various 

components might act in synergy, to promote the targeting of multiple pathways 

of cell death.                                                                                                                                                                                                                                             

All of these findings and previously published data confirm the role of such 

complex NHPs in combating a complex disease like cancer, with multiple 

vulnerabilities that can be exploited for the development of a more efficacious 

form of therapy. 

To go one step further to understanding the efficacy, in-vivo studies were 

carried out. Although dandelion extracts have been used for centuries, with no 

reports of adverse effects, proper scientific validation of the lack of toxicity was 

required. In this work, we show, through several biochemical and pathological 

markers, that DRE, when administered orally over a long period, was not toxic to 
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mice. More importantly, efficacy studies in xenograft models of colon cancer in 

immunocompromised mice showed that oral administration of DRE halted the 

growth of colon tumors and improved survival of the mice on this regimen. These 

results showed that the complex mixture of DRE are absorbed through the 

gastrointestinal tract (GIT) and are able to get to the tumor site and halt further 

growth. These findings not only provide further evidence of the efficacy of DRE 

as an anti-cancer agent, but also proving that this NHP is a safer alternative to 

current chemotherapy standards. 

Evaluation of the anti-cancer efficacy of therapeutics on cancer tissues 

obtained from cancer patients, in ex-vivo model, takes pre-clinical studies one 

step close to human testing in clinical trials and could be an indicator of patient 

response during clinical studies. Interestingly, we observed the induction of 

apoptosis and pro-death autophagy by DRE in several patient derived samples of 

leukemia, following the caspase-8 activation. Moreover cancer-selective 

response was further confirmed, as PBMCs from healthy volunteers were not 

susceptible to the induction of programmed cell death. These are important 

findings as they confirm the efficacy of DRE in ex-vivo models, bringing us one 

step close to using this complex mixture as a therapeutic anti-cancer agent in 

actual cancer patients, especially those with haematological cancers. These 

findings, along with the previous efficacy, safety and mechanistic studies 

presented in our application to Health Canada, convinced the review panel and 

dandelion root extract was approved for Phase I clinical trials in hematological 

cancers. 
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The thorough scientific validation of the anti-cancer efficacy of dandelion root 

extract in various cancer cell models, provide the necessary background 

evidence and guide to further validate and assess other NHPs with potential 

efficacies.  

The efficacy of piperlongumine as a possible anti-cancer agent, even at 

high doses (≥ 5 μM), along with the efficacy studies on other components of long 

pepper, suggest that this NHP could possess better effectiveness, and less 

associated toxicity. Part of this work was dedicated to laying the groundwork for 

studying the anti-cancer efficacy of long pepper extract. In this work, we show 

that an ethanolic extract of long pepper extract led to a caspase-independent 

mode of apoptosis in several cancer cells. This induction of apoptosis was 

associated with the permeabilization of the mitochondrial membrane and the 

generation of reactive oxygen species (ROS). The mechanism of action of this 

extract was found to be partially dependent on the oxidative stress, as pre-

treatment with N-acetylcysteine led to a partial rescue of the cells that were later 

treated with long pepper extract. These findings are in agreement with previous 

reports with piperlongumine, where it was observed that this compound targeted 

the oxidative stress response mechanisms, led to the production of ROS and 

induced apoptosis selectively in cancer cells (Raj et al., 2011).  

Furthermore, the use of this complex mixture of PLX was required at low 

doses, compared to the high doses of a single component, providing a significant 

therapeutic window for its use. Its efficacy in cell culture and the lack of toxicity in 

animal models, further provides the necessary evidence for its safety and 

efficacy, as anti-cancer agent. These results are essential for further clinical 
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development of this NHP. Furthermore, HPLC analysis of the ethanolic extract of 

long pepper showed a small peak corresponding to the presence of 

piperlongumine, along with peaks representing other components within long 

pepper extract. The miniscule amount of piperlongumine in long pepper extract 

suggests that this compound may not be the most essential component that 

lends to the anti-cancer activity of this extract.  

These findings further provides sufficient evidence that backs up the use 

of complex mixtures, with multiple pharmacologically active components, that 

work in synergy to promote efficacy and possibly reduce any toxicity associated 

with any one component. They further provide the essential scientific validation 

behind the use of common natural health products to deliver more efficacious 

modes of treatment, that are safer and mostly inexpensive, compared to currently 

available forms of treatment. 
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FUTURE DIRECTIONS & CONCLUSIONS 

The results presented in this thesis afford some scientific evidence for the 

use of NHPs in disease treatment, especially in developing better cancer 

therapies. However, substantial work is still needed to move these NHPs from 

where they are right now to where they could be beneficial to patients.  

