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Abstract 

Electrohydraulic forming (EHF) is a pulsed forming process in which two or more electrodes 

are positioned in a chamber filled with a liquid and a high-voltage discharge between the 

electrodes generates a high-pressure to form the sheet. Deformation history of a sheet material in 

EHF process shows substantial changes in the strain rate of the material during the forming 

process. In this research, the mechanical properties of DP600, TRIP780, and AA5182-O were 

obtained at different strain rates. Uniaxial tensile tests showed significant strain-rate sensitivity in 

all three material orientations (RD, DD, and TD) for DP600 and TRIP780. In contrast, AA5182-

O exhibits almost near-zero strain-rate sensitivity. Several anisotropic yield functions were 

calibrated at various strain rates to evaluate the effect of strain rate on the flow surface shape. By 

comparing the quasistatic and updated flow surfaces of DP600 and TRIP780 predicted by 

Yld2000-2d, results show a relatively considerable effect of updating anisotropy coefficients for 

higher strain rates (        ).  

Several rate-dependent anisotropic material models (plane stress and general) were developed, 

by combining updated anisotropic yield functions  and a rate-dependent hardening model (KHL). 

The developed models were implemented as user-defined material subroutines (VUMATs) based 

on implicit stress integration algorithm for ABAQUS/Explicit code to simulate electrohydraulic 

free-forming (EHFF) and die-forming (EHDF) processes. EHF simulations were completed, 

using Eulerian elements and ignition-and-growth model. The EHFF process was simulated for 

four different geometries (representing four different strain paths). Also, the EHDF process was 

simulated using a conical die The EHFF simulation results for the DP600 biaxial specimen 

showed that von Mises predicts a maximum effective plastic strain around     greater than 

Yld2000-2d for the same amount of applied energy. 

The EHDF simulation result for DP600 showed that with the same applied energy magnitude, 

von Mises overpredicts major, minor and through-thickness shear strains and consequently 

effective plastic strain (    higher) compared to Yld2004-18p. Results showed that     of the 

effective plastic strain occurs under a proportional biaxial strain path before contacting the die. 

Also, results showed that von Mises overpredicts maximum absolute compressive through-

thickness stress and shear strain compared to the values predicted by Yld2004-18p.  
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1 Introduction 

 

 

 

Finite element (FE) simulations can be used to investigate sheet metal forming 

processes for many reasons such as analysing stress, strain and temperature distributions, 

predicting material flow and deformation history, and predicting potential locations of 

strain localization and failure. FE simulations can significantly reduce the time and cost 

to design and optimize manufacturing processes. The development of modern 

computational techniques, especially the advancement of commercial finite element 

codes have made modelling and simulation indispensable components of product design 

and optimization in an integrated manufacturing environment. In FE simulations of sheet 

metal forming processes, the accuracy of the predicted results can be influenced by many 

parameters such as the constitutive material model which represents the elasto-plastic 

behaviour of the material, tribological and contact conditions, and numerical factors such 

as element type and formulation. The computation time and geometrical representations 

should also be considered for reliable and cost effective FE simulation. In the first few 

decades of FE simulation development, attention was focused on improving the 

formulations, methodology, algorithm, and computational efficiency. As these issues 

were gradually resolved and the FE approach was used for a broader range of 

applications, substantial efforts were put into developing and modifying different 

constitutive material models. Many material models were developed to represent the 

behaviour of a variety of materials. 

Generally, sheet metal forming processes involve large deformations and rotations 

which lead to substantial material and geometrical nonlinearity, respectively. In the 

analytical and numerical analysis of these processes, the logarithmic strain and conjugate 

Cauchy stress tensors are widely used to generate the constitutive material equations. A 

co-rotational coordinate system in which the reference system rotates with the material is 
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generally used to express all stress, strain, and internal state variables. The constitutive 

material model plays a critical role in many sheet metal forming areas such as formability 

analysis, defect analysis (such as wrinkling and earing), localization and failure analysis, 

and prediction of springback. The material model affects many aspects of a sheet forming 

analysis because it is used to update the stress and all internal state variables based on the 

deformation rate tensor. Due to the path-dependency (nonlinearity and irreversibility) 

nature of plastic deformation, the incremental formulation scheme is the most convenient 

approach for writing all elasto-plastic constitutive material equations. Therefore, for any 

constitutive material equation implemented into a FE code, the relation between the strain 

increment (or deformation rate) and stress increment must be derived (so-called 

incremental plasticity). The overall response is determined incrementally by integrating 

the rate-type constitutive and field equations along a given path of loading or 

deformation. Figure 1-1 shows the role of a general constitutive model in predicting the 

material deformation in nonlinear FE analysis. 

 

 

Figure 1-1 Role of constitutive material model in nonlinear FE analysis 

In the FE simulation of sheet metal forming, an acceptable constitutive material model 

should be able to capture many different phenomena that occur during plastic 

deformation, including the anisotropic material behaviour for different material 
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orientations, and the strain rate and/or temperature dependent hardening (flow stress) 

behaviour. Many factors should be considered when selecting a constitutive material 

model for a FE sheet metal forming analysis. First, the nature of the actual forming 

process must be carefully analyzed to recognize the parameters which are effective in the 

elasto-plastic mechanical responses (deformation history) of the material during the 

plastic deformation. For instance, it is now well known that the mechanical response of 

many materials including the initial yield stress, flow stress, and ductility, can change 

significantly with strain rate and temperature. Accordingly, the sensitivity of the 

mechanical response to strain rate should be considered in the simulations of rate-

dependent (dynamic) forming processes, such as electrohydraulic forming (EHF). At the 

same time, the constitutive material equation should not be so complicated that it requires 

an excessive number of coefficients, because the experimental tests to calibrate the 

model, the numerical implementation, and the computational procedures will be 

expensive. The robustness of a constitutive material model can be assessed with a 

thorough comparison to experimental findings. An appropriate material model should 

provide the best possible fit to the actual material properties at a reasonable cost. 

Generally, constitutive material models can be categorized into either micro-structural 

or phenomenological models. Micro-structural models are based on some description of 

the crystal structure and crystallographic texture. These types of models often produce 

accurate results, but usually require numerous complex experimental tests and the 

computing time needed to carry out these computations is prohibitive in the design stage 

of a forming process. Phenomenological constitutive models generally include an 

anisotropic yield function, a flow rule, and a hardening model. These models are assumed 

to be well described with a flow surface that evolves during plastic deformation. In spite 

of the limitations of a single flow surface associated with isotropic hardening, this 

approach is appealing at the forming process design stage, because they require less and 

simpler experimental tests and also shorter computation times compared to micro-

structural models.  

The change of the material properties, specifically material anisotropy, has seldom 

been considered in sheet metal forming analysis, since it is difficult to quantify 
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experimentally. Recently, it was demonstrated that in addition to flow stresses, the 

mechanical properties associated with the material anisotropy behaviour changed with 

strain rate (Lee et al., 2010). Among material parameters, the flow stresses and r-values 

under different loading conditions influence the initial anisotropic state of the sheet 

material. The initial anisotropy of a material is represented by the flow surface shape 

which determines residual stress and strain distributions in the sheet when the forming 

process is completed. Therefore, an accurate description of the anisotropy behaviour of 

sheet materials can be one of the most effective parameters in the simulation of sheet 

metal forming processes.  

For decades, many researchers have reported changes in the hardening behaviour of a 

variety of materials as a function of strain rate. The changes in hardening behaviour have 

a significant effect on the flow surface evolution of the material. But, to the best of the 

author`s knowledge, researchers do not take strain-rate sensitivity into consideration 

when calibrating anisotropic yield functions. Despite the importance of accurately 

capturing the evolution of the flow surface by correlating the anisotropic yield functions 

to strain rate, a comprehensive study to evaluate simultaneously the influence of the 

strain rate in both material anisotropy and hardening behaviour has not been completed to 

date. The variation in the material anisotropy coefficients with strain rate can potentially 

alter the flow surface shape, which consequently changes the residual stress and strain in 

the as-formed part in a rate-dependent forming analysis. Therefore, the author proposes to 

investigate the effect of both anisotropy and hardening changes of material as a function 

of strain rate in the simulation of sheet metal forming processes.  

In this work, the mechanical properties (including flow stresses and r-values) of three 

sheet materials (DP600, TRIP780, and AA5182-O) were obtained at different strain rates 

(                    and         ) under uniaxial tension (in the rolling, diagonal, 

and transverse directions) and biaxial tension conditions. Several anisotropic yield 

functions were calibrated at each level of strain rate. Using the mechanical properties, a 

comprehensive study was then completed to evaluate the effect of strain rate on the flow 

surface shape for each yield function. Also, in order to capture the hardening behaviour 
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of the materials, three different rate-dependent hardening models (Johnson-Cook, JC; 

Khan-Huang-Liang, KHL; and Surajit Kumar Paul, SKP) were calibrated. 

After a thorough review of different constitutive models, several associative rate-

dependent material models (based on associated flow rule, AFR) were developed. The 

new material models, which are a combination of updated anisotropic yield functions, 

(the anisotropy coefficients are updated depending on the strain rate) and rate-dependent 

hardening model, were developed to predict both anisotropic and rate-dependent 

hardening characteristics as accurately as possible. It should be mentioned that the 

“updated” expression implies that the anisotropy coefficients were updated to the 

corresponding values for the current strain rate, by applying 4
th

-order strain rate 

dependent polynomial functions instead of the initial constant anisotropy coefficients. In 

developing the rate-dependent material models, an effort was made to maintain the 

numerical implementation as efficient as possible. 

Among all the anisotropic yield functions and hardening models, Yld2000-2d (for 

plane stress conditions) and Yld2004-18p (for general stress state conditions) as yield 

functions were selected to combine with KHL as hardening model to develop rate-

dependent anisotropic user-defined material subroutines (VUMATs). Finally, an implicit 

stress integration algorithm, using the multi-step return mapping method, was used to 

develop rate-dependent anisotropic constitutive material models. The developed implicit 

integration method has a general form that can be implemented with any quadratic or 

non-quadratic yield function paired with any rate-dependent hardening model. The 

developed models were implemented asVUMATs for ABAQUS/Explicit code to 

simulate electrohydraulic forming of both DP600 and AA5182-O sheet materials under 

different process conditions, using Eulerian elements and the ignition-and-growth model 

to simulate the pulsed pressure wave in EHF. The simulation results under different EHF 

conditions using the developed material models were then compared with experimental 

measurements in order to validate the model. 
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This dissertation is subdivided into the following sections:  

    • Chapter 1. Introduction 

    • Chapter 2. Literature review 

    • Chapter 3. Rate-dependent constitutive model 

    • Chapter 4. Effect of updating anisotropy coefficients on the flow surface 

    • Chapter 5. Rate-dependent implicit stress integration scheme 

    • Chapter 6. Finite element simulation of electrohydraulic forming 

    • Chapter 7. Overall summary and conclusions 
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2 Literature Review 

 

 

 

2.1 Introduction 

The automotive and aerospace industries have been requesting material suppliers to 

develop lighter and stronger materials at reasonable production costs for decades. 

However, many of the developed low-cost and light-weight materials, such as aluminum 

alloys and advanced high strength steels (AHSS) have limited formability in conventional 

forming processes. Researchers have shown that, to overcome this barrier, non-traditional 

forming operations can be designed for these types of materials instead of merely 

substituting these alloys. High speed metal forming processes are recognized as a 

potential replacement for conventional forming processes to increase material 

formability.  

One of the main barriers to the industrial implementation of high speed metal forming 

processes is the lack of experience to predict sheet material behaviour under large plastic 

deformation. Numerical simulations of sheet metal forming processes are routinely used 

to achieve substantial time and cost reductions in the design process. When a sheet is 

accelerated in a forming process, the strain rate effect becomes important. Therefore, it is 

vital to consider the strain rate effect to accurately predict the deformation history and 

final shape in simulations of high speed metal forming processes. 

Among all the parameters in the simulation of a forming process, the constitutive 

model has a very significant effect on the accuracy of numerical results. Three major 

concepts are involved in a constitutive model: the yield function, the flow rule, and the 

hardening model, which determine a general stress-strain relationship for plastic 

deformation. In this chapter a brief literature review is presented on the incremental 
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constitutive equations of high strain rate plasticity. Incremental constitutive equations are 

obtained based on the minimum plastic-work theory and have been widely used in 

advanced computational plasticity for decades (Hill, 1986; Chung and Richmond, 1993; 

Yoon et al., 1999a and 1999b). This chapter also contains a review of the experimental 

and numerical work on high speed metal forming processes, and intermediate and high 

speed material characterization tests. 

2.2 High speed metal forming 

2.2.1 High strain rate metal forming processes 

According to work done by many researchers (Wood, 1967; Daehn, 2006; Ferreira et 

al., 2004; Golovashchenko et al., 2003), high strain rate forming can improve formability, 

suppress wrinkling, decrease springback and lead to more uniform strain distributions in 

sheet metal parts. For decades, one of the main desires of the automotive industry has 

been to improve the fuel economy of the vehicles. One of the most effective ways of 

reducing fuel consumption is to reduce the weight of the vehicle body, by replacing mild 

steels with advanced high strength steels (AHSS) or light-weight alloys such as 

aluminum (Cheah and Heywood, 2011). The main concern with the implementation of 

AHSS and aluminum alloys is their lower formability compared to typical steels. To 

overcome this barrier, the automotive industry has been investigating various forming 

techniques which can enhance material formability. 

According to many investigations on metallic alloys (Balanethiram and Daehn, 1994; 

Mynors and Zhang, 2002; Golovashchenko et al., 2003; Imbert et al., 2005, Psyk et al., 

2011), it was observed that sheet formability can exceed the conventional limits in high 

velocity forming processes. Pulsed forming processes such as explosive forming (EF), 

electromagnetic forming (EMF), and electro-hydraulic forming (EHF) are the most 

common high speed or high strain rate metal forming technologies (Benedict, 1987; 

Amstead et al., 1987; Groover, 2007). From a manufacturing point of view, the use of 

one sided tools in the pulsed forming rather than mating two-sided tools in conventional 

forming, leads to significant cost savings. The advantage of one sided tooling is 
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highlighted when very large dies are needed for low volume productions, particularly in 

the aerospace industry. Moreover, the elimination of the hard tooling from one side of the 

sheet reduces the friction and strain gradients and thus delays strain localization in the 

corner areas of complex dies (Golovashchenko et al., 2003). Furthermore, pulsed forming 

processes typically require less lubrication than conventional stamping (Mynors and 

Zhang, 2002). 

What distinguishes EF, EMF, and EHF processes from each other is the source of the 

forming energy and the method of energy transformation into the sheet. In explosive 

forming, an explosive charge, which is generally submerged in water, provides the 

energy to form the sheet material. In both EMF and EHF, the required energy is stored in 

high voltage capacitors. In EMF, the energy is released through a multi-turn coil 

positioned close to the sheet that is to be formed. The rapid increase of current in the coil 

induces an eddy current which generates significant repulsive forces and consequently 

accelerates the sheet. Instead of using coils, EHF uses (at least one pair) electrodes 

submerged in water to transfer the energy from the capacitors to the sheet. The discharge 

of energy across the electrodes creates a plasma channel that generates a high pressure 

wave in the water, which in turn accelerates the sheet. 

EHF is superior to EF due to its shorter cycle duration and much safer process. 

However, in view of the significant amount of energy in chemical explosives, the EF 

process is more practical to form larger parts, particularly in aerospace and military 

applications. Compared to EMF, EHF is more suitable for industrial applications, since it 

is applicable to almost all metallic materials. EMF cannot be used with materials that 

have poor electrical conductivity and in contrast with EHF, EMF requires expensive and 

complex coils that need to be replaced after only a few cycles. 

Needleman (1991) showed that in high velocity metal forming processes necking was 

postponed due to inertial effects (referred to as inertial stabilization), by reducing the 

stress-triaxiality factor in the necked region. During the 1990’s Balanethiram and Daehn 

(1992, 1994), and Balanethiram et al. (1994) showed that for AA6061 aluminum alloy, 

interstitial free (IF) iron, and HCOF copper, formability also improved due to substantial 
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through-thickness compressive and shear stresses (so-called “inertial ironing” effect) that 

were created as a results of the dynamic sheet/die interaction under pulsed die-forming 

conditions. Vohnout and Daehn (2002) reported formability enhancement in 6111-T4 and 

5754-O aluminum sheets in the EMF process after applying a certain quasi-static pre-

strain in uniaxial tension. 

Golovashchenko et al. (2003) also observed formability improvement in high velocity 

forming due to dynamic sheet-die interaction. In a pulsed forming process before the 

sheet contacts the die, the sheet is accelerated into an open space of the die cavity and the 

strain-rate sensitivity as well as inertial effects contribute toward material formability 

improvement. The advantages of a pulsed forming process become evident when the 

sheet approaches its final shape and impacts the die surface. More recently, Seth et al. 

(2005) reported a remarkable formability improvement in low carbon steel sheets that 

were accelerated by an EMF coil toward missile-shaped and wedge-shaped punches. Due 

to the low electrical conductivity of dual phase steels, the efficiency of the EMF 

technique is limited for these material types unless a driver with high electrical 

conductivity is used as an interface. 

Imbert et al. (2005) reported a formability enhancement of AA5754 and AA5182 

aluminum sheet alloys in EMF in the die-forming condition, while the formability 

improvement was negligible in free-forming. Similar to Balanethiram and Daehn (1992, 

1994), Imbert showed that the significant formability improvement was due to the 

bending-unbending effect as a consequence of the sheet/die interaction; however their 

simulation of the experiments used a rate-independent constitutive material model. An 

abrupt change of stress state was observed, from plane stress to a three-dimensional stress 

state, incorporating through-thickness shear and compressive stresses due to sheet-die 

interaction. The through-thickness stresses were shown to suppress the nucleation and 

coalescence of voids within the sheet metal, and consequently postpone the onset of 

necking and failure. 

Olivera et al. (2005) reported a moderate formability improvement in AA5754 and 

AA5182 subject to EMF. But larger maximum strain values were measured in safe grids 
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far from the fractured zone. Golovashchenko et al. (2007) reported almost 250% 

elongation increase in AA6111-T4 and AA5754 sheets in EMF compared to conventional 

forming, when formed into conical and v-shape dies. Dariani et al. (2009) reported 

significant formability improvement in the high strain rate regime compared to low and 

intermediate strain rates for AA6061-T6 and 1045 steel. Golovashchenko et al. (2011a) 

showed that in addition to the formability improvement in pulsed forming, a more 

uniform strain distribution though a much broader area of the sheet can be achieved. The 

uniform strain distribution can be beneficial to form very complex geometries, where the 

material in pulsed forming can flow easier into difficult to form regions compared to 

conventional forming by introducing a two-step forming process. This easier flow of 

material allows the usage of less ductile materials to be formed into complex shapes. Liu 

et al. (2011) showed formability enhancement of sheets that were prestrained quasi-

statically and then subject to EMF compared to the forming limits obtained in a 

conventional hydraulic bulge test. 

2.2.2 Electrohydraulic forming (EHF) 

In EHF, two or more electrodes are positioned in a chamber filled with a liquid 

(generally water), a high-voltage discharge between the electrodes generates a high-

pressure and high-temperature plasma channel. The plasma channel expands and creates 

a shockwave that propagates through the water and accelerates the sheet toward the die 

cavity (Figure 2-1). Generally, an EHF process is completed in less than a millisecond 

depending on the sheet material type, the position of the electrodes, the input energy 

magnitude and duration, and the chamber geometry. 

The main constraint in EHF relates to the availability of a bank of capacitors to store 

sufficient energy. The amount of energy required for a discharge strongly depends on the 

size of the part and the material grade of the sheet metal blank. Realistically, EHF is 

ideally suited for small to medium-sized sheet and tubes with relatively small thicknesses 

(Mynors and Zhang, 2002). Lane (1767) and Priestly (1769) were first reported the 

ability of an electrical discharge into a liquid to generate strong mechanical forces to 

form parts. Later on, Yutkin (1955), Bruno (1968), Davies and Austin (1970) and 
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Chachin (1978) conducted several lab-scaled and preliminary industrial applications of 

the EHF. In a combined conventional-pulsed forming study, Sandford (1970) developed a 

technology where the sheet was first preformed in a quasi-static hydroforming process 

before being completely filled into the die cavity with EHF. Daehn (2006) provided and 

overview of the experimental and development work that has been done more recently in 

high speed forming.  

 

 

Figure 2-1 Schematic of EHF process and related tools 

The automotive industry has recently shown increased interest in the EHF process. 

Golovashchenko et al. (2003, 2005, 2007, 2011a, 2013) made substantial efforts to apply 

EHF to higher volume applications. These efforts include development of a durable 

electrode and sealing system, an efficient water-air system, and a finite element (FE) 

modeling technique. The superiority of EHF to EMF was demonstrated for applications 

where several successive discharges are needed to completely form the sheet into the die 

cavity and calibrate springback without opening the EHF chamber. Several EHF pulses 

can be conducted without opening the tool but, several coils and clamping presses are 

needed to complete a multistage EMF process (Golovashchenko et al., 2013). 

Golovashchenko and Mamutov (2005) studied the evolution of the plasma channel shape 

during the EHF process. The pressure distribution history within the chamber in EHF 

simulation showed the reflected dynamic forces from the walls of the chamber and from 
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the sheet are converted into ellipses, which divide into smaller volumes and finally close 

towards the end of the process.  

Golovashchenko (2007) observed a circular split failure mode in the apex region of the 

die formed samples in EHF. Strains measured in some circle grids far from the fractured 

zone moderately exceeded the quasi-static forming limit, which was attributed to inertia 

in the plastic flow instability, as described by Drucker (1959). More recently, Rohatgi et 

al. (2011a; 2011b) experimentally quantified the deformation behaviour of AA5182-O 

and DP590 during EHF using high-speed cameras and the digital image correlation (DIC) 

strain analysis technique. The measurements (sheet velocity and strain rate) of the in-

process parameters helped to understand the roles of strain rate and sheet-die interaction 

in sheet formability enhancement at intermediate and high strain rates. They recorded a 

maximum velocity and strain rate of         and        , respectively, during 

electrohydraulic die-forming (EHDF). Unfortunately the conical die angle they used was 

so high, that they were not able to capture an effective dynamic sheet/die interaction 

during EHDF. Melander et al. (2011) developed a finite element model to simulate EHFF 

and EHDF of sheet steels which used an isotropic yield function (von Mises) and they 

calibrated the parameters in the JC model according to experimental uniaxial tensile tests 

for a range of strain rates up to         . They used acoustic elements to simulate the 

liquid medium within the EHF chamber.  

Substantial efforts have been dedicated to the analysis of pulsed forming processes, 

and EHF in particular. However, a detailed understanding of the reasons leading to the 

increased formability of sheet materials in high rate forming into a die cavity has not yet 

been accomplished due to the complexity of the effects taking place. In order to capture 

the mechanics of the sheet’s deformation into the die cavity, the development of the 

pressure pulse applied to the sheet needs to be taken into account; in EHF a pressure 

pulse propagates from the discharge channel to the surface of the sheet through the water-

filled chamber with multiple reflections from the walls of the chamber. This effect was 

described in detail by Golovashchenko et al. (2013) and also by Gillard et al. (2013) who 

developed a numerical technique to model the complex loading mechanism using LS-

DYNA. However, the numerical analysis of this phenomenon takes most of the 
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computation time required for the analysis of the EHF process. A very fine mesh in a 

small discharge channel and in the area around it requires a very small time step in an 

explicit integration procedure, and most of the computation time is consumed before any 

pressure has been applied to the sheet. This approach provides full details on the pressure 

propagation mechanism, but practically, it required the researchers (Golovashchenko et 

al., 2011a; 2011b; 2013) to employ a shell model of the deformed sheet (Theory of 

Shells, LS-DYNA manual, 2006). The use of shell elements to model the sheet limits the 

analysis to a plane-stress formulation that omits the through-thickness stresses from the 

analysis and excludes the dynamic sheet-die interaction. The plane stress formulation 

makes it impossible to analyse the mechanics of the coining effect or to predict the 

correct strain rate variation when the sheet hits the die, which is recognized as the main 

phenomenon that helps to improve material formability. Also, in these simulations an 

isotropic yield function (von Mises) was paired with the Johnson-Cook hardening model. 

Hence, in addition to the formability enhancement mechanisms, the effect of anisotropy 

at high strain rates was ignored in numerical simulations. The simulation and 

experimental results showed that, the sheet/die interaction creates very high strain rates in 

EHF. Numerical results showed a peak strain rate of approximately           ,  in EHF, 

when the sheet was able to completely fill the die cavity, but less than           when 

the die was not completely filled. 

Also, Golovashchenko et al. (2013) reported the formability limits of different dual 

phase steels (DP500, DP590, DP780, and DP980) in EHF compared to the conventional 

quasi-static limiting dome height (LDH) test. Substantial formability improvement was 

observed by comparing the maximum strains resulting from EHF into conical and v-

shaped dies to the maximum strains obtained in LDH tests. The relative improvement in 

plane strain formability in EHF conditions was between 63% and 190%, depending on 

the grade of dual phase steel. 

In a hybrid conventional-pulsed forming study, Gillard et al. (2013) reported 

substantial formability improvement in the DP780 and DP980 sheets that were preformed 

in a quasi-static hydraulic bulge forming step first, then formed electrohydraulically into 

conical and v-shaped dies. The formability of the DP steels formed in the hybrid process 
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was less than what was observed in a single pulsed forming process, but still greater than 

the quasi-static conventional forming limits. Also, Gillard et al. (2013) distinguished 

between two different failure modes in EHF experiments using a conical die: a quasi-

static failure mode, where the crack propagates through the pole of the dome-shaped 

specimen, occurred when the sheet was not able to completely fill the die cavity, and a 

dynamic fracture mode, in which the crack propagates circumferentially in the area away 

from the pole of the cone-shaped specimen, occurred when the energy level was high 

enough for the sheet to completely fill the die cavity. 

Most recently, Maris (2014) designed and optimized several specimen geometries to 

obtain the experimental FLC under electrohydraulic free-forming conditions. A series of 

EHF tests for DP600 and AA5182-O, covering the entire range of deformation modes 

(uniaxial, intermediate draw, plane strain, and biaxial) were conducted under proportional 

loading paths. The strains were measured throughout necked specimens (no edge 

cracking or splitting was observed in the deformed specimens). Comparison of the 

measured strains of the electrohydraulic free-formed specimens with the quasi-static 

FLC, showed that the formability improvement depends on the material grade. For 

instance, some formability improvement was reported for AA5182-O, whereas no 

formability improvement was observed for DP600.  

Although very complex and comprehensive FE models were recently developed to 

simulate the EHF process (Golovashchenko et al, 2013), the effect of material anisotropy 

was not considered in the high strain rate regime in any of the above-mentioned work. An 

extensive review of the literature has shown that, in all of the up-to-date pulsed forming 

FE simulations, only an isotropic yield function (von Mises) combined with the JC rate-

dependent hardening model has been used (Imbert et al., 2005; Melander et al., 2011; 

Golovashchenko et al., 2013). 

2.3 Constitutive model 

The finite element (FE) method has been widely used in the automotive industry over 

the years to simulate crashworthiness and metal forming operations (such as deep-
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drawing, rolling, cold, warm and hot-forming, forging, and extrusion). Among all of the 

parameters that affect the quality of FE analysis, the constitutive material model is known 

to be the predominant factor. An appropriate set of constitutive equations should be able 

to replicate the deformation behaviour of the material under different loading conditions. 

Generally a phenomenological constitutive model consists of a yield function, a flow 

rule, and a hardening model. A constitutive model should be selected depending on the 

available experimental data associated with the material behaviour, the deformation 

history of the part during the actual forming process, and the knowledge of the user. 

2.3.1 Anisotropic yield functions 

A flat rolled sheet can be significantly anisotropic due to complex phenomena 

occurring during the thermo-mechanical processing of the sheet and especially during the 

cold-rolling. The anisotropy depends on the initial anisotropy of the as-rolled sheet and 

the complex plastic deformation during the actual forming operation. The initial 

anisotropy of the rolled sheet is typically an orthotropic symmetry but when the principal 

axes of deformation are not co-linear with the principal axes of orthotropy, the 

deformation-induced anisotropy becomes non-symmetrical. Accordingly, the 

implementation of material anisotropy into a FE code can be very complex. But, in order 

to reduce computation times and simplify the numerical analysis of industrial forming 

operations, the progressive change of material anisotropy during an industrial forming 

process is usually assumed to be negligible compared to the initial anisotropy induced by 

the cold-rolling process.  

Two approaches have been widely used for consideration of anisotropy in a FE 

analysis. In the first approach the material is assumed to be a polycrystal. This approach 

is based on the physical phenomena of plastic deformation that occurs by the movement 

of dislocations on certain crystallographic planes and/or by twinning. The 

crystallographic texture is the main input to these models and each point in the 

continuous medium is assumed to be composed of a large number of grains where 

dislocation glide occurs on specific slip systems (Becker, 1993; Baudoin et al., 1994). 

Since the lattice rotation in each grain can be tracked in crystal plasticity models, the 
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material anisotropy is able to evolve throughout the deformation history, which makes 

this approach unique. However, in these models the material characterization is complex 

and computationally time-intensive, so they are rarely used for industrial-scale metal 

forming applications. There have been many attempts to simplify the polycrystal 

approach to overcome these drawbacks. A single grain behaviour has been used in FE 

simulations (Lequeu et al., 1987; Arminjon, 1991; Darrieulat and Piot, 1996; Maniatty 

and Yu, 1996; Gambin and Barlat, 1997). Also, a unified polycrystal behaviour was 

associated to the grain orientation distribution of the material by Toth et al. (1991), 

Arminjon and Imbault (1994), and Van Houtte (1994).  

The second approach is phenomenological, where the plastic behaviour of the material 

is described by a flow surface that evolves during plastic deformation. In this approach, 

the yield function is not necessarily associated with the microstructure of the material, but 

is rather associated with the anisotropy of the flow stress and the anisotropy of the plastic 

flow (or plastic strain). The anisotropy of the flow stress can be determined by measuring 

the flow stress in different material orientations (rolling, RD, diagonal, DD, and 

transverse, TD directions). The anisotropy associated with the plastic flow is generally 

described by the Lankford coefficient (r-value), which is defined as the ratio of the width 

strain to the thickness strain during a tensile test. In addition to the anisotropy, the 

Bauschinger effect, hydrostatic stress, etc., are other parameters that affect the plastic 

yielding of sheet metals. Based on many experimental observations, Bishop and Hill 

(1951a and 1951b), and Hecker (1976) showed that the assumption of a yield surface as 

the potential for plastic strain is valid for polycrystals and single phase materials. For 

many years, the evolution of the flow surface was a topic of great interest in both 

theoretical and experimental research. For many metal forming simulations, the flow 

surface is assumed to expand isotropically during plastic deformation. This assumption is 

numerically very efficient and it is verified for many single phase materials subjected to 

relatively smooth and continuous loading paths. Compared to crystal plasticity models, 

phenomenological models are easier to implement into FE codes, computationally more 

efficient, and require much simpler material characterization tests. 
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Hill (1948, 1950) introduced the first phenomenological anisotropic yield function, as 

an expansion of the von Mises (1928) quadratic yield function. Hill`s function has been 

widely used in FE analysis of forming simulations since it is applicable to three-

dimensional stress states and represents linear relationships between stresses and strain 

increments. Acceptable results are obtained for steel sheets using this function, but 

observations showed that Hill`s theory does not correlate with the behaviour of aluminum 

alloys (Mellor and Parmar, 1978; Mellor, 1981). Hill`s yield function was not able to 

describe the plastic flow of materials that display so-called “anomalous behaviour”. 

Therefore, several researchers such as Gotoh (1977), Hill (1979, 1990, 1993), Barlat and 

Lian (1989),Weixan (1990), Montheillet et al. (1991), Lin and Ding (1996), Barlat et al. 

(1991, 1997, 2003, 2005) have developed different non-quadratic yield functions to 

improve the plastic behaviour for aluminum alloys. Phenomenological yield functions 

have been reviewed in more detail by Zyczkowski (2001), Banabic (2001), Yu (2002) 

and Barlat et al. (2004). 

The linear transformation of the stress tensor has received much attention as a 

particular case of transformation theory. Sobodka (1969) and Boehler and Sawczuck 

(1970) were among the first to apply linear transformations to the stress tensor. Later on, 

Barlat and Lian (1989) combined the principal values of these transformed stress tensors 

with an isotropic yield function to describe the anisotropic behaviour of materials for the 

plane stress conditions. Barlat et al. (1991) and Karafillis and Boyce (1993) extended this 

approach to three-dimensional stress states by proposing a general yield function. Cazacu 

and Barlat (2004) showed that this theory is general and is compatible with a wide range 

group of materials, such as HCP metals. Since, many of the above-mentioned yield 

functions were not able to accurately capture the anisotropic behaviour of aluminum 

sheets, Barlat et al. (2003) introduced a plane stress yield function that is expressed by 

two linear transformations of the stress tensor (Yld2000-2d). Also, Bron and Besson 

(2004) extended Karafillis and Boyce`s (1993) function to two linear transformations. 

Barlat et al. (2005) proposed a new yield function (Yld2004-18P) that is able to describe 

the anisotropy of materials subject to a three-dimensional stress state.  
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In most non-quadratic yield functions (Logan and Hosford, 1980; Hosford, 1992; 

Hosford, 1996; Barlat et al., 1991, 1994, 1996, 2003, 2005), the exponent of the function 

is associated with the material crystal structure, and is equal to   and   for BCC and FCC 

materials, respectively. Recent progress in developing advanced anisotropic yield 

functions shows that the order of anisotropic yield functions becomes higher to more 

accurately describe the plastic behaviour of metal sheets. Higher order yield functions 

have more variables which require calibration from different types of experiments.  

Many of the above yield functions were implemented in different metal forming FE 

simulations for a wide variety of metals by applying the isotropic hardening assumption 

(Chung and Shah, 1992; Yoon et al., 1999a and 1999b; Tugcu and Neale, 1999; 

Andersson et al., 1999; Inal et al., 2000; Worswick and Finn, 2000; Yoon et al., 2000). 

The effect of anisotropic yield functions has been limited to the FE simulation of 

conventional metal forming processes. To the best of the author`s knowledge, no 

anisotropic yield function has ever been calibrated and applied to simulate a high speed 

metal forming process such as EHF. An extensive literature review failed to identify any 

research that considered the changes of the material anisotropy according to the strain 

rate. Several of the most frequently-used phenomenological anisotropic yield functions 

for sheet metals have been reviewed in this section. More details about the formulation 

and calibration procedure of some of them are presented here. 

2.3.1.1 Hill 1948 (Hill48) 

Hill's (1948) quadratic yield function (Hill48) is no doubt the most widely used 

anisotropic yield functions. The plane stress form of this function can be written as   

(   )   
           (   )   

       
      (2-1) 

where F, G, H, and N are anisotropy coefficients which can be defined as functions of 

either flow stresses or r-values. The equations related to these coefficients are described 

in detail in chapter 3. 
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2.3.1.2 Hosford 1979 

Hosford (1979) introduced an anisotropic yield function based on Hershey`s (1954) 

idea, which uses principal stresses to describe isotropic polycrystalline metals. This 

function is an extended form of Hosford`s (1972) non-quadratic yield function which is 

applicable to three-dimensional stress states.  

 |     |
   |     |

   |     |
      (2-2) 

where   ,   , and    are principal stresses and   is generally equal to   and   for BCC or 

FCC metals, respectively. 

2.3.1.3 Hill 1979 (Hill79) 

Hill (1979) proposed a general non-quadratic yield function for aluminum alloys, based 

on Hosford`s (1979) idea. 

 |     |
   |     |

   |     |
   |         |

          

  |         |
   |         |

      

(2-3) 

where, similar to Hill48, F, G, H, L, M, and N are anisotropy coefficients. m is 

determined based on the experimental uniaxial and biaxial data. 

2.3.1.4  Barlat and Lian 1989 (Barlat89) 

Barlat and Lian (1989) introduced a non-quadratic yield function (Barlat89) applicable 

to anisotropic polycrystals, but is limited to the plane stress condition. 

 |     |
   |     |

  (   )|   |
    ̅    (2-4) 

where    and    are written as 
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where a, c, h and p are the material anisotropy coefficients, which can be obtained either 

from measured flow stresses or r-values. The equations related to these coefficients are 

presented in Chapter 3. 

2.3.1.5 Hill 1990 (Hill90) 

Hill (1990) proposed another non-quadratic yield function (Hill90) to improve upon 

the drawbacks of Hill`s 1979 function, which is only applicable to the plane stress 

condition. 

|     |
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(2-6) 

where    is the equibiaxial flow stress,   is the shear flow stress,   is the angle between 

the first principal stress and the axis of orthotropy, and   and   are the anisotropy 

coefficients. 

2.3.1.6 Barlat 1991 (Yld91) 

Barlat et al. (1991) proposed a non-quadratic yield function (Yld91) for orthotropic 

materials, which is applicable to three-dimensional stress states.  

|     |
  |     |

  |     |
    ̅    (2-7) 

where    are known as the principal values of an isotropic plasticity equivalent (IPE). A 

linear transformation of the stress tensor is defined as  

      (2-8) 

where   is a symmetric fourth-order tensor associated with the material anisotropy, and   

is the Cauchy stress tensor (interested readers are referred to Barlat et al. (1991) for more 

details).   
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2.3.1.7 Hill 1993 (Hill93) 

Hill (1993) introduced a non-quadratic non-homogenous yield function to accurately 

capture the material flow behaviour of highly anisotropic materials, but it is only 

applicable to the plane stress condition. 

  
  (  

  
 

  
 )       

  [(   )  
       

  
]        

    (2-9) 

where    is the equibiaxial flow stress, and   and   are anisotropic parameters. Also,    

can be identified as the flow stress in either the rolling or transverse direction. 

2.3.1.8 Karafillis and Boyce 1993 

Karafillis and Boyce (1993) proposed a non-quadratic anisotropic yield function (KB) 

based on the combination of two isotropic yield functions, and it is applicable to three-

dimensional stress states. 
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 )    ̅    

(2-10) 

where    are the principal values of the IPE,   is a material parameter (     ), and    

is associated with different types of material anisotropy (triclinic, monoclinic, 

orthotropic, etc.). If     and the   tensors are isotropic, KB represents the Tresca yield 

function when    , and the von Mises yield function when   is equal to  . 

