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ABSTRACT

In recent years Vision Systems have found their ways into many real-world 

applications. This includes such fields as surveillance and tracking, computer graphics 

and various factory settings such as assembly line inspection and object manipulation. 

The application o f Computer Vision techniques to factory automation, Machine Vision, 

is a growing field. However in most Machine Vision systems an algorithm is needed to 

infer 3D information regarding the objects in the field of view. Such a task can be 

accomplished using a Stereo Vision algorithm.

In this thesis a new Machine Vision Algorithm for Close-Range Position Sensing is 

presented where a Hopfield Neural Network is used for the Stereo Matching stage: 

stereo Matching is formulated as an energy minimi2ation task which is accomplished 

using the Hopfield Neural Networks. Various other important aspects o f this Vision 

System are discussed including camera calibration and objects localization.
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Chapter 1: Introduction

1.1 Problem Statement

The aim of this thesis is to develop a Vision System for a Close-Range Position 

sensing application. In other words a “bin-picking” robotic vision system is to be 

developed. The aim is to enable a robot to interact with its environment through a set of 

Vision Algorithms. The ultimate product is a fully functional Robotics Vision system 

where various mechanical parts can be placed in arbitrary positions in the field o f view of 

the robot and the robot can grasp or move them either according to a set of 

predetermined rules or with user intervention.

The use o f Vision Applications has become increasingly attractive in factory 

automation settings. This is due to several factors such as:

Ability to manufacture products faster than manual means.

Ability to repeat the manufacturing procedure consistendy over time.

Ability to reduce or eliminate recurring labor costs via easy justification of 

investment.

Ability to use the same conveyors, trays, bins, totes, racks, etc. when 

products change.

Therefore it is apparent that automating various tasks in factory settings has 

multifold benefits including cost saving and higher efficiency. However developing a fully 

operational Vision System for a real-wodd application, which is the aim o f this thesis, 

requires an algorithm with a high degree of flexibility and fault tolerance.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Another important factor in such a system would be the time constraint. This is 

one constraint that can not be ignored by any vision algorithm if real-world applications 

are desired. This is to say that a certain task has to be accomplished by the algorithm 

within a given amount o f  time or undesirable consequences will occur. This is why we 

have explored the Hopfield Neural Network algorithm (HNN). As will be explained later 

on, Neural Networks (NN) are parallel processing algorithms that take advantage of 

many processing units that work simultaneously. This implies that hardware 

implementation of algorithms that depend on N N  can produce extremely efficient 

mechanisms in terms o f time.

1.2 Motivation

As explained in the previous section there are many reasons why an assembly line 

task should be automated using a vision system. However, the important factor to 

consider is that vision systems are often not as accurate as their human counterparts. 

That is to say that the error rate of a vision system can be prohibitively larger than what is 

expected in a certain application. Another important factor in the design of vision 

systems is the time constraint as mentioned above. Although much research has been 

conducted in the field of vision, still most algorithms are too computationally expensive 

to be realistically implemented in actual factory settings.

The aim o f this thesis is to develop a faster and more robust vision system for a 

bin-picking application. This has been achieved by introducing the use o f H N N  for the 

task o f stereo matching which will be thoroughly explained in the next few sections. This 

design has the potential o f real-time hardware implementation. It is also worth noting 

that HNNs have never been implemented in Machine Vision applications (to the 

author’s knowledge). Therefore this work is an experiment in the use o f an unpopular, 

yet potentially useful tool for achieving real-time stereo matching. In fact there have been 

few works [1-3] where the feasibility of HNN as stereo matching tools in vision 

applications have been considered. As mentioned, none have explored this in a machine 

vision application. Moreover, HNNs were in fact devised originally as associative

2
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memory [4]. However it will be shown that HNNs can potentially be very advantageous 

for certain combinatorial optimization problems. This and other aspects o f H N N  will be 

discussed in chapter four.

1.3 Thesis Organization

Following the introduction, the second chapter offers preliminary information that 

is required for the camera calibration chapter. The second chapter offers an introduction 

to projective geometry which is the tool that is used to describe many computer vision 

problems. It is necessary to present various concepts regarding projective geometry in 

order to discuss the problem of camera calibration. Amongst other things, this chapter 

explains the projection matrix and the 3D to 2D projection which occurs during any 

image formation. Also this chapter explains various concepts regarding multiple camera 

geometry such as the fundamental matrix. Again this is critical for understanding the 

epipolar geometry which will be thoroughly discussed in chapter five.

Following this, the third chapter discusses the actual camera calibration process 

used in this thesis which utilizes the concepts presented in chapter two. Various error 

tolerance factors and also the robustness o f the algorithm will be discussed and results 

will be presented. It is important to note that the calibration step is as critical as the 3D 

reconstruction step, since without accurate calibration results it is impossible to acquire 

accurate 3D measurements. Thus a significant amount o f space is devoted to discussing 

the calibration step and how more accurate results can be obtained.

The fourth chapter discusses the HNN. This is a brief introduction to HNNs and 

also how they can be used as a stereo matching tool. Their operation and advantages and 

disadvantages will be discussed. Also some comparisons will be made on the use of 

H N N  as opposed to the traditional method of stereo matching.

Chapter five introduces the stereo matching process. This chapter discusses the 

fundamentals and also the stereo matching constrains, which are an important topic is 

devising a stereo matching algorithm. Following this, some traditional methods for stereo 

matching will be presented. In addition, the state o f the art in stereo matching will be

3
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discussed in this chapter. And finally chapter six details the use of HNNs in stereo 

matching, which is the main contribution of this thesis.

Obviously, after 3D information is acquired this data has to be used in some sort 

of a control application where an articulating arm or other mechanical manipulator will 

interact with some object(s) in the environment. Therefore it is important to discuss how 

the raw 3D data obtained from stereo matching can be used to accomplish the actual end 

goal of the vision system. This goal could be anything ranging from moving a conveyor 

belt to picking objects to sending various commands to an autonomously navigated 

vehicle. In this thesis the final result to be achieved is grabbing o f a number of 

mechanical objects from the field of view. Although these objects are marked, the 

algorithm and programs are extendible to any arbitrary environment.

Finally chapter seven presents the conclusions o f this work. It is important to note 

this thesis is not merely a work in stereo matching (although that is the focus). Rather a 

Vision System has been presented where several stages have been incorporated into the 

work as shown in Figure 1.1. It is often the case where stereo vision research is 

concentrated on dense matching algorithms where researchers conduct their work on 

stereo image databases [5] and devise their algorithm without consideration for actual 

vision systems where those stereo algorithms can potentially be implemented. However 

this work includes research and code in calibration, 3D data analysis and robotics control 

and stereo matching, all integrated into one working Vision System. Finally the appendix 

contains the C++ source code to some of the core classes used to simulate the algorithm.

4
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Image data in camera 
buffers

Robot Grasp 
Objects

STEREO MATCHING

Find the projection and fundamental 
matrices (Fj, F2, M1; Mj)

Threshold and border follow data. 
Obtain edge data: (xf,y^

Convert to Robot Coordinate System 
Obtain waist, shoulder, and elbow and wrist angles:

(0 i, 02, 63, 04, ©5)

Scene Analysis 
Locate the the number of objects, and their orientation. 

Obtain the robot arm trajectories: (xb,yb,zb)

Figure 1.1 Various steps required for the 
transformation o f  image data into the appropriate 
combination o f  robot joint angles for grasping 
objects.
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Chapter 2:3D Vision

2.1 Introduction

3D vision is the science of acquiring 3D information regarding objects within 

some field of view. Although this thesis concentrates on 3D vision using stereo, there are 

various other methods used for acquiring 3D information [6]. The next sections will be 

discussing the mathematics and geometry behind stereo vision, however here a brief 

introduction to other 3D vision methods will be provided. Also the justification behind 

choosing stereo over other methods will be presented.

2.1.1 Active versus Passive Vision

Several approaches have been developed for 3D vision [6], They can be broadly 

categori2ed into two major classifications: active vision systems and passive vision 

systems. In active vision systems (Figure 2.1) structured light (e.g., laser) highlights the 

points on the object to be measured.

Surface

Camera

Figure 2.1 Active vision using triangulation

Note that there are many other methods for determining 3D properties o f objects 

in images such as [6]:

Shape from shading

6
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Shape from motion

Shape from optical flow

-  Shape from texture

-  Shape from focus/defocus

2.2 Projective Geometry

It is vital to give a brief introduction to various elementary topics in computer 

vision before the rest of the thesis can be presented. First and foremost, projective 

geometry is an essential tool in order to understand higher level vision concepts. Note 

that much of the information here has been obtained from [7] and [8].

2.2.1 Euclidean versus Projective Geometry

We are all familiar with Euclidean geometry and with the fact that it describes our 

three-dimensional world so well. In Euclidean geometry, the sides of objects have 

lengths, intersecting lines determine angles between them, and two lines are said to be 

parallel if they lie in the same plane and never meet. Moreover, these properties do not 

change when the Euclidean transformations (translation and rotation) are applied. Since 

Euclidean geometry describes our world so well, it is at first tempting to think that it is 

the only type o f geometry. (Indeed, the word geometry means "measurement of the 

earth"). However, when we consider the imaging process of a camera, it becomes clear 

that Euclidean geometry is insufficient: lengths and angles are no longer preserved, and 

parallel lines may intersect.

Euclidean geometry is actually a subset o f what is known as projective geometry. 

In fact, there are two geometries between them: similarity and affine. Projective geometry 

models well the imaging process of a camera because it allows a much larger class of 

transformations than just translations and rotations, a class which includes perspective 

projections. O f course, the drawback is that fewer measures are preserved — certainly not 

lengths, angles, or parallelism. Projective transformations preserve type (that is, points

7
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remain points and lines remain lines), incidence (that is, whether a point lies on a line), 

and a measure known as the cross ratio, which will be described.

2.2.2 Imaging as a Projective Transformation

Projective geometry exists in any number o f dimensions, just like Euclidean 

geometry. For example the projective line, which we denote by P \  is analogous to a one­

dimensional Euclidean wodd; the projective plane, P2, corresponds to the Euclidean 

plane; and projective space, P3, is related to three-dimensional Euclidean space. The 

imaging process is a projection from P3 to P2, from three-dimensional space to the two- 

dimensional image plane. And this is where projective geometry help explains this 

process and furthermore help model this transformation (which is used in camera 

calibration, and 3D reconstruction).

2.3 Homogeneous Coordinates

Another important concept in the field of computer vision is homogenous 

coordinates. This is a rather different method o f representing points and lines in space as 

opposed to the Euclidean coordinate system which most people are used to.

Suppose we have a point (x,y) in the Euclidean plane. To represent this same point 

in the projective plane, we simply add a third coordinate of 1 at the end: (x, y, 1). Overall 

scaling is unimportant, so the point (x,y,l) is the same as the point (ax, ay, a), for any 

nonzero a.

In other words, for any a 7^0 (thus the point (0,0,0) is disallowed). Because scaling 

is unimportant, the coordinates (X,Y,W) are called the homogeneous coordinates of the 

point. For example, to represent a line in the projective plane, we begin with a standard 

Euclidean formula for a line:

(X,Y,Z)  = ( a X , a Y , a Z ) (2 .1)

ax + by+ c = 0 (2.2)

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and use the fact that the equation is unaffected by scaling to arrive at the following:

a X  + b Y  + cW  = 0
t  n  (Z 3 )u p  = p  u = 0

where u=[a,b,c]T is the line, and p=[X,Y,W]T is a point on that line. Thus we see 

that points and lines have the same representation in the projective plane. The 

parameters o f a line are easily interpreted: -a /b  is the slope, -c /a  is the x-intercept, and - 

c /b  is the y-intercept.

2.3.1 Conversion from Projective to Euclidean Coordinates

To transform a point in the projective plane back into Euclidean coordinates, we 

simply divide by the third coordinate: (x,y) = (X/W, Y/W). Immediately we see that the 

projective plane contains more points than the Euclidean plane, that is, points whose 

third coordinate is zero. These points are called ideal points, or points at infinity. There is 

a separate ideal point associated with each direction in the plane; for example, the points 

(1,0,0) and (0,1,0) are associated with the horizontal and vertical directions, respectively. 

Ideal points are considered just like any other point in P2 and are given no special 

treatment. All the ideal points lie on a line, called the ideal line, or the line at infinity, 

which, once again, is treated just the same as any other line. The ideal line is represented 

as (0,0,1).

2.4 Camera Model

Using the information provided in the section on projective geometry and 

homogenous coordinates, we are now ready to present the basic camera model which is 

an essential concept in stereo correspondence and camera calibration. It is important to 

explain the camera model before any further information about calibration or 3D 

reconstruction can be provided.

9
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2.4.1 Projective Camera

There are a few different models for describing a camera, however the one mosdy 

used in this thesis is the projective camera (others include affine, pinhole, camera at 

infinity ...). A  general projective camera can be represented by a matrix, P. The camera 

will map world points, X to image points x according to x=PX. This matrix P, is also 

referred to as the projection matrix which will be thoroughly discussed in chapter three. 

In homogeneous coordinates we can write a projective camera as ITA, where A is a 

general projective transformation and n  is a perspective camera transformation. For 

reference, this means that

n  =
1 0 0 0

0 1 0 0

0 0 1 0

(2.4)

and

A =

 ̂a oo a oo

©o ©o

a io a n a u a u

a 20 «21 a 22 a 23

y a 30 a 3 l a 32 a 33 )

(2.5)

Notice that, because we are working in homogenous coordinates, A and aA 

represent the same transformation if o#  0. Note that the matrix A can be further broken 

down, this will be discussed later in chapter three.

2.4.2 Lens Distortion

There are various nonlinearities in these equations that are ignored since their 

inclusion will incur additional computational complexity and yet would not add 

significant accuracy increase. In brief, lens distortion is defined as failure o f the lens to 

image a straight line in object space as a straight line in image space and to maintain the 

same metric. Normally, the resultant displacement o f the image from that produced by a

10
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true projective transformation is referred to as lens distortion and is characterked by two 

components. One that is radically symmetric about the principle point and one that is 

symmetric along a line directed through the principle point [9]. Terminology adopted by 

photogrammetrists to describe these two components is radial and tangential distortion, 

respectively. Since distortion has to affect the position o f the image point in the image 

plane, therefore represents a factor in camera calibration parameters, and should be 

compensated for by using various correction schemes. For a complete analysis o f lens 

distortion and its affects on camera calibration see the work by R. Tsai [10].

linear image

Figure 2.2 Effects o f  lens distortion on images and 
their correction.

As explained, these nonlinearities are results o f imperfect lens characteristics. Note 

that another reason for the exclusion o f nonlinear lens behavior due to distortion is the 

fact that improved manufacturing techniques in lens technology has lead to a decrease in 

this phenomenon. This is to say those newer lenses are not as prone to the effects o f lens 

distortion as the ones manufactured before.

radial distortion

correction
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Chapter 3: Camera Calibration

3.1 Introduction

As explained in the previous section, the camera can be represented in a matrix 

format. This format can in fact be further decomposed into its constituent parts. The 

goal of camera calibration is to find this matrix. The reason for this is that once stereo 

matching takes place, it is impossible to find the 3D information regarding the objects 

without the aid of this matrix. In fact, this matrix contains information on how the pixels 

in an image are related to some outside 3D coordinate system. It is using this matrix that 

the 3D information can be recovered.

Another use for the calibration step is to find the epipolar geometry which will be 

explained later in chapter five. This helps the stereo matching algorithm narrow its search 

neighborhood significandy and thus helps in improving the performance of the system. 

Note that calibration is the process of finding the projection matrix rather than the 

epipolar geometry (represented by the fundamental matrix); however, the epipolar 

geometry can also be found at this stage. This makes the calibration step even more 

important. Also calibration has to be performed only once and the data can be used in 

subsequent image snapshots. However, once the cameras have moved (even a slight 

movement) they have to be recalibrated in order to have accurate information regarding 

the 3D data.

In order to better understand the reason behind camera calibration lets take a 

closer look at the camera projection formula:

« W N a2 ai a,;
Y

vw — « 5 a6 <h a8 Z
w , \ a9 aio « n

, 1
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This equation describes how a 3D point maps to a 2D point (u, v) in the image 

plane. Therefore when looking at pixels in a camera, the information that is known about 

them is their image coordinates which is (u, v) multiplied by a scale factor w. It is obvious 

that if we were given the projection matrix (al, a2 ...) and the 3D world coordinates of a 

point we could easily find its image points using a simple matrix multiplication. However, 

the opposite is not true, that is, since one axis is lost during this transformation, if given 

an image point, and we can not uniquely find its corresponding 3D point. This is where 

stereo vision gives us a second set o f equations from a second image which leads to an 

over determined set o f equations that can easily be solved for the world coordinates (X, 

Y, Z). However throughout this process it is obvious that without the projection matrix 

our goal o f  finding the 3D world coordinates will not be achieved.

3.2 Projection Matrix

It is important to better understand the projection matrix before proceeding to 

explain the camera calibration. We explained before that the projection matrix can be 

broken to two parts. However, there are really three parts to the projection matrix.

3.2.1 Decomposition of the Projection Matrix

The projection matrix is composed of the following parts:

1- A 3D Euclidean transformation: This is a 3D rigid displacement where a scene 

points, initially defined in a scene reference frame, is transformed so that they would be 

defined in the camera reference frame. This transformation has 6 parameters 

corresponding to a 3D rotation and a 3D translation.

2- A 3D-2D transformation: 3D points defined in the camera reference frame are 

projected on the image plane. The new coordinates of these new points are called 

normali2ed coordinates.

13
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3- A 2D-2D transformation: The normalized coordinates expressed in the scene 

metrics, undergo a 2D affine transformation to become defined in pixels in the image 

plane reference frame.

This three step transformation is best demonstrated by Figure 3.1.

Optical axis

camera coordinate 
system

Image coordinate 
system (pixels) v

Figure 3.1 The three step coordinate system 
transformation o f  the perspective camera

These three transformations can be algebraically explained. First, the 3D Euclidean 

transformation. Given a point P in the world coordinate system, and its location P' in the 

camera reference frame, where P —(X, Y, Z) and P'= (X1, Y , Z1), their relationship can be 

described as:

x ']
/

rn ri2 rn ' ' X } f °r = r2X r22 r23 Y + ty
7 ' J31 r32 r33y J z  J
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Using homogenous coordinates we can write the above in a compact way as 

follows:

* 1 ' rw rn r\3 C [ X

r r2l r22 r22 (y Y

Z' r3l V32 r33 K Z

1 ° 0 0 U ,1

or simply P'=DP.

Moving on, the 3D-2D transformation is the next step o f this transformation. 

Keep in mind that the point undergoing these transformations is a fix point and these 

transformations are only operating on the coordinate system that this point is defined in. 

This second transformation (3D-2D) is the projection that a point in the 3D space 

undergoes to become a point in the 2D space on the image plane. This is where one of 

the axes is lost and needs to be recovered later on to achieve 3D reconstruction. The 

following figure demonstrates this phenomenon.

P (X .Y ,Z )

t o 
<0 , 0* -

P(X. y)

Z-axis

X -axis

Image plane 
(Im sje  coordinate)

Figure 3.2 Perspective projection o f  a point.

The new coordinate values can in fact be found using similar triangles:
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Z X  r X  , Z  Y r Y
— = --------- > x = 1 —  ana — = ----> y =  f  —
f  x Z  f  y  '  Z

(3.4)

where f  is the focal length. This relationship is in fact a perspective projective 

transformation from P3 to P2. The following equation demonstrates this assuming the 

focal length, f  is unity:

y
0"

' X
0 0

Y
1 0 0

z
0 1 0 ,/

,1

(3.5)

A compact version o f the above will be: p=XIP, where I is a 3x4 matrix 

representing a perspective projection and, X is a scale factor for equality in the projective 

space. The perspective projection o f a point P, defined in a scene coordinate system, on a 

plane at distance 1 from the optical center is given by : p=XIDP , where, D takes care of 

changing the coordinates from the scene reference frame to the camera (projection 

system) reference frame and I takes care o f the perspective projection.

Following this the 2D-2D transformation will take place. This is due to the fact 

that after projection, points are defined in the scene units, for instance centimeters. 

However, the unit, used for image points is the pixel, therefore a scaling is necessary. To 

illustrate this point, consider a (x, y, 1) be the coordinates of p, a point located on the 

image plane, expressed in the scene unit. And let (u, v, 1) be the coordinates of p, a point 

located on the image plane, expressed in pixels. The issue becomes of determining the 

relationship between the two. Moreover, the scaling is not the only problem that has to 

be accounted for. Another issue is the fact that the current origin is located at (uo, vo), the 

intersection o f the optical axis with the image plane. But the origin of the pixel 

coordinates should be the upper left corner o f the image. Therefore the scaling has to be 

following by an addition. The following demonstrates this relationship which contains 

both the scaling and the addition:
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X 0 u0

A = 0 vo
0 1

(u v 1)r = A (x

(3.6)

where A is the affine transformation of the 2D space, and av and au are defined as:

(3.7)a u = - A  

« v = - A

where f  is the focal length in mm and ku and kv are the number o f pixels per mm 

along the Y and X axis.

After combining the above results we can arrive at the precise definition of the 

projection matrix:

M  = AID

(u ' m x i m, 2 m

V m2i m22 m

A "*32 m.

m u

m 24

m 3 4 /

Y

Z

A /

(3.8)

where (u, v) is the image point, (X,Y,Z) is the world point and A. is a scale factor.

3.2.2 Intrinsic and Extrinsic Parameters

From the above it can be seen that the projection matrix encodes information 

regarding two different set o f parameters. One set is that o f the camera, such as focal 

length and the number o f pixels per millimeter and the camera centre (uo, vo). These are 

called the intrinsic parameters of the camera and are independent o f the position of the 

camera related to the world coordinate system. The other set o f parameters are those 

described by matrix D, which was explained in equation(3.3). These parameters are 

direcdy related to the position o f the camera. Although these parameters do not have to
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be necessarily found explititiy (finding projection matrix, M is sufficient for our 

application) but some simplifications can be made if these parameters need to be found 

explicitly. For instance, intrinsic parameters can be found and later on only the extrinsic 

parameters need to be estimated since generally the intrinsic parameters do not need to 

be estimated more than once. Another simplification methods is to eliminate the 

extrinsic parameters altogether by fixing the world coordinate system at the camera 

reference frame (so positions are estimated relative to the actual camera). This would be 

very effective in cases where cameras need to move. However, in this project only the 

matrix M is found since explicitly finding the extrinsic/intrinsic parameters would not be 

useful since we need a coordinate system which is independent of the camera. This is 

because a robot needs to get the information from the camera and interact with the 

environment. Thus fixing the coordinate system at the camera would not be useful in this 

case. However for applications such as autonomous navigation fixing the world 

coordinate system to move with the camera is the only possible solution.

3.2.3 Estimation of the Projection Matrix

By finding a number of image points whose 3D world coordinate locations are 

known we can rearrange the equation(3.8). This can be simply written as an over 

determined set of linear equations if the number o f such points is higher than six and can 

be solved using any number of numerical methods such as Singular Value 

Decomposition (SVD) [11].

( - * '
- y t -Z, -1 0 0 0 0 «,A, «> Y, u,Z, «1

0 0 0 0 -X , -Z . -1 v,A, v.lj v.Z, h

- X t - n -Z 2 -1 0 0 0 0 u2X2 u 2Y u2Z2 «2
0 0 0 0 -X 2 - n -Z 2 -1 v2X2 V2Y v2Z2 V2

-X , -Y„ -Z. -1 0 0 0 0 unZn Un

v 0 0 0 0 -X„ - y . -Z„ -1 k x „ VnZ n V„

"h i
m,3
">14

« 2 1

" h i

"hi
"h i

" h i

" h i

."h i.

(3.9)
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In order to actually find the matrix shown above and to estimate the projection 

matrix of each camera, Mi and M2, the calibration process must be undertaken. This is 

done by finding several image locations and their 3D coordinates as mentioned above 

using these summarized steps:

-  Place a calibration target in the view of the cameras

-  Take snapshots from each camera

Change location o f the calibration target to several different heights, take 

snapshots, repeat as many times as necessary

-  Detect feature points o f the calibration target (the locations o f these 

feature points must be known in the world coordinate system that is to be 

used in the calibration)

Use a numerical method to find the projection matrix for each camera

Two terms need defining at this point, the first one being the “calibration target”. 

This is a physical object which will be placed in some known coordinates, where the user 

would note the location o f each of its feature points. To clarify, let’s look at the 

calibration target used in this thesis in Figure 3.3. This object is moved to various heights, 

and the centroids o f the circles are used as features.

It is important to know that we must move the calibration target to at least two 

different heights, because using feature point on a plane only would lead to a 

degenerative configuration [8] and the numerical solution to the projective matrix would 

be incorrect. In this thesis we decided to move the object to six different heights, this 

does lead to a high degree of redundancy and thus a higher quality solution is obtained.
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Figure 3.3 Calibration target

However, the calibration in this thesis is somewhat inaccurate compared to other 

works, mainly because a robot is used to move the calibration target, and since the 

movements of the robot are error prone, a highly accurate projection matrix could not be 

obtained.

3.2.4 Calibration Targets

Note that it is possible to use any kind o f calibration target. For instance a more 

popular calibration object than the one used in his thesis is the one using square objects 

such as the one shown in Figure 3.4. The reason why this target is more popular is that 

every object in this case (squares) provides four feature points which are the corners 

instead of one feature per shape as is the case with circular objects.

■■■■■■■■■ 
■■■■■■■■■
■■■■■■■■■ 
■■■■■■■■■

Figure 3.4 Other forms o f  calibration targets

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



These comers can in fact be very accurately extracted using various methods 

including the corner detector [12].

A more interesting calibration method is to use two perpendicular planes. This 

would mean that the calibration target does not have to move. This is highly desirable 

because the movement of the calibration target is one o f the sources of error in the 

calibration. So only a single snapshot of such a calibration target as shown in Figure 3.5 

could lead to a very efficient calibration scheme, note the number o f squares, each 

provides four points that can be used in the calibration process. Now let’s move on to 

the actual calibration process using the target o f Figure 3.3. After the robot moves the 

calibration target to a new known location, a snapshot is taken. Afterwards several steps 

have to be taken. First, using a simple thresholding method, the image is thresholded. In 

this case the Otsu threshold was used [13]. This algorithm is based on a very simple idea 

which is to find the threshold that minimizes the weighted within-class variance. It is fast 

and simple and suitable to this situation. Following this a border following algorithm is 

performed on the binarized image. The purpose o f this step is to effectively isolate the 

circles on the calibration target in order to pin point their exact location in the images.

■ I  ■
■ * ■

L  ■  •
P f i

Figure 3.5 A more effective calibration target

One important point is that in this project the border following was severely 

hindered by the presence of spurious reflection off o f the robot surface which is a shiny 

metallic surface. In order to avoid this, a simple shape descriptor was used (normalized 

distance o f border points to the centroid). And this feature was checked for every object
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in order to ensure the shapes that are extracted are perfecdy circular. Note that the size is 

not a good measure in this case since the calibration target moves to several different 

heights in respect to the camera and thus its projection on images changes as a result of 

this different in the distance o f the viewing camera.

3.2.5 Implementation of the Calibration Stage

To better see how this works in reality several snapshots o f the program used is 

shown. The first step is taking the images and binarizing them as shown in Figure 3.6. 

This screen is shown to the user for every time the calibration target moves to a new 

height. Therefore it is shown six times. The first row images are those o f the snapshot 

from the calibration target. The second row shows the thresholded version o f the 

calibration target using the Otsu method. Here you can see that the thresholding picks up 

objects that do not belong to the calibration target; these are parts o f the robot which 

were referred to earlier as spurious reflections.

CALIBRATION I MAGES

Figure 3.6 Calibration software — Thresholding and 
border following followed by centroid calculation.
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The third row shows the actual images, plus the centroid of the calibration circles 

(these marks are one pixel wide). It is possible for the user to intervene if the centroids 

have not been picked up correctly. In brief, the screenshots of the software shows five 

steps, the grabbing o f the frame (snapshot), the thresholding, border following, shape 

detection and centroid detection.

The second screenshot shows the process of establishing correspondence between 

the detected circles and those of the actual calibration target. This involves user 

intervention although it is possible to perform this automatically such as done by Zhang 

[14]. Since the equation(3.9) needs the actual location o f the calibration features plus their 

location in the image, these two entities need to be paired together. As previously 

mentioned, the world coordinate locations of the features are known, and the image 

location o f the features (centroids) is also detected using the procedure outlined earlier. 

All that is left to do is to pair these two values together so that they can be used in 

equation(3.9). This is done using software and interacting with the user by guiding 

him /her as shown in Figure 3.7.

.si
C am o t a  C alib ra tion  P a ra  m o to rs Ctck the circles in order 

■ Centroids

*
Cancel I

_§£! I
\

•  •  •  
•  •  • o o o

o o o
•  O  O

World Coordinates of Centroid 1:

Y

Figure 3.7 Pairing the image locations with world 
locations by user intervention.
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A computer generated image o f the calibration target is used where the user is 

shown one o f the circles blinking. The software starts out by blinking the first circle (first 

circle could be any). Afterwards the user clicks the circle that corresponds to this blinking 

circle. A t this stage the circles are detected and the software is aware o f them therefore 

the user need only click in the vicinity o f the first circle. After the user clicks the first 

circle the software starts blinking the second circle and so on. At every turn the user 

clicks the corresponding circle. This is obviously tedious and inconvenient since the 

calibration target has nine circles, and it has to move to size heights, and at every height 

two images are taken. This means the user has to click 108 circles. This it not 

prohibitively inconvenient since calibration is a one time process (one time until the 

cameras move). However alternative calibration methods are recommended to the 

reader to avoid user intervention. For instance the calibration technique using the target 

o f Figure 3.5 can be done using minimal user intervention and by using homographies 

[8].

0 a  g *  #aw Canaa U *  Shw Laval Cafcr*# Hobet Mmg f t * *  Z  '
l i J S S -

Left Right W orld -

X>X

Y X Y Z

457.6 453.0 537.3 351.1 12.3 30.2 5.6
411.7 439.1 496.0 357.0 12.3 32.7 5.6
367.0 425.5 454.4 362.8 12.3 35.2 5.6
470.5 407.8 529.2 309.1 14.8 30.2 5.6
425.4 394.0 488.5 314.5 14.8 32.7 5.6
380.3 380.8 447.1 320.4 14.8 35.2 5.6
483.5 362.5 521.5 267.2 17.3 30.2 5.6
436.1 349.2 480.6 272.7 17.3 32.7 5.6 '*7
393.7 336.2 439.6 276.0 17.3 35.2 5.6

M ean S quare  Error in Left C am era X coordinate is : 0.48539
M ean S quare  Error In Left C am era V  coord inate  is : 0.30047
M ean S quare  Error in R ight C am era X coordinate is : 0.40935
M ean S quare  Error in Right C am era Y  coordinate is : 0 .29982

4 \ |
Raaiy g U f t i u a

Figure 3.8 Calibration results shown to the user.

Once the user finishes selecting the circles in order, the program forms the matrix 

o f equation (3.9) and solves the system using SVD. Following this the results of the 

calibration are printed out on the screen. Also several text files are printed out that
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contain the calibration data. As explained the calibration and stereo matching and robot 

grabbing modules are separate entities. The calibration module uses text data files in rode 

rot relay the calibration to other modules in the application.

The next screenshot is the one in Figure 3.8 which can be divided into two parts. 

The top part shows the actual image location of the feature points in both cameras (left 

and right in the top part denote left and right cameras). That is why there are nine rows 

in the top part. O n the top right part we can see the world locations of these nine feature 

points. There could be six different such screen for the top part for every single 

movement of the calibration target. Finally the bottom part contains information 

regarding the accuracy o f the projection matrix in pixels for each camera. This 

information is obtained by using the projection matrix which was obtained from SVD to 

recalculate the image locations o f the feature points from the 3D (world coordinate) 

points of their coordinate in space. Although we have the image locations o f the features 

(found using thresholding, border following and ...) we can recalculate them numerically 

using the estimated projection matrix and then compare the two together. The closer 

they are indicates the more accurate the projection matrix is. This is how the information 

provided in Figure 3.8 shows a measure o f the accuracy of the projection matrix. Note 

that here the error is presented in terms o f pixels, a better method of assessing the 

accuracy of the projection matrix is to actually recalculate the wodd coordinates using the 

projection matrix, this way the error measures will be in terms o f more useful metric such 

as m illim e te rs  instead o f pixels (which could translate to any measure in the real work 

depending on the camera and scene geometry). It can be seen that the error is less than 

half a pixel approximately in the X and Y (image axis) coordinates, which is a reasonable 

accuracy to work with.

3.2.6 Accuracy of the Calibration Data

Keep in mind that without accurate camera calibration, it is impossible to achieve 

high accuracy in stereo matching and in 3D reconstruction using the stereo matches. This 

is because a poorly calibrated camera will produce an inaccurate projection matrix which 

leads to incorrect 3D coordinate calculations, and it will create an incorrect fundamental
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matrix which means it is going to produce an incorrect epipolar line and so this essential 

constraint can not be used in stereo matching (more on this in chapter five). This means 

that we need other ways o f ensuring consistency and accuracy o f the calibration results. 

One way is to take a closer look at the reprojections of the image features and their actual 

locations such as in Table 3-1. This helps in debugging purposes if for instance; one of 

the axes is creating a higher error rate. Another way to ensure consistency o f the 

calibration data is to calculate the location o f the camera centers. The location o f the 

camera centers is found using a simple equation: MC=0.

Table 3-1. Calibration data and reprojections

Error in X Error in Y U V Level Point #

0.378 0.259 264.717 437.302 1 1

0053 0.062 214.216 432.863 1 2

0.059 0.147 165.981 428.115 1 3

0.003 0.145 268.08 386.52 1 4

0.000 0.118 218.176 381.784 1 5

0.230 0.2 167.765 377.314 1 6

0.294 0.294 272.098 335.784 1 7

0.335 0.093 221.725 331.098 1 8

0.162 0.074 172.204 326.204 1 9

0.076 0.269 282.065 419.419 2 1

0.248 0.231 227.746 414.322 2 2

0.111 0.144 173.565 409.145 2 3

0.163 0.475 285.807 364.772 2 4

0.048 0.221 232.213 359.311 2 5

0.136 0.565 177.903 354.419 2 6

0.096 0.35 289.831 310.153 2 7

0.343 0.148 235.967 304.6 2 8

0.270 0.15 182.644 299.22 2 9

3.2.7 Finding the Camera Centre

Another way to state this formula is to say that the camera centre is the right null- 

space of M (the projection matrix). It might appear at first glance that this equation states 

that the centre of the camera is a location in the 3D world coordinate system that is
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projected on the location zero [0, 0]T in the image (the upper left corner) which might 

seem somewhat arbitrary. However this is not true, because all equations up to this point 

have been defined in homogenous coordinates, therefore point zero is actually point (0, 

0, 0)T in the two dimensional image space, which is in fact an undefined point in the 

projective space. This is intuitive because it would make perfect sense if the centre o f the 

camera was projected onto an undefined location.

The reason for finding the camera centre is mostly to ensure the calibration is 

consistent with our pre-determined world coordinate system. This is necessary since it is 

possible through some kind of error to obtain calibration matrices with very low error 

rate, but inconsistent with our world coordinate system. This is possible for instance if 

there is a systematic error in measurement error when providing the 3D coordinates of 

feature points o f the calibration matrix to the software. For instance if every x coordinate 

system has the same offset, the projection matrix will be accurate but it will provide a

calibration matrix for a biased coordinate system. Therefore by finding the camera

centers we can check the locations of the camera to the world coordinate system (by 

hand) and ensure these results reflect our desired world coordinate system. In other 

words finding the camera centers is a simple sanity check for ensuring the consistency of 

the coordinate system. For instance a typical camera centre location which is outputted as 

a flat text file in our simulations has the form:

Ci=[ 8.64476 ; 47.96822 ; 71.98662 ; 1.00000]

C2=[ 8.10730 ; 29.15020 ; 71.19551 ; 1.00000],

Note the extra one at the end, again this is described in homogenous coordinates. 

In our experiments we measure the location o f the camera with respect to the world 

coordinate system and we obtained similar results as those provided by the software.

3.3 The Fundamental Matrix

One o f the most important things to consider when performing stereo matching is 

the epipolar geometry. This will be explained later on, however its calculation is done in
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the calibration stage and thus its algebraic representation (the fundamental matrix) is 

discussed here.

Let two images be taken by two cameras by linear projection, as shown on Figure 

3.9. Let O and O' be the two projection centers of the two images which will be called in 

the following: first and second image respectively. The point O projects to the point e' in 

the second image, and the point O' projects to the point e in the first image. The two 

points e and e' are the epipoles and the lines through e and e' are the epipolar lines. Let a 

space point P be projected on p and p' respectively in the first and the second image. The 

plane defined by the three points P, O and O ' is the epipolar plane, it contains the two 

points p and p'. The projections o f this plane onto the first and the second image are 

respectively the epipolar lines (e, p) and (e1, p1). We can see from Figure 3.9 that the 

relation between the epipolar lines in the first image and the epipolar lines in the second 

image is a homography of lines. This homography is the epipolar transformation which 

relates a pair of stereo images. Note that a homography is a geometric transformation 

relating two planes, for more information the reader can refer to a number of references 

including Hartley and Zisserman [8].

The most common way to describe the epipolar geometry is by means of a 3 x 3 

matrix called the fundamental matrix. This matrix, usually denoted F, contains the 

geometric information which relates a pair of images. For a point p given by its 

homogeneous coordinates in the first image, the corresponding epipolar line lp, in the 

second image is given by:

lp ~ F p  (3.10)

where lp is a vector containing the coefficients o f the line. If in the second image p' is the 

corresponding point to p then p' must belong to lp this can be written as:

p ' T F p  =  0 (3.11)

F is homogeneous and is o f rank two [8], it has seven independent parameters.
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first im age
\  P /

O

Figure 3.9 A space point P defines the epipolar 
plane OPO' which intersects the two image planes 

in two lines (ep) and (e'p1): the epipolar lines.

3.3.1 Estimation of the Fundamental Matrix

The most popular methods to compute F are based on equation(3.11). A brief 

description o f these methods follows. Let’s assume that points have been matched in the 

two images. When using equation(3.11), each couple of match points (p,p’) gives rise to a 

linear homogeneous equation in the nine unknowns o f F. Since F can only be defined up 

to a scale factor, it has 8 independent parameters. So F can be computed with 8 matched 

points in the two images. When more than 8 matches are given, a linear least square 

method can be used to compute F. In this thesis, the SVD is used for solving an over 

determined set o f equations [8]. This numerical method is particularly attractive for its 

including noise cancellation abilities. The equation to be solved by SVD can be shown as 

follows:
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=  0 (3.12)

This is done by obtaining n number of correspondences between the two images 

which is done during the calibration stage. To see this more clearly lets revisit 

equation(3.11). This relationship can be better written as:

(fxx f n V
I/  v' 1) f ix f n f n V

J 31 f n f 33 j

=  0 (3.13)

Where the f  values represent members of the fundamental matrix. Therefore by 

combining a set o f known relationships in corresponding points in the two images we 

can construct a simple system that can be written in the form of

AF  =  0 (3.14)

Which is in fact an over determined set o f linear equations and can be simply 

solved using various numerical methods including Gauss-Jordan or SVD which has 

better noise cancellation abilities. It is important to consider the calibration step to be a 

noisy process. Which means it is almost impossible to obtain 100% accuracy in the 

fundamental matrix. This has severe repercussions when it comes down to the stereo 

matching process. This means that the epipolar line can not be relied upon completely. 

This makes the stereo matching more difficult and this uncertainty in the epipolar 

geometry has been incorporated in the H N N  matching technique which is presented in
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chapter six. Note that the work in this thesis is different from many other works in the 

stereo field. Most researchers work on rectified image sets where epipolar lines are in fact 

scanlines and where the researcher can focus on the actual stereo matching without 

having to take into consideration the uncertainties o f the two-camera geometry. This will 

in fact decouple the matching from calibration and epipolar line estimation. Therefore 

this thesis better resembles a real life Machine Vision Application where such 

assumptions about two-camera geometry can not be used. Note that if we could obtain 

100% accurate epipolar lines the matching algorithm would have been considerably 

different (and simpler).

In order to see what the fundamental matrix actually represents lets look at a real 

example. Figure 3.10 demonstrated the concept of epipolar geometry and its 

uncertainties. In this example a point has been randomly selected in the left image and 

the epipolar line corresponding to this point has been drawn in the other image using 

software which computes epipolar lines. Once this is established the stereo matching 

algorithm will travel along this line looking or the most likely candidate using a simple 

correlation matching method. If  the fundamental matrix had been correct, which it is to a 

high degree as can be seen from the image, the stereo matcher would not have missed. It 

can be seen that even a one-pixel error in the calculation of the fundamental matrix can 

mislead a naive stereo matcher which relies on the epipolar geometry.

Left Image Right Image

Figure 3.10 Uncertainties in the Fundamental 
Matrix.
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Therefore it is important to use the fundamental matrix effectively, but not rely on 

it as being 100% accurate.

It is however possible to achieve higher accuracy that reached in this project. It is 

possible to achieve higher accuracy in both the fundamental matrix computation and 

projection matrix computation by using third-party calibration tools which make use of 

both linear and nonlinear optimization tools for finding a numerical solution to the 

calibration parameters. Most notable is the OpenCV [15] library which is an open source 

package that is widely used in the computer vision community. Using such packages will 

enable the researcher to solve various problems and concentrate on the area o f research 

which he/she wishes to focus on. However, this package was not used in out algorithm 

and a custom calibration routine was written using SVD.

3.3.2 Output of the Calibration

Finally before moving on to the next chapter, a summary o f the output o f the 

calibration module is presented:

Left and right Fundamental Matrices: used for finding match 

neighborhoods (epipolar geometry).

Left and right Projection Matrices: used for metric measurement.

Left and right camera centers: sanity check of the calibration stage, gives 

the 3D location o f the two cameras.

Error analysis o f the calculated projection matrices: determining if the 

calibration data is useful.
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Chapter 4: Hopfield Neural Networks

4.1 Introduction

It is important to introduce Neural Networks before presenting stereo matching 

since the Hopfield Neural Networks (HNN) will be the tool used in achieving stereo 

correspondence. Therefore a brief introduction to Neural Networks in general is 

presented followed by detailed discussion of the H N N  which are a special type of Neural 

Networks. Afterwards, the use o f  H N N  for performing combinatorial optimization will 

be discussed. There will be little mentioning o f stereo matching since the goal of this 

chapter is to introduce H N N  and give an overview o f how it could be used in solving 

optimization problems. The next chapter on stereo matching will present the problem of 

correspondence and will also discuss how the stereo matching problem can be viewed as 

a combinatorial optimization problem. There are many ways of solving stereo matching, 

and recently combinatorial optimization techniques have gained much popularity [16,17].

What the reader should get from this chapter is a basic understanding of Neural 

Networks, an understanding of how HNNs work and how they can be used for solving 

combinatorial optimizations. The following is an introduction to Neural Networks.

