University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

2002

Layered approach to persistency modehng in
object-oriented environment.

Kamran. Choudhery
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation

Choudhery, Kamran., "Layered approach to persistency modeling in object-oriented environment." (2002). Electronic Theses and
Dissertations. Paper 2583.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F2583&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2583&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2583&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/2583?utm_source=scholar.uwindsor.ca%2Fetd%2F2583&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

@

UMI

Layered Approach To Persistency Modeling In
Object Oriented Environment

By

Kamran Choudhery

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science in Partial
Fulfillment of the Requirements for the Degree of
Master of Science at the University of Windsor

Windsor, Ontario, Canada
2002

Ovamm O K1A 0Nt ORea ON K14 04
Canada Canada
Yo @y Vevw séddrance
Ow B0 Nowe siideence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant i la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-75821-4

472529

© 2002 Kamran Choudhery

Layered Approach To Persistence Modeling in OOE

Abstract
—

Object persistence is a fundamental feature of any object-oriented environment. Several
programming language specifications do not include or discuss any method of providing
persistence for objects. Several schemes have been developed for adding persistence in
several different programming languages. Some of them require persistent objects to be
allocated and treated differently than non-persistent objects, while some others require
the programmer to provide vital parts of the persistence mechanism. It is desirable to
make the persistence feature transparent, but the nature of object oriented programming
makes it difficuit.

This thesis proposes an approach to build a persistency layer in an object oriented

programming language based, in part, on work by Ambler.

iv

Layered Approach To Persistence Modeling in OOE

Dedication

o,]

To my Mom whom I love and admire!

Layered Approach To Persistence Modeling in OOE

Acknowledgments
e, e

First, [want to thanks GOD for all his bounties, favors and blessing upon me. This thesis

would never have been completed without his mercy.

Words fail to express my indebtedness to Dr. R. D. Kent for his guidance and enthusiasm
and who made this thesis a very enjoyable endeavour for me, I am grateful to my advisor
for his guidance and advice during the development of the research presented in this
thesis as well as for his generous financial support. I have been fortunate to have Dr. Kent
as an advisor and to have the honor of working with him. | am also dedicating this thesis

to him.

I would also like to thank Dr. A. K. Aggarwal from department of Computer Science for
his valuable statistical guidance, support, impeccable understanding and for his friendly

encouragement that allowed me to write this thesis.

I would also like to thank Dr. R. S. Lashkari from department of Industrial and
Manufacturing System Engineering for generously taking time to read an earlier version
of this thesis Proposal and to offering many insightful comments and suggestions for

improvement.

I would also like to thank Dr. Alioune Ngom from department of Computer Science for

his kindness and agreeing to join my thesis committee as a chairman.

I am deeply indebted to Dr. Mark Perry from the University of Western Ontario (school
of computer science) for suggestions and encouragement on this thesis and to offer me to

join his research team from coming September.

Three people have always provided unconditional love and support: my mom, my elder

brother Imran Choudhery and Arslan Khan. Instead of pressuring me to achieve goals,

Layered Approach To Persistence Modeling in OOE

Mom and Brother motivated me to extend myself by saying, "As long as you do your
best, we'll be proud of you". They always encouraged me to pursue what I enjoyed. They
gave me the determination (often mistaken for stubbornness) and morals to accomplish
objectives the honest (but often most difficult) way and to fight for the rights of others
and myself. They always provided me with the best of everything. Despite our aggressive
interactions as kids, my brother blossomed into a considerate and supportive sibling. My
Mom has waited so long for this moment to come true; [am glad that their waiting has
finally been rewarded.

For all I know, however, this thesis would have never come to light without Arslan’s
generous support and his kindness in allowing me to serve as dramaturg in his
production. [am thankful to Mr. Khan for his friendship, advise and support throughout

my graduate work. [am also dedicating this thesis to him.

I am also grateful to the Dr.Ahmed Tawfik and Dr.Walid Saba who provided discussions,

ideas and suggestions essential to the planning and execution of this research.

[also wish to acknowledge the SHARCnet research fellowship program for funding

received during summer of 2002.

Last but not least, I would like to dedicate this thesis to all my Friends, Arslan Khan,
Arshad Shaikh, Rabhie Neouchi, Nabeel Abdullah, Adlane habeed, Aniss Zakaria, Amit
Anand, Neeta Majmudar, Nomi, Vineet, Faris, Raheel Ahmed and special thanks to
Lubna Batool. Indeed, it was my need to live up to their expectations of me that

encouraged to put as much of myself into this work as humanly possible.

vii

Layered Approach To Persistence Modeling in OOE

Table of Contents

e,]

Abstract iv
Dedication v
Acknowledgments vi
List of Figures Xiii
Chapter 1
Introduction 1
1.1 Thesis Statement 3
1.2 Thesis Structure 5
Chapter 2 Background 7
2.1 Historical Background 7
Chapter 3 Persistence 12
3.1 What is Persistence 12
3.2 Object's Lifetime 14
3.3 Persistence as Extending an Object's Lifetime 15
3.4 Forms Of Persistence Layer 17
3.4.1 File Based Persistence 18
3.4.2 RDBMS Based Persistence 18

viii

Layered Approach To Persistence Modeling in OOE

Table of Contents

e]

3.4.3 ODBMS Based Persistence 19
3.5 Kinds of Persistence Layers 21
3.6 The Class-Type Architecture 24
Chapter 4 Durable Persistence Layer 28
4.1 Durable Persistence Layer 28
4.2 Why Eiffel 29
4.3 Functionality for Durable Persistency Layer 33
4.3.1 Feature Overview 33
4.3.2 Main Characteristic of a DPL 34
4.4 Example Place where DPL can be used 35
4.5 Storing an Object 36
4.6 Deleting An Object 37
4.7 Retrieving Objects 37
4.8 Full encapsulation of the persistence mechanism(s) 38
4.9 Multi-object actions 38
4.10 Transactions 38
4.11 Extensibility 39
4.12 Object Identities 39

4.13 Conceptual Structure Of DPL 41

X

Layered Approach To Persistence Modeling in OOE

Table of Contents

e

4.14 Security 42
4.15 Application Security 42
4.16 Tracking Operations 42
4.17 Consuming Unreasonable Amounts of Resources 43

4.18 Confidentiality of Authentication Data and Persistent Data 44

4.19 Network Security 45
4.20 Sending sensitive Data Over the network 45
4.21 Concurrent Use 46
4.22 Logging 47
Chapter 5 The Persistence Manager Pattern 49
5.1 Context 49
5.2 Problem 49
5.3 Motivation 49
5.4 Solution 50
5.5 Overview of the functionality of the Persistence Manager 51
5.6 Resulting Context 52
5.7 Rationale 52

Layered Approach To Persistence Modeling in OOE

Table of Contents

Chapter 6 Implementation Of DPL 55
6.1 Storage independent Steps 56

6.1.1 Inherit from persistence and provide the features needed 56

6.1.2 Provide the factory 59
6.1.3 Provide the ondemand 59
6.1.4 registering the persistent classes with the PM 60

6.2 Usage Of DPL 62
6.3 When an object needs to be saved 62
6.3.1 Storing objects 62
6.3.2 Retrieving objects 63

6.4 Summary 63

Chapter 7 Testing and Post-analysis 64
7.1 DPL Compared to Embedding SQL Directly 64

7.1.1 Sample Code 64

7.2 Sample Code 66

7.3 Tradeoffs 67

7.4 Benchmark Information 68

7.5 Benchmarks 69

7.6 DPL Compared to Similar Components 71

xi

Layered Approach To Persistence Modeling in OOE

Table of Contents

7.6.1 Object Relational Bridge 71

7.6.2 Advantages of OJB Compared to DPL 72

7.6.3 Disadvantages of OJB Compared to DPL 72

7.7 Benchmarks 74

Chapter 8 Conclusion 77
8.1 Conclusion 77

8.2 Future Development 78

References 82
Glossary 87
Appendix A Sample Persistence Classes 92

Vita Auctoris 103

Xti

Layered Approach To Persistence Modeling in OOE

List of Figures

e , -]

Figure 3.2 Object Persistence 14
Figure 3.5 Hard-coding SQL in your domain/business classes 21
Figure 3.5.1 Creating data classes corresponding to 22

domain/business classes

Figure 3.5.2 Durable persistence layer 23
Figure 3.6 The class-type architecture 25
Figure 4.1 Architecture Of Sample application Using DPL 35

Figure 4.13 Conceptual Structure of DPL 41

Xiil

Layered Approach To Persistence Modeling in OOE

Chapter 1

Introduction
L.~~~ e

Object-oriented programming (OOP), like most newer paradigms incorporates and, builds
on old ideas, extending them, and permitting novel interpretations and approaches. A
revolutionary concept that changed the rules in computer program development, object-
oriented programming is organized around objects rather than actions, data rather than
logic. Historically, a program has been viewed as a logical procedure that takes input data,

processes it, and produces output data.

The programming challenge once revolved around how to write the logic, not how to
define the data. Object-oriented programming takes the view that what we really care about

are the objects we want to manipulate rather than the logic required to manipulate them.

A basic task for Object Oriented software is producing, changing and viewing persistent
objects. Persistent objects are objects that exist beyond the lifetime of the application; this
is typically achieved by storing them in some kind of a data store, such as a file or, most
commonly a relational database (see section 3.4). There are several recurring problems that
application programmers have to deal with when developing object-oriented applications
that use relational databases as a persistence mechanism. The greatest problem is handling
changes in the data structure - a simple alteration forces some reworking in both the
application persistence logic and the database. Larger changes - e.g. switching the

underlying database from one vendor to another - can require a great amount of work.

University Of Windsor, 2002 1

Layered Approach To Persistence Modeling in OOE

Another concem is application design — the persistence logic of many applications is
similar, differing mainly in the exact data structure. It would be favorable to exploit this

similarity and produce an automated solution.

My thesis proposes a reusable generic approach to handling persistence logic namely, the
Persistence Manager design pattern, which solves several problems when using relational
database management systems in an application environment. This pattern represents a
solution where business logic is separated from persistence logic to the degree where
persistent objects are not aware that they are being stored and retrieved transparently. The
solution is easily customizable for the data structure of different applications. It provides
fully automated persistence - the application programmer has no need for writing any
database access code, the component handles all data storage, retrieval and deletion by
itself. We propose the Persistence Manager to be a well-designed approach to persistence

logic, and to be a viable software component.

The proposed persistency layer encapsulates the entire persistence logic of an application,
and provides access to persistence via simple operations like store (object), delete (object)
and retrieve (criteria). In addition to solving the problems listed above, using the
Persistence Manager approach yielded better modularized application structure, faster
program development (as the programmer does not need to develop any database access

code) and possibility for better performance on object retrieval.

University Of Windsor, 2002 2

Layered Approach To Persistence Modeling in OOE

1.1 Thesis Statement
This thesis offers a solution to these concemns.

A. Implementation of Durable Persistence Layer

B. Persistence Manager Design Pattern

C. Comparison of DPL
First, we present a component that we wrote as an implementation of such software-the
object persistence layer. Based on a variety of different terminologies used in literature we
have adopted the name durable persistence layer (DPL), because of its robustness and
durability characteristics. Our DPL, written in the Eiffel programming language, provides
application objects with transparent persistence. With transparent persistence, persistence
of objects is provided automatically and the logic for performing persistence operations is
expressed in the other languages, without the client programmer needing to know anything
about databases and Structured Query Language (SQL). Persistence Layer encapsulates all
the persistence logic that an application needs, and gives access to persistence via simple
operations like store(object), delete(object), and retrieve(criteria).The current
implementation embodies ideas from Scott Ambler's white paper “ The Design of a Robust

Persistence Layer for Relational Databases.” [Amb00b).

Second, we introduce the Persistence Manager design pattern' for a reusable persistence
layer that separates application logic from persistence logic. The basic idea for such
software was introduce in Scott Ambler's white paper: “Mapping Objects To Relational

Databases™ [Amb00a].

A design pattemn is a description of associated objects and classes that are customized to solve a general,
recurring design problem in a particular context [Gam95]).

University Of Windsor, 2002 3

Layered Approach To Persistence Modeling in OOE

Thirdly, We compare the benefits of using the Persistence Manager pattern with the basic
approach to persistence logic - embedding database access directly into the application
code - and weigh the usefulness of the pattern. We also compare DPL with similar, publicly
available Java software that follow the pattern at least in some terms and offer similar

functionality, and we judge the viability of DPL.

University Of Windsor, 2002 4

Layered Approach To Persistence Modeling in OOE

1.2 Thesis Structure

In the remainder of this chapter we present the structure of this Thesis.

Chapter 2 mainly discusses the historical background of persistence programming systems.
The chapter also states some known limitations, lists related work and analyzes the

problem of changes in data structures.

Chapter 3 introduces some prominent issues in persistence mechanism. The chapter focuses
on Persistency layer, forms of persistence, kinds of persistency layers and requirements of

persistency layers.

