University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

1995

BiCMOS implementation of the hierarchy for

pattern extraction artificial neural network.

Kai Yiu. Hung
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation

Hung, Kai Yiu., "BICMOS implementation of the hierarchy for pattern extraction artificial neural network." (1995). Electronic Theses
and Dissertations. Paper 1294.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please

contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F1294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/1294?utm_source=scholar.uwindsor.ca%2Fetd%2F1294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

B+l

Acquisitions and

Sibliothéque nationale
du Canada

Direction des acquisitions ¢l

Bibliographic Serwces Branch des services bibliographiques

395 Wellinglon Street
Ottawa, Ontano
K 1A ON4 K1A ONa

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

- Canada

395, rue Wellnglon
Onawa {Ontaiky)

Vowm Bt b e

ML UEL T AT T W

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la these soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

BiCMOS Implementation of the Hierarchy for Pattern
Extraction Artificial Neural Network

by

Hung, Kai Yiu

A Thesis
Submitted to the Faculty of Graduate Studies th-ough the
Department of Electrical Engineering in Partial Fulfillment
of the Requirements for the Degree of
Master of Applied Science
at the

University of Windsor

Windsor, Ontario, Canada

May, 1995

R

Acquisitions and

Bibligtheéque natonale
du Canada

Direction des acquisiions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 KA QNG

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ortawa {Ontano)

Tove it Nl et e

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la proprieté du
droit d’auteur qui protéege sa
thése. Ni la these ni des extraits
substantiels de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-10937-2

Canada

Name UG

LA

iy

Dissartation Abstracts Intermational is arranged by broad, general subject categories Please select the one subject which most

nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

CLLC AW OMIC o ANY Rl TRICL, : U MI
SUBJECT TERM SUBJECT CODE
Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES
OMMUNICATIONS AND THE ARTS Pyychology 0525 PHILOSOFHY, RELIGION AND Ancient 0579
irchn.c'ur'-u 0729 R:Sdmg 0535 THEOLOGY Medieval 0581
Arl Hikory 0377 Religious 0527 Phileseoh 0472 Modern 0582
G oy i Ay i s
0378
En:;m . 0157 "_:oc?élr&:ann 8333 Blb;\lgrﬂ?lsmdll,'ﬂ g%%% éinu.é\us!mlm ond Oceanio 83%3
Informahon Science 0723 Sociology o cl o3l anadien
Journalism 0391 Speciol 0329 Hosrory of 6370 Eurapean 0335
sl Sovy 008 Techmatory 010 Philosophy of 9322 Mcii Eatorn 0333
Mo b 0708 Technol . . e I
N 1 B ™ - A, i
ommunicalion ocaliana .
Iheokor 0463 AGE, LITERATURE AND American Shudies 0323 i cal Scionce 0378
T Anthropology " Generol 0615
[Gemnuu“o" LINGUISTICS Archocology 0324 Internahonal Low ond
ol ' i Lenguage Culturol 0324 Rl:k?h:ms 0bié
A‘jm""‘"u"m‘ o b %ﬁl;ﬂl'ul 0679 Phr‘lcul L 0327 Pub’lc Adm:ﬂli‘rd'lo 06] 7
Adult and Continuing 0sle Ancignl 0289 Business Adminisirahion Recreation oala
gl Q33 nguiics g0 General oo Smeei L Gasg
1) I . 8| 4] .
filingual and Mubticuttural 22 h,mr:,g?:m : B;:Ei‘:.:;' E 0770 SOCBLDQy | 0626
Businets PLLE oral 041 Manogement 0454 cr ;E.:;I v ond Pencloay . 0627
Community Collega 02s 4 Classical 0294 Markehng 0318 Delrn r:qt. °gy 9938
Curpiculum and lnstruchion 02]2; Compargtive 0295 Conadian Strdies 0385 Elhn:iguns Ryucllbll eofey ool
Eimonmry baq Nodew Qa7 Economas osor oot ond Famy
" £ nerq
Finance 0ers Mrlc?nrr:‘ 03146 Agricultural 0503 In&smﬂl'm1 dlber 0628
Guidance and Counseling 0519 Asneticon 0591 Commerce-Business 0505 R“'? "° n° 0629
Health 0680 Asian . 0305 Finance . 0508 plddaons - wiliore oode
Higher 0745 Canadhan [English] 0352 History . 0509 fublic and Sacio :
e Econamc §3% Comadonfench 0333 Lobe galo Bevclopment — . 0700
Al
Industoal Q521 C;:gr::omc 031 Folklore Y 0358 Tro:rwr%‘%nr:ﬂ Methods . 8;83
Longuoga and biterabre . 0279 Latn American 0312 Geogrophy 0386 Urba:gnd n Plunrung - oros
Malhematics 280 Middle Eastern 0315 Geroniclogy 0351 yrban and Regie P
s‘h‘i’i:;“ hy ol Oggg Romance . 8%:3 Hnslgey | 0578
yu’c‘:!p Y 0523 Stavic ond East European nero
THE SCIENCES AND ENGINEERING
Geode 0370 Speech Pathol 0440 Engineerin
gi]?llg?hlnc:l SCIENCES o';.;; 0372 Tmlogy o 0383 gGencrc . : .0537
Ganeral 0471 Geophysics . Q373 Home Economicy 0384 Acrospoce 0538
Agronomy Q285 Hydrology 0388 Agricultural 0339
Animal Colture and incrology 0411 PHYSICAL SCIEMCES Autemotive 0540
Amvel P 0% Toleomcdiod 045 Pure Sciences N L1
mimal Pathology alececology e Chermiat hemical e e
ety o paemeedr O Generl Shncranic ondEisciical " 9343
Inchnoo%v . oleczoalogy Agriculturol Elociranics anc B . O
Forestry and Wildlile 0478 Palynology 0427 Analylical cot ond Thermodynamics ...
Plant Cullure 479 Phyt!cu‘l’&ogruphy e 0168 Biochemistry Hydroubic.........00545
gunl gglhol?gy 8;?[; Physical Oceanogrophy 0415 Inoraanic mn;xisrl‘znl SRS
Range fpogoment 0777 HEALTH AND ENVIRONMENTAL Nucker . MatorilsScance ..
Wood Techrology Q744 SCIEMCES Phormacautical echanical
by VR v AT I - st R
eall ences olymer
Anatamy 8285 Genc:u| . D566 Roéiuriun . 0754 ggfkgmiﬁ' s
Brostatishicy 309 Audioloﬁy e .. 0300 Mathematics0405 Peirolcgurng """
kg 0379 Chemathoropy ... 0992 Physics Samany and Manidipol
Cell 8329 Dentistryo ... 0567 General 0605 g stcmWScicncu pa
Ecology . a2 Education 0330 ACOUSiCs L0986 ot
Entomology 0189 Haspito! Managemen ... Q769 Astronomy and Oporations Beswearch .
Genalics : 079 Human Development ... 0758 Astrophysics................. . Plg;ir.s Technlogy ...
llc\'::tobnoogf .0410 m‘-""p d Soroare gggz ﬁtmo'lp ric Science B Teatile chhnology
. iine and surgery . JOMIC ..
Maloculee gg?; Menial Heolth .. ge . 0347 Electronics and Elccfri:iz0807 PSYCHOLOGY
Noun:m:mncr;‘ 0116 NUrSing oo e 0549 Elementary Particles an General 0621
Qeeanagraphy o8 Nutrition ..~ 0570 High Energy 0798 pobewiong] 0384
Raﬁ""ibw 0B Obstetrics and Gynecology .. 0380 Fluid and Plasma . ..0759 ok " 0a22
Veterinary S 0778 Occupational Health an Malecular 0609 B elopmental " 0820
Z;:ggn?ry e 0472 O;T\clzarvol """"""""""" 0354 ggc!ccr 8?.;% Experimental 0623
] ' thalr e hes
Broghyses | 0786 Pashology . o .. Radiofion o756 Industicl ... RIEE
",'"“l 0740 Pharmocology ... Solid State 0411 Physial ?::ol T
Maclica Phnrrnoc%r SIOBSHES .oovvrvvors oo 0463 Ps;:hugﬁ,,ogy"jj: 0349
EARTH SCIENCES Eil‘mi':ﬂ“}:ﬁ“p" o Applied Sciences Psychometrics ... 0632
Biogoochemisiry . . 0425 Radiology . R Applied Mechanics ... o 0344 Social ... e ...0451
Geochomistry 0996 Recreator oo Computer Science ... 0984 ®

© 1995 Hung, Kail Yiu

All Rights Reserved. No part
of this document may be reproduced,
stored or otherwise retained in a
retrieval system or transmitted in any
form, on any medium or by any
means without the prior written
permission of the author.

Dedicated with love

Lo My parents,

Abstract

This thesis presents the architecture and the algorithm of the Hierarchy for Pattern
Extraction (HyPE) artificial neural nenvork. The training algorithm and the recalling
algorithm of the HyPE artificial newral nenwork are rewritten into C based on a Smalltalk
prototype. A switching tre¢ minimization program is introduced that provides logic mini-
mization capable of handling a higher transisior tree height and merges several transistor
trees. The Northern Telecom 0.8u Bipolar Complementary Meral Oxide Semiconductor
(BATMOS) technology is used to implement the designs in this thesis. There are two final
dynamic neuron designs thar have been verified and fabricared. One neuron uses the True
Single Phase Clocking (TSPC) Laich and the other neuron uses the Ultra Fast Dynamic
Current Steering (UCDCS) latch at the output of the dynamic functional block. The verifi-
cation of the functional blocks for both newron designs is done using SPICE simulation.
The highest clocking speed applied to the TSPC neuron and the UCDCS neuron are
50MHz and 66MHz, respectively. Additionally, by isolating one of the transistor trees
from the functional block, the clocking speed up 10 333MHz can be achieved. Finally, a

test chip including these two final dvnamic neuron designs has been fabricated.

Acknowledgements

1 would like to express my sincere thanky and appreciation to my supervisor. Dr. G A, Jullien, and
my co-supervisor, Dr. W. C. Miller tor their tremendous support and guidance throughout the
progress of this r{:_f:'_sis. I would also like 1o thank to Bruce Erickson and Alagu Annaamalai for
guiding me on the research at the beginning. 1 wonld also need o thank Subramanian Kumar for
working out the algorithm and progranmming. 1 need to thank Marjun Shahkarami, John and
Dimitris Phoukas for helping me from the lavour design problem to writing the thesis. Finally 1
have to express my deepest gratitude to my parenis for their patience, support and encouragement

on every aspect of my life.

vi

University of Windsor

Table of Contents

Abstract ...

ACKNOWICABLIMENTS .t e e bt s vi
TABIE OFf COMMENLS ©oiivieieeiieie ettt e b e s eb e s e ba e e e sbebentes vii
LiSEOF FIZUIES oevivveieieeenieieinisie e atsee et s aas e sh ek b e st bea s eas e ba e s sa st ix
LASUOE TABIES 1oivrivieeeeiiir it et s b st bt b aa b b aa e e e b e e ans xii
LiStOf SYMDBOLS ©.vveiereeeiiiiiie et eressens e essersassssrsssssssssansssssssssssssnsssesasess ikl

Chapter 1
1.1
1.2
1.3
14

Chapter 2
2.1
2.2
23

24

25

Chapter 3
31
32

33

34

Chapter 4
4.1
4.2

INTOUUCTION ..ot rrre s s s s s e sa e s e sebnnans 1
MOLVALON OF LN TRESTS (it s s e e ba s bR A bR R e

Wik =

Hierarchy for Pattern EXIRaction ... s 5
Architeture 0 HYPE o rinssminss s bt ass st st s s s s snssasssnsasasassases 6
201 NEUTON MOUCL ..o s s et st st s ssa e b ben s D
The HYPE ALFOTIIMI ..ot neseessiseresssessrs i s e s sstsesessabessessnses 1 2
24.1 Training Pauurn Cerreresret et bttt st enssesa st b s s v s e s e e s et erata e | 3
24.2 Overall Training AILoruhm e etb e btk as s iasa e ebstearsnebeneabsseserasananasanssparie] D
243 Initialization ATZOTIIM (i s 16
244 Wake AlZOHEM ..o s ss s s ssrssssssssssssssssnsernas L1
245 Sleep AlZOTIM .o e et s s
246 ReECHIINE PHOCCSS . viivrrs s reesnessssescstsesssersesssssessns s sasssvasss sassaansssnsnsnssssnasnsr s &

Switching Tree Minimization & Latch Designscoienenninnncninninne, 25
INEEOUUCTON. et etecrectiteeercrser s reee s s e it ses bbb r sa b raR S e ER SR P e TR bR b an A Bba S SR SRe b aRareanen 25
Switching Tree MiRIMIZALON Lo e s s st s ss s s e ssssssnses 25
32,1 Minimization AIZOMININ ..o st ansmsssss e ssbsssssassssassens 26
3.2.2 Switching Tree Minimization PIOZIAM .. icecereecersesereressersrssssesisssissssin 32
Latch Design... restrrersbeessetetesarrarsnsresene e sasnsesasssnees I
33.1 Truc Smp,lc Phasu. Clo(.k:ng Lalch (TSPC) ... 34

3.3.1.1 TSPC Design Using in el LIBrary ..o, 36

3.3.1.2 A Full Custom TSPC Jatch DESIZN c..cruvcviecriiecererrnssrasnsssssasnrensesnecss 38
3.3.2 Ultra-Fast Dynamic Current Steering Lah ..o e 39

SUIMIMIATY c.veveeireceeverireresene e seresmsserenesssrsassers sibstsssisbi bobsbs b it st teaba b srsbs s sems s bassras e smsns namesnaead 41

VLSI Implementation of HyPE ... 42
Introduction... OO PO ROP ORI - 7
Pipeline Ncuron Dcslgn Approdch ... 43
42,1 Logic Gatc NCUron DCSIER .eccrmismessnsinsmmsesnsesmsmsss s e ss s sssssansssssisessonsas 45
4.2.1.1 8-input Pipeline Neuron DESiEN s osssnsisserisee 45
4.2.1.2 4-input Pipeline Neuron DEsig... et sisisisnisisismsnssississes 48
4.2.1.3 Stow B-input Pipeline NCuron DEsign .o 49
422 Pipeline Dynamic Neuron Design.... ererssnserneesessrserenssesind &
4.2.2.1 8-input Switching Tree P:pclme Dynamw Ncuron 53
4.22.2 T-input Switching Tree Pipeline Neuron Design ... essieseinees 55

Unavessity of Windsor

43 Single Block Neiron DEsioit APPIOICR . o i st e 56

431 Reorgamized Coll o e e ae)]

4320 3anput NCUROI DRI v s e asaessees 58

4.4 DESCUSSTON OF INCUTOD DIRIETIN L ee e sre s e seant e eaa 6l

4.5 SIMULAON OF NCUTON DICRIEIN e e e et e snaes 61

4.6 Additional Information on the Neuron DIESIE oo e eeageeead o

4.7 Test Cell FOr FADIICIION oo et ra e seb s snns st s as b asa s sessnad 6d

438 SUIITLATY covvteie ittt ettt er b ee e e e b e s sa e sea b b dh £ E e G a e shar e s et en b 66
Chapter 5 CONCIUSION -1 s b 67
5.1 Contributions Of e TRESIN i s s 67

52 FUIURC WOTK Lottt e ettt e e s e bbb 68
REFERENCES ... e e e s s s s e b e 70
Appendix A The Training Algorithm of HyPE s 72
Al B QUATEONS 11 rscver st iner et e e e e bbb R b bR eSS bR en 7

A2 HYPE AIZOTIIML i st srs e e st e s e s b s s T

AZ1 Overdll TrMONG PIOCESS (i e e s ssss s s e s srsassnss 72

A22 0 INIUALZE BN ProCUSS e s e e 73

AT WAKE PrOCUSS e e e st e e bR A b 73

A4 SICOD PrOCESS e s ek

Appendix B Source Code of All PrOgrams ... 77
B.1 C Code for genCrating inPUl PILICTIIN oo e emme st s s s sn st 71

B2 TrAININE PRORIIIT ccoein ettt s s s s s s rar s s r s ss b e b abssb s b b s b r s e rnen s 78

B.3 FOCAI] PIOBIAM ovitireiriie et et ser e st sas bbb e r e e b e s A sb bR bbb s bt n R s 91

B4 Switching Tree MInimization PrORIii ... i s 95
Appendix C Layout of the Desigin ... 97
Appendix D Pads Setting in the Test Cell o 114

vili

University of Windsor

List of Figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2,10
Figure 2.11
Figure 2.12
Figure 2,13
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20
Figure 3.21

Figure 3.22
Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4

The Diagram of the Brain Model i 7
HyPE ATChIlCCIure (s s s e 8
Diagram of a4 McCulloch-PIls neuron ..o, 10
Schematic Diagram of the neuron in HyPE . 11
Characteristic distribution of Groups AB,C...oin i, 13
Characier A, B, Coo s s e aaean 14
Examples from Character A'S patierm e 14
Plot of the Similarity Distribution of Character A, B, C....o.vns 15
The Flow Chart of the Overall Training Algorithm. 15
Flow chart of the Wike Al2orithm. s 18
An Example of Imprinting a NCUron ..., 20
Flow Chart of the Sleep ALZorthim e 21
An Example of Finding . and ... v 22
The Dynamic Logic DISZFAM i s sssisans 26
Graphical Symbel of Tree Componemit ..., 27
FUll Tree of Triansislor. ..ot 28
Graphical Representation of Full Tree of Transistor......cvviiiiescnnn 28
Rule 1 of Switching Tree Minimization......vveieini s 29
Rule 2 of Switching Tree MInimization ..., 29
Rule 3 of Switching Tree MInimizZation. ... 29
The Graphical Representition with Node Number and the Key Table......30
Merged Graphical Representation Tree ... ssieiens 30
The Reversed Variable Order MINIMIZAtioncoovviviimevnnviniennnns 31
An Example of “Don’t Care™ Caseoovvermecrercine s eseeeimnssesssnssnns 31
The Merged Tree Graphical Representationccvevviicnccrenicnnneiesnnes 33
True Single Phase Clocking (TSPC) LatCh....cccceiiciiiisiinnenns 34
Replace the N1 transistor with the NMOS Transistor Treecovvnnnnnenes 35
One of the Basic Cell of 1cell in BATMOS ..., 36
Transistor Level Division of TSPC LatCh.....cvvviininccenisnnnessssns 37
TSPC Latch Designed in tcell FOrmat ... 38
TSPC Latch Customized Layout Designccoveenieiciinncnnninnecesnseens 38
Master n-latch of UCDCS LatCh...ceciiiiiccinte s seccenacens 3%
Input Replaced by NMOS Transistor Tree in n-]Jatch ...oviviciiniisnnonenns 40
UCDCS Latch 1ayout Design......ovvvivvnininicvnninieneesenanssnsesssinssesensessns 40
BJT Transistor in BICMOS ...t 4]
Pipeline Neuron DesiZncccvvviiiiiniicinienesnies e nnerinnessasesenessans 44
8-bit Paralle]l COUNMET ...oviviricirr ettt s s st srssore 46
The Resettable D-type Negative-edge Flip-Flop(tdrn)coovviiiniininns 46
Schematic of the Z-10-1 MultipleXer ... 47

Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figurc 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27
Figure 4.28
Figure 4.29
Figure C.1
Figure C.2
Figure C.3
Figure C.4
Figure C.5
Figure C.6
Figure C.7
Figure C.8
Figure C.9
Figure C.10
Figure C.11
Figure C.12
Figure C.13
Figure C.14
Figure C.15
Figure C.16

Univerany of Windsor

Diagram ol the 84 Subliactor Lo 47
Diagram of the Activity BIOCh 48
Diagram of the <-bit Parallel Counter. i, 48
Diagram of 8-3 SubIrictor e e 49
Diagram of a Slow 8-bit Parallel Countero i S0
Schematic of the Stow --hit Paratlel Counter. e 50
Schematic of the 3-3 Adder e 3
Diagram of Slow 8-4 Subiractor . e 3
Schematic of S-1-0 SUDIEICTON i Y 2
Schematic of 3-3 SUBIFICION e 92
8-bit Switching Tree Parallel Counter. e 33
Schematic Symbol and the Graphical Symbol....cnninnnn 54
Schemuitic of the 8-4 Switching Tree SUDractor v 84
Schematic of the 7-bit Paralicl Counter with Complement Qutputs..........S5
Schematic of the 8-3 Subtractor with Complemented Outputs ...l 56
Single Block Neuron Design ..o s
Diagram of the 3-bit Paralle]l Subtractor. .. 38
Schematic of 3-bit Parallel Subtractor using TSPC Latch .39
Layout of the NMOS Transistor Tree a9
Schematic of 3-bit Parallel Subtractor Using the UCDCS Latch ... 60
Layout of the Single Block Neuron with UCDCS Latcho.n, 61
SPICE Simulation of the TSPC Latch Dynamic Neuron.......innene, 63
SPICE Simulation of the UCDCS Lutch Dynamic Neuron.........coeeone 63
Simulation of Single UCDCS Latch in 3-bit Parallel Subtractor 64
The Mask Layout of the Test Chip..., 65
Schematic of the 8-bit Counter ... 08
Schematic of the 8-4 SUbtriCIOr ..o 99
Layout of 8-input Pipeline Logic Gate Neuron ... 1)
Schematic of the 4-bit Counter ... s 101
Schematic of the 8-3 SUBIIACION ..o 102
Layout of 4-input Pipeline Logic Gate Neuronccocovvvecicvncninnicnnen 103
Layout of the Resettable D-type Negative-edge Flip-Flop.......c.cocoeinn 104
AND-2 Layout in Custom (left) and Teell (right)Design ..., 105
AND-3 Layout in Custom (left) and Teell (right) Design ..o 106
Buffer Layout in Custom (left) and Tcell (right) Design ..., 107
Inverter Layout in Custom (left) and Teell {right) Design.........cccocevee. 108
OR-2 Layout in Custom (left) and Teell (right) Design.....ccccevrvrvnnneeee. 109
Layout of the 8-bit Parallel Counter with Complement Outputs............. 110
Layout of the 8-4 Subtractor with Complement Qutputs......ccocerrriniinrins 11
Layout of 7-bit Parallel Counter with Complement Qutputs................... 112
Layout of the 8-3 Subtractor With Complement Outputs.......ccoceivennnee. 113

x

University of Windsor

Figure D.1 Diagram of Pads SCHING e 115

Universay of Windsor

List of Tables

Table 2.1.

