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ABSTRACT

A three-dimensional knapsack problem packs a subise¢ctangular boxes
inside a bin with fixed size such that the totalueaof packed boxes is
maximized. Each box has its own value and sizecamdbe freely rotated into
any of the six positions while its edges are paladl the bin’s edges. A Mixed
Integer Linear Programming is developed for thekBapsack problem, while
some practical constraints such as vertical stglalie considered. However,
the given model can be applied to two dimensiorrablems as well. The

proposed solution methodology is based on the seguériple. Simulated

annealing technique is used to model the heuregtjgroach. Moreover, the
situation where some boxes are pre-placed in thésbhvestigated. These pre-
placed boxes represent potential obstacles. Nualerxperiments are

conducted for bins with and without obstacles. Thasults show that the

heuristic approach is successful and can handierdift kinds of instances.
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CHAPTER 1

Introduction

1.1.Background

Cutting and packing problems have been intenselgliest as they have many
applications in industrial and finance manageméhe three dimensional packing
problem is essential for practical purposes suclccaainer loading or scheduling
which can be defined as a geometric assignmentlggmobThe various packing
problems can have different constraints and oljesti For instance, in the case of
shipping, objects with different sizes have to laeked into a larger container. A
topology of packing problems in general was defibgdyckhoff et al. (1990) and a
recent survey was defined by Wascher et al. (200udjting and packing problems
appear under several different names such as lkinga multi-container loading
problem, strip packing and knapsack problems, basethe objective function and
the side constraints. All types of cutting and pagkproblems have some similar
structures. They consist of two sets of elemensgt af large objects (called bins) and
a set of small items (called boxes). The problertoiselect some or all small items
and assign them to one of the large objects wiiilsetected small items are placed
entirely in the large object and do not overlap @andiven objective function is
optimized. Thus, only some of the large objects amall items may be used in a
solution of the problem. The packing problem coessdoptimal utilization of bin
volume for goods distribution and is an importamdustrial problem. Filling a bin
optimally decreases the shipping cost and increthgestability of the load. The large
objects, which are called bins, can be homogeneousterogeneous. If the boxes
placed in the given bin are identical it is calleamogeneous; however, if various

types of boxes are placed in it, it is consider®dteongly heterogeneous.

Different kinds of cutting and packing problems dendivided to two categories.
In the first category, sufficient bins are availabb pack all the boxes; however, only
a limited number of bins is available to pack assilof boxes in the second category.
The first type of problems are called an input mmiziation problem, and the second
type are called an output maximization type. Ind¢hse of output maximization, a set
of boxes has to be packed in a set of bins whexentimber of bins is not enough.



However, in the case of input minimization, all thexes can be packed. $trip
packingproblem, a set of rectangular boxes are packexd strip with certain width
and height and variable length. The problem is howlace all the boxes inside the
strip such that its length is minimized. Bm-packingproblem, a set of items have to
be packed in a set of bins of the same fixed sanekscosts, such that the number of
used bins is minimized. Unlike bin-packing problem, multi-container loading
problem, the containers (or bins) do not essentiatdlve equal sizes and costs. In
knapsack problemneach item has a profit and the problem is to cadbe best subset
of items that fits into the single bin or contaisech that the sum of the items profit is
maximized. In this kind of problem, the availalyiliof bins is limited so all items
cannot be packed. (Leung, 2012; Fekete & Sche®&8; Wei et al. 2009; Egeblad et
al. 2010; Pisinger 2002).

1.2. Knapsack Problem

The knapsack problem is a problem in combinatowgtimization. The
multidimensional knapsack Problem (MKP) is a stign§P-hard optimization
problem which can be show by reduction from the-dineensional packing problem;
it means that it is very unlikely to develop polymal algorithms for these problems.
Knapsack problems consist of three different tydd® first one isSingle Knapsack
Problem(SKP), the problem of packing a subset of stromglierogeneous boxes in a
single container Multiple Identical Knapsack Problens the second type which
considers packing a subset of strongly heterogenboues in a set of identical bins.
The last type idMultiple Heterogeneous Knapsack ProbléMHKP) which is the
problem of packing a subset of strongly heterogesdmxes in a set of weakly and
strongly heterogeneous bins. Figure 1.1 shows ifffereht types of knapsack

problems in summary.



Knapsack Problem

One Large Single Knapsack
——  Object ’ problem

Several Large
——  Objects

Identical Large (Multiple) Identical
— Objects # Knapsack Problem

Heterogeneous ' (Multiple) Heterogeneous
assortment Knapsack Probelm

Figure 1.1 Knapsack Problem Types, Wascher et al. (2007)

Various practical constraints can be consideretthénmultidimensional knapsack
problems. Some of these constraints are relatedetdin, while some of them may
refer to the boxes. Moreover, some constraints triighrelated to the relationship
between the bin and boxes. One such constraintes drientation constraint.
Principally, each box dimension can be considersdhaight, thus three other
orientations can easily be defined. Each box care l&x orientations in order to
orthogonally be placed in a bin. Moreover, one otpeactical constraint is the

positioning constraint which limits the locationtbe boxes in the bin.

Load stability constraint is one of the most impattissues in knapsack problems.
In spite of its importance, load stability is ofteat studied explicitly in the literature.
The stability is a direct consequence of load tesswhen high bin utilization can be
assured. This is typically true for knapsack protdan which only a subset of boxes
can be packed as the bin availability is limitedad stability can be divided into
vertical and horizontal stability. Vertical stabjliprevents boxes from falling down
onto bin floor or on top of other boxes. It dealshvwgravity force. In order to satisfy
this kind of stability, the bottom of a box shollel supported by the bin floor or other
box tops. Horizontal stability or dynamic stabiliyarantees that boxes cannot shift
notably when the bin is moving. Horizontal stalilis satisfied when each packed

box is adjacent to other boxes or to the bin wall.

In addition, another constraint which can be cozr®d in knapsack problems is
the guillotine cutting constraint. A packing is dptineable if it is able to be reached



by a series of cuts which are in parallel to the Walls. Guillotineable patterns are
not always suitable for packing as the boxes tentdbet more unstable while being
transported. A robot packable packing is one wliah be done by placing boxes
starting from left-bottom-behind corner of a bimile each box is placed in front, on
the right or above the already packed boxes. R@agkable packing tackles a

situation in which a robot with artificial handsgba the boxes into the bin.