Chapter 4 establishes the motivation for our work. In this particular section we present a
component that is written as an implementation of the object persistence layer software.
We christened it as DPL (durable persistence layer) because of its robustness and durability
characteristics. We also discuss the reason of choosing Eiffel in this chapter. It also focuses
on how DPL can be used in the architecture of a sample application. The chapter also

emphasizes the security issues concerning DPL and its possible solution.

Chapter 5 introduces the Persistence Manager design pattern for a reusable persistence

layer that separates application logic from persistence logic.

University Of Windsor, 2002 5

Layered Approach To Persistence Modeling in OOE

Some fundamental ideas for implementing DPL are presented in Chapter 6. Comparing the
benefits of using the Persistence Manager pattern with the basic approach to persistence
logic - embedding database access directly into the application code - and judge the
usefulness of the pattern are presented in Chapter 7. This Chapter also presents comparison
of DPL with similar publicly available Java software that at least in some terms follow the

pattern and offer similar functionality, and the viability of DPL.

Finally, we proceed in Chapter 8, to draw conclusions and then offering suggestions of
possible approaches, which could be investigated in the future development. In addition we
include a glossary of terms for ease of reference and also an Appendix in which we list the

Classes used in our software implementation.

University Of Windsor, 2002 6

Layered Approach To Persistence Modeling in OOE

Chapter 2
Background

2.1 Historical Background

Research in persistent programming systems started in the late 70’s, when it was noticed
that storing long-term’ data in a different logical framework from 'short-term' data leads to
all sorts of problems in large and complex applications. An analysis by IBM showed that
around 30% of the code of long-lived, large scale applications was devoted to the
movement of data in and out of the programming language domain. The fact that this code
is notoriously susceptible to system evolution errors, coupled with the statistic that 2% of
the USA's GNP is spent on software 'maintenance’, leads us to believe that storing long-

term data in a file or database system is expensive.

A solution may be provided by persistent programming languages. A somewhat misnomer
'persistent programming languages' is shorthand for 'programming languages where
persistence is treated as an orthogonal property of data’, rather than programming
languages, which survive for a long time [ADKO1]. In such languages the treatment of data
is entirely independent of its longevity - no matter for how long the data persists, the data
model is unaffected.

" The reason programming languages treat persistent data differently from transient

data is largely historical, based on the different physical properties of RAM and other

storage devices. Although modemn virtual memory makes a mockery of this distinction,

University Of Windsor, 2002 7

Layered Approach To Persistence Modeling in OOE

only a few programming languages can claim an orthogonal treatment of persistence.
Commercial vendors are now becoming increasingly aware of the importance of
persistence as an aid to increasing the cost-effectiveness of the software life cycle

[BDMO00a).”

The merging of distributed computing and object- oriented technology has resulted in novel
ways to design and develop modern, aggregate architectures of databases. When you first
begin to design any application you face numerous issues, including how your application
is going to communicate with your databases. For years, many architects and system
developers have not given this issue of communications interface design the attention

demands.

The most common approach is to write code that talks directly to the database (Application
Programming Interface) API provided in your environment. In the early days of SQL
databases, your only approach was to use the database API provided by the database
vendor, such as Oracle's OCI (Oracle Call Interface). This solved the initial need to enable
your application for a particular database. However, your application was then tied to that
database. You could not easily support another database, if at all, due to its different
database-specific APIs, as well as the prohibitive cost of parallel development for each

APL

Eventually, standard database APIs were introduced which worked for any database. This

effort began with the development of ODBC (Open Database Connectivity). ODBC was

University Of Windsor, 2002 8

Layered Approach To Persistence Modeling in OOE

the first standard API to address the problem of database-specific APIs. ODBC allows you
to issue SQL calls directly to the database. This API is function based, not based on
objects. In order to talk to ORACLE, you need to install the ORACLE ODBC driver, but
your application has no specific knowledge regarding the driver. The driver simply
implements a standard interface. This allows you to develop applications that can talk to
many different databases, providing that you use standard SQL (and the database has an
ODBC driver). Once you begin to use the specific features of a particular database,
however, your application becomes dependent on that database and supporting other

databases becomes an issue.

If you are passing SQL statements from your code through your database API (such as
JDBC), your application will become tightly integrated with your database schema. This is
commonly referred to as injecting your schema into your application code. Once the
schema is injected, it becomes difficult to modify or enhance your schema without
modifying your code. At this point, you must find all the places in your code that are
impacted by the potential change before you can update the code. This problem usually
presents itself after the first version of your product, forcing you to modify your schema
based on a new requirement or a particular user situation. The maintenance cost of this can

be huge [BDMO0Ob].

Later, Microsoft provided OLE DB, followed by ADO. Each simplified the API by
providing objects for creating connections and statements, but the issue of SQL residing in

your application code remained.

University Of Windsor, 2002 9

Layered Approach To Persistence Modeling in OOE

The corresponding common database API in the Java domain is JDBC (Java Database
Connectivity) and it raises similar issues to those of ODBC. So what did developers do?
Many developers created a library of SQL statements in their code and provided a public
API for the rest of the application developers to call. This encapsulated all the database
calls into a central location that could be maintained and updated appropriately as the
application matured. This does not solve the problem of having to update the code when

the database schema changes, but it makes it much easier to manage.

After you have developed several applications or systems following this approach, you will
begin to see the problem it creates. As your application matures and additional features are
added over time, your application accesses the same database table from several locations
in your code. The application modifies the same table in several different places in your
application, sometimes in different ways. This can make it very difficult to track down and

isolate problems in your code.

Most applications today start with a simple prototype. When developing a prototype, it is
usually much faster to just write the SQL statements and put more focus on the UI and the
user tasks (which are important). The next important step would be to add the building
blocks to your application that are necessary to give it a reasonable chance of success in

supporting new requirements. Unfortunately, this is not always done.

Instead of writing code in terms of database connections and SQL statements (which was

the standard way of thinking about database access), developers started writing classes that

University Of Windsor, 2002 10

Layered Approach To Persistence Modeling in OOE

presented the data in the form of Persistent Objects. Persistence refers to something (or a
property) that exists beyond its lifetime. As applied to an object-oriented programming
language, persistence describes objects that exist for an extended period of time, often
beyond the lifetime of the original program that created the objects. There are several forms
of persistence available to programmers (see section 3.4). The forms include file-based
persistence, relational databases, and object databases; but the most common persistence
mechanism at the present time is a relational database management system. Relational
databases are an efficient and proven technology, they have widespread support in
development languages and third party tools, and practitioners are familiar with them.
Several problems arise in combination of using an object-oriented language (like, Eiffel,
Java, SmallTalk or C++) as the development environment and a relational database as the
persistence mechanism, however. Another problem is the impact of changes in data
structure. If the class structure changes in some way, then, besides the database, this
triggers changes in the persistence logic of the application as well. For example, if a field
type is changed from integer to floating-point value, then even this minor modification

induces a change in the persistence logic.

We conclude this chapter with the following quote that provides emphasis of the need for
effective persistence mechanism:

“Persistence has proven the technical competence of its software offerings with a
growing number of large and demanding customers, including Air Canada, AT&T,
BellSouth, Boeing, Celera, Cisco, CNP Assurances, FedEx, Instinet, Intel, JP Morgan,
Lucent, Morgan Stanley, Norwest, Pfizer, Qualcomm, Scientific Atlanta, and Solomon

Smith Bamey”” Ed Murrer (Senior Vice President Persistence Software).”

University Of Windsor, 2002 11

Layered Approach To Persistence Modeling in OOE

Chapter 3

Persistence

e -~ -~ - "~}

3.1 What Is Persistence?

Persistence has been defined previously. Nonetheless, it is useful to begin this chapter with

a listing of several distinct scenarios, each of which illustrate various aspects of persistence.

~
»

\ Y

\%

A\

One of the most critical tasks that applications have to perform is to save and
restore data. Without it, software would be little more effective than the typewriter -
users would have to re-type the data to make further modifications once the
application exits.

Persistence consists of data retrieval from one or more data stores into system
memory after data manipulation (i.e. applying business rules) and storage of the
modified data into the appropriate data store.

After program execution the state of an object (the value of its attributes) is lost
unless saved to permanent storage. When an object maintains its state between
program executions it is said to be persistent.

The issue of how to store an object in a permanent storage. Objects need to be
persistent if they are to be available to you and/or to others the next time your
application is run.

Applied to an object-oriented programming language, persistence describes objects
that exist for an extended period of time, often beyond the lifetime of the original
program that created the objects. These include for example, executable images,

translation Code in JVM byte code.

University Of Windsor, 2002 12

Layered Approach To Persistence Modeling in OOE

Persistence is a critical architectural mechanism found in most business systems today.
Examples of emerging, advanced computing systems, or platforms, with significant need

for persistence are computing grid system (e.g. Sharcnet, WestGrid, and many others) .

*www.gridcanada.com

University Of Windsor, 2002 13

Layered Approach To Persistence Modeling in OOE

3.2 Object's Lifetime

An executing system represents application data as a coliection of collaborating objects,
connected by a potentially complex web of references. With current technology, these
objects occupy volatile memory in the computer and vanish when the system terminates.

Persistence extends the lifetime of an object from one execution of a system to the next.

It is achieved by saving the object to a file on secondary storage in one session and
restoring it from the file in another. Persistence mechanisms do not refer only to traditional
disk storage; rather, they include also additional, new techniques for distributed memory

mapping and emerging optical network storage technologies.

Application e Stere

Figure 3.2 Object Persistence
Figure 3.2 present that Persistent objects are objects that exist beyond the lifetime of the
application; this is typically achieved by storing them in some kind of a data store, which

most commonly is a relational database.

New OO programmers learn that objects have a lifetime. An object begins its life when

created by the new operator (for example, new String("hi")). After it is created, the object

University Of Windsor, 2002 14

Layered Approach To Persistence Modeling in OOE

exists until destroyed by the Java Virtual Machine's garbage collector; an object can be
garbage collected only when the Java program no longer holds a reference to the object.
Objects can also be destroyed implicitly, when the Java program ends. The following code

snippet demonstrates the essential concepts of Java object lifetimes:

Example 3.2: A simple object example
{

Date d = new Date(); // Create Date object-d starts its life
System.out.printin(d.toString()); // Date object still exists by virtue of referencing

/ // Date object is no longer referencable and may be destroyed.

In this example, a new Date is created within a program block ({}) and stored in a variable
(d) local to that block. Upon reaching the ending curly brace (}), the local variable g exists
no longer. From that moment, the Date object that was created is no longer referencable

and may be garbage collected.
3.3 Persistence as Extending an Object's Lifetime
Persistence is a way to extend the lifetime of an object beyond the lifetime of the program

that created it. To understand why it is useful to have persistent objects, consider an

AddressBook class that contains names, addresses, and telephone numbers:

University Of Windsor, 2002 15

Layered Approach To Persistence Modeling in OOE

public class AddressBook {
public String(] names = null;
public String([] addresses = null;

public String[] phonenums = null;

A person writes information in an address book so that it is available at a later date, when
the information is needed. Most people are unlikely to remember addresses and telephone
numbers, so they write that information into a book. If you try to use the AddressBook
class to represent a real address book, you will find that it does not support the "save it
now, use it later” paradigm. All instances of the AddressBook class are destroyed when the

Java program ends.

To be useful, an addressBook object must exist for an extended period of time. It must be
persistent (possibly for years). Every time the user looks up, adds, or modifies address
information, the addressBook object is needed. Because the program that uses the
AddressBook isn't always running, the AddressBook must be preserved during the time the

program is not running.

Persistence is usually implemented by preserving the state (attributes) of an object between
executions of the program. To preserve state, the object is converted to a sequence of bytes
and stored on a form of long-term media (usually. a disk). When the object is needed again,
it is restored from the long-term media; the restoration process creates a new Java object
that is identical to the original. Although the restored object is not "the same object," its
state and behavior are identical. The following example outlines an API for a helper class

that might be used to provide save and restore capabilities for AddressBook objects:

University Of Windsor, 2002 16

Layered Approach To Persistence Modeling in OOE

class AddressBookHelper {
public static void store(AddressBook book, File file) (...}

public static AddressBook restore(File file) (...}

To save an addressBook to a file, you must explicitly write a few lines of code to store the

object. The code might look like the following:

File output = new File("address.book");// persistent media

AddressBookHelper.store(addrBook, output);
Restoring an AddressBook from a file would look similar:

File input = new File("address.book"); // persistent media

AddressBook addrBook = AddressBookHelper.restore(input};

3.4 Forms Of Persistence Layer

There are several forms of persistence available for programmer. The forms discussed in
this thesis include file-based persistence, relational databases, and object databases. These
forms of persistence differ in several categories, including: logical organization of an object
state, the amount of work required of the application programmer to support persistence,
concurrent access to the persistent object (from different processes), and support for

transactional commit and rollback semantics [AMBOOb).

