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Abstract

Different from a centralized database system, distributed query processing involves data 

transmission among distributed sites, which makes reducing transmission cost a major 

goal for distributed query optimization. A Positionally Encoded Record Filter (PERF) has 

attracted research attention as a cost-effective operator to reduce transmission cost. A 

PERF is a bit array generated by relation tuple scan order instead of hashing, so that it 

inherits the same compact size benefit as a Bloom filter while suffering no loss of join 

information caused by hash collisions.

Our proposed algorithm PERF_C (Compressed PERF) further reduces the transmission 

cost in algorithm PERF by compressing both the join attributes and the corresponding 

PERF filters using arithmetic coding. We prove by time complexity analysis that 

compression is more efficient than sorting, which was proposed by earlier research to 

remove duplicates in algorithm PERF. Through the experiments on our sjmthetic testbed 

with 36 types of distributed queries, algorithm PERF_C effectively reduces the 

transmission cost with a cost reduction ratio of 62%-77% over IFS. And PERF_C 

outperforms PERF with a gain of 16%-36% in cost reduction ratio.

A new metric to measure the compression speed in bits per second, “compression bps”, is 

defined as a guideline to decide when compression is beneficial. When compression 

overhead is considered, compression is beneficial only if compression bps is faster than 

data transfer speed. Tested on both randomly generated and specially designed distributed 

queries, number of join attributes, size of join attributes and relations, level of 

duplications are identified to be critical database factors affecting compression. Tested 

under three typical real computing platforms, compression bps is measured over a wide 

range of data size and falls in the range from 4M b/s to 9M b/s. Compared to the present 

relatively slow data transfer rate over Internet, compression is found to be an effective 

means of reducing transmission cost in distributed query processing.

Keywords: distributed query processing, PERF, compression, arithmetic coding, bloom 

filter, two-way semijoin, bps
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Chapter 1 Introduction

One of the major goals in Distributed Query Processing (DQP) is to reduce the amount of 

transmission among the distributed sites. Since the dominant data transmission in DQP is 

created by distributed join operations, new operators such as semijoin, bloom join and 

PERF join had been proposed to replace the original join operation. Due to the compact 

size of bloom filters, algorithms using bloom filters consistently perform better than those 

employing semijoins [ML86] [M098] [M099] [MOLOO]. But bloom join suffers from 

the loss of join information due to unavoidable hash collisions; therefore a relation may 

only he partially reduced after bloom joins.

Algorithms employing Positionally Encoded Record Filters (PERFs) [LR95] and 

variations such as Complete Reduction Filters (CRFs) [Zha03] and Composite Semijoin 

Filters (CSFs) [Zhu04] came into being with the desire to keep the advantage of bloom 

filters as well as to avoid the drawback of hash collisions. PERF bit arrays are generated 

and transmitted based on the relation tuple scan order instead of hashing. PERF join has 

been shown [LR95][HF00][Zha03] [Zhu04] to be a cost effective operator due to its dual 

benefits. A PERF join outperforms a bloom join since it inherits the advantage of a bloom 

filter without suffering the side effect of hash collisions. A PERF has the same storage 

and transmission efficiency as a bloom filter and preserves the complete join information 

by generating a filter based on the relation tuple scan order. Therefore, reduction methods 

that require the original join information to he retained can still be considered in PERF 

based algorithms. PERF join outperforms two-way semijoin due to 1) cheaper 

transmission cost due to the compact size of PERFs instead of joining attributes; 2) 

cheaper local operation to do the backward reduction as the compact PERF bit arrays 

might be able to fit into memory, so that the I/O cost to do semijoin on large-sized 

attribute can be avoided.

However, to proceed with the PERF reduction properly, it is required that the site 

receiving the PERFs keep the order of relation tuples the same once join attribute 

projections are sent to do the forward semijoin. This requirement becomes hard to fiilfill 

when the duplicates in the join attribute projections are to be eliminated to reduce 

transmission cost. Sorting was proposed to eliminate duplications in former research
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[LR95]. As duplicate removal is a general topic in DQP and sorting is time consuming, it 

is worthwhile to seek better solutions to remove duplicates efficiently. We propose 

algorithm PERFjC, which applies arithmetic coding to compress both the joining 

attributes and the PERF filters in PERF join to further reduce the transmission cost, based 

on the fact that arithmetic coding is more efficient than sorting. A new metric 

“compression bps” is defined to guide the decision on when compression is beneficial, 

when the cost of compression has to be addressed. Evaluations of algorithm PERF_C and 

compression bps are conducted based on 36 types of randomly generated distributed 

queries. The evaluation results of PERF_C are compared with PERF to investigate the 

compression effects. Specially designed tests on compression bps are also carried out to 

identify the critical database factors that will influence compression bps.

The rest of this thesis is organized in 6 chapters. After briefly reviewing the literature 

concerning DQP strategies and algorithms in chapter 2, the inefficiency of using sorting 

to eliminate duplicates in PERF is discussed and the motivation to use compression in 

PERF is stated in chapter 3. A compressed PERF algorithm is proposed in chapter 4 to 

demonstrate where and how compression can be applied in PERF. Compression bps is 

also defined in Chapter 4 with theorems 1 and 2 to discuss whether compression is still 

beneficial when the cost of compression has to be considered. Chapter 5 describes the 

implementation of algorithm PERF_C and the evaluations designed and carried on 

algorithms PERFjC and compression bps. The conclusion and future work are given in 

Chapter 6 before the thesis ends with the bibliography.
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Chapter 2 Literature Review

A Distributed Database (DDB) is a collection of multiple, logically interrelated databases, 

which are dispersed geographically over a computer network and maintained by local 

computers [TC92][Ozs99], Distributed Query Processing (DQP) is the process of 

retrieving data from different sites. The challenge of DQP is to design and develop a 

sequence of operations to minimize the cost of executing the query. The cost of 

distributed query processing can be grouped into local cost and transmission 

(communication) cost. Most research focused on minimizing the transmission cost, 

ignoring the local processing cost. It has been proven that finding such an optimal 

solution of DQP is NP-hard [CL90][WC96] [HK94][BR88][PV88] due to the complexity 

of the exhaustive enumeration of all possible query processing plans. Thus, heuristic 

algorithms have been proposed since the 1970’s to quickly develop sub-optimal or near- 

optimal algorithms for distributed query processing.

2.1. Assumptions, definitions and modeis used in DQP

2.1.1. General assumptions
1. A point-to-point network is assumed and each distributed node has local 

processing and storage capabilities.

2. The relations are distributed amongst the nodes and all nodes can access all data.

3. Only select-project-join (SPJ) queries are considered.

2.1.2. Distributed query processing model
Typically the optimization of a distributed query is processed in three phases [KR87] 

[RK91 ] [CL84] [YC84] [LR95] [HFOO]:

1. Initial local processing phase

All local processing that requires no inter-site communication is performed here, 

which includes selection and projection on the joining and target attributes of 

relations.

2. Reduction processing phase

A reducer, such as a semijoin or hash semijoin schedule is derived from the 

remaining join operations and executed to reduce the sizes of all joining relations in a 

cost-effective way.

3. Final query processing phase
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All the preprocessed relations and intersite results are transmitted to a final site where 

the joins are performed and the answer to the query obtained.

2.1.3. Cost models and cost-effective
Two cost models are of interest in distributed query processing. The response time [SB82] 

calculates the elapsed time from the start of the query to the point when the final results 

are obtained, which can always be reduced if the queries can be processed in parallel. 

And the total time cost [ESW78] includes all the costs involved in the query processing. 

It is assumed that the cost involved in transmitting data from one site to another is linear, 

and the local processing cost is considered to be negligible in most cases. Therefore, as 

used in most research papers, the total time cost C (X) is represented as a linear function 

of the size of data transmitted, i.e. C (X) = Co + Ci* X, Where X is the amount or size of 

data transmitted and Co and Ci are system-dependent constants between distributed sites. 

The cost of data transmission is assmned to be the same between any two distributed 

computers for the same size of data transmitted. However, local processing cost can be 

significant for distributed systems under very high-speed network [RK91].

If applying an algorithm to the query processing results in the reduction of the transmitted 

data among distributed sites, this reduction is called the Benefit of this algorithm. 

However, the operation of this algorithm may necessarily involve Cost, including local 

processing and intersite processing cost. Whether this algorithm is profitable or not

depends on the Profit, which is defined to be (Benefit - Cost). A query processing using a

certain algorithm is called cost-effective or profitable if the cost introduced by executing 

this algorithm is less than the benefit.

2.1.4. Selectivity model
Selectivity of an attribute is defined to be its cardinality divided by the size of its domain, 

under the assumption that the attribute value of each join attribute is uniformly and 

independently distributed over the domain of the corresponding attribute. The selectivity 

model is used to predict the reduction effect after the reduction process, as selectivity 

varies from 0 to 1. The selectivity of a join attribute projection dij, is p(dij) = Idijj/jD 

(dij)|, where |dijl is the cardinality of the projection of relation i over attribute j and |D 

(dij)l is the cardinality of the domain for attribute dij. |D (dij)| is the possible number of 

values (tuples) in the domain of dij, not a coimt of the real values occurring in the

database. And it is assumed to be finite and known.
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The selectivity of an attribute can be used to estimate the size of a relation Rk after 

reduction phase. For example, after the execution of a semijoin from Ri to Rk based on

the joining attribute j, denoted by RilXj Rk, the projection of attribute A at relation Rk is 

reduced to Rk’. Then S (Rk)' = S (Rk) * p(dij), where S (Ri) is the size of the relation in 

bytes.

2.2 DQP Strategies and algorithms
Various distributed query processing strategies and algorithms have been proposed in the 

past 20 years. They are grouped in this section to be join based, semijoin based. Bloom 

join based and PERF join based algorithms.

2.2.1 Initial feasible solution (IFS)
This is the most intuitive and basic strategy in DQP. All the relations are retrieved and 

shipped to the query site and the joins are performed there. Obviously, it is the simplest 

but rarely efficient. The cost will be associated with the size of relations that are 

transmitted.

2.2.2 Join and join based algorithms
The join operation is one of the ftmdamental relational database query operations to 

combine data stored at different sites [ME92][YC84]. Rl joins R2 on the same joining

attribute A, denoted by Ri >< A R2, is shown in Figure 2.1.

A B

1 4

2 3

3 6

Rl

A D

2 8

3 9

4 7

A B D

2 3 8

3 6 9

R2 R1MAR2

Figure 2.1; Join operations

Join is performed by concatenating tuples of Ri and R2 where the value of attribute A is 

equal for both relations. In distributed systems, Rl and R2 may be located in different 

sites. So the join operation in DQP is performed by shipping the relation that has a 

smaller size to the bigger-sized one and performing the join there. The join result is then
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shipped to the final query site. The communication cost is the amount of data transferred 

over the network, and the benefit is the tuples eliminated by the join.

Since the join between two relations sometimes can eliminate tuples that do not match, it 

is natural that join he used to reduce the relations first before each of them is sent to the 

final site individually. However, the relation after join could be much larger than the 

participating ones, so join operations may expect greater cost of data transfer. Moreover, 

if there are a small percentage of tuples, which are of interest to the final site, it is 

obviously a waste to ship the entire relation. To summarize, although the join operation 

has the advantage of simplicity, it is still very expensive and effort has been made to 

optimize the join operators.

2.2.3 semijoin and semijoin based aigorithms
Under the situation that sometimes shipping the whole relation to perform join is too 

expensive if only a few tuples are really needed, the semijoin operator was proposed 

[BC81][BGWR^81] as an effective method to eliminate the transmission cost of 

traditional join. The basic idea is simple: instead of shipping the whole relation to 

perform the join, only the joining attributes are projected and shipped.

As illustrated in Figure 2.2, semijoin Ri XIA Rj on joining attribute A is computed in the 

following steps:

1) Project the joining attribute A of Ri locally in site i.

2) Ship the projection Ri [A] to Rj.

3) Perform a join Rj tx Ri [A] of Rj with the attribute Ri [A]

4) Reduce Rj by eliminating tuples whose attribute A are not matching any value in Ri 

[A].

