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ABSTRACT 

This work presents a study to build lumped models for fault-free and faulty 

Through Silicon Vias (TSVs). Three dimensional full-wave simulations are 

performed to extract equivalent circuit models. The effects of parametric and 

catastrophic faults due to pin-holes, voids and open circuits on the equivalent 

circuit models have been determined through 3D simulations. The extracted TSV 

models are then used to conduct delay tests to determine the required measurement 

resolution to detect TSV defects.  It is shown that the substrate conductivity has a 

considerable effect on TSV fault characterization. It is also shown that, regardless 

of the substrate type, even a relatively large void does not alter the TSV resistance 

or its parasitic capacitance noticeably at 1GHz solution frequency. An on-chip test 

solution for TSV parametric faults requires a dedicated high resolution 

measurement circuit due to the minor variations of TSV circuit model parameters. 
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Chapter 1 

Introduction and Background 

1.1 Three Dimensional Integrated Circuits 

1.1.1 A brief introduction to Three Dimensional Integrated Circuits 

Integrated circuit [1] technology is probably one of the most significant invention in 

the past century. It is considered the backbone of progress and technology. In addition to 

Electrical Engineering, other fields such as medical equipment, auto industry, and 

navigation industry have all heavily benefited from the rapid progress in IC fabrication. 

We could not have imagined that humans could possess such powerful handsets that 

make it possible for people to communicate with each around the globe. We could not 

have imagined that navigation systems, backlit cameras, gyroscopes, web browsers and 

music players could be packaged in something as small as a smart phone. Moore’s law 

predicts that the number of transistors per chip will double every 18 months [2], as shown 

in Figure 1.1. This allows us to meet the increasing demand for high-speed and low-

power consumer products.  

However, there are many factors that will eventually limit the scaling speed of CMOS 

transistors [3, 4] such as physical limitation, non-deterministic behavior of small currents, 

quantum effects and above all the costs of fabrications and tests. It is predicted that the 

technology scaling will lose its benefits if the length of CMOS transistors falls below 

10nm [5]. As CMOS technology scales down, the undesired effects such as power 

consumption caused by leakage current becomes more important [6]. 

Moreover, supply voltage [7], which plays a major role in the dynamic power 

consumption of CMOS circuits, cannot be scaled as fast as device dimensions due to 

fundamental limitations in decreasing the threshold voltage. 
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Single Electron Transistor [8] (SET), FinFet Transistor [9, 10] and three dimensional 

IC [11] are three popular solutions that have been presented to keep up with the demand 

for high density integration.  

Although SET devices can provide a solution to the scaling trend of Moore’s law, this 

technology has a limited application due to temperature constraints [12]. SET circuits can 

operate at a temperature close to absolute zero. If the temperature increases, SET devices 

will suffer from background charge and their reliability will be severely compromised. 

Researchers are still working on this technology to design SET devices to operate at room 

temperature. 

Figure 1.1 Microprocessor Transistor Counts from 1971 – 2011 [56] 
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Although three-dimensional integration has emerged as a viable solution to the CMOS 

technology scaling problem, the concept of three-dimensional integration is not new. The 

first U.S. patents on 3D-IC integration was issued more than 50 years ago. The 

fabrication technology at that time was not mature enough to implement 3D ICs.   

Three dimensional ICs contain integrated circuits stacked vertically and connected by 

Through Silicon Vias (TSVs) [13], as shown in Figure 1.2 [14].  

 

 

 

 

 

 

 

 

 

 

TSV technology as compared to conventional wiring technology reduces the distance 

between connected nodes [15] and lowers interconnect parasitic capacitances [16], as 

shown in Figure 1.3 [17]. In three-dimensional integration, shorter wires are needed for 

interconnects as compared to 2D integration. This reduces the complexity of the entire 

system [18].  As a result, 

 

Figure. 1.2 Three-dimensional IC [14] 
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 three-dimensional integration can support higher operation frequency and lower power 

consumption. Figure 1.4 [19] shows TSV fabrications, for stacked devices using chip-to-

chip (C2C) integration. 

 

 

 

Figure. 1.4 Stacked devices using C2C integration [19] 

 

Figure. 1.3 Wire connections comparison between 2D 

IC and 3D IC [17] 
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1.1.2 Three-dimensional IC fabrication process 

In two-dimensional IC, all components are at the same plane while in three-

dimensional IC, components are in different planes connected by TSVs. TSV as an 

enabling technology plays a critical rule in 3D IC integration. 

Figure 1.5 [20] shows the fabrication process for three-dimensional ICs.  

 

TSV is a vertical electrical connection passing through a silicon wafer or die. TSV 

fabrication is commonly completed in four steps [20]:  

I. Deep silicon etching: This is to make holes in a silicon substrate and prepare it for 

copper injection.  

II. Via oxide deposition: To deposit and insulate the copper from substrate  

III. Copper plating: To inject liquid copper   

IV. CMP+BEOL: In this step the wafer surface is polished. 

After TSV fabrication, the bonding process starts, including: 

 

Figure. 1.5 Fabrication process of 3D ICs [20] 
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I. Temporary carrier bonding. 

II. Back side thinning: This to thin the wafer and allow access to the TSV.  

III. Expose copper nails: To expose TSV copper nails for bonding. 

IV. Dicing. 

V. Permanent bonding. 

 

1.1.3 TSV structure 

Figure 1.6 shows a fault-free TSV and a TSV with typical structural defects. 

 

I. Passivation layer: A layer that separates the metal layer from TSV bump. This layer 

protects the TSV against environmental effects. 

II. Metal layer: This is a layer for interconnects to connect TSV to other components 

such as transistors. 

 

Figure 1.6. TSV structures (a) Fault free (b) Faulty. 
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III. Active layer: Usually made of silicon with bulk conductivity where active 

components are fabricated. 

IV. Keep out zone: Commonly considered to minimize the effect of TSV stress on active 

circuits. 

V. Copper bump: To create a small pad for TSV bonding.  

VI. Dielectric: Usually made of silicon dioxide to insulate the TSV from substrate.  

VII. TSV body: Usually made of copper.  

VIII. Substrate: Usually made of silicon. Bulk conductivity of the substrate has a 

significant effect on the whole TSV structure’s performance, which will be discussed 

later in this paper.  

TSVs can suffer from various types of defects [21, 22] such as pin-holes and voids that 

can affect the performance parameters of 3D ICs significantly. Common TSV defects 

include:  

I. Voids: These are small cavities that have not been filled with copper. Voids affect 

the physical integrity of TSVs. 

II. Open defects: In this case TSV acts like a capacitor rather than an interconnect. 

III. Pinholes: When there is a hole in the insulator around the TSV causing a leakage 

current to follow between TSV and substrate. This usually occurs when there is a big 

difference between the thermal expansion coefficient of the dielectric and the 

substrate. 

Figure 1.7 shows a fabricated TSV and its common defects [17].  

1.2 Challenges in Three-dimensional testing methods 
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 Although TSV technology has many advantages, there are also many challenges. 

TSVs are fragile [23] with small areas for bonding or probing. As a result, TSV probing 

for the purpose of testing has become a major challenge. Figure 1.8 [24] shows the 

damages on TSV after a probe touchdown. Efficient design-for-test methodologies for 3D 

integrated circuits have to be developed to minimize the costs and the test time for 3D 

ICs. How to conduct pre-bond tests on a bare die prior to integration into a die-stack and 

how to design a robust test access mechanism to cover TSV defects are among the main 

issues that have to be addressed to develop a test solution for 3D ICs. Testing TSV 

interconnects requires development of new design-for-test techniques and test access 

mechanisms [25, 26]. Conventional wafer probes cannot be readily used to access TSVs 

on 3D ICs due to excessive force exerted by these probes that can undermine the physical 

integrity of TSV structures [27]. Furthermore, wafer probe technology cannot support the 

pitch requirement of high density TSV probing [28].  

 

Figure. 1.7 Fabricated fault-free and faulty TSV [17] 
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To keep TSVs’ integrity, test technology needs to find solutions to reduce the damage 

caused by probe scrub marks. Advanced probing techniques are developed to minimize 

the effects of probing on TSVs.  

I. MEMS Probe 

In [29], MEMS technology has been utilized to address the problem of direct TSV 

probing. MEMS technology has also been used to design low-contact-force high-pitch 

probes supporting high frequency operation. The performance of MEMS probes is 

affected by thermal expansion and structural fatigue caused by cyclical loadings. Further 

improvement is needed to employ MEMS probes to conduct manufacturing tests in 

production lines. A MEMS based probe is shown in Figure 1.9 [29]. 

It can be seen that the contact force on the top surface of the MEMS probe is low, thus 

it can be used to probe TSVs without affecting their integrity. 

 

Figure. 1.8 Damages on TSV after probe touchdown [20] 
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II. Nano-Fiber Probe 

Nano-Fiber Probe [24] is also proposed as a solution to reduce the contact force on 

TSVs. Figure 1.10 shows the physical structure of a nano-fiber probe. 