University Of Windsor, 2002 17

Layered Approach To Persistence Modeling in OOE

3.4.1 File Based Persistence

Files are often used to store information between invocations of a program. Data stored in a
file may be simple (a text file), or it may be complex (binary strings). In daily use of a
computer, you often interact with objects that are stored in files (e.g. word processing

documents, spreadsheets, network diagrams, and so on).

A file-based persistence mechanism requires the programmer to put a significant effort into
achieving persistence. The programmer must choose an external representation of the

object, and write the code that saves and restores the objects.

Usually, concurrency control and transactional semantics do not apply to file-based
persistence. Storing objects in files is usually appropriate for single-user applications that

follow the File/Open.. and File/Save model.

3.4.2 RDBMS Based Persistence

Relational database management systems (RDBMS) can also store persistent objects, but
the characteristics of a relational database are different from file-based persistence. A
relational database is organized into tables, rows, and columns, rather than the unstructured
sequence of bytes represented by a file. There are two major ways to store objects in a
relational database. The first option is to interact with the database on its terms. The JDBC
API provides interfaces that directly represent relational database structures. These
structures can be used and manipulated by using conventional method. The other option is

to write your own classes and "map" between the relational data structures and your

University Of Windsor, 2002 18

Layered Approach To Persistence Modeling in OOE

classes. This type of mapping is a well-understood problem for which many commercial

solutions are available.

When using a relational database, unless you are using a tool to perform database-to-class
mapping, you must write a large volume of code to interact with the database. Managing
objects in the database requires you to write SQL statements (inserts, updates, deletes, and

so on), which are forwarded to the database through the JDBC API.

Although using a relational database involves more work, there are a few benefits.
Relational databases usually support concurrency control and transactional properties.
Multiple users can access the database without interfering with other users changes,
because the database uses locks to safeguard access. Additionally, almost all relational
databases support ACID properties (i.e. atomicity, concurrency, isolation, durability).
These properties protect the integrity of the data by assuring that blocks of work (referred
to as transactions) either complete successfully or are rolled back without affecting other

Uusers.

3.4.3 ODBMS Based Persistence

Object database management systems (ODBMS) support persistence in a different manner
than file-based persistence and relational databases. The philosophy behind object
databases is to make the programmer’s job simpler. Object databases (as the name implies)
store objects; the programmer does not have to write SQL statements or methods to
package and unpackage objects; the object database interface usually takes care of those

details.

University Of Windsor, 2002 19

Layered Approach To Persistence Modeling in OOE

Object databases usually support concurrency control and ACID properties, as with
relational databases. They provide for concurrent access to the database, and they also

provide commit and rollback transactional control.

University Of Windsor, 2002 20

Layered Approach To Persistence Modeling in OOE

3.5 Kinds of Persistence Layers

We would like to begin this section with a discussion of the common approaches to
persistence that is currently in practice today. Figure 3.5 presents the most common, and
least acceptable, approach to persistence in which Structured Query Language (SQL) code
is embedded in the source code of your classes. The advantage of this approach is that it
allows you to write code very quickly and is a viable approach for small applications and
prototypes. The disadvantage is that it directly couples your business classes with the
schema of your relational database, implying that a simple change such as renaming a
column or porting to another database requires a reworking of your source code. Hard-

coded SQL in your business classes results in code that is difficult to maintain and extend.

SQL F >

Domain Classes

Figure 3.5 Hard-coding SQL in your domain/business classes

University Of Windsor, 2002 21

Layered Approach To Persistence Modeling in OOE

Figure 3.5.1 presents a slightly better approach in which the SQL statements for your
business classes are encapsulated in one or more “data classes.” Once again, this approach
is suitable for prototypes and small systems of less than 40 to 50 business classes but it still
results in a recompilation (of your data classes) when simple changes to the database are
made. The best thing that can be said about this approach is that you have at least
encapsulated the source code that handles the hard-coded interactions in one place, the data

classes.

Hard coding SQL in separate data classes or stored procedures is only slightly better.

- (O
RDB

Domain Classes Data Classes

Figure 3.5.1 Creating data classes corresponding to domain/business classes

University Of Windsor, 2002 22

Layered Approach To Persistence Modeling in OOE

Figure 3.5.2 presents the approach that was adopted for our Durable Persistence Layer that
maps objects to persistence mechanisms (in this case relational databases) in such a manner
that simple changes to the relational schema do not affect your object-oriented code. The
advantage of this approach is that your application programmers do not need to know a
thing about the schema of the relational database; in fact, they don’t even need to know that
their objects are being stored in a relational database. This approach allows your
organization to develop large-scale, mission critical applications. The disadvantage is that
there is a performance impact on your applications, a2 minor one if you build the layer well,

but there is still an impact.

>
Durable ¢

== | Persistence =P | RDB
Layer

Domain Classes

Figure 3.5.2 Durable persistence layer

University Of Windsor, 2002 23

Layered Approach To Persistence Modeling in OOE
3.6 The Class-Type Architecture

Figure 3.6 shows a class-type architecture that your programmers should follow when
coding their applications. The class-type architecture is based on the Layer pattern proposal
by Buschmann Etal [BFM96]. The basic idea is that a class within a given layer may
interact with other classes in that layer or with classes in an adjacent layer. By layering
your source code in this manner one makes it easier to maintain and enhance because the

coupling within an application is greatly reduced.

University Of Windsor, 2002 24

Layered Approach To Persistence Modeling in OOE

Layering your application code increases its robustness

User Interface Layer

' v

Domain/Business Layer

l System Layer
Persistence Layer >

I

Persistence
Mechanism

< I

Figure 3.6 The class-type architecture

University Of Windsor, 2002 25

Layered Approach To Persistence Modeling in OOE

Figure 3.6 shows that users of an application interact directly with the user-interface layer
of your application. The user-interface layer is generally made up of classes that implement

screens and reports.

User-interface classes are intended to send messages to classes within the domain/business
layer and the system layer. The domain/business layer implements the domain/business
classes of your application, for example the business layer for a telecommunications
company would include classes such as Customer and Phone Call, and the system layer
implements classes that provide access to operating system functionality such as printing
and electronic mail. Domain/business classes are allowed to send messages to classes
within the system layer and the persistence layer. The persistence layer encapsulates the
behavior needed to store objects in persistence mechanisms such as object databases, files,

and relational databases.

By conforming to this class-type architecture the robustness of your source code increases
dramatically due to reduced coupling within your application. Figure 3.6 shows that for the
user-interface layer to obtain information it must interact with objects in the
domain/business layer, which in turn interact with the persistence layer to obtain the
objects stored in your persistence mechanisms. This is an important feature of the class-
type architecture — by not allowing the user interface of your application to directly access
information stored in your persistence mechanism you effectively de-couple the user
interface from the persistence schema. The implication is that you are now in a position to

change the way that objects are stored, want to reorganize the tables of a relational database

University Of Windsor, 2002 26

Layered Approach To Persistence Modeling in OOE

or port from the persistence mechanism of one vendor to that of another, without having to

rewrite your screens and reports.

University Of Windsor, 2002 27

Layered Approach To Persistence Modeling in OOE

Chapter 4

Durable Persistency Layer

e]

4.1 Durable Persistency Layer

The persistence layer can be looked 2t as a way to access objects within the database. The
Durable Persistence Layer (DPL*) is software that implements the Persistence Manager
pattern. It is a component that provides access to persistence. The DPL pattern allows the
application programmer to work with objects, which have the persistent property, without
knowing anything about database query languages. The programmer only has to call
methods for loading, storing and deleting of objects, the implementation of these methods
is left to the DPL. In order to map objects and their relations to other objects (inheritance,
association, aggregation...) to tables of a database, an object-relational-mapping is required
that supplies patterns (e.g. how to map inheritance hierarchies to tables) with all the

consequences.

* It is a common practice to give software products names that often are unrelated to the
product domain. For example, Ant is a popular Java compiling tool, and Tomcat is a Java
web component container. I propose the name "DPL" because of its durable and robust
characteristics.

University Of Windsor, 2002 28

Layered Approach To Persistence Modeling in OOE

Our motivation for using Eiffel as our development system is drawn from the properties
that Eiffel is a pure object-oriented programming language designed with the explicit intent
to produce high quality, reliable software. It is pure in its nature in that every entity is an
object declared of an explicitly stated class type. It adheres to some of the long proven and
time-tested programming practices that have made languages like Modula-2 a successful
engineering advancement. Eiffel* promises to be the next step toward a better
understanding and more importantly, efficient use of the object-oriented practices that have

evolved thus far.

4.2 Why Eiffel ?
Eiffel” is a methodology, language and environment for developing high-quality reusable
software components.
» Methodology: A system of principles and rules based on theory and practice that
guides the software construction process to achieve high-quality software.

Language: An elegant Object-Oriented Programming Language (OOPL) that

N/

strongly supports the methodology of this thesis.

Environment: Integrated set of OO CASE tools that strongly support software

\ %

development using the methodology and language.

‘www.eiffel.com

University Of Windsor, 2002 29

Layered Approach To Persistence Modeling in OOE

Eiffel is an elegant modemn object-oriented approach to software development that
emphasizes software product quality - especially correctness and reusability - crucial
prerequisites to shifting current practice towards component-based development. Some of

Eiffel's goals can be realized in non-Eiffel approaches, but only with considerable
external/non-standard mechanisms. Eiffel is elegant in the way it seamlessly integrates
many aspects of high-quality software development. It is a proven and portable technology
that strongly supports the requirements of large-scale, team-oriented development in many

application areas, from embedded systems to distributed enterprise applications.

The Eiffel language includes many important features such as:
® Pure OO programming.
® Simple, highly readable syntax.
® Clean Muitiple Inheritance.
® Static, strong-typing.
* Genericity.
® Automatic memory management (garbage collection).
® Disciplined exception handling.
® Persistence (low-level object database).
®* Concurrency (threads and later SCOOP).
® Full support for Design By Contract.
® Interoperability with other languages such as C and C++.
® Large collections of high-quality reusable class libraries for many application areas.

® Quality development environment/tools.

University Of Windsor, 2002 30

Layered Approach To Persistence Modeling in OOE

® Mature, supported language. (NICE: Non-profit International Consortium for

Eiffel*).

In another way Eiffel can serve as an excellent component combinator - wrapping and
combining proven software components developed in languages other than Eiffel. This
enables development teams to incorporate external code, such as Fortran libraries for
numerical computation, into a flexible OO architecture. This is far better than trying to
implement OO features in a non-OO language or even in another OO language that is less

supportive of software quality than Eiffel.

Of course, the quality of the final result is limited by the quality of the wrapped component
too - the "weakest link" notion - so it is important to ensure that components selected for

wrapping be of verified high quality.

Eiffel involves a comprehensive discipline that ambitiously targets many key aspects of
software development. It fosters, indeed requires, a shift in mindset that prioritizes certain
qualities, such as correctness, robustness, understandability, testability, extendibility,
reusability over others, such as functionality.

That is, the Quality First approach to development recognizes that some qualities simply

cannot be retrofitted - they must be built-in from the beginning and upheld throughout the

*www.eiffel.com

University Of Windsor, 2002 31

Layered Approach To Persistence Modeling in OOE

entire development process while others, such as functionality, naturally increase over
time. This is not a small step, but it is not a difficult one either. Eiffel goes far beyond
paying lip service to good software engineering principles. It actively supports, and even
enforces, these principle like no other development approach in widespread use. It does so
effortlessly in a seamless integrated environment, unlike other approaches that require
significant extra-linguistic mechanisms that try to inject and uphold quality. Eiffel's elegant
simplicity makes it significantly easier to master than other OOPLs.

We conclude with the following two quotes to stress the qualities of Eiffel as a support tool

for development.

“There are two things that [Eiffel] got right that nobody else got right anywhere else:
support for design by contract, and multiple inheritance. Everyone should understand
these "correct answers" if only to understand how to work around the limitations in
other languages.” (Paul Dubois in comp.lang.python Usenet newsgroup, 23 March

1997).

“If it can be defined by just one sentence, Eiffel is a language to write Eiffel
Libraries-that is to say to write the best possible, reusable industrial quality software

components that we can think of. " (Bertrand Meyer in .ExE Magazine).

University Of Windsor, 2002 32

Layered Approach To Persistence Modeling in OOE

4.3 Functionality for Durable Persistency Layer

A DPL encapsulates the behavior needed to make objects persistent; in other words to read,
write, and delete objects to/from permanent storage. DPL should support several types of
persistence mechanism. A persistence mechanism is any technology that can be used to
permanently store objects for later update, retrieval, and/or deletion. Possible persistence
mechanisms include flat files, relational databases, object-relational databases, hierarchical

databases, network databases, and object bases.

