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ABSTRACT 

Recently, due to  rising environmental concerns and predicted future shortages of fossil 

fuels, there is a movement towards electrification of the transportation industry. A vast 

majority of the current research uses permanent magnet synchronous machines as the 

main traction motor in the drivetrain. This work proposes to add a special damper to a 

conventional permanent magnet synchronous machine to further improve the suitability 

of this machine for electrified vehicles. 

Firstly, an equivalent circuit model is developed to simulate the operation of a 

conventional PMSM with a damper. A synchronous loading test is proposed to determine 

the synchronous reactance of the machine. A modified blocked rotor test is used to find 

the damper parameters assuming that the rotor cage construction is known. Also a single-

phase AC test that can be used to determine the damper parameters without prior 

knowledge of the rotor construction is proposed and presented as an alternative to the 

blocked rotor test. 

Thereafter, the models of a 50 kW traction motor and the same machine with damper bars 

are developed and simulated. The performance of both machines are compared and 

evaluated. The damper parameters are selected based on the dynamic and steady state 

performances. It is also shown that the machine with a damper has faster response to a 

three-phase short circuit fault. 

In addition, this study also looks into integrated charging which utilizes the existing 

drivetrain components for vehicle to grid and grid to vehicle operation. The damper is 

shown to be effective in mitigating the saliency condition caused by the buried magnets 

of IPMSM at stand-still condition. As a result, the machine windings can be used as line 

inductors for integrated charging. 
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NOMENCLATURE 

Lasas, Lbsbs, Lcscs : self inductances of phase a, b, c 

Lls  : stator leakage inductance 

LA, LB : saliency- independent and saliency-dependent inductances 

θr : electrical rotor angular position  

 Lasbs, Lascs, Lbscs : mutual inductances between phases  

λas, λbs, λcs : flux linkage in phase a, b, c 

 λ0' : flux linkage developed by the magnets referred to the stator side  

 ias, ibs, ics : stator a, b, c phase current 

 vas, vbs, vcs : stator a, b, c phase voltage 

 rs : stator resistance 

drqr : direct and quadrature axis in rotor reference frame 

dq : generalized direct and quadrature axis 

θ : electrical angular position of rotor of reference frame dq 

 θr0, θ0 : initial angular position of reference frame drqr and dq 

ωr, ω : electrical angular speed of reference frame drqr and dq 

 fa, fb, fc  : voltage, current or flux quantity in abc frame 

fd, fq : voltage, current or flux quantity in dq frame 

θs : time phase of the a defined signal f 

 ωs : electrical angular frequency of a defined signal f 

Mabc-dq : transformation matrix from abc frame to dq frame 

Mdq-abc : transformation matrix from dq frame to abc frame 

λds, λqs : d- and q-axis flux linkages 

ids, iqs : d- and q-axis currents 

Lmd, Lmq : d- and q-axis magnetizing inductances 

Lds, Lqs : d- and q-axis synchronous inductances 

vds, vqs : d- and q-axis voltages 

p : differential operator d/dt  
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Te : electromagnetic torque  

P : number of poles 

Larar, Lbrbr, Lcrcr : rotor self inductances of phase a, b, c 

Larbr, Lbrcr, Larcr : mutual inductances between rotor phases 

Lasbr, Lbscr, Lascr : mutual inductances between stator and rotor phases 

iar, ibr, icr : rotor abc phase current  

λar, λbr, λcr : flux linkage in rotor phase a, b, c 

λdr', λqr' : d- and q-axis rotor flux linkage referred to the stator side 

idr', iqr' : d- and q-axis rotor current referred to the stator side 

var', vbr', vcr' : rotor abc phase voltage referred to the stator side 

rr' : rotor resistance referred to the stator side 

Lm : magnetizing inductance of non-salient machine 

Ls, Lr' : stator and rotor synchronous inductance referred to the stator side  

rkd', rkq' : d- and q-axis damper resistance the referred to the stator side 

Lkd', Lkq' : d- and q-axis damper inductance referred to the stator side 

Llkd', Llkq' : d- and q-axis damper leakage inductance referred to the stator side 

VDC, IDC : measured DC voltage and current of the DC test 

ˆ
abV  : peak value of the line ab voltage. 

nm : mechanical revolutions per minute of the rotor 

Iph : measured phase current on synchronous speed loading test 

Vt : measured terminal voltage on synchronous speed loading test 

Xds, Xqs : d- and q-axis stator synchronous reactance  

E : induced emf generated by the magnet flux 

δ : load angle  

θ : power factor angle 

β : phase angle between b phase voltage and a phase current 

Tepm : torque component arising from the synchronous motor action 

Tedamper : torque component arising from the induction  motor action 

Sa, Sb, Sc : boolean variable representing the switching logic of leg 1, 2, 3  
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van, vbn, vcn : inverter abc phase voltage 

Vdc : inverter DC link voltage 

vab, vbc, vca : inverter ab, bc, ca line voltage 

Zeq : equivalent impedance of the magnetizing branch and damper 

G1, G2 : transfer function representing charging and discharging operation 

batteryi  : small AC disturbance of the battery current 

1d  : small AC disturbance of the duty ratio during charging 

R1 : conceptual output resistor representing load effect of battery 

L1, C1 : filter inductor and capacitor of the DC-DC converter 

RC1, RL1 : internal resistances of the filter inductor and capacitor 

2d  : small AC disturbance of the duty ratio during discharging 

R2 : conceptual output resistor on the grid side 

C2 : total capacitance at the DC link 

rC2 : total ESR at the DC link 

vsd, vsq : d- and q-axis components of utility voltage  

istd, istq : d- and q-axis components of the grid converter current 

Vcond, vconq : d- and q-axis components of the AC side terminal voltage of VSC 

v'cond, v'conq : d- and q-axis VSC voltage without cross coupling terms 

Rs, Ls : per phase resistance and inductance of the AC choke 

iload : current flowing out of the capacitor to the battery 

vdc, idc : instantaneous DC link voltage and current of the VSC 

Vbus : magnitude of the grid voltage space vector 

Kpd, Kid : proportional and integral gain of the d-axis current controller 

Kpq, Kiq : proportional and integral gain of the q-axis current controller 

Kpdc, Kidc : proportional and integral gain of the DC link voltage controller  

ids*, iqs* : d- and q-axis reference current 
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Chapter 1   

Introduction and Literature Review 

1.1     Overview 
1.  

With increasing environmental deterioration, the need to control the greenhouse gases 

emission has become prominent. According to a report [1] by International Energy 

Agency, the worldwide CO2 emission from fuel combustion has increased from 14 billion 

tons in 1971 to 31 billion tons in 2011, 22% of which is accounted by transportation. In 

addition, the growing demand and limited reserves of fossil- fuel in the world have driven 

the Organization of the Petroleum Exporting Countries (OPEC) Reference Basket price 

to rise from an average of $23.1/b in 2001 to $105.8/b in 2013.  The road transportation 

sector shares over 50% of the oil demand [2]. As a result, achieving sustainable 

transportation has emerged as a vital mission. Electrified vehicles (EVs) is considered 

one of the most promising solutions to increase energy security and reduce emissions of 

greenhouse gases and other pollutants [3].   

The main electrical components of a pure battery electric vehicle (BEV) are shown in 

Figure 1-1. A battery pack is connected to an electric machine through a power 

electronic based drive system. The drive system controls the electric machine which acts 

as a motor or generator (MG) depending whether the vehicle is driving or breaking. The 

electric machine is mechanically coupled to the transmission, which is in turn connected 

to the wheels. In order to recharge the battery pack, a BEV is generally equipped with an 

on-board single-phase battery charger.  

Hybrid electric vehicles (HEVs) and plug- in hybrid electric vehicles (PHEVs) are 

proposed to serve as a compromise for the environmental pollution problem and the 

limited range capability of BEVs [4]. HEVs are classified into four kinds: 1) series hybrid; 

2) parallel hybrid; 3) series-parallel hybrid and 4) complex hybrid [5]. 
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Figure 1-1. Main drivetrain components and power flow of a pure electric vehicle. 

The series architecture as shown in Figure 1-2(a) is the simplest kind for HEV. Only the 

driving motor/generator is connected to the wheel. The internal combust engine (ICE) is 

coupled with a generator. The mechanical output of the ICE is converted to electricity 

which is either used to charge the battery or to provide electric power directly for the 

driving motor. Because of this simple structure of the mechanical linkage, the location of 

engine and motor is flexible. However, the series hybrid configuration requires three 

propulsion devices: an ICE, an electric motor and one additional generator, which adds 

weight and cost [6]. Moreover, the traction motor must be sized for maximum sustained 

power because it is the sole propelling source for the vehicle [5, 7].  

On the other hand, parallel hybrid, as shown in Figure 1-2(b) allows both the ICE and 

electric motor to deliver power in parallel to drive the wheels. The ICE and electric motor 

are generally coupled to the drive shaft of the wheels via two clutches, and as a result, 

they can deliver propulsion power independently or simultaneously [5]. The electric 

motor can also be used as a generator to charge the battery by regenerative braking or by 

using the excess power created by the engine. With an extra mechanical linkage and 

complexity in energy management, parallel hybrid overcomes the d isadvantages of a 

series hybrid [5, 8, 9]. 

The series-parallel hybrid configuration, shown in Figure 1-2(c) incorporates the features 

of both series and parallel HEVs [4]. In this configuration, two mechanical power sources 

are connected to the driveline. One is the combination of the ICE and generator while the 
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other is the main electric motor. Determined by the power management system, the two 

power paths provide propulsion power to the vehicle simultaneously and independently. 

Series-parallel hybrid is relatively more complicated and costly, but able to achieve 

excellent dynamic performance and extended driving range.  

The key difference between a series-parallel hybrid and complex hybrid system shown in 

Figure 1-2(d) is the bidirectional power flow of a secondary motor. This bidirectional 

power flow can allow for versatile operating modes, specifically a three propulsion power 

operating mode which cannot be offered by the series-parallel hybrid. This topology 

increases the overall dynamic performance of the vehicle. Similar to the series-parallel 

HEV, the complex hybrid suffers from higher complexity and cost [5]. 
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       (c) 

 

(d) 

Figure 1-2. Main drivetrain components and power flow of hybrid electric vehicles. (a) Series hybrid. (b) 

Parallel hybrid. (c) Series-parallel hybrid. (d) Complex hybrid.  

1.2     Electric Machines for EV Application 

Regardless of the architecture, the main propulsion force for an EV  is the electric 

machine. It is of great importance to tailor the performance of electric machines for 

electric vehicle application. Conventionally, electric machines used for  various 
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applications such as manufacturing, machining, conveyors etc. operate in a small range of 

speed and torque with reasonable efficiency. Requirements for EV application are 

comparatively more stringent [8-10], and include:  

 high instant power and high power density; 

 wide speed range and a constant power operating range of 3-4 times the base 

speed; 

 fast torque response; 

 high efficiency over wide ranges of speed and torque for both motoring and 

regenerating; 

 high reliability and robustness for various vehicle operating conditions; 

 intermittent overload capability, typically twice the rated torque for short 

durations, typically for 15-20 seconds; 

 compact, light weight and reasonable cost. 

There are three major types of electric machines that are considered suitable for EV 

applications: 1) permanent magnet synchronous machines (PMSMs); 2) induction 

machines (IMs); and 3) switched reluctance machines (SRMs) [11]. The cross-section of 

these traction motors are presented in Figure 1-3. 

The development of PMSMs in 1950s was advocated by the availability of modern 

permanent magnets (PMs) with considerable energy density and the advent of transistor 

based power electronic devices [12]. In addition to being brushless and having no 

mechanical commutator, in a PMSM,  the magnetic field is excited by permanent 

magnets. Hence, the overall weight and volume can be significantly reduced for a given 

output power, leading to higher power density. There is ideally no current in the rotor of a 

PMSM and therefore its efficiency is higher compared to an induction machine. It is also 

easier for the heat to dissipate in a PMSM, since most of the power losses are 

concentrated in the stator. Because of the lower electromechanical time constant of the 

rotor, the rotor acceleration at a given input power can be increased [5]. However, the 

manufacture of PMSMs heavily depends on rare-earth materials which are limited and 

only available in some countries,  as a result, the price of these motors is comparatively 

higher than other types.  
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Despite the limited access and high cost of permanent magnets, most of the existing 

electrified vehicles use PMSMs as traction motor. Due to the high efficiency and energy 

density, PMSMs are still the most favorable options when it comes to EVs [13]. Most of 

the existing BEVs and HEVs such as Ford Focus [14], Nissan Leaf [15] and Toyota Prius 

[16] etc. use PMSMs as the main electric propulsion and generation unit. There is a 

significant amount of work that has been published on the design in both the rotor and 

stator, aiming to further improve the performance of PMSMs.  

1.2.1     Basic PMSM Configurations 

PMSMs can be broadly categorized into two groups based on their rotor construction and 

stator windings [17]. Based on the position of PMs in the rotor, PMSMs can be classified 

as surface PMSMs (SPMSMs) with the magnets mounted on the surface of the iron rotor 

core, Figure 1-4(a), or interior PMSMs (IPMSMs) with the magnets buried inside the 

rotor core, Figure 1-4(b). The characteristics of SPMSMs and IPMSMs have been 

compared at a given vehicle specification and inverter size [12, 18, 19]: 

 SPMSMs have shorter end connections and shorter overall length and are easier to 

manufacture; 

 IPMSMs have excellent overload capability throughout their speed range; 

 Losses increase for both motors at high speed, particularly the extra joule losses in 

SPMSMs and the slot harmonic losses in IPMSMs; 

 SPMSMs are mechanically less robust than IPMSMs, and not ideal for high speed 

operation; 

 The quadrature and direct axis inductances for SPMSMs are equal, while for 

IPMSMs the quadrature axis inductance is larger than direct axis inductance.  

The stator windings of PMSMs may be either concentrated (i.e., non-overlapping, 

surrounding individual teeth) or distributed (i.e., overlapping, spanning multiple teeth). In 

concentrated type of windings, all the winding coil turns have the same coil axis and are 

wound together in series to form one multi-turn coil. In distributed types of windings, the 

axis of a coil in one set of slots is different from the axis of a coil in the adjacent set of 

slots and all the winding turns are arranged in several full-pitch or fractional-pitch coils. 
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These coils are then housed in the slots spread around the air-gap periphery to form a 

phase winding [20].  The characteristics of distributed windings and concentrated 

windings can be summarized [17, 21]:  

 Distributed windings make the waveform of the induced electromotive force 

(EMF) more sinusoidal in nature, i.e. magnitude of harmonic components is 

smaller, hence less torque ripple manifests in the machine; 

 Due to the larger number of conductors per slot in concentrated winding machines, 

heat dissipation is poor and therefore they have lower demagnetization tolerance 

than distributed windings; 

 Since concentrated windings are wound on individual teeth, their mutual 

inductance between phases are smaller than those of distributed windings; 

 Concentrated winding machines have shorter end coils, and therefore lower 

copper loss than a distributed winding machine.  

 

                           (a)                                                  (b)                                                 (c)  

Figure 1-3. Cross-sections of the various traction motor technologies. (a) PMSM. (b) Induction motor. (c) 

Axial flux SRM. 

 

                                                                                   
 

(a)                                                                                (b) 

Figure 1-4. PMSM rotor configuration. (a) Surface mount. (b) Interior buried.   
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1.2.2     Literature Review of PMSM Design for EV Application 

In order to meet the requirements of electric vehicles, innovative designs of PMSMs have 

been proposed and evaluated based on efficiency, reliability, power density and cost. 

There is a considerable amount of literature that is present in this topic.  

Rahman et al [22] presented a design of a hybrid permanent magnet hysteresis 

synchronous motor where the magnets were inserted into the slots at the inner surface of 

the hysteresis ring. In this design, the negative effect of the magnet braking torque of a 

conventional PM motor is ideally compensated by the high eddy current and hysteresis 

torques during the initial run-up period. The machine combines the advantageous 

performance features of both conventional hysteresis motors and the PM motors. 

A study of the design of multi- layer IPMSMs by Honda et al [23], compares the 

performance of one, two, three, six and ten permanent magnet layers in the rotor. It is 

seen from simulations and experiments that the two-layer rotor is the best in terms of 

maximizing the utilization of both reluctance torque and magnet torque. Nerg et al [24] 

illustrated the design process of direct-driven PMSMs for a full electric sports car. The 

rotor of the machine has two PM layers embedded inside the rotor laminations, thus 

resulting in inverse saliency so as to take advantage of the additional reluctance torque.  