Although technological knowledge has enhanced,isglkeal knapsack problems
is still a challenge. The solution quality and catgional efficiency are very
sensitive to the box-positioning rule. Due to NRPdmess of the packing problem,
only few exact algorithms and many heuristic methibave been presented which are
based on the different strategies (Leung, 2012gtee& Schepers, 1997; Wei et al.,
2009; Egeblad et al., 2010; Pisinger, 2002; Baitf& Wascher, 2012).

The problem addressed here, in the topology sugddsy Dyckhoff (1990),
belongs to 3/B/O/F (3: three-dimensional, B/O: obgct/bin and items selection, F:
few items of different types) while Wascher et @007) classify it as the three-
dimensional single orthogonal knapsack problem. weall as non-overlapping
constraints, some other constraints should be deresi in practice, such as bin
stability and pre-placed boxes. The given probleonsaers the packing of
rectangular items in a rectangular bin in ordemtaximize the total value of the
packed items (minimize the amount of space losg)Mdiue of boxes is assumed to
be equal to their volume. The rotation of the basdaken into account as well. Since
the three-dimensional knapsack problem is NP-hdrds difficult to solve. In
addition, the difficulty of finding optimal solutivis enhanced as the box rotations
increase the search space significantly. Some exgotithms as well as heuristic
methods are proposed in the published literatureeSexact algorithms need more
time to find a solution, heuristic approaches amarpopular and can be used as an
alternative to find near optimal solutions. A mixiedeger linear model is developed
for the given knapsack problem. The model considerscal stability and pre-placed
constraints which were not studied in Egeblad aisthger (2009). These practical
constraints as well as the box rotations are addetie model in order to study a
realistic knapsack problem. The proposed three-dsme@al solution methodology is

based on the sequence triple representation prdfmsEgeblad and Pisinger (2009).

4



The developed algorithm also considers box rotata-placed boxes and vertical

stability. Simulated annealing is used as a heanmséthod.

1.3. Simulated Annealing

Simulated annealing (SA) is a general optimizatiwthod to solve combinatorial
optimization problems. It belongs to the classaxfal search algorithms. Simulated
annealing algorithm has been used to handle mamhdd® problems. It was
developed in 1983 to solve nonlinear problems. ifbpiration comes from annealing
in metallurgy, a technique of heating and contb®oling of material in order to
enhance the size of its crystal and decreasedkércts, so that its structure is finally
frozen which occurs at a minimum energy configarati Simulated annealing
algorithm is based on the very important fact teeén in low temperature it is
probable to have a particle with high internal gyefThis fact shows the possibility
of jumping out of the local minimum. While the teempture is reduced, the
possibility of jumping out decreases. The basiomelets of simulated annealing are as

follows:

A finite set S.
A cost function which is defined on S.
AsetS(i) OS—{i}0i 0S which is the set of the neighbours of i.

p w0 D PF

Cooling schedule T which is a non-increasing florctiT(t) is the temperature
at time t.

5. An initial state.

The slow cooling is applied to the simulated aningainethod as a slow reduction
in the probability of accepting worse solutions.esich step, the algorithm considers
some neighbouring states of the current state, deuides whether to stay at the
current state or move to a neighbouring state. pitwdability of moving from a
current state to a new neighbouring state is cadlledeptance probability which
depends on the energies of the two states and @&otgmarameter known as
temperature. If the energy of the new state isebetthan the current one, the

acceptance probability is equal to one. Howeveemwthe energy of the new state is



. -4
worse, the move to the new state is accepte(e( Vﬁemperatue)>R, where

_ (current_state_energy- new_ state_energy
current_state_energy

A

, and R=Uniform(0,1). At first, T

has a relatively high value, so the chance to adbepnew state is higher. T is slowly
decreased to values such that most new statesotilbe accepted. The algorithm is
repeated until it achieves a state that is goodigimdor the given application or until
a given computation time is exhausted. It has lpgewed that by controlling cooling
rate of temperature this algorithm can find thebglooptimum, although it needs
infinite time. Like all other algorithms, simulateshnealing has some strengths and
weaknesses. It can deal with chaotic data, higldglinear problems and many
constraints. It is able to reach global optimali8mulated annealing algorithm is
relatively flexible as it does not depend on angtrietive model's properties.
However, as SA is a metaheuristic algorithm, so ynahoices are required to
consider in the actual algorithm. Obviously, thisra trade-off between the quality of
the solutions and computation time. Figure 1.1 shtive block diagram of simulated
annealing (Bertsimas & Tsitsiklis, 1993; Dowharakt 2009).
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Figure 1.2. Simulated Annealing Block Diagram (Dowhan et al., 2009)



CHAPTER 2

Literature Review

2.1. Two Dimensional Knapsack Problem

Some papers in this area focus on two-dimensioaekipg problem. Leung et al.
(2001) present a genetic algorithm and a simulatetealing approach to solve the
two-dimensional non-guillotine cutting stock pratle They aim to find a cutting
pattern which minimizes trim loss. The authors gpible genetic algorithm and
simulated annealing to determine the permutatidnsall trim loss; then they use
different packing approaches to pack the items esponding to a special

permutation. The proposed heuristic cannot prodilidbe feasible packings.

Capara and Monaci (2004) consider upper boundseaadt algorithm for the two-
dimensional orthogonal knapsack problem. The asthmwesent an approximation
algorithm and four exact algorithms based on thereration scheme, and mainly
focus on upper bounds. They claim their algorithas kimilar performance to Fekete
and Schepers’ (1997) algorithms in most instances.

Clautiaux et al. (2007) consider the two-dimensiaméhogonal knapsack problem
and propose two exact methods to solve the problenthe first algorithm, they
improve the classic branch and bound method; howelie second one is on the
basis of a new relaxation of the problem. They, enger, define the reduction
procedures and lower bounds used within both eratiwer methods. The first
algorithm is called LMAO (Leftmost Active Only) wtth counts the packing of items
only in the left-most-downward position and teste possibility of not packing any
item in that position. By using this algorithm te@me packing is not counted twice.
The second algorithm called Two Step Branching &tace (TSBP) is based on
cutting each item with wand height hinto h strips with width w All strips relating
to the given item must be packed at the same aoatedieven if they are not similar.

The proposed lower bounds increase the computimg ith some instances.



Goncalves (2007) proposes combination of the plac¢rprocedure and a genetic
algorithm based on random keys to solve a two-dgioeral orthogonal knapsack
problem. The objective function is minimizing th@@unt of trim loss. The proposed

algorithm is relatively complex and time consuming.