 

III. Contactless Probe 

Contactless TSV probes have also been proposed in the literature to ensure the 

physical integrity of TSVs during the test phase [30]. The advantage of the contactless 

probe is that there is no need for the probe to touch the TSV. These probes generally 

operate based on principles of electric or magnetic coupling. The probe is positioned 

close to the desired TSV where a small capacitor or a coreless transformer is formed 

 

Figure. 1.10 Nano-fiber Probe for TSV probing [24] 

 

Figure. 1.9 MEMS Probe and its Contact Force Distribution [29] 
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between the probe and the TSV. This probing method supports high density and low-

pitch probing and eliminates the risks of TSV structural integrity degradation. Detecting 

circuits have to be added to the device under testing to implement this probing 

technique.  The structure of the contactless probe is shown in Figure 1.11. [30] 

 

1.3 TSV test solutions proposed in the literature 

TSV test architectures based on standard IEEE 1500 and IEEE 1149.1 die wrappers 

have been developed to cover TSV defects [4]. Boundary scan based test methods for 

TSVs rely on full controllability at the inputs and observability at the outputs. It is 

assumed that TSV defect mechanisms are similar to failures affecting wiring networks 

[31]. Therefore, the available automatic test pattern generators for interconnects are 

utilized to generate test vectors for TSVs and the die wrappers are used as test access 

mechanisms to apply the test vectors and to observe the outputs. The die wrapper [32] 

based TSV test approach can be employed successfully to detect hard faults such as open 

and short faults. Most of the TSV test and access methods in the literature have been 

developed to cover catastrophic TSV faults. While capturing these faults could 

understandably be the highest priority, a comprehensive test methodology for TSV has to 

cover parametric faults as well. Developing tests for TSV parametric faults is quite 

challenging and requires accurate TSV fault characterization [33]. The frequency 

response of TSV interconnects is commonly affected by TSV structural defects such as 

 

Figure. 1.11 Structure of Contactless Probe [30] 
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pin-holes. These defects cannot be detected readily by conventional interconnect tests 

using standard die wrappers. A test method to cover TSV parametric faults based on 

small delay measurement has been proposed in the literature [34]. In this method, a pair 

of TSVs are used as interconnects within a ring oscillator where the delay of the TSVs 

affects the oscillation frequency. Variations in the oscillation frequency from its nominal 

value are indications of a faulty TSV. While many TSV test methods have been presented 

in the literature [35, 36, 37, 38, 39, 40], the lack of an accurate model to characterize 

variations in TSV performance parameters limits our ability to determine the coverage of 

test methods and to further improve their performance. In this work, TSV circuit models 

have been extracted using three dimensional full-wave simulations where the electric and 

magnetic fields are calculated within the entire 3D structure using Maxwell equations. 

The extracted models were used to determine the effects of pin-holes and voids on the 

TSV parameters to identify the required measurement resolution to cover TSV defects.    

The rest of this thesis paper is organized as follows. Chapter two presents the setup 

used to implement a 3D TSV and shows the distribution of electric and magnetic fields 

within a fault free TSV; the circuit model representing the fault free TSV has also been 

extracted in this section, the effects of pin-holes and voids on field distributions under 

different circumstances have been presented in chapter three; the effects of substrates 

resistivity on the TSV equivalent circuit model is covered in chapter four; and chapter 

five presents simulation results indicating the required measurement resolution for TSV 

parametric fault detection; and finally, chapter six summarizes the results and presents 

the conclusions.   
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Chapter 2 

Implemented TSV Structure and the Equivalent Circuit 

2.1 CAD Tools 

TSV can be modeled using transmission line theory. In [41], a scalable electrical 

model for TSV has been provided using analytical equations derived from physical 

configurations. In [42, 43], the equivalent circuit of a TSV with passive components is 

presented. The parameters of the components are derived through analytical equations 

and the results are verified by numerical simulators. These models are only limited to 

fault-free TSVs, but they do not take faulty TSVs into consideration. How to develop a 

model using an analytical approach for TSV with structural defects is a major challenge. 

The location and the shape of defects are not known, but even if we have this information, 

an accurate analytical model is still difficult to develop. 

There are also some structural defects that are unique to TSVs such as pin-holes and 

voids, which are difficult to capture as they commonly affect TSV performance 

parameter rather than TSV logical function [44]. While the analytical methods developed 

to characterize TSV faults [45, 46] provide valuable information, they are limited since 

some important factors such as skin effect in TSV and eddy current within the substrate 

cannot be easily taken into consideration. These methods are mainly developed based on 

the TSV conducting body without considering the effects of the surrounding environment. 

As a result, they cannot be easily used to characterize the effect of TSV defects on the 

circuit model. For instance, it is not clear how the TSV circuit model varies if the 

substrate conductivity changes. TSV characterization through measurement results are 

equally difficult as they require full control over the injected faults such as the size of 

pin-holes and voids in order to measure TSV performance parameter variations.  

The emergence of 3D full-wave simulation tools has opened the path for accurate 

characterization of 3D structures. Powerful 3D full-wave simulation tools such as High 

Frequency Structural Simulator (HFSS) from Ansoft and EMPro [47] from Agilent are 

now available to conduct simulations on three dimensional structures. It has to be noted 
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that HFSS generates full-wave circuit models which includes dependent sources. To 

model TSV in this work, low bandwidth equivalent circuits which include R,L and C 

components have been extracted. These models are valid at frequencies close to the 

HFSS solution frequency. 

2.2 Why HFSS 

HFSS is a finite element method solver for electromagnetic structures [48]. It is ideal 

for TSV fault analysis since the effect of various defects on the TSV performance 

parameters can be fully characterized. It can be used to determine the distribution and the 

intensity of electric and magnetic fields not only within the entire TSV structure but also 

in the surrounding medium including the dielectric and the substrate. It can also generate 

equivalent SPICE models for simulated 3D structures. The SPICE model can then be 

imported to a circuit simulator such as Agilent's Advanced Design System [49] (ADS) or 

Cadence's virtuoso schematic for detailed analysis.  

 

2.3 Implemented TSV Structure 

Fig. 2.1(a) shows the implemented fault free TSV within a silicon-box surrounded by 

an air-box in the HFSS environment. TSV interconnects share some of the common 

defects of conventional 2D interconnects resulting in short and open faults. 
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Table 2.1 shows the parameters of the implemented TSV structure.  

Table 2.1 Parameters of the implemented TSV structure 

Parameters Values Parts Materials 

TSV Length 50 um TSV body Copper 

TSV Radius 2.5 um Dielectric Silicon 

Dioxide 

Dielectric Thickness 0.5 um   

Silicon box 

Conductivity 

10Ω.cm or 

1mΩ.cm 

  

 

The silicon box has been chosen to have resistivity of 10Ω.cm or conductivity of 10 

Siemens per meter. The effect of highly conductive substrates, known as epi-substrates 

with conductivity of 100000 Siemens per meter (1mΩ.cm), on TSV equivalent circuit 

model will be covered in Chapter 4. The implemented TSV for this work is a copper bar 

50µm in length with cross-section diameter of 5µm. It is covered with a layer of silicon-

dioxide with a 0.5µm thickness to insulate the TSV from the substrate. The top and 

bottom plates of the TSV are selected as wave port terminals to apply the excitations. It 

can be seen in Fig. 2.1(b) that the electric field is uniformly distributed along the fault-

free TSV within the substrate.  

 

Figure 2.1 (a) Implemented fault free TSV for 3D simulations 

0                    25                 50(µm)

Silicon 
box

Air
box
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2.3.1 S-Parameters of the Implemented TSV Structure 

Scattering parameters describe the linear electrical networks’ behavior [50]. The 

implemented TSV structure is a two port system, thus we can obtain the S-parameters to 

determine the performance parameters of the structure. The solution frequency was set to 

1.00GHz and the frequency of stimulus was swept from 1.00MHz to 1.00GHz with 

1.00MHz step size to extract S-parameters of the TSV. 

S11 is the input port voltage reflection coefficient, S21 is the reverse voltage gain [51], 

and the equations are given by 2.2(a) and 2.2(b). 

𝑏1 = 𝑆11 × 𝑎1 + 𝑆12 × 𝑎2  (2.2 𝑎) 

𝑏2 = 𝑆21 × 𝑎1 + 𝑆22 × 𝑎2  (2.2 𝑏) 

As a result, we can derive the expressions of S11 and S21 in equation 2.3(a) and 2.3(b) 

from equation 2.2. 

