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STATIC AND DYNAMIC ANALYSIS OF SANDWICH BEAMS

L]

ABSTRACT
, by .

DARWIS DARMALI . I

The finite element techmique is applied to thé analysis of
sandwich beams, including circular arches. Finite displacement
for@nlations are developed and incorporated for geometric nonlinear
analysis. Material nonlinearities are included for sandwich beams
with'faces having nonlinear‘stress-strain behaviour. Apprﬁpriéte
tangent moduli are used in the stress—stréin relations of the faces
'and a combined iterative—incremental method ié employed to predict
strains in the faces. The -dynamic formulatiom is limited to normal
made ‘analysis, and natural frequencies are based on linearized strain-

displacement relations.

The displacement functions necessary for describing the behaviour

_of the sandwich beams are represented by‘OScullatory (first order

Eermite) interpolation formulae. The Fletcher-Powell method is used
as the algorithmic tool used to minimize thé total potential emergy.
The static formulation is presented in terms of displacements,
geometry and various stiffness comstants associated with faces and

core. The dynamic analysis is formulated in terms of various inertia

constants for the faces and core together with the displacements and
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géometry. Several numerical examples are presented to illustrate

,the~poten£ia1 and efficacy of the ﬁiesent analysis. In addition to

L -

the various references cited from published literature adopted for

comparison, experimental studies were carried out on nine sandwich

beams.

g
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INTRODUCTION

——

Sandwich beam§ are compased of tﬁo thin high-strength faces bonded
to a thick low-strength and light-weight core. The faces are usually
separated in order to get a high section modulus for the sandwich
beams. The core must keep the faces apart to the correct distance
and must not allow the faces to slide over thé core; it supports the
faces and transmits the shear stresseé allowing them to effeétively
funetion'as a unit. The faces are primariiy.responsiblé for carrying .
the membrame forces while the core is used for carrying nearly all-
the transverse shear load. The.core is usually relatively weak and
as such the effects of transverse shear deformation is considerable.
The substantial interest in sandwich structures is mainly for iés high
strength to weight ratio. Other important advantages are good heat
and acoustic insulation, effective vibration absorption and ease of
construction imstallation. ‘

Many core materials are available for sandwich constructioms.
Balsawood is ane of the popular core materials; this core material
has grains oriented perpendicular to the faces and is used mainly for
its effectiveness in preventing local ;ompression failure, particu-

larly in the vicinity of concentrated loads and at supports polnt.
Y
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Expanded sygthetic pléstics sucﬁ-as polystyrene; p&lyurethane,
_phénolic and polyvinyl chlori&e have been uéed.in semi-structural
. building pamels ﬁrimaril& for théir good insulation prbpéfties{

More satisfactory cores such as the homeycomb geometr&, produced
from aluminium, steel, titanium, nickel-chromium and reinforced

plastic, have been a popular core material especially in the air-
craft industry.

For faces thére are aluminium éaloﬁs, glass—-reinforced plastics,
steel,‘titanium, plywood and other suitable materials. The faces of
the samdwich beams may be composed of several bonded léyérSu The
laninated faces considered can be isotropic,.anisotropic and trans-—

rsely heterogeneous. Some composite materials faces have been de-
veloped from glass-reinforced plastics, boron, graphite and metal
fibers. Laminated materials are designed to increase the structural
efficiency. Unbalanced 1aminated faces such as unsymmetric cross—
plied and angle-plied laminates have received considerable atteation;
in these type of laminationms, there exist coupling actibn between
longitudinal strétching and transverse bendiang in the faces which may
affect the displacements and stresses of the sandwich beams consider-
ably. With the rapidly growing importance of composite materials,
analysis techniques andlnew materials are constantly being developed.

In the present work, the finite element technique based on the
principle of minimum total potential energy is employed for the

analysis of sandwich beams, including arches. The developed formu-

lation involves geometric nonlinearities and nonlinear material



behaviour of the faces. In addition to the study of static problens,

the present work also_cbnsideré normal mode dymamic analysis.

1.1 Literature Review - .
. ' .

Many investigations on the analysis of sandwich structures have
been done. Hoff and Mautner (#af. 1) presented the formuiations for-
sandwich beamsbased on the pr@écipal of virtual displacements. .It ﬁas
assumed that the face-paralleliextension stresses in the core and the
shear stresses of the faces weﬁe negligible. The longitudinal and
bending stresses in the faces as well as the transverse shear stresses
and extension stresses perpendicular to the plane of the faces in the
care were iﬁcluded in the formulation. The theoretical solutions weré
found to compare favourably with the experimental results. Formglé—
tions derived in Ref. 1, however, were restricted to sandwich beams
with thin faces. TFormulatioms for sandwich strucéures with no restric-
tion with regard to the material propertigs and thicknesses of faces
and core have been considered by a number of investigators including
Yu (Ref. 2), Krajcinovic (Ref. 3 and 4); in theée papers, the effects
‘of shear deformation and normal stresses in both the.faces and cores
were accounted for. A more classical approach has been presented by
Ogorkiewicz and Sayigh“(Ref. 5, 6 and 7) for analyzing the sandwich
beams with various combination of faces and core materials under
various loading conditions. Equations for deflection were formulated
by transforming the actual sandwich section into an equivalent sectiom

of face material; the core material was transformed into a thin web



" of equivﬁlent moment of inertia and haﬁing‘material properties the
same as the: faces. A number.of inves;igators including Holt and
vWEbber (Ref.-é-and 9), Abél (Ref. 10) and Reissmer (Ref. 11) have
reported on the theory of sandwich arches. Holt and Webber (Ref. 9)
developed a formnlation based on the assumed stress hybrid and -
equilibrium methods. Simpler formulations were developed vith the
assumption that faces act only as membranes and that the core_is in- .
compressible in the transverse direction. In all the abo@e cases

the sandwich structures were restricted to small\deflection theory
assumptions.

Some studies have been made oun the geometric nonlimear analy;is
of sandwich structures. Reissmer (Ref. 12) presented the exart
analysis of sandwich plates comsisting of a core and of two faces such
that the;. face-parallel extension stresses in the core and the variation
of. the face stresses over the face thickness were negligible. The ef-
fect of extension stresses perpendicular to the plane of the faces in
the core was included but was found to be negligibly small as compared
to the core trans;erse shear strésses effect. In the above report
(Ref. 12) both the faces aﬁd core of the sandwich plate were assumed to
be isotropic. Alwan (Ref. 13) reported the finite deflection of sand-
wich plate with orthoﬁfopic core of honeycomb geometry. The same
assumptions as in Ref. 12 were adopted except that the core transverse
norﬁal stresses effect was neglgcted. Kan and Huang (Ref. 14) presen-
ted the geometric nomlinear analysis of a rectangular clampea sandwich

plate under uniform load using a method of successive approximations.
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.

A geometric nonlineaé formulation for a simply supported sandwich beam.
has been presenggd by Zahn (Ref. 15). The formﬁlatiodlinclude a .non-
linear term in the face equilibrium equations. The core equilib;ium
equation was- formulated in terms of four infinite sequences and in-
tegrating constants which remain the same as the linear case. _The
equations were then combined to give ome resulting nonlinéar differen-
tial equation for the displacement; the matching of the continuity of
strains and displacements at the interfaces of core and faces were then
sélved by Fourier amalysis. Finally, the numerical solutions were
obtained by successive approximations. According to Zahn, the behaviour
of simply supported sandwich beams, as cbmpared to lineaé analysis, show
negligible differences in face stresses and deflections but comsiderable
correction to core compressive stresses. Zahn suggésted that in the
case of simply supported sandwich beams, the inelastic action wouid be
of more importance.

Ditchér (Ref. 16) seemed to be aware of the importance of includ-
ing the nonlinear stress-strain behaviour of faces in the formulation;
he presented a theoretical analysis of a honeycomb sandwich beam with
laminated faces having nonlinear material properties but without taking
into account geometric nonlinearity. The formulation for the faces
involves the use of the appropriate tangent moduli for each load incre-
ment and a double iteration method was employed to calculate the strains
in the faces. In his paper, the study of flexural wrinkling of sand-

wich beam was emphasized in that this failure criterion was incor—

’porated in the formulation to predict the failure loads. .



Numerous papers have been published on the natural vibration of
sandwich structures. Raville, Ueng and Lei “(Ref. 17) presented the
ld;naﬁié fsrmﬁlatién tﬁ determine the natﬁral'frequéncies.of clamped-
clamped sandﬁich beams based on tﬁe enérgy approach.l The boundary
conditions of the claﬁped beams were satisfied by utilizing the
Lagrangiﬁn multiplier method. ‘The faces were assumed to be isotropic
thin skins and the core was considered to be orthotropic. It was
assumed that the face-parallel extension stresses as well as the trans-
verse normal stresses in the core were negligible. The experimental
results were found to be in good agreement as compared to the theore-
tical solutions. A series of papexrs by Ahmed (Ref. 18,-19 and 20)
dealt with the natural vibration of sandwich structures with various
boundary conditions. Ahmed (Ref. 18) formulated the equilibrium
equations of sandwich beams including arches which result in fourth-
order differential equations; the analysis was based om the Kirchhoff-
Love hypothesis. The faces of the sandwich beam were assumed to be
stiff in bending about their own middle axis, comsequently, the strain
energy of the faces is appreciable when compared to the' total energy
of the sandwich beam and thereby included in the energy formulation.
A further analysis (Ref. 19) was based on a Wang-type model in which.
the effect of transverse shear deformation is included in the finite
element formulation. In this case, the equilibrium equations are a
set of second-order differential equations. Uniike the pre&ious
.analysis (Ref. 18) which employed four degrees of freedom per node,

the formulation reported in Ref. 19 had six degrees of freedom per ncde.
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The natural frequencies of cantilever sandwich beams was presented by
. t
Rubayi and Charoenree (Ref. 21)_using.the method of minimizing the

b i
total energy of the sandwich system. Other investigators such as
Rutenberg (Ref. 22) presented a simple and yet accurate approximation

formula for the natural frequencies of sandwich beams and arches

under various boundary conditions.
\ £
1.2 Purpose and Scope

The finite element capability for predicting displacements,
strains and naturai frequencies of sandwich beams, including arches,
is developed in the follouing chapters. The faces of the sandwich
beams may be laminated. The core is considered to be £elaﬁively thi;k |
as compared to the faces and relatively weak such that the effects of
transverse shear deformation is predominant. Using nonlinear strain-
displacement relations, a finite displacement formulation is developed
for geometric monlinear analysis. The material nonlinearity is also
included in that the nonlinear stress—strain behaviour of the faces is
represented by a piecewise linear curve.  Appropriate tangent moduli
are used iﬁ the face stress-strain relations and a combined iterative-
incremental scheme is employed to predict strains in the faces. 1In
addition, the effect of including the nonlinear strain-displacement
relation within the material nonlinear amalysis has also been studied.
A curvilinear coordinate system is introduced to describe the geometry
in the case of sandwich arches.

Chapter 1I presents the general formulation of the potential and

kinetic emergy for the sandwich systems. The potential emergy is
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formulated in terms of the displacements, geometry, tpe stiffness
constants of thé faces (meﬁbrane, bending and coupling) agd core
(trans;erse shear) . The kinetic enexgy formulation includes the
translatory, rotary and coupling effects associated with the faces

and core. 'The poten;ial-of the,appliedlloads can be represented by
a work equivalenf ldading system. The formulation presented neglects
tﬁe shéar stresses of the faces, the transv;rse normal stresses of

the faces and core as well as the longitudinal extension stresses of

the core.
&

Chapter III contains the discretized formulatiom for the poten-
tial and kinetic emergy for the sandwich systems. The gradient vec-
tors for the element strain and kinetic energy are also presented.
Oscullatory interpolation formulas are selected as the displacement
functions to describe the behaviour of the sandwich beam. ‘The dynamic
formulation is limited to normal mode analysis and only strain-energy
based on linearized str;in—displacement relation is included. ' The

discretized formulation involves twelve generalized displacements in

each element.