Bortfeldt and Winter (2009) propose a genetic atgor for the two dimensional
orthogonal knapsack problems. The proposed algorgbnsiders both guillotine and
non-guillotine variant of the problem and an oragmmn constraint also may be
considered. The items which have to be placederctintainer can be constrained as
well as unconstrained. The authors claim thatdagd instances of the non-guillotine

constrained 2D knapsack, GA solution is significant

Joncour et al. (2010) suggest a method for findinggasible solution for a two
dimensional orthogonal knapsack problem which seldaon the characterization of
the interval graph. The problem is packing theamegtlar items in a big rectangular
container without overlapping. It is assumed the totation of the items is not
allowed. In order to find infeasible solutions el they used a method similar to
Clautiaux et al. (2007). The approach suggestedisnpaper is superior to the Fekete
and Schepers’ (1997) method since by creating Me€st{ the search space stays
within the set of interval graphs.

Dolatabadi et al. (2012) propose a recursive exgbrithm to solve the two-
dimensional guillotine knapsack problem. The probls packing small rectangular
items in a bigger rectangular sheet. The packirgtisogonal and the rotation of the
items is not allowed. At first, the sets of asstatziaguillotine packing are built; then,
the algorithm is divided into two exact algorithmms order to solve the two-
dimensional knapsack problem. The first algorithenon the basis of iterative
implementation of recursive method with differenpuit parameters, and the second
one is based on an ILP model. The branch-and-ctihodels used to confirm the

optimality of the solution.

Leung et al. (2012) propose a hybrid simulated alimg metaheuristic for the two-
dimensional knapsack problem. The authors firsinded fithess strategy to identify

which item has to be packed first in a given positiA heuristic algorithm generates

9



the solution based on this fitness strategy. Ringtle simulated annealing approach is
used to jump out of the greedy strategy’s localmaktrap. The items are packed into
stock sheet one at a time for a given sequenderfsi For any available position, the
fitness value of each item, which has to be pacikedalculated and then the item
with maximum fitness value is selected. If morentbae item has the same maximum
fitness value, the algorithm selects the one by itipait order of the items. The

proposed hybrid algorithm combines the greedy essatapproach and simulated
annealing to gain a better solution. The greedyrdtlyn is used to search a good
sequence of items; then a simulated annealing s$teuis applied to do a broader

search to gain a better solution.

2.2. Three Dimensional Knapsack Problem

Some papers consider the three dimensional cutting packing problem (or
container loading) and attempt to model it or psmeolution methodology for such
problems. The focus of most of these papers ishenréctangular bins. As multi
dimensional C&P problems are strongly NP-hard, ordyy few exact algorithms

have been proposed for such problems.

Fekete and Schepers (1997) propose a method forelmgdmore-dimensional
packing problem based on the graph characterizafié@asible packing. They define
a graph based on the relative positions of boxlks.gFaph is proven to be an interval
graph. The authors consider a set of boxes to tieeganto a container and focus on
an orthogonal packing problem. The method cannatlleafurther constraints like
fixing the position of some items, and the resats limited to two dimensional
problems. Fekete and Schepers (1997) present adhtlorder to gain lower bounds
for more-dimensional knapsack problem. They, moeeoilustrate that all known
lower bounds for such problems can be improved by tnethod. The authors
describe heuristics for dismissing infeasible pagki Fekete and Schepers (1997)

show how this method can be applied to more dino@asiknapsack problem.

Fekete and Schepers (2004) propose a new methoobtaiming classes of lower
bound for higher-dimensional packing problem. Thehars apply a number of

volume tests after modifying the size of boxes. Tdative bulkiness of the items and
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the way that they can be combined is reflectedrbgsformation. They present a
combinatorial characterization of feasible packasya basis for branch and bound
approach. The major objective of this paper iseébng good criteria for removing a
candidate set of boxes. Dual feasible function ¥gag to build conservative scales.
All known classes of lower bound for higher-dimemsl packing problem can be
improved by using the proposed approach. The asithoggest a strong method for
solving higher dimensional problems by combiningseh classes of bounds and
characterization of feasible packing as descrilbeHekete and Schepers (1997). The

computational results are mainly limited to the t#shmensional packing problem.

Hifi (2004) proposes a dynamic algorithm and ancexipth-first search in order to
solve the three dimensional cutting problem. Oagah and guillotine constraint are
considered. Sixty four problem instances were testkich include up to 50 boxes.

Optimal solutions are obtained for most of theanses but not all of them.

Although considerable advancement has been madbeirdevelopment of exact
algorithms, heuristic algorithms still play an inm@mt role in solving three-
dimensional knapsack problems. Only heuristic mdtshcan provide reasonable

solutions within acceptable running times for pesblinstances of real-world size.

Martello et al. (2007) consider the orthogonal ¢hdémensional bin packing problem
where box rotation is not allowed. Both general avlobt packable variants of bin-
packing problem are presented. The algorithm is tbe basis of two-level
decomposition approach and consists of two pantghé first part the boxes are
assigned to the bins. In the second part, a sibgies filled while the objective
function is maximizing the filled volume. The prgeal methodology can be used as a
whole for solving the three-dimensional bin packipgblem or just for filling a
single bin.

Egeblad and Pisinger (2009) propose a simulateegadimg based methodology for
the two and three dimensional knapsack problemshrae-dimensional knapsack
model is presented. New constraints can be addediganodel such as fixing the
position of items or rotation. The authors presamtiterative heuristic for the two-

dimensional knapsack problem which is based ors¢lggence pair. In each iteration,
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the sequence pair is transformed to the packingortter to control the heuristic
method simulated annealing is used. For three-dsioeal knapsack problem,
sequence triple technique is used. The authorseptbat a fully robot packable
packing can be obtained through sequence tripleeseptation. Robot packing is a
packing obtained by locating items starting frorft-b®ttom-behind (LBB) corner. It
is represented in three sequences; for any sequieacelationship of each two items
is defined. To find a placement for any given segee three constraint graphs are
constructed. Like 2DKP, the meta-heuristic anneai® used to solve the three-
dimensional knapsack problem. Rotation of boxesids considered in the three-

dimensional model and experiments.

