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ABSTRACT

The phase charaéteriétics of a digital filter is of
importance in many applications; specifically, in %Fage pro-
cesging problems. “Part of the work reported in this thesis
is devéfed to the design’of recursive digital filters in
which a simultaneous approximation of the desired magnitude
and linear phase is perfbrmed, using linear programming. The
use of linear programmipg is facilitated via:the linearization
of the inherently non%linear approximation problem. Using
this approach, both ohe and two dimensional gquarter plane
recursive digital filters have been designed, the examples
which are provided with the design algorithm. Linear stabi-
lity constraints are proposed, which can easily be incorpor-
ated into the linear programming design'procedure, to enable
the 'design of stable filtersl These stability constraints
are sufficient conditions for stability, and therefore allow
the design of a subclass of one and two dimensional guarter
plane recursive digital filters. ‘

Considering the computational advantage of recursive
dig;tal filters, compared to most convolutional methods of
filtering (specifically, convolution filtering via the Fast
Fourier Transform), the*second part of this thesis examines

{
applications of quarter plane two dimensional recursive .
digital filters in image processing. 'The thesis considers
applications in the areas of image enhancement and restora-

tion problems. The problems considered in image enhancement

are: high frequency emphasis and edge enhancement. The
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problems of image restoration are considered for the cases
of motion, focus and atmospheric turbulan{:e blurs.
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CHAPTER I

INTRODUCTION

_l;l One and Two Dimensional Signal Processing

In recent yeérs there has been a rapid growth of
interegst in computer érocessing of both one and two dimen-
sional digital signals. Examples of one dimensional signals
.of interest are speech, EéG (Electro pardiogrami and EEG
(Electro Encephalogram). Two dimensional signals of interest
include photographic dat;, sqch as medical x-rays, aerial
photographic data used for geographic purposes and non-
pictorial data such as the data corresponding to seismic
signals obtained in the exploration for oil and gas.

The purpose of.processing such signals is manifold.

In the case of speech signals, for example, it maylbe required
to extract information corresponding to the identity of a
speaker, or in‘fhe case of ECG it ﬁay be data compression,
where the-purpose is to redﬁce storage requirement to a mini-
mum. In the two dimensional case examples are the enhancemen£
of satellite pictures for improving image quality, or, in the
case of ERTS (Earth Resource Technology Satellite) pictures,
the purpose may be to obtain a classification of earth's
resources.

In many céses the processing of such signals by analog
techniques is unattractive. In the one dimensionél signal
processing, for example, considef‘an analog filter which
requires twenty poles to accomplish a design objective. In

this case even if the filter is realized actively with



isolation between stages, it probably"will be almost impos-
sible to tune. In‘thé two dimensional case an example of
analbg processing is the processi;g of photographic data by
optical techniques. Although optical prOCEssing is a com—
pletely parallel process (and he;ce fa;t), diéital processing
is much more flexible'and does not reguire the set up proce-
dures normally associated with, for example, optical filtering.
Optical filtering is normally restricted to handling only
linear filtering problems. In an all digital environment, it
is possible to carry out iterative processes and processes
requiring tests and decisions as well as normal 1inear, and

" non-linear filtering algorithms. To carry out these précesses
one may employ a general purpose digital compafer, along with
some dedicated‘hardware to peEform specific tasks.

One of the most common signal processing operations_
which can be performed digitally is linear filtering. As an
exaﬁple, the edge enhancement of a picture can be carried out
by two dimensional high pass filtering. The need for_such
types of processing and the decreasing cost df performing
these processes digitally has given rise to considerable
research interest iﬁ the area of digital filter design and
their applications. Digital filters are of two types, namely:
a) Finite impulse response (FIR) and b) Infinite impulse res-
ponse or Recursive. As a part of this research interest,
this diSsertation presents a method for the‘design-ofr a class
of digital filters called the recursiée {infinite impulse'
response) digital filters.in one and two dimensions ang

examines their applicatiodns in certain image processing pro-




blems. A complete description of the typés of digital
filters and various other terminologies used in digitai

filtering and digital image processing is given in Appen-

dices A and B.

1.2 Recursive Digital Filter Design and Applications...

In recent years con;iderable work in the area of
recursive digital filter design has be;n'and is still being
carried out, primarily because recursive digital filters
offer greater speed of filLering, smaller memory require-

"ments and easier impléméntations compared to FIR filters.
Many of the one dimensional recursive digital filter design
techniques can be found in [1] and many of the recent two
dimensional design techniques are presented in [2,3,4,5,6,
7,8,9,10,11,12] . These techniqgues consider only thelfre"_
guency domain apéroximation of given arbitrary
specifications. The techniques of spatial domain approxi-

‘mations aréggbt &énsideted in this thesis because these
design procedures do not incorporate constraints on filter
coefficients, which are. required for a stable design [13]-
Due to the huge amount of literature in this area, a com-
plete survey of frequency domain design techniques 1is not
attempted here. However, a brief discussion of the exist-
"ing design techniques wi igge comparisoﬁs are given in
the following paragraphs.

Some of the one dimensionai technigues given in [1]

and the two dimensional design techniques of Elo,ll,l2 are

analytical in nature, i.e., the desired type of filters are



obtained by using certain types of transformations (e.q.,

impulse invariance, .bilinear, etc.) on a prototype filter.

L4

This, however, provides very‘little control over the rés—
ponse oglthe designed filter. Also, i1f the desired speci-
fications are arbitrary, which is true in many app;ications
~such as speech and image processing,vthen in these sitﬁations
these methods of design are of very little u;e. The _
remaining design techniques reported in [1,2,3,4,5,6;7,8,ﬂ
employ either linear or non-linear optimization précedures

in designing stable recursive digital filters in which
approximations can be carried out to arbitrary épecifiéations.
Mény of these design technigues design filters to approximate
only arbitrary magnitude characteristics; however, this is an
incomplete spécification of the filter sihce it'is indicated
in [1] and also shown By Huang [14]-, that phase characteris-
tics should be given as much importance as -magnitude charac-
teriséics. Also in many applications linear phase is - )
important, where'dispersion due to non-linear phase character-
istics is harmful, specifically in image processing problems.
In the case of FIR filters, linear phase filters are easily

designed using the design prbcedures of [14,15] ; which use

-

linear programming [16]. In the ¢ase of exidting recursive
3k

digital-‘ filter design techniques, the lingar ;;g'ﬁase is realized
via group delay equalization [1,3], where—a non-linear
optimization 'procedure is employed for the approximation.

The overall design procedure of [1,3] involves two steps:

a) thé approximation of magnitude foilowed by b) group delay
equalization which compensates for the non-linearities in the

Q .



group delay characteristics of the magnitude only filter.
However, there are two draybacks'to using the non-linear
optimization approach: a) it reqguires the specificakion
of initialyvalues for ,parameters of optimization, b) the
optimum'obtainéd in the approximation procedure is a local
one rather than the global optimum. In addition to this;
as indicated in [}; PP. 288;291]7 in situations where the
group delay charééteristics of a magnitude only design are
hlghly non-linear, the egualization is impractical. Fur-
thermore, in the two dlmen510nal case, flndlng a good set
of initial values for the parameters of optimization is
much ﬁon@ difficult than in the one dimensional case.
However, the non-linear optimization techniques of design
given in [},2,3,4,5,6,5,§] are still useful in situétidns
where other types of approximations (e.g., approximating
to the real paft of the transfer function or a magnitude
squared transfer function approximétion) are invol&ed,
specifically in the two dimensional case.

In comparison, the use of.a linear optimization
approach> such as linear programming, not only overcomes
the drawbacks of the non-linear optimization pfocedures,
but alsc it is.possible to approximate simultaneously

~
linear phase and arbitrary ﬁagnitude characteristics. A
characteristic of linear programming that is worth noting
is that, if a solution to the problem exists, then it is
unique .and the optimum obtained 1is the absolute optimum
consistent with tﬁe constraints of the problem. As indi-

cated earlier, linear programming has been extensively
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usefl in designing FIR filters where both linear phase and

magnitude approximations are carried out simultaneously.
Due to its success in the case of FIR fiiters, linear pro-
gramming has also ﬁeen sﬁggested [23] for recursive filtér
design where gimultaneous approximations ‘0of linear phase
dnd magnitude may be carried. However, the linear program-
ming methods of designs presented sa.far TB,l?,lB,lQ,ZO,zﬂ
approximate eithe; magnitude, magnitude sgquared or phase
characteristics only. In this dissertation, a method is
presented to design both 6ne and two dimensional ({guarter
plane) recursive digital filtefs to simultaneously approxi-
mate both magnitude and linear phase characteristics, using
linear programming. A preliminary investigation of this
method by the author is reported in [22].

Another aspect of the research reported in this
thesis deals with the ‘applications in imabe processing area.
In recent years, the use of FIR filters has become very
common [23,24,25,26,27], specifically with the advent of the
fast fourier transform (FFT) [28]. This has not been the
case, however, for recursive filters; their ‘uses have been
feW'@9,30], because of difficulty encountered at the early
attempts at designing stable filters. As inéicated earlier,
recent design techniques, including the method to be pre-
sented in this thesis, are able to design stable filters
and at the same time ablé to approximate desired fregquency
domain characteristics. Considering the above, couplea with
the computational advantage of the recursive filters compared

to FIR filters ﬁl], this dissertation sets out to investi-

 gate the use of quarter plane recursive digital filters in



image processing. Somé preliminary work cafried out by the
author, in the applications of recursive digital filters to
image processing can be found in I}Z].

it sﬁﬁuld be noted here, that at the time this re-
search was carried out, the theory ana design of half plane
filters were. just being prqpoéed and therefore neither the
design nor the applications of half plane filters are con-

sidered in this thesis.

1.3 Problem Statement

Given an arbitrary magnitude characferistic, the
problem of finding coefficients of the recursive digital
transfer function using thg‘linear programming approach,
where the filter transfer function simultanecusly approxi-
mates magnitude and linear phase characteriétics, is con-
sidered in this thesis. The linear programming appfoacﬁ
is first applied to the desigﬁ of one dimensional filters,
and then extended to the design of two dimensional gquarter
plane filters. Since the approximation procedufe is hased
on linear programming, the constraints that are to be usgd
for stable filter design are required to be linear. There-
fore the design approaéh presented also considers various
linear stability constraints that can be incorporated in
the design technique for stable filters.

Given a blurred image, the thesis considers the
inverse filtering problem using recursive filter implemen-
» tation for restoration from motion, focus and atmospheric

turbulance blurs. The thesis also considers the application



of recursive digital filters to image enhancement applica-
, tions where the problem involves the high frequency emphasis.

and enhancement of the edges of a given image.

1.4 Thesis Organization

In Chapter II, techniques are presented for the design
of both one and two dimensional recursive digital filters.

. The techniques make use of linear programming for the simql-
taneous approximation'of both magnitude and linear phase
characteristics. |

Chapter III présents th applicat;ons cf two dimen-
sional recursive digital filéers to image processing prdblems;
The problems considered in the applicﬁtions area are re-
stricted to image enhancement and restoration.

In Chapter IV, the discussiéns of the design method
and results qf,applications of recursive digital filters to
image processing are presented; In addition, some exten-
sions to the research work presented in this thesis are also
discussed.

Finally, Chapter V presents the conclusions that can

be obtained from the research work presented in this thesis.




CHAPTER 1T

RECURSIVE DIGITAL FILTER DESIGN USING LINEAR PROGRAMMING

2.1 Introductibn

C4

Linear progfamming has been widely‘USed in the design
of both analog and digital filters. The design of analog
filters, using linear programming, was cpﬁéidered by Mathew's
et al [33]. iater on, the linear pférramming approach was
used by Rabiner and Hu [?5,26] in the design of FIR digital
filters. Their design approach included the appro#imation
of both magnitude and linear phase specifications and the
designs were carried out in both one and two dimensions.
Following this, the linear programming approach was used in
the design of one dimensional [17,18,19,20,21] and two
dimensional [B] recursive digital filters. However, these
techniques designed filters that approximated magnitude or
magnitude squared specifications‘[17,18,19,201 or phase only
specification [?l] using all pass filters and thérefore
these methods are of very little use in situatioﬁé where
both magnitude linear phase approximations are required.

) In this chapter, a linear programming method for
designing recursive digital filters is presented, where a
simultaneous approximation of linear phase and arbitrary
magnitude response is performed. For complepeness, a dis-
cussion on the general linear progrémming technique is pre-

sented below.

2.2 Linear Programming [16]

This section briefly'intfoduces the theory of linear
programming so as to facilitate the understanding of the

linear programming design technigue. This includes the con-
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cept of dual linear programming, which in many cases becomes
useful in reducing the number of varibles in the linear pro-

gramming problem.

2.2.a Linear Programming Theory

A linear programming problem can be mathematically
stated in the following form - find a vector (wl,wz,w3,...wM),

subject to the constraints:

= -t
[wl,wz,...v%d cfay; @y, ap3 -e- Ay
a1 222 %23 --- %y
. < [cl,cz...cN]:
{M<N)
. _aMl ................ aMN_
(2.2.1)
such that,
g [wl,wz...,wM] b,
. Pz
bM
(2.2.2)

is maximized.

Here, the variables (wl,wz,...wM) may be constrained;
for example wiao, i=1,2,...M.

A characteristic of the linear program is that given
- there is a solution, it is guafanteed to be a uniqué solution
and éhere are well defined procedures for arriving at this

solution within (M+N) iterations. The procedures also deter-

mine if the solution is constrained or unconstrained.
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Figure 2.1 sho§s the graphical interpretation of the

linear program with two variables. Each constraint line

(cl—cs) is a linear inequality in two variables, wlqand.wz.

Therefore a straight line cén be drawn representing the ) ;
linear equality, and part of the solution space (shown by
shaded lines) is eliminated as a region that does not belong
to the possible solution. When all the ¢onstréint lines have
been drawn, only a gmall region as shown in Figure 2.1,'55

admissible as the solution region in which to find the maxi-

mum. It should be noted that an important propérty of the

linear programming problem is that if there is to be a solu-
tion, the constréint equations should form a éolyhedron,‘and
that the maxiﬁLm or the minimum value of the desired linear ~
function occurs at an extreme point'of the polyhedron.. Thus
the procedure is to compute the value of the objecgﬁve func-
tion at each of the extreme points and choose an extreme
point as the solution for which the objective function vaiue
is a maximum. The maximum, thus obtainéd; is the absolute
maximum consistent with the constraints in the linear pro-

gramming problem.

2.2.b Dual Linear Programming

The linear programming problem described above can be
considered as the 'Primal Problem' of linear programming.

Rewriting (2.2.2) and (2.2.1) in the matrix notation, we

have:



Maximize
g =wh (2.2.3)
Subject to constraints
WA € ct (2.2.4)¢
hhere,
= [ = K b = B§ -1
W wlw ' c. N and b bl
w2 c2 - b2
A °x) [P

Depending on whether w is constrained:?r unconstrained, the
primal problem given by (2.2.3) and (£f2;4) can assume either °
of the two types of dual problems', indicated below:

If w is constrained; i.e.,

\r

!

i

w 2> 0 (2.2.5)
then the dual problem is a 'symmetrical dual linear program-

ming problem' and is stated as:

Minimize £ = x| (2.2.6)
Subject to
Ax > b 2.2.7)
and .
' x> 0 (2.2.8)

However, if w is unconstrained {i.e., it can assume both
positive and negative values), then the dual problem is an

'unsymmetrical dual linear programming' problem, and is

stated as:

1

¢~ refers to transpose of matrix vector c
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Minimize
£ = clx (2.2.9)
: Subject to
“Ax =b - (2.2.10)
and
x> 0 (2.2.11)

It should be noted that the solution of the primal
and dual problem can be obtained in the soclution of either

of the problems because maximum g = mini

The problem of interest here is f£he unsymmetrical
primal-dual problem, since the design [of digital‘filters can
be formulated as a linear programming|program given by (2.2.3)

and (2.2.4), having no constraints on{| the variable vector w.

esign

2.3 One Dimensioqal Recﬁrsive.Filter
In this 'section, a fréquency{do in approximation pro-
cedure for one dimensional recursive dig\tal-filters, using
linear-programming, is presented. Suitably stability con-
straints on filter coefficients are indicated\ for stable
designs and an algorithm for designing linear phase filters
is described. Details of computations and design exXamples

are also included.

2.3.a Theory of Approximation

Let H(Z) be the transfer function of a recursive

digital filter. Assume H(Z) has the form,

2 N
P(2) _ ao + alZ + azz + ... + a.z

zZ) = =
H(Z) Q(2) b0 + b.Z + b222 F ... + szM' {(2.3.1)

1
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where.Z = e-JQ and  is the normalized frequency variable. ,

The degree of numerator is less than or equal: to that of the.
denominator, i.e., N € M. The.term b0 cén be set equal to,
1.0 without any loss of generality.

Now, given arbitrary magnitude and phase specifica-
tions, it is desired to formulate the digital filter transfer
function approximation problem into a l{near programming pro-
blem such that the constraints of the linear program are in

~

terms of the filter coefficients. This can be carried out
B

as follows.

o]

Let R(Qi) and ¢(Qi) be the given magnitude and phase
speéifications, respectively, specified at a discrete set of
frequency points Qi, i % 1,2,...,L. The real component
Y(Qi) and the imaginary component Y{(Qi)'of the ffequency

domain specifications can then be written as:

I

T(Q,) R(Q;) -[cos ¢(§zi)] 2.3.2)

~

Y'(Qi) R(Qi) -[%in ¢(ﬂi)] (2.3.3)

Now, the problem of approximating the characteristics of a

Pl

recursive digital filter to (2.3.2) and {2.3.3) can be for-
mulated into a linear programming problem by following the
procedure of Matthews et al [16].

Define r(Qi) as,

_ P(e—JQi)

g.) = . i Y! \ - :
r( 1) Y(Ql) + ] (Ql) EYE:SQI?

for i =1,2,...,L {(2.3.4)
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Y

which is a céhplex error between the desired characteristics
and.the approximating fi;tgr.‘ Multiplying (2.3.4) on both
sides by Q(e_jﬂi), a—Weighted error function (which is linear
in terms of filter coefficients) is obtained, and is given

by:

r(e)0( %) = v@peEe M) + 5 v eI

- pe” %) for i=1,2,...,L (2.3.5)

The quantities in the expression (2.3.5) can be

separated into their real and imaginary components as:

r(Qi)Q(e_jQi) = e(R;) + 3 e'(q)) (2.3.6)
_jQ. _ . .
P(e”Vd) = Po(2) - 5 PL(Q)) 2.3.7)
_jﬂ. _ o
Qle™ ) = 0 (2) -3 o (a)) 2.3.8)

Substitution of (2.3.6), (2.3.7) and (2.3.8) into (2.3.5)
results in the following:

) =3 ep@n] + 3 vy @)

e(2) + 3 e'(n,) = Y(Qi)-[QR(Qi

L .
-3 QI(Qi)] - Ppl@y) + 3 P_(Q)) (2.3.9)

Equating the real and imaginary parts in expression of (2.3.9)

results in:

]

e(f,) Y{RIQp () + Y1 (R.)Q,(2,) ~ Pp(9,) (2.3.10)

]

e(Qi) Y'(Qi)QR(Qi) -'Y(Qi)QI(Qi) + PI(Qi) (2.3.11)
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where e(Qi) and e‘(ﬂi) are linear in:terms of filter'co—

efficients.

It is now possible to put Equations (2.3.10) and
(2.3.11) into a linear programming problem such that the
weighted error in (2.3:5) is minimized.

Choose a quantit§ e such that,

"
\e(szi) | € € (2..3.12)
'and
}e'(ﬂi) | ¢ €, for i=1,2,...L  (2.3.13)
| Expressions (2.3.12) and (2.3.13) can be re-written
as,
-€ <€ emi) < € (2.3.14)
and, .
- £ e'(Qi) < € (2.3.15)
From the above, one can write four -inequalities as
follows:
e(Qi) - £¢ 0
e (Qi) - e £ 0
- (2.3.16)
- - € <
e(ﬂi) E 0
—_p! -
e (Qi) eE< 0
Let £ = —¢, in which case the inequalities are as follows:
e(Qi) + &£ 50 '
E'(Qi) + £ 50
(2.3.17)
-e(Qi) + £ <0
~e' (Qi) + £ £ 0
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After substitution of e(g;) and e' (Q ) from (2.3.10)
‘and (2 3.11) into (2.3.17}), the linear programmlng problem
for filter design can be stated in a form sxmllar to (2.2.1)

and (2.2.2), as,’

Maximize _ g=£&

Suhject to,

Y(Qi)QR(ﬁi) YT (R0, () - PR + £ s 0 (2.3.18)
TR0 (8;) = ¥ (R.)Q,(R,) + Pr(R) +E <0 (2.3.19)
TR0 () - ¥ AAQ(9)) + F(@y) + £ < 0 (2.3.20)

_yr(ﬂi)QR(éi) Y (2)0p(2,) - Pr() + £ < 5 (2.3.21)

Maximizing £, minimizes the weighted errors in (2.3.%0)
and .(2.3.11).

It can be clearly seen from (2.3.17) that in the ideal
situation, the maximum value of £ can bé equél to zero. Also,
£ cannot be positive, and if it does become positive, the
solutlon is meaningless. Thus the upperbound on £-is zero.

A careful examination of the approximation pfocedufe reveals
. that the minimization of the weighted errors in the error

set,
[e(Qi), e'(niﬂ ; i=1,2,...L

is performed in the mini-max sense. Therefore the absolute
value of £ is equal to the magnitude of the largest devia-
tion from zero of the real component e(Qi) or the imaginary

component e'(Qi) of the weighted error.
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The constraints, (2.3.18} through (2.3.21), are suf-
ficient to carry out an approximation to- the desired speci;
fications, If the designed filter is desired to be stable,
however, ;dditional constraints will be needed. ,Sincé the
approximation procedure inveolves linear programming, tﬁese
additional constraints will have to be linéar in form. The

general form of these constraints could be as follows:
z . iz
oy fm(bm,ﬂi) € 0; 1 l,2,..t,L (2.3322)

_The inequalities in (2.3.18) through (2.3.22) can be

simplified as follows:

" Let

M )
Qp(2,) =1 + E bmcos(mﬂi) (2.3.23)
. m=1
M
QI(Qi) = E bmSln(in) (2.3.24)
-m=1
N [N
PR(Qi) = 1 + E ancos(nQi) {2.3.25)
n=0
N .
PI(Qi) = E anSLn(nQi) (2.3.26)
n=90 :
M
L b f (R.) €0 (2.3.27)
m=p MmO

Substituting inequalities (2.3.23) through (2.3.26)
into inequalities (2.3.18) through {(2.3.21) and simplifying,

one can rewrite the linear programming problem as:



~Maximize

Subject to

M

m=1

m=1

M4

m=1

m=1

and

5 bm{Y(ﬂi)cos{in) + Y'(Qi)sin(mﬂif}

n

M
Z'bm{Y'(Qi)cos(in) - Y(Qi)sin(mﬂi)}

A

_ 3 bm{Y(Qi)cos(in) + Y'(Qi)sin(mni)}

A

- L bm{Y‘(Qf)cos(in) - Y(Qi)sin(mﬂi)}

n

L bmfm(Qi) g

N -

n=0

v (0
Y { i)
N

-y (Qi)

N

h) i Q :
n___Oans‘,ln(n i) + £

(2.3.28}

Z acos(nl,) + &
n i .

(2.3.29)

(2.3.30)

X ancos(nQi) + £

- n=0

Y(Q,)

N

(2.3.31)

z an51n(nﬂi) + £

n=0

Y'(Qi)

(2.3.32)

which completely defines the linear programming design pro-

blem for a one dimensional recursive digital filter.
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2.3.b Stability Constraints in One Dimensién

As indicated eérlier; because of the use of linear
pfogramming in the approximation procedure, the constréints
that can be used to design stable filters have to be linear

in form. There are two types of constraints that readily

satisfy the above requirement. These are as follows:
(a) Monotonicity of denominator filter coefficients [34]:

i > > > > > >
i.e.; by > by > by > cuve > by g b >0 . (2.3.33)

where b, can be equal to 1. As shown in B4, the above
constraint ensures that allithe roots of Q(Z) lie outside
the unit circle |z | = 1 and hence ensurés the stability of
the transferlfhnction H(Z}.

(b) Real part of the denominator polynomial greater than

zero on the unit gircle [35],

"i.e., RelQ(z)} > 0 for 2] =1 (2.3 34)

This also ensures stability of H(Z), if (2.3.33) is speci-

fied over the unit circle in the 7 plane.

e

The constraint of (b) has been successfully used in
the design of all pass digital filters PR1]. It should,
however, be. noted that these constraints are just sufficient
conditions for stability (the proof of the sufficiency of
(b) is given in Appendix C). Also, since these constraints
are just sufficient conﬁitions for stability, they geperate
a subset of possible stable filter realizations.

From a closer examination of the two possible types



- . that the latter of the two constraints yields a larger
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.

of constraints that can be used in the design, it appears

subclass of stable filters compa#ed to the other. This can

at least be shown to be true in the case of filters whose

order is less than or equal to 2.

——— R T} ———— — —— T Yt T e — e ——— m——

Q(z) = 1 + b,Z (2.3.35)
14 and £ is the normalized frequency variable._' p

L]

Use ©of constraint (a) results in the following: K

where .Z=e

1> b1 >0 (2.3.36)

Use of type (b) constraint results in,

1 +b,cosfl > 0, 0 € Q< = {(2.3.37)

1
From (3.3.37) it is clear that bl is constrained to be as

follows:

1 ¢b, <1 -
-1 <b, <1 |

Consider now a first order transfer function H(Z),

such that,

where Q(Z) is given by (2.3.35). Therefore the pole of H(Z)
is at 2 = -1/b. From Figure 2.2 it can be observed that the- E
application df the constraint (2.3.36) restficts the poles
of the transfer function H(Z) to the left half of the real

axis in the Z plane. On the other hand, if (2.3.37) is used
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-then this resﬁlts in H{Z) having poles'on the entire real
axis except for the portion which is inside and on the.unit.
circle. Thus, conétraint type (b) yields a larger class of
stable fiiters compared to type (a) constraint.

In the second order example} (which is shown in
Appendix D) although the proof is not so rigorous, i£ can’
still be seen that the type (b) constraint yiel&s a larger
subglass—of stable filters compared to that of type (a).
Therefore in all the desién examples, the constraint type
(b} has been used to design stable filters. The actual
- stability coﬁstraint that is used in the désign-is a

slightly modified form of (2.3.34) and is given by,

"RelQ(z)} » AC for Pk |=1  (2.3.38)

where AC is a small positive quantity.

Since Re{Q(z)} =1 + % b _cos(m2,), (3.3.38) can be
R m:l m 1

rewritten as,

M
'E 'bmcos(in) > AC-1; O € Qi £ (2.3.39)
m=1
or
M ¥
z b-[—cos(mﬂ.)] € 1-AC; 0 € Q. € 7w (2.3.40)
N S ey W i i

" Proper choice of AC and a proper number of points at

which the constraint (.3.40) is specified can ensure a

stable filter design. \\;H\\;.
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2.3.c Design Procedure

The linear.programmingrapproach of filter design
outlined in the previous section is now used in/the design
of linear phase”filters. The desired linear phase charac-

"teristics can be specified in terms of: the spatrl

Let ¢ (R), be the phase characteristics in the
quency domain., As indicated in Appendix A, the delay

characteristics T(Q) is given by:

T(R) = - g%éﬁ— (2.3.41)

Therefore, if ¢ () is desired to be linear with respect to
the frequency 2, then T(2) needs to be a constant. Letting
T{R) = T where Ts is a constant, the desired linear phase

characteristics can be written as:

b (R) = LPRY: (2.3.42)

Using (2.3.42), the real and imaginary components of the
desired specifications given in (2.3.2) and (2.3.3) can be

written as:

Y(Qi) = R(Q;)cos(—rsﬂi) ) {2.3.43)

Y Y'(Qi) = R(Qi)sin(—rsﬁi); i=1,2,...L (2.3.44)

The line&r programming problem can therefore be rewritten as:
Maximize
g =£

Subject to the following constraints:
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M ’ N
milmeiﬂi)[cos{Qi(m¥fs)q - niaancos(nﬂi) + £
< -R(Qi)cos(-rsgii
M N
milme(Qi)[}Sln{QiST+Tsjﬂ + nioanSln(nQi) +E
M- . N
—milme(Qi) C?S{Qi(m+TS)ﬂ + nioaHCOS(nQi) + &

-

£ R(Qi)cos(—rsﬂi)_

N
I a sin(n®,) + §&
n=0 +

M
- I me(Qi)[—sin{Qi(m+TS)}]-

m=1 .

< R(Qi)sin(—rsﬂi)E

i=1,2,...,L

(2.3.45)

(2.3.46)

(2.3.47)

-

(2.3.4%)

Thus given an arbitrary magnitude characteristies, it is =~

now possible to approximate these characteristics together

with a linear phase specification (specified in terms of

delay TS) by a recursive filter of séecified order. A good

design.is normally obtained for a particular value of Tg

that lies within a certain range of values. This range can

be determined by examining the impulse response correspond-

ing to the given arbitrary magnitude characteristics.

Figure 3.3 shows the range of T in the impulse response
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Figure 2.3 ~Range of T, in the Impulse Response.
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correséonding to low pass type magnitude characteristics,
Searching for a proper Ty in the entire range may result in
egcessive design time. However, given the order of the
filter, one can specify appropriate upper and lOWef limits
for—rs. Thus if K is chosen as the order of filter, Fhen

an appropriate range for T i; {K-5) < Tg £ K. An argument
" as to th the upper limit for Tg is equal to K can be under-
stood from the following. ‘

Consider an all pass transfer function of order K.

A property of this function is that [1],

T
J t{@)adf = K
0 .

*FroT the aboYe, it- can be seen that toc realize a constant
delay exactly egqual to Kl up to the nyquist rate, the filter
order should at least be equal to K. Thérefore, in the

case of a general recursive gigital filter, the order of the
filter should at %east be greater than or equal te K, if it
is to realize, approximately, a constant delay K and alsc at
the same time approximate given arbitrary magnitude specifi-

cations.

The lower limit for Ty is chosen to be equai to (K-5),
although the ideal lower limit can be equal to 1. However,
choice of the lower limit, indica;ed above has not only
reduced the excessive design time but alsc has provided con-
sistently good results, as shown in the examples later.

.A suitable procedure for designing linear phase filters
is as follows:

1) Specify the magnitude characteristics; i.e., R({Q);

’
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'2)‘ Choose the filter order; say K and range of Ty as‘
“indicated above;

3) Solve the linear programming problem for each Tg starting
from upper limit of K (in descending order) until a maxi-
mum in £ is obtained. Denote the corresponding T, as

s .

4) Choose the coefficients of the filter for which maximum

£ was obtained and compute freguency response and errors.
The error measures in step 4) are a) the squared error

sum in magnitude, El, which is given by:

L . 2
E, = i__z_l[:a(_szi) - ey ] | (2.3.49)

b) the squared error sum in the delay characteristics in the

pass band of the filter, E given by:

2!

(Pass Band) 2 i
E. = z T - 1(Q.) (2.3.50)
2 [ Smax l]

R(Qi) and Tsmax are the desiréd magnitude characteristics and
the constant group delay and E(Qi) | and T(2,) are the magni-
“tude and overall group delay characteristics of the designed
filter at the specified discrete frequency points Qi.

As indicated above, the error measure incorporates
the error in delay characteristics ratﬁér than the error in
phase. A point to note.is that the degree of linearity of
the phase can be observed much more clearly using gr&up
delay characteristics since they are the differential of
phase characteristics. Also, ﬁhe error E2 in (2.3.%0) is

computed only over the pass band of the filter instead of

computing over all the frequency points of specification,



‘because, any non-linearity in phase or group delay of the

filter is of little consequence oﬁtside the pass band re-

gion, since in this region the magnitude of the filter
characteristics is‘not significanf.

Using éhe procedure described abéve, a large number
of filters'have been designed and- the examples of these

designs are presented in Section 2.3.e.

2.3.d Computational Considerations

Reconsider the linear programming design problem of
(2.3.27) through (2.3.32). This problem can be written in
the matrix notation of section {(2.2.a) as follo%s.

Find a vector (bl,bz,...,bM,aO,al,...,aN,E),

subject to constraints
[Fl,bz,...,bM,ao,al,...,aN,é]

D s[c]

\ (2.3.51)
such that
g = [bl,bzf...'b.M.’aO'al'-..aN’E] . ’-O
v ) 0
0
1
L (2.3.52)

is maximized. The matrix D is made up of several submatrices

as given below:
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B | 1
o - |
1
Dy 1 Dy E Dg '} P i Dq
N : | | | ’
. | emm—-——————— | I —— e ——— i T,
o = T N
Dy 1 Dy 1 Dy 1 DPg b Dy
1 | 1 I
| 1 1 |-
———————————————————————————————— :—.——-—-—-_———
|
i Dy ' Dy2 b Dyy ]

(2.3.53)

']
Matrices Dl and D2 are of size M x L and their elements

J
are given by:

4

dlij Y(gj)cos [iay ]+ Y(szj)sin[iszj] | (2.3.54)

o7
j

2, . = ¥'(qg4)cos [igj] - Y(gj)'sin [igzj] ] (2.3.55)

i=1,2,...,M; J=1,2,...;L

Matrices D3 and D4 are of size (N+1l) x L and their

elements are given by:
d
3ij

-cos Bi"l)gj] (2.3.56)

a

4ij sin Bi—l)nj] (2.3.57)

i=1,2,...,(N+1); j=lr21~--rL

‘Matrix Dg is the stability constraint matrix corres-
ponding to the stability constraint given by (2.3.40}). The- -
size of the matrix is M x Ll’ where Ll may be greater than or

-

equal to L. The elements of this matrix are given by:

dg = -cos(iQ.):  (2.3.58)
Ry ]

i=1,2,...,M; 3=1,2,...,L;
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and D are row matrices. Matrix Dll is of

P11 P12 13
size 1 x (2-M) and is given by:

-dll. =1 ; i=1,2,...,{(2"M) (2.3.59)
i

The matrices D10 and D13 which are of size (N+1) x-Ll

and 1 x L, respectively, are equal to zero. The rest of the

1
submatrices of D are as follows:

Dy = =D; i'Dg = -D,
(2.3.60)
Dy = Dy i Dg = =Dy
and
D12 = Dll (2.3.61)
The row matrix C also contains submatrices as shown
below:
t ' 1 )
= ' ! ' ! 2
C [ cp ey 1 o : ¢y & cs ] (2.3.62)

Matrices ¢y through c, are of size 1 x L and matrix Cg is of

size 1 x Ll' Their elements are as follows:
P - = gt . P =
cl. - Y(Qi)l 02. Y (Qi)r 1 1121---1L (2-3-63)
i i .
c5i = 1-AC : l=l'2""’Ll“(2'3ﬂ64)
and
cy = ~¢y and Sy T Tcy (2.3.65)

where Y{(Q) and Y'(g) are real and imaginary components res-

pectively of the desired specifications.

3
1

Ce e il
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As can be seen from {(2.3.60), (2.3.61l) and (2.3.65),
the coefficient matrix D, and matrix € have submatrices whose
elements afe redundant.. Also submatrices DlO and Dll are null
matrices. This property can therefore.be made use of in
reducing the storage requirements;

The linear programmin& problem of (2.3.51) and (2.3.52)
may be solved by a straightforward application gf the simplex
[16] (or the revised simplex [16]) algorithm. However, this
involves a large number of computations because of the large
number of variables involved. 1In the straightforward problem,
there are @Ll inequalities with (M+N+2) uﬁknowns where (M+N+1}
are denominator and numerator coefficients of the filter.
These coefficient variables are unconstrained and so they have
to be replaced by the difference of two positive variables, as
the simplex?élgorithm requires that the variables be greater
than or equal to zero. Also each inequality in the problem‘
is replaced by an equality by adding a slack variable. Thus
the resulting linear program will have (4Ll + 2M + 2N + 1)
variables. For large order filters this would involve very
lar?e amounts of computation. To avoid this problem, one
can turn to the dual linear program. In the dual system, which
is similar to the system of (2.2.10) through (2.2.12), after
the addition of artificial wvariables to each equality, the
result is (4Ll + M + N + 1) variables. This is a sméller
number of variables than the primal problem and can be more

easily handled.

Finally, there does not exist any rule for choosing the
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numbér'of sample frequencies ﬁife., the value for Ll) at
which to specify the desired specifi&ations, although i£ must
'be large enough to ensure that the response is well represented.
Brophy and Salazar [21] suggest that L, be greater than four
times the order of the filter. Therefore, if K is the orxder
of the filter, then L, > 4K. The stability constraint is ‘

also specified over 4K (or greater) number of points, so as to

reasonably ensure the stability of the filter.

3.3.e Examples of Design

In the examples presented here,lthe desired character-
istics are speéified over 81 equally spaced discrete frequency
points. The étability constraint is also specified over the
same frequency points. -In plotting the frequency response of
the designed Eilters, the phase response is eliminated‘in
favour of the group delay responsé, since the non-linearities
in'phase can be observed more clearly in the group delay

response.

The desired specifications are as follows:

The lower pass band frequency QP 0.357

1

The upper pass band fregquency ﬁp 0.55m
2

The complete magnitude specification R(Qi) is given by:

-

— —_y e Y2
R(g;) = e klapy—04) for 0 ¢ ., < R
1 Pl

0 for 9 £ 0. £ Q
P

d
=2

l_l-
Il

ok (Ri=8p,)

v}
=

}_l.
i

for & < Q. £ wm;i=1,2,...,L
P 1
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Figure 2.4 Desired Magnitude Characteristics.
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Figure 2.5 Designed Magnitude Characteristics
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Figure 2.7 Designed Impulse Response
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THE Z2ERGCES OF THE FILTER ARE-

ZERDL 1e .3294984E 29 +J C418085€ @9
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2ERO(19i« - CB@BJIBBE 0 +J - 7458324E 99
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POLE(1@)= - 1633266E 00 +J .1326754E 91
POLE(L1L)» - 1@B455GE @1 +J. - 6287156E 90
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x—-Pole
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* ®
Figure 2.8 Pole-Zero Positions of the Designed Filter
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The f£ilter order was chosen to be 16. A maximum %
was obtained for group delay value of 13. The value of AC
(in the constraint of (3.3.38)) and k, chﬁsen for this design
. 1

are 1 x 10_6 and 20.0 respecyiﬁely. The error measures of

the design are as follows: S

1
Ll [

1
E. = 1.6 x 1072, E - 1.48
1 o f 2 "
b
) |
The wvalue qf & (the variable that is maximized in the linear

_program) is egual to -7.8 X 1073, The desirdd magnitude
specification is shown in Figure 2.4. The dégigned filter

. . . . \ .
characteristics with its impulse response and pole-zero pOSl-

tions are shown in Figures 2.5 through 2.8. =& 7

i
|
\

The characteristics of an ideal differeﬁtiator is -
given by: |
‘ HQ) = 3 ()

n

where Qn is_half tﬁe sampling freguency in radians. Fromlthe
magnitude-phase plot of H(R) shown in Figure 2.9(a) and (b),
it can be seen that the phase charaéteristic is discontinuous
at one-half the sampling frequency. ~This characteris;ic is
difficult to realize because o% the discontinuity at half the
éampling frequencg: However, with,K the addition of a one-half
sampiej@elay, this discontinuitf can be eliminated [l] as’
shown. in Figure 2.9(c) and (d) . . The ‘discontinuity at the ori-

gin is of no consequence because the magnitude is zero at zero

frequency. Thus the desired magnitude and phase characteristics
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‘Figure 2.9 Realization of Differentiator With Half Sample
8 " Delay. ’



MAGNITUDE

42

.110E 91

JA00E 01 o

.BOE 29
. 7TRE ee-‘
.BIE 00 o
.SORE 00 -
. 4Q0F 20
.300E 00
.200E 29 ~

. 100E 00 -

.00CE 20 : T — ; .
.B0E 90 ,20E 0 .40E @0 .60F @0 .BOE 0@ .1@E o1

NORMALIZED FREQUENCY

XMIN =  .20000E 00 YMIN =  ,QOQOQE 00
XMAX =  ,10000E @1 YMAX = . 10000F 01
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Figure 2.15 Pole-Zero Positions of the Designed Filter.



of the differentiator are:
2
R(Qi)=?‘;0$9 € T

and the phase

©9(Qy) = 0.5T = (T  + 0.5)Q i 0 € @ <7

T is the amount desired delay in samples for linear phase

design. . The total amount group delay realized is therefore
equal to (TS + 0.5). )

A filter of order 17 was chosen and AC was set equai
to 1 x 10-6. A ma;imum t was obtained for a group delay
value of 14. In computing the error measure for group
delay, the error at 2 =0 was-disregarded, as it is of no
consequence as the magnitude of the desiéned differentiator
is almost zéro at this frequency. The erro; measures for

this design are as:follows:

- -2
E, = 3.446 x 10 4 ana E, = 6.8 x 10 °

The value of £ is equal to 1.65 X 10—4. The desired magni-
tude of the ideal differentiator is shown in Figure 2.10.
The designed response, pole-zero position and various errors

are shown:in Figures 2.1l through 2.15.

