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ABSTRACT 

The effectiveness of in-vehicle speech communication can be a good indicator of the 

perception of the overall vehicle quality and customer satisfaction.  Currently available 

speech intelligibility metrics do not account in their procedures for essential parameters 

needed for a complete and accurate evaluation of in-vehicle speech intelligibility.  These 

include the directivity and the distance of the talker with respect to the listener, binaural 

listening, hearing profile of the listener, vocal effort, and multisensory hearing.   

In the first part of this research the effectiveness of in-vehicle application of these metrics 

is investigated in a series of studies to reveal their shortcomings, including a wide range 

of scores resulting from each of the metrics for a given measurement configuration and 

vehicle operating condition.  In addition, the nature of a possible correlation between the 

scores obtained from each metric is unknown.  The metrics and the subjective perception 

of speech intelligibility using, for example, the same speech material have not been 

compared in literature.  As a result, in the second part of this research, an alternative 

method for speech intelligibility evaluation is proposed for use in the automotive industry 

by utilizing a virtual reality driving environment for ultimately setting targets, including 

the associated statistical variability, for future in-vehicle speech intelligibility evaluation. 

The Speech Intelligibility Index (SII) was evaluated at the sentence Speech Receptions 

Threshold (sSRT) for various listening situations and hearing profiles using acoustic 

perception jury testing and a variety of talker and listener configurations and background 

noise.  In addition, the effect of individual sources and transfer paths of sound in an 

operating vehicle to the vehicle interior sound, specifically their effect on speech 



 

vi 

 

intelligibility was quantified, in the framework of the newly developed speech 

intelligibility evaluation method. 

Lastly, as an example of the significance of speech intelligibility evaluation in the context 

of an applicable listening environment, as indicated in this research, it was found that the 

jury test participants required on average an approximate 3 dB increase in sound pressure 

level of speech material while driving and listening compared to when just listening, for 

an equivalent speech intelligibility performance and the same listening task. 
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CHAPTER 1: Introduction 

Our sense of hearing is undeniably essential for fully experiencing the physical changes 

of the world that surrounds us.  The ability to hear these changes enhances our quality of 

life and drives the need to communicate with other individuals, most often through 

speech.  Speech communication is one of the fundamental mechanisms of human 

interaction.  In addition to being audible, effective speech communication needs to be 

intelligible, or capable of being understood.   

Generally, the effectiveness of speech communication depends on the parameters 

associated with the talker, or sound source, the listener, or sound receiver, and the 

surrounding environment in which they are located.  Often, these parameters are used in 

order to evaluate the objective or subjective effectiveness of speech communication.  The 

results of this evaluation may be obtained through a variety of methods, standardized or 

unstandardized, and are all termed “speech intelligibility”.   

Using the currently available evaluation methods, the assessment of these parameters is 

often incomplete or inapplicable to a variety of practical listening situations.  A complete 

assessment of all the parameters affecting speech intelligibility in the context of a 

particular listening environment is essential for an accurate evaluation of speech 

intelligibility.  For the example of speech intelligibility inside an operating vehicle in the 

presence of background noise, these parameters can include the directivity of the talker 

with respect to the listener, the distance between the talker and the listener, binaural 

listening, hearing profile of the listener, vocal effort, and multisensory hearing.  

Currently, there are no published methods for speech intelligibility evaluation to account 

for all of these parameters.  In addition, there are no available methods for quantifying 
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the statistical variability associated with the evaluation of speech intelligibility.  The lack 

of these is the main motivation for the work presented in this dissertation. 

In today‟s society, a vehicle interior has become a common communication environment.    

The intelligibility of in-vehicle communication can potentially influence the overall 

comfort of the occupants and their perception of the overall quality of the vehicle.  Such 

communication may involve either the use of the many currently popular in-vehicle 

communication systems or person-to-person communication.  Despite the technological 

advancements that provide alternative ways of communicating, the person-to-person 

communication is still the most basic means of human interaction.  For the increasing 

number of senior aged drivers, the ability to hear speech sounds clearly permits 

individuals to converse and, consequently, provide an increased sense of independence 

and quality of life.  For many families, the conversations during the daily commute to and 

from work or school can be important opportunities to remain connected.  In addition to 

facilitating social interaction, in-vehicle person-to-person communication may also carry 

important safety information.  Cheesman and Jennings (2009) found that despite an 

awareness of speech communication difficulties in cars, little research on interpersonal 

speech communication exists in the literature.  There is though a large and growing body 

of research focused on in-vehicle machine to human communication and automated 

speech recognition systems, which are direct applications for vehicle navigational and 

control systems.  For example, McKeown and Isherwood (2007) investigated speech, 

environmental sounds, auditory icons and abstract synthetic warnings as candidates for 

within-vehicle interfaces and found that speech and auditory icons produced both the 

fastest response times and greatest accuracy.  Although the focus of this research is for 
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person to person communication, the methodology presented in the upcoming chapters 

related to in-vehicle speech intelligibility evaluation, including the evaluation of the 

statistical variability, may be applicable to any other speech communication situation and 

the communication environment. 

Speech intelligibility may be evaluated subjectively using listening tests or objectively 

using speech intelligibility metrics.  The objective approach is often preferred, as it is 

often more practical, but a good correlation with subjective speech intelligibility 

measures is critical and not always found.   

All objective speech intelligibility metrics require that a speech signal associated with a 

particular level of vocal effort to be specified in their analysis.  The results from these 

metrics are presented in terms of a score ranging from zero to one and interpreted based 

on the subjective descriptions of scores associated with a particular evaluation method or 

a standard, if such descriptions are available.  An alternative presented in this work to 

using a particular vocal effort in the evaluation and later interpretation of objective 

speech intelligibility scores is to consider the sentence speech reception threshold, as 

routinely used in the fields of audiology and speech audiometry.  The sentence speech 

reception threshold (sSRT) is defined as “the minimum hearing level for speech at which 

an individual can recognize 50% of the speech material” (ASHA, 1988).  Utilizing the 

sSRT eliminates the need for the subjective interpretation of scores by, instead, 

characterizing the human speech hearing ability in the presence of noise, and the 

associated variability.  For sentence-type tests typically used to measure sSRT, there is a 

point (a sound pressure level) after which the speech is understood in its entirety.  Below 

that point, it is not fully understood.  This speech intelligibility evaluation method is easy 
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to understand, simple and universally applicable.  The speech and background noise 

conditions at sSRT may then be used to calculate the objective speech intelligibility 

metric of choice and the associated variability.  

In this context, the basis of this work is to evaluate the decrease of in-vehicle speech 

intelligibility within a simulated driving environment using acoustic perception jury 

testing to set targets for future in-vehicle speech intelligibility evaluation.  In addition, a 

simulated driving environment may also be used to account for multisensory listening 

and to investigate whether or not, when presented with the same listening task, a listener 

would require a change in sound pressure level of the speech material while driving and 

listening compared to when just listening for an equivalent speech intelligibility 

performance.  Consequently, the associated potential increase in sound pressure level 

could also be quantified.  The multisensory context of the driving experience and its 

impact on the in-vehicle speech intelligibility would be evaluated in the presence of 

combined stimuli, including the background noise as well as driving tasks including 

steering, throttle control, braking and visual stimuli.   

Meston et al (2011) suggested that with an aging population, the number of older drivers 

would continue to increase, with their many health related factors, such as hearing loss, 

vision loss, cognitive changes, and central processing deficits that can affect driving.  

Consequently, as individuals get older they may rely more heavily on passengers while 

driving to help with various driving tasks.  In addition, car-buying demographics now 

include an increasing population of the hearing impaired individuals, regardless of age.  

Therefore, it is important to incorporate the effects of hearing profiles changes due to 

hearing loss in the investigation and the evaluation of in-vehicle speech intelligibility, so 
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that both normal and hearing impaired individuals are included in any acoustic perception 

jury testing. 

Background noise is one of the most significant contributors to decrease of speech 

intelligibility inside a vehicle.  Due to this, the inside of the vehicle can be a challenging 

communication environment for both normal hearing and hearing impaired individuals.  

The sound pressure levels of background noise at different locations inside the vehicle 

depend on the magnitudes and directions of the various structure-borne and air-borne 

sources of excitation.  These excitation sources can include road noise, engine noise, 

transmission noise, intake and exhaust noise as well as aerodynamic noise sources.  The 

resulting background sound pressure levels are also influenced by the amount of 

attenuation provided by the vehicle noise control components from these sources of 

excitation to the receivers inside the vehicle.  The attenuation is directly related to the 

sound propagation and the sound absorption and transmission loss characteristics of the 

individual vehicle noise control components.  The results of this work provide a 

possibility to explore the effect of the individual sources and transfer paths of sound to 

the vehicle interior sound, specifically their effect on speech intelligibility, thus offering a 

potential for vehicle sound package design changes for improving the effectiveness of in-

vehicle communication.   

The objectives of this dissertation are to: 

 Quantify in-vehicle speech intelligibility using the most comprehensive objective 

speech intelligibility metric - the Speech Transmission Index (STI) - for a variety 

of vehicle operating conditions, road surface profiles and talker and listener 

configurations (Section 6.1.1). 
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 Investigate the effects of sound source signal parameters associated with vocal 

effort and various measurement techniques used to evaluate the STI (Section 

6.1.2). 

 Quantify the effectiveness of in-vehicle communication using the better known 

objective speech intelligibility metrics, compare the metrics‟ results, and identify 

any shortcomings associated with each metric to lay the ground for developing an 

alternative, novel method for a complete and accurate speech intelligibility 

evaluation (Section 6.1.3). 

 Investigate in-vehicle speech intelligibility using the Speech Intelligibility Index 

(SII) and the hearing profiles associated with common hearing impairments 

(Section 6.1.4). 

 Quantify the effect of multisensory hearing on speech intelligibility by 

incorporating visual stimuli and performing tasks such as controlling the vehicle 

steering, throttle and brake as found in an actual driving situation, using a hearing 

in noise test within the simulated driving environment. 

 Develop a novel method for a complete and accurate speech intelligibility 

evaluation for the automotive industry using a virtual reality driving environment 

and acoustic perception jury testing to ultimately set targets. This will include 

investigating the associated statistical variability for future in-vehicle speech 

intelligibility evaluation (Chapter 5, Section 6.2).  For this the background noise 

measurements used in creating the simulated driving environment were obtained 

using a vehicle dynamometer.  
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 Develop a second driving simulator model for use with jury test participants 

having various hearing profiles and on-road interior sound measurements so as to 

include the effects of vehicle wind noise.  Using the proposed novel method, 

evaluate in-vehicle speech intelligibility. 

 Quantify the effect of the individual automotive sources of sound to the resulting 

vehicle interior sound, specifically their effect on speech intelligibility in the 

context of the above speech intelligibility evaluation method (Section 6.2.4). 

Table 1 provides an overview of the research.  

Table 1: Research Overview 

6.1.1 6.1.2 6.1.4 6.2.1 6.2.2 6.2.3

STI STI STI SII(nve1) SII(m2) AI SII sSRT

SII at sSRT3, 

Statistical 

Variability 

(Control 

Limits)

SII at sSRT

Smooth X X X X X X X X X

Rough X X X X X X

X

60 dBA X X X X

68 dBA X

Hearing in Noise Test X X X

60 dBA X

82 dBA X

X

X X X

X

1 normal vocal effort
2 measured speech signal
3 sentence speech reception threshold

Acoustic Perception Jury Test 

within a Driving Simulator

Normal Hearing Jurors

Hearing Impaired Jurors

Background Noise Signal

Measured

Fixed

Vehicle 

Dynamometer, 

Roll Surface

On-road

Objective Speech Intelligibility Metrics/Methods

Section 6.1.3

Assumed Common Listener Hearing Impairements

Speech Signal

 

It should be noted that the jury evaluation components of this study underwent a rigorous 

review and were approved by the University of Windsor Research Ethics Board. 
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CHAPTER 2: Literature Review 

The following is a literature review of the existing objective and subjective speech 

intelligibility evaluation methods as they apply to the evaluation of in-vehicle speech 

intelligibility.  The evaluation methods associated with each of the objective metrics 

considered are reviewed in order to expose the absence of consideration of some or all of 

the critical parameters necessary for a complete and accurate in-vehicle speech 

intelligibility evaluation.  As indicated in Chapter 1, these parameters include the 

directivity of the talker with respect to the listener, the distance between the talker and the 

listener, affects of binaural listening, hearing profile of the listener, vocal effort and 

multisensory hearing.  A rigorous search failed to find any published methods for speech 

intelligibility evaluation which account for all of these parameters.  In addition, no 

published studies were found on the statistical variability associated with in-vehicle 

speech intelligibility evaluation.  A suggested alternative to the current state of art, as 

presented in this work, is the development of a driving simulation to measure the ability 

to hear speech in the presence of noise using a popular speech test common in the fields 

of audiology and speech audiometry known as the hearing in noise test (HINT).  As such, 

an overview of research supporting the potential benefits of incorporating a driving 

simulation in the evaluation of in-vehicle speech intelligibility is presented.  The 

background noise measurement considerations required for the development of a driving 

simulation, including the effects of wind noise and the effect of vocal effort on the 

objective evaluation of in-vehicle speech intelligibility are also presented.  In addition, an 

overview of the vehicle acoustics applications of statistical variability analysis is 

provided.  It includes a discussion of the potential benefit of using control charts in 
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quantifying variability associated with in-vehicle speech intelligibility evaluation.  Also, 

an overview of past research related to in-vehicle speech intelligibility for hearing 

impaired individuals is presented.  Lastly, it should be noted that another aspect of speech 

communication quality assessment is speech privacy.  Due to its lesser significance for 

automotive acoustics applications, it is not being considered in this research. 

2.1  Objective Evaluation of In-vehicle Speech Intelligibility 

Articulation index (AI), speech intelligibility index (SII) and speech transmission index 

(STI) are the most common objective speech intelligibility metrics used.  These metrics 

involve values with a range from zero, indicating unintelligible speech, to one, indicating 

excellent speech intelligibility.  Data requirements vary depending on the type of metric 

and the calculation method.  All three methods account for the effects of the speech 

signal to background noise ratio on the reduction of speech intelligibility, and therefore, 

all three methods utilize background noise measurements in their calculations.  The AI 

method also utilizes a fixed speech spectrum.  The SII method allows for both a fixed and 

measured speech spectrum in the procedure, as described in the ANSI S3.5-1997 

standard.  The STI method based on the IEC 60268-16:2003 standard utilizes a measured 

speech signal.  This method also accounts for the effects of the enclosure on the resulting 

reduction of speech intelligibility from reverberation and echoes.  However, a recent 

study showed that for in-vehicle applications, this effect is indeed negligible (Samardzic 

and Novak, 2011b).  The main factor influencing a decrease in the apparent signal to 

noise ratio responsible for the loss of speech intelligibility is due to background noise in 

the vehicle interior at different vehicle operating conditions.  Qatu et al (2009) classified 

the vehicle interior noise according to its various sources, mainly the powertrain, road, 
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tire and wind noise, and provided an overview of vehicle design issues related to vehicle 

interior sound quality.  Samardzic and Novak (2009) quantified the contributions of 

engine radiated sound and mount vibration to the overall vehicle interior sound and 

vibration using transfer path analysis.  This contribution is often strongly dependent upon 

the vehicle‟s vibroacoustic attenuation characteristics, including the damping package 

design of the vehicle‟s sheet metal (Samardzic and Sergiyenko, 2008, 2009). 

Although the same level and spectrum of background noise can be used in the 

calculations of the three metrics, each method has its own calculation algorithms, 

frequency band weighing factors and usually speech spectra as well and, as a result, may 

yield different predictions for speech intelligibility.  For example, although the SII and AI 

methods both utilize a fixed speech spectrum, the former accounts for the distance 

between the talker and the listener but does not account for the effects of directivity and 

binaural listening on the perception of speech intelligibility, much like the AI method.  

Bozzoli et al (2005) showed that the directivity of the talker inside a vehicle has a 

significant impact on the STI calculation results.  The study suggested that for room 

acoustics applications the impact of the directivity of the talker is not critical for STI 

calculations due to, typically, a relatively large distance between talker and listener and, 

typically, a large amount of reflections.  Similarly, in telecommunications acoustics, the 

proximity of the receiver microphone is associated with only the near field impact on 

speech intelligibility.  For in-vehicle applications, as for small room applications, the 

distances between talker and listener are less than two meters but more than a few 

centimeters, and the whole directivity pattern of the talker is significant for in-vehicle STI 

evaluation. 
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Genuit (2004) acknowledged that binaural signal processing is essential for speech 

communication in a noisy environment, such as a vehicle interior; the two auditory 

channels allow for spatial discrimination essential for pattern recognition, as well as 

directional hearing, selectivity and suppression of noise.  The study also suggested that, 

in contrast to a typical measuring microphone with linear, frequency independent 

response for all directions of sound incidence, the outer ear is a directional filter which is 

able to change the sound pressure level at the ear drum by +15 to -30 dB, depending on 

the frequency and direction of sound incidence.  According to the same study, the 

filtering is due to the ear pinna, head, shoulder and torso geometry, which is dependent 

on the direction of sound, and resonances, which are independent of the direction of 

sound.  This emphasizes the importance of binaural measurements using, for example, a 

head and torso simulator.  In addition, Shinn-Cunningham (2003) stated that for a target 

(speech) signal near threshold, binaural spatial processing, i.e. combining information 

across the two ears, provides a performance improvement equivalent to increasing the 

speech audibility.   

A systematic evaluation of speech intelligibility for a variety of applicable configurations 

of the talker and listener‟s locations inside a vehicle, considering binaural speech and 

background noise measurements has not been found in literature.  Such evaluation would 

also require a consideration for a variety of the available speech intelligibility metrics‟ 

calculation methods.  For example, in addition to speech and background noise 

measurements, depending on the selected measurement procedure, the STI metric 

calculation may require impulse response measurements to account for the effect of 

reverberation on the reduction of speech intelligibility.   
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2.1.1  Articulation Index 

Articulation index was originally developed by French and Stenberg (1947) in order to 

predict speech intelligibility.  It was later modified by Kryter (1962).  The best known 

method for calculating articulation index is based on the ANSI S3.5-1969 standard.  It 

requires a measurement of the C-weighted speech signal, and adjusting the idealized 

speech spectrum by the difference between 65 dB (standard speech spectrum overall 

level) and the measured C-weighted overall level.  Examples of additional corrections 

include non-anechoic conditions and maximum allowed overall level.  There were no 

published studies found on the implementation of this method in the automotive industry.  

Instead, the work by Beranek (1947) is often referenced in many automotive noise, 

vibration and harshness (NVH) software packages to describe the articulation index 

calculation procedure, although references regarding the origin of the reference idealized 

speech spectrum and the frequency band weighing factors used in the calculations are not 

provided.  The reference idealized speech spectrum and the frequency band weighing 

factors are also quite different from those specified in the ANSI S3.5-1969 and ANSI 

S3.5-1997 discussed in the next section and appear to be customized for vehicle 

applications.  In addition, no published studies were found to describe the correlation of 

intelligibility scores to subjective speech intelligibility measures.  In comparison, these 

correlations are available in both the ANSI S3.5-1997 and IEC 60268-16:2003 standards 

describing the SII and STI metrics, respectively.     

Articulation index is the most commonly used speech intelligibility metric in the 

automotive industry, however, due to its simplicity, there are several limitation associated 

with its application.  The reference idealized speech spectrum has an overall level of 82 

dBA, presumably referring to a free field measurement at a one meter distance from the 
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talker‟s mouth.  This value is significantly higher compared to 60 dBA used in the ANSI 

and IEC standards describing the SII and STI metrics also used in this study.  In addition, 

the AI spectrum is fixed, without considerations for the effects of the directivity or the 

distance between the talker and the listener in different locations, all having a significant 

impact on speech intelligibility, particularly for in-vehicle applications.  The same 

spectrum is assumed for both male and female speech.  Also, the method does not 

account for binaural listening, i.e. any difference in speech spectra at the receiver 

locations between the left and the right ears, also potentially influencing the perception of 

speech intelligibility.  Still, this method was frequently used in publications related to the 

automotive industry over the years as one of the measures of vehicle NVH performance 

and, more specifically, the performance of vehicles‟ acoustic package and its 

components.  For example, Block (2001) used AI to compare the performance of the 

polyester acoustic absorbing materials in various applications in a sport utility vehicle 

relative to conventional absorbers.  Connelly et al (2005) calculated AI to compare the 

performance of three vehicles tested on a chassis dynamometer.  Hilyard and 

Cunningham (1991) used AI to rank the acoustic performance of foam backed 

automotive carpet systems.  Lu (2008) used AI results to illustrate the improvements in 

speech intelligibility performance associated with acoustic windshields. 

2.1.2  Speech Intelligibility Index 

The SII metric calculation is based on ANSI S3.5-1997 standard and it is an update to the 

ANSI S3.5-1969 standard.  As the new standard is a major revision, the name has 

changed from the Articulation Index to the Speech Intelligibility Index.  Ebbitt (2009) 

found that the differences between ANSI S3.5-1969 and ANSI S3.5-1997 calculation 
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results are small but potentially significant for a vehicle sound package development 

program.  Jiao et al (2006) performed subjective listening tests and multivariate linear 

regression analysis to find that SII “exerts a major effect on car interior noise quality”.  

Despite this, SII is infrequently used as a speech intelligibility metric in the automotive 

industry.  According to the new ANSI S3.5-1997 standard, it is possible to use either a 

standard or user-defined speech spectrum to calculate SII.  There were no published 

studies found in literature on the comparison of the two methods for in-vehicle speech 

intelligibility evaluation.  The standard, fixed speech spectrum is based on a distance of 

one meter from the talker‟s mouth.  As such, for in-vehicle applications, corrections 

would be required for the different distances between the talker and the listener inside the 

vehicle.  For the standard speech signal there are four available spectra depending on the 

required vocal effort, including „normal‟, „raised‟, loud‟ and „shout‟, with overall levels  

of 59 dBA, 67 dBA, 74 dBA and 82 dBA, respectively.  For in-vehicle applications, the 

method utilizing user-defined spectra should be based on the speech spectrum measured 

binaurally at the listener‟s location.  There were no published studies found in literature 

describing such application.  The same speech measurements acquired for the STI 

calculations may also be used to calculate SII using the user-defined speech spectra 

method.  Coincidentally, the overall level of 60 dBA associated with the STI speech 

measurements is similar to the 59 dBA specified for the SII standard speech spectrum 

overall level for normal vocal effort.  Therefore, it is possible to compare the SII and STI 

metrics using the same speech spectrum measured at the listener‟s location, as well as the 

SII metric using the fixed speech spectrum method, all with approximately the same 
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overall level.  Again, no published studies on this type of a comparison have been found 

in literature.   

The SII method may also account for special cases with variations in hearing threshold 

levels of a listener (Samardzic and Novak, 2011a) and insertion gain for hearing-aid 

devices worn by a listener.   

Rhebergen and Versfeld (2005) developed a method to predict SII in nonstationary noise 

by partitioning both speech and noise signals into small time frames to calculate SII and 

predict the amount of speech information available to the listener at that time frame. 

2.1.3  Speech Transmission Index 

The STI metric was developed by Steeneken and Houtgast (1980) and was shown to be 

well correlated to speech intelligibility.  Anderson and Kalb (1987) showed that the STI 

method is a valid method for testing the speech transmission of communications channels 

for use with the English language; previously the method has been validated only for the 

Dutch language (Steeneken and Houtgast, 1980).  The STI method is standardized as 

described in IEC 60268-16:2003.  Its previous uses were in the telecommunications 

industry and in studies of building acoustics.  It has more recently been introduced to 

automotive applications (Farina et al, 2003; Granat, 2008; Viktorovitch, 2005) given the 

growing interest of in-vehicle communications.  In previous studies, only selected 

combinations of talker and listeners locations inside a vehicle and operating conditions 

were used to investigate intelligibility using the STI metric (Viktorovitch, 2005), and to 

also study the effect a talker mouth‟s directivity for a given vehicle trim components at 

the in-board ear (Granat, 2008). 
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The STI calculation method is more involved compared to the other two methods.  It 

postulates that the reduction of speech intelligibility in an environment can be associated 

with the decrease of intensity of modulations from the source signal to the receiver 

signal.  The conventional method based on IEC 60268-16:2003 standard is described in 

the next chapter.  An alternative known as the impulse response method is used to 

calculate the modulation transfer function, resulting in increased repeatability and 

reduced measurement effort (Farina et al, 2003).  The impulse response is obtained in 

noise-free measurement conditions.  The noise-free impulse response method is used in 

this research for all STI calculations.  In this method, the modulation transfer 

function, )(Fm  at the modulation frequency F  is defined at each octave band frequency 

as: 
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Here, )(fh  is the impulse response and 
noise

L  and 
signal

L  are the sound pressure levels of 

background noise and the signal at a particular octave band, respectively; The modulation 

transfer function is required for each octave band frequency used to calculate the STI.  

Farina et al (2003) also compared STI calculations using the impulse response measured 

in noise-free conditions as well as in background noise.  The noise-free impulse response 

method resulted in a lower standard deviation of the STI, particularly at low signal-to-

noise ratios typically associated with in-vehicle listening environment.  

The modulation frequency, F , ranges from 0.63 Hz to 12.5 Hz in one third octave 

intervals, and octave band frequency , k , ranges from 125 Hz to 8000 Hz for male speech 
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signal and 250 Hz to 8000 Hz for female speech.  The above expression accounts for the 

effects of both reverberation (first term) and background noise (second term) on reducing 

the speech intelligibility.  For in-vehicle applications, the impact of the reverberation 

term on the STI should be quantified; in case it is found that the impact is negligible, 

likely due to the highly absorptive automotive interiors and their small volume, the first 

term of the above equation can potentially be neglected in order to reduce the 

measurement effort, and to only consider the effects of background noise.   

Another alternative to evaluating STI and reducing the measurement effort was proposed 

by Li and Cox (2001) who used the convolutions of anechoic speech signals and impulse 

responses of rooms to train an artificial neural network.  A multi-layered feed forward 

neural network trained by back-propagation was used to estimate STI received by a 

microphone in rooms.  It was also acknowledged that the current neural network could 

not effectively identify the spectral difference caused by different speech signals. 

Balasubramanian et al (2011) used the virtual ray tracing simulation method for 

predicting in-vehicle STI and identifying the effect of change in acoustic properties of 

high contribution components to STI.  However, a good correlation between the 

simulated and measured STI impacts was shown only for a limited number of 

components. 

Humes et al (1986) suggested that a potentially important difference between the SII and 

STI is that the latter is only an octave-band procedure.  This may be a drawback during 

abrupt changes in signal spectrum, including abrupt changes in audiometric configuration 

for the hearing impaired listeners. 
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2.2 Subjective Evaluation of Speech Intelligibility in an In-vehicle 

Environment 

A couple of recently published studies described below dealt with the subjective 

evaluation of in-vehicle speech intelligibility.  The second study provided the basis for 

developing the evaluation method for speech intelligibility in a simulated driving 

environment presented in this research. 

Balasubramanian et al (2011) compared the STI predictions with the ratings for the ease 

of conversation for four test vehicles from 1 (best) to 4 (worst) as rated by twelve 

panelists.  This kind of a comparison is in contrast to the method used in the IEC 60268-

16:2003 standard where the intelligibility scores from the subjective intelligibility 

measures are compared and correlated to the STI calculations.  In this study, word lists 

from the Modified Rhyme Test (MRT) utilizing similar-sounding monosyllabic English 

words in a carrier sentence were used.  Prior to this study, the results of the MRT have 

not been compared to any of the standards or publications associated with the common 

objective speech intelligibility metrics, including the STI.  A head and torso simulator 

used as the talker was positioned in the passenger, front, right location and the panelist 

was in the passenger, rear, left location with the vehicle being driven at 120 km/h on a 

smooth road.  There was no data reported either for the sound pressure level of the speech 

material played inside the vehicle or, from the performance of the panelists in terms of 

their intelligibility scores from the MRT. 

In another recent study, Sudirga et al (2011) used the Hearing in Noise Test (HINT) to 

quantify in-vehicle speech intelligibility.  The test setup and vehicle operating conditions 

described in previous studies (Samardzic and Novak, 2011a, 2011b, 2011c, 2011d), 

utilizing a mid-size sedan in a semi-anechoic dynamometer test cell was replicated in 
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Sudirga‟s study which used the same test vehicle and operating conditions.  Each of the 

nine jury participants was positioned in the driver‟s seat and a Bruel and Kjaer (B&K) 

4128 Head and Torso Simulator (HATS) was used to present speech sounds from the 

various passenger positions (front right, rear right and rear left).  The necessarily sentence 

recognition task associated with the HINT was performed on both smooth and rough 

dynamometer rollers, at 50 km/h and 100 km/h. 

In this research, in-vehicle speech intelligibility associated with person-to-person 

communication was evaluated by implementing the HINT in a driving simulator.  This 

provided the means of comparing the results to the HINT test from the previously 

mentioned study by Sudirga et al (2011). 