Presentation Method™s Information (s, 16
Table 2.2. Information of Initializing Each Level e, 17
Table 2.3. Novelty Arousal controlled Threshold of Virgin Neuron in Level19
Table 2.4. Limitation of Imprinting Virgin Neuron in each Levelo ., 20
Table 2.5. The configuration of Sleep Algorithim ... e, 21
Tabie 3.1. An Example of Truth Table ..o 27
Table 3.2. Status of Master n-tateh in TSPC Latch s 33
Table 3.3. Status of Slave p-latch in TSPC Latch e a5
Table 3.4. Different Combinations of Transistor S12¢ccoviivvvinen s 37
Table 4.1. INeuron Parameter SCHINE oo e e s enes 43
Table 4.2. Comparison of Teell and Reorganized Logic GRIes cvvvieccieninnn 57
Table 4.3. Capacity of Core in Fabrication ... crecviesee e 62
Table 4.4, Estimation of area per logic gite v, 62
Table 4.5. Functionality of Pad ... 65
Table D.1 Configuration of the Pad ..o 114

xii

University of Windsor

List of Symbols

Explaination of Subscripts

¢E Xn.i. it

n

runs across the ncurons in a present level.
is the level or layer(input(0), alpha(1), Beta(2), Gamma(3), Basal Ganglia)

is the presentation method (1 is the initial presentation, 2 is the regular
presentation, 3 is presentation with the target and non-target pattern)

runs across the neurons in the upper level.

is the time step (Patern application step).

List of Notations

AVE

ﬁinilial

BTF

C.

ijt

C

nijt
Ej_ 1:'
En.j— 1.4

Fj_lv'

Average number of inputs from new virgin alpha neuron to each regular
Beta neuron (integer).

number of the regular neuron in beta level after the initial wake period
(integer).

Beta Threshold factor (integer).

Neuron Connectivity with the previous level (boolean vector).

The element of C. ., (boolean).

it

Regular (for all neurons in previous level, O if virgin, 1 if regular, for alpha

level elements of E are all *1’s) (boolean vector).

The element of Ej_ 1,; {boolean).

Firing status record of neurons in previocs level (boolean vector).

xiii

Universaity ol Windsor

nj-1t

kl
ki, ks, kk,

LP,

LL

LPF

The elementof |, (hoolean).
The firing population tinteger vector),
The element of FP‘” (integer),

Fining status (boolean).

The input history (integer vector),
The element of IHJ., (integer).

The input population (integer vector).
The element of "’,; {integer).

The input record (integer vector).
The element of IR | (integer).

a constant factor by which the pain factor is increased each time pain is
experienced.

contants for the input population.
contants for the input population.

The maximum number of times that a set of inputs will be used in the [I'th
presentation (integer).

The population of virgin neuron in alpha level (integer vector).

The distribution of firing population of beta level, FP, (integer vector),
The number of connection of a neuron in each level (integer).
The minimum gamma firing (integer).

The number of neurons in j'th level (integer).

xiv

NA
NAC

NAM

i

PF

PP

TNT

TP,

University of Windsor

The Novelty Arousal value (integer).
Novelty Arousal Criterion (integer).
The Novelty Arousal Monitor Value (boolean).

The size of virgin ncurons in j'th level (integer).
The input vector ¢ (bovlean vector).

The limit number of firing of virgin neuron in I'th presentation at j'th level
(integer).

The pain factor (real).

The Pain & Pleasure (hoolean).

Am I aregular before (1 is regular O is virgin) (boolean).

The size of neurons in j'th level (integer).

This is the set of all neurons in the j'th level (Sjr = SRJ_‘ v Sv#) .
This is the set of all regular neurons in the j’th level.

This is the set of all virgin neurons in the j’th level.

The size of regular neurons in j'th level (integer).
Threshold of Neuron (integer).

TargetNonTarget (1 if target pattern, O if non-target pattern) {(boolean).

The number of training pattern used in the / training presentation (integer).

v

Uiversuy of Windsor

Functions

Boolean Vector Sum

ZBV This counts the number of Boolean 1's in the Boolean vector V.

Vectorize Boolean Qutputs

v [G,-j,] This produces a vector of boolean outputs across the i index.
&

Normalizes vector
n (IHﬂ) This produces a normalized vector output of lllj.r .

Vectorize Integer Outputs

Vi [B.-j,] This produces a vector of integer outputs across the i index.
i

Random Number

Rlow,high] This produces an integer number between low and high .

Generate Neuron

N[Tiijiquiijij:] This allocate resource for a neuron.

Chapter 1

Introduction

1.1 Motivation of the thesis

The Hierarchy for pattern extraction (HyPE) artificial neural
network was originally proposed by Andrew Coward [1] in the
carly nineties, It was soon realized that it had the potential to
become a complete digital network. A join project between
Northern Telecom (NT) and the VLSI Research Group, University
of Windsor, was proposed at the same time in order to explore the
possibility of implementing HyPE in BATMQS, which was at the
time the state of the an fabrication technology available at NT. Our
starting basis was a prototype Smalltalk implementation of the
HyPE algorithm written by Andrew Coward. As a proof of concept,
a single neuron was selected for VLSI implementation. It was not
too long before it was realized that the use of teells, the BATMOS
standard library elements, was very expensive in terms of space for
this kind of application. Therefore a full custom dynamic lcgic
style was adopted for the implementation of the neuron. This
dynamic style is based on a recently proposed timing scheme, the
True Single Phase Clock (TSPC), for which novel storage elements
using the full advantages of BiCMOS technologies have been
designed by the VLSI Group.

Introduction

Motvation of the thesis 1

Univeraty of Windsor

1.2 Background

The topic of the Artificial Neural Networks (ANNSs) has been investigated for a long time.,
ANNs are widely used in different applications such as pattern recognition, optimization,

product of predicting financtal analysis and more,

Most of the ANNs work with analog neuron which are easy to program but not so casy to
implement in silicon. Recently, researchers have developed digital neural networks, such
as the adaptive probability neural network [6]|7][8] and the HyPE artificial neural
network. Although the digital ANN is casy to implement in silicon, it has the

disadvantage that the size of the ANN can be several times larger than the analog ANN.

The HyPE artificial neural network is the focus of this thesis. The purpose of the HyPE
artificial neural network is to provide the recognition of suggested patterns sent into the
network. Since the HyPE artificial neural network is still under modification and it
requires a long time to verify one set of parameters, we need a faster process in order to
train the network. This thesis focuses on finding a way to improve the performance of the
training process, using the Bipolar Complementary Metal Oxide Semiconductor
(BiCMOS) technology provided by Northern Telecom. It also provides an
implementation of the general neuron that involves all the functionality of each neuron in
the architecture and is the most representative sub-function to implement under the

algorithm of interest.

1.3 Thesis objective

The original objective of this thesis was to reverse engineer the algorithm from the
Smalltalk program which was the only resource available to us in the beginning A
rigorous description of the algorithm was to be written as part of this investigation. The
other objective was to implement in the VLSI medium the full architecture (or some well
defined part of it) in order to improve the training performance of the artificial neural

network. As a side effect of this process, a new implementation of the switching tree

Introduction Background 2

University of Windsor

minimization procedure had to be written in order to generate the full custom

implementations of the functional blocks of the neuron.

1.4 Thesis Organization

This thesis includes six chapters. Chapier 1 provides the background of this research and

provides the structure of the each chapter in this thesis.

Chapter 2 introduces the hierarchy for pattern extraction (HyPE) artificial neural network.,
It provides the background, architecture and the algorithm of the HyPE artificial neural
network. This chapter focuses on the architecture and the algorithm of the HyPE based on
the original Smalltalk program written by L.Andrew Coward[l]. Both of them are

discussed deeply step by step and compared with the modern artificial neural network.

Chapter 3 presents the graphical switching tree minimization algorithm and the two latch
designs that are used in this thesis. The graphical switching tree minimization algorithm is
proposed by Bryant[14]{19]. A switching tree minimization program written in ¢
programming language is presented. The two latch designs are the true single phase
clocking (TSPC) latch[12][15] and the ultra fast dynamic current steering (UCDCS) latch
proposed by J.C. Czilli[12].

Chapter 4 presents the pipeline neuron implementation approach and the single block
neuron implementation approach for the general neuron that can improve the training
process of the HyPE antificial neural network. After that it goes through the other
directory of approaches that are based on using the standard cell in 0.8y BATMOS library
(tcell) to design the neuron and using the dynamic logic with switching tree minimization
to design the neuron. The two designs of 3-input single block dynamic neuron are chosen
to use in the implementation of the general neuron. A test cell has been designed and

submitted for fabrication.

Introduction Thesis Organization 3

University of Windsor

The last chapter, Chapter 5. concludes the work done in this thesis. It provides

suggestions for improving the architecture and the algorithm of the HyPE artiticial neural
network and the way to implement the neuron design for the possible future direction of
the research in HyPE project.

Introduction ‘Thesis Grganization 4

Chapter?2

Hierarchy for
Pattern
Extraction

2.1 Introduction

This chapter discusses the artificial neural network that Andrew L.
Coward brings out from the Brain operation system (The Brain
Model). This chapter is divided into four sections. Section one is
the introduction of this chapter. The second section is the
background of the brain model. The third section is the architecture
of the Hierarchy for Pattern Extraction (HyP'E). The fourth section
is the algorithm used in HyPE. The last section is the summary of
the HyPE network.

2.2 Background of ANN

Artificial Neural Networks (ANNs) have been considered as an
area of active research for a long time. Most of the developed
artificial neural networks are based on the non-linearity neuron
which uses a non-linearity function such as a sigmoid function.
These kinds of artificial neural networks have some similarities,
such as the non-linearity neuron, fixed network size, ease of
simulation, and difficulty to fabricate in Very Large Scale
Integrated (VLSI). Although the most current VLSI circuit

technology is used, it still faces some difficulty, regarding

Hierarchy for Pauem Extraction

Introduction 5

University of Windsor

fabrication. The original design in the design environment and after the fabrication may
have difference dimensions. These differences may be small but they could create a big
problem due to the nature of artificial neural networks in VLSI. Since most of the artificial
neural networks use a non-linearity function at the output of a neuron, Either fault
tolerance of the fabrication process in the training process or to reduce the sensitivity of

the artificial neural network need to be included.

There are several ways to bypass this problem. One is using discrete weight and sigmoid
function in the software training process. When the artificial neural network is recalling,
the hard-limit function replaces the sigmoid function as the non-linearity function of the
artificial neuron. Since the artificial neural network uses the discrete weight and hard-
limiting function, it adds great flexibility 1o the design. Although the fabrication process
creates some dimension differences, the design can still handle that. This method was
applied on two 3p Complementary Metal-Oxide Semiconductor (CMOS) designs [31[4],
on an optical coupled neural network and a 1.2p CMOS design[5] on programmable
optical coupled neural network. Another approach is the Hierarchy for Pattern Extraction
(HyPE) artificial neural network architecture that created by Andrew L. Coward|1][21]
using the Smallialk-V programming language in 1990. The other one is the adaptive
probability neural network[6][7][8]i9]. The HyPE anificial neural network is the

architecture, that this thesis focuses on.

2.3 Architecture of HyPE

The diagram in Figure 2.1 shows the brain model of Andrew design. Input layer
(Thalamus) is the sensor of the network. It presents sensory input signals to the middle
layer. The middle Layer (Cortex) is a multilevel pattern declarative memory storage that
keeps the characteristic of a target group and gives action recommendation to the network.
There are three levels of neurons, Alpha level, Beta level and Gamma level. Each of these
Jevels may contain more than a thousand neurons. It depends on the training process and
the training pattern. Output layer (Basal Ganglia) is the action selection section. It

contains a single artificial neuron. There are two management systems taking care of the

Hierarchy for Pattem Eximaction Architecture of HyPE 6

University of Windsor

training process. One of them is resource management (Hippocampus). It contains the
mapping of the middle layer neuron resources and assigns additional neurons if the
network requires more memory storage. Hypothalamus is the other kind of control
management. [t controls the novelty arousal that sets the threshold value of each resource
neuron (virgin neuron) in the middle layer. It also controls the pleasure and pain signal

releasing to the output layer neuron.

Figure 2.1 The Diagram of the Brain Model

(Thalamus)
Input Sensor

(Hippocampus) §
Resource Management§

(Cortex)
Action
Recommendation (Hypothalamus)
Management

(Basal Ganglia)
Action Selection

Pain/Pleasure

In the middle layer, each leve!l contains two regions: the action recommendation region
and the unused resource region. The unused resource region (virgin region) contains
unused neurons and those are called virgin neurons. Neurons in the action
recommendation region (regular region) are called regular neurons. These neurons are the
memory storage of the target pattern that give the information, justifying whether the input
pattern belongs to the target group or not. The characteristic and the functionality of these

neurons will be discussed in more detai! in the next section.

Hierarchy for Pauem Extmaction Architecture of HyPE 7

University of Windsat

HyPE is a feedforward multilayer hicrarchy artificial neural network implementing the
Brain Model. The sensor gives the input signal to the input layer. Input signals of the
alpha level, in middle layer, are the output signals of the input layer. The output signals of
the alpha level neurons will penetrate to the beta level neuron as their input signals. The
output signals of the beta level neurons will penetrate 10 the gamma level neurons and so
are the output signals of gamma level. They will become the input signals of the basal
ganglia layer neuron. The artificial neural network does not have any connection cross
over levels or layers. e.g. there is no connectivity behaviour between alpha level’s

neurons and gamma level’s neurons. It is shown in Figure 2.2.

Figure 2.2 HyPE Architecture
INPUT LAYER

Input Characteristics

*MIDDLE LAYER
Alpha level
Regular Virgin
Region Region
o Resource
Management
eta leve S—
Regular Virgin
Region i

Novelty

Arousal
Regular rou

OUTPUT LAYER
Pain/Pleasure

Action Selection

Hierarchy for Pauern Extraction Architeciure of HyPE 8

University of Windsor

The arrows in the Figure 2.2 represent the direction of the signal and show all the possible
connections between the layers and the levels. There are two things to notice in this
figure. First, there is no connection between the beta virgin region and the gamma regular
region, The missing connection is based on the present architecture. It can be modified
casily by a small modification in the algorithm and the connection can be restored. The
other missing connectivity is the gamma virgin region and the output layer. It is also
based on the architecture, however it cannol be replaced unless there is a big modification

on the algorithm.

2.3.1 Neuron Model

In the HyPE architecture, two types of neurons are used. One is called regular neuron that
has already recognized a specific pattern. The other one is called virgin neuron that has
not yet recognized any pattern but has been configured to have a high potential to fire and
then imprint. Imprinting is a process that transfers a virgin neuron to a regular neuron.
This process will be discussed in more detail later. There are three levels of neurons in the
middle layer and a neuron in cutput layer, Basal Ganglia layer. Basically, each neuron has
a similar characteristic and functionality except for the output layer neuron. Each neuron
contains a threshold value and connectivity to the upper level. The threshold value and

connectivity of a neuron normally are unique. This will be clear in the algorithm section.

The activity of a neuron depends on the threshold value and connectivity of the neuron.
Threshold value for each neuron is an integer number. Connectivity of a neuron is based
on the history of the probability of upper level neurons’ activity. It will be discussed in
more detail in the algorithm. There is no weight on each connection. It is either
connected or not. From a modern artificial neural network perspective, there are only two
different kinds of weight for each connection. Those are 0 and 1. It is much simpler than
the modem artificial neuron. The modern artificial neuron needs to have a weight on each
input connection and needs to have a nonlinear activation function after the summation to

determine the activity of the neuron. Figure 2.3 shows a schematic diagram of a

Hierarchy for Pattern Extraction Architccture of HyPE 9

University of Windsor

McCulloch-Pitts{2] neuron. This model can be equated as the following with notations

that used in the HyPE neuron.

Gijuri = fiLZ“'m'Gn, N, "“.‘) 2.1
Figure 2.3 Diagram of a McCulloch-Pitts neuron

F 1J-1,z—®w—"i—>
F 2,j-1,t—®ﬂ$
F3 14 —R2l
Fa i1, —@)~m
Fs j-10 —Q—lm

nonlinear
function

The firing status, G ijt » TEPTESENLS the output signal of the i th neuron in the j'th level in
the ’th pattern of time process. The upper level firing status, Fn.j_ 1> TEpTESents the

output signal of the n'th neuron in the (j— 1) 'th level in the ¢ 'th pattern of time process.

It is same as the firing status,G; j-li+ Wi TEpresents the weight between the i'th

neuron in the current level and the »n’th neuron in the upper level. It can be a positive

value or a negative value. |, represents the threshold value of the i 'th neuron in the j'th

level. The nonlinear activation function, f, in McCulloch-Pitts’ model is a step function,

however it can be modified by using the other nonlinear activation function such as, the

signum , sigmoid and threshold logic functions.

In HyPE, since there is no weight on the input connections, the firing status of the artificial
neuron is determined from the sum of active input connections, and then compared with
the threshold value of the neuron. If the sum of active input connections is greater or
equal to the threshold value, the neuron fires (the firing status is 1). For example, if there

are 3 active input connections, and the threshold value of the neuron is 3, then the neuron

Hierarchy for Pattern Extraction Architeciure of HyPE 10

University of Windsor

fires. In the general case the firing status of a neuron can be modeled in the HyPE as

follows:

G"-j.f = f(23 ‘Cn. it AFH.,‘_L,] —Ti,j,rJ (2.2)

Figure 2.4 Schematic Diagram of the neuron in HyPE

nonlinear function

F1i 10—
Foi1,—>
F3j.1,—
Faj1y

F5i-1,—

ZB is a function that sum up the boolean numbers. The threshold, T . , represents the

iji>
threshold of the i 'th neuron in the j 'th level in the 7'th pattern of processing time. In here
j would be declared more clearly. j is defined as the subscript notation for level or layer.
In HyPE architecture, input layer is 0, alpha level is 1, beta level is 2, gamma level is 3 and

the basal gangliais 4. j is a positive integer value. The connectivity, C,;;,, represents the

nije?
connection between the n'th neuron in the (j—1) ’th level and the i’th neuron in the
j’th level. As the diagram shows, the artificial neuron in HyPE architecture is not fully
connected to the upper level or layer. The connectivity is defined by the firing population
on the upper level, This will be defined more clearly in the next section. Since the

threshold, T, , is an integer value and so is the sum of the input signals, the signal that

ijt?
passes past through the nonlinear activation function, f, is no longer seen as a continuous

value. This is one of the advantages of the HyPE architecture.

Hierarchy for Patem Extraction Architectore of HyPE 11

University of Windsor

The model presented above is for a general neuron. It includes neurons in alpha level,
virgin neurons in beta level and neurons in gamma level. Regular beta neurons need to

have an additional condition to fire:

23

(zalcn,i.j.:AFH.j-"'l _-TUIJA }

_ f{
t
(223 [Coiju AFo 1 i A En s v =T

E, j—1, Tepresents the status of the neuron, i.e. whether it is regular neuron (1) or a virgin

neuron (0). The additional condition is applied because the regular beta neuron may have
some connections from the virgin alpha neuron. This additional condition protects the

over firing with the additional active virgin input neuron.

The neuron in the output layer, Basal Ganglia, is a unique neuron in the HyPE
architecture. Its connectivity is controlled by the hierarchy management, hypothalamus,
with the pain and pleasure feedback. It will be discussed in more detail in the algorithm
description. The firing status of this neuron is determined by any active input connectivity
occupied. In other words, if it has any active input connections, the neuron is firing. The

model of the firing status of Basal Ganglia neuron is shown as in the following:

Gl-4.l =f(zB|Cn.l,4.lAFn'3.,}_1J (2.4)

The firing status, G, , ,, is the Basal Ganglia neuron firing status.

24 The HyPE Algorithm

The HyPE algorithm is used to recognize a target group’s patterns from the other group of
patterns. Due to the complexity of the algorithm, it needs to be divided into 5 parts for
further discussion. First is the input pattern for training and then is the overall training
process. After that we have the detail of the initialization process, wake process, sleep

process and the recalling process.