2.4 Two-Dimensional Recursive Filter Design

In this section, the linear programming method of
design discussed in the preceeding section for the one-
dimensional filter is extended to the design of two dimen-

4

sional recursive digital filters. As in the one dimensional
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case, the two dimensional approximation.problem ié made
linear, so as to facilitate use of linear programming in the
design. A linear stability constraint, similar to the one
dimensional case, is proposed and is used in the design of

stable filters.

. 2.4.a Theory of Approximation

Let H(Zl,zz) be the transfer function of a two
dimensional recursive digital filter. Assume H(Zl,zz) is

of the form:

Ml N1 m on
P(Z.,Z.) oL oan, 27 2%
H(Z.,%.) = 1’ 2 . m=0 n=0 (2.4.1)
‘1792 0(Z.,.,2.) M2 N2 te
1772 m _n
X r bmn Zl 22
m=0 n=0 -
where,
st ] _ ~"302
Zl e and 22 a

-7 £ Ql £ m and -m £ . £ T

Ql and Qz are the normalized frequency variables. The term
b00 can be set equal to 1.0 without any loss of generality.
Now given an arbitrary mggnitude and phase specifi-
cation, it is possible, in a manner similar to the one
dimensional case, to formulate a linear programming® pro-
blem such that the constraints of the linear program are in

terms of the filter coefficients. Let R(Q sz) and

i

¢(Qli,92j) be the.,given magnitude and phase specifications

respectively, specified over a frequency grid Qli' sz;
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i=1,2,...,Ll, j=l,2,..{,L2. As before, the real components
. . 1-
Y(Qli,ﬁzj) and the imaginary components Y (Qli,ﬂzj) of the

frequency domain specifications can be written as:

-

YU8)5,9,5) = R(Q);,2,,) cos [quli'QZj )] (2.4.2)

Y'(Q 2:]) = R(Qli’QZj)Sin[}(Qli'QZj)] (2.4.3)

From this point onwards, the mathematical manipulations are
similar to the one dimensional design. Thus, in a similar
" manner, the two dimensional approximation problem can be

stated as:

Maxim;ze, - ¥‘_q =t

Subjegt to ' -
+ £ €0 (2.4.5)

Y'(QlifQZj)QRFQli’QZj) - Y ( ll )Q (Q 23) + P (Q 23)
+ &£ <0 (2.4.6)

. !

_Y(Qll’Q2j)QR(Qli'Q2j) - (R0 )Q (95 2 .} + P (Qll'QZj)

+ £ <0 (2.4.7)

-

L ]
Y (QlirQ2j)QR(Qll'Q 2j)

)T Y (05,055 Qp (Ry3+855) - Pr (0,0

+ £ € 0 ; (2.4,8)

i=1,2,3,...,01; §j =1,2,...,L2

at
@



e L e e L s e ( TATLTRIIEY
'

51

where QR,‘QI and PR' PI are the real and imaginary components
of @ and P respectively. Also, linear constraints on the
denominator coefficients, of the form:

M2 N2 -

z I b

) S0 . (2.4.9)
m=0 n=0 .

mnfmq(giz’gzj

are incorporated to obtain stable desigﬂs. =
Thus the above, completely defines the linear pro-

gramming design problem for the two dimensional case.

2.4.b Stability Constraints in Two Dimensions

The stability constraint used in the two dimensional
design procedure is similar to the constraint used in the

one dimensional filter design. It is given by:

RelQ(z,,2,)} 270 for Iz l=1 andl'zz\ =1 (2.4.10)

where Q(Zl,zz) is the denominator polynomial of the two-D
transfer function. This constraint is lineaf in terms of the
coefficients b(m,n) of the denominétor polynemial Q(Zl,zz)
and therefore it can be easily incorporated into the linear
programming design.procedure.

It should be noted here that E?e constraint of (2.4.10)

- is not a general stability constraint; however, it is a suf-

fiecient condition for Q(Zl’zz) to be a stable denominator
polyndmial of a two-D filter transfer function (the proof
of the sufficienty is given in Appendix E) and therefore the
use of this constraint in the filter desigq generates a sub-

set of possible stable filters. This is not a drawback when
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compared to the existing design methods [2,3,4,5,6,7] 3
where the designed filters also belong to a subclass of pos-

sible stable filters. . <

2.4.c Design Procedure

The design procedure is similar to the one dimensional
case. As in the pne;dimensional case, the linear phase
characteristic is specified in texrms of the'séatigf +delays.
As indicated in Chapter I, in the two dimentional case; the

“

~spatial delays are defined as:

5o | PtRLD,)

Tl(Ql,Qz) = (2.4.11)
. 1
and, ‘ !
| 0 (2, ,2,)
TZ(QI'Q.?) = = T ,‘ (2.4.12)

where ¢(Ql,92) is the two dimensional phase characteristics
in the frequency domain. Thus if the desired phase ghérac—
teristics is to be llnegr, then Tl(ﬂl,ﬁz) and 12(91,92) are
assigned constant values. By setting 11(91,92) equal to a
constan# anﬁnd Tz(ﬂl,Qz) equal to a constant Ty, the desired

linear phase characteristics can be written as:

The specifications can be simplified by setting T = Ty =T,

i.e., realizing the same amount of delay in both directions

-
r

in the spatial domain. The phase characteristics is then

given by:

t

This is group delay referred to spacé rather than time,
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N

$(8y,0y)) = ~T (2 % @)

(2. 4.14)

Therefore, the real and.iméginary components of the desired

specifications can be

Y (&

11%25)

1
YR 0855)

Now, with,

4

QR(Qli'sz) =

Qp (25 ,0,4) =

P_{Q

R Y ) =

11723

= R(Q

rewritten as:

1i’

R{Qy5r

sz)cos

sz)Sln{ch(Qli

p—

e

—

—Tc(Qli

+ @

+ 0 .ﬂ

23

23

for i=1,2,...,L1; 3=1,2,...,L2

1 +

M2 N2.

z L
m=0 n=0

m+n#0

M2 N2
z T
m=0 n=0

" mt+n#0

M1 N1
T L
m=0 n=0

M1 N1
I )
m=0 n=0

bmn

b

a
mn

a

m

n

cos(mﬂli

sin {m{

A

cos(ms’zli

51n(m91i

1i

+

nf

nfl

+ nf

+ nf

-

)

=

)

)

2]

)

(%.4.15)

(2.4.16)

. (2.4.17)

(2.4.18)

;2.4.19)

The linear programming design problem for.two dimensional

filter becomes:

Maximize

1



.“

v M2 N2
YL X
. m=0 n=0

m+nF#0

M1 N1
-z I
m=0 n=0

“subject to

bmnR(Qli,sz) cos{(m—rc)ﬂli + (n—rc)sz}
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\.

-

amncos{mﬂli + anj} + £ £ —R(Qli,sz)cos{—Tc(Qli+92j)}

M2 N2

z I b nR(Qli,sz) --S:Ln{(m+'rc)Qli + (n+Tc)92j}

m=0 n=0
m+n#0

Ml N1
+ I z
m=0 n=0

M2 N2
- Z. £
m=0 n=0

m+n#0

"M1 N1
+ £ L

a sin{mf

bmnR(Qli'QZj) cos{(m—Tc)Qli + (n-Tq)sz}

a

m=0 n=0

‘M2 N2
—.2 T
m=0 n=0

m+n#0

b
i

" M1 N1
+ L L
m=0 n=0

b
m

a.

LR(D

cos{m@.. + n.,.} + £ < R(Qli,ﬂzj)cos{-rc(ﬂli+92.)}

1i'

Sll']:{mﬂ

1

1

f

1

.

(2.4.20)

i F ngzj} + £ < —R‘Qli'QZj)Sln{_Tc(Qlifgzj)}

(2.4.21)

i 23 J

(2.4.22)

2j)—Sln{(m—Tc)Qli + (n—rc)szl

.+ Q L] = . . i - '
i n 23} + £ £ R(Qll,923)51n{ Tc(Qli+Q )}

23

(2.4.23)
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and the stability constraint, :

M2 N2

1l + ﬁio nio }:Jmncos(mle‘:i +
m+n7#0 L

-’

nf

R\

2j) AF _ (2.4.24)

where AC is a small posi;ive quantity.
The design procedure, which is similar to the one

dimensional case, can be described as follows:

1) Specify the desired magnitude characteristics:

R(Q,.,9 i=1,2,...,L1 ; j=1,2,...,L2

1179250 7
2} Choose an order for the filter, say N; and choose a range

for 1_.
c

-
-

3) Solve the linear programming problem for each Tc from its
upper limit (in decending order) untill a maximum § is -
obtained. Denote the corresponding T, as T,

max

4) Choose coefficients of the filter for which maximum g was

obtained and compute frequency response and error measures.

The range of T in Step 2 is cﬁosén based on N. The
larger the range for Tor the higher is the computational fime
for the design of £he'filter. A suitable range has been found
£o be \(N-2) < T < e+
; The error measurés in Step 4 are: a) squared
éum of magnitude errors Eq. and is given by:

Ll L2

— _ . 2
Bp =t I {R(Qli,ﬂzj) | H(Qli,gzj)j} (2.4.25)
i=1 j=2

+ If (N-2) is less than or equal to zero, the lower limit is
© to be set egual to 1l. ' '
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b) the squared error sum in spatial delay Tl(ﬂl,ﬂz) in the

pass band of the filter, E,, and is given by:

(Pass Band) \
E, = Iz {1 — 1,(Q,.:0,.:)1 . (2.4.26)
2 Chax 1 11723 ..

and ¢) the sguared error sum in spatial delay 12(91,92) in the

pass band of the filter E3,_which is given by:

(Pass Band)
‘E, = I = {rt_ -1
3 Cmax
“

{Q ,Q_,_j)}2 T (2.4.27).

27711

3.4.4d Computational Considerations

The computational simplifications, as well as the stor-
age reductioné in the two dimensional case are similar to the-
one dimensional case. The linear programming problem of two
dimensional filter design, given in Section 2.4.c, can be

written in a matrix form as:

b b

.
Lb01'b02""b0N2' 107P127 Py, v Mzmz'aoo'a01"'amlml'5]'

D < [: c ] - (2.4.28)

such that,
9= [bor""bmzmz'aoo""'amml'E ]

(2..4.29)
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'is maximized. The matrix D consists of several submatrices

as given below:

Matrices D

)

The elements in the submatrices

i

—— e  —— o —_ S —— —

and D

[ AU U

2

Fin

Fa,1,

(M2+1) ,1

= Y{Q

F
|
G1,1

Gy1

-

1572

.

Gim241),1 ° ° * °

of Dl

Y{cos (i—l)S?lj + mQ

6 9
|
1
S S
g ' DPio
[ R,
Dy3

‘FM2+1) , 1.2

1,L2

G (M2+1) , 1.2

are given by:

o 1

1 3 { -
+ ¥ (Qlj'QZQ){Sln (i l)szlj + mﬂzl 1

1

(2.4.30)

are also made up of sub matrices:

(2.4.3i)

(2.4.32)

{2.4.33)
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where,
i=1,2,...,(M2+1) -
m=%k and k =1,2,...,N2 for i =1 .

and _ {2 .4.34)
m= (k-1) and k =1,2,...,{N2+1) for i # 1

and o
j=1,2,...,L2,; ¢ =1,2,...,L1 )

The elements of the submatrices of,D2 are given by:

Gi'jkg = Y'(QlifRZE){cos Bi_l)glj + mﬂzd }

- ¥ (24405 ) {sin [(i—lmlj + mﬂzg] } (2.4.35)

T oo

where i,j,k,%,m are as given in (2.4.34).

The submatrix D, is also made up of submatrices as

9
follows:
Hltl lez o leL2
H .
Dy = ___2.1 (2.4.36)

Hemoe1),1 - @ ° ¢ - BMeen)12
L _

and the elements of the submatrices {Hi

j}, which corresponds

r

to the stability constraint given by {(2.4.24), are:

H. - = = i-1}02.. + Q
119, cos [(1 Myt m 22] (2.4.37)

where ", i,j,k,. ,m are as given in (2.4.34).

R DTS LAV B 1 T - |
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From the above, it can be seen that each of the"sub-

matrices, Dy, D, and Dy, are of size (M2+l) (N2+1)-1 X (L1-L2).

2 9f

Furthef} the first row of submatrices of_Dl, D2 and D9~aré of

size N2 x bl, where as the rest of the submatrices of Dl' D,

and D9 are of size (N2+1l) x Ll. The submatrices D3 and D4
of D are further made up of submatrices as followé:
11 Iy2 - I
I .
D3 = 2,1 (2.4.38)
L.I(M1+1),1 s Ty, 2
¢ .
Dy Ji1,1 Ji,2 = J1,12 :
J2,1 ' (2.4.39)
Tmis),1 0 0 0 I (M1+D), L2
- —_—

where elements of each of submatrices Ii .'s are:
: r

Ii'jkg = HCOS{}lnl)Qlj + (k—l)ﬂgg] (2.4.40)

and the elements of Ji j's are:
t

J = sin‘}i—l)glj + (k~l)922] (2.4.41)

)

and k=1,2,...,(Nl+1) ; &=1,2,...,L1
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The submatrix Dll is as follows:

Dll=[l 1....1]; . (2.4.42)

and is of size 1 x (2.L1-L2). The remaining submatrices of

D are as follows:

Dg = =Dy ; Dg = -D

DlO =0 .; D =D + D =0

The row matrix, C, on the right hand side of (2.4.27)

can be'split into four submatrices, as shown below:

(2.4.44)

Cy and C, are further made up of submatrices as follows:

Cl = [31’52""’SL2] : C2 [Tl'T2""’TL2] (2.4.45)
The elements of the submatrices Si‘s and Ti's are:

S.j = —Y(Qli,ﬂzj) ;'Tij = =Y (Qli,ﬂzj) (2 .4.46)

3 =121,2,...,L1
The elements of C5 are as follows:
C5 = [(l—AC),...,(l—AC)} (2.4.47)

and it is of size 1 x (L1-L2). The remaining submatrices of

C are:

C3 = —Cl ; C4 = —C2 (2.4.48)
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It is clear from the foregoing explanation that there
is redundancy in the coefficient matrix, and in matrix C.
Because of this redundancy, the storage reqﬁirement can be
almost- reduced by half.” Thus, instead of storing entire D
and C matrices, it is reqﬁired to store oniy submatrices Dl'
D D D ‘

Cl, C2 and CS'V As in the one dimensional

Dyr Dgr Pyr Pyyr Pyr
case, the solution is obtained by solving the dual of the
linear programming problem; this involves a comparatively
smaller number of variables compared to the primal problem,
Finally, a.procedure similar to the.one dimensional
case, is adopted in order to choose the number of sample
frequenc1es over the right half plane of the frequency domain.

Thus, given the denominator of the transfer function H(Zl,Zz),

i.e.,

M2 N2
+m _+n
Q(2.,2.,) = L T b 72,72
1772 m=0 n=0 mn 1 2 .

the frequency domain specificaéions are specified over L1 and
L2 number of equally spaced points in the Ql and Qzlfrequency-
axes respectively, such that L1 > 8.M2 and L2 > 4.N2. The
stability constraint is also specified over the same'(or
larger) number of points in order to reasonably ensure sta-

bility of the designed filter.

2.4.e Design Examples

In the design proceduré, the specifications in the
frequency domain are specified over equally spaced frequency
points in the right half of Ql - Qz‘plane. The value of AC
in the constraint equation of (2.4.24) was set equal to 1 x

107 3.
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4

Example 1 _Low Pass Filter Design

The specifications are as follows:

R(p) = 1.0 . for 0 € p € 0.2m
R(p) = ek (P=0.2m  £oy otherwise
where,
) Z
pP= Ql + 92

The transition and stop band chéracteristics are
gaussian a;d the value of k is set at 5.0. The order of the
filter was chosen such that M1=M2=N1l=N2=3. The initial value
of T, was set equal to 3 for which the design had maximum
value of ¥ . The approximatioﬁ was carried ocut over a
32 x 17 grid of equally spaced points in the frequency domain.

The error measures for this design were as follows:

2
2

E, = 0.9192 ; E, = 0.92 ; E; = 0.93 ; |5} = 3.12 x 10
The desired magnitude and the designed magnitude and

group delays rl(Ql,Qz), T2(Ql,92) érevshown'ln Figure 2.16.

Also Figure 2.17 shows the first 16 x 16 pixels of the impulse

response and the coefficients of the designed filter.

The specifications for the band pass filter are as

follows:

o
=
I
,_l
o

for 0.37m € p < 0.47

0 £ pg 0.3m

s
P
©

1
(D

©

Hh
o]
a

-k(p - 0.4m)°%

o
°
[

e for otherwise (value of k=5.0)
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(<7 ,-7) (T,=1) (-%,-7)

(“r-ﬂ)

(—ﬂ'—ﬂ) I (“r-ﬂ) (—ﬁr"“) 1 (ﬂ:‘ﬁ)

= Ql' 2,

- - - -
{—m,m) 1 92 {(m,m) (=1 ,m) l 92 {m,m)

Figure 2.16 a) Desired Magnitude Specifications
b} Designed Magnitude Response
c) & d) Desligned Group Delays Ty And T,
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/
(a) )

a5, = ~18972540E-02 bog = 1.0000000

ay; = 21177270E-02 b01\= - .84930090

ag, = 81653970E-02 by, = -44671370

a5 = 27611030E-02 byy = - .12157390

ajy = 21184090E-02° big = - -84917370

ajq ;% 91720860E-02 by, = -51898170

ay, # 20013660E=01 - by, = - 30581340

a; 17542880E-01 by =  .10858460

a,\.= 81638170E-02 by, = 44659460

a,; = 20015080E-01 b,y = - .30578520

a,, = 1B486460E-01 b,, =  .24817360

a,3 = 33414930E-01 b,, = # .73503730E-01

aj, = 27604210E-02 by = - -12151460

aj; = 17541230E-01 by, =  .10852020

aj, = 33416200E-01 by, = - .73444780E-01

a,; = 19868710E-01 by =  .49963110E-02

Figuee 2.17 (a) First 16 x 16 Pixels of the Impulse ResPonsé'
(b) Coefficients of the Designed Filter

* Each square area of constant intensity represents one,
pixel.
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(—TT,—'IT) (“r—“) (_“r_“) ('IT,—TT)

it

'—J

““ w

(m,m)

Figure 2.18 a)

Desired Magnitude Specifications
Designed Magnitude Response

¢} & d) Designed Group Delays T and Ty
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(a)

.
°a00 = ~57379310E-02 byg = 1.0000000
agy = ~13393510E-01 byy = = -75580170
a5, = ~15518550E-01 by, = -47858320
ayy = —30836500E-01 byy = — -13298210
a;, = -13391570E-01 by, = = 75583560 ‘
a;; = =34089480E~01 . by, =  -44810160
aj, = L4897800E-01 by, = - -273§1320
a), = -134605808~01 byy = -10086200
a,y, = =15515840E~01 by =  -47864050
a,.= 14900300E-01 by, = - .27365880
a,, = 52191500E-01 b,y = = -22460670
a,y = B8049360E~0I b,y = - -95416310E-01
ay, = —30835300E-01 by, = - -13299140 \)
ay, = -13458980E-01 by, = .10087010
a,, = B80496430E-01 by, = - -95393360E-01
ajy = 71583510E-01 by = .200174408-01

(b) ' )

Figure 2.19 a) First 16 x 16 Pixels of the Impulse Responsg_
b) Coefficients of the pesigned Filter. .

+ + .
Bach square area of constant intensity represents one pixel.
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The order of the filter is such that M1=M2=N1l=N2=3. The
initial value of T was set at 3 and é 1 ower limit of 1.
A good design was obtained for 1, = 3 for which the value

of ¥ was a maximum . The error measures for this design

are as feocllows:

= . - . 2
E, = 2.27 ; E, = 0.81 ; Eg

»

Figure 3.18 shows the desired magnitude and the designed

0.67 ; lg]=9.29 x 10

magnitude, group delay responses. 'Figure_2.19 shows the
first 16 x 16 pixels of the impulse response and_the co-

efficients of the designed filter.

The magnitude specifications for this design are

as follows:

I - 2 M
R(p) = e k(0,57 P) for 0 £ p € 0.57

R{p) 1.0 _ for otherwise (value of
k=5.0)

The range of T_ chosen was_Such that 1 € 1 ¢ 3. The order

of the f%lter is such that M1=N1=M2=N2=3. The design cor

responding to Te = 2 résulted in a maximum in the value

of ¥ . The error measﬁres are as féllows:

2

E) = 0.447 ; E, = 0.613 ; E3 = 0.57 ; lE|= 6.19 x 10

Figure 2.20 shows the desired magnitﬁde and designed magni-

tude, group delay characteristics. Figure 2.21 shows the

first B8 x 8 pixels of the impulse response and the coeffi-

‘cients of the designed filter.
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(-TT,—TI’) B l‘ ‘ (‘IT,—'IT) (—TT,—'IT)

E
-
1
=
—_
|
=
-~
i
3

(m,=-m)

-~

(-mw,m) Q, (m,m)  (=m,m) 2 (m,1)

Figure 2.20 a)
b)
c) & 4)

Desired Magnitude Specifications.
Designed Magnitude Response
Designed Group Delays T and T,




(0,0)

+n

= 1.0000000

ay, = ~16757070E-01 Bog
ay, = -31652120E-01 by, = - -29278870
a,, = -37393000E-01 by, =  -25963300E-01
Yy; = -21176130E-01 bgy =  -73930880E-02
\ a;, = 031652610E-01, big = - .29278920
a); = ~36145740E-01 by, =  .75002130E-01
a,, = -46683850E-01 b, = -64422040E-02
a,y = ~38984960E-01 by = - .73239300E-03
a,, = -37387810E-01 b, =  .25962280E-01
a,, = ~46688500E-01 by, = .64420660E-02
a,, = 94498280 by, = .27269780E-02
a,y = -32254580 b,y = = .18330530E-02
a3, = -21181930E-01 by = .73926150E-02
ay; = —38980000E-01 by, = - -73249870E-03
a,, = -32254740 by, = - +18328830E-02
a,, = 43960190E-01 b -

¢
w
w

[WS]

[¥e]

= .41012050E~03
(b)

Figure 2.21 - (a) First 16 x 16 Pixels of Impulse Responsg
(b) Coefficients of the Designed Filter.

+ . . .
Each square area of constant intensity represents one pixel.
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2.5 Summary
A linear programming method has been presented for

the design of one and two dimensional recursive digital
filters to apé;oximate magnitude and phase characteristics.
The variables of the linear program are the coefficients of
the desired filter and the linear programming problem is
"set up such that they minimize the real and imaginary com~;
ponents of the compléx weighted error.

' The types of §tability constraints, thch are linear
in fofm, are also indicated *and are incorporated in-the
method to design stable filters. The constraints used are
sufficient conditions forAstability and proofs of their
sufficiency are also presented. - |

The' filters are designed in the direct form and

examples bf design are also presented.

€



CHAPTER IIT

RECURSIVE DIGITAL FILTER APPLICATIONS IN IMAGE PROCESSING

3.1 Introduction \

Although recursive digital filters are computationally
advantaéeoﬁs when compared .to most convolutional methods of
filtering, {specifically, convolution via FFT)}, little has
been reported regarding the application of these‘filters in
image processing. Lack of application of these filters in
the past was primarily due to design a;d stability problems
associated with these filters. In recent years, however,
many of the stability ang design problems have been overcoﬁe,
specifically in the case of quarter plane filters and at the
present tlme there are a large number of design methods avail-
able, including the one presented in Chapter II, and therefore
this chapter considers in detail the applications of quarter
plane recursive.digiﬁal filters to image processing problems
in the areas of enhancement and restoration.

. A detailed analysis of the usefulness of various two
dimensidnal recursive filter design techniques, indicated
in Section 1.2, with regard to their ability to design recur-
sive filters for image processing applications, will not be
attempted here, since the task is beyond the scope of this
thesis. However, a brieffanalysis is provided in the follow-
ing paragraph.
| As discussed in Section 1.2, in situations where
simultaneous linear phase and arbitrary magnitude approximation
are required,,h the linear programmlng technique, presanted in

Chapter II, is more advantageous to use than the group delay

/ 71
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(phase) equaiization technigque of b], which uses non-
linear optimizasion for approximation. In situations where
epproxiﬁation of arﬁitrary specifications to the real part
of a transfer function or to the magnitude squared transfer
function, the non-linear optimization design procedures are
more useful than the design technlques of [8] and the tech—
nique of Chapter II,which use linear programming. Con-
sidering magnitude squared approximations, the linear pro-
gramming technigue of Chapter II simplifies to the'design.
technique of Dudgeon [8]. As discussed in [32], there are
severe problems i;\implementation of the magnitude squa}ed
transfer function designed using the meEEBQ\of‘Dﬂ. In.
the case of an approximation to the real part of the transfer
function, Re H(Zl,Zz) 1',-the coefficients of the nume;ator

of Re H(Z

17%5) ‘are in terms of the product of numerator and

- denominator coefficients of the original transfer function

H(Zl'zz)' Such an approximation is therefore, not in a
linear form; and cannot be performed using linear programming
techniques.

All of the non-linear optlmlzatlon design technlques
discussed in Section 1.2, design filters in cascades of
lower order sections and therefore the filters obtained due
to these design technigues belong to a subciass of all
possible stable realizations.¥ Among these'techﬁiques, the

most recent and the most improved, is the design procedure

t Re H(Z,,2,) refers to real part of filter transfer
functidn, H(ZI'ZZ)'

¥ This is due to the fact that the fundamental theorem of
algebraic factorization does not exist in two dimensions.
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oflbﬂ. Compared to the rem;inder of the similar techniques,
the technique of Dﬂ designs filters with the generalrclass
of low order stable fiitér sections.

From the brief analysis ahove, it can be seen that
suitable techniques for designing filters fo; image proéess-
ing applications are the linear programming technique of
Chapter II and the non-linear optimization design procedure
of [4. 1In the'followiné sections on applications of recur-
sive digital filtefs-to image processing, the linear program-—
ming design technique is used in designing filters Fo simul-
taneous 5peéification of magnitude and linear phase and the
non-linear optimization procedure of [4] , which is described
in Appendix F, is made use of ip approximating to the real
part of a transfer function or @g the magnitude sgquared

transfer funcE&on.

3.2 Applhcation of Recursive Digital Filters to Image
e

L %

Enhancement

In image procéssing, the familiar enhancement @roblems
are: high frequency emphasis or crispening and eddge enhance-
‘ment. The filters.required for these applicatioﬁs have
magnitude characteristics that afe generally high pass in
nature and linear phase characteristics over most of the
frequency domain. As indicated earlier, the suitable design
technique is the linear programming design procedure, with‘
which the desired specifications can be approximated‘simul—
taheously. In the following subsections, the usefulness of

v

this design technigque is illustrated by filters designed to °

prescribed specifications and applied to image processing



problems;

3.2.a High Frequency Emphasis or Crispening

Oftentimes it is required to make an image appear
sharper. One way of achieving this objective is ko pass the
image through a high pass filter and‘thus‘emﬁhasize the high
frequency components of the image. Considér thg image of
Figure 3.1l(a), which is sampled using tﬁé flying spot scan-
ner. Referring to Appendix G (second'section), the inten-
sity of each pixel of the sampled imaée is the convolution

of the original image with the CRT (cathode ray ﬁube) beam

. -

spot of £ﬁe flying spot scanner. The sampled image -can also
be thought of as the output of a filter, with thé original
image as the input and the transfer.function of the filter
equal to tﬁe fourier transform of CRT spot of light incident
on the film. The £filter transfer function is low pasé in
characteristics, as the intensity profile of qRT spot is
gaussian in nature. The band width of this Eiiter is dir-
ectly related to the aperature of the.CRT spot. If the CRT
beam is out of foéus, then the aperature of the spo£ incident
on the fgim is larger than normal and therefore the band
width of the low pass filter becomes very small. This causes
severe‘attenuatiOn of mid and higher frequency components of
the image and results in a blurred image as shown in Figure
3.1(a).

Blurred imaées similar to the one shown in Figure 3.1 (a)
can be enhanced by passing the image through a high pass £il-

ter, which compensates for the attenuation of higher frequency

components. For the image of Figure 3.1(a), a high pass

~— .‘
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agp = -.15575530E~01 b00'= 1.0000000

agy = .46834400E-01 bg1 .22357600

agy = -.39941100E-02 b .71496190E-01
ajg = .49515360E-01 byg .22108698

al_l = -.21031310E-01 by .15445120

ay, = ~.22371150 by, .10571910

ayy = .41128100E-02 - by .91730540E-01
ayy = =.23362350 byq .}0200290

a,, = -70751300 by .15625000E-01

Figure 3.2(e)

Coefficients of the Designed Filter.
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filter was designed with afbitrarily chosen specifications.
The gain of the filter was specified to Se equal to l_béyond
the rqdial frequency of 0.7m, and 0.1 below the radial fre-
quency of 0.37. The transition band in petween 0.3m and 0.77
was gaussian. The magnitude, group delay and the impulse
response of £he designéd filter ;re shown in Figure 3.2. The
coefficients of the designed filter is shown in Figure 3.3.
The.high pass filtered imagé'of 3.1(a) is shown in Figure
3.1(b). From this figure, .it is clear that the image is much
sharper comﬁgred to the original and the detéils which are
blurred in the original are much CIeafer in the filtered
version.

__.4-"""'
3.2.b Edge Enhancement - . 't

-

One of the approaches to picture segmentation is based
on the‘deteqtion of disﬁontinuities; l.e., lines along which
there is an abrupt change in gray level, indicating £he end
of cone regjion an@ the beginning of another. Such disconﬁinfd @*
uities are called edges. Prior to the detection of these "
edges, it }s requifed that they be enhanced. The filter that

is often used for edge enhancement is the Laplacian [36,37].

In continuous space, it is defined as:.

B 2 2
Tt e,y = SELLY) 2 et (3.2.1)

‘where f(x,y) is the imagé intensity which is a function of

spatial coordinates x and y. The fourier transform of (3.2.1)

is given by:
= - (w? 2y,
Liw ywy) = —(wy + wi) F(w,/B,) (3.2.2)
where F(wl,wz) is the fourier transform of the image f(x,y)

and wl and w2 are continuous frequency variables. Thus, the’
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laplacian operatdr can be represented in terms of a linear

'shift invariant system possessing a transfer function:
H . ) = - (W + W | T (3.2:3)
(wl,w2 = ‘(wl w2) (3. .
Assuming W to be the sampling frequency at which the image

is sampled along both the spatiai directions, the freguency

response of the laplacian filter can be written as:

= - (02 2 -
H(Ql,Qz) = (Ql + Qz) {3.2.4)

where Ql = wlw/(ws/z) and 92 = wzﬁ/ws/z) are the normg}lzed
frequency variables. The negative éign in (3.2.4) can be

neglected, since it simply involves multiplying the input or

—_—— "

the output by -1. Therefore the edge enhanceﬁent filter can
be written as: '

H(Q,,2,) = (Qi + Q3) (3.2.5)
The phase characteristics associated with the transfer func—
tion H(Ql,ﬂz) of (3.2.5) are zeroc or linear phase. A filter
was designed to approximate the magnitude characteristics of
(3.2.5) with.linear phase usin& ﬁhe linear programming tech-
nique. The desired magnitude chafacterigtics are shown in
Figure 3.3(a). The designed filter magnitude, group delay and
impulse respanse characteristics and the éoeiﬁicients ére
shown in Figure 3.3. This filter was then apéiied to enhance
the edges of the image shown‘in Figure 3.4{(a). The result of
enhancing the edges is shown in Figqure 3.4 (Db). Iflis obvious
that there is indisc;iminate enhancement of all edges of Ehe
image; the desired result.

For the purpose of comparison, a recursive filter
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ago = ~-38311810E-02 byo = 1.0000000 i
agy = —-22786600E-02 bgy = -36874460
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ayy = -16063760E-04 by, = -10230900

a5 = -17943920E-01 b1y = .47874560E~01
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a2y = -.39055160E-02 by = .51260240E-01
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aj; = -.10179080 b3y = .57397140E-01
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Figure 3.3 (e) First 8 x 8 Pixels of the Designed Filter
. Impulse Response
(f£) Coefficients of the Designed Filter -

L]

+ . . . .
Each sguare area of constant intensity represents one pixel.
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Original Image

Edge Enhanced Image with Linear Phase
Filter

Edge Enhanced Image with Non-Linear Phase
Filter.
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Figure 3.5 a) Magnitude Response
b) & ¢) Group Delays 1 4§nd T,
d) Impulse Responée
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= 1.0000000 boo = 1-0000000

- .33264320 by, = -93398490

= - .14728560 by, = -17348960

= .33264320 by, = -93398490

= - .44744180E-01 by,.= -90135800

= - .11984560 b, = ~18074860

=.— .14728560 byy = -17348360

= - .11984560 by, = -18074860

= - .63393340E-02 b,, = .42728630E-01

Figure 3.5(e)

Coefficients of the Filter.
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was designed in which the magnitude algﬁe'was given consi-
deration. The charaEteristics of the designed filter and
the coefficients are‘shQWn in Figures 3.5. Using this fil-
ter, the image of Figure 3.4(a) was filtered to obtain an
enhanced image of 3.4(¢). The consequences of neglécting
" the phase characteristics in the design are obvioﬁs in the

enhanced image.

3.3 Application of Recursiye Digital Filters in Image

Restoration

The problem of imége-restoration of degraded images
deals with the removal of the sources of degradation. The
type of degradation can be spatially varying or spatially -

- invariant. In this section; we will consider using recér—
sive filter implementations fof image restoration, where
image degradations gré of the latter type. The most common
t&pes of deéradations are:

a) Motion Blur

b} Focus Blur

c} Atmospheric Turbulanee Blur
With the assumption of spgtial invariance, the degrading
sysEem, corresponding to the three types of blur can be

.modeled as shown in Figure B2 of Appendix B. 1In this figure,
g(x,y) is the blurred image and h(x,y) is the point spread
function corresponding to the type of blur in gquestion.

In order to restore blurred images, tﬁe first task
is to identify the blur and the second to generate the
corresponding restoration or inverse filter transfer funcf

tion. The details of the blur point spread function identi-
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fication willrnot be given here, since a complete descrip-
tion of identification of the-ﬁhree differént types of blurs
~is found in the work of Cannon [23]. The generation of
restoration filter response is presented ip the next éection.
In the work reportéd by Cannon and others, the inverse fil-
tering is carried out by using non-recursive methods, speci-
ﬁicall?fbyrthe use of fast foufier transform (FFT). Here,

we cogsider performing inverse filtering using ;ecursiﬁe
digital filters whose response has been appra;imated to the
desired restoration filter characte;istics. For the purpose
of compafison, the inverse filtering was also carried out via
convolﬁtion using the FFT. The restoration filter (i.e.,
inverse filter) impulse response was windowed by a two
dimensional Hamming window, thus restricting the convolution
kernal to the chosen size of the window. For the extent of
blurs considered in all the examples in this thesis, a kernal
size of 32 x 32 was found to be appropriate. Larger kernal
sizes did not appear to improve the restorations significantly.
However, if the extent of blur is to be increased to larger
values than what is considered here, the kernal sizes would
have to be increased further. The convolution via the FFT
was implemented using the overlap and save method [1], with
an FFT array size equal to 64 x 64. Since the input to the
FFT is complex, the convalution can be carried out for two

32 x 32 sections of image data aﬁ a time.

The original images used in the examples were sampled

from photographs. The blurring of the images was performed
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by the computer, from known blurring functions and computer

generated noise (wide band gaussian) was added to the blurred

images, with a specified signal to noise ratio (SNR). The
two dimensional recursive digital fllters used in the inverse

fllterlng of the blurred images were de51gned1h51ng either *

the cascaded,deSng procedure (described in Appendix F) or = -

the linear ﬁrogramming technique described in Chapter II,

depending on the type,of approximation at hand.

3.3.a Restoration Filter Transfer Functions

Consider, the block diagram of Figure B2 in Appendix B.

Let b(x,y) be the intensity of the blurred image. Therefore,

from B3:

b{x,y) = hix,y) ® i(x,y) + n(x,y) {3.3.1)

where h(x,y) is the impulse response of the blurring system.
The fourier transform of the blurred image can therefore be

written as:

B(wl,wz) = H(wl'WZ) . I(wl,wz) + N(wl,wz) (3.3.2)

A
where Wy and W, are the freguency variables in the two

dimensional frequency domain. B, H, I and N are the fourier
transforms of b, h, i and n respectively. If W is the
frequency at which the image 1s sampled along both the

spatial directions, then (3.3.2) can be written as:

B(2,,0,) = H(Ry,Q

2) I(Ql,Qz) + N(Ql,Qz) (3.3.3)

where Ql = wln4ws/2) and 92 = W2F/(WS/2) are the normalized
e
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e

frequency variabies. From {3.3.3), theypoﬁer‘spectrum of

b(x,y) can be written as:
4

. oo 2
PL(R,2,) = E(2,8,)0 - Pr(Q,9,) + Bylf,%) |
| (3.3.4)

where‘PB, P_ and P.. are the power spectra of b, 1 and n

I N
respecpively.
Consider now, a blurred image that is free of noise.
For this case, N(2,92,) in (3.3.3) is equal to zero. There-
fore, the spectrum Qf the original image can be obtained in
a straight forward manner, as: '
_ 1(2.2,) = B(Qi;gz)/n(nl,nz) (3.3.5)

provided H(Ql,ﬂz) is known and invertible. Thus the simple

_restoration, or inverse filter, would be:

1

H, (2, ,8,)
R17 2 17 2)

= 5§70 {3.3.6)

With the knowledge of the type of blur, the simple restora-
tion filterx HR(Ql,Qz) can be computed and in the ideal
situation (when the blurred image is noise free), the ori-
ginal image can be obtained from the blurred image. However,
in the presence of noise, the simple restoration filter
would yield an ;nferior restoration as it tends to amplify
the noise which dominates the higher frequency components

of the image. Thus, one has to consider restoration filters
which take into account the presence of noise in the image.