Chapter IV presents the energy search method employed to arrive
at the solutions for the sandwich beams. The Fletcher-Powell method
is used as theoptimizatioﬁ.Eechnique to minimize the total potential
energy. The combined iterative~incremental procedure necessary for
material nonlinear analysis is also explained. Hamilton's principle
is introduced as the concept used for the dynamic solutions.

Chapter V focuses on the implementation and numerical evaluation



of the finite element method. Several numerical examples, static and.

dynamic, are solved and compared with other theoretical solutions and
experimental results in order to demonstrate the. capability and effi-

cacy of the present analysis. Experimental studieé on sandwich beams

have been carried out and the results are compared with the theoretical

solutions. All of the solutions are solﬁed by direct minimization of
the total potential energy using a variable metric method. The
FORTRAN IV compiler and IBM 3031 digital computer are used to obtain

the solutions.

Chapter VI summarizes the work and conclusions are drawn on the

-

potential of the present analysis. Some observations and recommenda-

tions are made with respect to the experimental investigation for

>

future research work.
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CHAPTER II
GENERAL FORMDLATION

2.1 Genéral

In this chapﬁer the genéréi formulations mecessary for the
.analysis of the san&wich beaﬁg are presented. Expressions for the
strain energy, the kinetic emergy and the potential energy of the
applied loads are obtained and émployed for the implementation of
t&e functién minimization technique.

A typical portion of the sandwich element is sh;wn in Fig. 1.
The general subscript, s(l,2,c); is used to identify the bottom face,
top face and core. Meanwhilé, the subseript, £(1,2), is used when
special agtention is focused om the bottom and top faces. The thick-
nesé’and principal radii of curvature are denoted by g and Rs Te-

spectively. The reference axis of the faces (xl,xz) and core (xc)

are the cegtroidal axes shown in Fig. l.

2.2 TFace Considerations

~

The assumptions made for the faces are as follows:

L ]

1. the transverse deflection w is counstant throughout the face

thickness:

Gf(x,zf) = w(x) (2.1)

2. the face behaves as a beam so that the displacegg&i of a

point at distance zZg from the face reference axis varies

10
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linearly across the face thickness: _ , '
. . . . h .
I
uf(xfzf) - uf(x) + zf¢f(x) (2.2a)
. where .
’ 3w |, f
de(x) == + %, for arch - (2.20)
L =3w
¢f(x) -E for beam. . (2.2¢)

ze Tepresents the distance measured perpendicular to the

reference axis of the face while: Be and kil.S represent the

X
lcng:.tud:.nal d:.splacement and slope of the face reference

axis. The typical deformat:.on of the sandwich beam element

is shown in Fig. 2.

3. the ,thickness of the face is small compared to the radii of
curvature.
Using the above assumptioms, the strain—displacement relation

is expressed as:

comu .+ e lay? ez X, (2.3)
£ “xf Rf 2Vx £ Rf xx’ N
where
v 2
- L - W -d¥
Uxf =’ “x 3% and Y ax?.

From Appendix A, the comstitutive equation for the faces is

defined as

T = sx(zf)ef ' (2.4)



where Og, €¢ and Sx(zf) represent the faces 1ongitudinal'stress, ’
strain and elasti; modulus, Sx(zf) is given in -Appendix A (Eqs. A.7).
The force and moment-deformation relatioﬁs are expressed as

(Appendix A):.
$

u ‘ ' ,
W 1 2, x£ ‘
Ng Af‘[uxf + i—; + > (wx) 1°+ Bf[-R? wxx] (2.5a)
Mfth[uxf+§w— (w) 21+ [-——wn] - (2.5B)
£ f_ ~
where Af, Bf and Df reprgseﬁt the membrane, cohpling'and bending

stiffnesses of the faces respectively aﬁd are given in Appendix A

(Eqs. A.10). ' _ - I

2.2.1 Strain Energy

The strain energy of a face is expressible as

J'J'ecr dxdz ' o (2.6)

where b and Sf are the width and cross—sectiomal area of the faces
respectively. Substituting the strain-displacement relatipn (Eq. 2.3)
and constitutive equation (Eq. 2.4) into Eq. 2.6, the resulting expres-
sion for the stfain energy after integrating over the total thi;kbess
of the faces in terms of the lemgitudinal displacements Ues the
transverse displacement w, the principal radii of curvatures Rf‘and

the stiffoesses Af, Bf and Df can be written as: ‘
' . \



e

A B

-1 1,°€2 £ .
= + Dw 2 - 28 u + oA +2{a VU
"2 -‘; fxx fxf RfRf \fRf xf
QQ.\
'<B£-+ 28 z_ Bww =2Du w )] +{Aa W Z_ 3w w 2
R, £ Ut " x> fFxfxx'" “fxfx fifxx'x
+ 2(aw w2 + B )]+[ L agril} ax (2.7
o Rf 5% 4 x °

where X, represents the reference axis of the faces. By setting

__ﬁé-- 0, the face-strain energy for a sandwich.beam can be obtained

£
from Eq. 2.7.
2:2.2 Kinetic Energy

The kinetic energy of a face is written as

% f_f of(zf)af . Z\." dx dz, ' B (2.8)
- Sg

where b, Sg and pf(zf) are the width, crcés-sectioual area and mass

density of the faces respectively. The displacement vectb; for the

faces is

u

- £ - e
Af-tu£+z£ (-R—-w)]e +we

B

(2.9)

vhere E; is a unit vector in the longitudinal direction and Eafis a
unlt vector in the direction normal to the longitudinal axis. After
dlfferentlatlng Eq. 2.9 with respect to time Q—-E-- Af) apnd substituting

into Eq. 2.8, the resulting expression for the kinetic energy is
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: 1 ¢ 2 2 a— . o U
T =g J Qe # ¥ - T @ - g2>)
: x t
£ . ¥
i
. £.2
“',If(" _R_) ]'.dx | - (2.10

where Qf, Jf and If represent the translatory, rotary and ;oupling

. N

inertia constants of the faces and are given in Appendix A (Eqs. A.ll).
Also, the kinetic emergy of the face for a sandwich beam can be ex-

tracted from Eq. 2.10 by simply puttingnﬁgf- 0.
. £

2.3 Core Comsiderations ~
' The core of the sapdwich ;onstruction which separates éhe faces

are bonded together so as to efféctivelylfuﬁétion-as a unit; it isl

considered to be relatively thick when coﬁpared to the thickness of

the faces. The following assumptions are made for the core (see

Fig. 2).

1. the core is incompressible so that the transverse deflec—
tion W remains constant throughout the core thickness:

ﬁc(x,zc) - w(x) , (2711)

‘2. the displacement of a point at a distance z, from the core

reference axis varies linearly across the core thickness:
uc(x,zc) = uc(x) + zc¢c(x) (2.12a)

-

where

o (x) = %{ul-l-uz - (b hp)w ] (2.125)
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. 1 . ’ I s,

$ c(x) - - 7::[“1-“2 - ‘(hl.-l-hz)wx] . {(2.12¢)

t. R ' t.R

1l ¢ 2% -

by g amd by =gy for axeh (2.124)

ty ‘ t, ' . )
h.L‘- —— and h, = — for beam (2.12e)

) 2y °F )

Zc represents the distance measured perpendicular to the
. reference axis of the core while u, represents the longi-

tudinal displacement of the core.

3. the longitudinal extension stresses are negligibly small as

compared to the transverse shear stesses.

Eoploying the above assumptions,' the strain-displacement relatiom

is writ®en as

1 ’ -
Yo --E:{ezuz ey + eswx] . (2.13a)
where
e
! 2R _
e
ez =1 - R (2.13¢)
e
e B'c e 2 Rc t<: " 17
33 = T(I]_. + E) + - (g - 'Z—R'z') + tc (2.134)
The comstitutive relation for the core is expressed as
)
T.=GY (2.14)

c cc

where ‘o Tc and Gc. represent core transverse shear stress, strain
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and moirlz respectively.

The transverse shear force resultant is written as

t

e .
5 .

v, =0 J:t T, dz (2.15a)

-5 .
2 -
or
Vc - (chtc)Yc = BéYc {2.15B)

where Bc is defined as the core transverse shear stiffness.

2.3.1 Strain Energy

The strain enmergy of the core is

T =2 g"rcv-cax az_ : C o (2.16)
c
.where b and S; are the width and cross—sectiomal area of the core
respectively. Substituting Eqs. 2.13 and 2.14 into Eq. 2.16 and
integrating over the total thicknéss of the core, the resulting core
strain energy in terms of the displacements ue and w, the core trans-,

verse shear stiffness Bc and the geometry t, and RS can be expressed

as

1 fad
T_=3 ;!' [;:2 e u,me u e ) ldx (2.17)
[

where xc represents the reference axis of the core. el,ez and e3 are

given in Eqs. 2.13.
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2.3.2 Kinetic Energy
Employing a similar approach to that of the faces, the result-

ing expression for core kinetic energy is

1 . 2,.2 . . 2
T -3 { [Q (8 ) + 23 (53.) + I (3. )1dx (2.18)
[+

- where Q_, J; and Ic represent the tramslatory, rotary and coupling
inertia constants of the core and are given in Appendix A (Eqs. A.ll).
Substituting Eqs. 2.12 into Eq. 2.18 results in tﬁe expression for
the core kinetic energy in terms of the displacements ?E and v the .

geometry t and Rs and the inertia comstants Qc’ Jc and Ic
T =< f{giﬂ' (b, ) 12 + 4 &
et T 4R b S Bl Bl R v
[~
JC
T QLo Ha,=(hy =R )9 1 (8 -8,=(a +hp)@ 1D
+Ii.<[' ; -Ch+h )% 12 tax 3 (2.19)
. T2 by o), .

SN

The potential emergy of the applied loads is represented by

2.4 Potential Energy of the Applied Loads

We = Neplgp ¥ Megleg ¥ V5" T Vg e T MY T Meaxa

+ [P, (xIw(x)ax (2.20)
X

where £ Vf and‘ﬁé represent the applied forces and moments acting

at the nodes of the faces. sz(x) represents the load distributiom
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in the directiom z. Subscripts p and q are used to denmote the end nodes
of the sandwich element. The positive sign .convention for the force and

moment resultants is shown in Fig. 3.