2.3 The Use of a Driving Simulator in the Evaluation of In-Vehicle Speech 

Intelligibility 

Vehicle driving simulators provide a variety of purposed uses: drivers‟ training, research 

of drivers‟ response to different driving conditions, vehicle design and verification, 

including NVH aspects, or simply entertainment.  Norfleet et al (2009) investigated three 

driving simulators in terms of their ease of use, user-interface, motion/vision agreement, 

vehicle dynamics, haptic feedback, traffic scenarios, realism, mobility, and 

programmability.  The same study provided examples of various driving simulator 

applications including vehicle development, in-vehicle system design, psychology and 

human factors research, education and training, traffic control improvements and 

entertainment.  Bhise and Bhardwaj (2008) compared driving behavior and performance 

of drivers in two different fixed-base driving simulators while performing the same set of 
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distracting tasks under geometrically similar freeway and traffic conditions.  Kolich 

(2003) used a driving simulator for the automotive seat comfort development. 

For the automotive industry, the NVH driving simulator provides a means to evaluate the 

vehicle interior sound quality as one of the main factors affecting the customers‟ 

perception of the overall vehicle quality.  The traditional subjective evaluation of the 

vehicle interior sound consists of jury testing in quiet listening rooms using pre-recorded 

sounds replayed in exactly the same manner for each juror through the headphones.  In 

reality, the sound perceived in an operating vehicle is a function of continuously 

changing parameters such as the throttle position, steering, the physical environment such 

as the weather and traffic, the visual and vibration stimuli, listener‟s attitude and 

expectations and others.  Therefore, the main advantage in creating a simulated driving 

environment for evaluating the speech intelligibility would be to account for the 

multisensory context of the driving experience and to, therefore, more accurately evaluate 

the vehicle occupants‟ perception of speech intelligibility in presence of the vehicle 

interior background noise.  Qatu et al (2009) classified the vehicle interior noise based on 

the root cause of the NVH phenomenon into powertrain, road, tire, wind, brake, chassis, 

squeak and rattle and electromechanical noise. 

According to Genuit and Fiebig (2007), the consideration of combined stimuli that affect 

various senses is imperative for properly capturing the perception relevant phenomena.  

Genuit (2004) also stated that speech communication in a noisy environment is only 

possible through binaural signal processing.  Ellermeier and Legarth (2006) found there 

was a moderate but a significant visual bias in an experiment in which sounds submitted 

for sound-quality evaluation were accompanied by pictures showing suggestive images of 
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the supposed sound source.  This visual bias effect was equivalent to a level change by  

2-3 decibels.  For this research, a simulated driving environment was created using a 

B&K Desktop NVH Simulator at the University of Windsor.  The desktop simulator used 

in this research did not capture the influence of vibration on the perception of sound; 

however, this influence is not significant.  According to Amman et al (2005), there is 

little evidence that vibration can significantly affect the perception of sound; some studies 

show that the judgment of sound is not dependent on perceived vibration while others do 

not.  The same study also concludes that any existing evidence indicates that at low levels 

of vibration, the sound caused a reduction in vibration annoyance while at high vibration 

levels, sound increased the level of vibration annoyance.  For this research, the 

assumption is that the physical vibration present during constant city and highway speed 

driving on a smooth road that does not manifest as airborne excitation would not affect 

the perception of sound or the speech intelligibility.  Therefore, at these driving 

conditions, the Desktop NVH Simulator would be an adequate sound evaluation tool for 

in-vehicle speech intelligibility in the presence of combined stimuli, including the 

background noise, steering, throttle, braking and visual stimuli. 

There are several published studies from the automotive industry involving applications 

of the particular NVH simulator used in in this research.  Allman-Ward et al (2003) 

explained the need for interactive NVH simulation using sound decomposition and 

synthesis and interactive sound replay.  This work described the early development of the 

NVH Simulator used in this study for the evaluation of design alternatives under realistic 

driving conditions using both the engineering specialists and non-specialists, such as 

customers, for jurors.  Williams et al (2005) used the NVH Simulator for powertrain, 
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sound quality, target setting and the evaluation of concept Computer Aided Engineering 

(CAE) models.  Dunne et al (2007) also used the NVH Simulator by modifying acoustic 

features interactively in order to instantly subjectively evaluate their effect on the overall 

character of the target sounds.  Quinn et al (2009) used the NVH Simulator approach to 

obtain the target sound generated by a secondary air intake system. 

The method proposed by Crewe et al (2003) for decomposing component sounds from a 

single operating measurement can provide an accurate sound synthesis of the sounds for 

use in driving simulators.  The sound decomposition method is an alternative to 

combining multiple test results where influence of one source is enhanced while the other 

sources are suppressed.  This is the case of towing the test vehicle on a rough surface for 

road noise to eliminate the affects of the engine noise or measuring noise interior wind 

noise by putting the vehicle in a wind tunnel.  These all may provide inaccurate results 

and at a higher cost (Crewe et al, 2003). 

In the field of psychology, the results from a study published on the subject of driving 

and speech intelligibility by Becic et al (2010) are particularly relevant.  In this study, the 

participants, drivers and their conversation partners, were engaged in a story-retelling 

task using a driving simulator.  They found that language production and comprehension 

are less accurate when one is driving.  The decline in accuracy included the driver‟s 

storytelling and their memory for stories related to them by their non-driving partners.  

However, the loss of intelligibility was not quantified by any physical acoustic 

parameters such as the known objective metrics or the subjective methods for the 

evaluation of speech intelligibility.  There are no published studies on the use of the NVH 
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Simulator, or any other simulated environment, for the evaluation of in-vehicle speech 

intelligibility. 

2.3.1  Background Noise Measurements Including the Effects of Wind Noise 

The reduction of in-vehicle speech intelligibility can be caused by numerous sources of 

noise including wind, road, tire, powertrain, intake and exhaust system noise as well as its 

operating conditions and the overall design of the vehicle.  Background noise 

measurements obtained from previous studies by Samardzic and Novak (2011a, 2011b, 

2011c, 2011d) and Samardzic et al (2012) were conducted using a small sized sedan in a 

semi-anechoic vehicle dynamometer test cell which did not account for the contribution 

to the vehicle interior wind noise and the reduction of in-vehicle speech intelligibility.  

Qatu et al (2009) showed that at high speeds above 90 kph the wind noise is a dominant 

source to the vehicle interior background noise.  According to Her et al (1997), wind 

noise reaches the vehicle interior through aerodynamic excitation of the exterior surfaces 

of the vehicle, acoustic transmission through door seals, including gaps and glass edge 

leaks, and also from airborne transmission of noise generated by wind interaction with 

body panels.  The characterization of the impact of wind noise on the vehicle interior 

sound quality is a popular research topic in the automotive industry, as seen from the 

studies listed next.  However, there are no published studies to describe the impact of 

wind noise on in-vehicle speech intelligibility.  Hoshino and Katoh (1999) developed an 

objective method to evaluate wind noise levels in the vehicle passenger compartment by 

considering the human hearing properties of auditory masking and sound localization.  

Coney (1999) showed that the air flow under the vehicle chassis and wheel wells as well 

as radiation from the roof and seal aspiration are significant contributors to the vehicle 
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interior noise.  Li et al (2006) investigated the distribution of wind noise sources and its 

generation mechanisms experimentally and using computational fluid dynamics (CFD).  

Jeong et al (2007) investigated roof rack and cross bar design parameters and their 

influence on wind noise.  Calcada and Moncao (2009) measured the sound transmission 

loss of different glass types and vehicle interior noise due to wind noise for proposed 

acoustical performance improvements and lower mass.  Callister and George (1993) used 

statistical energy analysis (SEA) modeling to analytically predict the noise level 

transmitted to the passenger by using an empirical expression for the fluctuating wall 

pressure on the window of an automobile.  Peng (2011) analyzed two SEA wind noise 

load cases and evaluated the results against vehicle measurements.  Graf et al (2011) 

coupled an unsteady computational fluid dynamics (CFD) solver for the wind noise 

excitation to a SEA solver for the structural acoustic behaviour to predict the noise the 

green house region for different yaw conditions, and then validated the predictions 

against the wind tunnel test measurements.  

In this research, a driving simulator model was created using both the vehicle 

dynamometer and on-road measurements to include the impact of wind noise, as well as 

various hearing profiles of the listener. 

2.3.2 The Effect of Vocal Effort on Objective Evaluation of In-vehicle 

Speech Intelligibility 

The sound pressure level of speech delivered by the human talker is associated with the 

necessary effort required to communicate intelligible speech to the listener.  Inside the 

vehicle, the sound pressure level is influenced by the talker‟s location with respect to the 

listener, the level of background noise, the vehicle interior acoustics, as well as the 
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talker‟s individual speaking style.  A previous study of speech sound pressure level inside 

a vehicle found 74 dBA (measured at one meter in front of the talker‟s mouth in free 

field) to be a realistic value for the situation when a talker positioned behind the driver 

was asked to speak “normally” (Bozzoli and Farina, 2004a, 2004b).  This value is 

significantly higher than the 60 dBA specified by the current IEC standard for calculating 

STI (IEC 60268-16:2003).  The previous version of the IEC standard (IEC 60268-

16:1998) specified a level of 68 dBA at a “normal speaking distance”.  As in previous 

studies related to automotive STI applications utilizing this version of the standard 

(Viktorovitch, 2005; Granat, 2008; Bozzoli and Farina, 2004a, 2004b; Farina et al, 2003), 

this distance was assumed to be one meter. 

The 74 dBA corresponds to a “loud” vocal effort according to the ANSI standard for 

calculating the SII (ANSI S3.5:1997).  The same standard assigns 66 dBA for a “raised 

vocal effort” and 59 dBA for a “normal” vocal effort.  These overall A-weighted values 

can be calculated from the fixed spectral density levels assumed for each vocal effort, as 

provided in the standard, using appropriate conversions.  The overall levels reported in 

the standard were expressed in terms of linear sound pressure levels.  Given a fixed vocal 

effort of the talker, however, the signal perceived by the listener may be quite different 

for different configurations of the talker and the listener due to the effects of the 

directivity and the distance between the talker and the listener, especially inside a vehicle.  

For this reason, the speech signal should be measured as described, for example, in the 

STI standard (IEC 60268-16:1998 and IEC 60268-16:2003), as opposed to assumed, for 

each configuration of the talker and the listener.  In addition to the procedure utilizing 
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fixed speech spectrum signals, the ANSI standard also describes a procedure using user-

defined or measured speech signals. 

Lastly, the AI calculation most commonly used in the automotive industry assumes 

speech signal spectrum level of 82 dBA.  It also assumes a fixed speech signal level and 

does not account for the effects of the directivity or the distance between the talker and 

the listener associated with in-vehicle applications. 

All of the different available options for speech spectra point to a need for standardizing 

speech level for in-vehicle speech intelligibility investigations.  Ultimately, a subjective 

study, currently not found in published literature, seems appropriate to determine the 

speech sound pressure level for different talker and listener configurations and different 

vehicle operating conditions under which speech communication is expected to be 

intelligible.  This is another motivation for developing the speech intelligibility 

evaluation method presented in this research.  In addition, a study on the effect of 

different source signal types and levels to obtain for the calculation of objective speech 

intelligibility metrics such as the STI seems appropriate.  Figure 1 illustrates the speech 

spectra associated with the various, previously mentioned, objective speech intelligibility 

metrics‟ standards. 
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Figure 1: Speech Spectra Associated with Various Objective Speech Intelligibility Metrics. 

 

2.4  Hearing in Noise Test (HINT) 

The HINT used in this research is a popular test used in the fields of audiology and 

speech audiometry to measure the ability to hear speech in noise.  The HINT may allow 

more regular and reliable assessment of the effects of noise on word recognition (Debonis 

and Donohue, 2007) and is one of the most common tests using sentence length stimuli 

(Katz et al, 2009).  Nilsson et al (1994) developed the HINT by creating a large set of 

sentence materials selected for their uniformity in length and representation of natural 

speech in order to quantify the sentence speech reception threshold (sSRT).  The 

sentences were derived from the Bamford-Kowal-Bench British sentence materials, 

rewritten in American English, and equated for intelligibility, uniformity in length and 

naturalness of speech.  The resulting test consists of recordings of 250 sentences, 

subdivided into 25 phonemically matched and balanced lists with ten sentences per list.  

The SRT (speech reception threshold) is defined as the presentation level required for a 
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listener to recognize the speech materials correctly for a specified percentage, usually 

50%, of the time.  Since speech materials become less difficult as they are repeated or 

reused, each test condition in this study included 20 unique HINT sentences, or two 10-

sentence lists.  Below is an example sentence list.  The permitted word variations from 

the listeners‟ response are indicated in brackets; the underlined words were used in the 

recordings in this study. 

1. (A/the) boy ran down (a/the) path. 

2. Flowers grow in (a/the) garden. 

3. Strawberry jam (is/was) sweet. 

4. (A/the) shop closes for lunch. 

5. The police helped (a/the) driver. 

6. She looked in her mirror. 

7. (A/the) match fell on (a/the) floor. 

8. (A/the) fruit came in (a/the) box. 

9. He really scared his sister. 

10. (A/the) tub faucet (is/was) leaking. 

 

The derivation of the sSRT uses an adaptive procedure where the level of presentation of 

the speech material is increased or decreased by a fixed amount, depending on the 

listener‟s ability to repeat the sentence correctly.  Nilsson et al (1994) justifies the many 

advantages of the HINT compared to the other available subjective speech intelligibility 

tests. 

Despite these advantages the results of the HINT have not previously been compared to 

any of the other objective speech intelligibility metrics mentioned above.  In addition, 

they have not been mentioned in the standards associated with these metrics, mainly the 

IEC 60268-16:2003 and ANSI S3.5-1997 for the STI and the SII metric, respectively.  

For example, the IEC 60268-16:2003 provides a relationship between the intelligibility 

scores from several subjective intelligibility measures including the phonetically 

balanced (PB) words test, Consonant Vowel Consonant (CVC) words test and sentence 
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intelligibility based on the SRT test.  The reference for the SRT test, however, is not 

provided in the standard.  For that reason, it cannot be associated with the HINT method 

that also involves determining the SRT.  The ANSI S3.5-1997 standard provides band 

importance functions for various nonsense syllable tests, PB words tests, Diagnostic 

Rhyme Test, short passages of easy reading material and SPIN monosyllables.  No 

published studies were found on the derivation of the HINT band importance function, or 

its application to any other objective speech intelligibility metric with the exception of 

the study by Eisenberg et al (1998) who used HINT in speech-shaped noise to compare 

subjective judgments of clarity and intelligibility for the same speech material and 

experimental conditions.  The clarity and intelligibility ratings were highly related but 

differed in magnitude.  As such, caution is needed when substituting clarity for 

intelligibility.  Nevertheless, according to the ANSI S3.5-1997, the band importance 

function for average speech provides accurate predictions across different communication 

situations and for communications situations where contextual, linguistic, semantic and 

syntactic constraints vary within a situation.  Therefore, for studies utilizing HINT for SII 

calculations, it seems appropriate to use the band importance function for average speech, 

as specified in the ANSI S3.5-1997 standard.    Nevertheless, the impact of different band 

importance functions in the evaluation of the SII using the HINT in a driving simulator 

should be investigated to determine the sensitivity of the SII to the band importance 

function particularly for constant background noise conditions associated with driving 

vehicle at a constant speed as presented in this research. 
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2.5  Vehicle Acoustics and Statistical Variability Analysis 

An accurate measure of speech intelligibility should be able to quantify the statistical 

variability of speech intelligibility for a complete objective assessment of speech 

intelligibility between passengers in a vehicle. None of the traditional objective speech 

intelligibility metrics accounts for the variability associated with the hearing ability of 

normal hearing or hearing impaired individuals and the influence of multi-sensory 

hearing on the perception of in-vehicle speech intelligibility.  In addition, an exhaustive 

search failed to find any published studies on the analysis of statistical variability 

associated with any particular measure of in-vehicle speech intelligibility.   

The statistical variability is critical for an accurate evaluation of the impact of any 

proposed vehicle design modification on in-vehicle speech intelligibility.  The design 

modification may involve improvements to the performance of a noise control package or 

general troubleshooting and correction of a vehicle interior noise issue.  If the difference 

in the selected speech intelligibility measure, for example caused by a proposed design 

modification or a noise issue, exceeds the amount of variability associated with the 

measure, then the change would be considered significant.  For example, a design change 

of an inner dash silencer, a common automotive noise control component, may alter the 

baseline levels and spectra of vehicle background noise.  If an inherent variability of the 

AI calculation, based on background noise measurements at a particular vehicle operating 

condition is +/-0.06 for example, the change (preferably an increase) in AI due to the 

design change would need to exceed 0.06 for this design change to be considered 

significant, in a positive sense.  This example emphasizes the importance of quantifying 

the variability associated with a selected speech intelligibility measure and any other 

sound quality metric, in general.  Any method selected for the evaluation of in-vehicle 
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speech intelligibility should also include the associated statistical variability as part of its 

procedure. 

Although no published studies were found to describe the statistical variability of in-

vehicle speech intelligibility, the following studies illustrate a variety of examples that 

discuss statistical variability analysis, including standard deviation and variance as well 

as other statistical analysis methods applied to the field of automotive acoustics. 

Shaver et al (2009) identified a variety of contributing factors related to the vehicle NVH 

performance variance.  They included the dynamic behavior of vehicle rubber 

components, such as the engine and body mounts, resulting from the variation in their 

material properties, temperature sensitivity, in-vehicle pre-load of the rubber components 

and force loading variation from on-road loading conditions.  Additionally, Shaver 

indicated that the variation in rubber properties affects the coupling of the vehicle body 

structure modes and chassis rigid modes, the overall vehicle dynamic response and 

consequently, the vehicle NVH variance.  Shaver also stated that the manufacturing and 

assembly process, component stack-up tolerance and assembly plant quality control, 

particularly for manual operations such as windshield glass installation and body sealing 

applications, could all be significant contributors to the overall vehicle NVH variability.  

At the vehicle component level, Paul (2004) quantified engine NVH variability based the 

measurements of engine radiated sound and engine mount vibration.  Fernholz (2005) 

used multivariate statistical methods, specifically the Principal Component Analysis 

(PCA), for a benchmarking study using 99 hydraulic steering pumps and their NVH 

measurements.  Using this method, the entire set of data was analyzed at once and the 
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two pump types with significantly better NVH performance compared to the other pump 

types were identified.   

A statistical analysis of the vehicle acoustical transfer path measurements was performed 

by Connelly et al (2005).  Connelly conducted a standard gage repeatability and 

reproducibility study of engine noise reduction and tire noise reduction measurements, as 

well as the variation in noise reduction from vehicle-to-vehicle through acoustical 

measurements from six compact sedans of the same vehicle line.   

Statistical Energy Analysis (SEA) is a common method used in the automotive industry 

to predict vehicle NVH characteristics.  For example, Peng (2011) simulated vehicle 

wind noise using SEA modeling.  Zhang et al (2007) developed an SEA model of a dash 

mat to optimize mass requirements and acoustical performance in terms of powertrain 

and road noise attenuation.  Wang and Maxon (2011) emphasized the importance of 

using experimental data for improving the accuracy of the SEA predictions, particularly 

for complicated SEA models with thousands of subsystems and junctions.  However, 

although SEA models can be used to estimate the vehicle level NVH variability, there is 

still limited data available to confirm the accuracy of these predictions (Connelly et al, 

2005). 

In the field of acoustical testing facility validation, Veen et al (2005) demonstrated that 

the precision expressed in terms of repeatability and reproducibility of random incidence 

sound absorption measurements obtained in both a small and large size reverberation 

room were comparable.  Based on the measurements acquired from the round robin data 

from this study, Pan et al (2007) investigated the measurement precision of random 
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incidence sound absorption measurements using automotive seats in small reverberation 

rooms. 

Statistical analysis is popular in other areas of automotive engineering, which are not 

related to vehicle acoustics.  For example, Sun et al (2007) introduced a statistical 

correlation metric between the numerical solution and test data for automotive crash 

simulation applications. 

2.5.1  Statistical Variability Analysis Using Control Charts 

Control chart evaluation is used for statistical process control (SPC) in order to detect any 

special causes of data variation and reduce the effects of common causes of variation to 

improve process quality.  The control chart calculations are typically based on the ASTM 

2587-10 standard. 

Samardzic and Pan (2009) used control charts to quantify the statistical variability of 

sound transmission loss and sound absorption measurements and to set targets for 

characterizing the acoustical performance of vehicle noise control materials and 

components.  In the same study, the control charts were also used to monitor and improve 

quality of acoustical material measurements and to select materials for optimal acoustical 

performance.  This work can potentially provide a foundation for control chart 

application to acoustical measurements related to in-vehicle speech evaluation.  As such, 

the control chart approach can potentially be used to quantify the statistical variability 

associated with the speech intelligibility evaluation method using an objective evaluation 

metric as a statistic.  The intent would be to provide reference values for the statistical 

variability for future evaluation of in-vehicle speech intelligibility. 
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Control chart evaluation consists of a center line, representing the time-averaged value of 

the statistic, upper control limit (UCL) and lower control limit (LCL), computed from the 

process statistics and located at three standard errors of the statistic around the center 

line.  The use of three standard errors, also known as “three sigma limits” as defined by 

the ASTM 2587-10 standard, is based on work by Shewhart (1931).  Shewhart originally 

chose these limits to balance the risk of failing to detect a special cause with the risk of a 

detecting a special cause when the process is in fact in a state of statistical control, or in 

other words, a false alarm.  Control limits are used to judge whether or not a set of data is 

in a state of statistical control based on a prescribed degree of risk.  Three sigma limits 

carry a risk of 0.135% of being out of control when the process is actually in control and 

the statistic has a normal distribution, as explained in ASTM 2587-10.  The 

appropriateness of the three sigma limits to describe the statistical variability of in-

vehicle speech intelligibility evaluation has not previously been investigated; for this, a 

jury test to quantify the statistical variability of the hearing ability of speech in an in-

vehicle listening environment is needed. 

2.6  In-vehicle Speech Intelligibility for Hearing Impaired Individuals 

The interior of an operating vehicle can also be a challenging communication 

environment, especially for the increasing population of senior drivers many of whom are 

hearing impaired.  Meston et al (2011) found that many individuals have experienced 

difficulty understanding or following a conversation while driving in a motor vehicle, 

regardless of age or hearing ability.  She also surmised that older adults may have the 

greatest difficulty in a driving situation due to the high prevalence of hearing loss as well 

as other age related factors.  According to Meston et al (2011), current research suggests 
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that as adults get older they are more affected by distractions in the driving environment 

and rely on their passenger to aid with certain driving related activities.  A study in the 

field of psychological sciences by Saweikis et al (2004) suggests that while young and 

old subjects with comparable audiograms tend to have a comparable speech intelligibility 

performance in quiet listening conditions, the older subjects have more difficulty with 

speech recognition tasks in degraded listening conditions. 

The difference in the response to speech perception in a vehicle interior listening 

environment specifically, between the normal and the hearing impaired individuals, has 

not been adequately quantified in the literature.  However, Zekveld et al (2010) examined 

the listening effort during speech perception in difficult listening conditions using 

pupillometry, and found that subjective listening effort ratings and the pupil response 

decreased with increasing speech intelligibility.  This decrease in the pupil response was 

relatively small for hearing impaired subjects (Zekveld et al, 2011).   

A reduction of hearing threshold associated with typical hearing impairments can 

significantly reduce the perceived speech intelligibility and the effectiveness of person to 

person communication inside an operating vehicle.  The AI metric, commonly used in the 

automotive industry to predict speech intelligibility, does not take into account hearing 

threshold loss.  The STI metric is also not a reliable prediction measure of the 

intelligibility of speech for hearing impaired listeners unless specific corrections are 

applied (IEC 60268-16:2003).  The SII accounts for the effects of elevated hearing 

threshold levels although its scope of application is limited to ontologically normal 

listeners.  The reason provided in the standard (ANSI S3.5-1997) is that some hearing 

pathologies may have effects on speech intelligibility above that predicted based on the 



 

36 

 

hearing threshold level alone.  These effects are called suprathreshold deficits.  They are 

not well documented and no corrections for the SII procedure are available at this time to 

account for them.  Nevertheless, the current procedure can still potentially provide a fair 

initial estimate of in-vehicle speech intelligibility for the hearing impaired listeners.  In 

addition, SII is becoming a preferred choice to quantify speech intelligibility within the 

field of audiology over the currently used audibility index metric (Debonis and Donohue, 

2007). 

An objective evaluation of in-vehicle speech intelligibility of individuals having common 

hearing impairments has not been found in literature.  This evaluation may account for 

the effect of elevated threshold levels on in-vehicle speech intelligibility for person to 

person communication involving drivers with common hearing impairments, for 

example.  This evaluation may also include the effect of hearing threshold levels obtained 

from audiograms and the impact of vehicle background noise measured for various 

vehicle operating conditions, road surface types and talker and listener configurations 

investigated.   

The two most common types of sensorineural hearing loss are noise-induced hearing loss 

and age-related presbycusis.  Most often, both types of hearing loss occur symmetrically 

in both ears.  The hearing threshold levels can be obtained from typical audiograms for 

individuals with noise induced hearing loss and presbycusis, respectively (Debonis and 

Donohue, 2007) and are shown in Figure 2.  The hearing level (HL) represents the pure 

tone threshold level at a specified frequency minus the reference pure tone threshold that 

is the minimum sound pressure level of the pure tone capable of evoking an auditory 

sensation at that same frequency.   
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Figure 2: Typical audiogram(s) for individuals with noise induced hearing loss and presbycusis (Debonis 

and Donohue, 2007). 

 

Therefore, the audiometric zero (0 dB HL) is associated with different sound pressure 

levels at each frequency. Noise induced hearing loss is progressive, resulting from 

excessive noise exposure.  It is characterized by an audiometric “notch” at 4000 Hz.  A 

potential explanation may be provided by pathologic evidence that demonstrates maximal 

cochlear hair cell loss in the tonal areas where the 4000 Hz hair cells normally reside in 

both animals and humans (Rutka, 2003).  The amount of hearing loss depends on the 

sound pressure level and noise spectrum as well as duration of exposure to the noise.  The 

resulting hearing loss will usually differ between individuals resulting in varying amounts 

of reduction of speech intelligibility.   

Presbycusis is a progressive hearing loss due to aging, typically affecting higher 

frequencies.  The majority of changes occur in the basal turn of the cochlea where the 

high frequency hair cells and their corresponding cochlear nerve neurons are found, 
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however, these changes are non-specific and can also be seen in a vast number of 

pathologies including the effects of noise upon the inner ear (Rutka, 2003).  The 

progression of hearing loss due to age is more rapid compared to the noise induced 

hearing loss, especially after age 60.   
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CHAPTER 3: Speech Intelligibility Metrics 

The following chapter provides an overview of the evaluation methods of the three 

objective speech intelligibility metrics used in this research.  AI evaluation is based on 

the procedure outlined in common automotive Noise, Vibration and Harshness software 

packages, and it is not standardised.  SII evaluation is based on the ANSI S3.5:1997 

standard.  STI is based on the IEC 60268-16:2003 standard. 

3.1  Articulation Index 

The AI evaluation method used in the automotive industry consists of determining the 

difference between the idealized speech spectrum and the background noise and then 

multiplying this difference by a weighing factor assigned to each one-third octave 

frequency band between 200 Hz to 6300 Hz.  The AI is the sum of contributions from all 

the one-third octave frequency bands.  If the background noise spectrum is higher than 

the speech spectrum then the contribution is equal to zero.  If the speech spectrum is 

more than 30 dB higher than the background noise spectrum the contribution is equal to 

30 dB, as the total dynamic range of speech is assumed to be 30 dB in any frequency 

band.  The AI is computed as:  







n

i
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AI        (3.1) 

Here, 
isL and, 

ipL and are the speech and noise spectrum levels and iW  is a frequency 

weighing factor, as shown in Table 2. 
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Table 2: Frequency weighing factors for AI calculations. 

 
Third 

octave 

frequency 

band 

[Hz] 

200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 

iW  1 2 3.25 4.25 4.5 5.25 6.5 7.25 8.5 11.5 11 9.5 9 7.75 6.25 2.5 

3.2  Speech Intelligibility Index 

The SII metric calculation consists of determining the band audibility function and 

multiplying it by the band importance function at each frequency band under 

consideration.  The SII is then the summation of the results over all the frequency bands.  

The procedure is available for both the octave and third octave frequencies in the range of 

250 Hz to 8000 Hz, and 160 Hz to 8000 Hz, respectively. 

The band audibility function is calculated by shifting the signal to noise ratio by 15 dB 

and dividing the result by the 30 dB range.  The signal to noise ratio values range from    

-15 dB to +15 dB.  The resulting band audibility function is then limited to the interval 

from zero to one.  This is quite similar to the final steps in determination of the STI from 

signal to noise ratio described in the next section. 

The band audibility function specifies the effective proportion of the speech dynamic 

range within the band that contributes to speech intelligibility under conditions which are 

less than optimal.  The band importance function indicates relative significance of a 

particular frequency band to speech intelligibility.  The band importance functions for 

different speech materials are also available in the ANSI S3.5:1997 standard.  Table 3 

shows the band importance function for average speech and octave band SII procedure. 
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Table 3: Band importance function for average speech and octave band SII procedure (ANSI S3.5: 1997). 