In the literature, the restoration filters, for
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deblurring blurred noisy image, have been derived based on
two criteria. These are the minimum mean squared error
criteria (MMSE) and the power spectrum eqqivalization cri-
teria (PSEC). The former criteriocn can be written as:
Minimize
: A 2t

E {i(x,y) - 1(x,y)} over all x and y (3.3.7)

where i(x,y) is the original image and Q(x,y) is the restored

image estimate. A restoration filter based on this criterion

is given by [38,39].

Hy (9.,8,) -
R 1772 : 2
1 |H(0q,0,)] 2P (2,,2,) + P (2,9,)
(3.3.8)

where PI and PN are the power spectra of the original image

and noise. The second criterion suggested and used by Cannon

and Stockham [23,39], can be stated as:

. 2 —
Pp(fy,9,) - |HR2(91,92)| —JPI(QI,Qz) (3.3.9)

where HR is the desired restoration filter and PB and PI
2

are the power spectra of the blurred and original images

respectively. The restoration filter can then be written as:

e I
2 AR

-1 Imag H(Ql'Q2)
Real H(Ql,Qz)

(3.3.10)

tE{ } refers to the expected value of the gquantity inside
the parenthesis.

* denotes conjugation.
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and as indicate8l earlier, P_ is given by:

B

. 2
PL(2,2,) = Pp(R,,2,) - [H(Q,92,) |+ B(2,,8))

In (3.3.8) and {3.3.10), %he function H(Ql,ﬂz) represents

the blurring transfer funétion."Also, it should be noted

that in (3.3.8) and (3.3.10) the pbase response ofH;l(Ql,Qz)
and HRz(ﬂl,Qz) are-identical to the phase response gf H(Ql,ﬂz);

In the %xamples considered in this thesis, since the

image blurrings are performed by the computer, the gquantities
on the right hand side of (3.3.8) and (3.3.10) are readily
available to compute the restoration filters HR and HR

1 2
In actual situation, where only the blurred image is avail-

able, the blhrring transfer function H(Ql,ﬁz) has fo be
determined from the blurred image itself and the details of
this procedure can be found in [23]. Also the power spec-
trum PI(Qlfﬂz) of the original image is required in computing
HRl and HRz, and is uﬁknown, when only the blurred image is
available. However, it has been suggested, and shown, by
Cannon 23], that good restorations can be obtained where

the power spectrum of an image, which is statisticélly simi-

lar to the original image, is substituted for PI(Ql,QZI. It

has algso been shown by Cannon {?3], that the restoration

R,

somewhat superior ‘to that of H

filter H (based on PSEC) provides restorations that are

Rl (based on MMSEC), for the
case of mdtion and focus blurs. However, in the case of
atmospheric turbulance blur, H has been shown to handle

Epe‘situation mdre effectively iompared to HR . Therefore,

N 2

R
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in the application examples shown, HR has been used for

. 2 . . )
motion and focus blur restorations and Hp for atmospheric
TRy )

turbulance blur restorations.

3.3.b Uniform Motion Blur

.Subjecting a point source.of light to a camera’which
is operated while in uniform motion produces a streak in the
resulting picture. Plotting the intensity of this image, as
a function of spatial coordinates, results in a rectangular
function in the direction of the blur; as shown in Figure 3.6.
This function is the impulse response (point spread functian)

of the blurring system and is given by:

h(r,0) = 3

rh
[}
H
H
”n
Ny
w
s
o
<
1]
D

2 (3.3.11)

0 otherwise

where x and y are spatial coordinates and 6 is the angle with
respect to the x axis along which the camera motion has taken
place. The fourier transf;rm of this function has the form

of a sinx/x function in the direction of blur and is constant
in the direction perpendicular to it. The fourier transform

is given by:

‘_ sin(wd/2) - .
HM(wl’WZ) = ~wd/2) ;W wlcose + w251n6 (3.3.12)
where Wy and W, are-spatial frequency variables. If we let
A be.the sampling interval, chosen for sampling the images
along both the spatial directions, then the blur length d can

be expressed in terms of A as:
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hir,)
4
1/a
—— & ——F =
(a) - ¢ =9
HM(Ql,Qz)

(b)

Phase Shift

- T 1 | e

0 — 0
(c) L
Figure 3.6 (a) Motion Blur Spatial Response

(b) Motion Blur Transfer Function
(c) Amount of Phase Shift Introduced by (b)
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a=%ks © (3.3.13)

where k is any positive number. Let the sampling'frequency

in radians be Woo so that:

_ 27
we = . (3.3.14)

Therefore (3.3.2) can be rewritten as:

_ sin Qk/2 . o _ . |
HM(QI,QZ) = —Qk—/'?—_ : Q= QlCOSG + 9251n8 (3.3.15)

where Ql = T;iggy and 92 = T;E;ET are the normalized frequency
variables. The plot of HM(Ql'QZ) along the direction of the
blur is shown in Figure 3.6(b). 1In (3.3.13), k is referred
to as the blur length in pixels . The motion blurring trans-
fer function of (3.3.15) is purely real and it attenuates the
higher frequency components of the image. Also, the alternate
side lobes of the transfér function are negative and this
"intro;uces a phase shift of w radians to the frequencies that
lie in those negative regions, as shown in Figure 3.6(c).
Figure 3.7(a) shows the computer generated motion
blurring transfer function for a blur length of 4 pixels.
The blur is along a direction which makes an angle g = 45°
with respect to the x axis. An original image shown in Fig-
ure 3.7(b) is blurred using the above transfer function. The
blurring is performed by conveolution via the FFT, with ﬁernal

size of 32 x 32 pixels. Noise is then added to the blurred

image such that the SNR is equal to 30 db. The resulting
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Figure 3.7

Blurring Transfer Function. Blur Length=4
Pixels, Angle=45 degrees w.r.t. Horizontal.
Original Image

Image Blurred by (a), With Noise, SNR=30 db.
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blurred,'noisy image is shown in Figure 3.7(c). For this
‘plurréd image, a restoration filter response Hy, (Q,.,8,) was
; ' 2 .

.~ computed based on the ‘power spectrum equalization criteria.

The response is purely real and is shown in Figure 3.8(a).

An approximate form of the response H (2.,2,), of the
_ MR, 1772

restoration filter along the direction 8 = 45° is shown in

1 . \
Figure 3.8(b). In Figure 3.8(a), the intense dark regions

and intense bright regions correspond to the most positive ¥

and most negative values in Figure 3.8(b}. The restoration'
filter magnitudé characteristics is simply the absolute
value of HMRzpﬂi,Qz) and the phaéecharacteristicsfis as
shown in'Figure 3.8(c), which is identical to .6(c).

‘From Figure 3.8(c), it is clear that the phase
charactEristics is discontinuQus in nature; therefore, a two
"dimensional recursivé filter implementation haviné causal
impulse.response cannot be used td‘iealize the motion blur
restoration f;lter.)@This would become clear if -the spatial
delay characteristips corresponding to the desired phase
response are consiﬁered. From.Figure 3.8(c), at points
where the phase characteristics is discontinuous, the corres-
ponding spatial delay would be an impulse and such a delay
characteristics cannot be realized by a two dimensional
récursive-fiiter. a more successful'épproach, to realize
the desired restoration filter response of Figure 3.8(a) by
a recursive filter is to use the implementation of Figure
3.9(a) where Hl(zl,zz) is a two dimensional recursive digital

filter transfer function. °The overall frequency response;

e n e ki o g = R
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A By (9)08))
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' Phase Shift
——— - Tl' e ————
_0 —_— 0
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Figure 3.8 (a) Restoration Filter Response (Origin.is at the
‘ Centre of the Image) o

(b) Restoration Filter Response Along 6 = 45

(c) Phase Shift Introduced by {(b)
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H(QI,QZ) of this implementation is given by:
_ * T
H(Q,,Q,) = H (2;,2,) + H)(Z,,2;) (Byy.lsx
- - b
= 2 Real{Hl(Zl,Zz)}, (3.3.17)

' _ -—J01 - %2

Hin,Qz) is purely real and can assume both positive and
negative values; therefore,Ait is now possible té approximate
the-desired restbration filter response by the recursive fii—’
ter implementation of Figure 3.9(a). In (3.3.16), the impulse
response of Hl(zl,zz) is causal and the impulse response of
Hi(zl,zz) is the same as that of Hl(zl’ZZ)' but ng;;gguéal.
Therefore, the overall impulse response of H(Ql,ﬂz) is non-
causal.

The restored image, i1, is the sum of the outputs il
and i2 of Hl(zl’ZZ) and Hi(zl,zz), respeFtively. The output
array, il’ is obtained by filtering éhe input array, b, with
Hl(zl’ZZ)' starting from the upper left haﬁd corner of the
input array. As shown in Chapter I, the fil£ering operation
is carried out via the difference equation relating to
Hl(zl,zz). The input array, i2, is also obtained by filter-
the input b by H,(Z;,Z,), but starting from the diagonally

opposite corner of the input array. The i2 thus obtained is

+  * denotes cdnjugation
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b(m,n) —— i{m,n)
Blurred Restored
Image Image

iz(m,n)

*
> Hl(Zl,Zz)

T (a)

("'TT,—TT) : (ﬂr—ﬂ)

(_ﬂrﬂ) - Q2 ('iT,Tl')
' (b)

Figure 3.9 (a) Recursive Filter Implementation for Motion
Deblur
(b) Frequency Response of (a) (Origin (s at
the Centre).

-
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equivalent to filtered output of Hi(zl,iz)T

Figufe 3.9 (b) shows the approximation of H(Ql,Qz) to
the desired ieétoration filter response of Figure 3.8(a).
The impulse respoﬁse corresponding to the desired_re;toration
filtéf is, shown %n Figure 3.10(bf. Figure 3.10(c) shows the
coefficienté of the two-dimensional recursivé digital filter
Hl(zl,zz); The' filter was designed using the ggscaded design
procedure (the design approach is described in Appendix F).
The'linear programming ﬁethod, however, is not suitable in
this situation beéause of the type of approximation involved.

The result of using the recursive filter implementation
to resta;g)the motion blurred, noisy image.is shown;in Figure
3.11. Figures 3.1l(a) and (b) are the original and blurred
images shown earlier in Figures 3.7(b)'and {(c). Figﬁ}e 3.11(d)

shows the restoration from motion blur, where the inverse

+ Let B{21,%2) and I2(%1,22) be the 2 transforms of b{m,n) and
iz(m,n), respectively. Then:

- * - * *

Let Ipn(Zy,Z2) = B*(Z1,Z2) and let ia(m,n) be the inverse
7 transform of Ip(Z3,Z2). The inverse 2 transform of
B*(Zy,%2) is an array bj(m,n), such that:

bl(m,n) = b(M-m,N-n) ; m=0,1,...,M ; n=0,1,...,N ,
From the above it can be seen that by is obtained by rotat-
ing b through 180° about its minor dlagonal. 1ip is now the,
filtered output of Hj, with bj; as the input. As befdre is
is obtained by rotating i through 180° about its minor
diagonal. .

$The impulse responses are shifted from the origin by 16
pixels in both spatial directions.

4
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IQrigin is at the upper 1left hand corner. Size = 64x64 pixels.
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Figure .3.11 (a}) Original Image
(b) Blurred Image with Noise; Blur Length=4,
Angle=459, SNR=30 db
(c) Image Restored Using FFT

{(d) 1Image Restored Using Recursive Implementation
of Figure 3.9(a).
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filtering was cgrried out using the recursive filter imple-
mentation 6f Figure 3.9(a). The restoration that was carried
out via convolution using the FFT is shown in Figure 3.ll(c).
In another example considered, the blﬁr length is increased
to 8 pixels and,the angle of blur is set equal to 22.5% 'with
‘respect to the-horizontal. The corresponding blurring trans-
fer fuﬁttion frequency_response is shown in Figure 3.12(a).
The original image and the motion blurred no&g§ image, where
the blurring is performed using the transfer ‘function’ of Fig-
ure 3.12(a), is shown in Figure 3.15(a) aﬁd (b) resﬁectively.
The restoration filter specifications, computed based on the

- power spectrum equivalization criteria, is shown in Figure

3.12(b). FPigure 3.12(c¢c) shows the frequency response H(Ql,ﬂz)
of the recursive filter implementation of Figure 3.9(a) after
X .

the approximation. The impulse responses corresponding to
Figures 3.12(b) and (c¢) are shown in Figures 3.l3(a) and (b)
respectively. The coefficients of the designed.recursive
filter are shown in Figure 3.14. The results of using the
recursive filter implementation £for deblurring the motion
blurred image of Figure 3.15(b) is shown in Figure 3.15(a) .
For the purpose of comparison, the restoration carried out

by convolution via the FFT is shown in Figure 3.15(c).

3.3.¢ Focus Blur
When a camera lens system is out of focus, then the
indge of a point source of light is not a point; instead,

it is a circular disc of constant intensity. This is the

t the impulse responses are shifted from origin by 16 pixels
in each spatial direction.
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Figure 3.12 (a) Motion Blurring Transfer Function; Blur
Length=8 pixels, Angle=22.59 with respect
to horizontal

{b) PSEC Restoration Filter Corresponding to
(a) and SNR=30 db.

{c) Recursive Filter Approximation to (b).
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Figure 3.13 (a) Impulse Response of Desired Restoration
Filter }

{b) Impulse Response of Recursive Filter
Implementation

!origin is at the upper left hand corner. Size=64x64 pixels.
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Figure 3.15 (a} Original Image
{b) Motion Blurred Image with Noise; Blur
Length=8 pixels; Angle=22.59, with respect
to horizontal; SNR=30 db
(c) Restoration Using FFT
(d) Restoration Using Recursive Filter Implemen-
tation of Figure 3.9 (a).
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point spread function of a focus blurring system. Although
ﬁhe true point spread function is aétually related to the
fourier transform of the aperatﬁ}e of the lens system, a
cylindrical approximation is a gdod‘one and is also mathe-

matically tractable. Thus, the focus blurring point spread

function can be written as:

h(r)

0 ; r > R
' (3.3.18)

h(r) 1/(mR?) "; r<R;r=qx2 +y?

The plot of (3.3.18) is shown in Figure 3.16(a). The fourier
transform of this point-spread function is a bessel function

of first order and it is of the form:

i

Hp{w) = 2 . Jl(kw)/(Rw) ;W =\fw3_+ QE _;3.3.19)'

“Where wy and w, are the two dimensional frequency variables.
As in Section 3.3.b, let A and W be the sampling interval
and the sampling frequency réspectively. The radius R of

the blur point spread function can then be written as:

R = kA . (3.3.20)

where k is referred to as the radius of blur in pixels.

Therefore, (3.3.1%) can be rewritten as:

Hp(Q) = 2 - J,(ka)/(kp) ; @ =4/0) + 02 (3.3.21)

1 2
win w2T )
where = d =
7 Tﬁ;;ET and Q, (ws/z) are the normalized frequency

variables. HF(Q) is a radially symmetric function with alter-
nating positive and negative side lobes. An image that is

filtered through HF(Q), will not only experience an attenuation
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Figure 3.16 (a) Focus Blur Point Spread‘Functioﬁ"
(b) Transfer Function of Focus Blur
{c¢) Phase Shift Introduced by (b)



109

. . » .
of higher frequency components, but also the frequencies in

the hegatifé side lobe regions will expe%ience a phase shiit
-0of 7 radians. The plot of HF(Q) alongféﬁy'radial directién
is shown in Figure 3.16(b). Figureli.ls(b)'éhGWS the- phase
shift expériéﬁCed by various freqﬁency coﬁpbnents of the
inpuf.‘ | o

In Figure 3.17(a) is‘sﬁpwn the transfer function cor-
responding to .focus blur, where the radius of the blur is 4
pixels. Using this transfer function, the original image of
Figure 3.17(b) is-blurred and nqise‘is.added to the image
such that the SNR is eqgual t0336 Abl fhe blurred noisy image
is as shown in Figu '3.17(c3. For this blurred image, a
restoration filter rdsponse HFRzkgl,Qz) was computed based on
the power spectruT quivalization criterion. The response

is purely real and it is as shown in Figure 3.18(a). 4an

approximate form of the response along a radial direction of

45° with respect to the horizontal is shown in Figure 3.18(b).

.
V= e

‘ _In'Figure 3.18(&), the'iﬁté%se dark regions and the intense
bright regions correspond to the most negative and most posi-
tive values, respectively of the function in Figure 3.18(b).
The restoration filter magnitude characteristic is the abso-

lute value of HFR (91,92) and the phase characteristics is
2

as shown in Figure 3.18(6).

As in the case of motion blur, the desired festoration
filter phase characteristics is discontinudué in nature.
Such a response cannot be realized by a two diménsional re-

cursive digital filter having causal impulse response.

However, a possible recursive filter implementation to realize

|
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Figure 3.17 (a) Focus Blurring Transfer Functio
Radius=4 Pixels

i

, Blur

(b) Original Image (Size 128x128 Pixels)
(c) Focus Blurred Noisy Image; SNR=30db

{Origin is at the centre of tﬁﬁgimage.
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Figure 3.18 (a) Restoration Filter Response
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{b) Restoration Filter Response Along 45°

Radial Direction

(c) Phase Shift Introduced by (b)

1'Origin is at the centre.
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the desired response is as shown in Figure 3.19(a). The .
implementation consists of two recursive filters in parallel
having non-causal impulse response. The overall frequency

response H(Ql,ﬂz) of the recursive filter implementation is

given by:
— ‘ 2 _ 2%
H(Ry,9)) = |Hy (2,2 [Hy (2,20 177
‘ (3.3.22)
S 105 ] - 7102
Zl e R 22 e
where
2 - . T
. {3.3.23)

2
|8, (21,8, 1% = H,(23,2,) - H5(2,,32,)

The impulse response of the overall filter H(Ql,ﬂz) is non-
causal since Hi(zl,ZZ)\and Hﬁ(zl,zz) are filters with non-
causal impulse response. The filtering by HI(Zl,Z2) can be
carried out in a manner described in Section 3.3.b. The
frequéncy response realized by H(Ql,Qz), after the approxi-
mation, is shown in Figure 3.19(b). The coefficients of
the filter are shown in Figures 3.20 and 3.21. The filter
was designed using the cascaded design procedure {(described
in Ap?endix F).

The result of restoration via convolution using FFT
is shown in Figure 3.22(a) and Figure 3.22(b) shows the
restoration using the recursive filter implementation. It

is obvious that the restoration due to recursive filter

implementation is a failure. The cause of this failure can



113

Iy (21,25 [
b{m,n) . i(mrn)
il b EN— .
Blurred Restored
Image Image_
" (B, (2,.2,) \_
(a)
/‘
(=m,-m) (m,-)

(-7 ,m) Q (ﬁ,n)

Figure 3.19 (a) Recursive Filter Implementation for Focus

Deblur,
(b) Frequency Response of (a) (Origin Is At
Centre).
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(b)

Restoration by Convolution Via FFT.
Restoration Using Recursive Filter
Implementation of Figure 3.19(a).
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be attr;buted to the recursive filters Hl(zl,zz) and Hz(zl,zz),
which are quarter plane recursive filters. As pointed out by
ékstrom and Woods [40], this class of filters cannot realize
general magnitude cH;;;cteristics. As can be seen from

Figure 3.19(b), ﬁﬂe approximation of the recursive filter

~ implementation £§ the desired response is inadequate.

.The class of filters, called half plane filters, appear

to be more suitable for this type of application, and their

use is suggested for further work in this area. Design tech-»’

.
-

nigques for half pléne filters were not available at the time
this work was performed and thereforéﬁfhe application of this
class of filters is,not considered herel At the time of com-
plgtion of this thesis, several techniques for half plane
filter design have been demonstrated in the literature, g1, 47]

which it is suggested, can be used to adequately approximate

the required focus deblurring filter response.

3.3.4 Atmospheric Turbulance Blur

The cause of this type of blur is attributed to the
variation in the refractive index of the atmosphere. Since
the atmosphere is thermally non-uniform, its refractive
index varies as function of both time and space. Therefore,
in a strict sense, the point spread functipn corresponding
to atmospheric turbulance blur is not only space variant,
but also a function of time. However, it has been shown by
Horner [R3], that the image of a point source of light com-

ing through atmosphere, when averaged over a period of time,

has the form of a gaussian function and therefore, one can
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write the point spread function corresponding to atmospheric

turbulance blur as:

—kr? :
h(r) = e ;x =% + ¥? (3.3.24)

where x and y are spatial coordinates and k is a constant.
The fourier transform of the point spread function is also

gaussian and it is given by:

_om _—(w?/4k) | o _ 5
HA(W) = pe ;W -\}wi + w5 (3.3.25)

where Wy and'w2 are spatial frequency variables. AS before,
chioosing w_ as the sampling frequency in both spatial direc-
tions, the atmospheric turbulance blur transfer function

can be written as: i
¥

-(Q%/8k) | o _ [of + &
e ; Q= Ql + 92 ,(3.3.26)

m
N b
W
where &, = (WlTr ) and &, = ( 2 ) are the normalized frequency
1 \ 2 w
s/2 s/2

variables. The computer generated atmospheric turbulance blur
transfer function for a value of k = 2 is shown in Figure
3.23(a) and a plot of the cross section of the transfer func-
tion is shown in Figure 3.23(b). This transfer function is
used to blur the original image, shown in Figure 3.27(a).
Noise is added to the blurred image such that the.signal to
noise ratio is 30 db. The noisy blurred image is shown in
Figure 3.27(b) .

For the blurred image of 3.27(b), a restoration filter,
HAR(Q), was. computed based on the minimum mean squared error

criterion. The intensity plot of the specifications is shown

in Figure 3.24(a). An approximate variation of restoration

~
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Figure 3.23 (a) Atmospheric Turbulance Blur Transfpr
Functio

{(b) One Dimensional Plot of the Transfer Function
Along Any Radial Direction

torigin is at ‘the dentre.
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filter specifications, along 45° radial direction is shown
in Figure 3.24(b). The intense dark and the intense bright
regions in 3.24(a) éorrespond to the zero and most positive
values of the function shown iﬂv?idure 3.24(b). Since the
blurring transfer function has zero or linear phase charac-
teristics, the restoration filter also has zero or linear
phase_characteristics. Therefore, the linear programming
technigue was used in designiné a causal recursive digital
filter to the desired restoration filter magnitude and linear
phase characteristics. The magnitude characteristics of the
designed filter, ‘and ité coefficients, are shown in Figure
3525(a) and (b). The impulse responses corresponding td the
restoration filter frequency domain specifications and the
recursive digital filter, designed using linear programming,
“
are shown in Figure 3.26(a) and (b). The result of using the
recursive filter for the purpose of restoration is shown in
Figure 3.27(d). The restoration performed via convolution
using FFT is shown iﬁ Figure 3.27(c).

One more example of atmospheric, turbulance blur is
considered, in which- the image is blurred using the trans-
fer function of (3.3.26) with k = 0.5. The SNR in the
blurred noisy image is 20db. The original and the blurred
noisy images are shown in Figures 3.30(a) and (b). In
this example, a recursive filter implementation whose im-
pulse response 1is non-causal, is used as opposed to the

causal implementation of the previous example, in the res-

toration of the blurred image. The recursive filter imple-
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AR

(b)

Figure 3.24 (a) Restoration Filter Response for Atmospheric
Blur
(b) Plot of Magnitude of (a) Along 45° Radial
Direction

*Origin is at the centre of the image.
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-

Figure 3.25 (a) Magnitude Response of the Designed Filter
(b) Coefficients of the Designed Filter *+

*The array N corresponds to numerator coefficients and array
D corresponds to denominator coefficients.
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Figure 3.26 (a) Impulse Response Corresponding to Desired
Magnitude Specifications (16x16 pixels)
(b} Impulse Response of the Designed Filter
(the first 16x16 pixels) '

Note: For (a) the origin is at the centre of the image;
for (b) the origin is at uppér left hand corner.
In (a) and (b) each square area of constant intensity
represents one pilxel.
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Figure 3.27 (a) Original Image
(b) " Blurred Neoisy Image; SNR=30 db
(c) Restoration Using FFT
(d) Restoration Using Recursive Filter
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Recursive Filter Implementation for Atmos-
pheric Turbulance Deblur

Desired Restoration Filter Freguency Response
Frequency Response Realized by (a)



-

(b)

Figure 3:29 (a) Impulse Responge Corresponding to
Figure 3.28(b) (64 x 64 Pixels)

{(b) Impulse Response Corresponding to
Figure 3.28(c)* (64 x 64 Pixels)

+ Origin 1is at upper left hand corner.




127

AO~r  .1227548908826765D-21

CASCADE SECTION % = |

Cee,e)- .1200E999208900848D A1

C(@,1)~ .37386582335Z24517320 2L
cee,g)- 23455523 78163450 9
Cei.a)e \381336753851137870 21

CCl.1)e - .13353756126550320 2L
Cee. 23 S70957912027755530 91
Ct2.3)+ - 30057632553531520 Ji
Ct2 11« ,3618879657731538D0 o1
C(2.2:~ -.1181942282898142D 9l

3 pr.  L1002VRNINNAD 0T
(5.1,. -.S30928T7452381913 ¢
5 2,. .3720848563395%3D v
. 3. -.10013517169093820 91
Dit 1)e .91105366751837300 39
D1 5,. -.324565¢923913647D ea
D(2 0. .4551665865547211D 08
Dz 1)e -.4996692213691412D 00
D(a.2). -1435237900884555D 09

Figure 3.29 (c) Coefficients of Hl(Zl,Z?)-



128 i BLURRED PAGE
. - PAGE EMBROUILLEE

Figure 3.30 -(a) Original Image
(b} Atmospheric Turbulance Blurred Image With
Noise

(c) Restoration Using FFT
{(d) Restoration Using Recursive Filter
Implementation of Figure 3.28(a)

-
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mentation is shown in Figure 3.28(a). The overall frequency

.

response H(ﬂl,Qz) of the implementation is:

_ 2
H(Q,,2,) = tHl(zl,zz) |

I

Hl(zl,zz)-H;(zl,zz); zl=3'391, zz=e—392 (3.3.27)

H(Ql,ﬂz) is purely real and positive and has zero phase char-
acteristics, and therefore, it can be used to approximate the

v

desired restoration filter response. The filtering of data

by H;(Zl,zz) is perfofmed in a manner described in Section
3.3.b.

The desired restoration filter response as shown in
Figure -3.28(b) and Figure 3;28(c) shows the response realized
by the recursive filter implementation, after the approxima-
-tion. The recursive filter was designed using the cascaded
design procedure. The impulse responses corresponding to the
desired restoration filter specifications, and the recursive
filter implementation is shown in Figure 3.29(a) and (b)+.

The coefficients of the recursive filter Hl(Zl,Z ) are shown

2
in Figure 3.29(c}). The resteg®ation achieved using the recur-
sive filter implementation is shown in Figure 3.30(d).' The

restoration that was carried out via convelution using the

FFT is shown in Figure 3.30(c).

3.4 Summary .

‘This chapter has presented the application of guarter

plane recursive digital filters to problems in image proces-

sing. The applications considered are in the areas of image

+ The impulse responses are shifted by 16 pixels in each
direction from the origin.



130

i

enhancement and'imagé kestoration. The problems of enhance-
ment considered were high frequency emphasis and edge
enhancement. In the case of restoration, .the use of recursive-
filters are examined for motion, focus and atmospheric tur-
bulance blurs. in the case of focus blur, the.restoration
appears to be a failure due to the inability of quarter plane
filters to approximate the required filter.response. However,
in the case of mbtion and atmospheric tubuulance biurs, it is
shown that successful restorations can be obtained with recur-

sive filter implementations.



CHAPTER IV

DISCUSSIONS OF RESULTS AND EXTENSIONS

4.1 Introducticn

In Chapter II, the design of both one dimensional
and quarter plane two dimensional recursive digital filters,
‘using linear programming, was presenﬁed where a simultaneous
approximation is carried out to both the desired magnitude
and linear phase characteristics. . The application of quarter
piane two dimensional recursive digital.filters to image
processing problems were considered in Chapter III. This
. chapter présents a discussién of some of the prbblems and the
advantages associated with the linear programming design
method for recursive digital filters and also the problems
and the'computational efficiencies associated with restorations
of blurred images using recursive digital filter implementa-
ticons. Also some extensions of the research work are discussed

towards the end of the chapter.

4.2 Discussion. of the Filter Design‘Method

The deéign examples presented earlier have shown that
linear programming can be successfully used to design recur-
sive filters which approximate given frequency domain magnitude
response witH.lingar phase chéracteristic. However, as in the
case of many other linear programping methods, there are some
problems that limit the range of filters that can be designed
using this method. The type of stability constraints given by
(2.3.34) and (2.4.10), used in “the one and two dimensional

recursive filter design method respectively, are not general

131
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stability constraints.- Therefdre; the filters that can be
designed using this method belong to a subclass of éll pos-
sible stable filter realizations. This is not a drawback in
the case of two dimensional filters, since for many of the
existing methods, the designed filters are also of a subclass
of all péssible stable filter realizations. However, the
storage requirements for linear programming design of two
dimensional filters are very large. Also, the computation
times are guite high because of the large number of constraints
involved in the linear'program. Because of the high storége
requiremen%, the range of the érder of the two dimensional
filters that can be designed using this method is limited;
- Thus, in this work, with 32 x 17 points of frequency aomain
.specifications, the largest-possible'filter order that can
be realized is M1=M2=N1=N2=3, (i.e., 16 coefficients'in the
numerator and 16 in the denominator). However, in the case
- of one dimension, this is not a problenm, and filters of
order 16 have been designed uéing this design procedure.

The désign time for both one and two dimensional f£il-
ters vary with the number of desired specification points
and also the order of the filter. On_thg average, the time
taken for one trial va&ue of Ts in the one dimensional fil-
ter design is approximatelyapne minute. In the case of two
dimensional filter design, the avérage time taken for one
trial value of Ta is'approximately two minutes for specifica-
tions over a grid of points less than bor equal.to 21 x 11.
However, for specifications over the grid points 32 x 17,

the time for one trial value of To is quite high {about ten

minutes). All the designs presented in the examples were



carried qQut using an IBM 360/65 computer in single prec1510n

arlthmetlc.

In spité of the problems méntioned earlierj the method
has advantages compared to nonflinear optimizatioﬁ and some
of the other linear prog;amming design methods. 1In -the case
of methods that use non—l;pear optimization [?,3,4,5,6,7,ﬂ
they require the specification of initial ﬁalues of the para-
kmeters, to start the optimization, and also the final design
isggependent onjfﬁézinitial values of the parameters. 1In
addition, the convergence of the optimization is not guaran-
teed and even when the procedure converges, it generaliy
converges to a local optimum. In comparison, the linear pro-
grgmming method of design does‘ﬁot require the specification
of initial parameter values and a}so the optimum obtained i;
the absolute optimum.consigtent wIﬁh the constraints of the
problem. Comp?red to manQ‘of thé linear programming methods
[8,17,18,19,20,2]], where it is bgssible to approximate only
a magnitude squared specifications, this method‘can approxi-

mate to both magnitude and .linear phase specifications.

4.3 Discussion on the Applications of Recursive Digital

Filters to Image Processing

4.3.a Image Enhancement Applications

In image enhancement applications, such as high fre-
quency emphasis and edge enhancement, the filter phase |
characteristics are zero or linear over most of the spatial
frequency dom;in. In Chapter III, it is demonstrated that
the linear programming design can be successfully employed

in de51gn1ng the desired filters with linear phase character-
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istics. It is also demonstrated that the linear phase
chéracteristics are critical in edge enhancement applications.
It should be noted that zero phase can a%so be achieved in
the filters used for enhancement, by using the magnituée
squared transfer function (non-causal) implementation shown
in Flgure 3.28(a). However, this results in almost twice

the number of computations than that of the causal fllter'

implementation.

4.3.b Image Restoration Applications
F ]

In Chapter III, suitable recursive filter implementa-
tions are shown for restorations due to motion, focus and .
atmospheric turbulance blurs. It is shown that the phase
. characteristics of the restoration filters are discontinuous
"in nature, in the case of motion and focus blurs, and there-
fore a non-causal impulse response filter implementation is
required. However, in the case of atmospheric turbulance
blur, the phase characteristics are either.zero or linear
phase and both causal and non-causal impulse response‘imple—
mentations are possible.

Prior to using recursive filter implementations for
restoration purposes, the restorations were also carried out
by convolution via, FFT. The restoration; so obtained, were
used in judging the performancé of the recursive filter
impleméﬁégtions.' In the case of motion blur, it can be seen
from the examples provided that the restorations obtained
are successful and are comparable to those obtained by con-

volution via FFT. In the case of atmospheric turbulance, it

can be observed from the examples that both causal and non-
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causal impulse response recursive filter implementations

provide good restorations, and are almost equivalent to those

obtained by convolution via FFT, The usefulness of the linear -

programming design method is also demonﬁprated in des%gﬁing
the restoratiog filter for causal impulse'response recursive
filﬁer implementation. In addition .to providing good‘restora—
tions, the recursive filter implementations alsoc provide:
significant computational savings compared td convolution via
FFT. A brié%gcomparison of the two types of implémentétions
follows. | - |

The size of kernal used in the restoration by coﬁvolﬁ—
tion via the FFT is restricted to'32 x 32, Since the FFT
array éize is set to 64 x 64, the filtefing caﬁ be performed
for two'32 x 32 éections of the image at a time, where the
input for the FFT is complex. Hence, according to 31 , the
number of complex operations involved for filtering an image
of size 256 x 256 pixels is equal to 6,422,528 complex opera-
tions.+ In comparison, the number of real operations involved
for the recursive‘filter implemeﬂzation used, in the case of
motion andﬂanospheric turbulance blurs, where successful
restorations Q@re obtained, -are as in Table 4.1. It can be
seen from this table that the number of computations reqﬁired
for recursive filtering.is very much less than that required
for the convoluticn via FFT; The average_time regquired for
‘%iltering image data of size 256 X 256 using FFT was approxi-

mately equal to 32 minutes compared to an average of 8 minutes

for the recursive filter implementations, using -the Data

+ One complex operation is defined as one éomplex multipli-
cation and an addition.
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General NOVA-840 mini-gco uter.

- In the case of focus blur, the restoration is a failure.

The cause of Ehis can be clearly seen in Figure 3.19(b), which

is an approximation obtained by the recursive filter implemen-

tation to the desired restoration filter response of Figure

3.18(a). This indicates the inability of quarter plane

R SLI

recursive digital filters to app;oximate the nearly circularly
‘- symmetric festoratiqn filter response. In thelpreliminary
study reported ;n Bi} tﬁe restorations for focus blur were
obtaine8 using the Q;me type of recursive filter implementa-
tions é? shown in this thesis. The restorations obtained were
reasgnably‘good in comparison to restoration by convolution

via FET} however, the original .images usgd in fhe study were
simple computer gemnerated images which contained only 16 gray

"levels in comparison to the 256 levels of the original images.

"used in this thesis.

4.4 Extensions

This section discusses the possible extensions and
further study.of the filter design techniqqe, and the.further
applicétions of two dimensicnal recu;si#e digital filters

'that are considered in this thesis.

4,4,a On PTwo Dimensional- Filter Design

The theéis has preseﬁﬁed the linear programming tech-
nique for quérter piane two dimensional recursive filter
design. Therefore, one might consider the extension of this .
techniqﬁe to design half plane fiifersrthat were discussed
iq Chapter I of this thesis. The basic design procedure

remains unaltered; however, the linear sfability constraint
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. may require some modifications. These modifications will
have to take into account the change in the stability cri-
teria from quarter plane filters to that of half plane

/
filters. ' '

4.4.b -On -Recursive Digital Filter applications In

Image Processing

Chapter IV of the thesis considers the applié;tion
of recursive digital filters in image processing; in parti-
cular, the application of quarfer plane;filteré. However,
the case of focus blur indicates the failure of quarter
plane filter implementations;‘yHencg, some further work is
réquired?'specifically in the area of half plané fiiter
applications to image processing. It ma§ also be worthwhile,
not only to consider half plane filter application in focué
deblurring, but in all the problems of image précessing that

have begn studied in this thesis.

- o -



CHAPTER V

CONCLUSIONS

A

A ﬁew technique of designing one and two dimensional
recursive digital filter transfer functions, which can approxi-
mate simultaneously linear phase and arbitrary magnitude
specifications is présented. The technique sets up a linear:
programming problem which is in terms of the filter coeffji-
cients and the desired constant group delay (linear phase),
which is theﬁ solved iteratively for the best gﬁ?roximation
to the given specifications. Since the_approximation is
performed using the linear programming techniqug which is a
liﬁear optimization 1::15c>cec11.1re‘,r the constraints on the filter
coefficients that can be used to obtain stable filters, are
requi%é? to be linear in form. 1In Chapter II, such stability
coﬁstﬁﬁints are p;opése@ and proofs of the sufficiency. of
these constraints are also provided. A wide range of’design
examples are provided in both one and two’dimenéional cases
and some limitations of the linear programming design tech-
nigque are also discussed.

| The thesis also has presented the application of
recursive digital filters to imagé procesging. A brief
evaluation of various two dimensional recursive digital fil-
ter techniques are carried out and it is shown that the
lingar programming technique of Chapter II and the-pon—linéar
optimizatioﬁ design technique of [4] are useful in designing |
filters for image processing applications. The applications . i
of recursive digital filters are considered in the areas-of

a) image enhancement and b) image restorations. Examples of

139
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enhancements using recursive filters are shown for the cases

of high frequency emphasis and edge enhancement and importance

of linear phase characteristics is stressed by way of an edge

enhancement example. The applications of recursive digital

filters in image restoration is considered for the cases of

motion, focus and atmospheric turbulance blurs. Using

suitable restoration filter specification, it is shown, with

éxamples, that recursive digital filter implementations

can=

not only provide good restorations, but are also computation-

ally advantageous compared to restoration. by convolution via

FFT, for the cases of motion and atmospheric’ turbulance
In the case of focus blur, the restoration is a fdilure
the cause of the failure is attributed to the inability
quarter plane filters to adeqguately meet the circularly

- .

metric specifications of the desired restoration filter.

blurs.
and
of

sym~ .
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APPENDIX A
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Digital 'Filtering Fundamentals




One and Two.Dimensional Filtering

Digital filteré fall into two classes. FilFers wﬁose
spatial response contains a finite number of non—z;ro samples
are called Finite Impulse Response (EIR) filters, and those
whose spatial response contains, in general, an infinite num-
ber of non-zero sampleé', are called Infinite Impulse Response
(IIR) or recursive filters.

In the one dimensional case, the output sequence y(m),

of a FIR filter, assuming an input sequence x{m), is given by

f1]:
K-1

y(m) = I h(k)x{m-k) ' (A.1)
X=0 .

where h(k) is the impulse response defined over the interval
0 € k € K-1. Similarly, in the two dimensional case, the

output array y(m,n) can be written as (1} -,
1

K"l L“l . ) r
y(m,n) = I & h(k%) - x{m-k,n-) (A.2)
k=0 £=0

where x{m,n) is the input érray‘éﬁaﬂh(k,i) is the impulse
response defined over the interval 0 £ k € (K-1), 0 € & ¢ (L-1).
A one dimensional recursive filter is characterized by

the difference equation [1]: .