A B A A D

1 4 1 2 8

2 3 2 3 9

3 6 3 4 7

Ri Ri[A] Rj

A D

2 8

3 9

Ri XA Rj

Figure 2.2: Semijoin operations
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Step 2) is the cost of the semijoin. It is a leaner function of the size of Ri [A]. Step 4) 

contributes to the benefit of the semijoin. The benefit is “size of Rj before semijoin -size 

of Rj after semijoin”. If the cost < benefit, this is a cost-effective semijoin.

Since semijoin was adopted in DQP, attention has been paid to improving the basic 

semijoin. As a result, new methods such as two-way semijoin [KR87], N-way pipelined 

semijoin [RK91], domain specific semijoin [CL90], composite semijoin [PC90], one-shot 

fixed precision semijoin [WLC91] have been proposed to enhance the performance of 

basic semijoin approach. Only two-way semijoin is mentioned below for the sake of 

relevance.

Kuang created a two-way semijoin operator [KR87] that can be used to replace semijoin 

to reduce relations in the backward direction as well. A two-way semijoin Ri A—» Rj is 

illustrated in Figure 2.3 with 4 steps. It is called enhanced two-way semijoin [RK91], 

which further reduces the backward semijoin by shipping back to Rj the smaller size of 

the forward reduced relation Ri.

Ri

Ri

step 1

A B
1------

A
2 1 2
4 3 4
6 5 6
8 7 8

Ri[A]

A C
1 5
2 7
3 9

step 2 
Ri X Rj (Ri[A] IX Rj)

A B C ------ 1 A ^ — A C
2 1 2 2 7

Rj

V

step 4 Ri[A]m step 3 Rj
Ri[A]m IX Ri Send min{Ri[A]n,:2 , Ri[A]nm: 4,6,8}

Figure 2.3: 2 -  way semijoin operation

1. Send Ri [A] from site i to j.

2. Execute Ri [A] IXRj to get the forward reduction of Rj. Then partition Ri [A] into Ri
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[A] m and Ri [A] nm, where Ri [A] m contains the values of attribute A which match one 

of the values in Rj [A], and Ri [A] nm equals to (Ri [A]-Ri [A] m).

3. Send min {Ri [A] m, Ri [A] nm} from site j back to i.

4. Perform backward reduction. If Ri [A] m is smaller-sized, execute Ri [A] m M Ri. If 

Ri [A] nm is smaller, the tuples in Ri with attribute A that matches Rj are eliminated.

2.2.4 Bloom join and bloom Filter based algorithms
A bloom filter, as introduced by Bloom [Blo70], is a compact data structure for

probabilistic representation of a set in order to support the membership queries (i.e., “Is

element X  in set r?”)[RI01]. A bloom filter was first applied in distributed query 

processing as Bloom join by Mullion [Mul83]. An array of bits is generated using a hash 

function on a join attribute and it is transmitted to the remote site instead of the join 

attribute itself. As the size of a bloom filter is normally smaller than the original joining 

attribute, the communication cost can be saved. As shown in Figure 2.4, a bloom filter is 

constructed at Ri using hash fimction f  (x) = x mod 5, and it is shipped to site j as the 

reducer to reduce the relation Rj. A one-transform bloom filter based semijoin is called 

hash semijoin [CCY92][TC92] or bloom join [LR95]. Bloom join was proposed 

[Mul90][CCY92][TC92] as a new operator to replace semijoin and it can be described as 

follows:

Ri f(A) R

A B H(x) 1 A C
1 1 1 2 5 A C
2 3 1-------- 0 1 :—=0> 3 7 '-------- 2 5
2 5 0 4 9
5 7 1

Ri

Figure 2.4: Bloom filter operation with hash fimction H(x) = x

1. Create a filter f  (A) at site i.

Create a bit array as the filter and initiate all bits in the array into zero. Develop a hash 

fimction and use it to produce an address in the array for each value in the joining 

attribute. For each address produced, set the corresponding bit in the bit array to 1.

2. Reduce relation size
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Send the filter f  (A) fi-om site i to site j. Hash on each value in join attribute A of Rj, using 

the same hash function to produce an address for Rj [A]. Check the bit value in the 

corresponding address in filter f  (A); if the bit value is 1, the corresponding Rj tuple is 

kept. If the value is 0, discard this Rj tuple.

A bloom join or hash semijoin was shown to be beneficial due to flexibility and 

simplicity [CCY92]. It was suggested that a hash semijoin could be considered when a 

pure semjoin is not profitable due to the large width of the joining attribute 

[CCY92][TC92]. Through experiments, it was demonstrated that simply replacing 

semijoin with hash semijoin is almost always beneficial [M098][M099]. Closer attention 

was given to the effect of collisions on reduction filters and it was found that hash 

semijoin still achieved significant reductions even at a collision rate of 60% [MOLOO]. 

Besides being applied to DQP in the form of hash semijoin, Bloom filters are also 

adopted in many applications when the space savings effect out-weights the collision 

drawbacks. Active research areas using bloom filters include web cache sharing 

[FCAB99], queiy filtering and routing [GBHC00][KBC+00], compact representation of a 

differential file [Mul83] and free text searching [Ram89].

However, a bloom filter may posit an element in a set when it is not, which in the 

literature is called a collision, a false position [Mit02], or a false drop. A collision 

happens in Figure 2.5. The tuple with the field of attribute A equals to 6 is posited in the 

final join since 6 has the same address as 1. However, it is an unwanted tuple.

A B
1 csOl
2 cs02
3 cs03

Hashing with 
H(x)=x mod!

0
1
1
1
0

A B
1 csOl
2 cs02
4 cs04
6 cs06

csOl
cs02
csOfi'

Ri BF(Ri[A]) with H(x) Rj reduce Rj with BF(Ri[A) Rj’

Figure 2.5; Collision happens in Bloom join with H(x) = x mod 5

A perfect hash function can be assumed to simplify the handling of collisions 

[Mor96][Ma97]. A perfect hash function is a time and space efficient implementation of
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static sets, which guarantees no collision. In [Sch90], a code generator called GPERF is 

developed, which can produce a perfect hash function, a mini hash function and a near­

perfect hush function according to a given set of keys. However, a perfect hash function 

is hard to find and the bloom filter generated by a perfect hash function normally has 

huge size. So it is not practical to use a perfect hash function in DQP.

As far as collisions are concerned, there are 3 parameters that influence the construction 

of a m-bit bloom filter for a set with n members.

• The number of hash functions, denoted by k for hi, hi, ...hk. Parameter k 

corresponds to computational overhead;

• The size of the filter m, which counts for memory storage needed as it is preferred 

to put the filter in memory;

• The collision (error) rate perr

Bloom [Blo70] shows that for a given bloom filter of size m, the optimal number of hash 

functions k = ln2 (m/n) should be used to minimize collision rate perr. At this point, perr 

= (1/2) k, and the filter size m = (k * n)/(ln2). However, only a small number of hash 

functions are used in practice because of the adding of the computational overhead 

associated with each hash function. Research has shown that simply adding hash 

functions will not decrease the collision rate significantly, after the number of hash 

functions reaches a certain threshold [RIOl].

Compressed bloom filters were introduced [Mit02] as another reasonable way to reduce 

collisions. The bloom filter is built with a very large size and is compressed to trade for a 

lower collision rate with a small number of hash fimctions. To maintain the same 

collision rate, having a much lager size bloom filter allows a smaller number of hash 

functions to be used, so that the computation cost to do the multi-transform of the hash 

functions can be reduced. The trade-off is the cost of compression and decompression, 

which happens only once before transmission and upon receipt of message. Simple 

arithmetic coding [MNW98] was suggested [Mit02], as its compression scheme is able to 

achieve near-optimal compression performance, with fast implementations for both 

compression and decompression.

Due to the unavoidable collisions in bloom filter based algorithms, the relation can only 

be partly reduced using bloom filter-based semijoins. So Bloom filter based algorithms

10
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are also referred to as lossy semijoins [Mit02][RI01], compared with the full reduction by 

using semijoins. A Bloom filter based reducer is also limited to handle only equality join 

and acyclic join due to the nature of bloom filters. Despite of these limitations, a bloom 

filter based semijoin is demonstrated to perform consistently better than purely using 

semijoin [MOLOO][M098][Mor96]. The advantages and the limitations of a bloom filter 

based semijoin have motivated a new operator called PERF (Positionally Encoded Record 

Filters) join.

2.2.5 PERF join and PERF-based algorithms
A new search filter PERF is proposed in [LR95] as a novel two-way join reduction 

implementation primitive. The basic idea of PERF join came from the desire to minimize 

the cost of the "backward" reduction in a two-way semijoin, which is done by sending a

bit array PERF instead of the original joining attribute. Considering Ri XA Rj, after Rj is

reduced to be Rj' by Rj X Ri [A], a bit array called PERF is generated which contains 

one bit for every element in the join attribute project Ri [A]. The bit is set to be 1 if that 

element is in Rj' and 0 if not. The order of this PERF bit array is the same as the order of 

Ri [A] received from Ri. Instead of sending Rj' [A] back to reduce Ri, this PERF filter is 

sent back as a compact representation of Rj' [A]. The PERF join operation can be 

illustrated in Figure 2.7 with 3 steps.

1. Send join attribute projection: Project Ri on joining attribute A and the projection 

Ri [A] is sent from site i to site j

2. Forward semijoin reduction: Perform Ri X Rj to reduce Rj to Rj and construct 

PERF (Ri) at site j. PERF (Ri) is a bit array of |Ri| bits according to the tuple scan 

order of Ri. The k'* bit of PERF (Ri) is set if and only if the k'* tuple of Ri appears

in the semijoin result Ri X Rj

3. Backward PERF join reduction: Send PERF (Ri) back to site i to reduce Ri to Ri 

Only the tuples that has matching PERF (Ri) set to 1 will appear in the final join 

and therefore kept.

PERF join outperforms two-way semijoin due to the following: 1) cheaper transmission 

cost, as the size of the PEFF array is normally smaller compared with the size of a joining 

attribute 2) cheaper local operation to do the backward reduction, as the compact PERF 

bit array might be able to fit into memory, so that the I/O cost to do semijoin on large-

11
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sized attributes can be avoided.

PERF join also outperforms Bloom filter based semijoins since it inherits the advantage 

of the Bloom filter without suffering the side effect of collisions. A PERF has the same 

storage and transmission efficiency as a Bloom filter, while having the advantage of being 

able to keep the relation tuple scan order. So it doesn't suffer any loss of join information 

incurred by hash collisions [LR95].

A B
2 1
4 3
6 5
S 7

Ri Ri[A]
Stepl project A on Ri

A B
2 1

A B ,-i— , 4 3
2 1 6 5

8 7

1
0
0
0

A C
1
2 7
3 9

2
4 
6
5

Rj M Ri[A] i.e. (Ri X Rj)

Ri Ri PERF (Ri)

1
0
0
0

PERF (Ri) Rj

Step3 Ri = PERF (Ri) IX Ri 

Figure 2.6: PERF join operation

Step2 Rj =  Ri X Rj + build PERF(Ri)

Research in [HFOO] applied PERF joins to the classical semijoin algorithm AHY 

[AHY83] to generate an algorithm called AHYPERF. The complexity of AHYPERF is 

still O (om^), which is not increased compared with AHY, as data will be scanned in the 

same way, for the same number of times. Experiments had shown a considerable 

improvement of AHYPERF over AHY, and PERF join was recommended over both huge 

width joining attributes and ordinary joining attributes.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 Motivation

3.1 Eliminate duplicates in PERF based aigorithms
Recent research has suggested PERF join as a beneficial operator in DQP [LR95][HF00] 

[Zha03][Zhu04] for its dual benefits: 1) use of bit array filters to save space and 

transmission cost 2) ability to keep complete join information by avoiding hash collisions. 

However, since the transmission of join attribute projections to the assembly site is still a 

necessary step in PERF join, it can be expensive when there are lots of duplicated 

elements in the join attributes. Intuitively, it will be beneficial if either the duplicates in 

join attributes or the duplicates in PERF filters can be eliminated efficiently. With the 

removal of duplicates to avoid sending the redimdant data, the transmission time in the 

forward semijoin reduction phase and backward PERF join reduction phase can be 

reduced. Sorting is used as a traditional way to remove duplicates in DQP but it is very 

inefficient.