   𝑆11 =  
𝑏1

𝑎1
=  
𝑉1
−

𝑉1
+                    (2.3 𝑎)  

𝑆22 =   
𝑏2

𝑎1
=  
𝑉2
−

𝑉1
+                    (2.3 𝑏)

 

 

Figure 2.1 (b) Electric field distribution of a fault free TSV 



 

17 

 

The variations of S11 parameter in Fig. 2.2(a), as expected, shows a minor insertion 

loss at high frequencies. This can be understood because we have both DC resistance and 

AC resistance between port 1 and port 2, and when the frequency is high, the AC 

resistance will play a more important role than the DC resistance.  

The S21 graph in Fig. 2.2(b) indicates that the input signal is attenuated by less 

0.004dB at 1 GHz. This is a relatively good result because we expect S21 to be close to 0. 

The results of S-parameter simulation are used by HFSS to generate a two-port 

equivalent SPICE model for the implemented TSV by HFSS.  

 

 

 

 

Figure 2.2(b). Extracted s-parameters of the TSV. S21  

 

 

 

Figure 2.2(a). Extracted s-parameters of the TSV. S11  
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2.3.2 Extracted Equivalent Circuit of a TSV 

The SPICE model was imported to ADS environment to create a schematic diagram 

representing the TSV. The generated low-bandwidth circuit model which is symmetrical 

with respect to the TSV terminals is shown in Fig. 2.3 

 

Though there are many components in Figure 2.3 to represent a simple TSV, which is 

just a small copper bar, each of them can be explained. We classify these components 

into two categories:  

 Components connecting TSV terminals 

There are resistors and inductors in series R1 and L1 between the TSV input and 

output terminals. The presence of a small resistances, R1, is expected because of the high 

conductivity of copper used to implement the TSV. The impedance between the TSV 

terminals cannot be modeled by a small resistor alone. At high frequencies, the 

impedance of copper increases due to the skin effect [52], which reduces the effective 

cross section of the TSV contributing to the conduction of current. The impedance 

elevation caused by skin effect is modeled by an inductor, L1, in the TSV circuit model.  

 Components connecting TSV terminal and ground.   

 

Figure 2.3. Low bandwidth lumped circuit model representing a fault free TSV 

generated by HFSS 5MHz solution frequency from 3D full wave simulation results. 
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The high resistors, R3 and R4, connecting each terminal to ground are due to the 

presence of dielectric between the TSV and the substrate which is connected to the 

ground. There are a pair of resistor and capacitor in series connection, R5 in series with 

C1 and R6 in series with C2, connecting each TSV terminal to ground. TSV metal at each 

port and the substrate can be considered as two conducting plates of a capacitor separated 

by the dielectric between them, which is by definition a capacitor. The small resistors R5 

and R6 in series with the capacitors represent the resistance of the TSV metal from its 

terminals to the surface of the dielectric layer. 

2.4 Analytical Verification 

Here we only develop analytical approaches for a fault-free TSV.  

A fault-free TSV can be modeled as a transmission line; we can develop the TSV’s 

analytical model with transmission line’s theory. Because the TSV is symmetrical, it can 

be represented by the transmission line model shown in Figure. 2.4.  

 

In Figure 2.4, the voltage between port a and c, b and d is V(l, t),V(l+hTSV, t) 

respectively. If we apply Kirchhoff’s voltage law, we get equation (2.4) 

 

 

Figure. 2.4 TSV transmission line model 
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−
𝑉(𝑙 + ℎ𝑇𝑆𝑉 , 𝑡) − 𝑉(𝑙, 𝑡)

ℎ𝑇𝑆𝑉
= 𝜌𝑇𝑆𝑉 × 𝐼 (𝑙 +

1

2
ℎ𝑇𝑆𝑉 , 𝑡) + 𝐿𝑇𝑆𝑉 ×

𝜕𝐼 (𝑙 +
1
2ℎ𝑇𝑆𝑉 , 𝑡)

𝜕𝑡
 (2.4) 

Equation (2.4), if ℎ𝑇𝑆𝑉 → 0, can be written as  

−
𝜕𝑉(𝑙, 𝑡)

𝜕𝑙
= 𝜌𝑇𝑆𝑉 × 𝐼(𝑙, 𝑡) + 𝐿𝑇𝑆𝑉 ×

𝜕𝐼(𝑙, 𝑡)

𝜕𝑡
 (2.5) 

after applying Kirchhoff’s current law, we can  

−
𝐼(𝑙 + ℎ𝑇𝑆𝑉 , 𝑡) − 𝐼(𝑙, 𝑡)

ℎ𝑇𝑆𝑉
= 𝐺𝑇𝑆𝑉 × 𝑉 (𝑙 +

1

2
ℎ𝑇𝑆𝑉 , 𝑡) + 𝐶𝑇𝑆𝑉 ×

𝜕𝑉 (𝑙 +
1
2ℎ𝑇𝑆𝑉 , 𝑡)

𝜕𝑡
 (2.6) 

From equation (2.6), if ℎ𝑇𝑆𝑉 → 0, we can write 

−
𝜕𝐼(𝑙, 𝑡)

𝜕𝑙
= 𝐺𝑇𝑆𝑉 × 𝑉(𝑙, 𝑡) + 𝐶𝑇𝑆𝑉 ×

𝜕𝑉(𝑙, 𝑡)

𝜕𝑡
 (2.7) 

 

From equation (2.5) and (2.7), we can derive (2.8) and (2.9) 

{
 

 −
𝑑𝑉𝑠
𝑑ℎ𝑇𝑆𝑉

= (𝜌𝑇𝑆𝑉 + 𝑗𝑤𝐿𝑇𝑆𝑉)𝐼𝑠   (2.8)

−
𝑑𝐼𝑠
𝑑ℎ𝑇𝑆𝑉

= (𝐺𝑇𝑆𝑉 + 𝑗𝑤𝐶𝑇𝑆𝑉)𝑉𝑠  (2.9)

 

If we take the derivation of (2.8) and replace 
𝑑𝐼𝑠

𝑑ℎ𝑇𝑆𝑉
 from (2.9), we get (2.10) 

−
𝑑2𝑉𝑠
𝑑𝑙2

− 𝛾2𝑉𝑠 = 0 (2.10) 

Solving equation (2.10), results in equation (2.11), (2.12). 

{
 
 

 
 𝛾 = √(𝜌𝑇𝑆𝑉 + 𝑗𝑤𝐿𝑇𝑆𝑉)(𝐺𝑇𝑆𝑉 + 𝑗𝑤𝐶𝑇𝑆𝑉) (2.11)

𝑍0 = √
𝜌𝑇𝑆𝑉 + 𝑗𝑤𝐿𝑇𝑆𝑉
𝐺𝑇𝑆𝑉 + 𝑗𝑤𝐶𝑇𝑆𝑉

                                  (2.12)
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TSV resistances can be modeled with two components of AC resistance and DC 

resistance.  

DC resistance is easy to calculate, the equation is given in (2.13) 

𝑅𝐷𝐶_𝑇𝑆𝑉 = 𝜌𝑇𝑆𝑉 ×
ℎ𝑇𝑆𝑉

𝜋 × (
𝑑𝑇𝑆𝑉
2 )2

   (2.13) 

In (2.13), 𝜌𝑇𝑆𝑉 = 1.724 × 10
−8𝛺.𝑚, ℎ𝑇𝑆𝑉 = 50𝜇𝑚, 𝑑𝑇𝑆𝑉 =  5𝜇𝑚.  

If we take these three values into equation (2.13), then we can get the DC resistance of 

the TSV, which is 0.043 𝛺. It has to be noted that the extracted resistance by CAD tools 

takes both the AC resistance and the DC resistance to extract the circuit models.  

The skin depth of TSV, 𝛿𝑇𝑆𝑉 can be calculated with equation (2.14) [53] 

𝛿𝑇𝑆𝑉 = √
2𝜌𝑇𝑆𝑉
𝜔𝜇𝑇𝑆𝑉

×√√1 + (𝜔𝜌𝑇𝑆𝑉𝜀0)2 + 𝜔𝜌𝑇𝑆𝑉𝜀0  (2.14) 

The skin depth for the TSV at 1GHz operation frequency is 2.09 𝜇𝑚. 

𝑅𝐴𝐶𝑇𝑆𝑉 =
𝜌𝑇𝑆𝑉 × ℎ𝑇𝑆𝑉

𝜋 × (𝑑𝑇𝑆𝑉 × 𝛿𝑇𝑆𝑉
′ − (𝛿𝑇𝑆𝑉

′)2) × (1 + 𝑌)
  

Where 𝛿𝑇𝑆𝑉
′ = 𝛿𝑇𝑆𝑉(1 − 𝑒

−𝑑𝑇𝑆𝑉
2×𝛿𝑇𝑆𝑉)  

The TSV body and the substrate are separated by the dielectric, which is by definition 

the capacitor, and its shape is a cylinder.  
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For the cylindrical capacitance, we have equation 2.15 to calculate the capacitance  

C =  
2𝜋εℎ𝑇𝑆𝑉

ln (
𝑏
𝑎)

  (2.15) 

Where "a" represents the radius of the TSV and "b" is equal to the inner thickness of 

the substrate. Taking all this information into consideration, we get the capacitance is 

equal to 0.0594pF, which has a small variation with the results given by the CAD tool.  