Wu et al. (2010) consider the three-dimensional gacking problem with variable
bin height. The bins and boxes are rectangular taadobject rotation is allowed.
Guillotine constraint is not imposed. Moreover, bigights can change in order to fit
bin contents. A mixed integer programming modepisposed, and a bin packing
algorithm which is based on packing index is ugedevelop the problem feature and
as a building block for genetic algorithm. The authalso present the situation when
more than one type of bin is used. A genetic aligoribased heuristic is proposed for
packing a batch of objects. The algorithm is on lthsis of extreme point method.
The authors consider both single bin packing andhain packing problems.

Amossen and Pisinger (2010) consider the multi-dsi@nal orthogonal bin-packing
problem with guillotine constraints where rotaties not allowed. The authors
experimentally evaluate three packing methods -atmcéed, robot packable,

guillotine cuttable- based on the solution time quodlity.

Models provide information on optimal objective &tion value and bounds. They are
helpful to assess the solution quality of heuristigorithms. Modeling three
dimensional knapsack problems, while consideriragtical constraints, is still at its

beginning.

Junqueira et al. (2012) present mixed integer tirgagramming models for the
container loading problem. Vertical and horizordtbility of the cargo as well as

cargo load bearing strength are taken into accoutite proposed model. The models
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can be extended in order to apply to other variahtsontainer loading problem as

well. However, the models are only able to handielenate size problems.

In addition, container loading problems have beedised from a more general and
practical view. Murty et al. (2005) propose a detissupport system in order to
develop optimal decisions. These decisions are tssalite container trucks, find the
storage place for containers, number of assignathoeer and truck scheduling. The
proposed decision system is applied to the HonggKoternational Terminals. Murty
et al. (2005) define a selection of inter-relategtisions which is made at the
container terminal during a day. The main goalh&fse decisions is minimizing the
resource and the trucks waiting time, and maxingizithe container volume
utilization. The author use decision support systémm make these decisions since
these kinds of decisions are complex and largeesdtering and Murty (2009)
develop a simulation study about terminal’'s averggay crane rate, and how the
long-run performance of seaport container termisaklated to storage block length
and yard crane deployment. Several scenarios aleiaed. These experiments are
direct connection between length of the block aadgirun performance in the

container terminal.

As mentioned, both exact algorithms and heuristethmds are proposed in the
published literature. Leung et al. (2001), Goncal\({@007), Bortfeldt & Winter
(2009), Leung et al. (2012), Egeblad & Pisinger0@0and Wu et al. (2010) propose
heuristic algorithms for different types of packimyoblems. While, Fekete &
Schepers (1997), and Hifi (2004) propose exact austh The following table
compares some relevant papers and models, and sheivsimilarities, differences

and superiority.
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Table2.1. Summary of Somerelevant Papers

: Solution Superiority to other -
Papers Problem type Assumption What they do? Limitation
M ethodology papers
Egeblad & 2D and 3D Items are strongly sequence based Sequence pair and triple Fixed orientation for
Pisinger (2009) knapsack heterogeneous, no | Mathematical Model | representation (SA | is one of the successful 3D
9 problem rotation based approach) representations
Bortfeldt & 2D Orthogonal Gu_ﬂlo'qne & nhon- GA is suitable for large | compare to other
K K guillotine, orientation istic alaorith ) fth hod o
Winter (2009) napsac constraint may be Heuristic algorithm GA ms_tan_ces of the non- met ods GAisin
problem . guillotine constrained the mid-table
considered
Junqueiraet al. container loadin vertical and extend in other variants | Only able to handle
9 horizontal stability, | MILP GAMS of container loading moderate size

(2012)

problem

load bearing strength

problem

problems

Wu et al. (2010)

3D bin packing
problem with

Rectangular boxes, ,
Guillotine constraint

Mathematical Model

GA & extreme point

both single bin packing
and batch bin packing

variable bin is not imposed problem is considered,

height P object rotation is alloweq

multi- .
Amossen & dimensional Guillotine, no evaluate three packing ug:isatgged&ir”%tt)ic:]te Fixed orientation
Pisinger (2010) | orthogonal bin- | rotation methods P 9

packing problem

cuttable

can be used as a whole

Martello et al. 3D orthogonal rotation is not " two-level for solving three-
bin packin allowed, general and Decomposition decomposition dimensional bin packing| Fixed orientation
(2007) P 9 ' 9 algorithm P ' P 9
problem robot packable approach problem or just for
filling a single bin
Goncalves Relatively complex,
2D knapsack Orthogonal, fixed Solving 2D packing Hybrid genetic long computational
(2007) problem orientation problem algorithm time compared to
Leung et al. (2012)
Leung et al. 2D non-guillotine | Fixed orientation, Heuristic alaorith Genetic algorithm and cannot produce all
(2001) cutting stock orthogonal, euristic algorithm simulated annealing feasible packing
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Fekete &
Schepers (1997)

More-
dimensional
packing problem

Fixed orientation,
orthogonal

Modeling packing
based on the graph
characterization of
feasible packing

Interval Graph

method cannot
handle further
constraints

Given Problem

3D knapsack
problem

Rectangular boxes

Finding more practical
packing, Mathematica

formulation

SA and sequence
triple

Rotation allowed,
vertical stability, pre-
placed boxes
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2.3. Research Gaps

According to the literature, not all papers considex rotation since it increases the
search space significantly. Moreover, bin stabiltyust taken into account in some
of the container loading problems and it has nenbeonsidered in three-dimensional
knapsack problem. Vertical stability is one of tealistic constraints which should be
taken into account in 3D knapsack problems, sthalpbacked boxes are supported by
the bin floor or other boxes top and do not fallvdo In addition, to the best of our
knowledge, pre-placed boxes (obstacles) has not bealied in three-dimensional
knapsack problems, which is so essential for swoblems since it is often required
to place certain boxes in certain positions. Sudorsstraint can be also considered
when the bin does not have rectangular shape. fonerdt is important to study more
practical constraints in the knapsack problem.him given problem, box rotation is
taken into account in order to find more practipatkings. Also, preplaced boxes
(bin with some obstacles) and vertical stabilityighhare real-world constraints are
studied.
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CHAPTER 3

Problem Formulation

3.1. Problem Definition

In this study, the three-dimensional knapsack mmwbls considered where there is
one bin with fixed size and a set of boxes; eachhas an associated size. The aim is
to find an efficient solution methodology in order pack rectangular boxes in a
single bin so that the total value of the packexklsas maximized, or equivalently the
empty spaces left are minimized. The boxes arenassuio be strongly heterogeneous
which means there is a relatively high number &edent types of boxes and a small
number of boxes for each box type (Wascher e80Dy). Moreover, the packing is
considered feasible if each box lies entirely ia tin, and the packed boxes do not
overlap. The edges of all boxes must be paralle¢héoedges of the bin (orthogonal

packing). The bin and boxes are assumed to bectarmgular shape.