=

N
y(m) = £ a(k)x(m-k) -

b(2)y{m-%) (A.3)
k=0 ) R

1

t Phis definition is used loosely, since convergent proper-
ties are required of the filter.
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Once again x(m) and y(m) are the input and‘output

et B b

respectively, and y(m) is computable (i.e., the IIR filter is

said to be recursible) for m = 0. The‘impulse response, h{m),

”

correspohding to (1.2.3) is causal, i.e., h(m) = 0 -for m < 0
T AT _
and it extends up to infinity for positive values of m. How- )

ever an extension of similar characteristics to the two
dimensional Ease-yields énly a specific class of two dimen- !
sional recursive filters 40 . This will be shown in the
folléwing discussion.

.In the two dimensional case, a general difference N

equation that characterizes a two dimensional IIR filter can

be writtgn as 46 .

]

y (m,n) L atk,t)x(mk,n-t)

(k,l)CRa

LI b(i,J)y(m-i,n-3) (A.4)
(1, 3)ER, ) :

i+3#0

where x and y are the input and output arrays respegtively,
and Ra and Ry € Ii, where I is the set'of'integefs. Before
discussing further about the difference equation (A.4), it
is iﬁportant to understand about the recursibility of a two
dimensional recursive digital filter.

Definition __ : A two dimensional IIR filter is said to be
recursible if for every output point (m,n), the output mask ?
covers only poinﬁs which have been previously computed.

Tn the above definition, the term output mask, simply

refers to a ;ectangle that encloses the appropriate samples

a3
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of the output array y for computation of an output point
y(m,n) (an input mask_ can also be defined in a similar manner) .

Now, consider the' following case of R, and- Ry, such that:

R
a

{(kg) | 0¢ kg KL, 0 ¢ & s L1}

(A.5)

Ry

{(i,9) | 0 ¢ i< 11, 0 j € J1}

The difference equation corresponding to this case can be
written as
Ki Ll

y(m,n) = £ I a(k,2)x(mk,n-)
k=0 £=0

11 Jl
- I L b{i,j)y(m-i,n-3); 1+j#0 (A.6)
i=0 j=0
[

In {(A.6), if 11, J1, K1, L1 afe all chosen to'ﬁe equal to
2, then the recursive filtering operation correspénding to
5 this case can be described by Figure 1.l. In this figure,'
té produce the value of y{(m,n), wﬁich is the desifed output
hole, the input and output masks are pl?ced over the appro-
priate samples of £he input and output arréys respectively
and each sample is multiplied by the coefficient associated
with that position in the mask and the products afe summed.
From the type of the outﬁut mask, it can be seen tha£ the
recursive filter associated with Equation (AVG); is recur-
sible eitﬁer column or rowwise. Consider, for example,

another case of Ra and Rb’ such that,
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Array . © Unknown polnts
. K « Initial conditions =.0
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m
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[ - ] _ i
.(0,0) n

Figure Al  An Example of Input and Output Masks
' to Calculate y(3,3) for Equation (1.2.6).
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R = (k,2) | 0 .k « K2'if 0 <2 ¢ L2

k]

'and ) (A,?l

.. .

-K4 < k ¢ -K3 if 0 < £ ¢ L2 .

Ro= (i,9)] 0<i<I2if0 < j s 32
and

-T4 ¢ i ¢.-I3 if 0 < 3 ¢ J2
ffThis results in an output sequence y(m,n) given.by:

2 -K4 * ‘L2

-”1 K2 L _
y(m,n} = 1§ T a(k,V)x(m-k,n-2) + I z alk,2)x(m-k,n-2)
. . k=0 ¢=0 k==K3 =1 ’
I2 J2 . - ~I4 J2 . i .
- . L b(irj)Y(m_irn—j) - b z b(irj)Y(m_irn"J)
i=0 j=0 - i==I3 j=1
i+3#0 ‘ (A.8)

Here again, if I2=J2=I3=I14=K2=L2=K4=K3=1, then the recursive
filtering operation given in (A.8) can be described by-
Figure A2, Aﬁ examination of the output mask for this case
indicates that this filter is recursible only columnwise. ’
According to Huang 14 , a two dimensional recursive
digital filter is said to be causal if the impulse response

—
h(m,n) is zero for m or n less than zero. Returning back to

Figure Al, one can see that impulse response of the IIR
filter (A.6) is spread over only the upper guadrant of the
right half plane in the spatial domain and therefore it is a

causal filter. This type of filter is also‘geferred to as &
/

quarter plane recursive filter, since its i&pulse response
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is conflned to one quarter of the spatial domain. Compared

_to this, however, from Figure A2, it can be seen that the

recursive filter O:‘(A'B) has its impulsa response spread
over tne right haif plane of the spatial domain.and it is
referred to as a semicausal recursive filter with respect to
the deflnltlon of causal filters. Because the 1mpulse res-
ponse of this type of filter spreads over- half the spatlal
domaln, 1t is also referred toKa“**,half plane filter.

The work reported in this thesis deals with only the

.quarter plane ‘filters and therefore, from here on, any

reference: to two dlmen31onal recursive dlgltal fllter should
be assumed to be a reference to a quarter plane two dimen-—
sional recursive digital filter, unless specified. For more
detailed information on half plane filters, the interested

reader should refer to recent works reported in -40,41,42 .

Z Transforms and Filter Transfer.Functions

Given a sequence x(n), defined for all n, the 2 trans-

form is defined as, ’ ,
o0

x(z) = ¢ =xmz"; z=ce | (A.9)

n:—oo

where S end 7 are complex variables. 1In (A.9) x{(n} is a
sequence that is obtained by sampling a continuous signal
x(t) once every T units of time. T represents the sampling
period: and its choice is based on the sampling theorem (see
). When the complex varlable S and the sampling period T

are such that

4
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S = 4w T == (A.10)

where w is the continuous fregquency variable and L is the

sampling frequency, then the complex variable Z can be writ-

ten as:
Z =8 (ALl

In (l1.3.3) @ = (ﬂw/ws/z) is referred to as the normalized
frequency variable t For various values of @, Z takes on
values on the unit circle in the Z plane. Using (A.11) in

(A.9), one finds that the evaluation of the Z transform
on the unit circle results in:

X(2) | _ig = ¥(e7 = 1 x(myeIn
Z=e . n=-w

which is the fourier transform of the sampled seqﬁehcejx(n).
Using the above-definition, it is now possible to
derive the transfer functions for FIR and recursive digital
filters. Thus for a causal FIR filter whose impulse res-
ponse h(n) is zero for values of n outside of the range

0.< n < (N-l1l), the transfer function can be written as:
(N-1) N . .
H(Z) = Z h(n)2 (A.12)
" n=0 :

o

Similarly, the transfer function correspon ing to the
causal recursive (IIR) filter is obtained as:

N i

_ L a(iyzm .

H(z) = £ h(n)g" = 20 - - (A.13)
n=0 1+ 2 b4z’ | |

1

o0

Il &=

]

TExpressed in radians.
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where we assume that no roots of the denominator are can-,

-

celled by roots of. the numerator. Most often N is less than
or equal to M and the filtef is referred to as an Mth order

'recursive filter. If N > M, then the filter can be taken

th th

to be an .M order recursive filter with an (N-M} ordér

4
FIR filter. Another important guantity in filter theory is

the frequency response H(Q) of the filter. This is obtained
.
by evaluating thestransfer function H(2Z) on the unit circle
in the Z plane, iié., 7 = e_jg. |
A two dimensional Z transform can be défined in

exactl§ the same manner as the one dimensional Z transform.,

Hence, for a two dimensional sequence x{m,n), defined for all

m and n, the 2 transform is defined as:
@ o

X(Zy,2,) = T £ x{(m,n) 2

Vn_ _.=51Ty _.—S2T7
Z Zl e ' 22 e

m —
1 727

(a.14)
where Sl' 82, Zl and 22 are complex variables.
x(m,n) is a sequence optained by sampling a continuous
two dimensiocnal signal x%tl,tz) at intervals of Tl and T2
1
units in spatial directions x and y. With complex variables
Sl' S2 and the sampling periods Tl and Tz, so that:

S=IWyr 8,=Jw,, T = (2ﬁ/wsi), T, = (2W/W52) (A.15)
where Wy and w, are continuous spatial freguency variables
and W " and W, o are the frequencies at which the signal

1 2 :

_x(tl,tz) is sampled in x and y spatial directions, the com-

plex variables Zy and Z., can be written as:

2
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= e_ng : Ql = wwl/(ws )

1/2

. . (A.16)
= =32 i,

Z., = e i R, = TW AW )

2 2 2 S5/2

In (A.17) Ql and 92 are referred to as normalized spatial
'frequency variables in radians and for various values of Ql
and Q’, Zl and Z, take on values on the unit circles in the

Zl and 22 planes respectively. Therefore from (A.14) the

evaluation of %2 transform on the unit bidisé' results in:

h-..\
X(Z.,2) | - . sfxiéhjgl, e” 2,
l 2 _ —jﬂl
. 2. = e
l .
: _ 32
4 Z2 e
=z z x(m,n)e d ML * nfi2) (A.17)

m-_—,\'im n=-«

which is the two dimensional fourier transform of the sequence
x{m,n). @
It follows from the above discussion,'thaﬁ given a
FIR filter whoie impulse response h(m,n) is zero outside the
region 0 é‘m £ M1 and 0 s.n £ N1, the two dimensionalltranSfer
function can be obtained as:
M1 N1

m n
H(Zl,Zz) = a E h(m,n)z, Z, (A.18)
m=0 n=0

For a two dimensional recursive digital filter, the transfer

- function can be obtained from the diffexrence equation of

(A.4) aé:

-+ . P
Un1§ bidisc2{z,,2,: |2, | <1 and |z, | > 1}
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5T alk, )z? 2,
(k,2) R :
H(Z),2,) = 2 — (A.19)
1+ I b(i,])2] z%
(1,3) R
i+97#0

Debendiﬁg upon the choice of R, and R the filter of (A.19)
can either be a half plane or a quarter plane digital filter.
The frequency respdnse H(Ql,gz) of (A.18) or (A.lQ) can be
obtained by evaluating the resbective,transfer functions

around the unit bidisc.

Order of Two-Dimensional Recursive Digital Filter

Unlike the one dimensional case, the general approach
in the two dimensional césé has been to specify the number of
filter coefficieﬂts,-inétead of an order-for the fflteé. How—
ever, as in>the approach of some authors 2,3,4,5 , it is
convenient to;sﬁecify an order for the two dimensional filter
for a specific case of the sets ?a and Ry of (A.19). Hence
p are as indicated in }A.S), where K1, L1, Il

if Ra and R
and J1 are all chosen to be equal to an integer K, then the
"filter of (A.19) is referred to as a quarter plane filter
of order K. A straightforward extension oi tpis can be
carried out to the case of half plane filters. The above
notation is adopted, throughout this thesis, in'referring
to the order of a two dimensional recursive digital filter.
In situations when Ra and Rb do not belong to the specific

case indicated above (which is not'very common), the filter

is referred to in terms of the number of numerator and
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dencominator coeéefficients.

Group Delay of a*Fiiter: 1l -

The group delay of a filter is a measure of average

spatial or time delay as a function of freQuency.

The transfer function H(Z) of a one dimensional filter

can be written in the fofm:

n(z) = |uz) 382

(A.20)

where |H(2)| is the magnitude and B8(Z) is the phase response-

of H(Z). The phase response of the filter is defined as:

a L -1 JIm H(Z) +
B(Q) - B(Z)\ B jQ = tan -"—"'"‘_Re H(-Z) 7= _jQ (A-Zl)
’r/_,—( Z= ' =e
The group delay is mnow defined as:
dp (@ '

ro) = - B (A.22)
T(Q) can be expressed in terms of H{Z) as:
_ Z dH (2) :

Z=e &)

The group delays for two dimensional filters can be defined
iA a manner similar to the one dimensional case. For a ‘two
dimensional filter, there exists group delays in each of the
spatial directions and are functions of both the spatial
frequenci?sY

Consider a two dimensional filter transfer function

* Im[ }and Re{ }refers to imaginary part of and reallpart of,
" respectively. . :

E
3
h
L
2
i
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H(zl;zz) = lH(zl,zz)l ejB(Zl'ZZ) (A.24)

as before, the phase response is defined as:

B40.0,) = B(Z103))| 5oy

’,//”////’f— lzl i
" y =g~ I92

Zs

Cran Im H(Zq,2,)
_ J Re H(Zl,Zz)

a3 ]
2,=e |
.—lQ
7,=e Mz (A.25)

The group delays can now be defined as (9):

AB(R, ,42,)
. T (R.,9.) = - 1772
£ 141702 9 |
: o ' (A.26)

[ —

T @R = T TR

shows the spatial frequency domain and the

corresponding delay directions in the spatial domain.

11(91,92) and 12(91,92) can be expressed 1n terms.of

the two dimensional filter transfer function H(Zl,Zz) as:

-

7 3H(Z.,2,)
1 1772
T (Q :Q ) = Re .
112 H{Zy,2,) 32, } _ —im
Z.,=e
1
# ’ e~ I02
22 e
(A.27)
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1'92)

"{b) Spatial Domain

Figure A3 Directions of Delays in Spatial Domain. -
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'z " SH(Z. ,2.)
_ 2 17%2°
To(09:85) = Re g7 BEY :
1142 2 | _ig
. ) . ' ) Zl=e‘ J1

i 113/
Zy
(A.28)

Stability of IIR Digital Filters |
t . -
.One Dimensional Case

i

-

. - . . .
In the case of one dimensional filters, a necessary

and sufficient condition for stability is:

[= =]

L |h(n)]|'< @ (B.29)

n=0

where h(n) is the impulse response of the given filter.'

FIR filters satiéfy the above condition. _Since their
impulge response 1is de?ined only over a sﬁort period, i.e.,
h(n) is defined for Nl < n < N2. However, in the case of
recursive filters, the impulse response extends up to infinity
and in order to meet the stability criterion, it is required
that poles o% the transfer function be outside the unit

circle.

Thus given an IIR filter,

, Z=e 7T (A.30)

y

«in order for this to be stéble, the'singularities (often

referred to as zéros) of 0(zZ) should lie outside the unit

L



16l

circle in the Z-plane. Therefore in designing recursive
filters of the form given in (A.30), proper stability con-
straints have to be imposed on the coefficients b(m), so that

the zeros of Q(2z) lie outside the unit circle in the Z-plane.

Two Dimensional Case

+

In the two dimensional case, conditions for sﬁability
become more involved. The following definition 41 ,_is use-
ful in the statement of stability theorems for two dimensional
recursive filters. ‘

Defipitidp__4l: 1In the two dimensional complex space, we’

define the following spatial regions by:

»

T : {(Zlfzz) 1 lzl|.= 1, |Zzl = 1};
- ‘ !
D++ = {(2,,2,) | |2;] < 1, lz,] < 1};
. D-+ = {(2y,2,) | |21 > 1, |z,] < 1}; (A.31)
D—- = {(2y,2,) | |2} > 1, |z,]-» 1};
.
D+- = {(27,25) | [2,] < 1, 1z, > 1}

T2 is generally referred to as the.unit bicircle.
Now, let H(Zl,zz) be a rational two dimensional trans-

fer function such that:

o A(Z,,Z.) o

H(Zy,2,) = ETEL‘EET = L 'a(k,m)zi zg ) b(i,j)zi zg
1' 2 (k,ﬂ, )CRa * (itj)CRb

' V

(A.32)
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\

where-z.=e %l and z =392 ang r_, R, are as defined in
. 1 - 2 a’.

(1.2.5) and (1.2.7). The stability theorems can then be

stated as follows: -

Theprem_1__41_: A causal (quarter plane) filter of definition
given in 14 is stable if B(2,,Z,) # 0 for (Z;,2,)  D++.
" The above theorem is the same as Shanks' stability

theorem for causal filters 14 .

-~

Theorem 2 41 : A semicausal filter is said to be stable if

—— e iy o S ————

B(Zl,22)~# 0 for (Zl,Zz) (D++ D-+) and B(Zl,O) # 0 for

Bl| < l;‘
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of 95 is given by:

. Digital Image Proce551ng

Image processing is a broad area that deals with

‘manipulation of pictorial data, which are lnherently two

dimensional in nature. It encompasses various areas such
as image enhancement, restoration, pictdrial pattern recog-
nition and efficient Qicturg coding for pictﬁre transmissiop =N
and storage. N ) |
In order to understand various technigques of digital
image processing, first it is important to understand some
of khe basic concepts iﬁ digita% image processing such as
image fofmatiOn, recording and sampling. A brief description

of the above follows.

The pr1nc1p1e elements of an image formation system

2

can be descrlbed as shown in Figure Bl. The black box in
Figure 1.4 acts upon a radiant energy component of the object
to generate the image. Thus the image at point (x,y) can be

considered as a function of contributions in a {possibly

infinite) neighbourhood of (xl,yl); If gi(x,y) represents

image radiant energy distribution and i(x,Y) represents ob-

ject radiant energy distribution, then a general description

gi(x,y) = [ [ h(x,y.xl.yl) i(xl,yl)dxldyl (B.1)

. —®

In (B.1l}, h is assumed to merely weigh the object distri-
bution ag a scalar multiplier and h is referred to as a
péint spread function. As such h in (B.l) represents a space
variant point spread function. If h is made position invari-

-

ant however, then g:.L can be"expressed as:

164
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R

gi(x,’y)\% f Th(fc—xlry-yl) i‘(xl,yl)dxldyl ’(B.Z)

-—T0 -0

This is true in situations ‘such as optical image formation
. J . "
systems.

i

The two major means of recording images are photo-
chemical and photoelectric. Example of phoébglectric :ecord—

v ' . .
ing is a television camera and in the case of photochemical,
. L

photographic film. Part of this dissertation dealing with
image processing is concerned with images that are recorded
in- a photographic film and therefore the pfocess:of image

formation and recording associated with this case can be

LY

described by  a model shown in Figure B2. This is a simpli-
fied block diagram that shqws the image formation system
with spétial response h. The intensity of the recorded image

is given by}_

g06,y) = hiy) @ iLy) + ntey)’ (B.3)

b

where n(x,y) is noise, which is modeled as additive. Although

the modelling of noise as additiGe may not always regiect
reality (an example is f£ilm grain noise (38} , which is multi-
plicaﬁive) it doeg however appé;r to provide good results in
most image processing problems [?jl;‘

The ihtehgities g(x,y),‘recorded in' the film can now
be obtained by projecting a spot 6% light in a_raster scan-
ning seguence, e.g., left-to-right, top-to-bottom and

sampling the intensity of the transmitted light at given co-

ordinate spacings. In a system such as flying spot scanner,

+ C) indicates convolution

,/’
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- the light  that is transmitted through the film is received

by a photomultiplierstube, which generates an equivalent
electrical signal at its . output. This electrical output is

converted to an integer number, via an analog to digital

3
b
b
¥
£
r
t
b
3
1
1

3
4
i
LN
s

converter (A/D) which is then stored in a digital computer.

.

Thus a digital image is formed as a two dimensiomnal array
of numbers representing individual brightness values at

¥ given co-ordinate spacings of the original continuous image.

—



APPENDIX C

Proof of Stability Criterion For

Dimensional Filter Design

One



Proof for the sufficiency of the one dimensional

_stability criterion:

_As indicated in Chapter III, the stability constraint
used in the design of one dimensional filter design is:

Re{Q(zj} >0 for lZl=1 (C.1)

where Q(2) is the denominator polynomial of tﬁe recursive
digital filter transfer function given by:
_ , N
_ P (2) - ao + alZ + azz‘ +....aNZ
Q(2) oo 2 M
) b0 + b.,Z + b2.Z +....bMZ

H(Z)
1
It is reqdired to prove that if (C.1l) is given to be true,
T

then Q(Z) is non-zero (i.e., it has no zeroes) inside the
unit circle in the Z plane.

. Consider the Figure Cl. From Cauchy's integral for-
mula, at agy point Z0 inside -the unit circle in-2 plane,

3 .

Q(ZO) is glven by:

_ Q(2)
Q(z,) = lzﬂ=l 2,7 dz (C.2)

Réparametqrizing the contour of integration, Figure

cl, i.e., with 2 = elt and also with ZO = rel¢, where r < 1,

(C.2) can be rewritten as:

which cah be rewritten

170
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. 2n
igp, _ 1 Q( )
Q(re ") = 37 g oy l(¢ ) dat | (C.3)

(C.3) can also be expressed as:

. . 2T . o .
Q(rel¢) _ —L-I Q(elt) . 5 rnel(cb-—t)'n

dt {C.4)
2m 0 n=0
Q(elt} is given by:
- M .
Q(elt) = % b e1-mt = b+ b elt + b 12t PR elMt
- m 0 1 2 M
m=0
) (C.5)
in which case it is true that: i -
27 . —co ; ’
51— ; ooty -z Mt Ve LAl R U PR (C.6)
m 0 n=-1 ;

Adding (C.6) to the right hand side of (C.3) does not
alter the value of Q(rel¢) and therifore Q(rel¢) can be

expressed as: '

. 2T . o R . =t . .
Q(rel¢) - S Q(elt) L rnel(¢-t)n + I r—nel(¢—t)n'dt
. 2T _ -
0 n=0 n=~-1
(C.7)
In (C.7), the guantity:
g Retlemtin g Rt le-tin P_(¢-t) (C.B)
> n=0 n=-1

where Pr(¢—t) is called the Poisson Kernel. One of the'
properties of the Poisson Kernel is that it is always posi-

tive for r < 1.

hhidd
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i.e., P (¢=t) > 0 ¥ r <1 (C.9)
Therefore, in (C.7), one can see that, if
S
Re{Q(2)} = Re{0(e'®)} > 0 0 ¢ t < 21 (C.10)
then,
o(xre™®) > 0 v r <1
Therefore, it is proven that if, . ) - ’

Re{Q(2Z)} > 0 for 2= 1.

then Q(Z) has* no zeros inside the unit circle in the Z plane.

Figure C1l
—-r



APPENDIX D

On The Stability Criterion For Second
Order One Dimensional Filter



Comparison of two‘tfpes of stability constraints for ',

the second order case: '

Consider a seéond order filter transfer function:

. a, + a,z + a,z’ .
B I e i (D.1)
] 1+ b,2 +bzz”-

1

where { 1is the normalized frequency variable.
Consider now, the type (a) constraint. Accordingly,

the coefficients of Q(Z) would be constrained as follows:

1> by, > b_2 >0 (D.2)

1

Inequality (D.2) can be split into several inequalities as

follows:
by < l. | ' (D.3).
by = b,> 0 | (D.4)
b, > 0O ' (D.5)

The solg;ion region for the inequalities (D.3) through (D.S5)
is sg%wn in Figure D1l(a). As one can see, the solution
region is dependent upon bl' The solution region gets smal-
ler and smaller as bl decreases and therefore the type of
stable filters one can design is véry liﬁited. lNow cbnsider
the type (b} constraint. The coefficients of Q(2), according

to type (b) constraint, would be constrained as follows:
) i
1+ blcosQ + bZCOSZQ >0 ; 0 Qs (D.6)

Substituting varidus values for @ we can get several inequa-

N\
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A

Figure D 1 Solution Region Corresponding to Various
Types of Constraints. ‘
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qualities, which, £o a considerable extent, is sufficient

t6 determine the convex polyhedron solution region. Thus

¢

(D.6) for various values of € becomes:

-

-1 (D.7)

- . .3 | >
m 3b1 N bo -
Q = = 1 L > . > -
z L+ —=F+5>0 3b) + by > 2 (D.8)
- : ) ~
_ i -bl b2 > -— > =
b= Lt -5 70 by = by> -2 (D.9)
Q=T 1+ b1 > 0 b, > - 2 (0.10)
4 p) 1 T
Q=X _ > 0 b. < 1 -+ (D.11)
2 e 2 - :
_2m _ b1 _ b2 <
s ¥ R 0 by + by < 2 (D)
Q = 3" ) Y | > 0 b, < 2 éD 13)
4 2 7
= - . > - _ ’ > 21
Q= 1= by + b, ‘ 0 B b, + b, 1 (D.14)

Constraints on b, and b, for other yalues of i do
not seem to alter the result significantly and Figure D1 (b)
shows the solution region for ineéualities_of A{D.7} through
(D.14).

Finally, according tc Jury [3ﬂ, the general constraints

on coefficients of Q(z) for ,a stable filter is as follows:

by * by, > -1 (D.15)

C— . ; > - ' '
bl + 92 1. | (9.16)

Y
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b2 f 1 o (D.17)

The solution' region corrésponding to these constraints

'is shown in Figure Hl(c)..

.

The assertion from Figure Dl is therefore the con- -

straiﬁt type (b) offers the design of larger subclass of

. stable filter than type (a) constraint.
<

-

S R
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APPENDIX E

Proof of the Sufficiency of the Two
"Dimensional Stability Constraint

-

{\



" where é(zl,zz) is th

e e e e it e e o 1 L e T T T I T T T T Y W T T

The stability cogstraint used in the two dimensional

design method is: '\\.
N
s

Re{B(Z

minator ,0of a two dimensional recur-

'sive digital filter transfer function, given by:

-

M1 N1
. T & a__zVg? .
P(2,.,2,) - - mn 1°2
H(Z.,2.) = 2 _ m=0 n=0
1772 QI 124} M2 N2
1772 : m_n
z I b 2.2
mn 12

m=0 n=0

It is required to show that if (E.l) is true, then
B(Zl,zz) satisfies the Shank's’stability theorum 14 ; i.e.,

B(Z,,2,) # 0 for 1zll <'1and [2,] <1

Proof:
Consider a point, 22 =022a’ on the unit circle in the
Zz, plane of Figure El. Now, for any 2z, = Z,.; 122l =1,

B(Zl,zz) is a polynomial in Zq only, i.e., fl(Zl) = B(Zl'ZZa)'

where the coefficients of fl(zl) are, in general complex.

From (A.l), it is then true, that,

Re{f,(z,)} > 0 ¥ |z 2

2a; 24

;| =1 and for any 2
\

' (E.2)

Therefore, using the proof for the one dimensional case from
Appendix C, it can be clearly seen that fl(zl) is non-zero

inside the unit circle in 2

J

1 plane, i.e.,

179
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Re{f, (2,0} > 0 for‘any %107 |zlol <1 (E.3)
Therefore, it is t;&Eﬂthat:

B(zlfzz)ff q for m1| €1 and |2

,l=1  (BE.4)
Consider now, the fdnbtiqp fz(zz) such -that:
£,(2,) = B(Zy4/5,) ¥ |zlo| <1 and |z, | - 1 (E.5)
From (E.3), it is clear that:
Re{fz(zz)}_> 0 ¥ |§21 =1 ‘ (E.6)

Therefore, once again, using the one dimensional proof, it

can be said that for any Z,,; lzzol < 1.

(E.7)
Ey(2y9) # 0
. . i.e., .3(210,220) # 0 for any Z,.i lzlol‘<.l; and
-for any 2,4; IZZO\ <1 (E.8)
Thus, it is proved that:
B(Z,,%,)°#0 ¥ mll ¢ 1 and [22\ <1
if  Re{B(Z,,2,)}> 0 ¥. Byl =1 and 1z, =1
Blane
Lz, =1
2

Figure El
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“This appendix desc¢ribes the frequency domain approxi-
mation of two dimensional recursive digital filters, ugihg
. H r . .

the technique of Ramamoorthy and Bruton [4]. The filters

__designed'by this approach are realized in cascade form.

" Porm of the Recursive Filter:

The twoe dimensional recursive filter transfer func-

tion uséd in the approximation'procedﬁre is of the form:
. Tr

H(Z,,%,) =&+ T H, (2,,2;) -l H, (%,,2,) (F.1)

1772 =1 1k 1’72 g=1 2, 12

where Zl = e_ng, 22 = e_JQZ and Ql' Q; are the normalized

frequency variables. Hlk(zl,zz) and HZR(Zl’Zz) are the
first and second order filter sections, and A is the gain l

~ factor. The first and second order filteyf sections are of : !
the form: ' . -

1 nn
nioak(m,n)zlz2 ~L

Il 1

g
o

1 . |
I b, {m,n)z 22 .

—n k 1 .
n=0

I o1

=
o

-

2
m.,n
. niocg(m’n)ZlZZ- '
H (Z 'Z }= )] (F-3)
22 1772 .2 nn
z dg(m,n)le
n=0 .

[ N
o

L

|

I 8

=
o

Central to the technique of [10] is the problem of .
obtaining the filter transfer functions of (F.2) and (F.3)
in the stable form. The procedure required to obtain stable

L]
H (Zl,Zz) and H2 (Zl,zz) is described in the following

1 %

k

e ——— o ot e kb e e A i A A 4 mmma a3 kbt ke



section.

A. Stable First and Second Order Transfer Functions

rd ) +

As shown in [4], a stable first order filter transfer

function Hl {zl,zz) or a stable second order transfer function'

k

H (Zl,zz) can be obtained by transforming a two dimensional

2
2
analog transfer function H(Sl'sz) of corresponding order, via
: . . h]

the double bilinear transformation, where:

P(Sl,Sz)

_ H(S1:S)) = grs 5,7 nd 218y 7.0 %
(F.4)
> ’ > . = =
for Re{Sl} 0, Re{Sz} 0; S,=jw,, 8§,=jw,
The double bilinear transformation is given by:
1 -2 1 -3
- 1. -2
5171 +Z, S5, T 17 Z, (F.5)

First Order Case:

e ——— ———— ———

Consider a first order analog transfer function,

given by:

P, (S,,S,) p + p, S, + p, S, + 8,5
Hl (5’52) - lk 172 _ lk 2k 2 3k 1 172
k Q. (8.,8,) . «q +q, S, + g, S, + 8,5
lk 1772 lk . 2k‘2 _3k 1 172

{F.6)

In order that. (F.6) satisfy the condition given in (F.4),

it is required that the coefficients ‘of Ql (51'52) be ex-
k

pressed in terms of a set of non-zero variables (xl ¢ X
k

)
k

'x

2

3
such that:

T2 2 2
o} =X, 7 g = x. ; and g = X (F.7)
lk 1 2 2 3k 3k

A

Llnm

HRr

cxpdF
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Using the double bilinear transform'&n (F.6) and also using

»

(F.7), the coefficients of the stable H

1 (zlfzz)’ which is

of the form given by . {F.2), cah be writtgn as follows:
- ' . 2 2 2 N
ék(D,O) = (Plk+Pék+P3k+l) b, (0,0) = (xlk+x2k+x3k+l)
2 (0,1) = (p; =B, +p, -1) b, (0,1) = (x; =X, +Xy -1)

k 1k .2k 3k k lk 2k 3k

o c2 -2 2

a (1,0) = (plk+P2k-p3k—l) bk(l,O) = (xlk+x2k-x3k—l)

. _ ' 2 2 2l
a, (1,1) = (plk-sz-p3k+l) b (1,1) = (xlk-x3k—x3k+l)
(F.8)

LW

the parameter vector, given by:

Thus the first order filter H (Zl,Zz) becomes a function of

X = (P P P -JX 1 X PXo ) (F.9)
Lk N A -

where %, ,X and x are non—-zero variables.
B 1" 2% 3y

a

.
Second Order Case:

Consider an analog two dimensional filter, given by:

_ P, (S,,S.)
'Hél(sl,sz) = 2y 1772 .

2 2 2 2
U +U2 82+U S2+U s,+U. §,5,+U. §,8,+U, S.+U, S,5,+5
L

5
1 4£ 1 75,7172 GE 172 77,71 8y 172

2 3

L

2 . 2 2 2
vV, - +V., 85 +V_, S +V, S.+V_ 8. 5 +V. 5.5, +V_, S . +V, 5.5,+5

S B )

2
2
2
2

S

(F.10)

In order that (F.10) satisfy (F.4), it is required that the

coefficienté of Q2(Sl,82) be expressed in terms‘of a set of

e

Ao s
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Ve .= (Yo Yqp =¥ Yo t¥o Yo )2
1, 5,Y10, ¥6,%9,7¥7,¥8,

Vo, = (Y Yo “Yo Y, *¥a ¥ )2 + (Y, Yq =¥, Yo +¥, ¥ )2
v = YZ '
3 5¢
V, = (Yq Yqp Y2 Yo ¥V, ¥ )2 + (Y, Yqa —¥o Yo *¥, ¥q )2
4, 1,Y10,7¥3,¥7,7¥4, Y6, 2,Y10,7¥3,¥9, "¥q Yg,
6 = (y2 +y2 +y2 +y2 )
3 6y, "7 "By 79
ve = (y] tv% )
7 1, 72
v, = y?
7, 10,
2 2
v = y., +y
8, 3 T4y

(F.11)

Using the double bilinear transform on (f.lO), the

coefficients of the stable H (Zl’ZZ) which is of the form

2

given by (F.3), can be written as:

¢ (0,0) = (u; +u, +u, +u, +u. +u. +u, +ug +1)

12 22 32 4Q 52 62 72 8%
02(0,1) = 2(ul£—u3£+u42-u6£+u7£—l)
c£(0,2) = (ulg-u2£+u32+u42—u52+u62+u72-u82+l)
c£(1,0) = 2(ul£+u22—u3l—u7£—982—1)

{F.12)
(cont'd)

A e A e e M M e B T

e

non-zero variables (erYZrerY4'Y5rY5rY7rY3!Y9rY10) such that:

")
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(1, l) = 4(u -u u., +1)
\CR' . 19,;::-.32. 72. : 7
c, (1,2) = 2(u, -u, +u u., +u, =-1)
2 lg 22 32 72 82
c, (2,0) (u, +u, +u., =u, -u. -u,. +u, +u, +1)
Lo 725 "3y 4y 5y 6y Ty 7By

cl(Z,l) = 2(u

cg(z,z)

|
=

-u, +1)

3 ‘ 7, 8 i

2 A A £ 2 A L (F.12)

Similarly dz(m,n) is expressed in terms of (vl ,v2,...,

o L

') where (v,.,v

8 Lo’ 2

non—-zero varlables (yl ,y2 ""ylG ), as given in (F.1l).
L

,...v8 ) are in turn expressed in terms of

Thus the secbnd order fllter H2 (Z Z ) becomes a function
2

of the paramQEer vector:
gy Uy reee iy Y 'Y rY o ety )
1 2 3 82 lﬂ 22 32 10

R Yipo13)

AN ' .
‘where yl'yz"“'ny are non-zero variables.

\-

A\
B. Approximation Procedure

The procedure involves the minimization of an L2

P
norm of the form:
I J { ‘\' }2p
L, (X)) = £ T {E(X,0,.,0,.) = €£.(Q,.,842)
2p i=1 =1 117727 d' 'l

- =
where X is a parameter vector with respect to which the
minimization is performed. The minimization is carried out

over a set of discrete frequency points Qli and sz“in the

right half of the frequency domain such that:

*
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¥

HB(Zl'ZZ) is chosen to be equal to that of HA(zl'ZZ)'

£(X,00,0,) = |H(X,2,2,) %) (F.19)

s 5]
Zl e

. —a—JR2
/,32 e

. _ AN
where X consists of.paraméﬁer vectors Xl and X of each

2
: k 2
first and second filter sections respectively of H(Zl'zz)‘

The minimization of the L2 norm of (F.14) is per-
p
formed by the widely used optimization procedure of Fletcher

and Powelf'.

-+

R. Fletchdr and M.J.D. Powell "A rapidly convergent decent

method for minimization", Comput. J., Vol. 6, pp. 163-168,
1963. .

et i
E————— L Rt Sl

e e
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< By

<T oamd 0< @y <m ' (F.15)

- fd(nli,nzj)'ls the desired specification. f(x,nli,ﬂzj) is
the approximating function whose form depends on the type of
recursive filter implemented. The form of f(x,Qli,sz) for

. r
various types of implementations considered in this thesis,

is as follows: ' ) : . . ) ;

- o | | o

f(x,al,ﬂz)f:zReal{H(x,zl,zz)}l (F.16)

o301
Zle

- -302
Z,=e

where H(Zl,ZZ) is of the form given by (F.1l). The parameter

.vector X consists of parameter vectors Xl and x2 ~of each "
k ’ A R

first and second order filter sections respectively. Xy
k

are as indicated in (F.9) and (F.13) respectively.

et v e - s e —a

and X
2,

Case 2: Recursive filter implementation for Focus deblur:

_ Sy 2
E(x,2y,0,) = [H,(X,,2,,2,) [' = [Hg(Xp,2y,2,) | |, _om3%1
. 1
=192
Z2e
(F.17)
where parameter vector X is given by:

X = {XA'XB} (F.18)

In (F.k8), XA of HA(Zl,sz and XB of HB(Zl'ZZ) each consist
of parameter vectors Xl and X2 of each first and second

k k . )
order filter sections respectively. 1In (F.17), the order of
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Image Processing Hardware



Sl U sy e s e T A T LA e TR

Thls appendix descrlbes the image proces81ng fac111ty
that was developed at the Slgnals and Systems Laboratory of
~the Department of Electrical Engineering, at the University
of Wlndsor, whlch makes use of a Flying Spot Scanner System
l4 for image sampMng and a Colorado Video Instrument dis-
play unlt_for image display. The block dlagram of Figure
Gl shows the complete hardware set-up. The facility is
centred around a Data General Corporation NOVA-840 minicom-
puter with 128K, 16 bit words of core memory and moving heaa
disk storage, with a total storage of 2.4 million 16-bit words.
There is alsolan A/D and digital to analog (D/A) converters,

witn a general purpose high speed data channel interface.

Flying Spot Scanner System

The flying spot scanner system, used for sampling
images, is shown in Figure G2. It consists of a cathoqe ray
tube (CRT), objectrve lens{ transmitting“film, a condensing
lens and photomultiplier tube. The % and y outputs from the
digital to analog converter generates a raster scanned elec-
tron beam across the CRT. The resnlting light pattern is
focused by the objective lens,‘onto,the transmitting film.
The light that is transmitted by the film is received by a
photomulriplier tube which is élaced behind the £ilm and the
condenser. lens system. This generates an equivalent elec-
trical signal corresponding to the amount of lighfwreceived.

In order to reduce the effects of internal and;GOHZ
beam supply noise, the output of the phototube is integrated
over a time period before being sampled by the analog to |

digital converter.

190
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The outpct of the analog digital cohverter is a digi-
tal number corresponding to the light that was transmitted
through'the film. It shbuid be‘noted here .that the sampled
‘1mage does not excctly correspond to the original image
that was recorded on the photographic film. .The image being -
sampled is convolved with the CRT spot that scans across the

film. The mathematical model that describes the light trans-

mitted through the film is given by 38 :

-

g -0 =00

gl(x,y).— I 7 h (x Xy 1Y yl)g(xl,yl)dx dyl -(G.1)

, - :
where g is the image recordeﬁ on the photographic film.

gliij ‘kAy) ‘are the matrix samples for j=0, l,...,(N 1) and
k=0,l,2,...,(M—l).’ The functioh ha’ describes the intenSLty
profile of the CRTrspot.that is projected onto_the.film and
this 1s the effective aperature through which the film is
:observed. The frequency domain equivalent of Equation (G. l)

is given by: o - .