 

2.5 Summary 

This chapter presents the implemented 3D TSV structure in HFSS environment for 3D 

full wave analysis. The equivalent circuit models are extracted from the S-parameters, 

and imported to ADS environment for further circuit analysis. Analytical explanations for 

the structure and parameters of the TSV’s equivalent circuit are also given in this chapter. 

The mathematical model is developed with transmission line theory. The components in 

the TSV circuit models meet the analytical expectations.   

 

 

 

 

Figure.2.5 Cylindrical capacitor between TSV conducting body and 

substrate 

Dielectric 
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Chapter 3 

Effects of Faults on TSV Model Parameters  

As mentioned in Chapter 1, there are typical defects such as pin-holes, voids and open 

circuits. We will study these defects in this chapter. In the real world, pin-holes or voids 

or opens cannot be added manually to TSVs, we cannot control the position of the pin-

holes or voids, the size of the pin-holes or voids, or other key parameters to analyze those 

faults. While with HFSS, we can easily deal with these kinds of faults. For example, to 

create a void fault, we can simply extract a small part of the inner side of the TSV body; 

to create a pin-hole fault, we can break the dielectric around the TSV body; to create an 

open fault, we can cut off the TSV body. Taking these advantages into consideration, we 

can study different types of faults to develop a solid model for TSV.  

3.1 Effects of Pin-holes 

3.1.1 Electric field distribution of a TSV with a pin-hole 

For pin-holes, we expect a much higher leakage current compared with a fault-free 

TSV. In the fault free TSV model, the TSV body is surrounded by a dielectric, which is 

usually made of silicon dioxide. As a result, the path from TSV body to ground is open. 

In this case, we have a very small leakage current because of the high resistance from 

TSV terminals to ground. While for a TSV with a pinhole, there is a path from the TSV 

body to ground, which connects TSV to the substrate directly.  

A pin-hole with dimensions of 2µm×2µm was created to see its effects on the electric 

field distribution. 3D simulations were performed under the same conditions as fault free 

TSV.  

It can be seen in Figure. 3.1 that the electric field distribution as compared to the fault 

free TSV is altered significantly. The field intensity is much higher within the substrate 

because of the open path from the TSV terminal to ground through the pin-hole. 
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3.1.2 Equivalent circuit of a TSV with a pin-hole 

We can calculate the resistance from TSV terminals to ground from equations 3.1 and 

3.2. For a fault free TSV,  

𝑅𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑡𝑜 𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑅𝑐𝑜𝑝𝑝𝑒𝑟 + 𝑅𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + 𝑅𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒  (3.1) 

For a TSV with a pinhole, 

𝑅𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑡𝑜 𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑅𝑐𝑜𝑝𝑝𝑒𝑟 + 𝑅𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 (3.2) 

Figure 3.2 (a) and (b) show the resistance from TSV terminals to ground for a fault-

free TSV and a TSV with a pinhole, respectively.  

 

 

Figure 3.1. The effect of a pin-hole with dimensions of 2µm×2µm on the 

electric field intensity in a resistive substrate. 
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For a TSV with a pin-hole, resistance of the dielectric is neglected because the pin-hole 

punches through the dielectric, connecting the TSV body to the substrate directly. The 

resistance of the dielectric is much greater than the resistance of the substrate and thus a 

significant fall in the resistance from TSV terminals to ground is expected.  

The schematic diagram of the extracted circuit model remains almost unchanged, 

shown in Figure 3.3. The impedances between TSV terminals and ground, R3 and R6 in 

Figure. 2.3, fall sharply from 208MΩ to about 23kΩ. 

(a) 

 

(b) 

 

Figure 3.2. Resistance from TSV terminals to ground (a) Fault-free TSV, (b) 

TSV with a pin-hole 
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 We noticed that there is a minor difference between the impedance connecting the 

TSV terminals of faulty and fault free TSVs. This is an acceptable result as pin-holes in 

general are not in the electrical path between TSV terminals. Thus, they are not expected 

to affect the impedance connecting TSV terminals in the circuit model.  

 

Figure 3.3. The equivalent circuit of a pin-hole with dimensions of 2µm×2µm 

on the electric field intensity in a resistive substrate. 

 

Figure 3.4 Capacitance variations for pin-holes with different sizes 
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The overall TSV capacitance does not change significantly; the variation is only up to 

14.3%. This can be understood if the nature of the TSV capacitance is taken into 

consideration. A cylindrical capacitor is formed between the TSV surface and the 

surrounding substrate that can be considered as two plates of a capacitor separated by 

silicon dioxide as an insulator. The pin-hole adds a resistor between the plates of TSV 

capacitors. If the added resistance becomes comparable with the AC resistance of the 

TSV capacitor, the TSV capacitance in the model will change as reported in section 4 

where the effect of highly conductive substrate on the TSV model is characterized. Figure 

3.4 shows the variations of capacitance to ground for different pin-hole sizes. Variations 

can be calculated by equation 3.1. For the case of a resistive substrate with low 

conductivity of 10 Siemens per meter, the variations in TSV capacitance due to the pin-

hole are negligible.  

Variation =  
𝐶𝑓𝑎𝑢𝑙𝑡𝑦 − 𝐶𝑓𝑎𝑢𝑙𝑡−𝑓𝑟𝑒𝑒

𝐶𝑓𝑎𝑢𝑙𝑡−𝑓𝑟𝑒𝑒
 × 100% (3.1) 

In fact, the displacement current between the TSV and the substrate remains the 

dominant factor compared to the conduction current through the pin-hole. As a result, the 

TSV capacitance does not change significantly in the extracted circuit model. For 

resistances from TSV terminals to ground, the effect of different size pin-holes on the 

circuit models has been presented in Figure. 3.5. 
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It can be seen that the resistance of the TSV terminals to the ground, R3 and R6, 

decreases when the pin-hole size increases. However, the relationship between resistance 

to ground and pin-hole size is not linear. For instance, when the size of a pin-hole 

increases by a factor of 2 from 1µm2 to 2µm2, R3 and R6 fall from 54kΩ to 32kΩ which 

is less than a twofold drop. The inductors, L3 and L4, in the path of TSV terminals to 

ground in Figure. 3.5 are also dependent on the size of pin-hole, and as the size of the 

pin-hole increases, they decrease with the same variation rate of R3 and R4. The 

impedance composed of R1 and L1 connecting the TSV terminals remains nearly 

constant. 

3.1.3 Effects on pin-hole positions 

The above results have been obtained for a pin-hole right at the middle of the TSV. We 

may wonder whether the positions of the pin-holes can also affect the parameters of the 

equivalent circuit. As a result, the effects of different pin-hole locations on the extracted 

circuit model have also been determined through simulations.  

 

Figure 3.5. Variations of the resistance of TSV terminals to ground in the 

equivalent circuit with different pin-holes for a resistive substrate with 10 Siemens 

per meter conductivity. 
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Two pinhole are created near the top and the bottom of the TSV, respectively, shown 

in Figure 3.6. The equivalent circuit of these two cases are shown in Figure 3.7. 

 

 

(a)                                                          (b) 

 

Figure 3.6. (a)Pin-hole near the top. (b) Pin-hole near the bottom. 

 

 

 

 

 

 

 

 

 

Fig. 6. (a) TSV with a void size of  ***. (b) Its lumped circuit model 
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The results indicate that the overall effect of pin-hole location on the circuit model 

parameters is negligible. When the pin-hole is chosen to be very close to a TSV terminal, 

variations of the equivalent circuit parameters are less than 0.1%.  

3.1.4 Effects on multi-pin-holes 

The effects of multi-pin-holes have also been studied. The results indicate that the total 

area of the pin-holes determines the circuit parameters of the TSV model and the number 

of pin-holes, or their distributions over the TSV do not have a noticeable effect. 

(a) 

 

(b) 

 

Figure 3.7. Equivalent circuit for TSV with a Pin-hole. (a) Near the top. (b) 

Near the bottom 
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3.2 Effects of Voids 

3.2.1 Equivalent circuit for a TSV with a pin-hole 

  In a TSV with a void, we expect an increase in the resistance connecting both 

terminals of the TSV because part of the TSV conducting body is not formed, thus 

reducing the effective TSV cross section. Figure 3.8 shows the extracted circuit for TSV 

with a void, the cross section of which is 3µm in diameter, extending 3µm from the TSV 

surface toward the TSV body.  

 

 

The extracted circuit model at 1GHz solution frequency shows that the equivalent 

circuit is the same circuit as in Figure 2.3 with almost the same parameter values. The 

presence of a void neither affects the TSV capacitance nor its resistance. We created 

voids of different sizes inside the TSV to see if there are any changes in the parameters of 

the equivalent circuit. Table 3.1 shows the variations of the parameters in the equivalent 

of different cylindrical shaped void sizes. 

