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ABSTRACT

Human YVH1 is an atypical dual specificity phosphatase (DSP) that is widely 

conserved throughout evolution. Deletion studies in yeast have suggested a role for this 

phosphatase in regulating cell growth, sporulation, and glycogen accumulation. However, 

the functional role of the human orthologue is unknown. This study examines the 

interaction between hYVHl and a recently identified binding partner Hsp70, in addition 

to deciphering domains and motifs important in hYVHl localization. The results 

established that the zinc binding domain mediates the subcellular targeting of hYVHl. 

Moreover, a putative nuclear export sequence was identified to have some effect on the 

shuttling of hYVHl between the nucleus and cytoplasm. Hsp70 and hYVHl were found 

to be colocalized to the perinuclear region following heat stress. Furthermore, hYVHl 

expression repressed heat shock induced cell death. The results suggest that hYVHl 

cooperates with Hsp70 to positively affect cell viability by targeting the MAPK signaling 

pathway.
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CHAPTER 1

Introduction

1.1 Cellular Phosphorylation as a Post-translational Modification

Covalent alterations to amino acid residues of proteins are defined as post- 

translational modifications. It is because of this process that the number of unique forms 

of proteins is larger than anticipated by genome analysis [1]. It is estimated that about 

5% of the higher eukaryotic genome codes for enzymes which specifically contribute to 

this process [1]. Examples of post-translational modifications include methylation, 

carboxylation, acetylation, glycosylation, ubiquitination, and phosphorylation [1 ].

Phosphorylation is an essential mechanism necessary for many aspects of cellular 

function including cell growth, signal transduction, cell cycle progression, cell 

metabolism, and gene expression [2]. The two enzyme superfamilies responsible for this 

reversible modification of the phosphorylation mechanism are protein kinases and protein 

phosphatases [3]. Protein kinases catalyze the transfer of a y-phosphoryl group from a 

molecule of adenine triphosphate (ATP) onto a serine, threonine, or tyrosine residue of 

the target molecule [3, 4]. Phosphatases act reversibly and dephosphorylate target 

molecules by removing the phosphate group and returning the molecule back to its 

original conformation [3].

The conformational change accompanying the phosphorylation/ 

dephosphorylation process occurs through the negatively charged oxygen atoms on the 

phosphoryl group. This addition of negative charge causes alterations in the surrounding 

environment of the substrate molecule either by forming stabilizing electrostatic 

interactions with positively charged amino acid side chain groups or by disrupting

1
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hydrophobic regions of the protein. It is through these interactions that a change in 

conformation of the target molecule occurs as well as an accompanied alteration in its 

biological activity.

The reversible process of phosphorylation, catalysed by protein kinases and 

phosphatases permits the control of a variety of proteins, lipids, nucleotides, and 

metabolic intermediates [5]. For instance, phosphorylation/dephosphorylation can 

increase or decrease a protein’s biological activity, stabilize or indicate a protein for 

destruction, or mediate protein-protein interactions [6 ]. However, it would be false to 

presume that kinases and phosphatases act constitutively. Both protein families are under 

tight control by regulatory subunits, inhibitors, and post translational modifications [3]. 

When this control is disrupted or an error in the coding sequence or folding of a kinase or 

phosphatase occurs, a number of different types of disorders can arise including various 

forms of cancers, metabolic and immune disorders, and neurodegenerative diseases [7-9]. 

Therefore, both kinases and phosphatases are a vital class of enzymes to study in order to 

gain insight, understanding, and perhaps even an approach of treatment for a number of 

human diseases. However, in comparison to the study of kinases, research regarding the 

equally important phosphatase family is lagging.

1.2 The Phosphatase Family

Phosphatases can be classified into two main families; the Ser/Thr-specific 

phosphatases and the Tyr-specific phosphatases [2],

The Ser/Thr phosphatases dephosphorylate Ser and Thr residues exclusively. 

They are metalloenzymes that contain two divalent metal ions (eg. Fe2+ and Zn2+/Mn2+) 

within its catalytic site [10]. Mechanistically, a water molecule is bound to one of two

2
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metal ions and is responsible for the nucleophilic attack of the phosphorous atom on the 

phosphate group [10]. The metal acts as a lewis acid and can enhance the nucleophilicity 

of the metal-bound water molecule [10]. A conserved histidine residue is responsible for 

donating a proton to the leaving group oxygen of the serine or threonine residue side 

chain and site-directed mutagenesis of this histidine indeed shows a loss of catalytic 

activity [10-12]. This dephosphorylation mechanism functions in a one-step SN2 

reaction where no phosphoenzyme intermediates are detected.

In contrast, the protein tyrosine phosphatases (PTP), which are characterized by 

the presence of a conserved active site motif, CX5R, follow an entirely unique 

mechanism that requires the formation of a phosphoenzyme intermediate complex [13]. 

PTPs catalyze a two step dephosphorylation mechanism. The first step involves the 

nucleophilic attack of the phosphorus atom on the substrate molecule by the active site 

cysteine, which forms a covalently bound phosphoenzyme intermediate [14, 15]. 

Simultaneously, a strategically placed general acid residue, usually an Asp residue, 

contributes a proton to the oxygen of the leaving group on the substrate molecule, which 

becomes free to leave the active site [13]. During the second step, the same Asp residue 

behaves as a catalytic base to remove a proton from a water molecule and activating it as 

a nucleophile. The nucleophilic attack of the phosphoenzyme intermediate causes the 

release of inorganic phosphate and the regeneration of the active site of the phosphatase

(Fig-1) [13]-

3
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Cys—S—P"TP
W l V '»0(H)

Asp

Cys— ST

Figure 1 -  Catalytic mechanism of protein tyrosine phosphatases [13]

The two step mechanism of dephosphorylation via a protein tyrosine phosphatase requires first 

the nucleophilic attack of the phosphate group by the catalytic cysteine and a proton donation 

from an acid to neutralize the negatively charged oxygen on the substrate molecule and second 

the base catalysis of the removal of a proton on a water molecule to form a nucleophile that 

readily attacks the phosphoenzyme, forming inorganic phosphate and regenerated phosphatase.

4
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1.3 Classification of Protein Tyrosine Phosphatases

Further investigation of PTPs reveals the discovery of 107 genes within the 

human genome that encode for these proteins [5]. This number was much higher than 

anticipated, based on the 90 genes encoding protein tyrosine kinases [5, 16]. The 

apparent discrepancy can be reasoned through the realization that of the 107 genes, 13 

dephosphorylate inositol phospholipids, 2 dephosphorylate mRNA, and 11 are considered 

catalytically inactive, which leaves 81 catalytically active PTPs [5]. This number is 

much more fitting when compared to the 85 known catalytically active protein tyrosine 

kinases [5].

Within the 107 members of the PTPs substantial variation exists and therefore 

they are further classified into three major groups; the classical PTPs, the lipid-specific 

PTPs, and the dual specific PTPs [5]. This classification is based on the amino acid 

sequence of their catalytic domains and their subsequent substrate specificity. However, 

despite the differences in primary sequence, there does exist high similarity of secondary 

and tertiary structure within the catalytic domains of each of the subgroups [17-19]. For 

instance, the environment surrounding the PTP signature motif, CX5R, includes several 

important helices containing conserved amino acid residues [20]. Examples include the 

P-loop, containing the PTP signature motif and the WPD loop that carries the Asp residue 

involved in acid-base catalysis [9, 20]. The P-loop is conserved amongst all PTP 

members, while the WPD loop is specific to the classical PTPs [21].

The classical PTPs are a group of 38 tyrosine specific phosphatases that are 

further divided into receptor-like proteins (RPTPs), non-receptor-like proteins (NRPTPs), 

and low molecular weight phosphatases (LMPTP) [5, 22]. The RPTPs contain an

5
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extracellular domain, a single transmembrane domain, and one or two intracellular 

phosphatase domains [23]. Members of this family include CD45 and PTPa, both of 

which are able to dephosphorylate members of the Src-family tyrosine kinases that have 

key functional roles in processes including cell differentiation and proliferation [23, 24], 

The NRPTPs constitute most of the remaining tyrosine-specific phosphatases that do not 

contain a transmembrane domain and hence reside in the cytoplasm [5]. PTP IB is a 

member of the NRPTPs and has been demonstrated as a negative regulator of insulin 

signaling [25, 26]. The final group of classical PTPs are the 18 kDa, LMPTPs and while 

this class may have very low sequence similarity to the other classical PTPs, it does 

contain the conserved active site motif, implying a similar catalytic mechanism [27-29]. 

These phosphatases have been shown to dephosphorylate a number of growth factor 

receptors, thus influencing cell division [29].

The second group of PTPs are the lipid specific phosphatases, which are 

responsible for the dephosphorylation of the D3-phosphate of inositol phospholipids [30]. 

These phosphatases are allotted into two different subgroups, PTENs and myotubularins. 

PTEN members are responsible for the dephosphorylation of phosphatidyl-inositol-3,4,5- 

trisphosphate on the plasma membrane and is mutated in a high percentage of cancers, 

while myotubularins mainly dephosphorylate phosphatidylinositol-3-phosphate of 

internal cell membranes and loss of function mutations cause myotubular myopathy and 

Charcot-Marie-Tooth disease [5, 30-32].

The final and most diverse group of PTPs are termed dual-specific phosphatases 

(DSP); this name denotes the group’s diverse substrate specificity for serine/ threonine 

and tyrosine phospho-residues [5]. Members of the DSP family can be further

6
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subdivided into unique subgroups. The first, known as the mitogen-activated protein 

kinase phosphatases (MKPs), are characterized by their specificity for the pTXpY 

signature sequence of mitogen-activated protein kinases (MAPKs) [5, 33, 34]. Another 

well characterized group of DSPs are the CDCs, which participate in the regulation of the 

cell cycle [5]. Meanwhile, the last major subgroup, known as the atypical DSPs, are 

poorly characterized, but are not thought to target MAPK or cell cycle regulators [5].

1.4 The Saccharomyces cerevisiae Homologue of VH1

The first identified DSP, VH1, originates from the HI open reading frame of the 

vaccinia virus and has been shown to dephosphorylate a viral histone-like protein 

required in the replication process of the virus life cycle [14, 26, 35]. The yeast 

homologue of VH1, commonly known as YVH1 or DUSP12, was the first eukaryotic 

DSP classified and falls under the atypical subclass of PTPs [36]. Functional studies 

have shown that under various stress conditions, such as nitrogen starvation or cold 

shock, YVH1 mRNA expression is significantly induced [36, 37]. Also, deletion of the 

yvhl gene results in defects relating to spore maturation, glycogen accumulation, and 

vegetative growth [38, 39]. In yeast cells expressing yvhl mutants, spore development is 

initiated, but occurs much slower and seldom compared with wildtype strains [38]. 

Through examination of dityrosine production, a late event of spore maturation, it was 

demonstrated that yeast strains containing yvhl mutants did not complete the sporulation 

process [38]. This phenotype was found to be genetically independent of the growth 

defect demonstrated by upstream suppression experiments [38]. Regarding glycogen 

accumulation, wildtype yvhl strains of yeast demonstrate increased glycogen 

accumulation during the S phase of the cell cycle, however mutant strains failed to

7
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Phosphatase Superfamily

Ser/Thr Phosnhatase

Classical

Receptor PTPs

Non-Receptor PTPs

Low MW PTP

Tyrosine Specific Phosphatase

Lipid Specific Dual Specific

PTENs

Myotubularins

MAP kinases

■Atypical DSPs

CDC PTPs

Figure 2 - Classification of the Protein Tyrosine Phosphatase Family

The protein tyrosine phosphatase family is further classified into subgroups based on amino acid 

sequence of the catalytic domain and substrate specificity, however, despite differences all members 

within this group share the signature catalytic motif, CX5R, and the ability to dephosphorylate 

phospho-Tyr residues.

8
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produce this event [39]. Surprisingly, these defects were recovered in yeast cells 

expressing a catalytically inactive YYH1 variant, where the conserved Cys residue was 

mutated to a Ser, as well as in cells expressing a YVH1 deletion mutant possessing only 

the C-terminus of YYH1 and completely lacking the phosphatase domain [39]. Oddly, 

this implies the YVH1 phosphatase activity is not required for the aforementioned 

phenotypes [39]. One possible explanation for this peculiar observation is that the C- 

terminus is the binding domain for the substrate, thus, instead of dephosphorylating its 

substrate, the variant forms of YVH1 are simply inactivating its substrate by direct 

binding [40].