Future work on this project should involve further determination and 

characterization of the pharmacologically active components within dandelion 

root and long pepper extracts. 6 of 28 fractions obtained from the secondary 

phytochemical fractionation of dandelions were found to have significant 

bioactivity, comparable to whole complex DRE and further fractionation of two of 

those fractions (with similar profiles) led to the identification of three out of five 

compounds. Considering these compounds, on their own, were required at high 

doses and only additive effects were observed when -amyrin and -amyrin were 

used in combination, it is of utmost importance that the remaining active 

components with DRE be identified and their anti-cancer activity be evaluated, as 

single agents and in combination. The identification all the bioactive components 

within DRE will be beneficial, as it can ensure that better extraction processes 

can be employed to extract yield higher amounts of the pharmacologically active 

components. HPLC analysis of long pepper, using a standard mix of known 

piperines and piperine alkaloids, led to the identification some of the common 

components of this extract. Further phytochemical and fractionation analysis of 

long pepper will be needed to get all the components.  
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Determining the mechanism of action(s) of complex NHPs in cancer cells, 

and the ability of these NHPs in particular to identify specific vulnerabilities in 

cancer cells, has proven challenging. Due to the presence of multiple 

pharmacologically active components that could individually target multiple 

pathways, it becomes a puzzle to identify a single mechanism of action of such a 

complex mixture. However, as with the expression analysis of genes involved cell 

death programs, we identified several key genes that were influenced by DRE 

treatment. These findings have helped narrow down the mechanistic efficacy of 

this extract. Further investigation into the roles of these genes in promoting the 

hallmarks of cancer cells, or in the initiation and progression of PCD is required. 

Understanding the roles of these genes in relation to cancer cell growth and 

death will be required to better comprehend the differences between cancer cells 

and non-cancer cells, in an attempt to better develop more efficacious cancer 

therapies.  

During the Phase I clinical trials for the use of dandelion root extract in 

haematological cancers, blood samples will be collected from patients in the trial, 

and assessed for the induction of apoptosis and autophagy. Caspase-8 activation 

will also be used as a marker for apoptosis induction. While histopathological 

analysis will be carried out by the clinic on patient samples, gene expression 

profiling should also be carried out on each sample obtained, before and after 

treatment commences. This will enable identification of patients that will benefit 

from using DRE, as a treatment option.  
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HEALTH AGENCIES & REGULATORY BODIES INVOLVED WITH NHPs  

The whole purpose for the scientific validation of NHPs against diseases, 

especially cancer, is to provide awareness for these NHPs and NPs that have 

been used for centuries in various traditional medicines. Published scientific 

studies carried out provide of the necessary evidence regarding the efficacy of 

these NHPs, their indications and contra-indications, as well as information on 

their safe and effective use.  In Canada, Health Canada is the governing agency 

for the introduction of drugs and NHPs to the public, with a division completely 

dedicated to NHPs, the Natural Health Product Directorate (NHPD). This division 

was generated to assist and ensure that Canadians have access to NHPs that 

are ―safe, effective and of high quality, while respecting freedom of choice and 

philosophical and cultural diversity‖.  

Regulations for NHPs came into effect in 2004 and take into account the 

unique nature and characteristics of NHPs. At the end of 2012, the NHPD 

published information that outline how NHPs are assessed, with a focus on 

health claims, the use of risk information and the use of NHPs in combination; 

these include the ―Pathway for Licensing NHPs Making Modern Health Claims‖, 

Pathway for Licensing NHPs making Traditional Health Claims‖ and ―Quality of 

Natural Health Products Guide‖, which summaries the requirement for 

standardization of high quality NHPs. Even after clinical trials and progression to 

the market, Health Canada continues to collect information on, track and analyze 

adverse reaction reports for NHPs through the Canada Vigilance Program and 

other regulatory agencies, like the World Health Organization (WHO), thus 

allowing constant monitoring of NHPs to ensure continuous safety and efficacy 
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associated with their use. More information on Health Canada’s requirements for 

NHPs can be found at their website:   

http://www.hc-sc.gc.ca/dhp-mps/prodnatur/index-eng.php  

Dandelion root extract, as a therapeutic anti-cancer agent, is leading the 

movement of natural health products in Canada and is one of the first NHP 

approved as a therapeutic complex mixture treatment for Phase I clinical trials in 

cancer therapy. In fact, the NHPD is now becoming the Therapeutic Health 

Directorate (TPD) in Health Canada, tasked with the duty of assessing the 

scientific validation of health claims of NHPs with potential efficacy in the 

treatment of diseases, especially cancer, that are still lacking effective forms of 

treatment. 