 

Figure 3.8. Equivalent circuit for TSV with a void (cross section 3µm diameter 

extending 3µm from the TSV surface toward the TSV body). 

 

 

 

 

 

 

 

 

 

Fig. 6. (a) TSV with a void size of  ***. (b) Its lumped circuit model 
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The created voids are at the middle of the TSV. The height of all cylindrical shaped 

voids is 1µm, with different radius ranging from 0.5µm to 2.45µm.  

From Table 3.1 we can see that parameters of the equivalent circuit remain almost the 

same. The simulation results indicate that even a larger void of cylinder shape with 

4.9µm diameter within a TSV of 5µm does not have a noticeable effect on the equivalent 

circuit parameters.  

This seems against intuition as a void takes a portion of TSV body and is expected to 

have an effect on the circuit parameters, such as increasing the resistances between the 

TSV’s terminals (R1 and L1). This result can be understood if the tendency of AC 

currents to be distributed over the surface of conductors is taken into consideration. At 

1GHz solution frequency, where simulations have been conducted, the inner portion of 

the TSV does not play an important role as most of the charge carriers find their way 

through the surface of the TSV to flow from one TSV terminal to the other. 

Table 3.1.Variations of TSV equivalent circuit parameters with different voids for 

a substrate with 10 Siemens per meter conductivity. 

Void Size (µm3) 

R1(m

Ω) 

R2(

MΩ) 

R3(

mΩ) 

R4(

Ω) 

R5(

Ω) 

L1 

(nH) 

C1 

(fF) 

C2 

(fF) 

0π (fault-free) 3 208 0.01 0.01 208 0.011 62.74 62.74 

0.25π 3 208 0.01 0.01 208 0.011 62.74 62.74 

1π 3 208 0.01 0.01 208 0.011 62.72 62.72 

2.25π 3 208 0.01 0.01 208 0.011 62.72 62.72 

4π 3 208 0.01 0.01 208 0.011 62.72 62.72 

6π 3 208 0.01 0.01 208 0.011 62.71 62.71 
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3.2.2 Current density distribution of a TSV with a void 

Figure. 3.9(a) shows a TSV with a cylindrical void with cross-section of 3µm diameter 

extending 3µm from the TSV surface toward the TSV body.  

(a) 

 

(b) 

 

Figure 3.9. (a) TSV with a cylindrical void of 3µm diameter and 3µm height. (b) 

Surface current density distribution at 1GHz. 
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It can be observed that the surface current density changes right after the void but it 

rapidly returns back to its nominal value. The void is just like a big obstacle at the center 

of a flowing river and the current is like the water flow, although the direction or 

performance of the water flowing near the obstacle will be abnormal, the general flow is 

mostly unchanged. 

As a result, presence of voids in a TSV can be considered as a reliability issue which 

undermines its physical integrity. The electrical performance of TSV at high frequencies 

is not notably affected by voids unless they become large enough to reduce the overall 

AC current passing through the TSV.  

3.2.3 Effects on multi-voids 

The effects of multi-voids have also been studied. We created multi-voids as shown in 

Figure 3.10.  

 

(a)                                    (b) 

 

Figure 3.10. (a) TSV with cylindrical multi-voids. (b) TSV with one cylindrical 

void 
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In Figure 3.10 (a), we have a TSV with three cylindrical voids in series. In Figure 3.10 

(b), we have one cylindrical void with the same volume. The results indicate that the total 

volume of the voids, the number of voids or their distributions over the TSV do not have 

a considerable effect on the electric performance. 

3.3 Effects of Opens 

  3.3.1 Equivalent circuit for a TSV with an open fault 

The TSV in Figure 3.11.is cut right at the middle, the gap between the two plates is 

1µm. 

 

  The equivalent circuit of a TSV with an open fault is shown in Figure 3.12. It can be 

seen from Figure 3.12 that the small resistance and inductance connecting TSV terminals 

are replaced by small capacitances.  

 

Figure 3.11. TSV cut off right at the middle  
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From Figure 3.12, we note that the capacitors connecting TSV terminals to ground, C3 

and C4, is almost half that of a fault-free TSV. 

We expect that as the open length increases, the capacitances decrease. Because the 

equivalent circuit is symmetrical, we can just take one capacitor into consideration, Table 

3.2 shows the capacitance (C3) connecting TSV terminals with different open lengths.  

A TSV with an open fault can be treated as two-plate capacitors, when the distance 

between the plates increases, the capacitance will decrease.  

 

 

Figure 3.12. Equivalent circuit for a TSV with an open fault  

 

 

 

 

 

 

 

 

 

 

Fig. 6. (a) TSV with a void size of  ***. (b) Its lumped circuit model 
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3.3.2 Current density distribution of a TSV with an open fault 

Figure 3.13 shows the current density distribution of a TSV with an open fault.  

 

It is clearly shown that since the TSV is cut off and there is no current flowing from 

one terminal to the other.  

 

 

 

Figure 3.13. Current density distribution of a TSV with an open fault 

 

 

 

 

 

 

 

 

Table 3.2. Capacitances connecting TSV terminals with different open lengths  

Open Lengths (µm) 1 2 3 4 5 

C3 (fF) 0.45 0.23 0.12 0.11 0.10 
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3.4 Summary 

In this typical TSV defects including pin-holes, voids and opens are studied. The 

equivalent circuit models and the current density distributions were also presented. The 

results shows that voids do not have a noticeable effect on the equivalent circuits’ 

parameters at 1GHz solution frequency. The inner portion of the TSV does not play an 

important role in the conduction current due to the skin effect. For a TSV with pin-hole, 

the resistance from TSV terminals to ground reduces sharply due to the open path from 

the pin-hole to ground.  
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Chapter 4 

Substrate Effects on TSV Model Parameters 

4.1 Equivalent circuit of a fault-free TSV in a highly conductive substrate 

The resistivity of the substrate has a considerable effect on TSV model parameters. For 

instance, if a highly conductive epi-substrate with resistivity of 1mΩ.cm or conductivity 

of 100,000 Siemens per meter is used, the resistances from TSV terminals to ground fall 

significantly. The circuit model of a 50µm long TSV with 5µm diameter within a highly 

conductive substrate is shown in Fig 4.1 

 

As compared to the circuit model for resistive substrate in Fig. 2.3, all component 

values remain unchanged other than R2 and R5 which fall from 208MΩ to less than 

3.2MΩ. We can calculate the resistance from TSV terminals to ground: 

 

𝑅𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑡𝑜 𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑅𝑐𝑜𝑝𝑝𝑒𝑟 + 𝑅𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + 𝑅𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒  (3.1) 

 

Figure 4.1. TSV equivalent circuit models for a TSV within a highly conductive 

substrate with 1mΩ.cm resistivity. 
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In the case of TSV in a resistive substrate, 𝑅𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒  contributes the most to the 

resistance to ground. The bulk conductivity increases from 10 Siemens per meter to 105 

Siemens per meter. As a result, the resistance to ground will be dramatically reduced.  

4.2 Analysis of a TSV with pin-holes in a highly conductive substrate 

4.2.1 Current density distribution 

  Figure 4.2(a) shows the current density distribution for a faulty TSV within a highly 

conductive substrate with 1µm2 pin-hole. 

 

It can be observed that most of the current flows from one terminal, through the pin-

hole, and then into the substrate in many directions. There is very limited current flowing 

to the other terminal after passing the pin-hole in a highly conductive substrate. This is 

because the substrate bulk conductivity is relatively high, which is close to the range of 

conductor. We may expect when the pin-hole size is large enough, there will be no 

connections between both terminals because in that case, the current will flow throughout 

the pin-hole totally. 

 

Figure 4.2(a). Current density distribution for a faulty TSV within a highly 

conductive substrate with 1µm2 pin-hole. 
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For the low conductivity case, Figure 4.2(b) shows the current density distribution for 

a faulty TSV within a resistive substrate with 1µm2 pin-hole. 

 

It can be observed that although the current density decreases after the current passed 

the pin-hole, there are no considerable changes in the current flow in general. There are 

some leakage currents after the pin-hole is created, but it is not high enough to create 

component changes in the equivalent circuit model.  

4.2.2 Equivalent Circuit 

A pin-hole of 1µm² on TSV within a resistive substrate reduces the resistances of TSV 

terminals to ground from 208MΩ to 23.6KΩ as shown in Figure. 3.3. All other 

components in the TSV extracted model remain unaffected.  

A pin-hole with the size of 1µm² on the same TSV within a highly conductive substrate 

(105 Siemens per meter) is also created. The equivalent circuit model is shown in Figure 

4.3. 