2.3.1.9 Barlat 1994 and 1997 (Yld94 and Yld96) 

Barlat et al. (1997a) proposed a non-quadratic yield function (Yld94) based on KB`s 

model to capture more accurate experimental as well as polycrystalline flow surfaces of 

alloys with highly anisotropic variations w.r.t. material orientations. 

  |     |
    |     |

    |     |
    ̅    (2-11) 
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where    and   are defined the same way as in the KB yield function.    are additional 

parameters to describe material anisotropy which are defined as 

        
       

       
  (2-12) 

where   ,    and    are material coefficients, and     are the components of the 

transformation matrix   between the principal axes of anisotropy and the principal axes 

of  . Since Yld94 is limited to plane stress states, Barlat et al. (1997) developed an 

improved format of the Yld94 function, known as Yld96, to capture material behaviour in 

3D stress states. More details on the formulation and calibration procedure for Yld96 are 

presented in Chapter 3.  

2.3.1.10 Barlat 2003 (Yld2000-2d) 

Barlat et al. (2003) developed one of the most advanced anisotropic yield functions 

(Yld2000-2d), to describe material anisotropy behaviour more accurately, in the plane 

stress condition. Compared to Yld96, Yld2000-2d guarantees the convexity and is more 

user-friendly to implement in a FE code.  

|  
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   ̅    (2-13) 

where   
  and   

   are the principal components of the two linear transformation tensors 

(   and    ), which are defined as 

                       (2-14) 

where    and     are high-ranked tensors, describing material anisotropy coefficients as 

functions of eight coefficients,    to   . More details on the formulation and calibration 

procedure of Yld2000-2d are presented in Chapter 3.  

2.3.1.11 Barlat 2005 (Yld2004-18P) 

Barlat et al. (2005) introduced another advanced yield function (Yld2004-18p) by 

building on the foundation of Yld2000-2d which is applicable to three-dimensional stress 
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states. Due to flexibility of the calibration procedure of Yld2004-18p, it is applicable to a 

wide variety of materials with substantial anisotropy variation in different material 

orientations (Barlat et al., 2005). 
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(2-15) 

where   
  and   

   are the principal values of two linear transformations of the     and     

deviatoric stress tensors. More details on the formulation and calibration procedure of 

Yld2004-18p are presented in Chapter 3.  

2.3.2 Flow rule 

In the phenomenological approach, the plastic strain increment is specified by the flow 

rule once the material has yielded. Based on experimental observations, the Levy-Mises 

and the Prandtl-Reuss relations were developed in such a way that the incremental plastic 

strain is coaxial with the deviatoric part of the total stress. These equations are widely 

used as specific forms of the flow rule in classical theory of plasticity (Hill, 1950). 

Drucker (1951) proposed a general approach to establish plastic stress-strain relations 

based on his stability rule, which applies to any anisotropic yield function. Based on 

Drucker's stability postulate, a material is stable if the following inequality is satisfied 

  ∫       ∫ (    )       
    

 (2-16) 

where    is a closed stress cycle. Ilyushin (1961) also showed that for a broad range of 

materials, the net work in an arbitrary closed strain cycle is non-negative, which is a 

weaker restriction on the material behaviour compared to Drucker's rule. The 

requirements of both Drucker`s and Ilyushin`s postulates can only be satisfied in 

materials with a positive hardening rate.  
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Bishop and Hill (1951a and 1951b) showed that according to some microstructural 

considerations, certain properties of a continuum yield function can be obtained. They 

showed that, based on the Schmid law for a single crystal, dislocation glide occurs on a 

slip system when the shear stress reaches a critical value. The resulting flow surface was 

shown to be convex and the associated plastic strain is normal to the slip plane. Their 

observations also showed that these phenomena can be extended to polycrystals by 

averaging the behaviour of a number of grains without making any extra assumptions 

about the interaction between grains or the deformation gradient uniformity. 

Observations by Hecker (1976) who conducted many multiaxial experiments to assess 

the flow surface shape showed that the normality and convexity assumptions are valid for 

a wide range of metals.  

Based on the postulates of both Drucker and Ilyushin, the yield function   serves as a 

plastic potential and the current plastic strain increment must be co-directional with the 

normal vector to the corresponding yield surface, and the plastic strain increment is 

defined by 

   
 

   
  

   
 (2-17) 

where    is called the plastic multiplier which is a non-negative parameter representing 

the size of the strain increment, and   is the yield function. Eq. (2.17) shows that the 

plastic strain increment is proportional to the gradient of the flow surface (    ⁄ )  This 

equation is referred to as the normality condition and a flow rule derived from this 

equation is known as the associated flow rule (AFR). Also, a flow rule in which the 

plastic strain increment is not normal to the yield surface is known as a non-associated 

flow rule (NAFR). The AFR can be generalized to describe the behaviour of both 

isotropic and anisotropic materials. Spitzig et al. (1976, 1984) conducted several 

experiments under different hydrostatic stresses and found small volume changes for 

several metal alloys, which were negligible compared to those calculated by AFR 

assumption. They concluded that the yielding in metals does not depend on a 

superimposed hydrostatic pressure and the AFR assumption is valid for a wide range of 
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metallic alloys. However, their observations showed that the AFR is not valid for highly 

porous materials, polymers, or for materials subjected to very high pressure (known as 

pressure sensitive materials). 

2.3.3 Rate-dependent hardening models 

Generally, the flow stress represents a material’s resistance to plastic flow under 

different loading conditions. The hardening equation is a mathematical equation that 

represents the relationship between the flow behaviour of a material and parameters such 

as plastic strain, strain rate, temperature, and so on. Depending on the actual forming 

conditions, the hardening equation can also contain more variables related to the previous 

loading condition (pre-straining), thermo-mechanical history or microsctructural material 

information (such as grain size, different phases, dislocation density, etc.). Among the 

well-known parameters, strain rate and temperature are the most influential parameters in 

the accurate description of material hardening behaviour in conventional and high-speed 

metal forming, high-velocity impact, high-speed machining, and other dynamic 

applications. Taylor (1942), and von Karman and Duwez (1950) were among the first 

researchers to make a substantial contribution to the development of several hardening 

models based on experimental observations.  

Over the years, several hardening models were developed for use in computational 

mechanics to predict the flow behaviour of different materials over a wide range of strain 

rates and temperatures. Hardening models are generally classified into two main groups; 

physics-based models and phenomenological models. Each class of hardening model has 

its own drawbacks and advantages, which can be highlighted or ignored based on many 

factors, such as; required accuracy, computational time, user-friendliness of 

implementing a model into a FE code, the availability of different experimental data sets, 

and more. 

In physics-based models, the material flow stress is the superposition of thermal, 

athermal and viscous drag components (Mecking and Kocks, 1981; Nemat-Nasser et al., 

2001). The dislocation accumulation is the main motivation in generating plastic 

deformation of metal under the rate-controlled deformation mechanism. In an active 
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thermal deformation, plastic flow is considered by short-range and long-range obstacles 

which are controlled by the motion of dislocations. Generally, the short-range obstacles 

include forest dislocations (in FCC materials), Peierls stress (in BCC materials), 

impurities, deposits, and so on, which can be overcome by thermal activation. The long-

range obstacles may include grain boundaries and the stress field of dislocation forests 

which are independent of temperature (athermal). Nemat-Nasser et al. (2001) showed that 

the viscous-drag component is active in high strain rate and high-temperature 

deformations. Armstrong et al. (1988) showed that the activation volume in BCC metals 

is much smaller than in FCC metals, which results in a much greater strain rate and 

temperature sensitivity. Many experimental studies have been conducted for a variety of 

materials to explore the micro-mechanisms underlying the material deformation in 

different loading conditions (Christian, 1983; Gray and Rollett, 1992; and Gourdin and 

Lassila, 1995). The consideration of microstructural details in physics-based models 

allows these models to more accurately describe the deformation behaviour of materials 

over a wide range of strain rates and temperatures. However, these models are not 

generally preferred for industrial applications because the determination of material 

constants requires numerous and more complex characterization tests. 

Compared to physics-based models, phenomenological hardening models are more 

widely used and applied into FE codes for numerical simulations of many industrial 

applications. Johnson and Cook (1983), JC, and Zerilli and Armstrong (1987), ZA, were 

amongst the first phenomenological models implemented to predict the deformation 

behaviour of various materials under dynamic loading conditions. Experimental results 

for different BCC, FCC, and HCP metals showed that the rate of strain hardening (or 

work hardening) behaviour could be changed by the strain rate as well as the plastic 

strain. Liang and Khan (1999) showed that the increase of strain rate can change the 

strain hardening rate in some FCC metals. Figure 2-2 illustrates a schematic of a decrease 

in strain hardening rate of a material with increasing strain rate. Liang and Khan modified 

the original JC model to include the strain-rate sensitivity of the material in the strain 

hardening term. This modification lead to a much better correlation than the original JC 

model, particularly for mild steels (Khan and Liang, 2000; Khan and Zhang, 2000; Khan 
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et al. 2004, 2007a, 2007b) over a wide range of strain rates (             ) and 

temperatures (          ).  

 

 

Figure 2-2. Schematic of flow curves at quasi-static and high strain rate regimes 

The most recent modified Khan–Huang–Liang (KHL) model (Liu and Khan, 2011) 

showed the strength of the model to more accurately describe the behaviour of alloys 

under multiaxial loading conditions, including dynamic torsion and non-proportional 

biaxial compression. Most recently, Paul (2012) proposed a phenomenological model 

(SKP) that was shown to be able to capture the flow behaviour for a variety of materials 

(DP600, TRIP780, and mild steel) with adequate accuracy and reliability over a wide 

range of strain rates and temperatures. In another aspect, depending upon their 

mathematical formulation, rate-dependent phenomenological hardening models can be 

classified into four groups. Different rate-dependent mathematical formulations are 

shown in Table 2.1, where    is the yield stress,   is the back stress,    is the plastic 

strain, and  ̇ is the strain rate. 
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Table 2.1 Mathematical formulation of phenomenological rate-dependent hardening models 

Category Mathematical formulation 

1 
     ( ̇)   (  ) (2-18) 

 

Zerilli and Armstrong (1987) for BCC metals, El-Magd et al. (2001) 

2 
      (  ) ( ̇) (2-19) 

 

Zerilli and Armstrong (1987) for FCC metals 

3 
  [    (  )] ( ̇) (2-20) 

 

Johnson and Cook (1983), Cowper and Symonds (1958), Lin and Wagoner (1987) 

4 

     ( ̇)   (  ) ( ̇) (2-21) 
 

Zhao (1997), Khan and Liang (1999), Kaps et al. (1999), Rusinek et al. (2007), 

Paul (2012) 

 

As can be seen from the mathematical formulation, the models belonging to the fourth 

category are more flexible to describe the flow behaviour of more materials (BCC, FCC, 

and HCP metals), due to dependency of both yield stress and back stress on strain rate, 

considering two different functions,  ( ̇) and  ( ̇). Paul (2012) showed that Kaps et al. 

(1999) model is able to account for strain rate but not temperature dependency, while 

both the Zhao (1997) and Paul (2012) models are able to show a good correlation with 

the experiments over a wide range of strain rates and temperatures for various metallic 

alloys. Here, four hardening models, JC, ZA, KHL and SKP are briefly discussed. The 

JC, KHL, and SKP formulations and material parameters are discussed in more detail in 

Chapter 3. 

2.3.3.1 Johnson-Cook (JC) 

The JC model (Johnson and Cook, 1983) is implemented into most commercial FE 

codes (ABAQUS and LS-DYNA) and it is widely used in the simulation of problems 

under dynamic loading. The JC equation is a multiplication of three terms; strain 



30 

 

hardening, strain rate hardening, and thermal softening. The decoupling of the three terms 

leads to a constant strain hardening (or work hardening) rate over different strain rates 

and temperatures. The JC model can be written as 

  [     
 ][      ̇ ] [  (

    

     
)
 

] (2-22) 

where    is the plastic strain,  ̇  is a dimensionless strain rate ( ̇   ̇   ̇⁄ , where   ̇ is the 

reference strain rate), and  ,   ,    are the current, room and melting temperatures. Also, 

 ,  ,  ,  , and   are material constants which are generally calibrated based on the 

least-squares method. 

2.3.3.2 Zerilli-Armstrong (ZA) 

The ZA (Zerilli and Armstrong, 1987) model is a dislocation-based hardening model 

which considers the strain hardening, strain rate hardening, and thermal softening based 

on the thermal activation theory. Zerilli and Armstrong introduced different equations 

according to the crystallographic texture of each particular material (BCC, FCC, and 

HCP). The following equation shows the hardening relation for BCC materials 

        
 (        ̇)     

  (2-23) 

where    is the plastic strain,  ̇ is the strain rate, and   is the current temperature. Also, 

  ,   ,   ,   ,  , and   are the material constants. Similar to the JC, the ZA model also 

predicts a constant strain hardening (or work hardening) rate over a wide range of strain 

rates and temperatures, which is not able to model the behaviour of BCC materials 

accurately.  

2.3.3.3 Khan-Huang-Liang (KHL) 

The KHL (Khan and Liang, 1999) is a phenomenological hardening model, that 

incorporates strain hardening, strain rate hardening as well as thermal softening effects. 

In contrast with JC and ZA, the strain hardening rate is not constant in the KHL model 

and can be significantly changed over a large strain rate range (            ). 
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 where    is the plastic strain,  ̇  is a dimensionless strain rate,  ,   ,    are the current, 

room and melting temperatures,   
 

 is equal to         and is used to non-dimensionalize 

the strain rate. Also,  ,  ,   ,   ,  , and   are material constants that are generally 

determined in a numerical optimization procedure. 

2.3.3.4 SKP 

The SKP (Paul, 2012) model was proposed to overcome the inability of some 

hardening models, such as KHL, to correlate well with the experiments particularly for 

mild steels and a few AHSS steels. Similar to the KHL, the SKP model is able to 

accurately predict the material flow over a wide range of strain rates and temperatures by 

automatically considering the local temperature rise (adiabatic thermal softening) effect. 

The general form of the SKP model can be expressed as 

     
   ( ̇ )  (    )  [   

   (       )](     ( ̇ )) (   (    )) (2-25) 

where    is the plastic strain,  ̇  is a dimensionless strain rate, and   and    are the 

current and absolute temperatures. Also,   ,  ,  ,  ,  ,  ,   and   are material 

constants that can be determined either in a systematic calibration procedure (Paul, 2012) 

or via a numerical optimization procedure. 

2.4 Experiments; high strain rate tests 

Many tests over a wide range of strain rates are required to determine the material 

constants in both yield functions and hardening models as material property input in FE 

analysis. The experimental procedure to characterize material flow behaviour can alter, 

depending upon the required strain rate. Mechanical or/and hydraulic tensile testing 

machines are generally used to acquire the flow behaviour of materials at low strain rate 

regimes, under so called isothermal quasi-static conditions (below 1    ). Quasi-static 
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tests are widely standardized, while intermediate and high strain rate tests have been 

under development for decades. Generally, in strain rates greater than       , the inertia 

effect generates a dynamic stress which could significantly change the material 

behaviour, particularly in steels. The Kolsky’s bar test or the split Hopkinson pressure bar 

(SHPB) test is a widely used technique to acquire the flow stress of materials at high 

strain rates (    -        ). The SHPB technique is not valid at intermediate strain rates 

( -       ), since the one-dimensional stress wave theory is no longer valid due to 

activation of quasi-static and dynamic effects simultaneously at this strain-rate range 

(Huh et al., 2002). Lim (2007) showed that both low and intermediate strain rate material 

behaviour can be captured by an open loop servo-hydraulic dynamic tensile testing 

machine.  In most conventional metal forming processes, the material generally is 

subjected to low to intermediate strain rates, while in pulsed forming technologies (such 

as EF, EMF, and EHF), high strain rate levels are expected. Therefore, there is a critical 

need for intermediate and high strain rate material characterization tests. Experimental 

observations showed that the majority of the plastic work is converted to heat during 

plastic deformation. The temperature increase can be calculated as follow s;  

   
 

    
∫     

  

 

 (2-26) 

where    is the density,    is the specific heat at constant pressure,   is the stress, and    

is the plastic strain. In quasi-static conditions, almost all the heat generated during plastic 

deformation has significant time to dissipate into the surrounding material, so the process 

is considered isothermal. In high strain rate plastic deformation, the process is considered 

adiabatic, since the heat generated does not have time to conduct and/or convect away 

(Khan and Liang, 1999). In Eq. (2.26), the coefficient   is generally considered between 

0.9 and 1.0 at high strain rates (Khan and Liang, 1999), and zero for quasi-static 

conditions. However, at intermediate strain rate regimes, quantifying the coefficient   is 

very challenging since the process is neither isothermal nor adiabatic but somewhere in 

between. Therefore, it is more convenient for a hardening model to predict the material 

flow behaviour without considering separate thermal effects at intermediate and at high 

strain rate ranges.  
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A large amount of experimental work has been conducted to characterize the material 

behaviour of metals at different strain rates. Dusek (1970) studied the high strain rate 

mechanical behaviour of Armco-iron and low-alloyed steels. He reported a substantial 

increase in the yield stress of these materials at high strain rates (   -       ), while a 

slow increase occurs at low and intermediate strain rates (            ). He also 

showed that Young’s modulus is constant in all strain rate regimes. Vashchenko et al. 

(1989) conducted an experimental study on dynamic testing of several steels and showed 

an increase of elongation in the range of strain rates     −         , while under 

        no improvement and even a slight decrease in elongation was observed. 

Experimental observations by Regazzoni et al., (1987), and Hu and Daehn (1996) showed 

higher failure strains can be achieved by delaying the onset of necking at intermediate 

and high strain rate regimes.  

Also, El-Magd (1997) reported a substantial delay in the onset of plastic instability 

under dynamic loading conditions for materials with greater strain-rate sensitivity. Many 

experimental tests were conducted by Nemat-Nasser et al. (1998) to investigate the 

mechanical behaviour of OFHC copper in both as-received and annealed conditions for 

the strain rate range of      to         . Picu et al., (2005) and Hughes et al. (1998) 

performed a series of compression tests in the strain rate range of      to      . They 

reported a negative strain-rate sensitivity and a dynamic strain aging deformation 

mechanism at room temperature for AA5182-O.Bleck and Schael (2000) conducted high-

speed tensile tests using flat sheet specimens of dual phase steels up to a maximum strain 

rate of        . They reported substantial strain-rate sensitivity even for the intermediate 

strain rate regime. Khan et al. (2000) conducted non-proportional multiaxial tests to 

investigate the mechanical behaviour of AerMet 100 steel and tantalum at different strain 

rates. Experimental observations by Borvik et al. (2001) for several aluminum and steel 

alloys showed that the fracture strain is less sensitive to strain rate than to the stress-

triaxiality and Lode parameters. Huang et al. (2011) conducted tensile experiments which 

showed no improvement in elongation of mild and dual phase steels up to        . Priem 

et al. (2007) showed that the inertial effect generates additional stresses outside the 
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necking region which lead to further uniform deformation in the part before the onset of 

severe necking and fracture.  

Oliver et al. (2007) reported microstructural changes in DP780 and TRIP780 in the 

strain rate range of      to         under tensile loading conditions. Observations 

showed lower ductility in DP800 by increasing the strain rate, while the opposite 

response was experienced in TRIP780. Van Slycken et al. (2007) showed that in TRIP 

steels, at high strain rate regimes, the austenite phase has a positive strain-rate sensitivity, 

while the ferrite and bainite phases are independent of strain rate. Khan and Farrokh 

(2006), and Khan et al. (2007a and 2007b) developed a non-proportional biaxial 

compression channel fixture to investigate the material behaviour of Al2024-T351 at high 

strain rate regimes. Tarigopula et al. (2008) studied the behaviour of DP steels in order to 

investigate the strain localization at intermediate strain rates using a servo-hydraulic 

testing machine (            ), and at high strain rates using the SHPB test (    

       ). Yu et al. (2009) conducted dynamic tensile tests at strain rates of     to 

         to study the mechanical behaviour of DP590. Additionally, he used the 

Johnson-Cook rate-dependent constitutive model to simulate the material behaviour at 

different strain rates. 

This literature review has highlighted the most significant research in high speed metal 

forming processes in the development of constitutive models that can describe the 

behaviour of anisotropic sheet metal at high strain rates and the experimental 

characterization tests required to determine material behaviour at high strain rates  
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3 Rate-dependent Constitutive Model 

 

 

 

3.1 Anisotropic yield functions 

The proper selection and calibration of a yield function is recognised as one of the 

most critical factors in classical plasticity. Calibrating a yield function is complicated 

because of complex functions and the number of experimental parameters required. An 

accurate description of the flow surface shape, which is crucial to the prediction of 

material plastic deformation, can only be obtained using an appropriate anisotropic yield 

function. For decades, many quadratic and non-quadratic yield functions were developed 

to describe the material anisotropy behaviour more accurately to improve the predictions 

of FE simulations. The formulation for several of the most frequently used and advanced 

phenomenological anisotropic yield functions (Hill 1948, Hill 1990, Barlat89, Yld96, 

Yld2000-2d and Yld2004-18p) and the corresponding calibration procedure for each, are 

presented in detail.    

3.1.1 Hill 1948 (Hill48) 

Hill (1948) proposed a quadratic yield function (Hill48) as a generalization of the 

Huber-Mises-Hencky criterion. The simplicity of the Hill48 yield function has led to its 

popularity as one of the most widely used anisotropic yield functions. The material is 

assumed to have anisotropy w.r.t. three orthogonal symmetry planes. The plane-stress 

(             ) form of Hill48`s function can be written as  

   (   )   
           (   )   

       
   ̅    (3-1) 
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where G, H, F and N are constants related to the anisotropy of the material. The effective 

flow stress ( ̅ ) is assumed to be equal to the flow stress in the RD ( ̅     =  ) for all 

the yield functions in this work. 

3.1.1.1 Calibration procedure 

The determination of the Hill48 constants can be completed based on either 

experimental flow stresses or r-values (plastic flow or Lankford coefficients) in different 

material orientations. The selection of either experimental flow stresses or r-values is at 

the user’s discretion and is often guided by the availability of experimental data. In this 

work, both procedures are considered so as to make a more comprehensive study of the 

effect of calibration procedure on the accuracy of plastic deformation behaviour. The 

Hill48 function that is calibrated based on experimental r-values will be denoted as 

“Hill48-r.value”, but it will be called “Hill48-stress” when it is calibrated with 

experimental flow stresses In this manuscript, the same nomenclature will be used for 

other yield functions, as applicable.  

3.1.1.2 Hill48-stress 

The Hill48 constants can be expressed in terms of stress  
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(3-2) 

where x, y, z are the principal anisotropic axes, which are assumed to be aligned with the 

principal plastic stretch directions. In sheet metals it is generally assumed that the x-axis 

is parallel to the rolling direction (RD), y is parallel to the transverse direction (TD), and z 

is oriented in the normal direction (through-thickness). Therefore,     (  ) ,     and      

(   ) are uniaxial flow stresses in the rolling, diagonal, and transverse directions, 

respectively.     is the shear flow stress, and    is the equi-biaxial flow stress. It is worth 
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noting that constant   was determined based on the stress-transformation in two-

dimensional (2D) stress space.  

3.1.1.3 Hill48-r.value 

The Hill48 constants can also be expressed in terms of r-values 
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where                are the experimental r-values in the rolling (RD), diagonal (DD) 

and transverse (TD) directions, respectively.  

3.1.2  Hill 1990 (Hill90) 

Hill (1990) introduced a non-quadratic yield function (Hill90) expressed in a general 

coordinate system for the plane-stress condition. This function was mainly developed to 

eliminate the severe limitations of Hill`s 1979 function, which was only applicable when 

the directions of the principal stresses were coincident with the material orthotropic axes.  
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(3-4) 

where   is the pure shear stress (      ), and    is the flow stress in equi-biaxial 

tension.  ,  , and   are material constants. 
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3.1.2.1 Calibration procedure 

Similar to Hill48, the Hill90 material constants can be determined on the basis of either 

experimental flow stresses or r-values. The exponent “m” is obtained from the following 

equation 

  
  ( (     ))

  (      ⁄ )
 (3-5) 

where     and     are the flow stress and r-value in the diagonal direction (DD).  

3.1.2.1.1 Hill90-stress 

The ratio    ⁄  can be expressed as a function of flow stresses   
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Constants   and   are obtained by the following equations   
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where    and     are the flow stresses in the rolling (RD) and transverse (TD) directions, 

respectively.  

3.1.2.1.2 Hill90-r.value 

The ratio    ⁄  can be derived as a function of     

(
  

 
)
 

        (3-8) 

Constants   and   are determined by the following equations  

  
(      )[  ((   )  ⁄ )   ]

(      )  (   )     
              

 [          (      )]

(      )  (   )     
 (3-9) 

where    and     are the r-values in the rolling (RD) and transverse (TD) directions, 

respectively. 
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3.1.3 Barlat 1989 (Barlat89) 

Barlat and Lian (1989) proposed a non-quadratic yield function (Barlat89) for 

polycrystals with planar anisotropy that is restricted to the plane-stress condition 

   |     |
   |     |

   |   |
    ̅    (3-10) 

where   is an integer exponent that is generally equal to 6 for BCC metals or 8 for FCC 

metals. Also,    and    are stress tensor invariants and are given by 
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where a, c, h and p are material constants. 

3.1.3.1 Calibration procedure 

Similar to the Hill family of yield functions, the Barlat89 material constants can be 

determined based on either the flow stress or the r-value, depending upon the availability 

of experimental data. 

3.1.3.1.1 Barlat89-stress 

The Barlat89 constants can be expressed in terms of stress 
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(3-12) 

where     is the flow stress in the transverse direction (TD), and     and     are the flow 

stresses obtained from two different shear tests;         when        , and     

         when      . In this work, due to the unavailability of experimental shear 

stress data,   was calculated by a numerical procedure.  
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3.1.3.1.2 Barlat89-r.value 

The Barlat89 constants can also be expressed in terms of r-value 

     √
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 (3-13) 

where    and     are the r-values in the rolling (RD) and transverse (TD) directions, 

respectively. 

3.1.4 Barlat 1996 (Yld96) 

Barlat et al. (1997) proposed a non-quadratic yield function (Yld96) for three-

dimensional stress states, to overcome some limitations in the FE implementation of 

Yld94 (Barlat et al., 1997) for metal forming simulations. This function is based on the 

KB model (Karafillis and Boyce, 1993) which was developed to capture the experimental 

and polycrystalline flow surfaces for sheet metal alloys that have undergone a large 

amount of cold reduction. Yld96 yield function is written as follows 

    |     |
    |     |

    |     |
    ̅    (3-14) 

where    are the principal deviatoric stresses,   is an integer exponent which in all 

Barlat`s yield functions is set to 6 and 8 for BCC and FCC metals, respectively, and 

coefficients   ,    and    are calculated based on weight factors   ,    and   , using 

the following transformation equation 

        
       

       
                 (3-15) 

where    ,     and     are components of a rotation matrix,  , correlating the anisotropy 

axes to the principal directions of the deviatoric stress tensor  .  

      (3-16) 

where   is a linear transformation matrix. In the plane stress condition,   can be written 

as 
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where   ,    and    are the constants describing the material anisotropy. 

3.1.4.1 Calibration procedure 

For the plane stress condition, seven material coefficients 

(                        ) are determined from uniaxial tension tests in three 

different directions (                           )  in addition to the biaxial bulge (  ) 

test. The yield conditions for uniaxial tension in the rolling (  ) and transverse (   ) 

directions, and equi-biaxial tension (  ), can be written as  

{
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 (3-18) 

First,              are determined using the Newton-Raphson method to solve the 

above non-linear system of equations, assuming         as initial values. Then, in a 

multistep iterative procedure, the    and    values are modified in such a way as to 

satisfy the RD and TD r-values (   and    ). In a similar iterative manner,    and    are 

calculated in order to approach to the flow stress (   ) and r-value (   ) for uniaxial 

tension in the diagonal direction.  

3.1.4.2 Calculation of    from Yld96 

The parameter    (  ̇   ̇ ⁄ ) is analogous to the r-value obtained in uniaxial tension, 

and it characterizes the slope of the yield surface in the balanced biaxial tension stress 

state (       ). This parameter can be evaluated using three different approaches; 
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experimentally by performing compression tests on circular disks, or computationally 

from a crystal plasticity simulation, or theoretically using an advanced yield function 

such as Yld96 (Barlat et al., 2003). In this work, since it was not possible to perform 

compression tests or carry out crystal plasticity simulations for a wide of range of strain 

rates (            ), Yld96 was used to calculate the    at various strain rates. A non-

linear system of five equations of the five unknowns (  ,   ,   ,    and   ) is required to 

be solved, assuming the associated flow rule (Barlat et al., 2005). After solving this 

system of equations using the Newton-Raphson method,    can be defined by 

   [   (      )(      )|      |
      (     )(      )|   

     |
    (      )(     )|     |

   ] [   (     )(      )|    

    |
      (      )(      )|      |

    (      )(     )|   

  |
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(3-19) 

3.1.5 Barlat 2003 (Yld2000-2d) 

Barlat et al. (2003) developed an incompressible plane stress yield function (Yld2000-

2d), which very accurately describes the anisotropic behaviour of sheet metals, in 

particular, aluminum alloys and guarantees the convexity of the flow surface. Two linear 

transformations of the Cauchy stress tensor were introduced into the formulation of the 

yield function.   
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   ̅    (3-20) 

where   
  and   

   are the principal components of two linear transformations (   and    ) 

of the Cauchy stress tensor, which are defined as follows 

                           (3-21) 

where    and     are two linear high-ranked tensors expressing the anisotropy of the 

material as functions of independent coefficients    to   .  
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The principal values of    and     tensors can be calculated as 
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3.1.5.1 Calibration procedure 

Due to the fact that eight constants (   to   ) are incorporated in the    and    , eight 

input data are required to characterise the anisotropy of the material. Uniaxial tension 

tests in the RD, DD and TD (  ,    ,    ,   ,        ), in addition to the biaxial bulge test 

(  ) provide seven input parameters. The eighth parameter,   , can be calculated based 

on Yld96 function, as mentioned in the previous section. It should be noted that all the 

independent coefficients    reduce to one in the case of an isotropic material. A system 

of eight nonlinear equations must be solved using the Newton-Raphson method to 

determine the    parameters. This system consists of four yield equations for the flow 

stresses and their corresponding derivatives for the r-values in both uniaxial and biaxial 

conditions. The function   can therefore be rewritten as 

  |       |  |        |  |        |   ( ̅  ⁄ )    (324) 

The loading for uniaxial (RD and TD) and biaxial stress states can be characterized by 

the two deviatoric stress components,       and      .  

{
 
 

 
            (  ̅        ⁄ )

 
  

          
  

    
   

  

    
     

      (3-25) 
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where     denote the deviatoric stresses, and  ,             are given in Table 3.1 based 

on the stress state. 

Table 3.1. The definition of  ,         parameters in uniaxial RD, TD and biaxial conditions 

           

RD (  ) 2/3 -1/3           

TD (   ) -1/3 2/3             

Biaxial -1/3 -1/3            

 

Coefficients    to    can be determined by solving the system of equations (3-25), 

expressed in terms of the uniaxial (RD, TD) and biaxial stress states. The remaining 

coefficients,    and    are obtained from data points in the diagonal direction (   ,    ). 
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where   
 ,   

   and   
   are defined as 
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The equation     is quite large when derived and expanded, so for the sake of brevity, 

the details are not presented here. Using the Newton-Raphson method,    to    can be 

determined by solving eight equations (3-25 and (3-26) simultaneously. 

3.1.6   Barlat 2005 (Yld2004-18p) 

Barlat et al. (2005) proposed another advanced yield function (Yld2004-18p) for a 3D 

stress state based on two linear transformations, by expanding on the core of Yld2000-2d. 

Due to the large amount of experimental data required for the calibration, this function is 

able to accurately capture the anisotropy behaviour of a variety of materials. The main 
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advantage of this model is its ability to describe the out-of-plane (through-thickness) 

anisotropy of sheet metals.   
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where S'i  and S''j  are the principal stresses of two linear transformations (   and    ) of 

the Cauchy stress tensor ( ). 

{
              

              

 (3-29) 

where    and     are the two linear transformation matrices incorporating the anisotropy 

coefficients, and   is the transformation matrix of the Cauchy stress to its devatoric 

components. 
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(3-30) 

3.1.6.1 Calibration procedure 

The two linear transformations provide a total of 18 coefficients to describe the 

material anisotropy. When all the coefficients are equal to one and the exponent   is 

equal to  , Yld2004-18p reduces to the von Mises isotropic yield function. For 

determination of all the coefficients, seven uniaxial flow stresses and the corresponding r-
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values are required in    degree increments relative to the rolling direction, the biaxial 

flow stress and the corresponding r-value, and four extra input data characterizing the 

out-of-plane material behaviour (two uniaxial and two simple-shear flow stresses) are 

required. Generally, crystal plasticity simulations are used to determine out-of-plane 

characteristics (Barlat et al., 2005). In order to determine the anisotropy coefficients, an 

error function is minimized.  
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where   correlates with the number of available experimental flow stresses, from 

uniaxial, biaxial and/or simple-shear tests, and   correlates with the corresponding r-

values. Also, the superscript denotes whether the corresponding value is experimental 

(  ) or predicted (  ).    represents the weight factor for each term in the error function. 

Due to the higher influence of flow stress in the material anisotropy behaviour compared 

to the r-values, applying different weight factors can lead to more accurate anisotropy 

coefficient determination.  In this work, as recommended by Barlat et al. (2005), weight 

factors    , 0.1 and      were used for the in-plane flow stresses, in-plane r-values and 

out-of-plane flow stresses, respectively.  

Here, due to the unavailability of the crystallographic texture of materials, the out-of-

plane flow stresses were set to their isotropic values, where   ̅⁄     for uniaxial tension 

and   ̅⁄   (      )  ⁄⁄   for simple-shear. Also, due to a lack of experimental data 

for the uniaxial tension tests at     increments from the rolling direction, Yld2000-2d 

(Barlat et al., 2003) was used to generate flow stresses and corresponding r-values for the 

              and      directions. Similar to the Yld2000-2d calibration procedure, Yld96 

function was used to determine the biaxial r-value,     Analytical flow stress and r-value 

formulations for in-plane and out-of-plane conditions are presented in detail in Appendix-

1.  
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3.2 Experimental work 

3.2.1 Sheet materials 

Three sheet materials that are widely used in the automotive industry, DP600 (dual 

phase steel), TRIP780 (transformation induced plasticity steel) and AA5182-O 

(aluminum alloy) each with a nominal thickness of 1.5 mm were selected for this study. 

The steel sheets (DP600 and TRIP780) were supplied by ArcelorMittal and AA5182-O 

sheets were supplied by Novelis. The chemical compositions of the three materials are 

given in Table 3.1.  

Table 3.1. Chemical composition of DP600, TRIP780, and AA5182-O 

DP600 

C 

(%) 
Si 

(%) 
S  

(%) 
Sn 

(%) 
P 

(%) 
Mn 

(%) 
Ni   

(%) 
Cr   

(%) 
Mo 

(%) 

0.107 0.175 0.001 0.004 0.011 1.5 0.015 0.18 0.21 

TRIP780 

C 

(%) 
Si 

(%) 
S  

(%) 
Sn 

(%) 
P 

(%) 
Mn 

(%) 
Ni   

(%) 
Cr   

(%) 
Mo 

(%) 

0.21 0.05 0.002 <0.02 0.01 1.74 <0.02 0.2 <0.02 

AA5182-O 

Mg 

(%) 
Mn 

(%) 
Fe 

(%) 
Si 

(%) 
Cr 

(%) 
Cu 

(%) 
Ti 

(%)   

4.5 0.35 0.3 0.11 0.045 0.09 0.04   

 

DP600 exhibits relatively high strength and good formability due to the presence of 

martensite and ferrite. Generally, the strength of DP steels is related to the amount of 

martensite, while the ductility is due to the presence of ferrite. In addition to the ferrite 

and martensite, TRIP780 contains bainite and retained austenite. During plastic 

deformation, the retained austenite gradually transforms to martensite, resulting in high 

work hardening. Van Slycken et al. (2007) showed that in the high strain rate regime, the 

bainite and ferrite phases can be considered strain rate independent compared to the 

austenite which shows a positive strain-rate sensitivity. 
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3.2.2 Quasi-static, intermediate and high strain rate tests 

In order to quantify the effect of strain rate on the flow stress and determine the 

material constants in different yield functions w.r.t. strain rate, the mechanical responses 

of the three materials were obtained under uniaxial and biaxial tension conditions at 

different strain rates. The quasi-static biaxial flow stresses were obtained from the work 

of Al-Nasser (2009) for DP600 and TRIP780, and from the work of Etienne Combaz of 

Novelis Switzerland-SA for AA5182-O (interested readers are referred to Chapter-4 of 

Al-Nasser, 2009 for details on the biaxial testing procedure and analysis). The validity of 

the biaxial flow stresses from the aforementioned literatures was determined by 

examining the uniaxial flow stress results in the rolling direction. The uniaxial flow stress 

results showed very good agreement with the experimental results for the materials 

studied in this work, and were therefore deemed to also adequately represent the biaxial 

flow stress of these materials.Uniaxial flow stresses and the corresponding r-values were 

obtained from uniaxial tension tests in three different material orientations (RD, DD and 

TD) for a wide range of strain rates (                                 ) at room 

temperature. The experimental uniaxial tension tests were performed by Professor 

Worswick`s research team at the University of Waterloo. A specimen based on the 

standard ASTM-E8 specification was used for testing at strain rates below      , while a 

miniature “dog-bone” shaped specimen was used for testing above       (Figure 3-1). 

Experimental work by Smerd et al. (2005) for aluminum alloys and by Bardelcik et al. 

(2012) for high strength steels confirmed that the flow stress obtained from ASTM 

specimens is in good agreement with the flow stress from miniature dog-bone specimens. 

It should be noted that all the specimens were machined in three different material 

orientations (RD, DD and TD) and were tested in the as-received condition.  
 

 

Figure 3-1 a) ASTM-E8 and b) miniature dog-bone specimen geometries (mm),               

(Rahmaan et al., 2014) 
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A closed-loop Instron servo-hydraulic testing machine, a hydraulic intermediate strain 

rate (HISR) testing machine and a split Hopkinson pressure bar (SHPB) apparatus were 

used to perform uniaxial tests at strain rates of            ,                and 

approximately         , respectively. For strain rates below       a biaxial 

extensometer was used to measure the longitudinal and width strains in the gauge of the 

specimens, and the Digital Image Correlation (DIC) technique using high speed digital 

cameras was used for higher strain rates.  