Hierarchy for Pattern Extraction The HyPE Algerithm 12

University of Windsor

2.4.1 Training Pattern

Patterns that are presented to the network are generated from sampling frequency
distribution. The training process requires three groups of patterns, so each of the groups
needs to create one distribution. Group distribution is the sampling of the group and the
summing up the characteristic of the group. An example is given in Figure 2.5. These are
the distributions of the 3 groups of cbject that have the bell shape sampling frequency.
Each of the patterns that are presented to the network are generated from those
distributions by randomly selecting 21 ~haracteristic out of the 54 from the example of
group distribution in Figure 2.5. Tne C programming source code, “C Code for

generating input patterns™ on page 77, is used to generate the 500 input patterns.

Figure 2.5 Characteristic distribution of Groups A,B,C

80() —
600 -

400 -

Sample

Characteristic

Here is a simple example of 3 characters A, B, C (Figure 2.6). Each character contains 54
characteristic components. Each characteristic component at the edge of the characters
has 100 sampling frequency and the other characteristic component has 1 sampling
frequency. A group of patterns for each character can be generated by randomly selecting

from the sampling frequency distribution in this example.

Hicrarchy for Patern Extraction The HyPE Algorithm 13

University of Windsor

Figure 2.6 Character A,B,C

“ 100 sampling frequency D I sampling frequency

There are two examples of patterns that are generated from the distribution of character A
in Figure 2.7. These patterns have about 10% distortion from the original character.

Using the examples in Figure 2.7, the patterns that are presented to the network are as

follows:

001100010010/ 10001] LOO0N0] 0 1001]000000] 00000 | LOCO0] 100001
001000{010010] 100000 10000101101 1]000001| 000001100000 100001

Figure 2,7 Examples from Character A’s pattern

B
O o

. i

Using these 500 patterns from each of the characters, one can show the similarity of those

patterns. Character A is defined as the target pattern for this network. The similarity of
those patterns is the sum of the sampling frequency of each of the characteristics that are
presented in those patterns and then normalized with respect to the sum of the sampling
frequency of the characteristics in the Character A. e.g. The sum of sampling frequency of
Character A in Figure 2.6 is 2232. The similarity of those examples in Figure 2.7 is
53.763% and 67.2%, respectively.

Hiemarchy for Pattern Extraction The HyPE Algorithm 14

Lniversity of Windsor

Figure 2.8 shows the similarity distribution of 500 patterns for each of the characters
versus the frequency. The similarity distribution provides an idea of possible distinguish
ability of the network. A group of character A has an average of 62% similarity, and the

similarity of character B and character C is 44% and 36%, respectively.

Figure 2.8 Plot of the Similarity Distribution of Character A, B, C

200
150
100

50

Frequency

Simularity

2.4.2 Overall Training Algorithm

The overall training algorithm, shown as Figure 2.9, is divided into three parts: the

initialization algorithm, the wake algorithm and the sleep algorithm.

Figure 2.9 The Flow Chart of the Overall Training Algorithm

Initialize

Finished
Trainin 2

Hierarchy for Pauem Extraction The HyPE Algorithm 15

University of Windsor

In the training algorithm, one needs three groups of patterns to train the neural network.
One is the target group. The other two are the non-target groups. These patterns are used
in three presentation methods. The first presentation method is to initialize the neural
network focus on the target group of patterns. The second presentation method is to
enhance the recognition of the target group’s patterns. The third presentation method is to
remove some of the error recognition of the non-target groups’ patterns. It is done by
putting some non-target groups’ patterns into the artificial neural network. Table 2.1
shows the information of the number of patterns presented to the artificial neural network
and the maximum number of times that these patterns are presented to the network. In the
third presentation method, patterns that are presented to the network are interlacing.
Using the example of character A, B und C, the order of patterns presented to the network
is the pattern of character A, the pattern of character B, the pattern of character C, and then
back to other pattern of character A and so on. Also the set of character A that is presented
in the third presentation method is different from the first and the second presentation

method.

Table 2.1. Presentation Method’s Information

-Group 1 Group 2 Group 3 presenting
(Target) {Non-target) | {(Non-target) times
——a i
1 4 0 0 1
2 20 0 0 20 |
3 10 10 10 20 |

2.4.3 Initialization Algorithm

Initialization algorithm is a process that creates a set of neurons in each level in the middie
layer. Since the algorithm of HyPE is a digital artificial neural network, it has unlimited

potential to learn if there are enough accessible neuron resources. The initialization

Hierarchy for Patten Extraction The HyPFE Algorithm 16

University of Windsor

algorithm is to supply the amount of neuron resources to the artificial neural network for

the first presentation method.

Table 2.2. Information of Initializing Each Level

Level () Neurons (NV)) | Inputs (my)
I Alpha 150 | 15
Beta 150 17 |
Gamma 150 14 |

Table 2.2 show the number of neuron resources in each level when the artificial neural

network initializes. It also shows the maximum number of input, m , , these neurons can

jte
have.

Connectivity of a neuron is randomly selected from the upper level’s neurons. Since the
artificial neural network does not have any regular neuron in the initial state, it randomly
selects from the unit distribution of the population of virgin neurons. The following is the

process to select the input connections to each neuron:

lel.N,_,i.i.j.n « liie S,-,, (2.5)

m , represents the maximum number of connections. R[1,N j—I] is a random number

that randomly selects among land N; ;. N;_, is the number of neuron in the j—1'th

level or layer. Because the connections are randomly selected, it is possible to have some
duplicated connections. Therefor the number of input connection may be less than m it
show in Table 2.2.

2.4.4 Wake Algorithm

Wake algorithm is a process that trains the neurons in the middle layer to store the

information of presented patterns. Flow chart in Figure 2.10 shows the wake algorithm.

Hierarchy for Pattern Extraction The HyPE Algorithm 17

University of Windsor

Figure 2,10 Flow chart of the Wake Algorithm

Present a
Pattern

D e — End

No Imprinting

Imprinting

Yes

2ol Gz ARzl < NAC 3

A few points in the flowchart need to be discussed. When a pattern is presented to the
artificial neural network, it will check to see that the neural network is in the initial state.
Initial state is the one which the network is still using the first presentation method that
focuses the neural network to recognize the target group. It will check that virgin neurons
are active or not. If not, the novelty arousal value will increase. This value controis the
threshold value of the virgin neuron in each level in middle layer. Table 2.3 shows how
the novelty arousal value effects the threshold value of virgin neuron in each level. Since
the neuvral network is at the initial state, novelty arousal value is set to 1 at the beginning,
Therefore the threshold values of virgin neuron in alpha level, beta level and gamma level
are 7, 7 and 6, respectively. At the second and third presentation method, the novelty

arousal value is set to 0 at the beginning. This is going to let the artificial neural network

Hierarchy for Pantern Exiraction The ilyPE Algorithm 18

University of Windsor

check that the pattern is already recognized. That i3 done because no virgin neuron will

have more the 50 input connections.

Table 2.3. Novelty Arousal controlled Threshold of Virgin Neuron in Level

Novelty Alpha Beta Gamma
Arousal Level Level Level
o0 50 50 50
i 7 7 6
2 6 6
L 3 5 5 6

M is the minimum number of gamma tiring before completing the training of the input

pattern. ZB [lnl-j,l defines the number of active inputs. Novelty arousal criterion,

NAC, is given by:

R, R -B. ..
NAC = Pﬁzﬁ-f-{u +k3sz Bﬂ B"““‘”J (2.6)
initial

PF isthe pain factor. Itincreases 5% every time when pain is experience. Pain is a signal

that a non-target pattern makes the basal ganglia neuron fire. EBR;‘r is the size of the

regular region in beta level. B, .. . is the initial beta level regular region size. It is defined

right after the first presentation method. k1, k2, k3 are the constants in this expression.

The value of k1, k2, k3 is 300, 0.25 and 1.25, respectively.

Imprinting is the process that converts a virgin neuron to a regular neuron when the virgin
neuron is active in the training process. When a virgin neuron fires and the neural network
goes into the imprinting process, the non-active input of the neuron will be removed and

the threshold value of the neuron will set as follows:

Hiemrchy for Pautern Extraction The HyPE Algorithm 19

University of Windsor

Ty = 2ptinyl -1 7N

An example of imprinting a neuron is given in Figure 2.11. In the example, the virgin
neuron has 3 active input connections. When it is imprinted, the non-active input has been
removed and the threshold is set to 2. The threshold value of the neuron will normally be
fixed at this time but there is a special case on beta regular neuron, It will be discussed

further in the sleep algorithm.

Figure 2.11 An Example of Imprinting a Neuron

SRR

- active input — noNn-active input

There is a limitation for imprinting for each level in different presentation method.

Table 2.4 shows the limitation for imprinting neuron.

Table 2.4. Limitation of Imprinting Virgin Neuron in each Level

. Presentation Alpha Beta Gamma
Method 1 (initial) none 50 4 I
Method 2 30 30 15
Method 3 30 30 15

2.4.5 Sleep Algorithm

Sleep algorithm, shown as Figure 2.12, is a process that reorganizes resource neurons of
the artificial neural network. It includes removing and adding new virgin neurons in the

levels. Beta regular neurons will have an average number of new input connections from

Hierarchy for Pattern Extraction The HyPE Algorithm 20

University of Windsor

the alpha virgin neurons just generated. The threshold of all virgin neurons and the

threshold value of beta regular neurons need to be reassigned.

Figure 2.12 Flow Chart of the Sleep Algorithm

: Add new
Generaie § |connections tof Set
virgin neuronsj virgin and § Tiju Tigg

N/ regular Beta | v S"u VSgr,
neurons

Virgin neurons after the last wake process are reorganized and new virgin neurons are
added to the network. The process of generating new virgin neuron is similar to the
initialization algorithm, but the limitation of virgin neurons and the number of their input
connectons are different from it. Since the imprinted virgin neurons are part of the basic
neurons, in the artificial neural network, the limitation of new virgin neuron is much less.
On the contrary, each new virgin neuron may have more input connections. Table 2.5
shows the configuration of number of neurons and number of their input connections in

sleep algorithm.

Table 2.5. The configuration of Sleep Algorithm

Level Neurons (NV;) | Inputs(my). l
alpha 30-80 20 !
beta 30-80 24 |
gamma 30-80 26 |

Number of new virgin neurons, NV T in the j 'th level basically is given by:

ij-i-SRj—Sj
NVj= 15 x 0

(2.8)

where SR j Tepresents number of regular neuron and S j Tepresents number of neuron in

the j’th level after wake process. If NV j is less then 30, it will set to 40. If NV i is

Hierarchy for Pattem Extraction The HyPE Algorithm 2

University of Windsor

greater than 80, it will reset 10 80. Also the size of the each level eftects the number of
virgin neuron go to be generated. If the sum of NVJ and SRJ- is less than 200, NVJ- will

increase until the size of each level is at least 20X,

The input connection of neuron is randomly selected from the input populations, 1P it
IPJ., is the population of the input history, IHJI. lHﬂ is based on the last Il-lj',_l and

the input record, IR jt- The input record, IR . is the population of active regular neuron

i
in the (j-— 1) 'th level that involves the activity of regular neuron in the j'th level. The
algorithms of generating those populations, histories and records are in Appendix A, An

example of those input connections to the beta level is given in Figure 2.13.

Figure 2.13 An Example of Finding IR

jo» TH, and TP,

w active neuron O non-active nearon

R = regular neuron V = virgin neuron

Assuming the input history, IHZ' ;-1 is as the following:

IH, ,_, < (205,88, 270, 45,90,0,0, 114, 4, 80, 60, 44, 0]

From the example in Figure 2.13, the input record, IRZ_,, is as the following:

IR, ,=(1,0,1,2,2,0,0,1,2,0,0, 1,0]

Using the following equation in the algorithm and replacing the constant, &, , to 500

Hicrarchy for Pauern Extraction The HyPE Algorithm 2

University of Windsor

ky (500) o k(500 S
lHn.Z.l(_ N x n.2.l—1+ x n 2t 1€ R,,
Z jrHs.z.r-l Z]R.v,z,: "
sES. s€S

i -1

~IH, & [153, 44, 185, 122,145, 0,0, 107, 102, 40, 30, 72,0}

Since j = 2, the following equations apply to the input population, IP, . The constants,

kk, and kk,, are replaced with 100 and 1000, respectively.

(o kk. (100)

3 .

P~ 2 IH“j'+T'_— neSp
. . ls=1 B =14

Since j=2: . -

kk, (1000)
P . IH , + e |ine S,
4 Z o ZBEf»j—l.l_ -

5=

1.

~IP, & [163, 217, 412, 544, 699, 1032, 1365, 1482, 1594, 1644, 1684, 1766, 2099]

The input population, IP, ,, will be used 1o generate new input to those new virgin

neurons in beta level.

The new input connections to the beta regular neurons are based on the distribution of
firing population, LPF, of beta regular neuron and the distribution of the visgin neuron,

LL, in alpha level. Firing population, FP i is the population history of active regular

neuron in the j'th level. The number of new connections to the alpha level is the product

of average, AVE , number and the number of beta regular neuron, SR, .

2.4.6 Recalling Process

After the artificial neural network is trained, it needs a recalling process to test the
network. When a pattern is presented to the trained artificial neural network, the neural
network will give a suggestion whether the pattern belongs to the target group or not,

based on the information stored in the middle layer in the training process.

Hiernrchy for Pattern Extraction The HyPE Algorithm 23

University of Windsor

The trained neural network has some neurons occupied in 2ach level that are no longer
useful for information retrieving. Because of the efficiency of recalling, those neurons are
removed from the network before trying to recall any pattern. Program, in Appendix B
"recall program" on page 91, is the source code of the recalling process. It first reads in
the configuration of trained artificial neural network, then removes those useless regular
neurons or virgin neurons in each level and at last it presents a list of patterns to the
network. Those patterns are coming from a data file and they can be the target group’s

patterns or the non-target group’s patterns.

2.5 Summary

This Chapter includes the architecture and the algorithm of Hierarchy for Pattern
Extraction (HyPE). HyPE is for single group of pattern recognition. It is a multi-level
artificial neural network. The learning algorithm was invented by Andrew L. Coward
based on his Brain Model. After going through the algorithm, it is easy to understand that
HyPE is a complete digital artificial neural network. HyPE is a non-fully connected
artificial neural network that has no weight at all the connections. Since the training
algorithm applies the random selection connectivity from the distribution, the result
artificial neural network will be different from one to the other with the same initial
setting. Therefore, it needs at least 10 runs to verify the setting of those parameters in the
network. Since the artificial neural network normally has about 1000 neurons in each
level, the verification time for each changing is time consuming. Basically, the
disadvantages of the HyPE anificial neural network are that it is a complex and time
consuming. The advantages of HyPE artificial neural network are its flexiblity and the
fact that it is a complete digital network, therefore it is appropriate for VLSI

implemention.

Hicrarchy for Pattemn Extraction Summary M

Chapter3

Switching Tree
Minimization &
Latch Designs

3.1 Introduction

The chapter discusses the minimization process and the latch
designs that are going to be applied into the implementation of
HyPE. The minimization method is based on Bryant’s work, There
are two latch designs that will be discussed. One is the True Single
Phase Clock (TSPC) latch design and the other is Ultra-Fast
Completely Dynamic Current Steering (UCDCS) latch which was
modified based on the Completely Dynamic Current Steering

(CDCS) latch by Czilli[12].

3.2 Switching Tree Minimization

Switching tree minimization algorithms are trying to that minimize
the number of transistor in a decision tree block in dynamic
logic[13] as shown in Figure 3.1. The topic has been actively
pursued over the last few years[10][11][17][19]{201.

Switching Tree Minimization & Laich Designs Introduction 25

University of Windsor

Figure 3.1 The Dynamic Logic Diagram

dd
o 4 Ml
nl >
inout NMOS
nput Transistor
Block

Dynamic logic has one PMOS, one NMOS clock transistor and an NMOS transistor
block. The functionality of dynamic logic involves two phases: the pre-charge phase and
the evaluation phase. In the pre-charge phase, the clock, ¢, is low, the M1 PMOS-
transistor is on and the M2 NMOS-wansistor is off. M1 charges up the internal parasitic
capacitor, so node nl stays at a high logic state. In the evaluation phase, the clock, ¢, goes
high, so M1 is off and M2 is on. If there is a conducting path within the NMOS transistor
block between nl node and n2 node, the internal parasitic capacitor will discharge and nl

will go low. If not, the internal parasitic capacitor will not discharge and n1 will stay high,

3.2.1 Minimization Algorithm

Switching tree minimization applied in this thesis, is based on the algorithms proposed by
Bryant[14][19]. There are more than one switching tree minimization approaches. For
example, Jullien has suggested a graph based reduction technique that effectively

implements those tree blocks with minimizing the number of transistors[10][11][19](20].

Switching Tree Minimization & Laich Designs Switching Tree Minimization 26

University of Windsor

These algorithms are applied to the truth table, as shown in Table 3.1 , where &, b, and ¢

are the input variables. F is the output of the boolean function.

Table 3.1. An Example of Truth Table

a b ¢ F
0 | O 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 | 1 0

Bryant presents a new data structure to represent boolean functions and a set of rules to
manipulate those boolean functions. It can be applied to dynamic logic, domino logic,
cascode voltage switch logic (CVSL), etc. The basic element in his paper is a node with
3 terminals. It is equivalent to two transistors with complemented and non-complemented

inputs to their gates, as shown in Figure 3.2,

Figure 3.2 Graphicai Symbol of Tree Component

ek

In the figure above, a, represents the non-complemented input to the gate. 3, represents

the complemented input to the gate. The letter next to the graphical symbol represents the
non-complemented input variable. Using the example truth table shown in Table 3.1, the
full tree of transistors is shown in Figure 3.3 and the graphical representation with the

basic element is shown in Figure 3.4.

Switching Tree Minimization & Laich Designs Swilching Tree Minimization 27

University of Windsor

Figure 3.3 Full Tree of Transistor

b-
jd%ﬂ%o;ﬂﬂdd

0 1 1

Figure 3.4 Graphical Representation of Full Tree of Transistor

There is a set of rules for minimizing the graphic node presentation that is proposed by

Bryant{14][19]. After the procedure of minimization, a key table will be generated. Two

terms need to be clarified before discussing those rules: A parent node is the root of the

current tree. Children nodes are the top nodes of the sub-tree.

Here are Bryant’s Rules:

Rule 1:If the children node numbers are equal, the parent node number will be equal w0
the children node numbers. This is shown as Figure 3.5.

Switching Tree Minimization & Latch Designs Switching Tree Minimizalion 28

University of Windsor

Figure 3.5 Rule 1 of Switching Tree Minimization

d a
b b

Rule 2a:If the children node numbers are not equal and there is an entry representing the
same kind of node in the key table, the same node number in the key table will be assigned

to the parent node. Figure 3.6 is the example of the rule.

Figure 3.6 Rule 2 of Switching Tree Minimization

O 2b <0,1> Q 2b <0,1>

&, 3b<l0> S, 3b<l0>

2 da <3,2> z e da <3,2>
100 b

Rule 2b:If the children node numbers are not the same and it does not have an entry

representing the same kind of node structure in the key table, a new entry will be created
and added in the key table. The new node number will be assigned to the parent node. It is

shown in Figure 3.7.

Figure 3.7 Rule 3 of Switching Tree Minimization

a k4 o 2b <0,1>
2b <0,1> 3b <1,0>
b 3b <1,0> b o da <3,2>

From the example of the truth table in Table 3.1, the key table of that boolean function is

shown in Figure 3.8. The graphical representation has assigned all the node numbers in

the left hand side. In the right hand size is the key table of the boolean function.

Switching Tree Minimization & Latch Designs Switching Tree Minimization 29

University of Windsor

Figure 3.8 The Graphical Representation with Node Number and the Key Table

a ()
2¢ <0,1>
b o o 3c <1,0>

4b <2,3>

5b <1,3>

¢ 0 o o e 6a <4,5>
0 1 1 0 1 1 1 0

After every nodes have been assigned, the original graphic representation of full tree can
be removed and the key table is complete. The new graphic representation tree is
constructed by using the key table. The order of the construction is opposite from the

assigning node number. It starts at the latest assigned node. Most of the time, the latest
assigned node is the top of the full tree.

Figure 3.9 Merged Graphical Representation Tree

There are two points that are importance in optimizing the minimization. One is the order
of variables. For example, in Figure 3.10, the left handside graphical representation
diagram is with the reversed order of variables from the above example and the right

handside is the merged graphical representation. Comparing with the merged tree in

Switching Tree Minimization & Latch Designs Swilching Tree Minimization 30

University of Windsor

Figure 3.9, it has reduced two more transistors from the same boolean function by just
reversing the order of variables. Conceming the variable ordering, the better
minimization comes with the order of the most changing variable at the bottom of the
switching tree and going up. The most stable variable is placed at the top of the switching

tree.

Figure 3.10 The Reversed Variable Order Minimization

2a <0,1>
¢ 9 3b <2,1>
4b <1,0>

| 5S¢ <3,4>
IO NN O B

The other point is the “don’t care™ case. The “don’t care” case is the condition that the
output of a boolean function can be either 1 or 0. Consider one of the boolean function
outputs in Table 3.1 to be a “don’t care” case. “X” is the “don’t care” case which can

represent “1” or “0".