3.2 The inefficient way to eliminate duplicates via sorting

To eliminate the duplicates, sorting on the join attribute is normally needed, which 

implies that the join attribute projection sent to do the forward semijoin may not be in the 

original scan order of the relation. However, to proceed with the backward PERF 

reduction properly, it is necessary that the site receiving the PERF filters keep the order of 

relation tuples the same once a join attribute projection has been sent to do the forward 

semijoin, or be able to map from the “sent” order to the current order, if the order is 

changed after sending. When duplicates in joining attributes are eliminated for the 

purpose of reducing transmission time, effort has to be made to make sure that not a 

single tuple in the relation is lost and the original relation tuple order is maintained to 

correctly retrieve the tuples for the final join. This problem was first addressed in [LR95] 

as shown below:

Given a local relation Ri and remote relation Rj, and X is the join attribute on Ri without 

removing duplicates by its original scan order'.

' The scan order o f R is either the physical order o f R, or the order according to some index used for the 
scan

13
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The duplicated elements of X can be eliminated in 4 steps, shown in Figure 3.1:

1) Add to X an extra column Y, which represents the sequence number in projection 

X.

a 1

S o r tX Y b y X
(2)

----------------------- ^

a 1

b 2 a 3

a 3 a 4

a 4 a 7

c 5 b 2

b 6 b 6

a 7 c 5

PER F jo in  on  X  
(3)

a 1

R e-sort X Y  on  Y
(4)

a 1

a 3 a 3

a 4 a 4

c 5 •4------------------------- a 7

a 7 b 99999

b 99999 b 99999

b 99999 c 5

Figure 3.1: Sorting overhead involved when eliminating duplicates

2) Sort XY ordered by the join attribute X.

3) Transmit only the distinct values “a b c” of column X (without transmitting the 

duplicates and column Y) to Rj to do the forward semijoin. The PERF filter for 

column X can then be generated after the forward semijoin with Rj and sent back 

to where Ri resides. In our example, there is no “b” in Rj on the corresponding 

column X’, so the PERF filter for Ri on coliunn X, denoted by PERF (Ri [X]), is 

set to be “101”. After PERF (Ri [X]) is received from Rj back to Ri, make a pass 

through the sorted XY to filter out all records with a non-matching value “b” in X. 

Mark these records by setting the corresponding Y value with a larger than any 

value of Y, for example 99999.

14
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4) Re-sort the XY column on Y, and then the matching tuples are now in the original 

scan ordei^. Another pass through Ri is needed to retrieve these tuples to be used 

in the final join.

The whole process is further illustrated in Figure 3.2.

Site i ~  (Ri)

X
a
b
a
a
c
b
a

1
2
3
4
5
6 
7

Ri[X]

a
a
a
c
a

Reduced Ri

X Y
a 1
a 3
a 4
a 7
b 2
b 6
c .5

Sort Ri[X] 
on X

X Y
a 1
a 3
a 4
c 5
a 7

^ 5 9 9 ^
^  99999^

Mark unmatching 
b & Resort Rj on Y

Figure 3.2: Eliminate duplicated in PERF join via sorting

S iteJ -(R j)

a
b
c

tx

Send Ri[X] without 
duplicates to do 
Ri[X] X  Rj[X]

X Y
a 1 
a 3 
a 4

%  2̂

z 5

1
0
1

Ri[X]

X
a
c
a
d
c

Rj [X]

X
a
c
a
c

Send PERF(Ri[X]) 
to do backward 
PERF join on Ri

Reduced Rj

The Y column can be looked on as the record # in relation R and it could have been used to retrieve tuples 
so that step 4 can be omitted. But record # is not always available and sometimes a query has to be 
processed according to certain key fields
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From the above example, in order to eliminate the duplicates of each joining attribute in 

each relation R of the query, two sorting operations and two passes through R are needed 

when PERF filter based algorithms are used. It is well known that even the most efficient 

sorting algorithm has an average time complexity of O (n log n), and the worse case could

be 0(n^). Even if the sorting operation can be handled in parallel during the local 

processing phase, it is still time consuming when the number of joining attributes and the 

number of relations become very large.

3.3 Motivations for compressed PERF
Inspired by the work from [Mit02] where compressed Bloom filter was proposed to 

reduce transmission time with a fixed collision rate, we propose compression combined in 

PERF because:

1. Compression can always be beneficial when the aim is to reduce the amount of data 

transmitted among distributed sites, since the processing time of compression and 

decompression can be looked on as local processing time and is therefore treated as 

negligible.

2. A good compression algorithm is always more efficient than a sorting algorithm. The 

latter is normally used to eliminate the duplicated tuples. For example, the time 

complexity of arithmetic coding is 0(n) [MNW98] while the most efficient sorting 

algorithm has the average time complexity of O (n log n).

3. Even if local processing time is considered, compression can be beneficial as long as 

the benefits of using compression are greater than the compression and decompression 

overhead.

To summarize, we have the questions and the goals of this thesis listed below:

1 .To find out where and how compression can be used in PERF join with a new algorithm 

PERF_C designed and implemented.

2. To evaluate the cost reduction ratio of algorithm PERF_C, compared to algorithm 

PERF.

3. When the local cost of compression has to be considered, can we come up a metric to 

help decide when compression is beneficial?

4. To identify the factors that influence the compression effectiveness.

16
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Chapter 4 Algorithm PERF_C and compression bps 

4.1. Algorithm PERF_C: compressed PERF
The proposed algorithm PERF_C applies compression in PERF join (with the 

combination of composite semijoin) to fiirther reduce the transmission cost, which is 

denoted to be Tcosti in the algorithm. Compression can be used both in the forward 

reduction phase and in the backward PERF reduction phase. Local Processing Cost 

involved in algorithm PERF_C is denoted as Lcost i.

Algorithm PERF_C:

1. Local processing

For each relation Ri, project on its joining attributes j, j = 1 ..number of join attributes. 

—  Lcost 1

Feed joining attributes projections P Ri (j) into compressor to get the compressed 

projections C_ P Ri q), -Lcost2

2. Forward reduction

■ Send the compressed joining attribute projections C_ P Ri (j) in parallel to the 

assembly site; ~  Tcosti

■ Decompress C_ P Ri q) back into the original P Ri (j). -- LcostS

• Perform forward reduction with semijoin and composite semijoin and generate a 

PERF filter PERF Ri for each relation Ri. ~  Lcost4

3. Backward PERF join reduction

■ Compress PERF Ri filter into C_ PERF Ri -  LcostS

■ Ship compressed filters C_ PERF Ri back to Ri -Tcost2

• Decompress C_ PERF Ri back into PERF Ri so that the backward PERF join can 

be performed to reduce Ri into Ri'. Ri' contains only the matching tuples needed 

for final join. -  Lcost6

4. Final join

Send the reduced Ri' in parallel to the assembling site to do the final join, excluding 

the joining attributes in Ri'. -Tcost3 

Compared to algorithm PERF, the transmission cost (^Tcosti) of algorithm PERF_C is 

reduced by compression with less Tcosti, Tcost2. However, local cost (LLcosti) increases 

with Lcost2, LcostS, LcostS and Lcost6 added to do compression and decompression. 

Using the same example as in Figure 3.1, Algorithm PERF_C on one joining attribute is
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illustrated in Figure 4.1.

For a distributed query with n relations and m joining attributes, the PERF filters PERF ri 

for all the relations Ri ( i = l..n) are built in 3 steps:

1. Generate a PERF filter for every join attribute projection x on every relation.

We denote these filters as PERF Ri (x), X= l..m, i = l..n. If composite semijoin is 

combined, m = (number of join attributes + number of composite semijoin attributes).

2. Create a PERF Ri for each relation Ri.

a

a
a
c

a

Site i -  (Ri)

Compress 
PRi(X) +

Send to Rj: 
. . . 0101 . . . .

S ite j - (R j)

Decompress 
received 
data back 
into PRi (X)

a a
b c
a M a
a d
c
b

c

a

P riRi(X) Compress Decompress

PERF

Decompress 
received data 
back into 
PERF(PRj(x))

Compress
PERF(PRi(x))

Send back to 
Ri:
...0  1101 . . . .

Ri(X)

i
P r j (X)

i
1 ■
0 a
1 c
1 a
1 c

0

1

PRi(X)’ Decompress Compress PERF(?Ri(x)) Pr^ x)’

Figure 4.1: Compressed PERF join

1) Start from the relation with the current maximum in-degree. If a relation Ri has more
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than one PERF Ri (X) where X = l..m, apply the “AND” logical operation on all these 

filters to get a final PERF filter for Ri. i.e. PERF Ri = II PERF Ri (X ), X = 1 .. m.

2) Update the related PERF Ri (x) to refresh the changes made by the creation of PERF ri.

3) Repeat 1) and 2) until all relations have been processed.

The following example in Figure 4.2 demonstrates how algorithm PERF_C works on a 

distributed query with 3 relations and 4 join attributes. Relation Ri has three attributes A, 

B and C with two join attributes B and C shaded. Similarly, there are four attributes B, D, 

E and F in relation Ri with B and F as join attributes. F is the join attribute of Relation R3 

out of its two attributes F and G. Algorithm PERFjC chooses the relation with the 

maximum in-degree as the starting point.

R i R2 R3

B C D E F

Figure 4.2: Relations RI, R2, R3 (the shaded columns are join attributes)

Algorithm PERF_C proceeds in the following 6  steps in the above example query:

1. With every relation projected on its join attributes, all join attributes’ projections are 

prepared: P r i  (b), P ri(C ), P r2  (b), Pr2(C), P r2  (f) and P r 3 (F).

2. Apply compression on the above joining attribute projections and send the compressed 

join attribute projections C _ P r i (b ), C _ P r i(c), C _ P r2 (b ), C _ P r2(c ), C _ P r2 (f) and C _ P r3 (f) to the 

assembly site. Decompress the compressed join attribute projections back into P ri (b ),
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P r i (C), P r2 (B), P r2(C), P r2 (F) and P r 3 (F) after the assembly site receives the compressed joining 

attributes.

3. Build filter PERF Ri for each relation Ri, starting from the relation R2 with the

maximmn in-degree 4. (Figure 4.3)

■ Generate PERF r 2, where PERF r2 = n  PERF Ri (X), X e {B, C, (B, C), F}. (See

left most frame of Figure 4.3)

■ Update related PERF filters after the creation of PERFr2. (Figure 4.4)

■ Create PERF ri and PERF r 3 in the similar way, as shown in the middle and right

frames of Figure 4.3.

4. Backward compression: compress PERF Ri and the compressed C_PERF Ri are sent 

back to Ri.

5. Backward reduction: decompress PERF Ri to reduce Ri into Ri’. (Figure 4.5)

6 . Final query result obtains with the join operation on Ri’. (Figure 4.6)

PERFr2(b) PERF R2(C) PERF r2{b,c) PERF r2 (F)

PERF R2

0 0
0 0
0 0
1 1

PERFrkb) PERFR,rc> PERF

J_

i,l

R1(C) R1(B,C) PERF R3(F)

P E R F ri

i
P E R F r 3

Figure 4.3: Final PERF filters for each relation

4.2 compression bps
When the cost of compressing and decompressing has to be considered, compression is 

beneficial only when the gain (reduced transmission cost) to use compression outweighs
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the associated overhead. As described above, the gain of Algorithm PERF_C is the 

reduced transmission cost Tcosti and Tcost2 compared to original PERF. However, 

PERF_C adds the overhead of (Lcost2 + LcostS + LcostS +Lcost6 ) to do the compression 

and decompress. In this thesis, we define “compression bps” as a new metric to show 

when compression is beneficial.