A permanent magnet machine with a doubly fed doubly salient stator that has an extra 

flux path in shunt with each PM pole amplifies the effect of flux weakening for constant 

power operation. This proposed topology by Chau et al [25] is shown to reduce both PM 

material and field winding magneto motive force (MMF) significantly and offer a distinct 

advantage of wide constant power operation range (four times the base speed), which is 

important for EV application. 

In order to increase the speed range of the machine, Stumberger et al [26] presented an 

IPMSM rotor design with magnet segments and Dutta et al [27] further analyzed the 

suitability of a segmented magnet IPMSM for EV application. It is shown that the 

segmented magnet rotor structure is effective in reducing the iron loss in the machine and 

eventually yields higher efficiency. Moreover, the machine shows an extremely wide 

constant-power speed range which exceeds 5:1. 
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The idea of utilizing a multiphase IPMSM for HEV was first suggested by Parsa et al 

[28]. A PM machine with four poles and five phases with fractional slots was designed 

and developed. The machine is shown to remain operational under loss of up to two 

phases without any additional hardware connections and is considered more reliable for 

vehicles. Also, due to the winding distribution and the greater number of phases, the 

machine has low torque pulsation. Further, Zheng et al [29] investigated the fault 

toleration ability of a five-phase PMSM with 40-slot/42-pole scheme for in-wheel 

application. Based on the application of an auxiliary winding to reduce torque fluctuation 

caused by cogging toque, a method was introduced by Abbaszadeh et al [30]. 

The efficiency and torque depend heavily on the split ratio of the outer stator and inner 

stator. By optimizing the split ratio, the output torque of the motor can be high enough for 

in-wheel application. An analytical method to optimize the split ratio and maximize 

output torque was first brought out by Pang et al [31]. Feng et al [32] extended the 

method and applied it to a double-stator PMSM for in-wheel drive to improve the 

efficiency of the HEV drivetrain.  

Arakawa et al [33] proposed an axial gap IPMSM motor with leakage poles piercing the 

rotor in the axial direction. Since q-axis flux can easily pass through the leakage poles in 

the axial direction, the proposed motor can make effective use of reluctance torque. In 

comparison with the motor in the third-generation Toyota Prius, the proposed motor 

provides twice the maximum torque and more than 1.95 times the torque density of the 

reference motor while retaining the same size. In addition, the motor manifests sufficient 

durability against irreversible demagnetization of the permanent magnets and the stress 

caused by rotating the rotor.   

A compound-structure PMSM which is composed of a stator with fractional slots and a 

double-rotor as traction motor for HEVs was optimized by Liu et al [34]. The slot 

openings and pole-arc embraces are optimized to decrease torque fluctuation. Moreover, 

the magnetic coupling between the stator and the double-rotor can be negligible, and 

therefore enables the independent control of the two members.  
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For high performance PM machines for HEVs, an alternative rotor design was explored 

by Dorrell et al [35]. Ferrite magnet rotor design was considered instead of a rare-earth 

approach. The initial design suffered demagnetization under high load. It was found that 

this issue can be mitigated by further embedding the magnets in the rotor to protect them, 

and therefore is considered a cost-effective solution.  

1.3     Electric Vehicle Charging Infrastructure  

As EVs enter the stage of commercialization, various issues should be considered for the 

EV charging infrastructure. This includes: availability of charging stations; convenience 

of payment for charging; standardization of EV batteries and charging power; regulation 

of clean and safe charging; impacts on power utilities [5]. Charging devices can be 

categorized into three levels based on the charging voltage and current [36, 37].  

 Level 1 AC (120 V, 15 A or 20 A) is the lowest common voltage level found in 

both residential and commercial buildings. The rated charging power of a level 1 

charger is 1.8-2.4 kW and it takes 12-16 hours to fully charge the Tesla Roadster 

EV and 3 hours for Toyota Prius plug- in; 

 Level 2 AC (Greater than 125 V or greater than 20 A) charging generally requires 

a 208V-240 V single-phase supply and a typical current of 40 A up to 60 A. The 

power of level 2 charging is up to 14.4 kW. Tesla Roadster takes around 6-8 

hours and Toyota Prius Plug- in takes around 2 hours to charge using level 2; 

 Level 3 DC Fast Charging (208, 480 or 600 V AC) using three-phase AC power 

over 14.4 kW, are able to provide the fastest charging time. They typically are 

off-board chargers to provide the AC to DC conversion. The vehicle’s on-board 

battery management system (BMS) controls the off-board charger to deliver DC 

directly to the battery. With level 3 charging, it is expected that these vehicles will 

be charged within 15-30 minutes to approximately 80% of the battery capacity.  

Level 1 and level 2 charging are predicted to be the most commonly adopted schemes for 

EVs in the future because of their convenience and low-cost [37]. However because of 

the low power rating, long charging time is required. Also, as the number of EVs 
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increases, more power will be required from the grid. As level 1 and level 2 require 

single-phase power, severe unbalanced loading will be imposed in the utility grid. Level 

3 charging provides high power and hence significantly reduces the charging time. But  

because of the large size and weight, it is normally off-board and not available 

residentially. Therefore, a three-phase integrated charger, using available electric 

drivetrain hardware, mainly the electric motor and the inverter, for the charging circuit, 

was proposed to avoid the problems of additional charger weight, space, and cost [38].  

1.3.1     Introduction to Integrated Charging  

Figure 1-5(a) illustrates the schematic block diagram of a three-phase level 3 charger 

which consists of power electronic converters and line inductors. During the battery 

charging mode, the three-phase AC-DC converter essentially acts as a high performance 

rectifier with near-unity power factor. A boosted constant DC link voltage of more than 

the peak of the utility input line-to- line voltage for this rectifier can be maintained by 

properly controlling the power electronics switches of the rectifier. A DC-DC converter 

in between this rectifier and the battery of the  vehicle is required for battery charging 

control based on command generated by BMS. A current or voltage control strategy is 

employed to adjust the current injected into the battery so as to charge the battery at an 

acceptable rate. To make the rectifier act as a boost AC-DC converter and minimize the 

harmonic components injected by high frequency switching, line inductors are connected 

in series with the converters.   

The traction motor drive system configuration is shown in Figure 1-5(b). During 

motoring, the DC-DC converter will be responsible for maintaining a constant DC link at 

the input of the AC-DC converter, which operates as an inverter for motor drive 

application.  During regenerating mode, the power flow goes from the machine to battery. 

It can be seen that the power electronic components for a three-phase battery charger and 

an AC motor drive system are basically the same. Therefore, the drive system can be 

used for charging with additional contactors for mode switching. Because of the 

bidirectional nature of the traction system, both grid to vehicle (G2V) charging and 

vehicle to grid (V2G) discharging can be implemented. Moreover, the line inductors can 
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be replaced by machine windings with various configurations. As a result, the additional 

components for on-board three-phase charger materials are simply relays/contactors. And 

for the grid side, only a three-phase outlet is needed. However, there are certain issues 

that need to be considered for integrated charging [38, 39]: 

 unwanted torque developed in the motor during charging; 

 low order harmonic content in the current from the grid; 

 mandatory unity power factor operation; 

 the optimized design and sizing of the motor and power electronic converters; 

 complicated control strategy due to saliency in IPMSMs; 

 isolation between the charger and the grid. 

 

 

(a) 

 

(b) 

Figure 1-5. Block diagram of a three-phase battery charger topology and traction motor drive.  
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1.3.2     Literature Review of Integrated Charging for EVs 

Different types of integrated chargers have been reported to solve the aforementioned 

challenges by using additional hardware or innovative control algorithms.  

Rippel [40] designed and patented a single integrated traction inverter and battery charger 

apparatus. The design integrates the components of a three-phase inverter with an AC-

DC converter in a manner which recognizes that an input capacitor and certain 

components of a three-phase bridge inverter are capable of performing dual functions. 

Therefore, some of the components are eliminated allowing reduction of cost, weight and 

space required by the integrated inverter/charger apparatus.  

A single-phase/three-phase combined battery recharge and motor drive system employs a 

conventional voltage source inverter and a poly-phase motor which may be reconnected 

to operate in a battery recharge mode. This design was proposed and patented by Cocconi 

[41]. During charging time, the motor is used as a set of inductors in series with the 

inverter to ensure unity power factor operation towards the utility/grid side. The system is 

currently in use in the car industry [42]. A similar integrated drive/charger system with an 

induction motor is reported for a fork lift truck [43]. 

A single-phase integrated battery charger that utilizes the existing hardware of a four-

wheel drive electric vehicle was introduced by Ki et al [44]. Two pairs of inverters and 

motor windings are configured as a single-phase boost rectifier to generate DC power in 

the DC link capacitor, while the other two pairs of inverters and motors are configured 

and operated as a full bridge DC-DC converter to charge the battery. The developed 

prototype can operate at constant voltage and constant current charging mode at unity 

power factor with only one mechanical transfer switch added to the drivetrain. Tang et al 

[45, 46] and Su et al [47, 48] described and prototyped a 14 kW single-phase on-board 

integrated charger for PHEVs connected in a similar manner. The proposed charger uses 

the main traction motor, auxiliary motor and associated power electronics systems of an 

HEV to construct the charger circuit.  

In a three-phase traction/fast-battery-charger drive which composes two three-phase 

PWM boost converters and a buck-boost chopper, each phase of the AC grid is connected 
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to two parallel boost converters. This connection analyzed by Bruyere et al [49], Sousa et 

al [50-52], Lacroix et al [39] and Sandulescu et al [53] is realized through the midpoint 

of each winding of the electric machine. In the case of balanced current in each half 

windings of a given phase, the rotating magnetic field components at the stator level are 

eliminated and therefore no electromagnetic torque is developed during charging 

operation.  

Haghbin et al [54, 55] and Subotic et al [56] constructed a single/three-phase integrated 

battery charger based on a split-phase/six-phase machine and six- leg inverter. For a 

single-phase AC source, the neutral of each winding is connected to the power source, 

and each phase is connected to the midpoint of the inverter. For a three-phase source, the 

same phases of each winding are connected in series or in parallel and connected to each 

phase of the AC source. With voltage oriented control, the developed torque of the 

machine at stand-still during charging can be maintain as zero.  

The stator windings can be reconfigured by relay based switching devices to constitute a 

special grid connected generator for charging. This rotary generator (machine with re-

configured windings) provides an isolated three-phase power source for the inverter to 

make a three-phase boost battery charger. This high-power integrated charger with 

isolation was proposed by Haghbin et al [38, 57-59]. 

1.4     Motivation for this Dissertation 

In this study, an interior permanent magnet synchronous machine with damper bars is 

proposed to: 1) improve the dynamic performance in the high speed region and system 

response during short circuit faults. 2) Mitigate the unbalanced effect caused by buried 

magnets in the machine and facilitate integrated charging for EVs.  

The idea behind this study originated from conventional synchronous machines with 

dampers for providing self-starting capability and improving stability. A line-start PMSM 

(LSPMSM) is an example of PMSM with a damper cage. However, the damper in a 

LSPMSM is primarily for direct online starting and secondarily to help maintain transient 

stability. In this study a special damper is proposed to be added into a IPMSM so that the 

machine can be used for EV propulsion and integrated charging.  
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(a)                                                  (b)                                                     (c) 

Figure 1-6. Construction of different machines. (a) Induction machine. (b ) PMSM. (c) IPMSM with 

symmetric damper.  

Figure 1-6 shows the structure of three machines, (a) an induction machine, (b) a PMSM 

and (c) a LSPMSM with a symmetric damper. PM machines, (b) or (c), generally have a 

significantly higher efficiency than IMs due to their negligible rotor losses at normal 

synchronous speed operation. The use of permanent magnets not only allows these 

machines to maintain a synchronous speed in loaded conditions, but also provides greater 

torque and power density than their equivalent induction motors.  

The addition of the damper in machine (c) offers advantages over PMSMs without them. 

The damper lowers the equivalent reluctance of rotor, thus offering improved transient 

response during dynamic conditions. In [60], two interior-magnet synchronous machines 

with and without dampers were designed and it was found that the damper bars improved 

the stability and increased the maximum output and efficiency.  

Also the machine with damper windings operates to suppress the transient oscillations 

with no external feedback. The feedback comes internally through the induced EMF due 

to the slip speed in the cage windings, whereas in the inverter-controlled PM drives, the 

controller has to be initiated by an external signal or feedback variable to counter the 

oscillation. Hence the inverter-controlled drive’s dependence on an external feedback 

loop compromises reliability. EVs require reliable operation regardless of the accuracy in 

torque or position control and the PMSM with damper windings is considered an 

intelligent choice for this application [12]. It is also shown in [61] that adding damper 

bars on the outer surfaces of the machine is effective to reduce the danger of PM 

demagnetization due to a short circuit fault.  
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Unlike a LSPMSM with a conventional squirrel cage, the proposed machine has special 

selected damper with high leakage on the axis oriented to the magnet to mitigate the 

saliency of the rotor at stand-still condition. This characteristic is beneficial for integrated 

charging. 

The proposed strategy takes advantage of existing IM and PMSM technology, and 

therefore, requires relatively low manufacturing costs. However, the additional aluminum 

cage increases the material cost, size and weight of the machine. If a 2010 Prius motor is 

considered, which weighs 13.0 kg with a rotor diameter of 8 cm [62]; the additional 

damper will increase the weight by about 5%. Also an additional cost of the machine will 

be incurred by adding the damper. But this cost can be compensated since no additional 

components for a three-phase charger is required. This study does not claim that the 

proposed structure is the most cost effective solution. Instead, it tries to investigate the 

scientific merits and suitability of such rotor construction for EV application.  

1.5     Dissertation Objective 

The objective of this dissertation is to investigate performance of IPMSM with damper 

for EV traction and charging applications. More specifically, these objectives include the 

following: 

 Develop a dynamic model for an interior permanent magnet machine with shorted 

damper bars that can evaluate machine dynamic and steady-state performance 

characteristics such as flux linkage, torque, speed etc.  

 Propose parameter determination methods to find out the equivalent circuit of the 

IPMSM with damper. Verify the determined parameters and developed model 

through simulation and experiment results.  

 Experimental test of the traction machine characteristics and charging profile of a 

laboratory EV and HEV.  

 Investigate the effect of dampers in IPMSM considering dynamic performance in 

high speed operation and response to short circuit condition.  

 Establish bi-directional fast charging for both V2G and G2V. Evaluate the role of 

damper in IPMSM for three-phase integrated charging 
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1.6      Dissertation Layout 

Chapter One provides a brief introduction of the architecture and major components of 

EVs. The classification of PM machines is illustrated and the current research on 

improving the performance of the machines is summarized. Furthermore, the charging 

strategy and charger topology BEVs and PHEVs is introduced. A thorough study of the 

EV drivetrain architecture and traction motor requirements as published in [4, 11]. 

Chapter Two gives a detailed illustration of the equivalent circuit modeling of a PMSM 

with a damper [63]. A synchronous speed loading test method with measured load angle 

is proposed to determine the d- and q-axis synchronous reactance. For a known cage 

construction, a blocked rotor test is used to find the stator leakage inductance and damper 

parameters [64, 65].  In addition, a single-phase AC test is proposed to determine damper 

parameters without previous knowledge of the damper structure  based on the author’s 

previous work in synchronous machine presented in [66, 67].  

Chapter Three establishes the need for machines with high dynamic performance through 

case study of HEVs. It is shown that under high speed conditions, the inverter operates at 

a 180 degree conduction mode. An IPMSM used as a traction motor and the proposed 

machine with damper of the same power ratings are simulated and results are analyzed. 

Both machines are also subjected to a short circuit test and subsequent analysis.  

Chapter Four studies an in-vehicle single-phase charger and proposes a three-phase high 

power fast charging strategy using the existing EV drivetrain components. The 

significance of the damper in compensating the unbalanced condition caused by buried 

magnets at standstill is demonstrated through theoretical analyses and simulations. Real-

time simulation of the system is presented to demonstrate the operation of the proposed 

DC fast charging system [68, 69]. 

Chapter Five concludes this dissertation with a summary of the work presented in 

previous chapters, identifying the new technical contributions that provide the basis for 

this PhD research project. A proposal is presented for the future work to extend this 

research topic. 
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Chapter 2   

Equivalent Circuit Modeling  

2.1     Introduction 

2.  

In order to study machine behaviour, models that can express the relation between 

machine flux, voltage, current, speed, torque etc. need to be developed.  Models based on 

finite element analysis (FEA) can directly determine the flux patterns and machine 

characteristics in great details, however the process is computationally intensive and time 

consuming. Magnetic circuit models (MCMs) have also been proposed to represent the 

machines, as they require less computation time compared to FEA models. However, 

since differential equations are written for each individual slot in the machine, MCMs 

generally have high order and are considered too complicated for motor controller design. 