3.2.3    Experimental results 

3.2.3.1 Flow stress 

Figure 3-2-Figure 3-4 show the engineering stress-strain curves for DP600, TRIP780, 

and AA5182-O measured in the rolling (RD), diagonal (DD), and transverse (TD) 

directions at various strain rates. Three to five tests were repeated for each case and the 

average results are presented here. Also, Figure 3-5-Figure 3-7 show the true stress 

versus effective plastic strain (also known as flow stress) curves are calculated from the 

measured engineering stress-strain data, for DP600, TRIP780, and AA5182-O in RD, 

DD, and TD at various strain rates.   

Results show a significant strain-rate sensitivity of DP600 and TRIP780 in all three 

orientations (RD, DD, and TD), which can be attributed to the large volume fraction of 

ferrite in these steels (Kim et al., 2013). In contrast, AA5182-O exhibits almost zero or 

even a small negative strain-rate sensitivity, which is attributed to the dynamic strain 

aging effect of aluminum alloys (Smerd et al., 2005). A general conclusion about the 

relationship between work hardening and strain rate is not possible due to the variance of 

this phenomenon amongst the materials and orientations. 

Figure 3-8 shows the biaxial true stress versus effective plastic strain curves for 

DP600, TRIP780, and AA5182-O. The biaxial flow stress is remarkably different from 

the uniaxial flow stress in the RD for DP600 and TRIP780. The dissimilarity of the 

biaxial results demonstrates how important the biaxial flow stress is in order to accurately 

predict the flow surfaces of the steel sheets. Comparison of the biaxial and uniaxial flow 
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stresses of AA5182-O shows almost the same mechanical response of material in these 

two stress states, i.e., the biaxial flow stress can be assumed to be the same as the flow 

stress in uniaxial tension in RD for AA5182-O.  

 

 

 

Figure 3-2 DP600 engineering stress-strain curves at various strain rates in;                               

a) RD b) DD c) TD 
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Figure 3-3 TRIP780 engineering stress-strain curves at various strain rates in;                           

a) RD b) DD c) TD 



52 

 

 

 

 

Figure 3-4 AA5182-O engineering stress-strain curves at various strain rates in;                         

a) RD b) DD c) TD 
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Figure 3-5 DP600 true stress versus effective plastic strain curves obtained at                               

various strain rates in RD, DD, and TD 
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Figure 3-6. TRIP780 true stress versus effective plastic strain curves obtained at                            

various strain rates in RD, DD, and TD 
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Figure 3-7. AA5182-O true stress versus effective plastic strain curves obtained at                        

various strain rates in RD, DD, and TD 
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Figure 3-8. Biaxial and uniaxial true stress versus effective plastic strain curves at           for                  

a) DP600 b) TRIP780 c) AA5182-O 
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3.2.3.2 r-value 

In addition to the flow stresses, r–values in different orientations are required to 

comprehensively describe the material anisotropy. In order to determine the r–values, the 

engineering elongation in the longitudinal and width directions of specimens was 

measured, using a biaxial extensometer (below      ) and the DIC technique (above 

     ). By converting the measurements to true strains and applying the volume 

constancy assumption, the r-value can be calculated as follows 

   
    ⁄

      ⁄
 (3-32) 

where    and    are the width and longitudinal true strains, respectively. The ratio     ⁄  

is the slope of the first-order equation fitted to the width versus longitudinal true strain 

curve over a certain strain range. Therefore, in materials with small variations of width 

strain versus longitudinal strain, the r-value that is calculated based on Eq. (3-32) 

provides a good representation of the material anisotropy. In this work, this approach was 

used to calculate the r-values of DP600, TRIP780, and AA5182-O in the rolling (RD), 

diagonal (DD), and transverse (TD) directions over a range of strains between       and 

     (Figure 3-9-Figure 3-11). 
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Figure 3-9. DP600 width versus longitudinal true strain curves obtained from uniaxial tension         

in RD, DD and TD at various strain rates 
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Figure 3-10. TRIP780 width versus longitudinal true strain curves obtained from uniaxial tension     

in RD, DD and TD at various strain rates 

 

 



60 

 

 

 

 

Figure 3-11. AA5182-O width versus longitudinal true strain curves obtained from uniaxial 

tension in RD, DD and TD at various strain rates 
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3.3 Anisotropy coefficients 

In rate-dependent forming processes, in addition to the size of the flow surface (that is 

determined by a rate-dependent hardening model), the shape of the flow surface can 

change due to variations in the flow stresses and r-values. In order to investigate the 

effect of strain rate on the material flow behaviour, the yield function anisotropy 

coefficients must be determined for each effective strain rate and not merely for the initial 

quasi-static condition. In this work, based on procedures that will be discussed in the next 

sections, the anisotropy coefficients for several yield functions have been obtained at 

various strain rates (                                 ). The set of anisotropy 

coefficients of a yield function for each effective strain rate can be used to update the 

anisotropy coefficients according to strain rate. This may improve the accuracy of FE 

simulations of strain rate sensitive processes, such as EHF. 

3.3.1 Evolution of flow stresses 

Anisotropy coefficients are independent of strain in yield functions, therefore it is 

necessary to select certain flow stresses (as input data) for uniaxial and biaxial stress 

states so as to calibrate the anisotropy coefficients at certain effective plastic strain (or 

plastic work). In many publications, the initial yield stresses (at zero plastic strain) are 

selected as the input data, which can cause substantial inaccuracy because in this region 

of the stress-strain curve the slope is the steepest. In addition, a large amount of plastic 

strain is expected in sheet metal forming simulations, but the initial yield stress is only 

associated with a very small plastic strain (almost zero) and anisotropy coefficients 

calibrated at or near zero plastic strain may not reflect the anisotropy of the material at 

higher strain levels. For these reasons, the flow stresses have been selected based on a 

comprehensive investigation of the normalized flow stress variation in the uniaxial (DD, 

TD) and biaxial (Biax) conditions for each corresponding strain rate.  

Figure 3-12-Figure 3-14 show the normalized flow curves for DP600, TRIP780, and 

AA5182-O, in which the uniaxial flow stress in the diagonal direction (DD), the uniaxial 

flow stress in the transverse direction (TD) and the biaxial flow stress (Biax), were 

normalized relative to the flow stress in the rolling direction (RD) at each corresponding 
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strain rate. It should be noted that the flow stress in the rolling direction is extrapolated 

up to large strain values (greater than the ultimate effective plastic strain value obtained 

from the uniaxial test) using the biaxial flow stress data. The biaxial flow stress data was 

used to calculate a more accurate work hardening exponent rather than simply 

extrapolating the uniaxial flow curve based on a hardening model such as a power-law, 

JC, KHL, or etc. It should be noted that due to the limitations of existing experimental 

testing equipment and procedures, there is no reliable testing method to obtain 

experimental biaxial flow stress at intermediate and high strain rates. Here, an analytical 

procedure was used to obtain flow curves for all three materials, the details of which are 

discussed in the next section. In Figures 3-12 to 3-14, the expression “Exp_Biax” is 

related to the experimental biaxial flow stress which is only available at          , and 

the expression “Cal_Biax” represents the biaxial flow stresses at 

                           , that were calculated using this analytical procedure. In 

this work, since large strain values (greater than 0.3 or even 0.4 true major strain) are 

anticipated from the EHF simulations, the flow stresses for uniaxial and biaxial cases 

were combined to achieve a more accurate and general material flow behaviour 

prediction.  

The normalized flow curves for DP600 (Figure 3-12) show significant variations in 

both the diagonal and transverse directions (DD and TD) for small strain values, which 

emphasizes that the initial yield stress is not a good representation of the anisotropic 

behaviour of DP600 at larger strain values. At almost all strain rates, the DD and TD 

uniaxial normalized flow stresses for DP600 saturate in the strain range from     to     . 

Therefore, the DD and TD normalized flow stresses were selected based on average 

values in this range, and these are given in Table 3.2. Also, the normalized biaxial flow 

stress (Biax) for DP600 was selected based on an average value in the strain range from 

    to    , since the normalized biaxial flow stresses saturate at strains above     for 

almost all strain rates. This procedure of identifying the normalized flow stress is very 

reasonable, since larger strains are obtained in biaxial EHF simulations compared to the 

uniaxial and plane-strain conditions. In addition, the procedure of selecting flow stresses 

at higher strain values gives a more precise indication of material flow behaviour because 



63 

 

the flow stress obtained from the biaxial bulge test (at          ) is not as accurate for 

small strain values.  

The normalized flow curves for TRIP780 (Figure 3-13) show that the DD and TD 

uniaxial normalized flow stresses do not vary significantly after 0.1 strain for almost all 

strain rates. Therefore, similar to DP600, the normalized flow stresses for the uniaxial 

cases were obtained based on average values in the strain range from     to     , and are 

given in Table 3.9. The TRIP780 biaxial normalized flow stresses saturate after effective 

plastic strains of 0.1 for almost all strain rates. Therefore, the Biax normalized value is 

calculated based on the average value in the strain range      to     . Similar to DP600, 

the significant variation in the normalized flow stresses at low strains shows that 

selecting the initial yield stress as an input value to calibrate anisotropy coefficients is a 

very inaccurate approach to describe the material anisotropy behaviour of TRIP780. In 

contrast with DP600 and TRIP780, a significant variation can be seen in the normalized 

DD and TD uniaxial flow stresses of AA5182-O at almost all strain rates (Figure 3-14). 

These variations make it difficult to decide which strain range to consider in order to 

select the normalized flow stresses that best describe the anisotropy of AA5182-O. In 

order to maintain consistency with the other materials, the DD and TD normalized flow 

stresses were calculated based on average values for the strain range of 0.1-0.18. The 

normalized biaxial flow stresses of AA5182-O were calculated based on average values 

in the strain range of 0.2-0.6, due to the very small variation after 0.2 strain in almost all 

strain rates.   
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Figure 3-12. Evolution of DP600 uniaxial and biaxial flow stresses normalized to the            

uniaxial flow stress in the RD at various strain rates 
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Figure 3-13. Evolution of TRIP780 uniaxial and biaxial flow stresses normalized to the         

uniaxial flow stress in the RD at various strain rates 
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Figure 3-14. Evolution of AA5182-O uniaxial and biaxial flow stresses normalized to the         

uniaxial flow stress in the RD at various strain rates 
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3.3.2 Calculation of biaxial flow stress at higher strain rates 

To describe the changes in material anisotropy w.r.t. strain rates, the uniaxial flow 

stresses and r-values were obtained from uniaxial tension tests in three different 

orientations for a wide range of strain rates (              ). In addition, the biaxial 

flow stresses at various strain rates are also needed for the calibration of most yield 

functions. As mentioned before, due to the limitations of existing testing methods, it is 

only possible to obtain experimental biaxial flow stress in the quasi-static condition 

(         ). In order to obtain the missing data, an analytical procedure was developed 

to calculate the biaxial flow stresses for strain rates of                          .  

In this procedure, it was assumed that the calculated biaxial flow curves (Cal_Biax) at 

strain rates greater than          , have the same trend as the experimental biaxial flow 

curve (Exp_Biax) at          . Based on this assumption, the biaxial flow curve only 

shifts up or down with changes in strain rate, depending upon the strain-rate sensitivity of 

the material. The strain-rate sensitivity of the material was calculated based on a 

superposition approach applied to the uniaxial flow stresses in the RD, DD, and TD. In 

this approach, it was assumed that the average strain rate sensitivity in uniaxial tension in 

RD, DD and TD, is a good representation of the biaxial strain-rate sensitivity. 

Figure 3-15a shows the DP600 uniaxial flow stresses in the RD, DD, and TD at    , 

    , and      strains and for each strain rate. These points were selected because the 

DP600 uniaxial flow stresses are almost saturated for strains above     (Figure 3-12). By 

calculating an average flow stress for the three material orientations, a single point is 

obtained for each strain rate (Figure 3-15b). Then, by fitting a polynomial equation to the 

average points and shifting the fitted curve upwards so that it passes through the 

experimental biaxial flow stress point at          , a trend can be obtained which 

represents the strain-rate sensitivity of the biaxial flow stress. Figure 3-15b shows a 

substantial increase in the average strain-rate sensitivity rate of DP600 above      . Also, 

Figure 3-15c shows the calculated biaxial (Cal_Biax) flow curves of DP600 at various 

strain rates. The calculated biaxial flow curves were calculated based on the average 
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strain-rate sensitivity and assuming no changes in the biaxial work hardening rate with 

increasing strain rates. 

The same procedure was used to calculate the biaxial flow curves for TRIP780 at strain 

rates of                          . Figure 3-16b shows the average strain-rate 

sensitivity of TRIP780 is lower compared to DP600. The calculated biaxial (Cal_Biax) 

flow curves of TRIP780 for various strain rates are shown in Figure 3-16c. The biaxial 

flow curves for AA5182-O (Figure 3-17) show that the near-zero strain-rate sensitivity of 

AA5182-O in the uniaxial condition results in an almost strain rate independency of the 

biaxial flow stress. Many previous researchers have reported zero or a small negative 

strain-rate sensitivity for AA5182-O based on solely the uniaxial flow stress in the rolling 

direction, whereas this work presents a more general and reliable conclusion. 
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Figure 3-15. Calculation of DP600 biaxial flow curves at strain rates                                            

of                           
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Figure 3-16. Calculation of TRIP780 biaxial flow curves at strain rates                                         

of                           
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Figure 3-17. Calculation of AA5182-O biaxial flow curves at strain rates                                        

of                           
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3.3.3 Determination of anisotropy coefficients for different yield 
functions 

Figure 3-18 shows the variations of the normalized flow stress (discussed in section 

3.3.1) and r-value (discussed in section 3.2.3.2) w.r.t. strain rate for DP600. Results show 

a continuous decrease in the flow stresses with increasing strain rate. i.e., the anisotropy 

effect associated with the flow stress decreases with strain rate. The r-value variations 

show oscillations with the same trend in different orientations (          ). Figure 3-19 

shows the variations in the flow stresses and r-values of TRIP780 w.r.t. strain rate. The 

trends do not show a smooth or continuous increase or decrease w.r.t. strain rate, which 

makes it difficult to draw a conclusion on the effect of strain rate on the anisotropy 

behaviour of TRIP780. Compared to DP600 and TRIP780, AA5182-O shows greater 

oscillations in the normalized flow stresses w.r.t. strain rate (Figure 3-20). Also, similar 

to DP600, a similar trend for                can be observed in AA5182-O.  

 

 

Figure 3-18. Anisotropy variation w.r.t. strain rate for DP600;                                                     

a) normalized flow stress b) r-value 

 

 

Figure 3-19. Anisotropy variation w.r.t. strain rate for TRIP780;                                                      

a) normalized flow stress b) r-value 
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Figure 3-20. Anisotropy variation w.r.t. strain rate for AA5182-O;                                                 

a) normalized flow stress b) r-value 

The input data required to calibrate the different anisotropic yield functions and the 

corresponding anisotropy coefficients for DP600, TRIP780, and AA5182-O at various 

strain rates are given in Tables 3.2-3.8, Tables 3.9-3.15, and Tables 3.16-3.22, 

respectively. It should be emphasized that for all cases, the flow stresses are normalized 

w.r.t. the uniaxial flow stress in the RD ( ̅    ). 
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Table 3.2. DP600 input data at various strain rates; for calibration of different yield functions 

DP600 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

Experimental data     
   ̅⁄  1.000 1.000 1.000 1.000 1.000 1.000 

    ̅⁄  1.028 1.012 1.012 1.007 1.004 1.007 

    ̅⁄  1.041 1.039 1.029 1.024 1.020 1.022 

   ̅⁄  1.076 1.070 1.063 1.054 1.048 1.040 
       

       

   0.646 0.883 0.777 0.830 0.773 0.862 

    0.896 1.094 0.877 0.915 0.839 0.989 

    0.853 1.137 0.988 1.023 0.998 1.116 

Calculated from Yld2000-2d  

    ̅⁄  1.005 1.001 1.001 1.000 1.000 1.000 

    ̅⁄  1.016 1.004 1.005 1.002 1.000 1.003 

    ̅⁄  1.036 1.023 1.020 1.014 1.011 1.013 

    ̅⁄  1.040 1.034 1.026 1.021 1.017 1.019 
       

       

    0.685 0.917 0.790 0.841 0.778 0.879 

    0.790 1.003 0.826 0.871 0.797 0.926 

    0.921 1.142 0.931 0.965 0.903 1.052 

    0.879 1.144 0.972 1.006 0.969 1.099 

Calculated    from Yld96     

   (Yld96) 0.666 0.735 0.738 0.776 0.742 0.743 

 
 

Table 3.3. Hill48 coefficients for DP600 at various strain rates 

DP600 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

Hill48-r.value     

G 0.608 0.531 0.563 0.546 0.564 0.537 

F 0.460 0.412 0.443 0.443 0.437 0.415 

H 0.392 0.469 0.437 0.454 0.436 0.463 

N 1.491 1.504 1.384 1.401 1.340 1.418 

Hill48-stress  

G 0.470 0.473 0.470 0.473 0.475 0.484 

F 0.393 0.400 0.414 0.427 0.436 0.440 

H 0.530 0.527 0.530 0.527 0.525 0.516 

N 1.460 1.517 1.510 1.521 1.527 1.511 
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Table 3.4.  Hill90 coefficients for DP600 at various strain rates 

DP600 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

Hill90-r.value     

  1.804 1.912 1.782 1.819 1.771 1.902 

  -0.140 -0.126 -0.120 -0.104 -0.127 -0.129 

  -0.271 -0.183 -0.011 0.002 0.052 -0.030 

Hill90-stress  

  1.804 1.912 1.782 1.819 1.771 1.902 

  -0.069 -0.075 -0.048 -0.040 -0.032 -0.041 

  0.058 -0.055 -0.014 -0.030 -0.036 -0.030 

 

 

Table 3.5. Barlat89 coefficients for DP600 at various strain rates (exponent a = 6) 

DP600 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

Barlat89-r.value     

  1.150 1.001 1.068 1.042 1.067 1.012 

  0.850 0.999 0.932 0.958 0.933 0.988 

  0.923 0.939 0.938 0.947 0.934 0.937 

  0.998 0.981 0.960 0.963 0.945 0.960 

Barlat89-stress  

  1.115 1.003 1.063 1.048 1.068 1.007 

  0.885 0.997 0.937 0.952 0.932 0.993 

  0.961 0.963 0.972 0.977 0.980 0.978 

  0.969 0.991 0.990 0.994 0.998 0.995 
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Table 3.6. Yld96 coefficients for DP600 at various strain rates (exponent a = 6) 

DP600 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

   0.767 0.837 0.828 0.860 0.871 0.911 

   0.782 0.885 0.841 0.869 0.852 0.903 

   1.006 1.023 1.020 1.022 1.018 1.015 

   0.888 0.968 0.965 0.980 0.985 0.988 
       

       

   2.55 1.52 1.82 1.57 1.56 1.21 

   3.4 1.73 2.28 1.92 2.15 1.63 

    1 1 1 1 1 1 

    1.52 1.12 0.98 0.96 0.89 0.978 

 
Calculation of rb from Yld96 

   

(Yld96) 
0.666 0.735 0.738 0.776 0.742 0.743 

 

 

Table 3.7. Yld2000-2d coefficients for DP600 at various strain rates (exponent a = 6) 

DP600 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

   0.944 0.996 0.966 0.976 0.956 0.979 

   0.919 0.945 0.954 0.964 0.978 0.983 

   0.815 0.866 0.854 0.877 0.873 0.899 

   0.945 0.939 0.952 0.958 0.960 0.956 

   1.001 0.986 0.996 0.995 1.003 1.001 

   0.858 0.886 0.888 0.906 0.919 0.948 

   0.951 0.986 0.963 0.973 0.966 0.985 

   1.057 1.047 1.082 1.074 1.090 1.041 
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Table 3.8. Yld2004-18P coefficients for DP600 at various strain rates (exponent a = 6) 

DP600 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

   
  0.765 0.898 1.305 1.072 1.286 0.832 

   
  0.272 0.888 0.931 0.853 0.978 0.709 

   
  0.889 1.185 0.998 0.853 0.777 1.407 

   
  0.376 0.941 0.589 0.395 0.546 0.888 

   
  1.058 1.026 0.921 0.805 -0.073 0.846 

   
  0.901 0.723 1.159 0.892 1.039 0.991 

   
  1.814 1.022 2.103 1.204 1.628 1.183 

   
  1.445 1.165 1.585 1.156 1.478 1.089 

   
  0.990 1.035 1.231 0.948 1.189 1.144 

       

       

   
   0.944 0.836 0.329 0.952 0.192 0.713 

    
  1.082 0.505 0.152 1.132 0.950 0.534 

    
  1.054 0.879 0.822 0.930 0.696 0.846 

   
   1.053 0.290 0.684 1.136 0.386 0.704 

   
   0.980 1.222 1.296 1.042 1.214 1.515 

   
   1.071 1.113 1.361 1.136 1.372 1.161 

   
   1.272 0.790 0.979 1.287 1.832 0.616 

   
   1.197 1.945 1.903 1.205 1.522 1.512 

   
   0.862 0.917 0.681 0.972 0.722 0.825 
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Table 3.9. TRIP780 input data at various strain rates; for calibration of different yield functions 

TRIP780 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

Experimental data     
   ̅⁄  1.000 1.000 1.000 1.000 1.000 1.000 

    ̅⁄  0.996 0.977 0.974 0.971 0.972 0.978 

    ̅⁄  1.020 1.034 1.040 1.035 1.020 1.034 

   ̅⁄  1.051 1.050 1.051 1.044 1.036 1.022 
       

       

   0.498 0.551 0.563 0.560 0.544 0.591 

    1.030 0.900 0.779 0.815 0.779 0.928 

    0.565 0.689 0.693 0.670 0.619 0.719 

Calculated from Yld2000-2d  

    ̅⁄  1.000 0.993 0.991 0.992 0.992 0.993 

    ̅⁄  0.997 0.980 0.976 0.977 0.977 0.980 

    ̅⁄  1.005 0.994 0.994 0.986 0.986 0.995 

    ̅⁄  1.016 1.021 1.025 1.009 1.009 1.021 
       

       

    0.586 0.618 0.607 0.594 0.594 0.657 

    0.835 0.778 0.704 0.704 0.704 0.812 

    0.903 0.872 0.778 0.751 0.751 0.899 

    0.661 0.752 0.724 0.664 0.664 0.781 

Calculated    from Yld96     

   (Yld96) 0.837 0.738 0.738 0.761 0.834 0.780 

 

Table 3.10. Hill48 coefficients for TRIP780 at various strain rates 

TRIP780 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

Hill48-r.value     

G 0.667 0.645 0.640 0.641 0.648 0.629 

F 0.589 0.515 0.520 0.535 0.569 0.517 

H 0.333 0.355 0.360 0.359 0.352 0.372 

N 1.922 1.624 1.483 1.547 1.556 1.635 

Hill48-stress  

G 0.471 0.486 0.490 0.491 0.485 0.511 

F 0.434 0.421 0.415 0.425 0.446 0.446 

H 0.529 0.514 0.510 0.509 0.515 0.489 

N 1.563 1.642 1.655 1.665 1.649 1.613 
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Table 3.11. Hill90 coefficients for TRIP780 at various strain rates 

TRIP780 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

Hill90-r.value     

  1.876 1.745 1.650 1.682 1.677 1.830 

  -0.065 -0.115 -0.106 -0.092 -0.067 -0.100 

  -0.909 -0.466 -0.235 -0.314 -0.306 -0.484 

Hill90-stress  

  1.876 1.745 1.650 1.682 1.677 1.830 

  -0.036 -0.052 -0.053 -0.048 -0.028 -0.055 

  -0.102 -0.256 -0.257 -0.274 -0.218 -0.266 

 

 

Table 3.12. Barlat89 coefficients for TRIP780 at various strain rates (exponent a = 6) 

TRIP780 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

Barlat89-r.value     

  1.307 1.239 1.232 1.241 1.266 1.212 

  0.693 0.761 0.768 0.759 0.734 0.788 

  0.960 0.933 0.938 0.946 0.960 0.943 

  1.152 1.051 1.013 1.035 1.046 1.053 

Barlat89-stress  

  1.075 1.033 1.017 1.032 1.074 1.039 

  0.925 0.967 0.983 0.968 0.926 0.961 

  0.981 0.967 0.962 0.966 0.981 0.967 

  1.009 1.038 1.043 1.047 1.043 1.037 
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Table 3.13. Yld96 coefficients for TRIP780 at various strain rates (exponent a = 6) 

TRIP780 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

   0.736 0.771 0.771 0.778 0.785 0.836 

   0.743 0.786 0.786 0.806 0.792 0.869 

   0.977 0.982 0.982 0.979 0.981 0.973 

   0.838 0.940 0.965 0.977 0.960 0.962 
       

       

   4.250 3.000 3.000 2.900 3.150 2.130 

   4.800 3.700 3.700 3.350 3.600 2.420 

    1.000 1.000 1.000 1.000 1.000 1.000 

    2.820 1.400 1.070 1.070 1.150 1.300 

 
Calculation of rb from Yld96 

   (Yld96) 0.837 0.738 0.738 0.761 0.834 0.780 

 

 

Table 3.14. Yld2000-2d coefficients for TRIP780 at various strain rates (exponent a = 6) 

TRIP780 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

   0.893 0.920 0.934 0.937 0.921 0.950 

   0.901 0.913 0.898 0.898 0.913 0.917 

   0.843 0.856 0.862 0.870 0.876 0.923 

   0.989 0.970 0.967 0.974 0.991 0.980 

   1.015 1.014 1.013 1.015 1.017 1.021 

   0.856 0.883 0.883 0.894 0.896 0.942 

   0.996 0.994 0.976 0.987 0.982 1.004 

   1.073 1.147 1.184 1.174 1.169 1.101 
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Table 3.15. Yld2004-18P coefficients for TRIP780 at various strain rates (exponent a = 6) 

TRIP780 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

   
  1.171 1.431 1.359 1.014 0.918 1.011 

   
  0.968 1.537 0.830 1.647 0.965 1.084 

   
  0.776 0.913 1.291 0.539 1.026 1.029 

   
  0.577 0.953 0.544 1.197 0.953 0.988 

   
  0.193 0.878 0.900 0.902 1.348 1.087 

   
  0.944 1.496 1.191 0.930 1.524 0.739 

   
  1.276 1.093 1.210 1.291 0.732 3.087 

   
  1.091 1.027 1.897 2.659 2.435 1.083 

   
  1.040 1.235 1.415 0.828 1.036 1.040 

       

       

   
   1.030 0.913 0.568 1.178 0.736 0.898 

    
  1.060 0.507 0.444 0.564 0.071 0.580 

    
  0.530 0.345 0.313 0.795 0.898 0.659 

   
   1.141 0.450 0.596 0.915 0.322 0.152 

   
   1.261 0.667 1.389 0.497 1.209 1.059 

   
   1.132 0.871 1.445 0.395 0.967 1.151 

   
   1.305 1.352 1.025 1.077 1.032 1.013 

   
   1.340 1.658 1.196 -0.199 0.748 -0.451 

   
   0.930 0.720 0.479 1.084 0.897 0.938 
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Table 3.16. AA5182 input data at various strain rates; for calibration of different yield functions 

AA5182-O 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

Experimental data     
   ̅⁄  1.000 1.000 1.000 1.000 1.000 1.000 

    ̅⁄  0.977 0.976 0.980 0.976 0.966 0.976 

    ̅⁄  0.951 0.979 0.981 0.969 0.955 0.967 

   ̅⁄  0.991 0.985 0.992 1.008 1.000 0.985 
       

       

   0.633 0.862 0.724 0.633 0.693 0.720 

    0.664 0.922 0.775 0.795 0.748 0.790 

    0.620 0.858 0.767 0.667 0.708 0.742 

Calculated from Yld2000-2d  

    ̅⁄  0.997 0.995 0.996 0.996 0.994 0.996 

    ̅⁄  0.989 0.984 0.987 0.986 0.980 0.986 

    ̅⁄  0.964 0.974 0.978 0.971 0.958 0.970 

    ̅⁄  0.955 0.977 0.980 0.969 0.955 0.967 
       

       

    0.642 0.878 0.735 0.671 0.707 0.737 

    0.659 0.909 0.757 0.751 0.734 0.771 

    0.649 0.904 0.778 0.762 0.738 0.779 

    0.629 0.873 0.771 0.697 0.718 0.754 

Calculated    from Yld96     

   (Yld96) 1.114 1.013 0.963 0.993 1.046 1.003 

 

Table 3.17. Hill48 coefficients for AA5182-O at various strain rates 

AA5182-O 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

Hill48-r.value     

G 0.612 0.537 0.580 0.613 0.591 0.581 

F 0.625 0.539 0.547 0.581 0.578 0.564 

H 0.388 0.463 0.420 0.388 0.409 0.419 

N 1.440 1.531 1.438 1.546 1.459 1.478 

Hill48-stress  

G 0.457 0.494 0.489 0.460 0.451 0.480 

F 0.562 0.537 0.527 0.524 0.549 0.551 

H 0.543 0.506 0.511 0.540 0.549 0.520 

N 1.586 1.585 1.575 1.609 1.645 1.583 
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Table 3.18. Hill90 coefficients for AA5182-O at various strain rates 

AA5182-O 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

Hill90-r.value     

  1.700 1.917 1.796 1.761 1.719 1.817 

  0.010 0.002 -0.030 -0.027 -0.011 -0.015 

  -0.058 -0.116 -0.051 -0.238 -0.075 -0.101 

Hill90-stress  

  1.700 1.917 1.796 1.761 1.719 1.817 

  0.071 0.038 0.030 0.049 0.068 0.055 

  0.012 -0.100 -0.068 -0.055 -0.068 -0.044 

 

 

Table 3.19. Barlat89 coefficients for AA5182-O at various strain rates (exponent a = 8) 

AA5182-O 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

Barlat89-r.value     

  1.230 1.075 1.146 1.213 1.176 1.156 

  0.770 0.925 0.854 0.787 0.824 0.844 

  1.006 1.001 0.983 0.984 0.994 0.992 

  1.013 1.015 0.997 1.029 1.008 1.009 

Barlat89-stress  

  1.246 1.152 1.144 1.186 1.235 1.195 

  0.754 0.848 0.856 0.814 0.765 0.805 

  1.051 1.021 1.019 1.032 1.047 1.035 

  1.023 1.030 1.025 1.029 1.041 1.028 
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Table 3.20. Yld96 coefficients for AA5182-O at various strain rates (exponent a = 8) 

AA5182-O 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

   0.967 1.023 0.983 0.931 0.971 1.004 

   0.819 0.953 0.908 0.821 0.821 0.888 

   1.027 1.005 1.007 1.025 1.036 1.014 

   0.972 1.020 1.010 0.970 1.000 0.995 
       

       

   2.140 1.110 1.440 2.200 1.880 1.440 

   3.320 1.390 1.940 3.330 3.100 2.150 

    1.000 1.000 1.000 1.000 1.000 1.000 

    1.160 0.980 0.930 1.305 1.055 1.093 

 
Calculation of rb from Yld96 

   (Yld96) 1.114 1.013 0.963 0.993 1.046 1.003 

 

 

Table 3.21. Yld2000-2d coefficients for AA5182-O at various strain rates (exponent a = 8) 

AA5182-O 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

   0.909 0.965 0.949 0.920 0.914 0.934 

   1.057 1.035 1.024 1.030 1.066 1.049 

   0.933 0.995 0.968 0.912 0.920 0.967 

   1.047 1.022 1.020 1.025 1.035 1.032 

   1.021 1.014 1.018 1.015 1.016 1.021 

   0.985 1.024 1.005 0.961 0.978 1.017 

   0.987 1.017 0.998 1.000 1.004 1.004 

   1.097 1.048 1.071 1.099 1.121 1.069 
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Table 3.22. Yld2004-18P coefficients for AA5182-O at various strain rates (exponent a = 8) 

AA5182-O 
Strain rate (s

-1
) 

0.001 0.1 1 10 100 1000 

   
  1.316 0.979 1.079 1.166 1.184 0.667 

   
  1.086 0.758 1.153 1.226 1.302 0.793 

   
  1.090 0.844 0.437 1.098 1.314 0.898 

   
  1.035 0.879 0.773 1.197 1.314 1.046 

   
  0.564 0.917 0.877 1.018 0.862 0.777 

   
  0.485 1.047 1.001 0.845 0.972 0.657 

   
  1.272 0.488 0.695 0.982 1.328 2.238 

   
  0.751 1.199 2.365 1.351 1.020 1.069 

   
  1.193 0.923 0.834 1.150 1.265 0.799 

       

       

   
   0.754 1.156 1.252 0.908 0.737 0.994 

    
  1.363 1.228 1.327 0.835 0.862 1.381 

    
  0.554 0.979 1.026 0.619 0.637 1.332 

   
   1.321 1.058 1.200 0.555 0.888 1.419 

   
   0.927 1.011 0.355 0.884 0.855 0.957 

   
   1.114 1.048 0.814 1.013 0.855 0.959 

   
   1.030 1.163 0.939 1.154 0.822 0.771 

   
   1.084 1.294 0.856 1.102 1.323 0.544 

   
   0.675 1.090 1.158 0.818 0.724 1.174 

 

3.3.4 Updating Yld2000-2d anisotropy coefficients w.r.t. strain rate 

Figures 3.21, 3.22, and 3.23 show the variation of Yld2000-2d anisotropy coefficients 

(     ) w.r.t. strain rate for DP600, TRIP780, and AA5182-O, respectively. In order to 

apply these variations to EHF simulations and update the anisotropy coefficients, 4th-

order polynomial equations were fitted to the   coefficients. These equations are given in 

Tables 3.23, 3.24, and 3.25 for DP600, TRIP780, and AA5182-O, respectively, and were 

implemented into the author’s user-defined material model that will be presented in 

Chapter 5. It should be mentioned that the variable     represents      ̇  in these 

polynomial equations.  
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Figure 3.21. Variation of Yld2000-2d anisotropy coefficients w.r.t. strain rate for DP600 

 

 

Figure 3.22. Variation of Yld2000-2d anisotropy coefficients w.r.t. strain rate for TRIP780 

 

 

Figure 3.23. Variation of Yld2000-2d anisotropy coefficients w.r.t. strain rate for AA5182-O 

Table 3.23. 4th-order equations fitted toYld2000-2d coefficients for DP600 
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Table 3.24. 4th-order equations fitted toYld2000-2d coefficients for TRIP780 

                                               

                                               

                                              

                                                 

                                                

                                              

                                             

                                             

Table 3.25. 4th-order equations fitted toYld2000-2d coefficients for AA5182-O 
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3.4 Rate-dependent hardening models 

The material work hardening behaviour, which is usually defined as a scalar function 

of plastic strain, represents the mechanical response of a material and also determines the 

expansion ratio of the flow surface in stress space during plastic deformation. The 

original hardening models, such as Power-law or Voce-law, were solely dependent on the 

plastic strain. However, in many forming processes, the actual strain hardening behaviour 

of materials is more complicated. The strain hardening behaviour is not only dependent 

on strain, but also on strain rate and temperature. Therefore, for an accurate prediction of 

plastic material flow in a finite element simulation of a rate-dependent forming process, 

the work hardening behaviour of the material must be determined more precisely over 

wide ranges of strain rates and temperatures. To this end, many phenomenological rate-

dependent hardening models have been proposed to predict the strain hardening effect 

together with the strain rate hardening (or softening) and thermal softening of the 

material (Johnson and Cook, 1983; Zerilli and Armstrong, 1987; Liang and Khan, 1999; 

Paul, 2012). In most of these proposed hardening models, the strain hardening, strain rate, 

and thermal effects are generally presented as decoupled terms and the stress response is 

expressed as a multiplicative form of these terms. In this work, three phenomenological 

rate-dependent hardening models, JC, KHL, and SKP (Johnson and Cook, 1983; Liang 

and Khan, 1999; Paul, 2012), were selected because they are widely used, easy to 

implement into a FE code, and have been justified for a variety of steel and aluminum 

sheet metal alloys over a wide range of strain rates. 

3.4.1 Johnson-Cook (JC) 

Johnson and Cook (1983) introduced a model (JC) to describe the hardening behaviour 

of metals subjected to large strains over wide ranges of strain rates and temperatures. 

This model is implemented into many FE codes, such as ABAQUS and LS-DYNA, and 

is able to successfully capture the hardening behaviour of different steel grades and 

aluminum alloys. The JC model can be written as 
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where    is the equivalent plastic strain,  ̇ and   ̇ are the instantaneous and reference 

strain rates, respectively,  ,   , and    are the current, room, and melting temperatures, 

respectively, and  ,  ,  ,  , and   are the material constants, which are given in Table 

3.26 for DP600, TRIP780, and AA5182-O. The JC equation includes three separate 

terms; the strain hardening term which is an expression of Power-law, the strain rate 

hardening term which represents the instantaneous strain-rate sensitivity of the material, 

and the thermal softening term. However, there is an inherent deficiency in the JC model 

in that it is not able to accurately describe the work hardening behaviour of some metals 

at high strain rates. Indeed, the decoupling of the strain rate and thermal softening terms 

in the JC model causes the work hardening rate (     ) to remain constant over all strain 

rates, i.e., the stress-strain curve can only shift up or down when the strain rate changes. 

Experimental observations for some materials show a decrease in the work hardening rate 

with increasing the strain rate (Chen and Gray, 1995), and therefore the JC model fails to 

represent the actual behaviour of these materials. 

3.4.2 Khan-Huang-Liang (KHL) 

Extensive experimental observations for many metals have shown that the work 

hardening rate can indeed be dependent on the strain rate and temperature. In order to 

overcome the shortcomings of the JC model, Khan and Liang (1999) proposed a 

hardening model (also referred to as KHL), which can incorporate the change in work 

hardening rate as a function of strain rate and temperature. Many modifications have been 

applied to the KHL model to adjust it for BCC, FCC, and HCP metals (Khan et al., 2004, 

2007). In this study, the general modified format of the KHL model that is widely applied 

to BCC and FCC metals was used. This version of the KHL model can be written as  

  [     
  (  

   ̇

    
 )

  

] (
 ̇

  ̇
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 (3-34) 



90 

 

where    is the equivalent plastic strain,  ̇ and   ̇ are the instantaneous and reference 

strain rates, respectively,  ,   , and    are the current, room, and melting temperatures, 

respectively,   
 
 is a constant equal to         which is applied to non-dimensionalize 

the (     ̇     
 ⁄ ) term, and  ,  ,   ,       and   are material constants, which are 

given in Table 3.27 for DP600, TRIP780, and AA5182-O. In the KHL model, the 

changes in the work hardening rate as a function of strain rate can be accommodated 

through the constant   . It should be noted that, the term (     ̇     
 ⁄ )

 
 is always 

greater than one, which causes the KHL model to predict a higher work hardening rate 

compared to the JC model.  