CHAPTER III
DISCRETIZED FORMULATION

3.1 General

In recent years, numerical analyéis of various structures by
the finite element method has become relatively routine; this\hethod
is a computer orientated technique which has the advantage that a
minigum of data preparation is required. In the finite element
analysis, the structure is subdivided into a finite number of ele-
ments by fictitious cuts; displacement patterns.are employed inde-
pendently to each elemeat. By invoking the compatibility conditioms,
it is possible to link these elements together to form the assembled
structure which, in fact, &s physically compatible with the actual
structure. It, is noteworthy, however, that the displacement func-
tions selected will directly effect the accuracy of the finite
element method in its ability to simulate the actual structural
behaviour. Omne of the important featureg of the implemented com—
patibility conditions is the continuity requirement in the displace-
ment functions; in the case of sandwich beams, the membrane dis-
placement Uc, the transverse deflection w and, if face bending is
considered, the slope v, must be continuous within the elemeut and

at the nodal points between elements. The displacement functions

employed in the present amalysis for describing the longitudinal

19
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displacement Ug and the transverse displacement w are represented

by two types of interpolati.bn formulas. They are,

. 1. Lagrange (ze'z:t:ath order Eermite) interpolation formulas:

ugle) = (1 - 3 ug + Qugy - (6.
w@ = 1=+ B | (3.2)

2. Oscullatory (first order Hermite) interpolation formulas:

2 (x) = [— Pl g+ (2432 g
a
+ [;1? (x3_-23:£2+a2x) ]ﬁ <£p + [ﬁ(x:)‘-axz)]u;fq
- (3.3)

wix) = [— (2: Bax +a )]w + [—-—- (-Zx +3ax )]w
a a

+ [? (x3—23x2+a2x) ]wxp + [-a—T'f (x3-axz)]wxq

(3.4)

Inspection of the Lagrange interpolativon formulas (Egs. 3.1 and 3.2)
reveals the fact that interelements contimuity is maintained only for
longitudinal and transverse displacements but not for longitudinal

strain and normal slope;- the displacement behaviour, therefore, is

not well represented by Lagrange functions since the longitudinal

strain and normal slope are assumed to be uniform along the individual
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discretized.elqnen;. The Oscullatory interpolation formulas (Egs.
3.3 and 3.4) permit satisfaction of the compatlblllty conditions fox
the longitudinal and tramnsverse. dlsplacements together with their
defivatives; the strains of the faces therefore are best predicted
.based on Oscullatory function. A third type of formulation where
longitudinal displacement is represented by a Lagrange .function ﬁhile
Oscullatory fumctiom is useé;for the tranéverse displacement has also
been attempted. From numerical experimenﬁacion, the results based
on the second type of formulation was found to be most accurate fér
both disp}acement and strain; it was decided, cherefore, to use the
_second type of formulation .for this work.. |

In the following, the discretized formulation using the
Oscullatory displacement functions for the element strain energy and
kinetic energy together with their gradient vectors are presented

with detailed formulatiom.

3.2 Discretized Strain Energy

The strain energy of the faces given in Eq. 2.7 can be re-

written as

-

_ @), g3 @
) Uf + Uf + Uf

£ (3.5)

where UéZ),-UEB) and Uéa) are the face strain energy which involve

quadratic, cubic and quartic terms in the displacement variables,

2 3) (4)

respectively. Uf » Uf and Ug ~ are expressed as
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-

A B

(2) |1 2 2 1 Cf2 £
Ue 7 J lAg g + D - 2B W ¥ B [i';’ + 2“5“‘{:.;?"" Ut
£ . ' ;
+(Ef-|-zs Yo 2 -28_ww - 2u . 1} & (3.6)
Rf £ xﬁ f xx f xf xx ’ *
) _ 1 f 2 _ 2 1, .2, 2
Uf 2 % {Afuxfwx Bfwxi?k * Rf(Afwwi + Bfuxfwx)} dx
| £ (3.7
&)1 1, by, :
U, 5 [ {A Afwx} dx (3.8)
£

'The total strain emergy is obtained by summing the contribu-—
tion of the faces (Egs. 3.6, 3.7 and 3.8) and core (Eq. 2.17). The
resulting expression for strain energy is

(4)

¢ (3.93).

(2) (2) L 53
U =T T +0; + U

" (2)

| or U=T1 (3)

+o® 4@ ~ (3.9b)
Substituting the displacement patterns (Eqs. 3.3 and 3.4) iato Egs. 3.9
and integrating as indicated, the resulting strain energy can be given

in matrix form as
$? . i— {x}T[KEZ) + KEZ)] X} == =R m Ga
) % TP 2 ' (3.11)

g4 - % {z}T[_K(’*)] (2} (3.12)

- -

The vector {X} contains the 12 nodal degrees of freedom of the gemeral-

ized displacements for the discretized element and can be expressed as



T : '
X} = {xl’xz’IS’xA’xS’:‘G’x?’xB’xg’xlo’xll’xl?.}

- {ulp’ulq’uxlp’uxlq’uz'p’u?.q’ux2p’ux2q’wp’wq’w ’wxq} (3.13)

The vector {Zlcontains the 10 possible miltiples of the four

L

degrees of freedom associated with the transverse deflection and slope.

2 - (252224524, 25222272250 292 o

2 2 2
» W } (3 14)
{"p’“b q’ p xp’ P Yxq*Yq? q xp’ Yq¥xq Vxp xp ¥xq, xq

The matrix [K(Z)] showing the quadratic displacement variables

can be outlined as .

E8 (&) @ ) @ @ @ w o @ n 2
PR LTINE O SRR (LT MIERT LT ] Sl APRT R AR SOl N (’l'ln)b ) [ ag )

K2

agay) l(l)‘.’.‘) .(2)‘.2." .(23‘.’.‘, ‘whf.) ‘(H‘.:.’l .(1)‘.’." .(23“2.‘“.33(‘:“0) ‘ﬂltlz."} ‘ﬂl(.:‘“,

.(13 lﬁl!) l(z,‘l‘l‘) lu,

(] B Y TSI TN ST [RLLTARY (R TP T

R

h‘mh

KR g PR ) ‘(H(".., .(2)(.“’) .mh‘_‘, ‘(Hh‘.‘, .ll!‘.‘.n) ‘tu‘.‘-“, .(2}“"1=,

r‘mh‘-‘, ‘(2)‘5-‘, ‘(l)“‘l’)“-ﬂ!(“‘:, ‘IZI(.“‘, .(ZI(.)‘N) e sny) ‘(ll(l"u)

(Symmetric) R T T R ORI CRCTs ‘m"ﬁ:’

[K(Z) 1= B G2

[£4] (£33 {2) [}3] (2)
@) Ju™ lapmg )i (aymg a2 {‘T"m, T gy J AT g, )

(12x12)

‘u)h.l.)ilu](l'l,) .(Z)h“‘c’ ‘lli(.‘.“, ‘(2)(.‘.“,

(2)‘ b o

tagmg) |4 P ngny ) |8 P tnge 0

R AT L

2
LT

73)
b8 )

‘u)hu’lﬂ

(3.15)
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“The elements of [K(Z)]-k_g) (i,j=1,12) are given in Appendix B
(Eq. B.1): '

The matrix [K(s)] can be expressed as

T LT IR T e, D hPteap [Py TP 1C TP
N [T e [ g 2P taty O (gt [P Py s P ge O NPl
R o AT ey LT TP TRy MR S yapry ST NET
O [ g ROTAEEY FOIRY e R P Y W [ Poey
[K(s)]" Ot [N gy |2 g | P e e NP gt P gty 1P gt Pty 2ty
(12x10) NETHR T o R TS Do R AR Dt e e
' S I N R R IR TR MY (T NCIRTY (TR
'(”(“l" .ll)h“:) ‘(l)‘-“a) ‘(nh‘.‘, i(”tl‘l’) .(3)“...) ‘(.H““" htll“.l‘, l(:,(l‘a‘) ‘(n(-'.‘é
NI TN [T R Y NETA XMy Ky ST P o)
O

- : » E) )
1oty 0 o o G40 RTINS LT ST A N it in s il Un

3 ] b [2}] [$Y) L) [2Y)
TN RO T (TN AT T T ] i d i e

tn) 34y

3}

‘(!l( .

Y] m (7] ) o)
Mg gy '1.":1‘ gt e Sty ~

gt p P gk ey

| (3.16)

D n .
The elements of [K(3)]-k§§) (i=1,10; j=1,12) are given in Appendix B

(Eq- B‘z) =, i . b

.$imilarly, the matrix [K(a)] is expressible as

) ) et DN 3] D)
TR NI ey KT SR Y, N TR T, Lt LT
14),

‘(IIIJ .(‘,(55) ‘“,('2'«) ““‘l.:l,) t“)h..l‘) ‘(“(l’l’, l“)(ﬁl‘) t“)(l:a,) t“’h.n“;l

i“‘tl‘l" l“jkﬁl‘) \“,ll‘l.jl \“’(L,l.) \“)h,l,) I‘“(l,x.) l“,(l’l‘) t(“h‘a“)

I R RO R s Vs g h Y )

&=

. t‘“h,l,) \“)(;‘-‘! I“,(l’l;) \“’h,n.) \“,(I-‘l‘) l“’(l‘lm)
(10x10) : RO NI T (L]
(Symmetric) ) g s uty o

y (4 [EFER] I‘“ (ayny) W (LI I.“)h.,;m)
._m tagey) ALY (a2 L (43 (e,

. . N ‘“’(s.lw l“’ (l‘ll i:
w tayathe?

-

: R c R+
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The elements of {K(Q)]-ék); (i,3=1,10) are given in Appendix B

S
(Eq_: Bi3) e L

3.3 Discretized Kinetic Energy T e
The resulting expression.for the total kinetic emergy obtained
after‘gdding'the contributibn of the faces (Eq. 2.10) and core (Eq.- 2.19)

1s

Lo (22
-i-'l'f

(2) (2)

e T - Tc (3.18)

-

Substitution of the displacement functioms (Eqs. 3.3 and 3.4) into
Eq. 3.18 and then performing the integrations, the total discretized
kinetic enmergy can be represented as

1@ 2 L PP = 3 = P17 @ (3.19)

The vector {X} contaims the first derivative with respect to time of
the gepneralized displacement {X}. By assuming {X(&)} = {X} .sinwt,

Eq. 3.19 is rewritten as

1@ -1 2P O (3.20)
where « represents the patural frequency of the sandwich systems.

The mass matrix [M‘z)] is expressed as

LY

"u,t‘l"l’ -(“In.‘-,) -(n(lln‘l -(2,‘l‘l‘) -u“hll‘l -u'hla.) -“J(n.‘l,) lu’lllI‘, -“)(ntn‘) “nul“ln’ -u’(lllu] -‘”u‘.u;

(1) u}‘_}, -(H h=.:‘

-u’h

R -(II(‘:_’, -““(l::‘) -tuh:;l.,) -u‘(x::.)_ -‘n(-f‘) -(n(h=nml n“)(-’:“l O(H(lzl‘:)

I‘z’(ljla) -(zl(ﬁl‘, l(l"l.‘l,! -u“(-‘u‘l -u)(-’l’) ‘“"‘3'1’ -u—)l-)-’) n:u(z"sm) .u)(l)s“) lu’h’an)

(11“‘“, -‘”u..,a -(nh‘l‘) -{:“(l"l’) lu,(ltl‘) -ul(l.n,) -ult-‘lw) .ﬂ)h““) -‘2’(-,.-‘:)

(2 tugny) ot (lsl" ot (l‘l’) -u’h,l') ot (l‘l‘) '3t (LIPS -u‘(u‘l‘ t? o2 (agny )

[M(Z) 1 (Smetric) (Z)(l.l., .‘2,(l‘ﬁr, -u'(x‘n.! .‘x,ll‘l') -lx’(l.l‘n’ "'1"I.KI‘] .(2)‘.!.!]:)
=

(12 ]2) u)(x.,l,) -u?(u.,-‘) -(nlu,n‘) -mu.,;m: -mu,;“) l‘nh,lu)

_(2)("", .(23 [T .‘2)(I‘I‘°) 3 (agay,) alP (ngn, ;)

- = (xgxgd o2 (ngnyg) - [CHE ) W2 [CECH

]t < ¢
g [+ ne]e ”(-“xuj

il [$3]
- )(luu“.l 2y )

{2,
o gy

(3.21)
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The elements of [M(z)]-mcig (i,j=1,12) are éiﬁen in gppenéix B
(Eq. B.4).
"'3;4"‘Gradient-ve;;9r for the Discretized Element
The quadratic strain enéféé‘ng) is given in Eq. 3.10. The
vector {VU(Z)} represents the analytic gradient of.the quadratic
strain energy with respect to the displacement {X} and is-expresse&
as S _ .
(vt = 3%, ? ax. * ox. ’ 9%, ’ oX. ’ ox; ' X, ' 3X
1 2 3 4 5 6 7 8
aU(Z),aucz) ,aU(Z) ,aUCZ) } * (3.222)
-3Xq ax10 axll axlz_
ox ‘
w7 - xPhx _ (3.22b)