 

Figure 4.2(b). Current density distribution for a faulty TSV within a resistive 

substrate with 1µm2 pin-hole. 
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We find that there are two main difference between these cases. One is that the pin-

hole itself reduces the resistances of the paths to ground to less than 6Ω. The other is that 

the pin-hole changes the components of the TSV equivalent circuit model. It can be seen 

that the large resistors between TSV terminals and ground, R2 and R5 in Figure. 3.3, 

have been replaced with relatively small resistors in series with inductors. The resistors 

are attributed to the low impedance path opened from TSV terminals to ground through 

the pin-hole and the inductors indicate that the impedances of the paths to ground 

increase with frequency.  

 

Figure 4.3. TSV equivalent circuit models for a TSV within a highly 

conductive substrate with 1µm2 pin-hole. 
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We may notice that the extracted circuit model does not include any capacitor since the 

pin-hole punched through the insulator and connected the plates of the capacitors formed 

between the TSV and the substrate. In this case, contrary to the case of high resistivity 

substrate, the current from TSV to ground is dominated by the conduction current 

through the low resistive paths from TSV terminals to ground.  

The displacement current through the capacitors formed between the TSV and the 

substrate become negligible as compared to the conduction current. Thus the capacitors is 

omitted from the circuit model. Variations of TSV equivalent circuit components for 

highly conductive substrate with different size pin-holes are shown in table 4.1. 

 

Figure 4.4. Impedances for a TSV within a highly conductive substrate with a 

pin-hole. 
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It can be seen that the impedance between the TSV terminals, R1 and L1, is constant 

while both the resistance and the inductance of each TSV terminal to ground experience a 

considerable reduction when the size of pin-hole increases.  

When the pin-hole size reaches 12 µm², R1 and L1 both become infinity, which means 

that under this condition there is no connection between both terminals. When the pin-

hole size reaches 12µm², the current generated from one TSV’s terminal will mainly flow 

into the substrate. 

4.3 Analysis of a TSV with voids in a highly conductive substrate 

4.3.1 Current density and electric field distribution 

Figure 4.5 shows the current density and electric field distribution for a faulty TSV 

within a highly conductive substrate with 37µm3 void. 

Table 4.1.Variations of TSV equivalent circuit parameters with different pin-

holes for a substrate with 105 Siemens per meter conductivity. 

Pin-hole 

Size (µm²) R1(mΩ) L1 (nH) R2(Ω) L2 (nH) R3(Ω) L3 (nH) 

1 3 0.011 5.47 0.038 5.47 0.039 

2 3 0.011 3.32 0.038 3.32 0.040 

4 3 0.011 2.29 0.037 2.29 0.040 

6 3 0.011 1.76 0.036 1.76 0.040 

9 3 0.011 1.4 0.036 1.4 0.040 

12 +∞ +∞ 1.15 0.034 1.15 0.040 
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From current density distribution, we note that some fluctuations of the current flow 

occur near the void, but the main flow in general is smooth, there are almost no changes 

(a) 

 

(b) 

 

Figure 4.5. (a) Current density distribution. (b) Electric field distribution for a 

faulty TSV within a highly conductive substrate with 1µm2 pin-hole. 
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of current distribution for this case as compared to the case that TSV in a resistive 

substrate.  

For electric field distribution, although there is a small field intensity change near the 

void, the field is more or less uniformly distributed. We can expect that the equivalent 

circuit for this case will not have a significant change.  

4.3.2 Equivalent circuit 

The structure and parameters of the equivalent circuit remain almost the same as 

compared to Figure 4.1.  

4.4 Analysis of a TSV with opens in a highly conductive substrate 

Figure 4.6 shows the current density distribution for a TSV within a highly conductive 

substrate with an open fault.  

 

 

Figure 4.6. Current density distribution for a TSV within a highly conductive 

substrate with an open fault 
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We note that as compared to the open TSV in a resistive substrate, the current density 

of the surface is reduced to 10%, but the current density distribution remains with almost 

no changes.  

4.5 Summary 

In this chapter we studied the effects of different bulk conductivity of the substrate on 

the equivalent circuit models and their parameters.  

We noted that for TSVs with voids or opens, the substrate’s bulk conductivity does not 

have a significant effect on the equivalent circuits’ parameters. While for TSVs with pin-

holes, the resistance from TSV terminals to ground reduces sharply. Moreover, the 

structure of the equivalent circuit is affected. The capacitors in the circuit model are 

replaced with inductors. This is due to the fact that the TSV body in this case is 

connected to a highly substrate and the plates of the capacitors are shorted. Also the 

resistances from TSV terminals to ground reduces sharply to less than 6Ω when a small 

pin-hole with the size of 1µm by 1µm is created on the dielectric layer. When the pin-

hole size exceeds 12um2 the current flows mainly through the highly conductive substrate. 
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Chapter 5 

TSV with Bumps and Layers 

5.1 Fault-free TSV structure 

Based on the discussions in Chapter 2, we have implemented a TSV structure shown in 

Figure. 2.1. This structure only includes the TSV body, the dielectric layer and the 

substrate, while a complete TSV includes a passivation layer, bumps on the top and 

bottom of the TSV, a metal layer, a keep out zone and an active layer. For an accurate 

analysis, we have implemented a complete TSV structure as shown in Figure 5.1. The 

length, width and height of the bumps are 20µm, 20µm and 5µm, respectively. The 

thickness of the dielectric is 0.5µm. 

 

 

Figure 5.1 Implemented TSV structure 
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5.2 Analysis of the complete fault-free TSV structure 

5.2.1 Electric field and current density distribution 

 The TSV was excited with one voltage at its port to extract S-parameters. The 

frequency is swept from 1MHz to 1GHz, with the step size of 1MHz, and the solution 

frequency is set to 1GHz.  

The top tin bump is assigned as terminal_1 and the bottom tin bump as terminal_2. 

Figure 5.2 (a) shows the electric field distribution and Figure 5.2(b) shows the current 

density distribution of the fault-free TSV. The electric field and the current density are 

uniformly distributed over the surface of the TSV and there is no current flowing into the 

substrate.   

 

                            (a)                                                                              (b) 

 

Figure 5.2 (a) Electric field distribution of a complete TSV structure 

(b) Current density distribution of a complete TSV structure 
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5.2.2. Equivalent circuit and S-parameters 

Figure 5.3 shows lumped circuit model representing the complete fault free TSV 

generated by HFSS from 3D full wave simulation at 1GHz solution frequency.  

 

As compared to Figure 2.3, there are no significant changes, only the capacitors to 

ground, C1 and C2, increase from 0.0627pF to 0.079pF. The contact area of the dielectric 

and the conducting plates are larger, which will increase the capacitance.  

Figure 5.4 shows the S-parameters of the TSV. S11 shows a minor return loss at 1GHz 

solution frequency and likewise, S21 indicates an insertion loss at high frequencies. 

These results are similar to what we got in Chapter Two.  

 

Figure. 5.3. Lumped circuit model representing a fault free TSV generated by 

HFSS from 3D full wave simulation at 1GHz solution frequency. 

0.49nH

220MΩ

0.003Ω

0.16nH 0.016Ω

1e-5Ω1e-5Ω

0.079pF 0.079pF

220MΩ



 

51 

 

 

5.3 Analysis of the complete TSV structure with a pin-hole 

5.3.1 Electric field and current density distribution 

  A pin-hole with the size of 2µm by 2µm was created on the silicon dioxide to see the 

electric field and current density distribution under this case. Figure 5.5(a) shows the 

electric field distribution and Figure 5.5(b) shows the substrate volume current intensity. 

The electric field intensity is higher near the pin-hole in the substrate because the 

dielectric separating the two conductors is broken. The current density of this fault model 

is also higher than the fault-free model because of the electric path from the pin-hole to 

ground which will result in greater leakage current.  

(a) 

 

(b) 

 

Figure. 5.4. S-parameters of the fault-free TSV with ultimate structure. 

(a) S11 and (b) S21 
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5.3.2 Equivalent circuit and S-parameters 

Figure 5.6 shows lumped circuit model representing a faulty TSV with a pin-hole size 

of 2µm×2µm ultimate structure generated by HFSS from 3D full wave simulation at 

1GHz solution frequency. As expected, most of the parameters keep no changes except 

the resistance to ground, say, R3 and R6, drop from 220MΩ to less than 23KΩ. This 

results are consistent with the results shown in chapter 3.  

 

 

Figure. 5.6. Lumped circuit model representing a faulty TSV with a pin-hole 

size of 2µm×2µm. 

(a)                                (b) 

    

Figure. 5.5. (a) Electric field distribution. (b) Substrate volume current 

intensity for a TSV with a pin-hole size of 2µm by 2µm 
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Figure 5.7 shows the S-parameters of the TSV with a pin-hole of 2µm×2µm. As 

compared with Figure 5.4, both return loss and insertion loss have noteworthy changes, 

e.g., the maximum return loss decreases from -75dB to -55dB and the insertion loss 

increases from -0.04dB at 1GHz to -0.05dB at 1GHz.  