3.4.3 Surajit Kumar Paul (SKP) 

Paul (2012) proposed a new hardening model (so-called SKP), which is more general 

in nature compared to the JC and KHL models, as discussed in Section 2.3. This model is 

able to predict the hardening behaviour for a variety of metals (with BCC, FCC, or HCP 

crystal structures), over a large range of strain rates and temperatures. The general form 

of the SKP model can be expressed as 

     
   (

 ̇
 ̇ 

)  (    )
 [     (       )] (     (

 ̇

  ̇
)) (   (    )) (3-35) 

where    is the equivalent plastic strain,  ̇ and   ̇ are the instantaneous and reference 

strain rates, respectively,   and    are the current and absolute temperatures, 

respectively, and   ,  ,  ,  ,  ,  ,   and   are material constants, which are given in 

Table 3.28 for DP600, TRIP780, and AA5182-O. In the absence of temperature effect, 

the SKP model reduces to  

    (
 ̇

  ̇
)

 

 [     (       )] (     (
 ̇

  ̇
)) (3-36) 

The reduced equation includes the yield stress, quasi-static, and strain rate sensitive 

terms. The strain rate effect is engaged in all three terms independently, which makes 
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SKP a flexible model that can reproduce the hardening behaviour of a variety of materials 

over a wide range of strain rates. 

3.5 Determination of constants for different hardening models  

Many researchers have fitted the hardening models to the experimental uniaxial flow 

curve up to uniform elongation (ultimate point), without verifying the work hardening 

rate beyond the ultimate point. The accurate prediction of material hardening behaviour 

beyond the ultimate point is necessary to precisely predict the plastic deformation at very 

large plastic strains, in particular for EHF simulations of biaxial stretching. In this work, 

the experimental uniaxial flow curve at each strain rate was extrapolated beyond the 

uniform elongation, according to the corresponding experimental or calculated biaxial 

flow curve (obtained in Section 3.3.2). The JC, KHL, and SKP hardening models were 

fitted to the uniaxial flow curves over a wide range of strain rates, after they were 

extrapolated to large strains based on the biaxial data (Figures 3.24-3.26).  

The least-squares method combined with a constrained optimization procedure in 

MATLAB was used to optimize the material constants. It should be noted that, the 

temperature effect was ignored in the calibration of all aforementioned hardening models. 

The material constants in the JC, KHL, and SKP hardening models are given in Tables 

3.26-3.28 for DP600, TRIP780, and AA5182-O. 

Table 3.26. Constants in the JC hardening model for DP600, TRIP780, and AA5182-O 

   (   )   (   )      ̇  ( 
  ) 

DP600 335 614 0.33 0.015 0.001 

TRIP780 433 1236 0.46 0.012 0.001 

AA5182-O 108 419 0.39 -0.002 0.001 
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Table 3.27. Constants in the KHL hardening model for DP600, TRIP780, and AA5182-O 

   (   )   (   )          ̇  ( 
  ) 

DP600 323 603 0.34 0.078 0.018 0.001 

TRIP780 382 1227 0.41 0.011 0.012 0.001 

AA5182-O 72 487 0.32 -0.24 -0.016 0.001 

 

Table 3.28. Constants in the SKP hardening model for DP600, TRIP780, and AA5182-O 

    (   )     (   )     (   )      ̇  ( 
  ) 

DP600 318 0.029 354 0.54 258 15.6 0.0015 0.001 

TRIP780 379 0.031 752 0.92 489 19.3 0.003 0.001 

AA5182-O 91 0.011 584 0.47 873 -0.2 0.004 0.001 

 

Figure 3-24 shows the correlation of the experimental data (uniaxial flow curves 

extrapolated based on the biaxial flow curves) with the fitted results for JC, KHL, and 

SKP hardening models at different strain rates for DP600. Results show that, although the 

correlations with KHL and SKP models are reasonably good, the KHL model is better 

able to represent the response of DP600 over the entire range of strain and strain rate. The 

results predicted by the JC model show a slight deviation from the experimental data 

points for almost all strain rate regimes, which is due to its limited flexibility compared to 

the other two models. Figure 3-25 shows a poor prediction of the JC model at different 

strain rates for TRIP780. Similar to DP600, results show that the KHL model delivers the 

best results for TRIP780, under quasi-static, intermediate and high strain rate regimes for 

almost the entire range of strains. Also, except for a slightly poor correlation at the 

highest strain rate (        ), the SKP model predictions are in good agreement with the 

experimental response of TRIP780 for the entire range of strains and strain rates. Both 

DP600 and TRIP780 exhibit positive strain-rate sensitivity, as given in Tables 3.26, 3.27, 

and 3.28 for JC, KHL, and SKP models, respectively. 

As shown in Figure 3-26, AA5182-O exhibits slightly negative or almost zero strain-

rate sensitivity, in which the calibrated constants are given in Table 3.26-Table 3.28. 
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Almost all three models are shown to correlate and predict the observed responses 

similar. It should be noted that experimental observations by Picu et al. (2005) showed 

similar behaviour for AA5182-O. They concluded that the small negative strain-rate 

sensitivity was due to the interaction of solute atoms with dislocations, where the 

interactions are associated with the dynamic strain aging (DSA) of AA5182-O. The DSA 

mechanism can lead to clustering of solute atoms which produces resistance to 

dislocation motion.  The average size of clusters is smaller in size at higher strain rates 

and cannot produce the same resistance to dislocation motion as can large clusters. i.e., at 

lower strain rate regimes there is enough time to form large clusters which provide 

resistance to dislocation motion giving rise to a faster increase of strain hardening at 

lower strain rates. Finally, it can be concluded that for the examined strain rate range of 

uniaxial tensile tests (from           to         ), there is no reason to apply a rate-

dependent hardening model in the FE simulation of AA5182-O. 
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Figure 3-24. Flow curves predicted by JC, KHL, and SKP models for DP600 
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Figure 3-25. Flow curves predicted by JC, KHL, and SKP models for TRIP780 
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Figure 3-26. Flow curves predicted by JC, KHL, and SKP models for AA5182-O 
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4 Effect of Updating Anisotropy 

Coefficients on the Flow Surface 

 

 

 

4.1 Planar Distribution of Anisotropic Data (uniaxial flow stress 

and r-value) 

 Sheet metals generally exhibit a substantial anisotropy of mechanical properties due to 

the cold-rolling process and the consequent crystallographic texture. The rolling process 

induces a particular anisotropy in the sheet material characterised by the symmetry of the 

mechanical properties w.r.t. three orthogonal planes. The intersection lines of the 

symmetry planes are the orthotropy axes, which are expressed by RD, DD, and TD 

(rolling, diagonal and, transverse directions, respectively), as shown in Figure 4-1. 

 

 

Figure 4-1. Orthotropy axes of the rolled sheet metals 

The variation of the plastic flow behaviour with direction can be assessed by the 

Lankford coefficient (r-value). The value of the Lankford coefficient depends on the 

direction (or material orientation) in the plane of the sheet (  ), and is determined by 

conducting uniaxial tension tests in various directions ( ), as shown in Figure 4-2b. The 
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subscript     specifies the angle between the axis of the specimen and the rolling 

direction. For instance,   ,    , and     represent the r-values in the rolling (RD), diagonal 

(DD), and transverse (TD) directions, respectively, and were obtained for DP600, 

TRIP780, and AA5182-O, as discussed in Section 3.2.3.2. 

Another important element characterising the performance of a yield function is the 

capability to predict the variations of the uniaxial flow stress in the plane of the sheet 

metal (  ). The experimental uniaxial flow stresses in the rolling, diagonal, and 

transverse directions were determined in Section 3.3.1 for DP600, TRIP780, and 

AA5182-O. In order to assess the capability of a yield function, the relationships defining 

the dependence of the parameters with the material anisotropy (   and   ) on the angle   

measured from the rolling direction shall be established. In the case of a uniaxial tension 

condition (Figure 4-2a), the components of the stress tensor can be written as follows 

                                                              (4-1) 

 

 

Figure 4-2. a) Uniaxial flow stress corresponding to a direction in the plane of the sheet metal, b) 

Tensile specimen extracted at the angle  ; measured from the rolling direction  

By replacing Eq. (4-1) in the relationship defining the effective stress and taking into 

account the homogeneity assumption, we have 



99 

 

         ⁄  (4-2) 

where      is the reference flow stress which is usually selected to be that in the rolling 

direction (  ), and    is a function of the angle  , which is related to the yield function 

adopted in the constitutive material model. Eq. (4-2) expresses the uniaxial flow stress 

(  ) corresponding to the planar direction identified by the angle  .  

In a similar way, the relationship defining the variation of the r-value (  ) in the plane 

of the sheet metal can be established. Let us consider the specimen inclined at the angle   

w.r.t. the rolling direction (Fig. 4.2b). According to the definition of the plastic flow, the 

instantaneous anisotropy coefficients can be expressed by  

   
  ̇ 

  ̇ 
 

  ̇   

  ̇ 
 (4-3) 

Taking into account the volume constancy assumption (  ̇    ̇    ̇   ), as well 

as the expressions of the strain rate components along the principal directions, we have 

   
  ̇     

     ̇     
     ̇           

  ̇    ̇ 
 (4-4) 

According to the associated flow rule (AFR), Eq. (4-4) can be rewritten in terms of the 

stress components as follows 

   
   (      ⁄ )     (      ⁄ )     (      ⁄ )

   (      ⁄ )     (      ⁄ )
 (4-5) 

Finally, by coupling Eq. (4-5) with Euler’s identity and replacing Eq.(4-2), we have 

   
  

      ⁄        ⁄
   (4-6) 

Eq. (4-6) expresses the anisotropy associated with the material plastic flow as a 

dependence of the specimen inclination. In order to evaluate the performance of a yield 

function in describing the anisotropy behaviour of a sheet material, both    and the stress 

derivatives (      ⁄            ⁄ ) are required to be specified in Eqs. (4-2) and (4-6). 
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The determination of the function    and the stress derivatives are presented in the 

following section for several yield functions. 

4.1.1 Uniaxial Anisotropic Data Formulation 

4.1.1.1 Hill48 

Taking into account Eq. (3-1) (Hill, 1948), Eq. (4-1), and Eq. (4-2),    can be defined 

by 

   [               (           )               ]  ⁄  (4-7) 

where        and   are the anisotropy coefficients, which are given in Table 3.3, Table 

3.10, and Table 3.17 for DP600, TRIP780, and AA5182-O, respectively. By replacing Eq. 

(4-7) in Eq (4-6) and taking the stress derivatives,    can be written as 

   
                      (  )⁄        

             
   (4-8) 

4.1.1.2 Hill90 

By using Eq. (3-4) (Hill, 1990), Eq. (4.1), and Eq. (4-2),    can be written as follows 

   [
 

 
(  (

  

 
)
 

                  )]
  ⁄

 (4-9) 

where      and   are the anisotropy coefficients, which are given in Tables 3.4, 3.11, 

and 3.18 for DP600, TRIP780, and AA5182-O, respectively. By replacing Eq. (4-9) in Eq 

(4-6) and taking the stress derivatives,    can be written as 

   
(
  
 )

 
   (  ⁄ )        

           ((   )  ⁄ )        
 (4-10) 
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4.1.1.3    Barlat89 

Taking into account Eq. (3-10) (Barlat and Lian, 1989), Eq. (4-1), and Eq. (4-2),    

can be written as follows 

   [ (     )
   (     )

  (   )(   )
 ]  ⁄  (4-11) 

where 

   
             

 
               [(

             

 
)

 

              ]

  ⁄

 (4-12) 

where      and   are the anisotropy coefficients, which are given in Tables 3.5, 3.12, and 

3.19 for DP600, TRIP780, and AA5182-O, respectively. It should be noted that in all 

Barlat`s yield functions (Barlat89, Yld2000-2d, and Yld2004-18p), the exponent (  or 

 ) is set to 6 and 8 for BCC and FCC metals, respectively. By replacing Eq. (4-12) in Eq 

(4-6) and taking the stress derivatives,    can be written as 

   
[ (     )

   (     )
  (   )(   )

 ]  ⁄

 (     )
   (     )   (     )

   (     )   (   )(   )
     

   

(4-13) 

where 

                        

   
 (     )

     (     )
   

 ̅   
  

   
 (     )

     (     )
     (   )(   )

   

 ̅   
 

(4-14) 

4.1.1.4 Yld2000-2d 

Taking into account Eq. (3-20) (Barlat et al., 2003), Eq. (4-1), and Eq. (4-2),    can be 

written as follows 
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where parameters   
  and   

  are defined as below 

{
 
 

 
   

     
     

 

  
     

     
 

  
     

     
 

  
     

     
 

,          

{
 
 

 
   

      
      

  

  
      

      
  

  
      

      
  

  
      

      
  

 (4-17) 

where    
  and    

   are the components of the two linear tensors defined in Eq. (3-22), 

expressing the anisotropy of the material as functions of    to   .    coefficients are 

given in Tables 3.7, 3.14, and 3.21 for DP600, TRIP780, and AA5182-O, respectively.  

By using Eq. (3.20), the effective stress for Yld2000-2d can be expressed by 

  (
 

 
 )

  ⁄

 (
 

 
)
  ⁄

[|  
 |

  ⁄
 |

 

 
(  

   √  
  )|

 

 |
 

 
(  

   √  
  )|

 

]

  ⁄

 (4-18) 

where 

{
  
 

  
 
  

    
       

                  

  
    

  
    

  
 

   
             

  
   (  

        
     )          

  
   (  

        
     )          

  
     

        
  
 

   
            

  (4-19) 

By replacing Eq. (4-19) in Eq. (4-18) and taking the derivative, we have 
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Finally, by replacing       ⁄  and       ⁄  in Eq. (4.6),    associated to Yld2000-2d 

can be calculated. 

4.1.1.5  Yld2004-18p 

Taking into account Eq. (3-28) (Barlat et al., 2005), Eq. (4-1), and Eq. (4-2),    can be 

written as follows 
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where   
  and    

  are defined as below 



104 

 

{
  
 

  
 
  

    
          

           

  
    

  
    

  
 

             

  
     

           
       

  
    

          
           

                     

{
  
 

  
 

  
     

           
            

  
     

        
  
 

             

  
      

            
        

  
     

           
           

 (4-23) 

where parameters   
  and   

  are defined based on Eq. (4-17). Also,    
  and    

   are the 

components of the two linear transformation matrices incorporating the anisotropy 

coefficients,    
  and    

  , which were described in Section 3.1.6 The 18 anisotropy 

coefficients are given in Table 3.8, Table 3.15, and Table 3.22 for DP600, TRIP780, and 

AA5182-O, respectively.  

By using Eqs. (3-28) and (4-22), the effective stress for Yld2004-18p can be expressed 

by 
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By replacing Eq. (4-22) in Eq. (4-24), and taking the derivative, we have 
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Finally, by replacing       ⁄  and       ⁄  in Eq. (4-6),    associated to Yld2004-18p 

can be calculated. 

4.1.2 Predicted Anisotropic Data (flow stress and r-value) 

By replacing the defined   ,       ⁄            ⁄  for each yield function in Eqs. 

(4-2) and (4-6), the distribution of the flow stress ratio (normalized w.r.t. the flow stress 

in the rolling direction) and r-value can be predicted. Figure 4-3-Figure 4-20 show a 

comprehensive comparison between the results predicted using Hill`s family (Hill48 and 

Hill90) and Barlat`s family (Barlat89, Yld2000-2d, and Yld2004-18p) of yield functions, 

and the experimental data for DP600, TRIP780, and AA5182-O, at different strain rates. 
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It should be noted that for Hill48 (Section 3.1.1.1), Hill90 (Section 3.1.2.1), and Barlat89 

(Section 3.1.3.1) two calibration procedures were used, and the results of both are 

presented here. The experimental input data presented in the following graphs are 

summarized in Table 3.2, Table 3.9, and Table 3.16 for DP600, TRIP780, and AA5182-

O, respectively, for different strain rates. It is unfortunate that the experimental data were 

only available for          and    , and not for every 15 degrees from the RD. However, 

unlike the HCP metals, a smooth and continuous variation of anisotropic data w.r.t. the 

tension angle is expected to be observed for for BCC and FCC metals (the three used 

sheet materials in this study). 

The purpose of this work is to update the anisotropy coefficients w.r.t. strain rate in the 

rate-dependent constitutive material model, so it is important to demonstrate the 

flexibility of each yield function at different strain rate regimes. Therefore, the 

experimental and predicted in-plane distribution of the flow stress and the r-value are 

shown in Figure 4-3-Figure 4-20, for                    and          strain rates. It 

should be noted that, since the experimental data were used to identify the anisotropy 

coefficients, the calculations are not completely predictive. However, the main point of 

these graphs is to evaluate the ability of each yield function to describe the whole set of 

anisotropic data (flow stresses and r-values) at various strain rates.  

Figure 4-3a,b-Figure 4-20a,b show the results predicted by Hill`s family of yield 

functions at various strain rates. In all cases, the results show that Hill48-r.value 

(calibrated based on r-values) and Hill48-stress (calibrated based on flow stresses) are not 

able to reproduce the variation of the experimental flow stresses and the r-value, 

respectively. The inability of Hill’s family of yield functions to reproduce the 

experimental trends was expected due to the nature of the procedures used to calibrate 

these models. Results show that Hill90-stress is somewhat able to capture the average 

variation of experimental r-value, which is an advantage of this model compared to 

Hill48-stress. Also, Hill90-r.value is more or less able to predict the average flow stress 

variation, which makes this model superior to Hill48-r.value. Among all Hill`s family of 

yield functions, it is shown that flow stress and r-value directionalities are best described 

by Hill90-stress for the entire range of strain rate and for all three materials.  
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Figure 4-3c,d-Figure 4-20c,d show experimental normalized flow stress and r-value 

anisotropies in addition to values predicted with Barlat`s family of yield functions. As 

shown in these figures, Yld2000-2d and Yld2004-18p best capture both flow stress and r-

value anisotropies, while Barlat89-r.value and Barlat89-stress underestimate or 

overestimate the flow stress and r-value. In contrast with Barlat89, both Yld2000-2d and 

Yld2004-18p result in an accurate simulation of the experimental normalized uniaxial 

flow stress as well as the r-value distribution. A close agreement can be seen between the 

distribution curves of Yld2004-18p and Yld2000-2d, since the additional data points 

(             and    ) required for the calibration of Yld2004-18p were calculated using 

Yld2000-2d, as indicated in Table 3.2, Table 3.9, and Table 3.16, for DP600, TRIP780, 

and AA5182-O, respectively. It should be noted that, in the event that the experimental 

input data was available every 15 degrees, it would be expected that Yld2004-18p would 

be in better agreement with the experimental values compared to Yld2000-2d, due to its 

more flexible formulation and more comprehensive calibration scheme. However, if only 

three data points (         and    ) are available, Yld2000-2d is able to exactly predict 

the experimental data, while Yld2004-18p may not be as accurate as Yld2000-2d, due to 

only minimizing a single error function instead of solving a system of equations (like 

Yld2000-2d). These small differences can be seen more clearly in Figure 4-5c,d, Figure 

4-12 c,d, and Figure 4-17 c,d, for DP600, TRIP780, and AA5182-O, respectively. The 

strong performance of Yld2000-2d and Yld2004-18p is associated with their formulations 

and calibration procedures. 
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Figure 4-3. Measured and predicted anisotropy of the flow stress and the r-value;                           

for DP600 at           

 

 

 

Figure 4-4. Measured and predicted anisotropy of the flow stress and the r-value;                            

for DP600 at         
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 Figure 4-5. Measured and predicted anisotropy of the flow stress and the r-value;                                      

for DP600 at       

 

 

 Figure 4-6 Measured and predicted anisotropy of the flow stress and the r-value;                                        

for DP600 at        
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Figure 4-7 Measured and predicted anisotropy of the flow stress and the r-value;                                           

for DP600 at         

 

 

Figure 4-8 Measured and predicted anisotropy of the flow stress and the r-value;                                          

for DP600 at          
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Figure 4-9 Measured and predicted anisotropy of the flow stress and the r-value;                                         

for TRIP780 at           

 

 

Figure 4-10 Measured and predicted anisotropy of the flow stress and the r-value;                                    

for TRIP780 at         
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 Figure 4-11 Measured and predicted anisotropy of the flow stress and the r-value;                                   

for TRIP780 at       

 

 Figure 4-12  Measured and predicted anisotropy of the flow stress and the r-value;                                 

for TRIP780 at        
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Figure 4-13 Measured and predicted anisotropy of the flow stress and the r-value;                                 

for TRIP780 at         

 

Figure 4-14  Measured and predicted anisotropy of the flow stress and the r-value;                                        

for TRIP780 at          
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Figure 4-15  Measured and predicted anisotropy of the flow stress and the r-value;                                    

for AA5182-O at           

 

 

Figure 4-16  Measured and predicted anisotropy of the flow stress and the r-value;                                  

for AA5182-O at         
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Figure 4-17 Measured and predicted anisotropy of the flow stress and the r-value;                                  

for AA5182-O at       

 

 

Figure 4-18 Measured and predicted anisotropy of the flow stress and the r-value;                                 

for AA5182-O at        
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 Figure 4-19 Measured and predicted anisotropy of the flow stress and the r-value;                                   

for AA5182-O at         

 

Figure 4-20  Measured and predicted anisotropy of the flow stress and the r-value;                                 

for AA5182-O at          

Based on this comprehensive study of the performance of different yield functions, it 

was found that Yld2000-2d and Yld2004-18p best capture the anisotropic behaviour of 
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DP600, TRIP780, and AA5182-O at all strain rates. In order to show the effect of strain 

rate on the predicted anisotropic data, Yld2000-2d was selected as the preferred yield 

function. Figure 4-21-Figure 4-23 show the distribution curves predicted by Yld2000-2d 

at different strain rates for the three materials. Due to the ability of Yld2000-2d to exactly 

capture the anisotropic data at        and     to the RD, the change in these curves is a 

good indication of the effect of strain rate on the anisotropy of the material. Figure 4-21 a 

shows that by increasing the strain rate, the uniaxial flow stress of DP600 decreases for 

the entire range of orientations from    to    , which emphasizes the importance of 

updating the anisotropy coefficients of DP600 w.r.t. strain rate (by applying the 4th-order 

polynomial functions, as given in Table 3.23 for DP600). Also, Figure 4-22a and Figure 

4-23a show the changes of the predicted flow stress w.r.t. strain rate for TRIP780 and 

AA5182-O, respectively. In comparison with DP600, these two materials show less 

sensitivity of the Yld2000-2d anisotropy coefficients to strain rate, in-particular at 

        . It can be observed that Figure 4-21b and Figure 4-23b show a sudden increase 

in the r-values from           to         for the entire range of orientations, whereas no 

continuous increase or decrease can be seen for the entire range of strain rates.  

 

 

Figure 4-21 Anisotropy variation for DP600 as predicted by Yld2000-2d at various strain rates;             

a) normalized flow stress b) r-value 
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Figure 4-22 Anisotropy variation for TRIP780 as predicted by Yld2000-2d at various strain 

rates; a) normalized flow stress b) r-value 

 

 

Figure 4-23 Anisotropy variation for AA5182-O as predicted by Yld2000-2d at various strain 

rates; a) normalized flow stress b) r-value 

4.2 Effect of Updating Anisotropy Coefficients on the Flow Surface 

In order to understand the influence of updating anisotropy for the three materials 

(DP600, TRIP780, and AA5182-O), the flow surfaces were derived and plotted in two-

dimensional (2D) principal stress space for each strain rate by assuming the principal 

axes of stress and anisotropy coincide. This is an effective way to visualize the 

initial/subsequent flow state (flow surface shape) of a material in sheet metal forming 

processes where the strain rate may vary. For the sake of brevity, due to the accuracy of 

Yld2000-2d and the wide spread use of Hill48-r.value, only the influence of updating 

anisotropy coefficients on the flow surfaces predicted by Yld2000-2d and Hill48-r.value 

are presented here. However, a comprehensive comparison was completed to investigate 

the difference between Hill`s and Barlat`s families of yield functions when the anisotropy 

coefficients are updated according to the strain rate. Also, in order to consider the effect 

of the shear term the flow surfaces predicted by Yld2000-2d have been plotted for every 

0.1 increment of normalized shear stress.  
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It should be noted that in all graphs the term “Quasistatic” represents the experimental 

or predicted results at           (the lowest strain rate) and the term “Updated” refers to 

the results obtained by adjusting the anisotropy coefficients at the current level of strain 

rate. For instance, if the graph is showing the results for       , the “Quasistatic” is 

associated with the results for          , while the “Updated” represents the results at 

      . Apart from the graphs showing the flow surfaces for every 0.1 increment of 

normalized shear stress, all other graphs represent the experimental and predicted data for 

two different normalized shear stress values: first, 0, and secondly, the value of the ratio 

of the flow stress in the diagonal direction w.r.t. the rolling direction (     ⁄ ) for each 

corresponding strain rate. It is noticeable that the value for       ⁄  can be changed from 

material to material and from strain rate to strain rate. 

4.2.1 Comparison between the Updated and Quasistatic Yld2000-2d 

Figures 4-24 to 4-26 show the differences in the flow surfaces of the three sheet 

materials predicted by Yld2000-2d in two different ways: Quasistatic and Updated 

anisotropy coefficients, for each level of strain rate. In these figures, the solid-line 

represents the flow surfaces using anisotropy coefficients associated with each 

corresponding strain rate (Updated), whereas the dotted-line represents the flow surfaces 

at           (Quasistatic).  

Figure 4-24 shows an increasing effect of updating the anisotropy coefficients of 

DP600 in biaxial stress states, in-particular for strain rates above        . A non-

negligible difference in the flow surfaces can be seen at higher strain rates for biaxial 

stress states, while this difference is smaller for the uniaxial stress state in TD. These 

differences emphasise the importance of updating anisotropy coefficients according to the 

strain rate for DP600 in FE simulations of rate-dependent sheet metal forming processes. 

Compared to DP600, the flow surfaces predicted by Yld2000-2d for TRIP780 show less 

sensitivity of the flow stresses to strain rate in biaxial stress states, as shown in Figure 

4-25.  

Figure 4-26 shows no difference between the Updated and Quasistatic flow surfaces in 

the biaxial stress states and only minor differences in the uniaxial stress state in TD, in 
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particular at intermediate strain rates (   ,  , and       ) for AA5182-O. By comparing 

the predicted flow surfaces with the experimental data points, Figures 4-24 to 4-26 show 

that Yld2000-2d is able to accurately describe the anisotropy of the three materials at 

various strain rates under different stress-states. This is not surprising since Yld2000-2d 

is calibrated using all experimental uniaxial and biaxial data points, simultaneously. 

4.2.2 Comparison between the Updated and Quasistatic Hill48-r.value 

Figures 4-27 to 4-29 show the flow surfaces predicted by Hill48-r.value for the three 

materials in the given range of strain rate. The comparison between the predicted flow 

surfaces and the experimental data shows the inability of Hill48-r.value to accurately 

capture the anisotropic data of these three materials at various strain rates. However, 

results show that updating the anisotropy coefficients w.r.t. strain rate can help to 

improve the performance of the Hill48-r.value function, in-particular for the biaxial stress 

states. This improvement is more evident for DP600 and TRIP780 when the shear stress 

term is non-zero (                 ), as shown in Figures 4-27 and 4-28. It can 

be concluded that, although Hill48-r.value is not a suitable yield function, its overall 

performance can be slightly improved by updating its anisotropy coefficients. 

4.2.3 Comparison between the Updated Hill`s family and Updated 
Barlat`s family 

Figures 4-30 to 4-32 show the flow surfaces of DP600, TRIP780, and AA5182-O 

predicted by Hill`s and Barlat`s families of yield functions when the anisotropy 

parameters are updated for each level of strain rate. Among Hill`s family, Hill48-stress 

and Hill90-stress functions show a better correlation between the experimental data and 

the predicted flow surfaces for the above-mentioned materials at various strain rates, 

which is because the experimental flow stresses were used in the calibration procedure. A 

difference can be seen in the curvature of the flow surfaces predicted by Hill48-stress and 

by Hill90-stress, which is due to the different formulations and exponents of these two 

functions. For all strain rate regimes, this difference is more significant for the plane-

strain, pure-shear stress states, as well as when the shear stress ratio is non-zero. 
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Figures 4-30 to 4-32 show that among Barlat`s family of yield functions, Barlat89 is 

not able to reproduce the experimental data for biaxial stress states at various strain rates. 

In addition to the inaccuracy in the biaxial stress state, Barlat89-r.value shows a 

remarkable deviation from the uniaxial flow stress data in the TD at almost all strain rates 

and for all three materials.  Results show that Yld2000-2d and Yld2004-18p best capture 

the experimental data points for all three materials for the entire range of strain rates. A 

small difference in the curvatures of the flow surfaces predicted by these two yield 

functions can be seen at several strain rates (for instance, DP600_0.001 s-1, TRIP780_10 

s-1, AA5182-O_0.001 s-1), in particular in the pure-shear and plane-strain stress states, 

as well as when the shear stress ratio is increased. This is due to the difference in the 

mathematical formulation and calibration approach of these two functions. It should be 

noted that Figure 4-32 shows a sharper curvature in the biaxial stress state for the flow 

surfaces of AA5182-O, compared to the flow surfaces of DP600 and TRIP780, which is 

basically caused by the difference of the exponent values for these materials (    for 

DP600 and TRIP780 and      for AA5182-O). These values are widely accepted as 

reliable exponents for these materials based on the extensive experimental work that has 

been carried out to develop and validate the different Barlat yield functions (Barlat et al., 

2003; 2005). It is noticeable that, generally, the Hill`s family of flow surfaces have more 

rounded shapes than Barlat`s family of flow surfaces, due to the difference in the 

exponent of these yield functions. This difference is more significant for AA5182-O, 

since Barlat`s yield functions have the highest exponent value (    ).  

In order to select the most accurate yield function among the Hill90, Yld2000-2d, and 

Yld2004, additional experimental data points, particularly in pure-shear and plane-strain 

stress states are needed at various strain rates. However, acquiring the required 

experimental data points at intermediate and high strain rate regimes is very challenging, 

if not impossible, and advanced machines, tooling, and specific testing procedures are 

required. In order to evaluate the predicted flow surfaces by these three yield functions, 

some comments can still be made in spite of the lack of a complete set of experimental 

data points. The curvatures of the computed Yld2000-2d and Yld2004-18p flow surfaces 

are sharper, particularly in the biaxial stress state, as compared with the flow surfaces 

predicted by Hill90-stress at various strain rates. Also, compared to Yld2000-2d and 
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Yld2004-18p, the flow surfaces calculated by Hill90-stress show a smaller radius of 

curvature, in-particular in the pure-shear stress state.  

Since uniaxial and biaxial flow stresses and r-values are required in the calibration of 

both Updated Yld2000-2d and Yld2004-18p, it can be concluded that these functions are 

more robust compared to the Updated Hill90-stress. In addition, experimental 

observations for the quasi-static condition for different steel grades and aluminum alloys 

(Barlat et al., 2003; 2005) showed that the Updated Yld2000-2d and Yld2004-18p flow 

surfaces correlate better with the experimental data for different stress states, such as 

pure-shear and plane-strain (which are not available here). This conclusion for the quasi-

static condition can be extended to higher strain rate regimes, if the yield functions are 

calibrated accurately for each corresponding strain rate, i.e., the anisotropy coefficients 

are updated w.r.t. strain rate. Therefore, it can be concluded that the Updated flow 

surfaces predicted by both Yld2000-2d and Yld2004-18p show the most accurate initial 

and subsequent flow surface shapes at various strain rates. 

4.2.4 Comparison between the Updated Yld2000-2d and von Mises 

Figures 4-33 to 4-35 show the comparison between the flow surfaces predicted by 

Updated Yld2000-2d and von Mises for DP600, TRIP780, and AA5182-O at various 

strain rates. As discussed above, the Updated flow surfaces computed by Yld2000-2d are 

considered to accurately describe the anisotropy of these sheet materials and therefore 

can be considered as references to compare with the von Mises flow surfaces. Figures 4-

33 and 4-34 show some difference between the Yld2000-2d and von Mises flow surfaces 

in biaxial and plane-strain stress states for both DP600 and TRIP780. These differences 

decrease with increasing strain rate, but still remain considerable. 

Figure 4-35 shows a substantial discrepancy between the flow surfaces predicted by 

Yld2000-2d and von Mises for AA5182-O, particularly in plane-strain stress states, and 

also when the shear stress ratio is high (         ). These differences are associated 

with the much higher exponent value (   ) of Yld2000-2d compared to the von Mises 

exponent value (   ). In contrast with DP600 and TRIP780, the predicted flow 

surfaces coincide with each other in the biaxial stress state due to the similar flow stresses 
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of AA5182-O in uniaxial tension in RD and in biaxial tension. Also, the same flow 

stresses are predicted by both Yld2000-2d and von Mises in pure shear for DP600, but 

small differences can be observed in the computed flow surfaces for TRIP780 and 

AA5182-O.  

According to the observations from Figures 4-33 to 4-35, it can be concluded that in 

the FE simulations of EHF (or any other rate-dependent sheet metal forming process), 

updating the anisotropy according to strain rate can have a significant influence on the 

accuracy of the prediction of the sheet deformation history. For instance, significantly 

different residual strains and stresses would be expected in EHF simulations of DP600 

and TRIP780, by using the updated Yld2000-2d instead of von Mises, when biaxial or 

plane-strain stress states tend to dominate. Even more significant differences would be 

expected in the predictions for AA5182-O in plane-strain stress states or when the shear 

stress ratio is significant. It should be noted that for DP600 and TRIP780, if the Yld2000-

2d coefficients are not updated (only using the initial or Quasistatic anisotropy 

coefficients), the overestimation in the EHF simulation results would become less 

significant, since the differences between the updated Yld2000-2d and von Mises flow 

surfaces decrease with increasing strain rates. 

4.2.5 Comparison between the Updated and Quasistatic Yld2000-2d at 
different levels of normalized shear stress 

In order to more comprehensively investigate the effect of updating anisotropy 

coefficients, a comparison is now made between the Updated and Quasistatic flow 

surfaces predicted by Yld2000-2d at                    and 0.5 levels of normalized 

shear stress (w.r.t. the uniaxial flow stress in RD) for DP600, TRIP780, and AA5182-O 

at various strain rates, as shown in Figures 4-36 to 4-38. As can be seen from Figure 

4-36, for almost all strain rates, the difference between the Updated and Quasistatic flow 

surfaces becomes more significant as the value of the shear stress increases. Another 

observation is that for TRIP780 the difference between the Updated and Quasistatic flow 

surfaces is almost constant for the entire range of normalized shear stress at almost all 

strain rates, as shown in Figure 4-37. Also, Figure 4-38 shows that the difference between 

the Updated and Quasistatic flow surfaces is very small for AA5182-O for the entire 
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range of normalized shear stress increments and for almost all strain rates. The reason can 

be explained by the small difference between flow stress and r-value anisotropy in 

AA5182-O. Finally, it can be concluded that in the case of DP600 and TRIP780, there is 

a critical need to describe anisotropy behaviour of these materials accurately considering 

the wide range of strain rates that exist in the EHF process.  An improvement in the FE 

results, such as residual stresses and strains, is expected by applying Updated Yld2000-

2d. Observations showed that the anisotropy coefficients of Yld2000-2d for AA5182-O 

are much less sensitive to strain rate, compared to DP600 and TRIP780. Therefore, it is 

expected that only applying a Quasistatic Yld2000-2d in the EHF simulations of 

AA5182-O can be used to predict accurate results.  
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Figure 4-24 Flow surface for DP600 predicted by Yld2000-2d at various strain rates;                    

using initial and updated anisotropy coefficients 
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 Figure 4-25 Flow surface for TRIP780 predicted by Yld2000-2d at various strain rates;                     

using initial and updated anisotropy coefficients 
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Figure 4-26 Flow surface for AA5182-O predicted by Yld2000-2d at various strain rates;                    

using initial and updated anisotropy coefficients 
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Figure 4-27 Flow surface for DP600 predicted by Hill48.r-value at various strain rates;                      

using initial and updated anisotropy coefficients 
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Figure 4-28 Flow surface for TRIP780 predicted by Hill48.r-value at various strain rates;                     

using initial and updated anisotropy coefficients 
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Figure 4-29 Flow surface for AA5182-O predicted by Hill48.r-value at various strain rates; 

using initial and updated anisotropy coefficients 
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Figure 4-30 Comparison between the flow surfaces for DP600 predicted by Hill`s and Barlat`s 

families at various strain rates; using updated anisotropy coefficients 
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Figure 4-31 Comparison between the flow surfaces for TRIP780 predicted by Hill`s and Barlat`s 

families at various strain rates; using updated anisotropy coefficients 
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Figure 4-32 Comparison between the flow surfaces for AA5182-O predicted by Hill`s and 

Barlat`s families at various strain rates; using updated anisotropy coefficients 
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Figure 4-33 Comparison between the flow surfaces for DP600 predicted by Yld2000-2d and von 

Mises at various strain rates; using updated anisotropy coefficients for Yld2000-2d 
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Figure 4-34 Comparison between the flow surfaces for TRIP780 predicted by Yld2000-2d and 

von Mises at various strain rates; using updated anisotropy coefficients for Yld2000-2d 
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Figure 4-35 Comparison between the flow surfaces for AA5182-O predicted by Yld2000-2d and 

von Mises at various strain rates; using updated anisotropy coefficients for Yld2000-2d 
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Figure 4-36 Flow surfaces for DP600 predicted by Yld2000-2d with contours of normalized 

shear stress in 0.1 increments from 0 to 0.5 at various strain rates; using initial and updated 

anisotropy coefficients 
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 Figure 4-37 Flow surfaces for TRIP780 predicted by Yld2000-2d with contours of normalized 

shear stress in 0.1 increments from 0 to 0.5 at various strain rates; using initial and updated 

anisotropy coefficients 
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Figure 4-38 Flow surfaces for AA5182-O predicted by Yld2000-2d with contours of normalized 

shear stress in 0.1 increments from 0 to 0.5 at various strain rates; using initial and updated 

anisotropy coefficients 
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5 Rate-dependent Implicit Stress 

Integration Scheme 

 

 

 

5.1 Introduction 

A material constitutive model describes the mechanical behaviour of sheet metals and 

determines the strain and stress distributions in the formed part. The role of a constitutive 

material model can be more significant in a rate-dependent forming process, because in 

addition to its dependence on strain, the flow surface shape and size can be substantially 

affected by the strain rate. In this chapter, an implicit integration scheme is presented to 

integrate all equations incorporated in a rate-dependent constitutive model. A numerical 

algorithm, using the return mapping procedure, was developed for implementation of this 

model into a FE code and is applicable to any general anisotropic yield function and rate-

dependent hardening model.  