Additionally, the yvhl gene and its mouse orthologue have both demonstrated 

modified mRNA expression in response to the cell cycle [41, 42]. The expression of the 

yvhl gene was down regulated in yeast cells synchronized to the G2 phase of the cell 

cycle [41]. Moreover, the mRNA expression of the mouse orthologue of YVH1 in NIH 

3T3 cells was highest in cells synchronized to the Gl/S interface and dropped during the 

G2/M phase [42]. Therefore, like the CDC DSPs, YVH1 may participate in a regulatory 

role within the cell cycle.

As for the exact identification of YVH1 regulators, yeast two-hybrid studies have 

revealed the yeast pescadillo homolog, YPH1 as a potential candidate [43]. The YPH1 

protein has been shown to be involved in the cell cycle progression of yeast and found to 

bind directly to the catalytic domain of YVH1 [43, 44]. However, as of yet, this 

interaction has not been demonstrated with full length YYH1 nor in vivo and no 

functional significance has been assigned to the pair [43, 44]. Another more recent study 

in the malaria parasite, Plasmodium falciparum, have identified that the P. falciparum

9
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orthologue of pescadillo interacts with the P. falciparum orthologue of YVH1, but again 

no functional significance of this interaction was determined [45].

1.5 The Homo sapien Orthologue of YVH1

The conservation of YYH1 orthologues throughout evolution was further 

established by Muda et al. which demonstrated that the human orthologue of YVH1 

(hYVHl) was able to rescue the slow growth phenotype in yeast cells expressing the 

yvhl disruptant gene [40]. Sequence alignments also showed that hYVHl shares an 

overall sequence identity of 31% with YVH1 [40].

Structurally, hYVHl is 340 amino acids long with a molecular weight of 37,687 

Da [40]. It consists of two domains, the first is the N-terminal, DSP catalytic domain, 

containing the conserved signature motif and the second is the unconventional C- 

terminal, zinc binding domain [40]. The zinc binding domain consists of two zinc 

fingers, each coordinating one zinc molecule through the amino acid residues C2HC and 

C4 [40, 45]. The seven cysteines and one histidine responsible for zinc coordination are 

very highly conserved in all YVH1 orthologues including S.pombe, C.elegans, and 

P.falciparum [40]. Yet, despite this preservation throughout evolution, little is known 

about its actual function. However, it is generally agreed that the zinc finger is crucial for 

the in vivo activity of hYVHl [40],

Hoping to gain functional insight regarding hYVHl, Muda et al. probed for 

mRNA in various human tissues [40]. It was found that this phosphatase was 

ubiquitously detected in most tissues, with higher levels present in the spleen, testis, 

ovary, and peripheral blood leukocytes while low levels were found in the lung and liver 

tissue samples [40]. This result highlights that not only is hYVHl highly conserved

10
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throughout evolution, but it is also expressed in various tissue types, implying a basic yet 

crucial functional role.

Recently, through the use of fluorescence in situ hybridisation studies (FISH) 

combined with microarray analysis, it was determined a number of sarcomas and 

ependymomas showed amplification in the chromosomal region Iq21-lq23, where the 

hyvhl gene is located [46, 47], Further analysis revealed that the hyvhl gene was indeed 

overexpressed in these forms of cancers [46].

More recently using mass spectrometry, our laboratory has discovered an 

interacting partner for hYVHl identified as heat shock protein 70 (Butt, unpublished), 

which itself has been implicated in a number of cancers [48]. Characterization of this 

interaction will likely be crucial in the elucidation of the functional role of hYVHl.

1.6 Heat Shock Protein 70

The heat shock protein 70 (Hsp70) is thought by many to be the most conserved 

protein in evolution [48-51]. Found in all organisms ranging from archaebacteria to 

humans, Hsp70 remains conserved in amino acid sequence as well as functional role 

throughout all species [48, 52-55]. It was shown in various cell types that subjection to a 

mild heat shock stress prior to a severe heat shock provided a protective effect for the 

cells, thereby linking the induction of Hsp70 to cell survival [56-58]. In 1984, it was 

suggested by Hugh Pelham that the protective effect of Hsp70 could be attributed to its 

ability to aid in the catalysis of the refolding of damaged proteins, otherwise referred to 

as its chaperone effect [52]. However, today it has become clear that Hsp70 has roles 

beyond its chaperone activity and it has been linked to other functions including; 

transportation of proteins, degradation of unstable proteins, and apoptosis [48],
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The human Hsp70 family consists of eight members that differ slightly from one 

another in amino acid sequence, expression levels, and localization [59]. Members of the 

human Hsp70 family consist of three main domains; a conserved ATPase domain, which 

binds and hydrolyzes ATP, a peptide binding domain, and the C-terminal domain, which 

contains an EEVD motif for binding co-chaperones and other Hsp molecules [48].

All members of the hsp70 family perform as molecular chaperones through the 

ability to recognize and bind to long stretches of hydrophobic amino acids exposed from 

incorrect peptide folding [48]. Hsp70 can bind to these regions using its peptide binding 

domain to help refold the molecule into its proper conformation [48, 60], Another 

important function of hsp70 is its ability to regulate the shuttling of various proteins 

between the cytoplasm and nucleus [61]. Hsp70 has been shown to stabilize the complex 

responsible for importing proteins into the nucleus as well as itself containing a sequence 

known to cause nuclear localization [61].

1.7 Nuclear/Cytoplasmic Shuttling

The cellular machinery responsible for the active translocation of proteins 

between the nucleus and cytoplasm act through nuclear pore complexes (NPC) found 

within the nuclear envelope [62]. Proteins belonging to the karyopherin family, 

otherwise known as the importin/exportin family, associate with the NPC to transfer 

proteins along the nuclear membrane [63], Proteins targeted to the nucleus usually 

contain a nuclear localization sequence (NLS) composed of several basic amino acids 

that are recognized by importin a [62]. The opposing procedure involves the recognition 

of a leucine-rich nuclear export sequence (NES) by an export carrier protein (eg. CRM1, 

exportin-t, and CAS) [62, 63].
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Many proteins are transported via this cellular mechanism across the nuclear 

membrane [62, 63]. For instance, the human homologue of Hsp70 is able to enter the 

nucleus through its NLS sequence, 2 4 6KRKHKKDISENKRAVRR262, however a 

functional NES has yet to be identified [61]. In addition to self-import, Hsp70 can 

regulate the entry of other proteins into the nucleus, examples include; p53, NF-k B, and 

nucleoplasmin [64-66]. Furthermore, Hsp70 demonstrates involvement in the formation 

and stabilization of the NLS/importin a complex, thereby aiding in the overall 

mechanism of cellular transport [61]. Lastly, during cellular stress conditions, like heat 

shock and oxidative stress, Hsp70 localization shifts to the nucleus and participates in the 

prevention of DNA damage, which is linked to apoptosis [61, 67].

1.8 The Role of Hsp70 in Apoptosis

The cellular function of heat shock proteins directly counters the apoptotic 

signaling pathway. While heat shock proteins help to regulate the protection and ultimate 

survival of cells, apoptosis is responsible for the removal of cells through programmed 

cell death [6 8 ]. Recent studies have demonstrated that the protective outcome of the heat 

shock proteins is partly due to their ability to suppress apoptosis within cells [69]. 

Overall, apoptosis signaling is an extensive process with various routes, eliciting a 

common response of controlled cell suicide. Despite the vast number of signals that 

result in this type of cell death, the morphological changes characterized by apoptosis 

remains the same. Apoptosis is recognized through specific physical phenotypes 

including membrane blebbing, chromatin condensation, and nuclear fragmentation [6 8 ].

The first implication of the involvement of Hsp70 in cell protection was the effect 

that mild heat shock protected cells from subsequent and more severe heat shock stress
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[70]. The cells were shown to defend against apoptosis and this resistance was seemingly 

related to an induction of Hsp70 [71]. Through ample evidence it has been revealed that 

Hsp70’s involvement in the obstruction of apoptosis modulates the mitochondrial 

mediated pathway (Fig.3) [6 8 ]. This pathway involves the disruption of the outer 

mitochondrial membrane, leading to the leakage of cytochrome c into the cytoplasm [72]. 

Cytochrome c binds to the caspase recruitment domain (CARD) of the Apaf-1 protein, 

which oligomerizes in the presence of dATP/ATP and recruits initiator caspase, 

procaspase-9 [6 8 ]. The association of procaspase-9 with Apaf-1 activates caspase-9, 

which is now able to recruit and cleave procaspase-3 [6 8 ]. Activated caspase-3 directly 

acts upon hundreds of substrates and it is responsible for many of the morphological traits 

as well as actual cell death that are associated with apoptosis [73]. The release of 

cytochrome c from the mitochondria is regulated by the Bcl-2 family of pro-apoptotic 

and anti-apoptotic proteins [74]. Bax is a pro-apoptotic member of the Bcl-2 family and 

when activated is able to integrate itself into the outer mitochondrial membrane causing 

permeabilization [74]. Currently, it is unclear as to how Bax gets activated in response to 

stress, but it is clear that its activation results in cytochrome c release and ultimately 

apoptosis.

The apoptotic inhibitory action of Hsp70 is not yet fully characterized, but it has 

been shown to be involved along multiple points within the mitochondrial mediated 

pathway of apoptosis. Hsp70 is thought to directly bind with the CARD domain of Apaf- 

1 and inhibit the formation of the apoptosome, which is the protein complex comprising 

of Apaf-1/procaspase-9/cytochrome c [72]. On the other hand, Hsp70 was also 

discovered to inhibit apoptosis upstream of mitochondrial permeabilization through the
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prevention of Bax translocation [74], However, Hsp70 does not directly bind to Bax, but 

instead represses signals responsible for its activation [74]. Such signals may include the 

ERK and JNK signaling pathways, which are able to regulate members of the Bcl-2 

family [74]. ERK has the ability to phosporylate the Bcl-2 protein, Bim and upon 

phosphorylation Bim can no longer associate and activate Bax [74]. Additionally, JNK 

associates with Bim and furthermore inactivates the anti-apoptotic protein, Bcl-2 [74]. 

Also, JNK phosphorylates the 14-3-3 protein, which usually associates with Bax 

sequestering it in the cytoplasm, therefore, upon 14-3-3 phosphorylation, Bax is released 

and able to interact with the mitochondria [74].

The role of Hsp70 in apoptosis is not limited to the caspase-dependent pathway 

described above. For instance, Hsp70 can bind directly to the apoptosis inducing factor 

(AIF), which is a mitochondrial intermembrane flavoprotein, and prevent chromatin 

condensation and apoptosis that is usually associated with this protein [75]. Also, Hsp70 

can control the activity of enzymes involved in apoptosis, like poly-ADP-ribose 

polymerase (PARP) and phospholipase A2 (PLA2) [76]. Hsp70 downregulates PARP, 

which is a substrate of caspase-3 involved in activating apoptosis, as well Hsp70 can 

prevent TNFa induced apoptosis by inhibiting the activation of PLA2 [76, 77]. Overall, 

the protective effects of Hsp70 are decidedly beneficial in aiding stressed cells to resist 

apoptosis, however, the overexpression of Hsp70 is also, not suprisingly, linked to a 

number of cancers [48, 78]. The involvement of Hsp70 in apoptosis is undoubtedly 

complicated and further adding to this complexity is the pro-apoptotic functions of Hsp70 

[78, 79]. One example of such function is the association of Hsp70 with IkB kinase 

(IKK)
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Figure 3 - Schematic of Hsp70 in the Mitochondrial Mediated Pathway of Apoptosis [68]

Upon the initiation of apoptotic signals A, Hsp70 can initially prevent the permeabilization o f the 

mitochondria via the inactivation o f the JNK signaling pathway through the stabilization o f  JNK 

inactivating phosphatases. However, once permeabilization of the mitochondria occurs apoptosis 

can still be prevented by Hsp70 through B, the blocking o f cytochrome c release, C, the inhibition 

of the formation o f the apoptosome, as well as even D, blocking apoptosis downstream of activated 

caspase-3 substrates.
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to inhibit its activation of NF-kB anti-apoptotic gene induction [79]. The role of Hsp70 

within apoptosis is still being unravelled, however, its importance is widely accepted.