Therefore this work develops and uses simplistic equivalent circuit models based on the 

principle of electromechanical energy conversion, magnetically coupled circuits theory 

and reference frame theory for general performance analysis and motor drive design. The 

model is proved to be simple and effective in representing the relation between key 

variables in a machine.    

2.2     Equivalent Circuit Modeling based on Reference Frame 

Theory 

In developing equations for a PMSM with damper bars, the following assumptions are 

made [70]:  

 The armature and field MMFs are sinusoidally distributed in space; 

 Magnetic hysteresis is negligible; 

 Magnetic saturation effects are negligible. 
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2.2.1     Winding Inductances and Voltage Equations for PMSMs in 

the abc Frame 

As proved in [71], the self inductances of stator abc phases and the mutual inductances 

between phases can be written as:    
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                                  (2.2) 

where lsL  is the per-phase stator leakage inductance, AL and BL  are respectively the 

saliency- independent and saliency-dependent inductances of the synchronous machine 

[71]. These terms are constant and are determined by the dimensional and magnetic 

properties of the machine [71]. For machines such as a squirrel-cage induction machine, a 

cylindrical rotor synchronous machine and a surface-mounted PMSM, 0BL  .  

In this study, counter-clockwise rotation is considered as positive. The angular electrical 

speed of the rotor is denoted by ωr. The axis along the magnet is defined as direct axis (dr 

axis). The axis along the electrically quadrature (or perpendicular) to the magnet axis is 

called the quadrature axis (qr axis). r denotes the rotor angular position which is the 

angle between qr axis and stator a phase. An illustration of this convention is shown in 

Figure 2-1. The relation between stator currents and flux linkage for PMSM can be 

expressed as:  
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                    (2.3) 

where asi , bsi and csi are the stator phase currents and '
0  is the peak or aligned value of 

the flux linkage established by permanent magnets referred to the stator.  

Based on principles of electric circuits and electromechanical energy conversion, the 

voltage equations for the machine are:  
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                                                       (2.4)  

where sr  is the resistance of the stator winding.  

 

Figure 2-1. Schematic o f a two-pole, three-phase PMSM with illustration of its conventions. 
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2.2.2     Fundamentals of Reference Frame Theory 

It has been shown that the equations which describe the behaviour of AC machines 

contain time-varying coefficients due to the fact that some of the machine inductances are 

a function of the rotor displacement. Therefore, a conceptual frame of reference that 

rotates at certain angular velocity is used to convert the time-varying quantities to 

establish invariant inductances in the voltage, current and flux equations [71].  

In addition to abc and drqr axes, a conceptual dq frame that rotates at a speed of ω is 

defined as shown in Figure 2-2.  denotes the angle between q axis and stator a phase. 

The relationship between rotational speed and position can be represented as in (2.5). 
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0

r
r r
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

                                                      (2.5) 

0r and 0 are the initial position of drqr axes and dq frame respectively. 0 0 0r     is 

assumed in this work in work in order to simplify the analysis.  

 

Figure 2-2. Illustration of the angular relationships for reference frame theory.  
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(a)               (b) 

Figure 2-3. Reference frame conversion. (a) abc to arb itrary  reference frame. (b) Arbitrary reference frame 

to abc. 

 

If the dq frame is chosen to rotate at the same speed as the rotor of the machine, i.e.

r  , then it is called the rotor reference frame. If the dq frame is chosen to rotate at 

the synchronous speed of the utility supply, i.e. s  , then it is called the 

synchronously rotating reference frame. If the dq frame is stationary, i.e. 0 , then it is 

called the stationary reference frame. Other than the aforementioned conditions, if the 

reference frame rotates at any other speed, it is called an arbitrary reference frame.  

In order to convert variables in the abc frame to the arbitrary reference frame, the 

orthogonal projections of the abc frame quantities on dq frame need to be calculated as 

shown Figure 2-3(a) (note that the vectors are drawn for demonstration purpose and the 

length of the vector does not represent that of actual three-phase balanced quantities). 

Therefore the variables in dq frame can be written as:      
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           (2.6) 

where fa , fb , fc, represent the voltage, current or flux in abc frame and fd and fq represent 

the quantities in the dq frame. Ratio a is a scale factor for the conversion.  
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Consider a set of balanced three-phase quantities fa, fb and fc which are written as: 
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                                                   (2.7) 

where f̂ represents the peak value and s st   represents the phase of the defined 

signal. 

From (2.6) and (2.7), fd and fq can be found:  
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                                                     (2.8) 

The ratio for conversion is set as 
2

3
to keep the amplitude of the abc and dq quantities the 

same. Similarly, in order to convert the variables from dq frame back to abc frame, the 

following set of equations is used:   
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where b is the scale factor from dq frame to abc frame.  

Based on (2.8) into (2.9), the three-phase balanced quantities in abc frame are:  
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To ensure the conversion does not change the amplitude of f, b=1. 

Therefore the transformation from abc frame to dq frame in matrix form is:  
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Similarly, the matrix form for transformation from dq frame to abc frame is: 
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Unbalanced phase conditions are not considered in this work and hence the zero sequence 

components are not discussed here [71]. 
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2.2.3     dq Equivalent Circuit Model for PMSMs 

Based on the established stator abc phase flux linkages in (2.3) and the transformation 

from abc frame to dq reference frame in (2.11), the flux linkage in d- and q-axis can be 

calculated as:   
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  (2.13) 

As seen from the equation, if LB = 0, by converting to arbitrary reference frame, the 

relation between flux and current becomes independent of the rotor position. However, 

for salient machine, 0BL  . Only when using the rotor reference frame i.e. r   , the 

flux equations can be written as using the conversion matrix in (2.11): 
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                                   (2.14) 

By converting to the rotor reference frame, the flux equation can be expressed with 

invariant inductances Lls , Lmd and Lmq, which are defined as leakage inductance, d-axis 

magnetizing inductance and q-axis magnetizing inductance respectively.   
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For PMSMs d- and q-axis synchronous inductances are defined as: 
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                                                       (a)                                                             (b) 

Figure 2-4. d- and q-axis equivalent circuit model o f a PMSM in the rotor reference frame. (a) d-axis. (b) 

q-axis.  

Therefore, the flux linkage expression can be simplified as: 
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The voltage equations in dq frame can be calculated using  (2.4) and (2.11):  
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                                                  (2.18) 

Using (2.17) in (2.18), the equivalent circuit can be developed as in Figure 2-4 and the 

stator terminal voltage in terms of current in dq reference frame can be expressed in 

matrix form as:  
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where p is the differential operator, d/dt. 

The total power of the machine can be calculated with abc phase voltages and currents. 

Using the conversion matrix, total power can also be represented in terms of dq axis 

quantities as shown below.  

   
3

2
e as as bs bs cs cs qs qs ds dsP v i v i v i v i v i                                         (2.20) 

rs Lds 

ids 

vds 
+ 

_ 
ωrLqiqs 

        

rs Lqs 

iqs 

vqs 
+  _ ωrLdids+λ’0 

        

+ 
– 

+  
– 



 

27 
 

 

Figure 2-5. Two-pole, three-phase, wye-connected symmetrical induction machine.  

The electromechanical torque developed in the machine is  
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where P denotes the number of rotor poles.  

2.2.4     dq Equivalent Circuit Model for Induction Machines 

To obtain the equivalent circuit for the induction machine, the schematic of which is 

shown in Figure 2-5, the flux linkage equations can be established in abc frame [71] as 

follows:  
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where as , bs and cs  denote the flux linkages in stator phases. ar , br  and cr denote 

the flux linkages in rotor phases. asi , bsi  and csi represent the phase currents in stator and

ari , bri and cri  represent the phase currents in the rotor. The inductances in the equation 
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represent the self- inductances of the stator and rotor phases and the mutual inductances 

between difference phases of the stator and rotor [71].  

The transformation matrix in (2.11) is used to convert the flux linkage into rotor 

reference frame. Note that because an induction machine is non-salient, it is not 

mandatory to use the rotor reference frame. The equivalent circuit of the machine can be 

developed in an arbitrary reference frame. Since in this study, the damper is added into 

the PMSM, which requires the rotor reference frame, the same frame is used to describe 

the induction machine to stay consistent. The flux linkage in an induction machine in the 

rotor reference frame is described as: 

  ' ' '

' ' '

ds s ds m dr

qs s qs m dr

dr r dr m ds

qr r qr m qs

L i L i

L i L i

L i L i

L i L i

   


   


   


   

                                               (2.23) 

where mL is the stator magnetizing inductance. '
dr and '

qr represent the flux of the rotor 

referred to the stator side. '
dri and '

qri represent the current of the rotor referred to the 

stator side. s ls mL L L   is the stator inductance and ' '
r lr mL L L   is the rotor 

inductance referred to the stator side.   

The stator voltages in the abc frame in terms of flux linkage have been presented in (2.4), 

the rotor terminal voltages referred to the stator side are:  
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Figure 2-6. d- and q-axis  equivalent circuit  model of a squirrel cage IM in  the rotor reference frame. (a) d-

axis. (b) q-axis.  

For squirrel cage induction machine, rotor bars are shorted, and therefore, '' 0dr qrv v  . 

Combining (2.4), (2.23) and (2.24), the voltage in rotor reference frame in matrix form is 

as follows:  

''
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dss s r s m r mds
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                             (2.25) 

The equivalent circuit can be developed based on (2.25) as shown in Figure 2-6. 

The electromechanical torque developed in an induction machine can be calculated as 

follows: 

 ' '3

2 2
e m qs dr ds qr

P
T L i i i i                                              (2.26) 

2.2.5     Dynamic Model for a PMSM with Damper Bars 

The schematic diagram of a PMSM with a damper is shown in Figure 2-7. The equivalent 

circuits of the machine, as shown in Figure 2-8, can be represented in a way similar to a 

conventional three-phase PMSM and an induction machine based on rotor reference 

frame.  The voltage equations can be written as in (2.27),  and the mechanical equations 

of the motor is represented in (2.28), (2.29) and (2.30). The first term of the total 

electromagnetic torque (Te)  on the right hand side of (2.29) represents the component  

arising out of ‘synchronous machine’ action due to permanent magnet and saliencies 
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(Tepm) and the second term on the right hand side of (2.29) represents the component 

arising out of ‘induction machine’ action due to the rotor cages (Tedamper). 

 '
0'' '
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00 00
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s ds r qs md r mq ds
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qsr ds s qs r md mqqs
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  (2.27) 

where vds and vqs are the stator terminal voltages, ids and iqs are the stator currents, i'kd and 

i'kq are the damper currents referred to stator side, r'kd and r'kq are the damper resistances 

referred to stator side in the d- and q-axis respectively. rs is the stator resistance. Lds = Lls+ 

Lmd and Lqs = Lls+ Lmq are d- and q-axis synchronous  inductances. Lls is the stator leakage 

inductance. Lmd and Lmq are the magnetizing  inductances in d- and q-axis. L'kd= L'lkd + Lmd 

and L'kq= L'lkq + Lmq are the damper inductances. L'lkd and L'lkq are the d-axis and q-axis 

leakage inductances, respectively, of damper referred to stator side. λ'0 is the PM flux 

linkage referred to stator side.   

         2r e L
Pp T T

J
                                                   (2.28) 

  ' ' '
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3 3
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               (2.29) 

 r rp                                                        (2.30) 

 

Figure 2-7. Winding schemat ics of a three-phase PMSM with  a damper demonstrating the winding 

positions, electrical rotor position and the dq rotor reference frame. 
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Figure 2-8. d-axis and q -axis equivalent circu it model of a PMSM with a damper in  the rotor reference 

frame. (a) d-axis. (b) q-axis. 

2.3     Parameter Determination of a PMSM  with a Damper 
 

Accurate equivalent circuit parameter estimation of the machine is of paramount 

importance as a reliable dynamic model of the machine has to be developed in order to 

design for, analyze and predict performance under varying loads and/or commanded 

speed. Parameter determination of this type of machine is an engineering challenge due to 

the complex rotor architecture consisting of permanent magnets and squirrel-cage rotor 

bars.  

The experiments have been conducted on two machines, the ratings of which are 

presented in Appendix A. Machine I, as shown in Figure 2-9(a), is a PMSM with a 

symmetrical squirrel cage damper for starting purposes. Machine II as shown in Figure 

2-9(b) is a wound-field rotor synchronous machine with an unsymmetrical damper 

(different damper parameters along d and q axes) for both starting and stability 

performance. Note that if the field current of the synchronous machine is set at a constant 

value during the operation, the machine may be conceptually considered as a PMSM. 

2.3.1     DC Test 

The stator resistance rs can be determined through DC Test as presented in [72]. DC 

voltage is applied to the stator windings of the test machines and the voltage across the 

windings and the current through the windings are measured. Because the current is not 

alternating, the induced voltage is zero and there is no voltage drop across the 

inductances.  
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Figure 2-9. Laboratory machines with a damper for parameter estimation experimentation. (a) Machine I: 

line-start PMSM. (b ) Machine II: synchronous machine with a damper.  

 

TABLE 2-1. EXPERIMENT TEST DATA OF DC TEST ON MACHINE I & II. 

Machine# Test # VDC IDC Rs 

I 

1 3.526 3.042 0.5795 

2 4.129 3.559 0.5801 

3 4.799 4.133 0.5805 

Average value: 0.58 

II 

1 1.93 1.57 0.6146 

2 2.94 2.39 0.6150 

3 4.32 3.5 0.6171 

                                                           Average value: 0.62 
 

The stator resistance can be calculated as:  

 
2

DC
s

DC

V
r

I
                                                         (2.31) 

where VDC and IDC denote the measured DC voltage and current respectively.  

The results of DC tests conducted on machine I and II are presented in Table 2-1 [64]. 

Note that only three sets of test results are presented here, however, the average is taken 

based on a large number of tests. The value of rs is not completely accurate with DC test, 

because it neglects the skin effect that occurs when an AC voltage is applied to the 

windings [73]. More details concerning correction of stator resistance can be found in the 

single-phase test proposed further in this study. 
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2.3.2     Open Circuit Test 

The flux linkage created by the PMs referred to the stator side, '
0  can be measured using 

a setup which is similar to that used to obtain open-circuit characteristics for synchronous 

machines [72]. The test machine, with its stator terminals kept open, is coupled with a 

DC motor as a prime mover. An induced voltage will be generated in the stator of the test 

machine and the electrical frequency of the stator is equal to the electrical velocity of the 

rotor, i.e. ωs =ωr. Therefore, there is no induced current through the rotor bars; the 

equivalent circuit of the test machine is the same as a regular PMSM as in Figure 2-4. 

Since the stator is kept open, there is no current through the stator windings. The d- and 

q-axis voltage under this condition is: 

 
'
0

0ds

qs r

v

v

 


   

                                                            (2.32) 

The mechanical speed and terminal voltage of the test machine can be measured, and the 

relation between vqs and terminal voltage using Park’s transformation has been given in 

(2.8). Therefore, the flux linkage of PMs referred to the stator side is: 

 '
0

ˆ2 30

3

ab

m

V

P n
 


                                                    (2.33) 

 where nm is the mechanical speed of the rotor in r/min and ˆ
abV is the peak value of the 

line voltage. 

 

Figure 2-10. Schematic b lock diagram of the experimental setup for open circuit test. 
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TABLE 2-2. EXPERIMENT TEST DATA OF DC TEST ON MACHINE I AND II. 

Machine # Test # ˆ
abV  nm λ'0 

I 

1 63.4 855.3 0.2891 

2 94.1 1269 0.2892 

3 104 1399.2 0.2899 

                                                           Average value: 0.289 

II 

1 147.7 835.8 0.4874 

2 227.3 1296 0.4837 

3 315.9 1805.1 0.4828 

                                                           Average value: 0.485 

 

 

Figure 2-11. Measurement of rotor mechanical speed versus terminal voltage of Machine I and Machine II.  

2.3.3     Synchronous Speed Loading Test 

In order to measure the d- and q-axis synchronous inductances (Lds and Lqs), a rotor 

position sensor has been developed, which yields on- line information of the operating 

torque angle (δ). It consists of three infrared emitter-detector diode pairs and a gray-

coded disk as shown in Figure 2-9(a). This position sensor is mounted on the motor shaft 

(rotor) in such a way that it yields a binary signal, with a positive edge that coincides with 

the positive zero-crossing instant of the induced EMF E of phase a of the machine, when 

it is run by a prime-mover at any speed [64]. This is ensured by running the machine as a 

generator at no load so that the induced EMF appears at the machine terminals.  