 

Octave Band 

[Hz] 
250 500 1000 2000 4000 8000 

iI  0.0617 0.1671 0.2373 0.2648 0.2141 0.0549 

  

The SII is computed as: 





n

i

ii AI
1

SII          (3.2) 

Here, iI is the band importance function and iA is the band audibility function.  The 

summation is performed over all octave frequency bands.  The band audibility function is 

defined as: 

30

15
 ii

i

DE
A         (3.3) 

Here, iE  is the speech spectrum level, and iD  is the disturbance level, defined as larger 

of the internal noise spectrum level and the noise spectrum level.  

The internal noise spectrum level is the reference internal noise spectrum level increased 

by the hearing threshold level.  The reference internal noise spectrum level is a spectrum 

level of a fictitious internal noise in the ear of the listener, which, if it were an external 

masker, would give rise to the reference pure tone threshold; These values is specified in 

the ANSI S3.5:1997 standard.  Hearing threshold level is a pure tone threshold level of a 

given ear at a specified frequency minus the reference pure tone threshold level, defined 

as a mean value, at a specific frequency, of the pure tone threshold levels of a large 

number of ears of ontologically normal subjects within the age limit of 18-30 years 

inclusive. 
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3.3  Speech Transmission Index 

For STI, an input and an output signal with a sinusoidal intensity 

modulation )2cos1( FtmI ii  , and ))(2cos1(   tFmI oo , respectively, are used to 

obtain the Modulation Transfer Function ( MTF ), defined as the ratio of the modulation 

index of the source signal, im , and the modulation index of the receiver signal, om .  The 

loss of intelligibility is revealed by the reduction in the values of the MTF .  The MTF  is 

defined for 14 predetermined modulation frequencies, F , at one third octave intervals 

and 7 octave band frequencies, k , for the male speech signal and 6 for the female speech 

signal.  The 14 modulation frequencies at one third octave intervals range from 0.63 Hz 

up to and including 12.5 Hz, and 7 octave bands with centre frequencies ranges from 125 

Hz up to and including 8 kHz for male speech and 250 Hz to 6 kHz for female speech.  

The apparent signal to noise ratio is based on the modulation transfer function, as the 

reduction of speech intelligibility is related to the decrease of intensity of modulations 

from the source signal to the receiver signal.   

The apparent signal to noise ratio ( SNR ) is then defined as: 

)
)(1

)(
log(10

,

,

,
Fm

Fm
SNR

Fk

Fk

Fk


        (3.4) 

When the SNR  is in the range from – 15 dB to 15 dB, its contribution to the STI is linear 

in the range from 0 to 1.  The resulting values are expressed as the transmission index, 

TI  and defined as: 
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The modulation transmission index ( MTI ) is the average of the 
FkTI ,

  values of the 14 

modulation frequencies for a particular octave band.   
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The revised STI ( rSTI ) is then calculated as the weighted sum of the modulation transfer 

indices.   
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The weighting factors include octave weighing factors ( ) and corrections for the 

contribution of adjacent frequency bands (  ), as shown in Table 4. 

Table 4: Weighing factors for male speech (IEC 60268-16:2003). 

 
Octave Band 

[Hz] 
125 250 500 1000 2000 4000 8000 

 0.085 0.127 0.23 0.233 0.309 0.224 0.173 

 0.085 0.078 0.065 0.011 0.047 0.095  - 

 

The MTF can be obtained directly by using a test signal for each of the 98 combinations 

of modulation frequencies and octave band frequencies associated with the STI 

calculation, to quantify the reduction in intensity of modulations of the source signal. 
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CHAPTER 4: Acoustical Measurement and Data Analysis Methods 

This chapter will discuss the acoustical measurements and procedures and the subsequent 

data analysis required for the evaluation of the objective speech intelligibility metrics 

considered in this work.  These include in-vehicle background noise measurements 

acquired both from a vehicle operated on a dynamometer test cell and on-road.  Other 

signals acquired include speech signal and impulse response measurements.  Also 

described are the necessary HINT speech measurements required for the driving 

simulator model, the model development itself and the jury testing for the acoustic 

perception measurements.  Lastly, the SII calculations from the jury testing results are 

described in more detail. 

4.1  Acoustical Measurement Methods  

In this section, the background noise and speech signal measurements, including the 

HINT speech material required for the driving simulator model, and impulse response 

measurements are described.  This measured data was subsequently used in the 

evaluation for the objective speech intelligibility metrics and development of the driving 

simulator model. 

4.1.1  Objective Metrics Calculations 

The speech intelligibility metrics were calculated according to the previously described 

procedures for each ear separately using the background noise measurements and either 

the measured or the assumed speech measurements, depending on the speech 

intelligibility metric under consideration.  The AI metric was calculated using B&K 
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LabShop software.  The SII metric was calculated using the software available from the 

website created by the members of the Acoustical Society of America Working Group 

S3-79, which is in charge of reviewing ANSI S3.5-1997 standard (sii.to).  As in previous 

studies (Farina et al, 2003; Granat, 2008; Viktorovitch, 2005) the STI metric was 

calculated with weighing factors for male speech and the impulse response method 

described previously, using Aurora software version 4.3 in accordance to the IEC 60268-

16:2003 standard. 

4.1.2 Vehicle Dynamometer Measurements of Speech, Impulse Response 

and Background Noise 

In-vehicle background noise, speech and impulse response measurements were conducted 

in a compact sedan located in a semi-anechoic four wheel chassis dynamometer (Figure 

3).  The use of the chassis dynamometer allowed for the very controlled speed and load 

settings to simulate actual vehicle operation for the background noise measurement.  The 

vehicle was placed on rolls with automated wheelbase adjustment and tied down with 

safety straps during background noise measurements.  The speech and the impulse 

response measurements used for STI calculations were obtained in quiet conditions.  The 

background noise was measured separately from the speech and impulse response 

measurements. 

A B&K Type 4128 HATS was used as the sound source for both the speech and impulse 

response measurements in quiet conditions.  A B&K Type 2716 audio power amplifier 

powered an artificial mouth with a loudspeaker from which the speech signal was 

emitted.  Pink noise and MLS signals used to study the effect of source signal parameters 

on the STI calculations, were the source signals for speech measurements.   
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Figure 3: Vehicle in a semi-anechoic dynamometer for speech, impulse response and background noise 

measurements with example HATS units‟ configuration; B&K Type 4100 HATS in the driver location as 

the receiver, or the listener, and B&K Type 4128 HATS in the passenger front location, as the source, or 

the talker. 

 

Prior to the in-vehicle measurements, the speech signal was equalized in a fully anechoic 

room by generating a pink and MLS noise signal and adjusting the spectrum according to 

the IEC standard specification for male speech (Figure 4).   

The loudspeaker gain was set to obtain different sound pressure levels of the equalized 

signal at a one meter distance from the artificial mouth using both the current (IEC 

60268-16:2003) and previous (IEC 60268-16:1998) standard values; 60 dBA and 68 

dBA, respectively.  The 68 dBA specified in the IEC 60268-16:1998 standard was used 

in past publications related to automotive STI measurements (Farina et al, 2003; 

Viktorovitch, 2005; Granat, 2008).  In addition, the effect of changing signal sound 

pressure level on the impulse response measurements was investigated using an equalized 

72 dBA MLS signal. 
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Figure 4: B&K Type 4128 HATS in a fully anechoic room with a microphone at a 1 meter distance from 

the mouth of the artificial talker for speech signal equalization according to the IEC 60268-16:2003 

standard specification for male speech. 

 

The speech signal, impulse response and background noise measurements were obtained 

for ten talker and listener configurations inside the vehicle, out of twelve possible 

combinations.  The measurements with the talker at the passenger rear left and the 

listener at the passenger front and the rear right locations were omitted due to time 

constraints and, to some extent, redundancy.  The driver, front passenger and the rear left 

and right passenger locations were used as the source (talker) as well as the receiver 

(listener) locations. This was facilitated by placing the two HATS units amongst the 

different seating positions for the speech, impulse response and background noise 

measurements.  A B&K Type 4100 HATS, was used to measure the sound pressure at the 

listener locations during the speech, impulse response and background noise 

measurements.  A B&K Type 4128 was also present during the background noise 

measurements to account for its effect on the sound field inside the vehicle.  The HATS 
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units were used to account for the directivity of speech and acoustic properties of the 

upper body similar to those of a human talker and the listener.  The height and position of 

the HATS units was kept constant for each of the four measurement locations.  The tests 

were conducted with both HATS units facing forward at all times.  Each measurement of 

background noise, speech and impulse response was repeated three times to verify 

adequate measurement repeatability. 

The impulse response was obtained by deconvolving the response to the MLS signals 

used for the speech measurements with the original signals.  The sine sweep technique 

was also used; a sine sweep signal was generated by the mouth simulator and recorded 

inside the vehicle.  Specifically, 70-second long sine sweep signal ranging from 70 Hz to 

12 000 Hz was generated using the B&K Type 4128 and recorded using the B&K Type 

4100.  The binaural recordings of sine sweep signals were then deconvolved with the 

inverse of the original sine signal in order to obtain noise-free impulse response (Farina et 

al, 2003) for each measurement configuration; all the talker and listener configurations 

considered in the study.  The quality of the impulse response measurements obtained 

from the two methods was compared in terms of the impulse response to noise ratio.  The 

modulation transfer matrices were also obtained using the impulse response method.   

The vehicle dynamometer test conditions for the background noise measurements 

included various constant and linearly increasing speeds on both smooth rollers and 

textured rollers to simulate different roadway conditions.  The rough roll surface was 

obtained by using bolt-on road shells which are textured coverings installed on rollers to 

simulate a rough road surface profile.  This was done to replicate the actual driving 

conditions and associated masking noises of a roadway due to different surface profiles.  
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The steady speed conditions were 50 km/h and 100 km/h and the variable speed condition 

was an engine run-up having a speed sweep from 1000 rpm to 5000 rpm.  Octave band 

and one third octave sound pressure levels were obtained for the constant vehicle speed 

conditions and at each 50 rpm increment for the variable engine speed conditions.  The 

speed was adjusted using a computer controlled robot positioner attached to the throttle 

pedal.  The vehicle transmission selector was set to drive during constant speed 

measurements and second gear for the variable speed measurements.  The engine speed, 

throttle opening and engine oil temperature were monitored during all measurements to 

ensure that the operating conditions remained consistent to ensure good repeatability of 

data acquisition.  The ambient temperature and pressure were kept constant during the 

measurements.  The background noise data was replayed binaurally prior to post-

processing of data to verify the quality of data and to ensure that no unwanted noises such 

as rattles were present during the measurements.     

4.1.3  On-road Background Noise Measurements 

The same small sedan model used for the vehicle dynamometer background noise 

measurements was used for on-road background noise measurements.  On-road 

measurements were obtained to account for the effects of wind noise.  The background 

noise measurements were acquired while operating the vehicle on both a straight section 

roadway and entrance and exit ramps of an expressway.  The measurements were 

obtained during periods of minimum traffic volumes during the early morning and late 

night times and under ideal weather conditions.  To ensure constant vehicle engine 

loading, the measurements were made on smooth sections of the road surface, which had 

no changes in elevation.  Once the data was collected, a binaural replay was performed 
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prior to data post-processing to ensure that no unwanted noises such as rattles and vehicle 

pass-by noise were present during the measurements.   

The background noise measurements were obtained using a SoNoScout Binaural 

Recording and Analysis System Type 3653.  The on-road measurements also 

incorporated global positioning system (GPS) data that were eventually used to extract 

the vehicle speed corresponding with the sound measurements. This operation is 

performed using the SoNoScout software.  The engine speed was obtained by an engine 

order extraction method using spectral maps obtained from vehicle interior sound 

measurements and an „Rpm Finder‟ feature of the B&K SoNoScout software.  The orders 

are defined as multiples of rotational speed of a vehicle component.  For example, engine 

ordered noise sources are associated with engine speed harmonics.   

The measurements were obtained at various vehicle speeds, throttle positions and at 

various gear settings chosen using the vehicle transmission selector.  The interior sound 

measurements were acquired during the engine speed sweeps at 50 percent and wide 

open throttle openings and in all four gears.  The interior sound measurements were 

obtained at closed throttle coast downs conditions, at a neutral engine speed sweep 

condition and at the engine idle speed. 

4.1.4 The Hearing in Noise Test (HINT) Measurements for the NVH 

Driving Simulator Model 

The University of Western Ontario‟s National Centre for Audiology provided the HINT 

sentence recordings and associated calibration signal used in WAV file format.  The 

sentences were recorded in the vehicle under quiet conditions having negligible 

background noise using a B&K HATS Type 4100 located in the driver‟s position.  The 
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sentences were presented using a B&K HATS Type 4128 located in the passenger front, 

passenger rear right and passenger rear left locations.  The recordings were obtained at 

levels of 35 dBA to 75 dBA in 2 dB increments. These were adjusted based on the 

voltage levels required to generate the same signals in an anechoic room at a distance of 1 

m from the mouth of the artificial Talker HATS Type 4128.  The speech signal was 

generated and recorded simultaneously using the B&K PULSE LabShop software version 

16.  A total of 15750 HINT sentence recordings were obtained for various combinations 

of speech levels and locations of the talker (HATS Type 4128). The listener (HATS Type 

4100) remained positioned in the driver‟s location.  The recordings were used as sound 

objects in development of the driving simulator model. 

The sound pressure levels associated with the HINT sentences used in the driving 

simulator tests matched those recorded inside the vehicle to within 0.2 dB, in the range 

from approximately 45 dBA to 70 dBA evaluated in 2 dB increments.  This test was 

performed by placing a pair of headphones on a Type 4100 HATS and verifying that the 

presented levels using the B&K PULSE LabShop software (Figure 5).  The HINT 

calibration signal recorded at these levels and different configurations inside the vehicle 

was used as the benchmark for any needed adjustments using the NVH Simulator 

software and the NVH Simulator soundcard mixer.   
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Figure 5: The sound pressure levels associated with the HINT sentences to be delivered from the NVH 

Simulator software through the headphones matched those recorded inside the vehicle to within 0.2 dB, in 

the range from about 45 dBA to 70 dBA, in increments of 2 dB.  The headphones were placed on a Type 

4100 HATS and the levels were verified using the PULSE LabShop software version 16.  The HINT 

calibration signal recorded at these levels and different configurations inside the vehicle was used as a 

benchmark for any needed adjustments using the NVH Simulator software and the NVH Simulator 

soundcard mixer.   

4.2  Driving Simulator Model 

Once acquired, the measured data was imported into the DTS Data Preparation (NVH 

Simulator) software and grouped according to the measured operating conditions - 

vehicle speed, throttle position, gear - in order to generate the sound objects to be 

imported into the simulator software.  The sound objects included the ordered (rpm 

related) and the masking (background noise) components that were decomposed from the 

total interior sound associated with each of the measured operating conditions.   

A Vold-Kalman filter was used for order extraction involving harmonic sound from the 

vehicle‟s rotating components.  For the vehicle level model used in this study, the total 

vehicle interior sound produced two types of sound objects: ordered and masking.  The 
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engine masking component was also extracted using the background noise measurements 

during the engine speed sweeps while the vehicle gear selector was set to neutral.  An 

additional set of sound objects that were also imported into the simulator software 

included the speech events; the HINT sentence recordings. 

The performance modeling was completed using the DTS Performance Data Preparation 

software.  Lookup tables were used to convert the driver inputs to the various vehicle 

parameters such as vehicle and engine speed.  These lookup tables were created for the 

vehicle speed and engine speed for each gear as a function of the throttle position.  The 

gearshift table was also populated with parameters specific to the test vehicle engine and 

used for automatic mode of driving in the simulator.  The performance data file was then 

imported into the NVH Simulator software. 

4.3  Driving Simulator Jury Testing 

The jury test participants in the first acoustic perception study consisted of 30 

participants, 18 males and 12 females between ages of 19 and 30.  The average age of the 

participants was 24 (standard deviation 3.2).  All of the participants had normal hearing.  

The jury test participants in the second acoustic perception study consisted of 10 

participants, 9 males and 1 female.  In this group, 4 male participants were hearing 

impaired, their ages ranging from 22 to 67.  Their audiograms with hearing threshold 

information were provided by the participants and used in subsequent SII calculations.  

The remaining normal hearing participants‟ average age was 25 (standard deviation 2.8). 

For both jury tests, twenty HINT sentences were presented via headphones (corrected for 

distortion) at intervals of approximately 20 seconds for each of the six measurement 

configurations considered.  Since the recognition of speech material becomes less 
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difficult as it is repeated or reused, each test condition in this study included 20 unique 

HINT sentences.  The duration of the simulated driving test using the HINT and the 

driving simulator was approximately one hour.  The participants were first asked to drive 

at 50 km/h during which the HINT sentences representing the talker in the passenger 

front location were played through the headphones (Figure 6).  These sentences were 

played simultaneously with the background noise associated with a particular driving 

condition (gear, throttle position, engine revolutions per minute).  A short break was 

subsequently provided for the participants before starting a 100 km/h test for the same 

talker and listener configuration.  After a second break, the next set of 50 km/h and 100 

km/h tests were conducted with the talker HATS located in the passenger rear right and 

rear left position.  For each test, the levels of the speech signals were adjusted after each 

sentence according to the response from the participants, as described by the HINT 

procedure for determining the sentence speech reception threshold (sSRT). 

4.4 SII Calculations Using Results from Normal Hearing and Hearing 

Impaired Driving Simulator Jury Test Participants 

The SII calculation based on the ANSI S3.5-1997 standard required the determination of 

the background noise and speech spectrum levels.  The random noise calibration signal 

created by averaging all of the HINT sentences was delivered using the HATS Type 4128 

in the passenger front, passenger rear right and passenger rear left locations while a 

HATS Type 4100 located in the driver‟s seat was used to record the sentences.  The SII 

was calculated from the in-vehicle recordings of HINT calibration signal at the levels 

associated with the juror‟s response to particular HINT sentences during the simulated 

driving test.   
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Figure 6: A juror (right) driving the NVH Simulator while the HINT sentence recordings are delivered 

from the NVH Simulator software (left).  The levels of the consecutive HINT sentences are adjusted in 2 

dB increments, based on the juror‟s response.   

 

In total, there were twenty SII calculations associated with each test condition and each 

of the thirty jury test participants.   

Prior to performing any in-vehicle HINT sentence recordings, the calibration signal was 

played in an anechoic room to determine the necessary voltage levels required to generate 

the same signal at the overall levels ranging from 35 dBA to 75 dBA, in increments of 2 

dB, at a distance of 1 m from the mouth of the HATS Type 4128 artificial talker.  Using 

the reference voltage levels determined in the anechoic room, the HINT calibration signal 

was then generated inside the vehicle, also from 35 dBA to 75 dBA, in increments of 2 

dB.   

In one study, the SII was also used to evaluate in-vehicle speech intelligibility using 

audiograms of common hearing impairments available in literature; however, the 
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predictions were not compared to the actual perception of speech intelligibility using 

human subjects in a driving environment.  In another study, the actual audiograms were 

used in combination with acoustic perception jury test results of the hearing impaired test 

participants to calculate the SII at the sSRT, using the novel method for speech 

intelligibility evaluation presented in the next chapter.   
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CHAPTER 5: A Novel Method for In-Vehicle Speech Intelligibility Evaluation and 

Statistical Variability Analysis 

The common objective speech intelligibility metrics discussed in Chapter 2 neglect to 

consider critical parameters that are essential for a complete and accurate in-vehicle 

speech intelligibility evaluation.  As discussed in Chapter 2, these parameters include the 

directivity of the talker with respect to the listener, the distance between the talker and the 

listener, binaural listening, hearing profile of the listener, vocal effort, and multisensory 

hearing.  For example, the current objective metrics require that a particular level of vocal 

effort be specified in their analysis regardless of the evaluation method used.  Ultimately, 

the metrics are evaluated in terms of the scores ranging from zero to one and interpreted 

based on the subjective descriptions of scores associated with a particular evaluation 

method or a standard, if such descriptions are available.  An alternative, as suggested in 

this work, to using a particular vocal effort in the evaluation and later interpretation of 

objective speech intelligibility scores is to consider the sentence speech reception 

threshold thus eliminating the need for the subjective interpretation of scores by, instead, 

characterizing the human speech hearing ability in presence of noise, and the associated 

variability.   

This chapter describes a novel method developed for a more complete and accurate 

assessment of all the parameters affecting speech intelligibility in the context of the in-

vehicle listening environment, using a driving simulator.  Additionally, the method 

quantifies the statistical variability associated with human hearing at the speech hearing 

threshold within an operating vehicle in order to provide targets for future speech 

intelligibility evaluation.   
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5.1  Vocal Effort Objective Speech Intelligibility Metrics 

The in-vehicle speech intelligibility is typically evaluated objectively using objective 

speech intelligibility metrics.  The metrics‟ calculations usually require background noise 

measurements at particular vehicle operating conditions and at a location of the listener 

inside a vehicle.  The speech signal is also required for the calculations.  It may be 

measured or assumed based on the measurement standard recommendations and 

depending on the evaluation method.  It is required that a particular level of vocal effort 

be specified in the analysis, regardless of the metric used for the evaluation.  Lastly, the 

metrics‟ results are presented in terms of the scores ranging from zero to one.  If the 

subjective descriptions corresponding to the scores are available for a particular metric, 

the scores may be interpreted accordingly.  For example, the SII values are generally 

defined as a proportion of the total number of speech cues delivered from the source to 

the listener, where good communication systems have an SII greater than 0.75, while 

poor communication systems have an SII below 0.45 (ANSI S3.5-1997).  Similarly, the 

qualification intervals for the STI are rated „poor‟ for scores below 0.45 and „excellent‟ 

above 0.75 (IEC 60268-16:2003).  There are no publications with similar guidelines 

related to the subjective interpretation of the AI scores, as used in vehicle applications, 

where the speech intelligibility as a factor influencing the perception of the overall 

vehicle sound quality is typically evaluated by customers based on their individual 

preference (Samardzic and Novak, 2011d).  In terms of vocal effort, Samardzic and 

Novak (2011c) used speech signal levels that comply with the IEC 60268-16:2003 

measurement standard for STI.  For the 60 dBA signal, the STI values ranged from 

unintelligible to excellent, depending on the location of the talker and the listener.  For 

higher speech signal levels, such as 68 dBA, the STI value was less sensitive to changes 
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in the vehicle operating conditions.  The same study showed that the 60 dBA speech 

signal, associated with normal vocal effort, according to the SII standard ANSI S3.5-

1997, provided at least fair intelligibility at lower speeds, such as city driving at 50 km/h, 

for all measurement configurations considered.  In contrast, an increased vocal effort of 

at least 68 dBA, considered to be loud, according to the ANSI S3.5-1997 standard, was 

needed to obtain similar intelligibility scores at higher speeds, such as highway driving, 

at 100 km/h, due to significantly higher levels of background noise.    

The vocal effort required for effective in-vehicle communication is influenced by the 

level of background noise, the vehicle‟s interior acoustics, the location of the talker with 

respect to the listener, as well as the talker‟s individual speaking style.  A suggested 

alternative to using a particular vocal effort in the evaluation and later interpretation of 

objective speech intelligibility scores would be to evaluate the in-vehicle sSRT, as 

suggested by Samardzic et al (2012).  Subjective interpretation of scores is no longer 

necessary as, by definition, the sSRT is a minimally acceptable vocal effort needed for 

understanding speech.  Therefore, the sSRT values in this study, coupled with the 

corresponding objective speech intelligibility scores, would be used to quantify the 

hearing ability of normal hearing individuals and the influence of multi-sensory 

perception on the perception of speech intelligibility in an operating vehicle. 

5.2  A Metric Selection for a Statistic in the Control Chart Evaluation 

In order to quantify the statistical variability of in-vehicle speech intelligibility, it is first 

necessary to select the proper variables that would accurately capture all-important 

influences on the in-vehicle speech intelligibility.  Since the in-vehicle speech 

intelligibility is often evaluated using objective speech intelligibility metrics, an objective 
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speech intelligibility metric would be a reasonable choice for a variable to be used in the 

statistical analysis.  Samardzic and Novak (2011d) investigated the in-vehicle application 

of common objective speech intelligibility metrics; the AI, the SII and the STI, to identify 

the most appropriate metric for use in automotive applications.  The SII method, utilizing 

user-defined, measured, speech signal was found to be the most appropriate out of the 

three metrics for quantifying in-vehicle speech intelligibility.  As the effect of 

reverberation on the loss of in-vehicle speech intelligibility was negligible, this method 

resulted in a close correlation with the more measurement-intensive STI method and 

provided an opportunity for a reduction in measurement effort while preserving the 

accuracy of the results.  Therefore, the SII method with measured speech signal is 

considered in this study, and as a result, the SII is used as a random variable in the 

statistical analysis. 

The objective metrics, including the SII, unfortunately do not include the influence of 

multi-sensory perception on the assessment of speech intelligibility, which is of particular 

significance for the in-vehicle listening environment.  In order to investigate the effect of 

multi-sensory perception, Samardzic et al (2012) created a driving simulation and 

implemented the HINT developed by Nilsson et al (1994), for the evaluation of in-vehicle 

speech intelligibility.  The study revealed that when presented with the same listening 

task, the jury test participants required on average an approximate 3 dB increase in sound 

pressure level of the speech material while driving and listening compared to when just 

listening for an equivalent speech intelligibility performance.  Therefore, the statistical 

variability of multisensory perception and its impact on the assessment of speech 

intelligibility is considered in this study by using the jury test results obtained by 
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Samardzic et al (2012) to calculate the SII for different configurations of the talker and 

vehicle operating conditions 

Signal to noise ratio (SNR) results obtained from the in-vehicle sound pressure 

measurements of speech and background noise are the main contributor to the reduction 

of in-vehicle speech intelligibility (Samardzic and Novak, 2011b).  The SNR ratio is 

directly related to the SII values per the calculation method described in the ANSI S3.5-

1997 standard.  The statistical variability associated with in-vehicle sound pressure 

measurements of speech and background noise used to calculate the SNR is also a 

potential contributor to statistical variability of in-vehicle speech intelligibility.  

However, based on the HINT in the driving simulator model by Samardzic et al (2012), 

the statistical variability of the speech and background noise signal for a particular vocal 

effort and operating condition, and conversely, a particular SNR, is assumed to be 

insignificant in this study. 

The sound pressure levels associated with the HINT sentences to be delivered from the 

NVH Simulator software through the headphones matched those recorded inside the 

vehicle to within 0.2 dB, in the range from about 45 dBA to 70 dBA, in increments of 2 

dB.  The headphones were placed on a Type 4100 HATS and the levels were verified 

using the PULSE LabShop software version 16.  The HINT calibration signal recorded at 

these levels and different configurations inside the vehicle was used as a benchmark for 

any needed adjustments using the NVH Simulator software and the NVH Simulator 

soundcard mixer.  The result of this is that the influence of the speech signal variation on 

the result associated with any particular vocal effort was minimal. 



 

62 

 

The influence of the background noise variation on the results during driving was also 

minimal.  The measurements were obtained at the average city and highway speeds of 50 

km/h and 100 km/h respectively, and the variation in speed resulted in the average 

variation of the background noise of less than 1 dB each time a HINT sentence was 

delivered over the headphones of the driving simulator. 

In this study, the statistical variability of in-speech intelligibility was quantified by 

accounting for the statistical variability in the hearing ability of normal hearing 

individuals and the influence of multi-sensory perception.  The sSRT values from the jury 

test of thirty participants performed by Samardzic et al (2012) in a simulated driving 

environment were used to calculate the SII, which is also used as a random variable in the 

statistical analysis. 

In the study by Samardzic et al (2012), the results were presented in terms of the sSRT 

values associated with different talker and listener configurations and vehicle operating 

conditions.  The SRT values are directly related to the level of the in-vehicle background 

noise.  The main influences on the vehicle interior background noise level are the vehicle 

design and its operating conditions.  Although the sSRT associated with a minimal vocal 

effort required for understanding speech appears to be a simple and easily understood 

way of evaluating the in-vehicle speech intelligibility, it is specific to the vehicle design 

and its operating conditions.  In this study, a more generally applicable metric for 

evaluating in-vehicle speech intelligibility is proposed.  The new metric involves SII 

evaluation at the sSRT.  In this context, an accurate evaluation of the sSRT, and 

subsequently, the in-vehicle speech intelligibility, needs to incorporate the influence of 

multisensory perception, different talker and listener configurations, including the 
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distance between the talker and the listener, and different vehicle operating conditions.  

Ultimately, the SII and sSRT values and the associated statistical variability will provide 

a benchmark for future in-vehicle speech intelligibility evaluation.   

The sSRT values obtained from the HINT using the jury consisting of thirty participants 

and a driving simulation developed by Samardzic et al (2012) were used to conduct the 

analysis of the statistical variability of in-vehicle speech intelligibility and to establish 

benchmark values and control limits for the newly proposed speech intelligibility metric 

for use by the automotive industry.  The applicability of the new metric and its control 

limits, as suggested in this study, was verified by Samardzic and Novak (2012a-

submitted) for special cases with variations in hearing threshold levels of the listener, as 

well as background noise levels associated with different vehicle operating conditions. 

