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“and eaperlmentally._; > I U

P
P R Y

L

. .
- - o+

FlOn 1n the developlng?reQ1on of ax1symnetr1c tur-

'7bulent jets 1n stlll air has been studied both theoretrcally

"‘L . . - “

e . P -y .
. -
-

.

- - ‘ ) .Jets produced bv three nozzles hav1ng tnree dlfferent

v 1

fturbulent boundary layer Veloclty proflles at tho noazle

“ei/;/Were lnvestlgated to determlne tha lnfluence of the

I

-_1n1t1a1 condltlons on the flow. The dlsplacement tllcknesses

' ]

at the exit of the nozzles were 6*/r = 0.0064, 0.0179 ‘and

!

_0“0628 andhror all three nozzles, the Reynolds number based

-on - the outlet dlameter and the average velocrty was R =

el .
l 53 x lD

? .

For each case;-the mean velocities, the turbulent

i

intensities in x,-r and B dlreculon and ‘the. shear stresses

N . *

'were measured by the hot—w1re anemometer «They were found

‘to be self preservrng’ln the 1n1t1al reglon except close to

~ *

the nozzle, but not in the tran51tlon reglon. The 1ngreased
h v

. ! -
boundary layer thlckness at the nozzle exit moves the self- i 8

preserving pomnt dOWnstream, although the potential core

length remalns the same.

. *+

.Numerioal solutions of the differential momentum,

~

contlnulty and turbulent kinetic energy equatlons together
w1th an emplrlcal length scale were performed by usrng a
flnlte dlfference method to predlct the mean and turbulent

quentltles in the initial region for any arbitrary initial

condition. Prandtl's mixing length model of shear stress

iii



) contlnulty and momentum eqguations.

- numerical solution is shown. :

‘model of shear stress.

I
-

e
. . L .
: -
. . : ~

B - : T L
was used for calculation and other sheaﬂ\stress models wgre

—

examined. Prandtl's model is not applicable to the tranfsi-

tiOn‘region and an empirical model of turbulent diffusivity

was used to calculate the mean flow quantltles from the ;

The calculated results '

are in satlsfactory agreement with the experimental, measure-~

LI - bl . .
ments. ) .
. A
-

For the thin beoundary layer .at the nozzle exit, the

" -~

measured mean velocities are shown to fit a polynomial form
velocity profile which is used to determine the jet boundarles

in the initial region by sdlvmng ‘the 1ntegral momentum and

mean: kinetic energy equations in conjunctlon with the Pranutl 5

a

Agreement'with the measurements| and @

.
-~

The turbulence level i ihe'core.of the jets was

high near 5% intensity. The effect of this turbulence on the

shear layer was not investigated, but might be important.

L
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CHAPTER I

INTRODUCTION / )

. .
l,l General

A jet is formed whén.a fluid‘discharges throuéh an
opening or_nozzle from a container under higher pressure
into a region of lower pressure. The neighbouring fluid
surrounding the jet may itself be in motion or at rest.
The formation of a boundary layer within the nozzle and
its separation at the outlet is the initiation of a shear
layer in the free jet flow.j Turbulence originates as an
instability in @he léminar flow, and the flow becomes

turbulent when the Reynold's number exceeds some critical

value.‘
Jets are of three kinds: 1) bounded, 2) wall, and

3) free jets. In bounded jets, the flow is confined by

solid boundaries; wall jets flow over solid surfaces.

‘Free jets flow without contacting solid surfaces and are

axisymmetric when formed by dischargihg through a circular
nozzle or orifice.

A detailed knowledge of the mean and turbulent
guantities within a jet is ‘essential to many problems of
diffusion, aerodynamic noise and airplane design. The

diffusion phenomena in free jets is associated with flows

in the exhaust of rocket engines, atomized fuel injection

systems,.sprays, waste disposal plumes and jets in numer-

ous cleaning devices.



Wall and bodnded jetsAaléo have é number of physical
applications;-|In1aigplénes, jets may be b;pwﬁ along‘ae;o;
foi},surfacgs fb energise thé b&dhdar?llayer'aﬁd prevent
separation. This‘ig.psual}y usgq:to.redpcé tﬁe.téﬁe;off
and landing speed of the airplane. It has been ;bélied
.with success to carrier-based naval aircraft; forJexample,
the Blackburn NA39 has blowing applied to the leading edge
of the wing, the flaps and the leading edge of the tail
plane which reduces landing ‘and take—off speeds by tens of
knots [1j'1. Directly related, although restricted by boun-
daries (i.e., free su§faces), is the diffusion of plunging
nappes from spillways.éf of submerged jeté from sluice
gates. Bounded jets are applied to‘the relatively new
technology of fluidiecs which include switches‘and Propor-
tional amplifiers. T

-Free Jjets in' the exhausts of rocket engines create
aeroaynamic noise which in many cases is objectionable and ¢
should be controlled. The aerodynamic noise is generated
by Reynolds stresses associated with either subsonic or
supersonic flows. It is necessary to know the turbulence
structure within such jets for better design related to
noise reduction.

Recently, research on free jets has received con-
siderable attention. One kind of jet, the axisfmmetrica

isothermal jet is a practical flow which embodies many of

1 Numbers in brackets designate references.

-~
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the essential features of shear flow turbulence, anda«it
1 ) .

remains a fertile grouhd for investigation.

1.2 Axisymmetric Jets in Still Surroundings

L

1.2.1 Turbulent Jet Formation | s

The turbulence in jet flow is caused by the genera-
tion of vortices and their breakddéwn due tb interaction.
Using flow visualisation téchnique (21, it has been shown
that waves starting from the nozzle cutlet grow with un-
stable aﬁplitude within two~to—th£ee wave lengths from the
exit. The wave‘crest in contact with the stationary ambi-
ent air folds back into the following trough. This folding
engulfs the surrounding fluid and forms a ring vortex core
which rolls downstream. After one or two revolutions, the
vorfices interact strongly with the waves behind and break
down into turbulent eddies [2]. The ihﬁeractions (like
vortex pairing) of turbulent eddies cause large scale vor-
tical motions; small scale vortical motions also evolve
through breakdown of the large eddies. When the initial
boundary layer is laminar, the initial vortical structure
results from the instability and rollup of the free shear
layer, and the initial size and sbacing of vortices can be
determined by the unstable eigenmode of.the profile. For
this case, the laminar-turbulent transition length from
the outlet depends on Reynolds number, R The higher

aD”
the Reynolds number, the smaller the laminar-turbulent

AN



transition length.

{ A free shear/layer reésulting from an initially tur-

L

bulent'bohndary layer can also roil'hp into an'brganized

-

vortical strgcture‘from~which evolve large and smal%ﬁgcale
motions not unlike the initially laminar case. This kind
of jet flow is shown in Figure 1.1, with three distinguis-
able layegxs: 1) shear, 2) ambient, and .3) potential core.
iFor convenient aﬁalysis, the turbﬁlént je£ flow is divided
into three principal regions: 1) ihitiai region, 2) trans-

ition region, and 3) developed region, shown in Figure 1.1.

The initial region applied to jets with an initial core of

- uniform velocity or potential core and extends until the

core disappears. The transition region starts after the
initial region. Further downstream,\‘\there exists a

developed region where the flow variables, i.e., mean velo-

o~
PN

city, turbulent intensity, etc. become apéroximately self-

-

preserving. The combined initial and transition regions

is called the developing region of the jet.

1.2.2 Flow in Axisymmetric Tufbulent Jets

A continuous transfer of momentum‘and energy takes
place from the jet fluid to the surrounding fluid. A dif-
ference in velocity between a jet and the regibn into which
it is discharged forms a pronounced degree of instability
due to the intensive‘;hearing of the peripheral jet fluid

with the ambient fluid. The shearing action initially

occurs over a small lateral region; but, the fluid near
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the axis remains unsheared. For turbulent jets, the shéar;
ing phenomenon steadily converts kinetic energy of the on-
coming mean flow into kinetic enerqgy of turbulence, and the
lét£er decays through viscous shear. Such a conversion of
energy occurs throughout the jet flo&. ‘On the other hand,
the reduction of kinetic energy of the mean flow rép:esents
a decréase in the flow velocity. The elementary considera-
tion of_c;ntinuity indicates that the area of flow sectidn
" must increase as the flow velocity decreases. Newton's
principle of action and reaction would suggest that de-
celeration of the fluid in the jet can’ occur only thréugh

a simultaneous accel%§é¢ion of the surrounding fluid, so
that the total rage of flow past successive sections.of

the jet increases with distance from the outlet. This
phenomena flattens the velocity profile in the shear layer
and r;duces centre line velocify after the potential core
region.

The iﬁitial'and boundary conditions play an important -
role én influence the flow and mixing p;ocess'in the ini-
tial regibn. The boundary conditions are related to the
shape &f the nozzle and the space surrounding the shear
layer. The initial conditions for stéady jets are the flow
properties at the_exit plane of the noz%le which depend on
the boundary layer thickness inside the nozzle. The flow
variables.in the initial region are dominated by the large

scale structure which can be expected to achieve independence

'



of the initial conditions in a finite flow length and the
flow may become self—présekving depending on the boundary

conditions.

1.3 Energy Transfer in Turbulent Jets

Turbulent flow represents a continuous interaction,
mixing or supefpbsition of turbuient eddies of various
sizes which cause fluctuation of flow variables'(velocity,

pressure, etc.) about their-mean values. Energy transfer
{

in a turbﬁlgnt flow field depends on the interaction of
eddies, and cor%élations between wvarious quanﬁities of the
tprbuleSEE and the mean motion. For simplicity, turbulence
may be considéred to consist mainly of eddies qﬁ two kinds,
depending on scale: 1) large.eddies, and 2) small eddies.
The large eddies are energy containing eddies, and they are
strained by both the mean and turbulent stresses present in
the flow field. The small eddies contain less energy and
they. are invariant to mean and turbulent stresses in tﬂe
flow field. ~The small scale eddies exist in the field ?f
large scale eddies and dissipate turbulent énergy to heat.

The kinetic energy reiated to small eddies in the field of

the big eddies may be called the internal energy of big

eddies.
Forms of energy in a turbulent shear flow are:
1) turbulent kinetic energy (for both large or

small eddies);

2) mean kinetic energy;



3) .energy due_ to préssure. ) )
These forms of enefgy transform from one form to anothex
in the following processes:

1) energy transfer from mean motion to turbulence;

2) turbulent_gneréy dissipation to heat:

3) -energy trg;sfer due to interaction, between

eddies of different size.

The relative magnitude of energy transfer with res-
pect to wave number is shown in Figure l.é;

VThe major portion of turbulent energy productiocn
takes place at relatively low wave numbers which correspond
to the larger scale eddies of the turbulence. The large
eddiés are stretcﬁed by the mean motion which performs work '
on them and this causes turbulence production. Tucker
3] interpreteé turbulence prdduction through vortex stretch-
ing for an irrotational flow field. Experimentally and
anaiytically, he has shown that the vortex stretching in-
creases turbulent kinetic energy which comes from the mean
motion. Thoqgh this analysis is not applicable to jet flow,
it gives an insight of energy transfer firom the mean motion
to turbulence.

Dissipation means the decay of turbulence which
occurs through the transfer of energy from the large eddies
to the émall eddies. Thistkind of energy transformation is
large at high wave numbers which represent the small scale

eddies, Figure 1.2. . s
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"The energy transfer due fo eddy interaction depends
on the_size of eddies, Ehe qorrelation of pressufe and
velpcity fluctuations and the triple correlations of the
fluctuating velocity components. This transformation is
called the diffusion of turbulent energy and its magnitude
is high at intermediate wave numbers, Figure 1.2. A

detailed discussion of energy transformation related to

axisymmetric jets will be presented later.

1.4 5Statement of the Problem

The flow in the developing region of axisymmetric
incompressible turbulent jets will be studied, both
" . theoretically aﬁd experimentally. Jets produced by three
different nozzles having different boundar§ layer velocity
profiles at the nozzle exit will ge investigated. The
. exit Reynolds number based on the average velocity and ‘the
outlet diamgter will be 1.53 x 105 for all three cases.

The mean velocity and turbulent intensity at the
nozzle exit will be measured to identify ﬁhe initial condi-
tions of the jet. The.me;n_velocity, the turbulent inten-
sitie§ in x, r and 6 -direction, and the shear stress will
be measured in the initial and transition regions.

. A differential method will be used to determine
mean flow proéerties by solving the differential mémenﬁum
and continuity equations for the initial and transition

regions with an arbitrary initial condition. This method

will be extended with a differentdial transport equation for+ "



turbulent kinetic enexgy together with an algebraic equation
for length scale to determine turbulent properties in the
.initial region.

An integral method will be used as a special'case to
determine jet boundarieg in the initial region for a tﬁin

boundary layer at the nozzle exit.

e



CHAPTER 1I

1

LITERATURE SdRVEY

"v2.1 General

Turbulent flows can be expressed mathematically by

the conservation of mass eqﬁation and the Navier-Stokes

quations. Since the Navier-Stokes equations are non-
.

linéar, each individual flow pattern has certaih unigue
characteristics that afe associated with its initial and
boundarykconditions. The egquations have Eeen énalysed by
.researchers for various flow patterns, but it is still not
possible to make guantitative prédictions concerning tur-
bﬁlent guantities without relying greatly on empiriéal
data because, in the time averaged turbulent equations,
there ére more unknown dependent variables than there are
equations. In order to obtain a useful set of closed
equations, it is necessary to make crucial assumptions
~concerning the flow, with physical concepts based on ex-
perimental data and experience. In this»way, many authors
have developed empirical and semi-empirical equations to
obtain a set of closed equations. Progress in this line
of research, as related to axisymmetric jets, is presented

in this chapter. ; o

The developed region of axisymmetric Jets, suffi;
ciently far downstream; is not affected by the initial con-
ditions. Much work has been déggiboﬁﬁ theoretically and

experimentally in this region by Wygnanski [4], Heskestad
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[s], Newman [6], Townsend [7], Rotta [#], Launder [9], Roshko

E}j] and others. On the other hand, much less work has been

done in the initial and transition regions except iately
in relation to noise by Bradshaw etlal [10], Kao-and Devies
(1], rau [12]‘and others. Some relevant experimental
work in these regions of turbulent jets is presénted in
chronolOgiéal order in Table 2.1, with information on‘jet
size, exit conditiohs, Reynolds numbers and the variables
measured. Relevant theoretical work with information on

the equations used is shown in Table 2.2.

2.2 Mean Velocity

2.2.1 Developed Region

Tn 1925, Prandtl [13] published the concept of

mixing length for free turbulent shear flow and it was

B

used by Tollmien [14] in 1926 to calculate mean velocities

in an axis étric jet without any speciai.COnsideration

of the regjon of the jet close fo the nozzle. The investi-
gation wafk based on the assumptions that: (a) the effeé;
tive forge was the fangentia&'shear expressed in terms of

the lateral momentum t:aé;poft and mixing length, (b) the
mixing length varies as the first power of the axial distance
from the efflux section:'(c) turbulence velocity was pro-
portional to the mixing length and meén velocity gradient.
Tolflmien [14] established a series solution for mean

velocity with variable, n

= r/{a,x), and the Prandtl's

t t

mixing length, L = CLX where a, and c, are empirical con-
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stanés. The se;ieé solution agreed fairly well with

" measurements [14] for the deveioped region of jets. In
1930, Schlichting [15] used Prandtl's hypothesis to express
turbulent shear stress, 1/p =.csbl(Umax - Umin)(au/ar) where
Cq is an empirical constant and b1 is the width of shear
layer, and solved the same problem as Tollmien [14] did in
1926 using similar assumétions. The solutjon shows satis-

factory agreement with measurements except in the region of

low velocity near the jet boundary.

2.2.2 1Initial and Transition Regions

The solutions given by Tollmien [(14] and schlichting
[i5] do not apply to the initial region of a jet issuing
from a nozzle Because of the presence of the potential core
and the effects of the initial conditions, although Prandtl's
mixing length is aﬁproximately linear for this region.
Kuethe [16]1, in 1935, applied Prandtl's mixing length to
the initial and transition regions and worked out an approxi-
mate method for computing the mean velocity for a round jet.
He assuméd Prandtl's mixing length to be proportional to the
width of shear layer and performed successive approximations
introducing a profile for the first approximation of the

form:

(u)lst.app. =1 -\ (2.1)

where bl’ the width of shear layer and r the radius of

ll

potential core were calculated by successive approximations.
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In this analysis, shear stress was expressed as:

T = 12 |28 (2.2)

where L = c4bl; cq'is an empirical constant determined by
.experiment.

The theoretical calculations of the mean velocity
for both initial and transition regions showed agreement
with experimental results from pitot tube measurements.

In 1944, Squire and Trouncer L[17] developed a mean
velocity model for the initial and trahsition regions of
co~flowinglﬁets with assumptions similar to those that
Kuethe [16] used for Jjets in still air. The Reynolds
shéar stress was expressed by Prandtl's mixing length
hypothesis given by Equation (2.2). The empirical con-
étant, Cyr used to determine the mixing length was found
to be different from tha%/préaféted by Keuthe:[16]. As -
a special case, the lend%h of the potential core was
calculated to be x/rO = 7.75 for jets in still air. This
‘value does not agree with that of Kuethe [16].

Albertson et al [18], in 1948, measured mean axial
velocities for both axisymmetric and two-dimensional jets,

and their measurements of mean velocity in the initial and

transition regions were found to follow the normal proba-

bility function:

u o (r*/20%) (2.3)
uo
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where o = c x; c_ is an émpirical constant which has two
values, one for the initial region and the other for the
transition region. This model of mean axial velocity
showed satiéfactory agreement for the two-dimensional case,
but it was not wholly satisf;étory fof the axigymmetric

|.

case. The expérimental value of the potential core length

1

was foﬁnd to be x/rO 12, but the authors,Jusing x/ro =9
achieved agreement with~measurements of the velocity in the
downstream sections. The measureménts vere carried'out by
using a hypodermic needle as a stagnation tube connected
directly to a manometer. .

In 1957, Miller and Cominés [19] used grandtl's
mixing length hypothesis for a two-dimensional jet f%?w

and developed a self-preserving empirical model for mean

axial velocity in the transition region after x/rO = 10:

‘ 2
o= = exp [} %(ﬁL):] (2.4)
C m ,
b

where bm was defined by: m OI (u/uc)dr.

The measured values _of*bm showed a linear relation-
ship with axial distance. Experimentally, it was shown
that the axial component of Reynolds shear stress was
balanced by the static pressure. They applied similar
assumptions to those of Kuethe [lé] for the theoretical
~analysis. Reynolds shear stress was expressed by Egquation
{2.2). This model does not‘apply to the.initial region.