(3}

The cubic terms of strain energy U is given in Eq. 3.11. The
vector {VU(B)} defines the analytic gradient of the cubic strain

energy with respect to the displacement {X} and is represented by

() 5P 53 y® P W@ H®

(3),T 3l 3l 3T,
(v = o ax, ? 3x, ’ EE ? ax, ? X, 3xg ? 3
BU(3) BU(3) BU(B) BU(3) 3U(3) )
axg axg” 3xy4’ 9%y, X, (3.23a)
or
(3). _ 1,2(3) 1,32, T (3) |
{vVU} ='_-2-[K {2} + “2‘{’&} [RY71{X} (3.23b)

The vector f%%} is given as

—~2
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or

3z
{-é-'i ]"‘

2 2

axl axz
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a_]c]: - - -
azlo leo 3:10
=, A%y
0 0 0 0
0 0 0 O
c 0 0 O
0 0 0 O
0 0 0 O
0 0 0 0
0 0 0 0
0 0 0 O
0 0 0 O
0 0 0 0
-

le
Y
92,
5 3x12
azy
. 3"1;
#2910
ST
c 0 o
Xq 0 0
0 xq 0
c 0O X
2x,0 O
X%y O
x120 ¥
0 2,0
0 X%
0 0 2,
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- (3.24a)

o

(3.24b)
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(4)

corresponding gradient vector {Vﬁ(a)

The quartic strain emergy U is given in Eq. 3.12 and the
} with respect to the dis-

placements {Z} is éxpressible as )
(4)

w44t _{aU(") 0 au® 3 5p{® ap® 54 5
{ - azl ’_Bzz ’_?zs ’ aza ’ azs 3 az& ’ 3:7.’ 328 ?
%) . (& ' |
3W__ W, (3.25a)
| g 329 © 3% - o
or . .
i@y - w2 | : (3.25b)

o

Houaver,'thé gradient vectoriyﬁ(a)} with respect to the four trans-
verse displacement variables xs, xlO’ xll and X4 can be obtained

by using the following relation
(v} o aytee®y ' | | (3.26)

* where the gradient vector (W5} is defined as

. (&) (&) (&) (&)
iy . N, (3.27)
9 10 “F11 °F12 .
-4
The matrix [A] is expressed as
32y 82, 324 9219
axg ,axg ax9 axg
i ) %10
3 ax ot 3
(a]= 10 10 10 (3.28a)
azl azg ale
9%y, 9xyy 3%y
9%y ) 3zg 3zg 3244
%12 3980, 3%,




or
2xg ¥y
0 xg
al =1 o 0
0 0
-

*11

12

=10
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0 x4 0 x5 2%,

(3.28b)

The gradient vector{VU(A)} with respect to the displacement {x}

is expressed as

AR S

0@ 5@ @ ap®) g8 @) g8 (&)

» > b ] » > » » -
3x1 3x2 333 - BxA ‘axs 3x6 ‘ 3x7 axs

BU(A) 30

@) (&) p®

} » b}
g Xy TIEy Xy

Since the quartic strain emergy, U

(%)

}

(3.29)

is a function of only the

transverse displacement variables xg, xlO’ xll and X199 Eq. 3.29 can

be reduced to

ol =0, 0, 0, 0, 0, 0, 0,70,

30

(&) 45(&) 58 55(®

ik » b ]
Ixg T Imyg” gy ¥Xp

(3.30)

Note that the last four terms in Eq. 3.30 is the gradient vector

T
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The kinetic energy T(z) is déf;i.ned in Eq. 3.20 and the correspond-

ing grédi.ent vector {VT('Z)} with respect to the displacements {X} is

given as

T - 212 @ a? arm,a'rcz) 12 @
a:-:l axz 4 ax3 ? axa axs > 3?:6 Bx7
2@ 3@ @ L@ L@ G.312)
Mg 3%y TOX g TAxyy ¥y, :
@47 . 2@y (3.31b)

or {vT



CHAPTER IV
METEOD OF ANALYSIS .

4.1 General

In the following, the methods of analysis which are employed
to arrive at the solutions for the static and dynamic problems are
presented. The principle of minimum total potential energy is
jntroduced and the optimization technique based on the Fletcger-
Powell method is selec;e& as the algorithmic tool used to minimize
the total potential energy; this.method is classified as a gradient
method which is Sased on the idea of conjugate directioms. The |
combined jterative—incremental procedure is explained as the selected
scheme for the.analysis of ma;erial nonlinear problems. Hamilton's
principle, employed for the dynamic analysis of the sandwich system,

is preseﬁted. The present dynamic study is limited to normal mode

analysis.

4.2 Principle of Minimum Total Potentizl Emergy

The principle of minimum total potential energy (Ref. 23) states

that,

"of all possible displacement configurations a body can assume
which satisfy compatibility and the coustraints or kinematic
boundary conditions, the configuration satisfying equilibrium
makes the potential energy assume 2 minimum value."

31
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The total potential energy for an assemblage of n elements

is expressed as

. n n
.= L U - L W " (4.1)
P fm1* el

where the total strain.eqergy U, is given in Eq. 3.9 and tye total
potential of applied load Wi cbtained from Eq. 2.20 is defined as
[P]T{X} (the‘vector [P] contains the 12 work equivalent loads
corresponding to each of the 12 generalized displacements residing
in the wvector {X}). |
From thé ptinciple of minimum potential energy,
E}- 0; § =1,2,. . .,d (4.2) -
3{X}. -

where {X} represents d 1ndependent nodal degrees of freedom for
the assembled structure. The gradient vector of the total potent1a1

energy for the assembled structure is defined as

)13 n .
ki T T W R N @y, - s 5 = L2ed
B{X}J. i=1 1

(6.3}

-

‘ .
wvhere the element strain energy gradient vectors {vaz)}i,_{vU(3)}i
and {vU(A)}i_are given in Eq. 3.22, 3.23 and 3.30 respectively. By
employing'a variable correlation scheme, the vectorial summation

defined in Eq. 4.3 can be obtained.



33

5.3 Fletche;—Powell Method

[

' The method of Fletcher-Powell (Ref. 2&).15 probably ome of the
most powerful procedures for finding a local minimum of a general
function; it is a second order gradient method im which conjugaté
directions are used as the directions of descent to locate the
minimum of the function. The iteration of ﬁhe conjugace directions
can bé generated as follows:

- e
s; = _Ki vHP({Xi}) (4.4)
where

gi is the conjugate direction defimed in the ith iteratiom. VHP({ii})
is the gradient vector of the total poténtial energy for the assembled
structure in the iEE_iteration with respec£ ;; each of the d inde-
pendent degrees of freed?m (Eq. 4.3). K, is a symmetric positive
definite matrix in the ith iteratiom, .

The Fletcher—Powell method starts with an initial approxipaF
tions, (¥} and Ky, to the minima of T, (X}). 'The inmitial matrix
KO can be‘any positive definite matrix, but usually is taken as the
identity matrix. The step length, 1i>0, is chosen such that
np({ii} + li;i) is a minimum at 1. along the direction of m?tion ;i
(i.e., vnp({ﬁi} + li;i)':i = 0). The new approximation {§i+l} - s
{ii}-+ 1.3, is achieved and correspondingly, the mew function
np({§i+l}) with gradient vn§(6§i+1}) is evaluated. The updated

patrix K is gemerated from the relations

K:‘.+1 = Ki"" A:._ + Bi {4.5)
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where

A, = 1 1  (4.6)

— e T
—-(K.y.)(K.y.)
B, = 2 : 6.7
1 - IK - ‘
Y3 8573 -
v = T (E D - m D 4.8

With the new approximation of {§i+1} and Ki%l’ the iteration_is
repeated and continued until VH ({i}) = (. Theoretically, this‘
condition is assured in d iterations for quadratic functzon wmth d
degrees of freedom' in pract;ce however, this is unllkely :o be
achieved because of the round—off errvors. Additional iteratioms,
therefore, are needed in order to compensate for the round-off

errors. Many useful criteria can be employed for terminating the

iteration, such as
G Y3y (4.93)

< 5'2 : (4.9b)

|m, (P - B, D]<gy (4.9¢)

. From the computer application using Fletcher-Powell method adopted

herein, the termination criteriom used is



|vn ((ED| < Eps . o (4.10)

where Eps represents the prescribed absolute error. In this work,
a value of‘lo-ﬁ was specified. Subroutide DFMFE for Fletcher-

Powell method is available from the 1BM 3031 subroutine package.

0

4.4 Hamilton's Principle
Hamilton's principle (Ref. 23) states that

" Among all possible time histories of displacement configura-
tions which satisfy compatibility and the comstraimts or kine-
matic boundary conditions and which also satisfy conditions at -
times t. and t., the history which is the actual solution makes
the Lagrangian“functional a2 minimum.!

The total Lagrangian functionm for an asséﬁblage of n elements

is defined as

o
. (2) _ 4 @y :
L= L (T, U ) (4.11)

where the total kinetic energy Ti(Z) is given in Eq. 3.20. Ui(z)

represents the total quadratic strain energy defined in Eq. 3.10.

The above principle takes the form

aL
‘3{X}.
{ }J

=03 j=1,2. . ., d (4.12)

with respect to each of the d independent nodal degrees of freedom.
The gradient vector of the total Lagrangién function is given as

n

L. ozper®y, - @115 5= 1,2,.0,8 (1)
a{x}j *

35 .
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where TVT(Z)}i and {VU(Z)}i are given in Eﬁs.3.31 and 3.22. A

variable correlation scheme is used for the vectorial summation de-—

fined in Eq..4.13. The resulting eigenvalue problem is

M21- 2EP ] = {0} (4.16)

.

where [E{Z)] and [ﬁ(z)] are the master stiffness and mass matrices
for the supported structure. Eq. 4,14 is solved using subroutines
NROOT, EIGEN and ARRAY from the IBM 3031 subroutine package to

obtain the normal modes gf vibration.

4.5 Combined Iterative—Incremental Method-

In this method, a piecewise linear load deflectiom curve and a
combined iteranive—incrémental procedure is piesented. Usually the
stress—strain relation of a material having a nonlinear behavio&r
can be répreéenced by piecewise straight lines and curves. That
portion of a function with large curvature can‘be approximated by a
polynomial function. The‘borizontal portions of the stress-strain
relation (perfectly plastic regioms) is represented by a straight
liné with a small positive slope. A typical stress—strain relatiom
for aluminium with a coarse piecewise linear approximation is shqwn
in Fig. 4.

Te obtain the comple;e load deflection curve, small load incre-
ments are applied and in each increment, two iteratioms are required
(see Fig. 5}. Consider the initial point o in Fig. Sa. The incre--_»

mental load AP} based on the initial tangent moduli El(l) yields the



(1)

incremental deflections AS . The corresponding face strains
i) ' ‘
ey are calculated and then substituted into the tangent modulus

(£)

equation-:o-oﬁtain a new tangent modulus slope E1 . The iteration

is repeated starting from initial point o. Using the load AP, and

1 -
the updated tangent moduli El(f), the final incremental deflections

'551(£> (point a) together with the final jncremental strains Aal(f{

(point a') ate obtained. Similarly, starting from point 2 the pro-—

£

cess is repeated to obtain point b. The second load 4P, using El

yields AS (1) and A€2(1). The accumulated face strains (Ael(f) +

Aez(l)) are used to determine new tangent modull Ez( ). The itera-
tion is repeated to yield A62( ) (point b) and Asz( )(pomnt b');in

this way, the entire nonlinear stress—strain behaviour can be repre—

sented by a piecewise stress—strain line which is linear.
. . &

R 7 AN
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CEAPTER V

-

IHPLEMENTAIION AND NUMERICAL EVALUATION

5.1 General

This chapter focuses on the implementation and numerical
evaluation of the finmite élgmeﬁt formulations for static and
dynamic ana%ysis of sandwich beams, including arches. The.formu-
lations have been applied to various sandwich beams and arches,
for isotropic as well as amisotropic faces, with differént boundary
conditions. Results are obtained and compared with other_théore-.
tical résults and experimental solutions in order to demonstrate
the present -analysis. Among the reférences from published litera-
ture, selected f;r comparison, were Monforton (Ref. 25), Abel
(Ref. 10), Yu (Ref: 2), Boff (Ref. 1), Holt (Ref. 9), Reissner
(Ref. 11), Ahmed (Ref. iB and 19), Rntenbgrg (Ref. 22) and Mead
(Ref. 26). The experimental tests of the sandwich beam was carried
out in ordér to provide a more complete comparison.