Artificial neural networks (ANNs) go by many names such as connectionist 

models; parallel distributed processing models, neuro-morphical systems, self-organizing 

systems and adaptive systems. ANNs are composed of simple elements operating in 

parallel. These elements are inspired by the biological nervous systems. An ANN is an 

information processing structure that tries to imitate human abilities in perception, 

vision, associative memory and pattern recognition. ANNs are being developed as a 

technological discipline that can automatically develop operational capabilities to 

adaptively respond to information environment. An ANN is either hardware or a 

computer program that strives to simulate the information processing capabilities o f its 

biological example. ANNs are typically composed o f a great number o f interconnected 

artificial neurons, which are simplified models of their biological counterparts.
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Figure 4.1 Structure o f  a typical Neural Network

ANNs acquire knowledge through learning and store this knowledge within the 

inter-neuron connection strengths known as weights. ANNs provide an analytical 

alternative to conventional techniques, which are often limited by strict assumptions of 

normality, linearity, variable independence etc. The true power o f ANNs lies in their 

ability to represent both linear and non-linear systems and in their ability to learn the 

relationships direcdy from the data being modeled. Figure 4.1 shows a typical NN. Note 

the fact that a typical N N  is simply a network of various “neurons”. These neurons can 

be thought o f as processing elements and they closely resemble the concept o f biological 

neurons. They resemble the neurons in the human brain in various ways. For example, 

both have “states” as in they are either off or on. Also the concept o f synaptic weights is 

common in both models. Therefore it is essential to first understand these processing 

elements or neuron models before discussing neural networks. The next section provides 

an overview o f what these neurons are and the different mathematical models used to 

represent them.
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4.1.1 Neural Network Training

Before moving on to the next section, it is vital to discuss the dynamic behaviors 

in NNs, in other words the idea o f “training” in NNs. Commonly, ANNs are adjusted or 

trained so that a particular input leads to a specific desired or target output. Figure 4.2 

shows the block diagram for a supervised learning ANN, where the network is adjusted 

based on comparing the neural network (NN) output to the desired output until the 

network output matches the desired output. After the network is trained, the network 

can be used to test new input data using the weights provided from the training session, 

the input data is fed through a N N  structure to get an output.

Desired
Output

Neural Network 
System '►j Compare

Input

Figure 4.2 Learning Ability o f  A N N s

4.1.2 Advantages of Neural Networks

The reason why N N s have been chosen in this work will be presented herein. 

Going through the stereo matching literature one will notice a very obvious absence of 

Neural Network methods in solving the stereo correspondence problem. However there 

are many reasons why researchers have a great interest in Neural Networks and which 

make them attractive for solving various problems, from classification to optimization.
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The major advantages and disadvantages o f Neural Networks (NNs) NNs in modeling 

applications are as follows:

NNs have high tolerance to noisy data.

NNs have the ability to model multi-dimensional nonlinear relationships. 

Neural models are simple and the model computation is fast.

Parallel implementation is easy.

-  NNs Learn from example, are capable of generalizing data, which makes it 

possible to process new, imperfect and distorted data.

-  There is no need to assume an underlying data distribution such as usually is 

done in statistical models.

-  It is easier to update neural models whenever device or component 

technology changes.

NNs can handle different kinds of environments such as dynamic and 

complex.

NNs have the ability to implicitly detect complex nonlinear relationships 

between dependent and independent variables.

The most important motivation behind using NNs in this thesis is the fourth item, 

the fact that parallel processing is a definite possibility with a N N  solution. This will be 

more thoroughly explained later on.

ANNs have been successfully applied to broad spectrum o f applications. For more 

information regarding the applications of NNs see Haykin [4], which gives an excellent 

overview on Neural Networks and its applications. Four different areas o f research that
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are o f  great significance will are: pattern classification (most popular), data mining, 

prediction and association (HNN).

4.2 Artificial Neuron Model

As mentioned before, the Neurons are the building blocks o f neural networks and 

as such they merit some attention. This section briefly described these processing 

elements which will later be used in creating large neural networks.

Similar concepts o f the biological neuron are applied in the artificial neuron, in 

other words the idea o f the artificial neuron is inspired by its biological counterpart. But 

still the artificial neuron is by far a simplified model compared to the biological neuron. 

In its simplest form, as shown in Figure 4.3, a neuron sums a set of input, weighted by 

the strength of its connections (synaptic weights) and takes the overall value and uses it 

as an input to some internal function (activation function) and outputs the resulting value 

o f this function through a set of weights to other neurons in the network.

Activation 
Local function 
Field ------------

Output

Summing
function

Synaptic
weights

Figure 4.3 A general artificial neuron

In general, an artificial neuron contains four components: input, weights, 

processing unit and output. The input is obtained from the other neurons or from the 

outside o f the neural network. The weights (wi, W2 . . . w,) are connections between
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neurons which have an influence on the response o f the neurons. A processing unit sums 

up the weighted input and threshold value and passes the signal through the activation 

function (transfer function) to the output. The output connection carries the output (ip)

information the input is multiplied by the appropriate weight and then passed through 

the transfer function, after summing up o f all the weighted input and threshold value. 

Most Artificial Neurons are similar in this way and differ only in their “Activation” 

function. That is most Artificial Neurons act as small processing elements, connected to 

other, similar elements in a large parallel processing network. But the way they operate on 

their internal input or their activation function is what sets them apart.

4.2.1 Activation Functions

The activation function is a function that is used to transform the activation level 

of an input neuron into an output signal. Typically, activation functions have a squashing 

effect. The activation function gives information to the processing neuron about how 

active is the connections to this neuron. Different types of activation functions exist, but 

in all these cases their purpose is to determine the neuron's output signal level as a 

function o f the input signal level to the neuron. Several models have been shown in 

Figure 4.4. Keep in mind that the discreet H N N  which will be discussed in the next 

sections uses the threshold function shown below, and the continuous H N N  which is 

used in the final implementation uses the Sigmoid version.

to the other neurons or outside of the neural network. During the processing o f the

Threshold Linear

G aussien Sigmoid

Figure 4.4 Various models o f  activation functions.
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The continuous version usually uses a function o f the form:

<p(v) -  tanh(— ) (4.1)
2

whereas the discrete neurons usually follow an equation as shown below:

\a  i f  v < c
9 i y )  = \ (4.2)

\b  i f v > c

Note in the case of the HNN, since the network has a time dimension, the 

equation (4.2) takes on a different form. In that case, if v=c, the value o f the function will 

retain the value at time instant t-1.

4.3 Types of Neural Networks

This section presents three major Neural Network models, Multi-Layer 

Perception; the Self Organizing Maps (SOM) and the Hopfield Neural Networks. There 

are many other types o f NNs; however these three capture the diversity of the various 

NN  models and serves as a good introduction.

4.3.1 Multi-Layer Perceptron

First the Multi-Layer Perceptron (MLP) is the most common N N  model. MLP is a 

hierarchical structure of several perceptron, which uses supervised training methods to 

train the NN. The training o f such a network with hidden layers is more complicated 

than a single perceptron which does not contain any hidden layers. This is because when 

there exists an output error, it is hard to know how much error comes from the input 

node, how much from other nodes and how to adjust the weights according to their 

respective contributions to the output layer. The problem can only be solved by finding 

the effect o f all the weights in the network. This is solved by using the back-propagation 

algorithm [4] which is a generalization of the least-mean-square (LMS) algorithm. The 

back-propagation algorithm uses an iterative gradient technique to minimize the mean-
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square-error between the desired output and the actual output o f the MLP. The training 

procedure is initialled by selecting small random weights and internal thresholds. The 

training data are repeatedly presented to the network and the weights are adjusted until 

they stabili2e which means the mean-square error is reduced to an acceptable value. The 

whole training sequence involves forward phase and backward phase.

Input layer Hidden layer #1 Hidden layer #2 Output layer

** yl

^  y2

Figure 4.5 Multilayer Perceptron (MLP)

The forward phase estimates the error and the backward phase modifies the 

weights to decrease the error. The MLP is perhaps one of the most commonly used NNs 

and they serve as a standard tool for performing classification.

4.3.2 Self Organizing Maps

Second is the Self Organizing Maps (SOMs) which are a data visualization 

technique invented by Professor T. Kohonen [18] which reduce the dimensions of data 

through the use o f self-organizing neural networks. The problem that data visualization 

attempts to solve is that humans simply cannot visualize high dimensional data and this 

tool is created to help us understand this high dimensional data. The way SOMs go about 

reducing dimensions is by producing a map o f usually 1 or 2 dimensions which plot the 

similarities o f the data by grouping similar data items together. So SOMs accomplish two 

things, they reduce dimensions and display similarities. Just to give you an idea of what a
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SOM looks like, Figure 4.6 shows an example of a SOM. As you can see, like colors are 

grouped together such as the greens are all in the upper left hand comer and the purples 

are all grouped around the lower right and right hand side.

Figure 4.6 Self Organizing Maps

The first step in constructing a SOM is to initialize the weight vectors. From there 

you select a sample vector randomly and search the map o f weight vectors to find which 

weight best represents that sample. Since each weight vector has a location, it also has 

neighboring weights that are close to it. The weight that is chosen is rewarded by being 

able to become more like that randomly selected sample vector. In addition to this 

reward, the neighbors of that weight are also rewarded by being able to become more like 

the chosen sample vector.

4.3.3 Hopfield Network Model

The third class o f Neural Networks that will be presented here as a survey is the 

Hopfield Neural Networks (HNNs). Although they are presented here as merely another 

class of Neural Networks, they are the main tool with which we have implemented in a 

machine vision algorithm and thus the next section will present a full detail discussion of 

this class. However for the sake of completion a brief explanation is presented here.
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In the beginning of the 1980s Hopfield published two scientific papers [19, 20], 

which attracted much interest. This was the starting point o f the new era o f neural 

networks, which continues today. Hopfield showed that models o f physical systems 

could be used to solve computational problems. Such systems could be implemented in 

hardware by combining standard components such as capacitors and resistors. The 

Hopfield neural network is a simple artificial network which is able to store certain 

memories or patterns in a manner rather similar to the brain - the full pattern can be 

recovered if the network is presented with only partial information. Note that unlike 

most other NNs which are used for classification purposes, the H N N  is used mainly as a 

memory system, and in this case, as an optimhiation tool. Furthermore there is a degree 

o f stability in the system - if just a few o f the connections between nodes (neurons) are 

severed, the recalled memory is not too badly corrupted - the network can respond with 

a "best guess" which makes this algorithm immune to noisy data. O f course, a similar 

phenomenon is observed with the human brain, for instance during an average lifetime 

many neurons will die but we do not suffer a catastrophic loss of memory. The nodes in 

the network are vast simplifications of real neurons - they can only exist in one of two 

possible "states" - firing or not firing (for binary HNNs, for continuous H N N s there are 

infinitely many states). Every node is connected to every other node with some strength 

as shown in Figure 4.7. At any instant o f time a node will change its state (i.e. start or 

stop firing) depending on the inputs it receives from the other nodes. If  we start the 

system off with any general pattern o f firing and non-firing nodes then this pattern will in 

general evolve with time and converge to a stable configuration (more on this will be 

presented). One might imagine that the firing pattern of the network would change in a 

complicated perhaps random way with time. The crucial property o f the H N N s which 

renders it useful for simulating memory recall is the following: we are guaranteed that the 

pattern will setde down after a long enough time to some fixed pattern. Certain nodes 

will be always "on" and others "o ff1.
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OUTPUTIN PU TS

Figure 4.7 A node, or a neuron in an H N N

Furthermore, it is possible to arrange that these stable firing patterns of the 

network correspond to the desired memories we wish to store if the goal is to use the 

H N N  as a content addressable memory. However if optimization is the tool we can use 

the evolution of the network (the network minimizes its energy) to minimize a 

complicated multidimensional energy function which represents out problem. This is 

shown in Figure 4.8 where the energy o f the H N N  is shows to be decreasing and 

converging to a stable state.

Figure 4.8 The H N N  moves along an n- 
dimensional energy surface

The reason for this will be thoroughly explained in the next section and 

mathematics of H N N  will be discussed to model the behavior o f the HNN, but for now 

lets take a lighter approach to discussing the evolution of the H N N  using analogy.
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Imagine a ball rolling on some bumpy surface as in Figure 4.8; we imagine the position of 

the ball at any instant to represent the activity of the nodes in the network. Memories will 

be represented by special patterns of node activity corresponding to wells in the surface. 

Thus, if the ball is let go, it will execute some complicated motion but we are certain that 

eventually it will end up in one of the wells o f the surface (a minima). We can think of 

the height o f the surface as representing the energy of the ball. We know that the ball will 

seek to minimize its energy by seeking out the lowest spots on the surface — the wells. 

Furthermore, the well it ends up in will usually be the one it started off closest to (this is 

where proper initialization of the H N N  is important).

This is the equivalent of gradient descent, but in the context o f binary problems. 

This is why H N N s are called combinatorial optimization tools. Because as opposed to, 

for instance the Newton-Raphson algorithm, they are designed to solve discrete 

optimization problems.

4.4 Hopfield Neural Networks

As mentioned earlier in the beginning of the 1980s, Hopfield [19, 20] and his 

colleges published two scientific papers on neuron computation. Hopfield showed that 

highly interconnected networks of nonlinear analog neurons are extremely effective in 

solving optimization problems. In fact, the Hopfield Neural Networks have a rather easy 

VLSI implementation. Hopfield’s original schematic for the Hopfield Neural Network 

was actually an analog circuit implementation as shown in Figure 4.9.

From that time on, people has being applying the Hopfield network to solve a 

wide class o f combinatorial optimization problems. In a discrete-time version, the 

Hopfield network implements local search. In a continuous-time version, it implemented 

gradient decent. The neural network contains only one layer. The input feeds to the layer 

at time zero and then the feedback from the output nodes are used as input. Output 

nodes are fed back to the inputs via variable connection weights. There are no self­

feedback connection weights in this NN. Figure 4.10 shows the connections and the 

layers of the HNN.
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neuron

V amplifier V  inverting amplifier
•  resistor in T,j network

Figure 4.9 The original circuit layout o f  the 
Hopfield Neural Network

When used for pattern association tasks, the training method for the Hopfield NN 

is a supervised training method. The H N N  knows the input and the output values of the 

HNN before the training process. The only unknown for this H N N  is weights. In fact, 

this is the case regardless of the application that the H N N  will be used in. Regardless of 

the mode of the operation, the weights are the unknowns which have to be found and 

tailored to the given problem. The discrete H N N  takes the binary input values +1 and -1, 

whereas the continuous H N N  which have been used in this thesis use a continuous 

range o f values from 0-1.

■*i Xj X3 Xj

Figure 4.10 H N N  layout
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4.4.1 Hebb’s Trainig Rule

The training of this network is done by the Hebb rule when pattern association is 

the goal. The training process is given below;

Where Wij is the weight connection between the input node i and the output node 

j, Xs, is the input element of training pattern s, M is the number of patterns used for 

training and N  is the number of nodes in the layer (number of input components). When 

using the H N N  for pattern association, during the recognition process, an unknown

Where yj is the output o f the output node j, Wij is the connection weight from the

elements and the fh is the hard limiting nonlinearity activation function. The activation 

function in this case could be a step function, which goes from -1 to +1 at the. The 

recognition process continues until there is no change in the output states on successive 

iterations. O f course the network has to be left to evolve for a number of iterations 

(order o f hundreds, depending on the si2e) to ensure the network is in a stable point.

4.4.2 Energy Function of the H N N

Note that the most important aspect o f the H N N  is the energy function which 

explains its convergent behavior. This behavior is the means with which pattern

u - 1

(4.3)
wij = °

where 0 < i , j < N

input is applied to the N N  at time zero. Then the N N  forces the output to match one of 

the trained patterns. The recognition process is shown below:

yj(0)  = xJ3 0 < 7 < J V

(4.4)

output o f the output node i to the input o f the output node j, N is the number o f input
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association and optimization is accomplished in HNNs. In fact it was Hopfield [20] who 

first showed in his work that this can be accomplished. The next section explains the 

process of optimization using the HNNs.

4.5 Hopfield Neural Network Approach to Combinatorial 

Optimization

A large class of logical problems arising from real world situations can be 

formulated as optimization problems, and thus qualitatively described as a search for the 

best solution. These problems are found in engineering and commerce, and in perceptual 

problems which must be rapidly solved by the nervous systems o f animals. Well-studied 

problems from commerce and engineering include: Given a map and the problem of 

driving between two points, which is the best route? Given a circuit board on which to 

put chips, what is the best way to locate the chips for a good wiring layout? Analogous, 

but only partially characterized problems in biological perception and robotics include: 

given a monocular picture, what is the best three-dimensional description of the locations 

of the objects? Indeed, what are the "objects"? In each o f these optimization problems, 

an attempt can be made to quantify the vague criterion "best" by the use o f a specific 

mathematical function to be minimized.

4.5.1 Computational Power of a Connectionist Model

In addition, the stereo matching problem that we need to solve in this research can 

also be viewed as a combinatorial optimization task. This will be discussed in more 

details in the next chapter. But one might wonder why Hopfield decided to use a “neural 

network” model to try to solve the classical optimization problem. The reason is that he 

realized that the computational powers routinely used by nervous systems to solve 

perceptual problems must be truly immense, given the massive amount of sensory data 

continuously being processed, the inherent difficulty o f the recognition tasks to be 

solved, and the short time (msec-secs) in which answers must be found. Also he noted
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that an understanding of biological computation may also lead to solutions for related 

problems in robotics and data processing using non-biological hardware and software. It 

is clear from studies in anatomy, neurophysiology, and psychophysics that part o f the 

answer to how nervous systems provide computational power and speed is through 

parallel processing. The mammalian visual system computes elementary feature 

recognition massively in parallel. At the level o f neural architecture, anatomy and 

neurophysiology have revealed that the broad category o f parallel organization is 

manifest in several different but interrelated forms. Parallel sensory input channels, such 

as the individual rods and cones in the vertebrate retina, allow rapid remote sensing of 

the environment and data transmission to processing centers. Likewise, parallel output 

channels, for example in corticocortical projections in the cortex, connect different 

processing modules. Another manifestation o f parallelism occurs in the large degree of 

feedback and interconnectivity in the "local circuitry" of specific processing areas. The 

idea that this large degree of local connectivity between the simple processing units 

(neurons) in a specific processing area o f the nervous system is an important contribution 

to it's computational power has led to the study of the general properties o f neural 

networks and also several "connectionist" theories in perception. The connectionist 

theories employ logical networks o f two-state neurons in a digital clocked computational 

framework to solve model pattern recognition problems.

In essence, seeing the power o f a connectionist computational model in human 

beings, Hopfield decided to harness the power o f highly interconnected processing 

element for the purpose of optimization. And he did so in fact solve the classical 

Traveling Salesman Problem (TSP) in his paper [20] and demonstrated the feasibility of 

the solution that can be obtained using his H N N  as shown in Figure 4.11. The general 

structure of the analog computational networks which can solve optimization problems 

is shown in Figure 4.9. These networks have the three major forms of parallel 

organization found in neural systems: parallel input channels, parallel output channels, 

and a large amount of interconnectivity between the neural processing elements. The 

processing elements, or "neurons", are modeled as amplifiers in conjunction with 

feedback circuits comprised of wires, resistors and capacitors organized so as to model 

the most basic computational features of neurons, namely axons, dendritic arborization,
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and synapses connecting the different neurons. The amplifiers have sigmoid monotonic 

input-output relations, as shown in Figure 4.4.

to) ( b >

02 0.4 0.6 08 0 02 0.4 0.6 08 1 0 02 04 06 0.8 t

Figure 4.11 Solutions to the traveling salesman 
problem found using continues H N N  in a, b and 
discrete H N N  in c.

4.5.2 Evolution of the H N N

Although this "neural" computational circuit is described here in terms of 

amplifiers, resistors, capacitors, etc., we have shown that networks o f neurons whose 

output consists of action potentials and with connections modeled after biological 

excitatory and inhibitory synapses could compute in a similar fashion to this conventional 

electronic hardware. We can describe the discrete Hopfield net in discrete time as:

X  ( «  +  ! )  =  s g n i =  (4.5)

Where sgn represents the threshold nonlinearity (0,1) and b is a bias. We assume 

that the update is done sequentially by neuron number; however there are other methods 

o f updating such as random updating where neurons are updated at random. The input is 

a binary pattern x = [xi, X2, . . .  x n ] and works as an initial condition; it is presented to the 

network and then taken away to let the network relax so it disappears from equation(4.5). 

Due to the sgn function we can see that the points visited during relaxation are the 

vertices of a hypercube in N dimensions (if the network is a discrete model).
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We presented the practical aspects o f Hopfield networks, but we assumed that the

nonlinear nature o f the network. The importance o f the Hopfield network comes from a 

very inspiring interpretation of its function provided by Hopfield. Due to the extensive 

interconnectivity, it may seem hopeless to try to understand what the network is doing 

when an input is applied [21]. We can write the dynamic equations for each neuron, but 

due to the fact that these different equations are highly coupled and nonlinear, their 

solution seems to be beyond our reach. In practice this is not so. When the weight matrix 

is symmetric, the neurons are threshold nonlinearities and the biases are zero, we can 

show that the network accepts an energy function E:

This is the most important behavior of an HNN. Note that the energy function 

here assumes a one-dimensional H N N  and zero biases. However, the H N N  used in this 

thesis is a two dimensional H N N  with non-zero biases, the energy function of this HNN 

will be described later on. The energy function is a function o f the configuration of the 

states [21] that is non-increasing when the network responds to ANY input. This is where 

the H N N  proves its use a minimization tool since any unction that is rearranged in the 

form o f the energy function can be minimized using the HNN. We can show this by 

proving that every time one neuron changes state, E  decreases. When the neuron does 

not change, E remains the same. This means that the global network dynamics pulls the 

system state to a minimum (along the gradient o f E), that corresponds to one of the 

minima of the system. The location of the minimum in the input space is specified by the 

weights chosen for the network. Note that when an optimization is carried out using the 

HNN these weights are the parameters that need to be adjusted and that there are no 

patterns given to the system, except a random initialization pattern used to start the 

system. Once the system reaches the minimum it will stay there, so this minimum is a 

fixed point, or an attractor. When the Hopfield network receives an input, the system 

state is placed somewhere in weight space. The system dynamics then relax to the

dynamics do in fact converge to a point attractor. Under what conditions can this 

convergence be guaranteed? This is a nontrivial question due to the recurrent and

(4.6)
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memory that is closest to the input pattern. Around each fixed point there is thus a basin 

o f attraction that leads the dynamics to the minimum. This explains why the Hopfield 

network is so robust to imprecisions (added noise or partial input) o f the input patterns. 

Once the system state is in the basin o f attraction for a stored pattern, the system relaxes 

to the undistorted pattern as shown in Figure 4.12 .

Syste iu state Energy surface

Attractor (specifedby

Figure 4.12 Energy surface o f  an H N N

There are some practical problems, however, since when we load the system with 

patterns, spurious memories are created which may attract the system to unknown 

positions. An energy surface with minima and a basin of attraction creates the mental 

picture o f a computational energy landscape, which is similar to a particle in a 

gravitational field. This metaphor is very powerful, because suddenly we are talking about 

global properties of a tremendously complex network in very simple terms. We have 

ways to specify each connection locally, but we also have this powerful picture of the 

computational energy of the system. Hopfield networks can be used in optimization, 

because we can link the energy surface to problem constraints. The optimal solution is 

found by relaxing the system with the present input to find the closest solution (the 

attractor). Mapping the problem solution to the network is the difficult part and has to be 

done on a case-by-case basis, and in the case o f our stereo vision problem this encoding 

o f the problem with the H N N  energy function will be discussed in chapter six.
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Chapter 5: Stereo Correspondence

5.1 Introduction

Image correspondence can be defined as a mapping between two images, both 

spatially and with respect to intensity. If  the two images are denoted by Ii and h  where 

Ii(x, y) and l2(x', y1) are image coordinates which map to the intensity value o f the 

corresponding pixel, then the matching between these two images can be expressed as:

i2(x',y') = g(W(x,y))) (5 1 )

Where g is a 2D intensity transformation and f  is a 2D spatial-coordinate 

transformation, g should be considered when two images are taken with different types 

o f sensors; it is not necessary in a typical stereo vision system with only CCD cameras.

Therefore, matching is to find a transformation f  that maps spatial coordinates x and y,

to new spatial coordinates x' and y' as shown below.

(x',y') = f(x,y) (5-2)

Some typical geometric transformation between the two images is shown in Figure

5.1.

(a) (b) (c)

Figure 5.1 Typical geometry transformation: (a) 
translation, (b) Rotation, (c) Rigid transformation.
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Translation transformation occurs when the images are misaligned by a small shift 

due to a change in the camera's position. Rotation transformation is caused by a camera 

rotation around the axis. Rigid transformations are those where the objects in the images 

retain their relative size and shape. If  the transformation between two images is 2D, the 

spatial transformation f can be expressed by a single equation that maps each point in the 

first image to a new location in the second image. However, because the 3D-2D 

perspective projection is an irreversible one, it is impossible to find a spatial mapping 

function between a pair of stereo images. Therefore, stereo matching is defined as 

locating a pair o f image points resulting from the projection o f the same object point by 

some similarity constraints o f  the pixel colors. The relation can be written as follows:

i 2(x'>y')=Ii(x+dx>y+dy) (5-3)

Where dx and dy are the location differences o f the matching pairs along the x and 

y coordinates respectively. Note that not all the points in one image can find their 

corresponding points in the other image; this is called occlusion. It is because a given 

object point may not have a projection in both images. For instance a point may appear 

in the left image but not in the right image because it becomes hidden due to the position 

and orientation o f the right camera.

5.2 Disparity and Disparity Map

Disparity specifies the offset o f a pixel in the first image to its match in the second 

image. Without loss o f generality, we can assume that the two image planes are parallel. 

As shown in Figure 5.2, an object point P projects in the left image on p(x, y) and in right 

image on p'(x', y1). Since the two image planes are parallel, we have y = y'. Therefore the 

disparity d of P on this pair of images is one dimensional, and d = x'-x. Note that in our 

case this was not true. This project was carried out using two cameras with arbitrary 

geometry therefore the disparities were two dimensional. However recently most stereo 

matching research is carried out on parallel geometry since changing the non-coplanar 

camera geometry to a coplanar geometry is a matter o f rectifying the images [9]. This is
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done by calibrating the cameras and projecting the non-planar images to a coplanar set of 

images.

QLeft
Image

O

O ’

Right
Im age

Figure 5.2 Geometric depiction o f  disparity

Matching results can be stored in a disparity map, while the result of dense 

matching is recorded in a dense disparity map. A disparity map is formed by the 

disparities of all the matched points and can be displayed as an image. It is defined as an 

integer valued array where each entry stores the disparity value of the same image 

location. For example, if the disparity map D  records the matching result between left 

and right images, given a pair o f  matched points (p(x, y), p' (x1, y1)) , then D(x, y) = k with 

k = x' - x. In that case, k is considered as the intensity value (gray value) o f the pixel at (x, 

y) o f the disparity map picture. This is a very easy way of visualizing the disparities and a 

convenient way to inspect the quality of a stereo matching. An example of a dense 

disparity map is shown in Figure 5.3. This is a particularly accurate disparity map since 

the surface is very smooth and the change of gray level corresponds to the change in the 

elevation of the object. The fact is that the disparity value indicates the distance from the 

cameras to the object point. If  an object point is infinitely far away, then its projection
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onto the two image planes will be at the same location, and the disparity will be zero. If  

an object is close to the cameras then the disparity will be large. Disparity is inversely 

proportional to the distance between an object and the camera system.

left right disparity map

Figure 5.3 Example o f  a disparity map

Now the reader might realize why a robot vision system might need a disparity 

map of the environment, to get information regarding the depth of objects. In fact the 

stereo matching algorithm which will be developed in the next section is the means with 

which the robot is able to estimate the shape and depth of objects that have been placed 

within the field of view of the cameras. To better see how depth and disparity are 

inversely proportional see Figure 5.4.

P

J.

Figure 5.4 Relationship between depth and 
disparity.
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From the above figure it can be seen that given the image location of a point, if the 

corresponding point in the other image found, we can find the depth o f the physical 

location that corresponds to these points using the formula:

D  =  (5.4)
v ,+ v 2

Where D  represents depth from camera, b is the baseline (distance between the 

two camera centers) and vi and V2 are the image locations.

5.2.1 Sparse Disparity Maps

Going back to Figure 5.3, note that in most machine vision applications a dense 

map is not required. That is we only need to match the pixels at certain, “critical” points. 

These points are referred to as features and are usual areas of high contrast such as edges 

or corners. The method for finding these features or the feature extraction technique is 

used in the next chapter. But note that the number of points that need to be matched in 

a typical machine vision application is less than that of a dense map where every single 

point is matched. This makes things a bit easier for two reasons, one is that obviously 

fewer points need to be found and second that the most challenging part o f a matching is 

to find correspondence for points that have low texture. But as we explained, feature 

points usually have high contrast and texture which means they can be found with a 

much higher degree of certainty than those points belonging to even and textureless 

areas. In brief, we require a sparse depth map rather than a dense depth map.

5.2.2 Features

Sparse matching matches feature points in an image as explained. Since these 

feature points arc easily distinguishable from other points, they are also easier to match. 

Sparse matching can be divided into two steps:

1. Identifying the interest points (feature extraction)
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2. Matching between these sets o f points (correspondence)

Identifying feature points in an image involves finding interest points such as 

corners, junctions or dots. Figure 5.5 shows examples o f different neighborhood 

configurations around an interest point.

Figure 5.5 Example Patterns for interest points in a 
5 x 5  neighborhood: a) dot, b) comer, c) junction

More on feature detection and the exact method used for the implementation of 

this work will be discussed in the next chapter. For now we will discuss stereo constraints 

which play a central role in stereo matching. These are constraints on how a point can be 

matched to other points and a starting point for any stereo matching algorithm.

5.3 Stereo Matching Constraints

Stereo matching process is a very difficult search procedure. In order to minimum 

false matches, some matching constraints must be imposed. Below is a list o f the 

commonly used constraints.

5.3.1 Epipolar Constraint

Perhaps the most useful stereo constraint is the epipolar constraint which has been 

fully used in this thesis. Given a point p in the left image, the object point P that was 

projected on p may he anywhere on the ray defined by O and p (keep in mind that it is 

impossible to recover the depth o f a point from a single image). However, the image of
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this ray in the right image is the epipolar line defined by the corresponding point p' and 

the epipole e'. Therefore, the correct match o f p must lie on this corresponding epipolar 

line in the right image. This constraint is known as the epipolar constraint and is shown 

in Figure 5.6; it establishes a mapping between points in the left image and lines in the 

right image and vice versa. If  we assume that the epipolar geometry is known, the search 

for the match o f p in the right image can be restricted to the search along the epipolar 

line of p. The matching problem is reduced from a two-dimensional search to a one­

dimensional search. This is a considerable simplification o f the problem; for instance, the 

search over 1000 x 1000 = 106 pixels (a 1000 x 1000 image) will be reduced to a search 

over 1500 pixels(a diagonal line at most). The mathematics o f this constraint was 

discussed previously.

P

’lane

Lett
Image

Figure 5.6 The epipolar constraint significantly 
reduces the search neighborhood.

It was also explained how this constraint is algebraically represented as the 

fundamental matrix. Also it was shown how the fundamental matrix can be found during 

the calibration step. In brief, the epipolar constraint can be found if the fundamental 

matrix is accurately found, this way the algorithm can limit its search neighborhood. But 

realistically this is impractical since the fundamental matrix could suffer from

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



inaccuracies. Thus one way to overcome this is to search around epipolar lines, for 

instance the search can be carried out along three lines around and including the epipolar 

line.

5.3.2 Ordering Constraint

Another important constraint used in stereo matching is the ordering constraint. 

The order constraint states that stereo projections always preserve the order o f points 

along the according epipolar line. As shown in Figure 5.7, if point n is on the right side of 

point m on the epipolar line, then the matching point n' o f n must lie on the right side of 

the matching m' o f m. The reason is that it is geometrically impossible for points 

projected from the same opaque surface to be differently ordered in the stereo image 

pair.

Figure 5.7 Order constraint.

If  the ordering constraint is used effectively it could help in further reducing the 

search neighborhood. As the reader might guess, a good algorithm is one that can make
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full use o f all stereo constraint. This is because further reducing a search neighborhood 

means less ambiguity and higher accuracy. However care must be taken when using the 

ordering constraint since it depends on previously matched points. If  this incorrect 

information is used in order to ascertain the neighborhood using the ordering constraint 

the algorithm will have no chance of finding the right candidate. There are many ways to 

overcome this but this is not discussed since the ordering constraint was not used in this 

thesis. The reason for that was that since an objective function has to be formed, it is 

difficult to incorporate all matching constraints effectively within this objective function. 

This constraint has been left out o f  the matching process. However a future work built 

upon this thesis could consider including more constraints. Keep in mind that our stereo 

algorithm uses the Disparity Gradient [22] constraint, which could be a substitute for the 

ordering constraint. This constraint is discussed later in this section.

5.3.3 Continuity Constraint

The next constraint that is discussed here is the continuity constraint. The 

continuity constraint is also known as surface smoothness constraint. The underlying 

idea o f this constraint is that the wodd is mostly made up of objects with smooth 

surfaces. It states that disparity varies smoothly on object surfaces; sharp changes of 

disparity occur at object boundaries. In the ground truth disparity map Figure 5.3, we can 

recognize the shape o f the objects in the scene since the sharp intensity change at the 

object's boundary. This abrupt change indicates the disparity discontinuity at the object 

boundary. Meanwhile on the surface o f the objects intensity changes smoothly and 

uniformly, which indicates the continuity o f disparity values.

5.3.4 Uniqueness Constraint

The other constraint used in this thesis is the unique constraint. The uniqueness 

constraint states that one image point has at most one match in the other image. It is 

impossible that one object point can project at more than one location in only one image; 

while there is no match in the case o f occlusion. The uniqueness constraint can simplify 

the computation and can be used to validate the matching results. Note that this
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constraint is explicitly included in our objective function as will be discussed in this next 

chapter.

5.3.5 Disparity Gradient

Burt and Julesz [23] pointed out that Disparity Gradient dictates binocular fusion 

when several objects occur near one another in the visual field. They argue that there is a 

Disparity Gradient limit o f approximately 1 for most human subjects in their 

experiments. Furthermore, order reversal occurs in two potential matches when the 

Disparity Gradient is allowed to be larger than 2. There have been numerous articles 

exploiting the Disparity Gradient limit [24]. However, the reason why it is not as popular 

as the other constraint could be the fact that it was inspired by the human visual system 

rather than being resulted from mathematical derivation. We have used this constraint in 

our objective function for two reasons, one is because it is able to contain the ordering 

constraint, the other is the fact that it fits nicely with the H N N  objective function and 

can be easily included in our optimization as will be discussed in the next chapter.

p si x v Yv z l)

b

Figure 5.8 Defining Disparity Gradient in stereo 
vision.

Figure 5.8 depicts the camera geometry for stereo vision where the camera optical 

axes are parallel to each other and perpendicular to the baseline connecting the two
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cameras L and R. For a point P (X, Y, Z) in the 3-D scene, its projections onto the left 

image and the right image are p1(x1, y1) and pr(xr, yr). Because o f this simple camera 

geometry, y1 = yr and the disparity d is inversely proportional to the depth Z.

d  =  X 1 - X  -  —  (5.5)
Z

Where f  is the focal length of the camera lens and b is the separation o f the two 

cameras. Given two points Pi(X, Y, Z) and P2(X, Y, Z), their Disparity Gradient (8d) can 

be defined as 8d = difference in disparities/cyclopean separation, where cydopean- 

separation is the average distance between pi1, P21 and pir, p2r •

5 ^  =  2 x n7 r - 7  Y n = 2 x nT WW Yh (5-6)
(̂ 2 ~ P [ ) ~  ( P r2 ~  P i ) |/>2 - P i ) ~  (Pi  ~ Pi  )

where | | . | | denotes the vector norm. Note, from its definition 8d is always a

nonnegative number. Suppose a virtual camera is placed in the middle o f  the cameras L

and R, i.e., at the position of the origin. Since

C ( p i + P i )  j  c ( p l2 + P ri )  
p [  = - — z—  and p 2 =~— r— - (5-7)

It follows that:

5d  = lK . ;  71 (5.8)
( P C2 - P [ ) \

Or

c ,  \d 2 ~ d x\
5J = yrJ — xii (5-9>

\ \ ( p c2 - p i ) \ \
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Keep in mind that when the cameras are not coplanar the top portion o f equation 

(5.9) is taken as the magnitude o f the distance which is a vector (x and y elements). This 

term will be incorporated in our optimization and will be explained in the next chapter. 

The 8d value can be used to reveal various stereo-matching constraints. It is thus used as 

the basis of the unified stereo constraint. A brief summary follows [24]:

8d > 2 - violation o f order constraint

8d = 2 - violation of uniqueness constraint

-  8d <1.1 or 1.2 - disparity-gradient limit

8d < <  1 - continuity and figural continuity constraints

5.4 Stereo Matching Techniques

Stereo matching methods can be viewed as a different combination o f choices for 

the following three components:

A matching token

-  A similarity measurement

A search strategy

The matching token represents the information in the images that will be used for 

matching (the features that were mentioned before). A basic matching token is the pixel's 

intensity value; while other tokens can be image features, such as edges and contours. A 

similarity measurement determines the measure o f  similarity for each test; different 

measurements apply to different types o f matching tokens, this research focuses on fully 

incorporating the constraints, plus using an intensity similarity metric that will be 

discussed later on. A search strategy is how the search area is determined in the target 

image and how the search is actually carried out. There are two major categories of stereo 

matching methods based on different matching tokens. The area-based methods and

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



feature-based methods. In the area-based method, the matching element is template 

windows o f a certain size. The feature-based method aims at establishing the 

correspondence between a set o f image features based on some global optimization as is 

the case in our work. Correlation functions are used to measure the similarity in area- 

based methods, while for feature-based methods more complicated criteria are adopted. 

Search strategies also vary for these two classes o f methods, although some principles 

apply to both. The difference between global optimization search strategies and local 

search methods is discussed in the next chapter. For now we will briefly mention the 

differences between area-based algorithms and feature-based ones. Note that even 

though we match features, we do measure the intensity similarity using correlation based 

methods which are widely used in area-based algorithms.

5.4.1 Area-based Methods

In area-based methods, the matching is carried out by calculating and comparing 

correlations between template windows (or some other block matching method). The 

correlation process is the essential part for an area-based matching algorithm. To match a 

point p from the left image in the right image: a small window (reference window) is 

located with p as the center.

Figure 5.9 Block matching searches one image for 
the best corresponding region for a template region 
in the other image. Correspondence metrics are 
outlined in Table 5-1.
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This window is then compared with same sized windows (target window) in the 

right image for each pixel in the search area. Each comparison produces a correlation 

score using certain correlation functions. The corresponding pixel p' shall be associated 

with the window that maximizes the similarity function. This process is shown in Figure 

5.9.

Note that there are many methods for comparing template windows; Table 5-1 

shows several o f these methods. Keep in mind that, as mentioned before, although our 

method is a feature matching method, we do make use of a template matching “metric” 

to create a similarity measure in the objective function to be minimized.

Table 5-1. Common Area-based matching methods

Normalized Cross-Correlation (NCC) ^  ( / ,  (« , v ) -  / , ) -  ( / 2{« +  v) - / j  )
«,V

l ^ r . k v ) - / , ) 2 - ( f j  ( « + d , v ) - / j ) J

Sum of Squared Differences (SSD) ( u , v ) - l 2(u  + d , v ) f

Normalized SSD

s
» ,v

/ \

( / , ( « , v ) - / , )  { l ^ u  +  d . v ) - ! ^

X ( / 1( « , v ) - J 1)3 J Z ( / t (u  +  < t . v ) - 7j
V ,Y  f  U ,Y ^

Sum of Absolute Differences (SAD) £ | / 1M - / 1( « + r f .v ] |
k ,v

Rank £ ( / ; ( u , v ) ~ / ; ( u + d , v ) )
u . v

I t ( u , v } = ' £ r i {m>n  ) < I t (u ,v )
m.it

Census H A M M 1N Cj[ i \ (u  , v \ l t (u + d ,  v))
«.v

/ ;  ( a ,v )  =  B H S m N G „ , ( / , ( m , n ) <  11 ( u , v))

In essence, correlation functions give a measure of the degree o f similarity between 

two areas based on the pixels' gray level values. One o f the most popular correlation 

functions is the Normalized Cross Correlation (NCC). NCC calculates the correlation of 

all the pixels within the range of reference and target window. For a reference window 

centered on the point to be matched, the target window centered with the matching
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point shall produce the highest NCC value among all other windows, which represents 

the highest similarity. The NCC for each pair o f  pixels is given by equation in Table 5-1.

5.4.2 Feature-based Methods

A pixel's intensity value is the basic feature o f  an image. However, a single pixel's 

gray value does not provide enough information for many applications. More commonly, 

an image feature refers to a higher level description of an image. The image features are 

defined as local, meaningful and detectable parts o f the image. Local describes the 

features related to a part o f the image with some special properties, and not the global 

properties of an image. Meaningful means that the features are associated with interesting 

scene elements via the image formation process. Detectable means that some algorithms 

exist to detect the feature. The outputs of these algorithms are called the feature 

descriptors. For example, a descriptor for the line segment feature could consist of the 

coordinates of the segment's central point, the segment's length and its orientation. The 

detection o f image features can be viewed as a pre-processing stage for matching. In 

feature-based methods, the matching is based on the numerical and symbolic properties 

o f the features obtained by feature descriptors. Instead of using correlation as similarity 

measurement, corresponding elements are given by the most similar feature pair using 

other criteria. It is however possible to use correlation to match those features, in this 

case the intensity of the neighborhood is used as the similarity metric o f the features.

5.4.3 Feature-based versus Area-based Methods

Area-based methods achieve a dense matching result for the stereo image pair, 

while feature-based methods only match a sparse set o f features between the images. 

However, feature-based methods have the advantage o f  being efficient and more robust 

against image variations. The comparison between these two methods is shown in Table 

5-2. Note that the aspects that apply to our machine vision application have been 

highlighted in the table. For instance, the first row denotes the image features where the 

indoor scenes (assembly line in the case o f machine vision applications) are full of 

straight lines and features that can be easily extracted with a simple edge detector.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5-2 Comparison o f  area-based and feature- 
based methods

Area-Based Methods Feature-Based Methods

Type of image

Highly textures images, images 

taken from slighdy different 

viewpoints

Images rich in features such as 

indoor scenes with many straight 

lines

Implementation

difficulty
Easy Comparatively more difficult

Pre-processing

stage
Not necessary Feature extraction

Computation time
Calculation of correlation is 

expensive
Comparatively faster

Sensitivity to noise
Correlation-based methods are 

sensitive to lighting changes

More robust to illumination 

changes and other image noise

Matching result Dense disparity map
Sparse disparity map of matched 

features

Also notice the fourth row, the gain in the computation time from using feature- 

based methods outweighs the increased difficulty in the implementation denoted by the 

second row. The most important is perhaps in the last row, where the results have been 

explained. We will obtain a sparse depth map in case o f a feature-based algorithm, but 

this is really all that is needed. In machine vision applications as explained before there is 

no need for full dense maps. In fact, usually around 15-25% of the pixels need to be 

matched in order to draw enough 3D information from the scene to achieve a given task.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6: H N N  Position Sensing

6.1 Introduction

Once the cameras have been calibrated and the projection and fundamental 

matrices are found, in order to proceed with the task of position sensing, we must infer 

3D information about the scene. As explained in the previous chapter, this can be done 

through a stereo matching technique, and once the 3D data is obtained, we can provide 

motion vectors to a robotics hand [25] in order for it to interact with the environment 

(i.e. grab various objects in the scene). It was explained that there are different method 

for stereo matching, feature-based and area-based. It was also shown that most machine 

vision tasks do not require a full 3D map o f the scene, that most machine vision tasks 

can be accomplished using sparse depth data. Once this data is found, it is only a matter 

of segmentation of the 3D depth information to obtain information regarding the si2e 

and height and location and number o f various objects in the scene. In this chapter, we 

develop a stereo matching technique suitable to our machine vision task using the HNN. 