R4

Kirshner [20] used a constant viscosity model for
o

e
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the transition region and solved the momentum integral
equation in the same way as for laminar flow. The expres-
sion for the mean axial velocity of the turbulent jet was
the same as that for the laminar jet with the molecular
diffusivity replaced by constant eddy diffusivity. The
constant eddy diffusivity was defined by: VvV, = ckbluc,
where cy is an empirical constant. The results of this
solution agreed with the measurements of Kirshner [20]
for the transition region. Though this model is éimple
to use, the turbulent diffusivity is not constant through-
out the jet flow, speéiélly in intermittent regions [21,
227,

Hatta and Nozaki [23]}, in 1975, developea a model
for axial mean velocity by an approximate solution of the
axial momentum integral equation fox the initial and trans-

ition regions. Turbulent diffusity, vt was defined by:

where ro is the mean radius of the jet expressed by:

2 = 2
oFm ryjug * 2 rf urdr
1l
Neglecting the pressure gradient in the momentum equation,

a model for the axial mean velocity was established:

G}CJ

= (1 - nH)“(l + 4ng) (2.5)

where Ny = r/bl. . :



-

This investigation also derived expressions for bm' blf‘
and r, as linéar functions of axial distance. Though this
approximate moéel showed agreement wf%h Hatta and Nozaki's
‘[23] measurements, it does notagg}ee wholly with the mea-
suremths of Bradshaw et al [10],sami et al [24] and von-
Frank. [25]. This discrepancy likely comes froﬁ the initial
condgtions which were not documented by the authors.

. Madni and Pletcher [26] Eéléulated the mean velocity
by an explicit finite-difference method from the differen- -

2

tial forms of mass and momentum conservation equations
LY

derived by using the boundary layer approximations. Rey-

nolds shear stress was defined by Equation (2.2) for the

initial region, and for the transition region by:

ToT =y
u'v vt'ar {2.6)
where,
< Ve = 0.03 S urdr (2.7)
r
_ o r .

The calculation started with uniform exit velocity and
showed satisfactory agreement with measurements for the
main portion of the shear layer. This model unﬁerpredicts
the mean'velocity of the outer region wheré velocity is
1ow.l

Many experiméntal investigations, without identi-
fying initial conditions, showed self—preservation-of the
mean velocity in the initial and transition regions of

the turbulent jets. Some empirical equations for the

\J

o+
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initial region are:

' a
. ' ,
. Abramovich [27]: ﬁi = (1 - n3/2)
) c
simson [28] L= - n’/4y’ f (2.8a)
c
l -
Kimura [237] ﬁi =1 - 3n2 + 2p3 J
. C '
where,
n = xr/by
and for the transition region is: "b
‘ . u _ —1.415(n + 0.7)
Nayer et al [29]: E; = e (2.8b)
‘where,

n=(r- :%)/bl

In the first three models, the shear layer width, bl' was
chosen between L;/uc = 1 and u/uc = Of apd Nayer measured
the width, bl between u/uc = 0.99 and u/uc = 0.01. Nayer's
definition is realisgic, but this model does not apply to
the initial region. Though these models are developed
from similar experimental data, they do not agree with each
other, probably because of different initial conditions.
bavies et al [30] measured the axial mean velocity
and showed self-preservation against the independent vari-
able (r - ro)/x in the initial and tran;ition regions.

Measurements of Bradshaw et al [10], Von-Frank [25], sami

et al [24], Laurence [31], Lau [32], Kolpin [33] and others
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show that the axial mean velocity is self-preserving when ]
it is plotted against the variablé (r - r%)/bl. These
measurements do not show whélly self—preservat&on against
the variable (r - r_)/x. vuu et al [34] ‘used a polynomial
form as an empirical model for the axial velocity in the
initial and transition regions with independent variable

{(r - rl)/x, where X is potential core radius. This model

does not show satisfactory agreement with measurements in
!

the initial region; but it is fairly applicable to the
developed region. It is iﬁteresting to note here that
measurements of Heskestad [57], Wygnanski [4], Gortler [153,
Reed [35], and others show self;preservation oé axial mean
velocity when <t is piotted against the variable r/x for
the developed region.

Recently, Bradshaw}[BG], Crow and Champagne [37],
Yule [38].and Hussain and Zedan [39,40] published some
experimental results for jet flow, identifying the initial
conaitions. Bradshaw [ 36] studied the effects of exit
boundary layer on turbulence with boundary layer untripped
or tripped by concentric rings. Experimental results have
‘shown that the shear layer becomes fully turbulent at an
approximate distance X, = 7 % 105(%LJ from the exit for
any boundary layer thickness used ii the experiment. The
investigation was carried out with maximum momentum thick-
ness 0.15 mm. at the nozzle exit. He also noticed a

significant change of virtual origin and an increase of

noise emission with boundary layer thickness. Yule [38]
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studied the jet flow for a wide range of Reynolds numbers
(9 x 103 - 105) by using flow visualisation and hot-wire
techniques. He found the shear layer fully turbulent at

: 5
an approximate distance x, = 1.2 x 10 (5—) from the nozzle

exit wﬂich i#® different from Bradshaw's %36] results. This.
work did not mention the exit boundafy layer thickhess‘and
turbulence level. |

Hussain and Zedan [39,40] measured mean velecity
and determined the Jet bouﬁdaries, varying b&@ﬁ the laminar
and turbulent boundary ‘layer thicknesses, and controlling
the turbulence at the nozzle exit.. Experimental results
showed the mean velocity to be self-preserving at a dis-
tance from the exit which varies with the initial turbu-
lence leﬁel and boundary layer thickness. For a turbulent
boundary layer at the nozzle exit, the virtual origin was
found to be very close to the geometric origin at the
nozzle exit. This investigation was carried out over a
range of Reynolds numbers (6 x 10" - 1.4 x 103 with
maximum momentum thickness eo/rO ='0.011 at the exit plane.

all- the theoretical work referenced to the above,
used the width of the shear layer, bl' as the scale f&r
the similarity variable n. In most cases, bl is the width
between iso-velocity lines u/uC = 1 and u/uc = 0. Physi-
cally it is impossible to determine iso-velocity line
u/u_ = 0. )

Numerical calculations of the dgifferential momentum
.
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equation together with the semi-empirical transport equa-
tions presented 1§;$f},were performed by Rot£a [g,41]
Biringen [42], saunder and Morse [43], Launder and Spald-
ing [9], Harshh [44] and others for mean velocity and
turbulence quantities. This approach will.be described

in the following sections in some detail.

2.3 Differential Transport Egquations

Turbulent shear flows can be ekpressed mathemati-

cally by the continuity equation, the momentum equétion, ///

7
and a set of semi-empirical transport egquations for ofe

or more dependent variables, spch as turbulent kinetic
energy, length scale, dissipation energy, étc, If the set
of empirical constants are known, these differential equa-
tions may be soljaéqby numerical methods to simulate the
behaviour of tﬁrbulent quantities "in the shear flow.
Kolmogorov [&5], in 1940, first proposed the semi-empirical
transport equ‘tions fofr the turbulent kinetic energy, k,
and the characteristic frequency, f£. These equations
describe'h{w the)dependent variables are influenced by

basic forms of energy transferx, i.e., production, dissi-~

pation, diffusion anthconvection. The length scale of

1 . .
turbulence was ed by: L =.Jiyf in this modél. These
equations were difficult to use because of their complexity.

A few yéars after Kolmogorov's [45] work, Prandtl

[46] independently suggested a similar differential trans-

port equation for the turbulent kinetic enerqgy, k, but he

-



used a linear algebraic equation for the length scale of
turbulence which was different from Kolmogorov's equation.
Glushko [47] applied this model to turbulent boundary layer

calculations. A

»

Recently, Rotta [8], L&under and Spalding [91, Rodi
~and Spalding [48], Bradshaw {{49], Ddly and Harlow [50],
Kovasznay[ 511/ Laﬁnder et al [52] and others have deQeloped
independentl} a~number of useable differential transport
equations. The eguations have been applied to a variety of
flows, including the developed region of turbulent jets, by
Rotta [8], Launder and Spalding [9] and others. These mathe-
matical models can be described as one-equation, two-eguation,
three-equation models, etc., depending on the number of
semi-empirical transport equatians used. Usually, increasing
the number of.eguations means longer computer time and
greater effort in determining a larger number of empirical
constants. On the 6ther hand, the modei having the large
number of equations can usually be applied to a wider 'variety

of flows, although the accuracy of the calculated values may

-

not bé superior.

Bradshaw, Ferriss and Atwell [53] calculated turbulent
guantities in a turbulent boundary_layer using a differential
~ trafisport equation for turbulent kinetic energy which was
similar/to that of Kolmogorov and frandtl. The equation is:

uak ok 20 + 3(—r'—r'

— 4+ Ur) = Tt — v =
p(us— Uay) oy *oay PV + pku') + pe=0 (2.9)
~ ~ — * w— - - ~— G
Transportation Pro- Diffusion Dissipation
duction

¢
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. Bui 2
where 7 = pu'u' and ¢ = “(3§")
3

A

The Reynolds Shear stress, pu'u' was expressed by:

—pu'y’ = clpk (2.10)
and the diffusion term was simplified to:
pTur + pku' = pEue (2.11)

where Ck is supposedly a universal constant and ue.is the

effective velocity at which turbulent energy is transported
in the transverse direction by the large eddies. The effec-
tive velocity,ue, was exéressed in terms of shear stress and

an unknown function, G:

T 5
_, ‘max y :
e."( > ) G(%) (2.12)

—~

where § is boundary layer thickness and Tnax ig/ wall shear

U

stress. The dissipation term was expressed as:

\ | e = thgon 32 (2.13)

The ;ngth scale Ll was assumed to be a universal function
of y/5£ This function was similar to that employed by
_Glushkg [4f] for developing Prandtl's model. Bradshaw,
Ferriss and Atwell [53] calculated furbulence quantities
from the continuity equation and a momentum equation and a
differential transport equafion for‘turbulent kinetic energy

together with an empirical length scale model.

Launder and Spalding [9],. Rodi and Spalding [48], Ng
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and Spalding [54], Jones and Launder [55] and Spalding [ 56
have|developed two—equaﬁion transport.models for turbulence
and applied these to a ﬁariety of flows. In.all models, one
dependent variable in the transport équations is the turbu-
lent kinetic energy, k. The second dependent variable is
the length scale itself. lHowever, since an equation for k
is prescribed, its simultaneous solution with- an equation
for a variable, Z of ;he form kleh has been used to find
the length scale, Ll. The apove authors have develcped
three p:incipﬁl models of this type, which resemble each

other. The differential\tgéziggyt egquation for Z for two

dimensional flow is: .
u ‘T M '
DZ _ 3 eff 32 2"eff duyz _ 2
(2.14)

& .
where the term, S represents a secondary source term; 1its

form is included in Table 2.3.

w

The equation for turbulent kirdetic energy, k, which

is the same for all the models of Laundéf—Spalding et al,

may be written in a form: S -
Dk 9 Heff 3k c ueff Ju :
—_— = — i ——— —_— - — 2
P Bt ay( Oy ay) + ok k (ay) Cpf k/ueff
(2.15)

Equations (2.14) and (2.15) express the supposition that

~convective changes in Z and k may occur through three agen-

cles:
C

i) Spatial gradients in turbulent guantities which
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give rise to diffus;:éjﬁtansfer.

ii) interactions between the turbulence and the
mean velocity field.. -
iii) direct action by‘turbﬁlent‘motion itself.

The differential equations-for-Z-and k contain the

-

terms Cyr c3, C g, and 0y which are assumed to be .a set

of empirical constants. The expressions for 2z and S, and

D'

the values of constants are presented in Table 2.3.

All these models use the same expression for turbu-

lent shear stress, pu'u'.

- _ Ju '
TRUV T Merr By . (2.16)

where the effective viscosity Mogg is:

-1
~ Mogf = pcDJk L | {(2.17)

o

Thes¢ models were applied to turbulent boundary
layers, internal flows and many other flows including the
developed region of turbulent jefs and satisfactory results'
have been shown in Refs. [9,43,57,58,59].

Rotta [8] also developed two-eguation transport
models for turbulence. One equation has been formed wi;h
the dependent variable either the turbulent kinetic energy
or the shear stress, and the other equation with the vgri—
able, kLl. In these eguations, it is assumed that Fhe con-
vective changes in dependent variables are balanced by
production, dissipation, and diffusion of turbulence. The

differential equations are:
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the K.E. eqguation,

3/2 . .
Dk _ ——y 3u _ kK~ 1 (3 . s o1 3K
BE u u Oy Cr Ll -+ P" ay Y ]’\.q kL m
v 2.18)
the length scale equation,
DELY _ e o 00 o 302
. bt YV &M 5y T CSLCr
1 9 ] Nerdrl 8k .3k
Y
(2.19)
where j = 1 for axisymmetric flow and j = 0 for two dimen-

sional flow. These equations contain the terms Crr kq, £,

Cy, s qu and oy which are assumed to be empirical constants.

-

Rotta [8] determined these constants for the developed

region of turbulent jets to be: (
¢, = 0.165; c, = 0.8 ; kg = 0.6
£ =0.99 ; qu = 0.6 ; a; = 0.5

Rotta [8] further used this model replacing the kinetic

energy equation by the turbulent shear stress equation in

the form:
D -y du _ Yk T
pe (Puiv’) = ek ag 50 -k oy pL (Pt

Kar 3y(/kL (2.20)

The terms ap, kp and qu are empirical constants and the

values of these constants. for developed region of jets are:
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a = 0.0, k_ =1 and Xk = k
P : P gt g

For these models, the relationship between turbulent k

energy and shear stress is the same as that of Launder

inetic

and

$palding [9] shown in Equations (2.16) and (2.17). These

differential transport egquations together with the mas

s con-

tinuity equation and momentum equation were solved numerically

for many cases of shear flows [8], including the developed
region of turbulent jets.

Harsha [44] formed a one-equation transport model for
calculating shear flow turbulence. He used a differential
transport equation for the turbulent kinetic energy and an
algebraié expression for the length scale. The energy
equation is: ¢

j 3/2
Dk 1 3 Heff y] 3k —— JUu pk
o X2 L 4 (=L =) 4+ pulv! 5 T 3y Y (2.21)
Dt y] vy P oy 3y 2 Ll
for axisymmetric flow j = 1.

The length scale Ll was chosen to be twice the half-

velocity width,r%'for axisymmetric £low, and the effective
viscosity was expressed as:
=0 0125Ll( - ) (2.22)
Heff : Ymax Ymin :

The empirical constants p. and a, were determined for axi-

symmetric flows:

p_ = 0.70 ; a, = 1.69

darsha [44] used Equation (2.10)} for relating turbu-
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lent shear stress and kinetic energy in the same way as that
of Bradshaw et al [53]; and Harsha and Lee [60] established
the constant, c, = 0.3 experimentally. Harsha's [44] calcu-
lation of the ‘differential tranSéort equation together with
the differential form of mass and momentum conservation
equations showed satisfactory results everywhere in jet flow
except the initial region.

At the Los Alamos laboratory of The University of
California, Harlow and co-workers have developed transport
models for turbulence which are similar to that of Kolmo-
gorov [45]. They have formed the differential transport
equations with two (or more) turbulent guantities as depen-
dent variables. Ail models developed by this research group
used the turbulent kinetic energy as one dependent variable
for a transport eqguation. The other dependent variable was
chosen to be the length scale by Harlow and Nakayama EG]J
and local dissipation rate by Harlow and Nakayama [62] to
form another differential transport equation. Recently,
Harlow and Hirt [63] and Harlow and Daly [[64] have employed’
differential equations for turbulent shear stresses and
normal stresses in the tﬁree individual directions of the
co-ordinate system. Each mbdel contains a set of empirical
constants, and the shear stresses were expressed by similar
expressions to those given in Equations (2.16) and (2.17).
These models have been applied to a variety of turbulent
flows, but their application to axisymmetric jets in still

surroundings has not been reported.



The calculation of turbulence by using the differen-
tial transport equations has become routine for many turbu-
lent {lows. Recently, .Heck and Smith [65], Peters and
Phares [66], Biringen [42], McGuirk and Rodi [67], Launder et
al ES2,59,98] and others applied the transport models -
described above to a variety of flows and obtained satisfac- .
tory results. Each worker used a different numerical method
of solution and a different set of empirical constants,lyet
each achieved satisfactory results.

From a survey of the literature, it is apparent that
not much theoretical work has been done in the initial and
transition reg@ons of axisymmetric jets. This dissertation
presents some_théoretical work for these regions using.a
single transport equation together with the continuity and

momentum equations.

2.4 Turbulence

Jet shear flows are aniostropic in character and a
continuous transfer of energy takes place from mean motion
to the turbulence due to the interaction of the Reynolds
stresses and the mean velocity gradients.' This kind of
flow has high Reyndlds stresses which are the major cause
of jet noise [68]. The turbulence in shear flows is deter-
mined either‘by measurements or by empirical/semi-empirical
relations.

Bradshaw et al [10}, Davies et al [30,69], Ko and
Davies [11], Lau [12,32], Laurence [3)], Lau and Fisher [70].

Arndt and Nilsen [[71] and others measured turbu%sﬁsp in -
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different jet geometries and at different Reynolds numbers,

as shown in Table 2.1. Though most of the measuremeﬁEs were
made under similar conditions using the hot-wire anemometer,
the results do not wholly agrec with each other in the ini-

tial region. The agreement of different measurements is

Asatisfactory in the transition and developed regions. The

éisagreement of measurements in the initial regién may be
due to different initial conditions which werev unspecified.
Rotta [8], Launder eé al [9], Harsha [44] and others
applied transport models for calculating turbulence in the
developed and transition regions of jets. Rotta [8] and
Launder et al [9] calculated turbulent kinetic energy and‘
length scale from.a tﬁo—equation transport model and detér—
mined the shear stress by Equations (2.16}) and (2.17).
Harsha [44] calculated turbulent kinetic energy from a one-
equation transportumodel and determined the shear stress by
Equation (2.10)2 Harsha [44] also applied the following

model for shear stress in jet'fldw:
TTOT = cip 3D/ (2D Ik (2.23)
axr 3 max| -

This model of shear stress does not show satisfactory agree-
ment with measurements for the initial region.

- Rudy and Bushnell [72] calculated Prandtl's mixing

" length for many shear fldws, and twenty-two out of twenty- .

yal

four cases in Langley Workshop conference were tested by

Prandtl's mixing length. The present research examines the .

Prandtl's mixing length model of shear stress in addition to
. » : i s !

)

9



that giveh in Equations (2.10) and (2.16) for the initial
region. |
The authors referred to in Section 2.1 above did not
report relationship between individual components of Reynolds
2

normal stresses and turbulent kinetic energy. Townsend [ 7]

and Csanady [73] approximated the normal stresses in r and

. o . 2 2 JE. - . 2
5 directions as v'° = w'®, and in x direction as u'® = k.

Measurehents of Bradshaw et al [10], Sami et al [24], von-
Frank [25] and others do not agree with the assumption, ~

U'z = w'2 in the developing region of jets. The present
research develops semi-empirical relations betwéen the indi-

-vidual components of Reynolds normal stresses and the tur-

~bulent kinetic energy.