The developed formniations have been implemented within a

FORTRAN IV program and an IBM 3031 digital computer capability.

38



5.2 Theoretical Comparisons

© 5.2.1 Examples of_Static Analysis
A Simply Supported Sandwich Beam with Thick Laminated

Faces Under Concentrated Load.

—

Consider a $imply sdpported sandwich beam with overhang sub-
jected to a concentrated load of a thousand pounds at iqé midspan

as shown in Fig.l6. The dimensions are selected as follows:

tl = 0.5 in.; t2 = 1.0 in.; tc = 2.0 in.

b = 2,0 in.; L = 12 in. .
\

The elastic constant values for graphite epoxy faces and glass
fabric honeycomb core.are taken as
Faces: Longitudinal modulus E; = 30 x 10° psi

Transverse modulus E2 a 75 x 10apsi

2
Shear modulus 512 = 75 x 104 psi.
Poisson's ratio Vi, = 0.25
Core: Shear modulus  G_ = 15 x 10° psi

Each face consists of two laminas of equal thickness. Tﬁq
principal axis (1,2) for laminas 2 and 3 are along the length of‘
the beam while laminas 1 and 4 make an angle é with respect to‘
the 1ongitudiﬁa1 beam axis.

By taking advantage of symmetrj, one—half.of th; beam was
modeled u§ing 4, 8 and 12 elements (26, 50 ana 68 degrees of
freedom respectively). The section and boundary conditions arg” -’

shown in Fig. 6; the stiffnesses are given in Table 1 and the

39
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results for midspan deflections are given in Table 2 for values of

8 = 0° 30°, 60° and 90°, w refers to ‘the deflection under the load.
Note that in Table 1, ﬁﬁén 8 = 0°, the coupling stiffnesses of faces
vanish (i.e:, BfuBz-O) and the faces are equivalent £° isotropic
faces.'.For aﬁiéqtropic faces (i.e., © # 0) the presence of coupling

' stiffnesses causes the beam to becémg less stiff as can be see; from
Table 2; for these types of beam, there occurs coupling action betweén-
longitudinal stretchiﬁg and transverse bending which is the main reason
fqr the more flexible behaviour;

L

Inspection of Table 2 reveals that the finite element solutions)
are in excellent agreement with those reported in Ref. 25 fof-a beam
modeled using 12 elements but somewhat stiffer for a beam modeled
using fewer elements. The results for a beam Qodeled using 4 ele—
ments diffef from exact solutions for & = 0°, 30°, 60° and 90° by
0.22,.2.31, 1.4% %?§ 1.5% respectively, while for a beam, modeled
using 12 elements, th; results improve ponsiderably.

The matrix formulation for the present analyéis was genergéed
using the assumed displacement functions; theréfore, the accuracy
of the solutions not Bnly depend upon the satisfaction of the
geometry admissibility conditions for the assumed displécement
functions but also depend on the number of elements used to‘godel
the sandwich beam. On the other hand, fhe stiffness matrix in
Ref. 25 was formulated using the so—called exact displacement
function; therefore, the number of elements uéed for modeling the

beam has no effect on the results.



B. End-Loaded Cantilever Sandwich Beam
Cons;der a ten inch long cantilever sandwzch beam of unlt

width with 1dent1ca1 isotropic faces (tl-tz-O'OA in.; E = 10.0x10

psi; G = 4. 0x106p51) and a 0.5 in. thick core (G = 1. OxloapSl)

The membrane and bending stiffnesses of the faces are (£=1,2)

= 4.0 x 10° 1b.; D, = 53.3.1b. in2.

-

A
£
The transverse shear stiffnesses of the core is

B = 0.5 x 10% 1b.

The boundaries of the sandwich beam are fully clamped at A

and free at B (see Fig. 7). The following clamped boundary condi-

. tions were imposed at A:

u1 = u, = o= wk = Q

Evenly spaced meshes of 10 elements result in 62 ﬁegfees of
freedom. The system is subjected to a umit load at the free end.
The displacement solution is plotted in Fig. 7. -Also, the results
are comparéd with theoretical solutions reported by Abel (gef. 10)
and Yu (Ref. 2). Comparison éf the results shows good agreement.
The slight discrepancy between the present analysis ;nd those of
Ref. 10 and 2 can be attfibuted to the basic assﬁmptions used for
the stiffness matrix formulation. The formulations developed by
Abel are based on poiynomial displacement models and are capable

of determining the distribution of the shearing stress of the

4

6
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face; the formulation is particularly suitable ﬁor sgn&wich'Qtruc-
tures wherein sﬁearing deformatibns in the faces are significgnt.
Yu s formulatxon considers both the shearlng and warping of the
faces. The present formulatlon, however; includes face bendlng

effect but neglects shear deformatzon.of the faces.

C. Simply Supported Sandwich seaﬁ Under Bending

In this example, results are presented and comparéa with
theoretical and expgrimental solutions given {n Ref. 1 for.various
core thickpesses, core materials and span lengths *in order to indi-
cate the potential of the present analysis.

Consider a simply suppo;ted sandwich beam loaded by a unit con—
centrated load at the midspan as shown in Figs. 8 and 9. Each face

consists of identical isotropic 24ST Alclad with |

.tl = tZ

£ = 10.0 x 10° psi; G = 3.76 x 10° psi

= 0.04 in.; b = 1 in.

Figure 8 shows the.results obtained for various core thicknesses
(0.25 in., 0.5 im., 1.0 in.) and core materials (balsawood, cellular
cellulose acetate) with a constant span length of 10 in. The figure
also contains the experimental results presented by ﬁoff (Ref. 1),
obtained from the testing of six specimens haviné a balsawood core
with a shear modulus of 24,000 psi and seven specimens having a
cellular cellulose acetate core with shear modulus of 2, 500 psi.
Similar tests were carried out by Hoff (Ref. 1) for five specimens

having a half inch thick balsawood core and the results together



o)

. . | o . 43
with the theoreticgl sclutions are plotted between‘midspan deflec-
tion and various span iength (8 in., 10 in.,'iB in., 18 in., 23 in.)
(Fig. 9).

Due to symmetry, only one-half of the beam was modeled using
8 elements resulting in 50 degrees of freedom. All of the results

were obtained by using a linear formulation and an overhang of

1 inch at both ends was included in the modeling. The results are

- then compared with the theoretical and experimental solutions repor—

ted in Ref. 1 and seem to show good agreement. The slight discre-
pancy, especially those exhibited for CCA core, can be attributed
ﬁainly to the assumptions made in.the formulation and partly due to
the usual discretization and experimental errors. The formulationms
déveIOpéd in Hoff's paper ﬁre based on the principle of- ¥irtual
displacement; the strain energy from the membrane and the bending
action of the faces as well as the transverse shear and the exten-~
sion perpendicular to the faces in the core are inclu&ed in tﬁe
formulation. However, the strain energy of the ;ransve:se shear in
the faces and the ;ongitudinal extension in the core have been

neglected. It is important to realize that the present analysis

" differs from Hoff's formulation, in that the contribution from ex-—

tension perpendicular to the faces in the core has been disregarded;

this extension action may have considerable effect on the behaviour

of the sandwich beam made of low shear modulus and may eXplain the

—n

reason for higher discrepancy in comparison with a beam made of CCA

core than a beam made of balsa core. CCA core, as is known, pos—

-
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sesses a muéh'iowér shear modulus .than balsa core (about 902 lower);
it is therefore more suséeptible to the extension action wﬁich in
turn causes the beam to be-mﬁre flexible. The.&iscrépancy, as men-
tioned earlier, is very smalliand thus i;'is fair to conclude that
the pfeséﬁt analysis is capable of anal?zing'the sandwich beam ef-

ficiently.

D. End-Loaded Cantilever Curved.Sandwich Beam
Consider a cantilevered quarter circle sandwich arch subjected

to a unit concentrated end radial load as shown in Fig. 10. The

" core is a Nomex homeycomb material with

t =7.5mm; R_= 150 m
¢ c

and Gc = 22 N/mum; b =1 mm

Each face is a single lamina of unidirectiomal carbon fibre rein-—

forced plastic (CFRP) with the following material properties:

2 : 2
E,, = 14200 N/m"; E,, = 9800 N/mm

G.., = 4300 N/mm?;

12 = 0.25

V12

The results are obtained for various.face thickness 60.2 mm,
1.0 mm, 2.4 om and 3.0 mm) with constant core thickness and core
radius. The whole Beam was modeled using 10 elements whicﬁ'has a
total of 62 degrees of freedom. Results from the present analysis,
Holt's theory (Ref. 9) and the Reiséner's analysis (Ref. 11) are
shown in Fig. 10 and are plotted using the stiffness under load

(defined as the ratio of the applied radial load to the transverse

&
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displacement) as ordxnate and the face thzekness as abscissa.

The present analysxs lnvolves twelve generallzed dzsplaeements

for each element with bend:ng effects in the faces included (Fig. ll)

. Element 1 of Holt's theory (Ref. 9) is shown in Fig. 12a; it has

fourteen’ geuerallzed dlsplacements which are used as Lagrange

Mnltlpllers to malntaln interelement equlllhrxum Element 2 is

. formulated in the same way as element 1 but wzthout a core general-

ized displacement; the generalized displacements are thus reduced
from fourteen to twelve. Element 3 is shown in Fig. 12b. In cen—
trast to element 1 and 2, it does not 1nelude face bending effects
and is formulated with the assumption that the faces act only as
membranes. Element & has the eame generalized displacements as
element 3 but with the assumption that the core is incompreesible
jn the transverse direction. Relssner analyzes the same way as
element 3 but with the further assumption that the core thickness
has to be small compared with the radius of -curvature at its mid-
axis.

Inspection of Fig. 10 reveals that the results for all methods
of analysis are virtually the same for face thickness lese than
0.4 mm as face bending effects are still not important. The results
of element 1 and 2 are very'elose. Reissner's element 3 and element
4 results are observed to be more flexible than both of element 1
and 2, owing to the membrane face assumption. Reissner's results
and the results fof element 3 are in complete agreement due to thel

same assumption made in both formulations. Element & results, how—
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ever, are stiffer than those of Reissner's and element 3 results
due to its infinite normal core modulus assump;;on..

The present amalysis shows %ery close agreement with element 3,
but gfadually &iverge to a stiffer behaviour with increasing face

thickness as face bending effects become siénificanc. As expected,

it diverges from element 3 to follow element 1 and element 2. The

discrepancy of results between the present analysis and those of
element 1 and 2 at higher face Fhickness is due to the basic assump¥
tions made in selecting the generalized displacements. and it is
arguable as to which formulation yields a better solution unless an

experimental study is carried out.

5.2.2 Example of Dynamic Analysis

This example aims to check the capability of the present method
and formulatioms to'calculate_the natural frequencies of sandwich
beams and ‘arches. Two straight sandwich beams, one siﬁply supported
and one cantilever together with ome fully clamped sandwich arch,

are employed in the analysis (see Fig. 13).