However, before proceeding with the algorithm one point has to be cleared. The reader 

might wonder where the H N N  might fit in a stereo matching algorithm. The answer to 

that is the fact that stereo matching can be viewed as a global search problem that can be 

solved using a combinatorial optimization method, and HNNs are one such method.

6.1.1 Stereo Matching by Combinatorial Optimization

Stereo matching has traditionally been solved using local search algorithms. Such 

local search methods could be applied to both feature-based and area-based algorithms. 

However, recendy discreet optimization techniques have become popular in stereo vision 

and also other fields of computer vision [26]. Such approaches view the stereo matching 

problem as a global optimization problem where the matching is represented by an 

energy function which is minimized via a combinatorial optimization technique. But first, 

let’s look at what combinatorial optimization is before proceeding to demonstrate how 

stereo vision can be formulated as such.
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6.1.2 Combinatorial Optimization

Combinatorial optimi2ation problems are concerned with the efficient allocation 

o f  limited resources to meet desired objectives when the values o f some or all o f  the 

variables are restricted to be integral. Constraints on basic resources, such as labor, 

supplies, or capital restrict the possible alternatives that are considered feasible. Still, in 

most such problems, there are many possible alternatives to consider and one overall 

goal determines which o f  these alternatives is best. For example, most airlines need to 

determine crews schedules which minimize the total operating cost; automotive 

manufacturers may want to determine the design of a fleet o f cars which will maximize 

their share o f the market; a flexible manufacturing facility needs to schedule the 

production for a plant without having much advance notice as to what parts will need to 

be produced that day. The versatility o f the combinatorial optimization model stems 

from the fact that in many practical problems, activities and resources, such as machines, 

airplanes and people, and pixels in the case of stereo matching, are indivisible. Also, 

many problems have only a finite number o f alternative choices and consequendy can 

appropriately be formulated as combinatorial optimization problems —  the word 

combinatorial referring to the fact that only a finite number of alternative feasible 

solutions exists. Combinatorial optimization models are often referred to as integer 

programming models where programming refers to “planning” (not coding) so that these 

are models used in planning where some or all of the decisions can take on only a finite 

number of alternative possibilities. Combinatorial optimization is the process o f finding 

one or more best (optimal) solutions in a well defined discrete problem space such as the 

stereo vision solution space which will be described shortly. Such problems occur in 

almost all fields o f management (e.g., finance, marketing, production, scheduling, 

inventory control, facility location and layout, data-base management), as well as in many 

engineering disciplines (e.g., optimal design of waterways or bridges, VLSI-circuitry 

design and testing, computer vision and etc.). Solving combinatorial optimization 

problems, that is, finding an optimal solution to such problems can be a difficult task. 

The difficulty arises from the fact that unlike linear programming, for example, whose 

feasible region is a convex set, in combinatorial problems, one must search a lattice of 

feasible points or, in the mixed-integer case, a set o f disjoint halflines or line segments to
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find an optimal solution. Integer programming problems have many local optima and 

finding a global optimum to the problem requires one to prove that a particular solution 

dominates all feasible points by arguments other than the calculus-based derivative 

approaches of convex programming. This is where HNNs come in and we will show 

how they can be used to solve this difficult problem.

6.1.3 Local Search versus Global Search in Stereo 

Correspondence

As explained in the previous section, combinatorial optimization is a problem 

where we would like to allocate a set o f “resources” or “labels” to a set o f discrete 

variables. In the traveling salesman problem [27] which is a classical combinatorial 

optimization problem, the variables are cities and the labels are the order of which the 

cities need to be visited. In stereo vision, the variables are pixels from one image and the 

labels are the pixels from the other image, and we must allocate these labels to our 

variables in such a way that a global measure o f the “goodness” o f the solution is 

minimized. We give this energy function to the H N N  in order for it to be minimized 

effectively (avoiding suboptimal minima).

To get a visual of what are the differences between solving the stereo matching as 

a traditional search method versus a combinatorial optimization method lets look at 

Figure 6.1. This figure represents a simplified correspondence problem where we have 

only three pixels in the left epipolar line and four pixels in the right epipolar line.

Left Image Right Image

Pixels A B C  A YS c '  T>
 • --------- ■ •   • --------------- •  * • ------

Intensities 12 14 16 10 13 16 25

Figure 6.1 Local search versus combinatorial 
optimization.
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We have been given information regarding the gray level of these pixels only (no 

information regarding their local neighborhood). The task is now to solve this 

correspondence. Using a local search method the correspondence problem would have 

been solved as follows:

1. Pick first unmatched pixel

2. Search all candidates on the other image for the best possible match

3. Assign a match and move to step 1

In this case, for illustration purposes we use the direct gray level o f a pixel as a 

measure o f similarity (this would be impractical in the real scenario of course). The flaws 

with using a local search method, is the fact that we do not get the best over all matching. 

The mathematical expression for a local search in this case would be:

A ^ B '  Cost = I  {A) -  I(B')  = 1 

B - + C '  Cost = 1(B)  -  I(C')  = 2

C  —> A' Cost = 1(C)  -  I(A')  = 6 (6.1)

Total Cost = 9

Note that the cost here is defined as the difference in the gray level o f the 

candidate pixel with the original pixel (same metric is used in the global method, with a 

different search technique). Here the overall cost or the “badness” of the correspondence 

is calculated as 9, and although the global cost o f the whole matching is not optimal, at 

every single pixel we do pick the highest matching score, thus the name local search. 

Now let’s look at a global matching technique where instead o f picking the best choice 

for a single pixel we pick the best overall arrangement. Note that the combinatorial 

optimization technique is a method for solving the global matching problem since a 

greedy search such as in the local method would be extremely inefficient. The local 

search uses a simple winner-take-all matching strategy which is computationally feasible 

for a local search method but impractical for a global search strategy since there are too
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many combinations. It can all be cleared by looking at the solution to our simple 

matching problem using a global matching technique:

A  -> A' AND B ^ B '  AND C -> C' Total Cost = 11

A -> B'  AND B  -> A'  AND C -> C' Total Cost = 13

A  ->• A'  AND B ^ B '  AND C -» D ' Total Cost = 9

A  -> C'  AND B  -> B'  AND C -> C" Total Cost = 14

... (n! combinations)

Match sequence with lowest cost: (6.2)

A - > A '  Cost = / ( A )  -  I (A ' )  = 2 

B ^ B '  Cost = 1(B) -  I (B ' )  = 1 

C - > C '  Cost = 1(C) - I ( C )  = 0

Total Cost = 3

It is sufficient to compare equations (6.1) with equations (6.2) to see the difference 

between a local and a global search strategy. We can see that in the global matching 

methods decisions regarding single matches are not made, rather one single decision is 

made for all o f  the correspondences that maximizes the sum o f the individual costs of 

the matching. Obviously if  we approach the problem this way we can get the best overall 

matching where the best decision is made globally (as can be seen in the results o f the 

overall cost or badness o f the solution). But the problem here is that there are n! 

combinations to be considered. Therefore greedy search techniques for finding the 

optimal solution are impractical. This is where combinatorial optimization techniques are 

useful. They are to solve such difficult problems in reasonable times, although the 

solution might not be the best (local minima) but the solution is still close to being the 

best overall. HNNs as explained in the previous chapters can be used to solve such 

difficult problems. The details will be presented next. But first, it was mentioned that our 

algorithm will be a feature-based algorithm[28]. Thus a brief discussion on how feature 

extraction is performed in this project is warranted.
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6.2 Feature Extraction

The stereo algorithm used in this project is a sparse matching algorithm as 

opposed to a dense matching algorithm where all points in the left image are matched 

with points in the right image (or vice versa). The reason for this is that, as mentioned 

earlier, a robotics vision system does not require a full range image (i.e. disparity map) in 

order to grasp the objects in its field o f view. Only a set of critical points on the object 

need to be resolved in 3D space in order to find an approximate location o f the object. 

This however, requires an extra step in addition to the existing stages o f most dense 

matching algorithm, and that is the feature extraction stage. One o f the goals o f this 

research has been to find the optimal method for feature extraction that yields the best 

results. In other words a set o f features need to be found that encapsulate enough 

information to characterize the object in space and still avoid including too many 

redundant features. There are three important qualities than any good feature must 

posses:

• General: represent majority of the useful info in a picture

•  Matchable: should be easy to match

•  Available: a convenient method for extraction should exist

The feature adopted in this thesis is interest points. There are other features 

available such as lines and curves, however points are simplest to extract and are 

sufficient for the task at hand and meet the above three criteria. The approach to finding 

these points is by applying an interest operator, which selects pixels that are good 

candidates for matching in the two images. These can be based on gradient, color and so 

on, and applied quite generally. Several of these features have been tested and the results 

are shown. The following is a brief discussion of various features that were tested in our 

experiments.
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6.2.1 The Moravec Feature

This operator [29] finds the local maxima of the directional variance minima. The 

mathematical model for finding such interest points is shown in equation(6.3). The 

results o f this feature extraction can be seen in Figure 6.2.

ft 71 3 71
V{i , j )  = mmVe{i , j )  with

4 2 4  (6.3)
y  (6 A  = [ f i x ,  y ) -  f ( x  + 1, y)]2 

2

This figure which will be used later is an image of a book with a cubic object on 

top of it. Eventually the goal is to find enough information (no more than required) in 

order to characterize these objects in space (i.e. find their centroid and orientation in 3D 

space). As you can see the Moravec operator which is actually used in the original work 

on HNNs and stereo matching [2] finds only very sparse information. Although it is 

possible to decrease the sensitivity of this feature extractor, its application to machine 

vision is limited for several reason. In spite o f its simplicity this method is very primitive 

and very sensitive to noise. Nasrabadi and Choo [2] were able to apply this operator 

because they merely performed their H N N  matching on very few points, much less than 

is required in an actual stereo application such as our position sensing robotics 

application.

Figure 6.2 A  com m o n ly  used  operator in  
finding p o in ts o f  in terest is the M oravec  
Operator.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.2.2 The SUSAN Corner Detector

The SUSAN (Smallest Univalue Segment Assimilating Nucleus) [12] corner 

detector has become an industry standard for finding comers in digital images. It is 

simple to implement and its behavior can be find-tuned with a threshold variable. The 

following shows the quality of the points that have been labeled by the SUSAN corner 

finder.

Figure 6.3 The SUSAN edge detector only labels 
the comers (intersection o f  edges).

It is possible to find finer details with the SUSAN corner detector but still the 

numbers of features are far from enough for us to be able to completely describe the 

object in space. This is why several edge detectors were experimented with in order to 

overcome these shortcomings of the corner detectors. This is one of the ways this work 

fundamentally differs from the work of Nasrabadi and Choo [2] since there is a real 

application that needs to be implemented using the stereo matching. That is why simply 

using a corner detector as they have done is impossible in this case. This makes the 

matching significandy more challenging than their case since we need to deal with 

number o f features much larger than they have used in their simulations. This is made 

more difficult since it is known that HNNs perform worse when the dimensionality of 

the neural network gets larger.

6.2.3 SUSAN Edge Detector

The SUSAN edge detector shares the same principles as the comer detector [12] 

but it attempts to locate edges rather than corners.
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Figure 6.4 The SUSAN edge detector

The experimental results using the SUSAN edge detector showed that it provides 

enough information regarding the critical points that an object can be characterized 

effectively; however there was even a better candidate, the Canny edge detector.

6.2.4 Canny Feature Extractor

As an edge detector this is perhaps the most accurate method available. The Canny 

method [30] differs from the other edge-detection methods in that it uses two different 

thresholds (to detect strong and weak edges), and includes the weak edges in the output 

only if they are connected to strong edges. This method is therefore less likely than the 

others to be fooled by noise, and more likely to detect true weak edges. This method is 

implemented in the correspondence module, however for every individual image two 

parameters have to be fixed. This gives us more freedom in determining the amount of 

information required from the scene. Our scene was particularly difficult for edge 

extraction since our background was a dusty dark surface. Therefore a noise immune 

system like the Canny edge detector was particularly useful and was able to provide finer 

details as shown below.

Figure 6.5 Canny Edge detector
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The reader might be wondering why we have not discussed the Sobel edge 

detector. This particular edge detector is perhaps the most widely used edge detector, and 

perhaps one of the most unsuitable one to this application. As explained our background 

is a dusty dark surface. The results o f the Sobel edge extraction were quit poor as can be 

seen below.

Figure 6.6 Sobel edge detector, poor noise 
immunity

One might argue that the added improvement in performance in the case of the 

Canny edge extractor comes at the price of higher computational time. But this is 

misleading since the added improvement in performance is worth the added 

computation time (which is in fact very minimal). Note that in cases when the Sobel 

extractor was used the application performed incorrecdy since the depth of noise points 

offset the location of the centroids that have been found and the robot would be 

provided with incorrect locations. This is why it is essential to use the best performing 

feature extractor. Also note that the more features to match, the more ambiguity is 

present in the system. This forces us to keep the number o f feature as low as possible, yet 

high enough to provide the required information.

6.2.5 Matching Strategy

As mentioned in the introduction, there has been a surge o f stereo matching 

algorithms that, unlike the correlation based methods, view the matching process as a 

combinatorial optimization problem [5, 26]. This is inspired by the fact that stereo 

matching can be viewed as a labeling where every primitive on the left image is assigned 

one from the right image such that a cost function is minimized. Formulating the stereo 

algorithm as such will have the benefit o f providing an optimal mapping of primitives
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from one image to another without being affected by local ambiguity or lack o f texture. 

The most important part o f such an energy minimization would be the cost function. 

This cost function is devised as to make use o f stereo constrains in such a way that the 

matching will be in compliance with the stereoscopic image properties. In the following 

sections we will discuss our novel objective function which uses Disparity Gradient (DG) 

and intensity similarity as its main constraint and forces matches that only follow the 

epipolar geometry.

6.2.6 Objective Function

Nasrabadi and Choo [2] devised a H N N  formulation o f the stereo matching 

algorithm; however their algorithm does not make explicit use o f the epipolar geometry, 

Disparity Gradient or intensity similarity. In this work we have enhanced their objective 

function by adding three important cost terms, and also by using a continuous HNN 

rather than a discrete one. This is due to the fact that a continuous H N N  is more likely to 

achieve a global minim without getting stuck in local minima. It is well known that the 

Lyaponov energy function o f a two dimensional H N N  is defined as [2]:

1 \  N, N r NI N r N , N r

E = - t  <«-4>
2  i  i=i *=i j = i / =i j=i k=\

Now the problem becomes that o f mapping the stereo constraints to the Hopfield 

Energy function in order to minimize it and achieve correspondence. Note that the 

H N N  is a set of fully interconnected neurons whose activations are denoted by Vik where 

“i” denotes the row number in the 2D neural grid and “j” denotes the column number in 

the grid. After the energy function has been properly mapped the network will evolve 

and the final state o f the network will provide the correspondence.

The correspondence is established by noting the value o f every neuron. For 

instance, if the activation of neuron V 3 4  is found to be the highest in its row and column, 

then it is deduced that the 3rd edge point from the left (or right) is matched with the 4th 

edge from the right (or left) image as shown in Figure 6.7. This is similar to how other 

combinatorial optimization problems are solved using the H N N  [27].
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34,

Right Edges

Figure 6.7 Matching by H N N

The following is the energy function used in this work which combines two 

additional constraints to the one used in [2]:

N , N r N , N r f  Nr V

k =1
£=-̂ zzzzo/«+5i *-zv *,=i *=i j=\ i=i i=

N r f  N , A2 N , N r 

c £

+

k =1 V 1=1 i=l k = 1

(6.5)

At this point equations (6.5) and (6.4) can be thought o f as separate entities. Later 

it will be shown that by rearranging (6.5) we can use the form of (6.4) and thereby use the 

H N N  as our energy minimi2ation tool. The first term contains information regarding the 

compatibility o f two matches, that o f Vik and Vji. These matches are related by their 

connection value which contains information regarding the intensity similarity and 

Disparity Gradient. Here we define the connection of the neurons as:
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TW  (1 +  e MX-0)) 1 (6 'C)

This value is a measure o f compatibility based on the variable X which encodes 

information about the match. In this work X  is defined to be:

X  = -----------------   (6.7)
W,glkjl+W 2( M i k + M u )

Here the gikji term denotes the Disparity Gradient compatibility between the two 

matches “ik” and “jl”. This value is a function o f the actual Disparity Gradient taken 

from Li and Hu [24] to be:

gl ¥ =2e-MIT- \  (6.8)

Where 8d denotes Disparity Gradient and T  is a constant that is chosen as in [24] 

to be 1.5. For a complete discussion o f Disparity Gradient and its use o f stereo matching 

see Li and H u [24] and Pollard [22], Here we have added another term that includes 

information regarding the intensity similarity. This is used in order to reduce the 

ambiguity of matches since Disparity Gradient will not always provide enough 

information for choosing the right match and will lead to some false matches. Each 

intensity similarity term is obtained using normalized cross correlation as follows:

' ^ [ f ( x l +u , y , +v ) - f ] [ t ( x r +u,yr + v ) -T]
M.  = — —--------------------- ----------------------------- - — (6.9)

X  [/(* / + «> y, + v) ■- f f  £  [<(*, + u, y r + v) - 1 f
u , v  u , v

Where u and v define a neighborhood area around the points xi and xr which is the 

point belonging to the ith feature of the left image and the points xr and yt which are the 

location of the kth feature of the right image. Since only edge points will be matched we 

can use a window size o f 7 or 5 without loosing a significant amount o f accuracy. This is 

due to the fact that edge feature can be much more reliable than points with 

neighborhoods o f low variance. Also it must be noted that Wi and W 2 are weights that
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can be chosen experimentally. The best combination in our experiments were W i—0.3 

andW 2=0.7.

The second and third terms tend to enforce the uniqueness constraint since the

probability represents a measure o f match between a feature point in the left image and

to “on” according the uniqueness constraint. This is the reason for the second and third 

term to prevent the probability of multiple matches. This uniqueness problem is one of 

the reasons we chose a continuous H N N  instead of a discrete one as in [2]. A discrete 

H N N  will evolve to a state where the activations will either be set to one or zero. Thus it 

is likely to obtain multiple “on” activations in one row or column, as is the case in [2]. 

However using a continuous scheme we avoid this pitfall by choosing the highest value 

in a row since activations can take on a continuous value in the range o f zero to one.

The fourth term o f the objective function tends to allow matches that are within 

an acceptable limit to the epipolar line. Although mosdy new stereo algorithms assume 

the images have been calibrated accurately and that images have been precisely rectified, 

this can not be assumed in every scenario especially in machine vision application. This is 

because we wish to have the freedom o f non-coplanar cameras while at the same time we 

can not guarantee accurate calibration. Therefore we can only assume weak calibration 

and allow certain variability for a candidate match in regard with the found epipolar line. 

This will give us the freedom o f not having an absolutely correct fundamental matrix. 

The term x is basically the perpendicular distance of a candidate match to the obtained 

epipolar line (not the real epipolar line):

Where xr and yr are the location of the kth feature point in the right image and the 

parameters a, b and c are those of the epipolar line in the right image corresponding to 

the ith feature point in the left image.

probabilities (states o f neurons) in each row or column should add up to 1. We know the

that o f the right image. Therefore only one neuron in each row or column should be set

\axr + b y r +c\
(6.14)T
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6.2.7 H N N  Parameters

Once the objective function has been defined all that is left is to construct a HNN 

o f the appropriate size, set the weights and let the network evolve. An H N N  that would 

require matching for Ni and N r would require N k x N r nodes and

(Ni x N r ) 2 connection weights. However the there is no self connection (i.e. Tkik=0)

and the weights are symmetric (i.e. T ^ F  Tjut ). So although some memory usage can be 

spared due to these facts, the H N N  remains a very memory intensive algorithm. This 

could be one of the reasons why there still has not been a single dense disparity matching 

algorithm using the HNN.

Once an H N N  o f the right size has been set up the weights will be set according 

to the objective function. However, our objective function needs to be rearranged in 

order to achieve the form of (6.4) so we can use it to determine connection weights and 

biases. After some algebraic manipulation we arrive at this form of (6.4):

E  =
(  , \  /V, N r N , N r N , N r

- r S I I S W >  -SS'A. (6-io)
4 J i=i k=i j=i ;=i 1=1 k=i

Where the weights are:

Wikj, = 2(A C ikjl — B8ik — C 8jl) (611)

And the biases are:

Iik = B + C  -  D xik (6.12)

Where A, B, C and D are free parameters o f the system. There is no mathematical 

way of finding their optimum value. In this work we mostly use small positive values.
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The best results that were found in this work were 2, 1, 1 and 1 were used respectively 

for A, B, C and D.

6.2.8 H N N  Evolution

Note that our updating differs from Nasrabadi and Choo’s method [2] since they 

used an updating scheme where a neuron is updating in a window o f a certain si2e using 

other neurons at a predetermined distance since they realized a neuron related to a match 

from one part o f an image should not be affected by one from a point that is unlikely to 

belong to the same object. Using this scheme they avoid interference between unrelated 

matches thus they resort to an unorthodox updating scheme which does not necessarily 

achieve a global optimum. However in our scheme since we added a term for epipolar 

distance it is unlikely that unrelated matches affect one another. Another method that we 

attempted was to scale down weights connecting far away points however the results 

were not satisfactory perhaps due to not being able to fine tune the network parameters. 

Figure 6.8 shows the evolution o f a continuous HNN. It is proven by the Lyaponov 

function of the H N N  that the network’s energy is guaranteed to decreased, thus, its 

usage as an energy minimization tool.
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Figure 6.8 Energy o f  an H N N
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Note the same energy function solved using a binary H N N  shown in Figure 6.9. It 

is always possible to achieve a lower energy level using a continuous H N N  instead o f a 

discrete H N N  as used by Nasrabadi and Choo [2].

Once the H N N  has evolved we can let the network evolve for a few hundred 

iterations to ensure the H N N  is in a stable point. Once this stable point has been reached 

we can infer information about the correspondences in the stereo image pairs using the 

state o f the outputs of the HNN. The next section describes the results and how this 

information is used to provide motion vectors to the robot.
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Figure 6.9 Energy o f  a discrete H N N

The state of our 2D H N N  can be inferred by moving horizontally and vertically 

and picking the highest values in each row and column (ensuring that every row or 

column has one value tagged in order to adhere to the uniqueness constraint) as shown 

in Figure 6.10. This table shows the values after they have been pruned and the winning 

values have been converted to Is and others to Os. Keep in mind that in reality all cells 

are filled with continues values. Note that there are unmatched pixels, this means the 

output of no neuron was high enough to denote a match (after thresholding the values).
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Figure 6.10 Output o f  an H N N  after settling in a 
stable state

6.2.9 Position Sensing

Once the correspondences have been established between the features we can find 

their 3D locations in space. Our H N N  can provide us with this information. It is 

important for the readers to realize that this result is not always correct. This might come 

as a surprise but in addition to the fact that stereo matching is an ill posed problem; the 

H NNs have traditionally been lagging in their application in combinatorial optimization 

problems [27, 31]. Although it is true that there has been a great amount o f literature 

focused purely on trying to improve the performance o f the H N N , but still if accuracy is 

the primary goal of an actual application perhaps dynamic programming or graph cuts [5] 

algorithm could be used instead o f the HNNs.

The primary reason for our exploration o f the HNNs in this machine vision 

application has been the fact that H N N s can be easily realized in VLSI analog chips and 

provides extremely rapid solution rates. This is to say that H N N s can provide their 

advantage when implemented in hardware since they are very promising for real-time 

application. However when implementing in software they use a great amount of 

memory since the network is fully connected and the number o f nodes can become 

exceedingly large. And then there is the problem o f infeasible solutions [27]:

“ ...[despite recent improvements in HNN], the reputation o f the Hopfield 

network for solving combinatorial optimization problems does not appear to have been
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resurrected. Recent results have shown that, unless the TSP is Euclidean, the quality of 

the solutions found using a Hopfield network is unlikely to be comparable to those 

obtained using traditional techniques” .

And also [31]:

“ ...we show that network dynamics are often ill suited to the solution o f other 

problems [other than TSP], In addition, the use o f alternative objective functions does 

not reliably improve performance. It appears that neural networks are not well adapted to 

the solution of [combinatorial optimization] problems without an underlying geometric 

structure; they are therefore not as attractive as they might have originally seemed.”

Therefore when implementing an H N N  algorithm for solving the stereo problem 

the reader should be careful about the infeasible solutions that the system might provide. 

One of the reasons for our system’s functionality in spite o f the downside o f using 

HNNs has been the fact that there is a large amount of redundancy in the system. We 

use cubic objects with flat surfaces to test our experiments, thus it is relatively easy to 

prune out outliers using a simple clustering method that is outlined later on. For now let1 s 

look at an example to demonstrate the results o f the algorithm. Figure 6.11 shows several 

blocks that were used in a sample run o f our vision application. The calibration has 

already taken place before proceeding with the actual position sensing.

Figure 6.11 Metallic blocks used to test the 
machine vision application
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The first step would be to use the feature extractor to extract the edges of the 

objects in the scene as shown in Figure 6.12. Following this the HNNs weights will be

Figure 6.12 Sample blocks and features

set according to equations (6.11) and (6.12). Once the 3D coordinates have been found 

using the stereo matching paradigm we can infer information regarding the number of 

objects in space and their orientation and also their centroids. This information is enough 

for the robot to grab these objects. This segmentation o f the depth data is done using a 

clustering algorithm that operates on the depth data as will be explained in the next 

chapter.

6.2.10 Clustering the 3D Points

Once 3D data are available regarding all feature points this data has to be 

processed. The input o f this stage (the clustering) is the raw 3D data and the output is the 

number of objects plus their centroid and orientation. Note that we have assumed simple 

cubical objects o f different heights, which means this process would only apply to such 

shape and more complicated algorithm need to be developed for objects of arbitrary 

shape. The basic pseudo-code of the algorithm which is based on K-mean clustering is as 

follows:

initialize the clusters: 
num_objects=0 

-  for all j Cluster(j].Z=0 
for any 3D point P[i] :
if p[i].Z belongs to cluster k (within a threshold from its mean)
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add po in t p[i] to  cluster “k”
else

start a new cluster : num_objects ++
-  add the point p[i] to cluster “num_objects”

6.2.11 Orientation in Space

Once this process has been completed and every point has been given to a cluster, 

if two clusters have average depths within a threshold, we merge them since the height 

difference between two objects will be within a threshold. This is threshold can be found 

for a given scene using trial and error. Also if a cluster has less than a threshold number 

of points, it will be removed since is it too small to be considered objects (most likely 

noise). These clusters now represent the actual objects’ centroids. Following this the 

variable “num_objects” contains the number of objects in space. Therefore every pixel 

has now been labeled an objects number and now it is known which objects each pixel 

belongs to. This information can now be used to find the orientation of these objects. 

This is done using the concept o f moments with the equation:

0  -  — tan~‘ 2 ^ u (6.13)
2 M-21 -M-02

Where Pij is the ijth central moment of all the 3D points in a given cluster. Also 

this angle is the angle o f the objects’ orientation in the xy plane. That is the surface of the 

objects is assumed to be parallel to the xy plane. After the centroid and the orientation 

has been found for every single object some sanity checks can be performed on the data 

before providing the motion vectors to the robot. For instance we can check for the 

average depth of every candidate object, we know it has to be within a limit. For instance 

we know the working environment is a certain size and that for instance no objects can 

be bigger than that size (in our case 20 cm). Also we must ensure no object with the 

depth of zero (ground level) is accepted. Such artifacts occur frequently and are results of 

the features detector picking pixels from the noisy background. This could be avoided if 

a background subtraction was performed; however discarding zero-depth data is more 

straightforward.
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6.3 Experiments

In our experiments as mentioned before several cubic objects o f varying heights 

were used in every run o f the program (as shown in Figure 6.11). After feature extraction 

and matching using the HNN, the clustering algorithm is performed on the depth data. 

Following this the centroids of the objects and their orientation has been found and 

outliers have been removed using the clustering algorithm. The results are shown on the 

screen to the user for debugging purposes but the real output o f the program is the 

motion vectors provided to the robot. However, having obtained the centroids of the 

objects and their orientation, moving the robot to the actual location is a matter of 

technology (the type o f robot, the working environment ...) and will not be discussed 

here. The interested reader can consult the thesis by Cardillo [25] to obtain information 

regarding how the robotics commands were calculated.

Following is an example of the results shown to the user; Figure 6.13 shows the 

features of the objects whereas Figure 6.14 shows the features that have actually been 

matched (note that the matching processes fails to match a large number o f points). This 

does not yield poorer results since the unmatched points are evenly distributed 

throughout the image and do not (usually) offset the final results. Figure 6.15 shows the 

orientation (where the straight line passes through the centroid). The attentive reader 

might wonder how the straight line denoting the orientation has been drawn, since the 

orientation is an angle in the world xy plane rather than the “uv” image plane. This is 

done by finding the equation o f the line in 3D space, and then projecting it into the 

image plane using the projection matrix.
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Figure 6.13 Features o f  the image (red pixels have 
been artificially added to show the feature 
locations).

%

Figure 6.14 Features that have been matched 
(much less red pixels).

Figure 6.15 Centroid and orientation o f  the object.

Also it is important to see the depth histogram to get a feeling for the functionality 

of the clustering algorithm. The depth histogram for the previous example (Figure 6.15) 

is shown below; note the high amount o f noise (mismatched points).
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Figure 6.16 Depth histogram o f  the objects in 
Figure 6.15

In an ideal situation there should only be two spikes in the histogram, but because 

o f various errors (calibration error, epipolar localization error, matching error...) the 

shapes are somewhat smeared and there is also an artifact (the object to the far right). We 

have two safety measures against such artifacts; one is the fact that the numbers o f pixels 

belonging to it are less than our threshold as mentioned before. And another which 

applies to this example is that the mean height o f the artifact object is larger than our 

maximum allowable heights. In order to better see the purpose o f the clustering stage 

note another example where artifacts are more significant. Consider the objects in Figure 

6.11. The raw data pertaining to the objects has been drawn using a 3D plotting utility in 

MATLAB as shown in Figure 6.17.
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Figure 6.17 Raw depth points.

You can see that many points have either not been matched (note the sparse set o f 

data along object boundaries) or have been matched incorrectly. The challenge is to 

reduce the destructive effects o f the outliers and also to use the remaining correct data to 

interpolate the depth of the unmatched pairs and to build a model o f the object in order 

to manipulate its location use a robotics arm. We can see how the clustering algorithm 

performs. The first figure shown below is an example o f applying the clustering 

algorithm with incorrect parameters.

Figure 6.18 Clustering with suboptimal parameters

There are two essential parameters to our clustering algorithm. First the number of 

pixel threshold that would constitute a real object and also the threshold o f belonging to 

a cluster (how close does a particular data have to be to the mean of a particular cluster in
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order for it to belong to that cluster). These parameters can be simply found using trial 

and error. Now lets take a second look at performing the same operation this time using 

a better set o f parameters:

300

Figure 6.19 Clustering using correct parameters

Now we have built correct models o f data and have been able to distinguish 

between their heights and also remove the outliers. All that is left to do is to convert this 

information to robot motion vectors. One more test o f the clustering algorithm can be 

performed in order to show the validity of the system. This is done by using an arbitrarily 

size object. This time Gaussian noise was added to the fundamental matrix in order to 

purposefully confuse the matching process. The following figure shows the object which 

has an irregular shape.

left image|

right imagej

Figure 6.20 Arbitrary shaped object used for 
testing.
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Below is the result o f the clustering o f the data. It can be seen that there is 

significant amount of noise and mismatched points. However the system was able to 

cerate a rough model of the object, which is in fact accurate enough for our machine 

vision task. Note that the algorithm was able to perform reasonably well in the absence 

of accurate epipolar geometry, this is due to the fact that the epipolar geometry is 

incorporated as a soft constraint in our algorithm (the closer the candidate to the epipolar 

line the higher the score as shown in equation (6.14)) and that we have avoided using the 

epipolar line as a hard constraint.

Figure 6.21 Result o f  clustering the depth data in 
case o f  an arbitrary shaped object

In spite o f this, the algorithm does begin to fail when the number of objects is too 

high or when the height difference between the different objects is not large enough.

Figure 6.22 System is capable o f  processing higher 
number o f  objects
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Figure 6.22 is another example o f the clustering algorithm performed for an object 

with nine different marks on it (effectively there are nine different objects). In this case 

the parameters of the clustering algorithm had to be adjusted in order to accommodate 

the new problem. The figure also shows the orientation and centroid lines for the found 

objects. The depth data that has been found is still accurate enough that we are able to 

distinguish between the objects and make decisions regarding their centroids and 

orientation. However in this case since the objects are circular the orientation is a 

meaningless value and the orientation lines merely reflect noise. To better see the 

accuracy o f the data note the depth histogram o f these objects shown below.

F igure  6.23 D e p th  h is tog ram  o f  n in e  ob jec ts

Using this histogram and our clustering algorithm we are still able to build a 3D 

model of the objects in the scene and use the robotics system to grab them. The 

following shows the 3D model built using MATLAB.

Figure 6.24 3 D  m o d e l o f  n in e  ob jec ts

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Another way that our implementation allows us to test the output o f the program 

is accomplished by a selective matching process. This is done by selecting single points, 

having the program match them using a simple local search using some type o f template 

matching. Below is an example of how this works in our implementation, note that this is 

mainly useful for testing the calibration data and checking heights o f objects one by one. 

Once the system has found the match various statistics regarding the match and other 

data in the system are printed on the screen as shown in Figure 6.25.

left im age right im age & E pipo lar line

Figure 6.25 Selective point matching to check the 
performance o f  the system.
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Chapter 7: Conclusion

The need for accurate and fast machine vision algorithms are ever increasing. One 

o f the most challenging problems of 3D Vision is the problem of correspondence where 

points are matched from one viewpoint to another in order to infer 3D information 

regarding the scene. Many algorithms have been devised for performing this task. These 

algorithms suffer from either of the two flaws. The first type of algorithms view the 

matching as a local search and attempts to increase the accuracy by incorporating as 

many constraints as possible (traditional methods). These algorithms suffer from lack of 

accuracy since they use local search rather than global search which always performs 

better. The second set o f algorithms view the matching as a global search and attempt to 

solve it by using a combinatorial optimization method. Several such algorithms have 

been devised which perform extremely well [5]. However, their flaws lay in the fact that 

most combinatorial optimization methods are computationally expensive and 

complicated (in comparison with local search methods). This makes them unsuitable for 

hardware implementation as well as for applications in real-time machine vision.

Our attempt in this thesis has been to built upon previous work [2] and take the 

HNNs one step further as tools for stereo matching. Our attempt is to use an H N N  as a 

combinatorial optimization too in spite o f its numerous shortcomings [27, 31]. The 

reason for our exploration o f this tool has been the fact that HNNs have comparatively 

simple analog VLSI implementations and if they are proven to perform anywhere near 

other combinatorial optimization algorithms for stereo matching it will lead to a new 

generation of global matching tools that can easily be implemented in hardware and 

provide extremely high solutions rates.

We have built upon the work of Nasrabadi and Choo mainly by modifying their 

objective function and also by incorporating the H N N  in a real world machine vision 

application which puts significant constraints in the performance o f  the algorithm. We 

have applied their algorithm to non-coplanar camera geometry and have incorporated the
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epipolar constraint as a soft constraint as well as using the Disparity Gradient constraint 

in our objective function. We have also avoided the use of binary H N N  since they are 

known to be inferior to continuous HNNs.

7.1 Future Work

The fact that H N N s are ever evolving makes them very attractive subjects for 

research. However the researcher must be aware o f the facts that many forms o f HNNs 

perform worse in most cases in comparison with other combinatorial optimization 

techniques. There has recendy been a number of works [27, 32, 33] who claim to have 

improved the performance o f the H N N s to the point where they can perform as well as 

other optimization techniques.

Experimentation with newer forms of HNNs in stereo vision and also 

modification o f the H N N  itself (as many have attempted) could prove to be an 

interesting research topic.
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APPENDIX A: SOURCE CODE

/ /  camera.cpp: implementation of the camera class. 
/ / a  class for performing various camera related tasks
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#include "stdafx.h"
#include "calibrb.h"
#include "camera.h"
#indude <math.h>
#include <fstream>
#indude <string>
#indude <iostream>
#ifdef _DEBU G
#undef THIS_FILE
static char THIS_FILE[]=_FILE_;
#define new DEBUG_NEW 
#endif

inline double FMIN (double a, double b) { return a<b?a:b; } 
inline double FMAX(double a, double b) { return a>b?a:b; } 
inline int IMIN(int a, int b) { return a<b?a:b; } 
inline int IMAX(int a, int b) { return a>b?a:b; }

#define TOL 1.0e-28 
#define BORDER_MAX 100000 
#define CIRCLES_MAX 10 
using namespace std;
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  Construction/Destruction 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

static double at,bt,ct;
#define PYTHAG(a,b) ((at=fabs(a)) > (bt=fabs(b)) ? \
(ct=bt/at,at*sqrt(1.0+ct*ct)): (bt ? (ct=at/bt,bt*sqrt(1.0+ct*ct)): 0.0))

static double maxargl,maxarg2;
#define MAX(a,b) (maxargl=(a),maxarg2=(b),(maxargl) > (maxarg2) ?\

(maxargl) : (maxarg2))
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a): -fabs(a)) 
double *vector(int n) {

double* vec=new double[n+2];

return(vec);
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}
double **matrix(int m, int n) {

/* create a matrix, for example matrix (1, 3,1,4); */ 

inti;
double **mat;
mat= new double* [m+2];

for(i=0; i<m+2; i++)
{
mat[i] = new double[n+2];
}

retum(mat);
}
void freevector(double* vec)
{

delete [| vec;
}

void freematrix(double** mat^nt num_rows) { 
int i;

for(i=0; i<num_rows+2; i++)
{
delete [] mat[i];
}

delete [] mat;

}

camera::cameraQ
{
int z,xx,yy; 
for(z=l;z<=8;z++){ 

switch(z) { 
case 1: 

xx=-l;
yy~*i;
break; 

case 2: 
xx=0; 
yy=-l; 
break; 

case 3: 
xx=l;
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yy=-l; 
break; 

case 4: 
xx=l; 
yy=0; 
break; 

case 5: 
xx=l;
yy=1;
break; 

case 6: 
xx=0;
yy=l;
break; 

case 7: 
xx=-l;
yy=l;
break; 

case 8: 
xx=-l;
yy~Q;
break;

}

neighbourl [z-l].x=xx; 
neighbourl [z-1] .y=yy;
}

}

camera:: ~cameraQ 
{

}
HBITMAP camera:'ArrayToBitmap(unsigned char *p) 
{

int widthl=S_X; 
int heightl =S_Y;

void* m_pBits;
HDC m_hdc;
HBITMAP hBitmap; 
int i;

BITMAPINFO *BIH;
BITMAP bmplnfo;
BITMAPFILEHEADER b£h;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
int iSize = sizeof(BIH->bmiHeader) + 256*sizeof(RGBQUAD); 
BIH = (BITMAPINFO *)LocalAlloc( LPTR, iSize); 
memset(BIH, 0, iSize);
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/ /  Fill in the header info.
BIH->bmiHeader.biSize = si2eof(BIH->bmiHeader); 

BIH->bmiHeader.biWidth = widthl; 
BIH->bmiHeader.biHeight = heightl; 
BIH->bmiHeader.biPlanes = 1; 
BIH->bmiHeader.biBitCount = 8; 
BIH->bmiHeader.biCompression = BI_RGB; 

for(i = 0; i < 256; i++)
{

BIH->bmiColors[i].rgbBlue = i; 
BIH->bmiColors[i].rgbGreen — i; 
BIH->bmiColors[i].rgbRed = i; 
BIH->bmiColors[i].rgbReserved = 0;

}

/ /  Create a new DC. 
m_hdc = ::CreateCompatibleDC(NULL);

/  /  Create the DIB section.
hBitmap = CreateDIBSection( m_hdc,

BIH,
DIB_RGB_COLORS,
&m_pBits,
NULL,
0);

memcpy(bitmapArray, p,(heightl*(widthl +padding)));

iSize = SetBitmapBits(hBitmap, (widthl)*heightl, bitmapArray); 
CBitmap::FromHandle(hBitmap)->GetBitmap(&bmpInfo); 

bmpInfo.bmHeight = heightl; 
bmpInfo.bmWidth = widthl;

ULONG sizBMI;

BIH->bmiHeader.biSizeImage=BIH->bmiHeader.biWidth*BIH-
> bmiHeader.biHeight* (BIH-> bmiHeader.biBitCount/8);

/ /  finding the sizebmi variable
sizBMI = sizeof(BITMAPINFOHEADER)+sizeof(RGBQUAD)*(l«BIH-

> bmiHeader.biBitCount);

/ / creating bimap fileheader info 
bfh.bflype = 0x4D42;
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bfh.bfSize =
sizeof(BITMAPFILEHEADER)+sizeof(BITMAPINFOHEADER)+si2BMI+ BIH- 
> bmiHeader.biSizelmage;

bfh.bfReservedl = bfh.b£Reserved2 = 0; 
bfh.bfOffBits = sizeof(BITMAPFILEHEADER)+sizBMI;

LocalFree(BIH);

ReleaseDC(NULL, m_hdc); 
return hBitmap;

}

void camera::release()
{
/ / release buffers 
MbufFree(GreyImagel);
MbufFree(GreyImage2);

MappFreeDefault(MilApplication, MilSystem, MilDisplay, 
MilDigitizer, M_NULL);

delete [] userlmagel; 
delete [] userlmage2; 
delete [] bitmapArray;

}

void camera::export()

I/ / save obtained images for debugging puprposes 
FILE* fil; 
char t[20]; 
char tx[20]; 
char ff[20]; 
int f=0; 
do { 

if(f) fclose(fil); 
f++;
_itoa(f,ff,10);
strcpy(t,"images\\right-");
strcat(t,ff);
strcat(t,".bmp");

strcpy(tx,"images\\left-"); 
strcat(tx,ff); 
strcat(tx," .bmp"); 
fil=fopen(t,"r");

} while(fil);
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Mbu£Export(t,M_BMP ,GreyImagel); 
MbufExport(tx,M_BMP ,GreyImage2);

}

void camera::export2{)

/ / save obtained images for debugging puprposes 
FILE* fil; 
char t[20]; 
char tx[20]; 
char ff[20]; 
int f=0; 
do { 

if(f) fdose(fil); 
f++;
_itoa(f,ff,10);
strcpy (t," target\\right-");
strcat(t,f£);
strcat(t,".bmp");

strcpy(tx,"target\\left-");
strcat(tx,ff);
strcat(tx,".bmp");
fil=fopen(t,"r");

} while(fil);

MbufExport(t,M_BMP .Greylmagel);// these functions are from a third party commercial library 
/ /designed for interfacing with cameras matrox mil library)
MbufExport(tx,M_BMP ,GreyImage2);

}

void camera: GRABQ 
{
/ /  clear the bugffers
MbufClear(GreyImagel, 0x0); MbufClear(GreyImage2, 0x0);
/  /  start grabbing from channel 1 
MdigChannel(MilDigiti2er,M_CH0);
MdigGrab(MilDigitizer, GreyImagel);MdigGrab(MilDigitizer, Greylmagel);
/  /  start grabbing from channel 2 
MdigChannel(MilDigitizer,M_CHl);
MdigGrabfMilDigitizer, GreyImage2);MdigGrab(MilDigitizer, Greylmage2);
MbufGet2d(GreyImagel,0,0,S_X,S_Y,userImagel);
MbufGet2d(GreyImage2,0,0,S_X,S_Y,userImage2);

}

void camera::initialize(void)
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{