T'3.1 General

CHAPTER III

THEORY

Turbulent mgfion is goveryied by the Navier-Stokes

differenpial equativns. The gefieral solution of the non-
linear Navier-Stokes eguation is'not‘available. In or@er
to apply Navier-Stokes eguations to practical cases, hypo-
thesis and empirical.aésumptions have to be introduced in
order.tq_obtain;a closed set'of equations with time average
dependent variables. The early theoretical work uses
Boussinesg's eddy viscosity hypothesié and Pranﬁtl'srmixing
length equationlto calculate mean velocities with the eddy
visqo;;ty and the mixing length as empirical guantities.
Thelaséumptions, necessary to build the empirical reiations'
depend on the boundary conditions of the flow field and
have to be readjusted for each particulér flow case.

' Theoretical work on turnulencé can be developea in
any of the goug levels:

| 1) Empirical algebraic formulée connecting the
turbulent and mean flow guantities. The most common example
is eddy viscosity formulae. |
2) Empirical differential equations (transport
equations) for one-point turbuleqt gquantities. Examples
are the Reynolds stress transport equatians, length scale
transport equation, etc.
3) Empirical differential equations for two-point

correlations or spectrum tensor. Exampleé are Kraichnén

36

>
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"Direct Interaction" model [74] and Deissler's Linearized
models -[75]- |

4} Direct numerical solution of the time-dependent
Navier-Stokes equations. Examples are peardorff [76] and
Schumann [77].

Studies at level 3 refer mainly to(isotropic turbu-
lence. The mathematical treatment to- the shear flow equa-
tions simplifies level 3 almost to+~level 2. Progress at
‘level 4 is possible for low Reynolds no. flows, but consunes
much computer timé producing results inferior to that of
1evél 3, even for the small scale motion. Therefore,
erigineering calculations of turbulent flows are confined to
levels i and 2 for the immediate future.

Theoretical analyses at levels 1 and 2 are most simply
explained as attempts to ‘close' the exgct Reynolds stress
transport equations for —bﬁzﬁglwhich are derived by manipu-
lating the(Navier—Stokes equation and time averaging as
shown in Appendix‘A. Up to the presenﬁ, the most successful
method of closure has been to obEain an empirical turbulent
enérgy transport equation and relate the Reynolds stresses

to energy equation‘by using physical concepts.

3.2 Governing Equation

3.2.1 Mean Flow Eguations

Assuming steady, incompressible flow without contact-
ing any solid surface and constant fluid properties and zero

pressure gradient, the eqguations for mean motion. are derived

in Appendix A.
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the mass conservation equation is:

. 5 (ur) | d(ur) _ g | (3.1)

ax axr

h . . .
the momentum conservation equation is:

._a._(r

=5 } {3.2)

W
]
Qs
=

Il o

I
p

where t is the shear stress and p is the density of the
fluid. The co-ordinate system is shown in Figure 1.1
The shear stress, 71, includes both viscous ‘and tur-

bulent contributions, and it was written as:
I=v & -5y (3.3)
P C

where v is the molecular diffusivity. The turbulent part
of shear stress is -pu'u' and it is usually expressed by

Boussinesqg's hypothesis:

—_— du
- T =
pu'u pvt ps (3.4)

v is the turpulent diffusivity. For the initial region of
turpbulent jets, the diffusivity, Vi is expressed in terms

of Prandtl's mixing length, L and mean velocity gradient,

su/9r.

for the initial region:

= 72 |2u
v, = L lar . (3.5)
where L 1is Prandtl's mixing length. This modél is not

applicable to the transition region. Schetz's (217 ana

Madni-Pletcher's [26] models are combined for calculatiﬁg
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mean flow properties in the transition region.

Madni-Pletcher's model is:

v, = / urdr C o (3.6)

. Schetz's model is:

o

Ve = 0'324 /  ursdr (3.7)
o] 0 :

where v is an intermittency factor. An expression was

Aeveloped by the author for y as follows:

Y = 1.0 ; 0 5 x/ry < 0.8
' (3.7a)
Y = (0.5)F r/ry > 0.8 q

where, w% = (;/r% - 0-.8)2'5

/
This gives a distribution for y which agrees well with the
experimentally determined curve in ref. (87].

g variable n = (x —-r%)/b is defined to b? a self-
preserving variable for the initial region, where the scale,
b, is defined as:

_ -1
/%o T Fatu/uct (3-8
[ }rz”sﬁ

2 (xr ro)

where roois tne'jet exit radius, Xy, is the radial distance
for u/u, = 0.5 and u, is the centre line velﬁcity.. The co-
ordinate at r% and the scale, b, were chosen as tﬂe most

- convenient for establishing self-preserving qualities of

the jet in the initial region.



3.2.2 General Turbulent Kinetic Enerqy Equations
Y
 Tne general turbulent-kinetic energy equation derived

in Appendix A 1s:

B N O B T X S SN ) 1
. ax " 3T, [}f T T UV 5 3% r 9¢

+
. — A
Transport : Production
wlu’ 3u - su'’ : au' z + dw'’ :
* r 36 V¥ ,;} [Eax ¥ v (3% l
u',? 3y aw', 2 1 3u',? 1av _w'?
e ) G+ Gy * (F 30 )
A v -
Dissipation
1 3w’ u' L]
+ (S e+ =) = = {u' (P + k)
A r J I, ;] [;x ‘A
1 3 ' ' 1 a_ t T
oo (W ®/er K+ T e {w(p /p+k)i
i Y
Diffusaion
3%k , 1 3 3k 1 3%k -
VlaE t i ) Y oo (3-9)
where k = (W'? + u'2 + w'?)/2. From physical concepts, this

equation contains four baslic terms: 1) convective ‘transport,

2) production, 3} dissipation and 4) diffusion transport.

;A correct interpretation of the terms in the transport equa-
tion (3.9} is'important. For practical purposes, Equation
(3.9) is simplified b§ introducing empirical assumptions.
This meané that the terms are approximated by algebraic re-

lations.
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3.3 Formation of Empifical Turbulent Encrgy Equatiorn

3.3.1 Production

The main. source of turbulence is the productionaterm.
Productign means transfer of energy from mean motion to tur-
bulence. Thds occurs through interaction of turbulent mo-
tion with mean flow. In other words, it can be defined as
the work done by Reynolds stregsés due to the deformation .
caused by mean flow. It may be seen from Equation (3.9),
that the production term is the product of ﬁhe Reynolds

stresses and the rate of deformation caused by mean flow.

Mathematically, the production term 1is:

Production = -uiul S. .
1] 71,3
. Bui Ju.
| B t 1 Ty — l . -
where ul (u.,u , W'Y and Si,j %(5;; + Bxi)' Uy (u,v,w)
and Ri = (%,¥,2). Si i is the deformation tensor due to mean

velocity, and GIE; is Reynolds stress tensor.

Production of turbulence causes the flow to be aniso-
tropic. A vortical motion exists in the flow; the mean
motion stfetches the vortices a?ﬁ performs work on them which

causes the generation of turbulence.

Fpr axisymmetric flow| the azimuthal gradient of any -
property is zero; hence, 3u/36, ;;735 ana ak/ae ar; equal to
zero in Equation (3.9{. From the order of magnitude princi-
pal, the transverse gradient of any property is very high
compared to the longitudinal gradient for a thih shear flow.

The production by the transverse mean velocity gradient,

u'v' %%, in Equatien (3.9) dominates the whole turbulence
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generation except near the centre of the transition region.
Therefore, the productién term in Equation (3.9) 1s expressed

(=
as, .

Production = a 5T Ju : (3.10)_

where a is an empirical constant which accounts for the
contribution of all the mean velocity gradients to the produc-

tion term.

3.3.2 Dissipation

Turbulent dissipation means the transfer of turbulent
energy to molecular motion. It is the rate at which the
#iscous stresses perform deformation work against. the fluc-
tuating strain rate. This term given in Equation (3.9) is
the product of the molecular diffusivity aﬁd the quadgatic
fluctuating deformation. It can se simplified by restrict-
ing the flow to high Reynoldé number; gnd asgumiqg that
the dissipation is independent of thé viscosity, and hence
the Reynolds number. The idea behind this assumption is
thaQ\ESE/high Reynolds numbers, the turbulent spectra ex-
tend over a very wide range of wave numbers, and that the
contribution to dissipation comes mainly from the small
eddies or largé'wave'gumbér spectra. The motion of the
large wave number components is statistically independent
of the energy containing part of the spectra. Although
the small eddies are’ﬁﬁfgly responsible for dissipation,
and independent of the behaviour of the“large eddies, the
viscous dissipation is governed by the rate of energy trans-

fer from large to small eddies and not by the viscosity,
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l.e., the rate of energy dissipation is independent of vis-

‘cosity. The magnitude may be expressed empirically [78]:

Dissipation = ¢

r T (3.11)

where Ll is a length scale for energy containing eddies and
. is an empirical constant. Although this simplification
is made for high Reynolds number flows, its éxtension to
low Reynolds number flows‘is also found to be valig ESSi

except for the laminar-turbulent transition.

3.3.3 Diffusicn v

Turbulent diffusion is a method of energy transport
caused by turbulént mixing or interaction of eddies. It is
high for the lower wave numbers cprrésponding to the eddies
which contain the major éortion of the turbulent energy. The
diffusion term has two parts: (1) inertia, and (2) viscous
diffusion. Viscous diffusion is the second part of diffusion
term in Egquation (3.9), and it is negligible in high Reynolds
number flows. Inertia diffusion is the fi'rst part of diffu-
sion term in Equation {3.9) and is triple correlations of
the fluctuating velocities and correlations between fluctu-
ating pressures and fluctuating velocities.

In general, the flow ﬁield is lesé affected by the
diffusion transport than by the other terms, although dif—
fusion may predominate in certain parts of the flow field.
Therefore, some crudg assumptions aré admissible. Launder
[91, Rotta [8] and others have used the simple gradient

type diffusion as suggested by Prandtl C46], and expressed

L
&R
e



diffusion in the.transverse direction by:

RN

\ (P'/p+ KJu' = —kq‘/k Lt 3—}; . (3.12)

whexe kq is an empirical constant. By the order of magnitude
principle, the longitudinal rate of diffusion is negligible
compared to that in the transverse direction for thin shear

layers.
o f )

3.3.4 Empirical Turbulent Energy Equation

Using the above interpretations and Equations (3.10),
(3.11) and (3.12) for the production, dissipation and dif-
fusion terms respectively, together with' axisymmetry and

thin shear layer conditions, Equation (3.9) becomes:

' : 3/2
. 3k ok —— 3u k
u — + — =-a, u'v' — - ¢
axX “@r. 1 3Y r LI
1 3 1 ok P

The closure of the equations are achieved relating

the turbulent shear stress and the kinetic energy in any of

the following forms:

clk . (3.14)

1,2 ’
CD/k Ll u . c k"du {3.15)

1
c
c

!

Besides these two models, Equation (2.2) may be used for

closure.



3.4 Differential Method

3.4.1 Egquations and Boundary Conditions

For mean flow properties, Equation (3.1) and Equation
(3.2) were solved numerically using the shear stress Equa-

tion (3.4). The turbulent diffusivity, v was expressed

£
by Equation (3.5), for the initial region and by a combina-
tion of Equatioﬁs (3.6) and (3.7), for the transition region.
The appropriate boundary'conditions applicable to Equations'
(3.1) and (3.2) are:

Buﬁx,O)

F =0 ; v(x,0) = 0 ; Lim u(x,r) =0 (3.16)

r -+ o
In addition, the measured initial distribution for u(x,r)

was used:

u(xo,r) = f(r) (3.17)

where x_ is the exit section of the Je.

This calculation was extended with turbulent kinetic
energy Equation (3.13) in addition to Equétion (3.1), and
Eguation (3.2} to calculate turbulent properties in the ini-
tial region. Equation (3.13) is subject to boundary condi-
tions.:

k(x,0)

e = 0 ; Lim k(x,r}) = 0 (3.18)

r -+ =

and the measured initial distribution:

Y k(x,_,r) = gl(x) (3.19)

All calculations use an empirical eguation for iength scale

given byﬁ
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1
L°/b = L/b = 0.10625

R . .
Hlere L™ is made egual to L by adjusting the constants in the

shear stress and dissipation equations. Experimental deter-

mination of L/b will be presented later. The flﬁid propertieé

p and y are assumed constant.

3.4.2 Calculation Technique

-

An explicit finite difference technigue of the Dufort-
F}ankél [94] type was applied heré to the momentum E&uatiOn
(3;2)Q\ﬁhe‘continuity Equation (3.1) and the transport Equa-
tion (3.13) associated with boundary‘conditions (3.16),
(3.17), - (3.18) and (3.19)  to calculate the turbulent kinetic
enerqgy and tﬁe mean velocities. How the‘derivatives are |
approximated for this method and their truncation errors are
given in Aﬁpendix D. The finite difference grid used for
thg'calculation are shown in Figure 3.l. The computer ﬁro—
gramme dgveloped for this purpose had the capability of
handling non-uniform grid spacings in both r- and‘x—direction.

' Von Neuman's method of stability analysis [79] with
first order error was applied to the momentum equation and
found to generate a mild stability constraint given in
Appendix E. For calculating the méan flow properties from
the continuity and momentum equations, non-uniform grid
spacings were used in x-direction which was restricted by
the stability constraint. The grid spacings in the r-
direction were chosen to be uniform, dividing the discharge
radius r, into 30 equal divisions to attain convergence of

the soclution. The calculation with uniform grid spacings

{Ax/Ar < 0.5) in both directions also attains convergence

but consumes more computer time.
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Von-Neuman's method of stability analysis [79] was
found,to be'inpffective with the finite difference.equation
of the turbulent kinetic enerqgy. For calculating turbulence
in addition to mean fiow properties from the cbnpinuity,
mbmentum and turbulent enérgy equations, small uniform grid
qucings in both directions were used with Ax/Ar<0.5 which
satisfies the étability constraint generated with the momentum

N .

equation. All calculations reported here for turbulence use .

4x/8r=0.5 dividing the discharge radius rs into 50 equal divi-"

.

sions to attain convergence of the solution in the initial

region. * Convergence was not obtained in the transition region,

v

- and hence, no turbulence predictions are presented for the

region. ' .

' - The Dufort-Frankel technique requires information from
two previous staﬁions for the calculations to proéeed in the
streamwise direction. The associated boundary conditions give

information at one station and information for the second

station is calculated by a simple finite difference technique

that reguires only the previous step values. Switching of the
calculations from the initial to the transition region takes
place when the centre line velocity in the initial régionm
decreases by 1%. |

The finite difference equations;for the continﬁity,
momentum and turbulent kinetic energy are shown in Appendix D
for both ﬁﬂe Dufort-Frankel scheme and the simple finite-
difference scheme.

Any calculation reported here did not require more

than 1.5 minutes of computation time on IBM 370 computer.
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3.5 Intcygral HMethod

-

The integral method is an alternative to the differ-

ential method for solving a set of differential equations

. k
by assuming an empirical mean velocity-profile. Mass,

momentum and energy are conserved ov£¥‘an integrated finite

length to develop fhe.governing equations. This is an

aﬁﬁroxiﬁate method, preferable for ease of caigulatiog.
It}@as possible to ;établish an empirical sé;f—

preserving vélocity‘p:ofile for the initial regibn of a

jet having a thin boungary léyer at the nozzle exit. This

-

velocity profile was used in the integral equaéions to
) e
determine jet geometry.

. 3.5.1 Integral Equations

The integral momentum and energy egquations for the
mean flow are derived in Appendix A. The momentum integral
egquatioh is:’

2 S owrar=o (3.21)

The energy integral equation is:

(2]

5 S wirax =-—f vr 3 oy (3.22)

The eddy diffusivity, vy is given by ‘Equation (3.5).

3.5.2 Empirical Mean Velocity Profile

Using the present mean velocity measurements for
the initial region, which will be presented in Chapter Vv,
in a third order polynomial for the main portion of the

mixing layer and superimposing Townsend's [7]1 hyperbolic
. :

.
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tangent velocity profile at the outer layer side, the follow-

ing velocity profile was established:

2 =1.0 ; . N < ~0.736 )

'Llc . y .

— = 0.5 -1 + 0.05n% + 0.66n%;~ 0.736 < n < 0:5

. C '
(

u = -

w Al - tanh B(n - 0.5)]: n < 0.5
/(3.23)

where n = (r - r%)/b.

The constants A = 01995 and B = 4.79 were determined
by using continuity of velgcity and matching the slope of the
velocity profiie at n = 0.5. This composite velocity'profile
behaves asymptofically at the outer part of the jet with RMS

deviation of (Au/uC)RMS = 0.0112.

3.5.3 Jet Boundaries

Equation (3.23) shows that the inner radius, Ty

éorrequnds to n = -0.736 where u/uc = 1.0, and the outer

radius is defined here as corresponding to n = 0.8 where

u/uC = 0.01. So, the inner and outer radii of the jet in

terms of Xy and b are:
Fi

Ty r!'5 - 0.736b {3.24)
X, = :r:;s + 0.8b ‘ {(3.25)
The width of the shear layer bl can be obtained by subtract-

ing ry from %

b, = 1.536b (3.26)
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Introducing Equation (3.5) into Equation (3.22),
transforming variabfle r to n, and using empirical velocity
Equaﬁion (3.23) in the fundamental integral equationg (3.21)
and (3.225, and integrating, the foilowing two ordinary 4if-

ferential eqguations are obtained (details are shown in

- Appendix B):

2
r
3 [ 1 a {] -

2 .
T
3 |1 :
=l R 5

1,2 - .
-0. + 0. .2
57 [»0 65829521 Xy 0 01311954%] (3.28)

|

b - 0.20326464bﬂ

For thin boundary layer at ‘the nozzle exit, these equations

are subject to the approximate boundary conditions:

at x = 0', b=0, r, =r
1 ‘o]

Physically, these "boundary conditions meﬁn‘that the potential
core f£ills' the nozzle and there is no boundary layer at the
nozzle exit. Integrating Equation (3.27) with the boundary
conditions at x = 0, and using Equation (3.24), the follow-

i'ng relation is obtained:

v

HlH
o |

= 0.18842198b/r_ + /1.0 - 0.075377(b/ro)z

(3.29)

~Equation (3.27) and Equation (3.29) are used in Equation

{(3.28) to obtain:
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d(b/x,) -

- 2 . ) - 2
ArET = 2/ [0-658296 0049620 (b/x,)" .

w — <
+0.1109177 b/r \(1 0.075377(b/x ) ]/

i
E).09655_86 - 0.0145566 (b/r_)*

— 3 |
+ 0.01210 b/r_ \1 - 0.075377(b/x )]  (3.30)

The ratio L/b was determined experimentally by measuring the
shear stresses and velocity gradients, and using the follow-

ing relation:

u .
T ) ’ {3.-31)

2
—Q.)

Transforming the variable 'xr into n, Equation (3.31) is

written as:

(L/b)? = Y (3.32)

The experimental values of L/b presented in Chapter Vv, lie
within the range 0.099 to 0.109 with an average, L/b=0.10625
given by Equation (3.20). Using Equation (3.20); Equation
(3.30) can be integrated numerically with the starting con-
ditions at x = 0,.to obtain b, and hencg,ri; r, and bl from
Equati§n§ (3.24), (3.25) and (3.26) respectively, as func-

tions of x.