In the United States, the Food and Drug Administration (FDA) is the agency 

in charge of the regulating the production and provision of NHPs to the public. 

NHPs are referred to as complementary and alternative medicine (CAM), which 

are divided into 5 main domains –  

a) Whole medical systems; Ayurveda, homeopathic medicine and traditional 

Chinese medicine (TCM). This is the most common domain of NHPs/CAMs 

b) Mind-Body Medicine; meditation, prayer and creative therapies 

c) Biologically based practices with herbs, foods, vitamins and dietary 

supplements 

d) Manipulative and Body-based practices; chiropractic and osteopathic 

manipulation and massage 

e) Energy medicine; including therapeutic touch. 

http://www.hc-sc.gc.ca/dhp-mps/prodnatur/index-eng.php
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These domains undergo the same levels of rigorous review, as described in 

the Health Canada review aspect above. More information of application to the 

FDA and their requirements can be found at their website: 

http://www.fda.gov/regulatoryinformation/guidances/ucm144657.htm   

These regulatory agencies ensure that health claims made by traditional 

medicine have scientific validations for anecdotal evidence presented for 

centuries. They ensure proper standardizations involved in the production and 

usage of NHPs/NPs/CAMs to maximize the benefits of these products and 

medicines. 

 

 

 

CONCLUSIONS 

The work presented in this thesis has significantly contributed to the scientific 

validation of natural health products and their roles in disease prevention and 

treatment. It has laid the groundwork for the validation of other NHPs that could 

potentially be used in the development of other cancer treatments, and even 

other diseases, with no treatment options available. This work also hinges on the 

platform that the complex mixtures of dandelion root and long pepper extracts is 

much more beneficial than a single identified component, allowing for the multiple 

events that are observed in in-vitro studies. Collectively, this work emphasizes 

the importance of natural health products, especially dandelion root and long 

pepper extracts in the development of safer, more efficacious anti-cancer agents, 

as preferable alternatives to the currently available forms of therapy. 

http://www.fda.gov/regulatoryinformation/guidances/ucm144657.htm
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In both cases, the fundamental rights needed to publish and distribute an article 

remain the same and Elsevier authors will be able to use their articles for a wide 

range of scholarly purposes.  

Details on how authors can reuse and post their own articles are provided below: 

How authors can use their own journal articles 
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Authors can use their articles for a wide range of scholarly, non-commercial 

purposes as outlined below. These rights apply for all Elsevier authors who 

publish their article as either a subscription article or an open access article. 

We require that all Elsevier authors always include a full acknowledgement and, if 

appropriate, a link to the final published version hosted on Science Direct. 

For open access articles these rights are separate from how readers can reuse 

your article as defined by the author's choice of Creative Commons user license 

options. 

 

Authors can use either their accepted author manuscript or final published 
article for: 

 
Use at a conference, meeting or for teaching purposes  

 
Internal training by their company 

 

Sharing individual articles with colleagues for their research use* (also 
known as 'scholarly sharing') 

 
Use in a subsequent compilation of the author's works 

 
Inclusion in a thesis or dissertation 

 
Reuse of portions or extracts from the article in other works 

 
Preparation of derivative works (other than for commercial purposes) 

 

 
 
 
 
 

http://www.elsevier.com/journal-authors/?a=117242
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II. PANCREAS 
 
“Dear Pamela, 
 
Our office grants permission for the reuse of the publication as a part of your 
thesis.‖ 

 
 Author’s Permission Document (Update on 01 January 2014) 

All authors of Wolters Kluwer Health Lippincott Williams & Wilkins must use 

Rightslink® to apply for permissions when reusing their own content if the 

intended usage is not on this list. The following reuse is free of charge (non-

commercial / non-for-profit purposes):  

Images/figures  

1. Re-publication in other journals / books with another STM Publisher (Elsevier, 

Nature, BMJ, Springer etc.)  