1.9 The Mitogen-Activated Protein Kinase Signalling Pathway

The mitogen-activated protein kinase (MAPK) pathway is the mechanism used by 

cells to translate external stimuli, like hormones, growth factors, and environmental 

stresses into internal responses including cell proliferation, differentiation and apoptosis 

[34, 80]. There are three distinct subgroups defining this largely complex pathway; two 

are stress-induced -  SAPK/JNK and p38 -  while the third is the mitogen activated ERK 

pathway [81]. The regulation of the MAPK pathway is attributed to a cascade of 

phosphorylation, which leads to the eventual activation of the MAPKs, ERK, JNK, and 

p38. Upon activation, the phosphorylated forms of these proteins can relocate from the 

cytoplasm to the nucleus, where they are able to further activate transcription factors and 

alter gene expression [82]. Directly upstream from these MAPKs are a family of dual 

specificity kinases that phosphorylate the TXY motif, thereby activating the MAPKs, 

these enzymes are commonly referred to as the MAPKKs (MAP2K) [83]. Existing 

upstream from the MAP2Ks is a family of Ser/Thr kinases termed MAPKKK (MAP3K) 

that activate their MAP2K substrate by phosphorylating two residues of either serine or 

threonine found in its activation loop [83]. There is great diversity in the MAP3K family 

of kinases allowing for these pathways to be activated by and respond to diverse 

environmental stimuli [83].

The first subgroup of the MAPK pathway is the extracellular signal regulated 

kinase pathway (ERK), involved mainly in cell proliferation and differentiation [84]. An 

important stimulus of the ERK pathway are growth factors, and when these molecules
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bind to receptor tyrosine kinases, the kinases are able to activate themselves through 

autophosphorylation [84]. The activated receptors can interact with adaptor proteins, 

which bind to Ras [84]. Ras-GTP can further activate the Ser/Thr kinase Raf, which 

phosphorylates the dual specificity MAP2K, MEKK1. MEKK1 directly interacts with 

ERK and phosphorylates Thr 183 and Tyr 185 [84]. While the activation of ERK is most 

commonly connected to the promotion of cell proliferation and differentiation, more 

recently, evidence has shown under some circumstances ERK can be linked to the 

promotion of apoptosis and cell cycle arrest [84], Activated ERK has a number of 

substrate targets including transcription factors such as c-Jun, c-Fos, Elk-1, ATF-2, and c- 

Myc, as well as cytoplasmic targets such as phospholipase A2 and ribosomal S6 kinase 

[84].

The two remaining subgroups of the MAPK pathway are the c-Jun N-terminal 

Kinase / Stress Activated Protein Kinase (JNK / SAPK) and the p38 pathway. Unlike the 

ERK signalling pathway, these two branches require a stress stimulus for activation. 

Activating stresses include UV irradiation, oxidative stress, heat shock, inflammatory 

cytokines and osmotic shock, which in turn triggers a set of MAP4Ks, MAP3Ks, and 

MAP2Ks specific to JNK and p38 [85]. Targets for the JNK pathway include 

transcription factors c-Jun, ATF-2, Elk-1, p53, DPC4, Sap-la, NFAT4, while p38 targets 

consist of PLA2 , ATF-2, Sap-la, Pax6, CHOP, CREB, and GADDI53 (Growth Arrest 

DNA Damaging transcription factor 153) [85]. The JNK pathway is most commonly 

associated with a pro-apoptotic role within mitochondrial dependent apoptosis as 

mentioned earlier. However, JNK has other functions such as encouraging cell 

proliferation. For instance, the JNK target transcription factor, c-jun, has been
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demonstrated as essential for the transition of cells from G1 phase to S phase during the 

cell cycle [86]. Fibroblast cells exhibiting a JNK isoform knockdown show a decrease in 

cell density as well as a slowness of growth, which relates to an overall defect in cell 

proliferation [86]. Briefly, p38 is involved in an array of functions including apoptosis, 

adipocyte and neuron differentiation, proliferation, development and inflammation [86]. 

The p38 pathway is known to induce apoptosis through the activation of phospholipase 

A2, negatively regulate cell cycle progression through downregulation of cyclin D1 

expression, and is required in the cdc-42 induced cell cycle arrest at the Gl/S phase [86].

1.9.1 -  The role of Hsp70 in the MAPK Pathway

The role of chaperone proteins within the MAPK pathway is of great interest and 

while some links have been made, there is still much to be discovered. Notably, Hsp70 

interacts with co-chaperone Bag-1 and prevents it from binding to Raf-1 [87]. The 

Bagl/Raf-1 complex is an activator of ERK, hence Hsp70 can lead to a decrease cell 

proliferation [87]. A change in ERK expression levels is also linked to the cell cycle 

[88]. More specifically, ERK has shown to affect the cdc2/cyclin B complex, which is 

necessary for M phase progression [88]. The actual influence of ERK is contradictory, 

differing with experimental conditions [88]. In NIH 3T3 cells and Xenopus eggs, ERK 

activation was shown to aid in the progression of the cell cycle, specifically in the NIH 

3T3 cells, blockage of ERK activation was associated with a delay in nuclear 

translocation of cyclin B [88]. However, in alternate study using Xenopus egg and 

fertilized egg, ERK was found to suppress cdc2 activation and block cell cycle 

progression [89]. Interestingly, a testis-specific Hsp70 molecule termed Hsp70-2 was 

found to interact with cdc2 to promote the formation of the cdc2/cyclin B complex and
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promote cell cycle progression [84]. It has not been established whether Hsp70 has an 

effect on ERK within the cell cycle or vice versa, but it is exciting to note that both 

proteins target the same cell cycle regulator.

The p38 pathway has important functions within cell immunity. In response to 

heat shock or necrotic cell death, an increase in Hsp70 is present and binds to 

macrophage receptor proteins, such as CD40 [90, 91]. The interaction between Hsp70 

and CD40 causes an upregulation of the p38 pathway, which is a known activator of 

phagocytosis [90, 91].

The main role of Hsp70 in the JNK pathway involves the regulation of 

phosphatases that deactivate JNK and therefore prevents apoptosis in a number of cellular 

contexts [92].

Overall, each segment of the MAPK pathway participates in a multitude of 

cellular processes and the regulation directing its action is dependent on a number of 

factors including, cell type, cell environment, stress conditions, and isoform specificity 

[84, 88]. It is apparent there is a great deal of overlap and crosstalk existing between the 

MAPK pathways and the equilibrium maintained in each regulatory step is crucial for 

normal cell homeostasis.

1.9.2 The Role of dual specificity phosphatases in the MAPK Pathway

As mentioned previously, a family of phosphatases associated with the 

dephosphorylation of MAPK members are termed the MAPK phosphatases or MKPs. 

These phosphatases recognize and dephosphorylate the pTXpY signature motif found on 

activated ERK, JNK, and p38 [34]. The MKPs can be further divided into three families 

based on their accessory domains and MAPK specificity [34], The dephosphorylation of
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simply one residue of the pTXpY motif is sufficient for the deactivation of MAPKs [93]. 

For instance, the Ser/Thr-specific phosphatase PP2A and the Tyr-specific phosphatase 

STEP were both shown to dephosphorylate and inactivate ERK in PC 12 cells [93]. 

However, most of the literature regarding the dephosphorylation of MAPKs focuses on 

the dual-specific-MKPs.

It has been demonstrated that 13 DSPs can be classified into MKPs due to their 

association with the dephosphorylation of MAPKs, and can be further divided into four 

groups based on structure and function [34], Type I MKPs only contain the DSP 

catalytic domain and consist of three members, VHR, DSP2, and MKP6, where YHR and 

MKP6 are ERK/JNK specific and DSP2 is p38/JNK specific [34, 94]. The remaining 

MKPs contain a MAPK binding domain (MKB), which acts as a docking site between 

MKPs and their corresponding substrate [34]. A substrate-induced activation model is 

suggested to describe the mode of binding between MKPs and their MAPK substrate 

[34]. It is believed in the absence of substrate the DSP catalytic domain is inactive, 

however, upon the binding of MKPs to its phosphorylated MAPK substrate through the 

MKB domain, a conformational change occurs [34]. This rearrangement allows the 

catalytic site to adjust to an active formation (Fig.4) [34]. Type II MKPs contain an 

MKB domain located at its N-terminal as well as a DSP catalytic domain [34]. Identified 

members of this group include the p38/JNK specific MKP1 and the ERK specific MKP3 

and PAC1 [34]. Also belonging to this group are MKP2 and MKP4, which are able to 

dephosphorylate all three MAPK pathways and the poorly characterized YH3 and 

PYST2, which have both been shown to dephosphorylate ERK [34]. The type III MKPs 

have only one member, the JNK/p38 specific MKP5, which contain both MKB and DSP
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domains in addition to an N-terminal domain of uncharacterized function [34], This N- 

terminal domain is hypothesized to be involved in protein-protein interactions and could 

possibly be involved in cross-communication between the different MAPK pathways 

[34]. The type IV MKPs contains two JNK/p38 specific members, VH5 and MKP7 [34]. 

In addition to the MKB and DSP domains, type IV MKPs, contain proline, glutamate, 

serine, threonine rich domains (PEST), which is most commonly associated with 

ubiquitin-mediated proteolysis [34].

The MKPs play important regulatory roles by deactivating JNK, ERK, and p38 

signaling and thus participate in the control of important cellular processes. Interestingly, 

the type I MKPs are able to dephosphorylate MAPK members despite the absence of the 

MAPK binding domain and it has been shown to have a preference for phosphorylated 

tyrosine over phosphorylated threonine [34]. This fact permits the possibility that other 

dual-specificity phosphatases with similar sequence or structure to VHR could also 

potentially dephosphorylate MAPKs.

22

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Active MAPK

Inactive MKP Active MKP Inactive MAPK

Figure 4 - Substrate Induced Activation of MKPs [34]

The MAPK substrate of the MKPs is able to allosterically initiate rearrangement of the 

catalytic domain of DSPs in order to instigate its own dephosphorylation.
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1.10 Objectives

The atypical dual specificity phosphatase, hYVHl, is highly conserved and 

widely expressed in human tissues, yet remains poorly characterized. Studies reveal that 

YYH1 orthologues are able to complement one another in gene deletion experiments, 

implying the biological function of this protein is also well conserved. Specifically, the 

YVH1 gene was shown to be involved in cellular growth, sporulation, and glycogen 

accumulation in yeast, however precise biological details remain unknown. Also, a 

recent study found that the gene of the human orthologue of yvhl was amplified in a 

number of malignant sarcomas. Thus far, a well defined physiological role has yet to be 

elucidated regarding hYVHl. This is most likely due to the failure to identify a 

biological substrate, lack of in depth structural characterization, and poor definition of its 

regulation properties. Therefore, one objective of my project is to determine regions of 

hYVHl important for subcellular localization. Additionally, the recent identification of 

Hsp70 as an interacting partner of hYVHl in our lab has permitted examination of 

hYVHl as functioning in cellular stress pathways.

The specific aims of this study are;

(i) To examine hYVHl regulatory motifs mediating its localization

(ii) To confirm the interaction between hYVHl and Hsp70 in vivo

(iii) To determine the functional significance of hYVHl and its interaction with 

Hsp70
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CHAPTER 2

Materials and Methods

2.1 Plasmid Construction

Truncated derivatives of hYVHl were constructed by introducing each cDNA 

fragment into a pFLAG-CMV2 mammalian expression vector. The three hYVHl Zn 

finger deletion constructs, ZnAhYVHl, CT-2, and CT-3, were made using the same sense 

primer, 5’-CGGAATTCGATGTTGGAGGCTCCG-3’, containing an initiation codon 

and an EcoRI restriction site and the antisense primers, 5’-CGTTAAGTCGACTC 

AT GGAT ACTT CTCT GT-3 ’, 5 ’ -CGTT A AGTCG ACT C AAT A AG AT G TACATTG-3’, 

and 5’-CGTTAAGTCGACTCATCCCAACAAAGCAGA-3’, for ZnAhYVHl, CT-2, 

and CT-3, respectively. The antisense primers all contained a stop codon and a Sail 

restriction site. The hYVHl zinc finger domain (catA hYVHl) was constructed by PCR 

amplification using the sense primer 5’-CGGAATTCGGAATTGCAGATT-3’ containing 

an EcoRI restriction site and antisense primer 5’-CGTTAAGTCGACTCATATTTTTCC 

TGTTTGTGA-3’ containing a Sail restriction site. The construction of full length 

recombinant wildtype hYVHl has been previously described [40].