CHAPTER IV

EXPERIMENTS AND UNCERTAINTIES

4.1 General

Of many experi -ntal_investigations on'jet flows
that have been published, only a very few have identified
the nozzle éxit'ponditions.

The aim of the present investfgation was to provide
information-on turbulence and mean flow qﬁanti£ies,in the
initial and transition regions bf jets with varying flow
conditions at the nozzle exit. Of the many flow quantities,
only the Boundary layer thickness and the turbulent inten-
sity were considered as identifying the exit conditions.
In éil the experiments, the boundary layers were turbulent
at thé nozzle exit, being consideréﬁ turbulent when the
following two conditions were satisfied simultaneously:

i) the exit fluctuation inténsity profile showed
characteristic peak intensity near the wall‘with,Jﬁ?Tyuc
near 10%, a value typical of turbulent boundary layers.

" ii) the shape factor was c%ose to 1.40.
The shape factor, Hy is defined as the ratio of the dis-
placement thickness to the momentum thickness of the mean

velocity-profile.

4,2 Experimental Facilities

Axisymmetric turbulent jets were produced by dis-
charging air through a series of circular nozzles from a

large settling chamber as shown in the schematic diagram

52
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of the experimental Set—up and nozzles in Figure 4.1.

Air from the compressed air facility in the laboéa—
tory was passed through a 3-micron filter, pressure regula-
tor énd needle valve before entering the large settliné |
chamber which contained a set of flow straighteﬁers followed
by 3 screens. .Figure 4.la.shows a short circular nozzle
fitted to the large settling chamber. [The displacementr
thickness near the outlet of- this nozzle (x = -1.0 mm) was

D

tions were changed by using nozzles with extensions shown

ﬁg/ro = 0.0064, for Re = 1.53 x 105. The jet exit condi-

in Figures 4.1b and 4.lc and tripping the boundary layer by
projections of 0.397 mm and 1.59 mm. The displacement
thicknesses for these cases weré 6;/r01= 0.0179 and 6;/ro =
0.0628 respectively, for ReD = 1.53 x 105. The turbulent
intensity profiles at the exit were different for each case.
Each jet contained a core of uniform velocity at the éxit,
which was found to be ;&isymmetric from measﬁrements of the
axial mean velocity and turbulent intensity at x/rO = 1.0
in both the vertical and the horizontal central planes,
as shown in Figures 5.1,5.2,5.3. The mean velocity profile
within the nozzle 'was also found to be symmetric about its axis.
Turbulence and mean flow quantities were measured by
using'a DISA constant temperature hot-wire anemometer {type
55M10) with a linearizer (type 55D1l0), signal conditioner
(type 55D31). A DISA miniature probe (55P11) with a 5y
tungsten normal wire was used for the mean axial velocity
and the axial turbulent intensity. The shear stress and

—J

-
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the turbulent intensities in r- and 6-directions were mea-
sured using the same normal wire and a single 5u tungsten

slanting wire with a DISA miniature probe (55P12).

.

4.3 Hot-Wire Calibration

Calipration of the hot wires was performed by making
simultanedus ﬁeasurements of the voltage with the.hot wire
connected to the anemometér, and the velocity with a pitot
tube connected to a Lambrecht inclined tube manometer.  The
hot wire and. the pitot tube were set up side—by-side in the
uniform velocity of the poteﬁtial core and the velocity was
varied in steps over a range of values 2.5 m/s to 100 m/s. .
The inclined tube manometer was calibrated against a Meriam
Micromanometer having a precision of 0.0254 mm; the results
are shown in Figure C.3 of Appendix C. The hot—wi;e equa-
tions and the typical calibration curves for both'normai
and slanting wires without linearizer are shown in Figures
C.4 and C.5 of.Abpendix C. Figure C.6 of Appendix C°
is a typical calibration_cﬁrve.of the hot wires.with
linearizer for high velocities (above 6 m/s}, and Figure
C.7 shows its calibration for low velocities (below 6'm/s).
The low velocity calibration was performeq as outlined in
Ref. [80]. The calibration consfapés.werérdetermined by
simple curve fitting principles [861 and their values are
given in Appendix C.

The calibration curve was checked at the beginning
and end of each series of transverses. If the curve had

changed then the whole series of transverses were repeated.



The hot-wire was traversed in the radial and axial
directions by a motor operated traversing mechanism with

a scale having precision of 0.0254 mm.

4.4 Measurements

aAll measurements'Were'performed for a Reynoldé
number, ReD = 1.53 x lO5 based on the exit diameter and the
average veiocity. The main air supply waé adjusted until -
the required value of £he nozzle exit velocity, as measured
by pitot tube, was obtained.

The velocity profile, about 1 mm inside the éxit

was measured by using a normal hot wire and recording the

anemometer output voltage.. The hot wire was traversed

-

over a scale with precision 0.0254 ﬁm, and a large number

of readings were taken where the velocity began to deviate
. 24

from the centre line velocityl‘ At each station, at least
five readings were taken within a time interval of 2 min-
utes. For higher fluctuating yalues, ten observations

were taken at a station. The mean velocity and axial tur-
bulence were calculated by using Equations (C.17) and (C.20)
of Appendix C.

For thé axial mean Velocity and the turbulent inten-
sity within the jet, a normal hot wire was positioned oh
the centre line of the nozzle, and the output from the
linearizer was ﬁ?corded. The hot wire was traversed verti-
cally through the jet, with a large. number of readings
being taken where the velocity began to deviate from the

jet centre line velocity. Within the turbulent shear layer



which corrgsponded to high fluctuating values, ten observa-
tions were noted for a station within a time intervél of 2
minutes. -"After the upper half of thé jet had been completely
t¥aversed, the hot wire was returnéd to jet centre line. The
linearizer output was compared with the value obtained ;t
£his locatioﬁ before traversing upwards through the jet; this
provided a check on whether the linearizer output had drifted
or the main flow rate had varied. If the two vélues were

the same, then the'hot wire was traversed vertically through
the lower portion of the jet, and its axisymmetry was. checked.

This procedure was follo@ed at the downstream locations:
x/r, = 2,4,6,8,10,12,15 and 18

Traversing and taking readings, similar to those des*
cribed above were followed to measure the shear stress and
radial trubulent intensity using the same normal wire and
"a slénting_wire. The mean velocity and turbulence were
calculated by using the calibration constants and Equations

(C.17) and (C.20) derived in Appendix C.

4.5 Uncertainty Statement

The variation of the slopes of any calibration curve
was found to lie within +1% for at least 4 calibrations.
The angle of iﬁclination of the slanting wire was ﬁeasured
by positioning the probe in a slide projector and project-
ing the wire image on a paper screen. To minimize image
distortion, the wire was located near the centre of the
lens and the screen was positioned perpendicﬁlar to the

projector. Twenty values of the angle of the slanting
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wirc fell within the range 459 36°'.

. The undertainﬁy of the measurements of mean velegity,
turbulent intensity and shear stress are influenced by vari-
ationg of the ambient temperature, chgracteristics of the
linearized circuit, contéﬁination of the hot wires, the

raccuracy of the arigle of inclination of the hot wire to the
mean flow.direction and £he accuracy of the calibration
equipment,. All uncertainties presented here were calculated
by using the standaxd procedure given in Ref. [81,82]. 1In
the calibration unit, the uncertainty of mean velocity, u/uC
was estimated to be less than+ 0.3%%. The mean velocities
which were obtained by using a linearized circuit‘showed
uncertainty of #1.5% in the main portion of shear layer and
$4% in the outer layer wherxe velocity is near 6 m/s. The
uncertainty of JEEF/UC was found to be less than :5.5% for
the major portion of the shear layer where the mean velo-
city is éreater than 6 m/s. The uncertaihty of the shear
streés was estimated to be less than:té.Sé neglecting the
wire angle uncertainty whiéh coﬁld cause an additional * 3%
bringing total uncertainty less than *7.5% for the major
portion of the shear layer where.the mean velocity is
greater than 6 m/s. The uncertainties ofvfﬁéf/uc and
J§ﬁ§7uc for the major portion of shear layer are less than
t7%. These values are exceeded at the outer layer side

where mean velocities are low. All uncertainties reported

here exclude the error in the hot-wire equations by assuming

* All uncertainties and repeatabilities were calculated
assuming 20:1 odds.
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weak turbulernce, Estimated from Rof, [?2 . this could causc
additional uncertainty in the shear and intensity values of

15% in the main portion of the shear layer and *8% ncar the-
outer boundary.

The repeatabiliéy of the mean velocity, turbulent
‘intensities and shear stresses were tested by taking 300
readinés at each- of 18 locations in the mixing layer at planes
normal to the axis of the‘jet and at diséances x/rO = 4,@,8,
12 and 18 from “the nozzle exit. Repeatability of the measure-
ments was estimated to be *5%.

The uncertainty in measuring the linear distance was

negligible. Temperature variation during the experiments

was within 0.3°c.



¥ CHAPTER V

RESULTS AND DISCUSSION

P
5.1 General

Proﬁérties of the flow in the initial and transition
regions of jets were determined both theoretically and ex- o
perimentally. Three different nozzles were used to produce
jets with three different exit conﬁitiops. For all three
cases, the momentum and continuity equa£ions were solved
by a finite difference method for the mean flow quantities.
In addition, a simple integral method was applied to the
initial region to determine the jet properties for éhe first
case, the very thin-exit boundary layer. Turbulent guanti-
ties in the initial region were calculated by:solving one
differential transport eguation for*the turbulent kinetic
energy in conjunction with the momentum and .continuity equa-
tions. All calculaticns for the initial‘region use an
empirical equation for turbulent length scale.

-This chapter presents comparisons of experimental

and theoretical results of the mean and turbulent motions

in the developing region of the jets.

'
5.2 ©Nozzle Exit Conditions -

The present limited measurements of mean velocity
within the boundary layer shown in Figure 5.1 give the dis-
placement thickness 5;/ro = 0.0064 at the nozzle exit,

x/ro=—0.08, the boundary layver was assumed turbulent.
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The measured vélocity distribution, as shown
in Figure 5.1 fits to the following velocity profile inside

the boundary layer:

: FXg™r 1/€.66 -
thin boundary layer: u/uc = [ Z J for 6O/ro=0.0064
o

The shape factor and the Reynolds number based on the dis-
placement thickness at the exit were calculated to be

N, = 1.31 and Red* = 503 for thin boundary layer. Similar

measureménts at the nozzle exit were performed for the two

other néz;leshhaving intermediate and thick boundary layers
of displacement thicknesses 6;/rO = 0.0179% and 0.0628, res-
pectively. The velocity distributions for these two cases

are shown in Figures 5.2 and 5.3, and they fit the follow-

ing boundary layer velocity profiles:

intermediate boundary layer:

r —p. 1/5.38
— S * =
u/u_ = [—Y] for §*/r_ = 0.0179
thick boundary layer:
| r -r 1/5.29 .
u/uc = [ 60 :] for Go/rO = 0.0628

The shape factors and the ReynoldsS numbers based on the

displacement thicknesses at the nozzle exits were calculased

to be HO = 1.372, Re * = 1387 for intermediate boundary

8 .
layer and'HO = 1.378, Réd* = 4824 for thick boundary layer.
In.all the three cases, the distributions of turbulent

intensity showed peaks close to the wall with values of

fu'z/uc close to 10%, typical of turbulent boundary layers.
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‘The velocity distributions in Figures 5.1,5.2 and 5.3 were

- used to start the finite difference calculations with the

momentum and continuity equations for mean flow properties.
The turbulence in the jeé core was not controlled, but

did not‘vary widely for the three nozzles; the intensity of

turbulence in the core was near 5% ‘which is high'wheq-compared

to that existing near shear layers investigated in low turbu-

lence wind tunnels.

5.3 Mean Motion in the Initial Region

5.3.1 Thin Exit Boundary Laver

Figure 5.4 shows that the measurements’ of the axial
mean velocity in the initial region has an'approximate seif—
preserving distribution when plotted against the similarity
variable, n=(r—r%)/b. It is also shown that the empirical -
velocity profile as expressed by the composite Equation {3.23)
is in good agreement with the measurements. The empirical
velocity profile given by Equation (3.23) was obtained by curvé
fitting based on least squares. The over?ll RMS deviation of
‘the combined experiméntal data at sections, X/ro=2,4,6 and 8
from the empirical velocity profile was calculated to be
‘(Au/uC)RMS=0‘0112' The axial mean velocity obtained from the
finite difference solution is approximately self-preserving in
the u/us vs. n plane. The results of the finite difference
solutions at sections, x/ro=2 and 8 are plotted in Figure 5.4
to show a comparison with the empirical model. The RMS devia-
tion of the empirical model and the finite difference so;ution
from the experimental data are shown in Table 5.1, The similar-

S )
ity variable, n was chosen to force agreement with experimental

N
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mcasurements and self-preservation in the central region of
the Tixing layer. It is not surprising that_the slight dis-
agreement of the measurements'wiﬁh the model éhows.ub in the
outer énd inner pafts of thelmixing layer, and the major
part of the RMS deviatibn shown in Table 571 comes from the

. oﬁter part of the mixing layer. The comparison,shqws that
Equation (3.23) describes the axial mean velocity-iﬁﬁﬁhefihii
.tial region with deviation from the experimenéal values of
not more than +1.5%. It is interesting to note that the con-
veniional similarity variable (r - ro)/x does not produce
satisfactory seIf-preservation_of the axial mean velocity

in- the present experimental measurements. or in-those of
Bradshaw et al f10] énd sami et al [[24].

The axialimnan velocity calculated by figite differenée
techniquelis plotted against the radial distancé r/rO in
Figure ‘5.5 for comparison with the measurements of Bradshaw
et al [ld]; sami et al [24]- and the present meésurements.
Satisfactory agreement is shown. Simpson's integration rule
[847] is used to calﬁuiate the scale b/ré from the first order
differential Equation (3.30) with starting condition at x = 0.
.Thq scaie, b/rb, may-be cqnsidered as a measure of the width
éf the shear layer. These results ﬁbgefher with measure-
ments and’ those obtained from the finite difference solution
are shown in Fig&?e 5.6. The xoot m;an square deviation of
the result of Equatioﬁ (3.30) from those of the finite aif—
feérence solution was calculated using values of 100 points

of eqdaily spaced intervals in Yhe axial direction. Similarly

-
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the RMS deviation of the radial distance, r,, for the
. “d

-y _
half velocity, u/uc = 0.5 - was alsco calculated. The result-

ing values are:

(Ab/ro)RMS =-0.001285.and (Ar%/r = 0.000953

O)RMS

Figure 5;6 shows that the scale, b, .is only apbroximately a

linear function of x. The nonlinearityaof the scale, b,

would generate the width of the shear laver, bl,_and the
g;ﬁn&t%*s mixing length, L, as nonlinear functions of x.

The.linear approximation of Prandtl's mixing length given
by Rotta td] has also been compared with the pﬁesent.results
and méasurements in Figure 5.%. The noﬁ—selfﬂpreservation
of the mean axial Qelociﬁy, and hence, the nonlinearity‘of
b arises when using~the variable, n = (r - ro)/x as already
yoted. ‘

The radii r%, ry and r, for u/uc = 0.5, u/uc = 0.99
and u/uc = 0.01 respectively were calculated by using Equa-'
tions (3.29), (3.24) and (3.25), and plotted in Figure 5.7
’ to show a comparison with the measurement and the results
of the finite difference solution. The iso-velocity lines
u/uc = 0.99 and u/uc = 0.5 obtained from the results of
the finite difference solution are in good agreement with
the measurement and the deviation from that of the integral
method is insignificant for thé major part of the shear .
layer. The deviation that is observed in the guter:and
inner boundaries shown in Figure 5.7 may be expressed in
terms of the RMS difference which was calcuiated by choos-

ing 100 points at equallj spaced intervals in the axial

\
S



65

direction and found to be (1"“:r.'2/rc))1:,_MS = 0.0193 for the outer
-boquarf and (Arl/rO)RMS = 0.00215 fo;'the inner boundary.
Here it is to be noted that the jet boundaries are not quite
linear with tﬁe a#ial distaﬁce, X. Laurencé's EBij approxi-
mation of outer boundary is also drawn in Figure 5.7 to show
a comparison with the present outer boundafa for._u/uC = 0.01.
The majér contribution to uncertainty in the.velocity mea-
surement occurred in the outer bouﬁdary. If one wishes to
comparé theéretical results with experimentél vélues, it is
preéerable not to formulate in.;érms of the outer radius and
the width of the mixing layer as aAbramovich [27] and others
have done. Hatta and Nazaki [23] approximated il and r, to
be linear functions of x, and developed a self—preserving'
model of axial mean velocity in terms of ry and r, which pre-
dicts constant axial mean vef%city at r/ro = 1.0 for ény
a;ial distance in this region. F%gure 5.8 shows the shqft—
coming of Hatta and Nazaﬁi's t23] mod=1 and the agreemeﬁt

of present calculations and measurements with the experi-
mental measurements of Bradshaw et al [10] and von Frank
[25].

Using the empirical model of the axial mean velocity
in the mass consérvation equation and integrating by Simp-
son's rule E84], the radial ﬁean velocity was calculated.
The RMS deviation_Sf these resﬁlés from the results obtained
by the finite difference technique Qas calculated by using

100 points at equally spaced intervals in the radial direc-

tion at sections, x/ro = 4,6 and é; its value was found to

]
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be.(au/uc)RMS = 0.0126. A comparison of the present 'cal-

. S .
culations and the measurements of Sami et al, £24] for the

radial mean velocity¥ is presented in Figure 5.9 with the

results of the finite difference method and shows good agree-

ment.

The length of the initial region calculated by the
finite difference method was close to x/rO = 9.0, which
agrees with the prediction of Madni and Pietcher.E2Gj. It
was calculated ﬁere to be x/rO = B.8 by the integral method.
Albertson et al [18] measured its value to be less than 10.0
and Davies et al [30] found it to be 9.0.

The experimental measurements of ﬁhe-turbulent shear

stresses, presented in Figures 5.22 to 5.25 were used to

calculate the L/b ratio from Equation (3.32) for axial dis-

-tances x/rO = 2,4,6,8 and their variations with the radial

direction are shown in Figure 5.10. It may be observed that

the ratio L/b lies in the range of 0.099 to 0.109 for the

»

-initial region of the jet. ~The calculations used L/b =

0.10625 as an average of all observations obtained for

x/r0 = 2,4,6 and 8.