4.3.1 Feature Overview

Following are the few key features of DPL:

® uses relational databases for data storage, automating object-relational mapping

® stores objects in the data store

® deletes objects from the data store

® retrieves objects from the data store, via potentially complex retrieval criteria; can
retrieve multiple objects with one operation

® supports one-to-many relationships between classes - when retrieving an object, its
related objects can be retrieved automatically

* supports referential integrity - when storing an object, its related objects will be
stored as well; when deleting an object, its related objects will be deleted with it

® caches persistent objects, which can yield a dramatic increase in retrieval speed

® can access multiple databases

® persistent classes do not have to inherit from a specific class

University Of Windsor, 2002 33

Layered Approach To Persistence Modeling in OOE

® supports composite identities

® custom SQL can be specified

4.3.2 Main Characteristic of a DPL
In this section we discuss DPL characteristic
Compatibility:
®* Works with your existing frameworks and databases
® Works with your modeling tool(s)
Flexibility:
* Allow complex mappings and operations, but provides good defaults
Encapsulation of the persistence layer:
* Provides good (ideally complete) isolation from changes in the database(s)
Support for the features required by your model and data sources:
* Distributed transactions
* Required scalability and performance load balancing

® Concurrency and parallel query processing

University Of Windsor, 2002

34

Layered Approach To Persistence Modeling in OOE

4.4 Examples of cases where DPL can be used
Following are few examples of using DPL.:
® web applications for information systems, which basically are database front ends
and therefore rely heavily on stored data
® desktop applications, that need to store user preferences
® applets for informations systems, acting as database frontends

® any kind of application where there is a need of making object persistence

// sample storage

Book book = new Book();
book.setAuthor("Deitel &

Deitel ");
persistencemanager.store(book);

// sample retrieval

Book example = new Book();
example.setld(1234);

Query query =
persistencemanager
.createQuery(example);
Book realBook

= persistencemanager
.retrieveObject(query);

Figure 4.1 Architecture Of Sample application Using DPL

University Of Windsor, 2002 35

Layered Approach To Persistence Modeling in OOE

Figure 4.1 Display a simple application using DPL. DPL has been designed with regard to
future support for other data stores besides relational databases. For example, if another
package is provided that implements the Persistencemanager interface and uses XML files
for data storage, then it can be integrated seamlessly with the existing code. Nothing
changes for the client programmer -Persistence Managers of different type will be obtained
in exactly the same way. This approach has the benefit of supporting the seamless
integration of new types of Persistence Managers discussed above, as the configuration file

specifies what kind of a Persistence Manager to use.

4.5 Storing an Object
Storing an object is very straightforward. The client programmer only needs to send a
message to the Persistence Manager and the object gets stored. If the object's identity is
unspecified, which is the case if the object has been transient so far; it is assigned a unique
identity.

Example: 4.5 Storing an object:

// Create a new object and set some of its attributes
Book book = new Book();

book.setTitle("C How to Program”);
book.setAuthor("Deitel & Deitel ");

// Store the object

broker.store(book);

University Of Windsor, 2002 36

Layered Approach To Persistence Modeling in OOE

4.6 Deleting An Object
To be able to delete an object from the underlying data store, the only information
needes to know is its identity.

Example 4.6 Deleting an object:

// Let the user input the identity of the Book to delete
System.out.print("Enter the id of the Book to delete: ");
BufferedReader in

= new BufferedReader(new InputStreamReader(System.in));
String input = in.readLine();

int id = Integer.parselnt(input);

// Create an example object and set its identity to that of
// the object to delete

Book book = new Book();

book.setld(id);

// Delete the object

broker.delete(book);

4.7 Retrieving Objects

DPL introduces the Query object - an object which represents query criteria and is used for
object retrieval and criteria. The client programmer obtains an instance from the
Persistence Manager, is able to perform some additional operations on it (e.g. setting

parameters and ordering information), and gives the query to the Persistence Manager to be

executed.

University Of Windsor, 2002 37

Layered Approach To Persistence Modeling in OOE

4.8 Full encapsulation of the persistence mechanism(s)

Ideally you should only have to send the messages save, delete, and retrieve to an object to
save it, delete it, or retrieve it, respectively. The persistence layer takes care of the rest of
the transactional details. Furthermore, except for well-justified exceptions, you shouldn’t

have to write any special persistence code other than that of the persistence layer itself.

4.9 Muiti-object actions

Because it is common to retrieve several objects at once, perhaps for a report or as the
result of a customized search, a robust persistence layer must be able to support the
retrieval of many objects simultaneously. The same can be said of deleting objects from the

persistence mechanism that meet specific criteria.

4.10 Transactions

A transaction could be made up of any combination of saving, retrieving, and/or deleting
of objects. Transactions may be flat, an “all-or-nothing” approach where all the actions
must either succeed or be rolled back (canceled), or they may be nested, an approach where
a transaction is made up of other transactions which are committed and not rolled back if
the large transaction fails. Transactions may also be short-lived, running in thousandths of a

second, or long-lived, taking hours, days, weeks, or even months to complete.

University Of Windsor, 2002 38

Layered Approach To Persistence Modeling in OOE

4.11 Extensibility

You should be able to add new classes to your object applications and be able to change
persistence mechanisms easily (you can count on at least upgrading your persistence
mechanism over time, if not port to one from a different vendor). In other words your
persistence layer must be flexible enough to allow your application programmers and

persistence mechanism administrators to each do what they need to do.

4.12 Object Identities

An object identity (OID) is an identifier that, assigned to a persistent object, uniquely
identifies the object. In a relational database, tables have key columns. The values of the
key columns of a row make up the identity of a row. If objects, mapped to relational
databases, are to have identities, then these key columns (which usually have no business
meaning) must intrude into the object classes (where they normally are not present).
Classes are assigned attributes that map onto key columns in the database table. The
intrusion is necessary for creating relationships between objects. If at run-time a persistent
object has a reference to another persistent object, then when the objects are made
persistent, this reference needs to be stored, and the only way to do it is via OIDs. For
example, a master class Person has a detail class Address, and a Person object can contain
several Address objects. When storing the Person object and its Address objects, the OID
of the Person object is stored as a foreign key in the database table the Address class maps
onto. When the Person object is materialized again, its Address objects are also
materialized by using the Person's OID. Another use for OIDs in DPL is in caching - to

cache an object, the object is mapped to its OID, and cache lookup is performed using the

University Of Windsor, 2002 39

Layered Approach To Persistence Modeling in OOE

OID. If the objects of a class have no identity, then they cannot be cached and the

performance gain from caching is lost.

University Of Windsor, 2002 40

Layered Approach To Persistence Modeling in OOE

4.13 Conceptual Structure of DPL

Figure 4.13 represent a conceptual overview of the architecture of the Durable Persistence

System and what basic parts it has and how they interact.

Storing and deleting

Deleting sorage
and deletion

Looking up cached
instences

Delegating queries
from the application

to lower level

Specitying the
criteria feld values

Hendies enscuting
SQL stetomants

Database -specifc
SQL queries

Figure 4.13 Conceptual Structure of DPL

University Of Windsor, 2002 41

Layered Approach To Persistence Modeling in OOE

4.14 Security

Following are the few security issues:

4.15 Application Security

Application security is by far the largest security domain, concerned with the problem
areas, shortcomings and flaws of design and implementation. Here the focus is laid on

problem areas in application security.

In the following section 4.16 to 4.20, we present several distinct problem scenarios that
illustrate some of the primary issines of concemn. In each case we present the problem, an

assessment and a solution strategy.

4.16 Tracking Operations
Problem

The history of potentially sensitive operations must be accessible.

Assessment
Situations can arise where information has mysteriously been changed or deleted, and it is

important to know when it happened and what the previous data looked like.

Solution
* Enable adequate logging in the persistence layer (See section 4.22 for a discussion

of Logging).

University Of Windsor, 2002 42

Layered Approach To Persistence Modeling in OOE

4.17 Consuming Unreasonable Amounts of Resources
Problem

The persistence layer could use up too many system resources.

Assessment
The persistence layer in newly initialized state holds only mapping information,
constructed from the configuration file. Additional work objects (like statement factories

for individual classes) are initialized on demand.

Database connections are also created on demand. They are not closed over the life of the
application, as creating a connection is a time-costly operation. Persistent objects are
cached, to speed up object retrieval. The cache uses soft references that are garbage-

collected in response to a memory demand.

To conclude: as the persistence layer uses lazy initialization wherever possible to avoid
unnecessary resource allocation, and keeps no objects that are not needed, memory is used
in reasonable amounts. If the memory footprint is still too large, object caching can be

disabled.

University Of Windsor, 2002 43

Layered Approach To Persistence Modeling in OOE

4.18 Confidentiality of Authentication Data and Persistent Data

Problem

The authentication information of the data store (e.g. username and password for
connecting to the database) is stored in the configuration file. If the application launched by
a malicious user has access to this file, or if the malicious user can access this information
directly, then the authentication information is compromised, and the malicious user can

steal, alter and destroy persistent data.

Assessment
® This concern usually arises if the application is a web application, for example a
servlet, that by default is not run with the access rights of the user and thus the
configuration file must have more liberal access rights. If no solution is used, then
harmful activity on persistent data is at least detectable if adequate logging is

enabled (See section 4.22 for a discussion of Logging).

Solution
Set the access permission of the file to be accessed by the attacked user only, and launch

the application with the rights of the attacked user.

University Of Windsor, 2002 44

Layered Approach To Persistence Modeling in OOE

4.19 Network Security

Network security is concerned with protecting data sent over the network.

4.20 Sending sensitive Data Over the network

Problem

If access to the data store is performed over the network, then sensitive information can be
obtained by eavesdropping. This includes the authentication information and persistent
data. Information could also be tampered with - changed on its way through the

communications channel.

Assessment
The persistence layer relies on the ODBC driver for connecting to the database. No attempt
is made on the part of the persistence layer to secure the information exchange. Therefore,

eavesdropping is a very real risk.

Solution
Use a secure ODBC driver. With a secure driver, the communication between the driver

and the database is encrypted.

We note that this solution can only provide security up to a point of certified reliability that

is limited by the qualities of the underlying algorithms and other security mechnasims.

University Of Windsor, 2002 45

Layered Approach To Persistence Modeling in OOE

4.21 Concurrent Use
The persistence layer can be used in a multi-threaded environment, with multiple clients

using the same PersistenceManager object.

PersistenceManagerFactory retains the Persistence Managers it has constructed and returns
an existing instance if one exists for the specified configuration file. As the threads utilize
the same resources, there will quite probably be some resource conflicts. Database
connection is a shared resource. If two threads want to access the database at the same
time, one will either have to wait until the persistence layer has finished serving the first

thread, or a pool of connections can be used.

A persistent object is a shared resource. As retrieved objects are cached, then several
threads retrieving the same object are given a reference to the same object. If the threads
use the object as read-only, then no problem occurs. If, however, the threads modify the

objects, then undefined behavior can occur in the thread context.

Since database records are a shared resource, if a thread modifies a record, it is locked. If
another thread tries to modify the record at the same time, then the result depends on the
particular database implementation. Most probably an exception will be thrown by the
ODBC driver. In case there is need for a Persistence Manager not shared with any other
threads, the method PersistenceManagerFactory.createNew can be used. This method does
not use the cached Persistence Managers, but creates a new one, that will not be given to

other callers.

University Of Windsor, 2002 46

Layered Approach To Persistence Modeling in OOE

4.22 Logging
The persistence layer makes heavy use of logging. Every performed action is logged.

Logging enables debugging of the application, to examination of unexpected behavior and
auditing. It is possible to configure logging at runtime. Editing a logging configuration file

can control logging behaviour.

There are S levels of logging. They are ordered ascendingly and are nested - lower levels

include the higher levels.

University Of Windsor, 2002 47

Layered Approach To Persistence Modeling in OOE

The levels are:

DEBUG Logging every operation detail. This level should be used only for
debugging purposes, as the output is extremely abundant and can
amount to thousands of entries in a few calls to a Persistence Manager

instances.

INFO Logging application progress - what operations are performed, what
values stored, what data retrieved. This level should be used if there is
need for auditing information. The output is nowhere near as abundant
as on the previous level, but as all stored and retrieved values are

logged, it can still reach undesirable quantities.

WARN Logging potentially harmful situations that do not have affect on

program flow.

ERROR Logging error situations that interrupt the current program flow, but

can be possible to recover from.

FATAL Logging unrecoverable error situations that make it impossible for
the application to continue. Setting the logging level to FATAL
practically disables logging, as fatal errors are extremely rare under

normal circumstances.

University Of Windsor, 2002 48

Layered Approach To Persistence Modeling in OOFE

Chapter 5
The Persistence Manager Pattern

e]

5.1 Context

Persistence Manager Pattern is necessary for developing an application that needs to store
the objects it works with. Most probably, the persistence mechanism used is a relational
database.

Example: a web-based book database, displaying the entered authors and their books, and

allowing the entry of new authors and books.

5.2 Problem

How to provide application objects with persistence, without hard-coding the system to use
a proprietary technology that can be subject to change? What solution would be easily

reusable in other applications?

5.3 Motivation

® The most commonly used persistence mechanism at the moment is a relational
database management system [BTRO1].