R3(F)

Update
PERFr2(b) PERF R2(c) PERF R2(B,C)

ida:e

Update

Update

Figure 4.4: Update related PERF filters to refresh changes after PERF R2 is created

R i’ R7’ R . ’

3 9 6 9 6 Y Ms. W W M
W T

Figure 4.5: Reduced relations Ri’

3 9 6 Y M s W M

3 9 6 Y M s W T

Figure 4.6: Final result
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4.2.1. Definition 1
(The number of bits saved by compression)

Compression bps = -------------------------------------------------------------

(Time to compress + Time to decompress)

For example, the size of a join attribute projection P(R) is measured to be 52517 bytes. It 

takes 0.08 seconds to compress P(R) and decompress back to P(R). The compressed P(R) 

has 13044 bytes. Then Compression bps = (52517 -13044) * 8  /0.08 = 3,947,300 (bit/s)

4.2.2. Theorem 1
Compression can be used as a cost effective operation in distributed query processing if 

compression bps is greater than data transfer speed. In other words, if compression bps > 

data transfer speed, then compression is considered beneficial.

Proof

Suppose a projection with size X is to be transmitted to a distributed site through 

network. By compression, X can he reduced to he X’. We denote the data transfer speed 

by n (b/s) and the compression bps by c (b/s). According to the condition, we have c > n. 

The total time spent on compression and decompression is:

Tcompress = (X-X’)/c 

And the time saved by compression due to less data transmitted over network is:

Tnetwork = (X-X’)/n

Since c > n, we have Tcompress < Tnetwork. That is, the time spent to compress and 

decompress the same amount of data is less than the time to transmit these data over 

network, so compression is beneficial.

4.2.3. Theorem 2
Suppose transmission cost is linear with the amount of the transferred data X, i.e. 

Tnetwork = Co + Ci*X. As X approaches or X is big enough so that Cq can he ignored, 

compress bps should be greater than 1/Ci in order to keep compression beneficial.

Proof

According to the assxunption, we have the time spent to transfer X bits of data,

Tnetwork = Co + Ci*X ------------------------------------ (4.1)

From the definition of compression bps, we have the time spent on compression and 

decompression

Tcompress = X/compression bps ----------------------------------- (4.2)
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To keep compression beneficial, we must have Tcompress < Tnetwork. According to 

(4.1) and (4.2), we have:

1/compression bps < Cq/X +Ci

As X oo or X is greater enough so that the startup Co can be ignored, we have 

compression bps > 1/Ci.
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Chapter 5 Implementation and Evaluation

The major goals in this chapter:

1. To implement algorithm PERP_C.

2. To evaluate the cost reduction resulting from compression and compare with 

algorithm PERF, neglecting compression overhead.

3. To find out if compression can he cost-effective in distributed query processing 

when compression overhead has to he considered.

4. To implement the measurement of compression bps.

5. To measure compression bps in a wide range of relation size and under different 

real computing platforms.

6 . To compare compression bps measured above with the current distributed system 

data transfer speed to see if the compression bps is fast enough to be considered 

advantageous in distributed query processing.

5.1. Implementation

5.1.1. Platform
• GNUCandVC++

• Sun Solaris 9, Linux, Windows

5.1.2. Infrastructure

The implementation of algorithm PERFjC consists of the testbed module, the reducer

module, the compressor module and interface reducer-compressor, interface reducer-

testbed and interface compressor-testbed, as shown in Figure 5.1.
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Ri,R-2, . . .Ri

Reducer
create_query_schemq( 
#Rel,#attr,sele); 
buiid_query„reIation

compress(relId, attrld); 

decompress(relId, attrld);
Rixmp

Bout_compress_statics(relld, 
attrld,COMPRESS_INFO* compRslt);

R i.R i.... Ri

create_relations(#Rel, Stride) 
create_rel_duplicate 

(#Rel, relSize, domain); 
get_compress_bps(relId);Compressor (arith_coder)

el, relSize,domain stride

Figure 5.1: Implement PERF_C: key modules and interface 

5.1.3. Testbed module
The testbed module randomly creates distributed queries and relations for the reducer and 

compressor modules. Large amounts of distributed queries of arbitrary number of 

relations (3-6), arbitrary number of join attributes (2-4) and selectivity varying from low, 

medium to high are generated to test the reduction ability of distributed query algorithms 

such as PERF and PERF_C. First, a query scheme is created to describe the feature of a 

query that is going to be generated, which describes the number of relations (#Rel), the 

number of join attributes (#attr) and the domain and selectivity of each join attribute in 

this query. Then the corresponding relations are generated with tuples randomly selected 

from the assigned domains according to the query scheme. The queries generated from 

the testbed are finally fed to selected distributed query algorithms for evaluation. New 

fimctionality to generate relations with specific relation size and selectivity is added to the 

testbed module to measure the compression bps and observe its behavior.

Key con cepts
Size and selectivity
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For each relation Ri, let | Rj | denote the cardinality of Ri, S (Ri) represent the size of the 

relation Ri in hytes, and W (Ri) the width of a tuple in Ri in bytes. Then:

S (R ^  =  \ R i \ * W ( R i )  (5.1)

The size and selectivity of each individual attribute dy are represented by S (dy) and p(dy)

respectively. The width of the join attribute in hits is W (dy). Then:

S (d i j )= \ d y \* W (d y ) .  (5.2)

p(dij) is the selectivity on joining attribute j of relation Ri. I t is the number of different

values occurring in the attributes divided by the number of all possible values of the

attribute, also called the domain of dy. Let | dy | denote the cardinality of the joining

attribute and D (dy) the domain of dy, the selectivity is represented as

P(dy )= = \dy \ /D (dy)  (5.3)

When p(dy) is small, dy is called to have a high selectivity. Selectivity in our

implementation varies from low [0.7..0.9], medium [0.4..0.7] or high[0.1..0.4].

Figure 5.2 gives the statistical information of a query of four relations and 2 join 

attributes created in our testbed. In this example, we have D  (du) = 990 and D  (di2)= 610. 

Note that only R4 has both join attributes. The selectivity of the join attribute projection of 

R i is calculated as follows:

P (dn) = \d i2 \ /D  (di2)

= 435/610 

= 0.713115

Relation S(Ri) S (dii) P (d„) S (d,2) P (di2)
Ri 4800 0 0 . 0 0 0 0 0 0 435 0.713115
R2 1900 945 0.954545 0 0 . 0 0 0 0 0 0

R3 1700 0 0 . 0 0 0 0 0 0 525 0.860656

R4 3300 825 0.833333 565 0.926230
Figure 5.2: Database statistical information
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Cost and Benefit

For algorithm PERF, the total transmission cost is the sum of the reduced relations Ri’ 

(after applying PERF to reduce Ri), the size of the join attribute projections and the size 

of PERF filters. The cost of PERF_C is smaller than PERF with the reduced size of 

compressed join attributes and compressed PERF filters.

C (PERF) = X 5 (Ri’) + S (Projections) + S (Filters) (i =1.. .n) (5.4)

C (PERF_C) = (Ri’) + S (compressed Projections) + S (compressed Filters)

(i= l...n ) (5.4)’

We call distributed query processing without any reducer the IFS (Initial Feasible 

Solution), the cost of IFS is

C(IFS) = S-S(R i) ( i= I ..n )

The benefit of PERF_C or PERF is the difference between the size of the original 

relations and the size of the reduced relations.

B (PERF_C) = I  (5 (Ri) - S (Ri ’)) (i =1.. .n) (5.5)

B (^m F ) = 'f:{S(Ri)-S(Ri’)) (i= I...n ) (5.5)’

The benefit ratio (or reduction ratio) is the benefit over the size of the original relations.

BR (PERF) =  5  (PER F)/2 -S'(Ri) (i= l...n ) (5.6)

BR(PERF_C) =  5 (P E R F _ C )/X 5 (R i) (i= l...n ) (5.6)’

If the benefit exceeds the cost, the algorithm is called cost-effective.
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The cost reduction ratio is the reduced cost (compared to CIF), over the size of the 

original relations.

CRR (PERF) = (C (CIF) -C  (PERF))/ C (CIF)

= (Ri) - 2  S (Ri’) - S (Projections) - S (F ilters))/1S (R) (i =1.. .n) (5.7)

CRR (PERF_C) = (C (CIF) -C  (PERF_C))/ C (CIF)

= (Z S  (Ri) S (Ri’)-5  (compressed Projections)-^ (compressed Filters))/ X S  (R)

(i= l...n ) (5.7’)

Interface to  reducer module

1.create_query_scheme (#Rel, #attr, sele)
Create distributed query schemes according to the user desired number of relations #Rel, 

number of join attributes #attr and selectivity level sele. The query schemes, which 

include the size of each relation Ri, the domain and selectivity for each join attribute of 

each relation Ri in the query, are randomly picked within the legal range and stored in a 

temp file.

2. build_query_relation( relld)

Build each relation in the distributed query by generating its distinct relation tuples 

according to the query scheme for each relation passed from the above function. Relations 

created in this query are used to test the cost and benefit for both PERF and PERF_C 

algorithms.

Interface to  com pressor module

1. create_relations (#Rel, stride)

Generate a series of relations Ri, R2, —R#Reiwith the relation size increased a stride in 

between. These relations are fed into compressor to test the compression bps.

2. create_rel_duplicate(#Rel, relSize, domain);

Create one-join-attribute relations Ri, i = (0.. #Rel) with the same relation size of relSize,
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the same join attribute domain of domain, but a different selectivity of (l/#i?e/) *i. The 

selectivity of Ri varies from 0 to 1 with a difference of (\l#Rel) in between. For example, 

create_rel_duplicate (7, 9000, 10000) will generate 7 relations with the same relation size 

of 9000, the same domain of 10000, but a selectivity of Ri to be (1/7 * i). In this way, Ri 

represents different levels of duplication with RO the highest and R6  lowest.

3. get_compress_bps (relld);

Calculate and output the compression bps when compressing the relation of relld.

The compression bps is measured as follows (with an iteration of loop times):

1) Call create_relations () or create_rel_duplicate () to generate a series of relations

Ri,
i=\..Rem

2) Call get_compress_bps () to compress Ri and obtain the compression bps c_bps 

[i]forRi,i = (l.. #ReO

3) Repeat 1)—2) loop times

4) Calculate the average c_bps [i] after repeating loop times

5.1.4. Reducer module
Algorithm PERF_C and algorithm PERF are implemented here as the reducer. The 

reducer module will first call create_query_scheme() and build_query_relation() to 

generate numerous distributed queries for every query type, and then apply PERF join 

and compressed PERF join to reduce the transmission cost. The cost, reduced cost and 

cost reduction ratio are finally calculated for both algorithm PERF and algorithm 

PERF_C.

K ey data structure
1. temp_jnax

To record the relation name and number of join attributes of the ciurent maximiun in­

degree relation in the query. Distributed query processing by PERF_C chooses the 

maximum in-degree relation as the starting point to process, then the second maximum 

in-degree relation, and so on, until all the relations in the query have been processed, 

typedef struct 

{
intrel; //relation Id

int no_join_attr; //number of join attributes
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} MAX_IN_DEGREE;

MAX_IN_DEGREE temp_max;

2. projection[MAXREL][MAXROW][MAXATTRJ

To store the projections for each join attributes of each relation in the query.

3. filters[MAXREL][MAXROW][MAXA TTRJ

To store the PERE filter FERE Ri (x) created for each join attribute projection P Ri (x).

4. filter[MAXREL][MAXROW]

To store the PERE filter PERE Ri created for each relation Ri.

Key Functions

1. scan_query_data 0

It belongs to the local processing phase of the distributed query processing. It reads in the 

query information such as #Rel, #attr and selectivity level. Then scans relations and 

projects on its join attributes.

2. build Jilter 0

Creates PERE filters for join attribute projections.

3. find_max 0

Finds the current max in-degree relation as the starting point to process.

4. when_to_end 0

Terminates query processing when all the relations in the query have been processed.

5. filter_composite Q

Creates PERE filter for each relation.

6. statisticO

Calculates the gain, cost and reduction ratio for algorithm PERE_C or PERF.