Afterwards, when the same machine is run as a motor at steady state under a particular 

load at synchronous speed as illustrated in Figure 2-12, the angular difference between 

the zero crossing instant of the applied line voltage and the instant of the positive edge of 
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the position sensor signal, read through an oscilloscope, provides the torque angle. The 

input power factor angle (θ) for a particular operating condition has also been 

experimentally obtained from applied voltage (Vt) and stator current (Iph) waveforms.  

Figure 2-13 shows the measured voltage, current and sensor signal waveforms under a 

typical steady state condition [64].  

 

Figure 2-12. Schematic b lock diagram of the experimental setup for synchronous speed loading test.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-13. Measured voltage, current and position sensor output waveforms captured on an oscilloscope 

under a specific load at steady state. 
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Since at steady state, the test machines rotate at synchronous speed, there is no current in 

the rotor and therefore can be considered to operate as salient pole synchronous 

machines. A conventional phasor diagram of a salient pole synchronous machine shown 

in  Figure 2-14 is employed to determine the d- and q-axis synchronous reactances (Xds 

and Xqs). E, Vt and Iph  denote the rms value of the per phase induced voltage, terminal 

voltage and phase current. According to Figure 2-14(a), under the condition that the 

machine operates at lagging power factor and θ > δ, the stator current and voltage 

components can be expressed as: 
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                  (2.34) 

Under the condition of lagging power factor and θ < δ as shown in Figure 2-14(b), the 

expressions are: 
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Figure 2-14(c) represents the phasor diagram for a leading power factor angle. 
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Incorporating the above conditions, leading power factor angle, θ is taken as positive and 

lagging power factor angle is taken as negative, the synchronous reactances can be solved 

as:  
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                                         (2.37) 

where,      

   
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. 

As operating torque angle δ, input power factor angle θ, terminal phase voltage Vt, phase 

current Iph, induced phase EMF E, and armature resistance rs are all known at a particular 

steady state, the synchronous reactances can be computed. In order to verify the 

consistency of the results, the machines were operated under different applied voltages 

and different loadings. The values of the reactances for both the machines obtained from 

the trials shows acceptable precision in the results as seen from TABLE 2-3. Furthermore, 

the magnetizing characteristics can be determined using this method under different 

loading conditions as explained in [65]. It was shown that a model incorporating the 

measured magnetizing characteristics can predict the machine performance with higher 

accuracy than the original model. 
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(a) 

 

(b) 

 

(c) 

Figure 2-14. Phasor diagram of a salient pole PMSM. (a) Lagging power factor θ>δ. (b) Lagging power 

factor θ<δ. (c) Leading power factor.  
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TABLE 2-3. EXPERIMENTAL RESULTS TO OBTAIN D- AND Q-AXIS SYNCHRONOUS INDUCTANCE AT 60 HZ 

SUPPLY FREQUENCY 

Machine Vt (V) It (A) δ (˚) θ (˚) 
 

Eph(V) 
Vds (V) Vqs (V) Ids (A) Iqs (A) Xds(Ω) Xqs(Ω) 

I 

 

127.0 

5.61 34.3 -75.0 

76.5 

71.5 104.9 3.66 4.25 7.08 17.34 

5.21 42.8 -55.7 86.3 93.2 1.16 5.08 11.73 17.13 

 

138.9 

6.63 34.3 -77.4 78.3 114.7 4.50 4.87 7.84 16.88 

6.37 42.9 -64.3 94.4 101.6 2.32 5.93 9.27 16.68 

II 

99.6 
3.12 10.6 45.0 

129.9 

18.4 97.9 2.58 1.75 12.62 9.52 

3.43 11.9 34.7 20.6 97.6 2.49 2.35 13.30 8.09 

117.0 
4.36 16.87 4.11 33.96 111.96 1.56 4.07 12.74 8.10 

5.01 20.51 -0.51 40.98 109.58 1.71 4.71 13.23 8.47 

 

2.3.4     Blocked Rotor Test  

In order to obtain rotor leakage inductance and damper resistance, a blocked rotor test as 

conventionally performed on a three-phase induction motor [72] has been performed on 

the LSPMSM for a set of low three-phase voltages. Under a blocked rotor condition (ωr = 

0), in the equivalent circuits of Figure 2-8, each dependant voltage source in the stator 

branch is considered as shorted. Also, as the operating voltage to establish rated current 

flow under a blocked rotor condition is much lower than its rated value, the flux in the 

machine is extremely low and hence the magnetizing branches of Lmd and Lmq in Figure 

2-8 can be treated as open circuited.  

Therefore, each of the d and q equivalent circuits reduces to a series network consisting 

of two resistances (stator and cage) and two leakage inductances (stator and cage). The 

total resistance and total leakage reactance, Rbr and Xbr respectively, represent the input 

resistance and reactance, viewed from the stator side, under blocked conditions and are 

computed from the blocked rotor test results using (2.38) and (2.39).   
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br ls kd kq

pk

V
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I
                                     (2.39) 

The tests are conducted for two different locked rotor positions; first the d-axis is aligned 

with the a phase, and next the q-axis is aligned with the a phase. Table 2-4 shows the 

measured input current Ipk, voltage Vpk and the power factor angle θ, as well as Rbr and Xbr 

calculated by using (2.38) and (2.39), respectively. The presented test results suggest that 

in either of the aforesaid aligned conditions, the input impedance of TABLE 2-4 are almost 

constant. The series parameters of the d-axis equivalent circuit and the q-axis equivalent 

circuit have therefore been treated same for the tested machine, i.e. r'kd=r'kq and L'lkd= 

L'lkq. Therefore, it is further verified that the LSPMSM machine has a symmetrical 

squirrel cage in the rotor.  

Given that rs and Rbr are known, r'kd and r'kq can be obtained using (2.38). After 

inspecting the rotor, by removing it from the stator with proper jigs and fixtures, the 

machine was found to belong to design class A. Therefore, the leakage inductances in the 

stator and rotor sides are considered same [72]. Hence, Xls = X'lkd = X'lkq = (1/2)Xbr.  

Since the equivalent circuit reactance values Xds, Xqs, Xls, X'lkd and X'lkq are obtained 

experimentally, the corresponding inductance values can be calculated as the supply 

frequency is known to be 60 Hz. Once, Lqs, Lds and Lls are known, Lmd and Lmq can be 

obtained easily [64]. 

TABLE 2-4. EXPERIMENTAL DATA OBTAINED FROM BLOCKED ROTOR TEST ON MACHINE I 

 

Condition Ipk (A) Vpk (V) θ (˚) Rbr(Ω) Xbr (Ω) 

d-axis aligned 

with a phase 

#1 1.2 2.42 60 1.010 1.750 

#2 1.65 3.34 60 1.014 1.757 

#3 2.5 4.91 60 0.981 1.700 

Average value: 1.012 1.754 

q-axis aligned 

with a phase 

#1 1.6 3.18 60 1.010 1.750 

#2 2 4.04 60 1.019 1.764 

#3 2.55 5.20 60 0.992 1.719 

Average value: 1.007 1.740 
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2.3.5     Single-phase AC Test 

A blocked rotor test is valid under the condition that the inductances of the magnetizing 

branches Lmd and Lmq are higher than the leakage inductances of the damper L'lkd and L'lkq. 

Moreover, the rotor structure needs to be known in order to determine the machine class, 

to be able to determine Lls , L'lkd and L 'lkq from Xbr. A single-phase AC test was proposed 

based on the fundamental magnetic circuit properties of the machine [66]. Referring to 

Section 2-1, the flux linkage of stator phase a, b and damper in the d- and q-axis for a 

PMSM with a damper are:  
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 (2.40) 

The motoring condition has been assumed positive here. In the proposed methodology for 

determining the electrical parameters of the dampers in the conventional d- and q-axis 

equivalent circuit, a controlled single-phase AC sinusoidal voltage is applied to the 

armature a phase winding with the rotor held stationary at certain strategic positions a ll 

throughout the test. When the rotor is held stationary, 0r rp    . The tests are 

performed under two rotor positions similar to that of the blocked rotor test [66].  

Condition 1: the a phase is aligned with d-axis (i.e. field axis), kept stationary and is 

excited with a single-phase sinusoidal AC voltage with the other two phases kept open 

(i.e. θr  = 900, ib=ic=0, pib = pic = 0). The voltages van, vbn and current ia are measured in 

steady state. 

Therefore the voltage v 'kq can be calculated as:  
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Because 90r   , cos 0,r  the q-axis damper current must satisfy:  

  ' ' ' '0 kq kq kq mq kqr i L L pi                                                (2.42)            

As there is no external excitation in the q-axis damper at steady state, i'kq is zero. 
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At steady state condition, the voltage can be expressed in terms of current, resistance and 

reactance at supply frequency. For phase a, 

 
'2

3
as s as ls as md as md kdV r I jX I jX I jX I                         (2.44) 

where the phase of the current in phase a is considered as the reference phase with a 

phase angle zero, i.e. | | 0as asI I   . The angle measured between the supply voltage 

and the stator current in a phase is defined as θ, i.e. | |as asV V  . 

For phase b, 

       
'1 1
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The measured angle between the induced voltage in phase b and the current in phase a is 

defined as β, i.e. | |bs bsV V  . Then, 

  ' ' ' '2
0

3
kd kd md as lkd md kdr I jX I j X X I                             (2.46) 

From (2.46), I'kd can be represented as: 
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Inserting (2.47) into (2.45) and (2.46) yields,  
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Therefore, 
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Since AC excitation is injected to the stator windings, the stator resistance rs found using 

this method is the AC resistance and is more accurate for the model compared to the 
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standard DC test. Once Xls is found, Xmd and Xmq can easily be calculated using the Xds 

and Xqs values from the synchronous speed loading test. Therefore,  r'lkd and X'lkd can be 

found by solving either the first and third or second and fourth equations of (2.48).  

Condition 2: Under operating conditions similar to that of condition 1, but now with the 

q-axis aligned with the a phase axis at stationary position θr= 0o. The voltage Van, Vbn and 

current Ia are measured in steady state. The voltage along the d-axis in the damper can be 

written as, 

 ' ' ' ' ' '2
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As 0r   , sin 0r  ; the d-axis damper current must satisfy 

  ' ' ' '0 kd kd lkd md kdr i L L pi                                           (2.51) 

Therefore, under this alignment, ' 0kdi  . 

The stator phase a, phase b and damper q-axis voltage can be calculated considering the 

given conditions: 
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Now the measured terminal voltage is represented in terms of q-axis parameters, and 

hence the parameters in q-axis can be found using the above equations.  
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                     (2.53) 

Similar to condition 1, rs and Xls can be calculated using (2.53). Since the stator does not 

have saliency, the value found from condition 1 should closely match with that from 

condition 2. r 'lkq and X'lkq can be found by solving either the first and third or second and 

fourth equations of (2.53). 

It can be seen from the waveforms measured using the oscilloscope as presented in 

Figure 2-15 that the stator a phase voltage is leading the current in phase a, i.e., θ>0. 

Also, the voltage induced in phase b is lagging the current in phase a, i.e. β<0. The 

measured resistances and reactances shown in TABLE 2-5 is consistent as the supply 

voltage and current vary. Also, the measured values of the impedances in the d and q-axis 

are not equal, validating the observed unsymmetrical rotor structure of the machine.  

TABLE 2-5. EXPERIMENTAL RESULTS OBTAINED FROM SINGLE-PHASE AC TEST OF MACHINE II 

Condition  |Vas| (V) |Vbs| (V) |Ias| (A) θ (˚) β (˚) rs (Ω) Xls (Ω) r'kd(kq)(Ω) X'lkd(kq)(Ω) 

d-axis aligned  

with a phase  

#1 11.77  4.61  6.30  61.32  -100.23  0.637  0.199  0.569  2.638  

#2 14.37  5.66  7.73  61.29  -100.18  0.633  0.189  0.567            2.641  

#3 15.31  6.05  8.30  61.38  -100.07  0.628  0.184  0.557  2.625  

q-axis aligned  

with a phase  

#1 17.75  7.86  5.42  67.53  -102.30  0.633  0.190  4.300  9.214  

#2 19.46  8.54  6.12  66.95  -102.38  0.646  0.200  3.807  8.474  

#3 22.04  9.65  7.23  66.28  -102.65  0.641  0.187  3.401  7.751  
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                                         (a)                                                                                    (b) 

Figure 2-15. Measure stator voltage of phase a and phase b, and current through phase a. (a) d-axis aligned 

with a, (b) q-axis aligned with a. 

2.4     Model Verification under Steady State and Free 

Acceleration Conditions  

In order to validate the above mentioned methodolgy, the determined  parameters have 

been incorporated in a numeric model based on the two-axis machine model described in 

(2.27)-(2.30). The steady state and dynamic behaviour were obtained through numerical 

computation methods. Experiments were then performed to obtain similar dynamic and 

steady state operating conditions and the results are compared. Figure 2-16 shows the 

calculated and measured steady state stator current waveforms of machine I at a terminal 

voltage of 220 V and load torque of 4 Nm. From the figure, it is evident that the results 

obtained from the parameter assisted mathematical model of the  machine  are  in close 

agreement with the experimentally captured values. Similar comparisons have been 

performed under a range of voltages and loads, and it was found that the calculated 

results match closely with that of the experimental values. The high frequency 

components obtained in the experimental current waveform are due to slot harmonics 

present in the induced EMF waveform of the laboratory machine [64].  

Figure 2-17(a) and (b) show the calculated and measured stator current waveforms 

obtained under direct online (DOL) starting with 200 V at 60 Hz, applied at the instant of 

the peak of the a phase supply voltage waveform at no load to machine I. This was 

performed to establish the accuracy of the dynamic nature of the model, influenced 

mainly by satisfactorily accurate determination of the cage parameters. The  huge inrush 
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current has been found to settle down to steady state in 2 seconds, as evident from both 

the presented waveforms, and therefore the measured damper parameters, particularly, 

are verified to be sufficiently accurate, to be used to represent the machine’s 

electromechanical behaviour. The overshoots, undershoots and the settling time of the 

calculated and measured waveforms further verify the dynamic accuracy of the model.  

 

Figure 2-16. Calculated and measured stator current waveforms during steady state condition of the 

machine. 

 

 

(a) 

 

(b) 

Figure 2-17. Calculated and measured stator current waveforms during starting (dynamic) condition of the 

machine. (a) Calculated. (b) Measured.   
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2.5     Performance Prediction and Analysis of a LSPMSM through 

Numerical Investigations 

Once the parameters have been obtained and the two-axis model incorporating these 

equivalent circuit parameters has been validated, an exhaustive analysis of various steady 

state and dynamic operating conditions can be conducted. Figure 2-18(a) shows the 

calculated electromagnetic torque (Te) and speed response of the model under DOL 

starting at 240 V, 60 Hz with a constant load torque of 10 Nm and then a step increment 

in load torque (Tl) of 5 Nm is introduced after 1 second. Figure 2-18(b) and Figure 

2-18(c) show the constituent torque component arising from the ‘synchronous’ motor 

action (Tepm) and ‘induction’ motor action, respectively. The induction motor torque 

component (Tedamper) is found to vanish once synchronous speed is reached and is found 

to come into existence during transient stages of starting and/or when a step change in 

load torque is made. Studies of these constituent torque components would allow 

designers to design improved machines for faster starting capabilities under loads by 

apportioning the constituent torques properly.  

Figure 2-19(a)-(b) present the calculated performance of the stator currents (two-axes 

components) and damper currents (two-axes components) when the machine is started 

DOL with a speed- invariant load torque of 10 Nm and then a step increment in load 

torque of 5 Nm is introduced after 1 second. Such current waveforms under different 

loading conditions would help the designers to predict the losses, improve the design and 

also to design the cage in a proper way capable of providing the requisite starting torque 

for an application. An insufficient torque from the cage action may prevent the motor 

from starting optimally with a particular load as this torque is opposed by the torque from 

synchronous motor action at starting. The waveforms are suggestive of the machine’s 

steady state and transient performances under a large perturbation (starting) and a small 

perturbation (change in loading) [64]. 
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(a) 

 

 (b) 

 

(c) 

Figure 2-18. Calculated torque components. (a) Electromagnetic torque. (b) Torque from ‘Synchronous’ 

motor action. (c) Torque from ‘Induction’ motor act ion.    

 

(a) 

 

(b) 

Figure 2-19. Calculated performance of the stator currents (two-axes components) and damper currents 

(two-axes components. (a) Stator currents. (b) Damper currents. 
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2.6     Study of the Magnetization Characteristics of a LSPMSM 

This section puts an effort to elicit the performance of the machine through the machine 

models incorporating and not incorporating the magnetization characteristics. Model A 

incorporates the characteristics and Model B does not. Figure 2-20(a) and (b) show the 

speed, torque and current waveforms obtained through these models at the rated 

condition. Faster synchronization in the machine is obtained from the investigations 

through Model A when compared to that of B.  Better starting performance through 

model A can be attributed towards less oscillations in torque and speed due to the lower 

slope of the saturation curve which limits the oscillations.  