* Every database vendor provides a slightly different syntax for functionality outside
the standard SQL, which gives greater power to the programmer, but enforces the

use of a proprietary technology.

University Of Windsor, 2002 49

Layered Approach To Persistence Modeling in OOE

® Object databases are relatively new and uncommon, and do not have the support
relational databases have [BTRO1].

* Embedding statements for data storage (e.g. SQL queries) in persistent classes is
fast, both in performance and initial development, but hinders portability and forces
reworking of the classes in case of changes in the data structure. For example,
changing the field type of a class triggers a change of both the database and the
persistence logic. In another instance, a database table column's data type is
changed from INTEGER to BIT, but the object's field type remains a boolean.

® Adding persistence into the classes themselves is not always possible - they might
be third party components.

® Persistence methodology is often very similar across applications, differing only in

the exact data structure, which makes it a candidate for automation and reuse.

Developing a generic, reusable persistence mechanism takes a lot more effort and skills

than embedding an application-specific mechanism in the application.

5.4 Solution

Create a component that is able to provide application objects with persistence. The
component is not directly associated with the persistent classes and is therefore fully
reusable. Configuring the component to handle new persistent classes is dynamical, done at
run-time, from a configuration file. The component's functionality equals that of a
relational database, providing a query mechanism, relational integrity, and transaction

support, which are significant in many applications. The persistence provided is transparent

University Of Windsor, 2002 50

Layered Approach To Persistence Modeling in OOE

- the client programmers do not need to be aware of how class instances are made to
persist. All the client programmer is aware of is that calling the methods of the component -
e.g. store, delete, and retrieve - provides access to persistence. Extending the software to
support other kinds of data stores besides relational databases should be possible with no

impact on existing code.

5.5 Overview of the functionality of the Persistence Manager
In this section we list the functionality of Persistence Manager classes.
® stores objects in the data store.
® deletes objects from the data store.
® retrieves objects from the data store, via potentially complex queries.
® supports referential integrity - when storing an object, its related objects will be
stored as well; when deleting an object, its related objects will be deleted with it.
® supports transactions.

® supports inheritance -.

"Persistent classes can inherit from other persistent classes, extending them with new attributes. This
inheritance needs to be supported in a relational database as well. This can be implemented either storing by
the entire inheritance tree in one table, storing each class in a separate table including all the attributes, or
storing each class in a separate table including only the attributes specific to that concrete class. When
retrieving an object of a persistent class that has persistent extensions, the extensions will have to be queried
as well [AMBO00a).

University Of Windsor, 2002 51

Layered Approach To Persistence Modeling in OOE

5.6 Resulting Context

The problem of achieving object persistence, which in some applications can comprise half
of the total effort, has become a non-issue. Thus, the programmer can concentrate on other
aspects of the application. The application programmer is not concered with the specific
persistence mechanism used. He has been provided with an easily used, transparent

persistence mechanism that can be used with different databases.

Our approach, however, has given rise to at least new problems.

New problem: performance overhead.
The persistence mechanism of the application has become notably more complicated,
adding at least one, and possibly several, layers of logic between persistent classes and the

data store. This incurs an additional performance load.

New problem: decrease in the functionality of the persistence mechanism.

With relational databases, the programmer can execute extremely complex queries just as
readily as simple storage and retrieval statements. With a Persistence Manager, other
workarounds must be used. Finding these work around can make an excellent thesis topic

for new research.

5.7 Rationale

The general idea for a Persistence Manager-like architecture was introduced by Scott W.

Ambler [AMB0Ob].

University Of Windsor, 2002 52

Layered Approach To Persistence Modeling in OOE

However, his work did not propose the broker in pattern form, and he specified the classes

to be persistence aware.

By encapsulating persistence logic in a separate place and providing transparent
persistence, the application programmer need not concentrate on the specifics of one data
store, which should not be in the scope of most applications; instead, the programmer may

concentrate on the problems of the application domain.

Most of the databases available today offer additional functionality besides that provided
by the ANSI SQL standard. They provide row identification mechanisms, special
functions, triggers, and stored procedures, all of which are useful. Using them in an
application, however, produces a tight coupling between the application and the database.
If the database is never changed during the lifetime of the application, then there is no
concern. If, however, it happens that there is a need to make the application use a different
database (e.g. the current one imposes some limits that have been finally reached), or the
software licence has expired and acquiring another licence from the same vendor is
unacceptable, then the application programmer is faced with a possibly huge task of
refactoring the application persistence mechanism. By utilizing a reusable component
capable of handling any kind of a database instead of making use of proprietary

technology, this domain of problems has become a non-issue.

Now that the Persistence Manager is ready, it can and will be used in many applications.
The application programmer can utilize it without paying attention to or even being aware

of whether the underlying data store is a database from the same vendor, from another

University Of Windsor, 2002 53

Layered Approach To Persistence Modeling in OOE

vendor, or an altogether different mechanism, such as an XML file. If a minor change is
made in the underlying data store, the programmer need not change any part of the
application; if a bigger change is made then there is no persistence logic code to change,

only the Persistence Manager configuration file.

University Of Windsor, 2002 54

Layered Approach To Persistence Modeling in OOE

Chapter 6
Implementation Of DPL

There are three fundamental ideas underlying the implementation of DPL.
A) Every persistent object has a symbolic object id(OID), which is a string and is unique

over classes. There is a mapping between persistent objects in memory and their OID.

B) References to persistent objects are encapsulated in classes called ONDEMAND. This
enables reference cycles without “endless pain”, and it enables intelligent loading and
caching. The normal ONDEMAND does — as the name implies load the object in case

of de-referencing with the help of the OID.

C) Every class is able to write and read itself to from a stream. That stream is storage

independent and is used from the storage dependent layer to store the object.

In terms of class design, this means:

- Every Class that should be saved on a Persistence Medium has to be derived from class
PERSISTENT.

- Every Class that should be saved on a Persistence Medium has to be referenced by

special smart pointers called ONDEMAND.

There is one interface to the persistence mechanisms called PERSISTENCE-MANAGER.

University Of Windsor, 2002 55

Layered Approach To Persistence Modeling in OOE

There are two Phases involved in creating a new class with persistence:
A. The storage independent steps

B. The storage dependent steps (This needs to be implemented as part of future work).

First, the storage independent steps will be explained on an example:
The class COMPANY has several MACHINES. The corresponding ondemands are

ONDEMAND_MACHINE and ONDEMAND_COMPANY.

6.1 Storage Independent Steps

6. 1. llinherit from persistence and provide the features needed

The inheritence is applied as in the following examples :

--------- sourcecode start

class COMPANY // Make Persistence

inherit PERSISTENCE

rename make as make_persistent // Providing the features
redefine write_to_stream, read_from_stream end

--------- sourcecode end

To model the has-relationship, we use a LINKED _LIST, one subclass of a more general
CONTAINER CLASS, CONTAINER of ONDEMAND[MACHINES].

To make things more interesting, we use an expanded type. So we do not forget to create
it. But on the other hand things are a little bit more complicated when we read in the

object, as you will be discussed see in the explanation of ‘read_from_stream’ below.

University Of Windsor, 2002 56

Layered Approach To Persistence Modeling in OOE

------- sourcecode start
machines: expanded LINKED_LIST[ONDEMAND _MACHINE]

-------- sourcecode end

The stream provides some features that can handle ondemands and containers of
ondemand. But, there is still a need for an assignment attempt, since the stream reads only
plain ONDEMANDs and the COMPANY uses ONDEMAND_MACHINEs. But since
they are derived from ONDEMAND, the assignment attempt always works. The call

stream.last_container returns a CONTAINER[ONDEMANDs].

In the COMPANY, the machines are a LINKED_LIST{ONDEMAND_MACHINE].
There is one possiblity to copy the CONTAINER to another COLLECTION. This the

feature fill.

A temporary ‘m’ is needed, since ‘machines’ is an expanded type and the assignment is not
allowed to expanded types.

--=-=---- sourcecode start
read_from_stream(stream: INPUT_OBJECT_STREAM) is

local

m: CONTAINER[ONDEMAND_MACHINE]
do

steam.read_ondemand_container

---cast ONDEMAND to ONDEMAND_MACHINE

University Of Windsor, 2002 57

Layered Approach To Persistence Modeling in OOE

m ?= stream.list_ondemand_container
machines.fill(m)

end

Because we also want to save the Company, we have to provide a ‘write_to_stream’
feature, as in:
--------- sourcecode start
write_to_stream(stream: OUTPUT_OBJECT_STREAM) is
do
precursor(stream)
stream.append_ondemand_container(machines)
end
--------- sourcecode end
First we have to call the precursor. This is important, because the class information and the
OID are written to the stream in the precursor. Then we write all persistent members to the
stream. For this purpose, the stream provides a number of features. It is vital to ensure, that
the order of writing the persistent members is exactly the same as the order of reading the
members! Otherwise, errors will occur during the reading the objects. Another feature
named ‘forward_ondemand’ has to be defined. This feature will forward recursive calls

during saving of object structures.

University Of Windsor, 2002 58

Layered Approach To Persistence Modeling in OOE

6.1.2 Provide the factory

To be able to read and especially create objects that come from the “outside” of the running
process, we have to provide a class that knows how to do that creation. This is the factory.
In addition, it knows how to create ONDEMANDS that belong to the class the factory is
responsible for.
It is always the same and coded as:
-------- sourcecode start
class COMPANY_FACTORY
inherit
FACTORY
feature
create_object(stream: INPUT_OBJECT_STREAM): COMPANY is
do
!COMPANY! result.create_from_stream(stream) // Creating Object
end
end — class COMPANY_FACTORY

--------- sourcecode end

6.1.3 Provide the ondemand

The ondemand classes, which are used to reference persistent objects, are derived from

ONDEMAND. They should be named “ONDEMAND_ClassName”. They look like:

University Of Windsor, 2002 59

Layered Approach To Persistence Modeling in OOE

----- sourcecode start
class ONDEMAND_MACHINE
inherit

ONDEMAND

redefined reference end

creation make_from_oid, make_from_reference
feature

referenece: MACHINE
end — class ONDEMAND_MACHINE

------- -- sourcecode end

6.1.4 Registering the persistent classes with the persistence_manager

To register the persistent classes within your application, first thing is to inherit the

interface to the persistence manager.

class APPLICATION
inherit
PERSISTENCE_MANAGER
feature
register_persistent_classes is
local
f: FACTORY

f_os: OBJECT_SOURCE

University Of Windsor, 2002 60

Layered Approach To Persistence Modeling in OOE

do

'FILE_OBJECT_SOURCE! f_os

--MACHINE

MACHINE_FACTORY! f

db.register_type(“MACINE”, “ONDEMAND_MACHINE”, f, f_os)

--COMPANY

!COMPANY_FACTORY! f

db.register_type(*COMPANY”, “ONDEMAND_COMPANY™, f, f_os)
end

......... sourcecode end

This is achieved by deriving from “PERSISTENCE_MANAGER”. The feature ’db’
returns the “OBJECT_SOURCE_MANAGER". The registration tells the
object_source_manager, which class has the appropriate ondemand_class, factory and
object source. The OBJECT_SOURCE will be explained later. It is dependent on the

storage (file, odbc). It can be changed without changing the rest of the DPL.

In the following example, the registration is bundled in its own feature. It is important to

the registration of all persistent classes before the persistence layer is used.

University Of Windsor, 2002 61

Layered Approach To Persistence Modeling in OOE

6.2 Usage Of DPL
After having written all the classes and features for a persistent class, one may ask how to
use the persistence layer within an application. There are only few things you can do;

basically, storing and retrieving objects from the store. We discuss these below.

6.3 When an object needs to be saved?

An object that was read from store and not changed does not need to be stored! Only after
having changed the object is a save needed. An object that needs saving is called “dirty”.
To mark an object for saving when the next call to ‘store’ is done, the feature “set_dirty”
should be called. Usually, every change to an object should also do a call to set_dirty. If an

object is created inside the process by the creation procedure of PERSISTENT, it is marked

dirty automatically.

6.3.1 Storing objects

To store an object ‘0’ of persistent class A, just call the feature ‘store’ on ‘o’. This will

result in saving all dirty objects that ‘0’ depends on.

In the example, a call to c.store (c:COMPANY) would save ‘c’ itself and the machines the

company has (only the dirty ones).

University Of Windsor, 2002 62

Layered Approach To Persistence Modeling in OOE
6.3.2 Retrieving objects

There are methods for retrieving objects. First we can load an object by an OID. The
second method is to load all objects of a specific class. After having loaded an object, in
terms of “class” you hold a PERSISTENT in your hands. An assignment attempt will be

used to make it useful for you.

6.4 Summary
In this chapter, we have discuss how to make an object persistent using Durable Persistence

Layer (DPL). The complete source code of DPL has not been included in this thesis. In

order to view the source code, contact Dr. R. D. Kent*.