Figure 3.11 An Example of “Don’t Care” Case

2c <0,1>
a 0 3¢ <1,0>

4b <2,3>

0 11 0X 11 0 0 11 0

Switching Tree Minimization & Latch Designs Switching Tree Minimization k)

University of Windsor

Figure 3.11 is the minimizing process of the “don't care™ case. Since “X™ can be “1" or
“0", the node with the “don’t care™ can be assigned either *1" or *2". The left half of the
sub-tree can be similar to the right half of the sub-tree if the “don’t care” case is
considered as a 0", In this example, it is not only minimizing the count of transistor but it
also reducing the tree height from 3 to 2. In regard to the “don’t care” case, the best
minimization is resulted by trying all possible combinations of “don’t care” cases in the

boolean function. For example, if there are 20 “don’t care™ cases in the function, it will

have 2% ¢ 1048576 of full switching tree to minimize for each variable ordering needed
to be minimized. It is a very time consuming procedure which is further complicated if
there are many “don’t care™ cascs. There is another approach to optimizing the
minimization due to the “don’t care™ cases. More transistors can be reduced if the
merging of the sub-trees occurs at the top of the switching tree[19]. By assigning *1" and
“0" to “don’t care” cases, the sub-trees are tried to be merged from the top of the switching
tree. If the sub-tree cannot be merged, then we go down one level and try to merge again.

This process goes on until the bottom of the tree is reached.

3.2.2 Switching Tree Minimization Program

The switching tree minimization program in Section B.4. is the minimization of transistor
switching tree. It uses the set of minimization rules for CVSL discussed above. The
program can merge up to 8 full transistor switching trees. If memory storage in fixed disk
is enough, it can be expanded more until no more memory storage is available. For
example, the truth table of 8 full transistor switching tree with 19 variables needs about 8
MByte of memory storage under the UNIX system. The program requires about 12
MByte of memory storage. It is a simple program that cannot compare with the other
optimized switching tree minimization software since it does not do any variable
reordering or tries to work with “don’t case” cases so the variable ordering and “don’t
care” cases need to be taken care of before putting the truth table into the program. Here
is an example of how the program minimizes the switching wee as following. In this

example, there are 4 full switching trees with 3 variables needed to merge together. The

process is from the left to the right. ¢,, 1,, 15, ¢, are the names of the full switching trees.

Switching Tree Minimization & Latch Designs Switchimg Tree Minimization 32

University of Windsor

a, b, ¢ are the three input variables, where a is at the bottom of the tree and ¢ is the top

of the tree.

1, 10001110
00111101
111100001
1,01010000

The merged entries of each node at @, / and ¢ level are shown as following from left to

right. The key tables of each level are shown at the right side of the entries.

1,201 2] 1, 4 6| 40<20> 1, 9] oc<a6>
5b <0,1>

[0 11 3] 2a<1,0> 1,57 . |22 10f 10c <5,7>

a ; b i6b <1,2> c ;
1,120 3} 3a<01> 1 68 t, 11| 11c <6,8>

. b <1,3> 3
t,3300 ty 30| g <0.3> t, 12| 12¢<3,0>
Figure 3.12 The Merged Tree Graphical Representation

c

b

a

Figure 3.12 is the structure after merging four full trees together. Depending on whether
a complemented or the non-complemented output needs to be created, either connections

to “1” or connection to “0” will be removed from the NMOS transistor block.

Switching Tree Minimization & Laich Designs Switching Tree Minimization 33

University of Windsor

3.3 Latch Design

There are two kinds of latches involved in the implementation of HyPE. One is the True
Single Phase Clocking (TSPC) latch. 1t is a voltage sensing latch., Another is the Ultra
Fast Dynamic Current Steering (UCDCS) latch. 1t is a pseudo single phase clocking latch.
The reason for choosing these latches in the implementation is that both laiches can be
used in a single clocking system. They need only one external clock input signal although
the ultra fast dynamic current steering laich needs a complemented clock. It is much
easier to control than the other latches which need two clock signals. It is also cost

efficiency, by reducing the area that is needed for the additional clock wire,

3.3.1 True Single Phase Clocking Latch (TSPC)

True Single Phase Clocking (TSPC) latch, is shown in Figure 3.13. It is a precharged
dynamic pipelined structure. TSPC laich contains two parts, a master TSPC n-latch and a

slave TSPC p-latch, as shown in Figure 3.13.

Figure 3.13 True Single Phase Clocking (TSPC) Latch

vdd
n-latch p-latch
/IIIIIIIIIII WS EEEEEEESESE
Ld (4
/ ’ /
’ ¢ ¢’
¢ —< 1 -3
4 ; ’
’ ¢ ’
¢ —t,
_ . |7
D /1— 1 3 :
¢ ’ /
4 ’ ’
/ ¢ /
A ’, -
’/ 2 4 v
: ro] ’
’ u /
o rrrrrrrrrsld Vrrrrrrorsrsl
VSS

In the master n-latch, when the clock, ¢, is low, P1 is on. The internal parasitic capacitor
is charged to vdd. The n-latch is in the precharge phase. Node Q is at the previous status.
When the clock, ¢, is high, n-latch is in the evaluate phase. The output of node Q is the

Switching Tree Minimization & Laich Designs Latch Design M

University of Windsor

same as the input signal, D. The status of each node in the master n-latch are shown in

Table 3.2. Q(t-1) in the table represents the previous status.

Table 3.2. Status of Master n-latch in TSPC Latch

[o p | P o |
low 1/0 1 Q(t-1)
high 1 0 i
high 0 i 0

The slave p-latch is just the opposite to the n-latch. When the n-latch is in the precharge
phase, the p-latch is in the evaluate phase. When the n-latch is in the evaluate phase, the

p-latch is in the precharge phase. Table 3.3 shows the status of node in the p-latch.

Table 3.3. Status of Slave p-latch in TSPC Latch

9 Q R s |
high 1/0 0 S(t-1)
low l 0 1 |
low 0 1 0 I

Figure 3.14 Replace the N1 transistor with the NMOS Transistor Tree

vdd
n-latch p-latch

17] 17

P; ’:—c P3 PS,

[

;"";’L]].’-

inputs N3 |44 S PG
¢ | /

¢ |9 R :

N4 1185 T

’ g
s sy rnd $ T TIITITIT

< VSS

Swilching Tree Minimization & Latch Designs Laich Design 335

Liniversily of Windsor

The NMOS transistor tree replaces the N1 transistor, as shown in Figure 3,14, 1f the non-
complemented output signal is required, all the connections to *1™ are removed since the
NMOS transistor tree block is connected to the ground, vss. If the complemented output
signal is required, connections to "0 are removed. The complemented and non-
complemented output signals cannot be obtained at the same time if there is more than one

full transistor tree merging together.

3.3.1.1 TSPC Design Using in tcell Library

Since the BATMOS technology is used, the TSPC latch had to be designed with tcells, that
were the only standard cells available at the time. The first thing that needs to be clarified
is the structure of the tcell. Tcell in BATMOS library is created by combining cells, as

shown in Figure 3.15.

Figure 3.15 One of the Basic Cell of tcell in BATMOS

This cell has all the requirement for constructing any kind of logic gate. In the middle of
the cell is the gate for the NMOS or the PMOS. It can contain up to 2 PMOS transistors
and up to 2 NMOS transistors. It depends on the p-device or the n-device expanding to
the other side of gate. Because each device can expand to the other side, there are 16 basic
cells similar to the cell in Figure 3.15. The device length is fixed. P1, P2, N1, and N2 are
11.8um, 3um, 3um and 8.8um, respectively. The size of this basic cell is 70.4um x
7.21um,

Switching Tree Minimization & Latch Designs Laich Design 36

University of Windsor

Figure 3.16 Transistor Level Division of TSPC Latch

1-15 vdd

’_I_JIIIIIII rryyrrs IIIII'IJ"

rd
¢ .
54' —-c| ¢ <4— high
’ s o s r st
- & rofreyorrg,,

s «—middle
ryy yry. Frr:
srbpsrsXradrsrXs,

’

A 74— low
Crefrslrar s drrrs rrdrrsy’

T s

Figure 3.16 is the level division of the TSPC latch’s transistors. It is used for trying out

different combination of transistor sizes that the basic cell of the tcell library can provide.

Table 3.4. Different Combinations of Transistor Size

- PMOS NMOS Outputat Rise | Output at Fall
Cem | m) {ns) e
‘high | mid {mid | tow | 2v | 3v | av | 2v |av i eV
3 | 118(3 | 88 |065]| 08 | 1.0 | 145|127] 107 |
3 | 118 | 8.8 3 | 044 | 058 | 0.74 | 248 | 2.1 | 1.76
18] 3 | 3 | 176 |105| 118|144 | 12 | 1.08 | 093
ng| 3 | 3 88 |084 095 1.11| 1.19 | 1.06 | 091
118 3 | 3 | 88088 102 | 12 | 145 121 | 1.08 | 095}
ns| 3 [3 3 | 066 076|087 | 122 | 1.11 | 1.00
118 3 | 33| 88 |082]094|1.11]121]1.12]1.03
N8| 3 | 88 | 118 |088 | 101|121 [133] 121 1.1
11.8| 3 | 88 3 | 066|075 | 087] 149 | 1.36 | 1.16
18] 3 | 88| 88 |08 092] 11 |13a]122] LI I

Table 3.4 list different combinations of transistor sizes and shows the performance of the
output rising edge and the performance of the output falling edge. As it is shown, the
optimum size for high level of PMOS, the middle level of PMOS, the middle level of
NMOS and the low level of NMOS are 11.8mm, 3mm, 3mm and 8.8mm, respectively.
The rising edge and the falling edge will be the closest and the rising time and the falling

Swilching Tree Minimization & Latch Designs Latch Design n

University of Windsor

time will be the least. The layout design is shown in Figure 3.17. The layout design in

tcell is 70.4pm x 29um.

Figure 3.17 TSPC Latch Designed in tcell Format

VSS

3.3.1.2 A Full Custom TSPC latch Design

As it can be seen, the tcell design is area inefficient. A full custom TSPC latch is required
if standard cells are not used in the design. The following TSPC latch, as shown Figure

3.18, uses unit transistor size for PMOS and NMOS. The layout area is 34.9um x 22.8um.

Figure 3.18 TSPC Latch Customized Layout Design

The customized TSPC latch layout design is for the dynamic NMOS wansistor block
design, so the input, as in Figure 3.18, is fed into the node P in Figure 3.14. The NI

transistor is put into the design afterwards.

Switching Tree Minimization & Laich Designs Latch Design K}

University of Windsor

3.3.2 Ultra-Fast Dynamic Current Steering Latch

Ultra-Fast Completely Dynamic Current Steering (UCDCS) latch is modified from the
completely dynamic current steering (CDCS) latch by Czillif12] in BiCMOS 0.8um
design technology, using the n-laich based on the CDCS latch design as the master and
using the TSPC p-latch as slave. Since the BICMOS technology can handle the bipolar
junction transistors (BJTs) which offer higher switching rates, the modification of the

CDCS n-latch is used to improve the pulldown speed of the dynamic node Q.

Figure 3.19 Master n-latch of UCDCS Latch

When clock, ¢, is low, transistor N1, N2, and P1 are on and transistor N3 is off. The
current goes through transistor N1 from the path 1. Since transistor N2 is on, the base of
bipolar transistor B1 is connected to ground, vss, through path III, that keeps the bipolar
ransistor B1 off. Also transistor P1 is on and node P is changed to vdd. Since transistor
N4 is off, node Q is maintained in its last state for the n-latch. This is the precharge phase
of the current steering n-latch. When the clock is high, all transistors are off except
transistor N3 and N4. At this point, if there is a current coming from input D, then the
current follows the path indicated as Il into the base of the bipolar transistor B1 and tum
on the device, thus discharging node P, turning on the transistor P2 and turning off the
transistor N5. So node Q is charged to vdd. If no current comes from input D, the bipolar
transistor B1 will not turn on and node P will be held at the vdd level. Since node P is held

at vdd, it turns on transistor NS and turns off transistor P2. Now node Q has a path go

Switching Tree Minimizarion & Laich Designs Latch Design 39

University of Windsor

through transistor N4 and N5 to the ground, vss, so node Q will be kept low. That is the

evaluate phase of the current steering n-latch,

Figure 3.20 Input Replaced by NMOS Transistor Tree in n-latch

paN
vdd

NMOS
Transistor

The NMOS transistor tree is similar to the TSPC latch with one exception. If the non-
complemented output signal is required, all connections to “0” are removed. If the
complemented output signal is required, all connections to “1” are removed. This is
opposite to the TSPC latch.

Figure 3.21 UCDCS Latch layout Design
e P ;

putput

VSS

Switching Tree Minimization & Latch Designs Laich Design 40

University of Windsor

The layout design is based on Czilli's work and it has been reorganized. Since the tcell
library does not have the Bipolar Junction Transistor (BJT), no tcell UCDCS latch has
been design. The BJT is from the basic cell in BATMOS library. The polarity of the BJT

is shown as Figure 3.22.

Figure 3.22 BJT Transistor in BICMOS

Base

~~Emitter

34 Summary

This chapter discusses the switching tree minimization algorithm and two latch designs
that are used in the implementation process. The switching tree minimization algorithm is
based on the set of rules proposed by Bryant. It includes three rules. Also discussed are
two important points that can effect the minimization process. Those are the variable
ordering and the “don’t care” case of the transistor tree. This chapter also includes a
simple program that can handle the minimization process with theoretically unlimited tree
size or unlimited number of full transistor trees needed to merge together. This program
only minimizes the truth table that has already considered the variable ordering and “don’t

care” cases that exist in the logic function.

The latches outlined in this chapter are the True Single Phase Clocking (TSPC) latch and
the Ultra Fast Dynamic Current Steering (UCL-CS) latch. Each of them includes two
parts: the master n-latch and the slave p-latch. TSPC latch is a true single phase clocking
latch. It requires only one input clock signal. UCDCS latch is a pseudo single phase
clocking latch that also requires one input clock signal with it complemented. The reason
of choosing the UCDCS latch is that it takes the advantage of BiCMOS technique by
using the bipolar junction transistor to increase the pulldown speed of the transistor

switching,

Switching Tree Minimization & Latch Designs Summary 41

Chapter4

VLSI
Implementation
of HyPE

4,1 Introduction

As discussed in Chapter 2, the Hierarchy for Pattern Extraction
(HyPE) artificial neural network uses a complex procedure to train
the network. After converting the original source code from the
Smalltalk object-oriental programming language running on the
Mac to the C programming language on UNIX, the training process
for ten runs takes about six hours in a SUN Sparc2 workstation.
The original Smalltalk program takes about one day to get ten runs
of simulation. Although it already shows about four times of
improveinent, it is not good enough to provide a procedure to tune
up the HyPE anificial neural network. Therefore it needs to be
implemented to in VLS! in order to accelerate the training
procedure. It normally needs about two thousand neuron resources
in the middle layer to fulfill the purpose of the network training and
it has a complex and random algorithm to create these connections

for each neuron.

From the point of view of implementation, it is impractical to have
the entire design in a single chip. For example, a self leaming
artificial digital neural network has been designed using the Wafer-

Scale L.SI by M. Yasunaga et al.[16]. Going through the training

VLSI Implementation of HyPE

Intreduction 2

University of Windsor

procedure, a specific part of the artificial neural network that is used frequently and can be
implemented in VLSI is investigated. Since the neuron structures are so similar in each
level and are the most time consuming in the algorithm, it is sufficient to create a general
neuron that fits in all three levels as a co-processor which works with the host computer.
Because each neuron can have over 1{(X) connections, it is not possible to implement all the

connection at the same time. Two neuron design approaches have been provided.

4.2 Pipeline Neuron Design Approach

Referring to Eqn. (2.2) and Eqn. (2.3) each neuron in the middle layer has the threshold,

T.. , the connectivity, C.. , the firing status, G it and the “regular or virgin” status, Rl.ﬂ.

ije? ijie
After completing many simulations, of the HyPE artificial neural network, it is concluded
that the threshold value of each neuron will not exceed 128. When designing the general
neuron for the HyPE, 8 bits of storage can handle the threshold value of every neuron.
The most significant bit is the sign bit of the threshold value. The connectivity is a vector
of boolean numbers: “1” means con ‘ecting to the a particular neuron in the upper level
and “0” means no connection to the particular neuron. The firing status needs only one bit

to be presented and so it is “regular or virgin” status.

Table 4.1, Neuron Parameter Setting

. Neuron Parameter Size (bit) o Comments

Tij: 8 most significant bit is the sign bit.

C'.ﬂ X Size of upper level.

" firing status.

it

.. regular or virgin.
L iyt

Since the count of connectivity is flexible, the majority function cannot be satisfactorily

Q

]

applied to it. Because it is not possible to have all input connections feeding into a
physical layout neuron design, input connections feed into the physical neuron by section,
e.g. 8 bits per period. Following the neuron firing algorithm, when the count of active

input connections is greater than or equal to the threshold value of the neuron, the neuron

V15! Implementation of HyPE Pipeline Neuron Design Approach 4

Univertity of Windsor

fires except from beta regular neurons. Beta regular neurons need an additional condition.
The active regular input connections have at least half of the threshold value. Following is

a block diagram of a pipeline neuron design.

Figure 4.1 Pipeline Neuron Design

Latch

Parallel
Counter

2

Subtractor

1
]

_—Latch

Parallel
Counter

* Y

EXRER RN

12

Figure 4.1 shows a pipeline general neuron design. The number of AND logic gate
depends on the number of input feeding into the neuron every time. The inputs of the
AND logic gates in the upper half are the connectivity, C

it of the neuron and the firing

status, Fn, j-1,10 of upper level neurons. The additional input to the lower half is the
status of “regular or virgin”, £ IRNE It applies to the beta regular neuron. The input to

the parallel counter is either the active input connections or the active regular input

VLSI Implementation of HyPE Pipeline Neuron Design Approach “

University of Windsor

connections. The functionality of the parallel counter is to count the number of active
inputs from the AND logic gate. Latches, put at the output of the parallel counter and the
output of the subtractor, are used to maintain the previous status of the block for a stable
input to the follower (e.g. the subtractor is the follower of the paraliel counter). The firing
status of a neuron depends on the number of active inputs, and it is greater than or equal to
the threshold (or half of the threshold), therefore the pipeline neuron design is continually
subtracting the active input until the recursive value (original value is the T;, or T;,/2)
becomes a negative value or there is no more active input to that neuron. If the recursive
value is negative, the sign bit is “1”. It will go into the activity selection unit to check the

activity of the neuron. The Multiplexer unit is the switch that chooses either to use the

threshold, T‘-ﬂ , (or T.-j,/ 2) or the recursive value from the output of the subtractor as the

input to the subtractor. The activity selection unit is based on the additional requirements
from regular beta neuron. If it is a regular beta neuron, upper half and lower half of the
general nevron must have their sign bit output from the subtractor as *“1” to fire the
neuron, If it is not a regular beta neuron, just the upper half of the general neuron has a

sign bit as “1” that will fire the neuron.

4.2.1 Logic Gate Neuron Design

The logic gate neuron design is based on the structure of the pipeline neuron design.
Since the only standard cell library available in BATMOS is the tcell, every design in
logic gate will be in tcell format for ease in designing and routing. Few schematic
pipeline neuron designs have been done. The neuron design starts with the 8-input
neuron. Because 8-bit is a basic unit of computer space (byte), it is a good starting point.
It is followed by the 4-input pipeline neuron design, and then a slower design of 8-input
neuron. The first two neuron designs are bigger and faster. The last neuron design is

much smaller and slower.

4.2.1.1 8-input Pipeline Neuron Design

8-input neuron design requires 8 AND gates as the input to the parallel counter. The

resulting parallel counter will have 8-input pins and 4-output pins, as shown in Figure 4.2.

VYLS! Implementation of HyPE Pipeline Neuran Design Approach 45

University of Windsor

Figure 4.2 8-bit Parallel Counter

From Parallel
8-AND Gates Counter

LSB

RO, R1, R2 and R3 are the output of the 8-bit parallel counter. We have the freedom of
minimizing it. The software that is used to minimize the number of logic gates is
EXPRESSO ver.2.3 from UC Berkeley. After minimization, the parallel counter needs
362 logic gates which are the simple AND and OR logic gates. Figure C.1 is the
schematic of the 8-bit parallel counter. 255 boolean vectors need to be generated with
AND gates.

The Latch design used here is the resettable D-type negative edge flip-flop (1dm), as
shown in Figure 4.3, provided in the BATMOS tcell library. The layout of the tdrn flip-
flop is shown in Figure C.7. The &-input parallel counter neuron design requires 24 tdm

flip-flop.

Figure 4.3 The Resettable D-type Negative-edge Flip-Flop(tdrn)

D —
RB O
CLK —¥

D is the input of the flip-flop. The reset input, RB, is the complement of reset. That means
if RB is “0”, output, Q, is set 10 “0” and the complement of output, QB, is set to “1".
Output, Q, maintains the status of the input D from one falling edge of the clock (CLK)
until the next falling edge of CLK.

VLSI Implementation of HyPE Pipeline Newron Design Approach 46

University of Windsor

The Multiplexer block is a parallel 2-10-1 multiplexer. It contains § parallel unit of 2-to-1
multiplexer. Each 2-to-1 multiplexer contains two AND gates and an OR gate that is

shown in Figure 4.4.