5.1.5. Compressor module
The compressor module is implemented based on Moffat, Neal and Witten’s research of 

the compression method arithmetic coding [MNW98], where a modular structure was 

proposed to separate the coding, modeling and probability estimation components in a 

compression system, as shown in figure 5.3. We modified the input interface and the 

output interface of the coder module to suit our needs. To interface with the Reducer 

module, functions to compress and decompress join attribute projections for each relation 

in the query and to output the compressed projections and the compression statistic 

information to the Reducer module are added. To interface with the Testbed module.
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functions to compress the relations created in the testbed and to output the compression 

result are provided.

f
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Figure 5.3: Modeling, statistics, and coder modules

5.1.6. Interface between PERF module and the compressor module
The join attributes projections Pr; [x] in each relation are gathered together at the reducer

module and passed to the compressor module, where ?Ri [x] are compressed into Ri.cmp 

with smaller size. Passed back to the reducer module, Ri.cmp is then sent to the assembly 

site instead of Pri [x] to reduce the transmission cost. The compression statistic 

information such as the compression ratio, the compression time and the compression bps 

are extracted from the compressor module and passed to the reducer module in the form 

of a structure “compressRslt.Ri”, which is used in the reducer module to calculate the 

overall cost reduction ratio for algorithm PERF_C.

K ey data structure
'  COMPRESS_INFO;

This is the interface structure between the reducer module and the compressor module. It 

is created in the compressor module and passed on to the reducer module to calculate the 

cost reduction ratio of algorithm PERF_C. 

typedef struct {

double bjdes_before_compress;
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Double bytes_after_compress; 

double compress_ratio;

//(bytes_before_compress-bytes_after_compress)/bytes_before_compress 

double compress_time;

//elapse time spent on compression 

double compress_bps;

I I (bytes_before_compress-b3^es_after_compress)/ compress_time 

}COMPRESS_INFO;

COMPRESjnSTFO compress_rslt;

Key functions
1. compressQ- To compress the join attributes projections / or its corresponding PERF 

filters in each relation Ri, and to output the compression statistic information in 

“compRslt.Ri” and the compression result “Ri.cmp”.

2. decompressO- To decompress Ri.cmp back into the original join attribute projections / 

or PERF filters to be used to do PERF join.

3. out_compress_staticsQ- To output the statistics of the compression result such as 

“bytes before compression, bytes after compression, time spent on compression, 

compress ratio, and compress bps”.

5.2. Evaluation of algorithm PERF_C
Algorithm PERF_C is implemented with arithmetic coding as the compressor. To be 

consistent with former research, the evaluation of algorithm PERF_C inherited the use of 

the synthetic generated distributed queries with 3-6 relations, 2-4 join attributes and 3 

levels of selectivity (0 for low, 1 for medium and 2 for high). These distributed queries 

are generated based on every combination of {(3, 4, 5, 6 ), (2, 3, 4), (0, 1, 2)}, which 

results in 36 different types of distributed query, as shown in the left most column in 

Figure 5.4. To keep the variation of the experiment results acceptable, 500 test runs are 

performed on each query type to evaluate algorithm PERF_C and algorithm PERF, which 

results in a total (500 * 36) test runs each for algorithm PERF_C and algorithm PERF. 

CRR (PERF_C) and CRR (PERF) are calculated by averaging the cost reduction ratios of 

the 500 runs and they are compared based on the exact same set of distributed queries. 

The difference between CRR (PERF) and CRR (PERF_C) is looked on as the benefit of 

compression in DQP. The original experiment results on PERF and PERF_C, with 500
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queries generated for every query type from the testbed, is listed in Figure 5.4.

5.2.1. Characteristic of aigorithm PERF_C
We evaluate the characteristic of the proposed algorithm PERF_C by observing how its 

cost reduction ratio (CRR) is related to #Rel, #attr and their selectivity level.

Query # # sele RelSize CostReduced CostReduced CRR % CRR %

Type Rel attr ctlvity (B) (PERF) (PERF_C) (PERF) (PERF_C)

3-2-0 3 2 0 7855.49 2923.42 4896.24 36.51 61.91
3-3-0 3 3 0 7429.16 2753.56 4623.8 36.26 61.75
3-4-0 3 4 0 7238.91 2783.89 4565.9 37.73 62.64
3-2-1 3 2 1 7954 3005.83 4985.1 37.42 62.45
3-3-1 3 3 1 7692.37 2894.85 4813.86 37.02 62.21
3-4-1 3 4 1 7456.16 2818.37 4673.49 37.74 62.64
3-2-2 3 2 2 8237.86 3169.75 5197 38.48 63.09
3-3-2 3 3 2 8303.91 3231.89 5260.7 38.56 63.14
3-4-2 3 4 2 7949.39 3191.43 5094.61 39.64 63.78
4-2-0 4 2 0 10588.2 4900.8 7175.76 45.53 67.32
4-3-0 4 3 0 10663.73 4979.36 7253.11 45.62 67.37
4-4-0 4 4 0 10465.8 4757.8 7041 44.74 66.85
4-2-1 4 2 1 10858.4 5113.8 7411.64 46.35 67.81
4-3-1 4 3 1 11185.6 5283.8 7644.52 46.48 67.89
4-4-1 4 4 1 10802.61 5152.51 7412.55 47.14 68.29
4-2-2 4 2 2 11283 5565.2 7852.32 48.84 69.3
4-3-2 4 3 2 11556.31 5654.71 8015.35 48.45 69.07
4-4-2 4 4 2 11621.4 5697.4 8067 48.62 69.17
5-2-0 5 2 0 12978.4 7009.6 9397.12 53.3 71.98
5-3-0 5 3 0 14071.4 7660.2 10224.68 53.68 72.21
5-4-0 5 4 0 14188 7699 10294.6 53.3 71.98
5-2-1 5 2 1 13052.2 7311.6 9607.84 55.35 73.21
5-3-1 5 3 1 14108.4 7788.8 10316.64 54.54 72.72
5-4-1 5 4 1 14452.8 8041.4 10605.96 55.08 73.05
5-2-2 5 2 2 14155.2 8175.6 10567.44 57.39 74.43
5-3-2 5 3 2 15179.8 8579.8 11219.8 56.23 73.74
5-4-2 5 4 2 15064.4 8736.4 11267.6 57.68 74.61
6-2-0 6 2 0 14976 9074.4 11435.04 59.94 75.96
6-3-0 6 3 0 16421.4 9860.2 12484.68 59.44 75.66
6-4-0 6 4 0 17090.2 10377.2 13062.4 59.96 75.97
6-2-1 6 2 1 15455.4 9432.6 11841.72 60.55 76.33
6-3-1 6 3 1 16903.8 10356.2 12975.24 60.7 76.42
6-4-1 6 4 1 17431.4 10662.8 13370.24 60.6 76.36
6-2-2 6 2 2 16714.2 10608.6 13050.84 63.43 78.06
6-3-2 6 3 2 17587.8 10913.8 13583.4 61.86 77.12
6-4-2 6 4 2 18204.4 11407 14125.96 62.29 77.38

Figure 5.4: Experiment result of PERF and PERF_C (500 runs)
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Figure 5.5: Cost reduction ratio of PERF_C
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From the above graph, we can see that PERF_C effectively reduced transmission cost 

with a CRR more than 60%. Higher CRR achieves on queries with higher # Rel under 

every selectivity level. In general, CRR increases with the increasing of #attr, though the 

difference of CRR is not big. Selectivity level and #attr place less important roles on CRR 

than #Rel in PERF_C, as the maximum CRR difference of different selectivity level/#attr 

is less than 2%. It makes PERF_C extremely useful in distributed queries which consist 

of low-selectivity join attributes as low-selectivity normally leads to a poor cost reduction 

ratio in DQP.

5.2.2. PERF_C vs. PERF
Figure 5. 6  and Figure 5.7 srunmarize the comparison of PERF and PERF_C in terms of 

cost reduction ratio.

Cost
Reduction

Ratio (%)

Number of Join Relations

3 4

High Med Low High Med Low

PERF
PERF

C PERF
PERF

C PERF
PERF

C PERF
PERF

C PERF
PERF

C PERF
PERF_

C
Number
of

Attributes

2 36.51 61.91 37.42 62.5 38.48 63.09 45.53 67.32 46.35 67.81 48.84 69.3

3 36.26 61.75 37.02 62.2 38.56 63.14 45.62 67.37 46.48 67.89 48.45 69.07

4 37.73 62.64 37.74 62.6 39.64 63.78 44.74 66.85 47.14 68.29 48.62 69.17

Average 36.83 62.10 37.39 62.43 38.89 63.34 45.30 67.18 46.66 68.00 48.64 69.18
Cost

Reduction

Ratio (%)

5 6

High Med Low High Med Low

PERF
PERF

C PERF
PERF

C PERF
PERF
C PERF

PERF_
C PERF

PERF_
C PERF

PERF
C

Number
of

Attributes

2 53.3 71.98 55.35 73.2 57.39 74.43 59.94 75.96 60.55 76.33 63.43 78.06

3 53.68 72.21 54.54 72.7 56.23 73.74 59.44 75.66 60.7 76.42 61.86 77.12

4 53.3 71.98 55.08 73.1 57.68 74.61 59.96 75.97 60.6 76.36 62.29 77.38

Average 53.43 72.06 54.99 72.99 57.10 74.26 59.78 75.86 60.62 76.37 62.53 77.52

Figure 5.6: Cost reduction ratio of PERF_C and PERF

We conclude our comparison of PERF and PERF_C as follows:

1. It is effective to use PERF join and compressed PERF join in DQP to reduce
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transmission cost. The transmission cost is reduced significantly with both PERF 

and PERF_C reducer in contrast to IFS. PERF reducer comes up with the cost 

reduction ratio between 36%-62% and PERF_C between 61.9% and 78.06% (in 

comparison with IFS).

•>5

OCoc
u

Cost Reduction Ratio: PERF v.s. PERF_C

I l l  i l l  I I I
. .  . . .  I i n m i i i i i i i i i i  I I  I
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I I I I I I I I I  I I I
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I I II I I I I I I I I I
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3-2  3-3  3 -4  4-2  4-3  4 -4  5-2 5 -3  5-4 6-2 6-3 6-4

query type (#Rel - #attr)

Figure 5.7: Compare the cost reduction ratio of PERFjC and PERF

2. Algorithm PERFjC outperforms algorithm PERF with an overall 16-36% more 

cost reduction brought to PERF via compression. The combination of PERF join 

and compression makes algorithm PERFjC a powerful method to reduce 

transmission cost.

3. For both PERF and PERF_C, the performance difference between low-selectivity 

join attributes and high-selectivity join attributes is not obvious, which makes 

PERF and PERF_C valuable reducers for queries with low or medium selectivity.

4. The cost reduction ratio of PERF and PERFjC, CRR (PERF_C) and CRR 

(PERF), both increase with the growth of the number of relation (#Rel) and the 

growth of the number of join attribute (#attr). However, the performance gap 

between CRR (PERF_C) and CRR (PERF) is getting smaller when #Rel and #attr 

grows bigger. This implies that the cost reduction via compression grows slower 

than the growth of the cost reduction via PERF join, when the #Rel and #attr 

increase. This feature also motivated the following evaluation on compression 

bps: What are the factors to influence compression bps? Does compression bps 

always grows when the data size to be compressed grows?
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5.3. Evaluation of compression bps
The questions to be answered through the evaluation:

1. How does compression bps behave during the distributed query processing with 

36 different types of queries generated in testbed?

2. How does compression bps change according to the database factors: #Rel, #attr, 

the selectivity level and duplication level of join attributes?

3. How much can we get for the compression bps in the real world? Is the 

compression bps fast enough that compression can still be used in DQP, even 

when the cost of compression cannot be neglected?

We designed the following tests to evaluate compression bps under different 

circumstances:

1. Test compression bps under 36 types of distributed queries created in our testbed 

to evaluate the relationship between compression bps and #Rel, #attr and 

selectivity.

2. Test the compression bps on specially created relations with different levels of 

duplication.

3. Calculate compression bps under real computing environment with different types 

of platforms to see if compression is still beneficial (or when compression is 

beneficial) in DQP even if the cost of compression is considered.

Each test is performed 500 times and the average of these 500 runs is reported as the 

result.

5.3.1. Compression bps under 36 types of Distributed Queries
Figure 5.8 details the output of our test on compression bps under 36 different types of 

queries. And Figure 5.9 illustrates how the database factors (#Rel, #attr and the selectivity 

level) in the distributed query influence compression bps.

It is shown in Figure 5.9:

1. For queries with #ReI of 3, 4, 5 and 6, compression bps increases as #attr grows, 

regardless of the selectivity level in the query. It is imderstandable, since #attr is 

associated with the data size to be compressed. This suggests that the size of the 

data to be compressed is an important factor for compression bps.