2. Reuse in a presentation at a conference or seminar in an electronic format  

3. Reuse in a newsletter for academic purposes if the number of copies does not 

exceed 100 (print and electronic format)  

4. Make photocopies up to 100 copies  

Full-text article  

1. Translated and republished in other journals (English language publications 

will be considered as duplications and therefore will not be permitted)  

2. Reuse in a presentation at a conference or seminar (print and electronic 

format)  

3. Reuse in classroom material if the number of students per course does not 

exceed 100 (print and electronic format)  
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4. Make photocopies up to 100 copies (print and online format)  

5. Posting on institutions repositories or personal blog : please see the terms in 

your Copyright Transfer Agreement which you have signed at the time of 

submission  

6. Reuse in a dissertation – without modification -  

All authors of Wolters Kluwer Health Lippincott Williams & Wilkins must use 

Rightslink® to apply for permissions when reusing their own content for all 

commercial, For-Profit re-use, even for educational material sponsored by 

pharmaceutical companies and it will be subject to fees. 

 

 
 
 
 
 

III. PLOS ONE 
 
 
PLOS applies the Creative Commons Attribution (CC BY) license to all works we 

publish (read the human-readable summary or the full license legal code). Under 

the CC BY license, authors retain ownership of the copyright for their article, but 

authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy 

articles in PLOS journals, so long as the original authors and source are cited. No 

permission is required from the authors or the publishers. 
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APPENDIX B 
 
CHEMICAL REAGENTS  COMPANY NAME   CATALOG NO. 
 

2',7'-dichlorodihydrofluorescein Sigma Aldrich   D6883 

diacetate (H2DCFDA) 

5,5’,6,6’-tetrachloro-1,1’,3,3’ – Invitrogen    T3168 

tetraethylbenzimidazolyl 

carbocyanine iodide (JC-1) 

 

Amplex Red    Molecular Probes   90101 

Annexin-V AlexaFluor 488  Invitrogen    A13201 

Anti--actin (Ms mAb)  GeneTex    GTX628802 

Anti-cFLIP (Ms mAb)  GeneTex    GTX28421 

Anti-LC3 (Rb pAb)   Novus Biologicals   NB100-2220 

Anti-caspase-8 (Ms mAb)  Santa Cruz Biotechnology  sc-70501  

Anti-EndoG (Rb mAb)  Abcam    ab9647 

Anti-SDHA (Ms mAb)  Santa Cruz Biotechnology  sc-59687 

Anti-AIF (Rb pAb)   Abcam    ab1998 

BioRad Protein reagent  BioRad    500-0006 

Bovine Serum Albumin  Sigma Aldrich   A7906 

Dandelion Roots   Premier Herbal Inc.   Lot#: 318121 

DEVD-AFC    Calbiochem    218829 

Eosin     Sigma Aldrich   E4382 

Etoposide    Sigma Aldrich   E1383 

First Strand cDNA synthesis  Qiagen, Inc    330401 

kit 

Gentamicin    Life Technologies   157-0-072 

Hematoxylin    Sigma Aldrich   HHS16 

Hoechst 33342   Molecular Probes   H1399  

Horseradish Peroxidase  Sigma Aldrich   P6782 

IETD-AFC    Calbiochem    368059 

IETD-fmk    calbiochem    218773 
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Image-iT Live Caspase-8 kit Invitrogen    I35105 

Leupeptin    Sigma Aldrich   L2023 

Long pepper Seeds   Quality Natural Foods Ltd 

MitoTracker    Invitrogen    M7513 

Monodansylcadaverine  Sigma Aldrich    30432 

N-acetylcysteine (NAC)  Sigma Aldrich   A9165 

Normal Goat Serum   Sigma Aldrich   G9023 

PARAQUAT    Sigma Aldrich   856177 

Pepstatin A    Sigma Aldrich   77170 

Phenylmethanesulfonyl  Sigma Aldrich    P7626 

Fluoride 

Poly-L-lysine    Sigma Aldrich   P4707 

Propidium Iodide   Sigma Aldrich   P4170 

Qiagen RT2Profiler Pathway kit Qiagen, Inc    PAHS-212Z 

RNeasy Kit    Qiagen, Inc    74106 

SYBR Green MasterMix  Qiagen, Inc    330502 

Tamoxifen (TAM)   Sigma Aldrich    T9262 

Terminal deoxynucleotidyl    

transferase dUTP nick-end  Invitrogen    A23210 

labeling (TUNEL) Assay Kit 

TMRM    Life Technologies   T-688 

Trypan Blue    Sigma Aldrich   T8154 

WST-1    Roche Diagnostics           11644807001 

ZVAD-fmk    EMD4Biosciences   219007 
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