5.3  Statistical Variability Analysis Using Control Charts 

The SII values were obtained from HINT speech presentation levels and background 

noise levels at 50 km/h and 100 km/h driving speeds associated with the driving 

simulation using thirty jury test participants.  Three combinations of talker and listener 

locations were investigated.  For all cases the listener was in the driver's location, the 

talker was located in the passenger front, rear right, and rear left locations.  Twenty HINT 

sentences were played through the headphones of the driving simulator in an adaptive 

procedure used to calculate the sSRT for a particular vehicle speed and a talker and 

listener configuration. Each of the thirty jury test participants listened to 120 HINT 

sentences delivered through the headphones.  The control charts were calculated for 

subgroups of data consisting of multiple numerical measurements for each of the six 

measurement configurations.  A subgroup consisted of SII calculated from the HINT 
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sentence presentation levels and corresponding background noise levels played through 

the headphones of the driving simulator at a particular vehicle speed and talker/listener 

configuration.  The presentation levels from the last seventeen, out of the total of twenty, 

HINT sentences played through the headphones for each participant were used in the SII 

calculations.  The same number of sentences was used to calculate the sSRT in the HINT 

procedure presented by Sudirga et al (2011). 

The X -bar and s  charts are the two charts used to monitor the level and short-term 

variability of subgroups of data consisting of multiple numerical measurements.  An 

observation 
ijX is denoted as thj observation, where nj ,...1 , in the thi subgroup, and 

where ki ,...1 .  In this study, there are seventeen observations for each of the thirty 

subgroups or jurors.  For each of the k subgroups, the thi subgroup average iX , and the 

thi subgroup standard deviation is , are respectively calculated as: 

 

          (5.1) 

 

 

          (5.2) 

 

The averages and standard deviations are presented on the X -bar and s  charts, 

respectively.  The grand average X , and the average standard deviation s , over all 

k subgroups are calculated as: 
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          (5.4) 

          

Using the control chart factors, 3A , 3B  and 
4B  from Table 1 in ASTM 2587-10, the LCL 

and UCL for the X -bar chart are calculated as: 

 

          (5.5) 

          (5.6) 

The LCL and UCL for the s chart are calculated as: 

          (5.7) 

          (5.8) 

 

In addition to SII, the control charts could also be constructed using frequency dependent 

data, such as the SII band audibility function and signal to noise ratio, also calculated 

based on the speech and background noise measurements from the HINT in the driving 

simulator.  In contrast to the SII control charts, these charts would not necessarily provide 

generally applicable speech intelligibility evaluation criteria, because like the SNR, the 

band audibility function is frequency dependent and the frequency content of background 

noise and speech response for each vehicle may be different.  However, frequency-

specific information can potentially be useful for a particular vehicle sound package or 

component design and acoustical performance benchmarking, as well as for vehicle 

interior noise issue diagnostics.  All of the above mentioned control chart examples are 

shown in the Section 6.2.2 and 6.2.3. 
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CHAPTER 6: Results and Discussion 

This chapter is organized into two parts.  The first part (Section 6.1) summarizes each of 

the several detailed investigations of automotive applications of the currently available 

objective speech intelligibility evaluation methods for normal hearing (Sections 6.1.1 

through 6.1.3) and hearing impaired individuals (Section 6.1.4).  This work lays the 

ground for developing an alternative method for a more complete and accurate speech 

intelligibility evaluation.  The studies associated with this method are presented in 

Section 6.2. 

6.1  Objective Speech Intelligibility Metrics’ Analysis  

In this section, the results of four studies related to in-vehicle applications of common 

objective speech intelligibility metrics are presented.  In the first study (Section 6.1.1) a 

detailed evaluation of in-vehicle speech intelligibility for different driving conditions and 

talker and listener configurations was conducted using the most comprehensive objective 

speech intelligibility metric, STI.  For this study, several vehicle operating conditions, 

road surfaces and talker and listener configurations were compared in terms of the STI 

metric to gain a better understanding of these influences on in-vehicle person to person 

communication.  Individual contributions of background noise and interior vehicle 

acoustics to the STI were also investigated.  In the second study (Section 6.1.2), the 

source-signal parameters critical for determining the STI are investigated.  For this 

investigation, different signal types and levels for the sound source were used to obtain 

the in-vehicle speech and impulse response.  Background noise included both the 

constant and variable speed operating conditions for the vehicle under controlled 
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conditions for several talker and listener configurations.  In the third study (Section 

6.1.3), all of the three most common metrics were investigated and the results compared 

in the context of in-vehicle speech intelligibility evaluation.  The goal was to identify the 

most appropriate metric, if a single one exists, for use in automotive applications.  The 

objective metrics included the AI, the SII and the STI.  In the fourth study (Section 

6.1.4), in-vehicle speech intelligibility was evaluated using the SII metric by considering 

threshold elevation associated with common hearing impairments.  In this study, SII was 

used to predict in-vehicle speech intelligibility.  The effect of hearing threshold levels 

obtained from audiograms (Figure 2) and the impact of vehicle background noise 

measured for various vehicle operating conditions, road surface types, and talker and 

listener configurations were investigated.  This was done using measured and user-

defined speech spectra as described by ANSI S3.5-1997.   

6.1.1 In-Vehicle Speech Intelligibility for Different Driving Conditions 

Using the Speech Transmission Index 

The background noise and speech octave band levels and the impulse response were used 

to calculate the STI for all operating conditions, measurement configurations and road 

surfaces.  For the variable speed condition, the STI was calculated at each 50 rpm 

increment between 1000 rpm and 5000 rpm.  Figure 7 shows an example of the speech 

and background noise sound pressure levels for one of the ten talker/listener 

configurations used in the study and at all the octave frequencies required for 

implementation of the STI calculation procedure.  The results for the two constant speed 

conditions and two road surfaces are illustrated in the same figure.     
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Figure 7: Speech signal and background noise levels over the frequency range used for STI calculations; 

Example background noise octave spectra was measured at 50 km/h and 100 km/h on smooth and rough 

roller surfaces, with the receiver, or the listener, in the passenger front location, and the example speech 

signal octave spectrum measured with the source, or the talker, in the driver location.  The higher overall 

sound pressure levels associated with rough roll operation are not necessarily related to lower STI; In fact, 

more dominant high frequency content associated with the smooth roll operation is a more significant 

contributor to the decrease of STI, compared to the rough roll operation, as the weighing factors at higher 

frequencies used in the STI calculation are higher compared to those at lower frequencies associated with 

the rough roll operation. 

 

A wide range of (speech) signal to (background) noise ratios in each frequency band is 

evident, mainly due to various contributions from ordered and masking sources unique to 

each operating condition.  Figure 8 illustrates the impulse response obtained using the 

same configuration, indicating short reverberation times associated with automotive 

interiors.  The significance of short reverberation times for the STI calculations is 

revealed in the discussion of the modulation transfer function, later in this section. 
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Figure 8: Example binaural impulse response, measured with the receiver, or the listener, in the passenger 

front location, and the source, or the talker, in the driver location, illustrating short reverberation times 

typical for automotive interiors. 

 

Table 5 is a summary of the STI results for the constant speed operating conditions.  A 

simple colour scheme is used to indicate the relation between the STI and the subjective 

descriptions of intelligibility from worst to excellent.  From here, the relationship of the 

results between the various talker to listener positions throughout the vehicle is evident. 

At 50 km/h, the speech intelligibility is good at the passenger front position when the 

talker is in the driver position.  It is generally fair when the talker is in the driver or the 

passenger front position and the listener is at one of the two rear positions.  It is worse 

when the listener is directly behind the talker as the speech signal has a less direct path 

from the source to the receiver location.   
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Table 5: STI at the left and the right ears of the listener for various talker and listener configurations, 

obtained using speech, impulse response and background noise measurements from constant speed 

operation (50 km/h and 100 km/h) on both, the smooth and the rough rollers.   

Left Ear Right Ear Left Ear Right Ear

Smooth Road 0.78 0.62 Smooth Road 0.57 0.78

Rough Road 0.73 0.60 Rough Road 0.62 0.79

Smooth Road 0.50 0.35 Smooth Road 0.34 0.57

Rough Road 0.46 0.33 Rough Road 0.35 0.55

Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear

Smooth Road 0.51 0.53 Smooth Road 0.65 0.51 Smooth Road 0.43 0.55 Smooth Road 0.58 0.49

Rough Road 0.52 0.50 Rough Road 0.56 0.47 Rough Road 0.49 0.55 Rough Road 0.50 0.46

Smooth Road 0.23 0.27 Smooth Road 0.37 0.25 Smooth Road 0.17 0.32 Smooth Road 0.30 0.23

Rough Road 0.22 0.22 Rough Road 0.31 0.22 Rough Road 0.20 0.28 Rough Road 0.24 0.18

Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear

Smooth Road 0.50 0.55 Smooth Road Smooth Road 0.49 0.60 Smooth Road 0.48 0.58

Rough Road 0.57 0.61 Rough Road Rough Road 0.56 0.65 Rough Road 0.55 0.63

Smooth Road 0.27 0.33 Smooth Road Smooth Road 0.27 0.38 Smooth Road 0.26 0.36

Rough Road 0.26 0.35 Rough Road Rough Road 0.27 0.37 Rough Road 0.26 0.36

Left Ear Right Ear Left Ear Right Ear

Smooth Road Smooth Road 0.59 0.81

Rough Road Rough Road 0.61 0.78

Smooth Road Smooth Road 0.31 0.57

Rough Road Rough Road 0.33 0.50

0-0.3 0.3-0.45 0.45-0.6 0.6-0.75 0.75-1

Unintelligible Poor Fair Good Excellent

Passenger Front (Source/Talker)

50 km/h

100 km/h

Driver (Source/Talker)

Passenger Front

50 km/h

100 km/h

50 km/h 50 km/h

100 km/h 100 km/h

Driver

Passenger Rear Left Passenger Rear Right Passenger Rear Left

50 km/h

Passenger Rear Right

50 km/h 50 km/h

100 km/h 100 km/h

Driver

100 km/h 100 km/h

Passenger Rear Left (Source/Talker)

Passenger Rear Right

50 km/h

not measured

100 km/h

50 km/h 50 km/h

not measured

100 km/h

Passenger Front Driver Passenger Front

50 km/h

100 km/h

Passenger Rear Left

Passenger Rear Right (Source/Talker)

50 km/h

100 km/h

 

At 100 km/h, the STI values are decreased compared to the 50 km/h STI values by up to 

about 55%.  This is due to the higher background noise at higher speeds, which reduces 

the apparent signal to noise ratio and consequently adversely affects the speech 

intelligibility.  In addition, at 100 km/h, the speech is unintelligible from the driver or the 

passenger front positions to the rear passenger positions.   

It is better at the ear closer to the source; however, it is still rated poor.  In this case, the 

subjective ratings provided a quick insight about the in-vehicle sound quality in terms of 

speech intelligibility for configuration and operating conditions.  

The intelligibility is worse at the outboard ear compared to the in-board ear of the listener 

for all the configurations and operating conditions due to the effects of road noise causing 

a reduction of the apparent signal to noise ratio and consequently, the reduction of speech 

intelligibility.  The difference is most prominent when the talker and the listener are next 
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to each other due to the greater difference in signal to noise ratio between the ears of the 

listener. 

The overall sound pressure levels (dB) associated with the rough roll set-up are higher 

compared to the same configurations when the vehicle is on the smooth rolls.  Although 

this result is instinctive, the rough roll set-up often provided higher intelligibility results 

compared to the smooth roll set-up.  This is due to the more dominant high frequency 

content that is associated with the smooth roll operation (see Figure 7), which tends to 

contribute more significantly to the STI, as the weighing factors at higher frequencies are 

higher compared to those at lower frequencies usually associated with the rough roll 

operation (see Table 4).  This observation reinforces the significance that the frequency 

content of the background noise, and not just the overall background noise level, has on 

STI.  One might extend this observation to the importance of the potential negative 

influence that aerodynamic noise maskers may have on intelligibility compared to 

roadway noise. 

Figures 9 through 12 illustrate the STI results at the four receiver, or the listener, 

locations inside the vehicle considering different source, or the talker locations, road 

surfaces and variable engine speed. 
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Figure 9: STI at the left ear (LE) and the right ear (RE) of the driver (D) as the listener, and passenger front 

(PF), passenger rear right (PRR) and the passenger rear left (PRL) as the talker, for variable speed 

operating condition, obtained using speech, impulse response and background noise measurements on both, 

the smooth rollers (SR) and the rough rollers (RR). 
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Figure 10: STI at the left ear (LE) and the right ear (RE) of the passenger front (PF) as the listener, and the 

driver (D) and the passenger rear right (PRR) as the talker, for variable speed operating condition, obtained 

using speech, impulse response and background noise measurements on both, the smooth rollers (SR) and 

the rough rollers (RR). 
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Figure 11: STI at the left ear (LE) and the right ear (RE) of the passenger rear right (PRR) as the listener, 

and the passenger front (PF) and the driver (PRR) as the talker, for variable speed operating condition, 

obtained using speech, impulse response and background noise measurements on both, the smooth rollers 

(SR) and the rough rollers (RR). 
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Figure 12: STI at the left ear (LE) and the right ear (RE) of the passenger rear left (PRL) as the listener, and the 

passenger rear right (PRR), passenger front (PF), and the driver (D) as the talker, for variable speed operating 

condition, obtained using speech, impulse response and background noise measurements on both, the smooth rollers 

(SR) and the rough rollers (RR), and calculated after each 50 rpm increment in the range from 1000 rpm to 5000 rpm. 
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The speech intelligibility is best when the talker and listener are next to each other, much 

like for the case of the constant speed conditions.  The speech intelligibility is decreased 

when the talker is in the driver or the passenger front position and the listener is at one of 

the two rear positions.  It is worse when the speech signal has a less direct path from the 

source to the receiver location, i.e., when the listener is directly behind the talker.   

During the variable speed operation, the STI decreases with engine speed due to higher 

levels of background noise and the reduced apparent signal to noise ratio.  Generally, the 

rate of decrease changes at 2000 rpm and 4000 rpm.  Between 2000 rpm and 4000 rpm, 

the rate of decrease is fairly constant.  Occasionally sudden decreases in STI are observed 

for the rough road condition at speeds less than 1500 rpm.   

A rate of change of the STI as a function of engine or vehicle speed may influence the 

actual human perception of speech intelligibility inside a vehicle, depending on the 

individual driving style and visual cues available to the listener.  Similar conclusions may 

be derived for the variable speed condition in terms of the effect of road conditions on 

speech intelligibility, although, the trends in terms of overall STI levels occasionally 

change throughout the range of speeds.     

These changes may be significant if a sound quality issue is reported by a customer at a 

particular operating condition where there also may be a change in perception of speech 

intelligibility.  Ultimately, further subjective testing seems appropriate to investigate the 

actual human perception of speech intelligibility at these locations and operating 

conditions. 

The binaural STI results indicate that for certain configurations and operating conditions 

the range of perceived intelligibility, as explained by the subjective description of 
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intelligibility used previously for constant speed condition (see Table 3) is quite different 

between the two ears.  For example, in the passenger rear left location the STI is rated 

„poor‟ at the left ear and „good‟, almost „excellent‟, at the right ear location, when the 

source is in the passenger rear right location, at about 3300 rpm on smooth rollers. 

A similar result is observed at the driver location when the source is in the passenger 

front location.  Again, subjective testing would help provide feedback on the effects of 

the differences in STI values between the two ears on human perception of speech 

intelligibility.  Currently, there are no corrections to the STI method that would 

objectively predict speech intelligibility using binaural measurements of both the speech 

and the noise signals with varying directivity of the talker, distances between the talker 

and the listener, and unsteady background noise characterized with ordered and masking 

sources, all of which are typical conditions in person to person communication in an 

automobile.   

Also, an additional variable affecting the perception of speech intelligibility is the 

difference in the speech and the background noise signals due to the physical 

environment itself for different talker and listener configurations, as in communication 

between the driver or the front passenger and the back row passengers, due to the 

presence of headrests, for example.  

Given in Table 6 are the modulation transfer functions that illustrate the effects of the 

background noise on the STI using an example configuration with the receiver, or the 

listener, in the passenger front location, and the source, or the talker, in the driver 

location.      

 



 

76 

 

Table 6: Modulation Transfer Functions with the receiver, or the listener, in the passenger front location, 

and the source, or the talker, in the driver location, obtained using speech, impulse response and 

background noise measurements (left), and impulse response only, without signal to noise ratio correction 

(right).  The results indicate that the effects of reverberation on reducing the STI are negligible, and that the 

background noise is the main contributor to the reduction of the apparent signal to noise ratio and, 

consequently, the STI. 

125 250 500 1000 2000 4000 8000 125 250 500 1000 2000 4000 8000

0.63 0.849 0.868 0.529 0.827 0.5 0.855 0.705 0.63 1 0.999 1 1 1 1 0.998

0.8 0.848 0.868 0.529 0.827 0.5 0.855 0.705 0.8 0.999 0.999 1 1 1 1 0.998

1 0.848 0.867 0.529 0.827 0.5 0.855 0.704 1 0.999 0.999 1 1 1 1 0.998

1.25 0.848 0.867 0.528 0.827 0.5 0.855 0.704 1.25 0.999 0.998 0.999 1 1 1 0.998

1.6 0.847 0.866 0.528 0.827 0.5 0.854 0.704 1.6 0.998 0.997 0.999 0.999 0.999 0.999 0.998

2 0.846 0.864 0.528 0.827 0.499 0.854 0.704 2 0.996 0.995 0.998 0.999 0.999 0.999 0.998

2.5 0.844 0.862 0.527 0.826 0.499 0.854 0.704 2.5 0.994 0.992 0.998 0.999 0.998 0.999 0.997

3.15 0.841 0.858 0.527 0.826 0.499 0.853 0.703 3.15 0.991 0.988 0.996 0.998 0.997 0.998 0.996

4 0.837 0.852 0.526 0.825 0.498 0.852 0.702 4 0.986 0.98 0.994 0.997 0.996 0.997 0.995

5 0.831 0.843 0.524 0.823 0.497 0.851 0.701 5 0.978 0.97 0.991 0.995 0.993 0.995 0.993

6.3 0.821 0.829 0.521 0.821 0.495 0.849 0.699 6.3 0.967 0.954 0.985 0.992 0.989 0.993 0.991

8 0.806 0.808 0.517 0.817 0.491 0.845 0.696 8 0.95 0.93 0.977 0.988 0.983 0.988 0.986

10 0.786 0.781 0.51 0.811 0.487 0.84 0.691 10 0.926 0.899 0.965 0.981 0.974 0.982 0.979

12.5 0.757 0.744 0.501 0.803 0.48 0.832 0.684 12.5 0.892 0.857 0.947 0.97 0.96 0.973 0.969

MTI 0.73 0.744 0.513 0.722 0.498 0.751 0.623 MTI 0.97 0.956 0.993 1 0.997 1 1

STI 0.622 STI (no noise) 0.995

Modulation 

Frequency, 

F  [Hz]

Octave Band Frequency, k  [Hz] Modulation 

Frequency, 

F  [Hz]

Octave Band Frequency, k  [Hz]

 

It is apparent that the main contributor to the reduction of the apparent signal to noise 

ratio is in fact the background noise, as the modulation transfer index and, consequently, 

the STI, at all the octave bands, is virtually 1, without considering the effects of 

background noise, i.e. signal to noise ratio.  In addition, according to the IEC 60268-

16:2003 standard, large reductions in values in each octave band column indicate that 

reverberation is the main factor in reducing intelligibility.  Constant or slightly reducing 

values as in Table 6 indicate the presence of noise.  Therefore, the effects of 

reverberation on the STI are negligible.  This is due to the highly absorptive nature of the 

small volume automotive interior and its short reverberation times as indicated earlier in 

Figure 8.  The measurement and the data processing effort can therefore possibly be 

minimized by not having to obtain the impulse response and considering the speech and 

background measurements only for the STI calculations. 
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6.1.1.1  Summary of the Results 

The overall sound pressure level of background noise is often used to benchmark vehicles 

in terms of NVH performance.  Reducing sound pressure level in the vehicle interior (dB) 

is a common goal in designing automotive sound packages.  The results of this study 

indicate that higher sound pressure levels, depending on the frequency makeup, are not 

necessarily associated with lower speech intelligibility.  The STI method and the 

measurement protocol presented in this study may be used in benchmarking vehicles in 

terms of interior sound quality as it relates to speech intelligibility.  It can also be used to 

diagnose vehicle interior noise issues and modify parts of vehicle sound packages to 

provide potential improvements to speech intelligibility at different operating conditions 

and locations inside the vehicle.  However, without further subjective testing, it is unclear 

whether certain trends observed in the STI results presented over a wide range of 

common vehicle operating conditions are significant in perception of in-vehicle speech 

intelligibility.  These trends include significant differences in STI values (based on the 

subjective descriptions of intelligibility provided in the IEC EN 60268-16:2003) between 

the ears of the listener, the differences in the rate of change of STI in unsteady 

background noise at any given speed and the differences in STI for different 

configurations of the talker with respect to the listener particularly from the back to front 

locations. 

It was found that the effects of in-vehicle reverberation on reducing speech intelligibility 

were negligible; the measurement effort for future in-vehicle STI studies could then be 

reduced by considering the speech and background noise measurements only, due to their 

predominant contribution to the apparent signal to noise ratio, and not measuring the 

impulse response.   
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The work presented in Section 6.2 incorporates an NVH driving simulator in order to 

model the perception of speech intelligibility using human subjects in a lab environment.  

An actual driving experience is simulated to offer a practical perspective and potentially 

interpreting the objective speech intelligibility scores, such as the STI. 

6.1.2 Source Signal Parameters in Vehicles for Determining the Speech 

Transmission Index 

Table 7 shows a comparison between the STI values for 60 dBA and 68 dBA speech 

signals for constant speed operating conditions and for different locations of the talker 

and the listener inside the vehicle.  As indicated previously, a simple colour scheme is 

used to indicate the relation between the STI and the subjective perception of speech 

intelligibility.  It is seen that increasing the speech signal sound pressure level from 60 

dBA to 68 dBA increases the STI values by up to 30%.  The subjective perception is 

subsequently improved significantly in some cases (for example, from „unintelligible‟ to 

„fair‟, „poor‟ to „good‟, etc.) based on the ranges of STI values and the corresponding 

subjective descriptions of the perceived speech intelligibility described in Table 7.  For 

the case where the vehicle speed was increased from 50 km/h to 100 km/h, the speech 

intelligibility was found to decrease by as much as 25%.  There was also a larger drop in 

intelligibility at the inboard ear at 100 km/h when the talker and the listener were located 

next to each other for the 60 dBA speech signal case compared to the 68 dBA speech 

signal.   
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Table 7: STI, Constant Vehicle Speed. 

Left Ear Right Ear Left Ear Right Ear

60 dBA 0.78 0.62 60 dBA 0.57 0.78

68 dBA 0.99 0.93 68 dBA 0.83 0.98

60 dBA 0.50 0.35 60 dBA 0.34 0.57

68 dBA 0.85 0.70 68 dBA 0.62 0.86

Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear

60 dBA 0.51 0.53 60 dBA 0.65 0.51 60 dBA 0.43 0.55 60 dBA 0.58 0.49

68 dBA 0.78 0.80 68 dBA 0.90 0.79 68 dBA 0.72 0.83 68 dBA 0.84 0.76

60 dBA 0.23 0.27 60 dBA 0.37 0.25 60 dBA 0.17 0.32 60 dBA 0.30 0.23

68 dBA 0.51 0.56 68 dBA 0.65 0.53 68 dBA 0.47 0.61 68 dBA 0.57 0.50

Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear

60 dBA 0.50 0.55 60 dBA 60 dBA 0.49 0.60 60 dBA 0.64 0.60

68 dBA 0.78 0.82 68 dBA 68 dBA 0.76 0.87 68 dBA 0.90 0.89

60 dBA 0.27 0.33 60 dBA 60 dBA 0.27 0.38 60 dBA 0.34 0.32

68 dBA 0.55 0.62 68 dBA 68 dBA 0.53 0.67 68 dBA 0.63 0.62

Left Ear Right Ear Left Ear Right Ear

60 dBA 60 dBA 0.59 0.81

68 dBA 68 dBA 0.85 0.99

60 dBA 60 dBA 0.31 0.57

68 dBA 68 dBA 0.59 0.85

0-0.3 0.3-0.45 0.45-0.6 0.6-0.75 0.75-1

Unintelligible Poor Fair Good Excellent

Passenger Rear Left (Source/Talker)

Passenger Rear Right Passenger Rear Left

Passenger Rear Right (Source/Talker)

50 km/h

not measured

50 km/h

100 km/h 100 km/h

50 km/h 50 km/h

not measured

50 km/h 50 km/h

100 km/h 100 km/h 100 km/h 100 km/h

100 km/h 100 km/h 100 km/h 100 km/h

Driver Passenger Front Driver Passenger Front

Passenger Rear Left Passenger Rear Right Passenger Rear Left Passenger Rear Right

50 km/h 50 km/h 50 km/h 50 km/h

Driver (Source/Talker)

Passenger Front Driver

Passenger Front (Source/Talker)

50 km/h 50 km/h

100 km/h 100 km/h

 

In general, the speech sound directivity effects are also apparent as STI scores are higher 

for configurations for which the speech signal has a more direct path from the talker to 

the listener; for example, from the driver or the front passenger to the rear passenger 

locations, as opposed to from the rear passenger locations to the driver or the front 

passenger.   

The intelligibility is worst when the talker is directly in front of the listener for all vehicle 

operating conditions.  The STI scores are lower for the outboard ear compared to the in-

board ear due to the effects of road noise.  This was observed for all operating conditions 

and configurations, with most significant difference for configurations when the talker 

and the listener are next to each other.   

Figures 13 to 16 illustrate changes in STI with engine speed for the 60 dBA and 68 dBA 

speech signal.   
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Figure 13: STI, Driver, Variable Engine Speed. 
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Figure 14: STI, Passenger Front, Variable Engine Speed. 
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Figure 15: STI, Passenger Rear Right, Variable Engine Speed. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10
00

 rp
m

11
00

 rp
m

12
00

 rp
m

13
00

 rp
m

14
00

 rp
m

15
00

 rp
m

16
00

 rp
m

17
00

 rp
m

18
00

 rp
m

19
00

 rp
m

20
00

 rp
m

21
00

 rp
m

22
00

 rp
m

23
00

 rp
m

24
00

 rp
m

25
00

 rp
m

26
00

 rp
m

27
00

 rp
m

28
00

 rp
m

29
00

 rp
m

30
00

 rp
m

31
00

 rp
m

32
00

 rp
m

33
00

 rp
m

34
00

 rp
m

35
00

 rp
m

36
00

 rp
m

37
00

 rp
m

38
00

 rp
m

39
00

 rp
m

40
00

 rp
m

41
00

 rp
m

42
00

 rp
m

43
00

 rp
m

44
00

 rp
m

45
00

 rp
m

46
00

 rp
m

47
00

 rp
m

48
00

 rp
m

49
00

 rp
m

50
00

 rp
m

ST
I

PRR, PRL, LE, 60 

dBA

PRR, PRL, RE, 

60 dBA

PRR, PRL, LE, 68 
dBA

PRR, PRL, RE, 
68 dBA

PF, PRL, LE, 60 
dBA

PF, PRL, RE, 60 
dBA

PF, PRL, LE, 68 

dBA

PF, PRL, RE, 68 
dBA

D, PRL, LE, 60 
dBA

D, PRL, RE, 60 
dBA

D, PRL, LE, 68 
dBA

D, PRL, RE, 68 

dBA

 

Figure 16: STI, Passenger Rear Left, Variable Engine Speed. 
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A similar trend in terms of overall STI values associated with the different talker and 

listener locations can be observed for the speech levels considered at any given engine 

speed.  Significant improvements in speech intelligibility are also realized, particularly at 

higher speeds, when the difference between the STI values associated with the speech 

levels is greater.  In general, the range of STI values at a given operating condition and 

location inside the vehicle is smaller at the 68 dBA speech level compared to 60 dBA 

speech level.  At low speeds, there is less fluctuation of the STI values, in addition to a 

more constant rate of change with respect to the vehicle speed. 

According to the definition of STI, the range of values where the apparent signal to noise 

ratio is linearly related to STI is from -15 dB to 15 dB.  Above and below this range the 

STI is assigned values of 0 and 1, respectively.  When the 68 dBA speech signal is 

generated at low vehicle speeds, and when the talker and the listener are next to each 

other, the STI frequently equals 1 because the signal level is greater than the background 

noise level by more than 15 dB.  For all other configurations at low speeds within the 

range of 1000 rpm to 1500 rpm, and occasionally up to 2000 rpm, the STI is fairly 

constant or it has a low rate of decrease with speed.  At these conditions, the STI is 

greater than 0.9 and the speech intelligibility is rated excellent.  At approximately 2000 

rpm the STI starts to decrease rapidly.  In comparison, for the 60 dBA speech level the 

rate of decrease of STI is more rapid at low vehicle speeds below 2000 rpm. 