1. Natﬁral Frequencies of Straight Sandwich Beams
Ahmed (Ref. 18 and 19), Rutenberg (Ref. 22) and Mead (Ref. 26)
x
have reported the theoretical results to determinme the natural fre-
quencies of-straight cantilever sandwich beams. In addition, Ahmed
and Mead have also reported thé results of simply-supported sandwich

beams.

The beam considered has the following dimensions:
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For

the

L, =ty = 0.018 in.; t, - 0.53in.; b = 1.9 in.
material properties of the aluminium faces are taken as

b

E = 10 x 10% psi; v = 0.33; o, = 2.509 x 10 1b-secZ/in.?

for the honeycomb core

Gé =12 x 1Q3 psi; p_ = 3.07 x 10-61b-sec2/in.a

lengths of the beams are L = 36 in. for simply supported and

28 in. for cantilever.

The membrane, coupling and bending stiffnesses of the faces

»

(f = 1,2). °

A = 1.8 x 10° 1b.; B, = 0; D_ = 4.86 1b. in.2
f - - .’ f ’ f - - -

transverse shear stiffness of the core is

B =6x 103 1b.
c

47

translatory, rotary and coupling inertia constants of the face§

(£ =1,2). c

Q; = 4.5155 x 107 1b-sec?/in.%; I, = 05 I, =A1.2192 x 107100 psec?
the core

Q = 1.5351 x 107 1b-sec?/in.%; J_ = 0; I_ = 3.1981x 10 5 1b-sec?

The simply supported beam is modeled using 4, 6 and 10 elements and
cantilever beam is modeled using 8 and 10 elements. The present anal-

ysis results, as given in Tables3 and 4, compare favourably with the theo-

‘retical results reported in Ref. 18, Ref. 19, Ref. 22 and Ref. 26.
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B. Natgral Frequencies of Curved Sandwich Beam

In this example, the naturai frequencies ‘of vibration for a
clamped-clamped sandwich arch are calculated. The arch considered
has dimensioms and material properties identical to those given in
Seetioe A except that the arch length is L = 28 in. and R = 168 in.
(see Fig. 13). .

The stiffnesses and inertia comstants for the faces and the
core are calcilated to be the same as those given in section A.

The arch is modeled using 6, 8 and 10 elements (34, 46 and 58
degrees of freedom respectively). The results are compared to the
theories reﬁorted in Ref. 18 and 19. ;Ihe first five natural fre-
queneies are given in Table 5. The present analysis solutions are
l observed to be in good agreement with results from Ref. 19 but some-—
what leeer than those reported in Ref. 18. The explanation for-the
discrepancy is that the frequencies are sensitive to tﬁe effect of
transverse shear deformation which has been neglected im Ref. 18.

By comparlng the results in Tables 3, 4 and 5, it is note—

worthy that the flrst few frequencies are in better correlation and

is evident that the relat1vely coarse modeling has omly a slight

effect on the accuracy of the natural frequency.

5.3 Experimental Programs
In the following, the experimental studies are carried out on
aine sandwich beams. Six beams are tested for various beam dimen—

sions and loading condxtlons to determine the core transverse shear

modulus. The other three are tested for comparison with nonllnear
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theoretical solutioms. All beams consists of 0.068 in. thick iden-
tical isotropic aluminium faces and a 3 in. thick expanded poly-
styrene foam core. The stress-strain behaviour of aluminium faces

were tested and are shown in Fig. 4.

5.3.1 Experimentﬁl Study of the Core_Tran;verse Shear Modulus

Several methods of testiﬁg core shear rigidities have been de-
vised over the year. The most:common method is the use of the block
shear tests (Fig. 14); but Kelsey et al (Ref. 27) has criticized che
validity of these tes;s for several reasons, including: the shear
stress is wréngly assumed to be uniformly distributed throughout the
core and face bending effects is neglected; these assumptions ﬁave
lead to a low value of core shear modul&s.- Alterna;ively, otheé
methods are used. Bigg (Ref. 28) develdped several standard bending
tests to calculate the core shear ﬁodulus from the meésured deflec~
tioﬁ of the beam; he summarized the criteria for a standard test ana
presented the chart as a guide for a sqitabi; selection of beam
dimension. It is claimed that Bigg's method produces satisfactor§
results for various expanded'plastic, alum;nium honeycomb ;nd aerated
concrete cores. A similar method was also used by Hoff (Ref. 1), in
‘that'the shearing rigidity of the_core‘material is determined with
the aid of the théoretical deflec?ion formulas. A good investiga—
tioﬁ has been dome at the University of Windsor by Fazio (Ref. 29)

in which both the direct shear test and bending test for determining

core shear modulus were performed. The results from the direct



50
shear test (siﬁgle—block shear test) howevef were found to be sur-
pfisinglylldw and widely scattered. .The bending test results were
also found to vary soﬁéyhat depending upon the‘beams.dimengion and
loading conditions. However, Fazio recommended the bending test.
method because it gost closely represents the conditions of the later
intended experimental studies.

In the present experimental studies, the direct shear test is
not_carried out.for the same reasons mentioned earlier. Ianstead,
the bending test for vafious beam dimensions and loading conditioms
are used. Six beams made of alumihium-faces and expanded poiystyrene
~ foam core‘were tested; Figures 15, 16, 17 Fhow the set up of the
test for three—(beams T1, T2, T3 and T4), four—(beam T5) agd six— 3
point (beam T6) beﬁding tests respectivély. The first four beams
(11, ?3, T3 and T4) were each tested six times while the last téo
beam;v(TS and T6) were each tested once to failure. Two dial indi-
cators at midspan were used in all beams to measure the deflection
of the beam. For beams T3, T4 and‘TG, strain gauges were installed
to measure the strain in the aluminium faces. The experimental load
versus midspan deflection for each beam was plotted and shown oﬁ
Figs. 18, 19, 20, 22, 24 and 25. Figures 21, 23 and 26 show load
versus strain for beams T3, T4 and T6 respectively. TFigures 27 and
28. show the failure patterns of beams T5 and T6 which will be dis-
cussed in a more detailed manmer in the next section. The shear
modulus of core for each beam was then determined from the measured

deflection of the beam by means of linear theoretical deflection



formulation. The experimental results of -shear modulud are rela-
tively consistent. The shear modulus for beams-Tl to T6 are qel—
culated to be 1150 ps;, 975 ps;, 1100 psi, 1300- psi, 1150 psi and
1150 psi respectively. The average value is 1138 psi. Beams Tl
TS and T6 show most con31stency. Beam T2 and.T3, however, yield
slightly 1cw values (14.3% and 4.4% below the average value), but
' beam T4 shows higher shear modulus,whlch elffer by 14.3% from the
average value. |

The shear modulus recommended for the polystyrene core is
taken to be 1150 psi as given by the rounded value of the average
of six beams tested. The above tests are con51dered to be satis-—
factory, therefore, the value of G -11150 psi is used as theoretical

_ ,

value for all experlpental studies of sandwich beams in this work.

5.3.2 Experimentel Study of Simply Supported Sandwich Beams

The following example serves to investigate the behaviour of
simply supported sandwich beams under an inEreasiug central vertical
load and aims to check the capability of ehe present method and
formulations to predict the behavieur of simply supperted sandwich‘
beams which later will be compared to experimental test results.
Geometric monlinear analysis together with material nomlinear R
analysis has each been aﬁalyzed seperately. The effects of com—
bining both geometric and wmaterial nonlinear contributions has

also been studied.

Three beams (T7, I8 and TS} consisting of the polystyrene
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core and aluminium faces were tested. The core shear modulus,

based on the previous experimental bending test results, is taken -

_as 1150 psi. ‘The nonlinear stress—strain behaviour of aluminium

faces was tested and the typical curve is shcwn.in Fig. 4. ‘If is
extremely important.to guaraetee the correct stress—strein beha~-
viour of the alumimium. Iz ensuring this; six specimené were
tested ;n.tension us@ng the universal testing maehine; the elonga-—
tion in the first four specimens were monitored by an electrical ex-
tensometer while for tﬁe last two specimens, the strains reading
were obtained by strain gauges. The results show good confiﬁgencql
and the final;ttress-strain equation was obtained by averaging the
results frem the six specimens tested.

?he beams were testea'in the uniﬁersaritesting machine (Fig.
29). Ail three beams were tested to failure according to the three-

point loadlng test. In all tests, rollers were used at support

points and at the point of applied load, rubber was used to reduce

local compression effects. Plexiglass‘stlffeners were installed

. to all beams at léading and support point;-these stiffeners are

important in the sense that they delay the premature local ‘failure

which often occurs at the concentrated load caused by the compres—
oy -

sibility of the core. In referriung to section 5.3.1, this type

of failure is observed to qccuf for beam T6. The six—point bending

'tests without stiffeners are seen to fail prematurely in the loading

region where Strains 1n the faces were still in the elastic range

-

(see Fig. 28). Furthermore, beam TS which was tested in four—poznt

- P

.
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- beﬁﬁing, failed bf f§ce w?inﬁling.in tH; reéion Getﬁeen_the Qwo
applied loads. Because tﬁq face st;ains were still in thellinear‘
" range, no nonlinedrity is present‘in ghe load-defle;tion curve. The
failure paétern is-éﬁown in .Fig. 27.- Consequentlf, the ioad-deflec—
‘tion cu£§e§ for beams TS5 and T6 could only be plotted iﬁ'the elastic
region. The piaciﬁg of the';;iffeners allow a more complete load
deflection_éhfve,‘tﬁus,permittin; a better and a more complete com-
.fparison with the results obtained from theoretically developed
formilation. The typical stiffener ;loqg with its dimensioms is
B shown in Fig. 30; they are glued into position with adhesive siﬁilar
to that used between faces and core.

.'The set up of the test is shown in Fig. 29. Two dial indica-
tbrs'placed as ﬁi&span are used in all.beams in order to measure .
the deflection of the beam. The s?rain at the miaspan of the‘
bottomface is monitored by -a strain gauge.

fhe e;perimentallload versus midspan deflection and strain as
well as the failure patterns for each beam are shown im Figs. 31 to
39. Figures 31 and 32 show }oad—deflection and st;ain curves for
beam T7; the experimental results are observed to reach beyond the
elastic region. The placing of the stiffeners‘in this beam was
effective in delaying the premature local failure, thus permitting
a more compléte experimental result. THe beam failed mainly be-
cause of high concentration of stresses in the load region. It

faiLedAby local compression yielding at the top face, followed by

local core crushing causing delamination between the:faces and the
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core which propagated well into the supports_point. _?hilure éas._ 
characterized by a‘load noise and'close'inspection at midspan re-
vealed that the core had almost'split in half.. The delaminatiou'
failure is shown in Fig. 33.

The load-deflection and strain curves, plotted-in Figs. 34 and

- 35 for beam T8 and in Figs. 37 and 38 for beam T9, show only little

nonlinearity. The deflection reading diverges gradually from a

. straight line, and this may be indicative of the development of

local instaﬁility in the coqpreﬁsidn faces. In the case of beams
T8 and T9, the basic type of failure similar to that of beam T7-is‘
exhibited e;ceptlthat-the delamina;ion is more narrowly éeveloggd
for beam T9. The failure patterns fqr beams T8 and T9 are shown

in Figs. 36 and 39 respec;ively. A possible explanation for.earlier
local instabilities in beams T8 and T9 is that the plexiglass stif-
feners 'used are smaller (0.25 in. thick) compared to the width of
the beams which measured to be 4 inches for beam T8 and 6 inches

for beam T9. pnlike beam T7 (3 inches %ide), the other two beams
haﬁe a larger unstiffened portion which implies that the effect

of local concent;ated load may be more severe.