Figure 4.4 Schematic of the 2-to-1 Multiplexer

DO

C—Lpo
DI/

If the selection bit, C, is “1”, input DO will propagate through the multiplexer to the

output R. If not, input D1 will propagate to the output.

Figure 4.5 Diagram of the 8-4 Subtractor

F B —» R7 sign bit
it Pan = R6 MSB

8-bit Parallel

Counter k > RS

LSB —¥® : R4

MSB —#» Subtractor | R3

From — R2

Threshold or 3 ;

Feedback —> R

The 8-4 subtractor functional block, as shown in Figure 4.5, is used to continuously feed
in the result, 4-bit signals, from the 8-bit parallel counter. It uses the same minimization
procedure in EXPRESSO. Since 7 out of 16 combination inputs from the parallel counter
are “don’t care” cases, the functional block of 8-4 subtractor is minimized much better
than the 8-bit parallel counter. The output of the 8-4 subtractor will be stored in the latch
until next clock period and it will feedback as the input of the block. The sign bit, R7, will

feed into the activity selection unit. Figure C.2 is the schematic of the 8-4 subtractor.

YLSI Implementation of HyPE Pipeline Neuron Design Approach 41

University of Windsor

Same as the 8-bit counter, the 8-4 subtractor requires 106 boolean vectors to generate a

full functional block.

The activity block is a functional block, as shown in Figure 4.6, that determines the
activity of the neuron. It predicts the activity of the neuron on the sign bit from the upper

half of the pipeline neuron, the lower half of the pipeline neuron and the algorithm of

neuron activity.

Figure 4.6 Diagram of the Activity Block

sign bit from
upper half of neuron

beta regular?—

Activity activity

sign bit from
lower half of neuron

Using Auto Place & Route in the Cadence Edge™ environment, the dimension for the 8-
input neuron is 1617um x 2050um. It involves of 1131 logic gates. The layout of the 8-

input neuron is shown in Figure C.3.

4.2.1.2 4-input Pipeline Neuron Design

The 4-input pipeline neuron design is similar to the 8-input pipeline neuron. The
difference is in the design of the paralle! counter and the subtractor. The pipeline neuron
requires 4 AND gates as the input to the parailel counter. The 4-bit parallel counter

design, as shown in Figure 4.7, has 4 input pins and 3 output pins.

Figure 4.7 Diagram of the 4-bit Parallel Counter

MSB
—> R2
From —{ Pparallel RI
4-AND Gates__g.! Counter RO
\ LSB

VLSI Implementation of HyPE Pipeline Neuron Pesign Approach 48

University of Windsor

It uses the same minimization procedure as the 8-bit counter or the 8-4 subtractor. 15
boolean vectors need to be implemented to provide the functionality of the 4-bit counter.

The schematic of the 4-bit counter is shown in Figure C.4.

Figure 4.8 Diagram of 8-3 Subtractor

F MPB —» R7 sign bit
: rom - R6 MSB
4-input Parallel
Counter g . RS
R4
MSB :: Subtractor R3
From — »R2
Threshold or - RI
Feedback 3
LSB —® R0 LSB

Figure 4.8 shows the 8-3 subtractor that is used in the 4-input pipeline logic gate neuron
design. It contains a similar structure as the 8-4 subtractor. It has 11 input pins where 3
inputs come from the 4-bit paralle! counter and 8 of them come from the threshold or the
feedback from the output of the subtractor. The 3 inputs coming from the 4-bit parallel
counter have 3 out of 8 combinations that are “don’t care” cases, so better minimization
can be achieved from the program. 74 boolean vectors are required to provide the
function of the 8-3 subtractor block. The schematic of the 8-3 subtractor is shown in
Figure C.5. The final 4-input pipeline neuron requires 945um x 912um silicon area. It

consists of 409 logic gates.

4.2.1.3 Slow 8-input Pipeline Neuron Design

The slow 8-input pipeline neuron design is similar to the 8-input pipeline neuron design
Since the 8-input pipeline neuron requires too much silicon area, another minimization
approach is applied. The slow 8-input pipeline neuron design focuses on minimizing the
count of logic gates. This new approach is applied to the parallel counter and the
subtractor.

VLS1 Implementation of HyPE Pipeline Nearon Design Approach 49

Lniversuy of Windsor

The new design of 8-bit parallel counter, as shown in Figure 4.9, includes three functional
blocks, two 4-bit parallel counters and a 3-3 adder. First the inputs from the AND gates
are divided into two groups which teed into the 4-bit parallel counter. Next step is to add

up the result from the parallel counter.

Figure 4.9 Diagram of a Slow 8-bit Parallel Counter

Parallel

Counter Rr3MSB
Adder R2
56 LSB

From
8-AND Gates

Parallel §
Counter J

The 4-bit parallel counter no longer uses the same design as the 4-input pipeline neuron.
The minimization goes through the customary method using the K-map, as shown in
Figure 4.10.

Figure 4.10 Schematic of the Slow 4-bit Parallel Counter

Comparing the 4-bit parallel counter with the 4-input pipeline neuron, the former needs 27
gates to provide the function of 4-bit parallel counting and the latter needs 12 gates to

provide the same functionality.

VLS! Implementation of HyPE Pipeline Newron Design Approach 50

Universily of Windsor

Figure 4.11 Schematic of the 3-3 Adder

The 3-3 adder, shown in Figure 4.11, adds both inputs from the 4-bit parallel counter.
Since it involves “don’t care™ cases at the input of the parallel counter, greater

minimization can be achieved.

Figure 4.12 Diagram of Slow 8-4 Subtractor
MSB —p———]
+__

R7 sign bit

From — 5-1-¢ R6 MSRB
Threshold or —$ 1 Subtractor RS
Feedback — P : R4
LSB —®— |’ T
-
MSB —
From Slow 33 gi
8-input Parallel 8% —»—— Subtractor RO LSB
Counter LSB ——

The new 8-4 subtractor, shown as Figure 4.12, is also divided into two functional blocks,
a 3-3 subtractor and a 5-1-c subtractor. The 3-3 subtractor is a subtraction functional
block that subtracts two 3-bit inputs. The most significance bit of the 3-3 subtractor will
propagate to the 5-1-¢ as the carry bit. The 5-1-c subtractor is a subtraction block that
subtracts a 5-bit input and a one bit input with carry. The schematic of the 5-1-c subtractor

and the 3-3 subtractor are shown in Figure 4.13 and Figure 4.14.

VLS! Implementation of HyPE Pipeline Neuron Design Approach 5

Univenity of Windsor

Figure 4.13 Schematic of §-1-c Subtractor

2

)

R6

RS

R4

i

it

4———R3

b

Figure 4.14 Schematic of 3-3 Subtractor

arrier

il

R2
R1
RO

The design approach of this slow 8-input pipeline neuron is to minimize the use of silicon
area. The dimension of the design is about 794pum x 840pum. It needs 269 gates to
provide the same function as the 8-input pipeline neuron. The minimization gain is due to
using the exclusive-OR gate that tcell library provides and merging the logic gate

customizing.

4.2.2 Pipeline Dynamic Neuron Design

Two pipeline dynamic neuron designs that have been worked on are the 8-input switching

tree pipeline neuron and the 7-input switching tree pipeline neuron.

VLSI Implementation of HyPE Pipeline Neuron Design Approach 52

University of Windsor

4.2.2.1 8-input Switching Tree Pipeline Dynamic Neuron

The 8-input switching tree pipeline neuron is used in the pipeline neuron design in Figure
4.1. The difference between the 8-input pipeline neuron design in Section 4.2.1.1 and the
8-input switching tree pipeline neuron is as follows. The former uses only the logic gate
of tcell library and the latter uses the switching tree 1o create the functional block of the
parallel counter and the subtractor, and it uses the reorganized logic to produce the

function of multiplexer and the activity block.

Figure 4.15 8-bit Switching Tree Paraliel Counter
PMOS clocking transistor

\\ wid

P 4
NMOS clocking transistor

Figure 4.15 shows the schematic of the 8-bit parallel counter. This desijn will only give
the complement of the output since there are four merged switching trees. It uses the
simple dynamic logic, shown in Figure 3.1. The clock transistors are shown in the figure.
Since it is an 8-bit parallel counter, it requires four outputs. R3 is the most significant bit
and the R2 is the second significant bit and so on. The schematic symbol of the transistor

pair is equivalent to the graphical symbol which is shown in Figure 4.16.

VLS Implementation of HyPE Pipeline Neuron Design Approach 53

Univenity of Windsor

Figure 4.16 Schematic Symbol and the Graphical Symbol

>,

After the minimization, the switching tree’s height remains & high. The minimization
program, discussed in Section 3.2.2, reduces the switching tree to about 60 pairs of
transistor. Since the complemented outputs and the non-complemented outputs cannot be
produced from the same tree at the same time, the output must be selected before creating

the scherr-atic. The layout of the 8-bit paraliel counter is shown in Figure C.13.

Figure 4.17 Schematic of the 8-4 Switching Tree Subtractor
PMOS clock transistor

F
VSS

NMOS clock transistor

The 8-4 subtractor, shown in Figure 4.17, uses the same strategy as the 8-bit switching
tree parallel counter. It has been reduced to 134 pairs of transistor using the minimization
program discussed in Section 3.2.2. The layout of the 8-4 subtractor is shown as Figure
C.14,

VLSI Implementation of HyPE Pipeline Neuron Design Approach 54

University of Windsor

4.2.2.2 7-input Switching Tree Pipeline Neuron Design

The 7-input pipeline neuron design tries to fully use the 3 output bits of the parallel
counter 1o get a better minimization in the switching tree of the functional block. The 7-
bit parallel counter has total 44 pair of transistor. The schematic of the 7-bit parallel

counter is shown in Figure 4.18 and the layout is shown in Figure C.15.

Figure 4.18 Schematic of the 7-bit Parallel Counter with Complement Outputs
PMOS clock transistor

P]

£
T

P

*
vs{ g

NMOS clock transistor

The 8-3 subtractor for the 4-input pipeline neuron is not the same as the 8-3 subtractor,
shown in Figure 4.19, for the 7-input pipeline neuron, since the former uses the advantage
of the “don’t care” optimization and the latter no longer has that advantage because the 3
input bits from the 7-bit parallel counter are already fully used. The layout of the 8-3

switching tree subtractor is shown in Figure C.16.

Each of the switching tree functional blocks in the 8-input switching tree pipeline neuron
design and in the 7-input switching tree pipeline neuron design has been simulated for

functionality with the HSPICE™ simulator.

VLSI Impiementation of HyPE Pipeline Neuron Design Approach 55

Univenity of Windsor

Figure 4.19 Schematic of the 8-3 Subtractor with Complemented Qutputs
PMOS clock transistor

RO

|

A AR
‘. ﬁﬁ 3 ?‘ﬁ -+ ﬁ < 3 3-

3 -
P .

NMOS clock transistor—¥—pvss

4.3 Single Block Neuron Design Approach

The single block neuron design is the other approach of neuron design. There are two
dynamic logic neuron designs. The single block neuron design approach merges the
parallel counter functional block, the subtractor functional block and the multiplexer
together from the pipelined neuron design. It is shown in Figure 4.20. The single block
neuron design has the advantage of using fewer latches in the design and it only requires
the design of a single functional block, the parallel subtractor. The design of the activity

still uses the logic gate.

VLSI Implementation of HyPE Single Block Neuron Design Approach 5

Subtractor B

University of Windsor

Figure 4.20 Single Block Neuron Design

e >
Lt Parallel

Sabtractor B

Latch

sign bit

d PR MR

4.3.1 Reorganized Cell

activity k

Since the switching tree design is used in the neuron design, it is beneficial to take

advantage of custom logic gates design because a lot of silicon area is wasted in the tcell

logic gate in the BATMOS library. Although the reorganized custom logic gate designs

still use the sarne transistor count and size as the tcells, their layouts are much more

efficient.
Table 4.2. Comparison of Tcell and Reorganized Logic Gates
“oGates | teell (wm x pm) reorganized (jm x jtm)

AND-2 18 x 70.4 = 1267.2 28x21.9=613.2
AND-3 21.6 x 70.4 = 1520.64 352x21.9=770.88

Buffer 14.4 x 70.4 = 1013.76 35.1x 16,4 =575.64 57 '
Inverter 10.8 x 70.4 = 760.32 12.8 x 21.9 = 280.32 39

OR-2 18 x 70.4 = 1267.20 29.1 x 21.9 =637.29

VLS! Implementation of HyPE

Single Block Neuron Design Approach

University of Windsor

Table 4.2 shows the silicon area required for each of the logic gates needed in the neuron
design. The area occupied by the reorganized logic gates is about 50% of the tcells. The

layouts of the reorganized cell are shown in Figure C.8 to Figure C.12.

4.3.2 3-input Neuron Design

Two 3-input dynamic neuron designs have been finished. One uses the TSPC latch and
the other one uses the UCDCS latch. The result of choosing the 3-input as the neuron

design is due to the limitation of the memory storage that is required by the switching tree

minimization program.

Figure 4.21 Diagram of the 3-bit Parallel Subtractor

From —]
3-AND Gates _’l
R7 sign bit
selection bit —#» R6 MSB
MSB —» RS
—_— Parallel R4
— Subtractor R3
From — R2
Threshold > R1
—> | RO | sp

R7R6R5R4R3R2ZR1 RO
From Feedback

The parallel subtractor requires 19 input bits: 3 from the AND gates, 7 from the threshold,
8 from the feedback of the output of the parallel subtractor and] selection bit that is the

same bit that goes into the multiplexer in the pipeline neuron design.

VLSI Implementation of HyPE Single Block Neuron Design Approach 58

Univenity of Windsor

Figure 4.22 Schematic of 3-bit Parallel Subtractor using TSPC Latch

YRy NMOS slock 1ransistors...........,
H '& NMOS Transistor Tree’

AT ATAT LR ALTTATEA T LA S A S AL A AL A AL LA AL ATELATETLE LT LR AR R VLR AR R A v

“\\.\\\\\\\\
¥

Y YT Y
TR T By i8¢ Laich

~

Figure 4.23 Layout of the NMOS Transistor Tree

Bk | 8 outputs
s ito the latch

VLSI Implemenwiion of HyPE Single Block Neuron Design Approach

59

University of Windsor

The TSPC latch, used in figure 4.22. 15 the custom TSPC latch design as shown in Figure
3.18. The NMOS clock transistors are connected between the ground, vss, and the
NMOS transistor tree. Figure 4.23 shows the layout of NMOS transistor tree of the 3-bit
parallel subtractor and it shows the input and the output of the NMOS transistor tree. The
dimension of the NMOS transistor tree is about 125um x 155.8um.

Figure 4.24 Schematic of 3-bit Parallel Subtractor Using the UCDCS Latch

VSS"" ”)”"”1 edevrrecs devevivsiosisroseissas Y TP P PR PR PPV PP PN
»
r _t ",

+ ¥ A i A: MOS Transistor Tree

' f‘w.w.. iwmr W N " "
VallVaV:

-
»n
-

, ' '—' Ww Y
-,(a1 ” ,‘m u.mw “UCDCSLaIEEIII””

é\\\s\\\\\\\\\\\\\\\\\\\\\
L
=
1
L) I
\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\.\\

Figure 4.24 shows the 3-bit parallel subtractor that uses the UCDCS latch at the output of
the NMOS transistor tree. Since the 3-bit parallel subtractor uses the UCDCS latch, it
does not have the NMOS clock transistor connecting the transistor tree to the ground, vss.
On the contrary, the NMOS transistor tree is connected to the power, vdd. The dimension
of the NMOS transistors used in the transistor tree is 3um x 0.8um. Layout of the single
block dynamic 3-input neuron design using the UCDCS latch is shown in Figure 4.25.

VLSI Implementation of HyPE Single Block Neuron Design Approach 60

University of Windsor

The single block dynamic neuron design using the TSPC latch has similar structure except
that it uses the TSPC latch at the bottom. The dimensions of the 3-input neuron design
using the UCDCS latch and using the TSPC latch are 424.5um x 235.5um and 428.6um x
234.1pm, respectively.

Figure 4.25 Layout of the Single Block Neuron with UCDCS Latch
AND Gates

gﬁ{’ﬁé?

Iulrm";

R e]

4.4 Discussion of Neuron Designs

Currently, there are two restrictions in the fabrication of the neuron design. One is the
number of pads and the other is the core area. The BATMOS fabrication process provides
only a 54 pads. 4 pads must be the power (vdd) pad and 4 pads must be the ground (vss)
pad. Therefore, the number of pads available for the design is 46 pads. The pad used in
the design has the dimension of xum x 585.4um. x is the x-dimension of the pads. e.g.
the dimension of the vdd pad is 137um x 585.4um. The core dimension excluding the
pads is 2344um x 2172um. Table 4.3 shows the approximate maximum number of

VLSI Implementation of HyPE Discussion of Neuron Designs 61

University of Windsor

neuron that can fit into the core. This is the maximum limitation of neuron count since the

wiring is not included in the estimation.

Table 4.3, Capacity of Core in Fabrication

Design max. of neuron (core area) |
8-input logic gate neuron 1T

4-input logic gate neuron 5

slow 8-input logic gate neuron 7
3-input dynamic neuron with TSPC laich 50 |
3-input dynamic neuron with UCDCS latch 50 _J

Due to the restriction of the number of pads, the large number of input is not considered.
For example, the 8-input neuron requires 24 input pads for input to the AND gates which
feeds to the parallel counter, 8 input pads for the threshold, 1 input pad for the selection
bit in the multiplexer, 1 input pad for the clock signal, 1 pad for the “beta regular™ bit in
the activity block and the 1 output pad for the output of the activity block. It needs 36
pads. It does not include the testing circuitry for output pads. Therefore, a design
requiring a large number of pads is not practical to place into the core. The remaining
designs are the 4-input logic gate neuron and the 3-input single block dynamic neurons.
Since the 3-input single block dynamic neurons can have 10 times more neuron fitting into

the core, it is much more reasonable to use them.

Table 4.4. Estimation of area per logic gate

Design area/gate (um?)
8-input logic gate neuron 2930
4-input logic gate neuron 2107
L slow 8-input logic gate neuron ~2479 I

From Table 4.4 the average of area per logic gate is about 2500um?. For the 3-input logic

gate neuron after using ESPRESSO to minimize the number of logic gate is 601. The area
for the 3-input logic gate neuron is 1.500mm?. The area of the 3-input dynamic neuron is

about 0.1mm? so the logic gate neuron is 15 times bigger than the dynamic neuron,

VLSI Implementation of HyPE Piscussion of Neuron Designs 62

University of Windsor

4.5 Simulation of Neuron Designs

The 3-input single block dynamic neurons are the final choice that will be put onto the test
chip. Simulation of the functionality is done using the extracted layout of the 3-bit
parallel subtractor and the extracted layout of the custom logic gates. Figure 4.26 shows
the output of the SPICE simulation of the 3-bit parallel subtractor using a TSPC latch at
S50OMHz clock. The 3-bit parallel subtractor provides the complement output signals. 5

volt output represents “0" and 0 volt output represents “1”,
P p p

Figure 4.26 SPICE Simulation of the TSPC Latch Dynamic Neuron

Y ol ER R e e A R R
2 T O U U O
wS [T T Yy e e o
vedl F o v Gy oo ooy by
(L S S e e I
(. S R U R
vl T e e T T

LU S IR R
L YR AVERYERYERYERVEAVERVER'

0 S0n 100n 150n

Figure 4.27 SPICE Simulation of the UCDCS Latch Dynamic Neuron

vr7

Ll t .1 1 i b Kk 1t

vrﬁ[lllrl:::‘:"':';llll'l‘llillll:;_:_:::_:-::illll
vrS[::l/lIllllllllllll]'lll/||1lllllll LR

s e h o 010
ved{]
| S St VNN et inel

e L T
2 | DRI PR EENNNENe NN e
B0 406000 EISBERAEEARESAAN S BB

vek{ L/ A LT N D LA W T LT
0 20n 40n 60n 80n 100n 120n 140n

VLSI Implementation of HyPE Simulation of Neuron Designs 63

University of Windsor

Figure 4.27 is the simulation result of the 3-input single block neuron using the UCDCS

latch. The 66MHz clock is used in the simulation,

4.6 Additional Inforraation on the Neuron Design

The reason to have a low clock speed in the simulation is that the current is fed into eight
transistor trees. Without merging 0o many transistor trees, the operational clocking speed
can be increased up to 5 times. This information is provided from the single block 3-input

dynamic neuron design using the UCDCS latch.

Figure 4.28 Simulation of Single UCDCS Latch in 3-bit Parallel Subtractor

vclk
1 [} 1 L] [1 1 1 L
Ty 1 L L L L L LI
Lt 1 1t 1 1 L i L1t 1 r 1t 311
I rfT 1P Tt rrrooeorinmrt t 1T T rrvy 1T venig
current
gointo
the]atch L1 1.1 0.1 1.1.1 it 1 .13 1.1 1111 1

0 5n 10n 15n 20n 25n 30n

The SPICE simulation result in Figure 4.28 isolates the sign bit of the 3-bit parallel
counter into the neuron and the input vectors use to test is the same as the 3-input single
block dynamic neuron used in the UCDCS latch. The clock used in the simulation is
333MHz.