*rkent@uwindsor.ca

University Of Windsor, 2002 63

Layered Approach To Persistence Modeling in OOE

Chapter 7

Testing and Post-analysis

e

7.1 DPL Compared to Embedding SQL Directly

This section deals with Testing and Post-analysis.

A simple approach to persistence logic is embedding SQL statements directly in
application code. Most of the advantages of a Persistence Manager were discussed in

sections 5.5 and 5.6, Persistence Manager pattern.

7.1.1 Sample Code

Simple Retrieval

The following two sections of code both retrieve all Simple Persons from the database that
have a location of 'Windsor'. When comparing the sections, we can see that using DPL
yields a much more terse and understandable program code, not to mention with less effort

then using embedded SQL.

University Of Windsor, 2002 64

Layered Approach To Persistence Modeling in OOE

Example 7.1.2 Using embedded SQL for simple retrieval.

Connection connection = DriverManager.getConnection("jdbc:odbc:emt”);
Statement stmt = connection.createStatement();

ResultSet rs = stmt.executeQuery(

"SELECT * FROM SIMPLEPATIENT WHERE location = 'Windsor'");
Collection results = new ArraylList();

while (rs.next()) {

simplepatient object = new SimplePatient();

object.id = rs.getint("id");

object firstName = rs.getString("firstName");

object.lastName = rs.getString("lastName");

object.location = rs.getString("location”);

object.phone = rs.getString("phone");

results.add(object);

/

connection.close();

Example 7.1.3 Using DPL for simple retrieval.

Simplepatient param = new SimplePatient();

param.location = "Windsor";

Query query = createQuery(param, new String[] {"location"}, null);
Collection results = retrieveCollection(query);

University Of Windsor, 2002

65

Layered Approach To Persistence Modeling in OOE

7.2 Sample Code

Simple storage

The following two examples of code both store a new SimplePerson in the database with

DPL this action is even more simple than retrieval.

Example 7.2.1 Simple Storage

Connection connection = DriverManager.getConnection("jdbc:odbc:emt");

Statement stmt = connection.createStatement();

SimplePatient person = new SimplePatient();

ResultSet rs = stmt.executeQuery(

"SELECT MAX(id) + 1 AS newld FROM SIMPLEPATIENT");

rs.next();

// The new id value is got this value to be able to set it to the

// object immediately.

person.id = rs.getint("newld");

rs.close();

person.firstName = "John";

person.lastName = "Doe";

person.location = "Windsor";

person.phone = "253-3000";

stmt.executeUpdate(

"INSERT INTO SIMPLEPATIENT (id firstName,lastName,location,phone)” +
"VALUES (" + person.id + ", '" + person.firstName + "', " +
person.lastName + "', " + person.location + ™, " +
person.phone + "")");

stmt.close();

connection.close();

Example 7.2.2 Using DPL

SimplePatient person = new SimplePatient();
person.firstName = "John";
person.lastName = "Doe";

person.location = "Windsor",

person.phone = "253-3000";

store(person);

University Of Windsor, 2002

66

Layered Approach To Persistence Modeling in OOE

7.3 Tradeoffs

The initial disadvantage of implementing the Persistence Manager pattern is that it is a
non-trivial task, possibly greater than developing the application itself. However, as the
component is easily reusable in consecutive applications, it pays off in the manner in

which it supports re-use.

The main disadvantage of using such a Persistence Manager is a decrease in the
persistence functionality. With embedded SQL, programmers can execute incredibly
complex queries just as easily as simple storage and retrieval. With a Persistence
Manager, the programmer has firm boundaries on persistence functionality. Therefore,
using a Persistence Manager is mostly suitable for applications that keep no business
logic in the database and that do not need to perform complex data mining and analysis.
For applications that do their work with business objects that need to be persistent, a

Persistence Manager is an excellent solution.

Another tradeoff with using a Persistence Manager might be a decrease in speed. As
such, a component can have an intricate inner structure, persistence operations can
develop a notable overhead. The following section explores this issue by benchmarking

simple persistence operations.

University Of Windsor, 2002 67

Layered Approach To Persistence Modeling in OOE

7.4 Benchmark Information
Test environment

Testing was carried out on a machine that hosted both the application and the database

S€rver.

Computer: P4, 766 MHZ, 256MB RAM, Windows 98
Database system: Microsoft Access 97

Database driver: Access Driver

Results Table

Repeated whether the same operation was repeated for
multiple times.
Ops how many atomic operations - storings or retrievals

contained. For example, action | retrieved 450

SimplePerson objects.
Sum how much time did all the ops take.
Avg how much time did an op take on the average.
Factor to DPL by what factor is X faster that DPL(if below 1, then
DPL is faster than X)
Repeated Ops X DPL Factor to DPL

Sum[ms] Avg[ms] Sum[ms] Avg[ms]

University Of Windsor, 2002 68

Layered Approach To Persistence Modeling in OOE

The following operations were benchmarked:
1. retrieving all Simplepatient for the location "Windsor’
2. updating every entry among the results retrieved in the above operation
3. finding all Persons from the location 'London' and retrieving their Phones
automatically

4. inserting a number of new Persons and two Phones for each person

7.5 Benchmarks

Action 1 - Find all Simplepatient from the location 'Windsor".

Repeated? Ops Embedded SQL DPL Factor to DPL
Sum[ms] Avg[ms] Sum[ms] Avg[ms]

No 450 4500 10.00 5400 12.00 1.20

Yes 1850 411 1500 3.33 0.81

Action 2 - update all Simplepatient retrieved in action 1.

Repeated? Ops Embedded SQL DPL Factor to DPL
Sum[ms] Avg[ms] Sum[ms] Avg[ms]

No 450 3350 7.44 3450 7.67 1.03

Yes 1650 3.67 3300 7.33 2.00

University Of Windsor, 2002 69

Layered Approach To Persistence Modeling in OOE

Action 3- Find all Persons from the location 'London’ and retrieve their Phones
automatically

Repeated? Ops Embedded SQL DPL Factor to DPL
Sum[ms] Avg[ms] Sum[ms] Avg[ms]
. No 50 8450 169.00 8750 175.00 1.04
" Yes 5650 113.00 960 19.20 0.17

Action 4- Insert a number of new Persons and two Phones for each person.

Repeated? Ops Embedded SQL DPL Factor to DPL
Sum [ms] Avg[ms] Sum [ms] Avg [ms]
- No 50 2200 44.00 4850 97.00 220

When examining the results, we can see that the main strength of DPL lies in retrieval in

some cases it can be very fast, e.g. when executing repeated retrievals in action 3.

Caching causes this good performance - as objects that are cached do not need to be fully
read from the database (once their identity is clear, their cached instance can be reused),
several operations could be skipped altogether. An especially high performance yield
comes with relationships - cached objects already have their related objects set in Place, so
additional queries to the database for getting the related objects are not needed. On the
whole, the results were surprisingly good. We did not expect all the application logic
existent in DPL to have such a small time overhead, and feared at least a triple time penaity

with using DPL.

University Of Windsor, 2002 70

Layered Approach To Persistence Modeling in OOE

On the basis of these results, using a Persistence Manager does not make persistence
operations tremendously slower, but as seen from the code samples, yields much less code

to develop.

7.6 DPL Compared to Similar Components

There is abundant software available that performs mapping objects to relational databases.
Some products are quite powerful, providing a rich user interface for configuration and
offering automatic generation of the class diagram from the database table diagram.
However, most products do not have the level of unintrusiveness that the Persistence
Manager pattern, and consequently the Durable persistence layer, have.

Persistent classes usually have to extend a superclass that couples them with the persistence
layer. There is only one component that does compare to DPL in terms of unintrusiveness

and functionality - ObjectRelationalBridge.

7.6.1 Object Relational Bridge

ObjectRelationalBridge (OJB) is an open source software (publicly available at
(hitp://objectbridge.sourceforge.net/) roughly following the Persistence Manager pattern.
Its functionality and structure is quite similar to DPL. In the following sub section we

compare the advantages and disadvantages of these approaches.

University Of Windsor, 2002 71

Layered Approach To Persistence Modeling in OOE

7.6.2 Advantages of OJB Compared to DPL:

The following are a partial listing of OJB advantages:

supports cursors (for information on cursors, see 8.2 Further Development)

has partial support for transactions - only if the underlying database supports
transactions. Some databases do not support transactions, like MySQL
(http://www.mysql.com/)

supports virtual proxies (for information on virtual proxies, see 8.2 Further
Development)

supports extent classes (for information on extent classes, see 8.2 Further

Development)

7.6.3 Disadvantages of OJB Compared to DPL:

Error handling is severely lacking - in most cases, encountered exceptions are
caught and not permitted to rise outside the component, thus giving no clue if there
was an error.

Has virtually no logging. It is possible to have some messages printed to the console
after recompiling the classes to support this, but the messages are non-expressive
and few.

Does not support composite identities.

University Of Windsor, 2002 72

Layered Approach To Persistence Modeling in OOE

® Table columns can only have certain pre-defined types - the types are hard-coded
in. Although they cover most of the possible column types, they do not cover all of
them.

& Object identity fields are hard-coded to integer type.

® There is only one identity generation strategy - using a sequence table in the
database.

® It is possible to configure OJB to use an arbitrary strategy, but not on a per-class
basis or even a per-Persistence Manager basis; the specified strategy will then be
used by all Persistence Managers. Configuring this arbitrary strategy
implementation has to be done outside the application - the broker configuration file
holds no information for it.

® There is one global object cache for the entire machine. As caches do not know
where an object is from - they only know its type and identity values, this can lead
to problems in cases where there are multiple applications running on the same
machine that use the same persistent classes, but store them in different data stores.

® Contains some bugs - for example, one type of query disregards its criteria and
retums every object for the specified «class it can find.
(http://jakarta.apache.org/ojb/)

* Instantiating persistent classes is not flexible - the user cannot specify an arbitrary
object creation strategy.

® Does not support custom SQL.

® Does not support a custom way for accessing object fields - the access is hard-

coded to be done using reflection and cannot be changed.

University Of Windsor, 2062 73

Layered Approach To Persistence Modeling in OOE

® APl documentation is inadequate, incomplete and defective.

7.7 Benchmarks

Action - Find all Simplepatient from the location "Windsor'.

Repeated Ops OJB DPL Factor to DPL
Sum[ms] Avg[ms] Sum[ms] Avg[ms]

No 450 6550 14.56 5400 12.00 0.82

Yes 3200 7.11 1500 3.33 0.47

Action 2- Update all Simplepatient retrieved in action 1.

Repeated Ops OJB DPL Factor to DPL
Sum([ms] Avg[ms] Sum([ms] Avg{ms]

No 450 10750 23.89 3450 7.67 0.32

Yes 10350 23.00 3300 7.33 0.32

Action 3- Find all Persons from the location 'London’ and retrieve their Phones
automatically.

Repeated Ops OJB DPL Factor to DPL
Sum([ms] Avg[ms] Sum{ms] Avg[ms]

No 50 14550 291.00 8750 175.00 0.60

Yes 1650 33.00 960 19.20 0.58

Action 4- Insert a number of new Persons and two Phones for each person.

Repeated Ops OJB DPL Factor to DPL
Sum([ms] Avg[ms] Sum[ms] Avg[ms]
No 50 10550 210.00 4850 97.00 0.46

University Of Windsor, 2002

74

Layered Approach To Persistence Modeling in OOE

These benchmark results are even more surprising than those in comparison with
embedded SQL. I expected OJB, a product that has had a considerably longer lifetime, to
be much better in terms of performance than DPL, a product that is a newborn. It is
possible that such good relative performance of DPL is caused by some issues that need to

be handled but have not occurred to me.

On the basis of these results, DPL can be pronounced to give excellent performance. The
Persistence Manager pattern is a good approach to handling data persistence. As we saw
from its comparison with directly embedded SQL, it does not incur an unacceptable
performance .In many cases, a Persistence Manager can give results fast, because it caches

the persistent objects it encountered.

The main argument for a Persistence Manager is its ease of use, however. Utilizing it
delivers clean and elegant application code, faster development time (as the programmer
does not need to produce any persistence logic), easy persistence maintenance (changes are

needed only in the configuration file) and good portability.

On the basis of these results, we can conclude that the Persistence Manager is a good
approach to handling data persistence, although not a solution fit for every application.
When comparing DPL, one implementation of the Persistence Manager pattern, to another
implementation, OJB, we see that the main strength of DPL is in its careful design and

flexibility - it has powerful logging, good error handling and its architecture is

University Of Windsor, 2002 75

Layered Approach To Persistence Modeling in OOE

compartmentalized so that custom sub-components can be used with the basic aspects of

persistence operations, like creating SQL syntax and accessing object fields.

At the present time, DPL is lacking some useful functionality that OJB possesses, such as
supporting cursors and transactions. These items have been noted on the list for future

developments. These issues do not impact negatively on the finding of this thesis, however.