2. The effect of selectivity on compression bps cannot be clearly identified with the 

test of 36 types of distributed queries, as the test result does not follow a regular
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pattern. For example, for #Rel =3, medium selectivity gives the highest 

compression bps at #attr=2 or 4. However, the highest compression bps happens 

at lowest selectivity when #atti=3. Inconsistency happens at #Rel=4, #Rel=5 also. 

The evaluation on selectivity using the 36 types of queries is not sufficient, as the 

sizes of relations in each query are randomly picked every time a new query is 

generated.

Query
Type

Before
Compress(B)

After
Compress(B)

compress
Ratio

compress
Time(s)

compression 
bps (b/s)

3-2-0 45674 16191 0.6455 0.062582 3769100.227
3-3-0 54876 18958 0.654 0.073209 3905210.37
3-4-0 65843 22313 0.6606 0.086333 3998254.917
3-2-1 46055 16299 0.6461 0.06248 3821381.572
3-3-1 57220 19755 0.6541 0.076233 3912634.265
3-4-1 67766 22962 0.6607 0.08842 4039398.839
3-2-2 47751 16923 0.6454 0.065 3800373.457
3-3-2 62095 21438 0.654 0.0821 3943669.204
3-4-2 73351 24830 0.6605 0.095693 4036128.215
4-2-0 44293 15779 0.6439 0.060755 3729324.363
4-3-0 53788 18770 0.6501 0.07207 3848969.223
4-4-0 62601 21488 0.6558 0.082605 3939531.386
4-2-1 45888 16334 0.6441 0.062655 3762248.729
4-3-1 56839 19829 0.6501 0.075975 3872830.027
4-4-1 65303 22393 0.6559 0.085825 3977494.642
4-2-2 47557 16924 0.644 0.06459 3789134.127
4-3-2 58263 20320 0.6501 0.077575 3891592.541
4-4-2 70507 24176 0.6556 0.09269 3966328.551
5-2-0 42847 15291 0.6434 0.058876 3727777.569
5-3-0 54675 19171 0.6484 0.07328 3837789.149
5-4-0 64342 22217 0.6534 0.08492 3927034.87
5-2-1 43272 15425 0.6437 0.059776 3724157.236
5-3-1 55053 19299 0.6486 0.073946 3847165.2
5-4-1 65362 22555 0.6537 0.086236 3935414.088
5-2-2 46999 16755 0.6433 0.064212 3767522.913
5-3-2 59078 20711 0.6483 0.07972 3829592.028
5-4-2 68872 23745 0.6535 0.091064 3930450.469
6-2-0 41338 14729 0.6438 0.05712 3716990.571
6-3-0 53238 18655 0.6487 0.071944 3797497.373
6-4-0 63889 22081 0.6533 0.084882 3889973.731
6-2-1 42480 15143 0.6436 0.058567 3726761.056
6-3-1 55036 19280 0.6487 0.074401 3815735.826
6-4-1 65121 22492 0.6532 0.08628 3916278.26
6-2-2 46422 16535 0.6436 0.063797 3752378.633
6-3-2 56532 19826 0.6482 0.076073 3835177.794
6-4-2 68936 23788 0.6533 0.090857 3946745.984

Figure 5.8; Compression bps on 36 t3q>es of distributed queried (500 runs)
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compression bps (#attr,selectivity): 3 relations

compression
bps

4050000
4000000
3950000
3900000
3850000
3800000
3750000
3700000
3650000
3600000

□  High

□  Med 

■  Low

selectivity

#attr

□  High 3769100.227 3905210.37 3998254.917

□  Med 3821381.572 3912634.265 4039398.839

■  Low 3800373.457 3943669.204 4036128.215

compression bps (#attr,selectivity): 4 relations

compression
bps

4000000
3950000
3900000
3850000
3800000
3750000
3700000
3650000
3600000

□  High

□  Med 

■  Low

selectivity

# attr

□  High 3729324.363 3848969.223 3939531.386

□  Med 3762248.729 3872830.027 3977494.642

■  Low 3789134.127 3891592.541 3966328.551

compression bps (#attr,selectivity): 5 relations

compression
bps 3950000

3900000
3850000
3800000
3750000
3700000
3650000
3600000

#attr

□  High

□  Med 

■  Low

selectivity

□  High 3727777.569 3837789.149 3927034.87

□  Med 3724157.236 3847165.2 3935414.088

■  Low 3767522.913 3829592.028 3930450.469

Figure 5.9: Compression bps: effects of Rel, attr and selectivity
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compression bps (#attr,selectivity): 6 relations
compression

bps
3950000 r
3900000
3850000
3800000
3750000
3700000
3650000
3600000

#attr

□  High

□  Med 

■  Low

selectivity

□  High

□  Med

■  Low

3716990.571

3726761.056

3752378.633

3797497.373

3815735.826

3835177.794

3889973.731

3916278.26

3946745.984

Figure 5.9: Compression bps: effects of #Rel, #attr and selectivity (Continued)

In response to the concerns in 1, 2 above, relations with controllable relation sizes and 

controllable selectivity levels should be generated in order to test how compression bps is 

influenced by the size of data to be compressed and the duplication of the data.

5.3.2. Compression bps with join attribute duplications
The duplication level of a join attribute can be represented by relation size, domain and 

selectivity of the join attribute altogether. For the same relation size and same domain, 

high selectivity level results in high duplication level and low selectivity low duplication 

level. Based on this analysis, a special test was designed to create a series of one-join- 

attribute relations with the same relation size and same join attribute domain but different 

levels of duplications by evenly varying the selectivity from 0 to 1. Under this 

circumstance, the higher the selectivity, the higher the duplication level. As in the 

example shown in Figure 5.10 with the colunm of # of tuples =2000, relations RO- R6 are 

created to have the same relation size 2000 and the same join attribute domain 8000. 

However, the selectivity of Ri will be (1/7* i), with a difference of 0.17 between Ri and 

Ri+i, i = 0..5. There are 2 extremes: RO has the highest duplication level (or the highest 

selectivity level) with all its tuples are duplicated, and R6 has the lowest duplication level 

with no duplicates at all. In Figure 5.10, seven relations R0-R6 are created for each 

relation size, which can be picked up from (2000, 3000, 4000, 5000, 6000, 7000, 8000} 

with the domain of 8000. Compression bps is tested on R0-R6, and the effects of 

duplication and # of tuples are illustrated in Figure 5.11.
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Duplicate Level 
- Selectivity

# of tuples
2000 3000 4000 5000 6000 7000 8000

RO-0 9307878 10530812 11271774 12034603 12273688 12392519 12598255
R1-0.17 4683660 5375029 5901417 6281398 6624087 6613446 6867911
R2 - 0.33 4042043 4676084 5203301 5660991 5775503 6087033 6057909
R3 - 0.50 3529782 4255035 4716034 5135605 5376294 5568856 5778102
R4 - 0.67 3084163 3810601 4327149 4719396 4956336 5226763 5347795
R5 - 0.83 2759174 3487304 4044189 4462222 4578408 4891671 5073682

R6-1 2583843 3268305 3734724 4146440 4427159 4636466 4623043

Figure 5.10: Compression bps with different duplication levels and # of tuples

Effects of duplication and size on compression bps
compression

bps
140000001-

12000000- '

■ 2000

0 4 0 0 0

0 5 0 0 010000000

8000000

6000000

4000000

2000000

# of tuples
R2 R3

® R5 r6

duplication level

Figure 5.11: Effect of duplication level and # of tuples on compression bps

We conclude from above:

1. Higher compression bps is achieved at higher duplication level, which is 

consistent with our analysis in Chapter 4. So for the joining attributes in the same 

relation (these join attributes have the same # of tuples), the attributes with higher 

duplication (or higher selectivity) level compress better. As shown in Figure 5.11, 

for the same relation size, the highest compression bps is obtained at RO, which 

has all its tuples duplicated with the highest selectivity and the lowest 

compression bps happens at the lowest selectivity R6.

2. Although compression bps grows when the increases under the same duplication 

level, the growth of compression bps slows down when the tuples size has reached
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a certain point. For example, eompression bps for selectivity 0.17 slows down to 

increase after the # of tuples is greater than 6000. This again motivated our 

interest to measure compression bps for a wider range of data sizes.

5.3.3. Compression bps under 3 different piatforms
In order to make further conclusions on how compression bps changes with the size of 

data to be compressed, we have designed another test to measure compression bps on a 

wide range of data sizes and carried this test on 3 different types of computing platforms 

with their system information listed in Figure 5.12.

Davinci Horus PC
Machine Sun Enterprise 6500 Server IBM cluster PC with dual CPUs

OS Solaris Debian Linux Linux

Memory 8G Shared Memory 8G DSM in total 
(Master: 900M, node1-node14: 516M) 320MB SDRAM

Work Load Heavy (load: 3.5 -  4) Light (Load: 0.1 - 0.2) Light (Load: 0.1)

CPU/node 14 UltraSparc processors
15 nodes with Xeon 2 Ghz Hyper 
thread processor on each node

2X Intel Celeron A 
367.5MHz

NETWORK Gigabit Ethernet 64 bit/66MHz Gigabit Myrinet 10/100M Ethernet

Figure 5.12: Three tj^ical computing platforms in the real world

Davinci
Horus
PC

Compression bps on Davinci, Horus and PC

10000 

9000cO
s 8000

5^ 7000

I  6000

“  5000

4000

3000

2000

1000

dataSize(B)

Figure 5.13: Compression bps for the above three typical computing platforms

The measurements under these different platforms have revealed that:

1. Compression bps converges after data size is greater than a certain point, which 

we name “converge point”. Compression bps grows as the compression data size
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grows until this converge point is reached. For example, compression bps 

measured under IBM cluster Horus increases from 2M b/s to 9M b/s when the 

data size grows from 3M Bytes to lOMbytes, and compression bps remains 9M 

b/s after the data size reaches lOM bjdes.

2. CPU computing power and the current machine workload are critical computing 

resources to influence compression bps. As a result, an off-sbelf single-user PC 

produces a faster compression bps than a Server (Davinci) with heavy workload 

(3.5- 4), as shown in Figure 5.13. This makes compression available and suitable 

even for cheap and off-sbelf machines.

3. As data size varies in a wide range, compression bps measured in this test can be 

used as bints to decide when compression is beneficial in DQP. For example, if 

current data transfer speed is 3M b/s on Davinci, compression may be considered 

usefiil when the relation to be compressed is larger than 4M bytes, since 

compression bps on Davinci is greater than 3M b/s only when data Size is greater 

than 4M bytes.

5.3.4. Compare compression bps with current data transfer speed
Compression bps measured under Davinci, Horus and the PC converges to 4M b/s, 9Mb/s

and 5M b/s respectively, which is quite impressive compared with the current data 

transfer speed over Internet, the real distributed system. According to the data transfer 

speed published by broadband.com [Bro04] in May 7*, 2004, the fastest download speed 

to date was 5M b/s (Figure 5.5) and most end users received a data transfer speed in the 

range of lM-1.5 M (Figure 5.6). With slow network still the main bottleneck for data 

transfer in distributed systems, compression can be considered an effective and 

reasonable way for distributed query optimization.

We summarize the findings of our tests on compression bps:

1. For the queries with the same #Rel, a higher compression bps is reached if a query 

has more join attributes.

2. Higher compression bps is reached if join attributes have higher duplications, i.e. 

more transmission cost can be reduced with compression on queries with highly 

duplicated join attributes.
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The Fastest Broadband ISPs (non ISP dom ains are ignored)
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Figure 5.14: The download and upload speed for the fastest ISPs
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Figure 5.15: Data transfer speed distribution

3. Compression bps increases as the size of data to be compressed grows, until it 

reaches the converge point.