Figure 17 shows the original and the equalized MLS and pink noise signals generated by 

the loudspeaker mounted in the Type 4128 HATS and measured in the anechoic room, 

including the required gain settings from the audio power amplifier.  As both signals 

were equalized in terms of spectrum according to the IEC standard for male speech     
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(+/- 1 dB), the STI results obtained by using both types of signals were identical, 

assuming the same background noise and impulse response measurements.  The STI data 

presented in this paper were obtained using the equalized pink noise signal.  The 

equalized pink noise signal required a higher amplifier gain compared to the equalized 

MLS signal.  At 60 dBA, the difference between the two values was 10 dB.  Similarly, 

for 68 dBA, the difference was 7 dB.  A gain value was also set for the equalized MLS 

signal at 72 dBA.  Attempting to set a gain value to provide 72 dBA with the equalized 

pink noise signal resulted in clipping, and as such, the loudspeaker was unable to 

generate the required sound pressure level.  An equalized pink noise signal then 

ultimately put more strain on the loudspeaker compared to an equalized MLS signal for 

any given sound pressure level. 
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Figure 17: Speech Signal Equalization, MLS and Pink Noise Signals with Amplifier Gain Settings. 
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The Peak to Noise Ratio (PNR) is used as an impulse response measurement quality 

parameter.  It is a logarithmic ratio of the maximum impulse response level and the noise  

level.  Its value must be at least 35 dB for a quality measurement (ISO 3382-2:2008).  

Table 8 shows changes in PNR using the MLS technique with different signal levels as 

well as the sine sweep technique to obtain the impulse response for an example 

talker/listener configuration.  Similar results were observed for the remaining eight 

configurations.  When the signal is set to 60 dBA, the PNR is above 35 dB at all of the 

octave frequencies of interest.  As the signal level increases, the PNR decreases.  When 

the 68 dBA and 72 dBA equalized MLS signals are used for impulse response 

calculations, the 35 dB criteria for signal quality is not satisfied.  The sine sweep 

technique provides the best PNR, however it requires that additional measurements be 

made, thus lengthening the acquisition procedure.  The results indicate that the speech 

signal equalized and set to 60 dBA may also be used to obtain the impulse response 

without additional measurements.  This speech and impulse response data in combination 

with the background noise data is used to calculate the STI. 

 

Table 8: Example Peak to Noise Ratios [dB] using Different Equalized MLS Signal Levels and Sine Sweep 

to Obtain Impulse Response (Talker Location: Driver, Listener Location: Passenger Rear Right). 

                    

  
 

Frequency [Hz]   

  
 

125 250 500 1000 2000 4000 8000   

  60 dBA 52 44 38 48 48 57 54   

  68 dBA 49 37 33 42 40 43 42   

  72 dBA 46 34 29 38 36 39 39   

  Sine Sweep 62 72 62 91 98 106 96   
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6.1.2.1  Summary of the Results 

This study presented results on the effects of different types and levels of sound source 

signals on STI calculations using various vehicle operating conditions as well as talker 

and listener measurement configurations inside a vehicle.  For a 60 dBA speech signal 

(current IEC standard) and constant speed operation, the STI values range from 

„unintelligible‟ to „excellent‟, depending on the location of the talker and the listener.  For 

a 68 dBA speech signal (previous IEC standard), the STI is at least „fair‟ and its value 

was found to be less sensitive to changes in the vehicle operating conditions.  The speech 

signal level from the current standard provides satisfactory PNR for any method for 

obtaining IR.  A more detailed investigation is needed to determine whether or not the 

value (60 dBA) is realistic using a wide range of vehicle operating conditions, vehicle 

types and actual human listeners.  This is a motivation for further investigation using 

acoustic perception jury testing within a driving simulator, as presented in Section 6.2.  

The 60 dBA signal, associated with “normal” vocal effort (ANSI S3.5-1997), provided 

adequate (at least “fair”) intelligibility at lower speeds, such as city driving (50 km/h), for 

all measurement configurations.  An increased vocal effort of at least 68 dBA, considered 

to be “loud” (ANSI S3.5-1997), was necessary to obtain similar intelligibility scores at 

higher speeds, such as highway driving (100 km/h), due to significantly higher levels of 

background noise.  Again, a subjective study using human subjects in a simulated vehicle 

environment would be conducted to investigate the speech sound pressure level under 

which speech communication is expected to be intelligible. 
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6.1.3  In-vehicle Application of Common Speech Intelligibility Metrics 

The speech intelligibility metrics for constant speed operation on both the smooth and the 

rough roll surfaces are summarized in Tables 9 through 12, for various talker and listener 

locations.  A simple colour scheme is used to categorize results for all the metrics, 

according to the ranges of subjective descriptions of speech intelligibility, as specified in 

the STI standard.  The categories seem appropriate for the SII values, generally defined 

as a proportion of the total number of speech cues delivered from the source to the 

listener, where good communication systems have an SII greater than 0.75, while poor 

communication systems have an SII below 0.45 (ANSI S3.5-1997).  Similarly, the 

qualification intervals for STI are rated „poor‟ for scores below 0.45 and „excellent‟ 

above 0.75 (IEC 60268-16:2003).  There are no publications with similar guidelines 

related to the subjective interpretation of articulation index scores, as used in vehicle 

applications, where the speech intelligibility as a factor influencing the perception of the 

overall vehicle sound quality is typically evaluated by customers based on their 

individual preference.  In order to remain consistent, the AI values are categorized in the 

same groups with subjective descriptions of speech intelligibility as SII and STI.  It 

should be noted that the SII(nve) calculation is based on a fixed speech spectrum 

associated with normal vocal effort, per ANSI S3.5-1997 standard (Figure 18).  The 

SII(m) calculation is based on the same 60 dBA measured speech spectrum used for STI 

calculations in the previous studies (Sections 6.1.1 and 6.1.2). 
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Table 9: Speech Intelligibility Metrics, 50 km/h, Smooth Road. 

Passenger Front (Receiver) Driver (Receiver)

Left Ear Right Ear Left Ear Right Ear

AI 0.80 0.80 AI 0.70 0.80

SII(nve) 0.74 0.69 SII(nve) 0.59 0.67

SII(m) 0.85 0.70 SII(m) 0.56 0.78

STI 0.80 0.63 STI 0.57 0.79

Passenger Rear Left (Receiver) Passenger Rear Right (Receiver) Passenger Rear Left (Receiver) Passenger Rear Right (Receiver)

Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear

AI 0.80 0.90 AI 0.90 0.80 AI 0.80 0.90 AI 0.90 0.80

SII(nve) 0.63 0.68 SII(nve) 0.62 0.58 SII(nve) 0.55 0.61 SII(nve) 0.69 0.64

SII(m) 0.54 0.55 SII(m) 0.62 0.49 SII(m) 0.51 0.61 SII(m) 0.55 0.48

STI 0.50 0.51 STI 0.66 0.51 STI 0.47 0.57 STI 0.58 0.49

Driver (Receiver) Passenger Front (Receiver) Driver (Receiver) Passenger Front (Receiver)

Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear

AI 0.70 0.80 AI AI 0.70 0.80 AI 0.80 0.80

SII(nve) 0.50 0.58 SII(nve) SII(nve) 0.44 0.52 SII(nve) 0.65 0.60

SII(m) 0.49 0.56 SII(m) SII(m) 0.47 0.57 SII(m) 0.64 0.60

STI 0.51 0.55 STI STI 0.49 0.60 STI 0.64 0.61

Passenger Rear Right (Receiver) Passenger Rear Left (Receiver)

Left Ear Right Ear Left Ear Right Ear

AI AI 0.80 0.90

SII(nve) SII(nve) 0.71 0.78

SII(m) SII(m) 0.61 0.85

STI STI 0.60 0.82

0-0.3 0.3-0.45 0.45-0.6 0.6-0.75 0.75-1

Unintelligible Poor Fair Good Excellent

Driver (Source/Talker)

not measured

not measured

Passenger Front (Source/Talker)

Passenger Rear Right (Source/Talker)Passenger Rear Left (Source/Talker)

 

Table 10: Speech Intelligibility Metrics, 50 km/h, Rough Road. 

Passenger Front (Receiver) Driver (Receiver)

Left Ear Right Ear Left Ear Right Ear

AI 0.80 0.80 AI 0.80 0.80

SII(nve) 0.68 0.67 SII(nve) 0.64 0.69

SII(m) 0.78 0.68 SII(m) 0.61 0.79

STI 0.74 0.61 STI 0.64 0.80

Passenger Rear Left (Receiver) Passenger Rear Right (Receiver) Passenger Rear Left (Receiver) Passenger Rear Right (Receiver)

Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear

AI 0.90 0.90 AI 0.90 0.80 AI 0.90 0.90 AI 0.90 0.80

SII(nve) 0.62 0.64 SII(nve) 0.55 0.54 SII(nve) 0.56 0.58 SII(nve) 0.61 0.60

SII(m) 0.53 0.51 SII(m) 0.55 0.44 SII(m) 0.51 0.57 SII(m) 0.48 0.43

STI 0.53 0.50 STI 0.57 0.47 STI 0.49 0.55 STI 0.50 0.46

Driver (Receiver) Passenger Front (Receiver) Driver (Receiver) Passenger Front (Receiver)

Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear

AI 0.80 0.90 AI AI 0.80 0.90 AI 0.80 0.80

SII(nve) 0.57 0.63 SII(nve) SII(nve) 0.51 0.57 SII(nve) 0.59 0.59

SII(m) 0.55 0.61 SII(m) SII(m) 0.53 0.61 SII(m) 0.58 0.57

STI 0.58 0.62 STI STI 0.56 0.66 STI 0.59 0.59

Passenger Rear Right (Receiver) Passenger Rear Left (Receiver)

Left Ear Right Ear Left Ear Right Ear

AI AI 0.90 0.90

SII(nve) SII(nve) 0.72 0.74

SII(m) SII(m) 0.62 0.80

STI STI 0.62 0.79

0-0.3 0.3-0.45 0.45-0.6 0.6-0.75 0.75-1

Unintelligible Poor Fair Good Excellent

Driver (Source/Talker) Passenger Front (Source/Talker)

not measured

Passenger Rear Left (Source/Talker) Passenger Rear Right (Source/Talker)

not measured
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Table 11: Speech Intelligibility Metrics, 100 km/h, Smooth Road. 

Passenger Front (Receiver) Driver (Receiver)

Left Ear Right Ear Left Ear Right Ear

AI 0.60 0.60 AI 0.50 0.60

SII(nve) 0.44 0.42 SII(nve) 0.35 0.45

SII(m) 0.56 0.43 SII(m) 0.32 0.56

STI 0.50 0.35 STI 0.32 0.56

Passenger Rear Left (Receiver) Passenger Rear Right (Receiver) Passenger Rear Left (Receiver) Passenger Rear Right (Receiver)

Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear

AI 0.60 0.60 AI 0.60 0.60 AI 0.50 0.60 AI 0.60 0.60

SII(nve) 0.34 0.42 SII(nve) 0.35 0.30 SII(nve) 0.24 0.35 SII(nve) 0.41 0.36

SII(m) 0.25 0.30 SII(m) 0.35 0.22 SII(m) 0.20 0.35 SII(m) 0.28 0.21

STI 0.22 0.26 STI 0.37 0.25 STI 0.18 0.32 STI 0.30 0.23

Driver (Receiver) Passenger Front (Receiver) Driver (Receiver) Passenger Front (Receiver)

Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear

AI 0.50 0.60 AI AI 0.50 0.60 AI 0.60 0.60

SII(nve) 0.27 0.36 SII(nve) SII(nve) 0.21 0.30 SII(nve) 0.36 0.33

SII(m) 0.26 0.34 SII(m) SII(m) 0.24 0.35 SII(m) 0.35 0.32

STI 0.27 0.34 STI STI 0.27 0.39 STI 0.34 0.33

Passenger Rear Right (Receiver) Passenger Rear Left (Receiver)

Left Ear Right Ear Left Ear Right Ear

AI AI 0.60 0.60

SII(nve) SII(nve) 0.43 0.52

SII(m) SII(m) 0.33 0.60

STI STI 0.32 0.57

0-0.3 0.3-0.45 0.45-0.6 0.6-0.75 0.75-1

Unintelligible Poor Fair Good Excellent

Driver (Source/Talker) Passenger Front (Source/Talker)

not measured

Passenger Rear Left (Source/Talker) Passenger Rear Right (Source/Talker)

not measured

 

Table 12: Speech Intelligibility Metrics, 100 km/h, Rough Road. 

Passenger Front (Receiver) Driver (Receiver)

Left Ear Right Ear Left Ear Right Ear

AI 0.50 0.50 AI 0.50 0.60

SII(nve) 0.38 0.37 SII(nve) 0.32 0.41

SII(m) 0.50 0.37 SII(m) 0.28 0.52

STI 0.46 0.33 STI 0.34 0.55

Passenger Rear Left (Receiver) Passenger Rear Right (Receiver) Passenger Rear Left (Receiver) Passenger Rear Right (Receiver)

Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear

AI 0.60 0.60 AI 0.60 0.50 AI 0.60 0.60 AI 0.60 0.50

SII(nve) 0.31 0.34 SII(nve) 0.26 0.24 SII(nve) 0.26 0.29 SII(nve) 0.32 0.29

SII(m) 0.21 0.21 SII(m) 0.24 0.13 SII(m) 0.19 0.27 SII(m) 0.17 0.12

STI 0.22 0.22 STI 0.32 0.23 STI 0.20 0.28 STI 0.24 0.18

Driver (Receiver) Passenger Front (Receiver) Driver (Receiver) Passenger Front (Receiver)

Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear Left Ear Right Ear

AI 0.50 0.60 AI AI 0.50 0.60 AI 0.50 0.50

SII(nve) 0.25 0.34 SII(nve) SII(nve) 0.20 0.27 SII(nve) 0.30 0.29

SII(m) 0.22 0.31 SII(m) SII(m) 0.20 0.30 SII(m) 0.28 0.26

STI 0.26 0.35 STI STI 0.27 0.37 STI 0.34 0.30

Passenger Rear Right (Receiver) Passenger Rear Left (Receiver)

Left Ear Right Ear Left Ear Right Ear

AI AI 0.60 0.60

SII(nve) SII(nve) 0.41 0.44

SII(m) SII(m) 0.30 0.52

STI STI 0.33 0.50

0-0.3 0.3-0.45 0.45-0.6 0.6-0.75 0.75-1

Unintelligible Poor Fair Good Excellent

Driver (Source) Passenger Front (Source)

not measured

Passenger Rear Left (Source) Passenger Rear Right (Source)

not measured
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In general, the nature of correlation between the different scores and subjective 

intelligibility tests is unknown, or whether or not the same score obtained using different 

metrics is associated with the same subjective response in terms of speech intelligibility; 

No direct comparison between various methods is available using, for example, the same 

speech material.   

For automotive sound package development, it is known that a difference in articulation 

index of only about 0.06 (6%) is considered to be significant (Ebbitt, 2001).  From Tables 

7 to 10 the difference in scores using different methods can be as high as 10%, which is 

potentially significant.   

The more dominant high frequency content associated with the smooth roll operation 

compared to the rough roll operation was found to contribute more significantly to the 

reduction of speech intelligibility for all three metrics.  The weighing factors associated 

with the AI, SII and STI calculations are higher at higher frequencies compared to those 

at lower frequencies usually associated with the rough roll operation.  The result is that 

the intelligibility scores are actually higher for the rough road operation compared to the 

smooth roll operation.  This is despite the higher overall sound pressure levels associated 

with the rough roll operation compared to the same set-up when the vehicle is on the 

smooth rolls.  A similar finding was obtained in a previous study also conducted in a 

semi-anechoic vehicle dynamometer (Section 6.1.1).   

Additionally, the presence of wind noise, which is not accounted for in a semi-anechoic 

vehicle dynamometer test cell, would likely provide additional masking at higher 

frequencies and reduce any differences between the rough and smooth road surface sound 

pressure levels at those frequencies. 
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In general, the articulation index scores are significantly higher compared to the other 

three methods mainly due to the 82 dBA overall level of its assumed speech spectrum 

(Figure 18).   
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Figure 18: Speech Spectra Specifying Standards (if applicable) Associated with the Metrics Under 

Investigation - AI, SII and STI. 

 

Coincidentally, this particular value is associated with „shouting‟ vocal effort according 

to the ANSI S3.5-1997 standard, and it is significantly higher compared to the 60 dBA 

level used by the other methods considered in this study.  Based on the AI values, the 

speech intelligibility is fairly constant at different listener locations in the vehicle.  The 

AI values are mainly influenced by the background noise that does not change 

significantly at different listener locations inside the vehicle.  The effects of the 

directivity of the talker and different distances between the talker and the listener are not 

taken into account, despite their contribution to variation in actual speech intelligibility 

for different combinations of the talker and the listener; the same assumed speech 
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spectrum is used for all measurement configurations and operating conditions under 

consideration and both ears of the listener. 

The assumed reference spectrum for calculating SII(nve) is associated with „normal‟ 

vocal effort measured in free field at a one meter distance from the talker‟s mouth.  The 

effect of the distance between the talker and the listener is also taken into account in the 

calculations, as described in ANSI S3.5-1997 standard.  Due to the effects of the 

directivity associated with in-vehicle communication between passengers, the reference 

measurement setup is not reproduced exactly inside the vehicle.  However, it is still 

important to apply the correction for the distance as it results in a more realistic 

prediction for speech intelligibility.   

The SII(m) and the STI methods use the same measured speech spectrum, and naturally 

account for the directivity and the distance between the talker and the listener, as opposed 

to the AI and SII(nve) methods discussed previously.  This is evident by the difference in 

the results between the methods using the assumed versus the measured speech spectra in 

the calculations.  Figure 3 illustrated that the measured speech spectrum after the 

equalization in the anechoic room at one meter distance from the artificial talker, 

according to the IEC standard.  An example of an in-vehicle measurement of the same 

speech signal is provided in the same figure for the listener‟s inboard ear for one of the 

measurement configurations.  The difference between the two spectra is due to the effects 

of the directivity and the distance between the talker and the listener.   

The SII(m) and STI scores were closely correlated.  This supports findings from the 

previous study showing that the effects of reverberation for vehicle applications are 

negligible, since SII method does not account for these effects, as opposed to the STI 
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method.  Thus, the loss of speech intelligibility is mainly due to background noise at 

various vehicle operating conditions.   

Any difference between SII(m) and STI values may be due to differences in the 

frequency weighing factors and calculation methods associated with each metric.  The 

speech intelligibility metrics were also calculated for variable speed conditions, for each 

of the ten configurations from Tables 7 through 10, between 1000 rpm and 5000 rpm, in 

increments of 50 rpm, for both types of road surface profiles and both ears of the listener.  

The results illustrated in Figures 19 through 26 are for the in-board ear of the listener in 

various listening locations and road surface profiles. 
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Figure 19: Speech Intelligibility Metrics when the Listener is in the Driver Position, Inboard Ear, Smooth 

Road.   
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Figure 20: Speech Intelligibility Metrics when the Listener is in the Driver Position, Inboard Ear, Rough 

Road.   
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Figure 21: Speech Intelligibility Metrics when the Listener is in the Passenger Front Position, Inboard Ear, 

Smooth Road.   
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Figure 22: Speech Intelligibility Metrics when the Listener is in the Passenger Front Position, Inboard Ear, 

Rough Road. 
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Figure 23: Speech Intelligibility Metrics when the Listener is in the Passenger Rear Right Position, Inboard 

Ear, Smooth Road. 
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Figure 24: Speech Intelligibility Metrics when the Listener is in the Passenger Rear Right Position, Inboard 

Ear, Rough Road. 
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Figure 25: Speech Intelligibility Metrics when the Listener is in the Passenger Rear Left Position, Inboard 

Ear, Smooth Road. 
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Figure 26: Speech Intelligibility Metrics when the Listener is in the Passenger Rear Left Position, Inboard 

Ear, Rough Road.   

 

The trends at different speeds are similar to the corresponding configurations and road 

surface at constant speeds (Tables 9 through 12) in terms of the overall amplitudes.  Wide 

ranges of scores associated with almost any particular operating condition, configuration 

and road surface are apparent, indicating the influence of a variety of factors such as 

binaural listening, directivity and locations of the talker and the listener, in quantifying 

the in-vehicle speech intelligibility.  Also, differences between scores associated with 

different metrics can be significant (often greater than 10%).  In addition, the magnitude 

of the differences often changes with operating conditions, i.e. increasing speed.  The rate 

of change of speech intelligibility is also different for different metrics at any given 

speed.  As observed in the previous studies, the rough road condition provides a more 

linear decrease with speed compared to the smooth road condition.  In addition, there is 

more fluctuation for the rough road condition at low speeds, compared to the smooth road 
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condition where the majority of the fluctuations occur at higher speeds.  Again, a 

subjective evaluation is suggested and should incorporate the effects of multi-sensory 

perception in order to evaluate speech intelligibility in the context of the vehicle interior 

listening environment. 

6.1.3.1  Summary of the Results 

A complete objective assessment of speech intelligibility between passengers in a vehicle 

should include measurements of both the speech and the background noise signals to 

account for the effects of the directivity, binaural listening and the distance between a 

talker and a listener on speech intelligibility.  The AI, currently the most frequently used 

metric in the automotive industry, does not account for these effects.    Measurements of 

simulated background noise and speech similar to those found in real communication 

between passengers in a vehicle are needed to obtain this assessment.  In this study, the 

SII(m) and STI methods provided this complete assessment.  The SII(m) method resulted 

in a close correlation with the more measurement-intensive STI method.  Since the 

SII(m) method does not require impulse response measurements, it can reduce the 

measurement effort while preserving the results‟ accuracy.  Subjective testing is needed 

for further in-vehicle speech intelligibility investigation, as the common metrics provide a 

wide range of scores for a given measurement configuration and operating condition.  

This is the subject of work dealing with acoustic perception jury testing within a 

simulated driving environment, as described in Section 6.2. 

 

 



 

98 

 

6.1.4  In-vehicle Speech Intelligibility for the Hearing Impaired Using 

Speech Intelligibility Index 

Tables 13 through 18 illustrate the results for the constant speed operation for the 

different talker and listener configurations and road surfaces.  For a communication 

system to be considered good, it is expected to have an SII in excess of 0.75.  Poor 

communication systems will have an SII below 0.45 (ANSI S3.5-1997). 

 

Table 13: SII, Talker is in Passenger Front Location, 50 km/h, Smooth Road (left), Rough Road (right). 

 

   

Table 14: SII, Talker is in Passenger Front Location, 100 km/h, Smooth Road (left), Rough Road (right). 

 

   

Table 15: SII, Talker is in Passenger Rear Right Location, 50 km/h, Smooth Road (left), Rough Road 

(right). 
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Table 16: SII, Talker is in Passenger Rear Right Location, 100 km/h, Smooth Road (left), Rough Road 

(right). 

   

Table 17: SII, Talker is in Passenger Rear Left Location, 50 km/h, Smooth Road (left), Rough Road (right). 

 

   

Table 18: SII, Talker is in Passenger Rear Left Location, 100 km/h, Smooth Road (left), Rough Road 

(right). 

   

The measurements were conducted in a semi-anechoic vehicle dynamometer test cell, so 

the results do not account for the effects of wind noise, which would potentially provide 

masking at higher frequencies and reduce differences between the rough and smooth road 

surface sound pressure levels at those frequencies.  The difference between SII scores 

associated with the rough and smooth road operation would also potentially be reduced. 

The SII is significantly lower at the outboard ear when the talker is located in the 

passenger front position.  This is because the talker and the listener are closer to each 

other compared to other configurations.  It is also due to directivity effects as the speech 
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signal has a more direct path to the driver/listener inboard ear.  The results are similar for 

both cases when the talker is located in the rear passenger positions. 

The rate of decrease of SII between the cases of 50 km/h to 100 km/h is less rapid for the 

hearing impaired individuals compared to the normal hearing.  The SII for the case of 

presbycusis is least sensitive to changes in speed compared to the other two cases.  The 

SII scores are also significantly lower for the case of presbycusis compared to the other 

two cases. They are consistently below the criterion for good communication system, 

even for the most conservative cases at low vehicle speeds and smooth surface types. 

For the case of normal hearing, the rough roll operation resulted in higher speech 

intelligibility index compared to the smooth roll operation for all the speeds and 

measurement configurations considered.  This is despite the fact that the overall sound 

pressure levels during rough roll operation were higher compared to the same 

configurations when the vehicle was operated on the smooth rolls.  The reason for this is 

a high frequency component in the vehicle noise associated with the smooth roll 

operation that significantly contributes to the reduction of SII.  This is because the 

weighing factors at the higher frequencies are greater than those at the lower frequencies 

which are more associated with the rough roll operation (Samardzic and Novak, 2011b).  

The threshold loss at higher frequencies tends to reduce this effect so the difference 

between SII scores for the smooth and the rough roll operation is less for the case of 

noise-induced hearing loss and presbycusis.  As explained previously, although counter 

intuitive, the scores are actually higher for the smooth rolls operation.  Illustrated in 

Figures 27 through 29 are results from the variable speed operation of the vehicle for 

different road surfaces, talker and listener configurations, and ears of the listener.   
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Figure 27: SII vs. Engine Speed, Talker is in Passenger Front Location. 
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Figure 28: SII vs. Engine Speed, Talker is in Passenger Rear Right Location. 
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Figure 29: SII vs. Engine Speed, Talker is in Passenger Rear Left Location. 

 

The SII was computed at 50 rpm increments over the entire range of speeds.  The trends 

are similar to those discussed previously for the constant speed operation.  In addition, 

the results for the rough road condition show more fluctuation of the SII at low speeds. 

The scores associated with the case of presbycusis are generally low and less sensitive to 

changes in speed compared to the other two cases.   

According to the definition of SII, speech intelligibility may potentially be improved by 

increasing the level of the speech signal and/or reducing the level of background noise, 

i.e. increasing the signal to noise ratio.  The vocal effort associated with the speech signal 

in this study is assumed to be fixed and independent of the level of background noise.  

The recommended minimum performance rating for speech intelligibility and vocal effort 

varies for different applications (ISO 9921:2003).  For critical situations where short 

messages are exchanged, a fair intelligibility at least is recommended at an increased 
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vocal effort (loud) corresponding to 72 dBA at one meter distance in front of the mouth.  

For a relaxed type of person to person communication over a longer time, more typical of 

in-vehicle applications, a good level of intelligibility is recommended allowing for a 

normal vocal effort corresponding to 60 dBA at one meter distance in front of the mouth.  

Previous studies related to in-vehicle speech intelligibility used a 68 dBA speech signal 

equalized at a one meter distance in free field (Viktorovitch, 2005; Granat, 2008; Farina 

et al, 2003).   

It was found in a recent study that decreasing this value to a more reasonable value of 

approximately 60 dBA (also specified in recent versions of the two most common speech 

intelligibility standards; IEC 60268-16:2003, ANSI S3.5-1997) reduces the speech 

intelligibility scores by about 30% (Samardzic and Novak, 2011c).  However, from an 

automotive customer‟s point of view, reduced background noise in the vehicle interior 

would be a preferred alternative to increasing vocal effort for more effective 

communication.  This requires the optimization of the sound package design to target 

background noise reduction in frequencies critical to speech.   

6.1.4.1  Summary of the Results 

In-vehicle speech intelligibility was quantified at various operating conditions and talker 

and listener configurations using the SII by considering the threshold loss associated with 

noise-induced hearing loss and presbycusis.  The results reveal poor speech intelligibility 

for most situations considered and provide evidence for the need for improving interior 

sound quality in terms of speech intelligibility for hearing impaired drivers such as senior 

aged drivers.  Further, this works provides the motivation for including the hearing 



 

104 

 

impaired individuals in acoustic perception jury testing within a driving simulator, as 

presented in Section 6.2.3. 
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6.2 A Novel Method for Improved In-Vehicle Speech Intelligibility 

Evaluation  

The shortcomings of the common objective speech intelligibility metrics, as discussed in 

Section 6.1, were addressed by developing an alternative method for in-vehicle speech 

intelligibility evaluation.  In this section, the implementation of the HINT was carried out 

within a driving simulator in order to evaluate the speech intelligibility in a vehicle 

between driver and passenger for a variety of driving speeds and the configurations of the 

talker and of the listener.  The sentence sSRT was determined for each of the various 

communication situations using an acoustic perception jury testing with thirty normal-

hearing participants (Section 6.2.1).  Next, the results from the novel method for speech 

intelligibility evaluation described in Chapter 5 are discussed are presented in Section 

6.2.2.  The statistical variability was quantified by evaluating the SII at the sSRT 

obtained from the previous study.  For both studies, the background noise utilized in the 

driving simulator model was based on the vehicle dynamometer acoustical 

measurements.  In another study (Section 6.2.3), both normal hearing and hearing 

impaired individuals participated in the acoustic perception jury testing.  Additionally, in 

this study, the contributions to the loss of speech intelligibility from the ordered and 

masking noise sources including wind were quantified.  The background noise utilized in 

the simulator model was based on on-road measurements.  Lastly, in Section 6.2.4 the 

impact of the band importance function for the HINT used in the evaluation of the SII at 

the sSRT, as used in studies described in Sections 6.2.2 and 6.2.3 was quantified.   
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6.2.1 The Evaluation of Speech Intelligibility in a Simulated Driving 

Environment Using the Hearing in Noise Test (HINT) 

The effects of the multisensory nature of driving on the perception of speech 

intelligibility would be evident by comparing the results of the HINT from the driving 

simulator jury test and the vehicle dynamometer jury test conducted by researchers from 

the University of Western Ontario, National Centre for Audiology (Sudirga et al, 2011).  