For construction of variants within the potential nuclear export sequence (NES) of 

hYVHl, PCR-based site directed mutagenesis was carried out. The NES variant 

containing one Leu to Ser mutation used the following oligonucleotides: 5’- 

AAGTATCCAGAATCGCAGAATTTACCT-3 ’ and 5 ’ -AGGTAAATTCTGCGATTCT 

GGATACTT-3’, while the doubly mutated Leu to Ser variant used the 5’-GAATCGCAG 

AATTCACCTCAAGAACTA-3 ’ and 5 ’ -G AGTT CTT GAGGT GA ATT CT GCG ATTC-3 ’ 

oligonucleotides. Lastly, all Hsp70 constructs used were a gift from Dr.Frank Sharp at the
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University of California. All above constructs were verified using automated DNA 

sequencing and prepared with either Sigma mini-prep kit or Qiagen maxi-prep kit.

2.2 Cell Culture, Transfection, and Treatments

HeLa cells originating from a human cervical carcinoma cell line were maintained 

in Dulbecco’s modified Eagles medium (DMEM) supplemented with 10% (v/v) fetal 

bovine serum at 37°C and 5% CO2 . Transient transfection of cells was carried out at 50- 

70% confluency using ExGen reagent (Fermentas) according to the manufacturer’s 

protocol. For heat shock treatments, cells were grown at 70-80% confluency, placed in 

incubators at 42°C, 43°C, or 45.5°C and heat shocked and recovered for various time 

periods.

2.3 Cell Fractionation and Cell Lysis

Cell fractionation was performed by pelleting cells, washing with lxTBS buffer 

(20 mM Tris base, 140 mM NaCl, pH=7.6) and resuspending cells in a cold hypotonic 

buffer (10 mM HEPES, pH 7.9, 10 mM KC1, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM 

DTT, and 0.5 mM PMSF) with 0.5% Triton-X. Following a one minute high speed 

centrifugation, the supernatant was collected, labelled cytosolic fraction, and stored at 

-20°C while the pellet was resuspended in a second ice cold buffer (20 mM HEPES, pH 

7.9, 0.4 M NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, and 1 mM PMSF) and 

vigorously rocked at 4°C for 15 minutes. After a five minute high speed centrifugation, 

the supernatant was collected, labelled nuclear fraction, and stored at -70°C.

Whole cell lysate samples were collected following treatment using a hypotonic 

lysis solution (50 mM Tris-HCl, pH=7.4, 1% Triton-X 100, 150 mM NaCl, 0.1% SDS, 

phenylmethylsulfonyl fluoride, and aprotinin). Cells were washed in PBS prior to being
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resuspended in lysis buffer, incubated on ice for 15 minutes, and centrifuged at 15,000 

rpm for 20 minutes. The supernatant was stored at -20°C.

2.4 Immunoprecipitation

Immunoprecipitation was performed using 20 pL of Protein A Agarose resin per 

sample (Invitrogen). The resin was washed twice with 500 pL of lysis buffer before 

being resuspended in 300 pL of lysis buffer and lpg of anti-JNK antibody (Santa Cruz) 

and incubated at room temperature for 45 minutes. Next, the resin was centrifuged at 

4000 rpm for 1 minute and the supernatant was removed. The resin attached to antibody 

was then incubated with fresh cell lysates, prepared as described above, for 2 hours at 

4°C. Following incubation, samples were rinsed twice with wash buffer (50 mM Tris- 

HC1, pH 7.4, 0.1% Triton X-100 detergent, 150 mM NaCl, and 0.1% SDS), resuspended 

in 2 x SDS-PAGE loading dye buffer, heated at 95°C, and stored at -20°C.

2.5 Antibodies and Western Blotting

Protein concentration was estimated using BioRad Protein Assay reagent and 

Bovine Serum Albumin (BSA) standard. Equal amounts of protein were loaded and 

separated by SDS-PAGE and transferred onto a polyvinylidene difluoride membrane 

(Millipore). Levels of hYVHl were detected using a polyclonal anti-hYVHl serum 

antibody at a 1:1000 dilution in 3% BSA. Recombinant protein expression was 

determined using a monoclonal flag antibody (Sigma) at a 1:1000 dilution in 5% milk in 

TBST buffer. Endogenous hsp70 levels were detected using a polyclonal anti-Hsp70 

antibody (Santa Cruz) at 1:200 in a 5% milk TS solution (150 mM NaCl, 13 mM Tris 

base) and recombinant hsp70 protein expression was determined using a polyclonal anti- 

his antibody (Santa Cruz) at 1:200 in 5% TS milk solution. Active MAPK levels were

27

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



determined using anti-phospho-ERK and anti-phospho-JNK antibodies at a 1:2000 

dilution. Antibodies were obtained from Cell Signalling and blots were incubated as per 

manufacturer’s protocol. The corresponding inactive MAPK antibodies, anti-ERK and 

anti-JNK, were incubated in 5% TBST milk at a 1:5000 dilution (Sigma). Lastly, 

fractionation control antibodies, anti-actin (Sigma) and anti-laminB (Santa Cruz) were 

used at a 1:5000 dilution in 5% milk TBST solution and a 1:200 dilution in a 5% milk TS 

solution, respectively. Following overnight blocking in 5% milk, primary antibodies 

were incubated with blots for one hour, except in the case of the anti-phospho-MAPK 

antibodies and anti-laminB, where a 1 hour blocking and overnight primary incubation 

was used. Bound primary antibodies were detected with a horseradish peroxidase- 

coupled secondary antibody at a dilution of 1:5000 for all blots (Biorad, Santa Cruz, 

Vector Labs) and visualized using Super Signal West Femto (Pierce).

2.6 Immunofluorescence

For immunofluorescence analysis, cells were grown on coverslips in 6-well plates 

to 50-70% confluency. The cells were fixed in 3.7% paraformaldehyde for 12 minutes at 

room temperature, washed in PBS, and permeabilized with 0.15% Triton X-100 in PBS 

for 2 minutes. The fixed cells were then blocked for 1 hour in 5% rabbit serum in TBST 

and incubated with primary antibody at a dilution of 1:500 for anti-hYVHl and anti-flag 

(Sigma) and a dilution of 1:50 was used for anti-Hsp70 (Santa Cruz). Fluorescein- 

conjugated secondary antibodies were used at a dilution of 1:500 in TBST for 1 hour 

(Vector Labs). For colocalization experiments, samples were incubated with anti-hYVHl 

or anti-flag for 1 hour, rinsed with PBS, and incubated with anti-Hsp70 for an additional 

hour, as well, the corresponding fluorescein conjugated secondary antibodies were also
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individually incubated at 1 hour intervals. Nuclei were stained with Hoechst 33342 dye 

(Molecular Probes) according to manufacturing protocol and coverslips were mounted on 

slides using SlowFade Antifade Kit (Molecular Probes). Cells were observed using 

fluorescence microscopy with either the Leica DM IRB microscope and Openlab 

software or with the Axiovert 200 microscope and Northern Eclipse software.

2.7 Annexin V Apoptosis Assay

Annexin V identifies apoptotic cells by binding to phosphatidylserine found on 

the outer surface of the plasma membrane in apoptotic cells. The FITC conjugated 

annexin V (Vybrant Apoptosis Assay Kit#3, Molecular Probes) differentiates between 

apoptotic cells and necrotic cells through a double stain procedure with propidium iodide. 

Following treatment, HeLa cells grown in 6-well plates were scraped and rinsed twice 

with lx  annexin binding buffer (10 mM HEPES, 140 mM NaCl, and 2.5 mM CaCl2 , pH 

= 7.4). After a 5 minute centrifugation at 2500 rpm, the remaining pellet was 

resuspended in Annexin binding buffer (lxlO6 cells/lmL binding buffer) and stained 

according to the manufacturer’s protocol. These cells were also stained using Hoechst 

33342 dye and viewed using fluorescence microscopy as described above. 

Approximately 500-1000 cells were counted per experiment and apoptotic cells were 

detected by a positive annexin V stain. Data is shown as a percentage of dead cells in the 

total sample population. The data is the culmination of three unique trials averaged 

together.

2.8 TUNEL Assay

A second method for apoptotic identification involved the use of APO-BrdU 

TUNEL Assay Kit (Molecular Probes) to measure DNA fragmentation. Another feature
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of apoptosis is the activation of nucleases that eventually lead to the degradation of 

nuclear DNA. Once DNA fragmentation occurs as a result of the nucleases, the 3’ 

hydroxyl end of DNA becomes exposed. This assay takes advantage of the exposed end 

by attaching a deoxythymidine analog 5-bromo-2’-deoxyuridine 5’-triphosphate 

(BrdUTP) to the 3’ end using the terminal deoxynucleotide transferase enzyme (TdT). 

An antibody against BrdUTP accompanied with fluorescence microscopy is used to 

detect the binding. Samples were prepared following the manufacturer’s protocol.
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CHAPTER 3

Results

3.1 The Effect of the Zinc Finger Domain on hYVHl Localization

Previously described by Muda et al., the subcellular localization of GFP and 

endogenous hYVHl determined by immunofluorescence in COS-7 cells was detected in 

both nuclear and cytoplasmic regions [40]. In order to further characterize the regulation 

of hYVHl between the two cellular regions, a more in depth examination of hYVHl 

motifs and their possible involvement in localization were conducted. Through the use of 

recombinant variants of the hYVHl phosphatase in conjunction with indirect 

immunofluorescence in HeLa cells, localization patterns were detected (Fig.5 and Fig.6). 

The localization of transfected HeLa cells with full length recombinant hYVHl 

demonstrated both nuclear and cytoplasmic localization, however, opposed to the Muda 

et al. findings, our localization pattern did not appear predominantly nuclear. Our results 

indicate the hYVHl phosphatase localized with approximately 60% of the protein found 

in both the cytoplasm and nucleus and 40% remaining solely cytoplasmic (Fig. 7). 

However, Muda et al. described their hYVHl localization as predominately nuclear with 

little diffusion in the cytoplasmic region. Therefore, our results put more emphasis on the 

cytoplasmic localization.
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Full length, 
hYVHl

Zinc Deletion, ZnAhYVHl

Catalytic Deletion, catAhYVHl 

Partial Zinc Deletion, CT-2

Partial Zinc Deletion, CT-3

NES single leucine mutant 

NES double leucine mutant

Figure 5 -  Variants of hYVHl

Schematic diagram representing the various hYVHl constructs used during transfection. Catalytic 

domain containing the signature DSP sequence is depicted in darker blue, while the zinc binding 

domain can be seen in pale blue. The zinc binding domain is composed of two separate coordinating 

zinc fingers, Znl and Zn2, which flank a conserved hydrophobic region (C). The partial zinc 

deletion, CT-2, contains only the first zinc coordinating site, while the CT-3 construct contains the 

first zinc coordinating site as well as a highly conserved hydrophobic motif. The NES mutants are 

derived from the potential NES site, LQNLPQELFA, located between the catalytic domain and the 

zinc binding domain.

193SQNLPQELFA:

>SQNSPQELFA:
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Lane 1 2  3 4 5 6 7

38kDa

21kDa

16kDa

Figure 6 -  Expression of hYVHl Variants

Immunoblot showing expression of hYVHl variants; Lane 1 full length hYVHl, 

Lane 2 Zn AhYVHl, Lane 3 CT-2, Lane 4 CT-3, Lane 5 catAhYVHl, Lane 6 NES 

single leucine mutant, and Lane 7 NES double leucine mutant.
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The ZnAhYVHl is the recombinant form of only the catalytic domain of hYVHl 

(Fig.5). This construct transfected in HeLa cells demonstrated a dispersed localization 

where a cytoplasmic/nuclear ratio could not be concluded due to the fact the protein was 

diffused ubiquitously (Fig. 8A, 8B). On the other hand, catAhYVHl, which is the 

catalytic deletion of hYVHl, shows a localization pattern that is increasingly focused in 

the nucleus. Approximately, 80% of recombinant catAhYVHl was found to be either 

exclusively nuclear or nuclear/cytoplasmic (Fig. 8C, 8D). This implies perhaps the zinc 

finger is responsible for the nuclear localization of hYVHl.