Three main components are required for implementing a rate-dependent constitutive 

model into a FE code: a) a plastic potential (which was taken to be the yield function due 

to the associated flow rule, AFR, assumption) which expresses the stress components 

relationship when plastic yielding occurs, b) a plastic flow formulation and its 

incremental integration (AFR) which describes the incremental strain and stress 

relationship, and c) a rate-dependent hardening model that describes the evolution of the 

initial flow stress throughout the deformation history. A great deal of research has been 

dedicated to developing and/or modifying new rate-dependent hardening models to 

improve the results of rate-dependent forming processes (Khan and Liang, 1999; Khan et 

al, 2004, 2007). From a computational point of view, Simo and Taylor (1985; 1986) 

proposed the idea of a return mapping algorithm for computational plasticity. Zeng et al. 
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(1996) and Kojic (2002) reviewed some numerical procedures for stress integration of 

inelastic material models including basic rate-independent hardening rules. Recently, 

Haowen (2011) implemented an associative constitutive model based on the von Mises 

yield function and modified the KHL hardening model using the formulation of Yoon et 

al. (1999a,b) for simulation of intermediate and high speed multi-axial loading 

conditions. To the best of the author’s knowledge, a comprehensive study to evaluate the 

influence of strain rate on the prediction of a sheet deformation history in a high-speed 

metal forming process where a rate-dependent yield function (updating the anisotropy 

coefficients w.r.t. strain rate) and a rate-dependent hardening model are simultaneously 

implemented has not been done before. Almost all the developed rate-dependent 

constitutive models were consisted of rate-dependent hardening models combined with 

isotropic yield functions (Khan et al, 2004; 2007). 

In this work, among all the anisotropic yield functions and rate-dependent hardening 

models presented in Chapter 3, the Hill48, Yld2000-2d and Yld2004-18p yield functions, 

and JC, KHL, and SKP were identified as being the most suitable to implement in rate-

dependent hardening models. The anisotropic yield functions were combined with rate-

dependent hardening models to develop user-defined material subroutines for 

ABAQUS/Explicit (VUMAT) for the plane stress and general stress conditions. It should 

be noted that in the developed VUMATs, in order to describe the strain rate effect on the 

material anisotropy behaviour more accurately, the anisotropy coefficients were updated 

w.r.t. strain rate, based on the 4th-order polynomial functions introduced in Section 3.3.4. 

Yld2000-2d was selected due to its ability to accurately describe the anisotropy of most 

sheet materials, and in particular DP600, TRIP780 and AA5182-O, presented in Sections 

4.2.1 and 4.2.2. As discussed in Section 3.5, the KHL model is in a better agreement with 

the experimental stress-strain curves up to large deformations and over a wide range of 

strain rates, compared to the JC model. However, in addition to the KHL model, the 

implicit integration equation for the JC and SKP models were also derived due to their 

wide-spread use and implementation. 

At the end of this chapter, the VUMAT verification is demonstrated under different 

loading conditions. For verification of the rate-dependent hardening model, the uniaxial 
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experimental flow curves in the rolling and transverse directions are compared with the 

stress-strain responses of a VUMAT (combined of Yld2000-2d yield function and KHL 

hardening model) at different strain rates. For the flow rule verification, the RD and TD 

uniaxial and biaxial flow stresses at various strain rates are compared with the 

corresponding experiments. Also, simulations of the bending of a cantilever beam and of 

loading under combined tension-shear were carried out to evaluate the accuracy of the 

developed numerical integration algorithm in the VUMAT compared with the ABAQUS 

built-in material model (combination of Hill48 yield function and JC hardening model).  

5.2  Stress Integration 

The implementation of a constitutive model into a nonlinear FE code involves the 

integration of the state of the material at an integration point over a time increment. In 

order to numerically integrate the stress and state variables (internal variables) over an 

increment, different methods have been proposed. Simo and Hughes (1998) proposed an 

algorithm called radial return-mapping which is a particular case of elastic 

predictor/plastic corrector algorithms. This algorithm works when a purely elastic trial 

stress is followed by a plastic corrector phase, which is here extended to the rate-

dependent condition and is called the elastic predictor/visco-plastic corrector algorithm. 

The purpose of the latter is to satisfy the consistency condition at the end of each time 

step in a manner consistent with the prescribed flow rule. 

The stresses and all state variables (such as total strain increment) are assumed to be 

known (which is typical for commercial software, such as ABAQUS and LS-DYNA) at 

the beginning of each time step based on the determined values from the last time 

increment and the assumption that the system is in global equilibrium. According to the 

return mapping algorithm, first the trial stress tensor is calculated based on the 

incremental displacement gradient field (or discrete total strain increment) over the time 

[       ]. Then, the radial return mapping algorithm (or elastic predictor/visco-plastic 

corrector method) is used to satisfy the stress state on the subsequent flow surface. In this 

chapter, all the formulations are developed for plane stress conditions and are written in 

such a way that they can be easily extended to a three-dimensional (3D) stress state by 
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simply replacing the elastic and anisotropic matrices. In the following equations, 

subscript   denotes a quantity at the beginning of the time step and the subscript     

(which represents a quantity at the end of the time increment) is eliminated for the sake of 

brevity. All the stresses, strains and state variables (internal state variables) are expressed 

in the local material coordinate system. It is more convenient to use a co-rotational 

coordinate system, where the base system rotates with the material (Yoon et al., 1999a). 

The implicit (Euler backward) method is used to integrate all plasticity equations. In 

order to distinguish between tensors and scalars, tensors are denoted by bold fonts and 

scalars are denoted by normal fonts. 

When the stress reaches the yield point of the material, the transition from the elastic 

state to the plastic state occurs. The yield point is generally established using the uniaxial 

flow curves of the material at different strain rates. It is more complex to define a yield 

criterion when a multi-axial stress state is used to represent the transition of the material 

from the elastic to the plastic state. To this end, an implicit function (so-called yield 

function) is defined by expressing the relationship between the principal stresses at which 

the plastic flow occurs. The yield criterion, as a function of all state variables, can be 

written in a generic form as 

   ̅( )    ( ̅   ̇)    (5-1) 

where  ̅( ) is a continuously differentiable function of the stress components, and    is a 

scalar function (usually taken to be the flow stress in uniaxial tension) of state variables 

including effective plastic strain ( ̅ ) and strain rate ( ̇), in rate-dependent hardening 

models (in this work, the temperature effect is ignored in all derived equations). In 

general, the mathematical formulation of a phenomenological rate-dependent hardening 

model can be written as a multiplication of two separate terms; the first term, is a 

function of the effective plastic strain ( ̅ ) and/or strain rate ( ̇) and is denoted by 

   
( ̅   ̇), and the second term, is only a function of the strain rate ( ̇) and is denoted by 

   
( ̇). Therefore, the general form of a rate-dependent hardening model can be written 

as follows  
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  ( ̅   ̇)  [   
( ̅   ̇)] [   

( ̇)] (5-2) 

 Eq. (5-1) is a mathematical formulation of a surface (so-called flow surface) in the 3D 

space of the principal stresses, which must be closed and convex. In the case of plane 

stress conditions (    ), the 3D flow surface reduces to a planar curve in the plane of 

the principal stresses    and   . During plastic deformation, the initial and subsequent 

geometrical characterizations of the flow surface are expressed by  ̅( ), and the initial 

size and subsequent expansion of the flow surface are determined by   . Points located 

inside the surface (   ) are related to the elastic state, whereas they are related to a 

plastic state when located on the surface (   ). It should be noted that there is no 

physical meaning when the points are located outside of the surface (   ). These are 

known as the Kuhn-Tucker conditions which can be briefly described by the following 

equations  

                        (5-3) 

where    denotes the effective plastic strain increment. According to the associated flow 

rule (AFR) and the consistency condition, the increment of plastic strain can be obtained 

by taking the derivative of the yield function w.r.t. stress, as follows  

      
  ̅( )

  
     (5-4) 

where    can be obtained by solving the yield function equation using the return 

mapping  method and   represents the normal to the flow surface at the current 

(unknown) configuration.  In the implicit (Euler backward) method, the variation of   

must be taken into consideration during the return mapping procedure, resulting in a more 

complex method, but also more accurate results compared to the explicit (Euler forward) 

method. The main disadvantage of the explicit stress integration algorithm is that it is 

only conditionally stable, which requires a very small time increment for each time step. 

Compared with the explicit algorithm, the implicit method is unconditionally stable and a 

more accurate solution can be obtained with larger time increments. In the implicit 
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method, the radial return mapping procedure is applied to ensure the calculated stress, 

strain, and any other internal state variables simultaneously satisfy the consistency 

condition and the yield condition. 

In the return mapping procedure, the total strain increment is initially assumed to be 

fully elastic. Then, the effective stress (so-called trial stress) is calculated based on the 

yield equation  ̅( ). If the calculated effective stress is less than, or equal to, the flow 

stress (calculated based on the hardening equation,   ), then the trial stress is accepted as 

the solution and the deformation is fully elastic. But if the effective stress is larger than 

the flow stress, the effective plastic strain and all internal state variables are corrected and 

the new stress is updated by subtracting the increment of plastic strain from the total 

strain increment. For every single time step, this iteration continues until the updated 

stress state satisfies the yield function equation. The Newton-Raphson method is usually 

used to solve the yield function equation for the effective plastic strain increment,   . 

The mathematical return mapping formulation can be written as follows 

       [   ]         (5-5) 

where     denotes the trial stress which is a purely elastic deformation (so-called elastic 

predictor),   is the stress at the end of the time increment (    ), and   is the elasticity 

tensor which is written for plane stress conditions as follows 

  
 

    [

                       
                     

            
   

 

]         (5-6) 

where   is the elastic modulus and   is Poisson's ratio. It should be emphasized that the 

incremental formulation is expressed in an embedded (co-rotational) material coordinate 

system, which is objective w.r.t. material rotation. By assuming the total strain increment 

is elastic, the trial stress can be calculated as follows 

        [   ] (5-7) 



150 

 

At the beginning of the     time increment, the plastic strain increments,    , is 

assumed to be zero and will be updated later if plastic deformation occurs at the Gauss 

integration point. In a plastic deformation, the trial stress is outside the flow surface and it 

will be modified by a visco-plastic corrector to satisfy the yield condition. By substituting 

the plastic strain increment (  ) from Eq. (5-4) into Eq. (5-5), the updated stress is 

obtained as follows 

       [   ] (5-8) 

By replacing Eq. (5-2) into Eq. (5-1), then based on the yield condition at the end of 

the time increment, the effective stress can be calculated from the updated stress as 

follows 

   ̅(        )     
(       ⁄ )    

(    ⁄ )    (5-9) 

By dividing Eq. (5-9) by    
(    ⁄ ), the yield criterion for the rate-dependent 

condition, can be rewritten as follows 

    [
 

   
(    ⁄ )

]   ̅(        ) [
 

   
(    ⁄ )

]     
(       ⁄ )    (5-10) 

Figure 5-1 shows a schematic view of the multi-step return mapping algorithm used for 

the AFR in the plane stress (2D) state. 

Eq. (5-10) is a closed-form nonlinear function of    that can be solved by any efficient 

numerical method. In this work, the Newton-Raphson method is used to solve the yield 

equation in each iteration to find the    value, which is used as a reference for the next 

time increment. It is usually difficult to find the solution of Eq. (5-10) numerically, if the 

yield function has an advanced non-quadratic formulation and/or if the strain increment is 

not sufficiently small. In order to solve this issue, Yoon et al. (1999b) proposed a multi-

step return mapping algorithm which is applicable to advanced anisotropic yield 

functions and general hardening models without the need of a line-search algorithm, even 

for relatively large strain increments (Yoon et al., 2004). This multi-step algorithm is 
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applied in this work to control the residual and guarantee the convergence to the solution. 

In an iterative scheme, for sub-step  , the Eq. (5-10) can be modified as follows 

 

 Figure 5-1 Schematic of a multi-steps return mapping procedure for AFR in the 2D stress space 

    (   )   ̅(          ) [
 

   
(     ⁄ )

]     
(         ⁄ ) (5-11) 

where    (    to R-1), is a rate-dependent residual for each sub-step and has a 

prescribed value. It is supposed that   sub-steps are required to reach to the final solution 

(    ), which mathematically can be expressed by  

    (     ) {  |                 (    )      }  

   (       )     

(5-12) 

Figure 5-1 shows that, the   (normal to the flow surface) in each sub-step, is first 

estimated from its direction in the previous sub-step. Then, the exact   is determined by 

solving Eq. (5-11) based on the Euler backward (implicit) method. By rearranging Eqs. 

(5-11) and (5-8), the following residual functions (   and   ) can be written as follows 

for sub-step ( ), 
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     ̅(  ) [

 

   
(     ⁄ )

]     
(         ⁄ )          

      [      ]                                                       

 (5-13) 

where              , is the calculated stress at each iteration. The residual 

functions (         ) must be linearized around the current values of the state variables 

to numerically obtain the correction of each internal state variable at each iteration and 

consequently the stress tensor. By applying Taylor`s series expansion at the current 

configuration and by ignoring the non-linear terms, the linear residuals can be written as 

follows 

{
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(    ⁄ )

]   ̅(  )
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(    ⁄ )

]            

   [      
  

  
]                                                                            

 (5-14) 

where   is the first derivative of    
 w.r.t.    (      

 ⁄   ), which was calculated 

for JC, KHL, and SKP hardening models and will be presented in Section 5.2.1. The 

correction for the effective plastic strain ( 𝛥 ) can be found by solving the above system 

of equations. After some mathematical arrangements in the system of Eq. (5-14), the 

correction for the effective plastic strain ( 𝛥 ) can be obtained by 

    
       

     [    
(    ⁄ )⁄ ]

    
    [    

(    ⁄ )⁄ ]   ̅( ( ))
 

   [    
(    ⁄ )⁄ ]   

         (5-15) 

Where 

  
   [      

  

  
]
  

 
(5-16) 

Eq. (5-15) gives  𝛥  and consequently each variable can be updated, and 

iterations continue until the convergence is achieved within a small prescribed 
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tolerance (usually     ).  The incremental plastic strain can be updated for step ( ) as 

follows 

   
       

       (5-17) 

Based on the new value of the plastic strain increment, the total effective plastic strain 

( ̅ ), stress tensor, and the rate-dependent hardening function (flow stress) can also be 

updated as follows  

{
 
 

 
 
 ̅    ̅

 
               

                   

     ( ̅      ⁄ )

 (5-18) 

where   ̅
 
 is the total effective plastic strain from the previous time increment (  ). The 

overall algorithm (flow chart) of the implicit rate-dependent numerical algorithm used in 

the VUMAT is summarized in Appendix-2. Using this algorithm, general rate-dependent 

user-material subroutines (VUMAT) were developed for ABAQUS/Explicit, which 

include different anisotropic yield functions (Hill48 and Yld2000-2d) and rate-dependent 

hardening models (JC, KHL, and SKP), to simulate the EHF process. 

5.2.1 Derivatives of Hardening Functions 

In order to calculate the correction for the effective plastic strain ( 𝛥 ) from Eq. 

(5-15), the first derivates of the JC, KHL, and SKP hardening models w.r.t.    

(    
 ⁄            

 ⁄   ) are required. 

5.2.1.1 JC 

The JC hardening equation can be expressed in multiplicative form by 

      
    

           
    ( ̅ )         

      (
    ⁄

  ̇
) (5-19) 
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where   ,  ,  , and   are material constants. The first derivatives of    
 and    

 

functions w.r.t.    are as follows 
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By replacing Eqs. (5-19), (5-20a), and (5.20b) into Eq. (5-15), the correction for the 

effective plastic strain ( 𝛥 ) can be obtained for a constitutive model with the JC 

hardening model. 

5.2.1.2 KHL 

The KHL hardening equation is given by 
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where   ,  ,   ,   , and   are material constants and   
         . The first derivatives 

of    
 and    

 functions w.r.t.    are obtained as follows 
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By replacing Eqs. (5-21), (5-22a) and (5.22b) into Eq. (5-15), the correction for the 

effective plastic strain ( 𝛥 ) can be obtained for a constitutive model with KHL 

hardening model. 

5.2.1.3 SKP 

The SKP hardening equation can be written as follows 
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where   ,  ,  ,  ,  ,  , and   are material constants. The first derivatives of    
 and    

 

functions w.r.t.    are obtained as follows 
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By replacing Eqs. (5-23), (5-24a), and (5.24b) into Eq. (5-15), the correction for the 

effective plastic strain ( 𝛥 ) can be obtained for a constitutive model with SKP 

hardening model. 
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5.2.2 Derivatives of Yield Functions 

Eq. (5-15) shows that, in addition to the first derivative of the hardening equation, the 

first and second derivatives of the yield function (      ⁄ ) must be defined to obtain 

the correction for the effective plastic strain ( 𝛥 ). The developed numerical procedure 

can be easily used with any advanced anisotropic yield function whose first and second 

derivatives can be explicitly defined. Here, for the sake of brevity, the derivatives for 

only two yield functions, Hill48 and Yld2000-2d, which were used to develop the user 

material subroutines, are presented. 

5.2.2.1 Hill48 

The yield condition for the Hill48 can be written as follows 

(
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(5-25) 

where   is the anisotropic tensor which for the plane stress condition is defined by 
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where F, G, H, and N are the Hill48 anisotropy coefficients, described in Section 3.1.1.2 

or 3.1.1.3. The effective stress can be defined as follows 
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According to Eqs. (5-4) and (5-27), the normal to the yield surface ( ) is obtained by 
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By differentiating Eq. (5-28), the second derivative (  /  ) of the Hill48 yield 

function can be defined as follows 
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5.2.2.2 Yld2000-2d  

The first and second derivatives of the Yld2000-2d function are straightforward but 

considerably more lengthy than the Hill48 derivatives. The formulation and anisotropy 

coefficients of Yld2000-2d are described in detail in Section 3.1.5, and are not repeated 

here for the sake of brevity. Using the chain rule, the first derivative of the Yld2000-2d 

function can be expressed as 
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where    stands for 11, 22 and 12. By differentiating, each term in the above equation 

can be calculated as follows 
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where, 
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By replacing Eqs. (5-31)-(5-35) into Eq. (5-30), the first derivative of Yl2000-2d is 

obtained. A similar procedure is followed to obtain the second derivative of Yl2000-2d, 

by making derivation from Eq. (5-30) based on the chain rule  
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By differentiating from the Yld2000-2d equation,       ⁄  can be written based on the 

chain rule as follows 
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where, 
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It should be mentioned that for the sake of brevity the derivatives of the Yld2004-18p 

yield function are not presented here and the interested readers are referred to the work of 

Barlat et al. (2005). The rate-dependent implicit integration algorithm developed in this 

chapter is completely defined for two different anisotropic yield functions (Hill48 and 

Yld2000-2d) and three different hardening models (JC, KHL, and SKP). In order to apply 

the developed VUMAT into finite-strain shell elements in ABAQUS/Explicit, the 

transverse shear stiffness must also be calculated.  

5.3 Transverse Shear Stiffness 

For finite-shell elements, ABAQUS/Explicit will automatically calculate the transverse 

shear stiffness values in each time increment. However, the user must specify the 

transverse shear stiffness values manually as part of the shell section, when applying a 

user-defined material subroutine (VUMAT). ABAQUS computes the transverse shear 
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stiffness by matching the shear response for the case of shell bending about one axis to 

that of a three-dimensional solid, using a parabolic variation of transverse shear stress in 

each layer. In order to calculate the transverse shear stiffness values, ABAQUS assumes 

that the bending about one principal direction is not enforcing a restraining moment about 

the other direction. This assumption may cause inaccuracy for composite shells with 

orthotropic layers that are not symmetric about the shell mid-surface, in which the shell 

section directions may not be the principal bending directions. Since ABAQUS computes 

the transverse shear stiffness values only once at the beginning of an analysis based on 

the material initial linear elastic stiffness, any changes to the transverse shear stiffness 

values during an analysis are ignored. For a homogeneous shell element made of a linear, 

orthotropic elastic material, the transverse shear stiffness values are obtained as follows 
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where    
  and    

  are the material's shear moduli in the out-of-plane directions, and   is 

the average element thickness.       is the shear correction factor which results from 

matching the transverse shear energy of a shell element to that of a three-dimensional 

solid element in pure bending (ABAQUS 6.12 user`s manual).  

5.4  Verification of the User Material Subroutine (VUMAT) 

In this section, the validity and accuracy of the developed rate-dependent user-defined 

subroutines are verified for several loading conditions at various strain rates, using two 

different VUMATs. The first VUMAT is based on the Yld2000-2d yield function and the 

KHL hardening model and the second one is a combination of Hill48 yield function and 

JC hardening model. The material used in theses simulations is the DP600 that was 

described in Chapter 3 and the Yld2000-2d anisotropy coefficients and the KHL material 

constants are given in Tables 3.7 and 3.27, respectively. The first VUMAT was used to 

simulate the uniaxial tension (in the rolling and transverse directions) and biaxial tension 

of a single element. The simulation results are compared with the corresponding 

experimental flow curves to evaluate the VUMAT, qualitatively and quantitatively.  
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The second VUMAT was used to simulate the bending of a cantilever beam and 

loading under combined tension-shear. The VUMAT results are compared with the 

ABAQUS built-in material model to evaluate the accuracy of the developed rate-

dependent numerical integration algorithm. It should be noted that it is not possible to 

combine an anisotropic yield function with a rate-dependent hardening model using the 

built-in constitutive material models in ABAQUS/Explicit. Therefore, in the second 

VUMAT, the Hill48 anisotropy coefficients were set to values which represent an 

isotropic material and the JC material constants for DP600 (given in Table 3.26) were 

used to compare the results of the VUMAT with the ABAQUS built-in material model 

(based on von Mises yield function and JC hardening model).  

5.4.1 Uniaxial tension at various strain rates 

As a very simple test, the uniaxial tension test can be used to verify the first rate-

dependent VUMAT (based on Yld2000-2d and KHL). This type of loading is attractive 

as it causes a homogenous material deformation and only one single element can be used 

in the simulation. The main advantage of using a single element is the mesh-

independency of the solution. To this end, the uniaxial tension of a 1 mm by 1 mm square 

plane-stress element was simulated in the rolling (RD) and transverse (TD) directions at 

various strain rates. As shown in Figure 5-2, the left or the bottom side of the element 

was fixed in the X or Y-direction, respectively, to simulate the uniaxial tension in the 

rolling and transverse directions. Also, the node located at the bottom left corner of the 

element was fixed in both X and Y-directions in both cases. Then, in order to produce 

various strain rate regimes, different constant velocities were applied to the right side or 

the top of the element to simulate the uniaxial tension in the rolling and transverse 

directions, respectively. The element was selected as CPS4R, a first-order quadrilateral 

reduced integration element type.  
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Figure 5-2. Schematic of the single element model for the uniaxial tension in a) RD  b) TD 

Figure 5-3 shows that the rate-dependent VUMAT is able to reproduce the 

experimental flow stresses in uniaxial tension at various strain rates (here, only strain 

rates of                     are shown). It should be noted that the appropriate 

extrapolation was applied at each strain rate to extend the uniaxial flow curves to the 

same level as the experimental or calculated equibiaxial curves (as discussed in Section 

3.5). Except for the initial small strain values (which are not really in the strain range of 

interest, since the EHF process leads to much higher strain values), the predicted flow 

stresses correlate well with the corresponding experimental curves. It can be concluded 

that both Yld2000-2d yield function and KHL hardening model correctly predict the 

behaviour of DP600 in uniaxial tension. The discrepancy between the experimental and 

predicted uniaxial flow stresses for the small strain values (      ) are related to the 

procedure used to determinate the normalized flow stresses for calibration of different 

yield functions. Based on the calibration procedure discussed in Section 3.3.1, the 

normalized flow stresses were selected when they saturate (after certain level of strain), 

which guarantees that, apart from the initial small strain values, the predicted flow 

stresses will match with the corresponding experiments for a wide range of strain values, 

as can be seen in Figure 5-3.  
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Figure 5-3. Comparison between experimental and predicted DP600 uniaxial flow curves; at 

various strain rates, a) RD b) TD  

5.4.2 Biaxial loading at various strain rates 

Uniaxial tension simulations serve to validate the VUMAT in uni-directional loading, 

however, actual forming processes usually lead to multiaxial loading conditions. The 

biaxial bulge test is one of the most popular examples of biaxial loading in sheet metal 

forming, and was used to evaluate the VUMAT in biaxial tension. To this end, a 1 mm by 

1 mm square element (CPS4R element type) was subjected to equibiaxial loading using 

the first VUMAT. As shown in Figure 5-4, the bottom and left sides of the element were 

fixed in both X and Y-directions, respectively. Then, different velocities were applied 

simultaneously to the top and right sides of the element to produce various strain rates.  
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Figure 5-4. Schematic of the single element model for biaxial tension 

Figure 5-5 shows the comparison between the predicted biaxial flow stresses and the 

corresponding calculated ones (obtained based on the procedure discussed in Section 

3.3.2). As expected, considering to the biaxial normalized flow stress determination 

procedure (presented in Section 3.3.1), the VUMAT is able to predict the biaxial flow 

stresses quite well after approximately     strain, at each level of strain rate. The 

VUMAT slightly underestimates the biaxial flow stresses at various strain rate regimes in 

the plastic strain range of      .  

 

 

 Figure 5-5 Comparison between experimental and predicted DP600 biaxial flow curves; at 

various strain rates 

Figure 5-6 shows an overall comparison between experimental/calculated and 

predicted uniaxial and biaxial flow curves at various strain rates. For all strain rate 

regimes, results show that the developed rate-dependent user-defined material model is 
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able to describe the DP600 material anisotropy accurately in both uniaxial and biaxial 

loading conditions. It is noticeable that a minor discrepancy for the uniaxial condition can 

be observed, at the beginning of the plastic strain region (below     ), while this 

discrepancy is more significant for a larger strain range (below    ) in the biaxial case. 

These discrepancies are considered acceptable considering the main objective of this 

work is to predict the behaviour of sheet materials up to larger strain values in biaxial 

stress states in high strain rate forming processes, such as EHF.  

 

 

 

Figure 5-6. Comparison between experimental and predicted uniaxial and biaxial DP600 flow 

curves; a)       b)         c)          
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5.4.3 Bending of a cantilever beam 

In order to verify the accuracy of the developed rate-dependent implicit integration 

method with the ABAQUS integration algorithm, the second VUMAT was used to 

simulate the bending of a cantilever beam. Once again, it should be emphasized that due 

to the inability of applying a built-in anisotropic rate-dependent constitutive model into 

the simulations in ABAQUS/Explicit, isotropic behaviour was assumed for DP600 in the 

second VUMAT. Therefore, Hill48 was reduced to the von Mises function, which makes 

the second VUMAT exactly identical to the rate-dependent ABAQUS built-in material 

model based on von Mises yield function and JC hardening model. As shown in Figure 

5-7, a 1 mm by 10 mm rectangle was fixed at one end and loaded with a downward 

velocity of              at the other end. CPS4R elements of                    

were used to discretize the beam.  

 

 

Figure 5-7. Schematic of the cantilever beam model 

Figure 5-8 shows the predicted effective stress variation along the top surface of the 

beam obtained by the VUMAT and the ABAQUS built-in material model. The 

comparison shows the same results for both the VUMAT and the ABAQUS built-in 

material model, which represents the capability of the developed rate-dependent 

numerical implicit integration algorithm to predict the same flow stress as the ABAQUS 

built-in algorithm, when assuming isotropic behaviour. Figure 5-9 also shows the 

effective stress contours in the deformed beam as predicted by the VUMAT and the 

ABAQUS built-in material model. 
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Figure 5-8. Effective stress variation along the top surface of a DP600 beam 

 

 

 

Figure 5-9. Effective stress contours in the deformed DP600 beam; a) VUMAT, b)ABAQUS built-

in material model    

5.4.4 Combined tension-shear 

The second VUMAT was again used to simulate a combined tension-shear loading to 

verify the developed rate-dependent implicit integration algorithm. Similar to the uniaxial 

and biaxial cases, a 1 mm by 1 mm square was meshed with CPS4R elements. As shown 

in Figure 5-10, the bottom side of the element was fixed in the X and Y-directions and 

two different sets of velocities were applied to the top side, separately. In the first set, 

          and             were selected as the velocities in the X and Y-
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directions, respectively. In the second set, these values were increased to    

         and              to simulate a higher strain rate regime.  

 

 

Figure 5-10. Schematic of the combined tension-shear model 

Figure 5-11 compares the effective flow stresses of DP600 predicted by the VUMAT 

and the ABAQUS built-in material model. For the two different sets of velocities, the 

same stress-strain responses were obtained, which confirms the accuracy of the rate-

dependent VUMAT under a multiaxial loading condition.  

 

 

Figure 5-11. Comparison between the predicted flow stresses obtained by the VUMAT and the 

ABAQUS built-in material model; at two different sets of velocities 

According to the above simulations, the developed rate-dependent user-defined 

material models are able to accurately predict the stress field of DP600 in several loading 

conditions such as uniaxial tension, biaxial tension, bending, and combined tension-shear. 

Therefore, it can be concluded that the user-defined material subroutines have been 
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correctly implemented and are expected to work properly for more complex loading 

conditions such as actual sheet metal forming simulations. The results of EHF 

simulations, using rate-dependent anisotropic user-defined material models, will be 

discussed in the next chapter.  
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6 Finite Element Simulation of 

Electrohydraulic Forming 

 

 

 

6.1 Introduction 

Substantial efforts have been dedicated to the finite element (FE) analysis of pulsed 

forming processes (Golovashchenko et al., 2013, Imbert and Worswick, 2011 and 

Melander et al., 2011). However, the role of material anisotropy and its effects on 

different aspects of sheet material deformation have not yet been clearly understood due 

to the complexity of the experimental and numerical work required for such an 

investigation.  

This chapter presents quantitative anisotropy results of electrohydraulic forming (EHF) 

process for DP600 steel and AA5182-O aluminum sheets, based upon experimental 

measurements and finite element (FE) predictions of major/minor (principal) strain 

distributions. To this end, four specimens with optimized geometries, representing four 

different strain paths (uniaxial, intermediate draw, plane strain and biaxial) were safely 

formed under electrohydraulic free-forming (EHFF) conditions. A new FE model using 

ABAQUS/Explicit code was developed, applying the ignition-and-growth model to a 

small spherical volume as an equivalent of the actual plasma channel. The developed 

rate-dependent (KHL hardening model) isotropic (von Mises) and anisotropic (Yld2000-

2d) constitutive material models (VUMATs) were used to simulate the EHFF process. 

These FE predictions are presented and compared to the measured strain distributions to 

investigate the effect of sheet material anisotropy at intermediate and high strain rate 

regimes. Also, the developed VUMATs were applied to a single element to calculate the 

difference in the effective plastic strain predicted by isotropic and anisotropic yield 
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functions at various strain rates. Finally, electrohydraulic die-forming (EHDF) using a 

conical-die was simulated for DP600. The developed general rate-dependent anisotropic 

material model (VUMAT, which is the combination KHL hardening model and Yld2004-

18p yield function) was applied to consider the effect of anisotropy in a general (three-

dimensional) stress state. Details of both the experimental work and the FE modelling 

technique, as well as the results are presented in the following sections. 

6.2  Experimental work 

In electrohydraulic forming (EHF), two or more electrodes are located in a water-filled 

chamber and a high-voltage discharge across the electrodes creates a plasma channel. The 

plasma channel expands and generates a shockwave that propagates through a fluid 

(generally water) and forms the sheet at the acoustic velocity of the fluid. The parameters 

that affect the efficiency of the EHF process are the distance between the electrodes and 

the blank (stand-off distance), the number and the mutual position of the electrodes, the 

electrical properties of the liquid, the capacitance of the circuit, the input voltage, the 

inductance and resistance of the equipment, and the shape and the volume of the 

chamber. The main pieces of equipment required for EHF tests are a pulse unit, a forming 

tool, a chamber, and a press. Interested readers are referred to Golovashchenko et al. 

(2013) for more details on the experimental EHF process, equipment and tooling design. 

A schematic of typical EHF tooling and setup that were used in both EHFF and EHDF 

tests is shown in Figure 6-1.  

In order to verify the FE modeling approach of EHF and determine the role of material 

anisotropy at intermediate and high strain rate regimes, Electrohydraulic free-forming 

(EHFF) tests were carried out for DP600 steel and AA5182-O aluminum sheets. 

Different specimen geometries were designed and optimized particularly to determine the 

experimental forming limits in EHFF for specific strain paths. To this end, new open-

window dies were built and some existing tools were modified by Maris (2014) to ensure 

the effective operation of EHFF experiments. Also, due to the greater interest to apply 

this technology in die-forming conditions, electrohydraulic die-forming (EHDF) tests 

were also carried out with DP600 sheets to investigate the effect of anisotropy in a 
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general stress state at high strain rate regimes. All experiments were performed at Ford`s 

Research & Advanced Engineering laboratory. 

 

 

Figure 6-1. Schematic of a typical EHDF setup (Maris, 2014) 

 

6.2.1 EHF Tooling 

6.2.1.1 Pulse Unit 

The Magnepress pulse unit was used to provide the electrical energy for the EHF tests. 

The duration of the discharge and the energy delivered to the chamber are internal 

characteristics of the pulse unit, which have a significant effect on the outcome of the 

experiments. The Magnepress has a total capacitance of 200µF and can deliver a 

maximum input voltage of 15kV, and a corresponding maximum energy of 22.5kJ. The 

measurements showed an approximately constant discharge time of 120µs with a 

sinusoidal shape, with a total forming time on the order of 100-350µs for different sheet 

metals. It should be noted that all specimens were formed with a single pulse of energy in 

both EHFF and EHDF to produce higher strain rate regimes. With both the conical die 

and open window die, a hydraulic press was used to clamp the upper dies to the chamber 

during EHF experiments with a clamping force of 100 tons. This amount of clamping 

force ensured that there was no drawing in of the sheet into the die cavity.  

The portion of the released electrical energy that is actually delivered to the sheet 

depends on many factors associated with the experimental set-up and the electrical 
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efficiency of tooling and cables. Due to various types of energy losses in the EHF 

process, repeating the process to obtain the very same maximum height in the safe 

deformed specimens is very challenging. Attempts were made by Maris (2014) to 

experimentally quantify the electrical energy delivered to a hemispherical chamber. 

Voltages and currents that were measured across the electrodes and inside the 

Magnepress were used to calculate the power and energy at both the Magnepress and 

chamber. Results showed that even for successive pulses with consistent experimental 

set-up, the outcome of the dynamic EHF process can vary based on the amount of energy 

lost to inefficiencies. Therefore, experimentally measuring the actual energy that is 

generated within the chamber and the portion which is transferred to the blank can 

significantly vary from test to test depending on many parameters. Due to the shortage of 

reliable energy or pressure measurements for each specimen geometry and the variability 

in the process due to many parameters; it was decided to calibrate the energy in the FE 

models by measuring the maximum height of safely deformed specimens for each 

specimen geometry and for each material. 

6.2.1.2 Chamber 

In both EHFF and EHDF tests a hemispherical chamber with a diameter of 120mm was 

used. In order to increase the efficiency of the process, a 30mm tall chamber ring was 

added to increase the total volume of water contained in the chamber to 0.79L. The shape 

of a chamber is an important factor in the process, since it affects the wave reflection off 

the chamber walls. The optimization of a chamber design to increase the efficiency of the 

EHF process as well as result in a desired strain distribution in the deformed sheet 

material is very complex and requires a deep knowledge of wave propagation, reflection 

and fluid/solid interaction (FSI); such an optimization was not conducted as this was not 

the focus of this work.   

6.2.1.3 Die 

The EHFF specimens were formed without carrier (driver) sheets, which allowed water 

to pass through the cut-out holes in the specimens. In order to prevent any undesired 

deformation of the specimens due to rebounding of the water onto the top side of the 
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specimen, the EHFF specimens were formed into an open window die. In order to form 

specimens in a state of biaxial strain in EHDF, DP600 steel sheets were formed into a 

conical die with an apex angle of 112˚ (34˚ from the horizontal), a base diameter of 120 

mm, an entry radius of 10 mm and a tip radius of 10 mm. An experimental study by 

Golovashchenko et al., (2013) showed that dies with greater depths were too extreme 

considering the formability of DP600 sheets. The study by Golovashchenko et al., (2013) 

also indicated that this die angle was ideal because it allowed for an effective dynamic 

sheet-die interaction which led to the activation of the beneficial formability 

enhancement mechanisms associated with die impact in EHDF. 

In contrast to traditional stamping, the EHF process does not use a punch, and there is 

inherently no friction at the sheet/water interface. However, in EHF the friction between 

the sheet and the die does influence the sheet material deformation, especially in EHDF. 

In EHFF there is only a friction effect at the entry radius of the open window die, which 

does not have an influence on the overall material deformation, since the high amount of 

plastic deformation occurs in the central gauge section of the specimen far from the die 

entry radius. The friction effect can be considerable when it comes to EHDF, where there 

is a significant dynamic sheet/die interaction over almost the entire die surface. It should 

be noted that all EHFF and EHDF experiments were conducted without any lubricant at 

the sheet/die interface.  

6.2.2 Sheet material, geometry and preparation 

Two sheet materials of significant interest to the automotive industry, DP600 steel and 

AA5182-O aluminum were selected for EHFF, but only the DP600 steel sheet was used 

in EHDF experiments. Both sheet materials were 1.5mm thick and were tested in the as-

received condition. The mechanical properties of these materials including r-values and 

flow stresses in different material orientations at various strain rates were presented in 

Tables 3.2 and 3.16 for DP600 and AA5182-O, respectively. 