MappAllocDefault(M_SETUP, &MilApplication, &MilSystem,&MilDisplay, &MilDigitizer, 
M_NULL);
S_Y=MdigInquire(MilDigitizer, M_SIZE_Y , M_NULL);
S_X=MdigInquire(MilDigitizer, M_SIZE_X , M_NULL);
//i=S_Y
Mbu£Alloc2d(MilSystem,S_X,S_Y,8+M_UNSIGNED,M_IMAGE+M_PROC+M_GRAB+M_
DISP.&Greylmagel);
Mbu£Alloc2d(MilSystem,S_X,S_Y,8+M_UNSIGNED,M_IMAGE+M_PROC+M_GRAB+M_
DISP,&GreyImage2);

userlmagel = new unsigned char[S_X*S_Y]; 
userlmage2 = new unsigned char[S_X*S_Y];

MdigControl(MiIDigitizer, M_GRAB_DIRECTION_X, M_REVERSE); 
MdigControl(MilDigirizer, M_GRAB_DIRECTION_Y, M_REVERSE);
/ /MdispSelect(MilDisplay, Greylmagel); 
padding = 0;

while ( (S_X + padding) % 4 != 0) 
padding++;

bitmapArray = new BY'IE [(S_X+padding) * S_Y];

}

void camera::border(MPoin t* pts.CBitmap *CBT, CBitmap *CBC) 
{

short* flags = new short[S_X*S_Y]; 
register int i,j; 
int flag2=0;

int relative=0; 
int n=0; 
int obj,bord;
int cc_border=0,cc_circles=0;
BY'IE* pBits;
BYTE* cBits;
BITMAP bm;
for (i = 0; i < S_X*S_Y; i++) {flags[i]=255;}//intlizae the flags 
COR this_b,previous_b;
COR neighbours2[10];
COR borders[ll][70];
COR2 centres [10]; 
int numborders[140]; 

for(i=0d<140;i++) numbordersfi]=0;
CBT->GetBitmap(&bm);

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pBits= (BYTE*) bm.bmBits +(S_Y-1)*(S_X); 
cBits= (BYTE*) bm.bmBits ;

bord=0;
obj=0;
for (i = 0; i < S_Y; i++){ 
for (j = 0; j < S_X; j++)

{
if(i!=(S_Y-l))

if(pBits[0]>pBits[-l] && (flags [(i*S_X)+j]==255))//detect first element of region 
{
if(obj==0 | | (numborders[obj]>45 && numborders[obj]<100 && ( 

variance (borders [obj] ,numborders [obj]) < 1)) ) 
obj++;

numborders [obj] =0; 
bord=0;
this_b.x=j;this_b.y=i; 
previous_b.x=j-l;previous_b.y=i; 
borders [obj] [bord] =this_b;

/  /  cant detect any neighbours 
while(l) {

if(flags[(this_b.y*S_X)+this_b.x]==0 ) break; 
else flags[(this_b.y*S_X)+this_b.x]=0;

findneighbours(neighbours2,previous_b,this_b); 
for(n=2;n<=8;n++) {

if(cBits[((S_Y-neighbours2[n].y-l)*S_X)+neighbours2[n].x]>250){ 
numborders [obj]++; 
previous_b=this_b; 
this_b=neighbours2[n];

bord++;

borders [obj] [bord] = neighbours2 [n]; 
break;
}

}
}}

pBits++;
}

pBits=pBits-2*S_X;
}

if(numborders[obj]<30) {numborders[obj]=0; obj--;} 

CBC->GetBitmap(&bm);
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pBits= (BYTE*) bm.bmBits +(S_Y-1)*(S_X); 
for (i = 0; i < S_X*S_Y; i++) {flags[i]=255;}

long double xxx=0,yyy—0;

for (i = 1; i <= obj; i++){ 
xxx=0;yyy=0; 
for (j = 0; j < numborders [i]; j++)

{
xxx+=borders [i] [j] .x; 
yyy+=borders [i] [j] .y;

}
xxx/=(double) numborders [i]; 
yyy/= (double) numborders [i]; 
yyy+=l; 

centres [i] .x=xxx; 
centres [i].y—yyy;

}
for (i = 1; i <= obj; i++){flags[(((int)centres[i].y)*S_X)+((int)centres[i].x)]—0;}

for (i = 0; i < S_Y; i++) { 
for (j = 0; j < S_X; j++)

{
if(£lags [(i*S_X)+j]==0)
(*pBits)=0;

pBits++;
}

pBits—pBits-2*S_X;
}

CBT->GetBitmap(&bm);
pBits = (BYTE*) bm.bmBits +(S_Y-1)*(S_X);

for (i = 0; i < S_Y; i++) { 
for (j = 0; j < S_X; j++)

{

if(*pBits==0)
(*pBits)=255; 

else (*pBits)=0;

pBits++;
}

pBits=pBits-2*S_X;
}
delete [] flags;
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for(i=  1 ;i< = 1 0;i+ +) {

pts [i] .x=centres [i] .x; 
pts [i] .y=centres [i] .y;
}

}
void camera::findneighbours(COR* result, COR prev, COR cum)
{
int i;
int xx,yy; 
int relative; 
xx=prev.x-cum.x; 
yy=prev.y-curn.y;

for(i=0;i<=9;i++) {result[i] .x=0;result[i] .y—0;}

for(i=0;i<=7;i++) { 
if(neighbourl[i].x==xx && neighbourl [i].y==yy)
{

relative—i; 
break;

}
}
int ftemp; 
for(i= 1 ;i<=8;i+ +) { 

ftemp=(relative+i)%8;
result[i+l].x=cum.x+ neighbourl[(relative+i)%8].x ; 
result[i+l].y=cum.y+ neighbourl[(relative+i)%8].y ;

}
}

void camera::thresholdl (CBitmap* CB)
{
int i,j;
BITMAP bm;
BYTE* pBits;
double temp=0;
int t_old=0,t_new=125;
CB->GetBitmap(&bm);
pBits= (BYTE*) bm.bmBits +(S_Y-l)*(S_X);//no padding required 
double* hist = new double [256]; 
int threshold=0;
/ / note this program might not work with a camera whose image width is not a multiple / /o f  4 

or an RGB camera , all the code is written for grayscale images 
for (i = 0; i < 256; i++) histfi] —0;
/  /  create histogram 
for (i = 0; i < S_Y; i+ + ) { 

for (j = 0; j < S_X; j++)
{
hist[*(pBits)]++;
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pBits++;
}

pBits=pBits-2*S_X;
}

for (i = 0; i < 256; i++) hist[i]/ =(S_X*S_Y);// divide by total pixels to get probability

while(t_old!=t_new) { 
t_old=t_new;
temp=(SX(hist,t_old)/S(hist,t_old))+((SX(hist,255)-SX(hist,t_old))/(S(hist>255)-S(hist>t_old)));
temp*=0.5;
t_new= (int) temp;
}

t_new+—40;

pBits= (BYTE*) bm.bmBits +(S_Y-l)*(S_X);//necessary for rewindidng the pointer 
for (i = 0; i < S_Y; i++) { 

for (j = 0; j < S_X; j++)
{
if((*(pBits))>t_new) *(pBits)=255; 
else *(pBits)=0;

pBits++;
}

pBits=pBits-2*S_X;
}

delete [] hist;
}
double camera::SX(double *a, int t)
{
int k=0;
double temp=0; 
for(k=0;k<=t;k+ +) 
temp+=a[k]*k; 
return temp;
}

double camera::S(double *a, int t)
{
int k—0;
double temp=0; 
for(k=0;k<=t;k+ +) 
temp+=a[k];

return temp;
}

void camera::getworldpos(MPoint *pts, int plane_num)
{
int j=0,i=0;

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



double xl,yl,zl;
/ / assume 5 CM distance 

double x_tnterval=2.5;// distance seperating disks on the control surface 
double y_interval=2.5;//same as above for the y axis

char* ctemp=new char[10]; 
string templ="world//pos"; 
itoa(plane_num, ctemp, 10); 
string temp3=templ+ctemp+".txt"; 
fstream world_file(temp3.c_str());

world_file >> zl; 
world_file >> xl; 
world_file >> yl;

pts[l].x=xl;
pts[l].y=yl;
pts[l].z=zl;

/  /  dummy values 
pts[10].x=0; 
pts[10].y=0; 
pts[10].z=0;

for(i=l;i<=3;i++)
for(j=l;j<=3;j++)

if(i+j!=2){
pts[((i-l)*3)+j].x=xl+(j-l)*x_interval;
pts[((i-l)*3)+j].y=yl+(i-l)*y_interval;
pts[((i-l)*3)+j].z=0;

}

delete [| ctemp;
}

void camera::normalizel(MPoint* pts) { 

inti;
/  /  this function will simply divide the coordinates to give the values
/  / relative to a centre (y/2, x/2)
for(i=lti<=9d++){
pts[i].x-= (double) S_X/2;
pts[i].y-= (double) S_Y/2;

}
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}
void camera::getworldpos2(MPoint pts[11],double xl,double yl,double zl){ 

int p0,i=0;

double x_interval=2.5;// distance seperating disks on the control surface 
double y_interval=2.5;//same as above for the y axis

pts[l].x=xl; 
pts [1] -y=yl; 
pts[l].z=zl;

//dummy values 
pts[10].x=0; 
pts[10].y=0; 
pts[10].z=0;

for(i= 1 ;i<=3;i+ +)
f ° r (j - 1  ;j < —3; j+ + )  

if(i+j!=2){ 
pts[((i-l)*3)+j].x=:xl+(i-l)*x_interval; 
pts[((i-l)*3)+j].y=yl+(j-l)*y_interval; 
pts[((i-l)*3)+j].z=zl;

}

}
double camera::variance(COR *A, int N)
{
int j;

double ct=0;

long double xxx=0,yyy=0; 
double xx,yy;

xxx=0;yyy=0; 
for (j = 0; j < N; j++)

{
xxx+=A[j].x;
yyy+=A0].y;
}

xxx/—(double)N; 
yyy/=(double)N; 
yyy+=l; 

xx=xxx;
yy=yyy;

double* t=new double[N+l]; 
xxx=0;yyy=0; 
for (j = 0; j < N; j++)

{
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xxx=(A B] -x-xx) * (A[j] .x-xx)+ (A [j] -y-yy)* (A [j] .y-yy);
xxx=sqrt(xxx);
t[j]=xxx;
yyy+=xxx;

}

/  /  mean

yyy=yyy/N; 
xxx=0; 
double zz;

for (j = 0; j < N; j++)
{

zz=(tD]-yyy);

xxx+=(zz*zz);
}

xxx/=N;

delete [] t; 
return xxx;
}

void camera: :normalize_image(double** left,double** right,double** world, CENTRES* ct) 
{
int i,j;
double X_mean; 
double Y_mean; 
double Z_mean; 
double distance_mean; 
double d_temp; 
double N=27.000; 
double X,Y,Z; 
double coeff=0;

/ /  find for left camera
Z_mean=d_temp=X_mean=Y_mean=distance_mcan=0;

for(j=l;j<=3;j++) 
for(i=1 fi<=9fi+ +) {
X=ct[j] .LPoints [i] .x;
Y=ct[j] .LPoints [i] .y;

X_mean+=X;
Y_mean+=Y;
}
/  /  found centroid 
X_mean/=N;
Y_mean/=N;
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for(j=l;j<=3;j++)
for(i=l;l<=9;i++){
X=ct[j] .LPoints [i] .x-X_mean;
Y=ct[j] .LPoints [i] .y-Y_mean; 
d_temp+=sqrt((X*X)+(Y*Y));
}
/ / found distance mean 
distance_mean=d_temp/N;
coeff=sqrt((double)2.0000); coeff=coeff/distance_mean;//  coeff=sqrt(coeff); 
X_mean= ((double) -1) *X_mean*coeff;
Y_mean=((double)-l)*Y_mean*coeff;

/ / now mnormalize left camera

for(j=l;j<=3;j++) 
for(i=ld<=9d++) {
ctQ] .LPoints [i].x=(ct[j] .LPoints [i] .x*coeff) +X_mean; 
ct[j] .LPoints [i] .y=(ct[j] .LPoints [i] .y*coeff) + Y_mean;
}

//now  form the normalization matrix
left[l] [1] =left[2] [2] =coeff;
left[l] [3] =X_mean;
left[2] [3] =Y_mean;
left[3][3]=l;
/  /  find for right camera
Z_mean=d_temp=X_mean=Y_mean=distance_mean=0;

for(j=l;j<=3;j++)
for(i=lti<=9;i++){
X=ct[j] .RPoints[i] .x;
Y=ct[j] .RPoints [i] .y; 
X_mean+=X;
Y_mean+=Y;
}

X_mean/ =N;
Y_mean/=N;
for(j=l;j<=3;j++)
for(i=ld<=9ti++){
X=ct[j] .RPoints [i] .x-X_mean; 
Y=ct[j] .RPoints [i] .y-Y_mean; 
d_temp+=sqrt((X*X)+(Y*Y)); 
}

distance_mean=d_temp/N;
coeff=sqrt((double)2.0000); coeff=coeff/distance_mean; 
X_mean=((double)-l)*X_mean*coeff;
Y_mean=((double) -1) * Y_mean*coeff;
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for(j=l;j<=3;j++) 
for(i=l;i<=9;i++) {
ct[j] .RPoints [i] .x=ct[j] .RPoints [i] .x*coeff+X_mean; 
ctjj] .RPoints [i] y=ct[j] .RPoints [i] ,y*coeff+Y_mean;
}

/  /  now form the normalization matrix 
right[l] [1] =right[2] [2] =coeff; 
right[l] [3] =X_mean; 
right[2] [3] =Y_mean; 
nght[3][3]=l;

/  /  find for world coordinates
Z_mean=d_temp=X_mean=Y_mean=distance_mean=0;

for(j=l;j<=3;j++) 
for(i=1 =9fi+ +) {
X=ct[j].WPoints[i].x;
Y=ct[j] .WPoints [i] .y;
Z=ctO].WPoints[l].z;
X_mean+=X;
Y_mean+=Y;
Z_mean+=Z;

}
X_mean/—N;
Y_mean/=N;
Z_mean/=N;

for(j=l;j<=3;j++) 
for(i=l;i<=9fi++) {
X=ct[j] .WPoints [l] ,x-X_mean;
Y=ct[j] .WPoints [i] .y-Y_mean;
Z=ct[j] .WPoints [i] ,z-Z_mean; 
d_temp+=sqrt((X*X)+(Y* Y)+(Z* Z));

}

distance_mean=d_temp/N;
coeff=sqrt((double)3.0000); coeff=coeff/distance_mean;// coeff=sqrt(cocff); 
X_mcan=((double)-l)*X_mean*coeff;
Y_mean=((double) -1) * Y_mean;t'coe ff;
Z_mean=((double)-l)*Z_mean*coeff;

forQ=l;j<=3;i++) 
for(i=l^<=9fi++) {
ct[j] .WPoints [i] .x=ct[j] .WPoints [i] ,x*coeff+X_mean; 
ct[j] .WPoints [i] .y=ct[j] .WPoints [i] .y*coeff+Y_mean;
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ct[j] .WPoints [i] .z=ct[j] .WPoints [i] .z*coeff+Z_mean;
}

//n o  form the normalization matrix
world[l] [1] =world[2] [2] =world[3] [3]=coeff;
world[l] [4] =X_mean;
world[2] [4] =Y_mean;
world[3] [4] =Z_mean;
world[4][4]=l;
}
void camera::denormalize(double** leftP, double** rightP, double **left, double **right, double 
** world)
{
/ /  find the inverse of the normalization matrix for the two cameras
/ /  srtarting fiom the left camera
double deter;
double mat[5] [5];
double temp [5] [5];
int i,j;

deter=leftP[l][l]; deter=deter*deter; deter=((double)l)/deter;

/ / finding the matrix inverse

/ /inidiaze the matrix
for(i=ld<=3fi++)
for(j=l;j<=3;j++){
mat[i][j]=0;
temp[i]D]=0;
}

mat[l][l]=leftP[l][l];
mat[l] [3]=((double)-l)*leftP[l] [l]*leftP[l] [3]; 
mat[2] [2]=leftP[l] [1];
mat[2][3]=((double)-l)*leftP[l] [l]*leftP[2][3]; 
mat[3] [3]=leftP[l] [1] *leftP [1] [1];

/  / multiply in the determinant 
for(i= 1 =3fi+ +)
for(j=1;j<=3;j++) 
mat[i]D]*=deter;

for(i=ld<=3fi++)
for(j=l;j<=4;j++)
{
temp[i] 0] —mat[i] [1] *left[l] 0] +mat[i] [2]*left[2] Q]+matp] [3] *left[3] [j];

}

/ /multiply again on the right side by the world normalization matrix
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for(i= 1 ;i<=3;i+ +) 
for(j=l;j<=4;j++)
{
left[i] [j] =temp[i] [l]*world[l] [j] +temp[i] [2]*world[2] |j]+temp[i] [3]*world[3] |j]+temp[i] [4]*world[4] |] 
];
}
for(i=ld<=3d++)
for(j=l;j<=4;j++)
{
le ft [i] [j]/= le ft [3] [4] ;
}
/  /  now the right camera

for(i=ld<=3d++)
for(j=l;j<=3;j++){
mat[i][j]=0;
temp[i]D]=0;
}
mat[l][l]=rightP[l][l];
mat[l] [3]=((double) -1) *nghtP [1 ] [l]*rightP[l] [3]; 
mat[2][2]=rightP[l][l];
mat [2] [3]=((double)-1) *nghtP [1] [l]*rightP[2] [3]; 
mat[3] [3] =rightP[l] [l]*nghtP[l] [1];

/  / multiply in the determinant 
for(i=ld<=3d++) 
for(j=l;j<=3;j++) 
mat[i][j]*=deter;

for(i= 1 -3d++)
for(j=l;j<=4;j++)
{
temp[i][j]=mat[i][l]*right[l]y]+mat[i][2]*right[2][j]+mat[i][3]*right[3][j];
}

/  /  multiply again on the right side by the world normalixation matrix
for(i= 1 —3d+ +)
for(j=l;j<=4;j++)
{
nght[i] [j]=temp[i] [l]*world[l] [j] +temp[i] [2]*world[2] [j] +temp[i] [3]*world[3] [j] +temp[i] [4]* world [4] 
0];
}

for(i=lji<=3;i++)
for(j=l;j<=4;j++)
{
»ght[i] D] /  —«ght[3] [4] ;

}
}
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void camera::finderror(double* leftx, double* lefty, double* rightx, double* righty, double **PL, 
double **PR, CENTRES *ct)
{
int i,j;
*leftx=*lefty=*rightx=*righty=0;//initliaze 
double reprojection_x; 
double reprojection_y; 
double reprojection_w; 
double errx.erry;

//printing the errors 
FILE *lfile,*rfile; 
lfile=fopen("lefterr.txt","wt"); 
rfile=fopen(" refterr.txt","wt"); 
fpnntf(lfile,"xcrror yerror — X Y\n\n"); 
fpnntf(rfile,"xerror yerror — X Y\n\n");

for(j=l;j<=3;j++)
for(i=ld<=9d++){

//left camera
reprojection_w=PL[3] [1] *ctO] .WPoints [i] .x+PL[3] [2]*ct[j] .WPoints [i] .y+PL[3] [3] *ct[j] .WPoints [i] .z 
+PL[3][4];
reprojection_x=PL[l] [1] *ct[j] .WPoints [i] ,x+PL[l] [2]*ct[j] .WPoints [i] .y+PL[1] [3] *ct[j] .WPoints [i] .z 
+PL[1][4];
reprojection_y=PL[2] [1] *ct[j] .WPoints [i] .x+PL[2] [2]*ctp] .WPoints [i] .y+PL[2] [3]*ct[j] .WPoints [i] .z 
+PL[2][4];

//last coefficient has to be one 
reprojection_x/=reprojection_w, 
reprojection_y/ =reprojection_w;

errx=fabs(ct[j] .LPoints [i] .x-reprojection_x);//* (ct[j] .LPoints [i] .x-reprojection_x); 
erry=fabs(ct[j].LPoints[i].y-reprojection_y);//*(ct[i].LPoints [i].y-reprojection_y);

fprintf(lfile>"%0.3f %0.3f — %0.3f %0.3f -  LEVEL=%d 
POINT=%d\n")errx,erry,ct[j].LPoints[i].x,ct[j].LPoints[i].y,j>i);

*leftx+=errx;
*lefty+=erry;

/ / now right camera
reprojection_w=PR[3] [1] *ct[j] .WPoints [i] .x+PR[3] [2] *ct[j] .WPoints [i] .y+PR[3] [3] *ct[j] .WPoints [i]. 
z+PR[3][4];
reprojection_x=PR[l] [1] *ctp].WPoints [i].x+PR[l][2]*ct[j].WPoints[i].y+PR[l][3]*ct[j].WPoints[i].z
+PR[1][4];
reprojection_y=PR[2] [1] *ct[j] .WPoints [i] .x+PR[2] [2] *ct[j] .WPoints [i] .y+PR[2] [3] *ct[j] .WPoints [i] .z 
+PR[2][4];

/ /last coefficient has to be one 
reprojection_x/=reprojection_w; 
reprojection_y/=reprojection_w,
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ertx=fabs(ct[j] .RPoints [i] .x-reprojection_x);//* (ctQ] .RPoints [i| .x-reprojection_x); 
erry=fabs(ct[j].RPoints[i].y-reprojection_y);//*(ct[j].RPoints[i].y-reprojection_y);

fprintf(rfile,"%0.3f %0.3f — %0.3f %0.3f -  LEVEL=%d POINT=%d 
\n",errx,erry,ct[j].RPoints [i].x,ct[j].RPoints[i].y,j,i);

*rightx+=errx;
*nghty+;rerry;
}

fclose(lfile);
fclose(rfile);

*rightx/=((double)27) ;
*righty/=((double)27);
*leftx/=((double)27) ;
*lefty/= ((double)27);
}

void camera::mrqmin(double x[], double yQ, double sigQ, int ndata, double aQ, int iaQ, int ma,
double **covar, double **alpha, double *chisq, void ( cdecl *funcs)(double,double [|,double
*,double [|^nt), double *alamda)
{
}

void camera::find_center(double **P, double *C)

//second implementation of centre finding algorithm 
//note this is the centre of projection such that PC=0 
//SVD is used

int i,j;
double** u; 
u= new double* [7]; 
for (i=0; i<7; i++)
{ u[i] = new double[6];

}

/ /  fill u with A 
for (i=l; i<=3; i++) 
for(j=1;j<=4;j++){

u[i]D]=PW0];

}
/ /appending last rows as zeros for SVD its recommended 
/ / t o  have at least as much rows as columns

for(j=l;j< =4;j++){
u[4 ]0 ]= O ;
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}

/ /d o  SVD 
solve2(u, 4, 4,C);

for (j=l; j<=4; j++) C[j]/=C[4];

FILE* tempe; 
if(flag3!=4)
{tempe=fopen("leftC.txt"1"wt"); flag3=3;}

if(£lag3— 4)
tempe=fopen(" rightC.txt" ,"wt"); 

if(flag3==3) flag3=4;

fprintf(tempe,"C=[ %0.5f; %0.5f ; %0.5f; %0.5f]">C[l]>C[2],C[3],C[4]); 
fdose(tempe);

for (i=0; i<7; i++)
{ delete [] u[i];

}
delete [] u;
}

void camera::findF(double** FL,double** FR, CENTRES* ct)
{
int i,j;

/ /first find the pseudo inverse of the projection matrix 

double** u;

double* x=new double[15];
//creating temporary matrices 
u= new double* [37];

for (i=0; i<37; i++) 
u[i] = new double[16];

/ /find F for left camera, form A for SVD 
int cc=l;

for (j=l; j<=3; j++) 
for (i=l; i<=9; i++)
{u[cc] [l]=ct[j] .RPoints [i] .x*ct[j] .LPoints [i] .x; 
u[cc] [2] =ct[j] .RPoints [i] .x*ct[j] .LPoints [i] .y; 
u [cc] [3] — ct [j] .RPoints [i] .x; 
u[cc] [4] =ct[j] .RPoints [i] .y*ct[j] .LPoints [i] .x;
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u[cc] [5] =ct[j] .RPoints [i] .y*ct[j] .LPoints [i] .y;
u[cc] [6] =ct(j] ,RPoints[i] .y;
u[cc] [7]=ctfi] .LPoints [i] .x;
u[cc] [8]=ct(j] .LPoints [i] .y;
u[cc][9]=l;
cc++;
}
writematrix(u,27,9,"ULEFT.txt");
/ /now do svdcmp 
solve2(u,27,9)x);

cc=l;
f°r (i=1; j<=3; j++)
for (i=l; i<=3; i++) {
FLD][i]=x[cc]; cc++;
}
/  / /now right F 
for 0=1; j<=3; j++) 
for (i=l; i<=9; i++)
{u[cc] [1] =ct[j] .LPoints [i] .x*ct[j] .RPoints [i] .x;
u[cc] [2] =ct[j] .LPoints [i] .x*ct[j] .RPoints [i] .y;
u[cc] [3]=ct[j] .LPoints [i] .x;
u[cc] [4] =ct[j] .LPoints[i] -y*ct[j] .RPoints[i] .x;
u[cc] [5] =ct[j] .LPoints [i] ,y*ct[j] .RPoints [i] .y;
u[cc] [6] =ct[j] .LPoints [i] .y;
u [cc] [7] =ct[j]. RPoints [i] .x;
u[cc] [8] =ct[j] .RPoints [i] .y;
u[cc][9]=l;
cc++;
}

writematrix(u,27,9,'lURIGFrr.txt'');
//now  do svdcmp 
solve2(u,27,9,x);

cc=l;
for 0=1; j<=3; j + +) 
for 0=1; i<=3; i++) {
FRD][i]=x[cc]; cc++;
}

//now  write the two Fs to file 
writematrix(FL,3,3,"left_f.txt"); 
writematrix(FR,3,3,"right_f.txt");

/  /  freeing temporary arrays 
for 0=0; i<37; i++)
{ delete [] u[i];
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}
delete [] u;

>void camera:rwntematrix(double **x,int m,int n, char *name) 
{

int i,j;
FILE* tempf;

tempf= fopen(name,"wt");
/ / fprintf(tempf,"M=["); 
for(i=1 =md+ +) {
/ /  if(i!=l) fprintf(tempf," 

for(j=l;j<=n;j++){ 
fprintf(tempf,"%0.9f ",x[i][j]);

}}

fprintf(tempf," "); 
fclose(tempf);

void camera:rwritevector(double *x,int n, char ’name)
{

int j;
FILE* tempf; 
tempf=fopen(name,"wt");

fprintf(tempf,"m=[");

forO=l;j<=n;j++){
if(j!=l) ^>rintf(tempf," ;"); 

fprintf(tempf,"%0.7 f "̂ x[j]);
}

fprintf(tempf," ] "); 
fclose(tempf);
}

void camera::matrixmultiply(double **c, double **a, double **b, int ma, int na, int mb, int nb) 
{//C=AxB ma is number of rows of a, na is the number of columns of a, mb and nb is same 
for b

if(na!=mb) {AfxMessageBox("Matrix multiplication: size error"); return;} 
int i,j,k; 
double temp;
double** H; / / this matrix is used as a temporary placeholder so we could have c=c*a 
H= new double* [ma+2]; 
for (i=0; i<ma+2; i++)

H[i] = new double[nb+2];

for (i=l; i<=ma; i++) 
for (j=l; j<=nb; j++) {
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temp=0;
for (k=l; k<=na; k++) 

temp+=a[i][k] *b[k][j];

H[i][j]=temp;
}

for (i=l; i<=ma; i++) 
for (j=l; j<=nb; j++)
c[i][j]=H[i][j];//nowput the results back in C

/  /  free the temprorary matrix 
for (i=0; i<ma+2; i++) 
delete 0 H[i];

delete [] H;
}

void camera::solve2(double **u, int m, int n, double *x)
{
int j,i;
double** v;
double* w=new double[m+2]; 
v= new double* [m+2]; 
for (i=0; i<m+2; i++) 
v[i] = new double[n+2]; 
for(i=0d< =md++) 
for(j=0;j<=n;j++) 
vHB]=0;
for(i=0^<=md++) w[i]=0; 
svd2(u,m,n,w,v); 
int smallest_index=0; 
double smallest_value=200000; 

for(j = l;j< = n ;j+ + ){  
if(w[j] <smallest_value) {smallest_value=w[j]; smallest_index=j;}

}
for(j = 1; j <=n;j++){ 

x[j] =vQ] [smallest_index];

}
for (i=0; i<m+2; i++) 
delete 0 v[i]; 
delete v; 
delete [| w;

}

void camera::svd2(double **A, int m, int n, double *w, double **v) 
{
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{//code taken from Numerical Recipes in C , will not be shown here 
}
}
void camera::getworldpos3(double* xl,double* yl,double* zl,int plane)
{
int j=0,i=0;
char* ctemp=new char[10]; 
string templ="world//pos"; 
itoa(plane, ctemp, 10); 
string temp3=templ+ctemp+".txt"; 
fstream world_file(temp3.c_str0);

world_file »  *xl; 
world_file »  *yl; 
world_file »  *zl;

delete [] ctemp;

}

/ /  camera.h: interface for the camera class.
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
#include "mil.h"

typedef struct { 
double x; 

double y; 
double z;

} MPoint;

typedef struct {
MPoint LPoints [12];

MPoint RPoints [12];
MPoint WPoints [12];

} CENTRES;
#if
!defined(AFX_CAMERA_H_8CA0399E_lEC2_475B_8927_AC79161D81C4 INCLUDED
)
#define AFX_CAMERA_H_8CA0399E_1EC2_475B_8927_AC79161D81C4 INCLUDED,

#if _MSC_VER > 1000 
#pragma once
#endif /  /  _MSC_VER > 1000

class camera 
{
public:

void svd2(double **A, int m, int n, double *w, double **v); 
void solve2(double **u, int m, int n, double *x);
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void matrixmultiply(double** c,double** a,double** b, int ma,int na, int mb, int nb);
void writevector(double* x,int n,char* name);
void writematrix(double** x,int m,int n,char* name);
void findF(double** FL,double** FR, CENTRES* ct);
void find_center(double **P, double *C);
void finderror(double* leftx,double* lefty,double* rightx,double* righty, double** PL,double** 

PR,CENTRES* ct);
void denormalize(double** leftP, double** rightP,double** left, double** right, double** world); 
void normalize_image(double **left,double **right,double** world, CENTRES* ct); 
void getworldpos3(double* xl,double* yl,double* zl,int plane);
void mrqmin(double xQ, double y[|, double sigQ, int ndata, double a[], int ia[],int ma, double 

**covar, double **alpha, double *chisq,void (*funcs)(double, double [], double *, double [], int), 
double *alamda); 

void getworldpos2(MPoint pts[l 1],double xl,double yl,double zl); 
int padding;

typedef struct { 
int x; 
inty;

//in t k;

public:

} COR;

typedef struct { 
double x; 
double y;

/  /int k;

} COR2;

double variance(COR* A,int N);

void getworldpos(MPoint pts[l l],int plane_num);
void border(MPoint* pts,CBitmap *CBT, CBitmap *CBC);
void normalizel (MPoint* pts);
double S(double* a,int t);
double SX(double* a,int t);
void thresholdl (CBitmap* CB);

HBITMAP ArrayToBitmap(unsigned char *p); 
void export(void); 
void export2(void); 
void release(void);

void GRAB(void); 
int S_X; 
int S_Y; 

int flag3; 
int flag4;
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in t £Lag5;

unsigned char* userlmagel; 
unsigned char* userlmage2;

/ /  MIL_ID MilApplication,MilSystem, Mi]Display,MilDigiti2er,
MilImage,GreyImagel ,GreyImage2;

void initialize(void); 
camera (); 
virtual ~camera();

private:

BYTE* bitmapArray;
MIL_ID MilApplication,MilSystem, MilDisplay,MilDigitizer)

Millmage,Grey Image 1 ,GreyImage2;

COR neighbourl[10];
void findneighbours(COR* result,COR prev.COR cum);

};

#endif /  /
!defined(AFX_CAMERA_H_8CA0399E_lEC2_475B_8927_AC79161D81C4 INCLUDED
)

/ / / / / / / / / / / / / / / / / / /  Order.cpp : implementation f i l e / / / / / / / / /  
/  / COrder dialog This is a GUI class for conveying calibration data o the 
/  / user and also interacting with the user regarding the order o f the 
/  / calibration targets

#include "stdafx.h"
#include "calibrb.h"
#include "Order.h"
#include "math.h"

#ifdef _DEBUG 
#define new DEBUG_NEW 
#undef THIS_FILE
static char THIS_FILE[] =  FILE :
#endifCOrder::COrder(CWnd* pParent /*=NULL*/)

: CDialog(COrder::IDD, pParent)
{

/ /  { {AFX_DATA_INIT(C Order) 
m_x = 0.0; 
m_y = 0.0; 
m_z = 0.0;
/ /  } }AFX_DATA_INIT
completion_flag=0;
inti;
for(i= l;i<=9;i+ +) {
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rect_highlight[i] =0; 
rect_highlight2[i] =0; 

order [i] =0;
}

flagtimer=0;
model[l].x=672;
model[l].y=451;
colorflag=0;
prev_circle=0;
count=0;
prev_point.x=0;
prev_point.y=0;
value_set_flag2=0;
}

void COrder::DoDataExchange(CDataExchange* pDX) 
{

CDialog::DoDataExchange(pDX);
/ /  {{AFX_DATA_MAP(COrder)
DDX_Text(pDX, IDC_EDIT1, m_x);
DDX_Text(pDX, IDC_EDIT2, m_y); 
DDX_Text(pDX, IDC_EDIT3, m_z);
/ /}  }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(COrder, CDialog)
/ /  { {AFX_MSG_MAP(COrder)
ON_WM_PAINT 0
ON_BN_CLICKED(IDDONT, OnDont)
ON_WM_LBUTTONDOWN0
ON_WM_MOUSEMOVE0
ON_WM_TIMER0
ON_BN_CLICKED(IDRESET, OnReset)
ON_BN_CLICKED(IDC_BUTTON 1, OnButtonl)
//}}AFX_MSG_MAP

END_MESSAGE_MAPO

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /
/ /  COrder message handlers

void COrder::OnCancel()
{
MessageBox("You must choose the order","Calibration");

CDialog: :OnCancel();
}

void COrder::loadimage(MPoint *pts, CBitmap *bt,int width, int height,LPCTSTR lpszString^nt 
value_set_flag,double* x,double* y,double* z)
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{
ptspts—pts;
btbt=bt;
w= width ;
h= height;
if(value_set_flag==l) {
m_x=*x;
m_y=*y;
m_z=*z;

}
if(value_set_£lag==0) { 
m_x=21.20; 
m_y=34.65; 
m_z=0;

}

X=x;Y=y;Z=z;

value_set_£lag2=value_set_flag;

myrect.left=20; 
myrect.top= 90 ; 
myrect.hght= 500;
myrect.bottom= ((myrect.right-myrect.left) *h)/w+myrect.top; 

int i,j;
double width2=(double)myrect.Width{); 
double height2=(double)myrect.Height(); 
double x_offset=(double)myrect.left ; 
double y_offset=(double) myrect.top ; 
double hh=h; 
double ww=w; 
int diameter =10;

for(i=l;i<=9;i++)
{
temp_points[i].x—(long) ((ptspts [i].x)*((double)width2/ww)+(double)x_offset); 
temp_pointsfi] .y=(long) ((ptspts [i] .y)* ((double)height2/hh)+ (double)y_offset);

circle_rect[i] .left=temp_points [i] .x-diameter ; 
circle_rect[i].top= temp_points[i].y+ diameter ; 
circle_rect[i] ,right= temp_points[i] .x+diameter; 
circle_rect[i] .bottom= temp_points [i] .y-diameter ;

}

model_rect.left=540 ; 
model_rect.top= 280 ;
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model_rect.right=740; 
model_rect.bottom= 550;

/ / find coordinates of model plane

int x_interval=42; 
int y_interval=59; 

for(i=l;i<=3;i++) 
for(j=l;j<=3;j++) 

if(i+j!=2){
model[((i-l)*3)+j].x=model[l].x-(j-l)*x_interval;
model[((i-l)*3)+j].y=model[l].y-(i-l)*y_interval;

}
}

void COrder::OnPaint()
{

CPaintDC dc(this); / /  device context for painting 
if(£lagtimer==0) {

this->SetTimer(l,300,(TIMERPROC) NULL); flagtimer=l; 
if(value_set_flag2==l) { 

this->GetDlgItem(IDC_EDITl)->EnableWindow(false); 
this->GetDlgItem(IDC_EDIT2)->EnableWindow(false); 
this->GetDlgItem(IDC_EDIT3)->EnableWindow(false);
UpdateData(false);} }

/ /  Sleep(800); 
drawimage();
/ /  TODO: Add your message handler code here 

/ /  Do not call CDialog::OnPaint() for painting messages
}

void COrder::drawimage0 
{
int i=0;
CDC MemDC,MemDC2;
CDC ’'“pDC;
CBitmap bt;
CRect rc;
GetClientRect(&rc); 
pDC = this->GetDCO;
bt.CreateCompatibleBitmap(pDC,rc.WidthQ,rc.HeightO);
MemDC.CreateCompatibleDC(pDC);
MemDC2.CreateCompatibleDC(pDC);

MemDC.SelectObject(btbt);
MemDC2.SelectObject(bt);

MemDC2.StretchBlt(myrect.left,myrect.top,myrect.WidthQ,myrect.Height(),&MemDC,0)0>w>h,SR
CCOPY);
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CString temp(lpszString2);
temp+=" Camera Calibration Parameters";

CFont newFont;
CFont *p01dFont;
newFont.CreateFont(20,13,0,0,0,0,0,0,0,OUT_DEFAULT_PRECIS,CLIPJDEFAULT_PRECIS,
PROOF_QUALITY,FF_DONTCARE,"Arial");

pOldFont = pDC->SelectObject(&newFont);

pDC->SetTextColor(RGB(l 0,50,15)); 
pDC->SetBkMode(TRANSPARENI);

pDC->TextOut( 21, 30, temp); 
pDC->SelectObject(p01dFont);

newFont DeleteObject();

//MemDC2.FillSolidRect(&model_rect,RGB(100,155,255));

CBrush newBmsh;
CBrush* oldBrush;
newBrush.CreateSolidBrush(RGB(100,12,110));
oldBrush=MemDC2.SelectObject(&newBrush);

for(i=ld<=9d++)
{
if( rect_highlight[i]==l && rect_highlight2[i]!=l)
{ MemDC2.Ellipse(&circle_rect[i]); break;}

}

MemDC2.SelectObject(oldBrush);
newBrush.DeleteObject();

newBrush.CreateSolidBrush(RGB(0,0,255)); 
oldBrush=MemDC2.SelectObject(&newBrush);

CString ctemp=""; 
int vtemp;

newFont.CreateFont(20,13,0,0,0,0,0,0,0,OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS, 
PROOF_QUALITY,FF_DONTCARE,"Arial"); 

pOldFont = MemDC2.SelectObject(&newFont); 
MemDC2.SetTextColor(RGB(100,155,255));

MemDC2.SetBkMode(TRANSPAREN'T);

for(i=ld<=9d++)
{
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if( rect_highlight2[i]==l) 
{

vtemp=order[i] +48; 
ctemp=vtemp;

MemDC2.Ellipse(&circle_rect[i]);
MemDC2.DrawText(ctemp, &circle_rect[i], DT_CENTER ); 
MemDC2.TextOut(circle_rect[i].left,circle_rect[i].top,ctemp);

}
}

MemDC2.SelectObject(oldBrush); 
newBrush.DeleteObj ectO; 
int model_diameter=12; 
newBrush.CreateSolidBrush(RGB(l 0,222,10)); 
oldBmsh=pDC->SelectObject(&newBrush);

CFont newFont2;
CFont *p01dFont2;

newFont2.CreateFont(20,13,0,0,0,0,0,0,0,OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PREC
IS,PROOF_QUALITY,FF_DONTCARE,"Anal");

p01dFont2 = pDC->SelectObject(&newFont2);

pDC->SetTextColor(RGB(100,155,255));
pDC->SetBkMode(TRANSPARENT);

int x_offset= -7; 
inty_offset= 16;
/ / pDC->SetTextColor( RGB(100,255,100)); 
for(i=15<=95++)
{
vtemp=i+48; 

ctemp=vtemp;

if( i!=count+l){
pDC->Ellipse(model[i] .x-model_diameter,model[i] .y- 

model_diameter,model[i]. x+model_diame ter,model [l] .y+model_diameter); 
pDC->TextOut(model[i].x+x_offset,model [i].y+y_offset,ctemp);
}

}

pDC->SelectObject(oldBrush);
newBmsh.DeleteObject();

if(colorflag==l) {newBrush.CreateSolidBmsh(RGB(255,0,0)); pDC->SetTextColor( 
RGB(255,0,0));}
else {newBrush.CreateSolidBrush(RGB(0,255,0)); } 

oldBmsh=pDC->SelectObject(&newBmsh);
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i=count+l;
vtemp=i+48;

ctemp=vtemp;
pDC->TextOut(model[i] .x+x_offset,model[i] .y+y_offset, ctemp);

pDC->Ellipse(model[i] .x-model_diameter,model [i] .y- 
model_diameter,model[i] .x+model_diameter,model[i] ,y+model_diameter);

pDC->SelectObject(oldBmsh);
newBrush.DeleteObjectO;

pDC->SelectObject(p01dFont2);

newF ont2.DeleteObj ect();

//MemDC2.StretchBlt(myrect.left,myrect.top,myrect.Width(),myrect.HeightO,&MemDC,0,0)w,h>
SRCCOPY);

pDC->BitBlt(myrect.left,myrect.top, myrect.WidthO.myrect.HeightQ, 
&JVlemDC2,myrect.left,myrect.top> SRCCOPY);

if(count==9) {

KillTimer(l);
}

/ /  for(i=l^<=9d++)
/ /  rect_highlight[i]=0;

/ /
}

void COrder::OnDont()
{
MessageBox("You may choose the order at a later time","Calibration"); 

CDialog::OnCancel 0;
}

void COrder::OnOKQ 
{

/ /  TODO: Add extra validation here 
MPoint temp_pts[ll]; 
if( count!=9)
{ MessageBox("All circles must be marked"."Calibration"); return;} 

int i,j;
for(i=ld<=9;i++){
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while(order[j]!=i) j++; 
temp_pts [i] =ptspts [j];

}

for(i= 1 d<=9;i+ +) 
ptspts [i]=temp_pts [i];

if(value_set_flag2==0) {
UpdateData(true);
if(m_x==0 && m_y==0 && m_z==0) {MessageBox("Not all values can be

zero","Calibration"); return;}
*X=(double)m_x;
*Y= (double)m_y;
* Z= (double)m_z;
}
CDialog::OnOK();

}

void COrder::OnLButtonDown(UINT nFlags, CPoint point)
{
int i=0;

if(count==9) return; 
double xx,yy,ll;

for(i=ld<=9d++)
{

xx=point.x-temp_points[i] .x; 
yy=point.y-temp_points [i] .y;
11=(xx*xx)+(yy*yy); 
ll=sqrt(ll);
if(rect_highlight2[i]!=l) { 

if(U<= 10) { 
rect_highlight2 [i]=1; 
count++; 
order[i]=count;

}
}

}
InvalidateRect( &myrect, false);

CDialog::OnLButtonDown(nFlags, point);
}
void COrder::OnMouseMove(UINT nFlags, CPoint point)
{if(count==9) return; 
int i=0;

int this_circle=0; 
double xx,yy,ll;
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xx=point.x-prev_point.x;
yy=point.y-prev_point.y;
11=(xx*xx)+ (yy*yy); 
ll=sqrt(ll);

if(ll==0) {prev_point=point; return;} 
for(i=l;i<=9;i++)

xx=point.x-temp_points[i] .x; 
yy=point.y-temp_points [i] .y; 
ll=(xx*xx)+(yy*yy); 
ll=sqrt(U);

i f(U<= 10)
{ rect_highlight[i]=l; this circle=i;}

else
rect_highlight[i]=0;

}

if(this_circle!=prev_circle) InvalidateRect( &myrect, false);
prev_circle=this_circle;
prev_point=point;

CDialog::OnMouseMove(nFlags, point);
}

void COrder::OnTimer(UINT nIDEvent)
{
if(nIDEvent!=l) return;
/ /  InvalidateO; 
if(color£lag==l) colorflag=0; 
else colorflag=l;
CRect b(600,401,601,402);
InvalidateRect( &b, false);

CDialog::OnTimer(nIDEvent);
}

void COrder::OnReset()
{
flagtimer—0; 

inti;
for(i=l;i<=9;i++) { 

rect_highlight[i]=0; 
rect_highlight2[i] =0; 

order[i]=0;
}

count=0;
InvalidateO;
}
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void COrder::OnButtonl()
{
exit(0);
}

/ / / / / / / / / / / / / / / / / / / /  o r d e r . h / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ /  COrder dialog 
/  /  header file for the order class

#include "camera.h"
#if
!defined(AFX_ORDER_H_2AA259F9_7348_41A3_8900_3FC325D4333D INCLUDED_)
#define AFX_ORDER_H_2AA259F9_7348_41A3_8900_3FC325D4333D INCLUDED_

#if _MSC_VER > 1000 
#pragma once
#endif / /  _MSC_VER > 1000 
/ /  Order.h : header file
/ /

class COrder : public CDialog 
{
/ /  Construction 
public: 

void drawimage(void);
void loadimage(MPoint *pts, CBitmap *bt,int width, int height.LPCTSTR lpszString,int 

value_set_£lag,double* x,double* y.double* z);
COrder(CWnd* pParent = NULL); / /  standard constructor 
CBitmap* btbt;
CPoint modelfll];
MPoint* ptspts; 
int rect_highiight[l 1]; 
int rect_highlight2[ll]; 
int w;

int value_set_flag2; 
int h;
int order[ll]; 
int completion_flag; 
int flagtimer;
CPoint temp_points[ll];
CRect myrect;
CRect cirde_rect[ll];
LPCTSTR lpszString2;
CPoint prev_point; 
int colorflag;
CRect model_rect; 
int prev_circle; 
int count; 
double* X;
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double* Y; 
double* Z;

/  /  Dialog Data 
/ /  { {AFX_DATA(COrder) 
enum { IDD = IDD_DIALOG2 }; 
double m_x; 
double m_y; 
double m_z; 
//}}AFX_DATA

/ /  Overrides 
/ /  ClassWizard generated virtual function overrides 
/ /  { {AFX_VIRTUAL(COrder) 
protected:
virtual void DoDataExchange(CDataExchange* pDX); / /  DDX/DDV support
/ /  } } a f x _ v i r t u a l

/  /  Implementation 
protected:

/ /  Generated message map functions 
/ /  { {AFX_MSG(COrder) 
virtual void OnCancel(); 
afx_msg void OnPaintO; 
afx_msg void OnDontQ; 
virtual void OnOK();
a£x_msg void OnLButtonDown(UINT nFlags, CPoint point); 
afx_msg void OnMouseMove(UINT nFlags, CPoint point); 
afx_msg void OnTimer(UINT nIDEvent); 
afx_msg void OnReset(); 
afx_msg void OnButtonlQ;
//}}AFX_MSG
DECLARE_MESSAGE_MAPO

};

/ /  { {AFX_IN SERT_LOC ATION } }
/ /  Microsoft Visual C++ will insert additional declarations immediately before the previous line. 