4. Compression bps measured imder three real computing environments is 

comparable with current Internet data transfer speed. This makes compression a 

practical and reasonable option to be used in DQP to reduce transmission cost, 

even when the overhead of compression has to be considered.
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Chapter 6 Conclusions and future work

6.1. Conclusions
We address the goal of distributed query optimization in the approach to minimize the 

transmission cost by reducing the amoimt of data to be transmitted over network. PERF 

join, which optimizes the backward reduction phase of the 2-way semijoin with the 

transmission of PERF filters (bit arrays generated according to relation tuple scan order) 

instead of join attribute projections, has attracted recent research attention [LR95] [HFOO] 

[ZhangOS] [Zhu04] due to its use of space-efficient and collision-fi-ee PERF filters. The 

issue of eliminating duplicated tuples in join attributes has been brought up to further 

optimize PERF join in [LR95][Zhang03][Zhu04]. From our investigations to date, sorting 

is the only approach that has been proposed to eliminate duplications [LR95]. The 

inefficiency of sorting has motivated our algorithm PERF_C, where compression is 

applied to both join attributes projections (in forward reduction phase of PERF join) and 

PERF filters (in backward reduction phase of PERF join), to further reduce the 

transmission cost in algorithm PERF. Through theoretical analysis, compression has been 

proved more efficient than sorting to eliminate duplicates. After further research, we 

foimd that the benefit of compression goes beyond simply eliminating duplicates. 

Compression is an effective operation to reduce transmission cost for general queries of 

arbitrary number of relations, join attributes, and selectivity levels as well. Our 

experiments have shown that algorithm PERF_C achieves a cost reduction ratio of 62%- 

77% for randomly generated general queries, which outperforms algorithm PERF by 

about 16%-36%.

Since the transmission cost among distributed site is more critical in DQP, it is common 

that local cost is not considered in most researches in DQP. But with the increasing of 

network link speed, it is not always feasible to ignore expensive local processing [RK91]. 

In this thesis, a new term “compression bps” is defined to address the local cost for 

compression and decompression during algorithm PERF_C. We prove that compression 

should be used in DQP if compression bps is faster than current data transfer speed. In 

this sense, compression bps can be treated as a guide to decide when compression should 

be applied in DQP, even when the local cost of compression is also considered.
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Experiments on compression bps with distributed queries have shown that the higher the 

number of join attributes and the higher duplication level, the higher compression bps will 

be. Compression bps is also measured based on three typical computing platforms to give 

an idea of compression bps on real computing environments. The measured compression 

bps falls into the range of 4 - 9 M b/s, which is fast enough compared with current data 

transfer speed published in May 7* 2004.

Summary of thesis contributions:

1. New algorithm PERP_C was proposed to apply compression to PERE join to 

further reduce transmission cost.

2. New concept of compression bps was defmed to measure the compression speed. 

Theorem 1 and Theorem 2 give hints that compression should be beneficial in 

DQP if compression bps is greater than data transfer speed.

3. Designed, implemented algorithm PERF_C with arithmetic coder as the 

compressor. Algorithm PERF was also implemented to compare with algorithm 

PERF_C.

4. The old testbed was extended to allow bigger domain and relation size. New 

features to create user-controllable relations with user-defmed relation size and 

user-defmed selectivity level were added to the testbed.

5. Experiments were designed and implemented to evaluate both algorithm PERF_C 

and compression bps. All the experiments are carried out with 500 runs to avoid 

coincidence and to enhance robustness.

6. Compression was found to be an effective operation to reduce the transmission 

cost in DQP. Through experiments on 36 types of general queries. Algorithm 

PERF_C outperforms algorithms PERF with a gain of 16%-36% more cost 

reduction ratio achieved.

7. Compression bps was measured to be in the range of 4 - 9M b/s under the real 

computing platforms, which is quite impressive compared with current data 

transfer speed on Internet.

6.2. Future work
1. Interleave compression with transmission during DQP to reduce the compression 

overhead. Current implementation has a serial interface between the compressor
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and the reducer, where the reducer has to wait for the compressor to finish. For 

example, join attributes projections are first compressed and then the compressed 

join attributes projections are transmitted to the distributed sites. If we can 

interleave compression with transmission in a pipelined manner, the time spent on 

compression can be overlapped with transmission.

2. Change the reducer and set up a reducer model: Apply compression to a wider 

range of distributed query optimization methods, for example. Bloom filter or 

semijoin, to see how compression performs. i.e. replace the reducer module in 

Figure 5.1. With other DQP reducer. It is ideal to be able to come up with a 

reducer model to describe how the cost reduction ratio is related to the database 

factors in distributed queries, such as number of relations (#Rel), number of join 

attributes (#attr), size of relations, selectivity, duplication level etc.

3. Change the compressor and set up a compressor model: Gather knowledge on how 

compression bps is influenced by the compressor. Re-evaluate PERF_C and 

calculate compression bps using different compression modes of arithmetic coder 

or even try different types of compressor. It is desirable that a quantified model 

for compressor can be set up too.

4. Establish an adaptive decision-making system based on the knowledge of the 

distributed queries, the reducers, the compressors available, and the current 

distributed system data transfer speed. This adaptive decision-making system will 

suggest a decision on whether compression should be used and help to choose the 

appropriate reducer, compression method or mode based on the work in 1 and 2.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY

[AHY83] P. Apers, A. Hevner and S. Yao, “Optimization algorithms for distributed

queries”, IEEE Transactions on Software Engineering, 9(1), pp.51-60, 1983.

[AM91] J. Ahn, S. Moon, “Optimizing joins between two fragmented relations on a

broadcast local network”. Info. Syst., Vol. 16(2), pp. 185-198, 1991

[BC81] P. Bernstein and D. Chiu, “Using semi-join to solve relational queries”.

Association for Computing Machinery Journal, vol.28, pp.25-40, Jan 1981.

[Bea95] W. T. Beal or, “Semi-join strategies for total cost minimization in

distributed query processing”. Master thesis. University of Windsor, 1995.

[BFSOO] S. Bandyopadhyay, Q. Fu and A. Sengupta, “A Cyclic multi-relation

semijoin operation for query optimization in distributed databases”, Proc. 

19th IEEE International Performance, Computing and Communications 

Conference - IPCCC 2000 PERFORMANCE, February, 2000.

[BG81] P. A. Bernstein, N. Goodman, “The power of natural semijoins”, SIAMJ.

Computer, Vol. 10. 4, pp.751-771, Nov. 1881.

[BG93] D. Bell, J. Grimson, “Distributed Database Systems”, Addition-Wesley.

[BGW+81] P. Bernstein, N. Goodman, E. Wong, C. Reeve, and J.Rothie, “Query

processing in a system for distributed databases(SDD-l)”, ACM 

Transactions on database Systems,Vol.6(4), pp.602-625, 1981.

[BKK+01] R. Braumandl, M. Keidl, A. Kemper, D.Kossmann, S.Seltzsam,K. Stocker, 

“Object Globe: Open Distributed Query Processing Services on the internet”, 

IEEE Computer Society Technical Committee on data Engineering, pp. 1-7, 

2001.

[BL82] P. A. Black,W. S. Luk, “A new heuristic for generating semi-join programs 

for distributed query proceeding”. In Proc. IEEE COMPSAC, pp.581-558,

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dec. 1982

[BIoTO] B. H. Bloom. “Space/time trade-offs in hash coding with allowable errors”.

Communication of the ACM, vol. 13(7), pp.422-426,1970.

[BPR90] P. Bodorik, J. Pyra and J. S. Riordon, “Correcting execution of distributed 

queries”. In Proc. Of 2nd int. Sjmip. on Databases in Parallel and distributed 

Systems, pp. 192-201,1990.

[BR88] P. Bodorik and J. S. Riordon, “Heuristic Algorithms for Distributed Query

Processing”, IEEE, pp.144-155,1988.

[BR88] P. Bodorik, J.S. Riordon, “Distributed query processing optimization

objectives”. Fourth International Conference on Data Engineering, pp. 320 -  

329, 1988.

[BRB+01] C. Badue, B. Ribeiro-Neto, R. Baeza-Yates, N. Ziviani, “Distributed query 

processing using partitioned inverted files”. String Processing and 

Information Retrieval, 2001. Proceedings. Eighth International Sjmiposium 

o n , 2001, pp. 10 - 20.

[BRJ89] Peter Bodorik, J. Spruce Riordon and C. Jacob, “Dynamic Distributed Query 

Processing Techniques”, ACM, pp.349-357, 1989.

[Bro04] Broadband report.com retrieved May 7th, 2004. 

http://www.broadbandreports.com/archive

[BRP92] Peter Bodorik,J. Spruce Riordon and James S. Pyra, “Deciding to Correct

Distributed Query Processing”, IEEE Transactions on Knowledge and data 

Engineer in Vol.4 No.3, pp.253-265, Jun. 1992.

[CBH84] D. M. Chiu, P. A. Berstain and Y. C. Ho, “Optimizing chain queries in a

distributed database system”, SIAMJ. Computer, Vol. 13. No.l, pp.l 16- 

134,1984.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.broadbandreports.com/archive


[CCY92] Tung-Shou Chen, Arbee L.P. Chen and Wei Pang Yang, “Hash-semijoin: A 

new technique to minimizing Distributed Query time”, IEEE, 1992.

[CH82] W.W. Chu, P. Hurley, “Optimal Query Processing for Distributed Database

System”, IEEE. Trans. On Comput, Vol. c-31,no.9, pp.135-150, Sep. 1982.

[CH84] D. M. Chiu, Y. C. Ho, “Optimizing star queries in a distributed database

system: A method for interpreting tree queries into optimal semijoin 

expressions”, VLDB, pp.959-967,1984.

[Cha82] Jo-Mei Chang, “A Heuristic Approach to Distributed Query Processing”,

Proceeding of the 8th VLDB Conference, pp. 54-61,1982.

[CLOO] H. Chen and C. Liu, “An efficient algorithm for processing distributed

queries using partition dependency”. Parallel and Distributed Systems, pp.

339 -346, 2000.

[CL84] L. Chen and V. Li, “Improvement algorithms for semi-jion query processing

programs in distributed database system”, IEEE Transaction on computers. 

Vol. 33(lI),pp.959-967, 1984.

[CL85] A. L. P. Chen, V. O. K. Li, “An optimal algorithm for distributed star

queries”, IEEE Trans. On Software Engineering, Vol. 11 No. 10, pp. 1097- 

1107,1985.

[CL90] L. chen and V.Li, “Domain-specific semi-join: A new operation for

distributed query processing”. Information science,Vol. 52, pp. 165-183, 

1990.

[CY90] M.-S. Chen, P.S. Yu, “Using combination of join and semijoin operations for

distributed query processing”. Distributed Computing Systems, Proceedings., 

10th International Conference on, pp. 328 -335,1990.

[CY91] M.-S. Chen and P. S. Yu, “Determing Beneficial Semijoins for a join

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sequence in Distributed Query Processing”, IEEE, pp.50-58, 1991.

[CY92] M.-S. Chen, P. S. Yu, “Interleaving a Join Sequence with Semijoins in

Distributed Query”, Parallel and Distributed Systems, IEEE Transactions on. 

Volume; 3 Issue: 5, pp.611 -621, Sept. 1992.

[CY93] M.-S. Chen, P. S. Yu, “Combining Jion and Semi-Jion Operations for

Distributed Query processing”, IEEE Transactions and Data Engineering 

Vol.5, No.3, pp.534-542, 1993.

[CY94] M.-S. Chen, P. S. Yu, “A graph theoretical approach to determine a join

reducer sequence in distributed query processing”. Knowledge and Data 

Engineering, IEEE Transactions on. Volume: 6 Issue: 1,152 -165, Feb. 1994.

[CY96] M.-S. Chen, P. S. Yu, “Optimization of parallel execution for multi-join

queries”, IEEE, pp.416-428, 1996.

[ESW78] R. Epstein, M. StoneBraker, and E. Wong, “Query Processing in a Distributed

Relational Database System”, In Proc. ACM SIGMOD Int. Conf. On 

Management of Data, pp.169-180. May 1978.

[FCAB99] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: A scalable

wide-area web cache sharing protocol (Extended version),” Computer 

Sciences Dept., University Wisconsin-Madison, Tech. Rep. 1361, Feb. 

1999.

[GBHCOO] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler, “Scalable, 

distributed Data Structures for Internet Service Construction”, In 

Proceedings of the Fourth Symposium on Operating Systems Design and 

Implementation (OSDl 2000), (San Diego, CA, 2000).