Further examination of the localization of the partial zinc finger deletion 

constructs demonstrated that with an incomplete zinc finger the nuclear localization 

remains strong. Transfection with CT-2, which contains the catalytic domain of hYVHl 

and the coordination site of the first zinc finger, shows a strong nuclear localization of 

approximately 90% (Fig. 9A, 9B). Similarly, CT-3, which contains the catalytic hYVHl 

domain, the coordination site of the first zinc finger as well as a hydrophobic motif that is 

highly conserved throughout evolution, also demonstrates an approximate 90% nuclear 

localization (Fig. 9C, 9D). A summarization of the cytoplasmic/nuclear percentages can 

be seen in Table 1. However, overall it appears that the zinc binding domain is 

responsible for mediating nuclear localization, while elements of the catalytic domain and 

zinc binding domain are necessary for cytoplasmic localization.
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Hoechst hYVHl

pCMV.2

hYVHl-

Exp: 4.0s

Exp: 750ms

Exp: 750ms

Exp: 750ms 

Figure 7 -  Localization of Recombinant hYVHl

HeLa cells fixed with 3.7% PFA were examined using fluorescence microscopy. Nuclear 

staining is in blue, while hYVHl is depicted in green. A, HeLa cells transfected with 

pCMV.2 empty vector DNA show very little non-specific binding of secondary anti-mouse 

FITC labeled antibody. B,C,D, HeLa cells transfected with full length wildtype hYVHl 

DNA and visualized using anti-flag primary antibody followed by incubation with anti

mouse FITC labeled secondary antibody.
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Hoechst hYVHl

ZnA _ 

hYVHl

catA _ 

hYVHl

Exp: 750ms

Exp: 750ms

Exp: 750ms

Exp: 750ms

Figure 8 -  Localization of the catalytic domain deletion and zinc finger domain deletion of 
hYVHl

A,B, Following transfection with ZnAhYVHl, Hela cells were fixed and incubated with anti-flag 

primary antibody and FITC labelled anti-mouse secondary antibody. C,D, Cells were transfected 

with the catalytic catAhYVHl and treated as described previously.
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Hoechst hYVHl

CT-2 —
B

CT-3
D

Exp: 750ms

Exp: 750ms

Exp: 750ms

Exp: 750ms

Figure 9 -  Localization of partial zinc finger deletion variants of hYVHl

Hela cells were transfected with A,B, CT-2 variant of hYVHl or C,D, CT-3 variant 

o f hYVHl. Cells were fixed and visualized as described previously.
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3.2 Determination of a possible NES site in hYVHl

One method of protein transportation across the nuclear membrane involves NES 

and NLS motifs. Characteristically, a NES motif is outlined as follows, LX1.3LX2.3LXL, 

where X is any amino acid and the last leucine may be replaced by any hydrophobic 

amino acid. Following this consensus sequence, a postulated NES of hYVHl is

1 Q O  O f ) ' )
LQNLPQELFA located precisely at the beginning of the zinc binding domain 

(Fig.5). Using site directed mutagenesis, two hYVHl variants were created, the first 

mutated one leucine into a serine to give the following, 193SQNLPQELFA202, and the 

second contained a double mutation of the first two leucines to create, 

I93SQNSPQELFA202. These constructs were transfected into HeLa cells and following 

immunofluorescence it was determined that both NES mutants were located in the 

cytoplasm and nucleus. More specifically, through cell counting it was established that 

approximately 75% of mutated hYVHl was found in the nucleus, while 25% remained 

cytoplasmic (Fig. 10A-10D). Comparing these results to the full length recombinant 

hYVHl, there appears to be a significant increase in the nuclear retention of hYVHl. 

However, there still exists cytoplasmic localization despite the fact that the postulated 

NES was mutated, therefore, this suggests the putative NES sequence may not be the 

only factor contributing to hYVHl nuclear/cytoplasmic shuttling.

3.3 Effect of Heat Shock on the Interaction and Localization of hYVHl and Hsp70

In addition to NES/NLS motifs, another possible mechanism influencing 

subcellular localization is protein-protein interactions. Our lab has recently identified 

Hsp70 as a novel binding partner to hYVHl using co-immunoprecipitation and mass
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Single

Leu

Mutant

Double

Leu

Mutant

Hoechst hYVHl

B

D

Exp: 750ms

Exp: 750ms

Exp: 750ms

Exp: 750ms

Figure 10 -  Determination of potential NES

Hela cells were transfected with A,B, single leucine mutant NES construct of hYVHl 

or C,D, double leucine mutant NES construct o f hYVHl. Cells were fixed and 

visualized as described previously.
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Cytoplasmic (%) Nuclear (%)

Recombinant hYVHl 40 60

ZnAhYVHl . . . . . .

CatAhYVHl 20 80

CT-2 10 90

CT-3 10 90

Single Leucine NES mutant 25 75

Double Leucine NES mutant 25 75

Table 1 Summarization of Cytoplasmic/Nuclear Localization
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spectrometry. Therefore, to examine whether these proteins colocalize to a discrete cell 

compartment, fluorescence microscopy was employed. The colocalization between 

Hsp70 and hYVHl was confirmed in HeLa cells using indirect immunofluorescence. 

The endogenous expression of both proteins was examined under untreated and heat 

shock conditions. Proper control pictures were taken to verify the absence of non

specific binding of secondary antibodies as well as false colocalization due to bleed 

through of microscope filters (images not shown). In agreement with the previous mass 

spectrometry results, a strong colocalization between hYVHl and Hsp70 was 

demonstrated under untreated conditions (Fig. 11 A-l 1C and 12A-12C). Furthermore, the 

colocalization of the two proteins was predominantly cytoplasmic with emphasis in the 

perinuclear region. However, upon mild heat shock of HeLa cells at 42°C applied for 2 

hours and a 10 hour recovery period at 37°C (Fig. 11D-11F and 12D-12F) a significant 

shift in both proteins was detected. It appears the heat shock stress caused an 

accumulation of hYVHl to the perinuclear region of the cell, while Hsp70 amassed 

around the perinuclear region as well as in the nucleus. Also, following an extreme heat 

shock stimulus at 45.5°C for 2 hours with a 3 hour recovery period at 37°C, the 

localization of both proteins appeared to be strongly perinuclear (Fig. 11G- 111, Fig. 13). 

This severe heat shock treatment caused morphological changes prompting cells to round 

up, yet not undergo apoptosis (Fig. 13A-13E). Overall, despite the severity and duration 

of heat shock, the colocalization between Hsp70 and hYVHl remained undisturbed. 

Interestingly, it has been previously shown that Hsp70 is capable of localizing at the 

perinuclear region and under heat shock conditions, the perinuclear localization is 

enhanced, but a purpose for this change in distribution has yet to be clearly elucidated
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[95]. The strong colocalization between hYVHl and Hsp70 combined with the mass 

spectrometry and co-immunoprecipitation findings that hYVHl binds to Hsp70 suggests 

a functional possibility for the interaction within a cellular context.

3.4 Effect of Heat Shock on Protein Expression Levels of hYVHl

The change in distribution of hYVHl and Hsp70 following heat shock stress led 

to further examination of hYVHl endogenous protein expression levels using 

immunoblotting analysis. The level of hsp70 was shown to increase at the 10 hour 

interval following mild heat shock and remained unchanged after extreme heat shock and 

12 and 24 hour periods of recovery. This coincided with another lab member’s result 

showing Hsp70 levels increase and peak around 4 to 8 hours after the activating stimulus 

(Mucaki, unpublished). In response to a mild heat shock at 42°C for two hours followed 

by a recovery period at 37°C for 10 hours, a visible increase in the expression of hYVHl 

occurred (Fig. 14A). A similar increase in hYVHl protein expression was also seen after 

12 and 24 hours of recovery post severe heat shock treatment of 1 hour at 45°C (Fig. 

14B). Taking into account that nitrogen starvation and cold stress have been shown to 

increase the yvhi mRNA levels in yeast cells [36, 37], it is very possible that hYVHl has 

some role in cellular stress pathways.
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Figure 11 -  Effect of heat shock on hYVHl and Hsp70 in HeLa cells -  Part I

Endogenous expression levels o f hYVHl (green) and Hsp70 (red) were detected using 

fluorescence microscopy. The hYVHl phosphatase was stained with polyclonal anti-hYVHl 

serum antibody and an anti-rabbit secondary antibody labeled with FITC (A,D,G). Hsp70 was 

detected using a monoclonal anti-Hsp70 antibody and an anti-goat secondary antibody 

labeled with Texas Red (B,E,H). By merging the two images, a suggested colocalization 

pattern between the two proteins can be seen in yellow (C,F,I). HeLa cells were either 

untreated, A,B,C, heat shocked at 42°C for two hours and recovered at 37°C for 10 hours 

D,E,F, or heat shocked at 45.5°C for two hours and recovered for 3 hours G,HJ, before being 

fixed and permeabilized. HeLa cells are depicted at a magnification of 400x.
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Figure 12 -  Effect of heat shock on hYVHl and Hsp70 in HeLa cells -  Part II

Endogenous expression levels of hYVHl (green) and Hsp70 (red) were detected using 

fluorescence microscopy. The hYVHl phosphatase was stained with polyclonal anti-hYVHl 

serum antibody and an anti-rabbit secondary antibody labeled with FITC (A,D). Hsp70 was 

detected using a monoclonal anti-Hsp70 antibody and an anti-goat secondary antibody 

labeled with Texas Red (B,E). By merging the two images, a suggested colocalization pattern 

between the two proteins can be seen in yellow (C,F). HeLa cells were either untreated, 

A,B,C, or heat shocked at 42°C for two hours and recovered at 37°C for 10 hours D,E,F 

before being fixed and permeabilized. HeLa cells are depicted at a magnification of 630x.
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Figure 13 -  Effect of Extreme Heat Shock on hYVHl and Hsp70 in HeLa cells

HeLa cells were heat shocked at 45.5°C for two hours and allowed to recover at 37°C for 3 hours. 

Following heat shock cells were fixed and incubated with anti-serum hYVHl primary antibody 

followed by incubation with a FITC labeled anti rabbit secondary antibody and a monoclonal 

anti-Hsp70 primary antibody followed by incubation with a Texas Red labeled secondary 

antibody. A, the phase contrast image of a HeLa cell following severe heat shock B, nuclear 

staining of the same cell using Hoechst 33342. C,D,E, the endogenous staining of hYVHl, 

Hsp70, and a merged image of hYVHl and Hsp70, respectively.
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Figure 14 -  Western blot analysis detecting expression level of hYVHl during heat 
shock stimulus.

Endogenous expression o f hYVHl, Hsp70, and actin were examined in HeLa cells. A, Cells 

remained untreated (Lane 1) or heat shocked for 2 hours at 42°C and recovered at 37°C for 

10 hours (Lane 2). B, Cells either remained untreated (Lane 1), or were heat shocked for 1 

hour at 45°C and allowed to recover at 37°C for 12 hours (Lane 2) or 24 hours (Lane 3).
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3.5 Effect of Overexpression of hYVHl on Cell Viability

In general, environmental stress can initiate various internal cellular responses. 

For instance, pro-apoptotic proteins can become activated to allow for controlled cell 

death when a stress becomes overwhelming, cell cycle arrest may occur to conserve 

cellular energy, and anti-apoptotic proteins, like Hsp70, can be activated as an attempt to 

protect cells. Therefore, the implication that hYVHl participates in a stress related 

mechanism could imply a number of different functions. Interestingly, it was noticed that 

following transfection with recombinant fall length hYVHl, cells that appeared apoptotic 

by Hoechst stain almost always remained negatively transfected (Fig. 7B). This led to 

the hypothesis that hYVHl may participate as an anti-apoptotic protein with a positive 

effect on cell viability.

To test this hypothesis, HeLa cells were transfected with fall length recombinant 

hYVHl in the presence and absence of Hsp70, while control plates were normalized via 

transfection of pCMV.2 empty vector DNA. HeLa cells were treated to a heat shock 

stimulus for 1 hour at 43°C and allowed to recover at 37°C for 14 hours. Following 

recovery, cells were stained with FITC conjugated Annexin V and Hoechst 33342 dye to 

measure cell viability. Annexin V detects apoptotic cells by binding to 

phosphatidylserine that upon apoptosis flips from the inner leaflet of the plasma 

membrane to the outer plasma membrane surface. Hoechst 33342 dye is a nuclear stain 

that binds to DNA and can illustrate the nuclear blebbing phenotype associated with 

apoptosis. Consequently, upon heat shock an approximate 20% induction of apoptosis 

occurred in HeLa cells. Conversely, heat shocked cells transfected with either 

recombinant hYVHl or hYVHl accompanied by Hsp70 only implicated a 5% and 3%
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increase in apoptotic cell death over control, respectively (Fig. 15 A, 15C). The 

percentages described above are the result of the number of dead cells, indicated by FITC 

conjugated Annexin V, divided by total cell number determined by Hoechst 33342 and is 

the average findings of three unique trials. Moreover, when the experiment was 

performed on coverslips, where lifted cells including those that underwent apoptosis were 

removed, a clear difference in cell number was observed. HeLa cells transfected with 

pCMV.2 empty vector DNA accompanied with a heat shock stress had much fewer cells 

present on its coverslip compared to those transfected with recombinant hYVHl alone 

and hYVHl with recombinant Hsp70 (Fig. 15B). Similarily, through the qualitative 

analysis of HeLa cells stained for DNA fragmentation using TUNEL assay, a reduced 

amount of apoptosis in response to hYVHl overexpression was evident (Fig. 16). Overall, 

these findings suggest the novel prospect that overexpression of hYVHl alone can 

participate in the protection of cells from apoptotic death. This function would be 

consistent with previous studies suggesting the yeast orthologue functions in cell growth 

and is upregulated in response to cell stress [36-38].