4,7 'Test Cell for Fabrication

The test cell which has been sent for fabrication is shown in Figure 4.29. The test cell
includes two 3-input single block dynamic neuron designs. One uses the TSPC latch and

the other one uses the UCDCS latch.

VLSI Implementation of HyPE Additional Information on the Neuren Design o4

University of Windsor

tl ll ﬂ u v

Ao & S, SAASAL W LA Sas. dated m# -,

W

rernA e K e T T

18
K
28
. w8
4
&

e

Pads included in the test chip are shown in Table 4.5

Table 4.5. Functionality of Pad

Functionality of Pad no, of 'péd | name éf pad

threshold 7 input
beta regular? 1 input
activity 2 output
selection bit of multiplexer 1 input
input to AND gate 0 input
output of 3-bit parallel subtractor 16 output

choice 1 input i

power and ground 8 vdd and vss I

Since there is a limitation on the number of pads, the functionality of both neurons needs

to be tested one by one. The choice pad, input the signal to the choice block to allow one

VLSI Implementstion of HyPE Test Cell for Fabnication

University of Windsos

of the 3-bit parallel subtractor’s output 1o be sent to the output pads. The choice block is a

multiplexer block which includes sixteen 2-to-1 multiplexer.

4.8 Summary

This chapter considers two approaches of neuron design: the pipeline neuron design and
the single block neuron design. Three logic gate neuron designs have been tried. These
are the 8-input pipeline neuron design, the 4-input pipeline neuron design and the 8-input
slow pipeline neuron design. Four dynamic necuron designs are investigated, The
functional block of the 8-input pipeline neuron and the 7-input pipeline neuron are
finished in either schematic or layout. The other two dynamic neuron designs are the
single biock 3-input neuron design. One of them uses the TSPC latch and the other one
uses the UCDCS latch. Due to the limitaticn of the dimension of the core and the number
of pad, the 3-input single block ncuron designs are chosen. SPICE simulation result
shows that the TSPC latch’s neuron can function properly in 50MHz and the UCDCS
latch’s neuron can work with 66MHz. Additional information is that if the transistor trees
are split in the 3-bit parallel subtractor, the operational clock speed can be improved up to
333MHz in the example in Section 4.6 The test chip has been sent for fabrication. It

includes two functional neurons.

VLSI Inplemenution of HyPE Summary 2]

ChapterS

Conclusion

5.1 Contributions of the Thesis

In this thesis, two single block dynarmic neurons were designed and
implemented. They are used to improve the speed of the Hierarchy
for Pattern Extraction (HyPE) artificial neuron network’s training
algorithm. The difference of the two neuron designs is that
different latch designs are used. One design uses the true single
phase clock (TSPC) latch and the other design uses the ulira fast
dynamic current steering (UCDCS) latich. The designs are utilized
in the hierarchical structure in the schematic and the layout. The
NMOS transistor tree in the dynamic functional block is minimized
by the minimization program provided in Section B.4 on page 95.
Both neuron designs have been designed in the Cadence Edge™

environment using the 0.8 R BATMOS technology.

The test chip has been fabricated. It includes both single block

dynamic neuron designs.

Here is a summary of the main points of the thesis:

The background of the Hierarchy for Pattern Extraction (HyPE)

artificial neuron network’s architecture and the training algorithm

Conclusion

Contributions of the Thesis 67

Univertity of Windsor

have been reviewed. It shows the difference between the HyPE artificial neuron network

and the other artificial neuron network.

The original algorithm was written in Smalltalk. The C program for the training is based
on the algorithm that is extracted from it. It was a very rewarding experience learning

object-oriented programming concepts in this process.

A review of the minimization algorithm’s rules, based on the algorithm proposed by
Bryant, has been presented. A switching tree minimization program written in the C
programmihg language has been discussed as well. The structure and the functionality of
the true single phase clocking {TSPC) latch and the ulira fast dynamic current steering
(UCDCS) latch have been provided.

The pipeline neuron design and the single block neuron design have been presented. 8-
input pipeline neuron, 4-input pipeline neuron and the slow 8-input pipeline neuron, using
tcell library provided in the 0.8m BATMOS technology, have been presented. The 8-input
pipeline dynamic neuron and the 7-input pipeline dynamic neuron have been introduced.
Two single block neuron designs with 3-input have been introduced. Each of themn uses a
different kind of latch {the TSPC latch and the UCDCS Ilatch).

The implementation of a test chip containing those two 3-input single block neuron design
has been discussed. This can be used 10 test the functionality of the neuron design and the
actual speed that the neuron design can provide in silicon. All the schematic and the

layout designs are worked in the Cadence Edge™ environment.

5.2 Future Work

In this architecture, there are a few things that need improvement. Reducing the number
of levels will reduce the complexity of the artificial neuron network. Simplifying the

regular beta neuron by removing, the additional neuron’s connectivity from the alpha

Conclusion Future Work 68

University of Windsor

virgin neuron to the beta regular neuron will not only simplify the training algorithm, it

will also reduce the general neuron design to half in silicon.

The training algorithm will have to be modified in order to recognize more one group of

patterns inside a single neural network.

Finally, a module generator [17] which will automatically generate the layout from logic
specifications is required for designs with a large number of input variables. This module

generator will have to take account node locality concerns.

Conclusion Fuwre Work (o

University of Windsor

m
(2]

(31

(4]

[5)

(6]

7

[8]

(9]

{101

REFERENCES

L. Andrew Coward, “Pattern Thinking”, Praeger Publishers, 1990.

John Hertz, Anders Krogh, Richard G. Palmer, “Introduction to The Theory of Neu-
ral Computation”, Addison-Wesley Publishing Company, 1991.

H. Chan, H.M. Chan, G.A. Jullien, W.C, Miller, “ An Artificial Neural Network VLSI
Realization”, Canadian Conference of Electrical and Computer Engineering, 1992,

Neural Network Research Group, “Design and VLSI Implementation of An Intelli-
gent Optical Sensor”, Department of Electrical Engineering, University of Windsor,
May, 1992.

Ka-Wa Lei, “A 1.2u Neural Network Design”, M.A.Sc. Thesis, Faculty of Graduate
Studies and REsearch, University of Windsor, 1994.

Waleed Fakhr, M. Kamel and M.1. Elmasry, “Probability of Error, Mutual Informa-

tion, and Size Minimization of Neural Networks”, Proceedings of the International

Joint Conference on Neural Networks (IJCNN'92), Baltimore, MD, USA, June 7-11,
1992.

Waleed Fakhr and M.1. Elmasry, “Mutual Information Training and Size Minimiza-
tion of Adaptive Probabilistic Neural Networks”, International Symposium of Cir-
cuits and Systems (ISCAS’92), San Diego, 1992.

Waleed Fakhr and M.1. Elmasry, “Minimam Description Length Pruning and Maxi-
mum Mutual Information Training of Adaptive Probabilistic Neural Networks", Pro-
ceedings of [EEE International Conference on Neural Network (ICNN'93), San
Francisco, CA, USA, March 28 - April 1, 1993.

Donald F. Specht, “Probabilistic Neural Networks and the Polynomial Adaline as
Complementary Techniques for Classification”, IEEE Transactions on Neural Net-
works, Vol. 1, no. 1, March 1990.

Roger Grondin, “The synthesis and Modeling of High Speed Digital Switching
Trees”, M.A. Sc. Thesis, Faculty of Graduate Studies and Research, University of
Windsor, 1991.

University of Windsor

[11)

[12]

[13]

[14)

(15]

[16]

[17]

[18]

{19]

[20]

[21]

Lino Del Pup, “The Development and Application of High-Speed Digital Switching
Trees for Regular Arithmetic Arrays™, M.A.Sc. Thesis, Faculty of Graduate Studies
and Research, University of Windsor, 1991.

James Christopher Czilli, “BiCMOS Technology and Some Applications in High
Performance Arithmetic Structures”, M.A.Sc. Thesis, Faculty of Graduate Studies
and Research, University of Windsor, 1994.

N. Weste, K. Eshraghian, “Principles of CMOS VLSI Design: A Systems Perspec-
tive”, Addison-Wesley, 1985.

R. E. Bryant, “Graph-based algorithms for Boolean function Manipuiation”, IEEE
Transaction on Computer, vol. 35, pp.677-691, 1986.

Yuan Ji-Ren, Ingemar Karlsson, and Christer Svensson “A True Single-Phase-Clock
Dynamic CMOS Circuit Technique”, IEEE Journal of Solid-State Circuit, Vol 22,
No. 5, pp.899-901, October, 1987.

M. Yasunaga et al., “A Self-Learning Digital Neural Network Using Wafer-Scale
LSI”, IEEE Journal of Solid-State Circuits Vol 28, No. 2, pp.106-114, February
1993,

Siddiq, Shakil Kaiser, “Module Generators from Topological Descriptions and
Graph Theoretic Approach”, M.A.Sc. Thesis, Faculty of Graduate Studies and
Research, University of Windsor, 1994,

“HSPICE User’s Manual, Elements and Models”, Volume 2, HSPICE Version H92,
Meta-Software, Inc., 1992,

H.M. Chan, “Dynamic Logic Synthesis with Application to Self-Timed Pipelines”,
M.A Sc. Thesis, Facuity of Graduate Studies and Research, University of Windsor,
1992,

R. Venkatesan, “FPGA Implementation of RMS Structures”, M. A.Sc. Thesis, Fac-
ulty of Graduate Studies and Research, University of Windsor, 1994.

Alagu Annaamalai, “Modeling and Synthesis of Special Parallel Architectures Using
VHDL”, M.A Sc. Thesis, Faculty of Graduate Studies and Research, University of
Windsor, 1991.

T

University of Windsor

Appendix A

The Training Algorithm of HyPE

This Appendix consists of the training algorithm of the HyPE architecture and the equa-

tions that uses in the algorithm.

A.1 Equations

R, R -B. ..
NAC = P‘szﬂl Jf[k2+k32n le Bmmal)
initial

NVJ.+SRj—Sj
NVj= 15 x T

A.2 HyPE Algorithm

A.2.1 Overall Training Process

Initialize Brain Process
loop 11,3
{
NAM 1
NAe [I=1)
100p se1, .LPIr
(
Wake Process
i (=1 Bt ZylR 25 € Sy,
Sleep Process
}

Appendis A ‘The Training Algorithm of HyPE

Cniversity of Windsor

A.2.2 Initialize Brain Process

N[T.' J.“'R‘-J"- O'Ci.J. U.C‘. . 0};1 €jsdue S}.
R-.;.D'_ isjsdiie S,_u

G‘.j.0<—0;l $jcdie S,,n

1]

Ciiot .
NA 1

T‘-J.ot—T[NA.jI;! $js3ie SJ.“

Tl_4'0<—l
loop j«1,3

Wy e icdic ¢
ok Junisisdies,

loop s 1,m,,

{
)
]

iPF 1.0

C‘!ll.N,, 10 liie S!_r

A.2.3 Wake Process

[NAM = 1]

{
NAM « 0
loop 1 1,7P,

{

F <P

ol)
Ey = .?s 1]
loop j«1,3

loop ie1,5,
}

Gij:*_(zglcn,.,,,: 1oFa, I.rIZTajr)mESj—lr
if (j=2)

Gij:“((zzalcn,,,. 12 By zTijr)ARi,j.z-!

}
Gij‘c—((za[R,-.j.,_ i AGU,])s Pﬂ)

A G‘.ﬂ);n € Si- 1

F,,&= ¥ 4 R [Gy
}

Appendix A ‘The Training Algorithm of HyPE

al

University of Windawe

£ ((ZdFasd <M ((ThFariBin, <¥aC)s 1= 11))

NAe=NA+L
F0.'c=P,
EO.:°= ;‘lepsn_,“]

T, e TINAGL (VS s Qhsie 8,

loop j« 1,3

Al

loop ie1.5,

{
Gn;l‘_(anCn,:,).l IAFH.] l.rlleﬂ).‘"E“:J 1,0
if (j=2

‘*([22-“}.;.: nF, e, ,JJW) . ,Acu,);nesj_,_‘

Gy ((Z,J NN) P”)

C ies [ni, i 1“((R=.1.l IVFn,,u Vrnj 11)"("11) ((Ra,j,r lVFn.j-l.:)“Gijt)Tl

..... (ig)s 3)iies,
R, 1—(R”'] :;r) (l<j<3)teﬁ
FP, <=V§ AFP, + (R, nG)T js3

€S

els 4;# 1 af-La Ayt

IR, = VI [IR‘“ L+)G nF ACpyen Ry I.,__Ill;lsjsii;ie S,

Cl,‘l,.!¢= ,.?s,’ [(Cn,l,d,:—l"Rn,a_;]) V(Fﬂ.g., N "Rn,‘j,l I)}
G,‘al,«-(zﬂ[cm_4.,nF"‘l,] > l):ne Sk,

pp= PP(—L 14,07 TNT |

c [an,A(PPvr”,)

1,445 neS
if (pP=1) PFc—Pka

A.2.4 Sleep Process

loop j«1,3

Appendix A IhL lramlng Mgunlhm uf Hyl’! 74

C e l:!‘svr[m
T‘.ﬂq-T[O,j] dE SV”
G, +—0ies,

R,j,‘- Oiie Sv’

loop s« 1,(NVJ_EBE U,)
{

N ITijr'Riﬂ‘cur'Giﬂ]

G 0ies,

R'-j'c-- Oie Sv"

Ce= l,:f‘sv” [0]

Ty TI0.jl5ie sy
'l

)

Moo — + !
njt LYY)
E ”I.r.;.r-l z ’R.m a

65,,,, 8y,

H, =T au,)
if =1 1p lim e I ' s
J= it & + ‘;NE‘R
4 sm] a Eﬁ El.) 1.0 b

if (>

n kk)
IP . ZIH--#—"-—-— me S,
Aft [I zﬁ E“} _ l,:_ S

!
gl

IP_J-‘&—

" k .
z 1Hm+———‘:—— me s,
EB ;i.; 1.0 1l

]

}

lOOp nt——l,Nj
{

n- 141 i

if Lm
)
if (j=2)
{

if (CojinEnjra=1) C, ¢~ Mies,

mgt

if (j=2)

R
LL ,,— Y E, ine Sv.,

rw

)
LPF,, « ¥ FP,, i€ Sk,
iml

loop ss - 1, (AVENEEE‘_ 2.,J

<Rinmaxqw)1 sir,] € e Blsnsmies,

M

University of Windsor

Appendin A The Training Algorithm of HyPE

75

}

ae R max(LPF, 1)
b‘—cﬁ[l.max(LLL,H
lOOp n+ l.N’J

{

1

if (bsiLL,,)

{

Jen
M—-Njﬂl

|
)
loop S I,Nj

{

if (asLPF,,)

(

Canaee]
S(—Nj

if (j=2)
. ZB (CnulAEn.; l,r‘ y g
a « (as integer) BTT e 8,
if (a).T.-j,) T'.j'(—a

Appendix A

The Traimng Algorithm of BiyPE

Universuy of Windsor

76

University of Windsor

Appendix B

Source Code of All Programs

B.1 C Code for generating input patterns

#include <sulio.h>
#include <math.h>
#include <stdlib.h>
#include <malloc.h>
#include <sysftimeb.h>
#include <sysftypes.h>

main{argc, argv)
int arge;

char *argv(];

(

FILE *fp,*fi;
int a,b,c.d.e Jo,inpui[54],probl 54],clef54] .count;
int m;
int fn;
srand(time ((time_t *)0));
if (arge 1= 3)
{
printf("the format of input is as below\n™);
printf("e.g. thingmake ‘input_file' "output_lile™\n™);
exit(1);
}
for(b=0:b<54;b++)
{
input(b]=0;
prob{b]=0;
ele[b)=0;
]

/* fp=fopen(“inp.pat™,"r");*/
fp=fopen(argv[1],"r");
for(a=0;a<54;a++)

fscanf{fp,"%d\n",&input[al);
)
fclose(fp);
prob[Q]=input[0);

Appendix B Source Code of All Programs T

for(a=1;a<54;a++)
(
probla)=input[a]+probla-1];
)
count=prob| 53120,
primf('count=%d\n" count);
fi=fopen(argv([2],"w™);
for(a=0;a<500,a++)/* generate SO0 input pauems*/

for(e=0:e<54;0++)
{

elefe]=0;
)

M*for(b=0;b<count-5;b++)*/
for(b=0;b<21;b+)/* sclect 21 from 54 characteristic components from */
{
m=(int{((({int)rand(}))/214 7483647 .00 prob] 53]
for(c=0;c<54;c++)
{
if(m<=prob[0])
{
ele[0]=1;
}
if((proble-1}am)}& & {m<=prohic|))
{
ele[e]=1;
e=54;
)
}
}
for(lo=0;lo<54;10++)
{
fprintf(fi,”%d *ele(lo});

}

fprintf(fi,"n");

}

for (a=0; a<54; a++)
fprintf(fi,”%d *.input(z]},
fprintf(fi,"\n");

iclose(fi);

}

B.2 Training Program

#include <math.h>
#inclnde <stdio.h>
#include <malloc.h>
#include <stdlibh>
#include <time.h>
#include <sysftimeb.h>
#include <sysftypes.h>
#definc MAX 2000

Appendix B Source Code of Al Programs

Universiy of Windsor

8

struct NEURON
(
unsigned int T,
unsigned int C[MAX];
unsigned R: 1;
unsigned G:1;
} N{4}[MAX].BasN;

struct LEVEL

{
unsigned int FIMAX];
unsigned int EfMAX};
unsigned int FF[MAX);
unsigned int IRIMAX];
unsigned int IH[MAX];
unsigned int TRM;
unsigned int IHM;
unsigned int [P[MAX];
unsigned int LL[MAX];
unsigned int LPF{MAX};
unsigned int S;
unsigned int SR;
unsigned int NV,
unsigned int P[5];
unsigned int NT[4];
unsigned int m[2];
JLevel{4];

struct PROCESS
(
unsigned int LP;
unsigned int TP;
) Train[4];
int NA NAM;
fioat PF;
int beta=0;

main{arge, argv)
int argc;

char *argv(l;

{

FILE *fp;

int 1=0,1b=0,u=0,m=0,t1=0,TP=0,Ii=0,l0=0,1p:;
int count=0,dummy=0,*y PP.TNT=1p=1 level;

int THforBETA=0,

int Gamma_Firing=0,1=0,1k=0,TT=(};

char *alp[10],*bet{10],*gam[10],*bas[10];

aip[0}="Alp0.rep”; bet[0)="Bet0.rep”; gam[0]="Gam{.rcp™; bas[0]="Bas0.rep™;
alp[1]="Alpl.rep™; bet[1)="Betl.rep™; gam[1|="Gaml.rep”; bas{1]="Basl.rep™;
alp[2]="Alp2.rep™; bet[2]="Bet2.rep"; gam(2)="Gam2.rep"; bas[2]="Bas2.rep”;
alp[3]="Alp3.rep”; bet[3]="Bet3.rep"; gam(3)="Gam3.rep"; bas[3]="Bas3.rep”;
alp[41="Alpd.rep”; bet[4]="Betd.rep”; pam[4]="Gam4.rep”; bas[4)="Basd.rep”;
alp[S]="AlpS5.rep™; bet[5]="BetS.rep™; gam(5|="Gam5.rep"; bas|5]|="Bas5.rep™;

Appendix B

University of Windsor

Source Code of All Programs

University of Windsor

alp[6])="Alp6.rep™; bet]6]="Be1b.rep™; gam(6]="Gamé.rep"; bas[6]="Bas6.rep™;
alp(7)="Alp7.rep™; bet7]="Bet7.rep™; gam(7|="Gam7.rep™; bas{7]="Bas7.rep";
alp(8]="Alp8.rep™; bei[8]="Betf.rep”; gam(B1="Gam8.rep”; bas|8]="Bas8.rep™;
alp[9]="Alp9.rep”; bet[9)="Be9.rep™; gam{v]|="Gam9.rcp"; bas|9]="Bas9.rep"”,

if (arge!=3)
{
printf(* You are missing some paramcters\n’);
printf(“e.g. backup ‘input_file1* ‘input_file2™\n");
exit(1);
J
for (1b=0;1b<10;lb++)
{
P““"“““*“IN]T}AL[ZE BRA!N*#‘t**h*t“ﬁ*!‘t*m**titt#!
fp=fopen(“Train.rep™,"a™);
fprind(fp,”%d\n" time ((time_t *)Y0);
fclose(fp);
mnit_brain (); /* initial brain */
PF=1.0;
!‘““.‘t.‘**‘*t‘tEND lNITlAL]SE BRA]N* F******i**til#ttiﬁht!
for {tp=1;tp<4;lp++)
{

NAM=1;
1p=0;
while (Ip<Train[tp). LP& &(INAM==1))
(
NAM=0,
fp=fopen(*Train.rep”,"a");
fprintf{(fp, Training Process{%d) at loop{%din"ip.lp)
fprintf(fp,"%d\n" time {(ime_t *)():
fclose(fp):
if (tp=1lltp=2) Wake(tp,argv(11);
if (tp==3lItp==4) Wake(tp.argv[2]);
if (tp==1) beta=Level[2].5R;
Sleep(:
lp++;
}