#endif /  /
!defined(AFX_ORDER_H_2AA259F9_7348_41A3_8900_3FC325D4333D INCLUDED_)

/ /  robot.cpp: implementation of the robot class. 
/  /  routines for robot movement relted to calibration
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
#indude "stdafx.h"
#indude "calibrb.h"
#indude "robot.h"
#indude "math.h"
#indude <fstream>
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#include <iostream>
#define rob_y 40.000 
#define rob_x 60.000 
#define pi 3.1415 
#define sliding (54.8000+180)
#define horizon 88 
#ifdef _DEBUG 
#undef THIS_FILE
static char THIS_FILE [] = FILE__;
#define new DEBUG_NEW 
#endif
using namespace std;
#define XX 49.95 
#define YY 5.1

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ /  Construction/Destruction 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

robot: :robotQ 
{

}

robot::~robot()
{
} .....................
void robot: :initilizeO
{BOOL success=true;
int carl [2] = {0x4E,0} ,car2[2] = {0x45,0} ,car3[2] = {0x53,0} ,car4[2] = {0x54,0} ,car5[2] = {0x0D,0}; 

DCB deb;
DWORD err;
FillMemory(&dcb,sizeof(dcb),0);
dcb.DCBlength=sizeof(dcb);

/ /  COMMTIMEOUTS timeout;
hComm = CreateFile("COMl", GENERIC_WRITE, 0, 0,

OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL , 0); 
if(hComm==INVALID_HANDLE_VALUE)
{err=GetLastErrorQ;

exit (0);}

if((BuildCommDCBC'COMl:2400,n,8,2",&dcb)<0))
{

exit(0);
}

/ /  success = GetCommState(hComm, &dcb); 
err=GetLastError();

if (Isuccess) {err=GetLastError();} 
err=GetLastError(); 

dcb.fOutxCtsFlow= 1;
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deb. fOutxDsrFlow= 1; 
deb.BaudRate = CBR_2400; 

dcb.StopBits=2; 
err=GetLastError();
/ / set the deb values

success = SetCommState(hComm, &dcb); 
if ((success)
{err=GetLastError();

exit (0);}
EscapeCommFunction(hComm, CLRDTR); 
EscapeCommFunction(hComm, CLRRTS); 
EscapeCommFunction(hComm, SETRTS); 
EscapeCommFunction(hComm, SETDTR);
}
void robot: .NESTQ 
{
SEND("RS");
SEND("NT");
SEND("SP9");
SENDfMI -6000,-2600,1800,1200,-1200,0"); 
SEND("MI 0,0,0,295,295,0");
SEND("HO");
SEND("GP 5,5,5");
}

void robot::SEND(char *tt)
{

DWORD numWrite,numbit;
COMSTAT status;

BOOL w,success=true; 
int carriage[21 = {OxOD.O} ,bv[2] = {0x07,0}; 

int DONE=false;

while(lDONE) {
w=ClearCommError(hComm, &numbit,&status); 
if(status.fCtsHold==false && status.fDsrHold==false)

{

if(*tt==NULL)
{

DONE=true;
success= WriteFile(hComm, carriage, 1, &numWrite, 0); 

break;
}
if((WriteFile(hComm, tt, 1, &numWrite, 0)))
{

++tt;
}}

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



}}
void robot: :movetotext(char *fname) 
{
fstream f; 
f.open(fname);

CString stringl=:"PS 1,";
CString string2=",";

int a[10];

inti;
char temp [10]; 
for(i=0d<7d++) f>>a[i];

for(i=0;i<6;i++) { 
itoa(a[i],temp,10); 
stringl+=temp; 
if(i!=5) stringl+=string2;
}
//if(A£xMessageBox(stringl.GetBuffer(stringl.GetLength()),MB_YESNO )—  IDOK) 
{SEND(stringl .GetBuffer(stringl .GetLengthQ));
SEND("MO l");}f.closeO;
}
void robot::moveto(double X, double Y, double Z, double A, double S)
{
X=rob_x-(0+X);
Y=rob_y-(Y-0); 

double d5=21.46;

int i; 
int a[10]; 
char temp [10];
double magnitude=sqrt((X*X)+(Y*Y)); 
double px,py,p2; 
double A_an=A;
A=(double)(A*pi);A/=(double)180;

for(i=0;i<7;i++) a[i]=0;

//wrist vector
px=(double) (X- ((double)d5* (X/magnitude) * sin(A))); 
py= (double) (Y-((double)d5*(Y/magnitude) * sin (A))); 
pz=(double) (Z-((double) d5*cos (A))); 
pz-=25.0000;

double pmag=px*px+py*py+pz*pz; 
pmag=sqrt(pmag);

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/  /body rotation 
double b;

b=(double) (atan2(Y ,X)); 
b=fabs(b); 
if(Y<0) b=b*-l; 
a[0]=(int)(-40*b*180/pi); 
double thetal—b* 180/pi;
//if(a[0]> 5999 | | a[0]<-5999) MessageBox("waist out of range");

/ /  shoulder rotation 
double lambda=0; 
double beta=0; 
double tempi =0;
tempi =pz/(sqrt((px*px)+(py*py))); 
lambda=atan(templ);

tempi =px*px+py*py+pz*pz+22.000*22.000-16.00*16.00;
tempi / =(2*22.000*pmag);
beta=acos(templ);

b=(double) (beta+lambda)*l 80.00;b/ =pi;b=b-(double)35.0000; 
b=b*40.000;

a[l]=(int)b;

/ /  elbow rotation

double alpha=0;
alpha=asin((22.00/16.00):t‘sin (beta));
b=alpha+beta;
b=b*-40.00*180.00;b/=pi;
b=b+1800.00;
a[2]=(int)b;

/ /wrist angles

double theta4,theta5;

theta4=A_an-90.00+(((lambda-alpha)* 180.00) /  pi); 
theta4+=1.9;

theta5=(S-thetal);

a[3]=(int)((1200+0)-((double)(40.000/3.000)*(theta4+theta5)));
a[4]=(int)((1200+0)+((double)(40.000/3.000)*(theta4-theta5)));

a[5]=0;
CString stringl="PS 1,";
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CString string2—

for(i=0;i<6;i++) { 
itoa(a[i] ,temp,l 0); 
stringl +=temp; 
if(i!=5) stringl+=string2;
}

//if(AfxMessageBox(stringl.GetBuffer(stringl.GetLengthO),MB_YESNO )== IDYES) 
{
SEND(stringl.GetBuffer(stringl.GetLength()));

SEND("MO 1");

}}
void robot::OPENQ 
{
SEND("GO");
}

void robot: :CLOSE()
{
SEND("GC");
}

void robot: :cartesian_text(char *p)
{
}
void robot::HOME()
{
SEND("OG");
}

void robot::calibrb(int a)
{
if(a==2){

moveto(25, 40,5,180,horizon);
}

if(a==3){

moveto(25,40,9,180,horizon);
}

if(a==4){ 
moveto(25,40,13,180,horizon);

}
if(a==l){ 

moveto(25,40,-0.7,180,horizon);
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}}
void robot: :putcalibback()
{

SENDfGF 1"); 
moveto(XX, YY,-.5,180,sliding);
SEND("GO");
SENDfGF 0"); 
moveto(XX, YY,2,180,sliding);

//SENDfOG");
}
void robot::MI(int vl, int v2, int v3, int v4, int v5) 
{
CString stringl—"MI ";
CString string2=",";

int a[10]; 
a[l]=vl ; 
a[2]=v2; 
a[3]=v3 ; 
a[4]=v4; 
a[5]=v5 ;

int i;
char temp [10];

for(i=l;i<6;i++){ 
itoa(a[i],temp,10); 
stringl+=temp; 
stringl+=string2;
}
stringl+—"0";

SEND(stringl .GetBuffer(stringl .GetLengthQ));

}

void robot::resetQ 
{
SEND("RS");
}

void robot::grabtarget()
{
moveto(XX, YY,2,180,sliding); 
moveto(XX, YY,-.9,180,sliding);
CLOSEO;
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SENDf'GF 1");
}

void robot::closecomm()
{
CloseHandle(hComm);
}

void robot::home20 
{
moveto(XX, YY,8,180,sliding);
}

/  /  robot.h: interface for the robot class.
/ /  
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#if
!defined(AFX_ROBOT_H_231B518D_AE22_4164_85F0_75307EF40B6A_INCLUDEDJ 
#define AFX_ROBOT_H 231B518D_AE22_4164_85F0_75307EF40B6A INCLUDED_

#if _MSC_VER > 1000 
#pragma once
#endif / /  _MSC_VER > 1000

class robot 
{
public: 

void home2(void); 
void closecomm(void); 
void grabtarget(void); 
void reset(void);
void MI(int vl, int v2, int v3, int v4, int v5);
void putcalibback(void);
void calibrb(int a);
void HOME(void);
void cartesian_text(char* p);
void CLOSE(void);
void OPEN(void);
void movetotext(char* fname);
void moveto(double X, double Y, double Z, double A, double S);
HICON m_hIcon;
HANDLE hComm; 
void SEND(char* t); 
void NEST(void); 
void initilize(void); 
robotQ;
virtual —robotQ;

};

#endif /  /
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!defined(AFX_ROBOT_H 231B518D_AE22_4164_85F0_75307EF40B6A_INCLUDED_)

/ /  calibtbView.cpp : implementation of the CcalibrbView class 
/ / t h e  bulk of the calibration routeines is here (except for the Singular 
//V a lu e  Decomposition routine which has purposefully been left out, see 
/ / “numerical Recipies in C” for code

#include "stdafx.h"
#indude "robot.h"
#indude "calibrb.h"
#indude "calibrbDoc.h"
#indude "calibrbView.h"
#indude "ORRESPOND.h"
#include <process.h>

#define num_points 9
#define num_planes 3
#define plane_num 3
#ifdef _DEBU G
#define new DEBUG_NEW
#undefTHIS_FILE
static char THIS_FILED = _F IL E
#endif

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /
/ /  CcalibrbView

IMPLEMENT_DYNCREATE(CcalibrbView, CScrollView)

BEGIN_MESSAGE_MAP(CcalibrbView, CScrollView)
/ /  { {AFX_MSG_MAP (CcalibrbView)
ON_COMMAND(ID_CAMERA_GRAB, OnCameraGrab) 
ON_COMMAND(ID_CAMERA_CALIBRATE, OnCameraCalibrate) 
ON_COMMAND(ID_SHOW_LEF"i'lMAGE, OnShowLeftimage) 
ON_COMMAND(ID_SHOW_RIGHTIMAGE, OnShowRightimage) 
ON_COMMAND(ID_SHOW_TLEFTIMAGE, OnShowIleftimage) 
ON_COMMAND(ID_SHOW_TRIGHTIMAGE, OnShowTrightimage) 
ON_COMMAND(ID_SHOW_LEFTBORDER, OnShowLeftborder) 
ON_COMMAND(ID_SHOW_RIGHTBORDER, OnShowRightborder)
ON_COMMAND(ID_CAMERA_RELEASEANDCLOSE, OnCameraReleaseandclose) 
ON_COMMAND(ID_SHOW_SHOWCENTRES, OnShowShowcentres) 
ON_COMMAND(ID_CAMERA_SHOWCALIBSTEPS, OnCameraShowcaUbsteps) 
ON_COMMAND(ID_LEVEL_l, OnLevell)
ON_COMMAND(ID_LEVEL_2, OnLevel2)
ON_COMMAND(ID_LEVEL_3, OnLeveB)
ON_COMMAND (ID_CALIBRATE_NEST, OnCalibrateN est) 
ON_COMMAND(ID_CALIBRATE_GRAB, OnCalibrateCalibrate) 
ON_COMMAND(ID_ROBOT_HOME, OnRobotHome) 
ON_COMMAND(ID_ROBOT_OPEN, OnRobotOpen) 
ON_COMMAND(ID_ROBOT_PUTBACK, OnRobotPutback)
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ON_COMMAND(ID_DEBUG_WRITEPOINTS, OnDebugWritepoints) 
ON_COMMAND(ID_CALIBRATE_START, OnCalibrateStart) 
ON_COMMAND(ID_ROBOT_RESET, OnRobotReset) 
ON_COMMAND(ID_ROBOT_MOVEASIDE, OnRobotMoveaside)
/ /  } } AFX_MSG_MAP 
/  /  Standard printing commands
ON_COMMAND(ID_FILE_PRINT, CScrollView::OnFilePrint) 
ON_COMMAND(ID_FILE_PRINT_DIRECT, CScrollViewcOnFilePrint) 
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CScrollViewcOnFilePrintPreview) 

END_MESSAGE_MAPO

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /
/ /  CcalibrbView construction/destruction

CcalibrbView::CcalibrbView()
{

/ /  TODO: add construction code here 
flagl=0; 
flag3=0; 
flag_centres=0; 
calibrate_flag=0; 
int i;

cam_calibL=new double [14]; 
cam_calibR=new double [14];

for(i=0d<=12d++) { 
cam_calibL[i] =0; 
cam_calibR[i]=0;}

FR= new double* [6];
FL= new double* [6];
MR= new double* [6];
ML= new double* [6];

for (i=0; i<6; i++)
{FR[i] = new double[5];
FL[i] = new double[5];
MR[i] = new double[5];
ML[i] = new double[5];
}

}

CcalibrbView::~CcalibrbViewQ
{
}
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BOOL CcalibrbView::PreCreateWindow(CREATESTRUCT& cs)

/ /  TODO: Modify the Window class or styles here by modifying 
/ /  the CREATESTRUCT cs

return CScrollView::PreCreateWindow(cs);
}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /
/ /  CcalibrbView drawing

void CcalibrbView::OnDraw(CDC* pDC)
{

CcalibrbDoc* pDoc = GetDocumentQ;
ASSERT_VALID(pDoc);

if(flag_centres==l) { 
writecentres (pDC);

}else
if(flagl==l){

CDC memdc;
memdc.CreateCompatibleDC(pDC);
CBitmap* pOldBm = memdc.SelectObject(curb);
CRect rc;
GetClientRect(&rc);
pDC->BitBlt(0, 0, 700,700, &memdc, 0,0, SRCCOPY); 
memdc.Select0bject(p01dBm);
DeleteDC(memdc);
}

/ /  TODO: add draw code for native data here
}

void CcalibrbViewcOnlnitialUpdateQ 

*CScrollView: :OnInitialUpdateO;

CSize sizeTotal;
/ /  TODO: calculate the total size of this view 
sizeTotal-cx = sizeTotal.cy = 1000;
SetScrollSizes(MM_TEXT, sizeTotal);

AfxGetMainWndO->SetWindowText ( "Stereo Project" );
/  /  changing the title 
level=l;

}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
u
I I  CcalibrbView printing
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BOOL CcalibrbView::OnPreparePrinting(CPrintInfo* plnfo)
{

/ /  default preparation
return DoPreparePrinting(pInfo);

}

void CcalibrbView::OnBeginPrinting(CDC* /*pDC*/, CPrintlnfo* /*pInfo*/)
{

/ /  TODO: add extra initialization before printing

}

void CcalibrbView::OnEndPnntmg(CDC* /*pDC*/> CPrintlnfo* /*pInfo*/)
{

/ /  TODO: add cleanup after printing
}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /
/ /  CcalibrbView diagnostics 

#ifdef_DEBUG
void CcalibrbView::AssertValid0 const 
{

CScrollView: :AssertValidQ;
}

void CcalibrbView::Dump(CDumpContext& dc) const 
{
CScrollView: :Dump(dc);

}

CcalibrbDoc* CcalibrbView::GetDocument() / /  non-debug version is inline 
{
ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CcalibrbDoc))); 
return (CcalibrbDoc*)m_pDocument;

}
#endif//_DEBUG

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /
/ /  CcalibrbView message handlers

void CcalibrbView::OnCameraCalibrate() 
{inti,j; 

double X=0,Y=0,Z=0; 
int cc=0;
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calibrate_flag=l;//set the flag 
//fix  orders 

for(i=l;i<=3;i++){
MyCam.getworldpos3(&X,&Y,&Z,i);
COrder centroid_dialogl;
centroid_dialogl.loadimage(MyCentres[i].RPoints,&S_IMAGE[i].RJmage,MyCam.S_X,MyCam.S
_Y,"Right",l,&X,&Y,&Z);
centroid_dialogl.DoModal 0;
COrder centroid_dialog2;
centroid_dialog2.1oadimage(MyCentres[i].LPoints,&S_IMAGE[i].LImage,MyCam.S_X,MyCam.S_ 
Y,"Left",l ,&X,&Y,&Z); 
centroid_dialog2.DoModal 0;

centroid_dialogl .DestroyWindow(); 
centroid_dialog2.DestroyWindow();
MyCam.getworldpos2(MyCentres[i].WPoints,X,Y,Z);

}

/  /  declare normalization matrix now

double** norm_imageL; 
double** norm_imageR; 
double** norm_space;

double** left_calib; 
double** right_calib;

double** A; 
double** v;

double* b=new double[l+(2*num_points*num_j)lanes)]; 
double* w=new double[l+(2*num_points*num_planes)]; 
double* C_left=new double[5]; 
double* C_right=new double[5];

A= new double* [l+(2*num_points*num_planes)]; 
v— new double* [l+(2*num_points*num_planes)];

le£t_calib=new double* [6]; 
right_calib =:new double* [6]; 
norm_imageL=ncw double* [6]; 
norm_imageR=new double* [6]; 
norm_space=new double* [6];
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for (i=0; i<l+(2*num_points*num_planes); i++) 
{ A[i] = new double [13]; 
v[i] = new double[13];
}

for (i=0; i<6; i++)
{
left_calib[i] = new double [6]; 
right_calib[i] = new double [6]; 
norm_irmgeL[i] = new double [6]; 
norm_imageR[i] = new double [6]; 
norm_space[i] = new double [6];

}
//ninitliaze to zero 
for(j=0;j<=5;j++) 
for(i=0d<=5i+ +) { 
norm_imageL[j] [i]=0; 
norm_iimgeR[j] [i] =0; 
norm_space[]] [i] =0; 
left_calib [j] [i]=0;
right calib[j] [i] =0;
MLO][i]=0;
MR00=O;
}

/  /  put real values inside another array to keep unnormalized values for later

for (j=l; j<=num_planes; j++) 
for (i=l; i<=num_points; i++)

*MyCentres_real[j]. WPoints [i] .x=MyCentres [j]. WPoints [i] .x;
MyCentres_real[j] .WPoints [i] .y=MyCentres [j] .WPoints [i] .y; 
MyCentres_real[j].WPoints[i].z=MyCentres[j].WPoints [i].z;

MyCentres_real[j] .LPointsfi] .x=MyCentres [j] .LPoints [i] .x;
MyCentres_real[j] .LPointsfi] .y=MyCentres [j] .LPoints [i] .y;

MyCentres_real(j] .RPoints [i] .y=MyCentres[j] ,RPoints[i] .y; 
MyCentres_real[j].RPoints[i] ,x=MyCentres[j] .RPoints [i] .x;
}
//now  normalize

MyCam.normalize_image( norm_imageL,norm_imageR,norm_space ,MyCentres); 

for (i=0; i<=(2*num_points*num_planes); i++) {b[i]=0; w[i]=0;}

for (i=l; i<=(2*num_points*num_planes); i++)
for 0=1; j<=12; ]++)
{
A[i]D]=0; 
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int ccc=l; 
int k—0;

for (j=l; j<=num_planes; j++) 
for (i=l; i<=num_points; i++)

{
if(num_planes==l) j=plane_num;

for (k= 1 ;k<=4;k+ +) A [(ccc*2) -1] [k]=0;

A[(ccc*2)-1] [5]—MyCentres [j].WPoints[i].x; 
A[(ccc*2)-l](6]=-MyCentres[j] .WPoints[i].y; 
A[(ccc*2)-1] [7] =-MyCentres[j]. WPoints [ij.z; 
A[(ccc*2)-1][8]=-1;

A[(ccc*2)-1] [9] =MyCentres [j] .WPoints [i] .x*MyCentres [j] .LPoints [i] .y; 
A [(ccc*2)-l] [10] =MyCentres [j] .WPoints [i] .y*MyCentres [j] .LPoints [i] .y; 
A[(ccc*2)-l][ll]=MyCentres[j] .WPoints [i].z*MyCentres[j].LPoints[i].y; 
A[(ccc*2)-1] [12]=1 *MyCentres [j] .LPoints [i] .y;

//next line

A[ccc*2] [1]=MyCentres [j] .WPointsfi] .x; 
A [ccc*2] [2]=MyCentres [j] .WPoints [i] .y; 
A[ccc*2] [3]=MyCentres[j] .WPoints [i] .z; 
A[ccc*2][4]=l;

for(k=5;k<=8;k++) A[ccc*2][k]=0;

A [ccc* 2] [9]=MyCentres [j] .WPoints [i].x*-l *MyCentres [j] .LPoints [i] .x; 
A [ccc*2] [10] = MyCentres [j] .WPoints [i] .y* -1 *MyCentres [j] .LPoints [i] .x; 
A [ccc*2] [11]=MyCentres[j] .WPoints [i] ,z*-l *MyCentres []] .LPoints [i] .x; 
A [ccc*2] [12]=1 *-1 *MyCentres [j] .LPoints [i] .x;

ccc++;
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/ / / / / / / / /
FILE* tempf;
tempf=fopen(" LmatrixA.txt" ,"wt");

£printf(tempf,"A=[");
for(i=l;i<=(2*num_points*num_planes)^++) { 

if(i!=l) fprintf(tempf," \n  "); 
for(j=l;j<=12;j++){ 

fpnntf(tempf,"0/of "AH D])>
}}

£printf(temp£," ] ");

fprintf(tempf,"\n\n\n ");
£printf(tempf,"b=[");

for(j= l;j < =(2*num_points*num_planes);j++) { 
if(j!=l) fprintf(tempf," ; "); 

fprintf(tempf,''%f ",b[j]);
}

fprintf(tempf," ] "); 
fclosc(tempf);

MyCam.solve2(A,(2*num_points*nurn_planes),12,cam_calibL);
make2D(cam_calibL,left_calib);
cc=0;
tempf=fopen(" Lcamera.txt","wt"); 

fprmtf(tempf(''P=["); 
for(i=l;i<4;i++){ 

if(i!=l) £printf(tempf," 
for(j=l;j<5;j++){ 

cc++;
£printf(tempf,"%f ",cam_calibL[cc]);

}}

fprintf(tempf," ] ");

fprintf(tempf," \n \n \n \n"); 
fprintf(tempf,"v=["); 
for(i= 1 ;i<=12;i++) { 

if(i!=l) fprintf(tempf," \n  "); 
for(j=l;j<=12;j++){ 

fprintf(ternpf,"%f ",v[i] [j]);
}}

fprintf(tempf," ] ");

fprintf(tempf," \n \n \n\n"); 
fprint^tempf,"w= ["); 
for(i=l;i<=12;i++) {
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fprin tf(tem pf,"% f ",w[i]);
}fprintf(tem pf," ] ");

fclose(tempf);

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
///righ t c a m e r a / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
for (i=0; i<=(2*num_points*num_planes); i++) {b[i]=0; w[i]=0;} 
for (i=l; i<=(2*num_points*num_planes); i++) 

for (j=l; j<=12; j++)
{
AHD1=0;
vHD]=0;
}

ccc=l;

for (j=l; j<=num_planes; j++) 
for (i=l; i<=num_points; i++)

{
if(num_planes==l) j=plane_num;

for(k=l;k<=4;k++) A[(ccc*2)-l][k]-0;

A[(ccc*2)4][5]=-MyCentres[j].WPoints[i].x;
A[(ccc*2)-1] [6] =-MyCentres[j].WPoints [ij.y; 
A[(ccc*2)-l][7]=-MyCentres[j] ,WPoints[i].z;
A[(ccc*2)-1][8]=-1;

A[(ccc*2)-1] [9] =MyCentres [j] .WPoints [i] ,x*MyCentres [j] .RPoints [i] .y; 
A [(ccc*2) -1] [10] =MyCentres [j] .WPoints [i] ,y*MyCentres [j] .RPoints [i] .y; 
A[(ccc*2)-l][ll]=MyCentres[j]. WPoints [i].z*MyCentres[j].RPoints [i].y; 
A[(ccc*2)-1] [12]=1 *MyCentres[j] .RPoints fi].y;

/  /  next line

A [ccc*2] [1] =MyCentres [j] .WPoints[i] .x; 
A[ccc*2] [2] =MyCentres [j] .WPoints [i] .y; 
A[ccc*2] [3] =MyCentres [j] .WPoints [i] .z; 
A[ccc*2][4]=l;

for(k=5;k<=8;k++) A[ccc*2][k]=0;
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A [ccc* 2] [9] = MyCentres [j] .WPoints [i].x*-l *MyCentres [j] .RPoints [i] .x; 
A[ccc*2J [10] =MyCentres [j] .WPoints [i] ,y*-l*MyCentres [j] .RPoints [i] .x; 
A[ccc*2] [11] =MyCentres [j] .WPoints [i] .z*-l *MyCentres [j] .RPoints [i] .x; 
A [ccc*2] [12]=1 *-1 *MyCentres [j] .RPoints [i] .x;

ccc++;
}

/ / / / / / / / /

tempf=fopen(" RmatrixA.txt" ,"wt");
£printf(tempf,"A=[");
for(i= l;i<=(2*num_points*num_planes) a++) { 

if(i!=l) £printf(tempf," \n  "); 
for(j=l;j<=12;j++){

£printf(tempf,"%f ",A[i] D])i
}}

fprintf(tempf," ] ");

iprintf(tempf,"\n\n\n ");
£printf(tempf,,,'b = [");

for(j= l;j <=(2*num_points*num_planes);j++) { 
if(j!=l) £printf(tempf," ; "); 

fprintf(tempf)ll°/of ",b[j]);
}

fprintf(tempf," ] "); 
fclose(tempf);
MyCam.solve2(A,(2*num_points*num_planes)J12,cam_calibR);
make2D(cam_calibR>right_calib);
cc=0;
tempf=fopen("Rcamera.txt","wt"); 

fprintf(tempf,"P= ["); 
for(i=l;i<4;i++){ 

if(i!=l) fprintf(tempf," 
for(j=l;j<5;j++){ 

cc++;
£printf(tempf,"%f ",cam_calibR[cc]);

}}

fprintf(tempf," ] ");

fprintf(tempf," \n \n \n \n"); 
fprintf(tempf,"v=["); 
for(i=ly< = 12a++) { 

if(i!=l) fprintf(tempf," \n  "); 
for(j=l;j<=12;j++){

£printf(tempf,"%f ",v[i] [j]);
}}
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fprintf(tem pf," ] ");

£printf(tempf," \n \n \n\n"); 
fprmtf(tempf,''w=["); 
for(i= l;i<—12/++) { 

fpantf(tempf,"%f ",w[i]);
}

£printf(tempf," ] "); 
fclose(tempf);
/ / i f  you wish to implement the non linear least square minimization 
//using the levenberg-marquardt method read this:
/ / l -  the minimization has to take place before DENORMALIZING
//2 - the value of the projection matrices is in two two dimensional array of type double
/ /left_calib and right_calib
//no te the denormalization is done in the next line, so the minimization has to take place before 
that

/ /denormalize the parameters
MyCam.denormalize(norm_imageL,norm_imageR,left_calib(right_calib,norm_space);

//print right camera calibration parameters 
tempf= fopen(" rcalib.txt","wt");
/ /  fprintf(tempf,"PR=["); 

for(i=ld<4^++){
/ /  if(i!=l) fprintf(tempf," 

for(j=l;j<5;j++){ 
fprintf(tempf,"%f ",right_calib[i] [j]);

}}
fprintf(tempf," ] "); 
fclose(tempf);
//print left camera calibration parameters 
temp f=fopen(" Lcalib.txt" ,"wt");
/ /  fprintf(tempf," "); 

for(i=l^<4d++){
/ / if(i!=l) %>rintf(tempf," "); 

for(j=l;j<5;j++){ 
fprintf(tempf,"%f ",left_calib[i] [j]);

}}
fprintf(tempf," "); 
fclose(tempf);

//p u t back the real values in the normalized coordinates 
for (j=l; j<=num_planes; j++) 
for (i=l; i<=num_points; i++)

MyCentres [j] .WPoints [i] .x=MyCentres_real[j] .WPoints [i] .x;
MyCentresjj] .WPoints [i] .y=MyCentres_real[j] .WPoints [i] .y;
MyCentres [j].WPoints [i].z=MyCentres_real[j].WPoints [i].z;
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MyCentres [j] .LPoints [i] .x=MyCentres_real[j] .LPoints [i] .x;
MyCentres [j].LPoints [i].y=MyCentres_real[j].LPoints [i].y;

MyCentres [j] .RPoints [i] .y=MyCentres_real[j] .RPoints [i] .y;
MyCentres [j] .RPoints [i] .x=MyCentres_real(j] .RPoints [i] .x;
}

/  /  find mean square error
MyCam.finderror(&left_x_error,&left_y_error,&right_x_error,&right_y_errorJeft_calib,right_cali 
b,MyCentres);

/ / find ccenteres of the cameras 
MyCam.find_center(left_calib,C_left);
MyCam.find_center(right_calib,C_right);

/  /  find the fundamental matrix

MyCam. findF (FL,FR,MyCentres);

/ / put left calib and right calin arrays into permanent public arrays
for(i=ld<=3fi++)
for(j=l;j<=4;j++){
ML[i] [j] =left_calib[i] [j];
MR[i] D1 =nght_calib[i] [j];
}

/  /  free memory
for (i=0; i<l+(2*num_points*num_planes); i++)
{

delete |] A[i]; 
delete 0 v[i] ;

}

for (i=0; i<6; i++)
{
delete 0 right_calib[i] ; 
delete [] norm_imageL[i] ; 
delete [] norm_imageR[i] ; 
delete [| norm_space[i] ; 
delete [] left_calib[i] ;

}

delete [] b; 
delete [| w; 
delete [] A; 
delete [| v; 
delete [| C_left;
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delete [] C_right;

delete |] left_calib; 
delete [] right_calib; 
delete [] norm_imageL; 
delete [] norm_imageR; 
delete [] norm_space;

/ / / / / / / / / / / / / / / / / / / / / / / / / / /  
if(flagl==l){ 

for(i= ld<-3d++){ 
S_IMAGE[i].RImage.DeleteObject(); 
S_IMAGE[i].LImage.DeleteObject(); 
S_IMAGE[i|.TRImage.DeleteObject(); 
S_IMAGE[i].TLImage.DeleteObject(); 
S_IMAGE[i].CRImage.DeleteObject(); 
S_IMAGE[i].CLImage.DeleteObject();
}
}
flagl = 0 ;//free the buffers
flag3=l; //indicate calibration is fiinshed

system("copy \"C:\\Documents and Settings\\Sid-Ahmed
robot\\Desktop\\calibrb\\left_f.txt\" \"C:\\Documents and Settings\\Sid-Ahmed
robot\\Desktop\\robsecond\\configs\\LF.txt\"");
system("copy \"C:\\Documents and Settings\\Sid-Ahmed
robot\\Desktop\\calibrb\\right_f.txt\" \"C:\\Documents and Settings\\Sid-Ahmed
robot\\Desktop\\robsecond\\configs\\RF.txt\"");
system("copy \"C:\\Documents and Settings\\Sid-Ahmed
robot\\Desktop\\calibrb\\Lcalib.txt\" \"C:\\Documents and Settings\\Sid-Ahmed
robot\\Desktop\\robsecond\\configs\\LM.txt\"");
system("copy \"C:\\Documents and Settings\\Sid-Ahmed
robot\\Desktop\\calibrb\\rcalib.txt\" \"C:\\Documents and Settings\\Sid-Ahmed 
robot\\Desktop\\robsecond\\configs\\RM.txt\"");

}

void CcalibrbView::OnShowLeftimageO 
{
if(calibrate_flag==0) return; 
curb=&S_IMAGE[level] .LImage; 

flag_centres=0;
InvalidateQ;

}

void CcalibrbViewaOnShowRightimageQ 
{if(calibrate_flag==0) return; 

curb=&S_IMAGE[leveI] .RImage; 
flag_centres=0;
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Invalidate{);

}

void CcaHbrbView::OnShowTleftirnageQ 
{if(calibrate_flag==0) return; 
curb=&S_IMAGE[leveI].TLImage; 
flag_centres=0;

InvalidateQ;

}

void CcaHbrbView::OnShowTrightirnageQ 
{if(calibrate_£lag==0) return; 

curb=&S_IMAGE[level] .TRImage;
flag_centres=0;
Invalidate();}

void CcalibrbView::OnShowLeftborderQ 
{if(calibrate_flag==0) return;

curb=&S_IMAGE [level] .CLImage; 
flag_centres=0;

InvalidateQ;
}

void CcalibrbView::OnShowRightborderQ 
{if(calibrate_£lag==0) return; 
curb=&S_IMAGE[leveI] .CRImage; 
flag_centres=0;

Invalidate();

}

void CcalibrbView::OnCameraReleaseandcloseQ 
{int i=0; 
if(£lagl—= 1) { 

for(i= 1 ;i<=3;i+ +) { 
S_IMAGE[i].RImage.DeleteObject(); 
S_IMAGE[i] .LImage.DeleteObject();}
}

exit(0);
}

void CcalibrbView::OnShowShowcentresQ 
{if(calibrate_flag==0) return; 

flag_centres=l;
InvalidateQ;
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}

void CcaHbrbView.:writecentres(CDC *pDC)
{if(calibrate_£lag==0) return;
int q=level;
inti;
CString stuff("");

char* temp=new char[390];
stuff+=" Left Right
World\n";
stuff+=" ---------------------- ------------------------
---------------------------- \n";
stuff+=" X Y X Y X
Y Z \n";
stuff+="--------------------------------  --------------------------------
------------------------------------------ \n";
for(i=l;i<=9;i++)
{
/  / print the centes

sprintf(temp," %0.1f %0.1f %0.1f %0.1f
%0.1f %0.1f %0.1f
\n" .MyCentres [q] .LPoints [i] .x,MyCentres [q] .LPoints [i] .y.MyCentres [q] .RPoints[i] .x,MyCentres [q]. 
RPoints ft] .y .MyCentres [q] .WPoints [i] .x,MyCentres [q] .WPoints [i] .y.MyCentres [q] .WPoints [i] .z); 

stuff+=temp;
}

/  /  now print the mean errors
sprintf(temp,"\n\nMean Square Error in Left Camera X coordinate is: %0.5f\n",left_x_error); 
stuff+=temp;
sprintf(temp,"Mean Square Error in Left Camera Y coordinate is: °/o0.5f\n",left_y_error); 
stuff+=temp;
sprintf(temp,"Mean Square Error in Right Camera X coordinate is: %0.5f\n",right_x_error); 
stuff+=temp;
sprintf(temp,"Mean Square Error in Right Camera Y coordinate is: %0.5f\n",right_y_error); 
stuff+=temp;

CRect rc; 
GetClientRect(rc);

rc.OffsetRect(5,5);
pDC->DrawText(stuff, -1, rc,DT_LEFT);

delete [| temp;

}
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void CcalibrbViewcOnCameraShowcalibstepsQ 
{
if(calibrate_flag==0) return; 

calibrate.Create(IDD_DIALOGl,this); 
calibrate.ShowWindow(SW_SHOW);
calibrate.loadpicl(&S_IMaiGE[level].RImage,&S_IM'\GE[leveI].LImage1&S_INL'\GE[leveI].TRI 
mage,&S_IMAGE[level] .TLImage,&S_IMAGE [level] .CRImage,&S_IMAGE[level] ,CLImage,My 
Cam.S_X,MyCam.S_Y);

}

void CcalibrbView::OnLeveil ()
{

level=l;Invalidate();

}
void CcalibrbView::OnLevel2()
{
level=2;Invalidate();

}

void CcalibrbView::OnLevel3Q 
{
level-3;Invalidate();

}

void CcalibrbView::OnCalibrateNestO 
{
robot myrob; 
myrob.initilizeQ; 
myrob.NEST(); 
myrob.closecommO;
} . . .

void CcalibrbView: GnCalibrateCalibrateQ 
{
int i=0;

if(flagl==l){ 
for(i=1 =3d+ +) {

S_IMAGE[i].RImage.DeleteObject();
S_IMAGE[i] .LImage.DeleteObject();
S_IMAGE[i].TRImage.DeleteObject();
S_IMAGE[i].TLImage.DeleteObject();
S_IMAGE[i] .CRImage.DeleteObject();
S_IMAGE[i] .CLImage.DeleteObject();
}
}
camera mycam; 
robot myrob;
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mycam.initializeQ;
myrob.initili2e();
myrob.grabtargetO;

myrob.calibrb(4);
myrob.calibrb(l);
/ /MessageBox("Continue");
Sleep(2000); 
mycam. GRABO;

i=l;
S_IMAGE[i]. width=mycam. S_X;
S_IMAGE[i].height=mycam.S_Y;
S_IMAGE[i].RImage.Attach(mycam.ArrayToBitmap(mycam.userImagel));
S_IMAGE[i].LImage.Attach(mycam.ArrayToBitmap(mycam.userImage2));
S_IMAGE[i].TRImage.Attach(mycam.ArrayToBitmap(mycam.userImagel));
S_IMAGE[i].TLImage.Attach(mycam.ArrayToBitmap(mycam.userImage2));
S_IMAGE[i].CRImage.Attach(mycam.ArrayToBitmap(mycam.userImagel));
S_IMAGE[i].CLImage .A ttach(mycam.ArrayToBitmap(mycam.userImage2));
mycam. exportQ;

mycam. threshold 1 (&S_IMAGE[i] .TRImage); 
mycam. threshold 1 (&S_IMAGE[i] .TLImage);

mycam.border(MyCentres [i].RPoints,&S_IMAGE[i].TRImage,&S_IMAGE[i].CRImage); 
mycam.border (MyCentres [i] .LPoints,&S_IMAGE[i] .TLImage,&S_IMAGE[i] .CLImage);

myrob.calibrb(2);

/ /MessageBox("Continue");
Sleep(2000);
mycam.GRABO;

i=2;
S_IMAGE[i] .width=mycam.S_X;
S_IMAGE[i].height=mycam.S_Y;
S_IMAGE[i].RImage.Attach(mycam-ArrayToBitmap(mycam.userImagel));
S_IMAGE[i].LImage.Attach(mycam.ArrayToBitmap(mycam.userImage2));
S_IMAGE[i],TRImage .A ttach(mycam.ArrayToBitmap(mycam.userImagel)); 
S_IMAGE[i].TLImage.Attach(mycam.ArrayToBitmap(mycam.userImage2)); 
S_INL\GE[i].CRImage.Attach(mycam.ArrayToBitmap(mycam.userImagel)); 
S_IMAGE[i],CLImage .A ttach(mycam.ArrayToBitmap(mycam.userImage2)); 
mycam.exportO;

mycam. threshold 1 (&S_IMAGE[i] .TRImage); 
mycam. threshold 1 (&S_IMAGE[i] .TLImage);

mycam.border(MyCentres[i].RPoints,&S_IMAGE[i].TRImage,&S_IMAGE[i].CRImage); 
mycam.border(MyCentres[i].LPoints,&S_IMAGE[i].TLImage,&S_IMAGE[i],CLImage); 
myrob.calibrb(3);
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/ /MessageBox("Continue");
Sleep(2000); 
mycam. GRABQ;

i= 3 ;
S_IMAGE[i].width=mycam.S_X;
S_IMAGE[i].height=mycam.S_Y;
S_IMAGE[i].RImage.Attach(mycam.ArrayToBitmap(mycam.userImagel));
S_INL‘\GE[iJ.LImage.Attach(mycam.ArrayToBitmap(mycam.userImage2));
S_INL\GE[i].TRImage. A ttach(mycam.ArrayToBitmap(mycam.userImagel)); 
S_IMAGE[i].TLImage.Attach(mycam.ArrayToBitmap(mycam.userImage2)); 
S_IMAGE[i].CRImage.Attach(mycam.ArrayToBitmap(mycam.userImagel)); 
S_IMAGE[i]. CLImage .Attach(mycam.ArrayToBitmap(mycam.userImage2)); 
mycam.export();

mycam.thresholdl (&S_IMAGE[i] .TRImage); 
mycam. thresholdl (&S_IMAGE[i] .TLImage);

mycam.border(MyCentres[i].RPoints,&S_IMAGE[i].TRImage,&S_IMAGE[i].CRImage); 
mycam.border(MyCentres [I] .LPoints, &S_IMAGE[i] .TLImage,&S_IMAGE[i] .CLImage);