5.3.3 Effect of pin-hole sizes on equivalent circuit 

Table 5.1 shows the parameters of the equivalent circuit with different pin-hole sizes. 

If we recall the discussions in Chapter Three, the variations of parameters other than the 

resistance from TSV terminals to ground retain almost no changes. We have the same 

situation here. We note that the resistance to ground, R3 and R6, fall from 220MΩ to 

55KΩ immediately after a pin-hole of 1µm by 1µm is created. R3 and R6 is decreasing 

when the pin-hole size is increasing, but the relationship is not linear. For example, when 

(a) 

 

(b) 

 

Figure. 5.7. S-Parameters for a TSV with Pinhole of 2µm×2µm. (a) S11. (b) 

S21. 
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the pin-hole size is 2µm×2µm, 4 times greater than 1µm×1µm, R3 and R6 fall from 

55KΩ to 23KΩ, which is not 4 times smaller. 

 

5.4 Analysis of the complete TSV structure with a void 

 Figure 5.8 shows TSV with a cylindrical void of 3µm diameter and 3µm height. The 

experimental results are almost the same as shown in Chapter Three, with no significant 

changes on the equivalent circuit’s parameter, the S-parameters, the electric field 

distribution and the current density distribution. As a result, although a void affects the 

TSV’s physical integrity, it does not have a noticeable effect on the electric performance 

of the TSV at high frequencies unless the void becomes large enough to either cut off the 

TSV or severely limit the current flow 

TABLE 5.1 

Variations of TSV equivalent circuit parameters with different pin-holes for a 

substrate with 10 Siemens per meter conductivity. 

Pin-hole Size 

(µm²) R1(Ω) R2(Ω) R3(KΩ) R4(Ω) R5(Ω) R6(KΩ) L1 (nH) L2 (nH) C1 (pF) C2(pF) 

1 0.016 0.003 55 1E-5 1E-5 55 0.164 0.488 0.078 0.078 

2 0.016 0.003 33 1E-5 1E-5 33 0.164 0.488 0.077 0.077 

4 0.016 0.003 23 1E-5 1E-5 23 0.164 0.488 0.076 0.076 

6 0.016 0.003 17 1E-5 1E-5 17 0.164 0.488 0.076 0.076 

9 0.016 0.003 14 1E-5 1E-5 14 0.164 0.488 0.074 0.074 

12 0.016 0.003 11 1E-5 1E-5 11 0.164 0.488 0.074 0.074 

16 0.016 0.003 9.5 1E-5 1E-5 9.5 0.164 0.488 0.073 0.073 

20 0.016 0.003 8.2 1E-5 1E-5 8.2 0.164 0.488 0.072 0.072 

25 0.016 0.003 7.0 1E-5 1E-5 7.0 0.164 0.488 0.071 0.071 
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(a) 

 

(b) 

 

Figure. 5.8. (a) TSV with a cylindrical void of 3µm diameter and 3µm height. (b) 

Surface current density distribution at 1GHz solution frequency. 
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5.5 Analysis of the complete TSV structure in a highly conductive substrate 

5.5.1 Fault-free model 

5.5.1.1 Equivalent circuit 

Figure 5.9 shows the equivalent circuit for the complete TSV structure in a substrate 

with the conductivity of 105 Siemens per meter.  

  

If we compare Figure 5.9 with Figure 5.3, we can see that all the parameters remain 

almost the same except the resistances to ground which falls from 220MΩ to 5.4MΩ. 

This result is also consistent with the result in chapter 3.  

5.5.1.2 S-parameters 

Figure 5.10 shows the effect of substrate on TSV S-parameters. The red curve shows 

the S-parameters of the TSV in a resistive substrate while the blue curve shows the S-

parameters of the TSV in a highly conductive substrate. We find that for the return loss, 

S11, there are minor changes while for the insertion loss, S21, the TSV in the highly 

conductive substrate has a higher loss. 

 

Figure. 5.9. TSV equivalent circuit models for a fault free TSV at 1GHz 

solution within a highly conductive substrate with 1mΩ.cm resistivity. 
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5.5.2 TSV with a pin-hole 

Figure 5.11 shows the equivalent circuit of a TSV with a pin-hole size of 1µm². It can 

be seen that the small capacitors which are in series connection with small resistors are 

replaced by small inductors. Table 5.2 shows the variations of TSV equivalent circuit 

parameters with different pin-holes for a substrate with 105 Siemens per meter 

conductivity. The resistors connecting TSV terminals to ground fall as the pin-hole size 

increases. 

 

(a) 

 

(b) 

 

Figure. 5.10. The effect of substrate’s bulk conductivity on TSV S-

parameters. (a) S11. (b) S21. 

 

 

 

 

 

 

 

 

 

 

 

0.51 0.60 0.70 0.80 0.90 1.00
Freq [GHz]

-50.00

-45.00

-40.00

Y
1

HFSSDesign1XY Plot 1

Curve Info

dB(S(...
Setup1 : ...

dB(S(...
Imported

0.00 0.20 0.40 0.60 0.80 1.00
Freq [GHz]

-0.04

-0.03

-0.02

-0.01

0.00

Y
1

HFSSDesign1XY Plot 2

Curve Info

dB(S(2,1))
Setup1 : Sweep

dB(S(2,1))_1



 

58 

 

 

 

5.6 Pre-bond TSV testing 

The major difference between pre-bond TSV testing and post-bond TSV testing is that 

we can only access one TSV terminal at the pre-bound stage while we have access to two 

TSV terminals in the post-bond TSV stage.  

TABLE 5.2 

Variations of TSV equivalent circuit parameters with different pin-holes for a 

substrate with 105 Siemens per meter conductivity. 

Pin-hole Size 

(µm²) R2(Ω) 

L2 

(nH) R1(Ω) 

L1 

(nH) R3(Ω) 

L3 

(nH) 

R4(

Ω) 

L4 

(nH) 

1 0.08 0.30 0.08 0.12 5.4 0.08 5.4 0.023 

2 0.08 0.30 0.08 0.12 3.2 0.08 3.2 0.025 

4 0.08 0.30 0.08 0.12 2.3 0.08 2.3 0.025 

6 0.08 0.29 0.08 0.11 1.7 0.08 1.7 0.025 

9 0.08 0.29 0.08 0.11 1.4 0.08 1.4 0.025 

 

 

Figure. 5.11. Equivalent circuit model at 1GHz solution within a highly 

conductive substrate with 1mΩ.cm resistivity for a TSV with a pin-hole of 1µm² 

area. 
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Figure 5.12 shows the implemented pre-bond TSV structure, its equivalent circuit and 

the return loss.  

For the equivalent circuit, there is a capacitor with the value of 0.07pF connecting the 

TSV terminal to ground. From S-parameters, it can be seen that the return loss increases 

with frequency to about -12dB at 1GHz frequency. 

Voids in the pre-bond TSV body can barely affect the TSV’s electric performance 

while a pin-hole sharply decreases the resistances connecting TSV terminals to ground, 

which is consistent with the results in Chapter Two.  

It is easy to detect open faults in post-bond TSVs as there will be capacitors instead 

of resistors in the TSV model. While for pre-bond TSVs, it is challenging to detect this 

kind of fault due to limited access. The variations of capacitances is a function of the 

locations of opens. Figure 5.13 shows a pre-bound TSV with an open defect which is 

10µm away from the TSV port. It shows that the farther the open fault is from the TSV 

terminal, the more difficult it is to detect the open fault. This is due to the fact that as the 

distance between the open fault and the TSV terminal increases, the parasite capacitance 

increases.  
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(a) 

 

(b) 

 

(c) 

 

Figure. 5.12. (a) Implemented pre-bound TSV and its (b) equivalent circuit and 

(c) return loss at 1GHz solution. 
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5.7 TSV Misalignment 

When TSVs are not packed together exactly on top of each other the performance of 

the TSVs are affected due to misalignment. Figure 5.14 shows an example of TSV 

misalignment.  

(a) 

 

(b) 

 

Figure.5.13. (a) A pre-bound TSV with an open defect 10µm far from the TSV 

port. (b) Variations of the pre-bound TSV parasitic capacitance with distance of 

the open defect from the TSV port. 
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The variations of capacitors to ground is shown in Table 5.3 

 

 

 

 

TABLE 5.3 

Variations of TSV capacitance to ground with misalignments 

Misalignment 

percentage C1(fF) C2(fF) 

0% 157.5 157.5 

25% 157.8 157.8 

50% 158.4 158.4 

75% 159.5 159.5 

 

 

Figure. 5.14. TSV misalignment reducing the effective contact surface between 

the TSV ports by 75%. 
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5.8 Summary 

Instead of the simple copper bar surrounded by a dielectric layer implemented in 

previous chapters, this chapter studies the complete TSV structure, with interconnects, 

bumps, keep out zone, and metal layer added.  