However, the torque and speed oscillations obtained through model B oscillate more 

because no limitation is offered by the unsaturated parameters and the linear 

characteristics. According to [74], the start-up performance of LSPMS motors benefits 

from a large magnetizing inductance whereas the synchronization capability is enhanced 

with a small magnetizing inductance.  

This theory can be validated by the result shown in Figure 2-20(a) and (b). The start-up 

performance of the machine in model A is better than that of B because of the higher 

value of its magnetizing inductance at starting. However, as the machine reaches near 

synchronism, the value of the magnetizing inductances in model A is smaller than that of 

the constant values in model B and this results in faster synchronization of the machine in 

model A. Moreover, as seen in Figure 2-20(b) less energy is consumed from start to 

synchronization, if the magnetization characteristics are incorporated in model A. This 

also leads to reduced starting losses in the machine. Also, the starting current for the 

saturated model is a bit higher than that of the unsaturated model as expected.  
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(a) 

 

 
(b) 

Figure 2-20.  Calculated torque, speed and current waveforms from to start to synchronization near rated 

conditions of the machine with and without incorporating saturation in the machine models.  

 

2.7     Conclusions  

In this chapter, the rotor reference frame model based on Park’s Transformation is 

developed for a PMSM with a damper winding. A novel and yet fundamental 

methodology to determine the parameters of a PMSM with a damper is proposed. 

Experiments have been performed using a developed position sensor and an experimental 

setup on a laboratory LSPMSM and synchronous machine. The parameters are 

determined through a combination of conventional machine theories and innovative 

methods of exciting the windings. The determined parameters have been subsequently 

incorporated into the developed LSPMSM mathematical model based on dq axis rotor 

reference frame theory. Numerical and experimental investigations have been performed 

to validate the determined parameters under both steady state and dynamic conditions of 

the machine. The results obtained from experiments are found to closely match with that 

of the numerical investigations. Hence, the accuracy of the parameters determined is 

claimed satisfactory.  
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Chapter 3   

Dynamic and Steady State Performance 

3.1      Introduction 

3.  

Understanding EV motors and their operating conditions will be beneficial for tailoring 

them for traction purposes. This research focuses on transient performance during high 

speed and high torque operations and also short circuit conditions [75].  

As discussed in the previous section, most EVs use an IPMSM as their traction motor due 

to the large power density, higher efficiency and capability to run over a large speed 

range with an almost constant power output with zero maintenance [76]. These 

synchronous motors for such vehicle applications invariably run under self-synchronous 

mode with rotor position feedback through a pulse-width modulated (PWM) inverter. 

Self-synchronous operation or self-control [77], [78] of the synchronous motor cause the 

drive to be self-starting and rules out the possibility of rotor falling out of step as rotor-

position synchronized switching of the inverter devices always keeps the rotor speed 

synchronous with the exciting currents in the armature [77]. IPMSMs are known to be 

generally designed with an expectation of sinusoidal back EMF distribution [78]. The 

inductances of the armature circuit of the conventional IPMSMs generally provide 

enough filtering to smooth the armature currents into a sinusoidal waveform in response 

to the PWM voltage pulses impressed by the inverter on the armature terminals. Hence, 

torque ripple should be zero if purely sinusoidal currents are injected to a IPMSM with a 

purely sinusoidal back EMF distribution. Conventional wisdom, based on the 

aforementioned reasoning, dictates that dampers are not required in such motors for such 

applications as operation will always be synchronous. Dampers will therefore not be 

required - neither for starting nor for pulling into synchronism for such synchronous 
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motors. This line of reasoning is generally why IPMSMs employed in EVs do not possess 

dampers.  

A LSPMSM, on the other hand, operates without rotor position feedback and in order to 

be self-starting must possess dampers and the design of dampers for such applications 

should be such that they should provide enough starting torque, and at the same time, 

help towards the pull- in phenomenon. Additionally, for such applications, the design of 

the dampers should be such that while drastic load disturbances appear on the system and 

the transient operation of the machine becomes asynchronous, the dampers should help in 

increasing the transient stability limit of the machine. Hence, substantial research to 

investigate the role of dampers for LSPMSMs has been conducted [60, 79, 80].  

Similarly, for any permanent magnet synchronous generator (PMSG) which does not 

operate under rotor position feedback, dampers come into play during the transient 

asynchronous durations and help in restoring stability. The damper design for such 

applications has thus far solely concentrated on restoring transient stability [81, 82]. 

To the best of the authors’ knowledge, publications to date have not yet investigated the 

performance of an IPMSM incorporating dampers bars for an EV application.  

3.2     Motor Drives in Electric Vehicles 

Most of the PMSMs on-board commercially available EVs have either a distributed or 

concentric winding arrangement in their stators and permanent magnets in their rotor. 

They are mostly three-phase (IPMSMs) driven with a maximum torque per ampere 

(MTPA) control strategy [10]. The DC link voltage of the three-phase self-controlled 

voltage source converter (VSC) driving the traction motor for such a vehicle remains 

constant and the inverter runs with under-modulation in the low-speed region and with 

over-modulation in the high-speed region of operation of the motor drive [11]. As the  

speed becomes progressively higher, the back EMF of the motor keeps increasing, and 

over a certain speed, the inverter starts operating as a pure square wave inverter, 

impressing a six-stepped phase voltage at the motor terminals. For EVs, this mode of 

operation can continue for a long time. As this mode of operation also calls for speed 

control, it is performed by the speed controller of the drive by adjusting the phase angle 
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of the six-stepped phase voltage waveform with respect to the back EMF of the 

corresponding armature phase, as dictated by the MTPA control strategy[78].   

3.3     Case Study for Illustrating Repeated Overmodulation 

Operation Periods in an IPMSM Drive 

The detailed specification of a commercially available vehicle used as case study for this 

research is shown in Appendix B. The vehicle has an IPMSM with maximum output 

power of 50 kW between 1,200 and 1,540 r/min and maximum torque of 400 Nm 

between 0 and 1,200 r/min. The combined output of the engine and motor is 82 kW at 85 

km/h and higher, the maximum torque at 22 km/h or lower is 478 Nm. A Nickel-metal 

hydride battery pack with a nominal voltage of 201.6 V and output power of 21 kW is 

used as the electrical storage unit [83, 84]. The detailed data collected from a 

performance-mapping test of a 2004 Prius subsystem is presented in Appendix C [84].  

The DC-DC converter, shown in Figure 3-1, is connected between the battery pack and 

the inverter to maintain the input voltage to the inverter at a level of 500 V. The three-

phase voltage source Inverter (VSI) shown in Figure 3-1 is switched based on space 

vector pulse width modulation (SVPWM).  The magnitude and frequency of the AC 

output depend on the reference voltage space vector and for the PWM.  

 

Figure 3-1. Diagram of electric components of an HEV powertrain. 

Three-phase Voltage Source Converter 

Controller 
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The fundamental frequency voltage magnitude increases proportionally with the 

reference voltage space vector magnitude in undermodulation (linear) region. With 

further increase in the required voltage level, the overmodulation mode is encountered. In 

this mode, the voltage magnitude no longer varies in proportion with the reference 

voltage and a saturation emerges. Finally, beyond another point, the controller loses its 

control over the voltage amplitude and PWM degenerates into a square wave inverter 

waveform. With a given DC link voltage, the output line-to- line voltage fundamental rms 

value becomes fixed at  0.78Vdc. 

As seen in Table C-1, when the speed and torque of the motor are low such as data sets 1-

1, 1-2, 2-1, etc., the output voltage level depends on the reference voltages. As the speed 

increases, in sets 4-3, 5-1, 6-1, etc., the output voltage exceeds the linear region and the 

inverter operates in 180 degree conduction mode. As indicated from Table C-1, for a 

large number of operating conditions, the motor is controlled by a self-controlled, rotor 

position synchronized square wave inverter during which the harmonic components of 

the voltage signal are significantly high and the torque response depends mainly on the 

load angle command set to the inverter.  

3.4     IPMSM Drives for EV Application 

Due to the variable speed and torque requirement of the traction application, a rotor 

position synchronized inverter is necessary to condition the current and voltage to control 

the motor (Figure 3-1) torque. Inverter switching is controlled to provide desired output 

voltage at a certain frequency synchronized with the speed of the electric motor. The 

inverter has to act depending upon the magnitude, phase, and frequency of the output 

voltages and currents.  

3.4.1     Modeling of a Three-phase Voltage Source Inverter  

The topology of a three-phase voltage source inverter is shown in Figure 3-1. The 6 

switches are numbered based on their switching sequences. Top switches are odd 

numbers and bottom switches are even number and no two switches of the same leg will 

be on at a time [85]. The switching for leg a is represented with Boolean variable Sa : Sa = 
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1 signifies top switch of leg 1 is gated on; Sa =0 signifies bottom switch of leg 1 is gated 

on. Similarly Sb and Sc are defined for the other two legs.  

With respect to the three switches, if Vdc is the DC link voltage of the voltage source 

inverter,  the three-phase voltages of the inverter with respect to the load neutral in terms 

of switching action can be expressed as:  
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The line voltages of the inverter is:  
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As seen from the voltage equations, the output AC voltage of the VSI depends only on 

the switching action, provided the DC link voltage is set to a particular value. In a square 

wave inverter the IGBTs of the inverter are switched on in sequence at every 60 degree 

interval and each switch is kept on for 180 degrees and then off for 180 degrees as. Three 

switches are gated at a time, either one at the top and two at the bottom or two at the top 

and one at the bottom.The phase voltage changes between 2Vdc/3, Vdc/3, -Vdc/3 and -

2Vdc/3 and the difference between phases is 120 degrees. The output voltage waveform 

does not depend on the load and contains low order harmonics. From Fourier analysis, 

the peak values of the fundamental frequency and harmonic components in the inverter 

output waveform can be obtained for a given input Vdc as [85]: 
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where the harmonic order h takes only odd values.  
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3.4.2     Experimental Implementation of a Square Wave Inverter 

Driven LSPMSM 

In order to verify the role of dampers in a PMSM intended for electrified vehicle 

application, it is required to have a PMSM with damper bars, which conventional 

PMSM’s do not have. A line-start PMSM was available in the laboratory and the damper 

which are integral with such a machine initiated the investigation of the effects of 

dampers. This LSPMSM has been run in the self-controlled mode (with rotor position 

feedback) through a three-phase square wave inverter. The dq axis model and its 

parameters for this LSPMSM have already been derived and experimentally validated by 

a novel technique in Section 2.3.  

The test machine (motor) is equipped with a low cost position sensor indicating the 

position at every 60 degrees and is coupled with a DC machine (operating in the 

generator mode) as load. A three-phase IGBT inverter stack is used as the voltage source 

inverter, and a TMS320 series digital signal controller is used to provide rotor position 

synchronized gate signals based on a 180 degree conduction scheme to actuate the 

inverter. A photograph of the whole arrangement as made in the laboratory is shown in  

Figure 3-2.  

 
 

Figure 3-2. Laboratory PMSM driven by rotor-position synchronized square wave inverter.  
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 (a) 

 

 
(b) 

Figure 3-3. Calculated and experimental voltage and current waveforms of the LSPMSM driven by a 

square wave inverter. (a) Calcu lated: ―vab, ―ia. (b) Experimental: ― vab, ― ia.  

The calculated results, as per the previously derived dq axis model and its parameters 

[64], and experimental results of the described drive are presented in Figure 3-3 for a 

particular load angle. The DC link voltage is set as 132 V and the load angle δ is 

controlled to be 60 degrees. The machine settles at a speed of 1125 r/min. The simulated 

result closely manifests the distortion in the current waveform that is seen in the 

experiment due to the squirrel-cage damper in the LSPMSM. The amplitude of simulated 

current has been found higher than the experimental one for all ca ses of set loads and 

load angles for which the drive is run, because the mechanical and core losses are 

neglected in the calculations. Instantaneous current flowing into the machine armature is 
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considered positive in the presented waveforms. The fact that the actual operating load 

angle is equal to the set one in the simulation and the experiment is verified by comparing 

the phase of the terminal line to line voltage with the phase of the corresponding back 

EMF, which is obtained by calibrating the rotor position sensor [64].   

The calculated and experimental results show similar characteristics thus establishing that 

the developed model of the rotor-position-synchronized, square wave inverter driven 

LSPMSM, characterized by its dq equivalent circuit resistance and inductance parameters 

satisfactorily describes an interior PMSM with dampers under steady state and dynamic 

conditions. Thus, this model is henceforth employed to study the effect of dampers in the 

performance of the drive, by changing its damper parameters in an iterative procedure.  

3.5     Comparative Analysis of Dynamic and Steady State 

Performance  

When a sudden change in the applied voltage at the stator terminals occurs, in the dq 

equivalent circuits shown in Figure 2-8, the branches containing the damper parameters 

become operative. They remain operational in the circuit until a steady state condition is 

reached. During this dynamic condition, the damper RL branch comes in parallel with the 

magnetising reactance. The equivalent impedance of the parallel branch is lower than the 

magnetizing reactance resulting in a low value of net impedance viewed from the d- or q-

axis stator terminals. This low impedance across the stator terminal causes larger 

overshoots in the current when compared to a machine without the damper.  

When a damper branch is paralleled across Lmd or Lmq, an additional resistance is present 

in the parallel branch which causes the equivalent resistance of the circuit to also reduce. 

However, the practical values of damper parameters employed are such that, the net 

decrease in L is much more than the net decrease in R. Hence the net time constant 

reduces resulting in a faster dynamic response.  
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TABLE 3-1. SAMPLE STEADY STATE AND DYNAMIC PERFORMANCE OF THE EXISTING AND PROPOSED 

MACHINES (STATOR RESISTANCE TO DAMPER RESISTANCE RATIO – 3:2, STATOR LEAKAGE INDUCTANCE TO 

DAMPER LEAKAGE INDUCTANCE RATIO – 1:1) 

Load   

Angle 

 Original on-board 

EV motor 

Proposed on-board EV 

motor with a damper  

30° 

Speed (r/min) 3951 3952 

Torque Ripp le (%) 14 64 

Stator Current (A) 47.1 47.1 

THD in Current (%) 11.1 66.8 

40° 

Speed (r/min) 5579 5577 

Torque Ripp le (%) 14 36 

Stator Current (A) 61.7 61.7 

THD in Current (%) 5.8 36.6 

Transition 

Transition Time (s) 1.255 0.59 

Peak Electromagnetic Torque (Nm) 90 340 

Peak Stator Current (A) 76 255 

 

TABLE 3-2. SAMPLE STEADY STATE AND DYNAMIC PERFORMANCE DATA OF THE PROPOSED MACHINE 

WITH A DAMPER KEEPING STATOR TO DAMPER RESISTANCE RATIO OF 1:1 AND VARYING THE STATOR TO 

DAMPER LEAKAGE INDUCTANCE RATIO 

Load   

Angle  

Stator to Damper Leakage Inductances Ratio  

3:1 2:1 1:1 1:3 1:5 1:10 

40° 

Speed (r/min) 5584 5580 5576 5572 5571 5570 

Torque Ripp le (%) 64 50 32 22 16 14 

Stator Current (A) 61.5 61.6 61.6 61.6 61.6 61.6 

THD in Current (%) 56.6 48.6 35.9 79.6 13.4 9.8 

Transition 

Transition Time (s) 0.88 0.901 0.898 0.885 0.853 0.847 

Peak Electromagnetic 

Torque (Nm) 
480 430 334 200 150 125 

Peak Stator     

Current (A) 
373 410 317 155 142 118 

 

TABLE 3-3. SAMPLE STEADY STATE AND DYNAMIC PERFORMANCE DATA OF THE PROPOSED MACHINE 

WITH A DAMPER KEEPING STATOR TO DAMPER LEAKAGE INDUCTANCE RATIO OF 1:5 AND VARYING THE 

STATOR TO DAMPER RESISTANCE RATIO 

Load    

Angle  

Stator to Damper Resistance Ratio 

3:1 2:1 1:1 1:3 1:5 1:10 

40° 

Speed (r/min) 5575 5572 5571 5570 5570 5570 

Torque Ripp le (%) 18 16 16 16 16 16 

Stator Current (A) 61.6 61.6 61.6 61.6 61.6 61.6 

THD in Current (%) 13.4 13.4 13.4 13.4 13.4 13.4 

Transition 

Transition Time (s) 0.424 0.499 0.853 1.022 1.151 1.188 

Peak Electromagnetic 

Torque (Nm) 
155 150 150 160 159 145 

Maximum Stator     

Current (A) 
143 142 142 121 121 114 
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3.5.1     Investigation of the Effects of Damper Parameters in 

Dynamic and Steady State Performance 

In order to further study the effect of a damper on an IPMSM to consider it for EV 

application, the developed and validated model is used to simulate a 50 kW on-board EV 

motor with emulated dampers, the equivalent circuit parameters of which are given in 

Appendix D [86]. The measured parameters of the LSPMSM are utilized as the starting 

point of this investigation. The LSPMSM has a symmetrical squirrel cage, and therefore 

the equivalent circuit parameters in d-axis equal to that in q-axis. The ratio between the 

stator resistance and damper resistance is 3:2, and the ratio between the stator leakage 

inductance and rotor leakage inductance is 1:1 [64]. 