/ / / / / / / / / / / / / / / / / / /
MyCam.S_X=mycam.S_X;
MyCam.S_Y=mycam.S_Y;
/ / / / / / / / / / / / / / / / / / /

curb=&S_IMAGE[3] .RImage;
level=3;
flagl=l;
Invalidate(); 
calibrate_flag= 1;

myrob.putcalibbackQ;
myrob.home2Q;
myrob.closecomm();
mycam.release();
}

void CcalibrbView::OnRobotHomeQ
{robot myrob;
myrob.initilizeO;

myrob.HOME();
myrob.closecommQ;

}

void CcalibrbView: :OnRobotOpenQ 
{

robot myrob;

1 6 2
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myrob.initilizeO; 
myrob.CLOSEQ; 
myrob.dosecommO;

}

void CcalibrbViewzOnRobotPutbackO 
{robot myrob; 
myrob.initilizeO; 
myrob.putcalibbackO; 

myrob.dosecommO;

}

void CcalibrbView::make2D(double aQ, double **b) 
{
b[l][l]=a[l];
b[l][2]=a[2];
b[l][3]=a[3];
b[l][4]=a[4];
b [2] [1] = a [5];
b [2] [2] = a [6];
b[2][3]=a[7];
b [2] [4] = a [8];
b[3][l]=a[9];
b[3][2]=a[10];
b[3][3]=a[ll];
b[3][4]=a[12];
}

void CcalibrbViewxOnDebugWritepointsO 
{

int i,j;

FILE *rightf2D,*leftf2D,*f3D;

right £2D=fopen(" Right2D .txt" ,"wt"); 
f3D=fopen("3D.txt","wt"); 
leftf2D=fopen("Le ft2D.txt",Mwt");

fprintf(rightf2D,''27\n'');
%rintf(leftf2D,"27\n");
Q5rintf(DD,"27\n");

for(i=l;i<=3;i++)
for(j=l;j<=9;j++){

fprintf(rightf2D1"%.5f %.5f\n",MyCentres[i].RPoints[j].x1MyCentres[i].RPoints[j].y); 
fprintf(leftf2D,"%.5f %.5f\n",MyCentres[i].LPoints[j].x,MyCentres[i].LPoints[j].y);
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fprintf(f3D,"%.5f %.5f
%.5f\n",MyCentres [i].WPoints [j].x,MyCentres [i].WPoints[j].y .MyCentres [i].WPoints[j].z); 
}
fclose(right£2D);
fclose(BD);
fclose(left£2D);
}

void CcalibrbView::OnCalibrateStartQ 
{return; 
inti= l;

/ /  if(flag3==0) {MessageBox("finish calibration first"); return;}
/ / i f  (flag3==2)

{
S_IMAGE[i] .RImage.DeleteObject();
S_IMAGE[i].LImage.DeleteObject();
S_IMAGE[i].TRImage.DeleteObject();
S_IMAGE[i].TLImage.DeleteObject();
S_IMAGE[i] .CRImage.DeleteObject();
S_IMAGE[i] .CLImage.DeleteObject();

}//fiee buffers 
camera mycam; 
mycam.initialize();
mycam. GRAB 0 ;mycam.GRAB Q ;mycam.GRAB Q;

/ / reusing the buffers used for calibration, plane 1

S_IMAGE[i] ,width=mycam.S_X;
S_IMAGE[i].height=mycam.S_Y;
S_IMAGE[i].RImage.Attach(mycam.ArrayToBitmap(mycam.userImagel));
S_IMAGE[i].LImage.Attach(mycam.ArrayToBitmap(mycam.userImage2));
S_IMAGE[i].TRImage Attach(mycam.ArrayToBitmap(mycam.userImagel)); 
S_IMAGE[i].TLImageAttach(mycam.ArrayToBitmap(mycam.userImage2)); 
S_IMAGE[i].CRImageAttach(mycamArrayToBitmap(mycam.userImagel)); 
S_IMAGE[i].CLImage Attach(mycam.ArrayToBitmap(mycam.userImage2)); 
mycam. export2Q;

CORRESPOND dlgl;
dlgl.load(&S_IMAGE[i].LImage,&S_IMAGE[i].RImage,FL,FR,ML,MR,mycam.S_Y,mycam.S_X
);
dlgl.DoModal Q; 
mycam.releaseO;
flag3=2; / /indicate buffer is full now 

}

void CcalibrbView::OnRobotResetQ 
{
robot myrob; 

myrob.initilizeO; 
myrob.reset(); 
myrob.closecomm();
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}

void CcalibrbViewxOnRobotMoveasideQ 
{

robot myrob; 
myrob.imtilizeQ; 
myrob.home2(); 
myrob.dosecommQ;

}
/ /  calibrbView.h : interface of the CcalibrbView class 
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /
#indude "camera.h"
#indude "aux2.h"
#indude "Order.h"
#if
!defined(AFX_calibrbVIEW_H_7E3B7836_7668_4A7E_B51E_CB57750CBA8C INCLUDE
DJ
#define
AFX_calibrbVIEW_H_7E3B7836_7668_4A7E_B51 E_CB57750CBA8C_INCLUDED_

#if _MSC_VER > 1000 
#pragma once
#endif / /  _MSC_VER > 1000 

typedef struct {
CBitmap RImage;
CBitmap LImage;

CBitmap TRImage;
CBitmap TLImage;

CBitmap CRImage;
CBitmap CLImage; 
int width; 
int height;

} IMAGE;

class CcalibrbView : public CScrollView 
{
protected: / /  create from serialization only 

CcalibrbViewQ;
DECLARE_DYNCREATE(CcalibrbView)

/ /  Attributes 
public:

CcalibrbDoc* GetDocumentQ;

/ /  Operations 
public:
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CENTRES MyCenttes[4]; 
CENTRES MyCentres_real[4];

IMAGE S_IMAGE[4]; 
int flagl;
/  /  normalisation parameters

double* cam_calibL;
double* cam_calibR;
double** FL;//fiindamental matrix left
double** FR;//fundamental matrix tight
double** ML;// fundamental matrix left
double** MR;// fundamental matrix right

int level;
double left_x_error; 
double left_y_error; 
double right_x_error; 
double right_y_error;
int flag3;// this flag indicates when calibration is finished

int calibrate_flag;
/  /  Overrides 

/ /  ClassWizard generated virtual function overrides 
/ /  { {AFX_VIRTUAL(CcalibrbView) 
public:
virtual void OnDraw(CDC* pDC); / /  overridden to draw this view 
virtual BOOL PreCreateWindow(CREATESTRUCT& cs); 
protected:
virtual void OnInitialUpdate(); / /  called first time after construct 
virtual BOOL OnPreparePrinting(CPrintInfo* plnfo); 
virtual void OnBeginPrinting(CDC* pDC, CPrintlnfo* plnfo); 
virtual void OnEndPrinting(CDC* pDC, CPrintlnfo* plnfo);
/ /  } } AFX_VIRTUAL

/  /  Implementation 
public:

void make2D(double a[|,double** b); 
void writecentres(CDC *pDC); 
int flag_centres; 
virtual ~ CcalibrbViewQ;

#ifdef _DEBUG 
virtual void AssertValidO const; 
virtual void Dump(CDumpContext& dc) const;

#endif

protected:

/ /  Generated message map functions
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protected:
/ /  { {AFX_MSG(CcalibrbView) 
afx_msg void OnCameraGrabQ; 
afx_msg void OnCameraCalibrate(); 
afx_msg void OnShowLeftimageO; 
afx_msg void OnShowRightiimgeO; 
afx_msg void OnShowTleftimageQ; 
afx_msg void OnShowTrightimageQ; 
afo_msg void OnShowLeftborderQ; 
afc_msg void OnShowRightborder(); 
afx_msg void OnCameraReleaseandclose(); 
afx_msg void OnShowShowcentresQ; 
afe_msg void OnCameraShowcalibstepsQ; 
afx_msg void OnLevell 0; 
afx_msg void OnLevel2(); 
afx_msg void OnLevel3(); 
a£x_msg void OnCalibrateNestO; 
afx_msg void OnCalibrateCalibrateQ; 
a£x_msg void OnRobotHomeO; 
afx_msg void OnRobotOpenQ; 
a£x_msg void OnRobotPutback(); 
afx_msg void OnDebugWritepoints(); 
afx_msg void OnCalibrateStart(); 
a£x_msg void OnRobotResetQ; 
afx_msg void OnRobotMoveasideO;
//}}AFX_MSG
DECLARE_MESSAGE_MAPO

private: 
camera MyCam; 
aux2 calibrate;
CBitmap* curb;

};

#ifhdef _DEBUG / /  debug version in calibrbView.cpp 
inline CcalibrbDoc* CcalibrbView::GetDocumentO 

{ return (CcalibrbDoc*)m_pDocument; }
#endif

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /

/ /  { {AFX_INSERT_LOCATION } }
/ /  Microsoft Visual C++ will insert additional declarations immediately before the previous line. 

#endif / /
!defin ed (A F X _ca lib rb V IE W _H _7E 3B 7836_7668_4A 7E _B 51E _C B 57750C B A 8C  IN C L U D E

D J

/  /  robthirdView.cpp : implementation of the CtobthirdView class 
/  / class for stereo matching using H N N
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#include "stdafx.h"

#include "robthird.h"
#include "MATX.h"
#include <process.h>
#include "math.h"
#include "robthirdDoc.h"
#include "robot.h"
#include "robthirdView.h"
#include "HStereo.h"
#include "HFunctiongraph.h"
#include "MainFrm.h"

#include "Hopdense.h"

#define X_OFFSET 0
#define Y_OFFSET 30
#define X_GAP 30
#ifdef _DEBU G
#define new DEBUG_NEW
#undef THIS_FILE
static charTHIS_FILEO = _ F IL E _ j
#endif
#define THRESHOLD 1 
#define SIZELIMIT 30 
#define PI 3.14159265
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /
/  /  CrobthirdView

IMPLEMENTJDYNCREATE(CrobthirdView,CFormView)

BEGIN_MESSAGE_MAP(CrobthirdView, CFormView)
/ /  {{AFX_MSG_MAP(CrobthirdView)
ON_COMMAND(ID_MODE_FILE, OnModeFile) 
ON_COMMAND(ID_MODE_CAMERA, OnModeCamera) 
ON_COMMAND(ID_RECONSTRUCTION_LOAD, OnReconstructionLoad) 
ON_COMMAND(lD_ZOOM_ZOOMOUT, OnZoomZoomout) 
ON_COMMAND(ID_ZOOM_ZOMIN, OnZoomZomin) 
ON_COMMAND(ID_ZOOM_RESET, OnZoomReset) 
ON_COMMAND(ID_FEATURES_SOBEL, OnFeaturesSobel) 
ON_COMMAND(ID_FEATURES_SUSANCORNERS, OnFeaturesSusancorners) 
ON_COMMAND(ID_FEATURES_SUSANEDGES, OnFeaturesSusanedges) 
ON_COMMAND(ID_FEATURES_MORAVEC, OnFeaturesMoravec) 
ON_COMMAND(ID_FEATURES_CANNY, OnFeaturesCanny) 
ON_COMMAND(ID_FEATURES_RESET, OnFeaturesReset) 
ON_COMMAND(ID_FEATURES_REMOVEBACKGROUND,

OnF eaturesRemovebackground) 
ON_COMMAND(ID_FEATURES_CHANGEDISPLAYSTYLE, 

OnFeaturesChangedisplaystyle)
ON_COMMAND(ID_MATCHING_MATCHLINES, OnMatchingMatchlines)

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ON_WM_LBUTTONDOWN0
ON_COMMAND(ID_MATCHING_MATCHALL, OnMatchingMatchall) 
ON_COMMAND(ID_FEATURES_REDUCEFEATURES, OnFeaturesReducefeatures)
ON_WM_VSCROLL0
ON_WM_HSCROLL0
ON_COMMAND(ID_MATCHING_MATCHALL2, OnMatchingMatchall2) 
ON_COMMAND(ID_CHECK_CHECK, OnCheckCheck)
ON_COMMAND(ID_SHOWPOINTS_SHOWNEXTPOINT, show_differentvalue) 
ON_COMMAND (ID_SHOWPOINTS_RESET, unshow_value) 
ON_COMMAND(ID_PRINTDATA_PRINTFEATURES, OnPnntdataPrmtfeatures) 
ON_COMMAND(ID_SHOWPOINTS_SHOWDISPAND3D, 

OnShowpointsShowdispand3d) 
ON_COMMAND(ID_SHOWPOINTS_NEWWINDOWFORSTATS, 

OnShowpointsNewwindowforstats) 
ON_COMMAND(ID_SHOWPOINTS_SHOWPROJECTION, 

OnShowpointsShowprojecrion)
ON_COMMAND(ID_ROBOT_MOVEASIDE, OnRobotMoveaside) 
ON_COMMAND(ID_ROBOT_GRABl, OnRobotGrabl) 
ON_COMMAND(ID_ROBOT_OPEN, OnRobotOpen)
ON_COMMAND(ID_ROBOT_NEST, OnRobotNest) 
ON_COMMAND(ID_ROBOT_HOME, OnRobotHome)
ON_COMMAND (ID_ROBOT_RESET, OnRobotReset)
ON_COMMAND (ID_ROBOT_C ALIBRATIONPOSITION1,

OnRobotCalibrationpositionl)
ON_COMMAND (ID_ROBOT_INTELLICAM, OnRobotlntellicam) 
ON_COMMAND(ID_ROBOT_PUTBACK,OnRobotPutback) 
ON_COMMAND(ID_ROBOT_GRABTARGETS, grabl)
ON_COMMAND(ID_MATCHING_MATCHHOPFIELX), OnMatchingMatchhopfield) 
ON_COMMAND(ID_MATCHING_HOPFIELDTESTl, OnMatchingHopfieldtestl) 
ON_COMMAND (ID_CHECK_SHOWDISPARITY GRADIENT, 

OnCheckShowdisparitygradient)
ON_COMMAND(ID_MATCHING_HOPFIELDMATCH, OnMatchingHopfieldmatch) 
ON_WM_MOUSEMOVE0
ON_COMMAND(ID_GRAPH_GRAPHl, OnGraphGraphl) 
ON_COMMAND(ID_CHECK_CHECKHRBITMAP, OnCheckCheckhrbitmap) 
ON_COMMAND(ID_MATCHING_DENSEMATCHl, OnMatchingDensematchl) 
ON_COMMAND(ID_CHECK_INCREASECONTRASTOFIMAGEl, 

OnChecklncreasecontrastofimagel) 
ON_COMMAND(ID_MATCHING_DENSEMATCHCORRELATION, 

OnMatchingDensematchcorr elation) 
ON_COMMAND(ID_CHECK_ENABLELINEMATCHING, OnCheckEnablelinematching) 
ON_COMMAND(ID_CHECK_FORCERELOADIMAGEl, OnCheckForcereloadimagel) 
ON_COMMAND(ID_CHECK_FORCERELOADIMAGE2> OnCheckForcereloadimage2) 
ON_COMMAND (ID_FEATURES_IN CREASESEN SOTVITY, 

OnFeaturesIncreasesensitivity) 
ON_COMMAND(ID_FEATURES_DECREASESENSnTVITY, 

OnFeaturesDecreasesensitivity)
ON_COMMAND(ID_FEATURES_RESETSENSI'nVITY> OnFeaturesResetsensitivity) 
ON_COMMAND(ID_MATCHING_FULLDENSEMATCHINGCORRELATION> 

OnMatchingFulldensematchingcorrelation) 
ON_COMMAND(ID_CHECK_SHOWGROUNDTRUTH, OnCheckShowgroundtruth)
/ /}  }AFX_MSG_MAP
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/  /  Standard printing commands
ON_COMMAND(ID_FILE_PRINT, CFormView::OnFilePrint) 
ON_COMMAND(rD_FILE_PRINT_DIRECT,CFormView;:OnFi]ePrint) 
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CFormView;:OnFilePrintPreview) 

END_MESSAGE_MAP()

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /
/ /  CrobthirdView construction/destruction

CrobthirdView::CrobthirdView0 
: CFormView(CrobthirdView::IDD)

{
/ /  { {AFX_D ATA_INIT (CrobthirdView)

/ /  NOTE: the ClassWizard will add member initialization here 
/ /}  }AFX_DATA_INIT 
/ /  TODO: add construction code here

}

CrobthirdView::~CrobthirdView0
{
}

void CrobthirdView: :DoDataExchange(CDataExchange* pDX)
{

CFormView::DoDataExchange(pDX);
/ /  { {AFX_DATA_MAP(CrobthirdView)

/ /  NOTE: the ClassWizard will add DDX and DDV calls here 
/ /}  }AFX_DATA_MAP

}

BOOL CrobthirdView::PreCreateWindow(CREATESTRUCT& cs)

/ /  TODO: Modify the Window class or styles here by modifying 
/ /  the CREATESTRUCT cs

return CFormView: :PreCreateWindow(cs);
}

void CrobthirdViewcOnlnitialUpdateQ 
{

//phi[l]=0; 
CFormView::OnInitialUpdate(); 
GetParentFrameO -> RecalcLayoutQ; 
ResizeParentToFitO; 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
modeflag=0; 
zoomflag=l; 
imagesloaded=0;
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background=l;
match_lines=0;
F_matrix_loaded=0;
match_array_loaded=0;
sensitivity=50;
disparity_gradient_demo=0;
ipshow_value=0;
showprojection=0;
enable_line_match=0;
for(int i=0;i<20;i++) {surfaces[i].size=0; surfaces[l].value=0;}

OnReconstructionLoadO ;
}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /
/ /  CrobthirdView printing

BOOL CrobthirdView::OnPreparePrinting(CPrintInfo* plnfo)

/ /  default preparation
return DoPreparePrinting(pInfo);

void CrobthirdView::OnBeginPrmting(CDC* /*pDC*/, CPrintlnfo* /*pInfo*/)

/ /  TODO: add extra initialization before printing

void CrobthirdView::OnEndPrinting(CDC* /*pDC*/, CPrintlnfo* /*pInfo*/)

/ /  TODO: add cleanup after printing

void CrobthirdView::OnPrint(CDC* pDC, CPrintlnfo* /*pInfo*/)

/ /  TODO: add customized printing code here

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
u
/  /  CrobthirdView diagnostics 

#ifdef _DEBUG
void CrobthirdView::AssertValidO const 
{

CFormView:: As sertValidQ;
}

void CrobthirdView::Dump(CDumpContext& dc) const 
{

CFormView::Dump(dc);
}
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CrobthirdDoc* CrobthirdView::GetDocumentQ / /  non-debug version is inline 
{
ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CrobthirdDoc))); 
return (CrobthirdDoc*)m_pDocument;

}
#endif//_DEBUG

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /
/ /  CrobthirdView message handlers

void CrobthirdView::OnModeFile0 
{
modeflag=0;
}

void CrobthirdView::OnModeCamera()
{
modeflag=l;

}

void CrobthirdView;:OnReconstructionLoadQ 
{

if(modeflag— 1)
{
cleandirectoryO;
GRAB 0;Sleep(8OOO);
}

if(imagesloaded==l) return;

//image[0].open("images\\truedisp.bmp"); 
image[l].open("..\\imagesWright.bmp"); 
image[2].open("..\\imagesWleft.bmp");

fixareaO; 
imagesloaded=1;

InvalidateQ;
}

void CrobthirdView::cleandirectoryQ 
{
DeleteFile(". .\\imagesWleft.bmp"); 
DeleteFile("..\\imagesWright.bmp");

}
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void CrobthirdView::GRAB()
{

HINSTANCE hlnst = ShellExecute(0,
"open", / /  Operation to perform
"camera.exe", / /  Application name 
"images", / /  Additional parameters 
0, / /  Default directory
SW_HIDE);

}
void CrobthirdViewr.changebackdirQ 
{
char szAppPath[MAX_PATH] =
CString strAppDirectory;

::GetModuleFileName(0, szAppPath, sizeof(szAppPath) -1);

/  /  Extract directory 
strAppDirectory = szAppPath;
strAppDirectory = strAppDirectory .Left(strAppDirectory.ReverseFind('\\')); 
SetCurrentDirectory(strAppDirectory.GetBuffer(strAppDirectory.GetLengthO));

}

void CrobthirdView::fixarea()
{

rcl.top=Y_OFFSET;
rcl.bottom=rcl.top+(int)((float)image[l].height/zoomflag); 
rcl .left=X_OFFSET;
rcl .right=rcl .left+ (int) ((float)image[l] .width/zoomflag);
/ /  first rectangle

rc2.top=Y_OFFSET;
rc2.bottom=rc2.top+(int)((float)image[2].height/zoomflag); 
rc2.1eft=rcl .right+X_GAP;
rc2.right=rc2.1eft+(int)((float)image[2].width/zoomflag);

//rc3  holds most of the screen, for the purpose of clearing leaked crosses 
rc3.top=rcl.top; 
rc3.1eft=rcl.left; 
rc3.right=rc2.right; 
rc3.bottom=rc2.bottom; 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

CMainFrame* pMainFrame = (CMainFrame*) ::AfxGetMainWndQ; 
pMainFrame->resize(&rc3);

}

void CrobthirdView::OnZoomZoomoutQ
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{
if(imagesloaded==0) return; 

zoomflag*=1.2;

fixarea();
Invalidate();

}

void CrobthirdView::OnZoomZominQ 
{
if(imagesloaded==0) return; 

zoomflag/=1.2;

fixareaQ;
InvalidateO;

}

void CrobthirdView::OnZoomReset()
{
if(imagesloaded==0) return; 

zoomflag=1.000;

fixarea();
InvalidateO;

}

void CrobthirdView::writetitle(CDC* pDC)
{
CFont newFont;
newFont.CreateFont(18,9,0,0,0,0)0,0>0,OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS,P
ROOF_QUALITY,FF_DONTCARE,"Anal");
pDC->SelectObject(&newFont);

int xl,yl,x2,y2; 

xl=(int)(180/zoomflag);
yl=5;

x2=(int)(900/zoomflag); 
y2=5;

pDC->TextOut(xl,yl,"Left Camera"); 
pDC->TextOut(x2,y2,"Right Camera");

}

void CrobthirdView::OnFeaturesSobelO 
{
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CF[l].edge_display_flag=2;
CF[2].edge_display_flag=2;
reset_displayO;

CF[l].sobeledge(&image[l]);
C F [2]. sobeledge (cSdmage [2]);

InvalidateO;
}

void CrobthirdView::OnFeaturesSusancomersO 
{

CF[l].edge_display_flag=3;
CF[2].edge_display_flag=3;
reset_displayO;

CF[1] .susan_comer(&image[l]);
CF[2] ,susan_comer(&image[2]);

InvalidateO;

}

void CrobthirdView::OnFeaturesSusanedgesQ 
{

CF[l].edge_display_flag-2;
CF[2] .edge_display_flag=2; 
reset_displayO;

CF[l].susan_edge(&image[l]);
CF[2].susan_edge(&image[2]);

InvalidateO;

}

void CrobthirdView::OnFeaturesMoravecO 
{

CF[l].edge_display_flag=3;
CF[2] .edge_display_flag=3;

reset_displayO;
CF[l].moravec(&image[l]);
CF[2] ,moravec(&image[2]);

InvalidateO;
}

void CrobthirdView::OnFeaturesCannyO 
{

CF[1] ,edge_display_flag-2; 
CF[2].edge_display_flag=2;

reset_displayO;
CF[1] .canny(&image[l]);
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CF[2] .canny(&image[2]);

InvalidateO;
}

void CrobthirdView::OnFeaturesResetO 
{
reset_displayO;
CF[1] .features.num=0;
CF[2]. features.num=0;

CF[l].edge_display_flag:=2;
CF[2].edge_display_flag=2;

InvalidateO;

}

void CrobthirdView::OnFeaturesRemovebackgroundO 
{
if(background==l) background=0; 
else background=l;
InvalidateO;

}

void CrobthirdView::OnFeaturesChangedisplaystyleO 
{
if(CF[l].edge_display_flag-=0) {

CF[1] .edge_display_flag= 1;
CF[2] .edge_display_£lag=1;

} else if(CF[l].edge_display_flag—=1) {
CF[l].edge_display_£lag=2;
CF[2].edge_display_£lag=2;

}
else if(CF[l].edge_display_flag==2) {

CF[1] ,edge_display_flag=3;
CF[2].edge_display_flag=3;

}
else{

CF [1] .edge_display_flag=0;
CF[2] .edge_display_flag=0;

}
InvalidateO;

}

void CrobthirdView::OnMatchingMatchlinesO 
{
match_lines=l;
}

void CrobthirdView::OnLButtonDown(UINT nFlags, CPoint point)
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{
/ /  TODO: Add your message handler code here and/or call default 
/ /createDGPoints(point);
/ /if(match_lines==l) matchlines(point);

if(ipshow_value!—0 && rcl.PtInRect(point)){ 
{

CPoint zpoint;

zpoint.y=point.y-rcl .top; 
zpoint.y*=zoomflag;

if(zpoint.y>CF[l].features.y[ipshow_value])
{
while(CF[l].features.y[ipshow_value]<zpoint.y)
ipshow_value++;
}

else
{
while(CF[l].features.y[ipshow_value]>zpoint.y)
ipshow_value--;

}

show_differentvalue();

}
InvalidateO;
}

if(rcl.PtInRect(point) | | rc2.PtInRect(point)) 
{
if(enable_line_match==1)

{

OnReconstructionLoadO ; 
reset_displayO;

CPoint zpoint; 
zpoint.y=point.y-rcl .top; 
zpoint.y*=zoomflag;

/ /  TODO: Add your command handler code here
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CHopdense dense(&image[l],&image[2],&CF[l],&CF[2]); 
dense.dense_match_l (2,zpoint.y);

CF[1] .edge_display_flag= 1;
CF[2] .edge_display_flag= 1; 
enable_line_match=0;
OnCheckForcereloadimagel 0;

InvalidateQ;
}

}

CFormView::OnLButtonDown(nFlags) point);
}

void CrobthirdView::load_F_matrix(void)
{
CFun.loadmatrixO;
F_matrix_loaded=l;
}

CPoint CrobthirdView;:fixpoint(CPoint p, CRect rc, float zoom) 
{
return 0;
}

void CrobthirdView::OnMatchingMatchall()
{
matchaflQ;
}

int CrobthirdView: :matchallO 
{

int windowsize=9;
/ /  flee if allocated 

int num_points; 
int order,other; 
if(match_array_loaded==l) 
delete [] matches;

if(CF[l] .features .num>CF[2] .features .num) 
order=2; 

else 
order=l;

/ / choose the image with the smaller number of feature points 
if(order==l) {num_points=CF[l],features.num; other=2;} 
else {num_points=CF[2].features.num; other=l;} 
matches=new CPoint[num_points];//allocate memory

inti;
CPoint pp;
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CFun.load_array_tracker(num_points); 
for(i= 1 ;i<=num_points;i++) { 

pp.x=CF[order], features.x[i]; 
pp.y=CF[order] .features.y[i];

matches [i].x=i;
matches [i].y=CFun.ZNCC(&image[order],&image[other],windowsize,pp,&CF[other] .order);

}

/ //write matches to text file 
FILE* tfile;
tfile=fopen(" matches.txt" ,"wt");
fprintf(tfile,"order number =%d and other number =%d\n",num_points,
CF[other] .features.num); 

for(i=lfi<=num_pointsd++) {
fprintf(tfile,"%d ------------- %d\n",matches[i].x,matches[i].y);
}

fclose(tfile);

int* xq=new int[num_points+2]; 
int* yq=new int[num_points+2]; 
int ccl= 0 ;//counter for the following loop
//remove any points in the original if no correspondence was found

for(i= 1 ;i<=num_points,i++) { 
if(matches[i].y!=-l) { 
xq[i] =CF[order] .features.x[i|; 
yq[i] =CF[order] .features.y[i]; 

ccl++;
}

}

for(i=1 —ccl ;i++) {
CF[order].features.x[i]=xq[i];
CF[order].features.y[i]=yq[i];

}

CF[order].features.num=ccl;// change size of the structure 

int cc2=0;

for(i=lfi<=num_pointsd++) { 
if(matches[i].y!=-l) { 
xq[i] =CF[other]. features ,x[matches [i] .y]; 
yq[i] =CF [other]. features .y [matches [t] ,y]; 

cc2++;
}

}
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for(i=1 ;i<=cc2;i+ +) {
CF[other].features.x[i]=xq[i];
CF[other].features.y[i] =yq[i];

}
CF[other].features.num=cc2;//change size of the structure 
delete [] xq; 
delete [] yq;

InvalidateO; 
return 0;
}
int CrobthirdView::matchall_10
{int j; 

int \vm dow size=9;

/  /  free if allocated 
int num_points; 
int order,other; 
if(match_array_loaded==1) 
delete [] matches;

if(CF[l] .features ,num>CF[2] .features.num) 
order=2; 

else 
order=l;

//chpoose the image with the smaller number of feature points 
if(order==l) {num_points=CF[l].features.num; other=2;} 
else {num_points=CF[2].features.num; other=l;} 
matches=new CPoint[num_points];//allocate memory 

/  /  form correlation value grid
float** match_grid=matrix(CF[order].features.num,CF[other].features.num);

inti;
CPoint pp;
CFun.load_array_tracker(num_points); 

for(i= 1 ;i<=num_pointsa++) { 
pp.x=CF[order].features.x[i]; 
pp.y=CF[order].features.y[i];
C F u n .Z N C C _ l (& im age[order],& im age[othcr],windows ize,pp,& CF[other],order,m atch_gnd[i]);

}
//writematrix(match_gnd,CF[order].features.num,CF[other].features.num,"gridbefore.txt"); 
clean_grid(match_grid,CF[order].features.num,CFfother].features.num);// remove ambiguity 
//writematrix(match_grid,CF[order].features.num,CF[other].features.num,"gridafter.txt");

/ /from the grid, for matches 
for(i= 1 d<=CF [order]. features ,num;i++) { 

matches [i] .x=i;matches [i].y=-l; 
for(j=1 ;j < =CF [other]. features .num;j++) { 

if(match_grid[i][j]!=0) matches[i].y=j;
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}}

/  / /write matches to text file 
FILE* tfile;
tfile=fopen("matches.txt","wt");
fprintf(tfile," order number =%d and other number =%d\n",num_points,
CF [other]. features .num); 

for(i=l;i<=num_points/++) { 
fprintf(tfile,"%d -----------  %d\n",matches[i].x^natches[i].y);
}

fdose(tfile);

int* xq=new int[num_points+2]; 
int* yq=new int[num_points+2]; 
int ccl=l;//counter for the following loop
//remove any points in the original if no correspondence was found

for(i=ld<-num_pointsd++) { 
if(matches[i].y!=-l){//check for invalid Zs 

/* CPoint pi,p2; 
pl.x= cfl->features.x[i] ; 
pl.y= cfl->features.y[i]; 
p2.x=cf2->features.x[i] ; 
p2.y=cf2->features.y[i] ;
this->reconstruct(pl,p2)l,&cfl->worldpts.x[i],&cfl->worldpts.y[i],&cfl->w°rldpts.z[i]);*/ 

xq[ccl] =CF[order] .features .x[i]; 
yq[ccl]=CF[order].features.y[i]; 

ccl++;
}

}

for(i=lfi<ccl;i++){
CF[order].features.x[i]=xq[i];
CF[order].features.y[i]=yq[i];

}

CF[order].features.num=ccl-l;//change size of the structure

int cc2=l;

for(i=lfi<=num_pointsfi++) { 
if(matches[i].y!=-l) {
xq[cc2] =CF [other]. features .x [matches [i].y]; 
yq[cc2]=CF [other]. features.y [matches [i] .y]; 

cc2++;
}

}
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for(i=1 ;i<cc2;i+ +) {
CF[other]. features.x[i] =xq[i];
CF[other] .features.y[i] =yq[i];

}
CFfother],features.num=cc2-l;//change size of the structure 
delete [| xq; 
delete Q yq;
/ / /find 3D points and disparities, this line is important

CFun. find3D_and_disp (&CF [1] ,&CF [2]);
CF[1] .calc_statisticsO; 
findorientationO;//find centroid 
InvalidateO; 
return 0;
}
void CrobthirdViewxOnFeaturesReducefeaturesO 
{
CF[l].reduce();
CF[2].reduce();
InvalidateO;
}

void CrobthirdView::OnVScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar) 
{

/ /  TODO: Add your message handler code here and/or call default 

CFormView::OnVScroll(nSBCode, nPos, pScrollBar);
}

void CrobthirdView::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar) 
{

/ /  TODO: Add your message handler code here and/or call default 

CFormView::OnHScroll(nSBCode, nPos, pScrollBar);
}

void CrobthirdView::clean_grid(float **pgrid,int m,mt n)
{
int i,j; 
float max; 
int index;

/  /  find max along the row

for(i=ld<=md++){
max—10000;
/  /  find biggest value 

for(j=l;j<=n;j++){ 
if^>gnd[i] 0] >max && pgrid[i] 0]!=0) {
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max=pgrid[i][j];

index=j;
}}
/ / set everything else to zero 

for(j=1 ;j <=n;j++) { 
if(j!=index) {
Pgrid[i][j]=0;

}}

}

for(j=l;j<=n;j++){
max=-10000;
/ /  find biggest value

for(i=ld<=mfi++){
if(pgrid[i] 0] >max && pgtid[i] [j]!=0) { 
max=pghd[i][j];
Pgrid[i]p]=1;
index=i;
}}
//se t everything else to zero 

for(i=l;i<=md++) { 
if(i!=index) {
Pgrid[i]D]=0;

}}

}

}

void CrobthirdView.:OnMatchingMatchall2() 
{
matchall_lQ;
}

void CrobthirdView::OnDraw(CDC* pDC)
{
if(F_matrix_loaded==0) load_F_matrixO;

if(imagesloaded— 1 && background— 1)
{
pDC->SetStretchBltMode( HALFTONE);
CDC memdcl;
memdcl .CreateCompatibleDC(pDC); 
image[l].draw(&memdcl);
pDC-

>StretchBlt(rcl .left,rcl .top,rcl .WidthO,rcl .HeightO,&memdcl ,0,0/mage[1].width^mage[l] .height,
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SRCCOPY);
CDC memdc2;
memdc2.CreateCompatibleDC(pDC); 
image [2]. draw(&memdc2);

pDC-
>StretchBlt(rc2.1eft,rc2.top,rc2.Width(),rc2.Height(),&memdc2,0,0,image[2],width ,tmage[2].height,
SRCCOPY);

drawDGdemopts(pDC);
/ /  this->writetitle(pDC);

}
//epipolar thing,
if(ipshow_value>0) { / /draw epipolar lines 

if(ipshow_value>CF[l].features.num) ipshow_value=l;
CPoint tpoint;tpoint.x=CF[l].features.x[ipshow_value];tpoint.y=CF[l].features.y[ipshow_value]; 
//CFun.epipolar_line(tpoint,&image[l],pDC,zoomflag,rc2,&CF[2]);
}

if(showprojection==0)
{
CF[1] ,draw(pDC,&rcl,zoomflag);
CF[2] .draw(pDC,&rc2,zoomflag);
}

if(showprojection==l) drawprojection(pDC);

}

void CrobthirdView::OnCheckCheckO 
{
int i,j; 

long float al,a2; 
al=a2=0;
OnReconstructionLoadO ; / / get images

for (i = 0; i < imagefl] .height; i++) { 
for (j = 0; j < image [1] .width; j++) {

a l+ =image[l] .getpixel(j ,i); 
a2+=image [2] .getpixel(j ,i);

}
}

long float a3,a4; 
a3=al-a2;
a4=image[l].height*image[l].width;
a3=a3 /  a4;

CString b;
b.Format("A= %f B=%f and d=%f',al,a2,a3);
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MessageBox(b);

}

BOOL CrobthirdView::PreTranslateMessage(MSG* pMsg) 
{

if (pMsg->message — WM_KEYUP) { 
if(pMsg->wParam==189) OnZoomZoomoutO ; 
if(pMsg->\vParam==187) OnZoomZominO ; 
if(pMsg->wParam==48) OnZoomResetO ; 
if(pMsg->wParam==87) OnZoomResetO ; 
if(pMsg->wParam==76) OnReconstructionLoadO ; 
if(pMsg->wParam==67) OnFeaturesChangedisplaystyleO; 
if(pMsg->wParam==86) show_differentvalueO ; 
if(pMsg->wParam==66) unshow_valueO ; 
if(pMsg~>wParam==88) performfulllO;

}

return CFormView::PreTranslateMessage(pMsg);
}

void CrobthirdView::show_differentvalueO 
{

ipshow_value++;
CF[1] .edge_display_flag= 1;
CF[2] .edge_display_flag= 1;

CF[l].showval=ipshow_value;
CF[2].showval=ipshow_value;
CF[1] .show3d= 1;
CF[2].show3d=l;
showprojection=0;

CPoint zpoint;
zpoint.x=CF [1]. features .x [ipshow_value]; 
zpoint.y=CF[l]. features.y[ipshow_value];
int disp=CF [2]. features .x [ipshow_value] -CF[1]. features .x [ipshow_value];

CMainFrame *pMainWnd = (CMainFrame *)AfxGetMainWndO; 
CString s;
s.Format("X=%d Y=%d Dispanty=%d",zpoint.x,zpoint.y,disp); 
pMainWnd->m_wndStatusBar.SetPaneText(0,s);

InvalidateO;
}
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void CrobthirdView::unshow_value()
{
ipshow_value—0;
CF[1] .showval=ipshow_value;
CF[2] ,showval=ipshow_value;
CF[l].show3d=0;
CF[2].show3d=0;
Invalidate!);

>void CrobthirdView::OnPrintdataPrintfeatures()
{
CF[l].printfeatures(" featuresl.txt");
CF [2] .printfeatures (" features2.txt");

}

void CrobthirdView::OnShowpointsShowdispand3d() 
{

if(CF[l].show3d==0) {
CF[l].show3d=l;
CF[2] .show3d= 1;

} else {

CF[l].show3d=0;
CF[2].show3d=0;

}

InvalidateO;
}

void CrobthirdView: :reset_displayO 
{
CF[l].show3d-0;
CF[2].show3d=0;
ipshow_value=0;
CF[1] .showval=ipshow_value; 
CF[2] .showval=ipshow_value;

}

void CrobthirdView::OnShowpointsNewwindowforstatsO 
{
if(CF[l].window_or_this— 0) {
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CF[1] .\vindow_or_this=1;
CF[l].dispinfo.Create(IDD_DIALOGl, AfeGetMainWndO); 

CF[l].dispinfo.ShowWindow(SW_SHOW); 
A£xGetMainWnd()->SetFocusO;} 
else {
CF[l].window_or_this=0;
CF[l].dispinfo.DestroyWindow();}

InvalidateO;
}

void CrobthirdView::findorientationO 
{
int i,j;

int flag=0;
int usedclusters=l;

f o r ( i= 0 ; i< 4 0 ; i+ + )  { 

s u rfa c e s  [i] .s iz e = 0 ; 
su rfaces[i] .v a lu e = 0 ;

}

/ /  find how many objects with rhe same height 
//also find their mean centroi on the surface 
for(i= 1 =CF [1]. features .num;i++)

{

if(CF[l].worldpts.z[i]>l && CF[l].worldpts.z[i]<15)
{
flag=0;
for(j=1 ;j <usedclus ters;j++)

{
if(fabs (CF [1] .worldpts.z [i] -surfaces [j] .value) <THRESHOLD)

{
addCluster(CF[l].worldpts.z[i],j); 
flag=l; break;
}

}
if(flag==0)

{
addCluster(CF[l].worldpts.z[i],j);
useddusters++;
if(usedclusters>38) {MessageBox("Levels exceeded"); return;} 
}

}

}
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/ / m e r g e  g r o u p s  th a t  a re  a like  
fo r ( j—l ; j< u s e d c lu s te r s ; j+ + )  { 

f o r ( i = l d < u s e d c lu s t e r s / + + )  {

if( i!= j){
if ( fa b s ( s u r f a c e s [ j] .v a lu e -s u r f a c e s [ i] .v a lu e )< T H R E S H O L D )

{

su rfa c e s [j] .v a lu e = (su rfa c e s [ j] .v a lu e * su rfa ce s [j] .s iz e + su rfa c e s[ i] .v a lu e * su rfa ce s [ i] .  s iz e ) / ( s u r f a c e s  [j].s 

iz e + su r fa c e s [i] .s iz e );
su rfa c e s  [j] .s iz e + = s u r fa c e s  [i] .size; 

s u r  fa ces  [i] .s iz e = 0 ;

}}}}

/  /  f in d  c e n t ro id

f o r ( i= 0 y < 2 0 ; i+ + )  { c e n tre s [ i] .x = c e n tre s [ i ] .y = c e n tre s [ i] .z = 0 ;}

/ / f i n d  Z  c o o rd in a te s  o f  th e  c e n t ro id s  

i n t  c o u n t e r = l ;  
fo r ( i=  1 ; i< u s e d c lu s te r s y + + )  { 

if(su rfaces[i] .s iz e > S IZ E L IM T C )

c e n t r e s [c o u n te r ] .z = s u r fa c e s [ i ] .v a lu e + 0 .2 ; / /a l l  d e p th s  s e e m  to  b e  0 .2  s h o r t ,  s o  h e re  im  a d d in g

0.2
c o u n te r + + ;

}}

n u m O b j e c t s = c o u n t e r - l ; / / w e  fo u n d  n u m b e r  o f  o b je c ts  

/ / f i n d  X  a n d  Y  c o o rd in a te s  o f  th e  c e n t ro id s  
f lo a t  te m p _ c o u n te r [2 0 ] ;  

fo r ( i= 0 d < 2 0 f i+  + )  te m p _ c o u n te r [ i ]= 0 ;

f o r ( i= ld < = C F [ l ] . f e a tu r e s  .n u m d + + )  { 
fo r ( j= 1  ; j< = n u m O b je c t s ; j+ + )  {
if ( fa b s ( C F [ l] .w o r ld p ts .z [ i ] - c e n tr e s [ j ] .z )< T H R E S H O L D ) {

/ / t h i s  k e e p s  th e  n u m b e r  o f  p o in ts  a lre a d y  a d d e d ,  u s e d  to  f in d  th e  a v e rag e  
t e m p _ c o u n te r [ j ]+ + ;

if ( c e n tr e s  [j] . x = = 0 ) 
c e n t re s  [j] .x = C F [1 ]  .w o r ld p ts .x  [i]; 

e lse
cen tre s[j]  .x = (c e n tre s  [j] .x * te m p _ c o u n te r[ j]  + C F [1 ]  .w o rld p ts .x [i])  /  ( te m p _ c o u n te r |j ] + 1 ) ;

if(cen tres [j]  .y= = 0 )  
cen tre s[j]  .y = C F [ l ]  ,w o rld p ts .y [i] ; 

e lse
c e n t re s  [j] ,y =  (c e n tre s  [j] .y * te m p _ c o u n te r[ j]  + C F [1 ]  .w o r ld p ts .y  [i]) / ( te m p _ c o u n te r [ j ]+ 1 ) ;
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>»/ / now find the reprojection of the centroids on the first camera 
for(i=0d<20fi+ +) {proj_centres [i] .X=proj_centres[i|.Y=0;}