The benchmarks showed that DPL has surprisingly good performance compared with OJB.
It is difficult to say what causes this good performance, as OJB does not log its activity and
inspecting source files and profiling the performance of every single operation is very time-

consuming and outside the scope of this thesis.

On the basis of the comparison and the benchmarks, DPL can be pronounced viable and
quite promising. When future development cycles have filled the present voids in DPL's

functionality, it could become a widely used component.

University Of Windsor, 2002 76

Layered Approach To Persistence Modeling in OOE

Chapter 8

Conclusion

e]

8.1 Conclusion

In this thesis, we set out to achieve the following goals:

To propose a reusable generic approach to handling persistence logic - the Persistence
Manager design pattern, that solves several problems when using relational database
management systems in an object-oriented application environment. The basic idea for
such software was introduced in Scott W.Ambler's white paper "Mapping Objects to

Relational Databases" [Amb00a].

To present DPL, a component we developed in the Eiffel programming language as an
implementation of this pattern. To compare DPL performance to the most basic approach
to persistence logic to find out whether the Persistence Manager offers a more preferable
solution; the most basic approach being embedding database access logic directly into

application code. We produced detail architecture of DPL showing in figure 4.13.

DPL was also compared to other software products that follow the Persistence Manager

pattern, to find out whether DPL is a viable solution among similar components.

All the three goals were realized. Based on the results of the comparison with the basic

approach, we deemed the Persistence Manager to be a well-designed approach to

University Of Windsor, 2002 77

Layered Approach To Persistence Modeling in OOE

persistence logic. Using DPL yielded faster program development, better modularized

application structure, and in cases even better performance on persistence operations.

8.2 Future Development

The persistence layer is far from being a completed product. The first fully usable
prototype contains the most vital functionality required - storing, retrieving, deleting.
Several of the functionalities mentioned in the Persistence Manager pattern are yet to be
implemented.

Overview of items scheduled for further development:

University Of Windsor, 2002 78

Layered Approach To Persistence Modeling in OOE

[Development Item Details Priority

Cursors
Provide support for a cursor that points to a set of Primary
retrieved objects and that the user can move to the
next or previous retrieved object. The cursor makes
use of lazy initialization - an object is retrieved only
when the cursor arrives at the object.

Transaction
Provide support for transactions — grouping Primary
persistence operations into atomic units that succeeds
or fails as a whole. Transactions are very helpful in
many applications, especially in the business realm
(e.g. making a bank transfer consists of several
operations - decreasing the amount on the transferor
side and increasing on the transferee side - that must
all either succeed or fail).

Object Query Language

Provide support for the Object Query Language Secondary
(OQL). OQL is an SQL-like declarative Languages

that provides a rich environment for efficient

querying of database objects, including high-level

primitives for object sets and structures [ODMG1].

OQL has the advantage of simplicity and better

overview, when compared to constructing queries by

setting parameters and criteria via method calls.

Virtual proxies

Provide support for lazy initialization of persistent Secondary
objects via virtual proxies. A virtual proxy is a proxy

for another object (the real persistent subject) that

materializes the subject when it is first referenced

[LarO1]. As it could happen that the real object might

never really be needed, this can provide a notable

performance gain.

University Of Windsor, 2002 79

Layered Approach To Persistence Modeling in OOE

| Development Item Details Priority |

Distributed use

Provide support for distributed use, in which there is tertiary
a central Persistence Manager server that multiple
clients connect to and execute persistence operations

on.
Logging configurable
In the Allow logging configuration to be specified in the optional
same persistence configuration file.
configuration
as persistence
XML files
as data stores Provide support for using XML files as data storage under
mechanisms. Although XML files are not consid-
comparable with databases in terms of ease of use, eration
performance and functionality, they have the benefit
of simplicity - there is no need for a database
management system, everything is contained in files.
For smaller projects, they provide adequate Performance.
Graphical user
interface for Provide a graphical application for producing lowest

configuration It should be able to generate lowest configuration
database table structure and a configuration file from
the class structure. Another approach would be to use
an existing graphical tool (such do exist - Rational Rose
is one) and add support for DPL via plugins or scripting.

University Of Windsor, 2002 80

Layered Approach To Persistence Modeling in OOE

Current programming languages are very good at manipulating objects, which only exist
during the execution time of the program. There are a multitude of applications, however,
that needs data to last "forever". Applications are becoming more complex by the day.
Programmers should not have to concentrate on changing the form of the data, but on the

application. DPL provides a vehicle to do this.

The software market has very few software products available that follow the Persistence
Manager concept strictly. Among the similar available software, DPL performed very well.
Its functionality should be extended, and the missing functionalities have already been

planned into future development.

University Of Windsor, 2002 81

Layered Approach To Persistence Modeling in OOE

References

[AMB02] Ambler, S.W. (2002a). “4 Class Type Architecture For Layering Your

Application,” A Ronin International White Paper. posted at www.ronin-intl.com

[AMBO1] Ambler, S.W. (2001a). The Object Primer 2nd Edition: “The Application
Developer's Guide to Object Orientation.” New York: Cambridge University Press.

www.ambysoft.com/theObjectPrimer.html

[AMBO00a] Scott W. Ambler (October 2000). “Mapping Objects To Relational Databases,
An AmbySoft Inc.” White papers ,http://www.AmbySoft.com/mappingObjects.pdf

[AMBO0O0b] Scott W. Ambler (November 2000). “The Design of a Robust Persistence Layer

For Relational Databases An AmbySoft Inc. " White Papers.

hgp://www.ambysoﬁ.com/mistenceLayer.gf

[AMB98] Ambler, S.W. (1998a). Building Object Applications That Work — Your Step-by-
Step Handbook for Developing Robust Systems With Object Technology. New York: SIGS
Books/Cambridge University Press.

http://www.ambysoft.com/buildingObjectApplications.html

University Of Windsor, 2002 82

Layered Approach To Persistence Modeling in OOE

[ABL96] B. Liskov, A. Adya, M. Castro, M. Day, R. Gruber, U. Maheshwari, A. Myers, L.
Shrira. “Safe and Efficient Sharing of Persistent Objects in Thor” Proceedings of

SIGMOD, Montreal, Canada, June 1996. ACM SIGMOD Record 25(2): 318-329.

[ACS00] Ambler, S.W. & Constantine, L.L. (2000). “The Unified Process Inception Phas.”

Gilroy, CA: CMP Books. http://www.ambysoft.com/inceptionPhase.html

[ADKO1] Kirby, GNC, Dearle, A, Sjeberg, D (eds), “Persistent Object Systems: Design,
Implementation and Use.” Vol. 2135, Springer, ISBN 3-540-42735-X. 2001. Proc. 9th
International Workshop on Persistent Object Systems, Lillechammer, Norway, 2001,

(POS9).

[ADHO00] Dearle, A, Hulse, D. In: “Operating System Support for Persistent Systems: Past,
Present and Future.” Software - Practice and Experience, Special Issue on Persistent

Object Systems 30, 4, pp 295-324. 2000.

[ADH99] O’Lenskie, A, Dearle, A, Hulse, D. In: “Persistent Operating System Support for

Persistent CORBA Objects.” Advances in Persistent Object Systems 1999.

[AMR99] R, Jordan, M, Atkinson, MP (eds), Proc. 8th International Workshop on
Persistent Object Systems (POS8) and 3rd International Workshop on Persistence and
Java (PJW3), Tiburon, California, 1998, pp 92-111. Morgan Kaufmann, ISBN 1-55860-

585-1. 1999.

University Of Windsor, 2002 83

Layered Approach To Persistence Modeling in OOE

[AGE 99] Ole Agesen, “Space and Time-Efficient Hashing of Garbage-Collected Object,”
Journal, Theory and Practice of Object Systems, volume S, number 2, pages 119-124, year

1999, http://www.sunlabs.com/research/java-topics/pubs/99-tapos.ps

[BAG91], Bagherzadeh, Nader and Heng, S-1. and Wu,"4 Parallel Asynchronous Garbage
Collection Algorithm for Distributed Systems" Journal "IEEE Transactions on Knowledge
and Data Engineering,” publisher IEEE, volume3, numberl, month mar, pages "100-107",

year 1991.

(BDMO0Oa] Morrison, R, Balasubramaniam, D, Greenwood, RM, Kirby, GNC, Mayes, K,
Munro, DS, Warboys, B. In: “An Approach to Compliance in Software Architectures:"
[EE Computing & Control Engineering Journal, Special Issue on Informatics 11, 4, pp 195-

200, 2000.

[BMN 02] Michael L. Nelson, B. Danette Allen, “Object Persistence and Availability in
Digital Libraries,” NASA Langley Research Center Hampton, VA 23681, D-libMagazine,

January 2002, Volume8, Number 1, ISSN 1082-9873 http://www.dlib.org/dlib/january02.

[BDMO0OOb] Morrison, R, Balasubramaniam, D, Greenwood, RM, Kirby, GNC, Mayes, K,
Munro, DS, Warboys, BC. In: “4 Compliant Persistent Architecture.” Software - Practice

and Experience, Special Issue on Persistent Object Systems 30, 4, pp 363-386, 2000.

University Of Windsor, 2002 84

Layered Approach To Persistence Modeling in OOE

[BMRO1] Bertrand Meyer."Invitation to Eiffel,” ISE Technical Report TR-EI-67/IV. July

2001, ISE Eiffel environment. http://www eiffel.com

[BFM96] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). “4
Systems of Patterns:” Pattern-Oriented Software Architecture. New York: John Wiley &

Sons Ltd.

[BMR92] Bertrand Meyer. Eiffel: “The Language (Second Printing),” Prentice Hall

International, 1992. ISBN 0-13-247925-7, P20-44.

[BTRO!] Biblio Tech Review (April 2001). Database Management Systems (DBMS).

Biblio Tech Review, Technical Briefings,http://www biblio-tech.com/html/databases.html

[CGLO1] Craig Larman (July 2001). Applying UML and Patterns: *An Introduction to

Object-Oriented Analysis and Design and the Unified Process.”” Addison-Wesley.

[GLR91] L. Gunaseelan, R.J. LeBlanc: Distributed Eiffel: 4 Language for Programming
Multi-granular Distributed Objects on the Clouds Operating System. Report 91/50,
Georgia Institute of Technology, College of Computing, 1991, Revised version in
proceedings of the Fourth International Conference on Computer Languages (ICCL), IEEE

Computer Society, San Francisco, Calif., April 1992.

University Of Windsor, 2002 85

Layered Approach To Persistence Modeling in OOE

[Gam9S] Erich Gamma et al (1995). Design Patterns, Elements of Reusable Object-

Oriented Software. Addison-Wesley.

[JMSO01] Sun Microsystems (October 2001). Java TM Message Service API.

http://java.sun.com/products/jms/index.html

University Of Windsor, 2002 86

Layered Approach To Persistence Modeling in OOE

Glossary

Business/domain class. Used to implement the concepts pertinent to your business domain,
such as “customer” or “product.” Business/domain classes are usually found during the
analysis process. Although business/domain classes often focus on the data aspects of your
business objects, they will also implement methods specific to the individual business

concept [AMBO02]

Class-type architecture. A defined approach to layering the classes that comprise the
software of a system. The interaction between classes is often restricted based on the layer

to which they belong [AMBO02]
Client/server (C/S) architecture A computing environment that satisfies the business need
by appropriately allocating the application processing between the client and the server

processes [AMBO1]

Concurrency The issues involved with allowing multiple people simultaneous access to

your persistence mechanism.

Coupling A measure of how connected two items are.

CRUD Acronym for create, retrieve, update, delete. The basic functionality that a

persistence mechanism must support.

University Of Windsor, 2002 87

Layered Approach To Persistence Modeling in OOE

Database server A server which has a database installed on it.

Distributed objects An object-oriented architecture in which objects running in separate

memory spaces (i.e. different computers) interact with one another transparently.

Layering The organization of software collections (layers) of classes or components that

fulfill a common purpose.

Lock An indication that a table, record, class, object, ... is reserved so that work can be
accomplished on the item being locked. A lock is established, the work is done, and the

lock is removed.

Object database (ODB) A permanent storage mechanism, also known as an objectbase or
an object-oriented database management system (OODBMS), which natively supports the

persistence of objects.]AMBO0Ob]

OOCRUD Object-oriented create, retrieve, update, and delete

Object identifiers (OIDs) A unique identifier assigned to objects, typically a large integer

number. OIDs are the object-oriented equivalent of keys in the relational world [AMBO0Ob].

Permanent storage Any physical medium to which data can be saved, retrieved, and
deleted. Potential permanent storage mechanisms for objects include relational databases,

files, and object databases.

University Of Windsor, 2002 88

Layered Approach To Persistence Modeling in OOE

Persistence class Provide the capability to store objects permanently. By encapsulating
the storage and retrieval of objects via persistence classes, you are able to use various

storage technologies interchangeably without affecting your applications.

Portability A measure of how easy it is to move an application to another environment
(which may vary by the configuration of either their software and hardware). The easier it
is to move an application to another environment, the more portable we say that application

1S.