All three beams show a similar trend in load-deflection and
strain. Only omne beam,_ﬁamely 7 tFig. 31), ﬁill be discussed
thoroughly. Curve 1 in Fig. 31 shows the behaviour of the beam
predicted using linear analysis; it compares favourably with
experimental results for small loads but is obviocusly invalid

for larger loads. The geometric nonlinear anmalysis is found to
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be the same as the linear curve. Curve 2 represents the_résults
oﬁtaipe& from‘fhe material nﬁnlinea;:analysis. The solutions are
observed to show a‘good frend but a rather sti£f~behaviour compared

to experiment. In this analysis, the load deflection curve is ob-
tained by using the iterative—incremental method; ﬁhis;method is very
sensitive to the load increment magnitude. In this particuiar problem,
one large load increment is used in the 1inear‘range followed by a
mach smailer size of load increment in the nomlinear rénge. The size

~ )
of load increment is reduced subsequently knowing that the region near

‘the plastic zone is very sensitive even to a very small load increment.

The curve demoted by 3 utilizes the iterative~incremental -method for

. material nonlinearity but also includes the geometry nonlinedrity.

The coﬁbined geometric and ﬁanerial nonlinear analysis fits-the.experi-
mental dataAsoﬁewhat‘be;ter than the previously mentioned curves. This
curve represents_éhe analytical solution for predicting the actual be-
haviour of the beam. Althougﬁ the model stil} overestimates the
rigidity to some degree, better cprrelation is obtained. The stiffer
ﬂehaviour way be remedied by modeling the beam using more elements

(sée Fig. 31). The same beam modeled with 16 elements instead of 10
elements is obgerved'go show better agreeﬁeﬁt with ‘experiment. It may
still be possible to achieve better results by modeling‘the beam using
more element; however, increasing the number of elements requires- a
considerable -increase in computer time and storage.

The experimental and theoretical load-strain curves for all

three beams, plotted in Figs. 32, 35 and 38, show a.considerable dis-
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crepancf even a;.very lpw 155&.: Althoﬁgh the stiffenmers prevented -
crushing of the core, ié teﬁdea to trag;%er tye éﬁ;lied load to the’
bottom face to cause &elamination; The discrepancy-of the strain
- reading seem# to be initiated by a prqﬁruéioﬁ of the stiffener at
the loading point which may have‘disfurbed the bottom face behaviour
(see Figs. 33, 36 and 33). Ty}s phenomenon will inevitably cause the
faceslto_yield eariier and consequeﬁtly make the beam more £eéxible. - -
As seen on the 1i;ear range in Figs. 31, 34 and 37, the sﬁifféners

-seem to make the beam slightly stiffer.

5.4 "Nﬁme?ical‘ﬁxample on Fully Clamped Beam Under-Bending

Some solutions are available for fully clamped sandwich plates
using-large deflection theory. Yet, very little or probably nothing
has been presented on clamped-clamped sandwich ﬁeﬁmé. Zahn (Ref. 15)
once concerned himself with large deflection theory of sandwich beams;
his study, however, was limited to beams which are simply supported.
In this example, the behaviour of a clamped—claﬁped sandwich beam sub—
jected to an increasing central vertical load has been investigated.
The sandwich beam is made of ﬁhe expanded folystyfeng core and the
aluminium faces with unequal face thicknésses. ‘The shear modulus of
the core was determined from experimental tests to be 1150 psi and
the nonlinéar stress-strain behaviour of aluminium was tested and
plotted as shown in Fig. 4. The section, dimensions and boundafy
coﬁditions are shown in Fig. 40. ‘

The imposed.displacement boundary conditions of the fully clamped

beam are taken to be



91 = ui - ? v - 0 at x= A and x -’B
By taking advanggge of symmetry, only one-half of the-beam was -
modeled uging\lb elements which results in 59 degrees of'f:éedom.
The analytical solutionms considered herein are classified.into;
four éypes‘aélfgllqu:

v L iineér analysis

2. Material nonlinear analysis

" 3. Geometric Epnlinear analysis

4. Combined material and geometric nonlinear analysis.

This éxample is employed to demonstrate clearly the differences
between the four types of amalyses. The load was gradually increased
and the corresponding deflection was calculatgé and plotted for mid-
span_load versus center deflection for all four types of analyses-
(Fig. 41). |

in the linear analysis (curve 1), both th; linear stress—strain
behgvidur and the linear stréin—displacement relation of the faces
are used. The solution is characterized by a straight line as shown
in Fig. 41. A defleckion of 1.54 inches was obtained at a load of 650
pounds.

In the material nonlinear solutioms, the same linear strain-
displacement relation is used, but fhe nonlinear matgrial behaviour
of faces is included. Instead of the initial linear medulus used in
the linear solution, the modification in the face formulatioms in—

volves the use of appropriate tangent moduli for each increment.

According to the material nonlinear (curve 2), the deflection under



'a load of 650 pounds uas'fpun&‘to be 1.80 inches. - -

The thifd cﬁrvé.in the_samelfiggré féﬁféseﬁts ;hé soluﬁibn
 based on geometric nonlinear'anaiysis only. The beam shows stiffer
behaviouf as lphd increases. This phenomenon is due to the clamping
effect at both ends af ﬁhe beam; the deflection is reduced consider-
ably to 1.07 inches under the same load of 630 pégnds. The result
differs from that obtained in linear amalysis by 30.5f£

The final solution-(curfe 4) involves.the combined geometric
and material nonlinear analysis; it represeats the actual behaviour
of the béam in that both the nounlinmear strain—disﬁlacement relation
and the poanlinear s;ré557straiﬁ behaviour ;f'the faces are employed
in the formulatiom. Initially the curve follows curve 3 as the
_strain in all faces is still in the linear fﬁﬁge but gradually it
di&erggs from curve 3 to follow cur@e 2 iﬁdicating-that-the faces
exhibit inelastic strain. The maximum deflection of 1.68 inches

was found under a load of 650 pounds.

-



CHAPTER VI

SUMMARY, CONCﬁUSIONS AND RECOMMENDATIONS

6.1 Summary

A finite element capabiiity'for predicting displacements, strains
and natural freqﬁencies of sandwich beams and arches has been presen—
ted. The method is applicable to sandwich beams with isotropic,’

" anisotropic and transversely heterogeneous faces. Using a set of‘
nonlinear strain-diéplacemenﬁ relations, éeometric_nonlinearity‘is
incorporéted.in the analysis. Material nonlinearity was incorppr#teq
in the analysis for isotropic faces by using 2 nonlinear stress—
strain relation-ofAthe faces. Dynamic analysis is limited to the
study of normal mode .of vibration and only a linearized strain—dis—
placement relation.is included in the formulation.

Specific element stiffness and mass matrices haée been developed
for static and dynamic analysis of the straight and curved sandwich
Beams. The static formulation was deséribed in terms of the geometry
and the various stiffnesses of the faces (membrane, coupling and
bending) and core (transverse shear). Similarly, the dynamic
analysis was formulated in terms of the various inertia constants
(translatory, rotary and coupling) of the faces and core. The dis-

placement behaviour of the sandwich system was described by the

59
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- longitudinal displacements of-the faces, uf(f-l,Z) and the transverse
displacement w. éhe displacement patterns, néce;aa#y for describing
the displacement behaviour 6f‘th; sandwich systeﬁ, were approximated
using dscullatory (first order He:mite) inéérpolation polynomials.

The solutioms for static probleﬁs were obtained by direct mini-~
mization of the total potemtial energy using the variable metric
pethod. A second order gradient algorithm based on Fletcher-Powell
pethod was employed as the directioms of descent to locate the mini-
mum of the function. In the material nonlinear analysis, appropriaée
ﬁangent moduli wﬁre used in the nonlipear stress-;train relations for
éﬁé faces and am itefative-iﬁcfeméntal scheme was used to calculate
the sﬁrain; in the faces. Fér dyaamic solutions, a linear eigenvalue °
solution technique was used in order to obtain the natural frequencies
of the ggndwich systens. .

Several numerical results have been prgsented for static and
dyunamic analysis of sandwich beams and arch;s. Also, amn experimentai"

study of simply-supported sandwich beams has been carried ocut and the

results were presented and compared with the finite element method.

6.2 Conclusions

The following coﬁclusions.may be drawn from the présent inves—
tigation:

1. . The method proposed is valid and capable of analyzing

sandwich beams exhibiting geometric npomlinear displace—

ments and having imelastic strains in the faces. -

" . ’ -
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2. The_displabgmeﬁt-an& naturai frequency results are found
‘to comparé?f;voﬁrably with the e:isting published results
for san&wich'béams and arches under various boundary com-

* ditioms. B - * - =

‘3, Experimental deflectioms of simply-supported sandwich beams
are good compare&lﬁo the present theoretical formulation.
Differsnces between theoretical and experimental strain;,
however, are significant especially in the inelastic regiom.

4, The energy search ﬁethod employing the Fletcher—Powell
‘minimization technique proved to be a powerful and efficient
prﬁéedure for the anai&sis of sandwich systems.

5. Géom;tric nonliﬁearity has pegligible effects oﬁ simply
supported sandwich beams but has significant effect on

_‘fixed-fixed sandwich beams.

6. Relatively few elements are required to predict accurately
-

the natural frequencies.

6.3 Recommendatiduns

A useful éxteﬁsion for the present method ?ould be to predict.
flexural wrinkliﬁg in the faces. Such a formulation would make it
possible to predict the failure load which would be of great importance
for the analysis of thin faces sandwich systems.. Moreover, the inclu-~
sion of thermal effects due to the temperature difference through the
" thickness of the sandwich system would be worth investigating since it

could be used to predict the residual stresses and strains due to’
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curing temperatures; It is recommended that more experimental studies
be tarrled out using core mater;als which have n higher compressxve
strength in the transverse d;rectlon. It is felt that higher com=
pressxve strength core materzals -such as honeycomb and balsawood, )

or;ented such that the grain is perpendlcular to the faces, might be .

& proper, cho1ce of core materlal to prevent local compressive failure.

:ﬁiso, ~the results of the finite element analyszs of clamped~clamped

sandwich beam has not yet been verified. Mbre study, theoretlcally

or experimentally, should therefore be carrled out 1n order to verlfy

the solutions.
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FIGURE.14 . BLOCK SHEAR TESTS
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FIGURE 15.

THREE-POINT TEST OF POLYSTYRENE SANDWICH
BEAM (TYPICAL FOR BEAMS T1, T2, T3, AND T4).
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FIGURE 16. FOUR-POINT TEST OF POLYSTYRENE SANDWICH
BEAM (BEAM T5).
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FIGURE 17. SIX~POINT TEST. OF. POLYSTYRENE SANDWICH
BEAM (BEAM T6). ,
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FIGURE

(a) Distant View

() Close-up -

27. WRINKLING FAILURE - SPECIMEN T5

8%



(b) Close-up

FIGURE 28. LOCAL FAILURE - SPECIMEN T6.
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FIGURE 29. THREE-POINT TEST OF POLYSTYRENE SANDWICH
“"BEAM WITH STIFFENERS (TYPICAL FOR BEAMS
T7, T8 AND T9).
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FIGURE 33. DELAMINATING FAILURE - SPEC
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FIGURE 39. DELAMINATING FAILURE - SPECIMEN T9.
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- TABLE 2

DEFLECTIONS OF A SANDWICH BEAM WITH
THICK LAMINATED FACES

w (inches) : .

& ' Finite Element Method Ref. 26
4 elements | 8 elements li? elements | Exact Solutiom]
0° 0.01822 | - 0.01826 I 0.01826 0.01826
30° ' 10.03732 0.03811 0.038156 0.03872. A
60° 0.04407 0.04457 0.04468 r0.04471 !

90° - -0.04517 0.04571 0.04583 G.04587
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APPENDIX A

T

STIFFNESS AND INERTIA CONSTANTS OF SANDWICH BEAMS .