/ / multiuply centroid with projection matrix, reprojecting on image 
for(i= 1 ;i<=numObjectsd+ +)

{

proj_centres [i] .X=CFun.M[l] [1] [1] *centres [i] .x+CFun.M[l] [1] [2] ̂ centres [i] .y+CFun.M[l] [1] [3] *c 
entres[i].z+CFun.M[l] [1] [4];

proj_centres[i] .Y=CFun.M[l] [2] [l]*centres[i] .x+CFun.M[l] [2] [2]*centres[i] .y+CFun.M[l] [2] [3]*c 
entres [i] .z+CFun.M [1] [2] [4]; 

float
scale=CFun.M[l] [3] [l]*centres[i].x+CFun.M[l] [3] [2]*centres[i] .y+CFun.M[l] [3] [3]*centres[i] .z+C 
Fun.M[l][3][4];

//divide by scale 
proj_centres[i] X/=scale; 
proj_centres [i]. Y /=scale;

>//find phi or axis of elongation
findPhi20;

/  /  now find the line on the image by choosing two points around the centroid and 
//projecting them on the axis of elongation and then project on the image

/ /initlize list of points 
for(i=0d<20fi+ +) { 

for(j=0;j<3;j++){
phi_points_dc[i] [j] ,X=phi_points_dc[i] [j] .Y=phi_points [i] [j] .X=phi_points[i] [j] Y=0;} }

/  /  finding where this line hits a circle to draw ther orientation line 
float radius=3; 
float m[20];
for(i=0d<20d++) m[i]=0;

for(j=1 ;j<=numObjects;j++) 
m[j]=tan(phi[j]);

for(j=1 ;j<=numObjects;j++)
{

phi_points[j] [l].X=sqrt((radius*radius)/((m[j]*m[j])+l)); 

if(phi[j]>(0.5*PI)) phi_points[j][1].X*=-1; 

phi_points[j] [2] .X=-phi_points[j] [1] .X;

phi_points[j][l].Y=sqrt((radius*radius)-(phi_points[j][l].X*phi_points[j][l] .X)); 
phi_points [j] [2]. Y=-phi_points [j] [1].Y;
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}

float yl=(phi_points[l][l].X+phi_points[l][l].X)+(phi_points[l][l] Y +phi_points[l] [1].Y); 
float y2=(phi_points [1] [2] ,X*phi_points [1] [2] .X)+(phi_points [1] [2]. Y*phi_points [1] [2]. Y);

//now  find their projection in the first image

float tempx2,tempy2;

for(i=1 /< =numObjects;i++) { 
for(j=l;j<=2;j++)
{
phi_points [ij [j] .X+=centres [i] .x; 
phi_points [l] [j] Y  + =centres [l] .y;

tempx2= phi_points [i] [j] .X; 
tempy2 = phi_points [i] [j] Y ;

phi_points[i] [j].X=CFun.M[l] [1] [l]*tempx2+CFun.M[l] [1] [2]*tempy2+CFun.M[l][l] [3]*centres 
[i].z+CFun.M[l][l][4];

phi_points[i] 0] Y=CFun.M[l] [2] [l]*tempx2+CFun.M[l] [2] [2]*tempy2+CFun.M[l] [2] [3]*centres 
[i].z+CFun.M[l][2][4]; 

float
scale=CFun.M[l] [3] [l]*tempx2+CFun.M[l] [3][2]*tempy2+CFun.M[l] [3] [3]*centres[i].z+CFun.M
[1][3][4];

/ /divide by scale

phi_points [i] [j] .X/=scale; 
phi_points [i] 0] Y /=scale;
/  /  now create phi_points 2 for the device context 
phi_points_dc[i] [j] .X=phi_points[i] [j] .X; 
phi_points_dc [i] [j] Y=phi_poin ts [i] [j] Y;

phi_points_dc [i] |j] .X/=zoomflag; 
phi_points_dc[i] [j] Y/=zoomflag;

phi_points_dc[i] [j] ,X+=rcl .left; 
phi_points_dc[i] [j] .Y + =rcl .top;

}}

wpoints2 centres_temp[20]; 
for(i=l/<=numObjects/++) 
centres_temp [i]=centres [i];

//have to sort the centres now 
for(i= 1 ;i<=numObjects;i++)

{
float maxz=-1000;
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int index_temp=0;
for(j=1 ;j <=numObjects;j++)

{
if(centtes_temp [j] .z>maxz)

{
maxz=centres_temp[j].z;
index_temp=j;
}

}
centres_sorted[i] =centres_temp [index_temp]; 
centres_temp [index_temp] .z=-100000;

}

}

void CrobthirdView::addCluster(float value, int K)
{
if(surfaces[K].size!—0) {
float temp=surfaces [K] ,value*surfaces[K].size; 
float temp2=(temp+value)/(surfaces |K].size+l); 
surfaces[K] .value=temp2;

} else{ 
surfaces [Kj .value=value;

}

surfaces [K] .size++;
}

void CrobthirdViewzOnShowpointsShowprojectionO

if(showprojection==0) showprojection-1; 
else showprojection=0;

InvalidateQ;
}

void CrobthirdView::drawprojection(CDC *pDC)
{
int i—1;
CFont newFont;
CPoint cdots;
pDC->SetTextColor(RGB(200,0,0));
pDC->SetBkMode(TRANSPARENT);
n ew F on t.C reateF on t(12 /zoom flag ,8 /zoom flag ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,O U T _D E F A U L T _P R E C IS ,C L IP _D
EFAULT_PRECIS,PROOF_QUALITY,FF_DONTCARE,"Arial");
pDC->SelectObject(&newFont);

while(centres[i] ,z!=0)
{
cdots.x=proj_centres [i] .X;
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cdots.y=proj_centres[i].Y; 
cdots.x/=zoomflag; 
cdots.y/=zoom£lag; 
cdots.x+=rcl .left; 
cdots.y+=rcl.top;

pDC->SetPixel(cdots,RGB(0,255,0)); 
pDC->SetPixel(cdots.x,cdots.y+l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x,cdots.y-l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x-l,cdots.y-l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x+l,cdots.y+l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x+l,cdots,y-l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x-l,cdots.y+l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x-l, cdots.y ,RGB(0,255,0)); 
pDC->SetPixel(cdots.x+l,cdots.y ,RGB(0,255,0));

/ /write text now 
CPen penl;

penl.CreatePen(PS_SOLID, 1, RGB(0,0,255));
CPen* pOldPen = pDC->SelectObject(&penl);
CString b;
b.Format("X=%0.2f Y=%0.2f Z=%0.2f 

phi=%0.2f',centres [i] .x,centres [i] .y,centres [i] .z,phi[i]* 180/PI); 
pDC->TextOut(cdots.x-140,cdots.y-20,b);
/  /  now draw the line
pDC->MoveTo(phi_points_dc[i] [1] .X,phi_points_dc [i] [1] .Y); 
pDC->LineTo(phi_points_dc[i][2].X,phi_points_dc[i][2].Y);

cdots.x=phi_points [i] [1] .X; 
cdots.y=phi_points[i] [1] .Y; 
cdots.x/=zoom£lag; 
cdots.y/=zoomflag; 
cdots.x+=rcl .left; 
cdots.y+=rcl .top;

pDC->SetPixel(cdots,RGB(0,255,0)); 
pDC->SetPixel(cdots.x,cdots.y+l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x,cdots.y-l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x-l,cdots.y-1 ,RGB(0,255,0)); 
pDC->SetPixel(cdots.x+l,cdots.y+l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x+l,cdots.y-l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x-l,cdots.y+l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x-l,cdots.y ,RGB(0,255,0)); 
pDC->SetPixel(cdots.x+l,cdots.y ,RGB(0,255,0));

cdots .x=phi_points [i] [2] .X; 
cdots.y=phi_points[i] [2].Y; 
cdots.x/=zoomflag; 
cdots.y/=zoomflag; 
cdots.x+=rcl.left;
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cdots.y+=rcl. top;

pDC->SetPixel(cdots,RGB(0,255,0)); 
pDC->SetPixel(cdots.x,cdots.y+l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x,cdots.y-l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x-l,cdots.y-l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x+l,cdots.y+l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x+l,cdots.y-l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x-l,cdots.y+l,RGB(0,255,0)); 
pDC->SetPixel(cdots.x-l,cdots.y,RGB(0,255,0)); 
pDC->SetPixel(cdots.x+l,cdots.y ,RGB(0,255,0));

/ /increment counter

i++;
}

}

void CrobthirdView::findPhil()
{

int i,j;
float temp_counter[20]; 
for(i=0;i<20;i++) {phi[i]=0;} 
float tempx[20]; 
float tempy[20];

/  /  reuse temp counter
for(i=0a<20;i++) {temp_counter[i]=0; tempx[i]=-l;tempy[i]=-l;}

for(i= 1 /< =CF[1], features.num;i+ +) { 
for(j=l;j<=numObjects;j++) { 

if(fabs(CF[l] .worldpts.zfi] -centres [j] .z) <THRE8HOLD) {
/ / this keeps the number of points already added, used to find the average 
temp_counter[j]++;
float x_av=(CF[l].worldpts.x[i]-centres [j]x)*(CF[l].worldpts.x[i]-centres [j].x); 
float y_av=(CF[l] ,worldpts.y[i]-centres [j].y)*(CF[l].worldpts.y[i]-centres[j].y);

if(tempx[j]==-l) 
tempx[j] =x_av; 

else
tempx[j]=(tempx[j]*temp_counter[j]+x_av)/(temp_counter[j]+l);

if(tempy[j]==-l)
tempy[j]=y_av;

else
tempy[j]=(tempy[j]*temp_counter[j]+y_av)/(temp_counter[]]+l);

}}}

//standard deviation, take sqrt
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for(j=1 ;j <=numObjects;j++) 
{
tempx[j] =sqrt(tempx[j]); 
tempyO]=sqrt(tempyO]);
}

/  /  now fine phi

for(j= l;j<=numObjects;j++)
{
phi[j] =atan(tempy [j] /  tempx[j]); 
}

}
void CrobthirdView::findPhi2()
{

int i,j;
float temp_counter[20]; 
for(i=0d<20d++) {phi[i]=0;} 
float tempx[20]; 
float tempy[20];

/  / reuse temp counter
for(i=0d<20fi++) {temp_counter[i]=0; tempx[i]=-l;tempy[i]=-l;}

float alpha 11 ,alpha02,alpha20;

for(j=1 ;j <=numObj ects;j++)
{
alphal 1 =moment(l,l,j); 
alpha20=moment(2,0,j); 
alpha02=moment(0,2,j);
phi[j] =0.5*(atan2((2*alphal I),(alpha20-alpha02)));
//if(phi[j]<0) phi[j]+=PI; 
float angle=phi[j]* 180/PI;

//if(phiO]<0) phi[j]+=PI; 
if(phiO]>PI) phiQ]-=PI; 
if(phiO]>(PI/2)) phiB]-=PI;
}

}

void CrobthirdView.:performfulllQ 
{
OnReconstructionLoadQ ;
OnFeaturesMoravecO ;
}

float CrobthirdView::moment(int m, int n/nt object_number)
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{

float tempxy=0; 
float tempx,tempy; 
int cc=0;

for(int i= 1 ;i< =CF[1]. features.num;i+ +)
{
for(int j=1 ;j <=CF[1] .features.num;j++)

{
if(fabs(CF[l].worldpts.z[i]-centres[object_number].z)<THRESHOLD)

{
cc++;
tempx=pow((CF[l].worldpts.x[i]-centres[object_number].x),(float)m); 
tempy=pow((CF[l].worldpts.y[i]-centres[object_number].y),(float)n); 
tempxy+=(tempx*tempy);
}

}
}

tempxy=tempxy/ ((float) cc); 

return tempxy;

}

void CrobthirdView::grabl()
{
robot myrob; 
myrob.initilizeO; 
float yy=60;
for(int i— 1 ;i<=numObjects/++) {

myrob.moveto2(centres_sorted[i] .x,centres_sorted[i] .y,centres_sorted[i] ,z+1,0,(phi[i] * 180/PI)); 
myrob.OPENQ;
myrob.moveto2(centres_sorted[iJ.xJcentres_sorted[i].y,centres_sorted[i].z-210,(phi[i]* 180/PI)); 
myrob.CLOSEQ; 
myrob.SEND("GF 1");
myrob.moveto2(centres_sorted[i].x,centres_sorted[i].y,centres_sorted[i].z+3,0,(phi[i]*180/PI));
myrob.moveto2(40,yy,centres_sorted[i].z-2,0,0);
myrob.SEND("GF 0");
myrob. OPENQ;
myrob.moveto2(40,yy,10,0,0);
yy+=5;

}
myrob.home2();
myrob.closecommO;
}

void CrobthirdView/.OnRobotMoveasideO 
{

robot myrob;
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myrob.imtilizeQ;
myrob.home20;
myrob.closecommQ;

}

void CrobthirdView::OnRobotGrablQ 
{
robot myrob; 

m yrnh .in itili7 .eQ ;

myrob.moveto(centres [1] .x,centres [1] .y,2,l 80,54.8000+180); 
/  /  myrob.OPENO;
/  /  myrob.CLOSEO;
//myrob.SEND("GF 1"); 
myrob.closecommQ;

}

void CrobthirdViewxOnRobotOpenQ 
{
robot myrob; 

myrob.initilizeO; 
myrob.OPEN Q; 
myrob.SEND("GF 0"); 
myrob.closecommQ;
}

void CrobthirdViewxOnRobotNestQ 
{
robot myrob; 
m yrnh .in itili7 .eQ ; 

myrob.NESTQ; 
myrob.closecommQ;
}

void CrobthirdView::OnRobotHomeQ 
{
robot myrob; 
myrob.initilizeQ; 

myrob.OPENQ; 
myrob.HOMEQ; 

myrob.closecommQ;
}

void CrobthirdView::OnRobotResetQ 
{
robot myrob; 
myrob.initilizeQ; 
myrob.resetQ; 
myrob.closecommQ;

}
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void CrobthirdView::OnRobotCalibrationpositionl 0 
{

robot myrob; 
myrob.initilizeO; 
myrob.grabtargetQ; 
myrob.calibrb(4); 
myrob.calibrb(l); 
myrob.closecommQ;

}

void CrobthirdView::OnRobotIntellicamO 
{

HINSTANCE hlnst = ShellExecute(0,
"open", / /  Operation to perform
"C:\\Program Files\\Matrox Imaging\\intellicam\\intelcam.exe",

Application name
0, / /  Additional parameters
0, / /  Default directory
SW_SHOW);

}

void CrobthirdView::OnRobotPutbackO 
{
robot myrob; 
myrob.initilizeO; 
myrob.putcalibbackQ; 

myrob.closecommQ;

>CPoint CrobthirdView::convertPoint(CPoint pt)
{
CPoint ppt;
ppt.x=0;
ppt.y=0;
if(rcl.PtInRect(pt)==0 && rc2.PtInRect(pt)==0) return ppt;

if(rcl .PtInRect(pt))
{

ppt.x=pt.x-rcl .left; 
ppt.y=pt.y-rcl .top;

ppt.x= ppt.x*zoomflag; 
ppt.y= ppt.y*zoomflag; 
return ppt;
}
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if(rc2.PtInRect(pt))
{

ppt.x=pt.x-rc2.1eft;
ppt.y=pt.y-rc2.top;

ppt.x= ppt.x*zoomflag; 
ppt.y= ppt.y*zoomflag;

return ppt;
}

return NULL;
}

void CrobthirdView::OnCheckShowdisparitygradient()

*if( disparity_gradient_demo==l) disparity_gradient_demo-0; 
else disparity_gradient_demo=l;

disparity_gradient_demo_counter=0;
Invalidate});
}

void CrobthirdView::createDGPoints(CPoint apt)
{
if(rcl.PtInRect(apt)==0 && rc2.PtInRect(apt)— 0) return; 
if(disparity_gradient_demo==0) return;

if(disparity_gradient_demo_counter<4)
{
disparity_gradient_demo_counter++; 
if(rcl .PtInRect(apt))

{
if(disparity_gradient_demo_counter— 1) pt_leftl -apt; 
else if(disparity_gradient_demo_counter==2) pt_left2=apt;
else {MessageBox("Left Image is Already Full"); disparity_gradient_demo_counter-; return;}
}

if(rc2.PtInRect(apt))
{
if(disparity_gradient_demo_counter==3) pt_rightl -apt; 
else if(disparity_gradient_demo_counter==4) pt_right2=apt;
else {MessageBox("Right Image is Already Full"); disparity_gradient_demo_counter-; return;} 
}

else if(disparity_gradient_demo_counter— 4)
{
m_pointchosen=findClosestNeighbour(apt);
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disparity_gradient_demo_counter++;
}

else if(disparity_gradient_demo_counter=-5)
{

switch(m_pointchosen)
{
case 1: 

pt_leftl=apt; 
break; 

case 2: 
pt_left2=apt; 
break; 

case 3: 
pt_rightl=apt; 
break; 

case 4: 
pt_right2=apt; 
break;

}

dispanty_gradient_demo_counter=4;// revert back to normal mode 

}
else MessageBox("invalid value for DG demo flags");

Invalidate();

}

int CrobthirdView::findClosestNeighbour(CPoint apt)
{
int dl=findDistance(apt,pt_leftl);
int d2=findDistance(apt,pt_left2);
int d3=findDistance(apt,pt_rightl);
int d4=findDistance(apt,pt_right2);

int mini=min(min(dl,d2),min(d3,d4));

int pt_num; 
if(mini==dl) 

pt_num=l;

if(mini==d2)
pt_num=2;

if(mini==d3)
pt_num=3;

if(mini==d4)
pt_num=4;
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return pt_num;
}

void CrobthirdView::drawDGdemopts(CDC *pDC)

if(dispanty_gradient_demo==0 | | disparity_gradient_demo_counter— 0) return;

if(disparity_gradient_demo_counter>0) 
markPoint(pt_leftl ,pDC,l ,4,4);

if(disparity_gradient_demo_counter> 1) 
markPoint(pt_left2,pDC,l,4,4);

if(disparity_gradient_demo_counter>2) 
markPoint(pt_rightl ,pDC,l ,4,4);

if(disparity_gradient_demo_counter>3) 
markPoint(pt_right2,pDC,l ,4,4);

if(disparity_gradient_demo_counter==5) 
{

if( m_pointchosen==l) 
markPoint(pt_leftl ,pDC,l ,4,3);

if( m_pointchosen==2) 
markPoint(pt_left2,pDC,l,4,3); 
if( m_pointchosen==3) 
markPoint(pt_rightl ,pDC,l ,4,3);

if( m_pointchosen==4) 
markPoint(pt_right2,pDC,l,4,3);

>.if(disparity_gradient_demo_counter— 3)
{

for(int i=rc2.topd<—rc2.bottomd++) 
for(int j=rc2.1eft;j < =rc2.right;j++)

{
pt_right2.x=j;
pt_right2.y=i;
CPoint temppt=convertPoint(pt_right2); 
float

DG=disparityGradient(convertPoint(pt_leftl),convertPoint(pt_left2),convertPoint(pt_rightl),con
vertPoint(pt_right2));

if(DG<0.01)
{
if(DG<0) MessageBox("whaa");
float CL=2550-DG*((float)2550);
pDC->SetPixel(pt_right2,RGB((int)CL,0,0));
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}
}

}

if(disparity_gradient_demo_counter— 4)
{
CRect rctemp (0,0,70,20); 
float

DG=disparityGradient(convertPoint(pt_leftl),convertPoint(pt_left2),convertPoint(pt_rightl),con
vertPoint(pt_right2));

CString b;
b.Format("%0.4f',DG);
pDC->DrawText(b.GetBuffer(b.GetLengthQ),-l,&rctemp,DT_CENTER);
}

>void CrobthirdView::OnMatchingHopfieldtestl Q 
{
CHStereo mystereo(&CF[l],&CF[2],&image[l],&image[2]); 
mystereo.findEnergyFromFiIe(" rnatches2.dat");
InvalidateQ;

}
void CrobthirdView::OnMatchingMatchhopfield()
{
OnReconstructionLoadO ; 
reset_display();
CF[l].moravec(&image[l]);

CHStereo mystereo(&CF[l],&CF[2],&image[l],&image[2],&CFun); 
mystereo.correspondO;

/  /  CFun. find3D_and_disp (&CF [1] ,&CF [2]); 
//CF[l].calc_statistics();
/ /  findorientationO;// find centroid 
InvalidateQ;
CFun. find3D_and_disp (&CF [1] ,&CF [2]);
CF[l].calc_statisticsQ;
}

void CrobthirdView::OnMatchingHopfieldmatchQ 
{

/ /  TODO: Add your command handler code here 
CHStereo mystereo(&CF[l],&CF[2],&image[l],&image[2],&CFun); 
mystereo.correspondQ;

InvalidateQ;
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CFun.find3D_and_disp(&CF[l],&CF[2]);
CF[l].calc_statisticsO;
}

void CrobthirdView::OnMouseMove(UINT nFlags, CPoint point)
{
CPoint zpoint; 

int gray=0;

CMainFrame *pMainWnd = (CMainFrame *)AfxGetMainWnd();

CString s,w;

if(rcl .PtInRect(point))
{zpoint.x=point.x-rcl.left;zpoint.y=point.y- 

rcl.top;zpoint.y*=zoomflag;zpoint.x*=zoomflag;gray=image[l] .getpixel(zpoint.x,zpoint.y);} 
if(rc2.PtInRect(point))
{zpoint.x=point.x-rc2.1eft;zpoint.y=point.y-

rc2.top;zpoint.y*=zoomflag;zpoint.x*=zoomflag;gray=image[2].getpixel(zpoint.x)zpoint.y);}

if(rcl.PtInRect(point) | | rc2.PtInRect(point)) { 
s.Format("X=%d Y=%d Intensity=%d",zpoint.x,zpoint.y,gray); 
pMainWnd->m_wndStatusBar.SetPaneText(0,s); 

w.Format("Gray Level=%d",gray); 
pMainWnd->m_wndStatusBar.SetPaneText(2,w);

}
CFormView::OnMouseMove(nFlags, point);
}

void CrobthirdView::OnGraphGraphlQ 
{
CHFunctiongraph myf; 
if(myf.DoModalO==IDOK) ;
}

void CrobthirdView: :OnCheckCheckhrbitmap 0 
{
unsigned char* b=new unsigned char[200*200 + 10];

for(int i= 1 =200d++)
{
for(int j=l;j<=100;j++)

{
b[((i-l)*100)+j]=250;
}

}

image[l] .open(b,100,200); 
image[2] .open(b,100,200);
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fixareaQ; 
imagesloaded= 1;
InvalidateQ; 
delete [| b;

}

void CrobthirdView::OnMatchingDensematchl Q
{OnReconstructionLoadQ ;
reset_displayQ;
CF[1] .canny(&image[l]);
CF[2] .canny(&image[2]);

/ /  TODO: Add your command handler code here 
CHopdense dense(&image[l],&image[2],&CF[l],&CF[2]); 
dense.dense_match_l (1);

CFun. find3D_and_disp (&CF [1] ,&CF [2]);
CF[1] .calc_statisticsO;
InvalidateQ;
}

void CrobthirdViewcOnChecklncreasecontrastofimagel 0 
{

float tempi =0; 
float temp2=(float)2;

for(int i=ld<=image[l].heightd++)

for(int j=l;j<=image[l].,width;j++)
{

tempi =image[l] .getpixel(j-l,i-l); 
templ*=temp2;

if(templ>255) tempi =255; 
if(templ<0) tempi=0;

image[l].setpixel(j-l,i-l,(int)templ);
}

}
Invalidate));

}

void CrobthirdView::OnMatchingDensematchcorrelation()
{

OnReconstructionLoadQ ; 
reset_displayO;

/ /  TODO: Add your command handler code here 
CHopdense dense(&image[l],&image[2],&CF[l],&CF[2]);
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dense.dense_match_l (2);
CF[1] ,edge_display_fkg=3; 
CF[2].edge_display_flag=3;

Invalidate)};

}

void CrobthirdView:: OnCheckEnablelinematchingQ 
{

/ /  TODO: Add your command handler code here 
if(enable_line_match==0) 

enable_line_match=1; 
else
enable_line_match=0;

}
void CrobthirdView::OnCheckForcereloadimagel Q 
{

/ /  TODO: Add your command handler code here 
image[l].open("..\\images\\right.bmp");

fixareaQ; 
imagesloaded= 1;

InvalidateQ;
}
void CrobthirdView::OnCheckForcereloadimage2Q 
{
/  /  image[0] .open("images\\truedisp.bmp");

image [2] ,open(" ..\\images\\left.bmp");
fixareaQ;
imagesloaded= 1;

InvalidateQ;

}

void CrobthirdViewcOnFeaturesIncreasesensitivityQ 
{
if(sensitivity>3) sensitivity=sensitivity-2; 
reset_displayQ; 

float s=0.8; 
float temp=sensitivity; 
s=s+((temp-50)/100);
CF[l].canny(&image[l],s);
CF [2]. canny (&image [2] ,s);

InvalidateQ;

}
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void CrobthirdView::OnFeaturesDecreasesensitivityQ 
{

if(sensitivity < 130) sensitivity=sensitivity+2; 
reset_display();

float s=0.8;
float temp=sensitivity;
s=s+((temp-50) /100);
CF[l].canny(&image[l],s);
CF[2].canny(&image[2],s);

InvalidateQ;
}

void CrobthirdView::OnFeaturesResetsensitivityQ 
{
sensitivity—50; 
reset_display(); 
float s=0.8; 
float temp=sensitivity; 
s=s+((temp-50) /100);
CF[1] .canny(&image[l] ,s);
CF[2] .canny(&image[2] ,s);

Invalidate();

}

void CrobthirdView::OnMatchingFulldensematchingcorrelationO 
{

OnReconstructionLoadO ; 
reset_displayO;

/ /  TODO: Add your command handler code here 
CHopdense dense(&image[l],&image[2](&CF[l],&CF[2]); 
dense.dense_match_l (3);

InvalidateQ;
}

void CrobthirdView::OnCheckShowgroundtruthQ 
{

image[2].open("..\\imagesWtruedisp.bmp"); 
fixareaQ;
InvalidateQ;
}

/ /  robthirdView.h : interface o f the CrobthirdView class
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/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /

#if
!dcfined(AFX_robthirdVIEW_H 68D41DBF_03F0_47B2_A86E_6A4DD66F7285 INCLU
D E D J
#define
AFX_robthirdYIEW_H_68D41DBF_03F0_47B2_A86E_6A4DD66F7285_INCLUDED_

#if_MSC_VER > 1000 
#pragma once
#endif / /  _MSC_VER > 1000 
#include "HRBitmap.h"
#include "Features.h"
#include "Fundamental2.h"

class CrobthirdView : public CFormView 
{
protected: / /  create from serialization only 

CrobthirdViewO;
DECLARE_DYNCREATE(CrobthirdView)

public:
/ /  { {AFX_DATA(CrobthirdView) 
enum{ IDD = IDD_robthird_FORM };

/  /  NOTE: the Class Wizard will add data members here 
/  /  } } AFX_D ATA

/ /  Attributes 
public:

CrobthirdDoc* GetDocument();

/ /  Operations 
public:

/ /  Overrides 
/ /  ClassWizard generated virtual function overrides 
/ /  { {AFX_VIRTUAL(CrobthirdView) 
public:
virtual BOOL PreCreateWindow(CREATESTRUCT& cs); 
virtual BOOL PreTranslateMessage(MSG* pMsg); 
protected:
virtual void DoDataExchange(CDataExchange* pDX); / /  DDX/DDV support
virtual void OnlnitialUpdateQ; / /  called first time after construct
virtual BOOL OnPreparePrinting(CPrintInfo* plnfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintlnfo* plnfo);
virtual void OnEndPrinting(CDC* pDC, CPrintlnfo* plnfo);
virtual void OnPrint(CDC* pDC, CPrintlnfo* plnfo);
virtual void OnDraw(CDC* pDC);
/ /}  }AFX_VTRTUAL
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/ /  Implementation 
public: 

int enable_line_match; 
void drawDGdemopts(CDC* pDC); 
int findClosestNeighbour(CPoint apt); 
void createDGPoints(CPoint apt);
/  /  void gtabl (void);
float moment(int m,int n,int object_number);
void performfulll(void);
void findPhil (void);
void findPhi2(void);
void drawprojection(CDC* pDC);
void addCluster(float value^nt IQ;
void findonentation(void);
void reset_display(void);

void clean_grid(float** pgrid/nt m,int n); 
int matchall(void); 
int matchall_l(void);

CPoint convertPoint(CPoint pt);
CPoint fixpoint(CPoint p.CRect rc, float zoom);
void load_F_matrix(void);
void matchlines (CPoint cp);
void writetitle(CDC* pDC);
void fixarea(void);
void changebackdirQ;
void GRABQ;
void deandirectoryO;
int modeflag;
wpoints2 centres_sorted[20]; 
int imagesloaded;

HRBitmap image[3];//left and right image 
CRect rcl,rc2,rc3;
CFeatures CF[3]; 
float phi[20]; 
tpoint phi_points[20][3]; 
tpoint phi_points_dc[20] [3]; 
cluster surfaces [40]; 
wpoints2 centres [20]; 
tpoint proj_centres[20];
CPoint* matches;
int sensitivity;// feature extractor's inittial sensitivity 
int match_array_loaded;
CPoint pt_leftl ,pt_left2,pt_rightl ,pt_right2; 
int m_pointchosen;// for DG dispaly 
int disparity_gradient_demo;
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int disparity_gradient_demo_counter; 
int numObjects; 

int showprojection; 
float zoomflag; 
int drawmatches; 
int F_matrix_loaded; 
float background; 
int ipshow_value; 
int match_lines;
CFundamental2 CFun; 

virtual ~CrobthirdViewQ;
#ifdef _DEBU G 

virtual void AssertValidO const; 
virtual void Dump(CDumpContext& dc) const;

# e n d i f

protected:

/ /  Generated message map functions 
protected:

/ /  { {AFX_MSG(CrobthirdView)
afx_msg void OnModeFile();
afx_msg void OnModeCameraQ;
afx_msg void OnReconstructionLoad();
afx_msg void OnZoomZoomoutQ;
afo_msg void OnZoomZomin();
afx_msg void OnZoomResetO;
afx_msg void OnFeaturesSobel();
afx_msg void OnFeaturesSusancomersQ;
afx_msg void OnFeaturesSusanedges();
afx_msg void OnFeaturesMoravec();
afx_msg void OnFeaturesCannyO;
afx_msg void OnFeaturesReset();
a£x_msg void OnFeaturesRemovebackgroundQ;
afx_msg void OnFeaturesChangedisplaystyleQ;
afx_msg void OnMatchingMatchlinesQ;
a£x_msg void OnLButtonDown(UINT nFlags, CPoint point);
afx_msg void OnMatchingMatchall();
afx_msg void OnFeaturesReducefeaturesQ;
afe_msg void OnVScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar);
afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar);
afe_msg void OnMatchingMatchall2Q;
afx_msg void OnCheckCheckO;
afc_msg void show_differentvalue();
afx_msg void unshow_valueQ;
afe_msg void OnPrintdataPrintfeaturesO;
afit_msg void OnShowpointsShowdispand3dQ;
afx_msg void OnShowpointsN ewwindowforstats Q;
a£x_msg void OnShowpointsShowprojecrionQ;
afe_msg void OnRobotMoveasideO; 
a£x_msg void OnRobotGrablO; 
afic_msg void OnRobotOpenQ;
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afo_msg void OnRobotNestQ;
a£x_msg void OnRobotHomeQ;
afx_msg void OnRobotResetQ;
afe_msg void OnRobotCalibrationpositionlO;
afx_msg void OnRobotlntellicamO;
afx_msg void OnRobotPutbackQ;
a£x_msg void grablQ;
afo_msg void OnMatchingMatchhopfieldQ;
a£x_msg void OnMatchingHopfieldtestl();
a£x_msg void OnCheckShowdisparitygradientQ;
afe_msg void OnMatchingHopfieldmatchQ;
afe_msg void OnMouseMove(UINT nFlags, CPoint point);
afe_msg void OnGraphGraphl();
a£x_msg void OnCheckCheckhrbitmapQ;
afe_msg void OnMatchingDensematchlO;
afx_msg void OnCheckIncreasecontrastofimagel();
afx_msg void OnMatchingDensematchcorrelation();
afe_msg void OnCheckEnablelinematchingO;
afx_msg void OnCheckForcereloadimagelQ;
afx_msg void OnCheckForcereloadimage2();
a£x_msg void OnFeaturesIncreasesensitivityO;
afit_msg void OnFeaturesDecreasesensitivityQ;
afx_msg void OnFeaturesResetsensitivityO;
afx_msg void OnMatchmgFulldensematchingcorrelationQ;
afe_msg void OnCheckShowgroundtruth();
//}}AFX_MSG
DECLARE_MESSAGE_MAPO

};

#ifndef _DEBUG / /  debug version in robthirdView.cpp 
inline CrobthirdDoc* CrobthirdView: :GetDocumentO 

{ return (CrobthirdDoc*)m_pDocument; }
#endif

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /

/ /  { { A F X _ I N S E R T _ L O C A T I O N  } }
/ /  Microsoft Visual C++ will insert additional declarations immediately before the previous line. 

#endif /  /
! d e f in e d ( A F X _ r o b th i r d V I E W _ H _ 6 8 D 4 1 D B F _ 0 3 F 0 _ 4 7 B 2 _ A 8 6 E _ 6 A 4 D D 6 6 F 7 2 8 5 _ I N C L U

D E D _ )

/ /  HStereo.cpp: implementation of the CHStereo class. 
/  / implementation of matching
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#include "stdafx.h"
#include "robthird.h"
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#include "Hopfield.h"
#include "HStereo.h"
#include "HEnergy.h"
#include "MATX.h"
#include "HSDialog.h"
#include <fstream.h>

#ifdef_DEBUG 
#undef THIS_FILE
static char THIS_FILE Q = FILE_;
#define new DEBUG_NEW 
#endif

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  Construction/Destruction 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

CFIStereo::CHStereoQ
{

}

CHStereo::CHStereo(CFeatures* cfl,CFeatures* c£2,HRBitmap* cbl.HRBitmap* 
cb2,CFundamental2* CFun)

{

init(cfl ,c£2,cbl ,cb2,CFun);
}

CHStereo::CHStereo(CFeatures* cfl,CFeatures* cf2,HRBitmap* cbl.HRBitmap* cb2)
{
init(cfl ,c£2,cbl ,cb2);
}

CHStereo::~CHStereo()
{
}

void CHStereoccorrespondQ 
{

/ / main function that calls most other functions in this class 
/ /write the features to file 
m_leftfeature->printfeatures("leftfeatures.txt");
/  /  form the 2D hop field Neural Network
float networkwidth;// determine if its is a regular neurla network or the new formulation where 
the height represents the disparity 
float networkheight; 
if(m_operationMode!=3) {

m_rightfeature->moravec(m_rightimage);
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networkwidth=m_nghtfcature-> features.num; 
networkheight=m_leftfeature->features.num;

}
else {
networkwidth=m_leftfeature->features.num;
networkheight=m_maxdisp+l;//if maximum disparity is 10, we need 11 disparity levels, the extra 
is for zero 

}

/ / /  declare the neural network 
CHopfield
mHopfield(networkheight,networkwidth,ON,OFF,m_operarionMode,m_activationalpha,m_initty 
pe,m_initvalue,m_gaussiandeviation,m_initialneuronvalue,m_updatingmode,0);//height is left 
features, or each row is one left feature, convention

//m_leftimage->setallto(150);
/ /m_rightimage->setallto(150);

if(m_inittype==6)
initCorrelate(&mHopfield);//for initialization in case of correlation init

mHopfield.WriteActivationsCinitialactivations.txt");
/  /  now set the weights 
if(m_operationMode!=3)
setBiasAll(&mHopfield,(float)2);//every neuron has a bias of two 
else
setBiasAll(&mHopfield,(float)l);//my formulation requires uniqueness only in one column not in 
rows

if( m_operationMode!=2)//dont update if its simple correlation 
setWeights(&mHopfield);
/  /  zeroWeights(&mHopfield);
/  /  mHopfield.alignWeightsO;
/  /  artificial weights 
/  /  setAllWeights(&mHopfield,-l);
//mHopfield.setConnectionValue(2,l,3,2,l);
//mHopfield.setConnectionValue(2,2,3,l,l);

if(m_writeweights==TRUE) mHopfield.writeWeightstoFileCweights.txt"); 
if(m_wntcactivations==TRUE) mHopfield.WriteActivations("initial-activations.txt"); 
/  /  now update the grid
if( m_operationMode!=2)// dont update if its simple correlation 
doUpdateNetwork(&mFIopfield);

if(m_writeactivations==TRUE) mHopfield.WriteActivationsCactivations.txt");
/ /  now prune network 
int temp;
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if(m_operationMode!=3)
temp=pruneNetwork_3(&mHopfield);
else
temp=pruneNetwork_4(&mHopfield);

if(m_writeactivations==TRUE) mHopfield.WriteActivations("activations-pruned.txt"); 
/  /  temp=pruneNetwork_l (&mHopfield);unnessary

/ / now report excess matches number, 
if(m_multiplematches= =TRUE)

{
CString b;
b.Formatf'Number of multiple matches is %d",temp);
AfxMessageBox(b);
}

PointMatch* pt_match=formMatches(&mHopfield);

///w rite  matches to text file 
FILE* tfile;
tfile=fopen("matches.txt",''wt");

for(int i= 1 ;i<=m_le ftfeature-> features .num/++) {
fprintf(tfile,"%d -----------

%d\n",pt_match[i].LeftFeatureNumber,pt_match[i].RightFeatureNumber);
}

fclose(tfile);

/ /now sort the features 
sortFeatures(pt_match);

/ /release the memory for the matches array 
delete [| pt_match;

if(m_showactivationfunction= =TRUE) drawFunction(&mHopfield,0); 
if(m_compatibilityshow==TRUE) drawFunction(&mHopfield,l);
//once the features are sorted #d can be found

//create match list and sort features as before with the corrleation thing

/ /  find 3D coordinatess 
/ /TO  do afterwards

//add  more constraints and modify the objective function add more terms 
}

void CHStereo::setWeights(CHopfield *hopfield)
{

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/ / this function gets a pointer to a hopfield neural network 
/ /and sets its weights 
int i,j,p,q;

/ /go through the network and set the weights

//g o  throug all connections and set the weights 
for( 1= 1 ;i<=hop field- >m_height/+ +)

{
for( j=l;j<=hopfield->m_width;j++)

{
for( p=l;p<=hopfield->m_height;p++)

{
for( q=l;q<=hopfield->m_width;q++)

{
if(i!=p | | j!=q)//no self feedback

Iif(hopfield->m_neuronGrid[i][j].m_connection[p][q].done— 0 && hopfield- 
>m_neuronGrid[p] [q] ,m_connection[i] [j] .done==0)

{

hopfield-
>setConnectionValue(i,j,p,q,scaleweight(i>j>p,q,calculateWeight(i,j,p,q))+m_offset);

}
}

}
}

}
}

}

void CHStereo::doUpdateNetwork(CHopfield *hopfield) 
{

if(m_updatingmode==0) 
doUpdateN etworkl (hopfield); 

else
doUpdateNetwork2 (hopfield);

}

void CHStereo::doUpdateNetworkl(CHopfield *hopfield)
{
//this function takes the pointer to the neural network and updates

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



// in  this updating method we update the network until the energy doesnt change for 200 
consecutive iterations
/ / if  the number of iterations passes 20000 it will stop
int numTimesEnergyIncreased=0;
float energy_present=0;
float energy_past=-l;
int numberlterations=0;
float numberConsecutive=0;

float *energyValues=new float[m_maxiterations+2];
/ /loop until networks settles down 
/ / the conditions are 1- loop is still hasnt settled down 
//2 -  the max numiterations hasnt been reached

while(numberConsecudve<m_stableiterations && numberlterations<m_maxiterations)
{

i f(numberl terarions==271) 
int z=2;

numberIterations++;//increase te counter 
energy_past=energy_present;
/  /  now is the actual updating of the network
energyValuesfnumberl terarions] =energy_present=hopfield->updateNetwork(l);//update once 

every time
/  /  energyValues [numberl terarions]=energy_present= hopfield->findEnergyDiscrete();
/ /increase the counter denoting how many times the network has been stale (for how many 

iterations)

if(energy_present>(energy_past+0.1) && numberIterations>l){ 
numTimesEnergyIncreased++; 
if(m_tellenergyincrease==TRUE) {
CString b;
b.Format("%d",numberIterations);
AfxMessageBox(b);
}}

if(fabs(energy_present-energy_past) <0.001) 
numberConsecutive+ +; 

else
if(numberConsecutive> 1) 
numberConsecurive=0;

}

/ /creating the dialog that will show the energy graph 
writevector(energyValues,numberIterations,"energy.txt"); 
if(m_showenergywindow==TRUE) {
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CHEnergy myen;
myen.m_energy= energy_past;
myen.m_iterations=numberIterations;
myen.setData(numberIterations,energyValues);
if(myen.DoModal()==IDOK);}
delete [| energyValues;

/  /  CString b;
/ /  b.Format("%d",numTimesEnergyIncreased);
/ /  AfxMessageBox(b);

}
void CHStereo::doUpdateNetwork2(CHopfield *hopfield)
{
/  / winner takes all
int numTimesEnergyIncreased=0;
float energy_present=0;
float energy_past=-l;
int numberlterations=0;
float numberConsecutive=0;

float *energyValues=new float[m_maxiterations+2];

while(numberConsecutive<m_stableiterations && numberIterations<m_maxiterations)
{

if(numberIterations==271) 
int z=2;

numberIterations++;//increase te counter 
energy_past=energy_present;
/  /  now is the actual updating of the network 
energyValues[numberIterations]=energy_present=hopfield- 

>updateNetwork((numberIterations%hopfield->m_width)+l);//update once every time 
/  /  energyValues[numberIterations]=energy_present= hopfield->findEnergyDiscrete(); 
//increase the counter denoting how many times the network has been stale (for how many 

iterations)

if(energy_present>(energy_past+0.1) && numberIteradons>l){ 
numTimesEnergyIncreased++; 
if(m_tellenergyincrease==TRUE) {
CString b;
b.Format("%d",numberIterations);
AfxMessageBox(b);
}}

if(fabs(energy_present-energy_past)<0.001) 
numberConsecutive++; 

else
if(numberConsecutive> 1) 
numberConsecutive=0;
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}

/  /  creating the dialog that will show the energy graph 
if(m_showenergywindow==TRUE) {
CHEnergy myen; 
myen.m_energy= energy_past; 
myen.m_iterations=numberlterations; 
myen.setData(numberIterations,energyValues); 
if(myen.DoModal()==IDOK);} 
delete [| energyValues;

}

float CHStereo::calculateWeight(int i, int j, int p, int q)
{

if(i==10 && j==l && p==25 && q==2) 
int hht=0;

if(m_objectivefunction== 0) return calculateWeight_l (l, j, p, q); 
if(m_objectivefunction== 1) return calculateWeight_2(i, j, p, q); 
if(m_objectivefunction:::= 2) return calculateWeight_3(i, j, p, q);

}
float CHStereo::calculateWeight(int i, int j, int p, int q,float wvalue)

*return (wvalue-findMiu(i,p)-findMiu(j,q));
}

float CHStereo::findDisparity(float xl, float yl, float xr, float yr)
{
/ / this finds the distance between two points, thats it