5.3.2 Intermediate and Thick Exit Boundary Layers

The mean velocities obtained by experimental measure-
ments and by finite difference calculations are shown in
Figures 5.11 and 5.12 in the pléne u/uC vs. n for the inter-
mediate (a;/ro = 0.0179) and the thick (dg/ro = 0.0628)
boundary layer velécity profiles at the nozzle exitsu Figure

5.11, for the intermediate boundary layer, shows .that the
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mean axizl velocitylprofiies are approximately sclf-
preserving in the initial.region stérting from x/r = 2.5
Qith an RIS deviation less than 2% from the measured values
atlx/ro =\2Q5, 4,6 and 8. In‘cbmpariSOn, Figure 5.4, for
the thin ezit boundary layer, shows satisfgctory self-
pFeservation starting from x/ro = 2 with an RMS deviation
,0f 1.12% from the measured values at x/r_ = 2,4,6 and 8.
The mean_vefbcity profiles for, the thick exit boundary
layer, in.Figure 5.12, also show ah approach to self-
preservation to the initial region at an incfeqséa‘disténce

-

downstream; x/ro = 3.5 and the RMS deviation of the results

. of finite difference solution from the measured values at

»

x/rO = 3.5, 4, 6 and 8 was found to'be léss than 1.5%.
Mean velocities obtained by the finite difference
method are plotted in Figure 5.13, for 5;/r0 = 0.0179 and
in Wgure 5.14, for 6%/r_ = 0.0628 and show that the radial
distribution of u/uc and the present measurements are in
satisfactory agreement. Tﬁe RMS deviation of the ;aicul—
ated and experimental results at sections, x/rO = 2,4,6
and 8 are given in Table 5.1 for the intermeéiate and thick

boundary layers.

Iso-velocity lines u/uc = 0.01, u/uc = 0.5 and -

u/ué = 0.99 obtained by the finite difference solution are
plotted in Figure 5.15, and sati;factory agreement is shown
with the experimental measurementé for u/uc = 0.5 and 0.99.
The experimental values on line,.u/uc = 0.99 where intér-

mittency occurs, were approximated by taking several read-

ings near the inner boundary of thé shear layer. Figuré

£
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5.15 also shows that the radial disténcos rz'and r%, for

u/u_ = 0.01 and u/uc = 0.5 respectively, decrease ¥ith the
increase of the exit boundary layer thickness. The value

of the potential core radius, ry, decreases with the increase
of the thickness of the exit boundary layer at the beginning
of the sheaf layer growth and bécomes‘independent of the

exit boundary layer thickness after some axial distance, x/rg.

For the intermediate boundary layer, the radius of the poten-
tial co?e, Ty becomes eqd;l to that of the thin exit boun-
dary layer at x/rO =_4.5, and for the thick boundary layer
‘(6;/r0 = 0.0628)at x/rO = 6. It may be observed from Figure
5.15 thaﬁ the jet boundaries are not exactly linear for any
exit conditions and the results of the integral method for
the thin exit}boundary layer shown in Figure 5.7 also agree
with this finding.
The scale, b, fof the jeté with the inteimediate/and

Ehiék exit boundary layers are plotted in Figure 5.6 and com-
_pared with the experimental results. Figure 5.6 shows that
the scale, b, is nonlinear in x. and its value is higher than
that of the thin exit boundary layer at the beginning of the
shear layer and becomes smaller after some axial disténce,
x/ro.

The values of L/b for the jet with the intermediate
boundary layer (ég/ro = 0.0179) were calculated by usipg
‘shear stresses given in Figure 5.33. All the calculated

values of L/b at sections x/rO = 2,4,6 and 8 fall within the

range 0.099 to 0.109 which is the same as shown in Figure



69

'5.10 for the thin bodédary layer. Thpugh the values for L/b
lie within the same range, the averagé of all calculated
.vélqes in this case is found to be 0.1076 which is slightly
high;r;than'thelva}ue, 0.10625 for the case given iﬁ Figure
5.10. The finite difference calculation for this case was
performed with L/b = 0.10625. |

The experimental values of shear stresses are shown
in Figure 5.34, for the'jét Qith thick boundary layer

(6;/ro = 0.0628). These exberimehta values were used to

calculate the-ratio, L/b at sections o = 2,4,6 and 8,
"and all the calculated values lie b tween '0.102 and 0.12,
having an average value of 02{135, as shown in Figure 5.16.
This valXe differs signifiéanti} from those obtaingd in the
casés of thin and intermediate boundary layers with the

displaéem nt thicknesses, Gg/ro = 0.0064 and 0.0179 respec-

tively. 'he finite difference calculation for this jet was

performed |by using L/b = 0.1135.

5.4 Mean Motion in the Transition Region

The jet flow is approximately self-preserving in the
initial region, but does not remain self-preserving in the
transition'region which starts from the end of potentiél
core. This is probably due to the interaction of the shear
layers along ;he,centre line of the jet. The experimental
values of the mean velocities at sectiops, x/rO = 10,12,15
and 18 are plotted in Figure 5.17 in the u/uc‘vs. n pléne.
The flow maintains its self-preservation in the ceﬂtral
part of the shear layer as required by the-scaléshagggen,

but becomes non-self-preserving near the centre line and

-
~
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the outer boundary of the jet. The results of finite dif-
ferénce‘calculations at sections, x/ro = 10 and 18 are also
presented in Figure 5.i7 and show agreement with the experi-
mental values.

The flow develops towards a new mean velocity profile
and again'becomes self-preserving in the developed region
far downst;eam according to the findings in Figures 5.4,

5.17 and 5.18. The length of the transition region was
determined-by measuring the mean vélocity at different axiai
distances until the experimentél values fitted the velocity
profile given by Tollmien [14] for the developed region.

The experimental values of the mean axial veioaities df
various workers at axial distances, x/rO = 18,24,35,40,64,80
and 100 are compared with Tollmien's [14] and Schlichting's
L15] velocity pro$iles in Figure 5.18. It is observed from
?iéufe 5.18 that the mean axial velocity achieves approximate
self-preservation at x/rO = 24 which may be cqnsidered to he
the beginning of the developed region. Therefore, the trans-
ition region extends from x/ro = 9 to x/ro = 24 as deter-
mined frgm the mean axial velocity. The turbulent quantifies
may not achieve self-preservation at x/rO = 24.

The experimental results of shear stress are plotted
in Figure 5.41 for the transition region. These experi-
mentai values were used td calculate the ratio of Prandtl's
length scale, L, and the length scale, 5, for the transi-
tion region. The ratio, L/b, is plotted against the vari-

able, n = (r—r%)/b in Figure 5.19 and shows that the values.

@



~of L/b do not lie within as nhrrow a range as that shown in
Figure S.lp for the initial region. Therefore, the ratio,
L/b, cannot be treated as a constant for the transiﬁidn
region, but must be considered as a, unction of the axial
and the radial distances, and can no longer be expressed
by a simple algebraic relation. Rotta [8] determined the
length scale of turbulence by solving a differential trans;
port equation for the developed region and he found it to
be self-preserving as shown in Figure 5.19. Rotéa's [s]
calculation agrees with experimental observations that the
lengtﬁ scale of tufbulence is a function of both axial and
radial distances in the developed g;gion, though Townsend
[71 and others used it as a function of x only which gives,
L/b = constant, as 1n Figuré 5.19.

The present finite-difference methéd replaces the

turbulent diffusivity, by combining the turbulent dif-

Vi
fusivity models of Madni-Pletcher [26] and Schetz Cz1],

given by Eguations (3.6} and (3.7). This approach is not
based'on any valid physical grounas, but only on empiri-

cal agreement. The calculated results of the mean velocity
obtained by using the Madni-Pletcher's [26] model of tur-
bulent diffuéivity gives values less than the experimental
values near the outer boundary. The RMS deviation of these
results from the experimental values at sections, x/rO = 10,
12,15 and 18 was calculated to be about 12%. The application
of Schetz's [21] model of turbulent diffusivity to the momen-

tum equation and the finite difference calculation predicted
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the mean axial VelOCltj to be hlghcr than that of the chperi—
mental values near the outer boundary with BMS deviation at
x/ro = 10,12,15 and 18 to be about 9%. The Present calcula-
tion used Madni-Pletcher's [26] model of turbulent diffusivity
from the centre line to the half-r radius line and continued by
- using conatant turbulent dlffu51v1ty until it became equal to
‘that of Schetz's [21] model ang then followed the latter.

Both Hadnl ~Pletcher's model and Schetz's model together with
the present comnlnatlon are presented in Figure 5.20. The
present results of the mean yelocity are plotted in Figure
5.21 and show satisfactory agreement with experimental‘measure—
ments. The RMS deviation betﬁeen the éxperimental and calcu-
lated results at Sections, x/r =10,12,15 and 18 was calculated

i

to be about 2%.

5-5 Turbulent Motion in ﬁhe Initial Region

5.5.1 Thin Exit Boundary Layer

. The momentum equation, the contlnulty equation and the
differential transport equation for the turbulent kinetic
energy were solved for turbulent kinetic energy by the flnlte
difference method. The length_scale and the Reynolds shear |
stress ‘were expressed by Equations. (3.20) and (3.31). Thg
measured velocity .and turbulent kinetic energy distributions
for the thin boundary layer at the nozzle exit, in Flgure 5.1
was used to start the finite difference solutlon from x/r =0,

The shear stresses obtained from Prandtl's mixing
length model, Eguation (3.31% are in good agreement with the

measurements of Bradshaw et al [10], sami et al [247 and the
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presenf measurements for x/rO = 2,4 and 6 ads shown ip Fig-
ures 5.22, 5.23 and 5.24, respectively. In Figure 5.25, the
model for x/rO = 8 shows somewhat less agreement than the
agreement shown for x/rO = 2,4 and 6.

Although the Prandtl's mixing length model adequately
represents tﬁe turbulent shear stress in the initial region
of the jet, it is interesting to examinefag energy model for
the shear streés given by Equation (3.14), based on the
assumption that the ratio of the turbulent shear stress and

the kinetic energy in the flow remains constant, i.e.,

= cp o (3.14)

This energy model has been used for boundary layers by
Bradshaw et al [53] and for the developed region. of jets by
Harsha and Lee [60]. 1In the latter flow, the value of cy
was reported to be 0.3.

The present measurements in Figﬁre 5.26 show that
-u'u'/k remains constant atu; vélue near 0.375 in the cen-
tral -portion of the mixing layer, but decreases nea oth
boundaries. The shear stressés, baéed on the energy model;
~3"U"/k = 0.375, are shown in Figures 5.22, 5.23, 5.24 and
5.25. BAs expected, agreement with measurements are good in
the central region of the mixing layer with less agreement
near the boundaries. It may be noted in passing that the
energy model may be improved by.using'the form u'y'/k =
0.375Y, where Y is an intermittency factor. However, this-

introduces another empirical quantity into the model which

is a disadvantage when compared with Prandtl's mixing length
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The empirical model of shear stress used by Launder
and Spalding [9] and Rotta [8] has already been mentioned
in Chapter III and it is rewritten here in the form:

-

- |
TUT = kZ 3u . (3.15)

-u =C T 3%
where k is the turbulent kinetic ecnergy, and Ll is a lehgth
scale which is the dependent variable.sin an empirical dif-
ferential transnort equation. € is the rate of dissipation
of turbulent energy. The two eguations, k-g, transport model
of Launder ané Spélding E}j was solved by usinq the above
empirical model of shear stress and satisfactof& results were
found by them for the developed region of jets &and also for
other turbulent flows. Figures 5:.22, 5.23, 5.24 and 5.25 show
this modei is in reasonable agreement with measurements when
k and € are obtained from a single transport_Equation (3.13)
for the'turbulent kinetic energy and an algebraic Egquation
(3.11) for the dissipation of energy toéether withkthe length
scale Egquation (3.20). The value of the constant <, is 0.09
as proposed by Launder and Spalding EQ]. The empirical con-
stants_al=l.q9, cr=0.2ll, and kq=0.86 which wege used in
Equation (3.13) were obtained from the experimental values
of Sami [85]). This will be discussed later.

The calculated values of turbulent kinetic energy
are plotted in Figure 5.27 and show safisfactory agfeement
with measurementd. The experimental values of u'2z/2k and
U'Z/2k are plotted in Figure 5.26 and show that these ratios
remain approximately constant throughout the shear layer.

The values of u'%/2k lie between 0.42 and 0.45 and those of

u'2/2k between 0.27 and 0.30. Values of w'2/2k were very
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close - those of U'Z/2k and are not shown. The ratios of
the nou:- a1 stfeéses to, the turbulent kinetic enerqgy were
estime ~d experimentally by taking 300 readings at each
of the nine stations at distances x/rO =4, 6 énd 8. By
Qrawinw frequency distributions and using 20:1 odds, thé'

ratios ire selected to be:

u'z/2k 0.44

(5.1)
v'2/2k = 0.29

These r.atios together with the calculated values of the
kinetic energy were used to determine turbulent intensities.
Figures 5.28 and 5.29 show comparisons of the calculated
intensiaies with the measurements of Sami et al [24], Brad-
shaw et al ElO],'Laurence [31] and the present measurements.
These si-ow ;easonable agreement between the calculated in-
tensiti=s and the measurements.

. “.otta [8] estimated the constants ajr c. and kq in
Table 5. 2, associated Qith turbulent energy Equation (3.13)

. and obt.:.ined good agreement with the measurements of Wygnan-

ski and riedler [4] for the developed region of jets.

TABL_T 5.2 Constant of Energy Transport Equation

al cr kq cl
Rottza[g] 1.0 0.165 0.60 N
My
\
Prec-=nt 1.09 0.211 0.86 0.375%




The calculated values using thése constants do not show
satisféctory agreement with measuréd'diffuéion encrgy,
transﬁért enesgf, etc. of Sami [857] for the initial region.
To'qphieve satisfactory a?féement witb Sami's measurements,:
the constants ai, c. a?d kq are adjusted to the values
shown in.Table 5.2. This agreement is shown in Figures
5.30, 5.31 and 5.32. The constanfs are chosen on the
basis of minimum RMS deviation of the calculated values
from the measured values of Sami [ﬁi].

The choice of constant a; = 1 used by Rotta [€]
ignores the contribution of the other velocitf gradients
to.the.production ;érm. Figure 5.31 shows the energy
production term obtained by using a = 1.09 is in good
agreement with the measurement of Sami [85]. This indi-
cafes that the contribution of other velocity gradients
to the production term is about 9% of GTUT-au/ar for this
. region.

The comparisons show that one transport eguation
for turbulent kinetic energy associated with an algebraic
length scale useé.here is- adequate to simﬁlate turbulent
flow in the initial region of jets. The term by term
epérgy balance indicates useful performance of this model.
This calculation saves computer time necessary'for simul-
taneous solution of two transport equatidns and shows
satisfactory agreement with exéerimenta} measurements.

The results of the turbulent guantities presented~
here for the initial region show that these are approxi-

mately self-preserving, starting from x/ro = 2 for the jet
— .
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‘ [
with the exit displacement thickness ﬁ;/ro = 0.0064.

5.5.2 Intermediate and Thick Exit Boundary Lavers

The turbﬁlent kinetic energy equation (3.13), the
momentum eguation (3.2) and the continuity equation (3.1}
together with an empirical length scale model were solved
for the turbulent kinetic energy. The measurea velocity
and kinetic energy distributions at the nozzle exit, in
Figure 5.2, for 6g/ro = 0.0179 and, in Figure 5.3, .for
Gg/ro = 0.0628 were used to start the solutions from the
exit ‘section of the nozzles. The length scale models used
in this calculation were: L/b = 0.10625, for ég/ro =
0.0179 and L/b = 0.113, for 6/r_ = 0.0628. The shear
stress was related in terms of the length.scalen L, and
the mean velocity gradient given by Equation (3.31). The
empirical constants associated with the energy egquation
already determined for the thin boundary layer were used
for the intermediate and thick boundary layers.

The t;Ebulent shear stresses calculated'by using
Prandtl's mixing length and the present expérimental
measurements are shown in Figures 5.33 and 5.34 for the
intermédiate and thick boundary layers with displacement
fhicknesseé at exit of 6;/ro = 0.0179 and 0.0628 respec-
tivély. An apprOXimate self-preservation is also achieved
in the initial reéion for the intermediate and thick exit
boundary layer velocity profiles after x/r_ = 4. The

energy model of shear stress is also presented in Figures

5.33 and 5.34 and shows a reasonable agreement with the

e

-
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experimental measurement except near the boundaries.

The calculated values of. turbulent kinetic énergy
are plotted in Figures 5;35 and 5.36-and show'good agree- -
ment with measurements. "The turbulent intensities,
JES;YUC and JE;;/uc were calculated as for the case with
the thin boundary layer. The calculated results of
J§$§/uc and U_'T/uc plotted in Figures 5.37 and 5.38,
for 6;/r0 = 0.0179 and in Figures 5.39 and 5.40 for §,/r =
0.0628, and the experimental results show satisfactory
agreement with the calculaéed reéu;ts. Figures 5.37 to
5.40 show the turbulent intensities are approximately
self-preserving in the initial region at x/rO = 4, for

the intermediate and thick boundary layers.

5.6 Turbulent Motion in the Transition Region

As already mentioned, the wmean veldcity is not
self-preserving in the transition region of axisymmetriﬁ
jets. The turbulent quantities were measured in thiﬁﬁ\\
region, for the thin boundary layer at the nozzle exft§3

-
to examine whether they possess self-preservation. The
experimental values of shear stress, —ETUT/UZ, and the
intensities u'z/uo, Jﬁ?%/uo anqﬁfﬁ?/uo are plotted in
Figures 5.41, 5.42, 5.43 and 5.44 respectively. Figures
5.41 to 5.44 show turﬁulent gquantities are not self- .
preserving in, this region. Similar plots for the in;erf
mediate and thick boundary layers, not included here,

show that the turbulent guantities for these jets are

also not self-preserving in the transition region.



CHAPTER VI

CONCLUSIONy‘

NuﬁeriCal qglculations we;é performed for the mean and
turbulent properties in‘tge initial and transition_régions of
axisymmetric turbulent.jeﬁs,land'the results were compared
with experimental measurements. Jets produced by théee dif-
ferent nozzles haﬁing displacement thicknesses at’ the Aozzle
exit of'Gg/rO - 0.0064,0.0179 and 0.0628, and Reynolds num-

N

ber}_Reb = 1.53 x 105 were %nvestigated.
Prandtl's mixing length model with a simple algebfaic
equation £0r length scale, L, adequately represents the éhear
Stress in the initial regioﬁ. .Ehe length scaleT L, is found
to be a nonliﬂear function of x and its dependency on radial
distance is négligible.
Both the mean and turbulent properties are approxi-
mately self-preserving in the initial region except close
to the outlet for all three nozzles. The inc%ease of the dis-
placement thickness and the turbulent intensity aéféhe exit
of the nozzle cause the self-preserving point to move down-
stream. Self-preservation of mean axial velocity starts
from the axial distances, x/rO = 2,2.5 and 3.5 for the dis-
placement thicknesses, 6*/r0 = 0.00QA, 0.0179 and 0.0628,
respectively, with the length of potential core the same for

all three nozzles.