Some practical considerations which play an impantale in modeling more realistic
knapsack problems are presented such as box rotatmbin stability. Boxes are able
to freely rotate in six different orientations, deeot to be packed in layers, and the
bottom of each box must be supported by the toptloér boxes or the bin floor. In
addition, some boxes are considered as pre-plaocrdshor obstacles, whose left-
bottom-behind (LBB) corner should be placed in acdr position. The value of
each box is equal to its volume. It is assumedtti@tlimensions of all boxes and the
bin are integers, thus the placement are to be dorateger steps. Let C be a
rectangular container with width W, height H angttieD. The origin of the Cartesian
coordinate system is located at the LBB cornehefdontainer, antj, h;, andw; are
respectively, the length, height and depth of bget. For each packed box,; (¥,

z)) represents the coordinates of the LBB corneheftiox.

A mixed integer programming formulation is presenter the given problem. Some
real-world knapsack problem constraints are comsalén the model which, to the
best of our knowledge, have not been studied ybes& constraints are vertical
stability and pre-placed boxes. Since the threeedsional knapsack problem is NP-

hard, it is difficult to solve. In addition, theeftibility of the orientation of boxes
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significantly increases the search space, so tleuliy of finding the optimal
solution is enhanced as well. Some exact algoritasngell as heuristic methods are
proposed in the published literature. As exact rdlgms require more time to find a
solution, heuristic approaches are more popularcamdbe good alternatives to find
optimal or near optimal solution. The proposed dkidenensional solution
methodology is based on Egeblad and Pisinger's 9R08equence triple
representation. Simulated annealing is used asstieunethod.

3.2. Mathematical Formulation

A mixed-integer programming model of the 3D-knapspooblem is introduced in
this section. The mathematical model is based cgblad and Pisinger (2009) and
Wu et al. (2010). Some modifications are made ieirthmodel which include
considering vertical stability and pre-placed bogeastraints. Egeblad and Pisinger
(2009) and Wu et al. (2010) do not consider thegmrtant and practical constraints.
Constraints (1) — (4) are based on Egeblad anddisi2009); they did not consider
the box orientation in their model. The binary piosi variables which show the
orientation of the boxes are based on Wu et all@RMHowever, constraints (5) — (17)

are new constraints added to the model which ageried in the following sections.
3.2.1. Notations

The variables and parameters used in the mathexh&gienulation are introduced as
follows:
» Variables:
(xi,Yi,z): LBB coordinates of box i
Xwi, Zw;: 1 whether width of box i is parallel to the can&’s X and Z
{ 0 otherwise
Yhi: [ 1 if height of box i is parallel to the contaifseY

0 otherwise
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Zd: | 1
L
rij, Lz [ 1
j

0j, Uy [

bij, fiji [

if depth of box i is parallel to the contaireZ
otherwise

if box i is to the right of or to left of box j
otherwise

if box i is over or under box |
otherwise

if box i is behind or in-front-of box j
otherwise

if box i is packed

otherwise

if X > X

otherwise

if X < X;

otherwise

ifz >z

otherwise

if z < z;

otherwise

if X'j > %

otherwise

if X' < X'

otherwise
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Cs: [

Cs: [

Cs: [

Cs: [

X'i= X + WwiXw; + h(ZW. -Yh + Zd) + d(l - Xwi—Zw + Yh - Zd)

L 0

if Z’j >Z

otherwise

ifz';< 7'

otherwise

if Xi < % <X

otherwise

ifz<z<2Z

otherwise

if X <X'j <X

otherwise

ifz<zj<z,

otherwise

if xi<x <xjand z<z <z
otherwise

ifx <x <xjand z<zj<7Z7)
otherwise

if x <xj<xjand z<z <7z
otherwise

ifx <xj<xjand z<z <7z

otherwise

Z'i=z+dZd + h(1-2Zw - Zd) + wiZw;
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* Parameters:
(w;,hi,d): width, height and depth of box i
(W,H,D): width, height and depth of the container
(r,s,k): LBB coordinates of the pre-placed boxes
(a, b, c, d): Binary orientation parameters offiheplaced boxes

P:: value of box i

3.2.2. Assumptions

The following assumptions are considered for the imtieger linear model:

The boxes are strongly heterogeneous.

The boxes must be located orthogonally

The boxes are able to freely rotate

The box and bin dimensions are assumed to be ngetiue integer

The value of a boxes is equal to its volume

S T o

The X, Y, and Z axes of the bin are shown in ti¥ing figure.

AY

\

Figure3.1. The X, Y, and Z axes of thebin

3.2.3. MILP

The objective Function is maximizing the value atked boxes:

Max)' P
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Subject to:

i+ lj+by+f+u=s+g-1 Oij %

Xi + WiXw; + h(Zw; — Yh + Zd) + d(1 - Xwi— Zw; + Yh — Zd) < x; + M(1-ly)

Ui 4]

Xj + WiXw; + (Zw; — Yh + Zd) + d(1 — Xw— Zw; + Yh — Zd) < X + M(1-1r;)

Oij
z+dzZd +h(1-Zw-Zd) + wZwi <z + M(I-h)  Oij i
z +dZd + h (1 - Zw — Zd) + wZw; < z + M(1-f;) Oij i4

yi + hYhi + wi(1 — Xw — Zwi) + d(Xw; + Zwi — Yh) < y; + M(1-)

Oij i
yi + hYhj + wi(l — Xw; — Zw) + g(Xw; + Zw; — Yh) <yi + M(1-0))

Hij 4
Xi + WiXwi + h(Zw; — Yh + Zd) + d(1 - Xwi— Zw; + Yhi — Zd) < W

yi + hYhi + Wi(1 — Xw — Zwi) + d(Xw; + Zwi — Yh) <H
z+dZd +h(1-2w-2d) + wZw; <D
Xwi+ 72w <1

Zw; + Zd<1

0<Zwi- Yhi+Zd<1

0<1-Xwi-Zwi+Yh-Zd<1

O<Xwj+Zw-Yh <1

i, ¥, z)=(r,s, k) Ui OPDb

(Xwi, Zw;, Zd, Yh) = (a,b,c,d) i OPb
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(1)