/ /this function simply finds the disparity of a match, not sure if this is the way to do it for 
nonplanar cameras
/ / in  rectified images i would simply use xr-xl

//this is used for both disparity AND distance, is disparith same as distance 
float xtemp=(xl-xr)*(xl-xr); 
float ytemp=(yl-yr)*(yl-yr);

float dtemp=sqrt(xtemp+ytemp);

return dtemp;

}
void CHStereo::setBiasAll(CHopfield *hopfield, float value)
{
//this function sets a bias value for all neurons in a given network 
int i,j;
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//g o  through the network and set biases 
for( i=l,i<=hopfield->m_height/++)

{
for( j=1 ;j < =hopfield->m_width;j++)

{

hopfield->setBiasValue(i,j,value);

}
}

}
int CHStereo::pruneNetwork_l(CHop£ield *hopfield)
{
/ / this is the first function to eliminate multiple matches, it will just choose the first candidate 
int i,j;
int counter=0; 
int tempflag;

/  /  eliminate & count float matches horizontally 
for( i=l;i<=hopfield->m_heightd++)

{
tempflag=0;
for( j=l;j<=hopfield->m_width;j++)

{
if(hopfield->m_neuronGrid[i] [j] .activation==ON)

{
tempflag++;

if(tempflag> 1) hopfield->m_neuronGrid[i] [j] .activation=OFF;// turn off excess matches 
}

}

counter+=temp flag-1;
}

/  /  now do the same thing vertically 
for( j=l;j<=hopfield->m_width;j++)

{
tempflag=0;
for( i=l;i<=hopfield->m_heightp++)

if(hopfield->m_neuronGrid[i] [j] .activation==ON)
{
tempflag++;

if(tempflag>l) hopfield->m_neuronGrid[i][j].activation=OFF;//turn off excess matches 
}

}
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counter+=tempflag-l;//add thre number of excess matches 
}

return counter;

}

int CHStereo::pruneNetwork_2(CHopfield *hopfield)
{
/ /this works for parallel cameras with y disoparity =0, a better way to do this would 
/ /be to measure the average y disparity and check against that 
int i,j;
int counter=0; 
int tempflag;
float average_y_disparity=0; 
float limit=0;

//eliminate & count float matches horizontally 
for( 1= 1 ̂ <=hopfleld- >m_height;i++)

{
tempflag—0;
for( j=l;j<=hopfield->m_width;j++)

Iif(hopfield->m_neuronGrid[i] [j] ,activation>0.95)
{
tempflag++;

if((fabs(m_leftfeature->features.y[i]-m_rightfeature->features.y[j]))>limit) hopfield- 
>m_neuronGrid[i] [j].acrivation=OFF;//turn off excess matches 

}
}

counter+=tempflag-l;//add thre number of excess matches 
}

return counter;

}
PointMatch* CHStereo::formMatches(CHopfield *hopfield)
{
if(m_operationMode!=3)
return formMatchesFvsF(hopfield);
else
return formMatchesFvsDS(hopfield);

}
PointMatch* CHStereo::formMatchesFvsF(CFIopfield *hopfield)
{
int i,j;
PointMatch* matches=new PointMatch[max(hopfield->m_height>hopfield->m_width)+2];
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for(i= la< =m_le ftfeature-> features. num;i++)

*matches[i].LeftFeatureNumber=i;matches[i].RightFeatureNumber—1; 
for(j=l;j<=m_rightfeature- > features .num; j++)

{
if(hopfield->m_neuronGrid[i] [j] .activation==ON) matches [i] .RightFeatureNumber-j; 
}

}
return matches;
}
PointMatch* CFIStereo::formMatchesFvsDS(CHopfield *hopfield)
{
int i,j;
PointMatch* matches=new PointMatch[hopfield->m_width+2];

for(j=1 ;j < =hop field- >m_width;j++)
{
matches [j] .LeftFeatureN umber=i; 
matches [j]. RightFeatureN umber—1; 
for(i=l;i<=hopfield->m_heightfi+ +)

if(hopfield->m_neuronGrid[i] [j] ,activation==ON) matches [j] .RightFeatureNumber-i-1;
}

}
return matches;
}

float CHStereo::findDeltad(int i, int j, int p, int q)
{
float disparityl,disparity2;
disparity 1=findDisparity (getLeftImagePoint(i,j) .x,getLeftImagePoint(i, j) .y .getRightlmageP oint(i,j). 
x,getRightImagePoint(i,j).y);
dispanty2=findDisparit}'(getLeftImagePoint(p)q).x,getLeftImagePoint(p,q).y>getRightImagcPoint(
p,q).x,getRightImagePoint(p,q).y);
return (disparityl-disparity2);
}

float CHStereo::findDeltaD(int i, int j, int p, int q)
{
float distancel,distance2;
distancel=findDisparity(getLe£tImagePoint(i,j).x,getLeftImagePoint(i,j).y,getLeftImagePoint(p,q).x
,getLeftImagePoint(p,q).y);
distance2=findDisparity(getRightImagePoint(i,j).x,getRightImagePoint(i,j).y,getRightImagePoint(p 
,q) .x,getRightImagePoint(p,q) .y); 
return (distancel-distance2);
}

float CHStereo::compatibility(float X)

<■if(m_compatibilitytype==0) return compatibility_l(X);
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if(m_compatibilitytype= =1) return compatibility_2(X);
}

float CHStereo::compatibility_l (float X)
{
float tempi =m_omega*(X-m_teta); 
tempi=1 +(exp(templ)); 
tempi=((float)2.00)/tempi; 
return (templ-1);
}

float CHStereo::compatibility_2(float X)
{
float tempi =(-X/m_T); 
tempi=(exp(templ)); 
tempi =((float)2.00)*templ; 
return (templ-1);
}

float CHStereo::findMiu(int i, int j)
{
float temp; 
if(i==j) temp=l; 
else temp=0;

return temp;
}

void CHStereo::sortFeatures(PointMatch ^matches)
{
i£(m_operationMode!=3)
sortFeaturesFvsF(matches);
else
sortFeaturesFvsDS(matches);

}
void CHStereo::sortFeaturesFvsDS(PointMatch ^matches)
{
m_rightfeature->allocate(m_leftfeature->features.num,'f);// allocate space for right image features 
inti;
/ / since disparity versus features was used we have to form completely new features for right 
image
for(i=1 =m_leftfeature-> features.numd++)

{

m_rightfeature->features.x[i]=matches[i].RightFeatureNumber+m_leftfeature->features.x[i];
m_rightfeature->features.y[i]=m_leftfeature->features.y[i];

}
}
void CHStereo::sortFeaturesFvsF(PointMatch ^matches)
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{
inti;
/  /  temporary holders for the sort algorithm 
ipoint* lefttemp =new ipoint[ m_leftfeature->features.num+2]; 
ipoint* righttemp=new ipoint[m_rightfeature->features.num+2]; 
int ccl=l;//counter for the following loop
/  /  remove any points in the original if no correspondence was found

for(i=1 ;i<=m_leftfeature-> features.num;i++)
{
if(matches[i].RightFeatureNumber!=-l)

{
lefttemp [ccl].x=m_leftfeature->features.x[matches[i].LeftFeatureNumber]; 
lefttemp[ccl].y:=m_leftfeature->features.y[matches[i].LeftFeatureNumber];

righttemp [ccl].x=m_nghtfeature-> features.x[matches[i].RightFeatureNumber]; 
righttemp[ccl].y=m_rightfeature->features.y[matches[i].RightFeatureNumber]; 
ccl++;
}

}

/ /resize the feature vectors 
m_leftfeature->allocate(ccl-l,'f); 

m_rightfeature->allocate(ccl-l,'f);

for(i= l;i<ccl/++)
{

m_leftfeature->features.x[i]=lefttemp[i].x;
m_leftfeature->features.y[i]=lefttemp[i].y;

m_rightfeature-> features .x[i] =nghttemp [i] .x; 
m_rightfeature->features.y[i]=righttemp[i].y;

}

delete [] lefttemp; 
delete [] righttemp;

}

void CHStereo::setAllWeights(CHopfield* hopfield,float value) 
{

/ / this function gets a pointer to a hopfield neural network

int i,j,p,q;

/ /go through the network and set the weights
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//g o  throug all connections and set the weights 
for( l = 1 ;i <=hop field- > m_heigh t;i++)

{
£or( j=1 ;j <=hop field- >m_width;j++)

{
for( p=l;p<=hopfield->m_height;p++)

{
for( q=l;q<=hopfield->m_width;q++)

{
if(i!=p | | j!=q)//no self feedback

if(hopfield->m_neuronGtid[i][j].m_connection[p][q].done==0 && hopfield- 
>m_neuronGrid[p] [q] .m_connection[i] [j] .done==0) {

hopfield->setConnectionValue(i,j,p,q,calculateWeight(i)j,p,q) value-1));
}

}
}

}
}

}

}

int CHStereo::pruneNetwork_3(CHop£ield * hop field)
{
/ / this applies only to the ontinues hopfield neural network and it should
//n o t be applied to continues, it prunes the network by finding the maximum in the row and
columns

//this is the first function to eliminate multiple matches, it will just choose the first candidate 
int i,j;
int counter=0; 
int tempflag;

/  /  eliminate & count float matches horizontally 
float max; 
int jindex=0; 
int iindex=0;

float averageactivation=0.1; 
for( i=1 ;i<=hopfield->m_height/+ +) 

for( j=l;j<=hopfield->m_width;j++) 
averageactivation+=hopfield->m_neuronGrid[i][j] .activation;

averageactivation=0;

for( i=l;i<=hopfield->m_height;i++)
{
tempflag=0;
max=-10000;
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jindex—1;
for( j=l;j<=hopfield->m_width;j++)

{
if(hopfield->m_neuronGrid[i] [j] .activation>max && hopfield- 

>m_neuronGrid[i] [j] .activation>averageactivation)
{
tempflag++;
max=hopfield->m_neuronGrid[i] [j] .activation; 
jindex=j;
}

hopfield->m_neuronGrid[i][j].activation=OFF;//set all neurons in a row to zero then set the 
max to the max value

>if(jindex!=-l) hop£ield->m_neuronGrid[i][jindex].activation=max; 
counter+=tempflag-l;//add the number of excess matches 
}

//now  do the same thing vertically 
for( j=l;j<=hopfield->m_width;j++)

{
temp£lag=0;
max=-10000;
iindex—l;
for( i=l;i<=hopficld->m_height;i++)

if(hopfield->m_neuronGrid[i][j].activation>max && hopfield- 
>m_neuronGrid[i] [j] .activation>averageactivation)

{
tempflag++;
max=hopfield->m_neuronGrid[i][j] .activation; 
iindex=i;
}

hop£ield->m_neuronGrid[i][j].activation=OFF;//set all neurons in a row to zero then set the 
max to the max value 

}

if(iindex!=-l) hopfield->m_neuronGrid[iindex][j].activation=ON;//now set the match to one to 
indicate match

counter+=tempflag-l;//add thre number of excess matches 
}

return counter;

}
int CHStereo::pmneNetwork_4(CHopfield *hopfield)

//this pruning is for the feature vs desparity formulation 
int i,j;
int counter=0;

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in t tempflag;

//eliminate & count float matches horizontally 
float max; 
int iindex=0;

for( j=1; j <=hop field- >m_width;j++)
{
tempflag=0; 
max=-10000; 
iindex=-l; 

for( i= 1 ;i<=hopfiekb >m_height;i+ +)
{
if(hopfield->m_neuronGrid[i][j].activation>max )

*max=hopfield->m_neuronGrid[i] |j] .activation; 
iindex=i;
}

hopfield->m_neuronGrid[i]|]].activation=OFF;//set all neurons in a column to zero then set 
the max to the max value

if(iindex!=-l) hopfield->m_neuronGrid[iindex][j].activation-ON;

}

return 0;

}
float CHStereo::findEnergyFromFile(char *filename)
{
ifstream matchfile (filename); 

if(!matchfile) {
AfxMessageBox("Cannot open match file."); 
return 1;
}

CHopfield mtHopfield(m_le ftfeature- > features .num,m_rightfea ture-
>features.num,ON,OFF,m_operationMode,m_activationalpha,m_inittype,m_initvalue,m_gaussia
ndeviation,m_initialneuronvalue,m_updatingmode,0);//height is left features, or each row is one 
left feature, convention
PointMatch* matches=new PointMatch[max(mtHopfield.m_height,mtHopfield.m_width)+2];

int nummatches=l; 
while(matchfile)

{
matchfile> >matches[nummatches] .LeftFeatureNumber;
matchfile>>matches[nummatches].RightFeatureNumber;
nummatches++;
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}
nummatches—; 
match file.dearQ; 
matchfile.closeQ;
setBiasAll(&mtHop£ield,(float)2);//every neuron has a bias of two 
setWeights(&mtHopfield);

/ / now set the activation values to the proper ones

//g o  throug all connections and set the weights 
for( int i=l/<=mtHopfield.m_heighd++)

{
for(int j=1 ;j <=mtHop field.m_width; j++)

mtHopfield.m_neuronGrid[i][j].activation-OFF;
}

}
for(i= 1 ;i<nummatches;i+ +)

{

mtHopfield.m_neuronGrid[matches [i] .LeftFeatureNumber] [matches [i] .RightFeatureNumber] .ac 
tivation=ON;

}

if(m_writeactivations==TR.UE) mtHopfield.WriteActivations("beforeupdating.txt"); 
doUpdateNetwork(&mtHopfield);
if(m_writeactivations==TRUE) mtHopfield.WriteActivations("afterupdating.txt"); 
pruneNetwork_3(&mtHopfield);
if(m_writeactivations==TRUE) mtHopfield.WriteActivations("afterpruning.txt");

PointMatch* pt_match=formMatches(&mtHopfield);

/ / now sort the features 
sortFeatures(pt_match);

delete [| pt_match; 
delete [] matches;

return 0;
}

void CHStereo::drawFunction(CHopfield *hopfield,int functiontype)
{
int si2e=200;
float *datay=new float[205]; 
float *datax=new float[205];
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for(int i—100;i<—100;i++)
{

if(£unctiontype==0)
{
datay[i+100]=hopfield->m_neuronGrid[l][l].activationFunction(i);
datax[i+100]=i;
}

if(functiontype— 1)
{
datay [i+100] =compatibility(i+100); 
datax [i+100] =i+100;
}

}

if(£unctiontype==l) size=70;
/  /  creating the dialog that will show the energy graph

CHEnergy myen;
myen.m_energy=m_activationalpha; 
myen.m_iterations=m_operationMode; 
myen.setData(size, datay, datax); 
if(myen.DoModal()==IDOK); 
delete [] datax; 
delete [| datay;
}

float CHStereo::calculateWeight_l(int i, int j, int p, int q)
{
float W l= 0.4; 
float W2=0.6;

/ /  find the value of the objective function variables 
float delta_d=fabs(findDeltad(i,j,p,q)); 
float delta_D=fabs(findDeltaD (i,j ,p,q));
float C=compatibility((Wl *delta_d)+(W2*delta_D));//C is an intermediate variable

return (C+generalMiu(i,j,p,q));//feature versus feature formulation 
}

float CHStereo::calculateWeight_2(int i, int j, int p, int q)

float C=calculateDisparityGradient(i,j,p,q);//C is an intermediate vanable 
return C;
}

float CHStereo::calculateWeight_3(int i,int j,int p,int q)

//this is the third formation of the objective function that uses correlation and distance from the 
epipolar line
//th e  compatibility is the correlation of the first two points plus the corrleationof the second two

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



points,, averaged 
float crl =m_cfun-
>ZNCC_2(m_leftimage,m_rightimage,7,getLeftImagePoint(i,j).x,getLeftImagePoint(i,j).y,getRight
ImagePoint(i,j).x,getRightImagePoint(i,j).y);
float cr2=m_cfun-
>ZNCC_2(m_leftimage,m_rightimage,7,getLeftImagePoint(p,q).x,getLeftImagePoint(p,q).y,getRi
ghtImagePoint(p,q).x,getRightImagePoint(p,q).y);
//float C=compatibility(calculateDisparityGradient(i,j,p,q));//C is an intermediate variable 
float C=(crl+cr2+2)/((float)4);

return (C+generalMiu(i,j,p,q));//feature versus feature formulation 
}

float CHStereo::cyclopeanSeperation(int i, int j, int p, int q)

*//th e  cyclopean location of first point (i,j)
CPoint leftimagepointl ,rightimagepointl ,leftimagepoint2,rightimagepoint2;

leftimagepointl= getLeftImagePoint(i,j); 
rightimagepointl = getRightImagePoint(i,j); 
leftimagepoint2=getLeftImagePoint(p,q); 
rightimagepoint2= getRightImagePoint(p,q) ; 
float vectorlx=leftimagepointl.x+rightimagepointl.x; 
float vectorly=leftimagepointl .y+rightimagepointl .y;
/ /average
vectorl x/=((float)2); 
vectorly/:=((float)2);

//the  cyclopean location of second point (i,j)
float vector2x=leftimagepoint2.x+nghtimagepomt2.x;
float vector2y=leftirnagepoint2.y+rightimagepoint2.y;
//average
vector2x/=((float)2); 
vector2y/=((float)2);

//distance between the two cyclopean points 
float vectorx=vector2x-vectorlx; 
float vectory=vector2y-vectorly;

//vector norm
float norm=sqrt((vectorx*vectorx)+(vectory*vectory));

return norm;
}

float CHStereo::calculateDisparityGradient(int i, int j, int p, int q)
{

float difference_in_disparity=fabs(findDeltad(i,j,p,q));
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float cydopean_seperation=cyclopeanSeperation(i,j,p,q);
if(cyclopean_seperation==0) return -1;
else return (difference_in_disparity/cyclopean_seperation);
}

void CHStereo::init(CFeatures* cfl,CFeatures* c£2,HRBitmap* cbl,HRBitmap* 
cb2,CFundamental2* CFun)

{

m_cfun=CFun; 

init(cfl ,cf2,cbl ,cb2);

}

void CHStereo::init(CFeatures* cfl,CFeatures* cf2,HRBitmap* cbl.HRBitmap* cb2){

m_leftfeature=cfl; 
m_rightfeature=cf2; 
m_leftimage=cbl; 
m_rightimage=cb2;

CHSDialog myd; 
if(myd.DoModal()==IDOK)

{

m_operationMode=myd.m_mode;

this->m_activationalpha=myd.m_alpha;
this->m_teta=myd.m_teta;
this->m_omega=myd.m_omega;

ON=atoi( (LPCTSTR)myd.m_on);
OFF=atoi( (LPCTSTR)myd.m_off);

this->m_maxiterations=atoi( (LPCTSTR)myd.m_maxiterations); 
this->m_stableiterations=atoi( (LPCTSTR)myd.m_iterations);

m_updatingmode=myd.m_updatingmode;
m_showenergywindow=myd.m_energygraph;
m_multiplematches=myd.m_sho-wmultiplematch;
m_showactivationfunction=myd.m_showactivation;
m_tellenergyincrease=myd.m_energyfluctuate;
m_writeweights =myd.m_writeweightmatrix;
m_writeactivations=myd.m_wnteactivations;
m_objectivefunction=myd.m_objectivefunction;
m_offset=myd.m_offset;
m_gaussiandeviation=myd.m_gaussian;
m_initialneuronvalue=myd.m_initialval;

228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



m_scale=myd.m_scale;
m_compatibiHtytype=myd.m_compatibi]ityfunctiontype; 
m_T=myd.m_T;

m_compatibilityshow=myd.m_compatshow;

m_inittype=myd.m_inittype;
m_initvalue=myd.m_initvalue;
m_maxdisp=myd.m_maxdisp;
}

}

void CHStereo::initCorrelate(CHopfield *hopfield)
{
int i,j; 
float cr; 
float one=l; 
float two=2;
CPoint pl,pr;
for( i= 1 ;i<=hopfield->m_height;i+ +) { 

for( j=l;j<=hopfield->m_width;j++) {

pl=getLeftImagePoint(i,j);
pr=getRightImagePoint(i,j);

cr=matchParaUelCorrelate(m_lefdmage,m_nghtimage,pl,pr)5);

cr+=one; 
cr/=two;
hopfield->m_neuronGrid[i] [j] ,activation=cr;
}

}

}
float CHStereo::generalMiu(int i, int j, int p, int q)
{

if(m_operationMode!=3)
return (-findMiu(i,p)-findMiu(j,q));//feature versus feature formulation 
else
return (-findMiu(j,q));//feature versus disparity formulation 
}

CPoint CHStereo::getRightImagePoint(int i,lnt j)
{
/  /  this function and the next function return a feature point corresponding to 
/ /integer J if this is a feature-vs-feature formulation, otherwise it willl return a 
/ /point based on the disparity of the left image shifted by (j-1) points 
CPoint right;
if(m_operationMode!=3) {
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right.x=m_rightfeature->features.x[j]; 
right.y=m_rightfeature-> features.y[j];

}
else

{

right.x=m_leftfeature->features.x[j]+(i-l); 
right.y=m_leftfeature-> features .y [j];

}

return right;
}

CPoint CHStereo::getLeftImagePoint(int i,int j)
{
CPoint left;
if(m_operationMode!=3) {
left.x=m_leftfeature->features.x[i);
left.y=m_leftfeature->features.y[i];

}
else

{

left.x=m_leftfeature->features.x[j];
left.y=m_Ieftfeature->features.y(j];

}

return left;

}

float CHStereo::scaleweight(int i, int j, int p, int q, float weight)
{ / / find distance form i to p, the distance between the points int eh left image, and scale the 
wights accordingly
/ /this should be done since points that are too far should not provide support for each other 
if(m_scale==FALSE) return weight;
/ / i f  its the same point make the weight zero 
if(getLeftImagePoint(i,j).x==getLeftImagePoint(p,q).x && 
getLeftImagePoint(i,j).y==getLeftImagePoint(p,q).y) return 0; 
float
distancel=findDisparity(getLeftImagePoint(i,j).x,getLeftImagePoint(i,j).y,getLeftImagePoint(p,q).x
,getLeftImagePoint(p,q) .y);
float temp 1=(float)0.2* (distancel ~(float)40.00);
tempi=l+(exp(templ));
temp 1=((float) 1.00) /  tempi;
return (weight*templ);
}
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/  /  HStereo.h: interface for the CHStereo class.
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#if
!defined(AFX_HSTEREO_H_DE2811D3_39BC_4B3D_952C_2BC27A207BlF INCLUDE
D J
#define
AFX_HSTEREO_H_DE2811D3_39BC_4B3D_952C_2BC27A207B1F INCLUDED_

#if _MSC_VER > 1000 
#pragma once
#endif/ /  _MSC_VER > 1000

#include "HRBitmap.h"
#include "Features.h"
#include "Hopfield.h"
#include "Fundamental2.h"
/ / this is the hopfield stereo class that should take two images 
/  /  and two feature sets as input and produce world coordinates as output 
class CHStereo 
{
public:

float scaleweight(int i,int j,int p,int q,float weight);
CPoint getRightImagePoint(int i,int j);
CPoint getLeftImagePoint(int i,int j); 
float generalMiu(int i,int j,int p, int q); 
void initCorrelate(CHopfield* hopfield);
void init(CFeatures* cfl.CFeatures* cf2,HRBitmap* cbl,HRBitmap* cb2,CFundamental2* 

CFun);
void init(CFeatures* cfl,CFeatures* cf2,HRBitmap* cbl,HRBitmap* cb2); 
float calculateDisparityGradient(int i,int j,int p.int q); 
float cyclopeanSeperation(int i, int j, int p, int q);

float calculateWeight_3(int i,int j,int p,int q); 
float calculateWeight_2(int i,int j,int p,int q); 
float calculateWeight_l(int i,int j,int p,int q); 
float zeroWeights(CHop field* hopfield);

int m_objective£unction; 
int m_operationMode; 
int m_maxiterations; 
int m_stableiterations; 
int m_inittype; 
float m_maxdisp; 
int m_compatibilitytype; 
float m_initvalue; 
float m_activationalpha; 
float m_T;
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float ON; 
float OFF;
CFundamental2* m_cfun;
BOOL m_showenergywindow;
BOOL m_scale;
BOOL m_multiplematches;
BOOL m_showactivationfunction;
BOOL m_teUenergyincrease; 
float m_gaussiandeviation; 
float m_initialneuronvalue;
BOOL m_writeweights;
BOOL m_writeactivations;
float m_offset;
float m_teta;
float m_omega;
float m_compatibilityshow;
int m_updatingmode;

void drawFunction(CHopfield *hopfield,int functiontype);
float £ndEnergyFromFile(char* filename);
int pmneNetwork_3(CHopfield *hopfield);
int pruneNetwork_4(CHopfield *hopfield);
void setAllWeights(CHopfield* hopfield,float value);
void sortFeatures(PointMatch* matches);
void sortFeaturesFvsF(PointMatch* matches);//F vs F = features versus features
void sortFeaturesFvsDS(PointMatch* matches);//F vs DS= features versus disparity
float findMiu(int ynt j);
float compatibility(float X);
float compatibility_l (float X);
float compatibility_2(float X);
float findDeltaD(int i,int j/nt p,int q);
float findDeltad(int t/nt j,int p/nt q);
PointMatch* formMatches(CHopfield* hopfield);
PointMatch* formMatchesFvsF(CHopfield *hopfield);
PointMatch* formMatchesFvsDS(CHopfield *hopfield);
float findDisparity(float xl,float yl,float xr,float yr);
int pruneNetwork_l(CHopfield* hopfield);
int pmneNetwork_2(CHopfield* hopfield);
void setBiasAll(CHopfield* hopfield,float value);
float calculateWeight(int i/nt jqnt p,int q);
float calculateWeight(int i,int j,int p,int q,float wvalue);
void doUpdateNetwork(CHopfield* hopfield);
void doUpdateNetworkl(CHopfield* hopfield);//regular updating
void doUpdateNetwork2(CHopfield* hopfield);//winer takes all
void setWeights(CHopfield* hopfield);
void correspond(void);
enum {contineous, binary};
CFeatures* m_leftfeature;
CFeatures* m_rightfeature;
HRBitmap* m_leftimage;
HRBitmap* m_rightimage;
CHStereo();
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CHStereo(CFeatures* cfl .CFeatures* c£2,HRBitmap* cbl .HRBitmap* cb2,CFundamental2* 
CFun);

CHStereo(CFeatures* cfl.CFeatures* c£2,HRBitmap* cbl,HRBitmap* cb2);//constructor 
virtual ~CHStereoO;

};

#endif /  /
!defined(AFX_HSTEREO_H DE2811D3_39BC_4B3D_952C_2BC27A207B1F INCLUDE
D J

/ /  Hopfield.cpp: implementation of the CHopfield class. 
/  /T h e  Hopfield network class, uses the Neuron class
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#indude "stdafx.h"

#include "Hopfield.h"
#include <stdlib.h>
#include <time.h>
#include "MATX.h"

#ifdef _DEBU G
#undef THIS_FILE
static char THIS_FILEO=_FILE_j
#define new DEBU G_NEW
#endif

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ /  Construction/Destruction 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

CHopfield::CHopfieldQ
{
/ /initialize random number generator 
srand( (unsigned)time( NULL));

>CHopfield::CHopfield(int m^nt n,float on,float off/nt mode,float alpha,int inittype,float 
initvalue,float inintval,float gaussian/nt updaringmode/nt disable)
{
srand( (unsigned)time( NULL)); 
m_height=m ; 
m_width=n; 
flag_disable=disable; 
m_updatingmode=updatingmode; 
m_initialEnergyFlag= 0; 
m_currentEnergy=0;
ON=on;
OFF=off;
m_inittype=inittype;
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m_initvalue=initvalue;
m_mode=mode;
m_alpha=alpha;
m_gaussiandev=gaussian;
m_neuroninitvalue=initvalue;
m_neuronGrid=initializeNeurons(m,n);

}

CHopfield::~CHopfieldO
{
inti;
if(flag_disable!=l) {

for( i=1 ji<=m_height;i++) 
for(int j=1 ;j < =m_width;j++) 
m_neuronGrid[i] [j] .deAllocO;

}

for( i=0; i<m_height+2; i++) 
{
delete [] m_neuronGridfi];
}

delete [| m_neuronGrid; 
}

void CHopfield::clear()
{

lastChangedNeuron=0;
m_initialEnergyFlag=0;
m_currentEnergy=0;

/ /clear all values from the neurons 
for(int i=1 ;i<=m_height;i+ +) 

for(int j=1 ;j < =m_width;j++) 
m_neuronGrid[i] [j] .clearQ;

}

CNeuron** CHopfield::initializeNeurons(int m, int n) 
{
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//create a grid of neurons and set all its values to zero 
int i,j,p,q;
CNeuron** neurons; 
neurons= new CNeuron* [m+2];

for( i=0; i<m+2; i++) { 
neurons[i] = new CNeuron[n+2];
}

for(i=ld<=m;i++){ 
for(j=l;j< =n;j++){ 

if(flag_disable==l) 
neurons [i] [}] .disable(); 

else {
neurons[i][j].setGridsize(m,n); 
neurons [i] [j].setOnOFF(ON,OFF);

neurons [i] [j] .setMode(m_mode,m_alpha,m_inittype,m_initvalue>m_neuroninitvalue,m_gaussiande 
v);

neurons[i][j].clearQ;//initilize the neuron 
}

}
}

/  /  now connect the neurons together

if(flag_disable!=l) { 
for( i=1 ;i< =m_heightd+ +) 

for( j=l;j<=m_width;j++) 
for( p=l;p<=m_height;p++) 

for( q=l;q<=m_width;q++) 
neurons[i] [j].m_connection[p] [q].neuron=&neurons[p] [q];

}
retum(neurons);

}

void CHopfield::writeWeightstoFile(char *filename/nt linenum)
{
if(flag_disable==l) return;

char tempi [60]; 
char temp2[30]; 
strcpy(templ,filename);
_itoa( linenum, temp2,10); 
strcat(templ ,temp2); 
strcat(templ ,".txt");

writeWeightstoFile(templ);
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}

void CHopficld::writeWeightstoFilc(char * file name)
{

if(flag_disable==l) return;

FILE* tempf;

tempf= fopen(£ilename,"wt");

for( int i=l;i<=m_height;i++) 
for( int j=1 ;j <=m_width;j++) 

for( int p=l;p<=m_height;p++) 
for( int q=l;q<=m_width;q++) 

fprintf(tempf,"W %d %d %d %d=
%f\n",i,j ,p,q,m_neuronGrid[i][j].m_connection[p][q] .weight);

fdose(tempf);

}

float CHopfield::findEnergyDiscrete()
{
/ / calcuulate the energy of the discrete hopfiled network 
int i,j,p,q;

float energyl—0; 
float energy2=0;

//firsst term
for( i=l;i<=m_height;i+ +) 

for( j=l;j<=m_width;j++) 
for( p=l;p<=m_height;p++) 

for( q=l;q<=m_width;q++)

energyl+ =m_neuronGrid[i] [j] .m_connection[p] [q] .weight*m_neuronGrid[i] [j] .activafion*m_neu 
ronGrid[p] [q] .activation;

energyl*=((float)(((float)-1.00)/((float)2.00)));

//now  calculate the energy due to bias

for( i=l;i<=m_height;i++) 
for( j=1; j <=m_width;j++) 

energy2+=m_neuronGnd[i] [j] ,bias*m_neuronGnd[i] [j] .activation;

return (energyl-energy2);
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}

float CHopfield::setConnectionValue(int i, int j, int p, int q, float value)
{
float oldvaluel,oldvalue2;

oldvaluel =m_neuronGrid[i] 0] .m_connection[p] [q] .weight; 
oldvalue2=m_neuronGrid[p] [q] .m_connection[i] [j] .weight;
if(oldvaluel!=oldvalue2) AfxMessageBox("Network is not symmetric"); / /just making sure 
network is symmetric, although unnecessary

/  /  now set the connection values, and make sure theyre symmetric 
m_neuronGrid[i] [j] .m_connection[p] [q] .weight=value; 
m_neuronGrid|p] [q] .m_connection [i] |j] .weight=value;

m_neuronGrid[i] [j].m_connection[p] [q].done=l; 
m_neuronGrid[p] [q] ,m_connection[i] [j] .done=1; 
return oldvaluel;
}
void CHopfieldcalignWeightsQ 
{
if(flag_disable==l) return; 

int i,j,p,q;
/ / make symmetric, in case used random initilazation 
for( i=l;i<=m_height;i++) 

for( j=1; j < =m_width;j++) 
for( p=l;p<=m_height;p++) 

for( q=l;q<=m_width;q++)

m_neuronGrid[i] [j] .m_connection[p] [q] .weight=m_neuronGrid[p] [q] .m_connection[i] [j] .weight;

for( i=lq<=m_heightd++) 
for( j=1 ;j < =m_width;j++) 

m_neuronGrid[i] [j] .m_connection[i] [j] ,weight=0;
}
float CHopfield::setBiasValue(int i, int j, float value)

{/ / use this function to set the value of a neuron's bias 
float oldvalue=m_neuronGrid[i] [j] .bias; 
m_neuronGrid[i] [j] .bias=value; 
return oldvalue;
}

float CHopfield::updateNetwork(int n)
{
if(m_updatingmode==0)// regular updating 
return updateNetworkl(n);
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else
return updateNetwork2(n);//winner takes all

}
float CHopfield::updateNetworkl(int n)
{
/ / update the network n times using asynchronous updating scheme 

if(m_initialEnergyFlag==0) initializeEnergyValue();

float delta_En;

for(int i=ld<=nd++)
{

int i_index=(int)randomGen(l,m_height,l);//create random indices for random updating 
int j_index=(int)randomGen(l,m_width1l);//create random indices for random updating

/  /  now update given neuron 
previous=m_neuronGrid[i_index]|j_index].activation; 
delta_En=m_neuronGrid[i_index] [j_index].update();//now update 
present=m_neuronGrid[i_index] [j_index] .activation;
//if(present<0.0001) m_neuronGrid[i_index] [j_index] .activation=0 
//se t the last changed neuron 
i f(previous !=present)
updateEnergyValue(delta_En,previous,present);
/  /  find new energy now 
}

return m_currentEnergy;

}
float CHopfield::updateNetwork2(int n)
{
/ /winner takes all 

inti;
float oldvalue;
float delta_En;
float maxinput=-10000;
int rowmax=-l;
for( i= 1 ;i<=m_height;i+ +)

{
oldvalue=m_neuronGrid[il [n] .activation; 
delta_En=m_neuronGrid[i] [n] .update(); 
m_neuronGrid[i] [n] .activation =oldvalue; 
if(delta_En>maxinput)

{
maxinput=delta_En;
rowmax=i;
}

}
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for( i=l;i<=m_height;i++)
{
if(i!=rowmax) 

m_neuronGrid[i] [n] .activation=0; 
else

m_neuronGrid[i] fn] .activation=1;
}

m_currentEnergy=findEnergyDiscrcte(); 
return m_currentEnergy;
}
void CHopfield::WriteActivations(char ^filename)
{
FILE* tempf;
temp f= fopen (filename,"wt"); 

fprintf(tempf,"M=["); 
for( int i=l;i<=m_hcight;i++)

{
if(i!=l) fprintf(tempf," ;\n"); 
for( int j=1 ;j < =m_width;j++)

*fprintf(tempf,"%f ",m_neuronGrid[i] [j] .activation);
}

}
fprintf(tempf," ] "); 
fclose(tempf);

Jvoid CHopfield::WriteActivations(char * filename,int linenum)
{
char tempi [60]; 
char temp2[30]; 
strcpy(templ,filename);
_itoa( linenum, temp2,10); 
strcat(templ ,temp2); 
strcat(templ," .txt");
WriteActivations(templ);

}
void CHopfield::updateEnergyValue(float deltaE,float pastactivation,float presentactivation) 
{
/ / calcuulate the energy of the discrete hopfiled network 
float energy_change=0; 
float activationchange;

float energyl =deltaE; 
energyl*=(float)-l .0;
activationchange=presentactivation-pastactivation;

m_currentEnergy+=(activationchange*energyl);
}

void CHopfield::initializeEnergyValueQ 
{
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if(m_iniriaIEnergyFlag— 0)
{
m_cutrentEnergy—findEnergyDiscreteO; 
m_initialEnergyFlag= 1;
}

}
void CHopfield::disableQ 
{
flag_disable—1;
}

/ /  Hopfield.h: interface for the CHopfield class.
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#if
!defined(AFXHOPFIELD_H_A707EAAD_0FEB_49DF_85E5_83213D274059_INCLUD
ED_)
#define
AFX_HOPFIELD_H_A707EAAD_0FEB_49DF_85E5_83213D274059 INCLUDED_

#if _MSC_VER > 1000 
#pragma once
#endif / /  _MSC_VER > 1000

#include "Neuron.h"

class CFIopfield 
{
public: 

void disable(void);

void initializeEnergyValue(void);
void updateEnergyValue(float deltaE,float pastactivation,float presentactivation);
void WriteAcdvations(char* filename);
void WnteAcuvations(char* filename,mt linenum);
float updateNetwork(int n);
float updateNetworkl(int n);
float updateNetwork2(int n);//winner takes all
float setBiasValue(int i,int j,float value);
void alignWeights(void);
float setConnectionValue(int i,int j,int p,int q, float value);
float findEnergyDiscrete(void);
void writeWeightstoFile(char* filename);
void writeWeightstoFile(char* filename/nt linenum);
CNeuron** initiali2eNeurons(int m,int n); 
void clear(void);
CHopfieldQ;
CHopfield(int m,int n,float on,float off.int mode,float alpha,int inittype,float initvalue,float
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inintval,float gaussian,int updatingmdoe, int disable);//constructor 
virtual ~CHopfield();
CNeuron **m_neuronGrid,
float m_gaussiandev;
float m_neuroninitvalue;
int m_inittype;
float m_initvalue;
float ON;
float OFF;
int m_mode;
float m_alpha;
int m_updatingmode;
int m_height,m_width;
int m_inidalEnergyFlag;
float previous;
float present;
float lastChangedNeuron;
float m_currentEnergy;
int flag_disable;

};

#endif /  /
!defined(AFX_HOPFIELD_H_A707EAAD_0FEB_49DF_85E5_83213D274059 INCLUD
ED_)

/ /  Neuron.cpp: implementation of the CNeuron class. 
/  / neuron class
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#include "stdafx.h"

#include "Neuron.h"
#include "MATX.h"
#include <time.h>

#ifdef_DEBUG
#undefTHIS_FILE
static char THIS_FILE[]= FILE ;
#define new DEBUG_NEW 
#endif

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ /  Construction/Destruction 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

CNeuron::CNeuronQ
{

flag_disable=0;
}
CN euron:: ~ CN euronQ
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{//deallocate the grid of connections

}

//se t the number of neurons in the grid mxn and initlize the weights 
void CNeuron::setGridsize(int height,int width)

m_gridsizeHeight—height; 
m_gridsizeWidth=width;
/  /  now allocate the connections ( a 2D grid) 
m_connection=new connections* [m_gridsizeHeight+2];

for(int i=0; i<m_gridsi2eHeight+2; i++)

*m_connection[i] = new connections[m_gndsizeWidth+2];
}

}
void CNeuron::clear()
{
if(flag_disable==l) return;
/ /initialzie the members 
if(m_initmode==0) activation=OFF; 
if(m_initmode==l) activation=ON; 
if(m_initmode=—2) activation=randomi2eActivation(2); 
if(m_initmode==3) activation=randomizeActivation(3); 
if(m_initmode==4) activation=m_initvalue; 
if(m_initmode==5) activation=randomizeActivation(4); 
if(m_initmode==6) activation=OFF;
//initialize the connection weights 
for(int i=0,i<=m_gndsizeHeight;i++) { 
for(int j=0;j<=m_gridsizeWidth;j++) { 
m_connection[i] [j] .weight=0; 
m_connection[i] [j] .done=0;

}
}

}

float CNeuron::updateO

//update returns the previous value of the neuron, this is needed in the energy function of the
hopfield class
float pastvalue=activation;
float input=0;

for(int i=l;i<=m_gridsizeHeightd++) { 
for(int j=l;j<=m_gridsizeWidth;j++) { 

input+=m_connection[i] [j] .weight*m_connection[i] [j] ,neuron->activation;
}
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input+=bias;
activation=activationFunction(input); 
return input;

>float CNeuron::activationFunctionContineous(float a_input)
{
float temp;
temp=(tanh(a_input/m_alpha))+1;
temp=temp*((float)0.5);
r e tu r n  te m p ;

>float CNeuron::activationFunctionDiscrete(float a_input)
{
if(a_input>0) return ON; 
if(a_input<0) return OFF; 
else return activation;

>float CNeuron::activationFunction(float a_input)

*if(m_mode==0) return activationFunctionDiscrete(a_input); 
if(m_mode==l) return activationFunctionContineous(a_input); 
else return activationFunctionContineous(a_input);

>float CNeuron::randomizeActivation(int mode)
{
if(flag_disable==l) return 0;
float random=randomGen(OFF,ON,0);
if (mode!=2 && mode!=3 && mode!=4) return mode; //static initialization (non-random) 
/  /  discrete random 
if (mode==2) 
return rint(random);
/  /  contineous random 
if(mode==3) return random;
if(mode==4) return (m_initvalue2+ randomGen(0,m_gaussian,0)); 
else {AfxMessageBox("incorrect function usage"); return 0;}
}

void CNeuroncdeAllocQ 
{
for(int i=0; i<m_gridsizeHeight+2; i++)

{
delete [| m_connection[i];
}

delete [] m_connection;
}
void CNeuron::setOnOFF(float on, float off)
{
ON=on;
OFF=off;
}

243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



void CNeuron::setMode(int mode, float alpha,int initializationmode,float initvalue,float 
initval2,float gaussian)
{
/ / set on and OFF first then call this function sicne this function might need to use the values for 
on and off
m_mode=mode;//0 is binary and 1 is contineous 
m_alpha=alpha;
m_initmode=initializationmode;//0 is off 1 is on and 2 is random binary 3 is random contineous 
and 4 is by value 
m_initvalue=initvalue; 
m_initvalue2=initval2; 
m_gaussian=gaussian;
}

void CNeuron::disable()
{
flag_disable—1;
/ /  Neuton.h: intetface for the CNeuron class.
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

#if
!defined(AFX_NEURON_H_85214CF3_6BB0_43B3_8BDF_946DCE05B5BA INCLUDE
D J
#define
AFX_NEURON_H_85214CF3_6BB0_43B3_8BDF_946DCE05B5BA_INCLUDED_

#if _MSC_VER > 1000 
#pragma once
#endif / /  _MSC_VER > 1000 
#include <math.h>
#include <stdlib.h>

class CNeuron 
{
public: 

void disable(void);
void setMode(int mode,float alp ha in t initializationmode,float initvalue,float initval2,float 

gaussian); 
void setOnOFF(float on,float off); 
void deAlloc(void); 
float randomizeActivation(int mode); 
float activationFunctionDiscrete(float a_input); 
float activationFunctionContineous (float a_input); 
float activationFunction(float a_input); 
float update(void); 
void clear(void);
void setGridsize(int height,int width);
CNeuronO; 
virtual -CNeuronQ;
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float activation; 
float bias;
int m_gridsizeHeight; 
int m_gridsizeWidth; 
int flag_disable; 
float ON; 
float OFF; 
float m_alpha; 
int m_initmode; 
float m_initvalue; 
float m_initvalue2; 
float m_gaussian;
int m_mode;//0 is binary and 1 is conitineous 
int valid; 

struct connections { 
float weight; 
int done;
CNeuron* neuron;
} ;

connections** m_connection;

};

#endif /  /
!defined(AFX_NEURON_H 85214CF3_6BB0_43B3_8BDF_946DCE05B5
BA INCLUDED_)
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