In this study, the HINT was mainly a listening task without the effects of the visual 

stimuli or the expectation of controlling the vehicle in terms of steering or the gas or the 

brake pedal as found in a real driving situation.  The driving simulator jury test consisted 

of the HINT listening task mixed with the vehicle background noise measured in the 

vehicle dynamometer.  The sound perceived by the participants over the headphones was 

associated with various vehicle operating conditions, dictated by the input from the driver 

of the simulator.  These inputs included the gas and brake pedal position that control the 

speed of the vehicle and the visual presentation of the surroundings, all of which 

contributed to simulating a realistic driving scenario.  Table 19 shows an average 

difference of about 3 dB between the two conditions; therefore, when presented with the 

same listening task the participants required a 3 dB higher sound pressure level of the 

HINT speech material while driving and listening compared to when just listening, for an 

equivalent speech intelligibility performance.  The values in brackets represent standard 

deviation (dB), calculated for each talker and listener combination and vehicle operating 

condition. 
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Table 19: HINT sentence Speech Reception Threshold, sSRT, as measured in free field at 1 m distance 

from the mouth of the artificial talker HATS Type 4128, (dBA).  The values in brackets represent standard 

deviation (dB). 

Talker Location Vehicle Speed

50 kph 48.74 (1.68) 45.43 (1.55) 3.31 (0.13)

100 kph 51.94 (1.48) 49.56 (1.24) 2.38 (0.24)

50 kph 52.92 (2.08) 49.08 (1.3) 3.84 (0.78)

100 kph 56.45 (1.78) 52.53 (1.19) 3.92 (0.59)

50 kph 52.73 (1.96) 49.52 (1.64) 3.21 (0.32)

100 kph 56.17 (2.12) 53.51 (1.37) 2.66 (0.75)

**Sudirga et al , 2011 3.22 (0.47)

(Avg.)

D

Hearing in Noise Test, Sentence Speech Reception Threshold, sSRT, dBA

Passenger Front

Passenger Rear Left

Passenger Rear Right

NVH Simulator Jury Test,                 

30 Participants

Vehicle Dynamometer Jury Test, **                       

9 Participants

 

The standard deviation of the NVH simulator jury test results was slightly higher when 

compared with the vehicle dynamometer jury test results.  In all instances the difference 

was less than 1 dB.  Figure 30 shows a HINT response of a single participant („11‟) of the 

NVH Simulator jury test, with all of the talker locations and road and vehicle operating 

conditions.  Figures 31 through 36 illustrate HINT results from the 30 participants of the 

NVH Simulator jury test, at all the driving conditions and locations of the talker.   
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Figure 30: Hearing in Noise Test (HINT) response of a single participant („11‟) of the NVH Simulator jury 

test, with all of the talker locations and road and vehicle operating conditions. 



 

108 

 

40

45

50

55

60

65

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

So
u

n
d

 P
re

ss
u

re
 L

ev
el

 (
d

B
A

),
 

o
f A

ve
ra

ge
d

 H
IN

T 
Se

n
te

n
ce

s 
M

ea
su

re
d

 a
t 

1
 m

 in
 F

ro
n

t 
o

f 
th

e 
H

A
T

S 
Ty

p
e 

4
1

2
8

, 
in

 F
re

e
 F

Ie
ld

Sentence #

50 kph , PF-D , 1

50 kph , PF-D , 2

50 kph , PF-D , 3

50 kph , PF-D , 4

50 kph , PF-D , 5

50 kph , PF-D , 6

50 kph , PF-D , 7

50 kph , PF-D , 8

50 kph , PF-D , 9

50 kph , PF-D , 10

50 kph , PF-D , 11

50 kph , PF-D , 12

50 kph , PF-D , 13

50 kph , PF-D , 14

50 kph , PF-D , 15

50 kph , PF-D , 16

50 kph , PF-D , 17

50 kph , PF-D , 18

50 kph , PF-D , 19

50 kph , PF-D , 20

50 kph , PF-D , 21

50 kph , PF-D , 22

50 kph , PF-D , 23

50 kph , PF-D , 24

50 kph , PF-D , 25

50 kph , PF-D , 26

50 kph , PF-D , 27

50 kph , PF-D , 28

50 kph , PF-D , 29

50 kph , PF-D , 30

 
Figure 31: Hearing in Noise Test (HINT) Results from the 30 participants of the NVH Simulator jury test, 

driving at 50 km/h on a country road with curves, with the talker in the passenger front (PF) location.  

Maximum range of response for a sentence was 12 dB. 
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Figure 32: Hearing in Noise Test (HINT) Results from the 30 participants of the NVH Simulator jury test, 

driving at 100 km/h on a straight country road, with the talker in the passenger front (PF) location.  

Maximum range of response for a sentence was 12 dB. 
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Figure 33: Hearing in Noise Test (HINT) results from the 30 participants of the NVH Simulator jury test, 

driving at 50 km/h on a country road with curves, with the talker in the passenger rear left (PRL) location.  

Maximum range of response for a sentence was 14 dB. 
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Figure 34: Hearing in Noise Test (HINT) response from the 30 participants of the NVH Simulator jury test, 

driving at 100 km/h on a straight country road, with the talker in the passenger rear left (PRL) location.  

Maximum range of response for a sentence was 12 dB. 
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Figure 35: Hearing in Noise Test (HINT) response from the 30 participants of the NVH Simulator jury test, 

driving at 50 km/h on a country road with curves, with the talker in the passenger rear right (PRR) location.  

Maximum range of response for a sentence was 12 dB. 
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Figure 36: Hearing in Noise Test (HINT) response from the 30 participants of the NVH Simulator jury test, 

driving at 100 km/h on a straight country road, with the talker in the passenger rear right (PRR) location.  

Maximum range of response for a sentence was 14 dB. 
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The maximum range of response for a sentence was between 12 dB and 14 dB.  The 

talker locations and vehicle speeds with instances of the highest maximum ranges of 

response for a sentence (about 14 dB) were also associated with highest standard 

deviations (Table 19). 

There were no significant differences in hearing threshold levels between the two rear 

passenger locations; with less than 0.3 dB difference between the passenger rear left and 

passenger rear right locations, for both vehicle speeds considered.  There was an 

approximate 4 dB difference in hearing threshold levels between the front and the rear 

talker locations.  In addition, the average signal to noise ratio difference as well as the 

difference in vocal effort between 50 km/h and 100 km/h was equivalent for all of the 

talker and listener configurations considered, given the same speech intelligibility 

performance. 

Table 20 shows the binaural sound pressure levels of the HINT calibration signal 

corresponding to the measured sSRT for each vehicle speed and talker location, and 

background noise at each vehicle speed.  The passenger front talker location resulted in 

the highest binaural sound pressure level difference in the driver‟s location compared to 

the other two talker locations; the passenger rear left and right locations.  For this 

particular configuration, the ear closer to the talker location showed an equivalent (less 

than 1 dB difference) average speech sound pressure level compared to the one produced 

from the remaining two talker locations, for an equivalent speech intelligibility 

performance.  Therefore, the signal to noise ratio of the ear closer to the talker appeared 

to be the main influence in determining the in-vehicle speech intelligibility performance 

when the binaural difference in the speech sound pressure level is significant. 
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Table 20: Binaural sound pressure level (dBA) of the HINT calibration signal (averaged HINT sentences) 

measured in vehicle at levels associated with the measured sentence Speech Reception Thresholds 

(sSRT‟s), and  binaural sound pressure level of vehicle interior background noise (dBA). 

Talker Location Vehicle Speed Left Ear Right Ear Left Ear Right Ear

50 kph 52.84 56.25 60.70 59.00

100 kph 56.51 59.96 71.30 68.80

50 kph 57.00 56.48 60.70 59.00

100 kph 60.30 59.50 71.30 68.80

50 kph 56.79 55.59 60.70 59.00

100 kph 59.85 58.69 71.30 68.80

Passenger Front

Passenger Rear Left

Passenger Rear Right

Sound Pressure Level (dBA)    

of Background Noise       

Measured in-Vehicle

Sound Pressure Level (dBA)    

of Averaged HINT Sentences 

Measured in-Vehicle, 

Associated with sSRT Levels

 

Despite the advantages of the HINT compared to the other available subjective speech 

intelligibility tests, as outlined by Nilsson et al (1994), the results of the HINT, have 

previously never been compared to any of the other objective speech intelligibility 

metrics mentioned above.  In addition, they have not been mentioned in the standards 

associated with these metrics, mainly the IEC 60268-16:2003 and ANSI S3.5-1997, for 

the STI and the SII metric, respectively.  For example, the IEC 60268-16:2003 provides 

relations between the intelligibility scores from several subjective intelligibility measures 

including the phonetically balanced (PB) words test, Consonant Vowel Consonant (CVC) 

words test, and sentence intelligibility based on the Speech Reception Threshold (SRT) 

test.  The reference for the SRT test, however, is not provided in the standard.  For that 

reason, it cannot be associated with the HINT method, which also involves determining 

the SRT.  The ANSI S3.5-1997 standard provides band importance functions for various 

nonsense syllable tests, PB words tests, Diagnostic Rhyme Test, short passages of easy 

reading material and SPIN monosyllables. 
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The common objective speech intelligibility metrics are calculated using the background 

noise measurements, either fixed or measured speech signal measurements and, for the 

case of the STI metric, the impulse response measurements.  Ultimately, all of the metrics 

provide a measure of the intelligibility of speech using values from 0 for completely 

unintelligible to 1 for perfect intelligibility.  In addition to the differences between scores 

associated with the different metrics given the same operating conditions and talker and 

listener configurations (Samardzic and Novak, 2001d), the objective metrics also do not 

include the influences of the multi-sensory perception, specific to the in-vehicle listening 

environment which, as shown earlier, proved to be significant.  Acoustic in-vehicle 

measurements commonly obtained in the automotive industry are used for the various 

objective metrics calculations and benchmarking.  A consequence of the above 

observation is the suggestion these tests be used to create a driving simulation for jury 

testing as described in this study, for a future standard method to provide a complete and 

a more accurate evaluation of in-vehicle speech intelligibility. 

According to Moore (2003), the details of how the complex acoustical patterns of speech 

are interpreted by the brain are still not fully understood.  Moore also states that the high 

redundancy of speech makes it an efficient method of communication where speech 

intelligibility is relatively unaffected even by difficult conditions such as severe distortion 

interruption or background noise.  Therefore, using natural speech material in the form of 

a sentence-type test such as the HINT instead of the word tests mentioned earlier 

provides a more realistic scenario for evaluating the understanding of everyday speech, in 

an attempt to include the mentioned complexities. 
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The effective range of objective speech intelligibility scores for word tests is wider, 

compared to sentence-type tests (Table F.1 of ISO 9921:2003(E));the ranges of scores are 

assigned various subjective intelligibility ratings such as „excellent‟, „good‟, „fair‟, „poor‟ 

or „bad‟.  However, the ratings and scores provide little practical insight into 

characterizing the speech intelligibility in a communication environment such as a 

vehicle interior, in addition to the fact that there is no standardized method currently in 

place; objective or subjective alike, in the automotive industry that would address the 

interpretation of the meaning of such a characterization.  Due to the redundancy of words 

in a sentence and speech in general, the sentence-type tests show saturation at certain 

values of objective test scores.  It would then be reasonable to assume that if the HINT 

test result comparisons to the same scores were available, they would show a similar 

saturation limit.  In other words, for sentence-type tests, there is a point (a sound pressure 

level) after which the speech is understood in its entirety.  Below that point, it is not 

understood.  This speech intelligibility evaluation method is easily understood, simple 

and universally applicable.  Therefore, the sSRT as described in the HINT procedure and 

implemented in the driving simulator in this study appears to be a viable alternative 

metric for evaluation of in-vehicle speech intelligibility.    

The majority of the NVH simulator jury test participants commented that a greater effort 

was required for listening and understanding sentences delivered from the rear passenger 

locations.  This is despite the same HINT evaluation criteria (adaptive procedure to 

obtain 50% correct of all the sentences presented), and consequently, the same 

intelligibility performance for all the listener location configurations.  The listening 

difficulty was not rated as it was not a part of the formal HINT procedure; however, 
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future studies should extend the HINT method presented here to determine a vocal effort 

that would create the same listening effort from various locations of the talker, to 

complement the current HINT results from the procedure proposed in this study. 

6.2.1.1  Summary of the Results 

The goal of this study was to present a new method for evaluating the in-vehicle speech 

intelligibility by using a simulated driving environment and the HINT.  The current 

standardized testing protocols used by the automotive industry do not include the 

evaluation of in-vehicle speech intelligibility.  For example, AI, which is the most 

commonly used objective speech intelligibility metric in the automotive industry, does 

not incorporate some of the significant factors that can have an influence on the 

assessment of in-vehicle speech intelligibility in its calculation method.  Examples 

include the distance between the talker and the listener and directivity.  In addition, all of 

the current objective speech intelligibility metrics, including the AI, provide a wide range 

of scores given the same operating conditions and talker and listener configurations 

inside a vehicle.  Further, these metrics do not include the influences that multi-sensory 

perception has on the assessment of speech intelligibility, which is particularly significant 

inside an operating vehicle.  However, these influences are all incorporated into the 

HINT implemented in the simulated driving environment as shown in this study. 

The results indicate that, when presented with the same listening task, the participants 

required on average an approximate 3 dB increase in sound pressure level of the HINT 

speech material while driving and listening compared to when just listening, for an 

equivalent speech intelligibility performance.  When the talker was in the front passenger 

location, next to the listener who was driving the binaural difference in the speech sound 
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pressure level was significant.  In this case, the signal to noise ratio of the ear closer to 

the talker was the main influence on the in-vehicle speech intelligibility performance. 

A future standard method for a more accurate evaluation of in-vehicle speech 

intelligibility is proposed by implementing the HINT using a driving simulator and 

further quantifying speech intelligibility as described in Section 6.2.2.  It is suggested that 

the acoustic in-vehicle measurements commonly obtained in the automotive industry for 

the various acoustic metrics calculations and benchmarking also be used for creating a 

driving simulation for jury testing as described in this study.  Future studies should also 

include an evaluation of the listening effort and determining the vocal effort required to 

obtain the same listening effort from the listener from any location of the talker. 

6.2.2 A Novel Method for In-Vehicle Speech Intelligibility Evaluation and 

Statistical Variability Analysis 

The SII evaluated at the sSRT and the associated statistical variability presented in this 

study provide reference values for future evaluation of in-vehicle speech intelligibility 

using the described novel method. 

The following examples illustrate control charts using SII, SII band audibility function 

and SNR as random variables.  The centerline has been omitted from the charts for clarity 

of presentation.  Figure 37 illustrates an example SII and standard deviation control chart 

X -bar and s  charts) calculated for the right ear of the listener at sSRT using the HINT in 

a driving simulator at 100 km/h.  Listener was in the driver location while the talker was 

in the rear right location.   
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Figure 37: Example SII (top) and standard deviation (bottom) control chart ( X -bar and s  charts), 

calculated for the right ear of the listener at sSRT using the HINT in a driving simulator at 100 km/h.  

Listener was in the driver location, talker was in the rear right location.  The three sigma control limits 

calculated are based on the ASTM 2587-10 standard formulations.  It appears that the SII data points are 

contained within six, as opposed to three, standard deviations away from the mean.  The six sigma limits 

may be a good recommendation for the selection of the specification limits in this case.  The standard 

deviation values are contained within the three sigma limits. 

 

For other speeds and configurations of the talker and the listener the corresponding 

control limits and standard deviation are summarized in Table 21.  The values presented 

in Table 21 serve as a reference for future evaluation of in-vehicle speech intelligibility 

based on the SII at sSRT.   
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Table 21: SII and standard deviation control limits, calculated at sSRT using the HINT in a driving 

simulator for all operating conditions and configurations of the talker and with the listener in the driver 

location.  The values presented provide a benchmark for future evaluation of in-vehicle speech 

intelligibility. The three sigma control limits calculated are based on the ASTM 2587-10 standard 

formulations. 

 

Examining Figure 37, the majority of SII data is dispersed between the process mean and 

the three sigma control limits, however, about a third of the data points are outside the 

limits.  It appears that all of the data points would be contained within six, as opposed to 

three, standard deviations away from the mean.  Therefore, the six sigma limits may be a 

good recommendation for the selection of the specification limits; potentially a design 

judgement by a vehicle interior acoustics engineer.  The exception to this is the data 

associated with Juror 6, which may be found outside even the six sigma limits.  Juror 6 

had the highest sSRT and, therefore, the highest SII at sSRT, particularly at high speeds, 

as seen from the results for the particular talker and listener configuration shown in 

Figure 37.  It was noted that Juror 6 commented to be less comfortable while driving and 

focusing on listening at high speed that, in general, required a higher level of 

concentration.  The data reveals a likely scenario for some individuals in an actual high 

speed driving situation, although perhaps not for the majority.  In any case, knowing the 

control limits, the specified level of confidence and the associated variability, as 

summarized in Table 21, the desired specification limits and the importance of the 

changes to the SII based on the variability may be selected.   
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The fact that the SII values on the control chart exceed the three sigma limits set by 

Shewhart (1931) and implemented in the ASTM 2587-10 standard, does not necessarily 

indicate a special cause of variation, but rather an inherent variability in this type of data.  

The special cause of variation is often characterized with outliers in the data.  For 

instance, in the study by Samardzic and Pan (2009), a few data points on the control chart 

associated with sound absorption measurements obtained at the conditions of high 

humidity were found outside the three sigma limits, thus indicating a special cause of 

variation in the data.  In contrast, the SII obtained in this study from thirty jury test 

participants is randomly dispersed about the centerline without outliers, with the 

exception of the aforementioned data from Juror 6.  Jurors associated with SII data from 

about a third of the data points found outside the control limits had not exhibited any 

unusual responses in their driving or hearing experience during the test.  They had no 

hearing issues or apparent similarities in driving behavior, or any apparent general 

differences related to the simultaneous driving and listening compared to the rest of the 

jurors, all of which would be potential indicators for a special cause of variation in the 

data.   

The standard deviation values shown in Table 21 are contained within the three sigma 

control limits, as shown by the example Figure 37.  The same trend is present in charts 

from other configurations summarized in Table 19.  In general, the maximum standard 

deviation value of approximately 0.1 (10 percent) is a minimum significant change in 

terms of the SII evaluated at sSRT for the evaluation of in-vehicle speech intelligibility 

for all configurations and speeds.  The specification limits and the variability may be 

used to assess the significance of the potential vehicle interior acoustic design changes or 
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noise issues in terms of their effect on speech intelligibility.  The application may also be 

extended to the design of the various communication devices and hearing aids algorithms 

for in-vehicle application. 

Samardzic et al (2012) found that when the talker was in the front passenger location next 

to the listener in the driver location, the binaural difference in the speech sound pressure 

level was significant and the signal to noise ratio of the ear closer to the talker was the 

main influence on the in-vehicle speech intelligibility performance.    

From the perspective of the statistical analysis in this study, Table 21, in a similar 

manner, indicates that the difference in terms of SII for this configuration is significant; 

14 percent at 50 kph and 20 percent at 100 kph, when comparing the upper control limits.  

Subsequently, the SII of the ear closer to the talker may be used to evaluate the in-vehicle 

speech intelligibility performance.  This assumption for SII evaluation would be valid for 

individuals with normal hearing or individuals with bilateral, symmetrical hearing loss. 

It should also be noted that the majority of the NVH simulator jury test participants 

commented that a greater effort was required for listening and understanding sentences 

delivered at 100 km/h, compared to 50 km/h.  This is despite the same HINT evaluation 

criteria (adaptive procedure to obtain 50% correct of all the sentences presented), and 

consequently, the same intelligibility performance for all the listener location 

configurations.  The difference in SII scores by about 0.1 between the two speeds may be 

related to this observation.  The listening difficulty was not formally rated during the 

HINT procedure; however, future studies should extend the HINT method presented here 

to determine a vocal effort that would create the same listening effort from various 

locations of the talker, to complement the current SII results in this study. 
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Figures 38 and 39 indicate example control charts and standard deviation based on the 

band audibility function used to calculate the SII.  Figures 40 and 41 illustrate example 

frequency-specific SNR values with control limits that were also used in SII calculations.  

The figures contain data from the control chart as a function of frequency, providing a 

different perspective on the same set of data.  The control limits based on three standard 

deviations again seem inadequate for this type of data and, as argued previously for the 

case of the SII, the specification limit may be set to model a six sigma process.      

 

Figure 38: Example SII Band Audibility Function X -bar chart calculated for the right ear of the listener at 

sSRT using the HINT in a driving simulator at 100 km/h.  The listener was in the driver location, and the 

talker is in the rear right location.  The control limits based on three standard deviations do not incorporate 

all of the data points and, as argued previously for the case of the SII, the specification limit may be set to 

model a six sigma process.  The frequency specific information from the SII Band Audibility Function may 

be potentially useful in determining the effect that modifications the background noise at particular 

frequencies have on in-vehicle speech intelligibility.  This is one of the most common projects in vehicle 

interior acoustic engineering.   
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Figure 39: Example SII Band Audibility Function s  chart, calculated for the right ear of the listener at 

sSRT using the HINT in a driving simulator at 100 km/h.  The listener was in the driver location while the 

talker is in the rear right location.  The SII standard deviation values are contained within the three sigma 

limits. 

 

The standard deviation values are contained within the three sigma limits, as shown in the 

previous examples using the SII (Figure 37).  The frequency specific information from 

the above examples may potentially be useful for determining the effect that 

modifications to the background noise at particular frequencies have on in-vehicle speech 

intelligibility.  This is a common project for vehicle interior acoustic engineering.  For 

this, information presented in Table 21 and Figures 38 through 41 can be utilized. 

For example, assuming that a re-designed inner dash silencer provides an in-vehicle 

background noise reduction within a specific frequency band, one can calculate the 

associated band audibility function and/or signal to noise ratio and compare the values to 

the target frequency band six-sigma control limits (see Figures 38 and 40).   
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A design improvement would be validated if the band audibility function and/or signal-

to-noise ratio exceeds the benchmark, six sigma, upper control limit at that frequency, 

and while the associated measurement variability does not exceed the upper control limits 

(Figure 39 and 41). 

 

Figure 40: Example SNR with control limits from X -bar chart calculated for the right ear of the listener at 

sSRT using the HINT in a driving simulator at 100 km/h.  The listener was in the driver location, while the 

talker is in the rear right location.  The figure contains data from the corresponding control chart as a 

function of frequency, providing a different perspective of the same set of data.  The control limits based on 

three standard deviations do not incorporate all of the data points and, as argued previously for the case of 

the SII, the specification limit may be set to model a six sigma process.   
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Figure 41: Example SNR standard deviation with control limits from s  chart, calculated for the right ear of 

the listener at sSRT using the HINT in a driving simulator at 100 km/h.  The listener was in the driver 

location and the talker is in the rear right location. The figure contains data from the control chart as a 

function of frequency, providing a different perspective of the same set of data.  The SNR standard 

deviation values are contained within the three sigma limits. 

 

6.2.2.1  Summary of the Results 

A novel method for evaluating in-vehicle speech intelligibility is proposed.  The sSRT 

coupled with the corresponding objective speech intelligibility scores are used to quantify 

the hearing ability of normal hearing individuals and the influence of multi-sensory 

perception on the perception of speech intelligibility in an operating vehicle.  The SII 

based on measured speech signal is evaluated at the sSRT using the HINT results from 

jury testing in a simulated driving environment (Section 6.2.1).  The statistical variability 

analysis was performed using control charts.  The SII values evaluated at the sSRT and 

the associated statistical variability, in terms of standard deviation, presented in this study 
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are references for future evaluation of in-vehicle speech intelligibility.  

Recommendations for future work include the quantification of the variability of vocal 

effort and vehicle interior background noise for incorporation into the speech 

intelligibility evaluation. 

6.2.3 The Analysis of the Reduction in Vehicle Speech Intelligibility for 

Normal Hearing and Hearing Impaired Individuals in a Simulated 

Driving Environment with Contributions from the Ordered and 

Masking Noise Sources 

The six sigma control limits from a previous jury test (Section 6.2.2) are shown as a 

reference in the first line of Tables 22 through 24.  Subsequent values are associated with 

the SII calculations at the sSRT for the normal hearing (NH) and hearing impaired (HI) 

jury test participants.  The normal hearing data shown is the average SII at sSRT from the 

six jury test participants. 

 

Table 22: SII evaluated at the sSRT, and the associated variability, s, for talker in the passenger front 

location.  The upper and lower control limits (UCL* and LCL*) are shown as references, and refer to the 

six sigma control limits based on the study by Samardzic et al (2012). 

LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL*

0.47 0.56 0.03 0.09 0.34 0.42 0.02 0.08 0.38 0.47 0.03 0.10 0.19 0.27 0.02 0.08

NH (Avg.)

HI1

HI2

HI3

HI4

0.06 0.05 0.31 0.06 0.12 0.03

0.47 0.000.00 0.00

0.07

0.05

0.04

0.070.00

0.04 0.03

0.04

0.05

0.23

0.39

0.32

0.05

0.06

0.31

0.17

0.19

0.08

0.33 0.20

0.27

0.46

0.32

0.52

50 km/h, Right Ear 50 km/h, Left Ear 100 km/h, Right Ear 100 km/h, Left Ear

SII s SII s SII s SII s

0.33

0.08

0.18

0.07

0.04

0.03

Passenger Front

Talker Location
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Table 23: SII evaluated at the sSRT, and the associated variability, s, for talker in the passenger rear right 

location.  The upper and lower control limits (UCL* and LCL*) are shown as references, and refer to the 

six sigma control limits based on the study by Samardzic et al (2012). 

LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL*

0.42 0.50 0.03 0.09 0.39 0.47 0.03 0.08 0.33 0.41 0.03 0.09 0.25 0.34 0.03 0.09

NH (Avg.)

HI1

HI2

HI3

HI4

0.25 0.05 0.19 0.05 0.13 0.04

0.05

0.00

0.04

0.02

0.05

0.12

0.220.19

0.060.07

0.08

0.070.400.03

100 km/h, Right Ear

0.34

0.29

0.280.19

0.27

0.19

0.05

0.430.02

0.03

0.25

0.29 0.05

0.49 0.06 0.00 0.00 0.49

Passenger Rear Right

Talker Location

0.13 0.00

50 km/h, Left Ear 100 km/h, Left Ear

SII s SII s SII s SII s

50 km/h, Right Ear

 
 

 

Table 24: SII evaluated at the sSRT, and the associated variability, s, for talker in the passenger rear left 

location.  The upper and lower control limits (UCL* and LCL*) are shown as references, and refer to the 

six sigma control limits based on the study by Samardzic et al (2012). 

LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL* LCL* UCL*

0.42 0.50 0.03 0.08 0.41 0.49 0.03 0.08 0.33 0.41 0.02 0.08 0.27 0.35 0.03 0.08

NH (Avg.)

HI1

HI2

HI3

HI4

0.14 0.040.28 0.05 0.27 0.05 0.18 0.05

0.05

0.26

0.24

0.05

0.02

0.06

0.00

0.03

0.03

0.07

0.06

0.07

0.00 0.41

0.36

0.050.11

0.24

0.00

0.03

0.06

0.04

0.12

SII

0.18

0.25

0.21

0.24

0.30

0.36

0.00

0.48

0.48

Passenger Rear Left

Talker Location

50 km/h, Right Ear 50 km/h, Left Ear 100 km/h, Right Ear 100 km/h, Left Ear

SII s SII s SII s s

 

Compared to the results from the previous study, the SII scores were on average 10% 

lower than the lower control limits (LCL) for all conditions, although the standard 

deviation was contained within the reference control limits.  The UCL values were not 

exceeded and could be used as benchmarks in future studies as they represent the 

minimum proportion of audible speech that needs to be available to the listener at the 

speech reception threshold. 
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As in the previous study (Section 6.2.2) involving normal hearing participants in a 

driving simulation and the HINT, all the test participants, both normal hearing and the 

hearing impaired, indicated that a greater listening effort was required when the talker 

was located in the rear passenger locations as compared to the front passenger location.  

For each configuration of the talker and the listener, the same HINT procedure was used 

and the speech intelligibility was quantified by the sSRT; the presentation level required 

a listener to recognize the speech materials correctly 50% of the time.  In each test 

scenario, the speech at sSRT levels was just barely perceptible by the participants.  

Interestingly, the results indicate that person to person communication at sSRT levels was 

not necessarily associated with the same listening effort; the conditions of minimal 

intelligibility required for understanding speech was dependent upon a combination of 

influences, including the directivity and the distance of the talker with respect to the 

listener, vocal effort, and the signal to noise ratio.  The relationship between these 

influences is not necessarily captured by the SII.  As stated previously, the UCL for the 

SII values at sSRT for a particular driving situation may still be used as benchmarks.  