The width of the shear layer obtained by defining
L}

outer and inner boundaries is not the most suitable as a

length'scale for developing the self-preserving model
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‘Qecaﬁqe the highest experimental uncertainty occurs near the
‘suter boundary where the mean velocity is lew. Therefore,
in developing the self—preserving model it is found conven;
ient Lo.define the length scale on the basis of the measure—‘
ments élong the half-radius (u)uC ; 0.5) where experimental
uncertaintz is the lowest. The length scale, b, was chosen

L)
as iﬁversely proportional to the mean velocity gradient at
half-radial line.

calculations using the one-equation transport model
together with an empirical length scale gives satisfactory
vresults.for the mean and turbulent properties in the.initial
region and consumes- less computer time than that required
when us™g the two-equation model.

The ratios of the turbulent intensities té-turbule t
kinetic energy remain constant at values close to GT7/2k17
0.44 and U'%/2k = 0.29 throughout the whole initial region
shear layer. The ratio of the shear stress to turbulent
kinetic energy u'v'/k remains constant at 0.375 in the cen-
tral portion of the shear layer, but decreases near the
boundaries where intermittency also occurs. 1t is concluded
that the structure of turbulence is uniform in the central
region of the shear layer. -

For the thin boundary layer at the nozzle exit, a
polynomial form mean Jelocity profile fits the experimental
measurements in the initial region. A simple integral method

is applied to determine jet boundaries which agree with the

results of the finite diﬁﬁé;;;;e solution and measurements.
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The length scale model used for the initial region is

81

not applicable to the transition region because the shear .
layers interact along the centre line causing a change in tﬂe
boundary cohditions an8 the length scale. A simple algebraic
eguation cannof be adoﬁted for the.length scale. S50, Bous-
sinesq's model, with an'empirical equation for turbulent
diffusivi;y,'is prefefred %or the shear stress. The mean and

turbulent properties are not self-preserving in the transi-

tion region which starts near x/ro =9,
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APPENDIX A

DERIVATION OF EQUATIONS

A.l Differential Equations

Turbulent flow is governed by the continuity eguation
and the Ravier-Stokes equations. 1In cylindrical co-ordinates

the mass conservation .equation for incompressible flow field

: is:

1 aw®
r 30

a’
=
HlH-

J o =
== + T 5p (Tv) + =0 (A.1)

.

- ' . e . o]
The co-ordinate system is giwven 1n Figure l.land uo, v~ and

o . : . .
w® are instantaneous velocity components 1in X,xr and § direc-
tions respectively. Splitting instantaneous variables into

mean and fluctuating ‘components:

O 1

u = u+ u

W@ = v+ vt L

WO o= w (A.2)
o]

p- =p + P’

:;;;;/; and v are mean co;ponents and u', v' and w' are the
fluctuating components of the instantaneous velocity. The

‘instantaneous pressure'pO has a mean and é fluctuating com-—
ponent, p and p', respectively.

Introducing Equation (A.2) in Equation (A.l}:

i 3_ 1 aw!

3 \ _
o+ ] + 55 = 0 (A.3)

— ut 4
=5 (utul) oo oay
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taking a time average,

+ %?_(ur) =0 — (A.4)

e
-

Subtracting Equation (A.4) from Equation (An.3),

(rv') + = — =0 (A.5)

au' 1l 9 ' 1 3w’
X pr . r du

Writing the Navier-Stokes eguations in cylindrical co-ordinates

for incompressible flow in absence of body forces [89]/

. . \
- ent: Duo - [ﬂ &z ) L L 9Trg aTxxi]
x~component: P b = == = 5 —~
o 02 o 3T M
- . DU _ W _ _°p _[:l 9 , 1 0
r component._P(EE = 1= 5 ar(rfrr) + =55
9 ™~
I Te6 Trx ]
- T ix .
(o} o R
U 139 1 3 1 Shs]
§-component: p(%% + _?E )= -2 32 - [;? ‘?(rzTre) R

'.‘.3'_

(A.6)

X1l T1's are stresses on fluid elements and their expressions

for incompressible flow with constant viscosity, p, are:

T =—2 _a_u-o . T = =2 8uo - T = - g ?E.O +Bo:l
XX Hex ! ry L 88 H1T 36 r
o o
- - - uB_U] - ol Lﬁg]»
Txr = Tex IJ[gr % i Trg T Tor u[ T )*T 36
o o
- = o ia_UJ
and Ty, = T,g = “[ax r 9 <
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Using bLquation (A.7) in Cguation- (A.6):

141

o 0 0 2,0t 2,0 .
ou® om0 LA 2% L L 2ul, 2] T
AT vl Tar ) T oge A%t (A.8)
o 0 o °
NAGRTRGR |- R [N S PSN L 3y
Plge = % ) = -3¢t U[ST (2 7T (ruv 7)) + ey
o 0 '
_ 2 3w ‘v ]
o 96 *oax (A.9)
0.0 0 ., O
 Dbwouvw, _ _ L1 9p 9 13 0 1l 3w
olpt 77 Y= - T3 " ”[ar (T 3¢ (V¥ Mt 2 30?7
2.,0
. g? éuo + 3°w J
e 2B ox?
(A.10)
Using Equation (A.2) in Eguation (A.8)

3 (u+u') \ . by 2 bop w2 .
oL + (utu') é&x (wra') + (UbU') = (weu') ¢ Fgg (urul)
_ 13 \ [az \ 139 .
= 5 7% {(ptp') *® Vv - (utu') + = &% {(u+u')

‘ 1 3t 32
+;_-T 882 (U+U')v+ axz ('L'H'U.ﬂ (A.ll)
Time Averaging Eguation (A.11)
Ju u . ou’ Ju . , ou' w' au'
T tUaxy tuiax tUsE TV o3 T T %6
=_l§£’.+\,[3’2u+l9_u+}_3_f_‘i+§f_u]
p ox dare r 3ar rz 020¢2 ax?



Multiplying Equation (A.5) by u',

1

42

and time averaging:

au’

u' —
o

Adding Equation (A.13)

du .au
—_ 4+ oot
at u X

"o

u'?, W u' and w'u' are the Reynolds

[
ol
~le

+ v

3
=7 g

.
3 u

ar?

1l 9 Pty oo
~h 7 3% {ru'v') U

and

R, oT
p

+

YT
au +

ar

K|

D gty o WLodul -
36 (w'u'), r .86 0

(A.13)

Equation (A.l2); and rearranging:

1
X

1
K] - = Tyt
) r ar (r v )
3u 1 Zu 3%u
52t oser oA
stresses.

(A;l4)

Miller and

Comings [19] experimentally showed that u'? and p/p are

approximately equal and opposite for jet fléw,.i.e.,

(p/p + u'¢) = 0.

For "axisymmetry,

3
36

(w'u') =

0,

and

2

G2

¥
=t
o

Q’

2
Applying the boundary layer approximations, %;; has been

neglected.

or -

where

For steady flow,

=
wlar
Xlﬂ

o
e

oA

i

R

Equation

I

(A.14) becomes:

(A.15)

(A.16)
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Subtracting Equation (A.12) from Equation (A.1l1l):

au Ju’ gu " u’ du
— — .__ l——— ,'_....._ — '_.
7t T YR tWoasx Y g% woax t Ve Y oar
_ oy fu' L ow! du o ow!oBu' | wiraut -1 9p!
ar r 3 r b - r 0 N o9x
2
sy Zut, 1
are r 3r

d u'z : 3 u'? Ju —— 1
T ( 5 ) + u = 5 ) % +u'y’ o=
[ 1 [4 [ I
cp BWT Bu e Uty 2UT, uW du
r 3 9 r r ]
-1 3p' E%.zBEU' 1 . su’ u' ozu’ .
= Sax PV W st Y osr Y rroger TV

Multiplying Equation (A.5) by u'?, time averaging and
q | ging

arranging:

‘ N
12 au' B_'_ B__ [ | - [ | i‘_ﬂ'
u S + T 3T (ru'v') u'y e
Tl 3 wlul aul
4+ — 2. W'y - gr =
T g (AW T 30 0

azulj
9 xz

(A.17)

(A.18)
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Adding Equation (A.18) and Equation (A.17} and rearranging:.

2

é) u'e py u'z ) u'z - Ju T JUu
TE (—5—) + u o (fiﬁ) + T (—5‘) = [9 < % + u'y 5
7
s
o pegey o *F T T r ¥ i
w'w' pu_ ., 8 (B w2y w3 M2y oW 3 u?
R Tl L i B - — )
‘ gu' 1l 3 \ 1 aw') . 32 u'2 1l 2 CRE
- y'2)ou L3 i v u- 8 (B
v {ax I 3T (xv') + =3 } T [arz (=) + ¥ 37 (=) n
1. 32 u™2 22 u'2 pu' - 1 pu',? _ au’ 2]
* T 387 (=) oz (=) (ar ) (Z 3 ) (BX

(A.19)
. Using continuity Equation (A.5) ., and .rearranging:
D u'2. _ _ = Ju —= U w'w' dul]_ ., o_ B’ u'z
Dt( 7)) = [ : rulv et T3 MoEx (B— =)
. 9 u'2, _w' o9 u'z [ 2 u'z 13 ,u'?
g G - g O YVl ) i
1 32 ue 52 u'z] _ l:au'2 1 3u'’ | 3u 2]
*ITyer U2 T ) G * Eae
{(A.20)

Similar mathematical operations in Egquations (A.8) and (A.10)

yield:



D ST, _ [t 2V 7 99, wv'wul _ v 3 (P, vTZ
ot {7 [; v v ?rrt b HU] VogT (p >)
wizpt ) vz W' oo TR Igz YREIN 19 v 2
Y3 Woax ) m g ) tviger eh oy ()
_ .
1 2 4 2 2 2
3 u'z 3 V2 [au' 1 v’ au"
+r_2882(2)+8x"-(2)] R A R v B v
.‘

F‘I’: 2u' aw! -
t =t ;2 a‘;. (A.21)
e

and, :
—
D w'¢y _ _ovp v _w 9 o p' o w2z, u'w'z =, 3 (W'
Dt( 2 ) W r r ‘98 (p + 2 X: r b x ( 2 )
8 w'2? 32 w'z 10 w2 1 3¢ - w2
v E‘f(z)*""[arz(2~)+E_r(2)+?faez(2)
3 R _—
3? w'ZJ dw' 1 sw'.? ow'. 2 w'2 2w' Jvu'
+&X2:(2) "D""’ar) U Ese) t ) T T oTn N
(A.22)

‘ i
Equations' {(A.20), (A.21) and (A.22) are Reynolds normal !

~ stress transport differential equations. The turbulent

kinetic energy equation is formed by adding Equations (A.20),

(a.21) and (A.22). For steady floti_iii/;ugp%;ent kinetic
energy equation is: ' '
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’ 3k 3k = du — ,9u | 8 u'w' Ju
I IO IR g 2 i 1
W'U' U | —p U [ ar,? Jur,? W' FIN
+ r .ﬁ-’_w T -V (BX (Bx) +(Bx) +(8r)
ur,? w', 2 1 au',” T o0’ Wyl ‘T 3w’ v’ 2]
+ 5 ) Y E5w) Y & ! T &t I )
3 5 1 3™ : 13 o
—_—) 1 -~ = 1 L A I__
] [ B v+ 2L wedE v+ 25 G+
3%k 15 - 3k 1 3%k
-V [ax2+f_r'(r ﬁ'f)*rzaez}] (A.23)
where k = (0% + 077 +iw'%)/2.

A.2 Integral Equations

Differential form of the mass and momentum conservation
equations for the mean flow are given by Egquations (A.4) and
(A.15). 1Integral equations may be formed by taking integrals
of-équation (A.lSj over a &ontrol volume and u;ing mass con-b

serv;tion Equation (A.4}.

A:2.1 Momentum Integral Equation

Multiplying Equation (A.4) by u and rearranging,

13 du _ '

ot
w|er
:’1]5

Adding Equatfion (A.24) and Egquation (A.15) and arranging,

2 (ru?) + 2_ {(ruv) =

X 5T (r t/0) C(A.25)

w|w '.
~l
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For axisymmetric jet v and 1 are equal to zerc at r=0 and .

Integrating Equation (A.25) over a control volume with r=0
to =,

%— /S ruldr = 0 (A.26)
TN

T

A.2.2 Mean Energy Integral Equation

s

“~

~ Multiplying Equation (A.15) by u,

2 2u u_ w3 |
w' oo+ uu oo = o {r t/0n) (A.27)

. 2y ._=
e+ oopE (WPur) - uu 0 (A.28)

Adding Equation (A.27) and Equation (A.28) and arranging,

~_)% %; (ru’) + %; (u’vr) = %; (ur t/p) - 1/p(r 9y,

ol =

ar

(A.29)
For axisymmetric jets, v and 1 are equal to zero at r=0 and
©. Integrating Egquation (A.29) over a control volume in the
limit‘r=0 to o,
" o [=5]

3 S _ 3u
% Of ru’dr = Of (r ar)

B =

T/p 9r (A.30)

Using Equation (A.16) for t/p in Equation (A.30),

(=]

d 3 - _ ” au du _ grorT
% Of ru’dr = OI {r ar)(\J = u'v’)or (A.31)

e

~p u'v' is turbulent shear stress and pv %% represents shear
]

stress due to molecular motion. Using./k and Ll as the velo-

city and length scales of the turbulence, the shear stress

v
Li )
i
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magnitude may be represented by:

uIU'f%K/E\/E

or (A.32)
U'U' —~ K l
[ 1 \/___
Ju k
; YV arVoor ‘
or (A.33)
v K ,
(VELT) /v

Comparing Equation (A.32) and Equation (A.33), u'v' is

1

{ kLl/v) times greater than v{du/dr). For high turbulence

'

Reynolds numbers, (VkL/v), the viscous-shear stress is negli-

gible. Expressing turbulent shear stress -p WU’ by Prandtl's

mixing,&6;;2h~model:

-p u'U"=,pu — (A.34i
where, .
vi = 1?38 - | (A. 35)
Neglectiné molecular shear stress and ﬁsing Equation (A.34) in
Equation (A.31), the’énergy integral equation becomes:

[e+] =] 2
%; S wlrdr = - f ovp ¥ (39 "5 (A.36)

0 ‘ 0 ar

N[ =



APPENDIX B

CALCULATION BY THE INTEGRAL METHOD

B.1 Integral Calculations

The empirical velocity profile obtained by fitting a

-

curve to the experimental measureménts is:

: ) N

U - 1.9 ; ' n ¢ -0.736

u

o .

S - 0.5-n+0.050° + 0.66n°  ; -.736 < n< 0.5

Cc o . .

S - 0.095[1.0 - tanh 4.79(n - .5z|; _ n» 0.5

c /
(B.1)

The momentum integral equation is obtained using the boundary
layer approximation:

S f Wwrir = 0
9x 0

+

where x is axial coordinate and r is radial coordinate as shown

in Figure 1.1.

The momentum equation can be written as:

3 T rl @
5_1: f TWfrdr + f uer%] = 0
XL ry

In the potential core 0 ¢ r & Xy, u = u, = constant, so the
above equation becomes:

2 -
s 5L, 5 8 har] =
i+ 5 ear]=o (8.2)
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A new variable, n, is defined as:
. r—r;j
n = b
where r is the radial distance for u/u = 0.5, and

ey
r=x

Transforming Equation (B.2) into variable n:

2 - .
) ""'rl T|2 . : .
Tl 3t ni (r%+qb)b(u/uc).8€] = 0 -”h(B.3)
where,
r,-r r,~r
Z 5 = 2 "k
ﬂl 5 and ﬂ2 5 . -

The energy eguation in integral form is also obtained
by using boundary layer approximation; it is:

. 0 o0 3
13 rulsr - 1?2 J r(ﬂE) dr = 0
2 ox 0 0 or

where L is Prandtl's m1x1ng ‘length,
o,

13 [:frl ru’dr + frz ru’dr
2 ox 0 .
. rl
' .]:‘l .3 ‘rg k]
or, - Lz[.f r(%%) or + f r(%ﬂ) B{] = 0
. 0 rl ¥

In core 0 & r ¢ r;, u = U, and 3u/3r = 0, so the above equa-—

tion becomes:

; 2 L ’ . ’

1y [r3 T2 e P B e W

j 5'}—('[-—2- + ri r(u/uc) Br:l I . S r 3T 9r = 0
1 ’




. r=r,,
Trancforming into the variable, n = 5 =
r? n '
13 [: 1 2 2 .
a3t nf (r%b+nb ) (u/u ) ufJ
- a(u/u N\ °
. L 2 nz c _ .
- (! nf (r%+nb)(f—§T*—) an = 0 (B.4)
._/Hl
Ny = -0.736 which repfesents the edge of the core, and n, is

chosen to be 0.8 where u/u, = 0.01. This choice is made only
to have easy access to the integration of higher powers of

the product of n and tanh 4.79(n—no).