. Gl(wl’w2) = Ha(wl'WZ)'G(wl'WZ). {G.2)

where Gl is the fourier transform of gy, etc. If the apera-
ture projected on the film is infinitesimally small, i.e.,
" a two dimenéiohal impulse, then G1=G; fIn practice, such an
aperature is impossible. From the viewpoint of aiiesing+,
such a response.may be undesirable. Considering Equation
(G.1), it can be seen that a suitable aperature’ can perform

analog prefiltering and this may, in turn, reduce the problem

+ Aliasing is the phenomenon in which the overlap of the
fourier spectrum takes place around the folding fregquency
due to incorrect choice of sampling interval.

-

S er i
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of aliasing since thé prefilterigg~is low pass in nature.
This will also help to reduce the high frequency noise present

in the image,

Image Digitization Scheme

As mentioned in the previous section, the output of

- the photomultiplier tube is integrated over a certain period'

of time. This period of time was. chosen to be half the
period of 60 HZ power supply (8 m.sec) since 60 HZ inter-
ference is gresent at the output of the phofomultiplier tube.
With the flyihg spot scanner on, the timing and con-
trol circuit generates control pulses to control the inte-
grater and A/D sampling. A block diagram of the timing and
control circuit connécfions to the intégrator is shown in
Figure G3. The details: of Ehe ﬁiming and control circuit,
along with the integrator Circuit and.thg timing diagram can
be found in the_next section. The integrator is a precision
integrator, ‘with control inputs t6 allow reset, integrate and

hold.

-

Tﬁe entire image is sampled by scanning one line at a
time, moving vertically downward after each line. This is
garried out using a program 'PICSAﬁP' given in Appendix H.
This program sets up two buffer storage areas in the memory.
One buffer contains the x and & co-ordinate wvalues for one
line of the image to be scanned and the other is reserved for
storing the sampled image values for the line thét'iS‘being .
scanned. » - By
The timing and control circuit sends out control signals

soon after the power is turned on. The execution of the pro-

~

]
5
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gram then enableé the D/Arand A/D £o s@art scanning and
‘saﬁpling the image. The A/D waits for the operate pulse to
go high (+5v), at which point the integration of the PMT out-
Qﬁt ends. _After_a small time delay, tﬁe A/D receives a
ééﬁpling pulse via a épecified trigger bus. The A/D converts
the output of the integrator (which is held constant-dufiﬁg
the conversidn) and stores the data in the‘buffer memory.
Fellowing the conéersiont the A/D c0nﬁerter generates an end
of conﬁersion (EOC) pulse, which ié sent to the D/A triggef
bus. This genefates a simultaneous D/A conversion of two
data corresponding to the next x and y co-brdinateé of the:
iﬁage. After a short time delay foilowing the A/D sampling
pulse, the timing and control circuit sends out a reset pulse
to reset the output of the integrator to the appropriate ini-
tial condition.

Using the above procedure, imageé can be sampled with
array sizes up to 512 x 512. The image scan can have its
" origin at any point on the image with different sampling grid

sizes.

Details of Timing and Contiol Circuit and the Integrator Set Up

The main circuit is shown in Figure G4. The zero cross-
_ings of the 60 HZ supply are detected by two operational ampli-
fieré (Motorola 741), operated in an open loop configuration.
The outputs of OPl and OP2 are square waves, with a period
egqual to that of the 60 HZ waveform, and are 1800 out-of-phase
with each other. These outputs are inputs to two monostables
(74121) which are cohnected in such a way that they respond to

only the positive transitions in the input. The outputs of

OPVPAR RERR
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Figure G5 Timing Diagram.
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these monostables are the 'start' and ‘stop’ pulses; Through
some extra circuitry, these pulses are then used to set or
reset the 'gperate flip-flop'; which is made up of two nand
gates; hamely, 4‘aﬁd 5 showﬁ in Figuré . From the stop.
pulse, the A/D sampling trigger puise is midway between‘the'

'stop' and 'reset' pulse, thus ensuring correct sampling of

- the integrator output. The 'reset' pulse is generatéd by

‘another network of delays as shown in Figure G4, and this

pulse resets the integrator output to the desired iniﬁiéi'con—
dition (IC). The timing diagram corresponding to the timing
and control ¢ircuit is shown in Figure GS.

The integrator éhdﬁn in Figure GA. is a model .9018

_ precision integrator from +Optical Electronics Inc. As indi-

cated earligr (Chapter IIL), it has digital controllinputs,
enable or disable integfation and reset the output to the
given.initial,condition. As can be seén from the timing aia—
gram, the integration takes place oniy when the OPERATE input
is low (0 volts) and the RESET input is high (+5 volts). The
output is reset when the OPERATE is high and RESET is low
and is held constant when both are high. The output voltage
swing of the integrator is 10V. This range of output is
maintained by proper choice of capacitor Cx, the initial con-
dition and proper input range.

The ocutput of the photomultiplier tube is amplified
prior to feeding it to the integrator. The amplifief circuit

is shown in Figure G6. The output from the integrator is fed

L+ Optical Electronics Inc., P:0Q. Box 1140,. Tucson, Arizona,

U.S.A., B5734.
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into the A/D convertér through a buffer which_is a model‘+P201,

. PET operational amplifier.

Image Display and Reproduction

The display of samp;ed and proceséed images is.carried
:out using the Coiorado vide07270 A Instrument (CVI270A) Expan-
der* which has 2 moaulatién capability. The block diagram is
rshown in Figure G7.

in this'displ;y system, there exists a comﬁon interface
with the NOVA computer, for Eoth the D/ﬁ converter apd the’
CVI270A Expander. In other words, the CVI270A and the D/A
‘cpnvertér are considgred as one peripheral device. The output
latch for both the D/A converter and the CVI270A are the same.
In order to transfer data to tﬁe CVI270A, the D/A converter
has to be activatéd, and while the D/A converSionhfakes place,
data is also traﬁsferred to the CVIZ?bA.

The data transfer is accomplished via a handshaking
operation betweegy the ﬁ/A converter interface and the CVIZ?OA.-
Considering Figure G7 - to display one pixel of the image
requires the téansfer of three data; namely, the x and y co-
ordinates and the intensity value. The data is transferred
one at a time. Thus fér each pixel of the,imége, the D/A
converter interface circuitry first presents the x data at
the output latch, and sends a strobe pulse 'ACCEPT DATA', to
the CVIZ270A, indicating that data is available, and the CVI-
270A in return sends back a pulse to D/A converter interface

circuitry, indicating that it is ready for the next data.

+ Polytron Devices Inc., P.O. Box 398, Paterson, N.J. 07524.

* Instruction Manual Model 270A Video Digitizer, Colorado
Video Incorporated, Boulder, Colorado, Jan. 1877.
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in-a similar manher, Yy and 2 (intensity).values are trans-
.fer;gd. | Ty

Because of limited ﬁemory, the CVI270A can display
imageé only up to size’256 x 256 pixels+. It can display
intensities up to 256 gray levels, i.é;, intensity data is
.8 bits in length. The recordiﬁg of the Leproduced image on
the f.v. monitor is carried out ﬁéingfa conventional camgfa,

. such as the Cannon FTh. For good results, one has to use a

; 7. . slow speed film, with exposure time set at %th of a second.
a

3 J

{

h -

'E_: —

!

t

!

i L

S + Pixel- indicates a picture element.
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APPENDIX H-

Filter Design, Image Filtering and Other

A@ditiohal Image Processing Computer Programs
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. ‘ DIMENSION WOLEL) . GUS&, DMILEL s, DF (LELD, KCOF (5@,
. ' #COF L SEh, ROOTROSE, RODTICS@0, LS8 S25., DHH\lBLJ
: - R R S S e e S e e i A A A 8 S SR S S
C - -
- C MAIN FROGRAM — DESIGNING OMNE-DIMEMSIOMAL RECURSIVE
C GIGITAL FILTER TO DESIRED NHGHITUDE AMD LIMEAR
S FHAZE CHARARCTERIZTICS
C THE INFUT FARAMETERS RRE -
: C ML ;. # OF FREGUENCY PCINTS IN THE FREGQUENCY AXIS
- C IFT : TYFE OF DESIRED FILTER . -
\ . & ‘ " LFF = LOW FAS5 : BFF - BAND PASS
* ) C HFF = HIGH FAS5 ; D1F - DIFFERENTIATOR
o LWECL. MCZ . LOWER AND UFFER FASS BAND FREGUENCIES
. s C RESFECTIYELY . FUR THE -CRSE-8F C
dr = . C S DIFFERENTIATOR . WCLl= & & FAND WNCZ= 4.8
‘&;t R ITRIAL : # OF TRIALS . WHERE: FUR EACH TRIAL A FILTER
iRy c . OF DIFFEREMT _GRDER-IS SPECIFIED
C IZETS : FOR EACH TRIAL WALUE OF ITRIAL . 1SETS # OF
C © s .CLGROUP DELAY YALUES ARE TRIED )
c - NORD : ORDER “OF THE FILTER C
A THE LIMEMSIONS OF THE ARRAYS ARE AS FOLLOWS -
. C MOML D GUNORD 30 DMCMAL . DR ML D, BCUEF (NORD+L 0, BOF CHORD+L D
ks €, ROOTR: CNCRD S - ROOT T CHERED U {E#NORD+a 3, (ZwNORD+43 3,
v r LoMES ML D ' ~ - ' : :
il [ - ’ . i . .
D SUEBROUTINES RERUIREL .- SFECM. SIMFTE. RIIMF. FLOTMF.. .
c FOLRTC FOR QEBTAINING FOLES AND ZERCES OF THE FILTERD
C . . ‘
- !I—::+::i::l-::}::«:{»::#:h:k:k:&::#::k:{-::i'::fi:+::§::&.-:+:-.1-::+::+::+::+::+::+:'.+::{a::t::h:k:k:«;ﬁ;k_:icu-::k:f::u:k:u:s:n:&::&:y:k:k:«:k
C : .
COMMONSBLESDM, DR b GDL'Y, WGL, MCE
- s-unnrwa°--n .nac RS MFREA ' -
DATR FY. BIFSZ, 441552, “LIF 7 ’
. KTIME=G
READS. S0 ML :
SR FORMATYIZ -
D=1, ASVP-10
' WL =6
DF L =0,
DO 12T 1=2. 0t
123 WCI sl T +D)
READC S, 8550 - IFT
5% FORMAT A . : )
i FEADCS, 2610 WOl WCE i} ’ ‘
2R FORMATCZELZ. So :
CMRITEGE. DAl : :
T4l FORMATCS <0 2. "LDESIRED SFECYRICATIONS - (FREGUENCIES
# ARE IN FRACTIGNZ OF HYGUIST mATED 7, :
TALL SFECMOML. IFT .
MFRG=ML .
FEALCS, S45 1ZETE. 1TRIAL
SAS FORMATLZIZD
§

o | 3 .
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/{f/ -7 45 FORMAT(IEZ T o
e . WRITECS. SE0 M, Dl 3 ‘ »
- . TR FORMATEY <. 2, "HO. OF POINTS ON FREG AXISs 703, SM. “FRE.
o #@ INTERWAL= L. E1Z S, 0 . - B
WRITELS. 5120 ,
S12 FORMATY “. 4i, "FREGQUENCY . I, “MAGHNITUGE ", 5
DO 444 I=1,. ML ‘
, DMAC T =DM T K _ ’ o
444 WRITEYCS. 2680 N(IW-DMQID ‘ A .
i 28 FORMATY S *, 202, Fia.
CALL PLOTZWM. DNH,MLJ
DIFFPH=&. S:kPY
DO zepE ITRE=I. fTFIRL
READ S, 46> HORD
NNC=NOFD+1
NL:C=NORD : , :
GDLY=HORD ., ' ‘
HRITELS. 520 NORD ‘ -
BT FORMAT A < *,:n, HF[EF CGF THE FILTEF —————— A PR
0O 106 }TIME' SETS

C
c - Gr:.NErFiTICIN OF LINEAR PHASE CHARACTERISTICS
C

DO 2 I=2, M1
DF I =—GUL bl T 2Py
IFCIFT. NE. DIF» GO TG SES5 .
CCDFC T a=0P I'+01FFH £, Sekld I DRy
+ SES CONTINUE
. IFCDFCIN LT, —F%D> BRCIN=RRLIN+2. Sepy
_ IF(DP(IT.LT.*F?} GG TO,SEeS:
2 CONTINUE LT -
CHRITECS: S43 KTIMES. GDLY , ' |
S4Z FORMATCS <. 2%, “SET NUMEER=". 13, IX. “GROUF- DELAY=",
o #EAZ S, S : ,
T CALL SIMPTECML. NOR. HRRD o B
CALL REIPF UL NOCR. NWRL KSIMD
& IFCKSIM EGL 10 GO TO LO66Z
. . HNRES=NCR+Z :
poOTe I=1. HODC
TH GIdS—UCHCR+L, I3
DO 71 I=1. HNC
- 71 GENDCHTr=~UCNCR+L, HDC+10
, 1PR=1
. ' IFK=NDC+L
. ‘ COE=1. :
WRITE«S, 2060 1P GLIFK D, IFG COE
DO 261 IK=1. N[O ‘
IKZ=IK+1 . _
THA=HDC+TH =1 . : .

IFCIKL GT. HERD GO 1KLL =0 . !
LWRITE A, 396} ITHZ GOIVdN, e, G I !

HQ6 FORMATY, S, CTOEFNL T, 1Z = GLd T S TCOEFD . f X, She ‘
w7 01 T . . _ -
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WRITELS, SOED
DO 362 I=1, HNC
HOOF I D=GUNDC+I o
MMNC=NORD
HHEP=NHC
- IFCHMNC, E@, @3 GO TO S8
CALL POLRT<XCOF, COF. M. FDDTR,FUDTI TER, HHNCF
WRITEC S, 266>
. WRITE(S, 563> I1ER
282 FORMATCS “, 24 TIER= ‘. Id. 2
GO TO S11 ‘
216 ROOTROLI=HCOF LD
., ROQOTILL0=6,
MNC=1" .
11 WRITELE, 3@G:  °
HEITECS, SE30 :
FORMAT Y 0 2N, 'THE ZERDES OF THE FILTER ARE-", .~
WRITELS, 305 (1. ROCOTRCIH, ROGTI: Lt I=L M

(V¥]
<1 _' X
B

0
X
)

1
[
A

1y
)
a

ACOFC{AL=1,
O Sas I=1, HGC

SRE HCOFCI+13=GoIn S
MHOCP=HRC ' Sl
CALL FOLRT CXCOF. COF. MLCF. ROCTR. EOGTT. TER. NHCED
WRITE S, S6@E _ . . .
CWRITECS. 282 1ER : ' ‘
HRITECS, S :

MFEITECS, 307! ‘ - o :
gy FOREMATL S 7. Z#. “"THE FOILEZ OF THE FILTER HRE-".-""0

NHITE(Sa?EE} uI.EUOTE.IH.RDUTI(I?;I=L¢NDED
SES FORMATC L2 POLECT, 120 "0=" B4 Vo 7+ 7L Edl4 V.

HRITE S, SBE
BET=08

BO EAE I=1. NGO
STE=ROCTR G T @ +RONT I 1 h bk Z

€gE IFCSTE. LE. 1. > KST=1
IFTKST. EGL 03 WRITEGE,
IFCKST. EQL 17 WRITECS,
WRITE LS. 266! ‘
DO 542 I=1. HHC

P12 COFCIN=GCNDC+ID
KTIME=KTIME+1
CALL FLOTMP ML, COF. KCOF. NHCF, NDOF, KT IMED

10862 CONTINGE

: . BLLY=GDLY-1L

LEEE CONT TMUE

C EEEE COHTINUE

2eg, FORMATC 7, 200

My
m
[ S

“THE FILTER I3 ZTRELE ..

_ﬁl-FﬁFHHTi' .
EE ﬁFGNHTi’ #s "THE FILTER 13 NS THRELE . 2
- ETOR

END

FORMAT ’JEmJ _ERDk'.I_J’J“' Etd, T3 L EL VLD
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SUERGUTIHg SFECHCMA, IFT

SEUBROUTINE TOQ GENERATE:THE MAGHITUDE SFPECS .
CORRESFONDING JO THE DESIREL TYFE OF FILTER -
THE CHARACTERYSTICS BEYOND THE FASS BEND 15
GEMERATED ACCORDING TO THE FUMCTION

FH=ERP C-FE# 0 (WP-WK 420 0, WHERE FK CAN EBE

YARIED. FK 15 UBTAINED IN TERMS OF FEZ.

"SHARFER TRANSITION BAND IN THE SPECIFICATIGNS

CAN- BE GENERATED EY SFECIFYING SMALLER “ALUES
FOR FKZ. USUALLY LESS THANW 1.8

DIMENSICON DMCLELY, DECLEL S, MCLEL)
INTEGER EF, HF., LIF ‘

. COMPLEX®16 “TFL. TFZ. TPI, TR, TFS

COMMONABLZ-TM, DF. W, GDLY. WFL. WFZ
DATA EFS'BFF ‘. HFSHPF 0 DIFSDIF
DATH FY-350 Ad1822

DATAR TRL-"LOW  PASE FILTER

DATA TRZABRND FASS FILTER

DATH TFZ.-"HIGH FRSS FILTER-

EDARTH TR LIFFERENT IRTOR

FHOFRS WP, MHI=ERF C—FRa SR =i sk Z o

CIFYIFT. EQL DIFY GO T0 162

FKZ=g, 7
FIK=166 &, (FRZeFHZ
IFCIFT. EQ, BFD GO TO 106
IFCIFT. EGL HF GO T 481
TPS=TFL

LOOL T=t, ML

CIFCMGIN. GT. WRZY G0 TO 2 -
DMCID=1. 6

GO TG 1 ‘

DM I =FRCFR, MPZ. WO T oo

COMTINUE : -
GO TO 1oz

TRE=TFZ

DO % I=1, Mt ,
IFZMCTY LT, MPLY GO TO 4
IFCMOTY. GT. WFZY GG TO S

LMCIn=1. &
G0 TO Z

DML B=FNCFR, WEL, MO0
GO TO :

DM I3 =FROFR, WFZ. T E
COMTINUE

GO TO 1a2

TRS=TFX

DO & I=1, M4
IFJWC T, LT, MPLy &G0 To T
DMC T =, &

GO TG &

DM T 5 =FREFE, MFL, Mo Tos
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_ . . 5 CONTINUE
, : GO TO iz
162 TPS=TF3
DO & I=Ll,M1
8 DMCIa=lIIn
, 1682 WRITECS. 2625 TFS ‘
- ‘ MRITE:S, 2832 WPl WFZ " '
82 FORMATCS ¢ 0 26 “FILTER TYFE :~—= ‘L HLE, &0
83 FORMATCY 7. 2, "FPASS BAND FREQUENCIES +-—-—7, 2¥, "WPi= *, .
#ELZ, . 2K, “WESZ= L ELZ S, o0 '
" RETURN
EMD

e

SUBRCUTINE SIMFTE ML NT. NWR2

SUERCQUTINE TO GEMERATE THE SIMPLES TRELERLUL
THE DIMENSIONS OF THE ARRAYS ARE AT FOLLOWS
A ZHNORD L, 26ML D B ZwHORD R 0 RL O, ML

R2Cz ML, OT CHNORD. ML

NORD AHD ML ARE AS IHNDICATED IN THE

MAIM FROGRAM,

OO nn

wCTo2d, 1EA 0, WG, DROLEL 3, DM LEL S
COMMONABZE-HRC, NDC. MFREC
COMMONSBLLAMZ. DWE
COMMOMNSBLZ DM, DF. No GDLY. WCL. WCE
COMMONASEZS- R, RE. CT. B B _
Fry=3 1415528 “
HTA=MNDC+HMC
HTW=HTH+L
NTWL=NTA+Z

D RA=Md
KR LR +RL

|
i
1
;
I
[
¢
i
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M R=RE

IFCICT. EGL 80 NYRE=SKKS
EFS=1l E=& :
GO I=l ML
WREOML I RGOS CLF T8
WI=DMOI RS IHLDR ST
SUML=G,

SUME=8,

SUMI=@.

SUMS =6,

HKA=PY ML)

DO 2 J=1. HLC

HR=COS THHAD
WP=S THC JHKAD

ACT, Ida Ry Tty
ACT, KL+T =" T =y Ry
SUML=SLML+FACT, 1
SUME=SUME+R L T, RL+1 3
COMNT INUE

DO I K=1. NNC

MK =COS L R =L kR D

R =S TG K =L ki
ACHDCHE. T d=~1H
FCHDCHK, EL+T =K
SUMAL=SUML+ACHDC+H, 10
SUMZ=SUME +RA DT+, KL+ 0
COMTINIE

ROl Io=—YR

FOCl. Ki+In=-r1

RICE, To=—3UML-1.

RZC S, KL+ =—SUMa—1.
CONT INUE

DO S I=1.NTHA

BT h=6,

ENTY =1,

BONTY+L0=0
EqNTW L =—1.

DO 15 I=1. M1

SUML=E.

AP T

Lo A7 J=1. HDC
HR=COSCT#EAD
CTT. To=-iH
SUML=SMLI+CT VT, 10
Ri<l. Ix=1. -EFZ
FAYZ, Ir==5010
RETURH

ENL
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SUBROUTIME REIMP U NCR. HYR. KaIM

SUBRCUTINE TCQ SOLWE THE LINEAR FROGRAPMING
FROELEM USING THE REWISED SIMFLEN METHOD
THIS FROGRAM UZES THE SIMPLEX TRELEAU
GEMERATED IN THE ROUTINE SIMFTE. 1
¥+ E . A ARE WORK YECTORS. THEIR SIZES
ARE AS FOLLOWS. |

HOERNORD+S 0 ECSHHNORD+4 3, H*"anl;

. \
DIMENSION AC4S, 2RSS0, BUSED. UCSE, S20. KOS20
HRL O LB, RIS, 2E2D. CTL24, LOLY, HxC2ES }
COMMONABITO,/HNC, NDC, ML
COMMOMABIS.RL. B2, CT. & B
REAL+Z 1,01, K2 .
REAL*S ML IM . !
KSIM=6 *
KEL=ML+ML
KK =KL+
HOCRA=NCR-1
HEG=NCR+2
IKT=2

=2 0

DO 2 I=1,NERQ
B0 2 J=1i.MEG
I Ih=06G &
D0 4 I=1. NER
Uol. ITu=1 @
ITR=1
EMU=-1. E-34
EMWw=—EML ' -
Tie=iy
HLIM=1. [+7TS
HMIN=1. E+7S
ICVER=G
DO S I=1.HVE
SUM=6.
IFCI. GT. KELY GO TO 100
M1 & J=1, NCF1L
IFCUCNEG, Jo, EQL & 83 G0 TO 8
ML= CHER, 5
Yi=ACT, I
WO
IFCHT. GE. ”LIM” IOWER=ICOVER+L
IFIIOVER. GO 7o =7
“ll—:HGLaiil
SUM=SLM+LL
CONT IMLE
AL T a =S
GEL =500+ NEGH MOF D +RD 0 IRT. 1o
GOOwO Lo
IFCT. ST, KEZY G0 TO AGL -
DEL T=—A T —RREL D #0CHER HOR D = FEC 1T, T-HKEL Y +SF

ECSZN,
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G0 TO 182 .

161 IKKE=I-KKZ

L0 S8 J=1.HDC
IFCUCHER, Jo. EGL & @0 GO TR &5

SUM=SUM+AUCHER, J3#CT 43, IRKED . 4
CONT INUE ’

DELJ=SUM+RLCIKT, IKKZ:

182 IF<HMIN. LE. DELJY GO TO S _

HMIN=DELT ) . : .
KK=1
S COMTINUE : : !

IFCIN. EQ. &) GO TO =1 -’ |

JIFCKMIN, GE. - 1E-@43 GO TO 2=
IFXKK. GT. KKZ> GO TO Z6G :
IFCKK.-GT. KE1Y GO TO =261

KECOL=KE ’

GO TO o2&z

EKCOL=KK-KKL

DO T IslNCR
WO IN=@ @

‘DO 2 J=1.MHCRi
IFCUCI. I EG &8 GO TO &
WA T =M T a4 T, FawAL T, KECOL
COMTINUE
IF KK, GT. KKL) Hola==koId

T OM{ID=RI I+ T, NCRD

DO 77 LZ=1. IKT,

LIl=HCR+LE -

M LT =, -

DO 3% JZ=1, HNCRL .

HOLZL = LT+ LT, TT o JT0 KKCOL Y ~
IFCKK. GT. KEL» GO T ZEL '

WMELTL =L a4+ LT, NORI+R2CLE, KKCOL D
GO TO TT

el IFYLE Bl L WolZao=—iLTd p+U LT, NCRY—RE CLE, KKCOL

IFCLT. EGL 20 MCLZAn=—3dLITLr+UCLIL, NCRI-{RICLE, KRKCOL »+5F 3
TV CONTINUE
GO TO 263
260 ERCOL=KE-ERE ' ' -
ENT =5 :
LD 29 I=1, NEG
WeIh=8, G
Lo 21 J=1, NOC
IFOICT, I, E@ & S 30 T &4
W ToamE T aeU I, JoeT 0T, KKCOL S
21 CONTINUE
IFC I, LE, NCRY GO TO &6
RNT=RMNT+1
W T =l T R KT KDL
S6 COMTINLE
AT WMIN=L ETR
L ERI=G
no 1@ I=1. NCF

1)1
1]

v o
= T

(A (h]
[ k)
[

m

m
Do
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IFGMYIn, LE. & » GO TO 18
THETA=B (I3 W10 :
IFCEMIN LT, THETAD GO 7O 13
H“MIN=THETH

KiKJI=1

14

el
41

SRS

—_
=

2 FORMAT.

CCONTINUE

CIFCKKJ. B 9> GO TO 35

0 42 I=t, MER

d E(I“——foIﬁ'ﬁ(KHJ}}

E KK IY=L SHCEETID
1—E'KKJ: - ) : ®
DO 14 I=1. MER ’ -
EXIZ=BCI+ELINwYL
BLKKI D =E (KK I 201
Lo 1S I=l: HEQ
W= KK T, T
GO 48 J=1, NEr
A I RELRTON |+E t&:‘T"_L
Uk.hJ.1J~E }hJJth
ITR=ITR+1
IFvIN, EG 40 GO TO 1S
IEYECHERY. GE. EMU. AND. BCHEQS. LE. EMWD GQ TO 18
IFCECHEG?. GT. EMWe GO TO 2w
GO TO 13 ‘
IH=1
NEG=MEC~L1
IKT=IKT-1

SF=@.

Go TO Z4
FRINT =&

& FORMATL . <. 2k, N0 LOMER ECUMNL FOR OFTIMUM . o0

KSIM=1

GO TO ZE

FREINT 41

FORMAETC S 7.3, “HNO FERSIELE SOLUTIONT. 2
KEIM=1

WEITE &, SESy Ik, ITR. BLHERD

FORMAT Y © -~ I, “FHASE -~ 7, Id. ZHE, N0 OF ITR= 7. 13,35,
wOBJ. FH. WAL= 7. Edd V.0

G0 TO =2
MRITE S,

FEIM=1

GO TO OZE

MRITECS. 420 ITH

FDRHHT(’ ST, COPTIMAL SCOLUTION FOURD. .. .. e EHa
eCNOL OF ITERATIONS= . Ic, .0

UFITE-F-?CE E HEF+l'

FORMATC A 7 7 “THE CFTIMUM “WARLUE OF THE ﬁDTELTI”E

+FUHCTIGH="JE14. ...3

2 COWNTINUE

FRETIIRM
Ent

. “OVMER FLOM IM SIMFLER ROUTIME . o
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SUBROUTINE FLOTMP (ML, COEFL. COEFZ, NNC, NDC, KTIMES?

SUBRCUTINE TO COMFUTE. FRINT HNWND PLOT CQGUT THE
MAGHITUDE AMND GROUF-LGELFAY CHARACTERSITICS OF THE
DESIGHED FILTER. THIS FALE0 COGMFUTES THE

SGQURRED ERRCOR BETHEEN THE DESIRED AND DESIGNELD
CHARRACTERISTICS., H 1S5 THE ARRAY TO STORE
COMPUTED MAGNITUDE AND F 15 THE ARRAY TO STORE
THE GROUFP-DELAY “ALUES.

THE 5SIZES OF ARRAYS LOCAL 7O THIZ ROUTINE ARRE
ZOML, HOML . POMAS ‘ )

ML I5 AS INMNDICATEDR IN THE MAIN FROGRAM

DIMENSION H{181), F{181h, COEFL(SE:, COEFS{SED s WI{LELD,
#Z (LG DPIA8LH. DMOLEL) -

COMPLEX Z. HN. HO. HZ. CHPLK. 22, CE\F

COMPLER HML. HDL

COPMPMONSBLZSDM, BF . W GDLY. WEAL, NF:' &

DATA FYA3 144592 - .
ERM=£. S S i
ERG=6. '

WRITE<S, S50

22 FORMATCS <. oD
WRITECS, 870

&7 FORMATY S =Jqf FFECUEHC T i, TMAGNITUDE . 33k,

o
_..."1
o

N

# - GROVF-DELAY

B0 o4 T=1.M1

IF{KTIMES. GE. &> GO TO S0
So=CMPLSECE, O, =W I sFYD

ZCTa=CESF ZED -
HMi=:G, . & >

HDL=20@ . &

HM=<&. &, 8. 8

HO=&, G, &, G

DO S J=1, NNC
HH=HN+COEFLC T (Sl T kel J=1 00
HHI=HNL+{ T -1 COEF L T 0 {20 L ke ] J=1 00
PO & J=1. NDC

HO=HD+COEFZ L T a2l T Dbkl J—L 0 s

HOL=HDL + J~L 0k COEF S Tk (S L Dk J=L 00 )
HZ=HM."H[

HuTx=CHES(HZ
FOLa=REAL C CHMLASHMN = CHDL AHD D s

MRITECS, 20 WCIh HOT0 POy
FORMAT Y 70 3(EKCELE S0
MT=h1 ’

KE=&

DO T Is=tMT

KE=KE+1 |

ERM=ERM+ (DM I o —HORE D bk
IFCRCKED. LT, WP QR WOKE D, GT. WFES GO TO 7
ERG=ERG+ GhLY—=F TRED Mk :

VOOTDNT THUE
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WMRITECS. 283 ERM. ERG

28 FORMAT S ’,:h,‘;un F SUARED ERROR IN MAGHITUDE I3=".
#ELZ. S, 0 ¢ CL2ML CSUM OF SEUARED ERROR 1IN GROUF-DELAY IN
#* PH_: BAND I5= 7, E1z. 53
WRITECS, T8> Mi, DR
CHLL FLOTZ{l H. M2
MRITELS., ok ML, DU
CALL PLOTZCMW PoMLD

S FORMAT (LHL, "DESIGHED HHGN;TUDE RESFOMSE ", 2, "HO.  OF

# POINTS ON FRE® AXIS=". Iz, 2K, "FREG IHTER”HL—‘ E12. S

&6 FORMATC1Hi, “DES IGHED GPDUP DELAY RESFUNSE”. NG aF
# FPOINTS ON FR H\I e 120 2. TFRER INT:ETHL-'.ELZ.
RETURH

ENL

Ax¥
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DIMEMSION DMOEE. A7, DRz 2 AT MR EE s WE AT s,

»

WA G, G0, BL(E 2, 034, 3l

:{-::l-::{»::}::k:k:k:R:k:k:{-::+::k:k:{-::{-c:+::+::£::i»::I-::k:k:ﬂ:#:k:{-::{»::{c:{::k:{::{»::k'.l-:;{-::k:k:k:fz:k:k:k:&:ﬂ:k:{::&::R

MAEIN FROGRAM — DESIGHING TWO-LIMERSIONAL RECURSIVE

DIGITAL FILTER TG DESIRELDR MAGNITUDE AND LINERK

PHARSE CHARACTERISTICS. '

THE INFUT FRRAMETER:S HRE -

ML : # OF FREQUENCY FOINTS ALONG THE Mi-AKIS

N1 # OF FREGUENCY FOINTS ALONG THE WZ-AR1S

IFT : DESIRED FILTER TYFE '
LFF .- L FASS : EFF . — BRAND FARSS
HPF — HIGH FASS

MPL . WPZ - LOMER AND WFFPER RALIAL PARSZ EBAND

FREGWENCIES

1SETS : # OF GROLP DELAY WRLUES 7O BE TRIED

HE : HIGHEST FOMER OF COMPLEY FREGUERCY YARIABLE
1IN THE MNUMERATGR oF THE TRANSFER- FUNCTIOGN

NE . HIGHEST FOMER OF COMPLEX FREGUERNCHY WARREIHBLE 22
IN THE MUMERATOR OF THE TRAMSFER FUNCTION

SIMILERLY MF & MR ARE FOR THE DEMOMIMATOR OF THE

DIGITAL FILTER TRANZIFER FURCTIUN

LET - TT”'NF+L‘L-HU+l'+‘NF+l'h'ND+l-—1

THEM THE DIMEMZICOMZ TF THE ARRAYS HRE AS FOLLOWE: -

Nl(Ni?JNEﬂNibabﬂiﬂi;NibaDF(Hi;HiD‘HC-NF TG

BCCME, ML, W IT+HE ITHED :

5

I
|,.:.

aa =,

:{~::{»::{-::{r::{::{-::k:{-::{»::&::&::i—::}::{::}::}::k:{-::ﬁ-::{-::{-::{»::r.:k:&:;{-::k:iq'.k'.{n'.:l-:'.{:;l-::{-;:}::f::{-:_;]»::t-‘.:};:{-::}::!-::+::k:k:+::k:k:{<:k:k;h:+:

COMMIAMEE DM, TR, WL, HEe WEL, MFE
COMMONAETOMPL, FEL, ML MG 1ML HED MU
Fiy=Z, 1415926

F”’-F?+F

READ S, S@E7 ML, M1

LA =2, ML=

DMZ=L, (L1

WRITEL G, 2E
WRITEY
WRITEY
WRITEY
WRITEY
ML=t

LO o4 T=2, Ml

(al= )

G ML, ML
Lo Db DME
L

r.Tl m g:h 3:71 {Zh

LT 3= LT —L i +TL
LY L =a,

Lo & I=2Hi

WZ T =bE T T -+ DME
KTIME=L _
READ S, E8E0 1FT
FEADCS, S840 WFL WPE
FORMAT (A -
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R4 FORMATYZELD. S5 -

11

CALL SFECMOML, Hi. IFT) -
READ (S, 262y 1SETS

READ S, SELD NF, MEL NP MES

MPL=MF+1

MEHL=ME+L

NFL=NF+1

NGIL=NGi+1 :
MRITECS. 2043 HP, NG
WRITELS, 3ET MF. M
GDL'P2=MG!

GDLY1=MP

WRITELS. 262D

CALL QUTFUT (DM, M. HL
WRITELS, FELY

DO Z68 KTIMES=1, IZETS
LRITECS. 3132 KTIMES
WRITE(S, 132 COLYL. GLLYE

GEMERATION OF LINERR FHASE CHARACTERISTICS

DO & I=1.ML
FH=GDL LML (T P

DO & J=1.ML

DRI, Jr=—(PHEGDLPZHNI LT kR

IFCDPCT. Jo. LT, —FYD DRI JasDR O Ja+FYre

IFCDPel, I, LT, —PYs GO T2 Sad

IFCDPY I T GT. Py DRCILT a=DREL I Je-PYE
IFeDECT, Jo, GT. Py GO TO SEs

EONTINUE

CHLL SIMPTECML, Ho. HOR. HWRD : -
CALL RSIMF UL NCR. MWYR. KEIMD
IFCKSIM Ef Ax GO T 165

T =NMH+HNC

MA=NT
NTL=NF+1
HTZ=MHA+Z

NTI=NA+Z \
BCCL, Ah=1

KM=a

DO 48 I=1, MPL

KI=1

IFY 1. EQ 10 KI=Z

OO L@ J=R T, Me

KM=R M+ :

BT Th=-l T2, KM

FM=HT +HD

L=
Doo11 I
IR T R
L=b+t
BT, Th==l0 T2, MO
WRITELG. ;
WRITEC S,



o 21 ' a
WRITECS, e .

MRITECS, QS
DO LE I=L. MPL
DO Az J=1. MEd
. IFCT. GT. NP1 CR..T O
12 WRITECS., S8 igJ;HCQI. iy
* CALL PLOTHMPSML. ML RO, BC. ¥
KTIME=KTIME+L = o - ‘ Tt
1666 CONTINMUE ‘ ' ’
WRITECS. 3@1n :
GOL'w1=GlL'Y1-1 - &
GLL'YS=GDLYZ-1 ' : . - co
206 CONTINUE ’ L o
se@ FORMATC2IZN .o e
SRt FORMATISIZ: - |
SHZ FORMATIIZ: ,
2A0 FORMATY . <. S, LLIFLE 4. LiaD
a1 FORMATLS 7. o :
aR2 FORMATL T “. &i. "DES MAGHITUDE SFECIFICATI
wONS 7, 0 ., ' :
amd FORMATLS . 24, “HUMERATOR INDICES F=', lasan. 78

’
wE=L TE S . :
QS FOURMATOS . 2. “THE COEFFICLIENTS OF THE FILTER
- * HF‘:E e Rt N
elsl=y FﬂFHﬂTf’ LI THCTL TR, T T T u=T, GAS Bl S o
. T2 ;”:IE;”;— PR R Tt .
_’:313? FliiF‘HFlT coe i CLENOMINATOR INDICES F=7. 124 R
w08 G= .lz,fﬁh .

fas FORMATL @ = ‘LESIRED SFECS (FREQUEMCIES ARE
# 1N FFHPTICIH"' I_~'F WPGUIST RATER == .--".'J, .