 
(a) 

 
(b) 

Figure 3-4. Current waveforms of the machines investigated driven by a square wave inverter with rotor 

position feedback at a load angle of 40°. (a) Orig inal on-board EV motor. (b) On-board EV motor with a 

damper parameters corresponding to Table II.  
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Figure 3-5. Current waveform of the finalized EV motor with a damper having a stator to damper 

resistance ratio of 1:1 and stator to damper leakage inductance ratio of 1:5.  

The steady state and dynamic performance of the on-board EV motor and the proposed 

on-board EV motor with emulated damper parameters of the same stator to damper ratio 

as that in the LSPMSM is investigated first to understand the role of dampers in high 

speed region of the EV motor. Both machines are driven by a square wave inverter with 

rotor feedback, which initially controlled the machine with a load angle of 30° and later 

changes to a load angle of 40° after the speed reaches steady state. Load torque kept 

constant at 50 Nm. The DC link of the inverter is also kept constant at a level of 500 V. 

The values of the major electrical and mechanical variables are presented in Table 3-1. 

As seen from Table 3-1, for both machines, the final speeds of the machines are 

determined by the load angle. The speed increases when the load angle increases. 

Because of the distortion in the terminal voltage, now containing lower side band 

harmonics, the phase current has high distortion, and causes higher torque ripple in the 

machine. The distortion is more at lower speed than that at higher speed. The current 

waveforms of both machines at a load angle of 40° is shown in Figure 3-4. 

The maximum current and torque of the machines during transition from one steady state 

speed to another are greatly influenced by the damper. It can be seen from the transition 

time, (defined as the time for the speed to reach 90% of the steady state value) that by 

adding a damper, the machine responds faster to changes and restores to a new steady 

state faster. This fast dynamic response is desired in an EV application. The final speed 

of the machine is not reduced appreciably with the added damper. The fundamental 
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current amplitude is not affected by the damper either. However, the damper increases 

the distortion in current and consequently increases the torque ripple significantly. As a 

result, it is necessary to design a damper for traction motors in order to improve dynamic 

performance as well as keeping satisfactory steady state performance.  

Further studies to investigate the effect of damper on machine performance have 

therefore been performed to understand the role of damper in IPMSM for EV application. 

The operation conditions are kept same as mentioned previously.  

Firstly, the ratio between stator resistance and damper resistance is kept constant as 1:1, 

and the ratio between stator leakage inductance and damper leakage inductance is varied 

as shown in the cases presented in TABLE 3-2. The steady state evaluations are only 

shown at a load angle of 40° as the trend at lower speed can be inferred from Table 3-1. It 

can be elicited from TABLE 3-2 that, given a resistance, the current distortion reduces as 

the damper leakage inductance increases. The current overshoot of the motor is more 

significant with smaller rotor leakage inductances. However, the response time remains 

almost same.  

 
Figure 3-6. Calculated stator current of the original PMSM without a damper and proposed PMSM with a 

damper under a sudden increase in load angle. (a) Without damper. (b) With damper.  
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Figure 3-7. Calculated developed electromagnetic torque of the original PMSM without  a damper and 

proposed PMSM with a damper under a sudden increase in load angle. (a) Without damper. (b) W ith 

damper. 

 
Figure 3-8. Calculated developed speed of the original PMSM without a damper and proposed PMSM with 

a damper under a sudden increase in load angle.  

Based on the performance analysis in Table 3-2, a stator to damper leakage inductance 

ratio of 1:5 is selected for the analysis of the effect of damper resistance as it yields the 

most satisfactory performance out of the considered cases. From the results shown in  

Table 3-3, the system response time is marginally different with different values of 

damper resistance. Moreover, the distortion in the current and torque ripple, the 

overshoot of current and torque during transition do not change significantly with the 

rotor resistance.  It can be inferred from Table 3-2 and  
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Table 3-3 that the improvement of transition time with a damper is mainly determined by 

the damper resistance. The harmonic components and the overshoot during transient 

conditions are influenced largely by the damper leakage inductance. Figure 3-5 illustrates 

the current waveform of an emulated machine with a stator to damper resistance ratio of 

1:1 and stator to damper leakage inductance ratio of 1:5. It can be seen that the waveform 

quality is significantly improved compared the current waveform of the machine with a 

line-start damper. The damper parameters will also influence the equivalent line 

inductances during integrated charging operation, further details of the damper effect will 

be presented in later section of this study. Based on the requirements, the damper 

parameters are decided and shown in Appendix D. However, investigation to select the 

optimized damper parameters considering traction and integrated charging 

simultaneously is of great importance and viewed as a future scope of this research.  

3.5.2     Investigation of Dynamic Response with Change in Load 

Angle 

The damper parameters of the dq equivalent circuit of the finalized EV motor with a 

damper are chosen based on the previous investigation keeping in mind both the transient 

response and steady state performance. An operating condition is considered, when the 

DC input to the inverter is 500 V and the machine is operating under a constant load 

torque of 50 Nm. Both machines initially operate with a load angle of 30° and at steady 

state speed of 4,000 r/min. At the time instant of 5 seconds from start, the load angle 

increases to 40º. Due to the paralleled effect of the damper, the phase current in the 

machine with a damper shown in Figure 3-6(b) rises to a higher value in a shorter amount 

of time compared to the phase current of the IPMSM without a damper shown in Figure 

3-6(a). As a result of the transient response of the current, the peak electromagnetic 

torque developed in the machine with a damper shown in Figure 3-7(b) is higher than that 

of the original machine presented in Figure 3-7(a). The corresponding speed responses of 

the two machines are given Figure 3-8.  As the torque response of the finalized EV motor 

with a damper is faster, speed of that motor also settles faster for the same load torque as 

evident from Figure 3-8.  The torque and speed of the machine with a damper definitely 

shows a better dynamic response compared to the original machine. Figure 3-9 to Figure 



 

66 
 

3-11 represent the stator current, electromagnetic torque and speed of the original PMSM 

and the proposed machine with a damper under a sudden decrease of load angle from 40º 

to 30º. The torque and speed of the machine with a damper also shows a better dynamic 

response compared to the original machine.  

 

 

Figure 3-9. Calculated stator phase current of the original PMSM and proposed PMSM with a damper 

under a sudden decrease in load angle. (a) Without damper. (b) With damper.  

 
Figure 3-10. Calculated developed electromagnetic torque of the original PMSM and proposed PMSM 

with a damper under a sudden decrease in load angle. (a) Without damper. (b) W ith damper.  
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Figure 3-11. Calculated speed of the original PMSM and proposed PMSM with a damper under a sudden 

decrease in load angle. 

 

Figure 3-12. Response of machine phase current during a three-phase symmetrical short circuit fault.  
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peak let-through current versus prospective short circuit current characteristic curves, and 

I2t characteristics [87].  

Considering the machine is operating with a constant load torque of 100 Nm and at a 

speed of 4,000 r/min, a three-phase symmetric fault is initiated at the machine terminal. 

The calculated currents for the original EV motor without a damper and the finalized EV 

motor with a damper are shown in Figure 3-12. It can be seen that the overshoot is more 

and rise time is less in the machine with the damper. This feature will cause the fuse to 

blow off faster in case of the machine with a damper, thus, saving the machine.  

3.6     Conclusion 

In this chapter, results of experimental testing of an in-house hybrid electric vehicle are 

presented and the necessity of improving dynamic performance is justified through 

experimental data.  Experiments were performed on a square wave inverter driven 

LSPMSM and the developed motor and drive model were verified. The improved 

performance is shown through the comparison of calculated results based on a 50 kW 

IPMSM with and without a damper. It is shown that the IPMSM with a damper is 

effective in improving the dynamic performance during high speed operation and short  

circuit response without significantly compromising the steady state performance. 
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Chapter 4   

Three-phase Integrated Charging  

4.1     Introduction 

4.  

Next generation electric vehicles (EV) and plug- in hybrid electric vehicles (PHEV) with 

vehicle-to-grid (V2G) and grid-to-vehicle (G2V) integration capability call for advanced 

research and development on charging strategies. The integration of such large number of 

vehicles, would leave a huge stress on the stability of the power system especially 

vehicles with single-phase on-board chargers [69]. A three-phase charger which imposes 

balanced loading on the utility and also ensures high power quality and power output is 

an excellent option for EV charging. However, due to the weight and size, three-phase 

chargers are generally off-board and comparably more expensive than single-phase ones. 

The traction motor and power electronics converters can be reconfigured to make on-

board three-phase charging feasible. IPMSMs are the most common traction motor in 

existing EVs, however, due to the salient nature of the rotor, the self inductances and 

mutual inductances values depend on the rotor position [39]. By adding a damper, the 

‘salient’ nature can be compensated by the damper cage, and the machine windings can 

be considered as three equal inductances when connected in series with the grid for 

charging purposes.  

4.2     Investigation of a Single-phase On-board Battery Charger 

for an Electric Vehicle 

 

As the leading names in auto industry compete to market high performance hybrid 

vehicles, Canadian consumers now have a wide selection of plug-in hybrid/electric 

models to choose from. Federal programs and incentives such as Automotive Partnership 
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Canada (APC), ecoAUTO rebate program, ecoTECHNOLOGY for vehicles program and 

ecoENERGY for personal vehicles program are encouraging consumers to convert to 

electrified transportation. The Government of Ontario's vision to have one out of every 

twenty vehicles to be electrically powered by 2020 is also a commercial boost to the 

alternative vehicle sector [88]. 

However, one has to notice that all plug- in and electric vehicles have to be charged from 

the existing grid. Utility companies would feel the heat in the future as these vehicles 

would leave an impact on the distribution grid as the new age of distributed generation in 

transportation electrification arises through the vehicle-grid and grid-vehicle concepts.  

These vehicles connected simultaneously to the grid, consume a large amount of 

electrical energy and this demand of electrical power can lead to extra large and 

undesirable peaks. Also, the power quality problems such as poor power factor, higher 

total harmonic distortion (THD) during charging and discharging may cause equipment 

malfunction and component failures [89, 90]. In addition, electrical distribution systems 

are normally of the three-phase four-wire type, allowing loads and renewable energy 

sources to be connected either at line-to- line or line-to-neutral. These are usually 

arranged in order to result in a balanced power distribution across the three-phases. 

However, when a single-phase battery charger converter, with a relatively larger output 

impedance of the low pass filter, is connected to  the grid, a large voltage imbalance 

might appear [91].  

 
Figure 4-1. The in-house electric vehicle with a single-phase battery charger under consideration in the 

experimental investigations. 
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(a) 

 
 (b) 

Figure 4-2. Grid current and voltage waveforms for the single-phase battery charger under consideration. 

(a) Low charging current. (b) High charging current. 

In order to study the quality of voltage and current profiles during charging of the battery, 

experiments were performed using a battery electric vehicle shown in Figure 4-1. The 

current profile, voltage profile, total harmonic distortion and displacement power factor 

were measured using a Tektronix 2024 digital storage oscilloscope and a Fluke 434 

power quality analyzer connected across the terminals of the on-board single-phase 

battery charger over a period of time. The measured waveforms of current and voltage 

are as shown in Figure 4-2(a) and (b) for two different states of charging. From Figure 

4-2, it can be observed that the applied voltage across the charger terminals has almost a 

sinusoidal waveform and the displacement power factor is very close to unity. However, 
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the amount of harmonics inserted into the current waveform is rather high ( in regards to 

the IEEE 519 power quality standard) at lower levels of charging current under ‘trickle’ 

mode, as evident from Figure 4-3(a). This is typical of the single-phase PWM rectifier 

based resistor-emulating DC-DC converter [92].  

As discussed in the previous section these harmonics injected into the system might cause 

detrimental effects on the distribution grid’s transformers and feeders. Also, the battery 

charger readily fitted on-board takes around 8 hours to charge the battery from 0% to 

100% SOC. Figure 4-3(a) and (b) show the measured total harmonic distortion (THD) 

and the harmonic spectrum of the current waveform [69]. 

  
(a) 

   
 (b) 

Figure 4-3. Measured THD and the harmonic spectrum of the current waveform. (a) Low charg ing current. 

(b) High charging current. 
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Figure 4-4. Overall block diagram of the three-phase bi-direct ional charger. 

4.3     Integrated Charger Using Traction Components 

Understanding the merits and demerits of the chargers proposed previously, an efficient 

charger should have high output power, balanced AC side loading, fast dynamic response 

without overshoots and undershoots, bi-directional power flow capability, unity power 

factor and very low harmonics. High performance three-phase battery chargers at higher 

power levels employ a two stage power converter system consisting of a grid side two-

level IGBT based voltage source converter (VSC) and a two quadrant buck-boost current 

controlled DC-DC converter at the battery side. The DC-DC converter is employed to 

control the charging rate for its optimal performance and the grid side VSC is employed 

to ensure that the power factor at the point of common coupling (PCC) can be ideally 

maintained at unity, thereby maximizing the power flow in either direction. The grid side 

VSC is generally controlled by adopting a technique very similar to the field-

oriented/vector control of electrical AC machines [93]. Figure 4-4 demonstrates the 

topology of an integrated charging system with additional relay/contactors on the 

machine windings. In traction mode, switches Sab and Sbc are closed to form a single 

neutral point of machine, while in charging mode, switches Sa, Sb and Sc are closed to 

connect the windings to the grid so that the machine inductors act as part of a boost 

rectifier for G2V operation. Due to electric motor construction, a magnetic coupling 

exists between the three inductances, because of this coupling and the buried magnets 

rotor structure of IPMSM, the equivalent impedances in the thee phases at stand-still 

condition are not equal and depend on the rotor position [39].  
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(a)    

 
(b) 

 
(c) 

 
(d) 

Figure 4-5. Stator voltage and current of an IPMSM at stand-still condition. (a) Terminal phase voltage. (b) 

Terminal current when θ r = 0°. (b) Terminal current when θ r = 60°. (c) Terminal current when θ r = 90°. 
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Figure 4-6. The rms value of the induced current in abc phases with respect to rotor position θr for a given 

line voltage of 15 V.  

 

(a) 

 

(b) 

Figure 4-7. Equivalent circuit of an IPMSM with a damper under b locked rotor condition. 

 

 

 

 

 

Figure 4-8. Per phase equivalent circuit of an IPMSM with a special damper.. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-9. Stator voltage and current of an IPMSM with a special damper at stand-still condition. (a) 

Terminal phase voltage. (b) Terminal current when θr = 0°. (c) Terminal current when θr = 60°. (d) 

Terminal current when θr = 90°.  
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In order to understand the machine equivalent inductance at standstill, an IPMSM under 

block rotor condition with a three-phase balanced voltage of 15 V line to line is studied 

and the results are presented in Figure 4-5. It is clear from the current waveforms at three 

different rotor positions that the magnitudes of the currents in the three-phases are not 

equal and are varying with θr. This is because of the unequal values of the self 

inductances of each phase and mutual inductances between phases in an IPM machine. 

The relationship of the rms value of the phase current and θ r is shown in Figure 4-6. 

Therefore, if an IPMSM is connected for integrated charging, the impedance of each 

phase is not equal and the three-phase charging will be drawing unbalanced current from 

the grid side causing a hazardous neutral current in the grid. By adding a damper, the 

unbalanced condition can be mitigated significantly. Referring to the equivalent circuit 

shown in Figure 2-8, under blocked rotor condition (ωr=0), the equivalent circuit can be 

simplified as shown Figure 4-7. As shown in previous studies, because of the difference 

in the d and q axes parameters of the machine, the inductances in three-phases vary with 

rotor position. If the damper is designed such that the equivalent inductances in the 

parallel branches of d and q axes are equal, the saliency effect created by buried magnets 

will be canceled by the damper circuits. The machine can be represented by a per phase 

equivalent circuit as shown in Figure 4-8. In other words, when switches Sa, Sb and Sc in 

Figure 4-4  are connected for charging operation, the equivalent impedances on the three 

lines are equal and therefore will draw balanced current from the grid.  