)
fp=fopen(alp[lb],"w");
for (1=0;t<Level[11.5;t++4)
{
count={);
fprintf(fp,"%3d %d %2d “ tLN[1I[{.RN[1][].T)
for(1t=0;t1<Level[0].5;tt4++)
(
if IN[11[1).C[tt]==1) fprintf(fp,"%d " A1);
if (N[11[1).Clul==1&&Level(0].E[tt]==1) count++;
}
fpeintf(fp,” %d\n” count++);
)
fclose(fp);
fp=fopen(bet[lb),"w");
for (t=0;t<Level[2].5;1++)
{

Appendix B Source Code of All Programs 80

count=0;
fpeintf(fp.” %3d %d %2d " LN[2][tL.R.N{2][t].TY:
for{tt=0;tt<Level[1].5;u++)
{
I (N21[1.Clu)==1) fprintf{fp."%d "%
if (N[2][1).Clul==1& &Level[1).E[tt}==1) count++;
)
fprintf(fp,” %d\n” count-++);
}
fclose(fp);
fp=~fopen{gam[lb],"w");
for (=0;t<Level[3].5;1+4)
{
count=0);
fprintf(fp,"%3d %d %2d " LN[3{LL.R.N[3|[).T)
for{t=0;ti<Level[21.5;1t++)

{
if (N[3][t).Clu}==1) fprintf(fp, % “.utx;
if (N[31[t].Cltt}==1& &Level[2].Eftt]==1) count++;
)
fprind(fp.” %d\n" count++);
]
fclose(fp);
fp=fopen(bas[ib],"w"™);
for (lo=0;lo<Leve![3].5;l0++)
{
fprintf(fp,”%d ", BasN.C[lo]);
)
fprintf(fp,™\n");
fclose(fp);
for (levei=1;level<4;level++)
for (=0;t<Level[level].S;t++)

Nievel][t].T=50;
Nevel][t].R=0;
for (u=0;tt<Level{level-1].5;ut++)
NllevelJlt).Cluj=0;
}
)

}**-* END OF MAIN ***%/

Ptttl‘ttt-ttttttttmttttBEGIN WAKE" wtamn-mwutw-t*m*tt*ttwtl

Wake(tp,argv)

int tp;

char *argv[};

(

FILE *fp*fl;

int TT ki, *y,Gamma_Firing=0,Beta_Firing lol,dummy=0,couni=0,PP=0,TNT=1;

float NAC;
y=(int *)calloc(55,sizeof(int)};
fl=fopen(argv,”r");
for(TT=0;TT<Train[tp]. TP;TT++)
(

University of Windsor

Appendix B Source Code of All Programs

University of Windsor

NA=0Q;
for(u=0;11<54,11++)

fscanf(f1,"%d\n" & y(u));
Level[O).Fiu]=ylu];
)

or (u=0;1t<54;114+) printf(*%d" Level[0].Flu));

printf(*\n");*/
Gamma_Firing=0;
if (tp=1) NA=1;

I‘.l‘-‘.l-tNovc"y A_rousaI Scclion!!llull L L1 ta:—'*l
NAC=PF*(Level[2).SR/300.0)*(.25+1.25%(Level[2].SR-bewa)/(float}(beta));
while({Gamma_Firing<5)& & (NA<=1))

{
init_VNs_T_A(NA);
check_activity(ip); Mcheck neuron activity*/
Gamma_Firing=0;
for(lo=0;l0<Level|3].5:lo++)
Gamma_Firnng=Gamma_Firing+N[3][10].G:
Beta_Firing=0;
for(lo=0;lo0<Level[21.5;lo++)
Beta_Firing=Beta_Firing+(N[2]{l0}].G&&N|2]{I0].R);
NA++;
if (Beta_Firing<NAC)&&(1p>1)) break;

}
if ((NA!=1)&&(1p!=1)) NAM=1;
update_connectivity (),

free**** Updalc Basal Node Conncctivity & Activity ******%/

BasN.G=0;

for(t=0;t<Level[3]).5;t1++)
BasN.C[t]=((BasN.C[)&&N[3][t.RIIMNI3L.G&&(UNI3][LL.RY);

dummy=(;

for(t=0;t<Level[3].5;1++)
dummy=dummy+{(BasN.C{t])& & Level[3].F[t]);

if (dummy>0) BasN.G=1;

update_threshold_regular();* Update Threshold & regular */

,‘“!i.ti‘ttt.#tu}c pmn aﬂd plcasurc*t*‘**t*****t****#‘*ttt/
if ((TT-(TT/3*3)==0)litp=1lItp==2) TNT=1;
else TNT=0;
PP=(BasN.G&&(ITNT));
for(1=0;t<Level[3).5;t4++)
BasN.C[t]={(BasN.C[t])&&{('PP)Ii('Level [3).F[t])));
if (PP==1) PF=PF*21/20.0;
fp=fopen(“Train.rep™,"a");
fprintf{fp, " Training Pattern(%2d) NA=%d TNT=%d NAM=%d PP=%d PF=%5.3f NAC=%7.3f Basal
Node Firing Static(%2d:%2d)->%d \n", TT,NA-1, TNTNAM,PP,PFNAC,Gamma_Firing,dummy,BasN.G);
fclose(fp);
‘ww_‘FP_lRO: l*.t‘tt* Upda‘c FP &]R t****t*/
)
fclose(f1);
l"""‘"‘"‘"’“Rccord to the rep ﬁlcmlt-mtvt*-ttt*ttt/‘
/¢ fp=fopen{"Alp.rcp”,"w");

Appendix B Source Code of All Programs .v4

University of Windsor

for(u=0;tt<Level[0].5:u++}
fprintf{(fp,"u=%3d IR=%3d IH=%3d [P=5% 30" i, Levell 1LIR fth Level[T1.IH[n] Level 11.TP{u]):
fclose(fp):
fp=fopen("BeLrep™,"w");
for(it=0:tt<Level(1].5:t1++)
fprint(fp."u=%3d IR=%3d TH=%3d IP=% 3d\n" &t Level [21IR (1] Level 2L 1H[uwt] Level 21LIPLRDY;
fclose(fp);
fp=fopen(""Gam.rep™,"w");
for{(u=0;u<Level[2].S;u++)
fprintf(fp, u=%3d [R=%3d [H=% 3d IP=%3d\n"ut.Level[3].IR[t] Level | 31LIH[1t] Leved 31 TP[ut]);
fclose(fp).*/
)

I"“t‘i*t““*it‘EN’D WAKEit&‘lltlnt! htﬂﬂl!l

Pt‘*.*“tt‘tt*hlltiniﬁal bmin i'unctiont** EEES R ER TR EESE Y] Ql/
init_brain
{
int level,t,it,m,t1;
srand(time ((time_t *)0));
Level[1].NT[0]=50; Level[I].NT[1]=7; Level|1].NT[2]=6: Level[11.NT|3]=5;
Level[2).NT{0j=50; Level[2JL.NT|1]=7; Level|2].NT}{2]=6; Level{2].NT{3]=5;
Level[3).NT{0]=50; Level[31.NT(11=6; Level]3).NT(2]=6: Level[3].NT|[3]=6;
Level[1].P[1]=MAX; Level{11.P[2]=30; Lovel{11.P[31=30; Level|1].P|4]=30;
Level[2).P[1]1=50; Level[2].P[2]=30; Level{2].P]3]=30; Level[2].P[4]=30;
Level(3]1.P[1]=4; Level{3].P{2]=10; Level[3].P|3]=10; Lcvel|3].Pl4)=10;
Level{0].8=54; Level[11.8=150; Lecvel[2].8=150; Level[3).5=150;
Level[11.NV=150; Level[2L.NV=150; Level[3].NV=150;
Level[11.SR=0; Level[2].SR=0; Lecvel[3]).5R=0;
Level[0).IRM=0; Level[11.IRM=0; Levcl[2]JRM=(}; Level{3].IRM=0;
Level[0).JHM=0; Level[l1LIHM=0; Lecvel[2l.IHM=0; Level[3L.IHM=0;
Level[1].m{0]=15; Level[1].m[1]=20;
Level[2].m[0]=17; Level[2].m[1]=24;,
Level[3].m[0)=14; Level[3].m[1]=26;
Train[1].LP=1; Train[2}].LP=20; Train[3].LP=20; Train[4].LP=1,
Train[1).TP=4; Train[2).TP=40; Train[3].TP=30); Train[4].TP=30;
for (t=0;0<54;1t++) Level[0). E[ut]=1;
for (level=1;level<d;level++)
{
for(t=0;t<Level[level).Sit++)
{
N(tevel](1]. T=Level{level]. NT(1];
Nievel]{1].R=0;
N{level{1}.G=0;
Level[level) . FP[1]=0;
Levelflevel].IR[t]=0;
Level[levell .E{t]=0;
for({ti=0;u<Levelflevel-1].S;tt++)
Nilevel][t].C[t)=0;
for{t1=C:t1<Level[level].m{O];t1++)
{
m=(int)({({(int)rand()/2147483647.00)* (Level[tevel-11.5-1));
Nilevei][t].Clm]=1;
}
}

Appendix B Source Code of All Programs 1}

University of Windsor

)
)

I‘.“‘t..i.t-‘.t.cnd Ol' mlllal ’C\'CI runclinnb*t#&&tttll‘ln/

f****initial virgin ncurans’ T & reset the aclivily**>*=****/
init_VNs_T_A(lk)
int lk;
{
int level lo;
for {level=1;level<d;level++)
for (lo=0;lo<Level[level].S;lo++)
{
if (N[levell[lo].R==0) N[l¢vel][lo]. T=Level[level INTHk]:
Nllevel][10]).G=0;
Level(level] . Fllo]=0;
]
}

f***cnd of initial virgin ncurons®™ T & resct the activity***/

fresssnnenrnbnkercheck to activity of neuron in love]*»***xf

check_activity(tp)}

i tp;

(

int level,lt) t,count,loandy, THforBETA;

fprint(*\aR (active regular), r(non-active regular), N(active virgin), n(non-active virgin)™);*/
for (Qevel=1;level<d;level++)

{
It=0;
for(lo=0;lo<Lecvel{level]l.S;lo++)
{
couni=0;
THforBETA=0;
for(l=0;l<Levelilevel-11.5;1++)
{
if (((N[levell[10].C[1)&&{Lcvelllevel-1|.F[11))==1) count++;
if (level=2)
{
if ((N[levell[lo].ClN& &(Level[level-11.F[1)& &(Level[level-11LE[1])==1)
THIorBETA=THiorBETA+2;
)
}
if (level=2})
{

if (({count>=N[level}[lo].T)&&{((THforBETA>=N[level][lo).T)
&&(N[level][lo]l.R)M('Njlevell[lo).R}))==1)
Nlievel][lo].G=1;
)
eclse
if {coun>=N([level][lo].T) N[level][lo].G=1;
if ((({(N[level)[lo).R)& & (N{level][10].G))==1) lt++;
if ((IoLevelllevell Pltp)) & & (N(level][l0].R))) Nlevel}[10].G=0;
)
andy=0;
for{lo=0;lo<Level{level].S;lo++)

Appendix B Source Code of All Programs 84

{
Level[level].F(lol=Nllevel}flo).G:
if (N[levet}{lo].G==1) andy++;
)
f* couni=0;
printf(*Neuron in level (Ged)An" Jeved):
for (lo=0;lo<(Level[level|.S/150):l0++)
{
for (=count;l<count+150;1++)
{
if (N[levelJ[.R&&N([level[{11.G)==1) prim{("R™;
if (N[evel][1].R&&(IN[level j[1]1.G))==1) printf("'r™);
if ((("N{level][1].R)&&N([level][1).G)==1) prim{{"N");
if (((N[level[HL.R)&&(IN[levelI[11.G)==1) printf("n™);
}
printd{(*“n™);
count=count+150;

)
for (I=count;l<Level{level].S;l++)

{
if (NOevel]{1].R&&NT{level][1].G)==1) printf("R™);
if ((N[level][1}.R&&(!N{level][1].G))==1) printt(“r”);
if (((IN[level]N].R)&&Nevel][1].G)==1) print("N");
if (((!Nlevel][1l.R)&&(!N[level][1).G)==1) printf(*n");

)
printf(*\n™),

count=0;

printf{*\nNecuron threshold in level (Gd)\n” level):
for (lo=0;lo0<(Level[level].5/50);1o++)

{

for (I=count;l<count+50;1++)

pn'[mf(“%Zd “Nlevel](1).T);
I}Jrimf(‘),
count=count+50;
gor (I=count;l<Level[level).S;14++)
[prim.f(“%?.d * Nilevel][}].T);

}
printf(‘*\n");*/

}
/* count=0;

printf{"Neuron in level (3).\n");
for (lo=0;lo<(Level[3}.5/100);10++)
{
for (I=count;l<count+100;1++)
(
if ((N{31{1].R&&N[3](1].G)==1) printf(*R");
if ((N[3YMN.REE(N[3INL.G))==1) printf{"“r");
if ((ON[3IN1.R)&&N([3][1].G)==1) print{(“N").

Univeruy of Windsor

Appendix B Source Code of All Programs

85

University of Windsor

il ((CNI3INLRY&&(IN(3)1].G))==1) prindf(**n™);
}
printf("™\n");
count=count+ 100;
}
for (I=count;l<Level[3].5;1++)
(
if ((N[3J1).R&&N[3I[1].G)==1) printf("“R");
if (N[3){1.R&&(IN[I)(1).G))==1} prinf (1"}
il (UNB)LR)&&N[3](1).G)==1) priml("N");
if ((CNE3)LR)&&NI3NL.G))==1) printf("n™);
}
prnd (") f

freerrrer==end of check to activity of neuron in level™** ===/

Pttt!h&tlttttt.ttumalc COnnCCli\'il)"*' EE TR ST 3RS] n-:u,r
update_connectivity()
{
int level,Ltt,abed.e;
for(level=1;lcveled;level++)
{
for(1=0;t<Level[level].S;i++)
(
for(u=0;tt<Levelflevel-1).5;1+4)
{
a=(('(N[levell{t].RD&&(N[level]t].G))):
b=((Levelllevel-11.Fu])& & (N([level|[1].G)):
c=((Level{level-11L.E)&&({N[level]|t]..G)):
d=((N[level][t].R)&&N[level][t].G)):
e=((Level[level-11LFu))& &N {level][t).G));
Nllevel]ft].Clu)=N{level][1].C[tt)& &(aliblictidlle):
}
)
}
}

{ttlt't“t*#*‘t#tcnd Of updalc Conncclivilyttl*********ﬁ***/

fressserenstypdate Firing Population & Inpul record*** ¥ #weex/
update_FP_IR()
{
int level L it Jummy;
for(level=1;level<d:level++)
{
for{ti=0;ti<Level[level-11.5;tt++)
{
Level[ievel] FP(tt]=Level[level).FPut)+((N[lcvel]{tt].R)
&&(N[level}{u].G));
dummy=0;
for(t=0;t<Level[level].5;14++)
(
dummy=dummy+{N[level][t]. G&&N][lcvel][t]. R&&Level{level-1}.F[]
&&N[level]t).Cltt]& & Level[level-1].E{ul);

Appendix B Source Code of All Programs 86

Univeruty of Windwor

)
Level[levell.IR[ttl=Level[level IR tt]+dummy;
}
]

P‘."ttt‘ti!tcnd Of Updillc lnput rccordnunumhnnthnttmnutuao/

ftttttttttttltUpdaw l.hC lhTCShOItl and n.‘gulnr" W nottuut/
update_threshold_regular()
{
int level Lit count.count 1;
for (level=1;level<d;level++)
{
counti=0;
for (=0;t<Level[level]S;1++)
{
count=0;
1f (((IN[level)[1L.R)&&MN[level][1].Gh==1)
|

for (t=0;tt<Level(level-1].5;u++)
{
i (Nlevel][1]).Clu)& & Levelflevel-11.F[u])==1) count++:
)
Nllevell[tl.T=count-1;

}
Nflevel][t]. R=((N[ievel}[1).RYUMNIcvel) [t}LG:
Level[level].E[t}=N{levetl]{t].R;
if (N[level](t].R==1) countl++;
)
Level[level].SR=countl;
)

f.“*t‘ﬁ**End or Updatc thc lhrcshﬂ](l Elnd rcgulartvttﬁtﬁ l*t*m/

F#tttnttttmﬁtttstt*tt*meLEEprrnwmww-mwww»t**rmmwﬁw’r

Sleep(
{
FILE *fp;
int level, 1=0,u=0,11=0,m=0,a=0,b=0,d=0,f=0,55=(},5=0);
int count test{MAX];
float z;
srand(time ((time_t *)0));
for (level=1;level<d;level++)
(
Level{level].IRM=0;
for(1=0;t<Level{level-11.5;1++}
Level[levell.IRM=Level[level]. IRM+Level{fevel IR[L;
)
f* for (1=0:t<54:t++) printf(“%d “Level[1].TH[1);
printi(a’");
prinlf(“[HM(Alpha, Beta, Gamma(%d %d %d)\n" Level[11.1HM Level[2).IHM,Level(3.THM);*/

I‘“‘*"*"**“Resct All Virgins Not]mprinlcd **i##ttt##***l
for (level=1;level<4;level++)

Appendix B Souree Code of All Programs Ly

{
for(1=0;1<Levelflevel].Sit++)

{
W((IN[level][t].R)
{
Nilevel]jt]. T=Level[level .NTI0];
Nilevel}f].G=0;
Level(level] .F(t}=0;
for{t=0;tt<Level[level-1].5;1t+4)
N(level)[t].Cltt]=0;
}
)
)

f******Remove Old Virgin Connections to Beta & Gamma*******/
for(t=0;t<Level[2].5;t++)

{if(NIZIIII-R)
[for(u=0;ll<chcI[11.5:4+)
l N2J[1L.CIW=NI2][1].Clu) & &(N{ 1 [[u].R);
|]
t]“or(l=0;l<bcvcl[3].5:t++)
[if(N[B][l].R)
[for(lt=0;u<l.cvc|[21.s;n++)
[NE3J[L].Clul=(N[3][1).Clu) & &(NI2j{tt].R);
| }
}

fressssrrrsnkmnnkkexerGoneraie New Virgins®** * e sk snssssons

for (level=1;level<d;level++)

University of Windsor

(
Level[level . NV=(int)((float}{(Level{level.NV+Level[level].SR-Level[level],.5)*15.0/10.0);

if(Level[level]. NV<30)
Level[level] NV=40;
else if(Level[level .NV>80)
Level[level]. NV=80;
if{Levelflevel].NV+Level[level].SR<150)
Level[level.NV=200-Level[level].SR;
Level[level].S=Level[level] NV4+Level[level).SR;

)
fp=fopen("Train.rep”,"a");

fpeintf(fp,"No. of virgin neruon (%3d:%3d:%3d)\n" Level[1].NV,Level[2].NV Level{3].NV);
fprintf(fp,"No. of regular neruon(%3d:;%3d:%3d)wn" Level[1].SR Level[2].8R,Level[3).SR);

fprintf(fp,"No. of neruon ~ (%3d:%3d:%3d)\n" Level[1].S Level[2].S,Level[3].S);

feveesswenensndae Input History and Normailizg*s*sssksmmns

Appendix B Source Code of All Programs

Universuty of Windsor

for (level=1;level<d:level++)
(
for(1=0;t<Level{level-1].5;0++)
(
if ((Level[level.IHM! =& & (Level[level AR M!'=0)
{

Level(level LIH[t=(int){(S000.0/Levelllevel L IHMY* LevelltevelLIH 1))
H(int)((5000.0/Level[level.IRMY*Level{levelLIR[1]:

else if ((Level[level . IHM==0& & {Levelllevel L IRM!=03)
Level[tevet] TH[t]=(int)((Roat)(10000.0/Level[level] IRMY*Level|level LIR 1)),
else if ((Level[level .LIHMI=0)& & (Levelllevel | IRM==0))

Levelilevel IH[t=(int) ((Roat)(10000.0/Level|level . THMY* Level| Llevel L TH[)Y;
else

if (N[level-13{t).R==1) Levelltevel . THIt1=(in0(1 0000.0/Level | level-1]).SR)Y;
else Level[level). IH{t]=0;
)
}
}
f* for (I=0;t<Level[1].5:t++) print{(“%d *Level| 21 IH D,

printf("\n"),

for (1=0it<Level[2].S;t++) printf("*%d “ ,Level|2LIR[]);

printf{*\n"});*/

for (level=1;level<d;lcvel++)
{
Levelfievel]. JHM=0;
for(t=0;t<Level(level-1].5;1++)
{
Levelflevell.IHM=Levcl[level . IHM+Levelllevel].TH[t;
Level[level].IR{t]=0;
)
}

'ft#l.tttt&ttit#ttttlnpul Popu]auon Gcncralinntt*t* RN EL L *th**t,
fprintf(fp, after normalisc\n™);
fprintf{fp,"[RM(Alpha, Beta, Gamma)(%5d %5d %3d)\n" Level[1].IRM,Level[2).IRM,Level[ILIRM);
fprintf{fp,"THM(Alpha, Beta, Gamma){%5d %5d %5d)An" Level[1].IHM,Level[2].IHM Level[3).JHM);
Level[1].IP{0}=Level[1].IH[0]+(int)(10G00.0/(float)(Level [01.5));
for(i=1;t<Level[0].5;t++)
{
Level[11.IP{t}=Level[1].IP[t-1]+Level[11.1H[1]+(int)(5000.0/(float)(Level [0].5});
}

for (level=2;level<d;level++)
{

f(N[level-1][t).R==1)
Level[level].IP[0)=Level[level.IH{O}+(int)(1000.0/(Roat)(Level(level-1],.SR));
else Level[level). IP[0}=Levelflevel | .IH([O)
+{m)}(10000.0/(float)(Level(level-1|.NV}):
for{t=1;t<Levelllevel-1].5;1-++)