B.2 Momentum Integral Equation

Using velocity profile (B.l) in Equation (B.3) and

using the limits for n,

3 ri 0.5 . 2 ,
==+ [ (r,b+nb?) (0.5 - n + 0.5n% + .66n%) .37
ax 2 L
-.736
0.8 ) : 2
# J (r,b+nb?){.095(1.0 - tanh 4.79(n-0.5)} ai]= 0
0.5 %

T4 :
WL * b S (.5 =1+ 0.5n* + .66n") 3n

- 236
1st InEegral
0.5 ' i 3
+ b? I n{.5 — n + .05n* + .66n°) 3n
~-.736
- . - I
2nd Integral
0.8 - )
+ r b [ {.095(1 - tanh 4.79(n-.5))} 3n
% 0.5 '
.5 iy -,
3rd Integral
0.8 2 .
+ b%* S n{.095(1 - tanh 4.79{(n-.5))} Bn:]= 0
0.5 y;

4th Integral S (B.5)



B.2.1 Calculation of ‘Inteqgrals of bguation (B.D)

0.5 : '
S (.5-n+.05n*+.66n°%)3an
-.736

lst Integral

P 0
o = [jzs n+1.05n2+. 56n'-1.3175n"
- - 736 )

+ .066n5+.4356nf]an

: 0.54685577

-

0.5
M(0.5- n+0.05n2+.66n°%) dn
.736

2nd Integral

[o 25n-n?+1.05h+. 561" +1. 37175n °
.736

+ .066n6+.4356nf]an

= -0.21578334
. o '
3rd Integral = [ 095 (i~ tanh 4.79 (n-. 5);} an
: 0. 5
0.8 o
= (.095)% J 1-2 tanh 4.79(n=.5)
0.5
+ tanh24 79 (n-. 5-]8n
0.8
= (. 095)2 f [? 2 tanh 4.79(n-.5)
0.
- sech?4.79(n-. 5:]an
= (. 095)2[}n 9 tn cosh 4.79(n-.5) .
1 .8
- 75 tanh 4.79(n~.5£] A

i

0.00072225



0.8 ‘ o,
4th Integral = f n Eogs(l-tanh 4.79(”-.5))] a,
hi1 )] _
. 0.
: = (.095)% f E)zu tanh 4.79 (n-.5)
0.5

+ ntanh¥4.79(n—.5)]an

i

. .2
(.095)2[% - 2/ntanh 4.79(n-.5)3n

0.8
+ f(n—nsech24.79(n—.5))aﬂ
0.5
=‘(.095)2[n"‘—2fntanh 4.79(n-.5)9n
0.8
- Insech24.73(n—.5)aﬁ]
“0.5
= (.095)2[h2-2fntanh 4.79(n~.5)an
- —N_ tanh 4.79(n-.5)
§.70 y .
1 0.8
+ -4—-.7§ftanh 4.79(n".5)83
. 0.5

=.(.095)%| n*-2/ntanh 4.79(n-.5)3n

N

- -4"-—.7—-9— tanh 4.79(n-.5)

2

+ (%g) n cosh 4.79(n—.5):l

= (.085) [ - f4 79 (n-. S)tanh 4.79(n-.5)3n

~ 2-0.5ftanh 4.79(n-.5)3n

n

- m- tanh 4-79(T]_.5)

+ (4 79) ILn cosh 4.7%9(n-. 5)]



L
’
~

2___2 ' o _(4.79(n-.5))"
4th Intefjral = (.095,)2[nz—-rd..—79—)-2f{(4-79(‘“—‘-5))2_( -_g” J))
2 c & 17 _ B
+ 7(4.79(n=.5)) =3 (4.79(n-.5))
482 4,79 (n-.5)) ‘ 18{4.79 (n~n )}
2835 < : n=ng

- _l7§£n cosh 4.79 (n-.5)-———tanh 4.79 (n-.5)

4 g. 79
1 ) 2 sh 4. 79( - 51] ‘
+ (4 75! n co n 5
= (.095)2[}2_ 2 ((4.79(n=.5))°_(4.79(n=.5)) °

(4.79)2 . 3 15

+ 1%5‘4'79‘”f‘5))7 L7 (4.79(n-.5))"

2835
62
+ 31185(4 79(n-.5)) *!1~-....}
1
- E—7§£n cosh 4.79(n-.5)

- N -
779 tanh 4.79(j .5)

: ]
+ —(—4'-:-.—7-'?-)—221'1 cosh 4.79(T1 -5)

0.5

= 0.00037526

Substituting the values of the integrals into Equation (B.5):

2

r ° "
I - - ﬂ -
ax[: 5 + 0.547578 ryb - 0.215408b 0 (B.6)

This, is a first order differential equation with starting con-

dition at x=0 is r;=r_ and b=0; integrating:

: ‘ Cp2
+ .547578 r%b - 215408 b* = —% (B.7)

NL:L



or

or

Since, § )
r. -r
‘ _ _ 71 Ty
Ny 736 = —
rl r% - 0.736b
Substituting (B.8) into Eguation (B.7):
(r, - .736b)° - r;
i ‘ + .547578 r,; b - .215408b% = —
-2 3 2
. rZ
2 _ 2 = _9
r% 0.37684397 r%b + 0.055%544 b 5
r, = 0.18842198b i'/rzo - .075377b°

Since at b=0, I, can never be negative, the positive sign is
included with the following relationship:
&

s
r

O

0.18842198 b/r, +\/1.-o' - 0.075377(b/r )?  (B.9)

(B.
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.3 Encrqgy Integral Equations

Using velocity profile (B.1) in Equation (B.4), we get:

2 .
0 rl 9.3 2 = ? 3
g;[}j + J xry + mb y{0.5 - n + 0.5n° + .66‘#9 3n

s 1 (r,b + nb)(.095(1 - tanh 4.79(n-.5))}3m]
0.5 ° S

I.l 2 0.5 . ' .
(B) [ I o{x, + nk) (-1 + 0.1In + 1.981%) *an

_.736

0.8

+ f (rli + nb){-0.455sech?®4.79(n - 0.5)}381‘1] =0
0.5

0.5 {
+ r%b [ (0.5 - n + 0.05n% + 0.66n?) %3N
2 -.736

w'cu
o
ol

g

1st Integral

0.5
b? /(0.5 - n + 0.05n% + .66n°) %3N
-.736

4

./

2nd Integral

0.8 .
£, b(0.095)% f {1 - tanh 4.79(n-.5)}%2n
b 0.5«

+

S

3rd Integral

-

0.8

b2 (.095)% S n{l - tanh 4.79(n-.5)13%0n

) 0.5, . y
~ 4th Integral

+




0.5 .-

. 2
- (%)[:rk ;T (=1 + 0.1n 4 1.98n%)an
Jl"-736‘ — 'J_
, 5th Integral '
. 0.5
b f n{-1+ 0.1y + 1.98n%)79n
-.736 ~— —_—
. 6th -Integral
0.8
- r;ﬁ(o.455)3 7 {sech?4.79(n-.5)}2an
0.5« . Y,
7th Integral
0.8 _ '
- b(0.455)3 f n{sech?4.79(n-.5)}%3n =0
0.5 _

8th InEEgral‘

(B.10)

B.3.1 Calculation of Integrals in Equation (B.1l0)

- 0.5
1st Integral = f (0.5-n+.05n%+.66n%) %an - - .
—-.736
0.5
= i) {.125—.75n+1.5375n2—0.655n3
-.736 ‘
- 1.826231%+2.0715n %+0.455525n°
- l.30165n7+0.06534n9+0.287496n9}8n
= 0.45097066
: 0.5
2nd Integral = f n(0.5-n+.05n2+0.66n7)3n
~-.736
0.5
= I {0.125n—0.75n2+1.5375n3-0.655n“
-.736

— 1.82625n %+2.0715n°+0.455525n7

- 1.30185n8+0.06534n9+0.287496n'G}Bn
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2nd Integral = -0.20326464
0.8 '
3rd Integral = (0.093)° f {1-tanhn4.79(n-.5)}%3n
0.5 '
0.8
= (0.095)* J l1-3tanh 4.79(n-.5)
0.5

+ 3tanh 4.79(n—.5)—tanh34.79(n—.S{]an

0.8
(0.095)% s | 4-4tanh 4.79({n-.5)
0.5

- 3sech?4.79(n-.5)

+ tanh 4.79Ln—.5)seph24.79(n~.52]an

(.095)3[}n- zéﬁgan_cosh'4.79(n—.5)

3 -~
- Wtanh 4.79(n~-.3)

L]

' 0.8
+ X _rtanh 4.79(n-.5)3{tanh 4.79(n—.5)]'
7.79 o s

= (.095)3[}n— Eiﬁgﬁncoéh 4.79(n~-.5)
. §

- —2—~tanh 4.79(n-.5)

2.79
0.8
, 1 tanh24.79(n—.5{]
.73 2 0.5
= 0.00004875

ks

0.8
{.095)* | n{il-tanh 4.79(n-.5)13%3n
0.5

4th Integral
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159 ‘ o - -
SR - . 0.8
4th Integral = (.095)% [ |4n-4ntanh 4.79(n=.5)
- 0.5 . R
> \ - 3nsech?4.79(n-.5) .

+ ntanh 4.79(n—.S)sech24.79(n—.%ﬂ an

(.095)3|:2_n2—4fntanh 4.79(n-.5)9n '. >
- 3/nsech®4.79(n-.5)an .~ . )

0‘\-8 Al ".%.i_
+ fntanh 4.79(n-. 5)*sech24 79 (n—. 5)85] R

\\\\;ﬂ~ 0f5

—ef{4.79(n-.5)tanh 4.79(n-.5)

; 3|2
(:095) 2n 4 73

+ 4.79%0.5tanh 4.79(n-.5)}an

Ao - 4?39 * tan 4.79(n-.5) -
.3 o -
+ TF 55724 n cosh 4.79(n-.5)
L _n__tanh®4.79(n-.5) ~
4.79 2
1 K 0.8
- ghzg tanh?4.79 (n-.5) 3]
. 5. 0.5

.

, :
= (.095)3[?n2- 44 f{(4.79(n-.5))_(4.79(n—.5;)§

.79 1 3
2 _ [ _ a
+T§(4'7,9(n -8)) 315(4 .79 (n=.5)) #
. 62 _ 10_ '
] + g5 (4. 79(n -3 B T e }an¥

2 -
- ET?gtﬁ\COFQ 4.79(n- 5)- 7 79tanh 4, 79(n— 5) .
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3 ) . | :
o+ W?Q;DCOSh 4.79(1]_.5) i

nf® tanh? 4.79 (n=.5) : -

* 7.79 2

o ~ 0.8
- ——f{1l-sech?4.79(n~.5)19n
9.58 0.5

_ . _ 4 ‘ (4.79(n-.5))°
B ('095)3[?”2 @7y | 3

(4.79(n=.5)) ° 2(4. 79(n- 5)7 17(4.79(n-. 5))°
15 105 31549

62(4.79(n-.5)) !

DE35%11 RAEEEEE R ‘
: 2
- Wﬂn cosh 4.79(n- 5) 1 79tanh 4. 79( 5)
3 ‘ - n  tanh®4.79(n-.5)
+ szﬁgTéﬁncosh4.79(n .S)+4'79 7)
. 1 0.8
- 5.55 T 9.58+4. —gtanh 4. 79(”‘ 59
0.5
4th Integral = 0.00002021
0.5
5th Integral = f {-140.1ln+1.98n%1}3%3n
‘ -.736
0.5 ' ,
= [ {-1+0.3n+5.91n2=1.187n%-11.7018n"
~.736 . .

+1.17604n 5+7,.762392n°}3n

€

Il

~0.647836§2 Vs
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0.5
6th Integral S n{-1+0.1n+1.98n° } *an
I's _-736

0.5 ‘
f  {-n+0.3n2+5.9113-1.187n“-11.7018n°
-.736 3

+ 1.17604n%+7.762392n7}an

= 0.01906390

0.8
7th Integral = (0.455)% [ sech®4.79(n=.5)3n
~ 0.5
; 0.8
. = L0:433)° 1 {1-tann? 4.79 (n=.5) I
. 79 0.5 3

]

*§{tanh- 4.79(n-.5)

/o (0.455)3 -8
) = AM-299) f | 1-2tanh?4.79(n-.5)
T.79 4 5

+ tanh“4.79(n—.5ﬂ atanh 4.79(n-.5)

_ (0.455)° [ 9 (n=.5) =2 ' -
= 10-432) "leanh 4.794n~.5)-5tanh 4.79 (n-.5)

L 0.8
+ gtanh54.79(n—.5)]
- 0.5

il

0.01045859

. 0.8
8th Integral = (0.455)% [ nsech®4.79(n-.5)3n
0.5

(0.455)a[ﬁfsech54.79(n—.5)aﬁ

o

0.8
—f{fsech54.79(n—.5)an}aa
‘ 0.5

Using 7th Integral,

\u
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(0.455) 3

8th Iptegr;l = 7.59

n{tanh4,79(n—.5)—%tanh34.79(n--5)

+ %tanh54,79(n—.5)}—f{tanh4»79(n--5)

3 5

(0.455) 1

[y

9 " 1 0.8
- —tanh34.79(n—.5)+—tanh54.79(n—.5)}BE
: : 0.5

»

- - _2 3 -
= —4T79 [B{ta?h 4.79(n-.5) gtanh 4.79(n-.5)

»j. + %tanh54.79(n—.5)}-I{%gtanh 4.79(n-.5)

+ Ztanh 4.79(n-.5)sech?4.79 (n-.5)

5

1

gtanh34.79(n—.5)sech24.79(h—.S)}Bﬁ]

_ (0.455)3[' o2 ; .
= a5 n{tanh 4.79(n_.5) 3tanh 4.79 (n .5)
1 5 _ _ 8

7 2 _ _i_
+ =—tanh®4.79(n-.5) 50

30

= 0.00598443

Substituting the values of integrals in

]

+ 0.45101941r,b - o(20326464b{]

[+
B
N N

1
2 9x e

* |:-o.65829521r;5 + 0.01311954%1

tanh“4.79(n—.5{ﬂ

Eguation (B.10) :

|
. U:_LL"'

n
o

2 2ncoshd.79 (n-.5)
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3

b - 0.215408b?) - 0.9655859r,b

2
;a_[ii
> % { 3 + 0.547578::si

‘ 2
+ 0.01214336b%| ~ £r|-0.65829521ry + 0.01311954§]

Using Equation (B.6):

N}
m‘w

x[?.09655859r%b — 0.01214336b

) .
= 4 %F-[0.6582952lrL - 0.01311954@
2 . "

Substituting the expression for r!\i from .Equatign (B.9):

% %§ [9.09655859b{0.18842198b +.J§g - 0.075377b%}

) .
- ”O.Ol2l4336b2] = (—%’) [0.65829521. 0.18842198b

+ J2 - 0.075377b*} - 0.01311954b
o] Y _

or

l-é—-E}9655859b ¢Q2‘-o.075377b2 + 0.0060504b2]
2 Ix (o)

2 »
= [0.65829521\/:; - 0.075377b + 0.1101977512]
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Differentiating,

1 3b :
5 = [b.09655859\/§é.— 0.075377b?

-

.09655859%0.075377b°
ST - 0753770
8]

+ O.lZlOOBb]

-

L, ? > - .
= () [p-es829521 A2 - 0.0753778F + 0.11091775%1

or,

%3—}3 E09655859(r
= |.

2 - 0.075377b%) = .09655859%0.075377b

v

+

0.0121008b-¢&é - 0.075377Hﬂ

12 l 2 7}y 2
B [0.6582952l(r0 - 0.075377b%)

+

0.11091775b /r? - 0.075377b{] | P

2 ‘ . .. . R
) [5.6582952ré - 0.04962032b + B A

o

©+ 0.11091775b \/r2 - 0.0753770% |/

[?.09655859r2 - 0.01455659b?

y +0.0121008 /r? - 0.075377b{]

(B.11)



APPENDIX C

HOT-WIRE EQUATIONS AND CALIBRATION

.

C.1 Hot-Wire Equations

C.1.1 Without A Linearizer

For a hot-wire anemometer without linearizer,

E2 = A + BUS (c.1)

where E is the output voltage, U_ is the effective cooling

E
velocity and A,B}C are- constants. The effective cooling

velocity is given by the following empirical equation [}i]:
' i

up = Uyt KRUL (C.2),

where UN is the velocity component normal to the wire and
Ug is the tangeritial velocity component. Webster[:9d] and

Champagne E9£] determined k2 to be 0.20, with no dependencée

on the wire % /d ratio, and only a weak dependence on velocity.

/Eﬁnsidering the wire in x-y plane; Figure C.1l.

U% = {(u+u')cosa + u'sina}? + w'?
and ' (C.3)
: U% = {(u+u')sina - v'cosal* .

Assuming weak turbulence, so that:
w>ru', wruv', wrw'

Neglecting terms containing quadratic and higher powers of

flug&ggging velocities, Equation (C.3) becomes:

Un

u' u!'
ucosa [ (L + ) l—l—tana]

' (C.4)
‘ u' !
T .ucosaE(l-+ G—);ana - G_j

c
li



Using Equation (C.4)

2
2
E u COSO’.E.

2 2
tana

[
&
I

+

2
tana(l +

or

UC UCCOSS E

E
U!Z 2
+ ——'-z-tana.
u
2
+ tana(l +

Expanding Equation (

first power terms of

c _ C c
UE 'slu-cos a[}

166
in Eqguation (C.2):

' 12 ] v 1

u u U utu
+ 2 — + -~ + 2tanu(— +
T u u? u ,,wr“L\
2 U‘»z u Ul
+ kz{—il—z- - 2tana(—— + _T—)
'ul ut2
at u'? utu!'
+ 2 Tttt 2tanu(~— + ST
kz{UIZ 5 u' 4 utu!
+ Sl= - tana(ﬁ— = )
' c/2
2 ﬁ“ .

el

C.5)

fluctuating components:

r

1 S 1
+C-E—-+C§ig"—]
2

‘where,
- € k2pansy 4+ SLC=2) w0
s, = 1 + 5 kztana + 5 k2tana
2 kh
s, = tana|l - kz(l -2 tano) + -3‘tanﬂ-
2 2 2
- 2 T2
* (2 - ¢ + (c 22(0 4) tamuﬂ

(C.5)

in power series and retaining the
4

(C.6)

(C.7)

The hot-wire anemometer output voltage, E, has mean and fluc-

tuating components:

x

(C.8)
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A

Using Equations (C16) and (C.8) in Equation {(C.l) and assum-

-

ing Bre:
A

— - ' . 1 S [
E? + 2Ee = A + leuccoscu[§ + C %_ + C —3 2—:] (C.9)

‘Taking average of Equation (C.9}):

B2 = A + (Bs.cos“a)u® (C.10)

1

(lecoscu) ¥s the slope in the plane E2 vs. u-. Using
experimental values of E ahd u, a series of curves can be
drawn in the plaﬂé with different values of c. The bes£ fitF
curve designates the best walue of c, and it is represented
by calibration curves in Figu;es C. 4 and C.5. for normal and
slanting wires £espect;vely.

To linearize a signal it is necessary to Sét the

value of ¢ on the linearizer. The determined value of ¢ does

not alaaxs give the best linearization, but it can be adjusted

by trial.
- g
C.l.2 With a Linearizer
For a hot-wire anemometer with'a linearizer:
E. = B_U ' {(C.11)

L LE :

where EL is the linearizer output and BL is a constant. The

expression for cooling velocity, U, for this case is obtained

E
by using c=1 in Equation (C.6):

- T s ]
U_ = s ucosaEL P (C.12)
E 1 u S, u

For c=1, sy and S, frbm Equation (C.7):
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- 2 t N .
sy = 1 + %ké tano - %k‘tanu S 7
L [ (C.13)
s, = tana|l - kZ (1 + itanfx) 2 tan&{l + Etangi
2 2 2 .2 4 :

/

The outpuf voltage,E_ has two components:

L

EL = EL + eL {C.14)

Using Equations {C.l4) and (C.1l2) in Egquation (C.1ll):

EL f eL = BLélucosa[} + %L +‘§% %%] (C.15)
Taking mean of Equation (C.15):
EL = (Blecosa)u i ' {C.16)
E, =" (slope)u (C.17)
where,
(SiOPe) = B, s,cosa

L1

=1, so, the slope, n; for normal

For normal wire,{a=0‘and si 1
wire becomes, nléBL, and the slope, n, for slanting wire is;
» n2=BLsicosa.- The best va;ues ny and n2-for normal and slant-
ing wires are determined by calibration presented later:
Subtracting Equation (C.16) from Equatioh (C.15):
52

eL = (Blecosa)[;' + EI u:] (C.18)

If a wire is located normal to the flow in Position I, and a
single slanting wire is placed alternately in Positions II and

II1, as shown in Figure C.2, Equation (C.18) can be written

as:
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N
€1 = nlul:since 52=0
e = o+ 2oy * (C.19)
L2 2 sl )
S
; 2
e = n,{u' -~ =— v'j
- L3 2 Sl ) )

I1f Position III is obtained by rotating the wire 180° about

the axis Qf.the wire support, then'n2=n3. .

Equation (C.19) can be written as:

T - S
\ V'l o= (sl/sz)z[(gi; + 'é'g;)/zng - T:"z:] (C.20)

=
[ed
!