4.4     Real-time Control Strategy of the Integrated Charger 

Converter 

4.4.1     Bidirectional DC-DC Converter  

The rating of the integrated battery charger system with bi-directional power flow 

capability considered is 10 kW. A maximum controlled charging current of +/- 20 A at 

500 V DC level has been considered to be ultimately drawn from or feeding to the three-

phase 60 Hz, 208 V AC grid, depending on the direction of power flow.  The current 

controlled bidirectional DC-DC converter at the battery end operates in two-quadrants, 

where the voltage polarity does not change but the DC current polarity should change 
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depending whether it is a G2V or V2G application. The direction of average power flow 

or current for G2V application has been considered positive in the calculations and 

analysis, and hence negative for V2G application. For G2V operation, the DC-DC 

converter acts as a current-controlled buck chopper and for V2G case, it acts as a current-

controlled boost chopper. 

The vehicle in this study has six lead acid batteries rated at 12 V and 100 Ah each. The 

voltage at the low voltage side is considered to be varying from 60 V to 360 V and a 

current output range from 25 A to 150 A to cater to a range of vehicles varying from the 

in-house battery electric vehicle (BEV), Mitsubishi iMiEV and Nissan Leaf which have 

fast charging capability. The switching frequency employed for the converter is 10 kHz 

considering a power throughput range of around 10 kW. The topology of the bidirectional 

DC-DC converter is shown in Figure 4-4 and the control of the IGBT's Ta and Tb should 

be such that the battery is able to be charged or discharged as per requirement. When the 

battery is to be charged, i.e. power has to flow from the DC bus side to the battery side, 

the IGBT Tb should permanently remain off and the IGBT Ta has to be periodically made 

ON and OFF by a PWM strategy. The converter will act as a buck chopper with Ta and 

Db as the active devices. Similarly, when the batteryis discharged, the IGBT Ta should 

permanently remain off and the IGBT Tb should be periodically made ON and OFF by a 

PWM strategy, so that the converter will act as a boost chopper with Tb and Da acting as 

the active devices.  

Generally, the mode of charging and discharging of any battery depends on the SOC 

level. the two most common modes are: (i) Constant current mode of charging, at low 

levels of SOC, i.e. terminal voltage of battery becomes too low and, (ii) Constant voltage 

mode of charging, when terminal voltage of the battery has almost come up to its rated 

value. 

A DC-DC converter is inherently nonlinear due to its switching devices. In order to 

design a controller with existing linear control system tools to obtain required steady state 

and transient responses, the power stage including the output filter has to be linearized 

using the state-state averaging method [94, 95]. As the main focus of this study is DC fast 

charging of electric vehicle, analysis is presented here only for the adjustable current 
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charging mode. Therefore, the transfer function G1(s) of the power stage reflects the 

relation between output current and duty ratio and is given in (2.57).  
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                  (2.57) 

batteryi  and 1d  represent small AC disturbance of the output current and duty ratio of the 

converter respectively. R1 is considered as a conceptual output resistor (output power 

equivalent) to represent the load effect of the battery. L1 and C1 are the filter inductor and 

capacitor of the DC-DC converter. RC1 and RL1 are the internal resistances of the filter 

inductor and capacitor. As shown in the system transfer function in (2.57), the system 

response changes as the load resistor i.e. charging/output power varies. The converter 

frequency response under power outputs of 4 kW, 6 kW, 8 kW and 10 kW is shown in 

Figure 4-10. During discharging, the battery side is the input end of the DC-DC converter 

and the high voltage DC link is the output. Similar to the charging case, the state-state 

averaging method is applied to model the power stage including the output filter [94, 95]. 

The transfer function G2(s) of the power stage that reflects the relation between input 

current and duty ratio is: 
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(2.58) 

where batteryi and 2d represents small AC disturbance of the output current and duty ratio 

of the converter during discharging. C2 is the total capacitance and rC2 is the total ESR at 

the DC link. R2 is considered a fictitious output resistor to represent the input effect of the 

battery discharging to the grid. The system response changes as the load resistor i.e. 
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output power and duty ratio varies. The converter frequency response under battery 

discharging power of 4 kW, 6 kW, 8 kW and 10 kW is presented in Figure 4-11. 

The models of the two converter power stages have been formulated, and their Bode plots 

are presented in Figure 4-10 and Figure 4-11. Based on these models, the current 

regulator system for the bidirectional DC-DC converter is illustrated in Figure 4-12. G1(s) 

and G2(s) represent the converter power stages during charging and discharging as shown 

in (2.57) and (2.58). The pulse width modulation results in an additional constant gain 

which is represented as the pulse width modulator in Figure 4-12. It is incorporated with 

each of the transfer functions for the two converter power stages [94]. PI (proportional-

integral) controllers, denoted as Gc1(s) and Gc2(s), are employed for the DC-DC 

converters. The proportional gain and the integral gain for these two controllers are 

obtained using the methodology mentioned below: 

 
Figure 4-10. Converter frequency response. (a) Gain plot of DC-DC converter at different battery charging 

power in dB. (b) Phase plot of DC-DC converter I at different output power, i.e. phase angle in degrees.  
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Figure 4-11. Converter frequency response. (a) Gain p lot of DC-DC converter  at battery discharging 

power in dB. (b) Phase plot of DC-DC converter I at varying output power, i.e . phase angle in degrees.  

 

 

Figure 4-12. Current regulator system small-signal model of the DC-DC converter in the battery side.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-13. DC-DC converter response during G2V operation at different power level.  
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(a) 

 
(b) 

 
(C) 

 
(d) 

Figure 4-14. DC-DC converter response during V2G operation at different power levels. 
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For each DC-DC converter, the gain crossover frequency (GCF) of the total forward path 

transfer function (consisting of the controller, PWM modulator and the DC-DC converter 

power stage) is chosen as one-tenth of the switching frequency of the respective 

converter. The highest value of GCF, which is obtained for multiple steady state 

operating points, about which perturbations are introduced, is finally taken.  A phase 

margin of 55 degrees is chosen for the total open loop forward path transfer function for 

each of the operation mode of the DC-DC converter. 

The battery is modeled as a constant DC source in series with an internal resistance. The 

high voltage side of the DC-DC converter is initially charged to a voltage level of 500 V 

using the VSC connected to the grid. After the high voltage DC link is established, 

depending on the switching strategy explained earlier, the DC-DC converter will 

facilitate G2V or V2G operations.  The waveforms illustrated in Figure 4-13 and Figure 

4-14 depict the operation of the bi-directional DC-DC converter during charging and 

discharging at different power throughput levels. The initial battery voltage is considered 

200 V for both cases. At the time instant of 0.8 sec, 1.1 sec, 1.4 sec a nd 1.7 sec, the 

reference charging/discharging current of the battery is set to be 20 A, 30 A, 40 A and 50 

A for a power level of around 4 kW, 6 kW, 8 kW and 10 kW respectively.  

Figure 4-13(a) is the DC link voltage. Before the time instant of 0.8 sec, the DC link 

voltage is maintained as 500 V by the grid side converter acting as a three-phase rectifier. 

At every instant that the output power of the DC link increases, the voltage drops slightly 

due to the dynamics of the controller and quickly regains to the set value. Figure 4-13(b) 

is the average output current from the DC link to the battery.  The current amplitude 

depends on the load power demand of the battery and it is used to generate the reference 

d-axis current control. Detailed controller design will be explained in the next section.  

Figure 4-13(c) and (d) are the battery voltage and current during charging. The current is 

positive as the defined positive direction is from grid to vehicle. The controller has 

excellent dynamic and steady state performance as the actual current reaches the 

reference in a short time with no steady state error. Figure 4-14 shows voltage and current 

waveforms of the bidirectional DC-DC converter which acts as a boost converter to 

transfer power from the battery (low voltage) side to the DC link (high voltage) side 



 

85 
 

during vehicle to grid operation. It can be seen that initially the voltage is set to be 500 V 

before the battery sends power to the grid. At the instant that the battery output current 

increases, the DC link voltage rises due to the dynamics of the system and quickly returns 

to the reference level maintained by the grid side VSC. The battery current is negative, 

opposite to the defined positive direction of the current, which means the current is 

flowing from the battery side to the grid side. The voltage ripple on the battery side of the 

bidirectional DC-DC converter, i.e. ΔVC1, is smaller than 5% of the maximum battery 

voltage and the inductor ripple current, i.e. ΔIL1, is 20% of the battery current, which 

satisfy the battery charging/discharging requirement states in [95].  

4.4.2     Bidirectional DC-AC/AC-DC Converter 

 

The IGBT-based VSC has a bank of electrolytic capacitors (equivalent capacitance C) at 

its DC side and a bank of AC chokes (Rs and Ls represent the loss-emulating component 

and the inductance value of each choke) connected between its AC side and the grid. This 

arrangement makes the VSC act as a boost converter, whose DC link voltage would be 

controlled at 500 V DC, which is much greater than the peak of the AC side line-to- line 

voltage. A 20 A DC current at 500 V corresponds to 27.76 A line current at the 208 V 

AC side at unity power factor, which will be maintained by properly controlling the 

switching of the IGBTs of the VSC [68, 69]. Total Harmonic Distortion (THD) in the 

current is expected to be within 5% as per IEEE 519 standard.  

The analysis and the real-time control strategy is based on the decoupled dq theory [96] 

in Park’s reference frame, as is generally done for achieving high performance control of 

AC electrical machines. An equivalent star-connected system is assumed. The voltage 

equations for the circuit consisting of the grid, the AC choke and the AC side terminals of 

the VSC (Figure 4-4) in the synchronously rotating dq frame, based on the Kirchoff’s 

voltage law are: 

std
sd s std s s stq cond

di
v R i L L i v

dt
                    (2.59)                                                                                                     

std
sd s std s s stq cond

di
v R i L L i v

dt
                         (2.60) 
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where, vsd, vsq are d- and q-axis components of the utility voltage, istd, istq are the 

corresponding components of the grid-converter currents (grid to converter side assumed 

positive), vcond, vconq are the corresponding components of the AC side terminal voltages 

of the VSC, Rs represents the per phase resistance representing the AC choke active 

power- loss, Ls represents the per phase inductance of the AC choke and ω represents the 

electrical synchronous utility frequency. The important equation in the DC side is:  

2
dc

load dc

dv
i C i

dt
                                             (2.61) 

where,  iload is the current flowing out of the capacitor to the battery (assumed positive 

convention), vdc is the voltage across the capacitors at the DC bus of the VSC and idc is 

the DC link current of the VSC.  

The utility voltage space vector is controlled to always remain oriented along the direct 

axis. This may be achieved by on- line monitoring of the utility voltages and employing a 

phase locked loop (PLL) [97] during hardware implementation. With this being achieved, 

the expressions for instantaneous active and reactive powers would become: 

                
sd std bus std

sd stq bus stq

p v i V i

q v i V i







 

   
                             (2.62) 

where, Vbus is the magnitude of the grid voltage space vector and is a constant under 

balanced conditions and powers from the  grid to converter side are considered positive. 

It appears that if istd and istq are controlled independently, the active power and the 

reactive power can be controlled independently by controlling istd and istq respectively. 

Although this seems to provide a decoupled control of active and reactive power flow, it 

actually does not, as a cross-coupling effect exists between d- and q-axis variables if 

(2.62) is examined closely. This calls for development of a proper feed-forward control 

which would truly yield a decoupled control of real and reactive power flow.  

With the feed-forward control in place, the s-domain block diagram of the d- and the q-

axis current control loops is shown in Figure 4-15 where, Kpd, Kid are the d-axis 

proportional- integral (PI) current controller parameters and Kpq, Kiq are the q-axis current 
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controller parameters. These two unknown controller parameters for either d- or q-axis 

are designed in this work based on: 

 Cancellation of the pole of the respective plant with the zero of the respective PI 

controller, in either of Figure 4-15(a) or (b). 

 Assumption of a bandwidth of 500 Hz for the current control loop, to be at least 

an order of magnitude less than the sinusoidal pulse width modulation (SPWM) 

carrier frequency of 10 kHz that has been considered in this work. 

The values obtained after calculations are: Kpd=Kpq=79 and Kid=Kiq=787. The reference 

value of q-axis current (iqs*) should be maintained at zero throughout as power injected to 

the grid or from the grid is optimum if the power factor at the grid is maintained unity. 

This is desired both from the point of view of optimizing battery resources as well as 

from the point of view of excellent power quality of the currents drawn from or injected 

to the grid. It is desired that iqs should track iqs* with zero steady state error, low 

overshoot and within a reasonably fast settling time. The reference d-axis current (ids*) 

should be such as to keep the DC link voltage constant at a value much above the 

amplitude of the utility line voltage, regardless of different values of battery charging 

currents. This is to ensure that the VSC acts as a boost converter so that lower order 

harmonics do not appear in the grid-to-converter or converter-to-grid currents and hence 

good power quality is ensured. 

The d-axis current controls active power flow in between the grid and the VSC. 

Considering power balance between the DC side and the AC side of the VSC, this power 

should therefore be directly related to the DC side battery charging/discharging power, 

the losses in the inverter devices, AC chokes and the stored energy in the DC link 

capacitor. A proper DC link voltage controller is therefore mandatory to regulate the DC 

link capacitor voltage. The DC link voltage control loop should therefore be an outer loop 

with a lower bandwidth and the DC link voltage controller output should produce the 

requisite amount of d-axis current reference of the VSC in order to maintain the required 

boosted voltage level across the DC link capacitor under varying charging/discharging 

currents.  
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(a) 

 
(b) 

Figure 4-15. The s-domain block d iagram of the decoupled current control loop fo r the three-phase battery 

charger. (a) d-axis. (b) q-axis. 

 

Figure 4-16. The s-domain block diagram of the outer DC link voltage control loop for the three-phase 

battery charger.  

 

Figure 4-17. The reduced s-domain block diagram of the outer DC link voltage control loop for the three-

phase battery charger for Figure 4-16. 

 

The d-axis current control loop has to be an inner loop and its bandwidth is much larger 

compared to the outer DC link voltage control loop. The s-domain block diagram of the 

DC link voltage control loop is presented in Figure 4-16. The DC link voltage PI 

controller parameters have been determined considering another feed-forward technique 

to reduce the s-domain block diagram of Figure 4-16 to that of Figure 4-17. The 

bandwidth of the voltage control loop has been assumed to be 50 Hz, which is one order 

lower than the bandwidth of the inner d-axis current control loop. It is for this reason that 

the inner d-axis current control loop has been represented as a block with unity gain in 
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Figure 4-16 or Figure 4-17. The DC link voltage reference has to be set at 500 V DC, as 

discussed earlier.  

In Figure 4-16 or Figure 4-17, ‘K’ is the ratio of the magnitude of the utility voltage space 

vector and the value of the DC link voltage. It is noteworthy that when the battery 

charging or discharging current changes (iload), the DC current flowing in the DC link 

capacitor of the VSC should ideally be zero, to ensure that the DC link voltage remains 

constant. This is essential to achieve a fast dynamic response and close to unity power 

factor operation. This depends on the controller tuning and a proper on- line estimation 

technique to determine the value of ‘K’ in the transient condition.  

The block diagram for the comprehensive control technique is presented in Figure 4-18. 

The grid line voltages are fed back to the controller for on- line generation of the unit 

vectors (cos ωt and sin ωt). These are required for maintaining orientation of the grid 

voltage space vector in the synchronously rotating reference frame and on- line 

computation of the d- and q-axis components of the grid voltages and similar components 

for the currents between the grid and the VSC. The control structure initiates with the 

reference value of the DC link voltage (Vdc*) and the q-axis reference current (istq*). They 

are set at 500 V and 0 respectively.  

The actual DC link voltage (vdc) is monitored on-line, fed back and compared with the 

reference value and the error is generated. This erro r is fed to a PI DC link voltage 

controller whose output generates the necessary d-axis current reference to ensure 

constant DC link voltage, after adding a fraction of feed-forward compensation obtained 

from on- line monitoring of the battery charging or discharging current. This d-axis 

current reference is compared with the actual d-axis current which is computed on- line 

and from measured AC side line currents of the VSC. The error is fed to the d-axis PI 

current controller to ensure that the actual current tracks the reference. This PI controller 

output is added with the feed-forward obtained from on- line computation of the cross-

coupling terms of (2.59) (Vbus and ωLsistq with proper signs) to derive the necessary 

reference value of d-axis voltage component at the VSC AC terminals (vcond). 
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Figure 4-18. Overall block diagram showing the comprehensive control technique. 
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(c) 

Figure 4-19. Calculated results illustrating the performance of the developed high performance level 3 bi-

directional battery charger. (a) DC link vo ltage and current waveforms (b) d- and q- axis grid currents (c) 

Grid phase voltage and phase current. 
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A similar task is performed in the q-axis current-control loop and its PI controller output 

is added with the cross-coupling terms of (2.60) (ωLsistd with proper signs) to derive the 

necessary reference value of q-axis voltage component at the VSC AC terminals (vconq). 