{
if(Nflevel-1][tl.R==1)

Appendix B Source Code of All Programs 8

University of Windsor

Level[level). IP[t}=Level{level LIP{-1 i+ Level[level L TH[t]
+(in(1000.0/(Noat){Level|level-11.SR))
else Level{level]. IP[t)=Level|tevell IP{-1|+Levellevel | TH(t]
HinQ(10000.0/(Moat)(Levelllevel- 11NV
}

|
P/ for (t=0;t<Level]1].5;t4+) printf{“%d “ Levci[2].TP}1]);

printf(“a”),*/

fprintf{fp,"IP {Alpha, Beta, Gamma)(% 5d %.5d % 5d\n" Level[1]1.IP[Level[0].8-1],Level[2].IP[Level[1].5-
1],.Level|3].IP[Level{2].8-1])
fclose(fp),
!“ti...‘.Qti“tt“it‘i.t*htﬁihtihtItltlmllallbt\htuttu/

for (level=1;level<d;level++)

(

for(1=0;t<Level[icvel].S;t++)

(
if(!N(levelllt].R)
(

for(ttt=0;tcLevel[level[.m] 1];ti++)

m=(in){(((int)rand())/2147483647.00)* (Level|level].IP{Level[level-11.8-1]));
for(t=0;ti<Level[level-11.5;u++)
{
" iffme=Level[level].IP[0])
{
Nitevell{t].Clul=1;
t=Level[level-1].5;

)
clse if((Level(levet].IP[u-1]<m)& &(Level|level |LIP{u]>=tn))
*/
ilime=Level[level|.IP[wt))
(
Nlevel}it].Clul=1;
tt=Level[lcvel-1).5;

****Crcate Populations For Adding New I/P's 10 Reg Bela******+/
Level[2].LPF[0]=Level{2].FP[0];
for(t=1;t<Level[2].5;t++)
Level[2].LPFit]=Level[2].FPit]+Level{2].LPF[1-1];
Level[2).LL[0]=!N{1][0).R;
for(t=1;t<Level{1].5;t+4)
Level[2].LL[t]=Level[2).LL[t-1]+!N[1][t].R;
[revsssnssnss Add New Connection to Bela Regulape» s ¥ s sasxss/
for(t=0;t<5*Level[2].SR;t++)
{
a=(int){(({(int)rand(})/2147483647.00)*(Level [2].LPF[Level[2].5-11));
b=(int}{(((int)rand(})/2147483647.00)*(Level[2).LL{Level[1].5-1]));
for(ss=0;ss<Level[1].5;55++)

Appendix B Source Code of All Programs

(
if(b<=Level[2].LLIss])
{

d=ss;
ss=Level{11.5;
}

1
for(f=0;f<Level[2].5:f++)

(
if(a<=Levcl[2].LPF(M)
{
Ni2][f1.CldI=1;
7* printf("a=%4d b=%4d upper=%3d regular=Ceddna b 0.0/
f=Level2].5;
}
}

for (level=1:leveled;level++)
for (t=0;t<level[level].Sit++)
Level{level]l. FPit]=0;
JresswnmnnrrerrIncrease the Bew Regular Threshold#ewwssxerseesy
for(t=0;t<Level[2).5;1++4)
{
s=0;
i[f(N[2][tI-R)

for(ti=0;ucLevel{1].5;1++)
s=s+(N[2]{t).C[u]&&N[1]{u].R);
a=(int)(s/25.0);
if(a>=N[2][t].T)
N[2][1).T=3;
\)
d=Level[1].5/10;
for (t=0:t<Level[2).5;1++)
for (1=0;tt<Level[1].5:t++)
test[t]=test[t]+N[2][t].Cltt) &&N[1][1t].R;
for (t=0;t<Level[3).5;t++)
{
count=(0;
for (t=0;u<level(2].S;u++)
if (testit]<d& &N[3][1].Clul==1) count++;
if {count<2) N{3][1).T=50;
}

Universiry of Windsor

P“‘t“‘*'..“‘."‘t#ﬁtt#t#**t iEND SLFEP"**"**‘ .t#‘t'tttitt‘##‘-‘#t!l

B.3 recall program

#include <math,h>
#include <stdio.h>
#linclude <malloc.h>
#include <stdlib.h>

Appendix B Source Code of All Programs

9

#include <sysftimeb.h>
#include <sysftypes.h>
#dcfine MAX 2000

struct NEURON
(
unsigned int T,
unsigned int C(MAX];
unsigned int R;
unsigned int G;
} NIS)IIMAXT;
struct LEVEL
{
unsigned int §;
unsigned inl use[MAXI:
} Level(5];
main(argc, argv)
int argc;
char *argv(];
{
FILE *fp:
int level, tit.t,p,pp.n.s,count,lo,st.act;
int y[54];
Level[0].5=54;Level[4].5=1;
for (level=1;level<d;level++)
{
fp=fopen{argvllevel),"r");
while (teof(fp))
(

fscanf (fp,"%d"&1);
fscanf (fp,"%d %d".&N[level][1].R.&N(level][t].T)
pp=-1;
while (1)
{
fscanf(fp."%d “.&p);
if (p>pp)
{
Nllevel][t].C[pl=1;
)
else break;
]PP=Di
fscanf(fp,"\n");
}
Levelflevel].S=t;
fclose(fp);
)
felose(fp);
fp=fopen(argv([4],"1");
for {1=0;t<Level[3].5;t++)

{
fscanf(fp,"%d",&N[4][0].C[1]):
)

University of Windsor

Appendix B Source Code of All Programs

University of Windsor

fclose(fp);
feesesvresteremove the non-use neuron ***** 2/
for {(t=0rt<level[3].5;t++)

{
Level{3].use(t]=N[4][0].C[t];
if (NI3][t].T==50) Level[3].use[t]=0;
N[3]{1.R=Level[3).use(t];

)

for (=0n<Level[3].5;1++)

{
for (1=0;tt<Level[2].5;1144)
if (N[3)(1].Cle) & &N[3][t).R==1} Levcll2].uselut]=1;

for (t=0;t<Level(2].5;t++)

{
Ni2][1).R=Level[2].useln];

]

for (t=0;t<Level(2].S:14++)

for (u=0;t<Level[1].5;u++)
if (N[2J[1).Cli] & &N[2){1].R==1) Level|] L.usclui=1;
)
for (=0;t<Level[1].5;14++)
{
N1t} R=Level[1).use[t] &&N[1][L].R:
if (N[FI[1].R==0) N[1}[1).T=999;
}
J*for (1=0;t<Level[1].5;t++) print{("%d"” Level| 1].usci);
printf(\n");
for (t=0;t<Level[11.5;t++) printf(“%d" Nf1][1).R);
printf(\n");*/
P*.“..“‘***.***‘ m_organizc thc rcgular & Virgin *****ﬁ*!/
for (level=1;level<d;level++)
{
st=Level[level].S;
for (1=0;t<Level{level].S;1++)
{
if (N[level][t]. R==0)
{
for {il=stjit>=L:it--)

if (N{level][it].R==1)
(

Nitevel][t].R=N[level][it].R;

Nllevell[it]. R=0;

N[level]ft].T=Nilevel][it).T;

for (ti=0:ti<Level[level-1).5;1t++)
Nilevellit].Clu)=N[level][it].Clt};

for (u=0;tt<Levelllevel+1].5;u++)

{
if (N[level+1][u]).C[it}==1) N{level+1]{u].Clt]=1;
Nilevel+1]{u}.C[i1}=0;

}

Appendin B Source Code of All Programs 93

University of Windsor

st=il;
it=1;
}
)
)
if (>=s1) t=Level[level].S;
)
count=(;
for (t=0;t<Level[level].S;14++)
{
if (N[level][t].R==1) count++;
fprintf(“%d” Nflevel][tL.R);*/
)
£* printf(Na")*/
printf("level{%d) finish (%d: %df\n" level Level[level].S,count);
Level{level].S=count;

}

F“"‘..ﬁ m"‘t‘t.t‘-ﬁ*‘**l
fp=fopen(argv(5]."r");

act=0;

printf(“%s\a” argv{5]);

for (lo=0;10<50;l0++)

{
for (1=0;1<54;t++)

(
fscanf(fp,"%d" ,&N[C]{1).G);
)
for (level=1;level<S;level++)
|
for (1=0;t<Level[level].S;t++)
{
count=0;
Nllevel)[1].G=0;
for (u=0;u<Level[level-11.5;u1++)
{
if (NQevel-1][u}.G&&N[level][1].Clu))
{
count++;
if (count>=Nflevel](t].T)
(
Nllevel][t].G=1;
tt=Level(level-1].5;
)
)
)
}

}
f* for (1=0;t<Level[1].5;1++)
printf("%d" N[1][1).G);
printf(*\n");*/
printf(*Basal neuron{%d)->%d\n" lo,N[4][0].G);
if (N[4][0].G==1) act++;
1

Appendix B Source Code of All Programs

University of Windsor

printf(“"Number of pattern be recalled=%d\n".act):
)

B.4 Switching Tree Minimization Program
#include “stdio.h”

main()
{
FILE *ptr,*ptrl;
int nn,c.a[2](8).array[3][5000].i,m j.count| SO00],tmpampl;
char *inp[5),*outp(5);
tmpl=(0;
inp{0]="a.out™
outp{0]="b.out"™;
/* Must have a *‘a.out” file inctude no. of output and the data list */
ptr=fopen(“array.dat”,"w");
fprintf{pir,”%d %d “,0.0);
fclose(ptr);
while (c!=1)
{
ptr=fopen(“array.dat”,"r"}:
fscanf{ptr,”%d %d **,&m,&tmp);
if (m!=0)

for (i=0;i<m;i++) fscanf(pr,"%d %d %d %d . &count(il.&array[0){i].&array[1][i].&array([2)[i])
)
fclose(pts);
printf(*%d\n",m);
printf(*'loop %d.... \n".tmp);
if (tmpi==0)
{

pte=fopen(inp{0},"r");
ptrl=fopen(outp{0]."w"},

else
{
prr=fopen(outp{0],"r");
ptri=fopen(inp[0],"w");
}
fscanf(ptr,”%d",&nn);
fprinf(ptrl,"%d\n",nn);
c=0;
while (Mfeof(ptr))
{

for (i=0;i<nn;i++)
fscanf(ptr,"%d *,&a[0][i]);

for (i=0;i<nn;i++)
fscanf(ptr,"%d “,&al1][i});

c+;

for (i=0;i<nn;i++)

Appendix B Source Code of All Programs 95

University of Windsor

=0
if (al0][i)=al1][i)
(
fprintf{pur!,"%d “.a(0]{i]);
J=5000;
)
else
if (m!=0)
{
for (j=0;j<m;j++)

if (al0)[il==array[011j1&al 1 \{i}==array(1](jl&count|j]==tmp+1& (array[2] (j]==i-

Tarmay{2){j]=i+1larmay|2]{j}==1})
(

fprintf(ptr],"%d “ j+2);
j=5000;
)
)

}
if (j<5000)
{
count{m}=tmp+1;
array(0){m]=al0][i];
array(1]{m]=a[1][i];
array[2]{m}=i;
m++;
printf(“%3d 723d %3d\n" array]0][m-1).amay[][m-1],array(2][m-1]};
fprintf(ptr1,"%d “,m+1);
]
}

fprintf(ptr1,™\n");
]

fclose(pur);

fclose(ptrl);
ptr=fopen(“array.dat”,"w+");
fprintf(ptr,"%d %d\n".mtmp+1}):
for (i=0;i<m;i++)

fprintf(ptr,"%2d %3d %3d %3d\n",count|i].array(0](i].array{ 1]{i],array(2][i]);

felose(pur);
if (tmpl==0) tmpl=1;
else

tmpl=0;

return(0);

]

Appendix B Source Code of All Programs 9%

University of Windsor

Appendix C

Layout of the Design

This Appendix contains layouts and schematics that involve in this thesis research.

1. Schematic of the 8-bit Counter

2. Schematic of the 8&-4 Subtractor

3. Layout of 8-input Pipeline Logic Gate Neuron

4. Schematic of the 4-bit Counter

5. Schematic of the 8-3 Subtractor

6. Layout of 4-input Pipeline Logic Gate Neuron

7. Layout of the Resettable D-type Negative-edge Flip-Flop

8. AND-2 Layout in Custom (left) and Tcell (right)Design

9. AND-3 Layout in Custom (left) and Tcell (right) Design

10. Buffer Layout in Custom (left) and Tcell (right) Design

11. Inverter Layout in Custom (left) and Tcell (right) Design
12. OR-2 Layout in Custom (left) and Tcell (right) Design

13. Layout of the 8-bit Parallel Counter with Complement Outputs
14, Layout of the 8-4 Subtractor with Complement Outputs

15. Layout of 7-bit Parallel Counter with Complement Outputs
16. Layout of the 8-3 Subtractor With Complement Outputs

Appendix C Layout of the Design 9

University of Windsor

CELEEEREEEEREET
00 P A P 1 R AR A R B

ARRARARAARADAARAAAABADAART A DG R RARRBAT AR
GERARAAR AARABARAAARAARARAARNARARARAARAAA

EREEEEEREEECEE DR R EEREEEE T T LA L E T
EREEEELEEECELEREEEEEEEREEELEEE L ERELRET
RRRARARBARRARARARAARARRAAAARARARARARARAR

mmﬁmva&p}a}ama}nmnhvn}n}ny3rnnna

Figure C.1 Schematic of the 8-bit Counter

Layout of the Design

98

Appendix C

Universiy of Windsor

Figure C.2 Schematic of the 8-4 Subtractor

W
[= 4

llelele

T A R
DRI AR D HARAT
DR B R R R R
S R R R R
I AR R AR A
SUBLEE R

T

2% B

Layout of the Design

Appendix C

University of Windsor

Figure C.3 Layout of 8-input Pipeline Logic Gate Neuron

h e - . e
lih HASY) .n| . ant nh s uu LI TRy T (TR RN P |
R .

[

I ' -)
I!III. TR o b made B0 wme nmdTWRA cewmi b did e b sembtm
LY TR] rk i ’ N
1 AT - H
|- T U T ol A St « I TS FICT B L BT
.

THIE] Is wonti hou AEUIEUUTRY TN sy R WA s 2 b I mu ARIIRRY lmi" '-1

1ia III hu o wdun illl L T mImII.ummlli T Y IR T YRR Y TN RN NI Ilisi-1

- : . ol - P . P g T L e

i"lf-nﬁ"‘ﬂllltmn Wi srnmi S T B Irllililt ¢ oweoh e Eos (LR TINE13E 0 Ilul.l " l!ﬁll‘l‘

TICR 0§ l”lllllllllllilll LAY RULED Hn-uu [[mmumuut TR RIE]) ﬂ'ﬂ

p Hill I S R I mn- SRR U T (LU s l!

. .
-

v .
ot . . . e

O T N B I B V1T T SURECONT TEERT | BRI AR I TR /{18 t TR E | llua] u‘N lll L N | m I1

. . 4 » o
I--mmmn-niu-uiun xrmu'lnaium-ucnununilll'um- I NI SR LT T R iv

il I!lllll LT WETRT n lI Imnd tand i lulnnmuillli i |l n i AN lnumu (] mrul 18§ u Wi Illil.1

[H!Illll!l 1 II L IIIIIIIIII llllllllllllllll Humhie HI!I!IIII IH! L TR It IIIHIIINI!! R IHERNE |] lI

oo

Appendix C Layout of the Design 100

University of Windsor

Figure C.4 Schematic of the 4-bit Counter

g 17
mid
iy
—tiha]
. - m
thdd
..1!.....‘
T 1m
il g
tnhdd
—tiy
o S
—tilgd
1 .11
i L -
iy
[ﬁg !E g H -]
= 1
thdd
] . L . |
. .
il et
-l
g
—
--d-¢— I®
1 .
il
iy
—tlla]
g 1=
i
—ilg
-t]
Nl 16t
—alg
ndd
iy
iyt
m
B
SR
il

b b
.

&é

o
trd3

3
i

it} $ i

BEE BEBF bR KM M

R2

Appendix C Layout of the Design 101

University of Windsor

Figure C.5 Schematic of the 8-3 Subtractor

el
dlalelelalelshalals

bbb bk
bbb nwﬁ
L

ho b heahany %%wg

mw%g%g T

R2

Il

Layout of the Design

102

Appendix C

Umiversity of Windsor

- —— g) ——— T L

H n‘ll |Il|“1'lllln::ulm—n_ -ﬂﬂ:. M) - TS

----‘-1,...-- R L B R T - TSR L L P %

i ol T T e R T T P PRI T aly

: .
A YL

e TETER PRI RY] R TRt I i TTTE e

oluwt | w!ﬂﬂ' Trhesl Twild Tl RIELE ew

e, M dan ahty

-"l“ ||ll“|l'§rﬂuuannn -in . 41 e I;T::EE'I 8l .n"m"“"rll) n"

Appendix C

Layout of the Design

103

University of Windsor

igure C.7 Layou! of the Resettable D-type Negative-edge Flip-Flop

e e mem e i s PR e Lem e KES SRR WS M T P e eE me i
. - . - . - . . - -

s

]

104

Layout of the Design

Appendix C

Utiversity of Wandsuor

Figure C.8 AND-2 Layout in Custom (left) and Tcell (righd)Design

—_——

pran o ——

Appendin C Layout of the Design 105

University of Windsor

a\}\\.\ms,\»q“mwnw

Appendix C Layout of the Design 106

University of Windsor

T

Appendix C

Layoul of the Design

107

University of Windsor

Figure C.11 Inverter Layout in Custom (left) and Tcell (right) Design

Appendix C Layout of the Design 108

Appendix C

Univeruty of Windsor

H

th e ey g o St R SEd AR kR A R

e icimgarr e - it en

d

Layout of the Design

109

University of Windsor

Figure C.13 Layout of the 8-bit Parallel Counter with Complement OQutputs
PMOS clock transistor

86.7um

NMOS clock transistor
-
86pm

Appendia C Layow of the Design 10

University of Windsor

Figure C.14 Layout of the 8-4 Subtractor with Complement Qutputs
PMOS clock transistor NMOS clock transistor
g ; A

3 U ARty I
& Q‘\ o ads R
= oty S Y

EELATRTIY

(=l 161.3um

Ry
Ay DA QNN e
AN ¥ YNAAAWANGS S
B IR geocoesnsnonsau
e S
B

Appendix C Layout of the Design

Il

University of Windsor

Figure C.15 Layout of 7-bit Paraliel Counter with Complement Qutputs
PMOS clock transistor

A
73.4pm
T A R et '
NMOS clock transistor
- >

76.3um

Appendix C Layout of the Design n2

Univertity of Windsor

Figure C.16 Layout of the 8-3 Subtractor With Complement Qutputs
PMOS clock transistor NMOS clock transistor

g Tl 1)

etet | |

33.3um

Appendix C

Layout of the Design

113

University of Windsor

Appendix D

Pads Setting in the Test Cell

This Appendix includes the diagram of the pad setting in the test cell. The configuration

of the pad is as shown in Table D.1.
Table D.1 Configuration of the Pad

pad name comment
Vvss ground pad
vdd power pad
va0, val, va2 connectivity, .
vb0, vbl, vb2 firing status, F; ;_,
vcl, vel, ve2 regular?, R; IRy
velkl the clock signal for the latch
vi0...vt6 the threshold, T,
vbeta regular?, R,
ve selection bit of the 3-bit parallel subtractor
vact_1 activity of neuron 1 using the TSPC
vact_2 activity of neuorn 2 using the UCDCS
vchoice selection bit of choice block (testing outputs) |
vrO..vr7 (left) | testing outputs of parallel counter with 3-input AND gate I
vr0..vr7 (right) | testing outputs of parallel counter with 2-input AND gate I

Appendix D Pads Scnting in the Tes1 Cell 114

LUniversity of Windsor

Figure D.1 Diagram of Pads Setting

VSS
vdd
vel

vb(
va(
vel

vbl
val

vc2
vb2
val

neuron 1 neuron 2
TSPC UCDCS

choice block

vchoice

vC
vbeta

vt6
vtS
vtd
vi3
vi2
vtl
vtl
vdd
VSS

|

Appendix D Pads Sciting in the Teu Cell 115

Vita Auctoris

Hung, Kai Yiu was born in Hong Kong on September 10, 1966. He completed the secondary
school education in Hong Kong in 1984, In 1987, he came to Canada as a visa student in
Columbia Secondary School in Hamtlton, Ontario. In September of 1987, he enrolied at the
Electrical Engineering program at the University of Windsor. He graduated with a bachelor of
Applied Science in 1991, At the same year, he was admitted into the Master’s program in the
Department of Electrical Engineering, University of Windsor, and has been a member of the

VLSI research group since 1991.

116

	University of Windsor
	Scholarship at UWindsor
	1995

	BiCMOS implementation of the hierarchy for pattern extraction artificial neural network.
	Kai Yiu. Hung
	Recommended Citation

	tmp.1363699808.pdf.5kcdc