In order to carry out EHFF tests in which the sheet material can deform along specific 

strain paths, four different specimens were developed with cut-out holes of various 

shapes such that four specific linear strain paths would be generated; uniaxial, 
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intermediate draw, plane strain and biaxial tension. Based on a comprehensive numerical 

optimization procedure, the specimens were designed and optimized such that the 

greatest major strain is located in the center of the specimen while minimizing stress 

concentrations in the corner radii of the cutouts. The EHFF specimens were safely 

formed with different energy levels so as to study the effect of anisotropy in different 

stress states at intermediate and high strain rate regimes.  

An important point is that carrier (drivers) blanks, which are normally used in quasi-

static tests to create a uniform strain distribution and have been used in the EHFF work of 

other researchers, were omitted in these EHFF tests. The use of a carrier blank results in a 

more complex friction condition between the specimen and the carrier sheet which adds a 

substantial uncertainty to the acquired experimental data, and increases the complexity in 

the numerical simulation of the forming process. Therefore, the elimination of carrier 

blanks made for a simple and straightforward test in which friction was minimized, the 

maximum stress was located at the centre of the gauge area and the strain path was quasi-

linear. Also, due to careful optimization of the EHFF specimens, no edge cracking was 

observed in any of the deformed specimens which ensured the reliability of the 

experimental data. In addition, the existence of a single gauge section in the centre of 

each specimen, makes this gauge area an interest zone to concentrate on the effect of 

anisotropy at high strain rate regimes. The four different specimen geometries were cut 

out from circular blanks using a CNC mill. For consistency, all the specimens were 

machined with the rolling direction (RD) of the material parallel to the length of the 

gauge section such that the major strain was always parallel to the RD. All the specimens 

were electroetched with a square grid on one side of the blanks, with a size of 2.54mm 

(0.1in). Figure 6-2 illustrates the four different specimen geometries used in the EHFF 

experiments and simulations.  
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Figure 6-2. Different geometries of specimens used in EHFF; a) uniaxial b) intermediate draw c) 

plane strain d) biaxial 

6.2.3 Deformed EHF Specimens 

In order to investigate the effect of anisotropy at high strain rate, a total of 27 safely 

formed specimens were selected from the EHFF tests (no necking or fracture were 

observed); 16 DP600 steel and 11 AA5182-O aluminum sheets. These specimens 

included all four geometries (uniaxial, intermediate draw, plane strain and biaxial 

tension) for the two materials. It was difficult to reach the same maximum dome height 

for the safe specimens in different geometries because EHF is a dynamic process with 

significant process variability, and accordingly, the exact same conditions do not occur 

with each electrical discharge. To ensure consistency between specimens and confidence 

in the measurements, the specimens with almost similar maximum height were selected 

for comparison with the numerical simulations. A path along the centerline of each 

specimen (shown in Figure 6-2 for the four specimens) was selected to provide insight 

into how certain parameters varied from edge to edge within the sheet. In order to 

evaluate the effect of material anisotropy, the major/minor strain distributions, thickness 

distributions, and height (vertical or out-of-plane displacement) profile of the selected 

safe specimens were measured and are presented in section 6.4.2. The height profile 

(distribution) of the deformed specimens was obtained using a 3D scanner with twin 3.0 

Megapixel CMOS image sensors with           dimensional accuracy. Also, the 

energy required to form each specimen was measured at the chamber by Maris (2014) 

and these measurements are summarized in Table 6.2 and Table 6.3 for DP600 and 

AA5182-O, respectively. Figure 6-3 shows the selected safe specimens in this study for 

DP600 and AA5182-O for all four geometries. Also, a safe DP600 biaxial specimen 

formed into the conical-die is shown in Figure 6-4. 
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Figure 6-3. Safe EHFF specimens for DP600 (top) and AA5182-O (bottom);                                

a) uniaxial b) intermediate draw c) plane strain d) biaxial 

 

 

Figure 6-4. Safe EHDF DP600 specimen 

6.2.4 Strain measurements 

Major and minor strains were measured from the deformed square grids on the EHFF 

and EHDF specimens using the FMTI grid analyzer model 100U. This apparatus 

calculates the major and minor strain based on an automatic image processing of the un-

deformed and deformed grid, using a digital camera and a software package. Ideally, the 

FMTI tool can be precise to ±0.5% engineering strain (Sklad and Verhaeghe, 2010). 
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However, the practical accuracy of the measured data strongly depends on the quality of 

the electroetched grid, among other factors. Based on a study that was conducted in our 

research lab and reported by Maris (2014), the error of the FMTI grid analyzer was 

estimated between 2% to 4%, depending on the geometry of the deformed specimen. 

Also, an Ultrasonic thickness tester was used to measure the thickness of each specimen 

along the centreline of the gauge area (Figure 6-2). 

6.3 Finite element modelling 

6.3.1 Single element model 

In order to better understand the role of material anisotropy in the prediction of 

effective plastic strain at various strain rates (                   and         ), a 

          single shell element was modelled. To this end, three different 

constitutive models including von Mises, Hill48 (calibrated based on r-values) and 

Yld2000-2d yield functions were applied, using the appropriate boundary conditions to 

simulate plane strain and biaxial tension conditions. It should be mentioned that the 

anisotropy coefficients were updated w.r.t. strain rate and the KHL hardening model was 

used in each case. By applying the same amount of plastic strain in the rolling direction 

(RD) for both plane strain and biaxial tension conditions, the error of effective plastic 

strain at various strain rates predicted by von Mises and Hill48 yield functions were 

calculated, assuming Yld2000-2d as the reference yield function. The calculations were 

completed for both DP600 and AA5182-O and the results are presented later in this 

chapter. 

6.3.2 EHF model 

The main emphasis of the simulations in this study was to understand the role of 

material anisotropy on the deformation occurring when the sheet is formed in EHF 

process. To this end, three-dimensional finite element explicit dynamic simulations were 

also performed using ABAQUS/Explicit to predict the deformation history of specimens 

in EHFF and EHDF. One of the most challenging parts of the EHF simulations was to 

model the input energy released between the electrodes in the water. In many 
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simulations, the interaction between the water and the sheet is not taken into account, and 

the input energy is simulated by a pressure history distributed uniformly across the sheet. 

However, experimental evidence (Rohatgi et al, 2011 and 2012) suggests that the shape 

and duration of the pressure pulse propagating through the water and the complex 

interaction between the water and the sheet significantly affect the strain distribution and 

strain rate history in the sheet throughout its deformation.  

In order to simulate every aspect of the actual  mechanism of electrical discharge in 

EHF, in-depth knowledge and sophisticated principles of underwater electrical discharge, 

plasma channel generation, wave propagation, hydrodynamics and fluid/solid interaction 

(FSI) are required (Grinenko et al. 2008). A comprehensive approach for FE modelling 

EHF in LS-DYNA was presented by Golovashchenko et al. (2013) to describe the results 

of EHF into open round, V-shaped, and conical dies.However, modelling the EHF 

process using the same approach in ABAQUS was not possible, due to the unavailability 

of some features, such as the energy-leak equation of state which was used by 

Golovashchenko as a representative of electrical discharge in EHF process in LS-DYNA.  

In this study as an alternative, shockwave generation by underwater electrical 

discharge was assumed to be nearly similar to that by underwater explosion (UNDEX), 

except that underwater electrical discharge involves a plasma channel during the electric 

discharge whereas UNDEX forms vaporized explosive gas bubbles during the explosion 

as illustrated in Figure 6-5. Based on the idea of similarity between underwater electrical 

discharge and UNDEX, Wakeland et al. (2003) applied the combination of similitude 

relation in UNDEX theory (Cole, 1948) and hydrodynamic code to predict the waveform 

of underwater electrical discharge-induced shockwave, assuming equivalency between 

electric energy in underwater electrical discharge and combustion energy in UNDEX. 

Results showed that the mathematical representation of shockwaves by underwater 

electrical discharge and similitude relation (Cole, 1948) are practically the same. 

It should be emphasized that the main purpose of this work was not to create a complex 

FE model which is able to capture all aspects of physical mechanisms that occur during 

EHF, but to develop a reliable FE model (which works for a variety of specimen 
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geometries and materials) that is able to confidently predict the material anisotropy effect 

in EHF. 

 

 

Figure 6-5. Mechanism of shockwave generation by;                                                                                    

a) underwater electrical discharge b) UNDEX 

In order to simulate the electrical discharge in this work, the ignition-and-growth 

equation of state with a specific energy magnitude (which is determined based on the 

maximum deformed specimen) was assigned to a small spherical volume, which is 

located in the actual position between the electrodes gap (stand-off distance of 60 mm). It 

was decided to use the ignition-and-growth model, since the shape of the plasma channel 

becomes spherical almost at the very beginning of the EHF process based on the 

investigations reported by Golovashchenko et al. (2013). In order to calculate fluid 

(water) motion induced by shockwave, Eulerian elements were used to simulate the 

motion of water using the Mie-Gruneisen (Us-Up) equation of state. In addition, a certain 

limit (        ) was specified as the cavitation threshold of the water to consider the 

cavitation phenomenon (free expansion in a constant pressure) when the pressure of 

water is below that limit. A void property was assigned to the Eulerian elements above 

the chamber to allow the water to travel into that space as the simulation progressed. 

During the EHF process, the heat transfer from the water to the sheet is negligible due 

to the very short deformation time and very small plasma channel volume compared to 

the volume of water. However, a local temperature rise (adiabatic thermal softening) does 

occur due to the plastic work in high-velocity forming. In this work, the thermal softening 

term was ignored due to insufficient experimental data relative to the effect of a 
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temperature rise on the flow stress of DP600 and AA5182-O at different strain rates. 

Therefore, a coupled thermal-structural analysis was reduced to only a structural analysis 

in this work. Figure 6-6 shows a section view of the developed FE model for EHF 

simulation. The details of the developed model are described in the following.  

 

 

Figure 6-6. Section-view of the EHF finite element model; a) EHFF b) EHDF 

6.3.2.1 Ignition-and-growth model 

The ignition-and-growth flow model treats the explosive material as a homogeneous 

mixture of two distinct constituents, the un-reacted explosive solid and the reacted 

gaseous product. The Jones-Wilkins-Lee (JWL) equation of state is assigned to each 

constituent, and a single reaction-rate law is postulated for the conversion of the 

explosive to products. It is assumed that the two constituents are always in pressure and 

temperature equilibrium. The pressure in either phase is defined in terms of volume and 

internal energy as 

   (  
 

   
)        (  

 

   
)       

  

 
 (6-1) 

where   is the pressure,     /   is the relative volume,   is the Gruneisen parameter,   

is the internal energy, and         and    are constants. The values of the above 
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constants for a reacted gaseous product are different from those for the unreacted solid 

explosive. The reaction rate law is expressed as, 

  

  
  [   ] [

 

  
    ]

 
    {           } 

            [   ]                   {          } 

            [   ]                   {          } 

(6-2) 

where   is the fraction reacted,   is time,   is the current density,    is the initial density, 

  is pressure, and  ,   ,   ,  ,  ,  ,  ,  ,  ,  ,  , and   are constants. This reaction rate 

law models the three stages of reaction generally observed during shock initiation of solid 

explosives. Interested readers are referred to Kapila et al. (2007) for more details on the 

ignition-and-growth model and formulation. 

Based on the experimental and numerical work completed by many researchers (Chen 

et al., 2007, Urtiew et al., 2006), ignition-and-growth parameters have been optimized for 

a wide variety of explosive materials. In this work, a parametric study was initially 

completed on the effect of several explosive materials such as Comp-B, C4, TNT, and 

LX17 (using the corresponding calibrated ignition-and-growth model) in the prediction of 

sheet material deformation history in EHF. Results showed a small effect of these 

materials in the overall deformation histories of different sheets in EHF simulations. 

Therefore, it was decided to select the calibrated parameters for explosive material 

Comp-B, calibrated by Schwer (2012). An optimization method was used by Schwer to 

optimally parameterize the ignition-and-growth reactive flow model to experimental 

Manganin gauge records. The ignition-and-growth model parameters are provided in 

Table 6.1. 

One of the most important factors in the ignition-and-growth model, which affects the 

predicted dome height of the formed specimen and consequently the strain distributions, 

is the specific energy. In this study, the specific energy was determined by correlating the 

maximum height of the formed specimen predicted by the numerical simulation with that 

which was measured experimentally, for each strain path and for each sheet material. The 

magnitude of specific energy was adjusted for each material and specimen geometry in 
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EHFF simulations, so that the final dome height of the numerical specimens and the 

associated selected safe experimental specimens corresponded. For the sake of 

comparison, the amount of experimental input energy and the applied energy in the 

simulations of different geometries are presented in Table 6.2 and Table 6.3 for DP600 

and AA5182-O, respectively. 

Table 6.1. Ignition-and-growth parameters for Comp-B 

 
Un-reacted JWL Reacted JWL 

  (   )                    

  (   )            

            

            

            

   (    ⁄ )            

Reaction rate 

                

               

                       

  0.333             

                    

          (        )          

  (   )           (        )      

         

 

6.3.2.2 Constitutive material model 

Numerical simulation results showed a predominance of intermediate and high strain 

rate regimes during almost the entire EHF process. Since, ABAQUS/Explicit does not 

support the combined use of anisotropic yield function (such as Hill48, Yld2000-2d and 

Yld2004-18p) and rate-dependent hardening model (such as JC and KHL) in its library of 

material models, the user-defined subroutine material model presented earlier was used to 

model the material behaviour. The subroutine material model was based on Yld2000-2d 

(for plane stress) and Yld2004-18p (for general stress state) anisotropic yield functions 

and the KHL hardening model using the implicit integration scheme for 

ABAQUS/Explicit (VUMAT) (details of the formulations were presented in Chapter 5). 
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The KHL hardening model was used for all the EHF simulations in this chapter. The 

KHL constants for DP600 and AA5182-O are presented in Table 3.27. The KHL model 

was selected due to its ability to accurately describe the response of the DP600 at various 

strain rates as shown in Figure 4-24b. It should be noted that, as discussed in Section 3.5, 

compared to the DP600 steel, AA5182-O is almost a strain rate insensitive material 

throughout the range in which material characterization tests were conducted (      

        ). The main reason for using the KHL hardening model for AA5182-O was to 

maintain consistency during all the simulations by using the same developed VUMAT for 

both materials, and by only changing the corresponding material constants. Therefore, no 

difference in the predicted results is expected for AA5182-O, when applying a rate-

independent hardening model. 

In the simulations of EHDF using different specimen geometries, due to the prevalence 

of plane stress conditions in the sheet material, two VUMATs were considered to 

investigate the effect of anisotropy in EHFF. The first one is the combination of the von-

Mises (isotropic) yield function and the KHL model. The second one is the combination 

of the Yld2000-2d (anisotropic) yield function and the KHL model. The Yld2000-2d 

anisotropy coefficients were updated for DP600 and AA5182-O based on the equations 

presented in Table 3.23 and Table 3.25, respectively.  

In the simulation of EHDF, the stress state shifts from plane stress to a general (three-

dimensional) stress state due to the generation of through-thickness compressive and 

shear stresses when the sheet impacts the die. Two general VUMATs were developed to 

consider the anisotropy effect in EHDF. The first VUMAT combines the von Mises yield 

function and the KHL hardening model. The second one combines Yld2004-18p and the 

KHL model. As mentioned in Section 3.1.6.1, since pertinent experimental anisotropy 

data were not available, an isotropic behaviour was assumed through the sheet thickness. 

Therefore, Yld2004-18p is analogous to Yld2000-2d but offers the added benefit that it is 

able to account for the through-thickness stresses in solid elements. Similar to Yld2000-

2d, the anisotropy coefficients of Yld2004-18p for DP600 were also updated. Finally, due 

to the unavailability of experimental data above         , it was assumed in the 
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VUMATs that the anisotropy coefficients remain constant and equal to the values 

obtained at           

6.3.2.3 Element Type and mesh convergence 

In order to verify the reliability of the FE model, an investigation was carried out to 

evaluate the effect of numerical parameters such as element type, mesh size and the 

integration scheme. The use of an isotropic yield function led to a significant decrease in 

run time which in turn allowed a more detailed mesh convergence study to be conducted. 

Therefore, the entire mesh convergence study was completed using only the isotropic 

constitutive model. The Lagrangian and Eulerian meshes were refined to various degrees 

so as to include coarse, fine and very fine mesh sizes. Major/minor strain and thickness 

distributions were used as the metrics to check the mesh convergence. Based on the 

author’s investigations it was found that the following conditions yielded the best results. 

 In EHFF, the sheet was modelled with three-dimensional quadrilateral (4-node, 

first-order) Lagrangian shell elements (denoted as S4R) in reduced integration. An 

average mesh size of 1.5 mm for all geometries represented an appropriate 

discretization of the model. The number of integration points through the 

thickness was set to 7 to ensure consistent and accurate deformation. 

 

 In EHDF, the sheet was modelled with three-dimensional hexahedral (8-node, 

first-order) Lagrangian solid elements (denoted as C3D8R) in reduced integration, 

which were required for the EHDF calculations to resolve the through-thickness 

compressive and shear stresses that can be generated due to the dynamic sheet/die 

interaction. The hourglass energy of the system and the convergence study 

showed that at least six elements through the thickness were required to 

accurately capture the stress gradient through the thickness of the sheet. An 

average in-plane mesh size of 0.75 mm was selected. In view of the small 

thickness dimension compared to the diameter of the sheet a very small in-plane 

element size was required, and correspondingly a large number of elements, in 

order to maintain a reasonable element aspect ratio. Therefore, this parametric 
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study for EHDF simulations was very time consuming, even when using an 

isotropic yield function.  

 

 The die (open-window and conical) and chamber were modelled with discrete 

rigid shell elements (denoted as R3D4). The element size for the rigid parts was 

selected to be on the same order as the element size of the deformable parts that 

contact with the rigid parts during the sheet deformation. 

 

 The Eulerian part (including water, spherical volume and void) was discretized 

with Eulerian elements (denoted as EC3D8R) with reduced integration and 

hourglass control. The average element size for the water and void sections was 2 

mm. The mesh size was reduced to 0.5 mm for the spherical volume, which 

represents the plasma channel medium. It should be emphasized that the element 

size of the spherical volume determines the stable increment time of the model, 

and consequently affects the computation time. Therefore, a very careful 

consideration was made to select an appropriate element size for the spherical 

region, by optimizing between the accuracy of the results and computation time.  

 

 A transverse shear stiffness was assigned to the shell element section for DP600 

and AA5182-O, by taking into account the formulation presented in Section 5.3. 

6.3.2.4 Boundary conditions 

The full geometry (i.e. no symmetry conditions) was modeled in both EHFF and 

EHDF simulations in order to fully consider the complex wave propagation and reflection 

within the chamber and consequently more accurately describe the fluid/solid interaction. 

For all specimen geometries, every degree of freedom (translational and rotational) was 

constrained along the outside perimeter of the sheet to represent the clamping force of the 

hydraulic press that prevents any material from drawing into the die cavity. The die and 

chamber were assigned an encastre boundary condition which prevents any translational 

or rotational movement.  
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6.3.2.5 Contact algorithm 

A general Contact/Explicit was used to define the contact between Lagrangian bodies 

and Eulerian materials. The Eulerian-Lagrangian contact formulation is based on an 

enhanced immersed boundary method, in which the contact constraints are enforced 

using a penalty method where the default penalty stiffness parameter is automatically 

maximized subject to stability limits. Based on the general contact property, tensile 

stresses are not transmitted across an Eulerian-Lagrangian contact interface. Therefore, 

the interface friction coefficient is zero, which signifies that the friction has almost no 

effect on the predicted strain distribution in EHFF.  In contrast, the friction effect can be 

significant in EHDF simulation, due to contact of the sheet against the conical die. The 

classical Coulomb friction law in a surface-to-surface contact model utilizing a penalty-

based algorithm was used to account for the interaction between the sheet and the die. 

Following the work of Golovashchenko et al., (2013), static and dynamic friction 

coefficients of 0.2 and 0.15 were selected for this EHF process. 
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6.4  Results and Discussion 

6.4.1 Single element results 

As mentioned before, the effective plastic strain was predicted for two forming 

conditions (balance biaxial tension and plane strain tension) using a single element. This 

element was deformed up to a true plastic strain of     in the RD for the plane strain 

condition and up to      in both the RD and TD for the biaxial condition. It should be 

mentioned that in all simulations in this section, results are presented for both the rolling 

direction (RD) and the transverse direction (TD). The reason for presenting both sets of 

results is that the predicted results will be different in plane strain tension depending 

whether the tension direction is parallel with the RD or the TD. Therefore, it is more 

comprehensive to present the predicted results in both directions. In all the following 

graphs in this Section, the term “RD” indicates that the gauge section of the specimen 

was oriented parallel with the rolling direction in the FE model, whereas “TD” indicates 

that the gauge section was oriented parallel with the transverse direction. Also, it should 

be emphasized that the relative error was calculated relative to the results predicted by 

Yld2000-2d. As shown in Section 4.1.2, the Yld2000-2d is able to describe material 

anisotropy more accurately than the von Mises or Hill48 yield functions. Therefore, the 

results using Yld2000-2d were considered the reference from which to measure the 

relative error. 
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6.4.1.1 DP600 von Mises error 

Figures 6-7a and 6-7b show the comparison between the effective plastic strain 

predicted for DP600 using Yld2000-2d and von Mises in the equibiaxial and plane strain 

conditions, respectively. Figure 6-7c shows that the maximum error (     ) occurs in 

the biaxial condition for all strain rates. Results show that the discrepancy between the 

Yld2000-2d and von Mises decreases as the strain rate increases, which is expected since 

the biaxial flow stress ratio (    ⁄ ) decreases with increasing strain rate, as shown in 

Figure 4-33. Also, the error for the plane strain condition shows a significant dependence 

on material orientation since it is positive (+3%) in the RD and negative (-3%) in the TD 

for almost all strain rates.  

 

 

 

 

Figure 6-7. Predicted effective plastic strain for DP600 using Yld2000-2d and von Mises yield 

functions; a) biaxial, b) plane strain, and c) relative error 
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6.4.1.2 DP600 Hill48 error 

Figures 6-8a and 6-8b show the comparison between the effective plastic strain 

predicted for DP600 using Yld2000-2d and Hill48 in the biaxial and plane strain 

conditions, respectively. Figure 6-8c shows the relative error calculated based on the 

corresponding results at each strain rate and for each condition. Biaxial tension results 

show that as the strain rate increases, the effective plastic strains predicted by Hill48 

approach the value predicted with Yld2000-2d (the relative error decreases to less than 

  ).  In contrast, the error increases with the strain rate (     ) for the plane strain 

condition. 

 

 

 

 

Figure 6-8. Predicted effective plastic strain for DP600 using Yld2000-2d and Hill48 yield 

functions; a) biaxial, b) plane strain and c) relative error 
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6.4.1.3 TRIP780 von Mises error 

Figures 6-9a and 6-9b show the comparison between the effective plastic strain 

predicted for TRIP780 using Yld2000-2d and von Mises in biaxial and plane strain 

conditions, respectively. Figure 6-9c shows that the maximum relative error (     ) 

occurs in both balance biaxial tension and plane strain (RD) conditions for almost all 

strain rates. Similar to DP600, the error in the balanced biaxial condition decreases with 

increasing strain rate which is expected considering Figure 4-34. Also, plane strain results 

show that the relative error slightly increases when the strain rate increases. 

 

 

 

 

 Figure 6-9 Predicted effective plastic strain for TRIP780 using Yld2000-2d and von Mises yield 

functions; a) biaxial, b) plane strain and c) relative error 
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6.4.1.4 TRIP780 Hill48 error 

Figures 6-10a and 6-10b show the comparison between the effective plastic strain 

predicted for TRIP780 using Yld2000-2d and Hill48 in the biaxial and plane strain 

conditions, respectively. Figure 6-10c shows a significant error (      ) in the 

biaxial condition for all strain rates using Hill48. The error decreases with increasing 

strain rate but still remains considerable. Results in plane strain show a much lower error 

(     ) for almost all strain rates. Moreover, the relative error decreases with strain 

rate and the predicted effective plastic strain is practically the same at          whether 

Hill48 or Yld2000-2d is used in the simulation. 

 

 

 

 

Figure 6-10. Predicted effective plastic strain for TRIP780 using Yld2000-2d and Hill48 yield 

functions; a) biaxial, b) plane strain and c) relative error 



194 

 

6.4.1.5 AA5182-O von Mises error 

Figures 6-11a and 6-11b show the comparison between the effective plastic strain 

predicted for AA5182-O using Yld2000-2d and von Mises in biaxial and plane strain 

conditions, respectively. Figure 6-11c shows a maximum relative error of        in 

the plane strain condition for all strain rates, which is expected due to higher exponent in 

Yld2000-2d (   ) for aluminum alloy (Figure 4-35), compared to     in the von 

Mises yield function. In contrast with the plane strain condition, results show only a 

slight error in the balance biaxial condition due to the very small difference in the 

uniaxial (RD) and biaxial flow stresses of AA5182-O. The relative errors show that the 

effective plastic strain is almost independent of the strain rate. This is expected due to the 

near zero strain rate sensitivity of AA5182-O.   

 

 

 

Figure 6-11. Predicted effective plastic strain for AA5182-O using Yld2000-2d and von Mises 

yield functions; a) biaxial, b) plane strain and c) relative error 
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6.4.1.6 AA5182-O Hill48 error 

Figures 6-12a and 6-12b show the comparison between the effective plastic strain 

predicted for AA5182-O using Yld2000-2d and Hill48 in biaxial and plane strain 

conditions, respectively. The dependence of the Hill48 yield function on the r-values 

causes significant variations in the relative error as a function of strain rate for both 

biaxial and plane strain conditions. Hill48 introduces considerable errors in both biaxial 

tension (     ) and in plane strain (     ) for this AA5182-O sheet. However, it 

is well known that Hill48 is unable to accurately predict the behaviour of aluminum 

alloys. 

 

 

 

 

Figure 6-12. Predicted effective plastic strain for AA5182-O using Yld2000-2d and Hill48 yield 

functions; a) biaxial, b) plane strain and c) relative error 



196 

 

6.4.2 EHFF Results and discussion 

The EHFF simulation results presented here provide the first quantitative assessment of 

the effect of material anisotropy on the strain distribution in pulsed forming. The results 

outlined in this section show how important material anisotropy can be, particularly at 

moderate and high strain rate regimes. In order to provide a more comprehensive 

analysis, comparisons are made for two materials (DP600 and AA5182-O) and four 

different specimen geometries (uniaxial, intermediate draw, plane strain and balance 

biaxial tension, as shown in Figures 6-2 and 6-37).  

The measured major and minor strains, thickness and height of the deformed 

specimens are compared with the predicted results using isotropic (von Mises) and 

anisotropic (Yld2000-2d) yield functions. As mentioned in Section 6.2.2, EHFF 

specimens were prepared in such a way that the major strain in the gauge area was always 

parallel with the RD of the sheet. Therefore, the major strain measurements are parallel 

with the RD and minor strain measurements are parallel with the TD. The measured and 

predicted data are presented along a path at the centerline of the specimens (Figure 6.2) 

for all specimen geometries. 

Also, for a better understanding of the deformation history of the sheet during EHFF 

process, an element at the centre of the specimen (where the peak strain rate occurs) was 

selected to investigate the effect of anisotropy on the evolution of effective plastic strain 

and effective strain rate. It should be noted that the EHFF simulations predict the total 

duration of the forming process for all specimen geometries and for both sheet materials 

to be between     to       , which is in good agreement with the results reported by 

Gillard et al. (2013) and Golovashchenko et al. (2013). Detailed comparisons between the 

measured and predicted data for the two materials and four geometries are discussed in 

the following. 

6.4.2.1 DP600 uniaxial tension 

Figure 6-13a shows that the major strain predicted with both Yld2000-2d and von 

Mises are in a good agreement with the measurements. The major strain distribution and 

in particular the peak major strain (    ) in the gauge section are expected to be similar 
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for Yld2000-2d and von Mises because the simulations predicted the same maximum 

height (Figure 6-13d) when the same energy magnitude was applied. However, Figure 

6-13d shows that the predicted profile of the DP600 uniaxial specimen is slightly 

different than what is observed experimentally. The main reason for this discrepancy may 

be the different load distribution on the sheet during the forming, which is very complex 

due to the interaction of the narrow gauge section of the uniaxial specimen with the 

water. As mentioned before, the energy magnitude of the pulse was adjusted in such a 

way as to achieve the same measured maximum height. 

Figure 6-13b shows that the minor strains predicted using Yld2000-2d are within the 

range of experimental accuracy, but von Mises over-predicts the minor strains, in 

particular in the gauge section. The improvement in the prediction of minor strains with 

Yld2000-2d compared to those predicted with von Mises, also signifies that Yld2000-2d 

is able to more accurately predict the thickness distribution in the gauge section of the 

uniaxial specimen as can be seen in Figure 6-13c. Figure 6-14 shows the improved 

accuracy of Yld2000-2d more clearly in terms of the strain distribution in the uniaxial 

specimen. Results show that von Mises leads to an overestimation of the minor strain 

which causes the strain path to deviate from the actual strain measurements. However, 

when the anisotropy is taken into account, a more accurate minor strain and consequently 

a more accurate strain path is predicted for DP600 uniaxial specimen. Figure 6-15 shows 

the evolution of the predicted effective plastic strain and of the effective strain rate for an 

element at the centre of the gauge section (centre of the specimen). Results show 

approximately the same maximum effective plastic strain value (         ) using 

Yld2000-2d and von Mises. Also, the predicted effective strain rate histories show almost 

the same trend with a similar peak value (        ) for isotropic and anisotropic yield 

functions. The evolution of the plastic strain shows that almost the entire plastic 

deformation occurs substantially above the quasi-static strain rate regime during the 

EHFF process. This emphasizes the importance of considering the actual material 

anisotropy data at different levels of strain rate and of updating the anisotropy 

coefficients in this rate-dependent forming process. It should be mentioned that the 

results for the other EHFF specimen geometries also show that the majority of the plastic 

deformation occurs at intermediate and high strain rate regimes.  
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Figure 6-13. Measured and predicted data for DP600 uniaxial EHFF specimen;                         

a) major strain, b) minor strain, c) thickness and d) height  
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 Figure 6-14 Measured strain distribution and predicted strain path for an element at the centre 

of the gauge section for DP600 uniaxial EHFF specimen 

 

 

Figure 6-15. Effective plastic strain and effective strain rate histories for an element at the centre 

of the DP600 uniaxial EHFF specimen 
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6.4.2.2 AA5182-O uniaxial tension 

Figure 6-16a shows that the major strain predicted with Yld2000-2d and von Mises are 

in good agreement with the measurements (    ). Once again, the profile of the formed-

specimens predicted with both von Mises and Yld2000-2d are somewhat different than 

the experimental measurements (Figure 6-16d). Figure 6-16b shows that the minor strains 

predicted using Yld2000-2d are in good agreement with the measurements. However, 

similar to the DP600 uniaxial specimen, the von Mises yield function leads to an over-

prediction of the minor strains in the gauge section. Figure 6-16c shows an improvement 

in the predicted thickness distribution using Yld2000-2d. Compared to the results using 

von Mises, trends show that Yld2000-2d is able to more accurately reproduce the 

experimental measurements. Figure 6-17 shows that the strain path predicted using 

Yld2000-2d coincides well with the strain measurements on the as-formed specimen but 

the results predicted using von Mises show a substantial deviation from the 

measurements due to the over-prediction of minor strains.   

Figure 6-18 shows that the effective plastic strain predicted using Yld2000-2d (     

    ) is greater than that predicted using von Mises (    ) for an element at the centre of 

the gauge section, when the same amount of energy is applied in the simulations. Also, 

the effective strain rate histories predicted with both criteria are almost the same, and the 

peak strain rate is         . 
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Figure 6-16. Measured and predicted data for AA5182-O uniaxial EHFF specimen;                      

a) major strain, b) minor strain, c) thickness and d) height  
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Figure 6-17. Measured strain distribution and predicted strain path for an element at the centre 

of the gauge section for AA5182-O uniaxial EHFF specimen 

 

 

Figure 6-18. Effective plastic strain and effective strain rate histories for an element at the centre 

of the AA5182-O uniaxial EHFF specimen 
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6.4.2.3 DP600 intermediate draw 

Figure 6-19a shows that the major strain distributions predicted with Yld2000-2d and 

von Mises follow the same trend as the measured strains. Results show that Yld2000-2d 

(    ) predicts a slightly greater major strain in the centre of the gauge section than von 

Mises. Similar to the uniaxial case, von Mises over-predicts the minor strain in the gauge 

section of the DP600 intermediate draw specimen, whereas results obtained with 

Yld2000-2d show very good agreement with the measurements both in terms of the trend 

and the magnitude along the entire path, as shown in Figure 6-19b. Figure 6-19c shows 

the ability of Yld2000-2d to accurately predict the thickness distribution and the 

minimum thickness (        ) in the gauge section, whereas von Mises underestimates 

the minimum thickness (        ), which is consistent with the over-prediction of the 

minor strain.  

Compared to the case of uniaxial tension which showed a discrepancy between the 

predicted and measured height distributions, the predicted and measured profiles are very 

similar along the entire centreline of the DP600 intermediate draw specimen, as can be 

seen in Figure 6-19d. Figure 6-20 shows substantial deviation in the strain path predicted 

with von Mises due to the over-prediction of the minor strains in the gauge section of the 

intermediate draw specimen. But good agreement can be seen between the measurements 

(final achieved strains across the specimen) and the strain path predicted with Yld2000-

2d at the centre of the specimen, which is due to the improved prediction of the minor 

strain with Yld2000-2d. 

Figure 6-21shows that, similar to the uniaxial case, almost the entire plastic 

deformation occurs at intermediate and high strain rate regimes. Results show that for 

almost the same maximum height of the deformed specimen, Yld2000-2d predicts a 

slightly greater final effective plastic strain (     ) than the von Mises (     ) for an 

element at the centre of the gauge section. And maximum effective strain rate predicted 

with Yld2000-2d is greater (        ) than the value predicted with von Mises 

(        ). 
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Figure 6-19. Measured and predicted data for DP600 intermediate draw EHFF specimen;         

a) major strain, b) minor strain, c) thickness and d) height  
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Figure 6-20. Measured strain distribution and predicted strain path for an element at the centre 

of the gauge section for DP600 intermediate draw EHFF specimen 

 

 

Figure 6-21. Effective plastic strain and effective strain rate histories for an element at the centre 

of the DP600 intermediate draw EHFF specimen 

  



206 

 

6.4.2.4 AA5182-O intermediate draw 

Figure 6-22a shows that Yld2000-2d predicts a slightly greater major strain in the 

gauge section (    ) than von Mises (     ) for the AA5182-O intermediate draw 

specimen. Figure 6-22b shows a significant difference between the results predicted with 

Yld2000-2d and von Mises. Compared to the DP600 intermediate draw specimen this 

discrepancy is more significant due to greater value of Yld2000-2d exponent chosen for 

aluminum alloys (   ) compared to that for steels (   ). Von Mises results show a 

substantial deviation of the predicted minor strain in the gauge section compared to the 

measurements, but Yld2000-2d can be seen to predict the minor strains in the 

intermediate draw specimen much more accurately. Figure 6-22c shows that von Mises 

underestimates the thickness distribution, whereas thickness distributions predicted with 

Yld2000-2d show very good agreement with the measurements, especially in the gauge 

section of the AA5182-O intermediate draw. 

In contrast with the DP600 intermediate draw, the height distribution predicted by both 

Yld2000-2d and von Mises deviates somewhat from the measurements, as shown in 

Figure 6-22d. Also, this figure shows that, compared to the Yld2000-2d, the von Mises 

underestimates the maximum height under the same applied energy magnitude. Figure 

6-23 shows that when von Mises is used the predicted strain path is very different from 

the strain distribution that is actually measured. In contrast, the strain path predicted by 

Yld2000-2d is in a good agreement with the principal strains measured across the 

AA5182-O intermediate draw specimen. This good correlation is particularly highlighted 

in the gauge section which undergoes greater minor and major strains, which is the region 

of interest in the specimen. Figure 6-24 shows approximately the same maximum 

effective strain rate (        ) is predicted by both Yld2000-2d and von Mises for an 

element in the centre of the gauge section. 
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Figure 6-22. Measured and predicted data for AA5182-O intermediate draw EHFF specimen;   

a) major strain, b) minor strain, c) thickness and d) height  
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Figure 6-23. Measured strain distribution and predicted strain path for an element at the centre 

of the gauge section for AA5182-O intermediate draw EHFF specimen 

 

Figure 6-24. Effective plastic strain and effective strain rate histories for an element at the centre 

of the AA5182-O intermediate draw EHFF specimen 

 

6.4.2.5 DP600 plane strain 

Figure 6-25a shows that the predicted major strains are greater than the measured 

major strain (   ) in the gauge of the DP600 plane strain EHFF specimen. This 

discrepancy is particularly significant for results predicted with Yld2000-2d (0.275). The 

main reason for this could be that the biaxial r-values (at various strain rates) were 

calculated based on Yld96 rather than measured experimentally. Also, another reason 

could be that the biaxial work hardening was assumed to remain constant for all strain 
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rates; however, it would be certainly be preferable to obtain the experimental biaxial flow 

stress at different strain rates, and in particular at high strain rates (above         ) to be 

able to improve the predictions. Figure 6-25b shows that both Yld2000-2d and von Mises 

predict minor strains that are near zero, which is in good agreement with the 

measurements in the gauge section of the DP600 plane strain specimen. Results show that 

Yld2000-2d over-predicts the absolute minor strain in the gauge section, which is no 

doubt related to the over-prediction of the major strain. The deviation of the minor strain 

from the experiment would no doubt be improved if the experimental biaxial r-value and 

flow stress could be obtained at high strain rates. Figure 6-25c shows that Yld2000-2d 

predicts a greater absolute minimum thickness than von Mises. The predicted trend for 

both Yld2000-2d and von Mises follows the measured thickness distribution accurately 

along the entire path. But, the over-prediction of the thickness by Yld2000-2d is 

attributed to the prediction of greater major strains in the gauge section of the DP600 

plane strain specimen.  