9(-33 FORMAT Y "~ 7. ol Mstnhiibdiohiiebseiposi prkshkebai T, T
ats FORMAT ]'JCI o ‘F;I__—Flul 7= riLLJNf_t WiL—H

T S=, 10, T SN0, OF SPECS-FOGINIT LS HLOHG Wz-FRl
:HE:" . 1:. PRt "
211 FOR NHT' coe, o, CFRER-INTERYAL ALLNG N_L Fi'. 315=".
wELS 5. 3. FREG-INTERWRL BLOUNG MI-AMlZ=".bkiz S
W, S0t :'l .
212 FORMATLS 2 YESET MO =74 120070 . ' '
21T FORMATY S <. 2, TGROUF-LELAT ALOMG WL —FG '1':~—' E1l
*D S, S, CGROVF-DELAY ALONG MI—AEls=". ELZ Su et
STOF ’ T
EN: 3
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- ) i , . Wi
3 IR ’HdRﬂHTL¥E'S. ECRAML, N, IF T
! c. R o S L -
;o c .[“4’U=FGHTINE T GENEFHTE .HE MAGHLITULE SPECS T T
1 o ;,;gcrmFE SFONMDING TQ- THE LDESIRED TYFE uF FILTER. - :
P g7 ., “THE CHARACTERI STICS BEYOWD THE FHS5S BAND 13
: Q. - -GEMERATELR ACCORLANG TO THE. FUNPTLUH
P C . CEN=ERP ¢ —FR# P =l n&haja/‘uhtﬁh FE GHN BE
Pl g i WARIED, FE 15 OBETAINED IN TERMSqOF FrE.
; c SHARFER TRANSITICH BANRC IN°THE SFECIFICATIONS
C CAr BE GENERATED EY SFECIFYING ZALLER WAHLUES
O FOR.F¥Z. - THE. ARRAY FECML. Nix 15 § LOGICAL
Iw ARREY WHICH 1S TRUE IM THE FASS EHND ARERA GOF
. C EE"IFED wPEPIFILHTIUN °
‘-.___, C . ]
' o FUCTION ’HEFFHGFHN REGUIRED :— FN _
c . . . _ ‘ s
. CIMENSIGN DMOIT. 4T3, RPOEE, A7 W ST, W2,
~ #PECEI AT . S
. . COMPLEM#LE TRL, TFZ. TFZ. TRt
. LOGICARL®*L A TRUE. .8l FALSE. ». FH

: . INTEGER EP.HF
> . COMMON-BESTM RF, M, W2, WL WFE
- . COMMONABZE-PE : .
ﬁ DARTA TRLSTLOW  FPASS FILTER”J
' DRTA TR EHND FRES FILTER”.
' DATA TRZ . éILTER"f
CETA BRSCBFF & HESOHPF 700 BYOS 440052
DooAS I=1.Md
LOoAS JT=1.M1
1% FBCI. Jr=EX S
Fho=2, & - : =
FR=186, A PRIy
D4 I=1.M1
FA=L Tkl £ I 0
i A T=t1. Mt . : .
1 RRCI, Io=T0RToRLAMI T hwla Ik
*IFCIFT. EGL BFD GOOTO 408
i : IFCIFT. EGL HFD GO To gl
TR3=TF1
pooE I=iomMl
DO o= J=i. Nt :
IFCER T, Ih, GT. WP G2 TO Z
REW T, To=f
DRI, To=d, & .
GoOTO 2 _ i
LM T Ta=F RO FR, WPZ. RFCTL T CL
CONTIMNUE . . . .
o TO 40z -
TE4=TFZ
OO 4 I=1.Mi
L 4 T=1.hd ]
IFeRP LT, 30 LT, WPdh D205
TFARPI, o, T WRZL 33 Ta

D

"y 1)

‘_'.»
DA
)
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| T Eethoems
« PRO1. Ju=1r

)

DO 0no

pREE

- GATTO 3

F |

s i T—i,ui

DML, JTa=FHIFE, WEL FR T, 350

GO TO 4 L .
DM T JTa=FNFR: WPZ, RECT. J00
CONTINUE :

JLE o I R

TP4=TFZ

DO T I=t. ML _
IF(RF(I.
EME Lo LR WLy RFC Lo T3

CONTINUE . .
CONTINUE

MRITECES, S@ax TR

WRITEN S, DS - WFL WPL

SO FOGRMAT (7 7 7. 2
Sal {OFNHT"-'- s 2L TPHEE BAND
# L EA2 5. 2, TWREZ= Y. Elz S

oaoo

jlo

-

RETURN ] :
EN

FURHCTION FHOFREL BF. W .

FLNCTION SUE:F'F:CIG;::HM FECUIRED BEY THE 5UE‘--—

ROUTIME SFPECH

FEG=Fi# 0 F =L
FH=&. &
IF ARG GT. LS7T. @3 GO TO =&

LT3 S

FH=EXF{-ARGY -

FETURM .
EMND B

SUBRCOUTIRE SIMFTE ML Ml P

SUBRCOUTINE TO GENERATE THE
DEFIMED IW THE

IT. Ml HL IZ RS

‘FILTER TYFE :-—= -

£

. GE. WF1i» GO Tu O

s FLE. o
FRERUENCIES  ——

MG MF MEL HER. RWYRS

SIMPLEN THELEAL
ME1N FROGRAM

LET IT#= MPL&MGL-1 & ITW=MLsNL
THE DIMENSICONTZ OF THE ARREAYS HF-F; AS FUOLLOWS

ROTT. 2 IT 0, BOITHE
(DS S ITD

DIMERSION AHOZL. 2220, BEES 0, DMGRE, A7 0. DECEE, AT 0.
-CT 15 u‘-l"‘- Fil (D SEL S, :-.—.k_a .L.L.__.f'

bl CZEG L WET AT
DIMENZION YWEOZ3
S QOPRCHCBEE
’r..*mt::r-:.--'E

TaaNICZIN L

O 0 I

T, ETOITHL AT

fos BLCZ. 1T

l .-'

ST, T U_L leZs WFLs WFE
'NE‘ Nr'l MNF L. NiGids T ML 10
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 HD=MPLAMEL-1
L 1C=MLsNL

»

MH=HFLGL
1CL=1C+1C
TES=HD+NN -

CICE=IC1+IC

IC4=1C2+IC .

ICS=1C4+1C

o EPSS1 E-G3 | ‘ . .

_“IL=B

ILi=IC .

ILz=1C4

DO L L=1.ML o

IK=A ' . : - ;
Do 2 K=1,MFL

IKA=K-1

CIMGE =MGL

IFCK. BEGL A IMEL=MGL-1

DO E J=10ML

2

o -l

o,

=6

TECK, EGL 1d IPM=1

DO 3 I=1. IME

R TRLML (L D+ TMRbIZ o T3 rfry

AME=COS N

A E=STHOND

AYL=STHCDP L, Ja0

ANL=COS DR CL, Jon ‘

ACTK+TL TLA+Ta=0M L, J ok R Ll S - i e
ACTRHT, TL+T =DM, Tk R+ L E 2
CTCIK+T, TL+J =008 Oy

IM=IM+1

TH=TH+MGL -

IFGK, EGL 40 IK=IK-1

I L+
TLA=NLA+NE
ILZ=TL 2 +MNL

IL=%

IL1=1IC
ILE=1I0C4

Lo S L=1.ML

TH=NE : : ,
oo & MSEI¥E£
TEL=K-1 .
LO 7 J=i.H1

DOoT I=l.NEL

IM=1-1 .

= TR L+ TR Z T 0 kY :
ACIR+T. TL+I ==K
Ao Th+1. ILL+To=2TN
TI=TH+HoL "
TL=1LH1 : .
TLA=TL 1+ :
ILZ=ILZ+NL ‘ .
THi=IED+1 o . -




)
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INz=1Rz+2
INZ=IBD+T
EFSi=1. -EFS .
-IL=6 ' : |
DO 12 I=1.ML : ' . |3
ILA=IL+IC ' '
DO 14 J=1. ML . ;
REVL. IL+I0=~0M T Josl0S DR T, T : 1
14 RECL. TLE+I0==DMC I, RS INIDR T, J00
12 IL=TL+ML :
DO 15 I1I=1. IBZ
15 BLIN=Q,
BLIMNLI=1
BeINS D=0, -
BCINZ=—1. ) ) 0
DO 2f T1=4. ICL , '
SUp=@, 4 . . 1
Do 21 ID=1. IES | _ : ‘
Z1 SUM=EUM+ACIZ. I4n ;
o0 RECD, IAN=—CSUM+L. B ‘
DO 22 Ta=a, 1C .
CeUM=g. @ - :
DO, 2% IZ=1.HD
2% SUM=SSUM+CT I, Tos
Fici, I1=EFSL
o2 RACD, T10==-510N
HYR=1CS
IFCICT. EGL A NYR=1O4
NCR=TM1.
RETUFNM
END : -

SUEBROUTINE RSIMPCLL NCR NWR, KS1M5

SUERCUTINE TO SO0LYE THE LINEAR FROGRAMMING
PROBLEM USIMNG THE FEVWIZED SIMFLER METHCL
THIS FROGRAM DSEZ THE SIMPLE!N TRBLEML
GEMERATED IN THE ROUTINE ZIMFIE. . B Ha

ARE WORE WECTOUREZ., THEIR SIZES ARE A5
FOLLOWE -

WOITH+ED . ELITHIED o mEdzwlTYD

IT :— IS A DEFIMED IN THE MAIM PROGRAM

1Ty .- 15 AS DEFINED 1N THE ROUTIHE Z1MPTE

DIMENSTION AT, 4428, BoEd e, Uild, Zda, Sila, B340,
HCTCAS, SAL L RACZ, SEL0, RECZ, LADZ %, AL 220
COMMONSETAMPL MEL, NP L, MEL, NNC, NEC, L *
COMMONABZSAR. B CT. B B2

REAL®E 1. YL HE

REAL#E HLIM




Ty

Ty
Jus

162

)]

fu

ool
el
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HEQ=HCR+2

INT=2

-.F'— P S -

e e 1=1,NEQ

DG 2 J=L. HEG . :

WET. Jo=0 @ '
DO 4 I=1. MNER ]

2T Ioe=l. @

1TR=1

EMU=—1, E-GF

Emu=—Emu

IH=06

HLIM=1. D+TE

WMIN=1. E+7T5

Iovsp =0

Do S I=st. HYR

SUM=6,

Fol. GT. KELD GO To 14

oS J=1. NORL ..
TECLCHER. T3, EGL 6L & GG TQ S
W= HE R I '
KR T g S )

o= L

IF¢ RS, GE. BLIM» IOWER=IOWER+L
IF ¢ IOWER.'GE. S0 G0 TG 27

v =EMGL Y HED :
SUM=SUM R

COMTINUE

AR I D=50M

LEL J=SUM-+L G HEGL HL:-+R_'I}T 1o
GooTO 18z -~
IF 1. 5T, KEZO GOOTO Aol

BEL J=—F { T-KRL D +UNER. HER s —CRE T T-KELN+5F D
GO TO AaZ

TREZ=1-KKEZ

DO S5 J=1, ND
TFECUCHER, Jh, EA & &0 GO TO S
SUM=SUM+U CHER, JaelT (3. Tkl
CONTIMHUE

DEL T=SUM+RL T TKT, TKKZ?
IFC4MIN, LE. DELJ: GO TO S
UMIN=DELJ

KR =1

CONTINUE

IF¢IX EQ Qoo TOOZL

IFcHMIN, GE. — AE-f4 o0 T =2
IFHLL.FT.hLZh GO TO Zod

IF VY. GT. FELy GG To 29l
WO S,

nooTO 2oz

LECOL=KE —ERL

Lo 7 oI=1. NCE

W= O
Doon J=a, HWCEL
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TFOUCT. T3, E6L G- GO TO &
MO TR TR T ToeeR s T BRI
& COMNTINUE o
TF KR, GT. ERL) M(Ih==i010
T oM I=M T a4, HCR D
DO FT LI=1. KT
LEA=NCR+LE
MOLZA =,
DO 38 JZ=1, HCRL _
MOLZL0=MOLE d+ LS, JTowA IS, KRGO
IFC¢KK. GT. KK1» GO TO et .
HLZA D= LTA 2+ LEL, NCRY+RE(LT, KKCOL
GO TO TV '
L TFOLT EQ A0 {{LZAn=—8dlIir+ULE1, NCR A -RELE, KKCOL >
IFCLZ EGL 20 MLZLlh==W{LTdr+0elid, NCRI—(RELE. KKCOL 8 +5F
TT CONTINUE \
GO TO zZ@=
200 KECOL=KK-KEE
KHNT=0
DO & I=1, NEG
H{1hv=R @ :
DO &1 J=1, NDO
IFCLCT, T EQ G 8% 30 TS &1
RS SESTE SR RIS SR SN Tu g ¢ S wt I
COMTINUE
IFCILLE NCRD GO TS @
BNT=KNT+1
WO T H=E T DR CENT. HMCOL
GO CONTINUE '
20T CONTINUE
HMIN=L ETE _ -
KK I=6&
DO 16 I=1. NCR
IF{ECIs LE @ » GO 7O 1&
THETA=E I 050 T
IFCHMIN LT, THETAD GO TO 1o
MMIN=THETH
KEJI=1
16 CONTINUE
IFCKED. ECL ) GO TO 25
Q12 I=1.NER
12 EXIrs—0WaTD AOERID
ECKEIN=1. S0k
=B EET : - )
v 14 I=1.NEGR
14 BLIN=BCIN+ECT el
B KM T =E CFRI ek,
DO LS I=1. ME?R
wASDCKE T, T
Dl e JI=24, NEH
0T, To=00 3, To+ES Tawrs
LRI, To=E okl 3 el
ITR=ITF+1
IF4IM EQL L0 G0 TO L

)
0

o
e

b

41023

()
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a

31
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.
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CIECERCHEGRD, GE. EMU, AL BONERD, LE, EMMD GOOTO LS

HEG=HEG-1

225 -

1FCEONERS. GT: EMYs GO TG Za
GO TO 13
Ti=1

IKT=IKT-1

SF=@.

GO TO =%

FRINT & ‘

FORMATY S “. ¥, “HO LOWER BOUND FOR OFTIMUM . 2
KSIM=1 '

GO TO ZZ

PRINT <1 :

FORMATCS ., 3%, "N FERSIBLE SOLUTIONT

CEESIM=1

WRITECE, S50 IHJITRJB(HED“
FORMATC © -, S “FHASE - ‘. 11, 33 “HO. OF ITR= 7. I3

kT, TOBJ. FM.- WAL= ’:E14.Ta.s

GO TO OZZ
URITE S, S&n :
FHPNHTtHHﬁHH:~’ ---- ez, TOWER FLOW 1IN SIMPLER ROUTIN

wET.

KSIN=1

GO TO =2 :

WRITELS. 420 ITR ' L
EORMATS . <. 3, "OPTIMAL SOLUTION Fobni. . ... ST TN

#0, OF ITERATIONS= 7. Ie..'

MRITE(&. T2 BV NFF+1'

FORMAT . © 70 Zil, “THE GRTIMOM YHLUE OF THE OBJECTI
#0E FUMCTION=S . E14. V.00

CONT INGE -~

FETURN

E M

SUERCOUTINE FLOTMFC N.I_ Nl Al B ETINME, GLLYL. GDLYE

%
SUBRCUTINE T3 COMFUTE AND FRINT THE FMAGH I TUDE ARD
SROUF-DELAY CHARACTERIZTION OF THe TWU-LIMENZIONAL
FECURSIVE DIGITAL FILTER. THIZ FROGRAM ALZO
COMPUTES THE SQUARED ERFCE LETHEEN THE DESIRED &
DESIGHED CHREARCTERISTICS. H IS THE ARRAY 0
STORE THE MAGHITUDE . Ti 15 THE ARKAY T4 STORE
THE GRCOUF-DELAY 1IN +4E WERTICAL DIRECTION AND T
1S THE SRRAY TO STORE SROUF-CGELAY 1IN THE +VE
HORITONTAL DIRECTION, THE SI1ZE OF SRkRAYS LOLAL
TO THIS SUERCUTINE ARE RS FOLLOGWS -
BOML. Rt 0 T4, L L TIOMAL ML . DLdmdl
ZIONAD

SN

LIT1 NEIOH FINE, &0 BN S Sl DR T, TEALT b WACSE D Wi

EIiCch
LOGICAL

t
CCOMPLES DL, T2 IT. CENFL CMPLME. Al HE A e BHE ADL. HDE



w*HHT. ZF. TF
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COMMOMABETSPF L, ML, PP L, NGEL, T N MLURU
COMMONAESS DM, DR, WL Man WEL P
COMMONAEZA-FE - .

FY=3 1415505
IFYKTIME GE 22 GO TO o

Rt N B S P e

[n g ()

n

D1 I=2,Mt .
To=OMPLM O, o WL T kP
AT v=CERP -T2

el BT B <

DO = J=I.HNL
TT=CMPLM G, o W2 I wFy )
Z2Ta=CERF (=220

CONTINUE

ERM=0. .
ERTi=0,

ERTZ=G

DD 3 I=1,ML

DO 3 J=1.01

ES=PESI, Jo

HH=C@, @ o _
HO=2@, . @ .
HML=¢@, . @, 2 ’
HOA =<8, . @, 0

HHZ =0, 6, 0
HDZ=0 6 . @ B

DO 4 K=i, NP1
TA=TLI kK =L
Do 4 =1, HNel
HNT=A K, Lok DRk Do Tk (=L 0 -
HH=HM+HNT

HHL=HML + R =1 s HNT

HN2=HHNZ+HNT® (=17

DO S K=l MPL

TEH=DLCT hekik o B =1

Lo S L=1. ML

HMNTSE K, Lok SR D000 3 k=L 0
HO=HD+HNT

HEL =HDL + ¢ B N T

HO2=HDZ+ CL =1 5 kHNT

Hi 1, T3=CABS CHMHED

TLo T, IH=REAL S CRMNLAH S = OHLL e HDs b

Tae 1, Jo=FREAL Y CHNS MW = SHD I HD e
ERM=ERM-+ DM Ty Ta—HO L1, J0 el

IEC. NOT. BTy GG TO =
ERTL=ERTL+GULYL=TL I, J0 skl
ERTZ=ERTZ+CCDLYE-To0 DL Io el

ZOCCHTINUE

WRITEY
WRITEY
CALL o
URITEY
WRITEY

123

QR A3

'-\

1ToH, ML L

Err

.

1 th (2 T N

-
=) =g

oo

w




o)

o NN w Ry

=y = =4
DA A |
P = 0

Taz

TRS FORMAT LA < Jp S¥. 75UM OF THE SEURRED

—

Tas FO

oA

o

=D

-

*‘F:EE:T < K] ."‘
EORMAT S <. X, “GDZ: - THE GROUF-LELAY

f227

WURITEL S, T

CARLL DUTRUTCTL. M, ML
MRITECS, TESY ERTL
WRITE (&, VEED
WRITE . TRED

CALL COUTPUTCTZ. P, ML
WRITECS, vRIEY ERTE
FORMATY © s A
FORMATL " 7. &=

FORMRTS " 7 2’ Gha .- THE GROUF-DELAY

*RECT 7. A2

w= T, EAZ T

FORMAT - ¢ 7 2. “SUR OF THE SQUARED
w= 7, EAZ. S |
RMATY A5 ¢ “0 2 “ZUM OF THE ZQUAREL

= 7 ELZ. D0

RETUREN
EMD

SUBRQUTINE CQUTRUT R P M2

SUBROUTINE TO FRINT OUT THE JUTFUT
FEGUIRED BY SUERCDUTIMNE FPLOTHF

DIMEHSION R3340

HCOOL=11

No=dRS L+
NEEM=H- v HE—1 el
IFON, BT, 21 GO 74 1

Mz=1

HREM=}

CONTIMNIE

COL=0

0o & J=1. M2 :

IFeJ EG MY HOOL=HREEM

OV I=iM

MR TTE (G, SEEs (AT, HioGL+ s, =l NOGL Y
WRITECS, Sl

Hod_= }rOL+NCDL

COMTINUE

FORMATY S 7 Dl LA JFAd < Lo
FORMAT T .o

RETUWREN

END

IT\

ALONG
ALONG

ERRORS
ERRORS

ERRORS

“THE DESIGHED MAGH1TULE RESFUNSE-

VERT-D1

HORZ-D'1
IN MAG
10 GDL

N Ghe

C o3
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EXTERNAL FUNCT

T DIMENSION X{188>, DAL, Ni{41id, Wa] 71);_1\4l>;22(21j

MAIN PROGRAM :— DESIGHNING TWO DIMENSIONAL RECURSIVE
DIGITAL FILTERS IN CASCADES OF 15T AND ZHD GRDER
SECTIONS USING NON-LINEAR OPTIMIZATION PROCEDURE
IN THIS PROGRAM GIVEN DATAR CAN BE APPROXIMARTED TO
THE REARL PART OR THE MAGNITUDE SQRUARED TRANSFER
FUNCTION OF THE PECUR:I?E DIGITAL FILTER
THE INPUT DRTHA ARE :
ML —-# OF FREQUENEY POINTS IN Wi AXIS:
M2 - # OF FREGUENCY POINTS IN W2 RXIS ‘
KS. KF - # OF 2HD AND 15T ORDER CARSCADES RESPECTIWELY
LIMIT — # OF ITERATIONS . ER - DESIRED FREQUENCY
DOMAIN SPECS , W — INITIAL FRARAMETER YALUES <KRE TO
BE NON-ZERO YALUES> ., EST - ESTIMATED MINIMUM OF
THE OBJECTIWE FUNCTION . EPS - STEP SIZE » LP - THE
E\PONENTIHL FACTOR OF THE ERROR OYRLUES SHOULD BE

.4, 6, ETC. >
THE METHOD USES THE FLECTHER AND FOWELLS OPTIMIZATION
PROCEDURE.
SUBROUTINES REQUIRED :— FUNCT , OUTPUT .DPREAL . DIMRG
AND DFMFF{FLECTHER AND PGNEL: OPTIMIZATION S5CHEMED

THE DIMENSIONS OF THE YARIOUS HRRH?; ARE :-

KON, DRCHY, WLCMLY, W2M23, ZA (ML, Z24M20, ZAMAD, EBI{MLD
PSIKS, 182, YFLKF, 520 IR(M22, S5{34K50, FLKF:#42, TAMLD,
TBIMZ2, TOCMZ23, TCIMLD, ERCML, M2, RPIMA, M25, TE(ML, M2)
TFOML, M2, TGIML, M2D, HC Rk (N+72 23 WHERE '

N EQUALS KS#«L38+KF#s5+1 WHICH IS5 EQUAL 70 THE

# OF PARAMETERS IN THE DESIGN PROBLEM

#, ZA 4L, ZB 245, v5{¢, 163, YF{4, 63, IR(4LD

DIMENSION S<555, FI(323, RC8Y, TR{4LD, TBLZ2LD, TC{415, TD(21).,
H#ERCAL, 240, RPCAL, 245, TECHL, 245, TRFL44, 245, TG4, 210, HEC(4880
RERL#E DABS., DSERT, DEXP

REAL#2 X, DA, HC, &, ¥'S. Y'F, DREAL. 5, F. R

COMPLEX ZZ, CMPLX, CEXP, 21, 22, ZR, £B., HNs HD, POLY, P
LOGICAL#L ITYF, IREP., IMGS
COMMON/B1-Y5, YF, ER. RP, TR, TB, TC, TD, TE. TF. TG, RO
COMMONAB2/KOUNT. M1, M2, K5, KF., LP

COMMONABIA/ITYF

DATA _MREP.. TRUE. / IMGS/. FALSE. ~

PYE3. 141553

-

S5ET ITYF=IREP FOR RERL FART AFPROXIMATION

IF MOT SET ITYF=IMGS FOR MAGNITUDE SGURRED
APPROXIMATION .

ITYF=IREP
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i
LP IS TO BE SET ERUAL T0 2 » 4 ., 6 ETC I.E
ANY EWEN NUMBERED INTEGER .

LP=2

RERD IN k oF FREQUENC? POINTS ALONG Wl AND W2
AXIS IN THE FREQUENCY DOMARIN )

" RERD(S, 588> Mi. M2

READ IN THE # OF 2ND AND 15T ORDER SECTIONS
RESPECTIVELY

RERD(S, 588> K5, KF ‘e

DWi=2. /M1
Dl2=1. /(M2-1D>
WLCLd=—1.
W2C12=0.
DO 1 I=2,Mi
1 WACID=WLI-10+DWL
DO 2 I=2, M2
2 W2{Id=W2{I-10+DH2
WACLd=WLCLI+6. 8125
W2CM2O=W2 M2 ~8. 8125
DO 3 I=1,Mi
TZ=CMPLK (D, , WL I3#PYD
TACII=TANCWLL I D#PY2RD
TCLID=TALID*TACT
ZACII=CEXP{-22>
ZACID=ZLCI 424D
DO 4 I=1,M2
TB{ID=TANCWC I D#PY2) v
TDLID=TBCIM*TBCID : -
ZZ=CMPLK(B. » U2< I #P'YD
Z2¢I>=CEXF{-ZZ>
4 ZBIN=Z2¢I>#Z2¢ID
DO 100 I=1,Mi
LO 188 J=i, M2
TELI, I>=TRCIDI*TBLID
TFCI, I>=TC{I»*TB{JID
18@ TGI, I>=TRII4TDLJID -
YMARL=0.

72

RERD IN THE FREQUENCY DOMARIN SPECIFICATINS
INTO THE ARRAY ER AND NORMALIZE THE DATA .

DO 554 I=1, ML
554 READCS, 556 (IRKD, K=1, M22
DO 554 J=1, M2 ' '
YMAM=ABS(FLOATCIRCISO D
PMAKL=AMAKL CYMAXL, THMAKD !
ER{I, J3=IR{J>

A
4]}
I
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FORMAT(LSIS)

DO S57 1I=1,Mi

DO S57 J=1,M2

ER{I. JO>=ER<{I, J) - YMAKXL

WRITE{S, 558> YMRAK1L

FORMATS” “» 4%, “MAKIMUM VALUE IN INPUT DRTHR=

HCS=KS5#13
NCF=KF#*5
N=NCS+NCF+1

READ IN THE INITIAL PARAMETER VYALUES

READCS, 555> (K{Id: I=1, N>
FORMAT(3D23. 18>

IFS. NOT. ITYF> GO TO 2¥
WRITE(S, 635682

GO TO 28

WRITE(SG, 222

URITE(S, 586> M1, M2

WRITECE, 681> K5, KF

WRITE(S, 66820

WRITE(S, 883> KIND

Ni=NA2

DO 13 I=1,Ni

HKi=Hi+1I _

WRITECSs 584> I, X{I2, NKL, K{NKLi>
WRITE(S, 5152

- WRITE{G, 56852

11

4D

=

18

CALL OUTPUTCER, Mi, M23 ;.
EST=8. 1 -

EPS=1. E-5 )
LIMIT=48

J

", ELZ. 5

FORMAT( 7, 14X, “THIS 15 A MARGNITUDE SRUARED APPROXKIMATION', /O

CALL DFMFR{FUNCT, N, X, @, DQ. EST, EF5, LIMIT, IER, HCS

WRITE(S, 587> KOUNT
WRITE(S, 6883 1ER
IFCIERYLS, 11, 12
WRITE(S, 616>

GO TO 10

WRITELS, 663>
WRITECS, 612> &
WRITES, 5132

DO 28 I=L.Ni
NKL=NL+1

WRITECS, 684> T, KCI0, MKL, KONKL)
WRITELS, 618)
WRITE{S, 6143
WRITE(S, 5155
WRITE{S, 6162
WRITE(S, 617D
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WRITE(S, 521>
MRITE(S, 6225 _ :
WRITE(S, 5237 L d
WRITEXS, 6240 S

WRITEXS, 683> KIND

WRITE(S, 685> :

IFKKS. ER. 8> GO TO 7688

KK=-8 :

KK1=-3

DO 141 I=1, K5

142

141

15

14
708

0O 141 J=1.2

KK=KK+&

KKL=KKi+3

DO 142 L=1.8

RLL>="r5<{T, KK+L> . .

SCKILA1 =R CII+RE2I+RIII+R A +R(SHI+RISI+R(TI+R{BO+1. DB
SCKKL+2)=2. DB#{R{LI-R{ZI+R{II-RIEI+R{TO 1. DBD ,
SCKKL+Z=RELI-RE2I+RIDI+REDD —R{SI+RIEI+RITI-R(B>+1. D6
S(KK1+4>=2.DB*(R(1)+R(2>+R(3>—R(?>—R(8)—i.De>
SCKKL+5) =4, DB {R{LI-R(3II-R{VI+1. DGO
S(KK1+6)=2.DG$(R(&¥=R(2)+R(3)-R(?)+R(8)—1.D@)
S(KK1+?);R(1}+R(2)+R(3)—R(4>—R(5)—R(5>+R(?)+R(8>+1.DB
S(KK1+8)=2.DB*(RC&)—R(E)—R(4)TR(6)+R(?)—1.DB)
SCKKA+3I=R (1 I-R{2I+R{3I-R{4I+R{5I~R{EI+R(TI-R{3>+1. DB
KK=-18 oL

DO 14 I=1,K5

WRITELSE., 625> 1

KK=KK+13

DO 15 J=1,32

-

JI=J-1-

URITECS, 512) JJ, SLKK+IY, JJ, SCKK+3+T)

WRITEC(S, 513> o <
IF¢KF. EQ. 8> GO TO 781

KK=-3

KK L=~

DO 161 I=1,KF

DO 151 J=1,2

KK=KK+3

KL =KL+

DO 162 L=1,3 -
RCLI=NF (I, KKHL) |
FORKL+HL)=RCLI+RC2I+R{Z+1. D@
FUKKL+2>=R {12 -R(2>+R{3>-1. DA
FOKKL+3)=R¢1LI+RE2I-RE3Z -1, DO

FORKL+4)=R{L3-R(2>-R{3D+1. DO
KK=-8

DO 16 I=1, KF

I1=K5+I ‘
KK=KK+3

WRITEKS, 6252 I1

DO 17 J=1.4

JI=J-1

WRITE(S, 813> JJ, FIKK+J2, JJ, FIKK+4+T0
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-

* . 15 WRITELSE, 513> s PR - .
T4 CONTINUE N - S
~ DO 25 I=1,ML ' : ) :
‘DO 25 J=1, M2
IF{. NOT. ITWF> GO TO 26
RP¢I, J>=2%A0«RP(I, I3
GO TO 25, C Cr S
26 RPCI, I>=A04RPLI, J> ' ' ' o
. 25 CONTINUE . ... Co ' -
WRITELS, 826> -« ' L T
 CALL OUTPUT(RP, Mi,M2>. | : A
v 588 FORMAT(2I2> ' . : o S
558 FORMATS® .43, “THIS I5 A REAL PART APPROXIMATIONT. 2 A
@ FORMAT(® %, 1X. “NO. OF FREQ FOINTS ALONG Wl=-, I2, 2%, ‘ALONG WZ="., 12
ey A
591 FORMAT(’ 7, 1%, “NO. OF SEC-ORDER CASCADES=-.12,2X. “NO. OF FIRST-ORD
*ER CRSCADES=", 12, /3 , - o
EB2 FORMATL® . 1%, “INITIAL WALUES OF PARAMETERS .-, .0
683 FORMATC” 7, 41X, "A0=~, D23. 16. /> . :
264 FORMATC(? “» 1K, “®K{7, 12, “3=7,D23. 46, 3K, "K{’, 12, 7»=",D23. 163
&85 FORMAT(/ 7, 1X, “DESIRED SPECIFICATIONS: -7, /> '
567 FORMATC” 7, 1%, “NO. OF FUNCTION EVALUATIONS=", I8,/
688 FORMATC" . 1K, “IER=", I2, /> . :
£8% FORMAT(SY, “CONVERGENCE NOT OBTRINED IN LIMIT ITERATIONS?.
£1@ FORMAT(SK, CONYERGENCE OBTAINED IN LIMIT ITERAVIONS .
512 FORMAT(SK, “SUM OF THE SQUARED ERRORS BETWEEN DESIRED. AND DESIGNED:
# SPECIFICATIONS=’,Di5. 8, /¢ o T
513 FORMATC® <, 1%, “FINAL VALUES OF THE FARAMETERS: - . /)
£B5 FORMATS S *, S5K, /NUMERATOR COEFS”, 28X, “TENOMINATOR COEFS7, /2
c14 FORMATC” 7,1, /THE SECOND ORDER SECTION IS5 OF THE FORM:=", /2
e15 FORMATC® *» 143, “A(Dd+ACLIHZ2+ALDIT 24T +HACIIHZL+ALSIHZIMTIHASIHZL 2
kT DAk DA GO KT Lk D +AL T IR TLhk 2 T2 AR B Ik TLAHDHZ Dotk 2 ) .
645 FORMAT(S *, 1%, "HEZd, Z2)=——m—mmm——m— s m s o e m e T
#* - e e e e e i e e e et )
£17 EORMATCY *r 443 ‘BB +BCLI*Z2+BLDI T4 2+BIIDHTL+B L4 4ZI4Z2+BISI#ZL
kT DK DA (G T Lok 2+E (7O ZLAKDAZ2+B LB I KL Ak LT 24k2 7 73
621 FORMATC- ~.41%, “THE FIRST ORDER SECTION IS OF THE FORM: -7, /O
G622 FORMAT(Y <, 11K, “ACBI +RCLIHZ2+AL2I*ZL+ACSI+ZL4Z2 D i :
523 FORMATL’ 7, 1%, “H(ZL, 22y¥=————m———=——=——=~ - -
go4 FORMATGY 11K, “BCOX+BULIKZZ+BL2O4ZL+BLIdELwZR7, /) '
. 518 FORMATLY < /oD
< 619QF0RM3T<"f,szx,*Hcf,xi,’>=’,023.16,15x,fs<’,11,f>=*,023.15)
. 625 FORMATC” “, 1%, “CASCADE SECTION NO. =7. 13, /2
626 FORMAT(” <, 14, "DESIGNED CHARACTERISTICS:-"»
STOP ’; .
. END * :
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SUBROUTINE FQNCT(NQﬁhé%ﬁﬁé'

SUBROUTINE THAT CALCULATES THE ERROR FUNCTION WALUE

@ AND THE GRADIENTS D@ . ALS0 IT PRINTS OUT 'THE
.FUNCTION'EUBLURTION‘NUMBER AND ERROF . _— »
THE DIMENSIONS OF THE ARRAYS ARE AS FOLLOWS:— . [
U(KS;5);P(18};?§16)4HFD(KF)JHSD(KS);HFN(KF} ‘ ‘
HSN(KS)»SUNi(E*KFj;SUMQ(B*KF):SUNE(G*KS);SUM4(1B*KSB .
THE DIMENSION OF THE REMAINING ARRAYS ARE SAME AS

. IN THE MAIN PROGRAM THE ARRAY YD CORRESPOMDS TO

- THE ARRAY ER IN THE MARIN PROGRAM. - : ‘

'DIMENSION L OND, DRCND, YECE, 62, P54 162, Uls 50, PL182.
*ucia>,TH<41>,TB<21>,TC<41>,TD<21>,HFD<4>;HSD<4>,
*SUMi{iz);5UM2(12);SUNB(SED{SUN4(4G),HFN(4);HSN(4>;
*TE(41;213,TF(41,21>,TG(41,21),RP(41,21);?Dﬁ41,21)
REAL#S . DR, & ¥F, ¥S» U, P ¥, 'SUML SUMZ, SUMZ. SUMS, SUMA. HFNR, HFNI .
_ ?HFDR:HFDI;RSNRJHSNIJHSDR;HSDIJDREHL,DINHG,Ei;EH,EH;ETi;ETE;Slig
*SI2, 513, 514, AOL, AO2 R ' .
_ LOGICAL+1 ITYF
COMPLEX#1L5 DCMPLX, PH, HFN, HFD, HSN: HSD, FTF .
commouzsmxvs,wF,vo,RPJTR,TB,TC.TD,TE,TF,TG,HO
COMMONAB2-KOUNT, ML, M2, K5.: KF, LP
COMMON/B3IAITYF
KF T=56#KF
KAUNT=KOUNT+L :
IFCKF) 1606, 186,161
181 KFC=-6
DO 1 I=i.KF
KFC=KFC+5
DO 1 J=1,3 *
YELL, IY=K{KFC+J> ’
4 WFCI, J+3)=R{KFC+I+30w42
160 IFCKS)> 1682, 182,163
103 K5C=KFT-18
M=—3 . )
DO 2 I=LKS i '
=M+16 .
KSC=K5C+13 .
DO = J=1.8 .
WS, ID=KKEC+T D
L=K5C+8
DO 4 K=1.18
PCRI=XILHKD
4 O =RLAK Dk
UCT, 152PCSH4P (LB —P LS #F (RO +P (TP 52
UCT, 25=P AP (3 =P 24P (3 +F{3D4P {50 ’
UCT, 3Y=P L ®PEAN =P 2P (TI+R (43 4F (30
UCT, SO=P 2P (1B P S rkP S +F (434 {50
UeT, 45=P CLi#P (183 —P (33 4P (T +F (40482
ST, MELI=UL T, Lhda
WO T, MA2)=UC T, 202+ T, Sl
WS I. MESI=Y (S

-



182

PSCI, MH4>=UCT, 4>4k2+UC T, Skl
YSCL MHSISVUEI +WVLETIHNLBI+(T) .
VST M+SI=VWEAdI+V 2D :
WS{IL M+TISVLeD ¢
WS, M8 {3+ {4

AD=KC¢ND

. Q=9. D@ - f'

185

164
187

-\J

|.'4
@
(1193

1a9

188
111

19

SUMR=6. D&

IFCKFY 184, 164, 165

KK1i=-3 -

DO S5 K=1,KF

KK1=KK1+32

DO 5 L=1,3 ‘ ..
SUMACKKLHL>=8. D8
SUM2C¢KK1+L>=8. D8

IF(KSS 186, 1686, 187

KK1=-3

KK2=-168 :

B0 & K=1,K5

KKL1=KK1+3 -

KK2=KK2+18

DO 7 L=1,3 o
SUMI<KKL+L)>=0. D8

DO & J=1, 18

SUM4CKK2+I>=8. DB

DO 38 I=1,ML

DO 8 J=1, M2
PH=DCMFL{ 1. D8, 8. DS)

IFCKF> 188, 168, 182

DO 3 K=1, KF

HFNR=YF{K, 1)~ TE&I;T) /
HFNI=YF K, 20 TBCI Y +YF K, ID#TARCID
HFN<{K)=DCMPLK CHFNR, HFNI »
HFDR=YF{K, 4>=-TECI, I)

HFDI="F{K, SO*TBCID+YFLK, 6+ TACI S
HFD{K>=DCMPLRXCHFDR, HFDI )
PH=PH4{HFNCK) #AHFD (KD D

IFCKSY 146, 116, 111

DO 16 K=1,KS
HSNR=?S(K,1>-iﬁ_;T:?wTD\J> WELK

=Y5{K
w+TELT, T kk2

234, -

-

SXTELI, IJ2=YSCK, 7a4TECID

HSNI="YS(K, Zo4TBLID+YSK, 404 TRCTI D =YS{K, E34TGCI, J)="PSCK, 80 TFLI. I)
HSDR="YS &K, 90 LYS G, 1104 TD( T > - =5 CK, A3ORTEC L. T3 =YK, 150« TC I

4+ TEX T, J) k2

HSDI"?;\KJLBl*TBkJ)+VS(KJL RTACT=YS(K, L43%TGL I, ID-YS{K, L6 *TF

*{I, I

HSN\K)—DCNPLA\H:NR;H:NI)
HSD{K>=DCMPLX{H5DR, HSD1I >

FH=PH# (HEN{K>"HSD K> >

118 IF<. NOT. ITYF? GO TO 1S

RP{I, J>=5NGL{DREAL {(FH>>
EA=2. *«[A0RP{I, I3 YD1, I
E1=ER#et(LP-13

EH=E1

_/




L1425

11
112
115

235 . . . .o "“:-.,

' EHA=2' #EL4RP (I, I3 | i

PTF=FH

GO TO 125 }
RP(I;J)=(SNGL(CDHBS(PH)))**2

EA=AC*RP (I, J>-YD{I1. IO ) : .
Ed=ER#t{LFP-10 . i Ja—
EH=E14#RP{I, J2 "
PTF=<1. D@, 6. 6D8> °
EHA=EH .

G=Q+E14ER
ETL=EH«TBLJI2

ET2=EH*TRACI> . : )
IFCKFY 112,142, 113" ‘ _,,/’T’J
Kk==3"
DO 11 K=1, KF
KK=KK+2 ’
STI1=DIMAGCPTFA/HFNIK? >
S12=DIMRGIPTFAHFD{K> D
SUML CKK +1 3 =5SUML {KK+1 2 —EH+DREAL (PTF<HFNC k\)
SUMLCKK+25=SUML (KK+2)+ET1#511 '
SUML CKK+32=5UMLKK+32+ETE+5I1
SUN9\KK+l)—SUM2\kk+l\-EH#DREHL\FTF‘HFD»K)
M2 CKK+2)=SUM2KK+2> +ET14512
:UME\KK+J)—SUM’(Kk+s)+ET”*:I'
IFCKSD 8, 8,145
KJI=—8 N -,
KL=-10 ) o _ - .