However, for the lower control limit, it was found that the increase in the listening effort 

was reflected by a decrease in SII scores.  This implies that for more challenging listening 

situations, the sSRT is associated with a lower SNR and lower SII score.  Therefore, an 

SII at sSRT is sensitive to the changes in SNR.   

The above arguments pertaining to the SII sensitivity to the SNR are further reinforced by 

the simulator jury test results using the model from on-road background noise 

measurements.  The signal to noise ratio at the sentence speech reception threshold levels 

in different listening environments varied; on average, the SNR was -8 dB for the semi-
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anechoic dynamometer test cell background noise measurements and -14 for the on-road 

background noise measurements.  In general, as the hearing conditions got more 

challenging for lower SNR, the auditory speech perception adapted such that lower SII 

scores characterize the sSRT at lower SNR, all using same speech material.  The band 

importance functions remain constant for each driving condition as the same speech 

material is used.  Further detailed studies are recommended to investigate the interaction 

between multisensory hearing and SNR at the SII at sSRT within a driving environment.  

Another potential influence may be the shape of the background noise spectrum and its 

similarity to the speech spectrum; According to Rhebergen et al (2005), in the presence 

of one or more interfering talkers, the more similar the target and masker are, the more 

the listener is confused or distracted.  This in turn results in poorer speech intelligibility 

performance.  In this case, the difference in SII scores may be due to any differences 

between the background noise measured in vehicle dynamometer compared to the on-

road measurements and the speech spectrum.  Figure 42 illustrates an example where the 

shape of both the vehicle dynamometer and on-road background noise spectra are quite 

different from the shape of the speech signal as well as from each other.  In addition, the 

vehicle dynamometer background noise has sharper transitions in spectra - an increase 

between 1000 Hz and 4000 Hz then a decrease from 4000 Hz to 8000 Hz, while the     

on-road background noise spectra are steadily decreasing within the entire range of 

frequencies.  Based on the SII results, this „smooth‟ shape of the background noise 

spectrum of the on-road measurements may have resulted in a more favorable listening 

environment for speech intelligibility in noisy conditions such as a vehicle interior. 
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Figure 42: The HINT speech signal spectra at the indicated sSRT and the corresponding background noise 

spectra at 50 kph and 100 kph, for an example configuration - talker in the driver‟s location and listener in 

the passenger rear right location.  The SII scores are also provided. 

 

In conclusion, unexpectedly, it was found that the SII at the sSRT is sensitive to the 

changes in the SNR; the SII at sSRT was different for different background noise spectra 

resulting from vehicle dynamometer and on-road measurements.  Therefore, it is not 

plausible to use a standard or a benchmark set of control limits associated with the SII 

values evaluated at the SRT for a particular set of vehicle operating conditions and talker 

and listener configurations.  Instead, currently, without such benchmarks it is important 

to evaluate speech intelligibility in the context of the listening environment, such as a 

driving environment.  The evaluation should be conducted for each vehicle and listening 

situation and evaluated according to the test procedure described in this study.   
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The results from previous SII at SRT studies were obtained in conditions free from the 

complexities associated with the in-vehicle listening environment, such as binaural, 

multidirectional and multisensory listening, as shown in this study.  The SNR and SII 

values at SRT were to some extent comparable to the ones found in this study and 

warrant further research on the subject, particularly as it relates to the field of audiology.  

For example, Rhebergen and Versfeld (2005) fixed the masking noise at 60 dBA and 

found that the SII value of 0.35 representing the information required to reach the speech 

reception threshold occurred at the SNR of -4.5 dB for stationary masking noise and -12 

dB for fluctuating masking noise.  Rhebergen and Versfeld (2005) used a method similar 

to the SRT method for sentences in the present study.  In contrast to the present study, the 

sentences in the study by Rhebergen and Versfeld (2005) have been presented 

monaurally and using speech-shaped masking noise.  Similarly, in the study by 

Rhebergen et al (2006), all noise conditions had a long-term average spectrum equal to 

the long-term average spectrum of the target female speech material while the subjects 

received the signals monaurally at their best ear at a fixed noise level of 65 dBA.  In 

another study by Rhebergen et al (2009), the monaural SRT at the better ear was also 

measured. 

Figure 43 illustrates an example of the SII evaluation at the SRT using background noise 

components decomposed from the measurements of the total on-road background noise.   
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Figure 43: Example SII evaluation at the SRT using the HINT sentence responses of a single normal-

hearing participant (NH4) during a driving simulation, at 50 kph and 100 kph, when the talker is in the 

passenger front (PF) location.  In this example, the octave data used in the SII calculations was based on the 

background noise and speech measurements obtained at the right ear of the driver/listener.  The SII was 

calculated for the contributions of the ordered, total masking, and engine masking components of the total 

background noise, to investigate the effect of these components on the loss of speech intelligibility. 

 

The contribution to the reduction of speech intelligibility may be studied for the various 

operating conditions, talker and listener configurations and ears of the listener.  For the 

example shown in Figure 43, the total masking noise sources are the most significant 

contributors to the reduction of speech intelligibility at both speeds. Compared to the 

ordered noise sources, the SII scores using this noise component resulted in the lowest 

SII values.  The contribution of the ordered sources of noise is insignificant at 100 kph 

compared to 50 kph, as the SII score is close 80 percent. 
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6.2.3.1  Case Studies of the Hearing Impaired Jury Test Participants 

The hearing threshold levels used in the SII calculations in this study were obtained from 

each of the participants‟ audiograms (Figure 44), based on the hearing tests administered 

by certified audiologists.   
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Figure 44: Hearing threshold levels obtained from the audiograms of the four hearing impaired (HI) driving 

simulation jury test participants. 

 

Three out of the four participants were wearers of hearing aids.  They reported to 

occasionally wearing their assistive devices while driving their vehicles due to the fact 

that, from their experience, it was difficult to get the signal amplification benefit from 

their hearing aids in noisy environments such as a vehicle interior.  In this study, the 

HINT in the driving simulator was performed without hearing aids so that the hearing 

threshold information from audiograms was directly used in SII calculations without any 

modifications to address frequency filtering associated with the use of the hearing aids.   
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The hearing level (HL) represents the pure tone threshold level at a specified frequency 

minus the reference pure tone threshold, which is the minimum sound pressure level of 

the pure tone capable of evoking an auditory sensation at that same frequency (Debonis 

and Donohue, 2007).  According to Clark (1980), normal hearing range is between -10 

and 15 dB HL.  The „slight‟ and „mild‟ hearing loss is defined from 16 to 25 dB HL, and 

26 to 40 dB HL, respectively.  The „moderate‟ and „moderately severe‟ hearing loss is 

defined from 41 to 55 dB HL, and 56 to 70 dB HL, respectively.  Lastly, the „severe‟ and 

„profound‟ hearing loss range is from 71 to 90 dB HL and greater than 91 dB HL, 

respectively. 

The relationship between the SII value and the sSRT for hearing-impaired listeners is less 

clear compared to the normal hearing listeners (Rhebergen et al, 2010), however, 

according to Rhebergen et al (2006), hearing-impaired subjects often require SII values 

that exceed 0.33, which indicates that correction only for audibility in the ANSI S3.5-

1997 SII standard is not sufficient.  The exception is for cases of mild hearing loss.  An 

elevated SII associated with an observed SRT is often associated with a supra-threshold 

deficit in such listeners (Rhebergen et al, 2010). 

Additional variability in the results exists because an audiogram is generally measured at 

octave frequencies with an accuracy of about +/- 5 dB.  Rhebergen et al (2010) found that 

a 5 dB error per octave frequency may lead to approximately a 16.7% audibility 

difference compared to an ideal prediction.  According to Rhebergen et al (2010), the 

reliability of the absolute-threshold estimate is a major factor in the variance of SII 

predictions in quiet conditions.  However, it may also be an issue in noisy conditions, as 

is the case in this study, when considering the elevated hearing threshold levels 
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associated with the hearing impaired jury test participants in the simulated driving test.  

In general, Rhebergen et al (2010) recommends using absolute thresholds recorded at 

1/3-octave frequencies for more reliable results rather than using just the octave 

frequencies for which the audiogram is routinely measured.   

6.2.3.1.1 Case Study 1 – HI1 

The participant reported a history of otosclerosis treated with stapendectomy for the right 

ear resulting in a high frequency sensorineural hearing loss.  Pure tone air and bone 

conduction testing revealed an essentially moderate mixed hearing loss for the left ear 

and a mild to profound hearing loss for the right ear. The participant also reported using 

binaural hearing aids for about 15 years. 

Samardzic and Novak (2011) found that the signal to noise ratio of the ear closer to the 

talker was the main influence on the in-vehicle speech intelligibility performance when 

the binaural difference in the speech sound pressure level was significant.  That is, when 

the talker was in the front passenger location next to the listener who was driving.  The 

same is for the participant where the ear associated with less hearing loss (better ear) was 

the main influence on the in-vehicle speech intelligibility performance.  In case study 1, 

unfortunately, the participant‟s better ear was farther away from the talker, especially 

when the talker is in the front driver location. 

For the left, or „better‟, ear mainly influencing the speech intelligibility perception, the 

SII results indicated a higher than average variability in terms of the standard deviation as 

well as the SII score, and therefore, the corresponding SNR, or vocal effort, associated 

with the speech reception threshold condition.   
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6.2.3.1.2 Case Study 2 – HI2 

The (HI2) participant‟s hearing loss can be described as mild sloping to severe in the 

right ear, and mild sloping to profound in the left ear.  The participant also reported 

symptoms of tinnitus usually in the form of a constant high-pitched sound, which 

occasionally changes in severity.  In addition, the participant reported the occasional 

masking of speech, especially when the frequency content of the speech signal is within a 

higher frequency range, as the case for a female voice.  The HINT implemented in the 

driving simulator is based on a male voice (Nillson et al, 1994) so this condition may or 

may not have an effect on the results of the participant HI2 in this study.  The right ear 

associated with less severe hearing loss is closer to the talker in the passenger front and 

passenger rear right location and may be a favourable circumstance in this case as the 

listener is positioned in the driver location in this study.  The SII in this case was a valid 

predictor of speech intelligibility by taking into account the hearing threshold elevation, 

as the SII scores from this participant were comparable to those of the normal hearing 

listeners. This is despite the fact that the hearing loss of participant HI2 ranged from mild 

to profound.  It would be interesting to note that an alternative situation may also be 

plausible for individuals diagnosed with tinnitus; Schaette and McAlpine (2011) found 

that many tinnitus patients present with a normal audiogram.  It was suggested that this 

was possibly a result of a homeostatic response of neurons in the central auditory system 

to reduced auditory nerve input in the absence of elevated hearing thresholds.  Traditional 

theories assume that tinnitus is triggered by cochlear damage, which would be manifested 

by elevated hearing thresholds in the audiogram.  
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6.2.3.1.3 Case Study 3 – HI3 

The participant (HI3) has a moderate to moderately severe, bilateral symmetrical, flat 

hearing loss, characterized with approximately equal hearing threshold levels over the 

entire range of frequencies in both ears.   The participant is a wearer of hearing aids and 

reported that the condition was present since childhood as well as during the initial 

acquisition of language.  In this case, the SII was a valid predictor of speech intelligibility 

by taking into account the hearing threshold elevation, as the SII scores from this 

participant were comparable to those of the normal hearing listeners. 

6.2.3.1.4 Case Study 4 – HI4 

The participant (HI4) has a profound hearing loss in the left ear.  The SII score of zero 

was calculated as a consequence for this ear at all operating conditions and talker and 

listener configurations.  The right ear has some hearing potential and, as the ear is located 

closer to the talker in the passenger front and passenger rear right location, potentially 

provides a favourable condition for the perception of speech intelligibility from the 

driver‟s location.  According to the participant‟s audiogram, the hearing test was 

conducted only between 500 Hz and 4000 Hz.  As such, for this study the missing 250 Hz 

and 8000 Hz HL data required for the SII calculations were assumed to be the same as 

HL measured at 500 Hz and 4000 Hz, respectively.   

Although the ear closer to the talker is the main influence on the in-vehicle speech 

intelligibility performance when the binaural difference in the speech sound pressure 

level is significant (Samardzic et al, 2012), it appears in this case that the lack of any 

hearing ability in one (worse) ear may have an effect on the participant‟s overall hearing 

ability.  The SII scores associated with the „better‟ ear were approximately 20% higher 
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compared to the average, as the participant HI4 needed higher than average SNR, or 

vocal effort at the speech reception threshold. 

6.2.3.2  Summary of the Results 

The SII was evaluated at the sSRT for various vehicle operating conditions and talker and 

listener configurations based on on-road interior sound measurements that include the 

effects of vehicle wind noise.  The jury test participants had various hearing profiles; both 

normal hearing and hearing impaired.  It was found that the SII at sSRT is sensitive to the 

changes in SNR; the SII scores were lower for the on-road background noise 

measurements, compared to the dynamometer background noise measurements, implying 

the SRT occurred at lower or less favourable SNR.  The SII was a fair predictor for the 

hearing impaired individuals, depending on the severity and the ear location associated 

with the more severe hearing loss, however, due to the highly heterogeneous nature of 

hearing loss in general, it needs to be evaluated on the case by case basis.  It is also 

recommended to evaluate the hearing thresholds in one third octave frequency bands for 

improved accuracy of the results. 

The SII at sSRT was also calculated individually for the ordered and masking 

contributors of vehicle interior background noise as an example of the analysis of relative 

significance of the vehicle background noise sources to in-vehicle speech intelligibility. 

The total masking noise sources are the most significant contributors to the decrease of 

speech intelligibility at both speeds. Compared to the ordered noise sources, the SII 

scores using this noise component resulted in the lowest SII values.  The contribution of 

the ordered sources of noise is insignificant at 100 kph compared to 50 kph, as the SII 

score is close 80 percent.  The method presented can be used to design vehicle sound 
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package components as well as vehicle operating conditions and associated background 

noise in order to achieve the desired in-vehicle speech intelligibility, particularly the 

speech reception threshold. 

Future work may incorporate a more detailed, component-level driving simulator model 

where the identification of random sound sources may be performed after the order 

extraction from the measured vehicle noise.  For example, Crew et al (2003) proposed 

that for random sound analysis in the driving simulator, including road and tire noise, 

coherence-based methods such as multiple coherent output power, or principle 

component analysis, are applied to separate the various sources.  Wind noise is produced 

by subtracting the harmonic and random components already decomposed from the 

overall sound considering that once the harmonic and random components are removed 

from the overall sound, the only sound remaining is the wind noise. 

6.2.4 The Impact of the Band Importance Function in the Evaluation of the 

Speech Intelligibility Index at the Speech Reception Threshold within 

a Simulated Driving Environment 

A novel method for evaluating in-vehicle speech intelligibility using the SII is based on a 

measured speech signal, per ANSI S3.5-1997 standard, and it is evaluated at the sentence 

sSRT in a simulated driving environment.  In this context, the impact of different band 

importance functions in the evaluation of the SII using the HINT in a driving simulator is 

investigated.  The motivation for this study is the fact that the band importance function 

for the HINT speech material used in this research is currently not developed for the 

ANSI S3.5-1997 standard also used in this research as a basis for SII calculations. 

The speech signal used in the calculations was based on in-vehicle recordings of random 

noise calibration signal created by averaging all of the HINT sentences.  The SII was 
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calculated from the in-vehicle recordings of HINT calibration signal at the levels 

associated with the average jurors‟ response to particular HINT sentences during the 

simulated driving test. 

The impact of different band importance functions (BIF‟s) in the evaluation of the SII 

using the HINT in a driving simulator is investigated by using the BIF‟s from a variety of 

speech material available in the ANSI S3.5-1997 standard: Nonsense syllable tests, PB-

words, NU6 monosyllables, Diagnostic Rhyme Test, Short passages and SPIN 

monosyllables (Table 25).       

Table 25: Octave Band Importance Functions for Various Speech Tests (ANSI S3.5-1997). 

Frequency 

Band [Hz]

Average 

Speech

Nonsense 

Syllable tests
PB-words

NU6 

Monosyllables

Diagnostic 

Rhyme Test

Short 

Passages

SPIN 

Monosyllables

250 0.0617 0.0437 0.1549 0.0853 0.096 0.1004 0.0871

500 0.1671 0.1294 0.1562 0.1912 0.2043 0.2551 0.1493

1000 0.2373 0.2025 0.2165 0.211 0.2343 0.196 0.2206

2000 0.2648 0.3117 0.2768 0.309 0.2643 0.2322 0.3022

4000 0.2142 0.2576 0.1488 0.1682 0.1501 0.1744 0.2102

8000 0.0549 0.0551 0.0468 0.0353 0.051 0.0419 0.0306

 

Figures 45 through 47 illustrate the results of the SII calculations at sSRT.  The sSRT for 

each vehicle operating condition and talker and listener configuration was an average of 

the sSRT‟s of the five participants obtained from jury testing using the driving simulator.  

The BIF‟s from Table 25 were applied in the calculations for each combination of speech 

and background noise levels, and for each ear of the listener.  The deviation in SII 

between the average speech BIF and the various other BIF‟s did not exceed 4 percent 

(Figures 45 through 47).  In addition, according to Samardzic and Novak (Section 6.2.3), 

the three sigma limits for standard deviation in SII at sSRT evaluated at test conditions 

similar to those in this study are between 2 and 9 percent.   
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Figure 45: The speech intelligibility index evaluated at 50 kph and 100 kph at the average sentence Speech 

Reception Threshold (dBA), using band importance functions from various speech tests, per ANSI S3.5-

1997 standard.  Passenger front (PF) is talker location, driver (D) is listener, while LE and RE represent the 

left and the right ears of the listener, respectively. 

 

Figure 46: The speech intelligibility index evaluated at 50 kph and 100 kph at the average sentence Speech 

Reception Threshold (dBA), using band importance functions from various speech tests, per ANSI S3.5-

1997 standard.  Passenger rear left (PRL) is talker location, driver (D) is listener, while LE and RE 

represent the left and the right ears of the listener, respectively. 
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Figure 47: The speech intelligibility index evaluated at 50 kph and 100 kph at the average sentence Speech 

Reception Threshold (dBA), using band importance functions from various speech tests, per ANSI S3.5-

1997 standard.  Passenger rear right (PRR) is talker location, driver (D) is listener, while LE and RE 

represent the left and the right ears of the listener, respectively. 

 

Therefore, at constant background noise conditions, such as driving at 50 kph and 100 

kph as considered in this study, the SII appears to be relatively insensitive to the changes 

in the band importance function.  In this research, the band importance function for 

average speech was used.  According to the ANSI S3.5-1997 standard, the band 

importance function for average speech provides accurate predictions across different 

communication situations and for communications situations where contextual, linguistic, 

semantic and syntactic constraints vary within a situation. 
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CHAPTER 7: Conclusions and Recommendations 

In this chapter, the conclusions and recommendation are listed to summarize the main 

results of this research and to provide suggestions for further investigation of in-vehicle 

speech intelligibility, respectively.   

7.1 Conclusions 

The following conclusions were reached after thorough analysis of the results of this 

research: 

 In quantifying in-vehicle speech intelligibility using the most comprehensive 

objective speech intelligibility metric - the STI, it was found that higher sound 

pressure levels, depending on the frequency makeup, are not necessarily 

associated with lower speech intelligibility.  In addition, without acoustic 

perception jury testing it is unclear whether certain trends observed in the STI 

results presented over a wide range of common vehicle operating conditions are 

significant in perception of in-vehicle speech intelligibility.  These trends include 

significant differences in STI values, based on the subjective descriptions of 

intelligibility scores provided in the IEC EN 60268-16:2003 standard, between 

the ears of the listener, the differences in the rate of change of STI in unsteady 

background noise at any given speed and the differences in STI for different 

configurations of the talker with respect to the listener particularly from the back 

to front locations.  It was found that the effects of in-vehicle reverberation on 

reducing speech intelligibility were negligible; the measurement effort for future 

in-vehicle STI studies could then be reduced by considering the speech and 
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background noise measurements only, due to their predominant contribution to 

the apparent signal to noise ratio, and not measuring the impulse response.   

 The results on the effects of different types and levels of sound source signals on 

STI calculations using various vehicle operating conditions as well as talker and 

listener measurement configurations inside a vehicle were investigated.  For a 60 

dBA speech signal (current IEC standard, EN 60268-16:2003) and constant speed 

operation, the STI values range from „unintelligible‟ to „excellent‟, depending on 

the location of the talker and the listener.  For a 68 dBA speech signal (previous 

IEC standard, EN 60268-16:1998), the STI is at least „fair‟, based on the 

subjective descriptions of intelligibility scores, and its value was found to be less 

sensitive to changes in the vehicle operating conditions.  The speech signal level 

from the current standard provides satisfactory Peak to Noise Ratio for any 

method for obtaining impulse response.  An acoustic perception jury testing is 

needed to determine a realistic vocal effort required for adequate in-vehicle 

speech intelligibility.  The 60 dBA signal, associated with “normal” vocal effort 

(ANSI S3.5-1997), provided adequate (at least “fair”) intelligibility at lower 

speeds, such as city driving (50 km/h), for all measurement configurations.  An 

increased vocal effort of at least 68 dBA, considered to be “loud” (ANSI S3.5-

1997), was necessary to obtain similar intelligibility scores at higher speeds, such 

as highway driving (100 km/h), due to significantly higher levels of background 

noise.  An acoustic perception jury testing in a simulated vehicle environment 

would be conducted to investigate the speech sound pressure level under which 

speech communication is expected to be intelligible. 
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 In evaluating in-vehicle speech intelligibility using the best known objective 

speech intelligibility metrics - the Articulation Index, the Speech Intelligibility 

Index (SII) and the Speech Transmission Index (STI) - it was found that the SII 

method, utilizing user-defined, measured, speech signal was the best out of the 

three metrics for quantifying in-vehicle speech intelligibility.  Since the effect of 

reverberation on the loss of speech intelligibility was negligible, this method 

resulted in a close correlation with the more measurement-intensive STI method, 

thus potentially providing a reduction in measurement effort while preserving the 

accuracy of the results, since the SII method does not require impulse response 

measurements.  Common metrics provide a wide range of scores for a given 

measurement configuration and operating condition.  The scores could also be 

interpreted differently for each metric.  These shortcomings lay the ground for 

developing acoustic perception jury testing and a novel method for in-vehicle 

speech intelligibility evaluation. 

 The Speech Intelligibility Index (SII) was evaluation at various vehicle operating 

conditions and talker and listener configurations by considering the threshold loss 

associated with common hearing impairments - noise-induced hearing loss and 

presbycusis.  The results reveal poor speech intelligibility for most listening 

situations considered and provide evidence for the need for improving interior 

sound quality in terms of speech intelligibility for hearing impaired drivers such 

as senior aged drivers.  Further, this work provided additional motivation for 

including the hearing impaired individuals in acoustic perception jury testing 

within a driving simulator. 
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 In an acoustic perception jury testing utilizing the HINT within a driving 

simulator it was found that when presented with the same listening task, the 

participants required on average an approximate 3 dB increase in sound pressure 

level of the HINT speech material while driving and listening compared to when 

just listening, for an equivalent speech intelligibility performance.  When the 

talker was in the front passenger location, next to the listener who was driving the 

binaural difference in the speech sound pressure level was significant.  In this 

case, the signal to noise ratio of the ear closer to the talker was the main influence 

on the in-vehicle speech intelligibility performance. 

 A proposed novel method for evaluating in-vehicle speech intelligibility involves 

evaluating SII at the sSRT using acoustic perception jury test results obtained 

within a simulated driving environment.  The background noise measurements 

used in creating the simulator model were obtained using a vehicle dynamometer.  

The statistical variability analysis was performed using control charts.  Using this 

method the hearing ability of normal hearing individuals and the associated 

statistical variability was quantified thus providing a benchmark for future 

evaluation of in-vehicle speech intelligibility.  

 Another driving simulator model incorporated jury test participants with various 

hearing profiles and on-road interior sound measurements used to include the 

effects of vehicle wind noise.  It was found that the SII at sSRT is sensitive to the 

changes in SNR; the SII scores were lower for the on-road background noise 

measurements, compared to the dynamometer background noise measurements, 

implying the SRT occurred at lower or less favourable SNR.  The SII was a fair 
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predictor for the hearing impaired individuals, depending on the severity and the 

ear location associated with the more severe hearing loss, however, due to the 

highly heterogeneous nature of hearing loss in general, it needs to be evaluated on 

the case by case basis.   

 In the same study, the SII at sSRT was also calculated individually for the ordered 

and masking contributors of vehicle interior background noise as an example of 

the analysis of relative significance of the vehicle background noise sources to in-

vehicle speech intelligibility.  This information can be used to design vehicle 

sound package components as well as vehicle operating conditions and associated 

background noise in order to achieve the desired in-vehicle speech intelligibility, 

particularly at the speech reception threshold. 

7.1.1  Significant Contributions to Research 

The following contributions associated with this research have been made to the state of 

the art: 

 A detailed investigation of all common objective speech intelligibility metrics for 

in-vehicle applications and laying groundwork for an improved evaluation 

method to include directivity and the distance of the talker with respect to the 

listener, binaural listening, hearing profile of the listener, vocal effort, and 

multisensory hearing, all particular to an in-vehicle listening environment.  In 

general, the research suggests that a higher practical value of common speech 

audiometric test results may be achieved by facilitating the speech testing within 

an applicable listening environment; for the case of this research, simulated 

driving environment. 
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 Development of an innovative method for the evaluating of in-vehicle speech 

intelligibility by implementation of HINT, a common audiometric speech test, 

within a simulated driving environment, and subsequent quantification of speech 

intelligibility using the SII, the most practical objective speech intelligibility 

metric for in-vehicle applications, by evaluation at the sentence speech reception 

threshold.   

 Quantifying statistical variability of speech hearing ability of normal hearing and 

hearing impaired individuals using a simulated driving environment under a 

variety of vehicle operating conditions and listening situations, all using control 

charts. 

 Quantifying the effect of the individual sources of sound to the vehicle interior 

sound, specifically their effect on speech intelligibility, in the context of the above 

speech intelligibility evaluation method.  This evaluation provides the potential 

for modifying the vehicle components or operating conditions that contribute to 

the reduction of in-vehicle speech intelligibility. 

7.2  Recommendations 

 Incorporate a variety of vehicle types as well as hearing profiles and further, to 

investigate parameters related in-vehicle speech intelligibility evaluation. 

 Quantify the statistical variability of vocal effort and vehicle interior background 

noise in the evaluation of in-vehicle speech intelligibility. 
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 Perform an acoustic perception jury testing to evaluate the relationship between 

the listening effort and the vocal effort for a variety of vehicle operating 

conditions and listening situations. 

 Develop a more detailed, component-level driving simulator model where the 

identification of random sound sources may be performed after the order 

extraction from the measured vehicle noise.  The noise sources may include wind, 

tire, engine, transmission, intake, exhaust systems.  The contribution of each of 

the noise sources to the loss of speech intelligibility may be quantified, as 

presented in this research. 

 Evaluate the hearing thresholds at one-third octave frequency bands, instead of 

one-octave frequency bands presented in conventional audiograms, for improved 

accuracy of the objective speech intelligibility metric results calculations. 
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APPENDICES  

Appendix A: Equipment Specifications 

A1: Bruel and Kjaer Type 4100 Head and Torso Simulator 

MICROPHONES AND PREAMPLIFIERS 

Two Type 4190–L–002 microphone/preamplifier assemblies with built-in 

TEDS, each comprising a ½″ Falcon Range Microphone Type 4190 placed 

in the bottom of the concha, and Falcon series Preamplifier Type 2669 L 

with charge injection calibration (CIC) facility and LEMO connector 

Microphone Sensitivity: 50mV/Pa. Individually calibrated 

Upper Limit of Dynamic Range: 148 dB SPL at 3% distortion 

Max. Sound Pressure Level: 

159 dB peak with Preamplifier Type 2669 and mains driven power supplies 

138 dB peak with Preamplifier Type 2669 and battery power supplies 

Preamp. Lower Limiting Frequency: <2Hz (–3dB) 

PINNA SIMULATOR 

Dimensions similar to those specified in ITU–T Rec. P.58, IEC 959 and 

ANSI S3, 36–1985, except for the ear canal extensions 

 

HEAD AND TORSO SHAPES 

The main dimensions comply with the dimensional requirements of 

ITU–T Rec. P.58 and the reports from IEC 959 and ANSI S3 36–1985 

 

SHOULDER DAMPING FABRIC 

The shoulders, chest and back are covered with a damping fabric to adjust 

diffraction. The fabric has a minimum of 10% absorption in the range of 

100Hz to 20 kHz. 

 

LEFT/RIGHT EAR TRACKING 

±1 dB up to 5 kHz 

±3 dB up to 8 kHz 

 

CALIBRATION 

Sensitivity calibration can be made using a calibrator or pistonphone with 

Calibration Adaptor DP 0887 

 

DIMENSIONS AND WEIGHT 

Head Height: 700mm (27.6″) 

Torso: 480 × 440 × 210 mm (18.9 × 17.3 × 8.3″) 

Weight: 7.9 kg (17.4 lb.) 
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A2: Bruel and Kjaer Type 4128 Head and Torso Simulator 

LISTENER FREQUENCY RESPONSE 

Conforms to ITU-T Rec. P.58 for measurements on telecommunications 

devices and to IEC60318–7 and ANSI S3.36–1985 for measurements on 

air conducting hearing aids. 