(2a)

(2b)
(2c)

(2d)

(2e)

(2f)
(3a)

(3b)
(30)
(4a)
(4b)
(4c)
(4d)
(4e)
()
(6)



X — % <M. yj X —%=M (Y5 —1)
X'i =% <M. x5
(V5 + G — 1)/ 2 < 25 < (¥ + X5) /2
Z-2<M.Y) Z-2>M (5 -1)
Z' -z <M. X
P + X0 — 1)y 2 < 2% < (Y% + %) /2
X'} =% <M. Y5
X'i = X} < M. X5
(V5 + X5 — 1)/2 <25 < (Y5 + X5) /2
Z—z<M. ydij
Z' -z < M. x5
% + 8 — 12 < 2% < (v + ) /2
(& + 25— 1)/2<Csy < (& + 2%) /2
(& + 25— 1)/2<Csp, < (& + ) /2
(&5 + 25— 1)/2<Css< (& + 2)/2

(Zcij + Zdij —1)/2<Cs4< (Zcij + zdij)/2

Cs+Cs+Cs+Cs=uy+0q

X'i= X + WiXw; + h(ZW. -Yh + Zd) + d(l - Xwi—Zw + Yh - Zd)

Zi=z+dZd + h(1-2w - Zd) + wiZw;
ri, B, by, fij, uy O {0,1}

Xwi, Zw;, Zd, Yhi U {0,1}
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Oi,j

Oi,j

Xi=Xj=M (Xcij -1)

Oi,j

Zi-zj>M (Xdij -1)

i,
i,
i,
i,

04

Oij

Xi—%>M (x5 —-1)+0.5

i#

zi—-z>M (% -1)+0.5

i#

Xj=%>M(y5-1)+05

i#

Zj-2=M (% -1)+05

i#
i#
i#
i#
i#

i#

(7a)
(7b)
(7c)
(8a)
(8b)
(8c)
(9a)
(9b)
(9¢)
(10a)
(10b)
(10c)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

(19)



X%, X%, X5, XYL Yo Yo Y 2, 2, 25, 2 0{0,1 (20)
s, Cs, Cs, Cs, Cs 10 {0,1} (21)
(Xi Vi Zi) >0 (22)

Constraint (1) ensures that if box i and box j@aeked then they must be placed left,
right, under, over, behind or in-front-of each ath@onstraints (2) guarantee that any
two boxes i and j do not overlap, while considerihg box rotation. It includes six
parts; constraint (2a) and (2b) find the x coortéra the box to be packed; constraint
(2c) and (2d) are used to find its z coordinatel, @nstraint (2e) and (2f) calculate its
y coordinate. The binary position variables (Xiéw;, Yh;, Zd) are used to allow box
rotations. Constraint set (3) ensures that all boaee placed within the bin’s
dimensions. Constraint (3a) makes sure that thedamensions do not exceed the
bin’s width; while constraints (3b) and (3c) aréated to the bin’s height and depth.
Constraint set (4) is used to make sure that tharpivariables which show the
position of the boxes are controlled to represeatfral positions. Constraint (4a)
guarantees the width of the packed box is not lghtal both X and Z axis. Constraint
(4b) ensures that the width and depth of each phbke are not parallel to Z axes
simultaneously. Constraint (4c) shows that the Htegd box i cannot be parallel to
both Z and Y axes. Constraints (4d) and (4e) abtsdrol the orientation of the packed
boxes, and ensure that the width, height, and defpgach packed box are not parallel
to two axes simultaneously. Constraint (5) andaf@) used to fix the coordinates and
orientation of the pre-placed boxes, where Pbsetaf preplaced boxes. Constraints
(7)—(10) ensure vertical stability. These consteatompare the four corners of each
newly packed box with the points that cover the abpther packed boxes. If one of
the corners has the same x and z coordinates aefdhe mapped points, it means
that the new box is located under or above that @bnstraint set (7) is used to
define the binary variabl€®izand includes three parts. Constraint (7a) enshesif
X;> X, then ¥} is equal to one; otherwise it is equal to zeronsT@int (7b) makes
sure that if x< x;, then X is one; otherwise it is equal to zero. Constrgift)
guarantees wherfijyand Xj; are both equal to one, thef) & equal to one. Similarly,
constraint sets (8), (9), and (10) are used tondetfhe binary variableé’i,z Z%, and
zdi,-. Constraints (11)-(14) show whether the x and erdioates of the new box’s
corner are equal to x and z coordinates of the edppints on the top of the packed
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boxes. Constraint (15) ensures that if these coatés are the same, the new box
should be located on top of or under the packed Goxstraints (16) and (17) define
x'; and z{. Constraints (18) - (21) represent the binaryaldds, and constraint (22)

represents the integer variables.

The given mathematical model has 249n binary variables and 3n integer
variables. It was coded in GAMS/Cplex, and the cotatonal tests run on an Intel®
Core™ |5 CPU @ 2.67GHz processor with 4.0 GB RAMe Todel at first was run
for an instance with 5 boxes; it reached the ogtsoéution in 53 seconds. Then the
instance with 6 boxes has been considered, thé@olime is equal to 6 minutes and
14 seconds. However, the solution time for theaims¢ with 7 boxes increased
significantly to 4 hours and 4 minutes; the numbkwrariables in such instance is
1113. The optimal results for instance with 8 bexB$40 variables- was obtained
after 21 hours and 39 minutes. GAMS was not ableeth optimal solution for
instance with 9 boxes — 1809 variables- even &ftdays, thus the algorithm was
terminated before reaching the solution. Accordimghe results, optimal solutions
only for small size instances (up to 8 boxes) werssible in a reasonable time. Thus,
heuristic algorithm is required to get faster sols for larger instances.

3.3. Two-dimensional Model

Although the proposed model is considered a thmeessional knapsack problem it
can be modified in order to solve two-dimensionedlglems as well. The z axis
should be omitted in order to adjust the modelc&itwo dimensional problems are
simpler than three-dimensional ones they can beedoin a shorter time. As an
example, the instance of 4 different types of mghes (totally 10 rectangles) is
studied. The dimensions and maximum allowed nurob#rese rectangles are shown
in table 3.1. The dimensions of the bin, whichwse tlimensional as well, are equal to
900x900 (mrf).
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Table 3.1. 2D Rectangles Dimensions and Maximum Allowed Number

Rectangletype | Width(mm) | Height(mm) Max. allowed no.
1 229 483 4
2 165 330 3
3 165 165 1
4 229 406 1

The optimal solution is obtained after 3 hours &8@dminutes. Figure 3.1 shows the
obtained result. Compared to the three dimensimsgnces, the optimal solution can
be obtained sooner. However, the solution timeotsreasonable for the 2D instances
as well, thus it is better to use a heuristic atgar to reach the results in a shorter
time.