. 7 _ =2 2
s,/5, (8], — e} 3)/4n;

The'values of-gil,-giz and E%B were cbtained by squaring.the
vpltage which were read from the RMS meter to the hdt—wire
anemOmetei, and with the wires in Positions I, II aﬁd III.
The constant (51/52) was determined by calibration in a
developed pipe flow as in ref. [i]. As a check, sr,and S,
were also calculated from Egquation (é.lB) knowing ¢ from

measurement and k2=0.2 for wires (L /d=200) used here.

C.2 Calibration

Cc.2.1 Determinatidn of ¢

The hot-wire Equation (C.1l0) for an anemometer with-
out a linearizer contains three empirical constants. For
calibration purpose E? and u were measured by increasing

the main flow, in steps, to give the nozzle exit velocities
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from 2.5 m/s to 100 m/s. The measured values of B? and u°
we}e plotted by least square principle varying the values
" of c'betwéén 0.4 and 0.5. The least RMS deviation desig-
nates the best value of ¢, and typical plottings for normal
and slanting wires are shown in Figures dT4 and C.5, rgspec-

tively.

C.2.2 Anemometer with a Linearizer

The hot-wire anemometer signal is nonlinear. At
higher degrees of turbulence, the distortion caused by the
curvature of the calibration curve becomes noticeable; also,:

measurements at varying degrees of mean flow velocity are

N - . -

rendered difficult by conseQuént sensitivity variations.

This pr;blem is OvVercome by iinearizing the signal through

an electronic circuit. The hot-wire Equation {(C.17) for
this case contains one empirical constant.

For calibrating the hot-wire anemometer, the hot-wire
and the pitot tube were placed side by side in a core of
uniform velocity. A suitable value of the exponent, ¢, is
nécessary toc set to the iineérizer to produce a linearized
signal. The best value of ¢ obtained by curve fitting prin-
ciple described in Section C.2.1 does not always produce the
best linearization. By trial, c was adjusted to the linear-
izer to achieve the best linear coutput. The values of c'for
the best linear output and that obtained in Section C.2.1
for a number of wires (5yu, 2/d = 200) are shown in Table C.1.

: N
Adjusting the value of ¢ to fhe linearizer, E and u were
measured. Typical calibration curves for both normal aﬁd

slanting wire are shown in Figure C.6. The calibration was

-
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L

checked by measuring shear stress and turbulent intensities
in a fully developed pipe flow and comparing these with the
mcasuréments of Tucker [3] and Laufer 92 as shown.in
Figures C.8 and C.9.

A straight commercial a;uminum pipe of 10.8 cm inside
diameter and 15.24 m long was connected to a wooden settlihg
chamber of length 1.65 m and crqss—section 0.9l m x 0.9l m
sgquare. The settling chamber,. havin§ flow straighteners and
screens inside, received‘air from a blower through a flexible
pipe. The turbulent intensities and shear stress were mea-
sured by a hot-wire anemometer (type 55M10) with a linearizer
(tyée 55D10) at the exit of the pipe. The inside surface of
the.pipe was polished by glasswool. The hot-wire probe was
traversed over a scale of precision 0.0254 mm.

The low velocity calibration was performed following °
the préEedure given in the instruction manual for the lineaxr-
izer type 55D10. A typical low velocity calibration curve
is shown in Figureﬁc.f. The calibratipn of the pitot tube

with the micromanometer is shown in Figure C.3.
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 beé stable for the varying step size. that was used here.
A

APPENDIX D

THE FINITE-DIFFERENCE FORMULATION

4

!

‘D.1l General

oA standard explicit, finite-difference techniqﬁé re-
quires very small streamwise steps [?3] to s€}isfy the stabi-
lity criterion. The DufortrFfankel [94] method was found to
The
standard explicit scheme was used as a starting method for
the Dufdrt;Frankel proceﬁp?e which requifes information from
the two previous streaﬁwise stations.
The finite-difference problem domain is usually
/Egtablished by leZling AX and AR be small incremeﬁts of the
coordinateg X and .R and the considering of all the variableé
as existing on the finite set of points X=iAX, R=jAR (valid
" for fixed 40X, AR) where i and j are integers: Hererthe
finite-difference g;;atiens'will be written in'é form that

will be applicable for uneven grid spacing with x and r

directions. - For this purpose, the notation AR =(R. —R.f,
w ot j+l 7]
AR_=(Rj—Rj_l{, X = (X 7%) and AX_=(X;-X, 1) will be intro-

duced. The dependent variables are expanded in Taylor series

- [os].

AN
" The basic variables are made non-dimensional by using

the following transformation. '

181
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Replacing shear stress, t1/p by (v+vt)au/ar and introducﬁng

the above' transformation (D.l) in the continuity Equation
pa

(3.1), the momentum Eguation (3.2) and the turbulent kine-

tic energy Equation (3.13):
the continuity equation is:

. 3(UR) . 3(VR) _. .
: Cmx o Y TeR T 0 (D.2)

the momentum equation is:

3y ig‘alii - S D.3)
Uzx * V3R “R%9r (MR .

and the turbulent kinetic energy equation is:

IK* 9K* 9 oK

- D - 1 k 1% wrpill
L ——[ql, K*R (p-4)

X - 3R 3 oR
In all calculations LL=L.

D.2 Finite Difference Equations for Dufort-Frankel Method

-

D.2.1 Continulty Equation

Taylor's expansions about half a grid in r-direction

and one grid in x-direction.

AR :
Ui+, §+1) = U(i,3+%) + OR,U_+ —= U_+ Jx )2
AR, * _ _
+ AX+AR+ er +(—§ﬂ) Uir} + 0(A°) (Df5)

~

X

AR, 2
v S +
- A§4A§:E;;g+\(—§—) U} o+ 087 o (D.6)

- . . ) . ‘ A R+ 1 -
O i ] o - - 2
IR VA g W R U(i,j+%) ',AX_UX + —— U+ ={ (BX_) U

4
<3
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-

.. /L Re .
. . = P . !’ _ - X A2
U(%+1,3) UL, 348 + 0X, U, = —— U+ SL(Ax U
.L';R- -2 0 ) 3
= AX AR U .+ (=) U )+ fA ) : ) (D.7)
e s sy _AR- . L1 A
U(i-1,3) = U(i,3+%) - 8X_U_ - =5= U_ + S{(aX)*U_
. AR+ 2 .
_r 3
vAX_OR UL+ () U} o+ 08 (D.8)

»

Subtracting (D.8) from (D.5), (D.7) from (D.6), and adding,

’

(au C_ _U(i+1,3+1)+U(i+),3)-U(i-1,3+1)~U(i-1,3)

%)
X' 5, 34 20X, F5X)

. o -

+ 0{4&)
(D.9)

Subtracting” expansions for V'as :in Equation (D.5) and Equa-
tion (D.7):
oV V(i+1,j+1)-v(i+l,3)

(%) =
IR sy (AR FAR_) /2

(D.10)

Using approximations (D.9) and (D.iO) in the continuity

Equation (D.l), the finite difference equgéion becomes:

R(j)+R(3+1) U(i+1,j+1)+U(i+1,3)-U(i~{d,j+1)-U(i-1, j)
2- . Z{8X, ¥4X) \\

R(3+1)V(i+t1,3+1) ~R(3) V(i+1,3)

+ (bR, ¥BR_) /2

=0 (D.11)

-

D.2.2 Momentum Equation

Taylor's expansion of U about one grid in r-direction,

(AR)?
U + 0 (A% (D.12})

UNG+1) = U(L,3) + ARLU_ + — or



U(i,3-1) = Ui, ])

Subtracting Equation (D.13)

184
_ (AR-)? 3 :
_AR_Ur + = U T 0{A") {(D.13)
.
1
IZrom Eguation (D.l?),
= Ui, 3+40)-0(i,3-1) 2
.= AR TR + 0(A°) {D.14)
-}r] + Fa
. -7

Similarly, expanding U about one grid distance in x-direction

it is obtained,

¥

Ui+l,3)-4(i-1,3)

— 2 . . v
(BX - (AX +8X ) * 00 (D.13)
» l ] + -
) e
. J
Taylor's expansion of U about,half a grid spacing in r-
direction:_ '
» o
AR : AR
. _ [ + 1 + 3
Ui, j+k%) = U(i,3) ,+ 5 UI.' + vl (T) Urr + 0{A°)
' . (D.16)
. . . AR- 1 AR-,% . 3
U(1,3-%) = U(i,3) - -5 U+ 3 (———) U__ + 0(a%)
2 r 2 rr (D.17)
‘ .
' Subtractiné'Equation (D.17) from Egquation (D.1l6),
. FELH -2 Thiiae . T
> 3R}, .~ AR AR |V %)-U(lrj‘qz] (D.18)
l':] + -
Similarly, it is written:
9 aU 2 al 39U :
2 {RN f~4] - ERN ) (RN <=) 2] .
. aR ‘BR i, AR++AR__ oR i,k oR i,9-% R
w b o, ’ t
{j :> 9 _(ry ELI _ [R(j)+R(j+l) N(i,d)+N(i, q+1)
) R 3R] . ARiﬂR 2
f_ i,]
- _ R(§)+R(3-1) ]
* ( ) -
aR 2
i,3-%

. . N(i,j)+N(i,j-l)(
3 3T

{5 %] (D.19)



Using expansions similar to Equations (D.

is written:

I . 2 .’.+1 T . . B ‘.r
(%%) = Ui, A; Ui,J) 4 g(aty -
R T B +
(D.20)
~ _'_ - ""1‘_‘—1 .
(_?)__IR-]_) - U(l J)Ag(l J ) + O(Az)
i,J-% - ’
Writing the following expansions for U:
ax% 3
i i = i1 A . — .
Ui+, 5t U(i,q§) + JX+?h-+ 7 Uy + 0(a%) (D.21)
2 N
8X> 4 4+ 0(a%) - (D.22)

u(i-1,3) U(L,3) - X U+

2 X

Adding Equation (D.Z21) and Equation (P.22):
2 2
AXZ+0X2

Ulir3) = 0.5[U(i+1,3) + U(i-1,3)] - —5—— U, + 0(a")

(D.23)

The differential equation is for a.thin shear- layer where U,
is negliéibly small compared to U_ - Using Equations (D.23)

and (D.20) in Eguation (D.19%9):

- L]

3 gy 3U . 2 [R(j)+R(J+l) LON(i, ) #N(E, 1)
R 3R’ ;4 BRFAR. z 2

. U(i,;9+1)=0.5{U(i+1,3)+U(i-1,3)}
AR+

L R(DAR(3-L) | N(i,3)HN(i,3+1)
2 - 2 _

R 0.5{U(i+iLj)+U(i;1,j) —U(irj‘l){]+ O(A)

{D.24)



Using Equations (D.24), (D.15) and (D.14) in Equation (D.3),

the finite-difference equation for the momentum egquation is:

-

U(d+),§)-U(i-1;3) U (i, 3+1)=U(i,3-1)

U(l::]) AX FAX + V(l,:]) AR +AR
+ - . + -
_ 1 2 Euj)+n(j+1) . N(3,5)N(L,G+1)
R(J) BR _+AR_ 2 2

. x UL, 3+1)-0.5{U(i+1,5)-0(-1,3)} | RED+R(3-1)

uR+ A2

L N(i,3)+N(i,3-1) . o.S{U(i+1,j)+uci-1,j)}—U(i,j—lr]
2 AR_
' (D.25)

-

D.2.3 Turbulent Energy Equation

’
as for the momentum

Using the similar approximati

‘equation, the finite—difference/equa-io -for the turbulent .\\\

energy equation (D.4) is: ' e
.y R*(i+1,3)-K*(i-1,3) ..y K*(E,9+1)-K*(E,3-1)
U(i,J) X TAX + VI{1,]) TSR AR
4 R0 4+ 00~
w ' ) '
k * .
.o .o i ;
= P(lr]) - E(lr]) + Ricjl) ﬂ\%{i_{_(&R)
. + -
. o . ' /)

*Eﬂj)+a{j+1) R, §)+ K* (L, 5+1)
2 p)

» K¥(1,J+1)-Q.5{K*(i+1,9)+K*(i-1,3)}
Z VAR,

_ R(I)+R(j-1)  _K*{i,j)+ K*(i,j-1)
2 2

o 0.5{K*(i+1,5)+K*(i-1,3) }-K*(i,j-1)
J AR :

(D.26)



~
and,
+ - .
:* iS 3/2 . ;,,,/\.
i,3) =Cp [x (11,’3)(3“ (0. 28)

i,
TAU (4, 3) =ph (1) [T 20030700 | (Bl 2t 08,370 ;
| + o + o
g \ Q (D.29)

D.3 Direct Explicit Scheme

.

The finite-difference equations for this scheme were
used - to start the Dufort—Ffankel method. These eguations

be derived by standard method [95]. ‘
the continuity equation is:
R(j+1) C s - : Ty s
St [UGE+1,3) UG, 3) +U (41, 3+1) ~u (i, 3+1)]

A

" %ﬁ:[R(j+1)V(i+1,j+1)-R(j)V(;+1,j[] =0

(D.30)
the momentum equation ié: . f
P )
U(l,]) U(l+l,j)A‘>_{U(l,j) + V(l,j) ‘U(lrj)_gélr]_l)
_ 1 2 [R(j)+R(j+l) N(i,3)+N(i,3+1)
R(J}.AR +AR_ 2 ) 2
' 4
« U(i,3+1)-U(i,3) _ R(3)+R(3-1) /
AR 2
+
* N(i!j)+N(ilj_l) - U(irj)—U(i,j_l)
5 N (D.31)
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the turbulent enerqgy egquation is:

K* (i+1,3)-K*(i,3) K*(i,3)-K*{(i,j-1)

o i/"\\\i 25T [R5y +R (5+1)
= P(ll]) - E—(lrj) + R(:l) L‘.R++AR_ 2

i

« K*(1,3)+ K*(i,j+1) K*(i,j+l);K*(i,j) _ R{3)+R(j-1)
. : 2. AR+ . 2 )

~

o K*(i,3)+ K*{i,j-1) K*(i,9)-K*(i,3-1)

- 2 ’ AR_ (D.32)
-~ \_/
where, . -
P(i,3) = a TAU(L,J) U(l’j+ﬁglu(l’j) (D.33)
. ..13/2
e(i,3) = crbﬁwigag (D.34)
I 2 U(L, 3+1)~U{i,3) ; UL, 3+1)-U(i,]

TAU(1,§) = D) 2ided A;a+ (.J); ula :'_ A;+ (2.3)

. {D.35)

TAU(i,3) is the shear stress, P(i,j) is the production

of turbulent energy and e(i,j) is the dissipation of energy.



APPENDIX E

STARBILITY ANALYSIS OF THE MOMENTUM EQUATION ‘ s

The finite-difference solution should ensure:

“ -

1) the solution being obtained is that corresponding
‘to the partialzdifferential equations, at least if the mesh
were to be refined in a particular manner.

2) due to the particular method of solution, round
off errors or errors from any source are not amplified ox
allowed to grow in subsequent steps in the solution.

The first point is called the consistency condition
[96] which can be studied by expanding the dependent variables
in Taylor series expansions in a manner such that the-differ—
ence Eetween the partial differential equations and the finite
difference representation‘éan be'obserbed[_96,97]. This dif-
ference is known as truncation erro; 6f the equaﬁions, and if
it vanishes ih the limit as the mesh size is shrunk, the
finite difference representation is said to be consistent.

" The second point is called the stébility condition.

. " In dealing wiﬁh stability and convergence, the ideas of von

Neumann [7§] were used.

Let the error growth in U be 6, and according to

Neumann [7§], it was expressed in first hermonic by:

5 = pePlRgiB2X (E.1)

Wwith the error, the velocities change to:
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§(i,3+41) ~ Ui, J+1)+6 (1, +1) ]
U(i,3-1) ~ yli,j-1)-6(1,3-1) < (E. 2}
U(i+l,3) ~ U (i+l,§)+6(i+1, ) )
. and | )
§(i,3%1) = aePL(RFAR) 162X }
(E.3)
§(i,5-1) = AeBl(R"BR) 162}{ ] ) :

etcetera

Substltutlng Equation (E.2) in Equatien "(D.25) and £hen sub~ -
. !

tracting Equation (D. 25) and using AR, = AR_ = AR:

Ui, ) 5(1+13§);2§l—l,j)
+ —

§(i,3+1) =8 (i, 3-1)

.1
TER) T E& . IR{ j))(N(l j)+N(l j+l))

¢’

{6(i,j+l)—0;5(6(i+l,j)+6(i—lfj))} -1 - 2B

2R(J))

*

« (N1, 9)4N(5,3°1)) 10,5 (6(1+1,3) +6 (1-1,9)) =8 (i,3-1) )]
. - 'Y . X

~ (E.4)
. . . . . . _ _BilAR
Substituting Equation (E.3) in Equation (E.4), using E_— e
and rearranging: '
2 ’ —_ ‘
£ + At +B, =0 (E.5)
where,
A = - U{i,3)/(DX++8X-)
o V{i,3) _ 1 AR . . R
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V(i,j)/24R + ET%ET? (1L -~ ﬁ%?y)(N(i,j)+N(i.j-l))

B = —
o} v(i,j) _ 1 AR A .o
Tyt o el OO 5§737NN(1.3)+N(1,3+1))
The roots of Equation (E.S5) is:
_ Ag Ag % ‘

According to Von Neumann [79] stability condition,

N {4 O | - (BE.T7)

For real roots, inequality (E.7) are:

,52 + (ig)z - B < 1 | (E.8}
2 2 o~ T
ﬂ *
Ao- Ao 2 . )
-5 - (jr) -B_ 2 -1 L (E.9)

For AO > 0, Equation (E.9)}, and for Ao < 0, Egquation (E.8)
f Ed T

yield:
(A - B) 51 (E.10)

Using expressions for A_ and 8, in Equation (E.10) and re-

arranging, .

U(i,g) [y(i,j) 1 N(i,j-1)*N(i,4
- & + fJ-L)FN(i,§+1) AR
AX +0X_ Y TAR 3R AR {1 - 2R(j)i]
(E.LL)
Since U(1i,3)/( L+ X_) is always positive,
UG,5) L (i, 3) . 1 AL Ao1)eN (L, -
. > ' + ] LJ-L)EN(L,9+1) AR
hx +AX_ 2[R 28R AR L - 3R(3))
or,
(72, +6X_) s UL, J)nR
lv(lrj) + (ll(lrj"l)'*'N(irj"'l) (1 - AR |
_ 2AR, 2R(3)

7



For complex roots,
A

T

and Ihequality {E. 7} becomes :

A A

o? 0,2
(5) + By = ()

A

or,
.
B, €

= e it iVB, - (A /2)* "

(E.13)
1

The stability constraint given by Equation .(E.12) determines

i

the grid spacings'in x—-direction with uniform grid spacings

~

in r-direction. As the radial velocity on the outerside is

negative, the condition (E.13) $at%sfies‘automatically, but

it is not satisfied in the inner side where instability did

not a@ow at all.
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