We performed simulations on fault free TSVs and TSVs with different types of faults, 

the results are consistent with the results obtained with the TSV structure in previous 

chapters. TSV misalignment and pre-bond testing are also studied. Misalignment does 

not have a significant effect on the TSV’s electric performance if the overlap area 

exceeds 0.25%. The current find its way from one TSV to the other through the surface of 

the conducting metal. For pre-bond TSV testing, the effects of pin-holes and voids are 

similar to post-bond TSVs.  It is more challenging to test the open fault of pre-bond TSVs 

due to the limited access to the ports.  
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Chapter 6 

Measurement resolution to detect TSV defects 

6.1 Delay test 

Delay test is an essential part of circuit debugging. In [21], a solution has been 

presented for wire delay measurement using random samplings of signals with different 

periods. A method to detect TSV faults through delay measurement is also presented in 

[17]. In this method, the delay is determined by changing an inverter from a normal 

operation to a Smith Trigger. In [13], a small delay test scheme for through-silicon vias 

(TSVs) is presented.  

Although a fault free TSV presents a high capacitance and the delay caused by a TSV is 

dominated by its capacitance, the rate of TSV capacitance variations due to voids and 

pin-holes is too small for low conductivity substrates. In a resistive substrate, the TSV 

capacitance value remains nearly constant even in the presence of large square pin-holes 

of 20µm2 or sphere voids of 800 µm3. The total TSV capacitance does not vary noticeably 

with voids even in highly conductive substrates. Interestingly, pin-holes have a 

significant effect on the TSV capacitances and resistances on highly conductive 

substrates.  

6.2 Elmore delay 

As the inductance of the TSV can be neglected when calculating the delay [13], we can 

just take the resistance and the capacitance of the TSV into consideration. Elmore delay 

[54] formula fits perfectly into this kind of situation. Figure 6.1 shows the tree-structured 

RC network [55].  
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 The Elmore delay from node s to node i is given in equation 6.1.  

 𝜏𝐷𝑖 =  0.69∑ 𝐶𝑘
𝑁
𝑘=1 𝑅𝑖𝑘 = 0.69 [𝑅1(𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 + 𝐶𝑖) + 𝑅2𝐶2 +

 𝑅3(𝐶3 + 𝐶4 + 𝐶𝑖) + 𝑅4𝐶4 + 𝑅𝑖𝐶𝑖]                            (6.1) 

In the same way, if we take the equivalent circuit of a TSV shown in Figure 2.3 into 

consideration, the Elmore delay for a TSV can be given in equation 6.2.  

𝑡𝑑𝑒𝑙𝑎𝑦_𝑇𝑆𝑉 = 0.69(𝑅1 + 𝑅4)𝐶2                                   (6.2) 

A challenge is raised here: The capacitance of a TSV is around pico-farad range and 

the resistance of a TSV is only a few mili-Ohm, the delay for a fault-free TSV should be 

very small and difficult to capture. How to expand this small delay to an acceptable range 

is a critical issue. 

6.3 Circuit designed for delay test 

A test circuit has been implemented using Agilent Advanced Design System (ADS) to 

estimate the required delay measurement resolution to detect a TSV pin-hole of 1µm² on 

a resistive substrate. As shown in Figure. 6.2, a step voltage of 1V has been applied to the 

TSV circuit model through a driver with 𝑅𝑑𝑟𝑖𝑣𝑒𝑟  and 𝐶𝑑𝑟𝑖𝑣𝑒𝑟  of 10KΩ and 10fF, 

respectively.  

 

Figure 6.1 Tree-structured RC network 
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For this circuit, we expect the delay should be calculated by equation 6.3.  

𝑡𝑑𝑒𝑙𝑎𝑦_𝑇𝑆𝑉 = 0.69[(𝑅𝑑𝑟𝑖𝑣𝑒𝑟 + 𝑅3)𝐶1 + (𝑅𝑑𝑟𝑖𝑣𝑒𝑟  +  𝑅1 + 𝑅4)𝐶2]    (6.3)      

Equation 6.3 can be simplified to equation 6.4 

𝑡𝑑𝑒𝑙𝑎𝑦_𝑇𝑆𝑉 ≈  0.69𝑅𝑑𝑟𝑖𝑣𝑒𝑟(𝐶1 + 𝐶2)    (6.4) 

𝑅𝑑𝑟𝑖𝑣𝑒𝑟 is in more than 107 times greater than 𝑅1, 𝑅3 𝑎𝑛𝑑 𝑅4, as a result of which, we 

can remove 𝑅1, 𝑅3 𝑎𝑛𝑑 𝑅4 in equation 6.3. 

  The variation of delay can be calculated by equation 6.5 

𝛥𝑡𝑑𝑒𝑙𝑎𝑦_𝑇𝑆𝑉 ≈ 0.69𝑅𝑑𝑟𝑖𝑣𝑒𝑟(𝛥𝐶1 + 𝛥𝐶2)    (6.5) 

Simulation results for a substrate of 10 Siemens per meter conductivity with a pin-hole 

of 4µm² in Figure. 3.5 indicate that the resistances of the TSV terminals to ground, R2 

and R5 in Figure. 3.3, fall to 23.6KΩ while all other component values remain unchanged. 

The delay difference between the responses of fault-free and faulty TSV in this case is 

negligible. When the output exceeds the threshold of 0.5V, the difference between the 

responses becomes less than 0.1ps, which is much lower than the resolution of current 

on-chip time measurement circuits. A relatively large pin-hole of 20µm² still requires less 

than 1ps measurement resolution to be detected. As a result, such defects remain 

unnoticed even though they potentially can have significant effects on the circuit 

 

Figure 6.2. Test circuit implemented to determine the required measurement 

resolution for TSV parametric fault detection. 
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performance. In the case of resistive substrates, pin-holes neither affect the swing nor the 

delay noticeably if typical drivers and receiver are used. To properly detect such TSV 

defects the output resistance of the driver has to be high enough to allow pin-holes to 

have a meaningful effect on the time constant of the output. For instance, if the output 

resistance of the driver, 𝑅𝑑𝑟𝑖𝑣𝑒𝑟, changes to 10kΩ, the delay at the TSV output as shown 

in Figure. 6.2 exceeds 20ps.  

 

 

The effects of pin-holes on highly conductive substrates can be detected readily as they 

reduce the output swing and delay significantly. In this case, a pin-hole acts like a stuck-

at zero fault if a driver with high output resistance is used.  

 

 

 

 

 

Figure 6.3. Simulation results indicating measurement resolution of 20ps to detect 

a pin-hole of 1µm². 
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6.4 Summary 

In this chapter, a circuit is presented to analyze the required time measurement 

resolution to detect TSV faults.   Simulation results in ADS environment indicate that  the 

output resistance of the driver used to apply the test signal to TSV affects the required 

measurement resolution considerably. The time measurement resolution of about 20ps is 

needed to detect a pin-hole of 1µm² with a driver with 10KΩ output resistance. Due to 

the minor variations of TSV model parameter with pin-holes and voids, a test solution for 

TSV parametric faults needs a dedicated high resolution on-chip measurement circuit. 
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Chapter 7 

 Conclusion and Future work 

Conclusion 

One of the main challenges of 3D IC integration is how to test TSVs to cover their 

physical defects. TSV as a new structure presents some unique test challenges. 

Conventional test methodologies developed for interconnects can be used to cover 

catastrophic TSV defects including open and short faults. However, new test techniques 

are needed to cover TSV parametric faults.   

In this work, analytical approach using transmission line to present a TSV is shown, and 

3D full wave simulations using industry standard CAD tool, HFSS, have been performed 

to extract TSV equivalent circuit model under different conditions. The extracted models 

indicate that the delay of a 50µm long TSV with 5µm diameter is dominated by its 

capacitance.  However, the variations of total TSV capacitance in a resistive substrate 

with different size pin-holes are too small for the purpose of fault detection. In this case, 

variations of the resistive paths from TSV terminals to ground have to be monitored to 

detect pin-holes. It is shown that the substrate has a significant effect on TSV fault 

characterization. A circuit used to detect a TSV pin-hole on low conductivity substrate 

cannot be easily used to detect the same fault on a highly conductive substrate. It is also 

shown that regardless of the substrate type, even a relatively large void does not 

noticeably alter the TSV resistance or capacitance at 1GHz test frequency. Due to the 

minor variations in TSV model parameters with pin-holes and voids, a test solution for 

TSV parametric faults may need a dedicated high resolution on-chip measurement circuit. 

Future Work 

Although this work presents good models from CAD tools for faulty and fault free 

TSVs in different conductivity of the substrate, the need for fabricating TSVs cannot be 

neglected. We need the test results from the fabricated TSVs to support our work. Also, 
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we should develop an on-chip testing circuit with high-resolution and is independent 

from temperature, supply voltage and process to test the TSV faults. 
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