Although a greater major strain was predicted by Yld2000-2d, both Yld2000-2d and 

von Mises show similar height distributions both in terms of trend and peak values, 

which are in very good agreement with the measurements, as can be seen in Figure 

6-25d. Predicting greater major and minor strains in the gauge section of the DP600 plane 

strain specimen with Yld2000-2d compared to the measurement with exactly the same 

height distribution may signify that, the biaxial r-value has a more significant effect than 

the biaxial flow stress in the prediction of the deformation distribution and history. Figure 

6-26 shows that the strain path predicted with Yld2000-2d slightly deviates from the 

measurements, which is due to the over-prediction of the absolute minor strains in the 

gauge area. As mentioned before, obtaining the biaxial experimental r-value at high strain 

rate would likely help to improve the strain path prediction. Figure 6-27 shows the same 

trends for the effective strain rate predicted by both Yld2000-2d and von-Mises. 

However, Yld2000-2d over-predicts both the effective plastic strain (   ) andthe 

maximum effective strain rate (        ) in the centre of the gauge area compared to the 

effective plastic strain (    ) and the peak effective strain rate (        ) predicted with 

von Mises. 
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Figure 6-25. Measured and predicted data for DP600 plane strain EHFF specimen;                   

a) major strain, b) minor strain, c) thickness and d) height  
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Figure 6-26. Measured strain distribution and predicted strain path for an element at the centre 

of the gauge section for DP600 plane strain EHFF specimen 

 

 

Figure 6-27. Effective plastic strain and effective strain rate histories for an element at the centre 

of the DP600 plane strain EHFF specimen 
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6.4.2.6 AA5182-O plane strain 

Figure 6-28a shows that both the general trend and the peak value of the major strain 

distribution in the AA5182-O plane strain specimen are well predicted with both 

Yld2000-2d and von Mises. It can be seen that a slightly greater peak major strain is 

predicted with Yld2000-2d compared to that predicted with von Mises. This could be due 

to the greater maximum height (       ) predicted with Yld2000-2d compared to von 

Mises (       ) with the same energy magnitude (Figure 6-28d). 

Figure 6-28b shows that Yld2000-2d predicts an almost zero minor strain in the gauge 

area of the AA5182-O plane strain specimen, which is in very good agreement with the 

measured data. It should be noted that von Mises leads to a predicted minor strain 

distribution that is in better agreement with the measurements across the entire specimen. 

However, Figure 6-28c shows that the absolute minimum thickness predicted with 

Yld2000-2d in the centre of the gauge area is in better agreement with the measurements 

than that predicted with von Mises. Von Mises underestimates the absolute minimum 

thickness which is consistent with the prediction of a lower maximum height (Figure 

6-28d) and a greater absolute minor strain value compared to those predicted with 

Yld2000-2d. Figure 6-28d shows that the height profile predicted with Yld2000-2d is in 

good agreement with the measurement, however the maximum height predicted with von 

Mises is lower than the measured height across the centre profile of the specimen. Figure 

6-29 shows the experimentally measured strains in the AA5182-O plane strain specimen 

and the predicted strain paths at the centre of the gauge area: a comparison of the 

experimental strain data and the predicted strain paths shows the ability of Yld2000-2d to 

accurately describe the behaviour of AA5182-O sheet material when it is deformed in 

plane strain in EHFF. The strain path predicted by von Mises for an element at the centre 

of the gauge section shows a significant deviation from the maximum strains measured in 

the specimen.  

 Figure 6-30 shows that Yld2000-2d and von Mises predict approximately the same 

effective plastic strain. Also, Yld2000-2d predicts a slightly greater maximum effective 

strain rate (        ) compared to von Mises (        ). 
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Considering these simulation results, it appears that Yld2000-2d shows a better 

prediction of EHFF in the plane strain condition for AA5182-O than for DP600. There 

may be two reasons for this: first, an exponent of   is generally used for aluminum alloys 

compared to an exponent of   for steels in Yld2000-2d, which leads to a greater 

discrepancy between the plane strain results predicted with Yld2000-2d and those with 

von Mises in the case of AA5182-O than for DP600. This greater discrepancy can be 

seen by comparing the flow surfaces of DP600 and AA5182-O in Figure 4-33 and Figure 

4-35, respectively. Another reason that the predictions for AA5182-O are in better 

agreement with the measurements in the plane strain condition is that, both the r-values 

and flow stresses of AA5182-O are almost strain rate insensitive, whereas they are rate-

dependent in the DP600. It was not possible to obtain the biaxial flow stresses and r-

values experimentally at different strain rates, and in particular for strain rates above 

        , and the biaxial flow stresses were calculated for higher strain rates by 

assuming a similar work hardening behaviour for every level of strain rate). It is not 

surprising therefore, that the greater discrepancy was obtained for the DP600 sheet 

material. 
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Figure 6-28. Measured and predicted data for AA5182-O plane strain EHFF specimen;                  

a) major strain, b) minor strain, c) thickness and d) height  
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Figure 6-29. Measured strain distribution and predicted strain path for an element at the centre 

of the gauge section for AA5182-O plane strain EHFF specimen 

 

Figure 6-30. Effective plastic strain and effective strain rate histories for an element at the centre 

of the AA5182-O plane strain EHFF specimen 

 

6.4.2.7 DP600 Biaxial 

Figure 6-31a shows that the major strain distribution predicted with Yld2000-2d 

coincides very well with the measurements across the entire DP600 biaxial specimen, 

with a maximum major strain of     at the centre of the specimen. For the same amount 

of energy, von Mises over-predicts the major strain distribution with a maximum value of 

     , which is due to the fact that von Mises predicts a lower biaxial flow stress 

compared to Yld2000-2d, as can be seen in Figure 4-33. Figure 6-31b shows that the 

measured minor strains are slightly lower than the major strains across the entire 
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specimen. Similar to the major strain, the minor strains predicted with Yld2000-2d are in 

good agreement with the measurements, whereas von Mises over-predicts the minor 

strains. The comparison of the measured and predicted thickness distributions shows the 

capability of Yld2000-2d to accurately capture both the trend and the absolute minimum 

value of the thickness, however von Mises over-predicts the absolute minimum thickness 

value near the apex of the deformed specimen, as can be seen in Figure 6-31c. The 

discrepancy between the thickness measurements and those predicted with von Mises is 

consistent with the previous observation that von Mises over-predicts both major and 

minor strains.  

Figure 6-31d shows that von Mises over-predicts the maximum height of the DP600 

biaxial specimen (       ) compared to that predicted with Yld2000-2d (       ) 

with the same energy magnitudes. This difference is associated with lower biaxial flow 

stress in von Mises compared to Yld2000-2d, which causes the material to flow faster 

using von Mises and results in greater major and minor strains compared to Yld2000-2d. 

Once again, the prediction of specimen height using Yld2000-2d correlates very well 

with the experimental height measurements on the DP600 biaxial EHFF specimen. As 

expected for the biaxial tension case, Figure 6-32 shows a proportional biaxial strain path 

predicted by both von Mises and Yld2000-2d for an element at the centre of the 

specimen. Comparison between the predicted strain paths and the maximum measured 

strain values (measured near the apex of the specimen) confirms the accuracy of the 

predicted strain path.  

Figure 6-33 shows that von Mises predicts a greater effective plastic strain (    ) than 

Yld2000-2d (     ) in the centre of the DP600 biaxial EHFF specimen: this is around 

    greater. This can be expected due to the over-prediction of major and minor strains 

with von Mises. As a consequence of predicting a greater effective plastic strain for the 

same energy level, von Mises also predicts a much greater maximum effective strain rate 

(        ) compared to Yld2000-2d (        ). The greatest strain rate was reached in 

the centre of the DP600 biaxial specimen towards the end of the EHFF process, which is 

in good agreement with the dynamic mechanism of pulsed forming of circular 

membranes discussed by Hudson (1951) and Golovashchenko et al. (2011a).  



217 

 

 

 

 

 

 
Figure 6-31. Measured and predicted data for DP600 biaxial EHFF specimen;                              

a) major strain, b) minor strain, c) thickness and d) height  
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Figure 6-32. Measured strain distribution and predicted strain path for an element at the centre 

of the DP600 biaxial EHFF specimen 

 

 

Figure 6-33. Effective plastic strain and effective strain rate histories for an element at the centre 

of the DP600 biaxial EHFF specimen 
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6.4.2.8 AA5182-O Biaxial 

Figure 6-34a shows a reasonably good agreement between the measured major strain 

distribution and the major strains predicted with Yld2000-2d and von Mises (    ), 

although the predicted peak major strains are slightly greater than the measured peak 

major strains in the gauge area. The difference between the major strains predicted by 

Yld2000-2d and von Mises is very small, due to the similar biaxial flow stress for 

AA5182-O at various strain rates and in particular at         , which can be seen in 

Figure 4-35. Comparison of Figure 6-34a and Figure 6-34b shows that the measured 

minor strains are somewhat lower than the measured major strains in the centre of the 

specimen, whereas the predicted major and minor strains at the apex of the specimen are 

very similar. The difference between the measured major and minor strains in AA5182-O 

could be related to the unsymmetrical pressure distribution on the specimen during the 

EHF forming process, which results in the deviation of the strain path from the 

equibiaxial condition.  

 Figure 6-34c shows that the predicted thickness distribution coincides very closely 

with the measurements across the entire specimen. Results show almost the same 

thickness distributions are predicted by both Yld2000-2d and von Mises, because the 

predicted major and minor strains are similar. Figure 6-34d shows that both Yld2000-2d 

and von Mises predict similar height distributions that are in good agreement with the 

measurements. Figure 6-35 shows a proportional equibiaxial strain path predicted by both 

Yld2000-2d and von Mises. Comparison of the measured major/minor strains across the 

DP600 and AA5182 biaxial specimens, shows a greater deviation from the equibiaxial 

condition at the apex of the AA5182-O specimen compared to the DP600 specimen. 

Figure 6-36 shows that both Yld2000-2d and von Mises predict almost the same effective 

plastic strain (     ) and effective strain rate (        ), both in terms of the general 

trend and peak values for an element at the centre of the specimen. This might have been 

expected for AA5182-O due to the similarity of the biaxial flow curves at various strain 

rates. 
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Figure 6-34. Measured and predicted data for AA5182-O biaxial EHFF specimen;                        

a) major strain, b) minor strain, c) thickness and d) height  
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Figure 6-35. Measured strain distribution and predicted strain path for an element at the centre 

of the AA5182-O biaxial EHFF specimen 

 

 

Figure 6-36. Effective plastic strain and effective strain rate histories for an element at the centre 

of the AA5182-O biaxial EHFF specimen 
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In order to visualize the final deformed part for the four EHF specimen geometries, the 

effective plastic strain contours of DP600 predicted by Yld2000-2d are shown in Figure 

6-37. Results indicate that the strain localization occurs in the centre of the gauge section 

far from the free edges for all specimen geometries. This confirms that the specimen 

designs were effectively optimized and the experimental measurements are reliable.  

 

 

Figure 6-37. Effective plastic strain contours predicted by Yld2000-2d for DP600;                      

a) uniaxial, b) intermediate draw, c) plane strain and d) biaxial 

 

6.4.3 EHDF Results 

In contrast with the EHFF process and with conventional sheet metal forming 

operations, EHDF is a rather complex forming process due to the dynamic sheet/die 

interaction.  In order to account for the coining effect and to more accurately predict the 

deformation history when the sheet hits the die, it is necessary to employ solid elements 

in order to model the sheet in EHDF. It should also be noted that all simulations of EHDF 

were performed with either von Mises (3D) or Yld2004-18p (3D) yield criteria. And in 
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order to better understand the nature of the deformation process occurring during the 

EHDF and especially the role of anisotropy in die-formed specimens, the histories of 

major/minor strains, shear strain, effective plastic strain, effective strain rate and 

minimum principal stress were extracted from the FE simulations. An element on the 

outer surface of the sheet near the apex of the specimen and that has a direct contact with 

the die (     from the centre of the specimen) was selected since it experiences the 

maximum instantaneous strain rate and all the histories were reported for this element. 

Figure 6-38a shows that with the same energy magnitude, von Mises over-predicts the 

peak major strain (     ) compared to Yld2004-18p (    ). This over-prediction occurs 

because the von Mises biaxial flow stress is lower than that predicted with Yld2004-18p, 

as can be seen in Figure 4-33. A similar result was observed for the DP600 biaxial 

specimen in EHFF. Also, Yld2004-18p predicts a greater peak major strain (    ) at the 

centre of the sheet, compared to the measured maximum major strain (   ). This 

discrepancy is partly due to experimental uncertainty since the strains near the apex of the 

deformed specimen were very difficult to measure because the friction of the sheet 

against the die mostly erased the grid from the surface of the sheet. Figure 6-38b shows 

that the measured minor strains are lower than the measured major strains (Figure 6-38a) 

in the apex region. The peak minor strain predicted with Yld2004-18p (     ) is in good 

agreement with the measured peak minor strain, however von Mises over-predicts the 

peak minor strain (     ), which is again associated with the lower biaxial flow stress for 

von Mises compared to Yld2004-18p (Figure 4-33). It should be noted that the 

measurements show that maximum major and minor strains are concentrated rather 

closely to the apex area, with a rather substantial strain gradient in the radial direction. 

Figure 6-38c shows predicted and measured height profiles that are very similar, with 

the same maximum height (       ). This is to be expected because the sheet 

deformation is constrained by the conical die. Simulation results also show that the 

predicted height distribution shows a slight rebounding somewhere between the apex and 

the entry radius. This could be a consequence of using rigid tools in the FE model which 

results in over-prediction of the contact stresses resulting from the sheet/die dynamic 

interaction. It should be noted that even when rigid parts are used, the computation time 
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is very expensive for EHDF simulations. Therefore, implementing a non-rigid die in the 

simulation would significantly increase the computation time and was not practical for 

this investigation. 

 

 

 

 

 

Figure 6-38. Measured and predicted data for DP600 in EHDF;                                                   

a) major strain, b) minor strain and c) height  
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Figure 6-39 shows the strain path predicted by Yld2004-18p and von Mises for an 

element that initially lies      from the centre of the specimen. As mentioned before, 

this location was selected because this is where the maximum effective strain rate and 

consequently the greatest through-thickness stress were predicted. The predicted strain 

paths for both yield functions show a sudden increase in the major strain just after the 

sheet contacts the die. Yld2004-18p shows an incremental increase in major strain of 

     (from      to     ), while von Mises shows an incremental increase of      (from 

     to     ). The sudden increase in major strain while the minor strain remains almost 

constant, causes an abrupt change in strain path from biaxial tension to plane-strain 

tension when the sheet contacts the die. This effect is predicted by both Yld2004-18p and 

von Mises. Also, this effect can be seen in the experimental work that was reported by 

Balanethiram and Daehn (1992) and by Ilinich et al. (2011). This change in strain path is 

accompanied by a remarkable change in the stress state in the sheet at the locations that 

contact the die (Figure 6-41). In the analysis of the EHDF process, it is essential therefore 

that the effects of non-linear strain path be considered when interpreting the material 

formability. Results for the selected element show that around     (predicted by both 

Yld2004-18p and von Mises) of the total major strain (or     of the effective plastic 

strain as shown in Figure 6-40) occurs when the sheet material is subject to a proportional 

biaxial strain path before it contacts the die. Since, most of the plastic deformation in 

EHDF occurs under very similar condition as biaxial EHFF for. 
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Figure 6-39. Measured strain distribution and predicted strain path for an element at 5mm 

distance from the centre of DP600 specimen in EHDF 

Similar to DP600 biaxial EHFF, Figure 6-40 shows that von Mises predicts a greater 

effective plastic strain (    ) than Yld2004-18p (    ). This discrepancy (around 14%) is 

associated with the lower biaxial flow stress predicted by von Mises compared to 

Yld2004-18p (Figure 4-33). Both Yld2004-18p and von Mises predict that at the time of 

impact there is a substantial increase of effective plastic strain, which coincides with the 

generation of a very high strain rate and compressive through-thickness stress. The 

effective plastic strain history for the selected element predicted with Yld2004-18p shows 

an incremental increase of       (from       to     ), while von Mises predicts an 

incremental increase of      (from      to     ) when the sheet impacts the die. This 

indicates that a significant amount of plastic deformation (around     effective plastic 

strain) occurs immediately after the sheet contacts the die. 

Also, Figure 6-40 shows that both Yld2004-18p and von Mises predict a remarkable 

increase in the effective strain rate at the moment when the selected element in the sheet 

impacts the die. This phenomenon is rather localized, when compared to the area of 

maximum strain rate in EHFF (Figure 6-33). Yld2004-18p and von Mises predict a 

maximum effective strain rate of approximately 16,300 s
-1

 and 20,800 s
-1

, respectively. 

The discrepancy between the Yld2004-18p and von Mises is related to the difference in 
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the biaxial flow stresses in these two yield functions. The lower biaxial flow stress 

predicted by von Mises allows the material to flow faster compared to the Yld2004-18p 

when subjected to the same energy magnitude. The predicted maximum instantaneous 

effective strain rates are in good agreement with the results reported by Golovashchenko 

et al. (2013) for the same sheet material and conical die, even though the chamber shape 

and volume were different. More details on the effect of different process parameters on 

the effective strain rate can be found in a paper published by the author (Hassannejadasl 

et al., 2014). Also, it should be noted that the total deformation time predicted by 

Yld2004-18p is around       , which correlates quite well with the results (      ) 

reported by Gillard et al. (2013) for the same conical die but using a different chamber. 

The predictions indicate that the sheet material in EHDF can reach deformation rates at 

which the constitutive behaviour of the material is not known. i.e. results show that at 

least     of the plastic deformation can occur at strain rates that exceed           . 

The predicted strain rates are substantially greater than those observed in conventional 

metal forming or even EHFF, and are well above the rates (         ) at which the split 

Hokinson bar tests were conducted in this work. Therefore, for more accurate prediction 

of the sheet deformation in EHDF, the mechanical properties and work hardening 

behaviour of the desired alloys should be determined at these strain rates. 

 

 

Figure 6-40. Effective plastic strain and effective strain rate histories for an element at 5mm 

distance from the centre of DP600 specimen in EHDF 
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Significant through-thickness compressive and shear stresses are generated as a result 

of the dynamic sheet/die interaction. These stresses induce a unique deformation mode in 

the sheet material and are recognized as the main mechanistic factors that are responsible 

for the formability improvement (Imbert et al., 2005, Golovashchenko et al. 2011a and 

2011b). Figure 6-41shows the generation of a large through-thickness compressive stress 

just after the sheet impacts the die. It appears that the maximum absolute through-

thickness compressive stress predicted with von Mises (        ) is greater than that 

predicted with Yld2004-18p (        ), which is due to the greater maximum 

effective strain rate predicted by von Mises when the sheet hits the die (Figure 6-40). 

This through-thickness compressive stress causes a change in the stress triaxiality, and 

consequently affects the formability of the material. 

Balanethiram and Daehn (1994a and 1994b) reported the first analysis of the sheet/die 

dynamic interaction in high speed metal forming, and showed that a significant 

compressive through-thickness stress can be generated, resulting in so called “inertial 

ironing effect”. Later on, Golovashchenko (1999) reported compressive through-

thickness stresses on the order of the material yield stress from electromagnetic tube 

forming simulation. More recently, Imbert et al. (2005, 2011) completed numerical 

investigations in electromagnetic forming and suggested that the generated through-

thickness compressive and shear stresses at very high strain rates produce the observed 

increased formability. Imbert showed that the large compressive through-thickness stress 

that is suddenly generated can suppress void growth and coalescence, thus increasing 

formability, which is also suggested in the comprehensive review of Lewandowski and 

Lowhaphandu (1998). Simulations of the EHDF process showed that the compressive 

through-thickness stress magnitude strongly depends on the constitutive material model, 

die geometry and the energy magnitude. A correct calculation of the trend and magnitude 

of the contact stress is important in order to accurately predict the damage accumulation 

behaviour. More details on the effect of compressive through-thickness stress on the 

damage accumulation in EHDF using isotropic yield function (von Mises) was reported 

by the author (Hassannejadasl et al., 2014). 
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In addition to the significant through-thickness compressive stress, large through-

thickness shear stresses are also generated which result in significant through-thickness 

(out-of-plane) shear that contribute to the overall plastic deformation of the material. 

Figure 6-41 shows that the greatest through-thickness shear strain is reached at, or just 

after, impact. von Mises predicts a larger absolute value of the through-thickness shear 

strain (0.175) than Yld2004-18p (0.153), which again may be due to the prediction of a 

greater effective strain rate with von Mises compared to Yld20004-18p, when the sheet 

hits the die. The amount of through-thickness shear strain predicted with Yld2004-18p 

represents approximately     of the major strain (    ), which indicates that the 

through-thickness shear stress makes a considerable contribution to the plastic 

deformation in EHDF. 

 

 

Figure 6-41. Shear strain and minimum principal stress histories for an element at 5mm distance 

from the centre of DP600 specimen in EHDF 

Figure 6.42 shows the evolution of the pressure distribution within the chamber due to 

wave propagation through the water when the energy is released from a spherical volume 

that is equivalent to the plasma channel in the actual EHF process. Results show a 

spherical wave propagation shape at the very beginning of the process, before the 

pressure wave reaches the bottom surface of the rigid chamber. As the pressure wave 

evolves and reflects off the chamber wall, a very complex and discontinuous wave 

propagates through the water towards the sheet and drives the sheet into the die cavity by 

dynamic forces. The maximum predicted pressure is around        , which is 
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somewhat greater than the maximum value (       ) reported by Golovashchenko et al 

(2013). The difference could be due to the different methodologies used by the author 

(who used the ignition-and-growth model in ABAQUS/Explicit) and Golovashchenko et 

al. (who used the energy leak model in LS-DYNA) to simulate the pressure pulse in 

EHDF. However, regarding the maximum predicted effective strain rate and the total 

deformation time, the overall deformation histories predicted by the two authors are in 

good agreement, which confirms the reliability of the FE model created by the author. 

6.4.4 Experimental and numerical energy 

In order to provide a more complete comparison between the energy that was applied 

in EHFF and EHDF laboratory tests and that which was applied in the corresponding 

numerical simulations, both sets of input energy are presented in Table 6.2 and Table 6.3 

for DP600 and AA5182-O, respectively. The experimental energy at the chamber was 

calculated by Maris (2014) based on the voltage differential measured across the 

electrodes using a voltage probe and also based on the current measured using a 

Rogowski coil that was coiled around the busbar leading in to the chamber (please see 

Maris, 2014, for more details). In comparison with the experimental input energy 

required to form a safe specimen, the energy ratios show that more energy is required in 

the EHF simulations to reach to the same maximum height as the experiment for both 

DP600 and AA5182-O. This indicates that despite the effort to model the physics of the 

EHF process, the equivalency of the energy is still very challenging. One main reason 

could be due to different techniques used to model the EHF process. However, a 

reasonable correlation between the experimental and numerical applied energies can be 

seen for each case. It should be noted that some portion of the error should be attributed 

to the experimental measurements, since a substantial variation and loss of energy can 

exist, as reported by Maris (2014). 
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Figure 6-42. Pressure distribution history through the water during EHDF                                    

(pressure unit in GPa) 
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Table 6.2. DP600 experimental and numerical input energy 

Condition Geometry 

Experimental 

input energy 

(kj) 

Numerical 

applied energy 

(kj) 

Ratio of the 

energy 

EHFF 

Uniaxial 5 9.9 1.98 

Intermediate Draw 3.2 5.6 1.75 

Plane strain 2.9 4.5 1.55 

Biaxial 4.3 7.2 1.67 
 

   
 

 
   

 

EHDF Biaxial 3.5 5.7 1.63 

 

Table 6.3. AA5182-O experimental and numerical input energy 

Condition Geometry 

Experimental 

input energy 

(kj) 

Numerical 

applied energy 

(kj) 

Ratio of the 

energy 

EHFF 

Uniaxial 2.1 4.05 1.93 

Intermediate Draw 1.1 1.97 1.79 

Plane strain 0.95 1.43 1.51 

Biaxial 1.25 1.95 1.56 

 

6.4.5 Computation time 

One important aspect of the advanced material models that are developed for more 

effective simulations of sheet metal forming is the computation time. In fact, some 

advanced micro- and macro- constitutive models have been developed which are able to 

predict the elasto-plastic behaviour of sheet metals very well, but the expensive 

computation time is a significant disadvantage. Computation times for EHFF simulations 

for different geometries with von Mises and Yld2000-2d yield function in conjunction 

with rate-dependent KHL hardening model are shown in Figure 6-43. All simulations 

were performed under the same conditions (except for the geometry of the specimen) 

with the same computer which had 8 CPUs (2.8 GHz). For all specimen geometries in 

EHFF simulations the computation time using Yld2000-2d was much greater than when 

von Mises was used, which means that the more accurate computation comes at a cost. 
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The main reason is the non-quadratic nature of Yld2000-2d and the large number of first 

and second derivatives which need to be computed for the implicit integration scheme 

and that substantially increase the computation time compared to the isotropic function. It 

should be mentioned that using a rate-dependent hardening model and updating the 

anisotropy coefficients w.r.t. strain rate in every iteration is another reason the 

computation time increased in these EHF simulations. On average, Yld2000-2d requires 

more than    times more computation time than von Mises in order to simulate EHFF. 

 

 

Figure 6-43. Computation times for EHFF simulations 

In the EHDF simulation, the computation time is further increased because solid 

elements are used to model the sheet. The EHDF model based on the von Mises yield 

function required around 19 hours to simulate the complete forming process, while it took 

about 283 hours (around 12 days) when using Yld2004-18p. The time and memory 

required to simulate an industrial scale EHDF process is almost unaffordable due to the 

fine mesh of solid elements (in particular out-of-plane refined elements), the very large 

first and second derivatives required for Yld2004-18p, the rate-dependent hardening 

model and the updating of anisotropy coefficients. However, since the main goal of the 

EHDF modeling was to understand the role of anisotropy at high strain rate regimes for 

only one particular material and geometry, the computation time was acceptable for this 

research project.  
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7 Overall Summary and Conclusions 

 

 

 

7.1 Summary  

In this work, the mechanical properties (including flow stresses and r-values) of three 

sheet materials (DP600, TRIP780, and AA5182-O) were obtained at different strain rates 

(                    and         ) under uniaxial tension (in the rolling, diagonal, 

and transverse directions) and biaxial tension conditions. Several anisotropic yield 

functions such as Hill48, Hill90, Barlat89, Yld96, Yld2000-2d, and Yld2004-18P were 

calibrated at each level of strain rate. Using the mechanical properties, a comprehensive 

study was then carried out to evaluate the effect of strain rate on the flow surface shape 

for each yield function and at each level of strain rate. Furthermore, in order to capture 

the hardening behaviour of the materials, three different rate-dependent hardening models 

(Johnson-Cook, JC; Khan-Huang-Liang, KHL; and Surajit Kumar Paul, SKP) were also 

calibrated. 

After a thorough review of different constitutive models, several associative rate-

dependent anisotropic material models (for plane and general stress conditions) were 

developed. The material models which feature both the updating of anisotropic yield 

functions, (the anisotropy coefficients are updated according to strain rate) and rate-

dependent hardening model, were developed to predict both anisotropic and rate-

dependent hardening characteristics as accurately as possible. The anisotropy coefficients 

were updated for the current instantaneous strain rate, by using 4th-order strain rate 

dependent polynomial functions instead of the initial constant anisotropy coefficients.  

Among all the anisotropic yield functions and hardening models, Yld2000-2d (for 

plane stress conditions in EHFF) and Yld2004-18p (for general stress conditions in 

EHDF) were selected with the KHL hardening model to simulate the behaviour of the 
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sheet materials in these high energy forming processes. Finally, an implicit (Euler 

backward) integration algorithm, using the multi-step return mapping method, was used 

to develop the rate-dependent constitutive material models. The developed models were 

implemented as user-defined material subroutines (VUMATs) for ABAQUS/Explicit 

code to simulate EHFF and EHDF processes. EHF simulations were carried out for 

different forming conditions, using Eulerian elements to model the water and space 

between the sheet and the die, and the ignition-and-growth model as an equivalence for 

the generation of the pressure pulse. The EHFF process was simulated for four different 

specimen geometries (representing four different strain paths; uniaxial, intermediate 

draw, plane strain and biaxial tension), for both DP600 and AA5182-O sheet materials. 

Also, the EHDF process using a conical die was simulated for DP600 to investigate the 

role of anisotropy when the sheet undergoes substantial through-thickness compressive 

and shear stresses (general stress state).  

7.2 Conclusions 

The following conclusions can be drawn from this work: 

7.2.1  Material characterization tests 

 Uniaxial tensile tests for a wide range of strain rate (                      and 

        ) at room temperature show a significant strain-rate sensitivity in all 

three material orientations (RD, DD, and TD) for DP600 and TRIP780. In 

contrast, AA5182-O exhibits a near-zero or a small negative strain-rate 

sensitivity. A slight decrease of the work hardening rate can be seen with the 

increase of strain rate in some cases in certain directions. 

 

 The flow stress ratio w.r.t. strain rate plots for DP600 and TRIP780, show a slight 

continuous decrease in the flow stress with increasing strain rate. i.e., the 

anisotropy effect associated with the flow stress decreases with increasing strain 

rate. The r-value shows random changes w.r.t. strain rate for the three 

aforementioned materials, which makes it hard to draw a general conclusion 
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regarding the effect of strain rate on the anisotropy behaviour associated with the 

r-value. 

7.2.2  Yield function and hardening model calibration 

 A calibration procedure was developed to determine the anisotropy parameters in 

various yield functions which considers the variation of flow stresses in uniaxial 

and biaxial tension. The anisotropy parameters were calibrated for each level of 

strain rate by using the uniaxial and biaxial flow stress ratios after a certain 

amount of strain, when they have reached stable values. Results showed that this 

procedure is very reasonable, since EHF simulations typically lead to large 

deformations across a wide range of strain rates. 

 Results show that among all the hardening models considered, the KHL model is 

better able to capture the response of DP600 and TRIP780 in RD for the entire 

range of examined strain rates. 

7.2.3 Effect of Updating anisotropy coefficients on the flow surface 

 Results shows that Hill`s family of yield functions are not able to accurately 

reproduce the variation of the experimental flow stresses and the r-value for any 

of these sheet materials. However, among all Hill`s yield functions, it was shown 

that the flow stress and r-value directionalities are best described by Hill90-stress 

for the entire range of strain rates and for all three materials. 

 

 Results for Barlat`s family of yield functions shows that Yld2000-2d and 

Yld2004-18p are able to reproduce both the flow stress and r-value anisotropies 

for the entire range of strain rates and for all three materials, although Barlat89 

underestimates the associated anisotropy values. The strong performance of 

Yld2000-2d and Yld2004-18p is associated with their formulations, which are 

based on two linear transformations as well as their unique calibration procedures. 

 

 By comparing the quasistatic and updated flow surfaces predicted by Yld2000-2d, 

results show a considerable effect of updating anisotropy coefficients in the 

biaxial stress state of DP600 and TRIP780 for a strain rate of         . For 
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almost all strain rates, the difference between the updated and quasistatic flow 

surfaces of DP600 is more significant as the value of the shear stress increases, 

whereas the difference remains constant for TRIP780 for almost all strain rates. In 

contrast with DP600 and TRIP780, almost no difference in the quasistatic and 

updated predicted flow surfaces of AA5182-O is seen with Yld2000-2d, due to 

the strain-rate insensitivity of this aluminum alloy for the examined range of 

strain rates. 

 

 The comparison between the flow surfaces predicted with Hill48-r.value and the 

experimental data shows the inability of Hill48 to accurately capture the 

anisotropic data for all three materials at various strain rates. For the DP600 and 

TRIP780 steel sheets, results show that updating the anisotropy coefficients helps 

to improve the performance of the Hill48-r.value function, in-particular for biaxial 

stress states. This improvement is further highlighted when the shear stress term is 

increased. 

 

 A significant difference can be seen between the flow surfaces predicted using the 

updated Yld2000-2d and those predicted with von Mises, especially in biaxial and 

plane-strain stress states for both DP600 and TRIP780. This difference decreases 

with increasing strain rate, but still remains considerable. Also, the AA5182-O 

flow surfaces predicted by Yld2000-2d deviate significantly from the von Mises 

flow surfaces at all strain rates, especially for plane strain stress states. This 

deviation is still considerable when significant shear stresses exist, because of the 

much higher exponent value (   ) in Yld2000-2d compared to that in von 

Mises’ yield function (   ). 

7.2.4  Finite element simulation 

7.2.4.1 Single element (calculation of effective plastic strain) 

 Results of single element simulations on DP600, in which the same amount of 

plastic strain was applied in RD and TD for the equibiaxial condition and either 

RD or TD for the plane strain conditions, show that the maximum relative error 

occurs in the equibiaxial condition (  ) when the effective plastic strain is 
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calculated using the von Mises yield function (assuming Yld2000-2d accurately 

predicts the effective plastic strain). Results show that the error decreases (   at 

        ) as the strain rate increases. Also, comparison between the effective 

plastic strains predicted with Yld2000-2d and von Mises for TRIP780 show that 

the maximum relative error (     ) occurs in both biaxial and plane strain 

(RD) conditions for almost all strain rates. A maximum error of        exists 

when the effective plastic strain is predicted using von Mises for AA5182-O in 

the plane strain condition for the entire range of strain rates, whereas the relative 

error is negligible for the equibiaxial condition, as would be expected from the 

material flow surfaces. 

7.2.4.2 EHFF  

 The EHFF simulation results for both the DP600 and AA5182-O uniaxial and 

intermediate draw specimens show an improvement in the predicted minor strains 

when Yld2000-2d is used rather than von Mises. The use of Yld2000-2d also 

results in a better agreement of the predicted strain path with the principal strain 

measurements in the EHFF specimen. Furthermore, the improvement in the 

prediction of the minor strain with Yld2000-2d, also leads to a more accurate 

thickness distribution in the gauge section of the uniaxial tension specimen.  

 

 The EHFF simulation results for the DP600 plane strain specimen show that both 

Yld2000-2d and von Mises over-predict the major and minor strains as well as the 

thickness in the gauge section when compared with the measurements. In the 

author’s opinion, this discrepancy would be minimized if experimental biaxial r-

values and biaxial flow stresses could be obtained at high strain rates (such as 

        ). The results predicted with von Mises for the EHFF of the AA5182-O 

plane strain specimen show a lower maximum height at the centre of the gauge 

section than that predicted with Yld2000-2d with the same amount of applied 

energy. Although, a greater specimen height is predicted with Yld2000-2d for the 

plane strain condition, almost the same peak major strain is predicted with either 

Yld2000-2d or von Mises; this is in spite of completely different material 
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behaviour of AA5182-O predicted by the two yield criteria. Results show that 

Yld2000-2d predicts an almost zero minor strain at the centre of the gauge section 

which correlates very well with the strain measurements. Also, the absolute 

minimum thickness predicted using Yld2000-2d is in better agreement with the 

measurements than that predicted with von Mises.  

 

 The EHFF simulation results for the DP600 biaxial specimen show that von Mises 

predicts greater major and minor strains, thickness and height distributions 

compared to Yld2000-2d for the same amount of applied energy. This is because 

von Mises predicts a lower biaxial flow stress than Yld2000-2d. Both yield 

functions predict a similar proportional equi-biaxial strain path for an element at 

the centre of the sheet. Results for DP600 show that the von Mises effective 

plastic strain is around     greater than that predicted with Yld2000-2d for 

DP600, when the same amount of energy is applied. As a consequence of 

predicting a greater effective strain at the same energy level, von Mises also 

predicts a greater strain rate (        ) than Yld2000-2d (        ). However,  

Yld2000-2d and von Mises predict the same results for the AA5182-O biaxial 

specimen, which is not surprising considering the insensitivity of this alloy to 

strain rate and the similarity of the unaxial and biaxial flow curves at various 

strain rates (experimental and calculated).  

 

 The EHFF simulation results show that Yld2000-2d predicts a maximum effective 

strain rate in the range of           to          , depending on the specimen 

geometry and the material grade. For all cases, the highest strain rate occurs in the 

centre of the sheet and towards the end of the EHFF process. 

7.2.4.3 EHDF  

 Simulation results show that a more complex deformation mechanism occurs in 

EHDF compared to EHFF, due to the dynamic sheet/die interaction. Results for 

DP600 show that, with the same applied energy magnitude, von Mises predicts 

greater major, minor and through-thickness shear strains and consequently a 

greater effective plastic strain (around     greater) compared to Yld2004-18p 
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when the sheet is formed into a conical die. Once again, this difference is due to 

the fact that von Mises predicts a lower biaxial flow stress than Yld2004-18p.  

 

 The strain paths predicted with both Yld2004-18p and von Mises show a sudden 

increase in the major strain just after the sheet hits the die, and consequently an 

abrupt change in the strain path from biaxial tension to plane-strain tension. 

Results (predicted by both Yld2004-18p and von Mises) for an element near the 

apex (     from the sheet centre) show that around     of the effective plastic 

strain occurs when the element has a proportional biaxial strain path before the 

sheet hits the die. Therefore, forming conditions in EHDF are very similar to 

those in biaxial EHFF, until the sheet hits the die. Therefore the results obtained 

in EHFF simulations using Yld2000-2d and von Mises are almost applicable to 

the EHDF condition, except for the through-thickness shear strain that is suddenly 

generated in EHDF when the sheet contacts the die. 

 

 Results for an element      away from the centre of the sheet show that von 

Mises predicts a greater maximum absolute through-thickness compressive stress 

(        ) and a greater shear strain (0.175) compared to the values predicted 

by Yld2004-18p (         and      , respectively). These differences are due 

to the greater maximum effective strain rate predicted by von Mises (          ) 

compared to Yld2004-18p (          ) at the time of impact. The through-

thickness shear strain predicted with Yld2004-18p is approximately     of the 

major strain, which indicates considerable contribution of the through-thickness 

shear stress to the plastic deformation in EHDF. 

7.3 Recommendations for selecting an appropriate constitutive 

model for DP600, TRIP780 and AA5182-O 

          Yield function 

 For plane stress condition (such as EHFF); Yl2000-2d is the best yield function 

for DP600, TRIP780 and AA5182-O. It should be noted that updating the 



241 

 

anisotropy coefficients according to strain rate is highly recommended for DP600 

and TRIP780, while it is not the case for AA5182-O. 