Persistence mechanism The permanent storage facility used to make objects persistent.

Examples include relational databases, object databases, flat files, and object/relational
databases.

Pessimistic locking An approach to concurrency in which an item is locked for the entire
time that it is in memory. For example, when a customer object is edited a lock is placed on
the object in the persistence mechanism, the object is brought into memory and edited, and
then eventually the object is written back to the persistence mechanism and the object is
unlocked. This approach guarantees that an item won’t be updated in the persistence
mechanism whereas the item is in memory, but at the same time is disallows others to work

with it while someone else does [AMBOOb].

Persistence layer A collection of classes that provides objects the ability to be persistent,

being effectively a wrapper for the persistence mechanism [Amb00b]

Persistence logic Application code that handles storing, deleting and retrieving persistent

data

University Of Windsor, 2002 89

Layered Approach To Persistence Modeling in OOE

Persistent data Data that has persistence

Persistence operations Operations like saving, deleting and retrieving

Relational database (RDB) A permanent storage mechanism in which data is stored as
rows in tables. RDBs don’t natively support the persistence of objects, requiring the

additional work on the part of developers and/or the use of a persistence layer.

Sequence diagram A UML diagram that models the sequential logic, in effect, the time

ordering of messages between objects [CGLO1]

SQL Structured Query Language, a standard mechanism used to CRUD records in a

relational database.

Soft reference An object reference that is cleared at the discretion of the garbage collector

in response to memory demand

Transaction A transaction is a single unit of work performed in a persistence mechanism.
A transaction may be one or more updates to a persistence mechanism, one or more reads,

one or more deletes, or any combination thereof.

Transparent persistence Automatically provided persistence without special effort on the

client programmer side. No difference between persistent and transient objects.

University Of Windsor, 2002 90

Layered Approach To Persistence Modeling in OOE

User interface class A class that provides the capability for users to interact with the
system. User interface classes typically define a graphical user interface for an application,
although other interface styles, such as voice command or HTML, are also implemented

via user-interface classes [AMB02]

University Of Windsor, 2002 91

Layered Approach To Persistence Modeling in OOE

Appendix A

Sample Persistence Classes

e "~ - e

-Main Class--

class PE
inherit
PERSISTENCE_MANAGER
MEMORY
FILE_OBJECT_SOURCE
creation
make
Sfeature
objectID: STRING
human: HUMAN
man: MAN
woman: WOMAN
car: CAR
Jos: FILE_OBJECT _SOURCE
ob_tvpe: STRING

make is

do
io.new_line
io.put s"-i"g("%N‘.““...“‘...O..‘....'.“““‘..‘")

fo.put_string("%NWelcome to the world of PERSISTENCY")

io‘p“'_srring("o/oN‘..““0‘.‘0“.‘..““‘.“'..‘.““")

-- Registering Persistent classes

register_persistent_classes
- !"human.make

-~ Restoring the Object Structure

-- Restoration of HUMAN

io.new_line
fo.put_string("---
ob_tvpe := "HUMAN"

objectID = Read_Object_From_File(ob_type)
human ?= db.get_object_by_oid(objectID, ob_type)

--- Trying to restore HUMAN")

if human = void then
io.new_line
io.put_string("--—~----------— Creating NEW HUMAN!")

University Of Windsor, 2002 92

Layered Approach To Persistence Modeling in OOE

!'human.make
io.put_string("%aNHUMAN is set up”)

else
io.put_string("%N----————— Restoration of HUMAN Done!%N")
io.put_string("%NThe value of HUMAN afier restoration is:%N")
io.put_string(thuman.data.out)

end

-- Remaining Execution

io.put_string("%NExecution completed!")
end

Jeature -- persistence

register_persistent_classes is

local
f: FACTORY

os: OBJECT_SOURCE

do
!FILE_OBJECT_SOURCE!os
IHUMAN_FACTORY!Yf
db.register_type("HUMAN", "ONDEMAND_HUMAN", f, os)
IMAN_FACTORY!f
db.register_type("MAN", "ONDEMAND_MAN", {, os)
!WOMAN_FACTORY!f
db.register_type("WOMAN", "ONDEMAND_WOMAN", {. os)
!ICAR_FACTORY!f
db.register_type("CAR", "ONDEMAND_CAR", f, os)
io.put_string("%NRegistration done!")

end

end -- class PE

University Of Windsor, 2002

93

Layered Approach To Persistence Modeling in OOE

—~Class HUMAN -

Class HUMAN
inherit
PERSISTENT
rename make as make_persistent
redefine write_to_stream, read_from_stream, create _from_stream
end

creation
make, create_from_stream

Jeature
gen: CHARACTER
gender: STRING
name: STRING
data: STRING
car: CAR
man: MAN
woman: WOMAN
humans : expanded LINKED_LISTIONDEMAND_HUMAN]

make is
do
make_persistent
data_for_man
- execute
set_dirty
io.put_string("%NStoring the Object References for HUMAN...")
store
io.put_string("%aNHUMAN Stored!%N")
io.put_string("Executing the remaining program....%N")
end
execute is
do .
io.new_line
fo.putstring("[M/m = MALE; F/f = FEMALE.....]%N")
io.putstring("Enter Your gender HUMAN: ")
io.readchar
gen := io.lastchar
check_gender
end
check_gender is
do
inspect gen

when ‘M’, ‘'m’ then data_for_man
when 'F', '’ then data_for_woman
else
io.putstring("Wrong entry...!")

University Of Windsor, 2002 94

Layered Approach To Persistence Modeling in OOE

io.putstring("%NPlease enter the data again: ")
io.readchar
gen := jo.lastchar
check_gender
end
end

data_for_man is

do
name := "Kamran"”
data := "HUMAN 1975-03-29- choudhe@uwindsor.ca”
io.put_string("%NName of Human: %N" + name)
io.new_line
io.put_string("Data of Human: %N" + data)

end

data_for_woman is

do
name := "Jennifer Lopez"
data := "HUMAN Jennifer@uwindsor.ca”
io.put_string("Name of Human: %N" + name)
io.new_line
io.put_string("Data of Human: %N" + data)

end

- READ FROM STREAM -

read_from_stream(stream: INPUT_OBJECT_STREAM) is
- local
- h: CONTAINER{ONDEMAND_HUMAN]
do
- stream.read_ondemand_container

- h ?= stream.last_ondemand_container

stream.read_string
name := stream.last_string

stream.read_string
data := stream.last_string

- !Yhumans.make
- humans.fill(h)

end

University Of Windsor, 2002 95

Layered Approach To Persistence Modeling in OOE

WRITE TO STREAM
write_to_stream(stream: OUTPUT_OBRJECT _STREAM) is

do
precursor(stream)

- stream.append_ondemand_container(humans)
stream.append_string(name)
stream.append_string(data)

end

— FORWARD ON DEMAND --

JSorward_ondemands(f: FUNCTOR; condition: BOOLEAN) is

do
Jforward_ondemand_container(humans, f, condition)
end
—~ CREATE FROM STREAM --

create_from_stream(stream: INPUT_OBJECT _STREAM) is

do

io.put_string("%NThis is the return of HUMAN!")
precursor(stream)
end

end — class HUMAN

University Of Windsor, 2002 96

Layered Approach To Persistence Modeling in OOE

- Class MAN -

class MAN
inherit
PERSISTENT
rename make as make_persistent
redefine write_to_stream, read_from_stream
end
creation
make, get_data, create_from_stream
Jfeature
name, country: STRING
mans : expanded LINKED_LIST[ONDEMAND_MAN]

make is
do
make_persistent
get_data
set_dirty
io.put_string("%NStoring the Object References for MAN...")
store
io.put_string("%NMAN Stored!%N")
fo.put_string("Executing the remaining program....%N")
end
get_data is
do
name := “john"”
io.putstring("Enter your Country " + name + ": ")
io.readword
country := jo.laststring
io.putstring("Welcome to my world " + name + ".")
io.new_line
end
—~ READ FROM STREAM --
read_from_stream(stream: INPUT_OBJECT_STREAM) is
local
m: CONTAINER[{ONDEMAND_MAN]
do
stream.read_string
name := stream.last_string
stream.read_string
country := stream.last_string
stream.read_ondemand_container
m ?= stream.last_ondemand_container
!!'mans.make
mans.fill(m)
end

University Of Windsor, 2002 97

Layered Approach To Persistence Modeling in OOE

—~ WRITE TO STREAM --

write_to_stream(stream: OUTPUT_OBJECT_STREAM) is
do

precursor(stream)
stream.append_string(name)
stream.append_string(country)
stream.append_ondemand_container(mans)

end

— FORWARD ON DEMAND --

Jorward_ondemands(f: FUNCTOR; condition: BOOLEAN) is

do
Jorward_ondemand_container(mans, f, condition)

end
end - class MAN

98

University Of Windsor, 2002

Layered Approach To Persistence Modeling in OOE

—~Class WOMAN -

class WOMAN
inherit
PERSISTENT
rename make as make_persistent
redefine write_to_stream, read_from_stream
end
creation
make, get_data, create_from_stream
Sfeature
name, country: STRING
womans : expanded LINKED_LISTONDEMAND_WOMAN]

make is

do
make_persistent
get_data
set_dirty
io.put_string("%NSltoring the Object References for WOMAN...")
store
io.put_string("%NWOMAN Stored!%N")
io.put_string("Executing the remaining program....%N")

end

get_data is

do
io.new_line
name := "Jennifer"
io.putstring("Enter your country " + name + ": ")
io.readword
country := io.laststring
fo.putstring("Welcome to my world " + name + ".")
io.new_line
end

~~ READ FROM STREAM

read_from_stream(stream: INPUT_OBJECT _STREAM) is
local
w: CONTAINER[ONDEMAND_WOMAN]
do
stream.read_string
name := stream.last_string
stream.read_string
country := stream.last_string
stream.read_ondemand_container
w ?= stream.last_ondemand_container
!'womans.make
womans.fill(w)
end

University Of Windsor, 2002 99

Layered Approach To Persistence Modeling in OOE

- WRITE TO STREAM —-

write_to_stream(stream: OUTPUT_OBJECT_STREAM) is
do

precursor(stream)
stream.append_string(name)
stream.append_string(country)
stream.append_ondemand_container(womans)

end

- FORWARD ON DEMAND --

Jorward_ondemands(f: FUNCTOR; condition. BOOLEAN) is

do
Jorward_ondemand_container(womans, f, condition)

end
end - class WOMAN

University Of Windsor, 2002

100

Layered Approach To Persistence Modeling in OOE

- Class Car -

class CAR
inherit
PERSISTENT
rename make as make_persistent
redefine write_to_stream, read_from_stream

end
creation
get_data, make, create_from_stream
feature
model: STRING
year: INTEGER
cars : expanded LINKED_LIST[ONDEMAND_CAR]
make is
do
make_persistent
ger_data
set_dirty
io.put_string("%NStoring the Object References for CAR...")
store
io.put_string("%NCAR Stored!%N")
io.put_string("Executing the remaining program....%N")
end
get_data is
do
model := "Mercedes- Benz"
year :=2002
end
-- READ FROM STREAM --

read_from_stream(stream: INPUT_OBJECT_STREAM) is

local
c: CONTAINER[ONDEMAND_CAR]
do
stream.read_string
model := stream.last_string
stream.read_integer
year := stream.last_integer
stream.read_ondemand_container
¢ ?= stream.last_ondemand_container
Hcars.make
cars.fill(c)
end

University Of Windsor, 2002 101

Layered Approach To Persistence Modeling in OOE

-- WRITE TO STREAM —-

write_to_stream(stream: OUTPUT_OBJECT_STREAM) is
do
precursor(stream)
stream.append_string(model)
stream.append_string(year.out)
stream.append_ondemand_container(cars)

end
-- FORWARD ON DEMAND --
Jorward_ondemands(f: FUNCTOR; condition: BOOLEAN) is
do
Jorward_ondemand_container(cars, f, condition)
end
end - class CAR

University Of Windsor, 2002 102

Layered Approach To Persistence Modeling in OOE

Vita Auctoris

o ————————————,—————]

Kamran Choudhery was born in Karachi, a city in Pakistan on 27" August 1975. He
graduated from Sir Syed University Of Engineering and Technology on March 1998 with a
Bachelor of Science degree in Computer Engineering. In September 1999, Kamran joined
the Master of Science program in Computer Science at the University of Windsor',
Windsor, Ontario, Canada. Kamran is planning to pursue a Doctor of Philosophy Degree in
Computer Science at the Computer Science Department at the University of Westem
Ontario®, Ontario, Canada. Where he has been admitted and will be joining from

September 2002.

'www.cs.uwindsor.ca

s
"WWW.CS.uwo.ca

University Of Windsor, 2002 103

	University of Windsor
	Scholarship at UWindsor
	2002

	Layered approach to persistency modeling in object-oriented environment.
	Kamran. Choudhery
	Recommended Citation

	tmp.1363898525.pdf.KACWe