3.6 Consequence of hYVHl Overexpression on Phosphorylated ERK Levels

In response to heat shock, not only do the protein expression of hYVHl 

and Hsp70 increase, but levels of phosphorylated ERK and JNK become elevated 

[81,92]. Interestingly, Hsp70 has been shown to prevent the activation of both ERK and 

JNK in response to heat shock [92, 96]. Considering hYVHl is a DSP that has a strong 

affinity for Hsp70, a possibility that this phosphatase could have an affect on the MAPKs 

is fairly reasonable. In an attempt to examine the effect of hYVHl overexpression on 

phosphorylated ERK (pERK), HeLa cells were fractionated and cytoplasmic and nuclear
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Figure 15 -  Cell Viability determined using FITC conjugated Annexin V

Following 24 hours after transfection with either empty vector pCMV.2 DNA, recombinant full length 

hYVHl or recombinant full length Hsp70 in conjunction with hYVHl over expression, HeLa cells were left 

untreated (-HS) or heat shocked for 1 hour at 43°C and allowed to recover at 37°C for 14 hours (+HS). A, 

Cell viability was detected using FITC conjugated annexin V (green) as per manufacturers protocol and total 

cell number was determined using Hoechst 33342 dye (grey). B, Total cell number was visually compared 

on slides stained with Hoechst 33342 dye (grey). C, Graphical representation expressing cell death as a 

percent of total cell number determined using FITC conjugated Annexin V and Hoechst 33342 nuclear stain.
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-HS + EV +HS + EV +HS + WT-hYVHl

Figure 16 -  Cell Viability determined using TUNEL assay

HeLa cells transfected with empty vector pCMV.2 (EV) or recombinant hYVHl (WT-hYVHl) were 

subjected to a 2 hour heat shock at 45.5°C and recovered for 3 hours at 37°C. Cells were stained to indicate 

DNA fragmentation (green).
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samples were collected. It appears the overexpression of hYVHl in both cytoplasmic 

and nuclear fractions caused the dephosphorylation of pERK (Fig. 17).

To further verify this trend, whole cell lysates from HeLa cells subjected to heat 

shock were examined. HeLa cells were incubated for 1 hour at 43 °C and allowed to 

recover at 37°C for 3 hours before being lysed. The heat shock was successful in 

boosting Hsp70 levels and cells overexpressing hYVHl under the heat shock stress 

demonstrated a notable decrease of pERK levels compared to those that were transfected 

with empty vector DNA (Fig. 18). Therefore, it generally appears that hYVHl is able to 

cause a significant, but not complete dephosphorylation of pERK. Alternatively, HeLa 

cells were examined after a heat shock of 1 hour at 43°C at the 0 hr and 6 hr recovery 

time points. Immediately following the heat shock stress, allowing for no recovery 

before cell lysis, the pERK levels demonstrated a supposed dephosphorylation in the 

overexpressed hYVHl sample compared to cells transfected with pCMV.2 empty vector 

DNA (Fig. 19). Alternately, after a 6 hour recovery period at 37°C, an increase in pERK 

levels was seen in cells transiently transfected with hYVHl versus those transfected with 

pCMV.2 empty vector DNA (Fig. 19). While these results seem contradictory, one 

possible explanation that provides some resolution is to note the trend in pERK levels in 

cells transfected with empty vector DNA versus hYVHl. More specifically, immediately 

following heat shock HeLa cells transfected with pCMV.2 vector DNA demonstrated 

increased pERK levels, but with time, these levels reduced to those of normal resting 

conditions (Fig. 19). However, cells overexpressing hYVHl deviated from this trend and 

instead demonstrate a prolonged increase in pERK levels and despite a 6 hour recovery 

period, pERK levels remained as high as immediately following heat shock (Fig. 19).
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Therefore, it is possible that instead of hYVHl acting to dephosphorylate ERK, it may 

work on an upstream regulator of ERK to cause its prolonged activation.

3.7 Consequence of hYVHl Overexpression on Phosphorylated JNK Levels

In addition to ERK, the phosphorylation and activation of JNK is also regulated 

by heat shock and Hsp70. The activated forms of ERK and JNK trigger a number of 

events, but most notably, phosphorylated JNK is a strong participant within apoptosis 

[92]. Therefore the possibility that hYVHl can interact with Hsp70 to deactivate pJNK 

could result in the anti-apoptotic phenotype described earlier (Fig. 15 and Fig. 16). In the 

previous experiments examining pERK levels, the pJNK levels were also checked, 

however due to inadequacies of the pJNK antibody a signal was rarely detected. In an 

attempt to concentrate samples, a scaled-up fractionation experiment was conducted 

using HeLa cells. Only cytoplasmic fractions were examined owing to the fact that low 

concentration of nuclear samples that would remain undetected by the pJNK antibody. It 

was determined that cytoplasmic pJNK levels exhibited an increase in heat shocked cells 

overexpressing hYVHl (Fig.20). One explanation can be that in the presence of hYVHl, 

pJNK gets sequestered in the cytoplasm. An increase in cytoplasmic pJNK, indicates less 

pJNK enters the nucleus to activate its pro-apoptotic substrates. Hence, the anti-apoptotic 

phenotype seen in HeLa cells overexpressed with hYVHl may be due to the ability of 

hYVHl to inhibit pJNK entry into the nucleus.

As mentioned earlier, examining hYVHl’s affect on JNK using phospho- 

antibodies proved difficult. Therefore, to investigate whether hYVHl could complex 

with JNK as an indication of its involvement in the JNK pathway, immunoprecipitation
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Figure 17 -  Overexpression of hYVHl related to pERK Levels in Fractionated HeLa 
Cells

HeLa cells either remaining untransfected or overexpressed with recombinant hYVHl 

were fractionated. A, Samples of untransfected cytoplasmic fraction (Lane 1), 

overexpressed hYVHl cytoplasmic fraction (Lane 2), untransfected nuclear fraction 

(Lane 3), and overexpressed hYVHl nuclear fraction (Lane 4) were probed with pERK 

antibody to investigate the relationship between hYVHl and pERK. Equal loading was 

determined using an anti-ERK antibody, while anti-lamin B and anti-actin acted as 

nuclear and cytoplasmic fractionation controls, respectively. Monoclonal anti-flag 

antibody was used to detect hYVHl expression.

53

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



-H S + HS

Phospho-ERK

EV WT | EV WT

42 kDa

ERK
Z m m S *

44 kDa 
42 kDa

Flag 37 kDa

Hsp70 70 kDa

Actin
42 kDa

Figure 18 -  Overexpression of hYVHl related to pERK Levels in Whole Cells 
Lysates from HeLa Cells

HeLa cells were either left untreated (-HS) or subjected to 1 hour heat shock stimulus at 

43°C and allowed to recover at 37°C for 3 hours (+HS) prior to lysing. A, Cell lysates 

from HeLa cells transfected with either empty vector pCMV.2 DNA (EV) or recominant 

wildtype hYVHl (WT) were probed with pERK antibody. The overexpression of hYVHl 

was verified using a flag antibody, while heat shock was deemed successful via anti- 

Hsp70 antibody. Anti-ERK and anti-actin both acted as loading controls.
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Figure 19 -  Overexpression of hYVHl related to pERK Levels following Heat 
Shock Stimulus

HeLa cells were either left untreated (-HS) or subjected to 1 hour heat shock stimulus at 

43°C and allowed to recover at 37°C for 0 hours or 6 hours (+HS) prior to lysing. A, Cell 

lysates from HeLa cells transfected with either empty vector pCMV.2 DNA (EV) or 

recominant wildtype hYVHl (WT) were probed with pERK antibody. The 

overexpression of hYVHl was verified using a flag antibody, while degree of heat shock 

was measured via anti-Hsp70 antibody. Anti-ERK and anti-actin both acted as loading 

controls.
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was employed. HeLa cells transfected with pCMV.2 empty vector DNA, recombinant 

full length hYVHl, or recombinant his-tagged Hsp70 were lysed and endogenous JNK 

was immunoprecipitated from these lysates using a polyclonal anti-JNK antibody. 

Interestingly, it was found that hYVHl was in fact bound to JNK under both unstressed 

and heat shock conditions (Fig.21). Notably, it appears more hYVHl was pulled down in 

HeLa cells that were lysed immediately succeeding 1 hour incubation at 43°C versus 

untreated cells. Overall, the determination of the co-immunoprecipitation of hYVHl 

with JNK is an exciting prospect that with further investigation can lead to the 

deciphering of a significant role of hYVHl in the MAPK signaling pathway.
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Phospho-JNK

Figure 20 -  Overexpression of hYVHl related to pJNK Levels in Fractionated HeLa 
Cells

HeLa cells were heat shocked for 1 hour at 43°C before being fractionated. A, Cytoplasmic 

samples of HeLa cells transfected with either pCMV.2 (EV), hYVHl (WT), or Hsp70 were 

probed with anti-pJNK to check for variation in pJNK levels. Antibody against JNK acted 

as a loading control and anti-flag and anti-Hsp70 were used in the detection of transfection 

efficiency.
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Figure 21 -  Potential Interaction Between JNK and hYVHl

HeLa cells transfected with either pCMV.2 DNA (EV), recombinant hYVHl (WT), or His-tagged 

Hsp70 (Hsp70) were lysed following 1 hour incubation at 43°C. Transfection efficiency was 

verified of hYVHl and Hsp70 were verified in lysates using anti-flag and anti-his antibodies 

respectively. Lysates were then incubated with resin and anti-JNK antibody and JNK and hYVHl 

levels were probed within the immunoprecipitated samples.
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CHAPTER 4

Discussion

Identified in 1999, little is still known about the dual-specificity protein tyrosine 

phosphatase, hYVHl [40]. The yeast orthologue of this phosphatase has been shown to 

play a role in spore maturation, glycogen accumulation, and vegetative growth, while the 

mouse orthologue has been implicated within the cell cycle [38, 39, 42], However, 

despite its high conservation in amino acid sequence throughout evolution, the human 

YVH1 orthologue remains scarcely studied [40]. To date, only a single paper has been 

published that actively sought to characterize aspects of this phosphatase [40]. Muda et 

al. has confirmed the high conservation between hYVHl and its yeast orthologue by 

demonstrating hYVHl could suppress the characteristic phenotypes caused in yeast cells 

expressing YVH1 disruptant mutant [40]. Additionally, hYVHl was established to 

localize in both the cytoplasmic and nuclear regions of the cell as well as shown to be 

nearly ubiquitously expressed in human tissues [40]. The hYVHl phosphatase is mapped 

to the chromosomal region of Iq21-lq23, which has been shown to be amplified in 

various human sarcomas and ependymomas [46, 47].

This study attempts to continue in the characterization of the hYVHl phosphatase 

by examining important motifs and domains that contribute to the subcellular localization 

of hYVHl phosphatase. Also, recently our lab has discovered Hsp70 as a novel 

interacting partner for hYVHl. Therefore, this study sought to gain insights into the 

functional purpose of this interaction.
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4.1 Subcellular Localization of hYVHl

Through the use of indirect immunofluorescence, the cytoplasmic/nuclear ratio of 

hYVHl’s subcellular localization was determined. In agreement with the results 

published by Muda et al., it was found that recombinant full length hYVHl localized to 

both the cytoplasm and nucleus. However, where the Muda study suggests that the 

localization of hYVHl was predominately nuclear, our results differ in that they suggest 

a more predominant cytoplasmic localization with particular focus in the perinuclear 

region. The reason behind this difference may be attributed to the use of a GFP-tagged 

recombinant hYVHl construct and non-specific binding of secondary antibody in the 

Muda study to give a false nuclear localization. In addition to full length hYVHl, the 

subcellular localization of recombinant variants of hYVHl were also examined. The 

ZnAhYVHl recombinant protein represents the catalytic domain/zinc binding domain 

deletion of the hYVHl phosphatase. The distribution of ZnAhYVHl was found diffused 

throughout the cells and did not retain any of the perinuclear localization that is strongly 

visible with full length hYVHl. Due to the indiscriminate dispersion of the ZnAhYVHl 

construct throughout the cell, a cytoplasmic/nuclear ratio could not be determined. 