. L=KFT-16

DO 12 K=1, K35 ’ ' ' IR —N
STL=DREALKFPTFAHSHCKM

512=DIMAG{PTF/HSN{KY >

SIZ=DREALCPTFAHSDKY

SI4=DIMAGCPTFAHSDIKD >

KI=KJI+3

KL=KL+18&

L=bL+12

SUMI{KI+1=5UMS{KI+10-EH+511
SUMSCKI+2>=5UMI(KI+2)+ET1#512 ¢

SUMI CKI+ZD=SUMZCKI+ED+EH®TD (I 311 T
SUMSCKI+40=5UMB(KI+40+ET24%512 | N
SUMZCKI+S2=5UMI CKI+SO+EHTEC I, JO #5141
SUMZCKI+6D=SUMIKI+E8)~EHK TG 1, JH)+512
SUMZ KT +72=5UMZCKI+7 D +EH+#TCI 2511
SUMS CKI+82=SUMS{KI+8) ~EH&TF {I. Jo#31z
SUM KL+ 2= :UN4ukL+l-+EH*kTB\JJ#\U\h,2\$r\L+8>+U\K;;>*k(L+QJ}

TR D UK, AR CLALEI TG, ID#R{L+LD 04514

SUMS CKL+2)=5UM4KL+2 )+EH*\—TB\J)V\U\K;2)«%&L+o;+U\Ka4“# WCL+T 22
RETERCI MUK, SO4RL+18)-TGC I, JI®R{L+20 34514
SUM4(KL+3)=SUM4(KL+3}+EH*(TB(J}*U(K;2)$K(L+S}7TH(I}$(U(K,43*
W CL+T I+ S S0 L+ Y =TF T, Jhk{L+3) »#514

SUMGCKL+4 )= ;UN4\kL+4\+EH*\TB\J'kU\k;-;ksuL+4)+TH\I)*'U\K,4
L +S UKL S St LB D =TFCI, Jr{L+30 04514

SUMS CKL+53=SUMa4 CKL+S0— EH#DFEHL\DCNPLX\RU\R,1)#A\L+l@“~TD\J)H
kA\L+S)W,fTB=J)h\U\h,_)$A\L+3}+Ukk;;)kA\L+4>)))prDkk)\

& .

»

u
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#B(L+52 ), (~TBC )*U(Ka2>$H(L+2>+TH(I)*U(KJ4)*H(L+4)3>HHS§(K)}
SUM&4{KL+7>=5U _(KL+?}—EH*DREHL(DCNPLK((U(K;1}*H(L+8§—TE(I;J)*

' éum4<KL+s>=sQ§:<KL+s>ﬂEH*DREﬁL(DcmpLxc(-ucx,1>*x<L+s>—TE<1;J>m

_*K(L+?)):;(TB(J)*U(K;3)*X(L¥2)+TH(I)*U(K;4)*X(L+3)))/ DK >

12

_ 8
114

4417

SUM4 (KL +8>=2SUMG CKL+8 > ~EH#DREAL {DCMPLM S (UK, 13#K{L+7 ) —Mal I, Jo*
ARCL+8D Y, CTBLIDHUCK, 204K CL+L3+TALI D UK, SH#R{L+42 33 H5D KD
sun4(KL+9>=sum¢xKL+9>-EH$DRERL(DcmpLx<c-u<K,1>*K<L+s>-TE<1,J>*
AR CL4+S3 ), (TBCIIAUCK, DML +L3~TAC I #ULK, SI*R{L+32 22 /HSDIKO D
.SUM4(KL+1G)=SUN4(KL+1G)—EH*DREHL(DCNPLK((U(Kai)*K(L+5)-TC(I)*
*X(L+1B))5TH(I)*(U<K,4)*R(L+1)+U(K,S)*X(L+E))>/HSD(K))
SUMR=SUMR+EHR : ; .

AO0d =—24+LP:*xA0D

AO2=-R01%2. DA

IFCKFY 116, 118, 147

KK=-5

KKL=-3

DO 14 K=1,KF

KKL=KKL+Z
KK=KK#S

- DO 18 L¥=1,3

14

118
113

© DECKKALK ) =R0LASUML CKKL+LKD

DOCKINH DI =A02:%SUMZ KKL LK IR LK I+LHKD

IFCKS) L33, 118, 143 . !
KI=KFT-1§ - ' :
KA=-3

KB=-18

DO 15 K=i, K5

KI=KJ+13
KA=KA+3
KB=KB+18 ;

DO 156 Ki1=1,8 y
DACKI+KA I =ROLASUMS CKA+HKLD

KC=KJ+3 :

DO 15 K2=1, 106

DO KCHK2 2 =R02:+SUMS CKB+K25

DRN>=LP*SUMA )

WRITECS, 800> KOUNT. &

FORMAT(” 7. 2%, “FUNCTION EVALUATION NO. = v, 16, 2%, "ERROR= *, D15, &2

RETURN
END

i
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Program PICSAMP

The prggram "PICSAMP' is used to scan the image line
by line. One can actually scan up to 4097 x 4097 rectangular
érray points in an image. Since the display‘facility can
only display- images of size 256 x ?56 or less, the images
are scanned in such a manner so as to fit into an array 6f
256 x 256: |

Consider an image that is scanned as a rectanéular
array of points as shown in Figure Hl. Figure Hl(a) shows
the rectangular sampling grid. Figure H1l(b) shows the
extreme integer co-ordinate vaiués of the lafgest possible
sampling grid. The input data.fqlthe D/A has to be lgss
than or egual to 12 bits in' length, where one bit is reserved
for the sign. The co-ordinates of the sampling grid in
Figure H1l(a) should fall within that of Figure Hi(b). The

input parame¥ers and subroutines required are as follows:

NSIZE: # of picture elements desired.

NLINES: # of lines to be sampled.

IXSTEP: step size in x directiOn.‘-

IYSTEP: step size in y direction.

AIXSHIFT: starting x co-ordinate.

IYSHIFT: starting Y co-ordinate.

The vaiues for all the above parameﬁers should be chosen
such that all the sampling grid points lie within the area

of Figure H1(b).
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SYINIT: subroutines that-initialize the A/D and 57A_systems.,

PSINIT: subroutine to-position.the CRT beam to the‘initial
starting poin£ of the sampling grid. | |

BEGIN: subroutine that waits for operator response to
start.the image sampling. o

bARUNP: subroutine that enableg the sampling of image pixel
b} pixel along éach horizontal line and storing it
in an array IPIC.

After providing all the parameters, the program sets
uﬁ the A/D énd D/A converter systems and types out the string
of characters "***70 START SAMéLING STRIKE ANY KEY#***'". then
it enters the routine BEGIN and waits for the operator to
strike any key on the console. As soon as a key is struck,
the program returns from routine BEGIN and executes. the rest

of tﬁe program,

Program PICTEST

The program 'PICTEST' is a test routine which éan be
used to continuously scan a desired area of the image that
is.to be sampled. While éhe image is being continuocusly
scanned, the brightness for the CRT spot is adjusted, such
that there is no saturation at the output of the photo-
multipliexr tube or at the output ©f the integrator. Once
this is done, the program 'PICSAMP' can be used to sample
that particular area of the image:

In order to stoé the érogram '"PICTEST', it is required
to set the NOVA-B40 data‘switéhes to a value other than -27

10
LLE-1000338). The description of the input parameters to this
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255 minus the intensity values of. the original
image.
PICROT: Program to rotate the picture.through an angle

o . . . .
of 90”7 in a counter clockwise direction.

Image Display Program

CVIDISPI: A program used for displaying the sampled ;nd
' proceééed image using the CVI Expander.
Inpu£ pgrameters for this progf%m are:
M2: # of columns of the image to be displayed ( 1<M2<256),
Ml: # of rows (1$M1s256);i
IXSHIFT: x co-ordinate of the point from where the display
begins,. |
IYSHIFT: y co-ordinate of the point from where the display
begins. _"
IXSHIFT and IYSHIFT are integer valués énd they should be
subject to the following limits:
0 < IXSHIFT < 256 and IXSHIFT + M2 € 256
0 £ TIYSHIFT € 256 and IYSHIFT + Ml < 256
Subroutines required are:
CVSET: sets up the A/D and D/A systems.

CVWRIT: program to transfer data from computer.

BEGIN: - same as before.
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DINENSION IRHST(E;SiQ);IPIC(SiQ);NRNEiia):INIT(Q}

. ukokdokskotikik PTCSAMP  skeetetekueiokgedk

1@

SUBROUTINE FILES REQUIRED:- SYINIT . PSINIT . BEGIN
» DARUNP

DATA IZ/7

DO 18 I=1,106

NAMECI>=IZ

ACCEPT"# OF PIXELS PER LINE = ", NSIZE
ACCEPT"# OF LINES TO BE SAMPLED = ", NLINE
WRITEC1B, S68) '

FORMAT(” <, 41X, “TYPE IN THE FILE (NAME FOR IMAGE= 7,22
REARD {11, 860>  (NAMECI), I=1, 18>
FORMAT(10A2>

NSIZEL1=NS5IZE -

NSIZE2=2#¢N51ZEL

ACCEPT "STEP SIZE IN X-DIRECTION = ", IKSTEP

ACCEPT "STEP SIZE IN Y-DIRECTION = ", IYSTEF
" ACCEPT "STARTING X-COORDINRTE = ", IXSHIFT

ARCCEPT "STHRTINGl?—CODRDINHTE = IYSHIFT

{8

rl& ’

TYPE"ERROR IN SYINIT: ERROR COLE #

INITCL)=IXSHIFT

INITL2)=IYSHIFT .
IERR=06 o : -
CALL SYINITCIERRY _ ' .
IFCIERR. GT. 8> GO TO_ S8 )
NSIZER=-NSIZEL | T
NSIZEB=-N5IZEZ2 -

00 2 J=2, NSIZE

IRASTCL, J=1)=IKSHIFT+{J-1>*IKSTEP

IRAST (L, NSIZEX=IKSHIFT

IYWAL=IYSHIFT

CALL PSINITCINIT, IERRD

IFCIERR. GT. 8> GO TO 7%

T‘\JPE 1w 1"

TYPE " TO START aHNFLING STRIKE ANt KEY? dokek"

. T‘T‘PE " "

OPEN 1, NAME, LEN=24NSIZE, REC=NLINE -
CALL BEGIN

DO 1 I=1,NLINE

DO 4 K=i1,NS1ZE

IRASTZ, K2=1IYVAL

IYWAL=IYVAL-IYSTEP

IRAST (2, NSIZEX=I""/AL

CALL DHRUNP(IRHSTaIPIC;IERR;NSIZER;NSIZEB,1iBBBiK)
IFCIERR. GT. 8> GO TO 2806

WRITE(LY (IPICKNAY, NR=1, NSIZED

CLOSE 41 -

STOP

", IERR
5TOP

TYPE"ERROR IM PSIMIT: ERROR CODE # ", IERR
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-

STOP
200 TYPE"ERROR IM DARUNP: ERROR CODE # = ", IERR
CLOSE 1 - ) :
STOP
END

; PROGRAM FILE NAME :— SYINIT
.TITLE SYINIT :
. ENT SYINIT. ..
. ZREL—"""
SYINIT: . SYINIT
. - NREL
. SYINIT: SAVE ©
- "LDR @,ARGE.3
5TA 8. IERR
SUB .G, 8
STA 8. BIERR
LDR 8, RDDEV -
. S¥YSTM
. DEBL
IMP . +1
LDA B, DADEY
. SYSTM
. DEBL
IMP . +1 :
LDR B8, ADDEVY
LDA 1, ADCTARD
MOVZL 1,4
MOVOR 1.1 ; SET BIT O
-LDAR 2, BLKA
. SYSTM
. IDEF
JMP ERRL
LDA 6, DADEV
LLDR 1, ADCTDA !

.

MOVZL 1.1
MOVOR 1,1
- LDA 2.BLKB
. BYSTM
. IDEF
JMP ERR1
RTN |
ERRL: STA 2, BIERR
RTH
1IERR: O
BLKA: &
BLKB: 12
ADDEV: 24
DADEV: 23

ADCTAD: . +2
ADCTDA: . +4
DETAD: .BLK 2 ’
DCTDA: .BLK '3
. END



PSINIT:

s

Cu

. PSINIT:

ERRL:

IERR:

ADCHAN:
DACHAN :
ADTRIG:

DRCNT:
IBUFL:
RDDEY :
DADEY :
DRDEBEL :
ADDBL. :

; PROGRAM FILE NAME :— PSINIT

. TITLE P5INIT
. BNTJ PSINIT

. ZREL

. PSINIT

MACRO SETMAP

DA 8,71
LbR 1,72
. 5YsTM
. STMAP
JMP- ERRL
DoB 1,73

. NREL

LDA 8. ARGH. 3
STA 9, IBUFL
LDAR 8, ARGL, 3
STA 8, IERR
sus 6,0

STA 8, RIERR
LDR ©. DACHARN
DOAC B, 23
SETMAP DADEV
LDA @, ADTRIG
DORC 6, 21
LDA 8., DACNT
DOCP 6, 23
SKPDN 23

JMP . -1

LDA 6, DRDBL
DOAC 6, 23
LDA 8, ADDBL
DORC 6,21
LDA 8. ADCHAN
DOR @, 21

RTHN

STR 2, RIERR
RTN

%)

1460606
120443
127162

-1

B

21

23

116443
1936082

. END

SAVE ©

IBUFL

J

[ 3N
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. TITLE DARUNP DACNT: @
. ENT DRRUNP C IBUFL: @
. . ZREL . IBUFZ2: @
DARUNP : . DARUNP . ADDEY: 2
' . MRCRO SEIMAP : DARDEY: 23
LDA 8, "1 ¢ ADDBL: 183882
LDA 72 et ' . END
LSYSTM T
. STMAP .
JMP ERR1L '
DOBC 1. "3
z
. NREL

. DRARUNP : SAVE & . ,
.. LDA 8. ARG, 3 . TITLE BEGIN

STR 8. IBUFL . . ENT BEGIN
LDA. 8., ARGL, = . ZREL-

-  NREL
Eﬁg g’?ggé" : . BEGIN: SAYE ©
- £ N
LDR O, @RRGS, 3 . SHSTH
STA 8. ADCNT - GCHAR
LDA 8, GARGH: 3 JHe .+l
STR B8, DACHT 'RE:D
LDA 8. BARGS, 3 '
5TR @, ADTRIG
SUB 8,8
STA 8, RIERR
. S¥STM
. ODIS
IMP . +L
SETMAP DADEY ‘IBUFL 23
SETMAP ADDEY IBUF2 21
LDB 8, ADTRIG
DOR 8, 21
LDA 8, DACNT
DOCP B, 23
LDR 8, ADCNT
DOCF @, 21
SKPDN 241
MP . -1
LDA 8, ACDBL.
DOA ©. 21
. SWSTM
. OEBL
IMP . +1
RTH
ERRL: S5TA 2, RIERR
RTN .
IERR: g
ACTRIG: ©
ADCNT: 8
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. NSIZE4=NSIZE

-
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DIMENSION IRAST(2, $133, IPICCSL2>, INITC2>

ckckokdokiorke PICTEST  sotckekkuokiok

SUBROUTINE FILES REQUIRED:- SYINIT . PSINIT .
BEGIN , DARRUNP :

ITEST=1860855K
RCCEFPT"# OF PIXKELS PER LINE
ACCEPT"# OF LINES TO BE SAMPLED

", NSIZE
", NLINE-

nu

NSIZE2=2%NSIZEL

ACCEPT "STEP SIZE IN X-DIRECTION = ", IXS5TEP Q\
ACCEPT "STEP SIZE IN Y-DIRECTION = ", IYSTEP
ACCEPT "STARTING X-COORDIMATE = ", IXKSHIFT

ACCEPT "STARTING Y—-COORDINATE = ", IYSHIFT
INITAM=TIRKSHIFT

INITL(2>=IYSHIFT

IERR=0

CALL SYINIT{IERR? ; :
IF(IERRAGT. 8> GO TO S8 ‘ '
NSIZER=-NSIZEL

NSIZEB=—N5IZEZ

D3 2 J=2, NSI:ZE

IRAST (L, J-10=IKSHIFT+{J—13:+ I &K5TEF
IRAST (1, NSIZEX=I®5HIFT

T_‘rrpEn "

TYPE"#«#k TO DTHPT TESTING STRIKE ANY KEY deer!
TYPE™

CALL BEGIN

IYWAL=IYSHIFT

CALL PSINITCINIT. IRRRD

IF(IERR. GT. 8> GD TO ¥S , .
DO 1 I=1.NLINE

PO 4 K=1,NSIZE

IRAST(Z, K>=IYVAL

IYWAL=IYYAL-IY5TEP

IRRSTCZ, HSIZE>=IYVAL

CALL DHRUNP\IRR’T,IPICJIERRaN;I“EH;N:IdEB;liDQ@lK)
IF(IERR. GT. 8> GO TO 208

CAEL QuUT(IVAL>

IFCIVAL. NE. ITEST> S5TOF

CONTINUE .

GO TO 3 ,
TYPE"ERROR IN SYINIT: ERROR CODE #
STOP

TYPE'ERROR IN PSINIT: ERROR CODE #
5TOP

TYFPE"ERROR IMN DARUNF: ERMOR CODE #
S5TOP

ENDE

", TERR

", TERR

", IERR
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; PROGRAM FILE 1~ OUT
.. TITLE OUT ‘

. ENT OuUT
.ZREL © -

oUT: . OUT

" . NREL
.0UT: SAVE ©
y STA @, IVAL
SUB .8, 8
STR. 6, RIVAL _ ,
. SY5TM . e
. RDSH
JMP . +1 : o
S5TR 8, BIVAL
| RTN :

IVARL: © ' .

. END

DIMENSION IWINDCAE334), IR(E4, 2562, NAMEC(SY.
**ﬁ#$**#*m NORMP IC ekekickokkekos -

IMAGE NDRNHLIZRTIUN_'

00000

COMMON/BL/ TWIND
EQUIYALENCE - CIWMIND, Ik
CALL “MEM{ICHNT, IERD
IF{IER. EQ 5> GO TO 3608
TYFE"# OF FREE 1824-WORD BLOCKS= ". ICHT
CALL MAPDF{ICNT, IWIND. 16, IER?
IF<IER. GE. 5> GO TO 3861

WRITEX18, 188> -

188 FORMAT(” *, 41X, “FILE WAME OF IMAGE= -,
. READCL4, 288> (NAMECID, I=1. 5D

268 FORMATISAZD -

o]
)

ACCEPT "# OF COLOUMNS QF IMAGE = ", M2
ACCEFT"# OF ,ROWS OF IMRGE = ",Mi
ACCEPT™INTENSITY FRCTOR = ", FRCT
TYPE"TO START ——=—- TYFE ANY KEY"

CALL BEGIN - 3

OPEN 1, NAME, LEN=2#M2, REC=M1

MLK=ML, 54
IF¢MAK. EQ. 8> GO TO 28
MREM=ML—ML}{#SS .
IF<MREM. GT. 8> GO TO 21 ~
FMREM=64
GO TO 22

24 MLK=MIX+L
GO TO 22

20 Mix=1
MREM=M1

22 KB=-16
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MiR=864 : : ;
DO 22 I=L1, MIX -
St .. KB=KB+15 - ' s
P CALL RENHP\@;KBJLb,IER)
e A . IFCIER: GE. 29> GO T0 3802 :
P - - IFCI. EQ. MAXK> MLA=MREM - .
‘ DO 23 J=L, M1A * -
. 22 READCLY (IXCT, KD, K=1, M2>
: REWIND 1
KB=-18
. S , MiA=54
S ot s - pO 24 I=1,MAX
A _ KB=KB+16&
L e CALL REMAPY{S, KB, 15, 1IER) )
- ' IFCIER. GE. 23> GO TO 3882 ‘ R
S IFCI. EQ. MLX> MLA=MREM .
. .- DO 25 J=i,MiA S '
‘ : DO 25 K=1,M2 . -
$ - 25 IRCT, KI=CCFLOATCINCT, K2 D+8132, 8)/64. B)«FACT
L . DO 24 L=i,MIA
™ St 24 WRITECL) CIXCL, N2, N=i, M2)
' ) . GO TO 308 .
‘ - 3808 TYPE"ERROR IN WMEM ; ERROR # = ", IER
-0 . GO TO 480 ,
- 3991 . TYPE"ERROR IN NRPDF ; ERROR #
© GO TO 486
3062 TYPE'"ERROR IN REMAP ; ERROR #
386 CLOSE L
488 STOP
" END

", IER

1

“, IER. ' -\

DIMENSION IWINDC(LS3843, IN(54, 256>, NRMELS?

1

dekckekcricdcik TNWERTPIC skekoiekeiokbkkii

INYERTING A NORMALIZED IMAGE

00000

COMMON/BL/TWIND

EQUIVALENCE (IWIND, IxD
CALL YMEMCICNT, IERD
IFCIER ER. 5> GO TO 3800 .
TYPE"# OF FREE 1824-WORD BLOCKS= ", ICNT
CALL MAPDFCICNT, IWIND, 16, IERD
IFCIER. GE. 5> GO TO 3601
WRITE(18, 188>

188 FORMAT(® *, 1%, "FILE NAME OF INHGE— 7LD

_ READI11, 288> (NAMEID, I=1, 5>

268 FORMAT(SA2>
ACCEPT "# OF COLOUMNS OF IMAGE
ACCEPT"# OF ROWS OF IMAGE
TYPE"TO START —t— TYPE ANY KEY "

- ‘ CALL BEGIN

OPEN 1, NAME, LEN=2%M2, REC=M1

", M2
", ML

o
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22
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mix—m1zo4 , o : : _
IFCMLX. EQ. @5 GO TO va . . . N
MREM=M1-M1X:®S1 . -
IFCMREM. GT. 8> GO. TO 21

\MREM=6:4

GO TO 22

MLIX=MAX+L |

GO TO 22 ' , -
MEK=1 : . 4
MREM=M1 .

B=—16 .s':-:"ﬁ R

MiA=54

DO 23 I=4,MiX

KB=KB+16

“CALL PEMHP\B;KB;lb;IER)

IFCIER. GE. 23> GO TO 2682

" IFCICER MAX) MiA=MREM._

n
W

DO 23 J=i,MiR
READCCLD kIRkJJK? K“laﬂ9>

REWIND 1 3

==15 _ A

' M1R=G4

)
U

[N}
5

‘38006

aooo0

3061
3802
200
480

DO 24 I=1,MiX .

KB=KB+16 )

CALL REMAP(@. KB, 15, IER>
IFIER. GE. 22> GO TO 2862
IFCI. EQ O MARD MLA=MREM

DO 25 J=1, M1A

DO 25 K=L, M2

IR{J,-K)=255. B—FLOHT(IH(J;K))
DO 24 L=1i, MiR,
WRITECLD \Ik(L;N);N—l;Na)
GO0 TOo 388 -, :
TYPEMERROR IN YMEM ; ERROR # = ", IER
GO TO 400
TYPE"ERROR IN MAPDF ; ERROR # = ", IER
GO0 TO 486 :
TYFPE"ERROR IN REMARP ; ERROR #
CLOSE 1
STOP
END

", IER

DIMENSION TWIND{LEZ84)>, IVIREG6, 643, IACZ2, 2560, NRNEkS)
eskedokokspokdokdedctekeksckdek PTCROT  skebodedokomuokaboodetodokbtifokibk
PROGRAM TO ROTATE THE IMHGE

COMMON<BL/TWIND

EQUIYALENCEL IWIND. IV

cALL VMEMJIICNT, IER?

IFCIER. EQ. 5S> GO TO 10866

TYPE"# OF FREE 1024-WORD BLOCKS= ", ICNT

f
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W
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ICNT‘ICNT—l : '
CRLL NHPDF(ICNT:ININDJio;IER)
IFCIER. GE. S> GO TO 1061

TYPE"SIZE OF IMAGE TO BE ROTATED ( > 84K64

ACCEPT"# OF COLOUMNS { POWER OF 2>
RCCEPT"# OF RONS { POWER OF 2>
WRITEL18, 188>

FORMATC” - 7, 4X, “FILE HAME OF IMRGE= °,
READ<11, 286> (NAMECIZ, I=1, 52 .
FORMAT(SAZ) o .

OPEN 1., NAME, LEN=2#%M2, REC=M1 : )

", M2
.Ml

N]

>

M21=M2+1
IR1=64

IR2=32

ITI=M1i/IR1

IT2=M2/1IR2

IB=15

KK=-1B

DO 1 K=1, IT1"

KK=KK+IB

CALL REMAP(B, KK, IB. IER>
IFCIER. GE. 22> GO TO 1862

DO 4 I=1, IRL -
RERDCLY <IVCM24-F, I, J=1, M2>
REWIND 1

KKi=-IR2

DO 2 K=1,IT2

KK4=KK1+IR2 '70

KK2=-IR1 ~

KK=-1B

DO 3 L=1, IT4
'KK=KK+1B
'KK2=KK2+IR1

CALL REMAP(B, KK, IB, TER>
IF<IER. GE. 233 GO TO 1882 :

DO 3 I=1, IR2 ///
DO I J=1., IR |

IACT, KK2+ )= 1Y (KKL+1, J> %
DO 2 IM=1, IR2

WRITECA) CIACIM, TK>, IK=1, ML

CLOSE 1

- 5TOP

18806

TYPE"ERRQR IN VYMEM ; ERROR # = ", IER

. CLOSE 1

. STOP

19@f

16092

TYPE"ERROR IN MAPDF ; ERROR # = ", IER
CLOSE 1 -

5TOP -
TYPE"ERROR IN REMAP ; ERROR # = ", IER
CLOSE 1 - -

STOP

END

3\

#

M,
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DIMEN;IUN IWYZ2(3 4896);IFILE(S)
shesperpksiskc iRk C?DI;PI ******w****mm*m

PROGRHN TO WRITE PICTURE DHTH ON CYICLINE BY LINED

-

SUBROUTINES REQUIPED ~ CVSET . CWMWRIT.. BEGIN

O0O000000

ACCEPT"SAMPLLING RATE= ", ISAMP1
ISAMP=ISAMP1 : '
IERR=08
CALL CVYSET(8., 8, IERR>
IF{IERR. GT. 8> GO 7O 158 N
568 " ACCEPT"# OF COLOUMNS TO BE DISPLARYED= ", M2
. ACCEPT"# OF ROWZ TO BE DISPLAYED= ", Mi .
IWZ=8 T
245 ACCEPT"STARTING ¥ -_CO-0ORDINATE= ", IXSHIFT
ACCEPT"STARTING ¥ - CO—ORDINHTE— ", IYSHIFT
NSL=(M1-15>+1 S
NREM={NSL*15)—ML
IF{NREM. EQ. 16> NSL=N5L- l
CIFCNREM. EQ. 16> NREM=06
IFCIWZ, ER 1> GO TO 466 T ,
ACCEPT"WISH TO CLEHR\B »OR DISPLAY{1> ON THE i
#*  SCREEN?=-2", ID : '
IFC(ID EQ. 8> GO TO 368
406 WRITE{16, 18683 '
1688 FORMATC” <, "INPUT FILE NRAME:-——", >
' READ{1L, 208X (IFILECID, I=1, 52
208 FORMAT (DSR2
¢ ID=1
OPEN 41, IFILE, LEN=2+M2, REC=M1
269 CONTINUE

NST=16 \
TYPE" " _

TYPE"TO START DISPLAYING TYPE ANY CHARACTER"
TIT]PE n "

CALL BEGIN
DO 3@ Ki=1, NSL

IF (KL EQ, N3L)> NST=1&6-NREM

DO 25 K2=1, N5T ‘
TCON=CIYSHIFT+KL~1 4l S+ (K21 Dk 2+ <1 41 083K
J2=(K2-1 D2

MCID. EQ. 8> GO TO 326

READ 1> \Ixu:£3,k4f§é> KZ=1, M2

GO TO 338
228 DO 248 Ka=1, M2
348 IXYZ(3, Ke+J20=0
2=8 CONTINUE

0O 25 J=1.M2

J1=J2+7J

IXYZ(2, JLX=ICON
TRYZCOL, JL=TKEHIFT+I-1+ (1 42600K >
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CYHRIT

. CYHRIT:

'HCCEPT"NISH TO START FROM THE BEGININGﬁ YESLL

IRYZ(Z, Jio= IA?—.E:JLJ+\lE$B@@K)
. CONTINUE -
”NCOUNT*-;«MO*HgT

IERR=6 ~ '
CALL CYWWRITCIRYZ, ISAMP, MCOUNT, IERRY

"IF{IERR. GT. 8> GO TO 158

CONTINUE ‘ '

TYPE"WISH TO DI:PLH? ANOTHER IMAGE HAVING"
TYPE"THE SAME NUMBER OF COLOUMHS AND ROWS"
ACCEPT"FROM THE SAME STARTING FOINT? ?ES(i);NOkG‘
———=2", TWI '

IFCID. EQ. 82 GO TO 3418

CLOSE 1

IFCIWI. NE. 8> GO TO 466

ACCEPT"ERASE LHST DI:PLH?ED IMAGE? ?E:kl):NOk@)

m——— >, IZR

IFCIZR. EQ. 4> ID=B _

IFCIZR. EQ 1> GO TO 386

TYPE"WISH TO CHANGE X AND ¥ STARTING CO-ORDIMRTES"
TYPE"AND DISPLAY SAME IMAGE OR ANDTHER IMAGE oF ™
HCCEPT“ HNE # OF ULOUNN; AND ROWS? YESC(L), NOLB2

IF\IN“ ECL: 1> GO TO 345

by

NOLB> =37, TW2
IF(IW2 EQ. 1> GO TO S40

STOP :
TYPE"ERROR IM CWSET: CODE=". 1IERR
CLOSE 1. .
STOP
TYPE"ERROR IM CYWRIT: CDDE—";IERR
CLOSE 1
STOP o
END :

. TITL CWHWRIT . . . TITL CW3ET
. ENT CWWRIT : “ _ENT CWSET

. ZREL . ZREL

CYWRIT CYSET: . CVSET

. NREL . NREL

SAVE © _CYSET: SAVE 0

LDR 8. ARGH, = LDA 8. ADCHAN
STAO, IXYZ LDA 1, @ARGH, =
LDA B, @ARGL, 3 ADDZ 1.0
STA 8. ISAMP STA 8. ADCHAN
LDA 8, BARGZ, 3 : LDA &, DACHAN
STR @, MCOUNT LDR 1. @ARGL, 3
LDA 8. ARGS, 3 ACDZ 1, 8
STA 8, IERR STA 9, DACHAN
LDA &, DADEY LDA 8. ARG, 3
LDA 1, INYS © STA 8, IERR
. S¥5TM SUB 8,8



ERRL:

4
RDEHAN:
ADTRIG:
DACHAN -

IERR:

BLKNUM:

BLKL:
RLDEY :
DADEY :

ADCTAD:
ADCTDA:

DCTAD:
DCTDH:

"STA 8, @IERR

LDA 8. ADDEY
. SYSTM

. DEBL

JMP .+t :
LDA &, DADEY
. SYSTH

. DEBL

JMP .+

LDA 6., ADCHAN
DORC 8, 24

' LDA @, ADTRIG
DOR 8, 21

\.DA 8. DRCHAN

DORC @, 23,

LDA 9. ADDEWV
DA 1., ADCTAD
MOVZL 1,14
MOVOR 1.1
LDR 2, BLKL
. SYSTM

. IDEF

JMP ERRL
LDR 8. DARDEY
LDA 1., ADCTDA
MOYZEL L, 1
MOVOR 1,1 e
LDA 2., BLKNUM
. 5YSTH™

. IDEF

5TR 2, RIERR
RTH

57TA 2, BIERR
RTH

14660680
122688
135061 |

(5]

15

5

24

23

. +2

.+

.BLK 3
.BLK 3

. END

253

ERR:

IR
ISAMP :
MCOUNT :
IERR:
ADDEY :
DADEY :
RTEMP:
ADCOUNT :
TEMP:

. 5TMAP
JIMP ERR
DOB 1, 23

LDA 8, ADDEV

LDA 1, ATEMP
. 5Y5TM

. STMAF

JMP ERR

DOB 1.21
LDA 8, MCOUNT
pocC 9. 23
LDA @, RDCOUNT
DOCC 8. 21
LDA 8, ISAMP
DOAFP 8, 23
DOAP 9., 21
SKPDN 23

IMP . -1

RTH

STA 2, @IERR
RTN S
8

8

B .
B -

2: (
2

+ U P

b
2

.BLK 2
.END -’
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sy

TN

oy

Ly

DIMENZION THIND SRz, Ddldd, el FELE
wibskokboh Rl POESTOLE  hkbkanssukiikig iR ook

EETIMATION OF THE RWERAGE FOWER SFECTRLUM QF

A GIWEM IMAGE OWER A GIVEN ZEGMENT SIZE
SEGMEMTS CAM BE CWERLAFED AWD MINDOWED

IF DESIREL . THE SIZE OF THE ZSEGMENMT 15 .
Mi= Skt . M IS TO BE LESS OR EGUARL TO & THE
IMFUT IMAGE SIZE 15 = M2 ¥ kil . M2 ARWD MY

 ARE TO BE POWERS 0OF o2 AND SHOULL BE LESS OR
EGUAL TO 256 . THE ESTIMATED FOMER SFECTRUM

[E
3]]

WRITTEM IMTC A MNEM FILE

» .

DIMEMSTION $OSd, Sdh, I7Y 06t ZSS 0, HAMEC S, WD EE, &40
CIGMELER L CMPLM

CIOPMMOMS LS T THD

COMMON - BLEL S

EGUIWARLENCE © TRIIND. D 7S Wb

EQUIWMALENCE i I% . .
CHRLL WMEMOIONT. IERS S <
IFCIER, EQ-Sh 50 TO Lo

TYRE"S OF FREE L19Z4-MORD BLOCKE = V. IOMT

CALL MRFDEC TONT. THIND. 4, S IERD

IFCIER, GE S5 G0 TO L&9ld

ACCEFTYFFT SIZE = Dkl G M= 0N

ML =Sk .

MRLEML D :

SRR SRR YR -

TYRFENSITE OF THE IMFUT DRETA © o OF FFT ZIZE » "
ACCERT"® OF COLOUMMNS J PORER OF 25 S S
ACCERT"# OF RS FOWER OF &0 S AER

FIHC=4 '

MIR=ME AT

MAA=ML HL

]
!

IF THE [n © ¢ OF MESF D WALUE OF THE IMAGE 15 7O BE
REMOVED THEN SET MDD EQJAL 7O 1 AND REAL IW THE
[ 2 WHLUE

TARFEN M

X
NTRET YES L, N ===, THMD
ASEY WESO Loy HOg) 5" pd
CHEMT wALLE= v, Doy

SCCERT'ORIGIN OF F.OZ
ACCERT"REMIME L © &

T
r~
1
T a

ACCERT"OWEELAR THE SESMEMTET YES Ll fadigd —————= e Tl
SOCEETYNINGON THE SEGMENTZY YEIS(LL, HLgy ——————— T T
- c

m-{m

= I
Mo~

TFOMOG, ERL L0 RCCERT D
TFCTOL, ¥R G0 30 7O I
BINC=Z2

[
i



00

M0

L

255

T Toed TWRE naasue

1M HORT
1t YERT

TYFE"# OF
TWPEYH OF SEGMEMNTS
TYFE "<a150"
EKRL=12
D2 List, =
KEL =} EL+d
CHLL REMAF D& REL, &, IERD
- IF(IER. GE. 230 G0 TO 100z
DO oS K=t HAL
L = L=1, HY
2 PSCK.LI=G. 8
MRITE 18, 186
186 FORMATY "~ <, 3.
READCLL, ZB& D

208 FORMAT(SHZ
COFEN L, NAME. LEMN=2+MZ, FET=ML
IFCIMWD. B0 8 GO T
BMRITE LGS, L84

164 FORMAT " I, FILE
READ 1L, 285
OFEN 3.

SKBRI=ZG

SEGHMEMTE LIRELTY

DIRELT Ilm=

CIFUT
CHAMECT

DHTA FILE MNARME=

T=t, S0

-

SE

T MHAME
CHAMECT B

NAME. LEN=3«+ML,

OF WIdNDDW=
I=1.%0
REC=MNL *

READING IM Z0-WINDOW WRLUES IF InD=1
il 41 LE=1. 2

KEZ=KEZ+4

CALL REMAF (@ KEZ. 4. IER:
IFCIER. GE. 23 G0 TO L1@mz
O 11 KA=. NAL
FERDCI Y DAL KT
CLOZE Z
202 URITEC LD,
A, FORMATC S

11 o=l MLD
ALl : :
4 EZ*Z: ‘FILE MAME FORE JOTRUT=
FERL IM FILE MHAME TO ZTORE THE ESTIMAT
ERECTRUM WHLLUES | .