Figure 3.2. 2D Instance Result

v
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CHAPTER 4
Solution Methodology

4.1. Three Dimensional Algorithm

Based on Egeblad and Pisinger’s work (2009), theetBequences considered for the
boxes must be packed. These sequences show thigerddax locations. They are
known as sequence triple. Sequence triple is onethef most successful
representations in the literature and defines thekipg order. As mentioned in
Egeblad and Pisinger (2009), the sequence tripds dot create all three-dimensional
packing; however, it is proved that a fully robatcgable packing is obtainable with
this representation. Aobot packingis a packing that can be obtained by placing
boxes from the LBB corner of the bin while each Imin-front-of, on the right side,
or above other boxes. If all six rotations of thacking are robot packable, the
packing is known as a fully robot packable packiAfhough Egeblad and Pisinger
(2009) claim that their algorithm creates normalizeckings, their results are not
normalized. Normalized packing is a packing whdrbaekes are placed as far left,
down, and back as possible without overlapping, amery new box touches an
already placed box on its left, lower, and backesiHowever, according to their

results some of the packed boxes are placed iaithe

The solution methodology section is organized dlovis: first, sequence triple is
described in section 4.1.1 which is used in sedlidn? in order to place the boxes.
Simulated annealing is defined in section 4.1.2datrol the local neighbourhood
search. Orthogonal rotation, pre-placed boxes &ohest), four-corner packing, and
box insertion order are explained in sections 4.441.5, 4.1.6, and 4.1.7,

respectively.

4.1.1. Sequence Triple

Three sequences A, B, and C represent the fullgtrpackable packing, where A, B,
and C are permutations of the numbers 1 ... nnasdhe total number of boxes to be
placed in the bin. These sequences denote théveefdhcement of each of the two i

and j boxes with respect to each other. Each seguerdefined as follows:
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* A-chain If box i appears before box j in the A-chain,rihgox i is located to
the left of, on top of, or in front of box j.

* B-chain if box i appears before box j in the B-chain,rth®ox i is located
behind, to the left of, or below, box j.

» C-chain If box i appears before box j in the C-chain,nthmx i is located to

the right, under, or in front of box j.
4.1.2. Placement algorithm

Based on the given three sequences, box i is kbaatethe left side of box j if it
appears before box j in A-chain and B-chain anérafiox j in C-chain. Box i is
located below box j if it appears before box j ktlain and C-chain and after box j in
A-chain. Moreover, box i is placed behind box jtibppears after box j in B-chain
and before it in A-chain and C-chain, or if box iplaced after box j in all sequences.
It is observed that box i always appears before jnioxB-chain for all three given
placements. Thus, the order of placement of thed®ax the bin can be based on the
order of B-chain. The first box is placed at th@ior, and the succeeding boxes are
placed according to their relative position to athg packed boxes. The coordinates of

each new box are calculated based on the follovangula:

X = max(, ma)gupx(xj +Wj))
y, =max0 maxsp, (¥, * hy)
z =max0max.p (z,+d,)

where R, R, and R are the subsets of packed boxes located on thebtdbw, and
behind the new box. In order to consider vertitabsity and reduce the gap between
the boxes, some modifications have been appliedglebad and Pisinger's (2009)

procedure. These modifications are explained irfdhewing section.
* Vertical Stability

As it is assumed that (x,y,z) coordinates of boxed their dimensions are integer, it
is possible to map a set of points that a certaindovers.. Let (x Vi, z) be the LBB
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coordinates of each to be packed box. The algoritbnsiders four corners of the
given box. If x and z coordinates of one of thesmers are equal to the coordinates
of one of the points at the top of any packed bbxeturns the height of that box.
Then, the y coordinate of the new box would be etuanaximum of those values.
The proposed approach is illustrated in the follayvi

1. Consider (x Vi, z)
0j O P, : compute % and 3
Where x< x'j < x+w;-1 and < 7', < z+d-1
If (x; =Xx’jand z= zj) then
Return y+ h
Else Go to 2
2. Consider (x+ W, Vi, z)
0j O P, : compute % and 7
Where x+1<X'; < x+w; and 7< z'j < z+d-1
If (xi+ w; = X’jand z= z’j then
Return y+ h
Else Goto 3
3. Consider (x i, z + d)
0j U P, : compute x and z
Where X< X'j < x+wj-1 and zr1< 7' < z+d
If (x; = x'jand z+ d = )
Return y+ h
Else Go to 4
4. Consider (x+w, Y, z + d)
0j O P, : compute % and 3
Where x+1 < X’; < x+wj and z+1 < 2’ < z+d
If (xi+ wi= X’;and z+d; = z}) then
Return y+ h

Else Return O

Returny =maxO.max (Y, +h;)
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The algorithm pushes each packed box downward wiessible such that its bottom
can be supported by the bin floor or by the toptber packed boxes.

4.1.3. Smulated annealing

Although it is relatively simple to develop a siratdd annealing heuristic, choosing a
good neighborhood and cooling procedure, whicHfitkepends on several different
parameters, is usually necessary for the algorithmvork efficiently. The cooling
procedure is different for various types of probland even between instances of the
same problem. Therefore, it is difficult to findtoa good cooling procedure. In the
proposed simulated annealing algorithm, the tentpeyais reduced when a new
solution is accepted, according to the followingdtion:

t—t/(1+ Bt)

wherep is the cooling parameter. Besides the cooling dpratedure, the process is
allowed to heat up again whenever it is appearedetng trapped. The heating up

function is:
t—t/(1- at)

wherea is the heating parameter. The temperature is eiwhen the solution is
accepted and increased when the solution is rejectenust be smaller thgh as the

number of acceptances is small relative to numbegjections (Dowsland, 1993).