However, catAhYVHl, which is the recombinant form of only the zinc binding domain 

of hYVHl, demonstrated a heavily favoured nuclear localization. Interestingly, this 

localization was not exclusively nuclear, but indeed showed a combined 

nuclear/cytoplasmic localization. In contrast, the partial zinc deletion recombinant forms 

of hYVHl, CT-2 and CT-3, demonstrated near exclusive nuclear localization with much 

less cytoplasmic localization as compared to catAhYVHl.

60

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Collectively, these results suggest a role of the zinc binding domain in the 

mediation of hYVHl nuclear localization as well as the importance of both the catalytic 

domain and zinc binding domain in regard to cytoplasmic and perinuclear localization. It 

was found that the catalytic domain localized to both the cytoplasm and nucleus and by 

attaching on the first coordination site of the zinc finger and a highly conserved 

hydrophobic motif the subcellular localization of hYVHl becomes strongly nuclear. 

Recombinant hYVHl devoid of its catalytic domain also retains a strong nuclear 

localization, however some cytoplasmic localization is retained that was absent with the 

incomplete zinc finger constructs. This leads us to believe that both catalytic and zinc 

binding domains are necessary for localizing hYVHl in the cytoplasm. One possible 

putative model of hYVHl structure that supports these localization conclusions is the 

potential interaction between opposite ends of the hYVHl protein. The hypothesized 

interaction of the N-terminal catalytic domain with the C-terminal zinc binding domain 

may support the proper conformation of hYVHl, which in turn allows it to interact with 

another protein that sequesters it in the cytoplasm. In order to test this hypothesis it 

would be necessary to construct a recombinant chimera protein from the catalytic domain 

and the second zinc coordinating site of hYVHl. It is assumed that the opposite ends of 

the hYVHl protein will be able to interact and retain the normal localization pattern of 

full length hYVHl. Additional confirmation is currently underway in the form of 

structural identification of full-length hVYHl through x-ray crystallography. Identifying 

the 3-dimensional structure of this phosphatase would confirm whether the opposite ends 

of hYVHl do indeed interact. Agreeable to this hypothesis is the recent discovery in our 

lab that demonstrated through the use of gel filtration that the hYVHl protein eluted at a
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molecular weight corresponding to 30 kDa, rather than the expected 38 kDa. This is 

indicative of a compact structure of hYVHl, which supports the theory that the two 

opposite ends of the protein may interact with one another.

A second possibility rationalizing the subcellular localization results would be the 

presence of a NLS within the first zinc coordinating site of hYVHl. Through the 

examination of the hYVHl sequence the following motif has been identified as a putative 

NLS, 219KCRKCRR225, due to its abundance in basic amino acid residues. An interesting 

feature of this sequence is the fact that the two cysteines embedded in the putative NLS 

motif also compose part of the first zinc finger. This may allow hYVHl to adopt different 

conformations, regulated by zinc binding that can expose or hide a NLS motif. Therefore, 

it is possible that the recombinant zinc finger construct and the partial zinc finger deletion 

constructs change conformation in a manner that does not allow the coordination of a 

zinc molecule to the first zinc finger coordination site, which leads to the exposure of the 

putative NLS and causes the heavy nuclear localization. Our lab has recently shown that 

in response to oxidative stress one of the two zinc ions is ejected (Bonham, unpublished). 

This suggests that the zinc ejection is a plausible mechanism regulating hYVHl 

conformations. Additionally, the protein SOD1 has also shown to change its 

conformation in response to oxidative stress accompanied by a loss of its coordinating 

zinc further providing evidence for this hypothesis [97].

On the other hand, the localization of ZnAhYVHl appears diffused to all parts of 

the cell, which can be reasoned by the loss of the binding domain that controls hYVHl 

localization. This second hypothesis puts emphasis on the zinc binding domain as the key 

factor that controls hYVHl subcellular localization. Again, one method of conformation
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of this hypothesis can transpire through x-ray crystallography of the recombinant forms 

of hYVHl and currently Dr. Brian Crane of Cornell University is solving the crystal 

structure of both full length hYVHl and the catAhYVHl.

4.2 The Putative Nuclear Export Sequence

The process of nucleocytoplasmic transport is central in allowing proteins to 

target their downstream nuclear substrates. The control of nuclear/cytoplasmic shuttling 

is often dictated by the presence of NLS and NES motifs. Therefore, in addition to the 

putative NLS sequence described above, a potential NES motif is also present in hYVHl. 

The following sequence, 193LQNLPQELFA202, situated between the end of the catalytic 

domain and the beginning of the zinc binding domain, fit the characteristics of an NES 

motif [62, 63]. In order to construct NES mutants, recombinant flag-tagged hYVHl was 

mutated at 193Leu and I96Leu to two non-hydrophobic Ser residues using site-directed 

mutagenesis. As a result, the localization of hYVHl appeared increasingly nuclear, 

however, significant cytoplasmic localization was still retained. It is plausible that the 

cytoplasmic localization present with overexpression of hYVHl NES mutant is a result 

of the protein not entering the nucleus. Notably, the constitutive localization of wildtype 

hYVHl is split between the nucleus and cytoplasm, therefore if the hYVHl NES mutant 

does not initially enter the nucleus, its mutation has no effect on the nuclear export 

mechanism. To further this claim, a fusion protein between the putative NES and the 

NES mutants with the NLS of another protein, like the SV40 T-antigen, could be created 

[98], Upon transfection the localization of the mutant fusion proteins would be expected 

to be strongly nuclear, while the intact NES should demonstrate cytoplasmic localization. 

Also, in an attempt to create a more severe NES mutant, Ser residues should replace
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Leu and Ala because often the last two hydrophobic amino acid residues are key for 

NES function [99]. The successful completion of these additional approaches will 

strongly confirm our current data suggesting that hYVHl possesses a NES motif that 

regulates the temporal localization of hYVHl in the nucleus.

4.3 The Effect of Heat Shock on hYVHl

The functional data regarding hYVHl remains scarce, however, studies on the 

yeast orthologue, YVH1, demonstrate that in response to nitrogen starvation or cold 

shock, YVH1 mRNA expression was significantly induced [36, 37]. Therefore, regarding 

the recent identification of Hsp70 as an interacting partner of hYVHl, it was reasonable 

to assume that hYVHl may respond to a heat shock stimulus. HeLa cells were treated to 

a mild and severe heat shock stress and subcellular localization and protein expression 

levels of hYVHl were analyzed.

Protein expression levels of hYVHl in response to both mild and extreme heat 

shock conditions following a recovery period of 10-24 hours was increased. Previous 

studies demonstrated an induction of mRNA hYVHl levels in response to stress [36, 37], 

however this is the first time an alteration in hYVHl protein expression was 

demonstrated as a result of a stress stimulus. The increase in hYVHl protein expression 

appears to occur later in recovery. Earlier time points were examined and recovery 

periods of up to 8 hours show no induction of hYVHl. This suggests that the function of 

hYVHl is involved in a later event of the cell’s stress response system. For instance, 

hYVHl protein induction may respond to changes in the protein expression of an 

upstream or downstream regulator and therefore it must wait for the induction of another 

protein to signal a change in its own expression levels. Interestingly, HeLa cells are a
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cancer cell line that demonstrates rapid growth, high resistance to stress, and altered 

protein expression levels, therefore the late effect of hYVHl induction may be due to the 

cell line and therefore, other cell types should be further considered.

In regard to subcellular localization, under normal resting conditions endogenous 

hYVHl and Hsp70 demonstrate a tight colocalization. This is the first evidence 

suggesting an interaction between hYVHl and Hsp70 within a cellular context. Upon 

mild and extreme heat shock, both proteins displayed an increased enrichment in the 

perinuclear region of the cell, while in response to mild heat shock with a lengthy 

recovery period, only Hsp70 increased its nuclear localization. The alteration of the 

subcellular localization of hYVHl in response to heat shock is extremely interesting. It 

implies that under stress hYVHl has a purpose to congregate at the perinuclear region of 

the cell. Some functions associated with proteins that localize in the perinuclear region 

include membrane trafficking and cell signaling [99].

Previous studies have also shown an enhanced perinuclear localization of Hsp70, 

however a purpose has yet to be elucidated [95]. Notably, there is a study regarding the 

yeast orthologue of an Hsp70 co-chaperone, YDJ1, where the authors describe its 

localization as a “perinuclear ring” accompanied with cytoplasmic distribution [99]. This 

is on par with the hYVHl localization detected in HeLa cells. Another interesting feature 

of YDJ1 is that it contains a cysteine rich motif similar to a zinc finger protein and it has 

been demonstrated that the E.coli orthologue of YDJ1, dnaJ, does in fact bind to Zn2+ 

[100]. Additionally, disruption of the YDJ1 gene results in a slow growth phenotype, 

which is also a characteristic of YVH1 disruption mutant [38, 100]. The similarities 

between the two proteins are striking and furthermore it was established that the
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perinuclear localization of YDJ1 is most likely due to association with the endoplasmic 

reticulum (ER) [100]. In an attempt to analyze whether hYVHl colocalized with the ER, 

immunofluorescence was conducted using ER-Tracker (Molecular Probes). 

Unfortunately, upon permeabilization of the cell to allow the binding of primary serum 

hYVHl antibody, the ER-Tracker continuously leaked into the nucleus and lost all 

cytoplasmic localization. Interestingly, a number of functions can be assigned to ER 

localization including protein assembly, membrane trafficking, and cell signaling [100, 

101].

Briefly, in a second study regarding another zinc finger containing dual- 

specificity phosphatase, FYVE-DSP-2, perinuclear localization was also revealed [101]. 

FYVE-DSP-2 was established to bind to phosphotidylinositol 3-phosphate (PI(3)P) 

located in cell membranes and furthermore reference a number of other zinc finger 

containing proteins that bind to PI(3)P [101]. The proteins that interact with PI(3)P on 

cell membranes have been shown to be involved in cellular functions including protein 

trafficking and cell signaling [101]. It is very interesting to consider the possibility that 

upon heat shock stress, hYVHl accumulates in the perinuclear region of the cell, binding 

to the nuclear or ER membrane through the interaction of the zinc finger with PI(3)P and 

participate in a stress related mechanism. However, further research in the form of 

subcellular fractionation and lipid overlay assays needs to be conducted in order to 

validate this hypothesis.

4.4 The Involvement of hYVHl in Apoptosis

The cellular stress response includes a number of events to cope and re-establish 

cell homeostasis. A protein implicated in a stress response role can participate in a
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number of events, which include the sensing of DNA damage and other changes in cell 

homeostasis, cell cycle regulation, cellular repair mechanisms, and control of cell 

metabolism [102]. If a stress becomes overwhelming, a cell can respond through 

apoptosis, which refers to the mechanism of controlled cell suicide. The advantage of 

such a mechanism lies in the control feature, apoptosis can cause cell death within 

individual cells without disturbing the surrounding environment and causing adverse 

distress in the remaining cell population. Therefore, the perinuclear localization and 

presence of two zinc fingers, which is indicative of protein trafficking and cell signaling, 

could imply a plethora of roles for hYVHl within the stress response mechanism.

Early evidence in the form of the absence of overexpression of hYVHl in cells 

that appeared apoptotic via Hoechst stain, led to the belief that hYVHl may participate in 

an anti-apoptotic role. Further evidence was provided through the lack of binding of 

FITC conjugated annexin V, a known binding partner of phosphatidylserine, in unlysed 

cells overexpressing hYVHl under heat shock conditions. Upon apoptosis 

phosphatidylserine relocates to the outer surface of the cell membrane, therefore the 

binding of annexin V of unlysed cells indicates the presence of phosphatidylserine on the 

cell surface, which is indicative of apoptosis. Directly comparing cells transfected with 

empty vector pCMV.2 DNA with cells overexpressing hYVHl following a heat shock 

stimulus, a significant decrease in the number of apoptotic cells in hYVHl overexpressed 

cells was present. The extent of protection as a result of hYVHl overexpression was near 

that of cells transfected with empty vector DNA, but did not undergo heat shock 

treatment. This result was further verified through the examination of a second apoptotic 

marker, DNA fragmentation. Apoptotic signaling can activate nucleases, which are
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responsible for the nicking of DNA ends and causing DNA fragmentation. Qualitative 

analysis using TUNEL assay, which detects the DNA fragmentation phenotype of 

apoptosis, also shows a reduced amount of staining in response to hYVHl overexprssion.