T

RERLY L1, 266
SUM=5. G
IFC MO, B
CALL MAFDF L,
IFCIER, GE. 55
MIT =1L
MHIT=5
Dol
el

KHNAMEC TN I=4. 5

EQ A SUmM=DaChy
IERD
T W = TE

=1, PML§
=17 W4T

Io=

4

"L MEH
Vo MLA

I}

ab/ﬁauER

LI DU
REACING TMEGE ORTH OF SLOCH SITE ML 0 M
-~
ZORERDIAY CINOHITET, R mEl R
IFCI. EG l.;E.IUL.Eu.uA GOOToCRED
KB -
1
k]



=l

14 IZ3=d, MERL

WE=p B+

ES=kS+NL

CHLL REMARCE, HKE. <+ IZR
IFCIER. GEe 25% GO 70 4

e o )
1
II

l:i h

Lk

DO 14 K=t NA2 '
: S D A8 L=iony . ‘ :
| L L4 TV KESLISTMONFL R LD :

i 223 KB=-¢ ,
| K S==~H1 S
! C :
o C STORE FART OF INFUT DATR FOR GYERLAFPING THE
| E DATA FOR NERT ESTIMATICN.
' .
! DO 3 Ti=1. MIfL
| KE=HE -+ _
: KI=KIHHL _
CALL FEMAFCE. HE. 4, IERD
IFCIER. GE. 280 GO TO L1363
D 3 R=l. N
DO 3 L=l Nt
T OLMOK. LD=DeR KEFLD
_ KB=@
| : DO 2 JE=1. M2A
| _ MRITES LG, 162> I, ] '
£ 192 FORMATO T i, COOHFUTING FOWER SRECTRUM OF
% SEGMENT = ¢, 1207, 7. 150 .
CALL FEMAF (G, K2, 4, TERD ST
IFCIER. GE 2F) GO TO i@ms o ™
TFOIMD. ERL 4 GO T 223 -
C o . :
C CEUBTRACTING THE 0. 0 WALUE FROM THE UATA
[ : ’
s M
. o T : e
:,a,L|—=nn
SHIFL G,
()
C SHIFTING THE CFIGIN OF THE POMER SFECTRUM
C TO THE CENMTRE BY MULTIFLYING THE IWFUT
‘ C CATA BY -1
o

Do S K=, ML
ICA=T10H® =10
TCE=-1

1) in
1.1 M

I




Nnonon

IDEWEY

000

IFCIER, GE S G0 TO 1@l
IFCIMD, B By, GO TO 263
KESZ=—NAL -
KBZ=20
MULTIFLYING THE LATH &Y THE WINDOW YALUES
DO 1T LI=1. 2
KES=NSS+NAL
KE2=kBZo+4 :
CRLL REMAF (@, KBZ, ¢, IER
IFCIER.\GE. 2% GO TO 108z
DO L2 KE=1. NFL
DD 12 KUu=1. Nl .
12 HEEHKE, Kb =M OSSR RE, KL bl KE, KD
COMPUTING THE THO — DIMENSIGHAL FFT
204 CALL FETPZM, e Na o ~4) - Mi. ML
KEl=12 '
KSi=~MAL .
SUMMING THE FOMER SFECTRUM OF SEGMENTS
OO 4 Li=1, 2
KT L=k St+HAL
KB =k B+
CALL REMAPCO. KEL. 4. IER)
IFZIER. GE. 223 GO TO 1062
DO 4 k=1, NAL -
Dn 4 L= 1L ~
WN=CABS N KSR, L
4 TR LD =PSB Lk R S SN
CALL MAFDF L. 1IER
IFCIER. GE. S5 GO TO 198
2 KE=KE+K INC
IFCIOL, E6L &3 GO TO 1
N T=MAL
MIT=MAL
1 COMNTINUE,
MIZ=MZRRMLA
CAHLL MAPDFYZ. IERD
IF<1ER. GE. S» GO TO 1Gal
QFEN 2. HAME. LEM=3whl, REC=MNL
KEl=12
WRITECLE. 16T
163 FORMAT A, © 7. 44, "COMPUTING AYERAGE FOWER
# SPECTRUM< . -
OO & Li=t, T
KEL =k EL+3
CHLL REMAEFID. FEL. 4. ISR
IFCIER. GE. 230 G0 T0 102
THE ARVERAGE FOHER SFECTRISM

257

CCOMPUTING




DOV K==L HAL -
Lo 7 oL=t. N1 - -t
T PSR Ly=RPEOk. Lo Mo
PO S Kd=1. HAL Y
& WRITECZ) CFPSCRL, K, Ka=L1, Nl
CLOSE 2 -
CLOSE 4
STOF
1008 TYPE'ERRCOR IM WMEM : ERRGR & = ",
G TO Ses . -
1@81 TYFE'ERROR IN MAFDF ; ERROR #

Vo To san - )
10@2 TYPE"ERRCR IN REMAF  EFROR § =

CLOZE =

-—-SE CLOsE 1

STOR
END
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RO

\

TLIMENSTOM TMIMDONCEESE0, TTOIE, b, IV (38, &40, HL G4, 82

ki DEFE T stk

FILTERING QETH ﬁSIHG THE OWER~LAF SAVYE METHID OF FFTT
SUBRCLITINE FECUIRED: — TOFFT | |
THE INPUT IMAGE SIZE = ] o 2wl . AND M 15 TO BE

LESS OR EGUAL TC & THE FFT ARRAY SIZE 15 EQUAL TG
Swal 3 EweN L, AMD N IS TO BE LESS OR EGUAL TO B

. LET Mi=2ZwwM . THEM THE BLOCK 3IZE GF IMAGE THEY IS

FILTERED AT A TIME 15 = ML ¥ %Ml | THE BLOCKS RRE-
OWERLAFPFED . THE FILTERED IMAGE 15 WRITTEWH EACE
TO THE CORIGINAL  IMAGE FILE

DIMEMSION HAMECSH, Modd, 30, ILOEE, B3ed, IE3E, 240
DIMEMSION IWL10EZ. 22, ITLCZE 220 :

COMPLE: R, .

COPMMOMNA W ITHDORE T T HDCH _ }
COMMONSBLE SN ‘ ) . ;

EQUIVALENCEC IMINDOM, IT, IY, «is
EGUIVALENCE W, Tha TED

CALL “WMEM<ICNT. IERD
IFCIER. EQL 50 GO T 1006 .
TYFE"# OF FREE BLOGOES OF 18Z4-MORDS= ", ICHT
CRLL MAPDFLICHT. IWMINDOMW, 2. IER:

IERL1=1 '
IFYIER. GT. S GO TO 1ol
WMRITECLS, 5@n . ,
FORMAT - "<, 13, “FILE NAME OF BLURCSDEBLUR L F. = 7. Zh
REAGCLL. 20 (HAMEL I D, I=L. B0

FORMAT ¢ SAZD : _ e
ACCEFT"SIZE OF T. F=S1ZE OF Fry=zwwl H= "o H

M=k} ’ .

GPEN 1. MAME. LEM=E:«ML, FEC=ML

GO 2@ 1=1. ML

REAL LS ¢WaI, Jo, T=1. ML

CLOSE 1 '

CALL MAPDF .4, IERD

1IERt=2

IFCIER. GE S» G0 7O 1&dl ) .
We=-3a
1IERZ=2

LD 25 KA=L. =

BB = ER—L

THELL REMAEYCOL-EER, &, IR
IFCIER, GE. 2% G0 7o 1oEE
R e

Lo 25 EE=1. S

KEA=KS+HE

L0 25 EC=1, ML

\

-

VERY PooR ¢oPy |



000

nonao

I:'

260

MAKC, KED=KOKEA, RO
URITE‘i@:iﬂif :
FORMATY . <o Lk, "FILE MAME OF IMAGE= . =3
RESD AL, ZH0n CHAMECI D, I=3, S0
TYFE'"SIZE OF IMAGE" . . :
ACCERT"# OF COLOUMMI=ROMS=ZwHslt M= "M
HO=2u:kM
QOFEN 2. NAME, LEM=2#NL, REC=NC
RO =L SRME ML ' *
M2=Mi = )
MTH=MZ:=NC
HT=NCL 2 .
Do 1 I=1. HNCL
IREC="I~1lo#MEZ+d
CALL FSEEKCZ. IRECH

READIMNG QLT AM IMAGE BLOCK OF SIZE NU

Lo 7 oIl=lmE

READCZY <100Id, T2, I3=1, N0y -
CALL MARFDF L. IER:

IERL=5 -
IFYIER. GE. S GO TO 129l
MIN=-PL

FEL=14

K¥els)

==‘I='

.
-

DO 466 Il=i. HT
FEL=KEL+2

MIN=MIHSML

CALL REMAF(Q, KEL. 2. IER
1ERZ =% ,
IFCIER. GE. 250 G0 TO 1803 -
DO o4@n Iv=1. ME

Dol @8 Thl=1. bt

TTV I, I =T00 I MIN+EIWD
1J=15

IK=24

FILTERING GWERLSFFED IMAGE BLOCKE OF
SITE EQUAL T ML 0 ZeML

Lo odem =10 MT

IBLI=C J~10#a+1

IELZ=IE11+1

MRITE( LG, 5550 1. IBLL

FORMRTS - 7. Lk TFROCE
1
E

I, IBLZ
SZING BLOCEE Ll
B O N e i

CHLL REMRFC f1 1J.2Z, IERS
1ERE=1

IFCIER. GE. 230 GO 7O 1983
IFGT BG4 GO 7O T

IFe T Efn L Gl T Zd

GO 70 Zoo

Lo 2 Kl=d, Mo
L 2 EE=1.

M2



000

N0

-
-9

Betels

4 HOMEHRL, MEFE D=
WEL. ME+KE |
IF{I. NE.

318

MO K
IF: 3. Eo.
DO 9 KL=t

l—\bi
1o G

Mz

DO, 4 HE=t, ME
MOMEHKL K2 =CMPLE (FLOR

i DRI

LE0-TO 16
0Q 3 Ki=1, M2
Dy 3 k2=l M2

W ME AR, KZJ-CNFLF(G
IO OMEHKL MERRE D

] -.l -.' \..

A GO

HEAL MEHRZ 0
IFCI. ERL LS
CALL PENHF(U-IR-_-LERT

'\—.

IER2=C
IFCIER.

GE.

2 GO

P:‘l
i

DO S k=1, M

R I L“-l Mo

‘U o

To- ZAi

_Tu'zza'

TO @ .

GO0 LEEE

“'hl,KEﬁ‘ENFLE(B.:FL@HT(

M FE S0
GO TO L

=

IERZ=Z

S OMIKL MEEKE

I -I

IFCIER.-GE. 250
DO & Ra=d, M2
DG & kE=d1. Mz

HOE L, K2 =CMPL
“'}l M’+FT-—FHFL CFLOET S IR L, koo s FLOATC I K L,

e

TIH CALL FEMAFCE. Ik, 2, 1IERD

GO TO 1oz

HFL”’ LORT

TRITL ORI, e e FLOGATC LT (KL,

CFLOAT (ITORLKE 0
rNFL%iFLDHT\ITkhl.h;,

e FLOAT 1T

e I o I ORI

2CMPLISCFLOAT I R L KE02 0l FLOAT I (R

#

SOFLGAT I IR L, KEL b FLOAT IWOKL, K20

COMPLUTE FFT OF OWERLAFFELD IMAGE BLUCKS

CRLL FFTFEZNG. 6. &
CHRLL MAFDE 4. IERD

1ER1=3
1F ¢ 1ER.
KS=—F

GE, O

S

GO TO 1ol

e = s ML ML

FREGUERCY DOMAIN MULTIFLICATION OF THE FFT OF
IMAGE WITH THE TrRENSFER

Do 11 HA=

KEK = CRA—L

CALL REMAFCGLEER. 2. 1ERD
- TERZ=4

TEYIRER,
} =HS+3

GE

.z

S

Do T LSmT

FUMCTION JF FILTER

iIT(KiJKEDDJFLUHT{IT(.

P



e et e Ao ———

I 0

AL ROMERE, KOS ONOETRL HO L KD, KB 14038, |

COMPUTE THE IMVERZE FFT OF Th:
FFT OF INAGE BLOCK AND TRANSFER FUNCT1GH

C ’ _. . 26_2 i

rmHUUL: iJF

- CHLL FFTPTfﬁ-SJSJGpi.JHiJﬂiﬁ ‘

"CALL MAPDF YL, IER

IERL=4 _ R
IFCIER. GE. S» GO T lﬁﬂl‘

CALL REMARCR. IJ. 20 1ER L .

1ERZ=5 ‘ o ' .
IFCIER. GE. 290 GO TO 1063

DI A2 KR=1.MZ : -
[0 12 KEE=1.ML y ' .
IFCKE. LE. M2 GO 1
ITLCKA HE-MZ =1 T KA.
1

-
]

s

it

= ! .

7

m -

TECKRA: KB»=IT KA. KB
CALL REMAFRCE, IE. 2.
1ERZ=5 ‘
IFCLER. GE, 220 GO0 TO 100z
Loo1d pH=1. M :
DO 14 KE=1, M2
IYLCEA KB =T KA M2+EED
DO 462 EA=1. M2
v 302 KE=1. bl
IV EA KBEM=TECKA.
CALL REMAFES 1]
1ERZ=T
IFCIER. GE. 2%y G0 TO 1962

i 4% EH=1. MZ :

D AT RE=1. Mo

ITCERAS EBY=FERL RO MI+E AL M i 0
ITYEA MZ+EE I =RIMAGCSAMEFEA ME+RE 0
1JI=1J+% '
IK=IK+2
MIM==-rM1

rEL=14

v gt JTU=1. WNT

ERL.

L
.:. TEF

gy

.

KEL=KEL+2

C MIM=MIN+ML

ET-E )

}....
1y

R

CALL REMAFCE, KEL. 2. 1ER)
IERZ=5 ‘

15/359.65.393‘55 TO LeEd -
DA a6 TwsL, e

L el Th=d, Ml
IECTW, MIN+AIMA =TT I, TG
CRLL FTEEKCZ. Im oo

WRITING BRCE THE FILTZFRED IMPbE ollce INTD
THE SRME IMRGE FILE -

17

}i‘ll'l 1= it= T . .
WRITEZD> CIDId, 120, 12=1, NCo
CTHTINZE

[
!_.
—r

- ———




.

TETOR

1@6a6 TYFE"ERFOR EN WMEM ——HERROR .=, 1ER

. sTQR v
1661 TYFE"ERFOE LN MPQNP- kE?RD
STOP

-1@R= TYFETERROR IN REHHF:—}ERHDR_HT= “;;ER

STOP
_END

:ﬂlk:k:ﬁ‘-k?:z‘c:_{-iﬂ::k:k;_k ‘TDFF—'T JYTTETEY TS IRV PRTRRT PR TEPYRT Iy L 1)

F BHT= " LERL ",

ERROR #

"ERROE. #

SUBROUTINE FETFZ COMPUTES ThE TND—DlhEHSIDNHL FFT-

c

c

C '.4'.“ R
cC

C OF A GIYEMN TWO-DIMEWZIONAL ARRAY OF
z - :

DIMENSION KoSd, oai ©

SIZE METH MY .

DOUBLE FRECISICH AR BE. CC L EE L RRGe OG0S, BEIN.

CONPLEX CMPLM, bl T
CEMPMON EL R
DATH G005

LEd=ohekl _
< LPI=ZwslE B -
DO 9 LL=T P
nu'l Lo=1,m:
'-1!..- i

Pt ’CL—CL.LI\‘

IF LO-MZ+LTn 2. 2, 3

= DO 3 LM=1.LPT - e
FREG=¢LM=1 7 +SCL
FA=0COS ARG
EE=S140SINGSrmG
ARL=SHNGL AR
BEA=CHNGLYEERD @
L= rNFL”'RHL EE:
OO 3 LI=Uan, He. LIn
FL=U 1L L
JE=JASLMS :

g4 WOLL. Jou=bleidLi, JL1o .
GooTO L

T ODOOS M=t LM
ARG=LM=L10 &S00
Y ER=BC0S  /EG
FE=ST40E 1M RRGH
RREL=ENHGLL AR
:E1=ﬂhuLi::“

W=CMEL a8, BEL L
DT LI=LINNZL Ll
AR IS IR SRR
JLmlialm

- i

e S ~
b NZ=ZeklZ '



o

[l o

b

]

10 =)

B

DO T OIs=d. MNP ‘ '

- 264.

Tae L, T3 =4 LLNIZ - - -
MeLL, TAn=koLL, TL-+xr;L.J_; '

SOl Je=lkT
COMTIMUE
NI ST
MHPIL=NE-1

J=2

IFCT. GE. I0 G0 70 5 : _ : '
T=WoLL. T3 | . > —

WOLL, Jo=all, I _ '

Wwell, In=T ’ -

K=pdi o : : ,

IFCK. GE. J» GO.TO 7 -

J=I-K

|36 P
Go T
I=J+E
COMTINUE .

Lo A3 Li=1, NZ

DO 11 L=, Wi

LIS 2k ML =L 00

LIi=ZwL e

SCL=C0- LIk

IFCLO=MA+LAY 13 12, 13

OO otd LM=1.LF1

ARG=C M= wElL

AR=DCDE TGRS

EE=ST#DEIHN RFG

RASASHIGL AR )

EEL=SHGL (BE D ' < ~
W=CMPLA S AFAL, BEL .
DO 24 LI=slIs, M. LI

TA=LT-LTH-+L .

JZ= T4+

e 32, LL =l T, LL

GO To 1 : -

DO AT LM=1. Lp - :
ARGz M= 24300

AR=DOLS (ARG

EE=SI4DIIMNIRRG

AAL=SHNELCAAT 0

EEL=SHGL (EE ) ‘ s

11

SM=CMPLEAAL. BELD
D A% LI=LIM.ML.LIR

TA=LI-L1x+LH
IT= T
Tawiv=TL. WL = To, L

FER T
Cha p,_:,: wan



4=
7

18

*

TT.GE. I G TOOLE
T T L

S T LU= T, LU

WOl L =T '

R e B

IFVE. GE, I G0 TO A7
I=J-K

K=K 2

GO TO 1% -
J=J+k —t
COMTIMUE °

RETURM

-'EHD -

—_—— .
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GIMEMSION S0 38, A3

S A, ZOAD. 100 RNAE e Dha 1IN IeSES D
B A L 1 P Tt S = gy — ST T TRREPLIEE ST LI C S LT L L
- ' 4

WO DIMEMSIOHNAL RECURSIVE FORMWARD FILTERING
Y A RECIRSIVE FILTER MHITH 1S REALLIZELD 1M

DIRECT FORM. THE SIZE OF THE LIWNFUT LETH-
S oML s MEZ oL ML OAMD MR ARE TO o POWERS OF
AME: SHCULD 2E G, E. SS9 AND L. E. 236 .

2 1=t o 110 o]
L
im

-

DIMEMSTON WHCE, 2643, W80 ad, 2555
INTEGER ME

COMMORSEL - THIHD

ECUITVALENCE o IWIND. B .
FALL “WMEMCICHT. IER:
IFCIER EQ S0 G TO 1o
TYRFE"S 0OF FREE 18Z24-WORD SLOCRS= Y. JONT
CRLL MARDFEC TONT. THIMD. LE. %ﬁr )
IFCIER. GE. S GO TGO L1ool :

TYRE "SITE OF IMPUT IfALE"

ACCERT # 0OF COLOUMHE = ", ML

ACCERT & bE ROME = ", ML

WRITE L, TOE ) . ruy
FORMATY 7. AN, “FILE MAME OF IMAGE=s <. 25
FESDLL, D050 CHREMEC T I=L, 40

5]

-~

.
+
4

FEAD IMN A MULTIPLICATICN FALTOR AFD

IF THE FILTERED GUTFUT IZ T3 AMFCLIFIED
EY A CERTRIM FROTOR . IF NOT RESD IMN
AREC = L. : -

ACCEFT"MULTIFLICATION FRCTOR= ". AFC

CFEM 2. HAME. LEN=Z%MZ, REC=RL

FORMAT CS&Z

FEAD COEFFICIENTS OF THE FILYER . hF‘ &
Rl REE THE HIGHEST FOMER:E OF Z1 & I
RESPECTIVELY 1M THE HNUMERATOR-OF THE

20 TRAMZFER FUNCTION . SIMILERLY MPL o« G
ARE FOR THE DEMOMINATOR . A0 12 THE GAIN
FRCTOR OF THE TREMIFER FUNCTICH .

-

CHEMEL T, IT=2, 3 )
We “FILE NRME OF COEFE= LI

s

ML ni, HE L MG
WOCCESTL T J=l M. I=L pF L
Gu 0 CENIL Fh. T=L MAd e, I=ih. R

anDu'ﬁ A

M TLTSE 4

—
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MOFMALIEE THE CCEFFICIENTSES OF THE il EBER
SLCH THAT AL 43 ARl Bod. 1o 8SFE EaURL T0 .
1. THE GAIWN FROTOR RO 15 Mo IFIcD

ACCORD INGLY

IFCAL, A0 B A B S0 7O Sal
RCt=RO®FA L, 10

WOOF=ACL, 10 -

Do 4 I=1. HFL

DO A JI=1. Ml
YOOF=AC I, I
H(I,Jb=?CDF‘VCﬂF
IFCECL, A0, EQL 4. B0
KEDF=E(13'J
HD=RH'”TDr

vy 2 I=1,MFL

Do o= T L ML
WOGF=E I, T
EQI,"—?CHF‘“FGF
MPZ=MPL1+1
MF=MPL1-1
ME=MEl—-1

i
-1
)
on
3]
|

II "

SET THE INITIRL WHRLUES OF THE INTERMEDIATE
AFFAY WM ERUAL TO ZERD

FEAD THE INFUT bHTR AL FERFORM THE

CFILTERIMG GRERATION

D 23l N7 =L, 1T
FE=kB+14
CLALL REMAF D
IFCIER. GE. 25
Do Son T=1,
FERDCZN TR
REWIND Z
EE==1&

DO T WT=1, T . ‘
KB=KES1E

CHLL FEMARCQ. KE. 15, 1ER)
IFCIER. GE. 250 30 T2 100D
DOOT 1=l A4

DOo4 T Mo

MITEME T TR

S =0

JI=TE=MG

VERY PooR ¢ opy
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Ls=z

45
=4

-|‘j| [asU e B0 A o |

HRITE THE FILTERELD

Do ZE K=t MEL

MP s =MP T =

Dil 44 L=S, Mo
SM=SUM R, LR P. JI-L0
1L5=1 '

LG MPL, TR =HE=SU

SiM=0,

LE=2

DO 34 E=1HFL

MP =M 2=t
DO 45 L=L=, Nt

SLIM=CUM+H4 . Lol MRS, TI-L0
LS=1 ,
WH=SOMELNCMEL. TR

WEC T TR = PR

DO ATT K=i, MZ

TI=K M0

L AFT L=l MF

ML, TIo=kMd L+t J10 . ~

COMT INUE -

CETA EACK TO THE
SAME FILE FROM MHICH THE IMNFUT DATS
WS OBETHINED .

—
[ =4

FE=-1&
Dl 1S NT=
FBE=kE+sLle
CAHLL FREMS
IFCIEFR. BE b
D is I=1

1
'uRzTruzh CWE T T0. T=L M

CLOZE

STOR :
TYEENERFGE IN WMEM : ERRECR 8 = ", 12
STOF .

TYFETERROR IWN MAFDF  RRFEOFR & = .4
STOF

TYFE"ERFIRE 1IN FEPR
STOF

EMLD

ham 4
T
o
in
o
Ny
"
T
B
]
]
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DIMENSIGN ?5(3;13);?F(2;8):NHME(5)
stk KR K - EDRECNB seckR Rk kR R R

REMOYAL OF MGTIGN ‘BLUR B%Y FILTERING THE IMAGE BY
THE. REAL PART OF TWO-D RECURSIVE DIGITHL FILTER
IMAGE 5IZE SHOULD BE EQUAL TO ¢ M. X M2 > WHERE
ML & M2 ARE POMERS OF 2 AND GREATER THHN 63

THE: DIMENSIONS OF 'v5, 'Y'F, WN, WM, WNL, WMt SHOULD e

BE AS FOLLOWS :- %5 kK::lS)a?F\KF;o)aNN\K:aE;QﬁS&; .

WMKS, 3. 58:‘ NN.L‘\KF: = 2580, WhMLLKF, 2, 258>

THE DIMENSIONS OF OTHER ARRAYS ARE FIXKED AND THEY
CAN HANDLE IMAGES OF SIZE UPTO 258 X 256 :
THE PROGRAM WRITES BACK THE DEBLURRED IMAGE -
INTO THE ORIGIMAL BLURRED IMAGE FILE .

K5 AND KF ARE THE # OF ZND RND 157 ORDER FILTER
SECTIONS RESPECTIWELY OF THE 2D FILTER TRANSFER
- FUNCTICON . ,
DIMENSION WN¢3, 3. 2580, WMLS, 3, 2583, WH1L2, 2, 253D,
*WMA (2, 2, 258D ‘
DIMENSTION IWIND{4825)>, IX{16, 25562, IY(16, 256D
DOUBLE PRECISION. Y5, YF.RQ. BO

COMMONABLA/TWIND _ ‘ T
EQUIMALENCECIWIND, I¥> ) >
CALL WMEMIICNT, IERD> '
IFCIER. EQ 5> GO TO 36608

TYPE"# OF FREE 1624-WORD BLOCKS= ", ICNT

IWS=4 4

CALL MAPDF {ICNT, IWIND, IW5, 1IERD

IFCIER. GE. 5S> GO TO w61l

TYPE'SIZE OF INFUT IMAGE"

ACCEPT THE IMAGE SIZE AND RERD OUT THE IMAGE
DATA INTO THE EXTENDED MEMOR'Y

ACCEPT"# OF COLOUMNS= ", M2
ACCEFT"# OF - ROWS= ", ML . .
WRITE(10, 180>
168 FORMATCY “, 1%, “FILE NAME OF NOISY ELURRED IMHGE— :
REHD\11,289> CNAMECID, I=1, 5>
OFEN 2, NAME, LEN=2%M2, REC=M1
NR=16
NER=NR+1.
M1X=M1/NR
M2K1=M2+1
M2K2=M2+2
KBR=1WS+«MLK
KB=-IWS
DO 68, I=1, M1
KB=KB+IWS
CAHLL REMAP(@, KB, IW5, IERD . :
IF{IER. GE. 2% GO TO 3882 . .

I8



270,

//’/6 50 K=1.,HNR
f//SQ READ(2> (IV(K, I, J=1, M2>
REWIND 2

‘.l

v

READ IN THE COEFFICIENT 'FILE NAME AND STORE
THE COEFFICIENTS IN THE COEFFICIENT ARRAYS |
YS AND YF '

D000

WRITEC1®, 162> ~ :

READC1L, 288> (NAMECID, I=1, 5> L :
192 FORMATC” “, 1%, “FILE NAME OF COEFS = “,2)

OPEN 4, NRME _

READC4)> KS. KF ' =

NTA1=KS%12 :

NT2=KF:#8

IFCKS. GE. 1) READC4D <CWSCK, L), L=1, 18>, K=1, K5)

IFCKF. GE. 12:READCHY COPF LK, L2y L=, 82, K=1, KFD

READCY> RO

CLOSE 4

. E'g.

SET THE INITIAL VALUES OF THE INTERNEDIHTE
ARRAYS WN. WM, WHNL, WML TO ZERO

0000

DO 234 NZi=1,3
DO 234 NZ2=1, 3 .
DO 234 NzZ3=1, M2K=2
WN{NZ1, NZ2, NE3)=6. ba
234 WMINZL, NZ2, NEZ20=8. De
. DO 435 NZi=1.,2
DO 456 NZZ=L, 2
DO 458 NZ3=1, M2xi
© WNLCNZL 22, NZ30 =0, 03
456 WMLCNZL, NZ2, NZ3)>=8, D@
Kid=-NR+1
7 KBi=KBX

FILTER THE IMAGE BY THE RERL FART OF THE zD FILTER

000

DO 3 I=1, M1 _
KL=k +NR .
CALL FSEEK<2, Kl

< DO 43 IM=1, NR

43 READ{2Y CIXKCIM, IWD, IN=1, M2
KEL=KB1-IWS
CALL REMAP <@, KBL, IWS, IERD>
IFCIER. GE. 253 GO0 TO 3902
DO S55 I0=1, NR
DO 4 J=1.M2
WK=A0FLOART CIXCI0, I3
WY =AC4FLOAT C I' (HRA-10, M2X1-J3)
IFKS. EQ. 8> GO TO 222

T=J+2
DO S8 K=1i, K5
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- . L

LY

.

-

NN\k;;;JZ\~'%—?S(K;ii)*Nﬂ(KJEJJZ—i)-”S(K;iQﬁ*NN(K;E:JZ-Z)
w=YS K, A3 WNCK, 2, JZO v, 142 #WNCK, 2, JZ2-12-Y5{K, 152 4UdNIK,

#2kWNCKL 1, JZ2-20 v . .
WMIK, 3, JZo=YY- ?S(Kali)*”ﬁ(KaE;JZ—1>“VS(K:12)*NM(KJE;JZeQ)

=S (I A3 D uelMOK, 2,

JZ-20-YSCK, 82 RMNCK, L, JZ0=Y5SCK. 1

?)*NN(K:i;JZ*iﬁ-?SFK;iB

2325 K, LD WM 2, JZ-10=-YS{K, 153 WMLK

*:2:JZ-Q)*VS\K;lb)*NN(K;i;JZ)-?S(K;1?)*NN(Ka1:JZ—1)—?S(KJ
© ol 33RWMIK, 1, JTZ-22
K= NN(K;JJJ4\+?SkKa2)kNN\K:J;34*1)+?SLKJJ)*NN\KJ4;J¢—2)+?
#*S LK 44N 25 T22+9SCK, SO#UNCK, 2, JZ2-10+YS (KJb)*WN\KJé JZ-
#2D+YSLK, TIUNCK, Lo J22+9S K 80 #NCK, 4, JZ=1)+7SCK, 32#WNCK, 1
w, JZ=-25
50 ??—NM\K:E:J4)+?S(KJ2)*NM\KJA;J;—l)+?:kk;4)*umxk;5;JL—2)+?

#S K, 404lMCK, 2, T

JZ2+7S5K, So#WMIK, 2, JZ2-15+YS<CKs S #UMIK, 2, JZ

*—2)+?5(K:?)*NN&K:1;J—)+VS(K;3)*NN\K;14Jz—i>+VS(Ka9>*NN(K
#, L, JZ2=22

222

44

4

177
444

23
955

IF{KF. E&. 8> GO TO 44
Jo=J+1
DO 52 K=1,KF

WNLCK, 2, JDX=KK=YF (K, S3:bNL O, 25 JTD=10=YF K, 7O4WNLK, L, JD> -
wWF K 83N K, 4. JD—-10
NMi(KJ;aJD)‘?V“?F\K;b“*NNl(Ka_aJD—l)-?FKK:r)*NMl\K;laJD)“
#YF (I, 80 :+bMLCK, 1, JD-12
WM=WNL K, 2, IDY+YF KRG 22 %WNLCK, 2, JD— 1\+?F\Ka$\*NNl\k;l;JD)+
P F G A2 sldNL KL L, JD—10
52 wY=WMLCK, 2, JDO+YF UK, 20%WMLCKS 2, JD- l)+VF\K;$>*NM1\K:iJJD\+
AYF (R a0 wWMAK, 1, JD=-10

1X¥{I0, Jax=K¥

IY{NRA-I0. MZ¥i- J)—VV
CONTINUE

IF(KS. EQ. 82 GO TO 444
DO 177 K=1,K5 '
DO 177 L=4.M2

LZ=L+2

WK, 1, LZ3=WHIK, 2, LZ2
WNCK, 2, LZ>=WNCK, 3, L2
WMOK, L, LZ>=WMJK, 2, LZ2
WMOK, 2, LZ>=WMK. 3, LZ>
IF{KF. EQ. 8> GO TO 355
DO 238 K=1,KF

B0 28 L=1,NM2

LZ=L+1
NNi(KJiJL2)=NMi\KJHJLL>
CONTINUE

" CRLL FSEEK{(Z, KK1>

L}

DO 32 IM=1,NR -

WRITECZ> (IW{IM, THD, Th=L, M20
REWIND 2

KB=-1Il5%

DO S5 I=1. MiX



S5

ooo0n

2680

3960

- 3861
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.

KE=KB+IW5

CALL REMAP{@, KB, INS. IER)
IFCIER. GE. 23> GO TO 3662
DO 55 K=1, NR

READC2) CIK{K, LY, L=1, M2)
DO 55 K=1, NR

DO S5 L=1, M2 .
IYCK, LY=TYCK, LI+IRCK, LD
REWIND 2 .
KB=-IWS

WRITE BACK THE FILTERED IMRGE BRCK
TO THE ORIGINAL BLURRED IMAGE FILE

DO 57 I=d1,MiX

KB=KB+IWS

CALL REMRPY@, KB, IWS, IER?>
IF(IER. GE. 29> GO TO Z@a2
DO 37 K=1i, NR

WRITE(Z) (IV{KL LY, L=1.M2D
CLOSE 2

FORMART{SAZD
STOP
TYPE"ERROR IN WYMEM ; ERROR = ", IER

CLOSE 2

STOP

TYPE"ERROR IN MAFDF ; ERROR # = ", IER
CLOSE 2

sSTOP

TYPE"ERROR IN REMAP ; ERROR.# = ", IER

CLOSE 2
sSTOP
END
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"THE ORIGINAL BLURRED IMAGE FILE
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DIMENSION VS(B:iS);WFEE{E);NHNEQSD
dokscccicrscickk  2DRECAB *#*m****ﬁ*****m*m**

REMOYAL OF ATMOSPHERIC EBLUR BY ZERO FPHASE
TWO-DIMENSIONAL RECURSIVE DIGITAL FILTERING.

IMAGE SIZE SHOULD BE EQUAL TO ( ML K M2 >

WHERE M1 & M2 ARE POWERS OF 2 .AND GRERTER.

THAN' 83 BUT LESS OR EQUAL TO 256 . THE

DIMENSIONS OF Y5, YF, WN, WNL RRE RS FOLLOWS ‘
YSLKS, 183, YFIKF, 82, WNCKS,: 3, 2583, WNL(KF, 2, 258>

KS, KF ARE THE # OF ZND AND 1ST ORDER FILTER e
SECTIONS RESPECTIVELY OF THE 2D FILTER. THE
DIMENSIONS OF THE OTHER ARRAYS ARE FIKED AND -
THEY CAN HANDLE IMAGES OF. SIZE UPTO 256 k 2556

THE PROGRAM ‘WRITES BACK THE RESTORED IMAGE TO

”
t

DIMENSION WNCZE, 3, 2582, UNLLZ, 2, 235382
DIMENSION IWIND{ie3g4), IY(54, 20560
DOUBLE PRECISION Y= '¢Y5i. YF. YFL, RO.BE&™
COMMON/BLAIWIND )
ERUIVALENCE(IWIND, I'Y)

CALL WMEMJICNT., IER>

IF{IER. EQ 5> GO TO 3866

TYPE"# OF FREE 1824-WORD BLOCKS= ", ICNT
IWsS=15 ' :

CALL MAPDF{ICNT, IWIND, IWS, IERD
IF{IER. GE. 52 GO TO 3061

w

TYPE"SIZE OF: INPUT IMAGE"

"RERD IN THE SIZE OF IMAGE AND REARD OUT THE

IMARGE DATA INTO THE EXTENDED MEMOR'Y

-
ACCEPT"# OF COLOUMNS= ",M2
ACCEPT"# OF ROWS= ", M1
WRITEL18, 10G> : :
FORMATC” <, 41X, “FILE NAME OF NOISY BLURRED IMAGE= “.,Z>
READC(1L, 206> (NAMECID, I=1, 55
OPEN 2, NAME, LEN=24M2, REC=M1
NR=G4
NRA=NR+1
MIK=PM1/NR
M2KL=M2+1
M2K2=M2+2
KBXR=TWS*MLX )
KB==IWS
DO 88 I=1,Mix
KB=KB+IW5 _
CALLL. REMAP(B, KB, IWS, IERD
IF(IER. GE. 283 GO TO 3892
D0 &80 K=1, NR
RERDCZ2D (IVWCK, I35, J=4. Mao
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Jj/h;;ﬂD IN THE COEFFICIENT FILE NAME AND

S5TORE

THE COEFFICINTS IN THE COEFFICIENT ARRRAYS

¥S AND %F
WRITE(1@, 182> .
READCL1, 208> (NAMECID. I=1, 53
182 FORMATC” , 1%, ‘FILE NAME OF COEF5 =
OPEN 4, NAME
READ (4> K5, KF ,
NFL1=KS5#18 R
NT2=KF 3

IFCKS. GE. 1> READ(4Y (OrS5<K, LI, L=1, 185, K=

IFCKF. GE. 1> READC4> {{YFK, L3, L=1,3),
RERD<{43> RO
CLOSE 4

YL 2D

1, K5

K=1, KF?>

s b

SET THE INITIAL CONDITIONS OF THE INTERMEDIRTE
ARRAYS WN AND WNi TO ZERO AND FILTER THE IMAGE
By THE MAGNITUDE SQUARED 2D FILTER TRANSFER -

- FUNCTION .

DO 3 IJ=1,2
DO 234 NZi=1,3
DO 234 HZ2=1,3 .
DO 234 NZI=L14M2K2
234 WNCNZL, NZ2, NZ3)=0. '@
DO 455 NZ1=1,2
DO 455 NZ2=L1.2
DO 455 NZ3=1, M2Xi
455 NNL\N;l;N““;N;;\—G.DB
=K B
IF(IJ.EQ.i) KB=—IWS5
DO 3 I=1, MiX
IF<1J. EQ. 2> GO TO 778
KB=KB+IWS
. CALL REMAP (@, KB, IW5, IERD .
IFCIER. GE. 28> GO TO 3682 - -

- GO TO 773 ' '

778 KB=KB-1W5
CALL REMAP @, KB, IWS, IERD
IF¢IER. GE. 29> GO TO 3602
773 DO 3 I0=1,NR
DO ¢ J=1,M2
IFCIJ. EQ. 2> GO TO 786@
Al¥=1v{10, I>=A0
GO TO 731
760 XKX=I1Y(NRA~IO0, MEKL1-JD#A0
784 IFCKS. EQ. 6> GO TO 222
JZ=34+2 -
. DO 58 K=1,KS

WHOK, 3, J22=KRK-Y5 (K;ll)kwﬂkka;;JZ 15-%5

w="YS LK, 130N K, 25 Z23=S K, 143N 2,

i

(RS A20#WNCK, 2, JZ2-20
Z=10="S{K, 152+ WNCK,



c

OO0

w2,

D) RWNCK, A, JZ272) .

XK= NNkk;:;JZ)+?S\R;2)*NN\K;;JJa—l)+¥:\K;3>*NN\K13: JZ-25+Y
*S K, 4INNCKS 25 JZ2I+PSCK, S2#UNCK, 25 JZ-12+Y5C(K, 62#UNCK, 24 JZ2-

s A2DHYSCK, POHWNCK, 1, J22+YSCK, B2#WNIK, 1, JZ2-13+Y5(K, D34UNCK, 1
*, JZ=2) ) - 2 i ‘

Se

222

- det

IFCKF. EQ. 8 GO TO 44
JD=J+1 :
DO 52 K=1, KF - .

L}

—
'd

JZ2-2X=-Y5 (K:lb)*NN(KJLJJ")—VS\KJL.)*NN(KﬁlaJL*L)—Y {K, 18

NNi\K;2aJD)“WX—?F\K;b)*NNikKJZJJD—l} 9F\K;?)ﬁNNl(K;l;JD)—

#PE (K, 82uhiNL (K, 1, JD-1)
' 52 XK=NNi(ka2;JD)+?F\K;2)*HN1(K;_;JD—l)+?F\K;4>*NNl(K;l;JD)+
' *?F\K;4)#HN1&K;1;JD—1)

1FCIJ. EQ 2> GO TO 55o_‘

. IVCI0, IO=KK

GO TO 4
IYC{NRA-10, M2X1-J>=KX.

4 CONTINUE °

177
4

57

2600

3980

_ 3801

208682

IF{KS. EQ. 8> GO . TO 444'

DO 4177 K—laKS :

Do 177 L—lsz ¢

LZ=L+2

WH{K, 1. LZ)HWN\KI 2, L2

WHNCK, 25 LE2X2=WNKS 3, L2d ) -
IFKF.ERL 8> GO TO 3 "«

DO 23 K=1, KF | p
DO 28 L=1.Mz -
LZ=L+1 ‘

WNACK, 4, LL:‘—NN.L\K: =0 LL)

CONTINUE

- REWIND 2

KB=-IWS .

. ) -
WRITE THE DEBLURRED IMAGE BACK INTO THE

ORIGINAL BLURRED IMAGE FILE

DO 5v I=1,MLX

KB=KB+IW5

CALL REMAP (O, KB, TWS, IERD
IFCIER. GE. 29> GO TO 3862
DG, S7 K=1, NR '
WRITEC2> <IWLK, LD, L=t M2)
CLOSE 2 - :

FORMAT (SA2>

STOP

CLOSE 2

sSTOP - , :
TYPE"ERROR IN MRPDF ; ERROR # =, ", IER -
CLOSE 2 ' '

STOP - .

TYPE"ERROR IN REMAP ; ERROR #
CLOSE 2
STOP

~hirs

", IER

TYPEYERROR IN YMEM ; ERROR # = ", IER =~

4
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