The necessary three-phase reference voltages required for the SPWM strategy in the abc 

frame are computed on- line from vcond and vconq with the help of the on- line unit vectors. 

The SPWM is considered to have a carrier frequency of 10 kHz considering the IGBTs 

proposed at the 10 kW, 500 V DC power level. The comparator outputs of the SPWM 

strategy form the desired switching signals of the IGBT’s of the VSC to finally achieve 

the desired performance of the converter system.  

The waveforms illustrated in Figure 4-19(a) to (c) which depict the performance of the 

charger, are corresponding to the following operating conditions: 

At the uncharged state of the DC link capacitor, initially it is ensured that the battery does 

not draw any current. The DC link electrolytic capacitor bank is to be first ‘pre-charged’ 

from an uncharged state to a level close to the peak value of the grid line voltage. Then, 

the DC link voltage reference of 500 V DC is given to the controller so that the switching 

of the IGBT’s in the VSC start and the DC link capacitor voltage starts boosting. This is 

considered as the ‘time=0’ instant in the presented waveforms. After 0.4 seconds from 

this instant, a constant battery charging current of 20 A is drawn as a step input from the 

charger to examine the high performance of the VSC under G2V operation. At time = 0.7 

second, a negative step battery current of 20 A is drawn, mimicking the effect of V2G 

operation. The waveforms under this testing condition are presented next.  

Figure 4-19(a) shows the DC link voltage waveform with time. It is seen to settle at the 

reference value within 15 ms after an overshoot well within 800 V, which is considered 

as the safe DC bus voltage level, as mentioned earlier. It is found to undergo minimal 

changes at the instants of introduction of the battery charging/discharging current. The 

overshoot in the dynamics is within safe limit, the settling time is low enough and the DC 

link voltage restores to the reference value. This has only been possible due to proper 

design of the DC link voltage control loop, the d-axis current control loop and proper 

evaluation of the constant ‘K’.  
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(a) 

 
(b) 

 

 

(c) 

Figure 4-20. Machine terminal voltage and current during integrated charging, (a) Terminal phase rms 

voltage. (b) Per phase current when θ r=0°. (c) Per phase current when θ r=45°. 
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Figure 4-19(b) shows the istd and istq waveforms of current with time, under the same 

testing condition. The average value of the istq waveform is found to remain almost at 

zero all throughout, tracking its reference value ( i*qs kept at 0). This ensures near unity 

power factor operation. The istd changes depending on the requirement to maintain proper 

DC link voltage. Figure 4-19(c) shows the a phase grid current and the corresponding a 

phase voltage waveform (equivalent star connected system). It is found that the 

distortions in the current is minimal, almost near unity power factor is achieved 

regardless of the battery current is positive or negative. Additionally, the transition from a 

positive power flow to negative power flow ensuring unity power factor occurs in few 

milliseconds. All these waveforms prove the soundness of the implemented vector 

control strategy of the battery charger [69]. 

Figure 4-20 indicates the electrical characteristic of the machine during integrated 

charging. Three-phase currents are balanced irrespective of the rotor position. The 

machine terminal voltage has high frequency ripple due to the PWM switching during 

charging. The amplitude of the fundamental voltage is significantly lower than the rated 

machine voltage, the current through the machine armature during charging or 

discharging never exceeds the rated current and its fundamental is always at the utility 

power frequency with little PWM ripples of the high switching frequency; thus the 

machine has not been found to rotate.  

4.5     Real-time Simulation of the Three-phase Bidirectional 

Charger 

In order to study the performance of the developed charging strategy, experiments were 

performed on the BEV available at the laboratory and a range of charging characteristics 

were measured between its safe discharging voltage and its rated voltage. The ve hicle 

under study has six 12 V lead-acid batteries in series, therefore Vbattery is equal to 72 V. 

The vehicle was charged using the on-board charger installed in the vehicle supplied by 

the utility grid. These experiments were performed to obtain the DC reference current and 

voltage dictated by the battery management system.  
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(a) 

 
(b) 

 
(c) 

Figure 4 -21.  Measured lead-acid battery characteristics using the charger on-board the battery electric 

vehicle. (a) Battery voltage. (b) rms values of AC and DC currents. (c) The battery current characteristics 

that are used to replicate the reference current for the developed charging system. 

Figure 4-21(b) shows the measured DC and the corresponding AC currents while 

charging. Through experimentation it was found that it would be sufficient to use such a 

DC current trend as shown in Figure 4-21(c) as the reference current for testing the 

developed DC fast charging station. Moreover, it replicates a unit step. Note that this 

profile will be used for the battery charging reference for V2G operation; this vehicle 

voltage level is not high enough for a single- level DC-DC converter topology. Another 

DC-DC converter to step up the voltage level needs to be added.  
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(a) 

 
                                                                                  

         
(b) 

Figure 4-22. (a) Measured current and voltage waveforms during charging under grid only mode.  

Multiplication factors: DC link voltage (100V/Unit), Grid current (17A/Unit), Grid voltage (100V/Unit), 

Battery reference current (40A/Unit). (b) Near unity power factor achieved. 
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(a) 

  

(b)  

Figure 4-23. (a) Measured current and voltage waveforms under vehicle to grid condition.  Multiplication 

factors: DC link voltage (100V/Unit), Grid current (28A/Unit), Grid voltage (100V/Unit ), So lar PV 

reference current (20A/Unit). (b ) Near unity power factor achieved. 

In this study, a voltage level of 200 V during V2G operation is considered. 

Comprehensive testing of the designed charging system has been performed using a real-

time environment setup consisting of an FPGA based Opal-RT real-time control platform 

and Tektronix Digital Oscilloscope. Figure 4-22(a) and (b) show measured results 

obtained from the Tektronix Oscilloscope under such a situation. As it can be seen in 

Figure 4-22(a), initially, it was assumed that the DC link capacitor is in a completely 

uncharged state and it was charged from the grid once the station was powered on. The 

Grid Voltage 

Grid Current  

DC link Voltage Battery Reference 

Current  

Grid Voltage 
Grid Current  

DC link Voltage 

Battery Reference Current  



 

97 
 

DC link voltage reference of 500 V DC is given to the controller so that the switching of 

the IGBTs in the VSC start and the DC link capacitor voltage starts boosting. This is 

considered as ‘time=0’ instant in the presented waveforms in this section. 

Around 0.3 seconds after the DC link voltage has reached a steady state voltage, the car 

battery is connected to the DC charging station for charging. The battery consumes 

around 80 A in a step at a battery pack voltage of 66 V. These conditions were chosen 

based on the specifications of the lead acid battery pack present in the in-house electric 

vehicle which is rated at 72 V and 100 Ah. A charging current of 80 A is provided to the 

battery at a voltage of 66 V. Around 0.3 seconds it can be seen that the grid current 

increases due to the load demand and stabilizes to a value around 14.7 A rms as the DC 

link voltage stabilizes. The charging was stopped around 0.75 seconds and the grid 

current reaches zero. In Figure 4-22(b) current that flows out of the grid is considered 

positive and it can be seen that almost near-unity power factor is also achieved even 

under loading conditions with minimal perturbation in the power factor.  

Similar to Figure 4-22, here also the DC link capacitor is assumed to be uncharged and 

then charged to around 500 V. Once the DC link voltage has reached steady state the 

intermittent vehicle to grid power flow is initiated. At around 0.3 seconds, high battery 

discharging was emulated as a result of which around 28 A rms of current was fed back 

to the grid. At this condition the battery side voltage and current were found to be 210 V 

and 47.6 A. Again at around 0.75 seconds the battery power input reduced and the grid 

current decreased to around 14 A rms. At this condition the vehicle side voltage and 

current were found to be 105 V and 24 A. In all cases, from Figure 4-23(a), it can be seen 

that the grid voltage remained a constant and the DC link voltage and the grid current link 

stabilized to reference values within a short period of time. Moreover, it can be seen from 

Figure 4-23(a) and (b) that regardless of the direction of power flow, unity power factor 

is ensured in a few milliseconds post perturbation. All these waveforms prove the 

soundness of the implemented vector control strategy of the battery charger.  
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4.6     Conclusion  

In this chapter a three-phase bidirectional charging strategy was introduced using the 

existing traction components of an electrified vehicle, which include power electronic 

converters and the electric motor. The unbalanced condition caused by the buried 

magnets can be mitigated by the damper in the rotor and therefore, the machine windings 

can be used as line inductors for grid side converter. Both V2G and G2V operations are 

considered in this study. Modeling of the power stage of the converters during charging 

and discharging is discussed and the control strategy is developed while maintaining 

satisfactory ripple voltage and current on the battery side as well as unity power factor 

and low THD of the grid current. Experiments were performed using an in-house battery 

electric vehicle for reference purpose. Real-time simulation studies were done to verify 

the performance of the integrated charger.  
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Chapter 5   

Conclusions and Suggested Future Work 

5.1     Conclusions 

PMSMs are generally chosen as the traction motor for EVs because of their high torque 

density, high power density, compact size and high efficiency. In this research, an interior 

permanent magnet synchronous machine with a special damper is proposed for this 

purpose. A dynamic model based on reference frame theory of the proposed machine is 

developed and validated. Parameter determination methods are additionally proposed, 

established and verified to experimentally measure the equivalent circuit parameters. A 

comparative study of a PMSM and the proposed machine of similar size/rating with a 

special damper is conducted under a square wave self-controlled inverter driven 

condition. It is shown that the machine with a damper has faster dynamic performance 

than the original machine especially in the high speed region. Under a three-phase 

symmetrical fault, the damper contributes to the fast rising and falling of the phase 

current, thereby, decreases the protective relay or contactor response time and lowers the 

risk of demagnetization of the machine. Furthermore, the machine is considered for 

integrated charging. For this purpose, the damper is effective in mitigating the problems 

caused by the saliency due to the buried magnets. It ensures that the machine offers three-

phase balanced impedances during both V2G and G2V operations. The existing inverter 

power stage in the vehicle can be retained for charging purposes and control strategies 

involving balanced cases may be sufficient. The findings in this study are supported 

through simulations and experimental results.  

The contribution of this work can be summarized as follows:  

• A comprehensive experimental and theoretical investigation of the EV and HEV 

load profile and charging profile was completed [4, 11, 75]; 
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• The effects of adding a damper to interior PMSM to improve dynamic 

performance and short circuit response were analyzed in detail; 

• A model and a novel parameter determination method for its parameters was 

developed for an PMSM with a non-symmetrical damper. This model was 

validated through simulation and experiment [64-66, 98]; 

• A bi-directional integrated charger for both vehicle-to-grid and grid-to-vehicle 

operations was developed using an IPMSM with a damper [68, 69]. 

5.2     Suggested Future Work 

Some ideas are presented in this section highlighting suggested extensions of the work in 

this research area. Key elements are described as follows:  

Further performance analysis of the proposed machine with its damper are to be 

performed. An investigation of the space harmonics caused by the machine, ripple 

components, detailed efficiency mapping and other machine characteristics is needed.  

It is assumed that under steady state, the total torque is developed only by the PMs. 

However, the total torque under dynamic conditions is the combination of the PM torque 

and the cage torque. A control method to maximize the developed torque for the 

proposed machine with damper will be of great value.  

It is shown in this study that by adding a damper, the IPMSM can be used for integrated 

charging. The damper parameters are chosen through numerical investigation based on a 

dq axis model. The optimized design of such a machine to maintain satisfactory 

efficiency during both motoring and integrated charging is of paramount importance for 

future study. Moreover, practical design of the damper to achieve the required parameters 

needs to be initiated.  

It is seen that during charging conditions, the currents in the machine windings result in 

the development of torque in the machine. The torque is significantly smaller than the 

starting torque, and hence the machine does not rotate. However, this developed torque 
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causes small noise and vibrations. It is advised to further investigate this issue to reduce 

the resultant torque of the machine at this standstill condition. 

For any grid connected system, it is necessary to provide power quality monitoring and 

fault detection capability to ensure the healthy operation of the system such that it does 

not influence the stability of the grid. Moreover, as the number of vehicles that are 

connected to the grid increases, the load optimization at the grid level needs to be 

considered.  
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APPENDICES  

Appendix A  

Nameplate Rating of the Machines with Damper under Test 

A.  

TABLE A-1. NAMEPLATE RATINGS OF MACHINE I (LSPMSM)  

Hz V kW A cos  r/min  Nm 

20 85 1.13 11.13 0.20 600 18 

50 200 2.83 11.40 0.80 1500 18 

100 400 5.66 11.68 0.76 3000 18 

 

TABLE A-2. NAMEPLATE RATINGS OF THE WOUND-FIELD ROTOR SYNCHRONOUS MACHINE WITH DAMPER 

r/min  Volts AC Hz EXCIT (V DC) 

1800 120/208 60 120 

kW AMP. AC cos φ AMP. DC 

2 11.8/6.8 1 1 
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Appendix B  

Electrical and Mechanical Characteristics of the EV Studied 

B.   

TABLE B-1. VEHICLE OVERALL AND MAJOR POWER COMPONENTS RATINGS  

 

                            Vehicle Overall   

Vehicle Mass [kg] Coefficient of Aerodynamic Drag 
Frontal Area of Vehicle 

[m
2
] 

1,250 0.30 2.52 

Wheel Radius [m] Coefficient of Rolling Resistance Air Density [kg/m
3
] 

0.287 0.015 1.184 

ICE 

Max Power [kW] Max torque [Nm] Max Speed [r/min] 

57 @ 4,500 r/min  111 @ 4,200 r/min 5,000 

MG1 

Rated Power [kW] Rated Torque [Nm] Max Speed [r/min] 

15 60 11,000 

MG2 

Rated Power [kW] Rated Torque [Nm] Max Speed [r/min] 

35@940 to 2,000 

r/min  
305 @ 0 to 940 r/min  7,000 

Battery 

Voltage [V] Capacity [Ah]  

312 13  
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Appendix C 

Case Study of the Traction Motor for Toyota Prius 

C.  

TABLE C-1. MECHANICAL AND ELECTRICAL DATA FROM THE PRIUS PERFORMANCE-MAPPING TEST 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Mechanical  

Conditions 

Inverter DC  

link side (rms) 

Inverter AC side  

per phase (rms) 

Test # 
Speed 

(r/min)  

Torque 

(Nm)  
Voltage (V)  Current (A) Voltage (V)  Current (A)  

1-1 304  71.0  504.0  7.70  92.0  38.5  

1-2 302  179.2  504.0  21.32  108.0  87.3  

1-3 297 269.7  498.1 46.72  212.3  129.8  

2-1 703 30.2 504.0 6.74 112.3 20.2 

2-2 700 129.6 503.8 24.29 141.3 64.4 

2-3 702 228.8 500.9 47.99 220.2 110.1 

3-1 1303 20.4 503.8 7.83 141.7 14.7 

3-2 1303 69.6 503.7 22.47 166.1 38.2 

3-3 1302 228.9 500.4 77.18 232.8 111.5 

4-1 2106 20.4 504.4 11.54 177.9 14.8 

4-2 2104 70.4 504.4 34.83 204.5 38.8 

4-3 2105 168.2 503.8 81.51 232.0 82.5 

5-1 3805 20.4 499.7 19.87 240.7 17.1 

5-2 3804 49.8 499.5 45.43 236.3 44.7 

5-3 3804 98.6 499.0 91.37 241.0 95.6 

6-1 5006 20.2 500.0 26.43 240.8 92.3 

6-2 5003 40.1 499.5 49.05 240.3 99.8 

6-3 5004 59.8 499.4 73.17 239.7 113.7 

7-1 6005 20.3 500.1 32.10 241.8 31.0 

7-2 6005 40.1 499.7 59.79 239.6 53.9 

7-3 6005 49.4 499.6 73.60 240.7 68.2 
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Appendix D 

Machine Equivalent Circuit Parameters 

D.  

TABLE D-1. PARAMETERS OF THE TOYOTA PRIUS IPMSM WITH DESIGNED DAMPER. 

Parameters rs (Ω) Lls (mH) Ld
 
(mH) Lq (mH) λ' (Wb.t) 

Values 0.0065 0.15 1.598 2.057 0.1757 

Parameters r’kd
 
(Ω) r’kq

 
(Ω) L’lkd (mH) L’lkq(mH) 

 

Values 0.0195 0.005 2.1 1.6  
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Appendix E  

Permissions for Using Publication 
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