Additionally, the effect of dual overexpression of hYVHl and Hsp70 regarding 

apoptosis measured by annexin V was also examined. It was found that the protection 

provided by the doubly transfected cells was near that of cells overexpressing in hYVHl 

exclusively. According to these results it would appear that Hsp70 had minimal effect on 

cell survival, despite the fact it is well-known as an anti-apoptotic protein [68]. This 

anomaly can be reasoned in a number of ways. Firstly, low transfection efficiency of 

Hsp70 could render its affect as too mild to be detected. Another possibility is an 

inadequate heat shock could result in minimal apoptosis, which is seemingly reduced by 

overexpression of hYVHl and its interaction with endogenous Hsp70. A third possibility 

is the regulatory mechanism or substrate hYVHl and Hsp70 are involved with become 

saturated out and therefore overexpression of either proteins beyond a certain level would 

have no affect on cell viability.

Notably, different heat shock and recovery time periods were tested, however, at 

best only a 20% increase in apoptotic death was observed. It is believed that the lack of 

cell death can be attributed to the resilience of the cancer cell line used in this 

experiment. Therefore, the effect of hYVHl overexpression related to apoptosis should 

be characterized in different cell types. In an attempt at testing this hypothesis NIH 3T3 

cells (mouse embryonic fibroblasts) were transfected with hYVHl, however transfection 

efficiency was deemed poor as determined by immunoblotting. This addresses a second 

factor of concern with this experimental system. The use of transient transfection results
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in a variable number of cells expressing the gene of interest. This can be standardized 

using flow cytometry and transfecting cells with GFP-tagged hYVHl. This would allow 

cells that stained positive for annexin V and did not overexpress hYVHl to be eliminated 

from the data set and therefore a more pronounced relationship between hYVHl and 

apoptosis could be established. An alternative solution would also be the use of a stable 

cell line overexpressing hYVHl. This provides 100% transfection efficiency and again 

eliminates the effect of untransfected cells in response to heat shock. However, despite 

the limitations of the system used, a clear reduction of heat shock induced apoptosis was 

demonstrated upon overexpression of hYVHl. In agreement with our findings is the 

large-scale RNAi screening study conducted by the Blenis group at Harvard [102]. In 

their study, they systematically knocked down and screened all kinase and phosphatase 

proteins in HeLa cells [103]. It was discovered that hYVHl demonstrated one of the 

highest apoptosis scores and when HeLa cells were transfected with siRNA hYVHl and 

then measured for the pro-apoptotic events of PARP and caspase-9 cleavage, both events 

were found to occur in cells expressing the knockdown of hYVHl.

It is tempting to consider that the anti-apoptotic effect of hYVHl could result in 

the cancerous phenotype present in liposarcomas resulting from gene amplification of the 

chromosomal region Iq21-lq23 and subsequent overexpression of hYVHl [46]. 

Furthermore, the involvement of Hsp70 in apoptosis presents a promising theory that the 

interaction between Hsp70 and hYVHl are together involved in an anti-apoptotic 

function. As discussed earlier, Hsp70 has been shown to be involved with apoptosis in a 

number of situations [68-78], as well, its anti-apoptotic effect has demonstrated to be 

crucial in the survival of many human cancer cells of diverse origins [79, 104]. To
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further validate the importance of the interaction between hYVHl and Hsp70, our lab has 

determined which domains of the two proteins interact with one another (Mucaki, 

unpublished). Interestingly, it was established that hYVHl did not interact with the C- 

terminal domain of Hsp70, which is associated with its chaperone activity, but instead 

with the N-terminal ATPase domain. This suggests that the interaction between hYVHl 

and Hsp70 has a functional purpose other than maintaining proper protein folding. 

Considerable research needs to be conducted in order to establish the mechanism in 

which hYVHl and Hsp70 function together in an anti-apoptotic manner.

4.5 Can hYVHl act as a MAPK Phosphatase?

In an attempt to begin to elucidate the mechanism of the anti-apoptotic role of 

hYVHl, a closer examination of the MAPK signaling pathway was conducted. The 

choice was based on the fact that 13 dual specificity phosphatases have been previously 

characterized as MKPs [34], in addition to the involvement of Hsp70 within the signaling 

cascade in an anti-apoptotic context. In response to heat shock two main pathways of the 

MAPK signaling cascade become activated; the first is the cell death inducing JNK 

pathway and the second is the cell survival ERK pathway.

The effect of overexpression of hYVHl on the activated ERK substrate, pERK, 

was investigated using phospho-antibodies and immunoblotting techniques. Initially, it 

appears that hYVHl may lead to the dephosphorylation of pERK and consequently the 

inactivation of the ERK pathway. However, as the results of figure 19 illustrate, when 

comparing pERK expression levels in cells transfected with pCMV.2 empty vector DNA 

and recombinant hYVHl in a temporal sense, the opposite conclusion is suggested. 

These results indicate that instead of hYVHl causing the dephosphorylation of pERK, it
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is actually prolonging the activation of pERK. The extended activation of pERK is in 

agreement with the apoptosis data suggesting that hYVHl participates in a function that 

increases cell viability. The supposed prolonged activation of pERK subsequently 

lengthens the activation of its anti-apoptotic effects, which range from the 

phosphorylation and inactivation of the proapoptotic Bcl-2 family member Bad to its 

unknown anti-apoptotic roles downstream of cyochrome c or upstream of caspase 8 [96].

Another possibility to explain the initial dephosphorylation of pERK followed by 

its phosphorylation can be explained through a sequestration effect of hYVHl. Initially 

following heat shock, hYVHl could actually bind and sequester pERK, protecting it from 

dephosphorylation until the cell restores normal homeostasis. After homeostasis is re

established, hYVHl may release pERK, so it may return to its most well known function, 

which is the induction of cell proliferation. The collective release of pERK would appear 

as an increase in phosphorylation as detected by pERK specific antibodies. Also, the 

binding of hYVHl to pERK could inhibit the phosphorylation of pERK by the upstream 

kinases, thereby indicating a false dephosphorylation at the early time points via western 

blot.

Lastly, owing to the complex nature of the MAPK signaling pathway, activated 

pERK has also been shown to participate in key roles regarding the cell cycle. Much 

evidence supports the claim that ERK activation is essential for cell cycle progression 

from the G1 phase to the S phase through the regulation of various cyclin-dependent 

kinases [105]. Therefore, the inactivation of pERK through its dephosphorylation can 

also result in cell cycle arrest, the temporary stop in cell cycle progression and cell 

proliferation would allow a population of cells to cope with a stress stimulus (ie. heat
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shock) instead of initiating apoptosis [105]. Therefore, the deactivation of ERK is able to 

confer some anti-apoptotic function. Interestingly, it would appear that not all activated 

ERK is involved within the cell cycle progression function and therefore only a limited 

pool of the total ERK population would operate in this regard. This would be consistent 

with the partial dephosphorylation of ERK seemingly caused by hYVHl. Also, it would 

explain the inconsistent pattern of dephosphorylation and phosphorylation of pERK in 

regard to figure 19. It is possible that the pool of pERK supposedly being 

dephosphorylated by hYVHl potentially within the cell cycle context is being masked by 

the effect of the other population of pERK within other functional circumstances, 

including cell proliferation. It would be quite interesting if hYVHl could in some 

localization manner specifically target activated ERK involved within the cell cycle. 

Obviously, the fact that both hYVHl and Hsp70 respond to changes in the cell cycle 

make this an interesting area of study and currently through immunofluorescence, the 

endogenous hYVHl localization at different stages of the cell cycle is being investigated.

However, the possibility that the incomplete dephosphorylation of activated ERK 

is a result of cross-talk between the different MAPK signaling branches cannot be ruled 

out. Cross-talk is a result of many overlapping proteins that function in multiple 

branches of the MAPK pathway, therefore a protein that has a strong effect on the JNK 

pathway may also show minimal effect to the ERK and p38 pathways. Therefore, levels 

of activated JNK, which also have been shown to respond to heat shock stress, were 

evaluated through phospho-antibodies and immunoblotting. Unfortunately, the phospho- 

JNK antibody used to measure activated JNK levels was unable to detect a signal in most 

cases. Unlike ERK, JNK is stress-induced, therefore while basal levels of ERK and
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activated ERK are high enough to be detected by western blot, it appears the same is not 

true of JNK. In an attempt to boost JNK levels, a scaled-up fractionation experiment was 

conducted and only cytoplasmic levels were examined. In this case, hYVHl appears to 

be responsible for the cytoplasmic retention of pJNK. Previous studies have indicated 

that upon activation JNK is able to translocate into the nucleus to further activate various 

transcription factors including c-Jun, c-Fos, and ATF-2, all of which have shown to be 

involved in the execution of apoptosis through gene regulation [82, 106]. Therefore, 

sequestering activated JNK in the cytoplasm would prohibit interaction with its nuclear 

pro-apoptotic substrate, thereby conferring an overall anti-apoptotic effect on the cell. 

However, activated JNK also triggers apoptosis within the cytoplasm, but it should be 

noted that dual-specificity phosphatases play an important role in the deactivation of JNK 

and therefore, the overexpression of hYVHl may also contribute to the 

dephosphorylation of activated JNK. The possibility that hYVHl can directly 

dephosphorylate pJNK is very tempting due to the fact that Hsp70 has been directly 

related to the activation of another dual-specificity phosphatases, MKP-1 [106]. The 

direct interaction between MKP-1 and Hsp70 is able to cause increased phosphorylation 

of MKP-1, this activated phosphatase was found to be directly responsible for the 

deactivation of JNK [107].

Therefore, in order to determine whether hYVHl and JNK could form a complex 

as well as establish an alternative method to examine the relationship between hYVHl 

and JNK due to the poor detection of the phospho-JNK antibody, co-immunoprecipitation 

was conducted. Endogenous JNK was co-immunoprecipitated in lysates containing 

overexpressed amounts of hYVHl. It was established that hYVHl was coupled to JNK,
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which is an exciting surprise considering the fact that hYVHl lacks a MKB domain. 

There are two possibilities that can reason this result. Firstly, JNK and hYVHl could 

bind through an adapter protein or secondly, if determined that hYVHl directly binds to 

JNK, it may do so in a manner analogous to VHR, which also lacks an MKB domain. 

The possibility that hYVHl could deactivate JNK and prevent its pro-apoptotic effect fits 

nicely with the data presented earlier. However, much research still needs to be 

conducted in order to validate this theory. Firstly, to determine whether hYVHl and JNK 

directly bind, various deletion mutants should be created and GST-pull-down assays can 

be conducted. Also, kinase assays can determine the direct effect of hYVHl on JNK 

activity in vitro. In order to improve the detection levels of phospho-JNK antibody, 

recombinant JNK should be overexpressed via transfection. Lastly, JNK is also known to 

be activated under other stress conditions like UV irradiation, serum starvation, and 

oxidative stress. The oxidative stress is particularly interesting due to the results of in 

vitro studies conducted in our lab suggesting that H2 O2 can alter hYVHl’s ability to 

coordinate zinc (Bonham, unpublished).

Lastly, it should be noted that HeLa cells demonstrate a high endogenous 

expression of hYVHl. Therefore, the possibility endogenous hYVHl protein expression 

could saturate out the substrate, scaffolds, and other regulators of hYVHl could lead to a 

minimal effect of the overexpression of hYVHl. In this regard, an attempt at knocking 

down endogenous hYVHl via RNAi and then overexpressing the protein may lead to a 

clearer effect of hYVHl on the MAPK signaling pathway.
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Figure 22 -  Schematic of Proposed Anti-Apoptotic Mechanism via hYVHl

(1) An initial external stress (ie. heat shock) causes the (2) activation of JNK through 
phosphorylation and (3) the increase in protein expression of hYVHl and Hsp70. (4) It is 
proposed that hYVHl and Hsp70 interact together at the perinuclear region of the cell in 
order to cause the deactivation of JNK, which can lead to the prevention of apoptosis.
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4.6 Final Remarks

The YVH1 DSP orthologues represent one of the most evolutionary conserved 

phosphatase members. Remarkably though, very little is known about its main role in 

regulating cellular processes. The current study has provided significant insight into 

YVH1 function and will act as a framework for future studies. Notably, our results point 

to a role for hYVHl in cell survival. This function likely entails collaboration with 

Hsp70 and preliminary efforts suggests the mechanism of action involves targeting 

aspects of the MAPK signaling cascades.
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