 

EAR SIMULATOR 

IEC 60318–4/ITU-T Rec. P.57 Type 3.3-based calibrated ear simulator 

complying with ITU-T Rec. P.57, IEC 60318–4 and ANSI S3.25 

standards. Output from the ear simulator is via a 7-core 3 m cable (2.3 m 

from the bottom of the torso) terminated with a Lemo (1B) plug. For 

connection to a preamplifier input socket of Brüel & Kjær Power Supplies, 

Analyzers, etc., a Lemo-to-Brüel & Kjær adaptor is supplied 

Typical Sensitivity: 11.6 mV/Pa = –38.7 dB (±1.5 dB) re 1 V/Pa @ 250 Hz 

3% Distortion Level: 162 dB re 20 μPa at eardrum position 

 

LEFT EAR TO RIGHT EAR TRACKING 

±1 dB up to 5 kHz, ±3 dB up to 8 kHz (measured using the same ear 

simulator) 

 

PINNA SIMULATORS 

Dimensions similar to those specified in ITU-T Rec. P.58, IEC 60318–7 

and ANSI S3.36. Minor adjustments in the dimensional details have been 

made which enable Type 4128-C to conform with the acoustic 

specifications of these documents in the frequency range 100 Hz to 

8 kHz. Types 4158-C and 4159-C are supplied with calibrated pinna 

simulators. An additional pair of uncalibrated hard pinna simulators are 

available as accessories. 

 

MOUTH SIMULATOR 

Input to mouth simulator via 0.75 m cables (0.2 m from the bottom of the 

torso) terminated with banana-sockets 

Sound Pressure Distribution: conforms to ITU-T Rec. P.58 

Mouth Opening: W × H: 30 × 11 mm (1.18 × 0.43″) 

Equivalent Lip Plane Position, CL: 6 mm in front of the sound radiation 

opening 

Mouth Reference Point, MRP: 25 mm in front of mouth CL 

Continuous Output Level at MRP: 

Min. 110 dB SPL, 200 Hz to 2 kHz 

Min. 100 dB SPL, 100 Hz to 8 kHz 

Typical Sensitivity at 1 kHz: 80 dB SPL 2 V/500 mm 

Distortion (Harmonic Components up to 8 kHz) at 94 dB SPL: 

<2%, 200 Hz to 250 Hz; <1% >250 Hz 

DIMENSIONS AND WEIGHT 

The main dimensions comply with the dimensional requirements of ITU-T 

Rec. P.58 and the reports from IEC 60318–7 and ANSI S3.36-1985 

Total Height, Head and Torso: 695 mm (27.4″) 

Torso: Height: 460 mm (18″), Width: 410 mm (16″), Depth: 183 mm (7.2″) 

External Neck Diameter: 112 mm (4.4″) 

Head Angles: Vertical or tilted 17° forwards 

Weight: 9 kg (19.8 lb.) 
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A3: Bruel and Kjaer Type 2716 Audio Power Amplifier 

FREQUENCY RESPONSE (8Ω, 1W) 

20 Hz . 20 kHz: +0, .1 dB 

INPUTS AND OUTPUTS 

Gain: 30 dB ± 1 dB 

Input Attenuator: 0 . 30 dB in 6 dB ± 0.3 dB 

steps 

Impedance: 20 kΩ 

Common Mode Rejection: 50 dB@1 kHz 

Slew Rate: 25 V/μs 

Output Impedance: 0.03Ω 

Hum and Noise: More than 105 dB below 

max. power 

Channel Separation: 70dB@10kHz 

 

FRONT PANEL 

Gain Controls: 2 . channels, A and B 

Clip Indicator: 2 red LEDs, fast peak and 

slow release or shorted output 

Protection Indicator: 2 yellow LEDs, 80°C 

at heat sink or 12 kHz at full power 

Present Indicator: 2 green LEDs, . 25 dB at 

Input 

On Indicator: 2 green LEDs, DC rail voltage 

for channel A and B 

 

REAR PANEL 

Input Connectors: Two XLR-type, 3-pin 

female (pin 2+) and 1/4″ jack 

Output Connectors: Two Neutrik®, 4-pin, 

Speakon® sockets 

Link: Stereo . Link/Bridge A + B 

Clip Limiter: On/Off 

 

POWER REQUIREMENTS 

Voltage Selector: 230V/115V 

 

DIMENSIONS 

W × H × D: 48.3 × 4.4 × 28.0 cm 

(19 × 1.7 × 11 inches) 

 

WEIGHT 

7.5 kg (16.5 lb.) 
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A4: Bruel and Kjaer Free Field TEDS (Transducer Electronic Data Sheet) 

Microphones 

 

Temperature Range 

The read/write temperature range of the TEDS chip is guaranteed by the chip manufacturer up to 85ºC 

(185ºF) only, but the TEDS chip will survive the full specified temperature range of the TEDS microphone/ 

preamplifier without any damage. 

Standard preamplifiers (Types 2669, 2670, 2671, 2699) go to 80°C (176°F). High-temperature preamplifier 

Type 1706 goes to 125°C (257°C). Remember also to use cables with the correct temperature range. 

 

Cable Length 

TEDS will normally work with cables up to 100 m (328 ft). 
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A5: Bruel and Kjaer Type 4231 Sound Calibrator 

STANDARDS SATISFIED 

EN/IEC 60942 (2003), Class LS and Class 1, Sound Calibrators 

ANSI S1.40 – 1984, Specification for Acoustic Calibrators 

 

SOUND PRESSURE LEVELS 

94.0 dB ±0.2 dB (Principal SPL) or 

114.0 dB ±0.2 dB re 20 μPa at reference conditions 

 

FREQUENCY 

1kHz ±0.1% 

 

SPECIFIED MICROPHONE 

Size according to IEC 61094-4: 

– 1″ without adaptor 

– 1/2″ with adaptor UC-0210 (supplied) 

– 1/4″ with adaptor DP-0775 (optional) 

– 1/8″ with adaptor DP-0774 (optional) 

 

EQUIVALENT FREE-FIELD LEVEL 

(0° incidence, re Nominal Sound Pressure Level) 

– 0.15 dB for 1/2″ Brüel & Kjær Microphones. See Type 4231 User 

Manual for other microphones 

 

EQUIVALENT RANDOM INCIDENCE LEVEL 

(re Nominal Sound Pressure Level) 

+0.0 dB for 1″, 1/2″, 1/4″ and 1/8″ Brüel& Kjær Microphones 

 

NOMINAL EFFECTIVE COUPLER VOLUME 

>200cm3 at reference conditions 

 

DISTORTION 

<1% 

 

LEVEL STABILITY 

Short-term: Better than 0.02 dB (as specified in IEC 60942) 

One Year: Better than 0.05 dB (σ = 96%) 

Stabilization Time: <5 s 

REFERENCE CONDITIONS 

Temperature: 23°C ±3°C (73° ±5°F) 

Pressure: 101 ±4 kPa 

Humidity: 50%, –10% +15% RH 

Effective Load Volume: 0.25cm
3
 

 

ENVIRONMENTAL CONDITIONS 

Pressure: 65 to 108 kPa 

Humidity: 10 to 90% RH (non-condensing) 

Effective Load Volume: 0 to 1.5 cm
3
 

 

INFLUENCE OF ENVIRONMENTAL CONDITIONS (Typical) 

Temperature Coefficient: ±0.0015 dB/°C 

Pressure Coefficient: +8 × 10–4 dB/kPa 

Humidity Coefficient: 0.001 dB/%RH 
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POWER SUPPLY 

Batteries: 2 × 1.5 V IEC Type LR6 (“AA” size) 

Lifetime: Typically 200 hours continuous operation with alkaline 

batteries at 23°C (73°F) 

Battery Check: When Type 4231 stops working continuously, and 

only operates when the On/Off button is held in, the batteries should 

be replaced. 

 

DIMENSIONS AND WEIGHT 

(Without case) 

Height: 40 mm (1.5″) 

Width: 72 mm (2.8″) 

Depth: 72 mm (2.8″) 

Weight: 150 g (0.33 lb.), including batteries 

Note: All values are typical at 25°C (77°F), unless measurement 

uncertainty or tolerance field is specified. All uncertainty values are 

specified at 2 σ (i.e., expanded uncertainty using a coverage factor 

of 2). 
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A6: Bruel and Kjaer Desktop Simulator Hardware Overview and Specifications 

 

 

DTS CORE AND VISUALS TYPE 8601-A-N 

 

Core software: all other modules plug into this. Includes data  

management, virtual prototype assembler, test manager, and runtime  

manager.   

Enables user to configure data into vehicle models, build a virtual  

vehicle for assessment, choose which vehicles to compare in a test,  

and drive the vehicles interactively with virtual instrumentation for  

feedback of vehicle rpm, gear and speed. 

Data types which can be evaluated interactively using DTS Core  

include: 

- spectra 

- time histories 

- order profiles 

Adds a choice of visual scenarios to the simulation, allowing the user  

to drive as though in a real car. Includes traffic and the ability to  

define a sequence of road surfaces to allow the user to experience  

the NVH when driving from one surface to another. 
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DTS ENGINEERING TYPE 8601-B-N 

 

Engineering style interface to NVH data, giving a button for each  

sound configured in a virtual vehicle. Mixer-style interface, where  

user can play any combination of sounds, and hierarchical interface,  

where intelligence helps decide which sounds make correct  

combinations for the vehicle. 

Allows components (for example, engine mount contributions or  

intake orifice contribution for example) to be switched on/off,  

substituted for new versions, and modifications to the sound of  

individual components to be made (using filtering tools). 

User can apply filter sets to sound objects in the simulation. Filtering  

can be applied at any level/component included in the simulation. 

Allows user to set targets very quickly by interactively applying filters  

while driving the vehicle to check that the outcome is optimal for all  

driving conditions. Includes a set of pre-defined filters representing  

engineering rules of thumb, for example addition of secondary  

firewall, balancer shaft for 4-cylinder engine, double glazing, triple  

sealing, etc.. 

 

DTS PERFORMANCE DATA PREPARATION TYPE 8601-C-N 

 

Module to configure a free-driving performance model from vehicle  

speed/time and rpm/time curves. 

Permits editing of an existing model to meet new design criteria. 

 

DTS VEHICLE LEVEL DATA PREPARATION TYPE 8601-K-N 

 

This module prepares NVH data to allow the user to perform free  

driving in an NVH Simulator. 

This can be done by decomposing the noise of the vehicle into engine  

related noise and the residual noise (for example, wind, road, tyre  

noise). 

 

 

 

 

 

 

 

 

 



 

164 

 

A7: SonoScout Binaural Recording and Analysis System Parts List and 

Specifications 

 

Microphones 

 

Cartridge Type: Prepolarized, gold-plated condenser element with vertical diaphragm 

Microphone Size: 12.7mm (0.5 in.) length, 5.4 mm (0.21 in.) capsule diameter 

Frequency Range: 20 Hz . 8 kHz, ± 2 dB re 1 kHz, 3 dB soft boost at 8 - 20 kHz when measured in 

free field for individual microphones at 0° incidence 

Sensitivity: Nominally 20 mV/Pa ±3 dB at 1 kHz 

Equivalent Noise Level, A-weighted: Typically 23 dB(A) re 20 μPa 

Maximum Sound Pressure Level: 134 dB SPL before damage 

Total Harmonic Distortion: <3% at 114 dB SPL (sine) 

Preamplifier Output Impedance: 30 . 40Ω 

Cable Drive Capability: Up to 3m (10 ft.) 

Cable Length: 1.40 m (4.6 ft.) from capsule to connector 

Weight: <10 g (down to cable clip) 

SoNoScout Case (with system components stored inside) 

Dimensions: 164 × 322 × 450 mm (6.5 × 12.7 × 17.7 in.) 

Weight: 3.6 kg (7.9 lb.) 
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A8: LAN-XI Data Acquisition Hardware for Bruel and Kjaer PULSE Software 

LAN-XI Data Acquisition Hardware Type 3660 covers a range of input/output modules that can be used 

stand-alone, in a distributed network or in frames holding up to 11-modules. Fully compatible with PULSE 

IDAe hardware, LAN-XI hardware is extremely flexible and can be easily reconfigured as requirements 

demand into systems from 2 channels to more than 1000. 

 

Power over Ethernet 

 

PoE is implemented according to IEEE 802.3af. PoE is wired Ethernet LAN technology that, with a 

suitable PoE LAN switch, allows the power needed for each module to be carried by screened shielded 

twisted pair (S/STP or S/FTP) CAT6 LAN cables rather than by separate power cables. This minimises the 

number of cables required and results in lower cost, less downtime, easier maintenance and 

greater installation flexibility. PoE switches, such as the Linksys
®
 SRW2008MP, 8-port Gigabit Switch, 

and PoE Injectors, such as ZyXEL PoE-12 Power over Ethernet (a single-port PoE injector), can be used.  

 

Silent operation 

 

Operation is silent as the modules have no cooling fan – the ribbed design provides enough cooling when 

used stand-alone. 

 

Phase matching over LAN - PTP 

 

For most sound and vibration applications, sample-synchronous and phase-matched measurements are a 

must. If no synchronisation method is used, two or more sampling systems will drift apart over time. Even 

the best clock systems available will, in less than 10 seconds, drift so far apart that the sample correlation 

will drop to an unacceptable level for high-quality sound and vibration measurements. Traditional 

measurement systems have a common sample clock ensuring synchronisation between measurement 

channels located in the same front-end frame. Newer systems have offered various cable-based 

synchronisation techniques between different front-ends – all with the significant disadvantage of requiring 

extra cabling. 

 

With LAN-XI, Brüel & Kjær introduces a new technique to ensure sample-synchronous measurements 

over the same LAN connection used for transferring the measurement data. This simplifies the 

measurement system‟s cabling and makes it possible to perform sample-synchronous measurements over 

long distances, eliminating the effect of delays over the cable and interconnected switches. 

PTP synchronisation provides a whole new set of possibilities for combining measurement systems located 

different places: closer to the actual measurement point, in different rooms/test cells, long distances 

between equipment. The only thing that is required is a LAN connection. 

 

The IEEE 1588 Precision Time Protocol 
 

PTP synchronisation measures the delays between individual PTP components using a special algorithm 

(see the IEEE 1588 standard*). By doing this, all delays can be accurately measured, and the individual 

clocks can be set to exactly the same time. On top of this, the phase drift of the “slave” clocks is 

continuously measured and counter-adjusted by a control loop, which adjusts the slave clocks‟ speed. All 

Brüel & Kjær Sound & Vibration applications will work with either a high-performance 1 gigabit switch or 

a dedicated PTP switch. 

 

Interchangeable front panels 

 

The modules allow front panels to be interchanged freely, with a variety of connectors for different 

transducers and applications. See Input Channel section for list of supported transducers. 

 

This results in fewer patch panels, less cable “spaghetti”, fewer cable adaptors and faster system setup. 
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Most connector panels can be used on any module. If an illegal combination is used, such as connecting a 

front panel that has LEMO (multipurpose) connectors to a module that only supports DeltaTron™ and 

voltage (B-versions), the module will stop during power-up and display an error message. 

 

Input channels 

 

Frequency Range 51.2 / 102.4 kHz 

100% independent channels 

 

The input channels on a module can be set up independently. You can set up the high-pass filters and input 

gain separately and attach different types of transducers to different channels. The microphone polarization 

voltage can be switched on or off for each module. 

 

Overload and cable break detection 

 

Input modules use two methods to detect transducer cable breaks or whether the wrong conditioning has 

been chosen. For microphones, their supply current is monitored. For DeltaTron™ accelerometers (or 

microphones using DeltaTron™ preamplifiers), the supply voltage is monitored. If a conditioning error, 

such as a broken cable, is detected, an error is indicated as an overload on the specific channel. 

 

IEEE 1451.4 transducers 

 

Input modules support TEDS transducers allowing automatic front-end and analyzer setup based on 

information stored in the transducer. TEDS information includes, for example, sensitivity, serial number, 

manufacturer and calibration date. 

The individual frequency response of a transducer can be corrected for using Transducer Response 

Equalisation (REq-X) to achieve higher accuracy over extended frequency ranges. 

 

Ground-loop noise suppression 

 

The modules‟ floating/grounded, differential input design and the fact that all external connections (LAN, 

power supply) are galvanically isolated in the module provide optimal ground-loop noise suppression. 

 

Protection 

 

If the signal input level to a module significantly exceeds the measuring range, the input will go into 

protection mode for at least 0.5 s until the signal falls again. While protected, the input is partly switched 

off and the input impedance is greatly increased (The measured value will be strongly attenuated but still 

detectable). 

 

160 dB in one measuring range - DYN-X technology 

 

Dyn-X is an innovative range of state-of- the-art input modules with a single input range from 0 to 10Vp 

and a useful analysis range exceeding 160 dB. To date, high-quality transducers and preamplifiers have 

outperformed measuring equipment with regard to linearity and dynamic performance, being able to deliver 

a noise- and distortion-free signal over a dynamic signal range of 120 to 130 dB broadband and 160 dB 

narrow-band. 

 

With Dyn-X technology the entire measurement and analysis chain matches or outperforms the transducer 

used for measurement. This eliminates the need for an input attenuator for ranging the analysis-system 

input to the transducer output. All you need to do to get excellent results is choose the right transducer. 

 

Output channels 

 

The two output channels on Type 3160 can be used as high-quality signal generators with a frequency 

range from 0 to 51.2 kHz and can supply the signals necessary for performing system analysis. 
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Type 3160 is designed around a powerful digital signal processor and a low-noise, 24-bit, D/A converter. 

Type 3160 has exceptional flexibility, stability and accuracy. Output levels are adjustable in hardware (two 

ranges) with maximum outputs of 316mVpeak and 10Vpeak. High-quality levels from 1 V to 316mV or 

10 V are obtained. The output signal is provided by a BNC connector and can be referred to ground or 

floating. It is possible to add a DC offset, but any unwanted DC offset is automatically removed. When 

Type 3160 is powered by PoE, only the generator channels and two input channels can be used. If DC 

or mains power is available, the generator channels and all four input channels can be used. 

 

Linearity 

 

Frequency linearity is better than ±0.1 dB over the entire frequency range, and amplitude linearity is better 

than 0.1 dB over at least 100 dB amplitude range referred to full scale. 

 

Overload 
 

Output voltages above 11Vpeak or output currents above 40mApeak are indicated as overloads by the 

circular LEDs on the output channels. 
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Appendix B: A Complete List of HINT Sentences Used for Jury Testing 

 

 

1. (A/the) boy fell from (a/the) window.

2. (A/the) wife helped her husband.

3. Big dogs can be dangerous.

4. Her shoes were very dirty.

5. (A/the) player lost (a/the) shoe.

6. Somebody stole the money.

7. (A/the) fire was very hot.

8. She’s drinking from her own cup.

9. (A/the) picture came from (a/the) book.

10. (A/the) car (is/was) going too fast.

1. (A/the) boy ran down (a/the) path.

2. Flowers grow in (a/the) garden.

3. Strawberry jam (is/was) sweet.

4. (A/the) shop closes for lunch.

5. The police helped (a/the) driver.

6. She looked in her mirror.

7. (A/the) match fell on (a/the) floor.

8. (A/the) fruit came in (a/the) box.

9. He really scared his sister.

10.  (A/the) tub faucet (is/was) leaking.

PF-D 50 kph

 

B1: Passenger front (PF) as talker, Driver (D) as listener, at 50 kph. 
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1. They heard (a/the) funny noise.

2. He found his brother hiding.

3. (A/the) dog played with (a/the) stick.

4. (A/the) book tells (a/the) story.

5. The matches (are/were) on (a/the) shelf.

6. The milk (is/was) by (a/the) front door.

7. (A/the) broom (is/was) in (a/the) corner.

8. (A/the) new road (is/was) on (a/the) map.

9. She lost her credit card.

10.  (A/the) team (is/was) playing well.

1. (A/the) little boy left home.

2. They’re going out tonight.

3. (A/the) cat jumped over (a/the) fence.

4. He wore his yellow shirt.

5. (A/the) lady sits in the chair.

6. He needs his vacation.

7. She’s washing her new silk dress.

8. (A/the) cat drank from (a/the) saucer.

9. Mother opened (a/the) drawer.

10.  (A/the) lady packed her bag.

PF-D 100 kph

 

B2: Passenger front (PF) as talker, Driver (D) as listener, at 100 kph. 
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1. (A/the) boy did (a/the) handstand.

2. They took some food outside.

3. The young people (are/were) dancing.

4. They waited for an hour.

5. The shirts (are/were) in (a/the) closet.

6. They watched (a/the) scary movie.

7. The milk (is/was) in (a/the) pitcher.

8. (A/the) truck drove up (a/the) road.

9. (A/the) tall man tied his shoes.

10. (A/the) letter fell on (a/the) floor.

1. (A/the) silly boy (is/was) hiding.

2. (A/the) dog growled at the neighbours.

3. (A/the) tree fell on (a/the) house.

4. Her husband brought some flowers.

5. The children washed the plates.

6. They went on vacation.

7. Mother tied (a/the) string too tight.

8. (A/the) mailman shut (a/the) gate.

9. (A/the) grocer sells butter.

10. (A/the) baby broke his cup.

PRR-D 50 kph

 

B3: Passenger rear right (PRR) as talker, Driver (D) as listener, at 50 kph. 
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1. The cows (are/were) in (a/the) pasture.

2. (A/the) dishcloth (is/was) soaking wet.

3. They (have/had) some chocolate pudding.

4. She spoke to her eldest son.

5. (An/the) oven door (is/was) open.

6. She’s paying for her bread.

7. My mother stirred her tea.

8. He broke his leg again.

9. (A/the) lady wore (a/the) coat.

10. The cups (are/were) on  (a/the) table.

1. (A/the) ball bounced very high.

2. Mother cut (a/the) birthday cake.

3. (A/the) football game (is/was) over.

4. She stood near (a/the) window.

5. (A/the) kitchen clock (is/was) wrong.

6. The children helped their teacher.

7. They carried some shopping bags.

8. Someone (is/was) crossing (a/the) road.

9. She uses her spoon to eat.

10. (A/the) cat lay on (a/the) bed.

PRR-D 100 kph

 

B4: Passenger rear right (PRR) as talker, Driver (D) as listener, at 100 kph. 
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1. School got out early today.

2. (A/the) football hit (a/the) goalpost.

3. (A/the) boy ran away from school.

4. Sugar (is/was) very sweet.

5. The two children (are/were) laughing.

6. (A/the) fire truck (is/was) coming.

7. Mother got (a/the) sauce pan.

8. (A/the) baby wants his bottle.

9. (A/the) ball broke (a/the) window.

10. There (is/was) a bad train wreck.

1. (A/the) boy broke (a/the) wooden fence.

2. (An/the) angry man shouted.

3. Yesterday he lost his hat.

4. (A/the) nervous driver got lost.

5. (A/the) cook (is/was) baking (a/the) cake.

6. (A/the) chicken laid some eggs.

7. (A/the) fish swam in (a/the) pond.

8. They met some friends at dinner.

9. (A/the) man called the police.

10. (A/the) truck made it up (a/the) hill.

PRL-D 50 kph

 

B5: Passenger rear left (PRL) as talker, Driver (D) as listener, at 50 kph. 
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1. (A/the) neighbor’s boy (has/had) black hair.

2. The rain came pouring down.

3. (An/the) orange (is/was) very sweet.

4. He took the dogs for a walk.

5. Children like strawberries.

6. Her sister stayed for lunch.

7. (A/the) train (is/was) moving fast.

8. Mother shut (a/the) window.

9. (A/the) bakery (is/was) open.

10. Snow falls in the winter.

1. (A/the) boy went to bed early.

2. (A/the) women cleaned her house.

3. (A/the) sharp knife is dangerous.

4. (A/the) child ripped open (a/the) bag.

5. They had some cold cuts for lunch.

6. She’s helping her friend move.

7. They ate (a/the) lemon pie.

8. They (are/were) crossing (a/the) street.

9. The sun melted the snow.

10. (A/the) little girl (is/was) happy.

PRL-D 100 kph

 

B6: Passenger rear left (PRL) as talker, Driver (D) as listener, at 100 kph. 
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Appendix C: Letter of Information and Consent to Participate in Research 

 

 
 
 

LETTER OF INFORMATION AND CONSENT TO PARTICIPATE IN RESEARCH 

 

TITLE OF STUDY 
 
Investigation of In-Vehicle Speech Intelligibility for Normal Hearing and Hearing Impaired 
Listeners Using a Desktop Driving Simulator 
 
PRINCIPAL INVESTIGATOR 
 
Nikolina Samardzic, University of Windsor 
kojovic@uwindsor.ca  
 
INVITATION TO PARTICIPATE  
 
You are being invited to participate in a research study that measures the effectiveness of speech 
communication in vehicles.  This letter is intended to provide you with the information you require 
to make an informed decision on participating in this research. Please take the time to read this 
information and feel free to ask questions if there is anything unclear to you.  You will be given a 
copy of this letter for your records. 
The research is being conducted for Nikolina Samardzic’s Doctoral Dissertation under the 
supervision of Dr. Colin Novak.  The research is being funded by the Ontario Research Fund. 
 
PURPOSE OF THE STUDY 
 
The purpose of this investigation is to quantify in-vehicle speech intelligibility between a driver 
and a passenger using the Hearing in Noise Test (HINT) and a desktop driving simulator.  The 
loss of speech intelligibility under a variety of vehicle operating conditions and driver and 
passenger configurations is investigated.  The results of this study will help in gaining a more 
detailed understanding of in-vehicle communication and future research of developing new in-
vehicle hearing technologies.  This would include the development of new cabin designs to 
facilitate better communication in vehicles as well as the development of better in-vehicle 
communication systems. 
 
PROCEDURES 
 
If you volunteer to participate in this study you will be asked to drive a desktop driving simulator at 
either 50 km/h or 100 km/h.  As you are driving, speech will be played to you through the 
headphones and you will be asked to repeat back what you have heard.  While you are listening, 
the sound level of the speech might be increased or decreased, which may make listening slightly 
easier or more difficult.  The test is expected to last up to one hour.     
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POTENTIAL RISKS AND DISCOMFORTS 
 
Overall risks involved in this research are minimal.  The sound level of the noise stimuli played 
over the headphones of the desktop simulator will always be within the range encountered in a 
vehicle moving between 50 km/h and 100 km/h.  The sound level of speech played 
simultaneously through the headphones will be close to your threshold of hearing.  The study will 
be terminated if you report any signs of physical or emotional discomfort while driving the desktop 
simulator or at any point during the study. 
 
POTENTIAL BENEFITS TO SUBJECTS AND/OR TO SOCIETY 
 
You may not benefit directly from participating in this study, but your participation will help in 
understanding the nature of in-vehicle communication and speech intelligibility.  The results of 
this study can potentially be used in assisting with the development of new vehicle designs as 
well as the development of in-vehicle communication systems for improved speech intelligibility. 
 
COMPENSATION FOR PARTICIPATION 
 
Participation in this research is voluntary and you will not be paid to participate in this research.   
 
CONFIDENTIALITY 
 
Any information that is obtained in connection with this study and that can be identified with you 
will remain confidential and will be disclosed only with your permission. 
 
PARTICIPATION AND WITHDRAWAL 
 
Participation in this study is voluntary. You may refuse to participate, refuse to answer any 
questions, or withdraw from the study at any time with no consequences.  
If you decide to withdraw or if you are withdrawn before the study is completed, we will ask for 
your permission to retain and use your data collected up to that point. If you decline permission, 
your data and contact information will be destroyed.  However, it will only be possible to do so if 
they have not been included in any publication. 
 
FEEDBACK OF THE RESULTS OF THIS STUDY TO THE SUBJECTS 
 
The research findings will be available once published.  If interested, a hard copy or an electronic 
copy of the publication would be provided to you.   
 
SUBSEQUENT USE OF DATA 
 
The study data may be used in subsequent studies. 
 
RIGHTS OF RESEARCH SUBJECTS 
 
If you have questions regarding your rights as a research subject, contact:  Research Ethics 
Coordinator, University of Windsor, Windsor, Ontario, N9B 3P4; Telephone: 519-253-3000, ext. 
3948; e-mail:  ethics@uwindsor.ca 
 
 
 
 
 
 
 
 

mailto:ethics@uwindsor.ca
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SIGNATURE OF RESEARCH SUBJECT/LEGAL REPRESENTATIVE 
 
I understand the information provided for the study “Investigation of In-Vehicle Speech 
Intelligibility Using a Desktop Driving Simulator “as described herein.  My questions have been 
answered to my satisfaction, and I agree to participate in this study.  I have been given a copy of 
this form. 
 
 
 
 
 

______________________________________ 
Name of Subject 

 
 
 

______________________________________  ___________________ 
Signature of Subject       Date 

 
 
 
 
 
 
 SIGNATURE OF INVESTIGATOR 
 
 These are the terms under which I will conduct research. 
 
 

 
_____________________________________  ____________________ 
Signature of Investigator      Date 
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