 

 For general stress state (such as EHDF); Yld2004-18p is the best choice for 

DP600, TRIP780 and AA5182-O. Again, similar to Yld2000-2d condition, 

updating anisotropy coefficients of Yld2004-18p is highly recommended for 

DP600 and TRIP780, while only using the initial (Quasistatic) anisotropy 

coefficients for AA5182-O results in a good accuracy. 

 

 In case of shortage of experimental data to determine the anisotropy coefficients 

of Yld2000-2d and Yld2004-18p, it is highly recommended to use Hill90-stress 

(where the anisotropy coefficients are determined based on the flow stresses 

rather than r-values) for DP600 and TRIP780 for both plane stress and general 

stress state conditions. 

 

 It should be noted that to take advantage of anisotropy yield function and describe 

the anisotropic behaviour of material accurately in finite element simulation of 

sheet metal forming processes, a substantial consideration should be done in 

selecting appropriate normalized flow stresses in different material orientations. It 

is highly recommended to look at the normalized flow stress variations versus 

strain and then select the normalized flow stress when it is saturated.    

 

           Hardening model 

 Khan-Haung-Liang (KHL) is highly recommended for DP600 and TRIP780, 

which accurately describes the rate-dependency of mechanical response of these 

materials at various strain rates. Also, a rate-independent hardening model can 

easily reproduce the flow stress of AA5182-O at different strain rates, due to 

strain rate insensitivity. In case of using KHL for AA5182-O, the strain rate 

sensitivity should be set to around zero. 
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7.4 Future work 

 The results of the simulations of EHDF indicate that the material can reach 

deformation rates that are beyond the range that was used to define the 

constitutive behaviour of the material. i.e. results show that around     of the 

plastic deformation can occur at very high strain rate regimes (above 

          ). The predicted rates are substantially greater than in EHFF and are 

well above the rates (         ) that were applied to characterize the tensile 

behaviour of the sheet materials. Therefore, for more accurate prediction of the 

sheet deformation in EHDF, the mechanical properties of the desired alloys 

should be determined at the same level of strain rate. This may also provide a 

better insight into the EHDF process. 

 

 One of the main advantages of the Yld2004-18p yield function is its ability to 

describe the out-of-plane (through-thickness) anisotropy of sheet metals. 

Simulation results showed how important the effect of through-thickness 

compressive and shear stresses can be in EHDF, when the sheet contacts the die at 

high velocity. In this study, due to the unavailability of the through-thickness 

anisotropy of these materials at various strain rates, the out-of-plane flow stresses 

were set to their isotropic values. Determination of though-thickness anisotropy of 

the material (using measured crystallographic texture and crystal plasticity 

simulations) may help to further improve the predictions. 

 

 For processes in which the sheet metal is subjected to relatively linear loading 

paths (such as EHFF), the simple assumption of isotropic hardening may lead to 

fairly accurate strain distributions. However, the results of simulations for 

processes in which the sheet metal undergoes reverse loading due to the 

successive bending and unbending that occurs when the sheet hits the die (such as 

in EHDF), the hardening behaviour should account for the kinematic hardening 

effects associated with the stress reversal. Although it is possible to develop rate-

dependent advanced hardening models (such as kinematic or mixed isotropic-

kinematic hardening models), it may be difficult to conduct cyclic tests at 
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intermediate and high strain rates, which means that it would be difficult to 

calibrate the advanced rate-dependent hardening models. Therefore, in this study, 

although it would have been beneficial to use kinematic hardening with 

anisotropic yielding, it was only possible to use and calibrate an isotropic 

hardening model. Nevertheless, the results of EHFF simulations show that the 

effect of anisotropy at intermediate and high strain rate regimes is accurately 

predicted, even though an isotropic hardening model was used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



244 

 

Bibliography 

Al-Nasser, A.E., 2009. Characterization of sheet materials for stamping and finite element 

simulation of sheet hydroforming. The Ohio State University, M.Sc. thesis. 

Amstead, B.H., Ostwald, P.F., and Begman, M.L., 1987. Manufacturing processes, in, John 

Wiley and Sons, New York, 329-330. 

Andersson, A., Ohlsson, C.A., Mattiason, K., and Persson, B., 1999. Implementation and 

evaluation of the Karafillis-Boyce material model for anisotropic metal sheets. In: Gelin, J.C., 

Picart, P. (Eds.), Proceedings of NUMISHEET’99 1, Besancon, France, 115–121. 

Arminjon, M. and Imbault, D., 1994. An analytical micro-macro model for textured polycrystal 

at large plastic strains. Int. J. Plasticity 10, 825-847. 

Arminjon, M., 1991. A regular form of the Schmid law. Application to the ambiguity problem. 

Textures and Microstructures 14, 1121-l128. 

Armstrong, R.W., Ramachandran, V., and Zerilli, F.J., 1988. In: Rama Rao, P. (Ed.), Advances 

in Materials and their Applications. Wiley Eastern Ltd., New Delhip. 201. 

Baig, M., 2009. Responses of engineering materials, anisotropy and forming limit diagrams at 

different strain-rates and temperatures. University of Maryland Baltimore county, Ph.D. thesis. 

Balanethiram, V.S. and Daehn, G.S.,  1992. Enhanced formability of interstitial free iron at high 

strain-rates. Scripta Metallurgica et Materiala 27, 1783-1788. 

Balanethiram, V.S. and Daehn, G.S., 1994. Hyperplasticity: increased forming limits at high 

workpiece velocity. Scripta Metallurgica et Materialia 30, 515–520. 

Balanethiram, V.S., Hu, X., Altynova, M., and Daehn, G.S., 1994. Hyperplasticity: Enhanced 

formability at high rates. J. Materials Processing Technology 45, 595-600. 

Banabic, D. and Cazacu, O., 2002. Anisotropy in sheet metals. In: Yang, D.Y., Oh, S.I., Huh, 

H., Kim, Y.H., (Eds.), Proceedings of the Fifth International Conference and Workshop on 

Numerical Simulation of 3D Sheet Forming Processes, Jeju Island, Korea, October 2001, 515–

524. 

Bardelcik, A., Worswick, M.J., Winkler, S., and Wells, M.A., 2012. A strain rate sensitive 

constitutive model for quenched steel with tailored properties. Int. J. Impact Eng. 50, 49-62. 

Barlat, F. and Lian, J. 1989. Plastic behaviour and stretchability of sheet metals. Part I, A yield 

function for orthotropic sheet under plane stress conditions. Int. J. Plasticity 5, 51-66. 

Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., and Dick, R.E., 2005. Linear 

transformation-based anisotropic yield functions. Int. J. Plasticity 21, 1009-1039. 

Barlat, F., Becker, R.C., Hayashida, Y., Maeda, Y., Yanagawa, M., Chung, K., Brem, J.C., 

Lege, D.J., Matsui, K., Murtha, S.J., and Hattori, S., 1997. Yielding description for solution 

strengthened aluminum alloys. Int. J. Plasticity 13, 385-401.  

Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, 

S.H., and Chu, E., 2003. Plane stress yield function for aluminum alloy sheet - Part I: theory. Int. 

J. Plasticity 19, 1297-1319.  

Barlat, F., Cazacu, O., Zyczkowski, M., Banabic, D., and Yoon, J.W., 2004. Yield surface 

plasticity and anisotropy. In: Raabe, D., Chen, L.-Q., Barlat, F., Roters, F. (Eds.), Continuum 



245 

 

scale simulation of engineering materials fundamentals microstructures process applications. 

WILEY–VCH Verlag, Berlin GmbH, 145–177.  

Barlat, F., Lege, D.J., and Brem, J.C., 1991. A six-component yield function for anisotropic 

materials. Int. J. Plasticity 7, 693-712.  

Baudoin, A.J., Dawson, P.R., Mathur, K.K., Kocks, U.F., and Korzekwa, D.A., 1994. 

Application of polycrystal plasticity to sheet forming. Comput. Methods Appl. Mech. Eng. 117, 

49-70. 

Becker, R.C., 1993. Simulations of earing in aluminum single crystals and polycrystals. Mod. 

Sim. Mat. Sci. Eng. 1, 203-224. 

Benedict, G.F, 1987. Non-traditional manufacturing processes, CRC Press, New York. 

Bishop, J.W.F. and Hill, R., 1951a. A theory of the plastic distortion of a polycrystalline 

aggregate under combined stresses. Phil. Mug 42, 414-427. 

Bishop, J.W.F. and Hill, R., 1951b. A theoretical derivation of the plastic properties of 

polycrystalline face-centered. metals. Phil. Mug. 42, 1298-1307. 

Bleck, W. and Schael, I., 2000. Determination of crash-relevant material parameters by 

dynamic tensile tests. Steel research 71, 173-178. 

Boehler, J.P. and Sawczuk, A., 1970. Equilibre limite des sols anisotropes. J. Me´canique 9, 5–

33. 

Borvik, T., Hopperstad, O.S., Berstad, T., Langseth, and M.L., 2001. A computational model of 

viscoplasticity and ductile damage for impact and penetration. European J. Mechanics: A/Solids 

20, 685–712. 

Bruno, E.J., 1968. High velocity forming of metals. American society of tool and 

manufacturing engineers, Dearborn, Michigan.  

Chachin, V.N., 1978. Electrohydraulic treatment of structural materials. Minsk, Nauka i 

Texnika, 80-87. 

Cheah, L. and Heywood, J., 2011. Meeting US passenger vehicle fuel economy standards in 

2016 and beyond. Energy Policy 39, 454–466. 

Chen, J.K., H.K., Ching, and F., Allahdadi, 2007. Shock-induced detonation of high explosive 

by high velocity impact. J. Mechanics of Materials and Impacts 2, 1701-1721. 

Chen, S.R., Gray III, G.T., 1995. Constitutive behavior of tungsten experiments and modeling. 

In: Bose, A., Dowding, R.J. (Eds.), 2nd Int. Cong. on Tungsten and Refractory Metals, McLean, 

VA, Metal Powder Industries Federation, Princeton, NJ, 489-497. 

Christian, J.W., 1983. Some surprising features of the plastic deformation of body-centered 

cubic metals and alloys. Metall. Trans. 14A, 1237-1256. 

Chung, K. and Shah, K., 1992. Finite element simulation of sheet metal forming for planar 

anisotropic metals. Int. J. Plasticity 8, 453-476. 

Chung, K., Richmond, O., 1993. A deformation theory of plasticity based on minimum work 

paths. Int. J. Plasticity 9, 907-920. 

Cole, R.H., 1948. Underwater explosions, Princeton Univ. Press, Princeton. 

Daehn, G.S., 2006. High velocity metal forming. Metalworking: Sheet Metal Forming 14B, 

ASM Handbook, 405–418. 

https://archive.org/search.php?query=publisher%3A%22Princeton%2C+Princeton+Univ.+Press%22


246 

 

Dariani, B.M., Liaghat, G.H., and Gerdooei, M., 2009. Experimental investigation of sheet 

metal formability under various strain rates. J. Engineering Manufacture 223, 703–712. 

Darrieulat, M. and Piot, D., 1996. A method of generating analytical yield surfaces of 

crystalline materials. Int. J. Plasticity 12, 575-610. 

Davies, R. and Austin, E.R., 1970. Development in high speed metal forming. Industrial press 

Inc., New York. 

Drucker D.C. and Palgen L., 1981. On Stress-Strain Relations Suitable for Cyclic and Other 

Loading. ASME J. Applied Mech. 48, 479-485. 

Dusek, F., 1970. Plastic deformation at high strain rates. Czechoslovak J. Physics 20, 776-789. 

El-Magd, E., 1997. Influence of strain rate on ductility of metallic materials. Steel Research 68, 

67-71. 

Ferreira, P.J., Sande, J.B., Fortes, M.A., and Kyrolainen, A., 2004. Microstructure development 

during high-velocity deformation, Metallurgical and Materials Transactions A 35, 3091-3101. 

Gambin, W. and Barlat, F., 1997. Modeling of deformation texture development based on rate 

independent crystal plasticity. Int. J. Plasticity 13, 75-85. 

Gambin, W., 1991. Plasticity of crystals with interacting slips systems. Mod. Sim. Mat. Sci. 

Eng. 39, 303-324. 

Gillard, A.J., Golovashchenko, S.F., and Mamutov, A.V., 2013. Effect of quasi-static prestrain 

on the form-ability of dual phase steels in Electrohydraulic forming. J. Manufacturing Processes 

15, 201-218. 

Golovashchenko, S., Mamutov, V., Dmitriev, V., and Sherman, A., 2003. Formability of sheet 

metal with pulsed electromagnetic and electrohydraulic technologies. In: Proceedings of TMS 

Symposium “Aluminum-2003”, San-Diego, 2003, 99–110. 

Golovashchenko, S.F. and Mamutov, V.S., 2005. Electrohydraulic forming of automotive 

panels. In: Proceedings of 6th Global Innovations Symposium: Trends in Materials and 

Manufacturing Technologies for Transportation Industries, San Francisco, USA, February 13–17, 

65–70. 

Golovashchenko, S.F., 2007. Material formability and coil design in electromagnetic forming. 

J. materials Engineering and Performance 16, 314–320. 

Golovashchenko, S.F., Bessonov, N., and Davies, R., 2011a. Analysis of sheet-die contact 

interaction in pulsed forming processes. Proceeding of 10th Int. Conf. on Technology of 

Plasticity. 

Golovashchenko, S.F., Bessonov, N.M., and Ilinich, A.M., 2011b. Two-step method of forming 

complex shapes from sheet metal. J. Materials Processing Technology, 875–885. 

Golovashchenko, S.F., Gillard, A.J., and Mamutov, A.V., 2013. Formability of dual phase 

steels in electrohydraulic forming. J. Materials Processing Technology 213, 1191–1212. 

Golovashchenko, S.F., Mamutov, V., and Ilinich, A.M., 2009. Electro-hydraulic forming tool 

having two liquid volumes separated by a membrane, U.S. Patent 7, 493,787. 

Gotoh, M., 1977. A theory of plastic anisotropy based on a yield function of fourth order (plane 

stress state)-I. Int. J. Mech. Sci. 19, 505-512. 

Gourdin, W.H. and Lassial, D.H., 1995. Multiple mechanisms in the thermally activated plastic 

flow of tantalum. APS Topical Conference, Seattle, USA. 



247 

 

Gray III, G.T. and Rollett, A.D., 1992. The high-strain-rate and spallation response of tantalum, 

Ta-10W, and T-111. In: Asfhani, R., Chen, E., Crowson, A. (Eds.), High Strain Rate Behavior of 

Refractory Metals and Alloys. TMS, Warrendale, PA, 303-315. 

Grinenko, A., Sayapin, A., Efimov, S., Fedotov, A., and Krasik, Y.E, 2008. Last progress in 

underwater electrical wire explosion. IEEJ Transactions on Fundamentals and Materials 128, 31-

36. 

Groover, M.P., 2007. Fundamentals of modern manufacturing, Materials, processes, and 

systems, in, John Wiley and Sons, New York, 473-474. 

Haowen, L., 2011. Responses and constitutive modeling of aluminum alloys, and strain-rate 

and temperature dependent failure criteria for F.C.C. and H.C.P. metals. University of Maryland 

Baltimore county, PhD thesis. 

Hassannejadasl, A., Green, D.E., Golovashchenko S.F., Samei, J., Maris, C., 2014. Numerical 

modelling of electrohydraulic free-forming and die-forming of DP590 steel. J. Manuf. Proc. 16 

(3), 391-404. 

Hecker, S.S., 1976. Experimental studies of yield phenomena in biaxially loaded metals. 

Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects. ASME, New 

York, l-33. 

Hershey, A.V., 1954. The plasticity of an isotropic aggregate of anisotropic face centered cubic 

crystals. ASME J. Appl. Mech. 21, 241-249. 

Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Sot. 

Lond A193, 281-297. 

Hill, R., 1950. The Mathematical Theory of Plasticity. Oxford University Press, Oxford.  

Hill, R., 1979. Theoretical Plasticity of textured aggregates. Proc. Camb. Phil. Soc. 85, 179-

191.  

Hill, R., 1986. External paths of plastic work and deformation. J. Mech. Phys. Solids 34, 511-

523. 

Hill, R., 1990. Constitutive modelling of orthotropic plasticity in sheet metal. J. Mech. Phys. 

Solids 38, 405-417.  

Hill, R., 1993. A user-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci. 

35, 19-25. 

Hosford, W.F., 1972. A generalized isotropic yield criterion. 1. Appt. Mech. Trans. ASME 39, 

607-609. 

Hosford, W.F., 1979. On yield loci of anisotropic cubic metals. Proc. 7th North American 

Metalworking Conf SME, Dearborn, MI, 191-197. 

Hosford, W.F., 1985. Comments on anisotropic yield criteria. Int. J. Mech. Sci. 27, 423-427. 

Hosford, W.F., 1992. The Plasticity of Crystal and Polycrystals. Oxford University Press, 

Oxford. 

Hosford, W.F., 1996. On the crystallographic basis of yield criteria. Textures and 

Microstructures 26-27,479-493. 

Hu, X. and Daehn, G.S., 1996. Effect of velocity on flow localization in tension. Acta 

Materialia 44, 1021-1033.  

http://www.scopus.com.ezproxy.uwindsor.ca/authid/detail.url?authorId=7003800152&amp;eid=2-s2.0-72149105596
http://www.scopus.com.ezproxy.uwindsor.ca/authid/detail.url?authorId=6602333729&amp;eid=2-s2.0-72149105596
http://www.scopus.com.ezproxy.uwindsor.ca/authid/detail.url?authorId=34770587200&amp;eid=2-s2.0-72149105596
http://www.scopus.com.ezproxy.uwindsor.ca/authid/detail.url?authorId=7201568649&amp;eid=2-s2.0-72149105596
http://www.scopus.com.ezproxy.uwindsor.ca/authid/detail.url?authorId=35553144200&amp;eid=2-s2.0-72149105596
http://www.scopus.com.ezproxy.uwindsor.ca/source/sourceInfo.url?sourceId=3300147408&origin=recordpage


248 

 

Huang, G., Yan, B., and Zhu, H., 2011. The effect of strain-rate on tensile properties and 

fracture strain. Presentation at great Design in Steel Seminar. 

Hughes, D.A., Kassner, M.E., Stout, M.G., and Vetrano, J.S., 1998. Metal Forming at the 

Center of Excellence for the Synthesis and Processing of Advanced Materials. JOM 50 (6). 

Ilinich, A.M., Golovashchenko, S.F., Smith, L.M., 2011. Material anisotropy and trimming 

method effects on total elongation in DP500 sheet steel, J. Materials Processing Technology 211, 

441-449. 

Ilyushin A. A., 1961. On the postulate of plasticity. Prikl. Mat, Mekh. 25, 503. 

Imbert, J. and Worswick M.J., 2011. Electromagnetic reduction of a pre-formed radius on AA 

5754 sheet. J. Materials Processing Technology 211, 896–908. 

Imbert, J., Winkler, S.L., Worswick, M.J., Olivera, D.A., and Golovashchenko, S.F., 2005. The 

effect of tool-sheet interaction on damage evolution in electromagnetic forming of aluminum 

alloy sheet. J. Engineering Materials and Technology 127, 145–152. 

Inal, K., Wu, P.D., and Neale, K.W., 2000. Simulation of earing in textured aluminum sheets. 

Int. J. Plasticity 16, 635-648. 

Johnson, G.R., Cook, W.H., 1983. A constitutive model and data for metals subjected to large 

strains, high strain rates and high temperatures. In: Proceedings of the 7th International 

Symposium on Ballistic, Hague, Netherlands, 541-547. 

Kapila, A.K., Schwendeman, D.W., Bdzil, J. B. and Henshaw, W.D., 2007. A study of 

detonation diffraction in the ignition-and-growth model. Combustion Theory and Modelling 11, 

781-822. 

Kaps, L., Lipowsky, H.J., Meywerk, M., Werner, H., and Scholz, S.P., 1999. 

Auswerteverfahren zur Weiterverarbeitung von Versuchsdaten. VDEH working Group Int. 

Communication. 

Karafillis, A.P. and Boyce, M.C., 1993. A general anisotropic yield criterion using bounds and 

a transformation weighting tensor. J. Mech. Phys. Solids 41, 1859-1886. 

Khan, A.S. and Farrokh, B., 2006. Thermo-mechanical response of nylon 101 under uniaxial 

and multi-axial loadings: Part I, Experimental results over wide ranges of temperatures and strain 

rates. Int. J. Plasticity 22, 1506–1529. 

Khan, A.S. and Liang, R., 1999. Behaviors of three B.C.C. metal over a wide range of strain 

rates and temperatures: experiments and modeling. Int. J. Plasticity 15, 1089-1109. 

Khan, A.S. and Zhang, H., 2000. Mechanically alloyed nanocrystalline iron and copper 123 

mixture: behavior and constitutive modeling over a wide range of strain rates Int. J. Plasticity 16 

(12), 1477–1492. 

Khan, A.S., Kazmi, R., and Farrokh, B., 2007a. Multiaxial and non-proportional loading 

responses, anisotropy and modeling of Ti–6Al–4V titanium alloy over wide ranges of strain rates 

and temperatures. Int. J. Plasticity 23, 931-950. 

Khan, A.S., Kazmi, R., and Farrokh, B., et al., 2007b. Effect of oxygen content and 

microstructure on the thermo-mechanical response of three Ti–6Al–4V alloys: Experiments and 

modeling over a wide range of strain-rates and temperatures. Int. J. Plasticity 23, 1105–1125. 

Khan, A.S., Suh, Y.S., and Kazmi, R., 2004. Quasi-static and dynamic loading responses and 

constitutive modeling of titanium alloys. Int. J. Plasticity 20, 2233–2248. 



249 

 

Kim, J., Kim, D., Han, H.N., Barlat, F., and Lee, M.G., 2013. Strain rate dependent tensile 

behavior of advanced high strength steels: Experiment and constitutive modeling, Mat. Sci. and 

Eng. A 559, 222-231. 

Kojic, M., 2002. Stress integration procedures for inelastic material models within finite 

element method. Appl. Mech. Reviews 55, 389-414. 

Lane, T., 1767. Description of an Electrometer invented by Mr. Lane; with an account of some 

experiments made by him with it: in a Letter to Benjamin Franklin. Philosophical Transactions of 

the Royal Society 57, 451. 

Lee, C.S., Bae, G.H., Kim, S.B., Lou, Y., Huh, H., 2010. Construction of the Hill48 and 

Barlat89 for Auto-body Steel Sheets considering the Strain Rate. 4th Int. Conf. on High Speed 

Forming, Columbus, Ohio, USA. 

Lequeu, P.h., Gilormini, P., Montheillet, F., Bacroix, B., and Jonas, J.J., 1987a. Yield surfaces 

for textured polycrystals-Part I: Crystallographic approach. Acta Metall. 35, 439-451. 

Lewandowski, J.J., Lowhaphandu, P., 1998. Effects of hydrostatic pressure on mechanical 

behaviour and deformation processing of materials. Int. Materials Reviews 43, 145–187. 

Liang, R. and Khan, A.S., 1999. A critical review of experimental results and constitutive 

models of BCC and FCC metals over a wide range of strain rates and temperatures. Int. J. 

Plasticity 15, 963-980. 

Lin, S.B. and Ding, J.L., 1996. A Modified form of Hill’s orientation-dependent yield criterion 

for orthotropic sheet metals. J. Mech. Phys. Solids 44, 1739-1764. 

Liu, D., Yu, H., and Li, C., 2011. Experimental observations of quasi-static-dynamic 

formability in biaxially strained AA5052-O. J. Materials Engineering and Performance 20, 223–

230. 

LS-DYNA Theory Manual, 2006. Livermore Software Technology Corporation.  

Maniatty, A. M., Keane, T., and Yu, J.S., 1997. Anisotropic yield criterion for polycrystalline 

metals using texture and crystal symmetries. Znt. J. Solids and Strut., 18-26. 

Maris, C., 2014. Experimental determination of the forming limits of DP600 and AA5182 

sheets in electrohydraulic free forming. University of Windsor, Windsor, CA, M.Sc. thesis. 

Mecking, H. and Kocks, U.F., 1981. Kinetics of flow and strain-hardening. Acta Metallurgica 

29 (11), 1865–1875. 

Melander, A., Delic, A., and Bjorkblad, A., Juntunen, P., Samek, L., Vadillo, L., 2011. 

Modelling of electrohydraulic free and die forming of sheet steels. Int. J. Materials Forming 6, 

223-231. 

Mellor, P.B. and Parmar, A., 1978. Plasticity of sheet metal forming. Mechanics of Sheet Metal 

Forming, Plenum Press, New York, 53-74. 

Mellor, P.B., 1981. Sheet metal forming. Int. Metals Reversus 26, l-20. 

Montheillet, F., Jonas, J. J., and Benferrah, M., 1991. Development of anisotropy during the 

cold rolling of aluminum sheet. Int. J. Mech. Sci. 33, 197-209. 

Mynors, D.J. and Zhang, B., 2002. Applications and capabilities of explosive forming. J. 

Materials Processing Technology 125–126, 1–25. 

Needleman, A., 1991. The effect of material inertia on neck development, AM Press, Ann 

Arbour, US. 

http://koasas.kaist.ac.kr/simple-search?from_item=10203/176384&query=%28%28author%3A%22C.+S.+Lee%22%29%29
http://koasas.kaist.ac.kr/simple-search?from_item=10203/176384&query=%28%28author%3A%22G.+H.+Bae%22%29%29
http://koasas.kaist.ac.kr/simple-search?from_item=10203/176384&query=%28%28author%3A%22S.+B.+Kim%22%29%29
http://koasas.kaist.ac.kr/simple-search?from_item=10203/176384&query=%28%28author%3A%22Y.+Lou%22%29%29


250 

 

Nemat-Nasser, S. and Yulong, L., 1998. Flow stress of F.C.C. polycrystals with application to 

OFHC Cu. Acta Mat. 46(2), 565-577. 

Nemat-Nasser, S., Guo, W.G., Nesterenko, V., Indrakanti, F., and Gu, Y., 2001. Dynamic 

response of conventional and hot isostatically pressed Ti–6Al–4V alloys: experiments and 

modeling. Mechanics of Materials 33 (8), 425–439. 

Oliver, S., Jones, T.B., and Fourlaris, G., 2007. Dual phase versus TRIP strip steels: 

Microstructural changes as a consequence of quasi-static and dynamic tensile testing. Materials 

Characterization 58, 390-400. 

Olivera, D.A., Worswick, M.J., Finn, M., and Newman, D., 2005. Electromagnetic forming of 

aluminum alloy sheet: free form and cavity fill experiments and model. J. Materials Processing 

Technology 170, 350–362. 

Paul, S.K., 2012. Predicting the flow behavior of metals under different strain rate and 

temperature through phenomenological modeling. Comput. Mat. Sci. 65, 91-99. 

Picu, R.C., Vincze, G., Ozturk, F., Gracio, J.J., Barlat, F., and Maniatty, A.M., 2005. Strain rate 

sensitivity of the commercial aluminum alloy AA5182-O. Mat. Sci. Eng. A 390, 334-343. 

Priem, D., Marya, S., and Racineux, G., 2007. On the forming of metallic parts through 

Electromagnetic and Electrohydraulic processing. Advanced Materials Research 17, 655-660. 

Priestly, J., 1769. Experiments on the lateral force of electrical explosions. Philosophical 

Transactions of the Royal Society 59, 57. 

Psyk, V., Risch, D., Kinsey, B.L., Tekkaya, A.E., and Kleiner, M., 2011. Electromagnetic 

forming – a review. Journal of Materials Processing Technology 211, 787–829. 

Rahmaan, T., Bardelcik, A., Imbert, J., Kim, S., Worswick, M.J., 2014. Strain rate sensitivity 

and anisotropy of TRIP780, DP600, and AA5182-O sheet metal alloys. Proceedings of the 4th 

International Conference on Impact of Lightweight Structures, Cape Town, South Africa. 

Regazzoni, G., Kocks, U.F., and Follansbee, P.S., 1987. Dislocation kinetics at high strain rates. 

Acta. Metall. 12(35), 2865-2875. 

Rohatgi, A., Stephens, E.V., Davies, R.W., Smith, M.T., Soulami, A., and Ahzi, S., 2012. 

Electro-hydraulic forming of sheet metals: free-forming versus conical-die-forming. J. Materials 

Processing Technology 212, 1070-1079. 

Rohatgi, A., Stephens, E.V., Soulami, A., Davies, R.W., and Smith, M.T., 2011. Experimental 

characterization of sheet metal deformation during electrohydraulic forming. J. Materials 

Processing Technology 211, 1824–1833. 

Sandford, J.E., 1970. Recent advances stir interest in high velocity forming. Iron Age 

Metalworking International 204, 36–38. 

Schwer, L.E., 2012. Impact and detonation of Comp-B, an example using the LS-DYNA EOS: 

ignition and growth of reaction in high explosives. 12th Int. LS-DYNA Users Conference. 

Seth, V.S.M., Vohnout, V.J., and Daehn, G.S., 2005. Formability of steel sheets in high velocity 

impact. J. Materials Processing Technology 45, 595-600. 

Simo, J.C., Hughes, T.J.R., 1998. Computational Inelasticity. Volume 7 of Interdisciplinary 

Applied Mathematics. Springer-Verlag, Berlin. 

Simo, J.C., Taylor, R.L., 1985. Consistent Tangent Operators for Rate Independent Elasto-

Plasticity. Comput. Meth. Appl. Mech. Eng. 48, 101-118.  



251 

 

Simo, J.C., Taylor, R.L., 1986. Return Mapping Algorithm for Plane Stress Elastoplasticity. Int. 

J. Numer. Meth. Eng. 22, 649-670.  

Sklad, M.P. and Verhaeghe, J.D., 2010. Forming limit curve based on shear under tension 

failure criterion. Proceedings of the IDDRG 2010 Int. Conference. Graz, Austria, 1-10. 

Smerd, R., Winkler, S., Salisbury, C., Worswick, M.J., Lloyd, D., and Finn, M., 2005. High 

strain rate tensile testing of automotive aluminum alloy sheet. Int. J. Impact Eng. 32 (1-4), 541-

560. 

Sobotka, Z., 1969. Theorie des plastischen Fliessens von anisotropen Korpern. Zeit. Angew. 

Math. Mech. 49, 25–32. 

Spitzig, W.A, Sober, R.J., and Richmond, O., 1976. The effect of hydrostatic pressure on the 

deformation behavior of Maraging and HY-80 steels and its implication for plasticity theory. 

Metall. Trans. 7A, 1703–1710. 

Spitzig, W.A. and Richmond, O., 1984. The effect of pressure on the flow stress of metals. Acta 

Metall. 32, 457–463. 

Tarigopula, V., Hopperstad, O.S., Langseth, M., Clausen, A.H., and Hild, F., 2008. A study of 

localisation in dual phase high-strength steels under dynamic loading using digital image 

correlation and FE analy-sis. Int. J. Solids and Structures 45, 601-619. 

Taylor, G.I., 1942. The Plastic Wave in a Wire Extended by an Impact Load. British Ministry 

of Home Security, Civil Defense Research Committee Report RC 323. 

Toth, L.S., Van Houtte, P., and Van Bael, A., 1991. Analytical representation of polycrystal 

yield surface. In Anisotropy and Localization of Plastic Deformation. Elsevier Applied Science, 

London, 183-186. 

Tugcu, P. and Neale, K.W., 1999. On the implementation of anisotropic yield functions into 

finite strain problems of sheet metal forming. Int. J. Plasticity 15, 1021-1040. 

Urtiew, P.A., Vandersall, K.S., Tarver, C.M., Garcia, F., and Forbes, J.W., 2006. Shock 

initiation experiments and modelling of composition B and C-4. 13th International Detonation 

Symposium Norfolk, VA, United States. 

Van Houtte, P., 1994. Application of plastic potentials to strain rate sensitive and insensitive 

anisclropic materials. Int. J. Plasticity 10, 719-748. 

Van Slycken, J., Verleysen, P., Degrieck, J., Bouquerel, J., and De Cooman, B.C., 2007. 

Dynamic response of aluminium containing TRIP steel and its constituents phases. Mat. Sci. Eng. 

A, 460-461, 516-524. 

Vashchenko, A.P., Stepanov, G.V., Tokarev, V.M., Leonev, V.P., Motovilina, G.D., and Eglit, 

A.S., 1989. Influence of loading rate on the mechanical properties of steels of different strength 

levels. Strength of Materials 21, 1328–1335.  

Vohnout, V.J. and Daehn, G.S., 2002. Effect of quasi-static prestrain and eddy currents on limit 

strains in electromagnetic pulse forming of two aluminum alloys. In: Aluminum 2002—

proceedings of the TMS annual meeting. 

von Karman, T. and Duwez, P., 1950. The propagation of plastic deformation in solids. J. 

Applied Physics 21, 987-994. 

Wakeland, P., Kincy, M., and Garde, J., 2003. Hydrodynamic loading of structural components 

due to electrical discharge in fluids. Digest of Technical Papers-IEEE International Pulsed Power 

Conference, 925-928. 

http://www.scopus.com.ezproxy.uwindsor.ca/authid/detail.url?authorId=6506988082&amp;eid=2-s2.0-1442306654
http://www.scopus.com.ezproxy.uwindsor.ca/authid/detail.url?authorId=6507879469&amp;eid=2-s2.0-1442306654
http://www.scopus.com.ezproxy.uwindsor.ca/authid/detail.url?authorId=7006139517&amp;eid=2-s2.0-1442306654
http://www.scopus.com.ezproxy.uwindsor.ca/source/sourceInfo.url?sourceId=55739&origin=recordpage
http://www.scopus.com.ezproxy.uwindsor.ca/source/sourceInfo.url?sourceId=55739&origin=recordpage


252 

 

Weixian, Z., 1990. A new non-quadratic orthotropic yield criterion. Int. J. Mech. Sci. 32, 513-

520. 

Wood, W.W., 1967. Experimental mechanics at velocity extremes-very high strain rates. 

Experimental Mechanics 7, 441-446. 

Worswick, M.J., and Finn, M.J., 2000. The numerical simulation of stretch flange forming. Int. 

J. Plasticity 16, 701-720. 

Yoon, J.W., Barlat, F., Chung, K., and Pourboghrat, F., Yang, D.Y., 2000. Earing predictions 

based on asymmetric non-quadratic yield function. Int. J. Plasticity 16, 1075-1104. 

Yoon, J.W., Barlat, F., Dick, R.E., Chung, K., and Kang, T.J., 2004. Plane stress yield function 

for aluminum alloy sheet-Part II: FE Formulation and its implementation, Int. J. Plasticity 20, 

495-522. 

Yoon, J.W., Yang, D.Y., and Chung, K., 1999a. Elasto-plastic finite element method based on 

incremental deformation theory and continuum based shell elements for planar anisotropic sheet 

materials. Comput. Methods Appl. Mech. Eng. 174, 23-56.  

Yoon, J.W., Yang, D.Y., Chung, K., and Barlat, F., 1999b. A general elasto-plastic finite 

element formulation based on incremental deformation theory for planar anisotropy and its 

application to sheet metal forming. Int. J. of Plasticity 15, 35-68. 

Yutkin, L. A., 1950. Elektrogidravlichesky effect. U.S.S.R. State Science and Technology Press 

for Machine Construction, Moscow. 

Zeng, L.F., Horrigmoe, G., and Andersen, R., 1996. Numerical implementation of constitutive 

integration for rate-independent elastoplasticity. Comput. Mech. 18, 387-396. 

Zerilli, F.J. and Armstrong, R.W., 1987. J. Applied Physics 61 (5), 1816–1825. 

Zhao, H., 1997. Materials Science and Engineering A 230, 95–99. 

Zyczkowski, M., 2001. Anisotropic yield conditions. In: Lemaitre, J. (Ed.), Handbook of 

Materials Behavior Models. Academic Press, San Diego, CA, 155–165. 

 

 

 

 

 

 

 

 

 

 



253 

 

Appendices 

A1.  Anisotropy coefficients identification of Yld2004-18p 

 

The corresponding stress tensor expressed in the embedded material frame for in-plane 

tension condition at degrees from the rolling direction (RD), can be written as the 

following 

  [                                           ]
 
 (A1.1) 

where    is the flow stress in the corresponding direction. According to the relation 

between the Cauchy and deviatoric stresses, the stress deviator can be expressed by 

    [(        ⁄ )   (        ⁄ )      ⁄                     ]       (A1.2) 

where    is given by 

  

 ̅
 (

 

 (  )
)

  ⁄

 (A1.3) 

The r-value for the uniaxial tension condition (  ) can be calculated as follows 

      
  

(   ̅⁄ ) (      ⁄ |  
)
 (A1.4) 

For in-plane balanced biaxial tension stress state, the stress tensor can be expressed by 

    [   ⁄       ⁄      ⁄             ]       (A1.5) 

where    is given by 

  

 ̅
 (

 

 (  )
)
  ⁄

 (A1.6) 

The r-value for the balanced biaxial tension condition (  ) can be calculated by 
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      ⁄

      ⁄
 

 

(A1.7) 

The out-of-plane flow stresses are expressed by 

  

 ̅
 (

 

 (  )
)

  ⁄

 (A1.8) 

where    is obtained from the following equations, depending on the stress state 

     [   ⁄      ⁄      ⁄      ⁄         ]                                          (  

   )        

     [  ⁄       ⁄      ⁄          ⁄     ]                                          (  

   )        

     [                     ]                              (     )        

     [                     ]                              (     )      . 

(A1.9) 
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A2.  Implicit integration algorithm for implementation of rate-

dependent hardening model (VUMAT) 

 

Step-1. Elastic Predictor (trial stress calculation) 

   1.1.Calculate trial stress:         [   ] 

   1.2. Check for the yield condition 

 If   ̅      or   ̅ [     
]     

; then set ( )    ( )   
   and Exit. 

 Else Goto step-2. 

 

Step-2. Visco-plastic Corrector (multistep return mapping algorithm) 

   2.1. Initial iteration: 

 𝛥                      

   2.2. Calculate the effective plastic strain and stress tensor ( ): 

 Use Eq. (5-2) to calculated    
 and    

 

 Use Eq. (5-13) to calculate the residuals    and    

 If     and              (    ); then Goto Step-1, ELSE 

 Use Eq. (5.16) to calculate   
   

 Depending on the hardening model, use Eqs. (5-20a)or (5-22a) or (5-24a) to 

calculate 
 

   
(

 

   

) and   

 Solve Eqs. (5-14) and (5-15) to find  𝛥  and 𝛥  

 Update:              ,            ,             

 Goto 2.2. 
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