[Gra96] Jim Gray, “Data Management: Past, Present, and Future”, Microsoft

Research, Technical Report MSR-TR-96-18, Jvm. 1996.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Gre98] Michael Gregory, “Genetic Algorithm Optimization of Distributed Database 

Queries”, IEEE, pp.271-267,1998.

[GW89] G. Graefe and K. Ward, “Dynamic Query evaluation plans”, ACM SIGMOD, 

pp.73-170, 1989.

[HCY97] H.-I. Hsiao, M.-S. Chen, P. S. Yu, “Parallel Execution of Hash joins in

Parallel Database”, IEEE, pp.872-883,1997.

[HFOO] R. Haraty, R. Fany. “Distributed query optimization using PERF joins”.

Symposium on Applied Computing Proceedings of the 2000 ACM 

symposium on Applied computing, Como, Italy, 2000. Pages: 284 -  288.

[HK94] Harris and Kotagiri. “Join Algorithm Costs Revisited”, VLDB Journal

Vol.5, 1994, pp. 64 -84 .

[HMOO] A. Hameurlain and F. Morvan, “An Overview of Parallel Query

Optimization in Relational Systems”, IEEE,2000.

[HY79] A.R. Hevner and S. B. Yao, “Query Processing in Distributed Databases”,

IEEE Trans, on Software Eng., SE-5(3), pp. 1770-187, 1979.

[JK84] M. Jarke and J. Koch, “Query Optimization in database system”, ACM

Computing Surveys Vol. 16, No.2, pp. 112-152,1984.

[KHY82] Y. Kambayashi, M. Yoshikawa and S. Yajima, “QUERY Processing for

Distributed Databases Using Generalized Semijoins”, ACM Proceedings of 

SIGMOD, pp.151-160,1982.

[KosOO] D. Kossmannn, “The State of the Art in Distributed Query Processing”,

ACM Computing Surveys (CSUR), v.32 n.4, pp.422-469, Dec. 2000.

[Kos98] D. Kossmann, “Iterative D5mamic Programming: A New Class of Query

Optimization Algorithms”, ACM Transactions on Database Systems, 1998.

[KR87] H. Kang and N. Roussopoulos, “Using two-way semijoins in distributed query

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



processing”, In Proceedings of The 3’̂  ̂ International Conference on Data 

Engineering, pp.664-651, 1987.

[KSOO] D. Kossman and K. Stoker, “Iterative Djmamic Programming A new Class of

Query Optimization Algorithm,” ACM Transaction on Database Systems, 

Vol.25, No.l, pp.43-82,1986.

[LCOl] C.-H. Le and M.-S. Chen, “Distributed query processing in the Internet:

exploring relation replication and network characteristics”, 21st International 

Conference on Distributed Computing Systems,, Apr 2001, pp. 439 - 446.

[Lia98] Yan Liang, “Reduction of collisions in bloom filters during distributed query

optimization”, M.sc Theses, Computer Science, University of Windsor, 1998.

[LR95] Z. Li and K. A. Ross, “PERF join: an alternative to two-way semijoin and

bloomjoin”. In Proceedings of CIKM'95, pp. 137-144, 1995.

[LY93] C. Liu and C. Yu, “Performance issues in distributed Query Processing.

IEEE, pp.889-905,1993.

[Ma97] X. Ma. "The use of bloom filters to minimize response time in distributed

query optimization". Master thesis. University of Windsor, 1997.

[MB95] J. Morrissey and S. Bandyophdhyay, “Computer Communication

Technology and its effects on Distributed Query Optimization Strategies”, 

IEEE, pp.598-601, 1995.

[MB96] J. Morrissey and W. T. Bealor, “Minimizing data transfers in distributed

query optimization: A comparative study and evaluation”,The Computer 

Journal, vol.39, no.8, pp.676-687, Dec 1996.

[MB96] J. Morrissey and W. T. Bealor, “Minimizing data transfers in distributed

query processing: a comparative study and evaluation”. The computer 

journal, Vol.39, No. 8, pp. 675 -  687, 1996.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[MBB95] J. Morrissey, S. Bandyopadhyay, and W. T. Bealor, “A comparison of static 

and dynamic strategies for query optimization”, In Proceedings of the 7‘̂  

/lASTED/ISM Intemational Conference on Parallel and Distributed 

Computing Systems, 1995.

[ME92] P. Mishra and M. Eich, “Join processing in relational databases”, ACM 

Computing Sxirveys, vol.24(l), pp.63-113, March 1992 

M. Mitzenmacher, “Compressed Bloom filters”, lEEE/ACM Transactions on[Mit02]

[MM98]

networking.Volume: 10 Issue: 5 , Oct 2002. Page(s): 604 -612 

J. Morrissey and X. Ma, “Investigating response time minimization in

distributed query optimization”. Present at ICCI'98, pp.124-138, 1998.

[MNW98] A. Moffat, R. M. Neal and I. H. Witten, “Arithmetic Coding Revisited”, 

ACM Transactions on Information Systems, Vol.16, No.3, July 1998.

[M097] J. Morrissey and W.K. Osbom, “Experiences with the use of reduction filters 

in distributed query optimization”. In proceedings of the 9th intemational 

Conference On Parallel and Distributed Computing and Systems (PDCS'97), 

pp.327-330, 1997.

[M098] J. Morrissey and W.K. Osbom, “Distributed Query Optimization using 

reduction filter”. Electrical and Computer Engineering, 1998. IEEE Canadian 

Conference on. Volume: 2, pp.707-710,1998.

[M099] J. Morrissey, W. K. Osbom, “The effect of collisions on the performance of 

reduction filter”. Proceedings of the 1999 IEEE Canadian Conference n 

electrical and computer Engineering, pp.215-219,1999.

[MOLOO] J. Morrissey, W. K. Osbom, and Y. Liang, “Collisions and reduction filters 

in distributed query processing”. In Proceedings of the 2000 IEEE 

Conference on Electrical and Computer Engineering, vol.l, pp.240-244, 

2000.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Mor96] J. Morrissey, “Reduction filters for minimizing data transfers in distributed 

query optimization”, In Proceedings of the 1996 Canadian Conference on 

Electrical and Computer Engineering, vol.l, pp. 198-201,1996.

[Mor96] J. M. Morrissey, “Reduction filters for minimizing data transfers in

distributed query optimization”, IEEE, pp. 198-201,1996.

[Mul83] J. K. Mullin, “A second look at bloom filters”. Communication of the ACM, 

vol.26(8), pp.570-571, August 1983.

[Mul94] J.K. Mullin, “Optimal Semijoins for Distributed Database Systems”,

Software Engineering, IEEE Transactions on. Volume; 16 Issue; 5, pp. 558 -  

560,1994.

[Mul96] Craig S. Mullins, “Distributed Query Optimization”, Technical Enterprise, 

1996.

[NS98] F. Najjar and Y. Slimani, “Distributed optimization of cyclic queries with 

parallel semijoins”, IEEE, pp. 717 -722,1998.

[Osb98] W. Osbom, “The use of reduction filters in distributed query optimization”. 

Master's Thesis, the university of Windsor, 1998.

[Ozs99] M. T. Ozsu, “Principles of Distributed Database Systems”, Printice Hall, 

Upper saddle River, New Jersey 07458, Second Edition (1999).

[PC90] W. Perrizo, C. Chen, “ Composite Semijoins in Distributed Query

Processing”, Information Sciences Vol. 50,No.3, pp. 197-218,1990.

[Per85] W. K. Perrizo, “Upper bound response time semijoin strategies”, 1st

intemational conference on super computer systems, pp.273-279,1985.

[PV88] S. Pramanik and D. Vineyard, “Optimizing join queries in

distributed database”, IEEE Transaction on software engineering Vol. 14, 

No. 9, ppI319-1326, Sept. 1988.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Ram89] M. V. Ramakrishna. “Practical performance of Bloom filters and parallel

ffee-text searching”, Communications of the ACM,32 (10). 1237-1239, 

Oct. 1989

[RIOl] M. Ripeanu, A. lamnitchi, “Bloom Filters -  Short Tutorial”, Retrieved 2003

http://people.cs.uchicago.edu/~matei/PAPERS/bf.doc

[RK91] N. Roussopoulos and H.Kang, “A pipeline n-way join algorithm based on the

2-way semi-jion program”, IEEE Transactions on Knowledge and data 

Engineering Vol.3(4), pp.486-495,1991.

[SB82] M. S. Sacco and S. B. Yao, “Query Optimization in Distributed Database

System”, In M. C. Yovits (ed.). Advances in Computers,Volum21,New York: 

Academic press, pp225-273,1982.

[Sch90] D. C. Schmidt, “GPERF: A Perfect Hash Fimction Generator”, In

Proceedings of the 2 C-H- Conference, pages 87—102, San Francisco, 

California, April 1990. USENIX.

[Seg86] A. Segev, “Global Heuristic for Distributed Query Optimization”,

Proceedings of IEEE INFOCOM, pp.388-394,1986.

[TC02] P.S.M. Tsai, A.L.P. Chen, “Optimizing queries with foreign functions in a

distributed environment”. Knowledge and Data Engineering, IEEE 

Transactions on. Volume: 14 Issue: 4, pp. 809- 824, 2002.

[TC92] J. C. R. Tseng and A. L. P.Chen. “Improving distributed query processing by 

hash-semijoins”. Journal of Information Science and Engineering, vol. 8, 

pp525-540,1992.

[Vla97] Richard Vlach, “Query Processing in Distributed Database System”, 1997

[Wan90] Chihping Wang, “The complexity of processing tree queries in distributed

databases”, IEEE, pp.604-601,1990.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://people.cs.uchicago.edu/~matei/PAPERS/bf.doc


[WC96] C. Wang and M-S. Chen, “On the complexity of distributed query 

optimization”, IEEE Transactions on Knowledge and Data Engineering, vol. 

8(4), pp.650-662, 1996.

[WC96] C. Wang and M-S Chen, “On the Complexity of Distributed Query

Optimization”, Knowledge and Data Engineering, IEEE Transactions on. 

Volume: 8 Issue: 4, pp.650-662,1996.

[WCS92] C. Wang, A. L. P. Chen and S- C Shyu, “A parallel execution method for

minimizing distributed Query response time”, IEEE transactions on Parallel 

and distributed Systems, 3(3), pp.325-333,1992.

[WLC91] C. Wang, V. Li and A. L. P Chen, “Distributed Query Optimization by One-

Shot Fixed-Precision Semi-Join Execution”, Processing 7th Intemational 

Conference on Data Engineering, pp.756-763,1991.

[Won77] E. Wong, “Retrieving dispersed Data from SDD-1”, Proc. 2nd Berkely

Workshop on Distributed Data Management and Computer Networks, 

pp.217-235, 1977.

[YC84] C. T. Yu and C. C. Chang, “Distributed query processing”, ACM Computing

Surveys, 16(4), pp.399-433,1984.

[YL90] C. Yu and C. Liu, “Experiences with distributed query processing”, IEEE, pp.

192-199,1990.

[Zha03] Yue (Amber) Zhang, “Variation of Bloom Filters Applied in Distributed

Query Optimization”, Master’s Thesis, University of Windsor, 2003

[Zhu04] Y.M. Zhu. “Implementation of Composite Semijoins Using A Variation of 

Bloom Filters” Master thesis. University of Windsor, 2004.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Vita Auctorls

Name:

Education:

Working Experience:

Ying (Joy) Zhou

2004 M.Sc. Computer Science
University of Windsor

Windsor, Ontario, Canada

1995 M. Eng., Electrical and Computer Engineering
Nankai University

Tianjin, P.R. China

1992 B.Sc., Computer and System Science
Nankai University

Tianjin, P.R. China

Web Developer & Computer Technician
Liquidator Powerhouse, Windsor, ON

Research Assistant
University of Windsor 
2001— 2003

Graduate Teaching Assistant
University of Windsor 
2001— 2003

Instructor/Lecturer
Nankai University
1995 —  2000

Software Engineer
HuaXing System Integration and Electronic Engineering 
Tianjin, PRC
1996 —  2000

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Compressed positionally encoded record filters in distributed query processing.
	Recommended Citation

	ProQuest Dissertations