The neighbourhood of each solution is defined as ohthese five permutations:
either exchange two boxes from one of the sequermeshange two boxes in
sequences A and B; exchange two boxes in sequénaad C; exchange two boxes
in sequences C and B; or exchange two boxes isegliences. An overview of the

simulated annealing algorithm is as follows:

Il Prepare the initial state and volume
temperature := initial_temperature
initial_state := randomly generated state
best_state :=initial_state

best_volume := volume_utilized(best_state)
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while (time is not up) do
neighbours := generate_neighbourhood(best) state
neighbour := randomly select an element fromghtsours
neighbour_volume := volume_utilized(neighbour)
found_better := false
if (neighbour_volume>best_volume) then
found_better := true
else
/Il We accept a worse solution at randomheichance of
// doing so decreases with the temperature.
temperature := temperature /{itemperature)
delta := (best_volume — neighbour_volumagdt_volume
i ;== random number between 0 and 1
if (i< e”( -delta / temperature ) ) then
found_better := true
else
/lincrease temperature
temperature := temperature la¢temperature)
end if
end if
if (found_better) then
selected := selected + 1
best_state := neighbour
best_volume := neighbour_volume
end if
end while

return best_state

The solutions are compared based on the bin uidiza The formula used for
calculating the utilization percentage is as fokow

total _volume of _ pa(:ked_boxes><
volume _of _bin

utilization_ percentage= 100
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4.1.4. Orthogonal Rotation

The boxes are allowed to be rotated orthogonaltir vaspect to the bin. Suppose the
width, height, and depth of all boxes are respettiyparallel to x, y, and z axis, and
w;, h, and d represents the width, height, and depth of bosespectively. It is
possible to obtain better packings if the boxesewetated in different directions.
Egeblad and Pisinger (2009) considered box rotatiay for the two dimensional
instances but neglected to include it in the titie@ensional experiments. Boxes are

allowed to be rotated in one of the following otegion:

WHD: Standard orientation.

WDH: Swap the height and the depth.

HWD: Swap the width and the height.

HDW: Swap the width and the height, and then swapheight with the depth.
DHW: Swap the depth with the width.

DWH: Swap the depth with the width, and then swepdepth with the height.

The given rotation is applied to the simulated afing by adding an additional
transformation to the neighbourhood generatingimeutThe orientation of the boxes
is generated randomly at first. Thus, an additiomattor R which shows the
orientation of the boxes is stored as well as dwience triple.

4.1.5. Obstacles
SupposeO is a set of rectangular obstacles with known coatds (X, y, z) and
known dimensions (w, h, d). At the beginning of #hgorithm, the obstacles are fixed
into the bin. The packing is created from the seqgeetriple and those boxes that

overlap with any obstacles in the set are removds: container free volume is

calculated as follows:

Bin free volume = volume of bin — total volume lo$tacles
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4.1.6. Four-corner packing

Four packing schemes, one for each corner areetteBirst, the coordinates of the
boxes are calculated relative to the current orighren, their real (x, y, z) coordinates
are calculated relative to the real origin of tlatainer which is its LBB corner. The

processing technique is as follows:

W := bin width
H := bin height
D := bin depth
w := box width
h := box height
d := box depth

if (loading from front) then
/I No change needed: this is the default loaduethod.
return <x.,y,z>
else if (loading from rear) then
return<W —-x—-w,y, D -z —d>
else if (loading from left side) then
return<W —z —w, y, x>
else if (loading from right side) then
return<z,y, D —x —w>

end if

4.1.7. Order of box insertion

As mentioned earlier, the order of inserting boxd#e the container is based on B-
chain. The order of the boxes in B-chain can batecerandomly or can be based on

the volume of the boxes which means ones with targeime are packed first.

4.2. Two Dimensional Algorithm

Although the algorithm is proposed for the thremelsional knapsack problem, it
can also be used to solve two dimensional instaasesolving a two-dimensional

knapsack problem is simpler than three-dimensi@mad. The algorithm must be
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modified in order to apply to the two-dimensiormagtances. These modifications are

as follows:

Instead of defining three sequences, a pair of esetps commonly known as

sequence pair is defined. The definitions are bews:

* A-chain If rectangle i appears before rectangle j in Aiohthen rectangle i is
located left of or on top of rectangle j.
* B-chain If rectangle i appears before rectangle j in Biohthen rectangle i is

located left of or under rectangle j.

Based on these two sequences, rectangle i is tbcatethe left of rectangle j if it
appears before box j in both A-chain and B-chaiowklver, rectangle i is located
under rectangle j if it appears before box j in #&im and after box j in B-chain.
These implications are used for the placement gkgor The first rectangle is placed
in the origin, and the succeeding rectangles aaeepl according to their relative
position to the already placed rectangles. Thedinates of each new rectangle are
calculated based on the following formula:

X, =max(, maXEPX(Xj +\W)) y =max(, maXDPy(yj +h))

where R and R are the subsets of the placed rectangles locatedeoleft and below
the new rectangle, respectively. Same simulate@amy scheme is used here but
with two-dimensional sequences. The neighborhooehoh state is defined as one of
these three permutations: either exchange twonglgs in A-chain; exchange two
rectangles in B-chain; or exchange two rectanglesoth sequences. The rectangles
are allowed to be rotated in the following two otegions: WH which is the standard
orientation, and HW which is obtained by swappimg width and height. Pre-placed
rectangles with known coordinates (x,y) and knowneshsions (w, h) are fixed into
the bin. Two packing schemes, one for each coarercreated. First, the coordinates
of the rectangle are calculated relative to theemurorigin. Then, their real (x,y)
coordinates are calculated relative to the reaimrof the bin. Similar to the three-
dimensional problems, the order of inserting thetanegles into the bin is based on the
order of rectangles in B-chain which can be creadé@diomly or can be based on the
area of the rectangles.
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CHAPTER 5

Numerical Analysis
5.1. Introduction

This chapter presents some numerical experimentsttfe proposed solution
methodology in order to assess its practicabilithe numerical examples are
illustrated in section 5.2. Section 5.3 presenéspghrameter setting for the heuristic
algorithm. The results are discussed in section &d the algorithm verification is

illustrated in section 5.5.

5.2. Numerical Experiments

The proposed methodology is implemented in C++. Tbde is tested using two
different sets of boxes. The first set is based5éi J1100 — Section 9 — Standard
which includes 7 types of boxes. The dimensiornth@$e boxes are illustrated in table
5.1. Twelve instances are created by using theé dies of boxes. These instances
contain 36 and 70 boxes. The maximum allowed nu