In this section, a method for determining the constitutive
equation, the forece and moment reéuiﬁants, together with the mem-
brare, coupling and bendiﬁg stiffnesses of.laminated faces, as well
. as the f;anslatory, rotary and coupling inertia of faces and core
are presented. A laminated face may'bé composed of several bonded
laminas, each lamina making up‘the face is assumed to be b;mngeneous

' and mgy have different thickness, material properties and orientation

of elastic axis.

A.l Constitutive Equation
The lamina could be considered to be in a'plgne stress state.
The stress—strain relation for an individual kth lamina with respect

to its principal axis 1 and 2 (Fig. 42) is

RS o G G 17 )
o (k) 11 21 11 0 . (k)
Lo e, &, & _, @ &) 1
(ovyp 7o ) Ay )
(k) ‘
) ( a2 13 > (A.1la)
(k) | = (k) (k) (k)
s A=vy, 7Yy ) 0 €y
(SDMMETRIC) a .
(k) ' (k) (k)
T12 12 Y12
LN o - - L o

or

), (k) (k)
{012 } =[] {512 }
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| W, @
wh‘erel\’zl ' E =V

11 12 -

v (k)
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22 . If the lamina principal axis (1,2)

make an angle & with the reference axis (x,y) ‘for the laminate, the

lamina stress-strain relation transformed to the laminate reference

axis are

r ’ p— .
(k) (k)
Gl(k) ;0329 sin @
PRRC¢SR I (k) (k)
< 02 = Binzel cosze
©, | | 3sin2e @ L Liinze
\ J =
or {clz(k) ) [To' (k) ] {c.xy (k) }
and )
(W) 5 (&) 5 06
El cos 6 -sin”8
(k) (k)
4 tz(k) r = sin © cos ©
(k)
112 ~sin28 sin20 "
\ J L
() (k) (k)
or | {512 }'= ['Ie ] {exy
(k) (k)
where [Tc 1-1 = [T ]T

(k)

L]

(k)

sin28

'Y
-51n26

(k)
cos28

(k)

(k)

(k)

cos28

Substituting Eqs. A.2 and A.3 into A.l results in

- (k)

(A.2b)

(A.3a)

(A.3b)

(A.4)



o - b —
(k) ) (k)
% S11 S12
) k) (k)
cy = . ) S22
.. | |snewTRIC)
4 s -

or

W, 1ol 1)
to, 0y = 18791 (e

(k)
16

(k)
26

(k)
66 -

/
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(A.ga)

(4.5D)

(A.5¢)

As mentioned previously, each lamina making up the face is assumed to

be homogeneous and may have different material properties, thickﬁess

. . . . : . ke .
as well as elastic axis orientation. The matrix [S( )] for each lamina,

thetefore, may be different. The laminated face which is formed from

several bonded laminas, however, is considered as heterogeneous in

nature; its constitutive equation is expressible as

r ~ -

Oex S11(zg)  Sy,(z0)
1%y ¢ = Sy2(z¢)
(STMMETRIC)
T ’
L £xy) -

or {cfxy}a [S(zf)]{‘af):y} N

S16¢28)

S..(z

26

(

f)

zf)

Se6

(A.6a)

(A.6b)

For beam analysis, the laminated face may be assumed to be in g?



a state of uniaxial stress (:_'.-._e., '°fy - foy = 0), Egs. A6become

oexe = Sx(Zg) €gy
' foy = Sxy(zf)efx .

where

Sx(zf) - Sll(zf) + 512(25) Sy(zf) + Sle(zf)s'xy(zf) ’

Sy(zf) .-(Sle(zf)' Sgs_(zf) - Slz(zf)ses(zf))[S(zf)
Sxy—(zf) = (Slz(zf)st(zf) - Sls(zf)szz(zf))/S(zf)

S(zg) T S,9(2e)Sgg(2e) = Sp(2£)8,4(2)

A.2 TForce-Deformation Relatiomns

120

(A.7a)
(A.7H)

(A. 7¢)

(A.7d)
(A.7e)
(A.7£)

(A.7g)

—’ﬁhe following expressions for the force and moment resultants are

used to obtain the £orce—deformation relations for the faces,

i

2
N bf cfxdzf

< c.rfx.zf.dzf

(A.8a)

(A.8b)
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M

where b and te represent the wzdth and thickness of the faces ) .
respectxvely. 'Substituting the stralnrdlsplacement equatlon (Eq. 2.3)
and stress-straln relatzon (Eq. A.7) for the faces into Egs. A 8, the

C et

resultlng force-deformation relations are defined as -

‘ w1, 2% a pixf
oL Nf = Af[uxf +§?+ -z-(wx) i + Bf[-'F? -.wn] o (A.9a)
¥ = Bf[u Rf + (w ) ] +D [ R, wm] (A.9b)

The terms Af, Bf and Df represent the membrane, coupllng beudlng stiff-

nesses of the faces are expressed as

te

2 ' _
A = b _ Sx(zf).dzf , (A.10a)
’ t

z

> , .

By = b j‘ Sx(zf).zf.dzf _ (A.10b)

2 i

°f
D_=b 2 s (z.) z'z-dz : : (A 10ci
£ f % Cf cCE UUF _ .

e

2 “.

val

A.3 Inertia Counstants

The terms Q J and I (s*l 2,c3 represent the translatory,

' rotary and coupling inertia constants for the sandw1ch beams are

-
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3 ‘ ST T Tl
Q .bj' plz)dz ' g - (A.11a)

Iq bj‘ ps(zs).zs.dzs (A.11b)

t )
=
2

"2
Is b f ps(zs).zs .dzs ‘ (A.1lc)
-t

S

z /

where ps(zs) represents the mass demsity of the faces and core and is
allowed to vary throughout the thickness of the faces amd core. When

the mass density is comstant, Eq. A.l1l can be rewritten as

.

Q - b_wsts | - (A.12a)
I =0 _ o | (A.12b)
1 3

I_= 13 bpst | ) (A.12¢)
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APPENDIX B
STIFFNESS AND MASS MATRICES FOR .
CURVED SANDWICH BEAM

This appendix presents. the stiffness matrices -[K(Z) 1, [K(3)] and

[KM} (2)

] as well as the mass matrix [M ~']. The matrices presented from

Eq. B.1 to Eqg. B.4 are valid for both straight beam ( ... 0,

P“.L R2 Rc

Rc Rc
— = — = 1 ) and curved beam.
R.L RZ

The stiffness matrix EK(Z)] is

kI2l (E] (.

. ¥ a.n @ ao P anh®a.e [P an P e HHaae (P aan P aan

K2 et o2

(2.2 2. a0 s P e [ e B e [ e P aae K aan [HPaas

7

L2 oo [P [P oan

o |a P 0 [P aniat® ot

e [P oan [P o W an

2o I enla® o [ n | e [ an i ean [ e [P e

E T R P PP Pl L PR TR T REY

t3.11)

(FrearTaIc) e e n ] e em | 2 e o (P wan [k

L] [t ]

Y| P | 2P aam o [ (xP ean

s | 22w | T e [P [P0

it

(%] K

xem wao |8 [x P ean

1at® oo | goan| 61 (10,12

&2 12,22 & 21,220

w13, 129

(B.1)

Patt
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where 23
- 2B b 39ae_-
km(l,l) -'55;(1\14- L. 12 ) + — 12
R R, 105t 2
' 2B D, Sae ZB
kP (1,2 = -2 (a, v e A5y e —2SE
Rl Pj. oo 70tc-
1 5
. 2B D lla e 2B
k(2)(1,3)-i—0(;\1+ L, 12)4- _ 12c
: Ry R® . 210t
c
) . 2 2
(2) 1 28, D 13a'e) B,
k (1;4)=r6'(31+ + 2}- 3
- S RO 420t
3S%ae. e .B
k(2) (1,5) = - 1 g c -
105t
c
9ae_e B
kP .6 = - 228 .
70t
. -
' llaze e B
k(2) @7 = - 122 c
210t
c
13a2e e B
k(.Z) (l,ﬁ%) = — 1 g c
420t
[
A B e.e B
R A e
R
A B e.e 3
£ (1.10) =_%(_1_+ 12) _a 32c
R
D A B. | ae.e B
k(Z)(-]_,J_;L) = —%(_Bl + =2 - ;0 (—1-1-——12 ) - —23c 32c
B R 10t_
1,12 = - @1 :
k(z) (2,2) = k(z) (1.1
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kfz)(Z,B).; - k‘Z)(i,Ql : | .
k(2,4 = -k @, ' ;
kP s =P ae
¥ (2,6 = xP (1,5 )
P 2,7 = -xP a8
k(z’(z,a) =-x2a,n
P 2,9 = - ¥ .20
k@ (2,10 = - ¥ @,9
2,10 = - P @,
K (2,12) = (1,11 )
(2) 2a 2, b a3ei Be
R = O e - ) —=
3 2
£ (3,8 = - So(a :il . Dlz e zc
| Ry 140t _
3,5 =@ a,n
23,6 = - @,e
@ (3,7 = - a3ele22c
105t _ ,



' : a3e e B
k(2) (3,8) ==~ L .22?
N l40tc

(2

x? (3,9 = - k¥ 11

kP 300 =P a1

P

(2) 1 1
k (3,11) = 2 { Bl + )

E

D

(2) .1 Dy, 2
k7 (3,12) > ( B.‘L + ) + (

!

f
.

(24,4 = k(z)(3'L)

I';(2)

k(z)ﬁ4.5) = (1,8)

kP8 = -,

ktz)(4;7) = k(z)(3p8)

k(2)

k2 (4,8) = (3,7

e

‘2 (4,9 (1,12)

(4,10) = - k(Z)(l,ll)

/\/—.b"\
////;(2)(4,11) =- x? (3,12)
e ~

/ :
. k(Z)(4512) = - k(z)(3,ll)

k(2)

———

e

(2) _6_
k (5,5) = Sa

. . PR
a2 f}_ Bl - a ele.3Bc

+
R e

D 39ae_ 2B
2 + 2 T
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(a,+ o +

)
2 2
R2 lOStc
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‘ ' 2B_ - D Sae 28
k(Z)(S,S)--S—(.Az R.2_|_ 22)+ 22c
- . 2 70t N
(2" 1 22 D2 lla e 2B
kP s,n =is(a, s 225 4
: 2 RS 2101: _
2 2
@) N z, o, 13a%,%_
k% (5,0 =55 (A, + 2 e 25 - <
: R R, 420t
A B e .e B
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2w 2t_
A. B e eB
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2 Rz 2tc
D ' A B ae_e B
ks = - 208, ¢ 22 _E(_z 2oy v 238
2 2 R, 10t
L (2) '
(5.12) = - x? (5,11)
X 6,6 = k2 (5,5)
% e = - k(.8
6,8 = - k¥ (5,7
% 6,9 = - k% (5,10
2 6,20) = - k¥ (5,9).
? (6,11) = - x'¥ (5,11
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”(77)--—(n sz 22 .
SRR v
( 232 D2 3.33 23
(73)"-—(1\ —p =) -
30 2 R, | Rzz T Teot
(7,9 = - x¥(s,11)
k2 (7,100 = k¥ 5,11y
D
t2) =1 -2
77,1 > ( 32 + Rz )
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2 2 R 60t
(2 (8,8) = k2 (7.7)
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A. A
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A B
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The stiffness matrix [K'°'] is

-
M | 2P aa [P |2 Pase | Paas [ ae [P aun [P ame [P o [ sPPaae
¥ PP e [P ey [ SMaa | P en [ Pee [KPan 2P [P an [ HPaan ;
oy (2P e [ Pon [Poe [ Pas [Pae BPon Pos [ Pas {$Poae
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(3)

k32,10 = - x
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(4) . .

. The _stiflfness-matrlix: [K*'7T is
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