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ABSTRACT

Variational eigenvalues for the 1522s 2S and 1s522p 2P states of the lithium isoelec-
tronic sequence (3 < Z < 15) are calculated using multiple basis sets in Hylleraas coor-
dinates. A systematic convergence pattern for each of these nonrelativistic energies is
established, and extrapolated values are determined to within an accuracy of several parts
in 100 to 10''. An analytical calculation to determine the first two coefficients <(® and
) of the Z-expansion for the above states of the lithium isoelectronic sequence is also
presented. Using improved electron-pair energies, the third coefficient =(? for the above
states is determined to twelve significant figures, and the next several coefficients of the
expansion are found by applying the linear least squares fit method to the extrapolated
variational eigenvalues. Finally, first order relativistic and mass polarization corrections
from (8], and [40] are added to the nonrelativistic energies obtained, and the resulting
15225 25 — 1522p 2P transition energies are compared with experiment to determine the

“experimental” QED corrections.
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Chapter 1

Introduction

The lithium isoelectronic sequence comprises lithium and all other atoms of higher nuclear
charge which have been stripped of all their electrons except for the three innermost.
The nonrelativistic description of such three electron systems includes an interaction
between each electron and the nucleus as well as an interaction between each of the
electrons. It is this interaction between each of the electrons which prevents one from
obtaining exact analytic solutions to these systems. However, despite this complication,
a particular theoretical technique known as the variational method has been used since
the late 1920’s to obtain approximate solutions for several electron atoms. The basic idea
of this method, as explained in detail in the first chapter, is to choose a trial wavefunction
¥ that depends on a number of parameters (a;, sz, ...), and minimize (¥| H |¥) with
respect to these parameters to obtain an upper bound to the energy being calculated.
This seems simple enough, however, there are many details about the form of the trial
wavefunction which must be considered if one is to obtain very accurate solutions for the

several electron systems. Some of these details include:

1. the size of the basis set,

2. the explicit inclusion of correlation effects by incorporating powers of the interelec-

tronic coordinates r;; (Hylleraas coordinates), where 7, j = 1,2, and 3,



3. the usage of multiple basis sets (i.e. the explicit inclusion of multiple distance

scales),
4. the inclusion of nonlinear as well as linear variational parameters,
5. the optimization of the nonlinear parameters for improved numerical stability, and

6. the inclusion of all terms which yield a systematic convergence pattern for increasing

basis set size.

With the incorporation of all these details to form the optimum trial wavefunction,
time becomes an important factor for the lithium calculation. This is mainly due to
the very slow convergence of integrals with several interelectronic distances r;; in the
integrand. The solution to this problem as well as the particulars of an optimum trial
wavefunction have been addressed by many atomic theorists over the last 60 years. Much
of the success in dealing with these problems has come in the last 10 years as a result
of significant increases in computational power and the application of new mathematical
techniques. The most recent progress has been made by Drake and Yan [11] who have
succeeded in dramatically decreasing the time required for the calculation of three elec-
tron integrals in Hylleraas coordinates. This development along with improved methods
for obtaining an optimum trial wavefunction have led Drake and Yan to obtain the most
accurate results for the lithium calculation to date [38]. One of the purposes of this thesis
is to present these recent methods for the lithium calculation.

These methods have been used in this work to determine the nonrelativistic upper
bound energies for the 15225 25 and 1s22p 2P states of the lithium isoelectronic sequence
for up to Z = 15. These energies may also be determined from the Z-expansions for

these states, namely,

EZ)=e9Z22 +eMWZ 4+ @ 1 A7z  DZ72 4. (1.1)



where the leading terms £(® and £(!can easily be evaluated exactly. Equation (1.1) arises
by treating the electron-electron interactions as an entire perturbation term and expand-
ing the resultant total energy. In this thesis, €@ and () are calculated analytically,
an improved value for £() is obtained as a weighted sum of electron-pair energies and
single-electron energies [7], [5], and the next several terms £®,e®), ... of the expansion
are found by performing a least squares fit using the nonrelativistic energies obtained
from extrapolations of the three electron computer calculations.

A meaningful comparison with experiment can only be made once the mass polariza-
tion and relativistic corrections have been added to the nonrelativistic energies. In this
thesis, these corrections have been obtained from Chung et al. [8], [40] for both the S and
P-states of the lithium isoelectronic sequence up to Z = 10. The QED corrections may
then be extracted from the difference between theory and experiment and the results

may be compared to directly calculated QED results.

1.1 Historical Survey

The first variational calculation for lithium was done in 1930 by Eckhart [13]. He used

the following screened type radial wavefunctions
u(r) = exp(—ar), (1.2)

and

v(r) = (1 —yr)exp(—r), (1.3)

for the 1s and 2s orbitals, respectively, where a and 7 are the variational parameters.
Using these analytic functions he also calculated the ground state energies for the low
Z members of the lithium isoelectronic sequence. All his values except for lithium itself
were accurate to within a few percent. The calculation for lithium turned out to be in

error, and it was later corrected by Wilson [12].



The ground state calculation for lithium was improved upon in that same year
by Guillemin and Zener [17] who introduced a third parameter in place of the non-
exponential parameter 7y in Eq. (1.3). With this new three parameter wavefunction they
obtained an improved value of —7.4183 a.u. for the ground state of lithium. Calcula-
tions such as these, containing simple analytic wavefunctions, continued throughout the
early 1930’s. However, the accuracy in the energies obtainable from using these simple
separate orbital wavefunctions was limited.

In 1936, important breakthroughs were made by James and Coolidge [21] with their
introduction of more elaborate wavefunctions. In an effort to improve upon previous
trial functions, they made three different types of adjustments to their wavefunctions,
and examined which of these adjustments resulted in significant improvements for the
bound states and ionization potential of lithium. The first of these adjustments was the
addition of new linear and nonlinear parameters to the radial function representing the
2s orbital. This change was made for the purpose of improving the representation of the
2s orbital, however, the resultant four-term function yielded an improvement of less then
1 x 107* a.u. for the ground state energy. The second adjustment that they made was
intended to improve the core representation. Previously, the core had been represented
by a product of two separate orbital functions, u(r;) u(rz). In the place of this product,
James and Coolidge tried using a single function u(ry,r2), which explicitly included the
first two powers of the interelectronic coordinates, i.e., 13 = |[r; — ry| and r2,. The use
of such coordinates was first introduced, with great success, by Hylleraas [19] [20] for the
helium calculation in 1928. As such, it seemed very likely that similar success could be
achieved for the lithium calculation since the interelectronic coordinates would improve
the core representation by allowing correlation effects within the core to be taken into
account. This, in fact, turned out to be the case. With the inclusion of r12 and r%,,
a value of —7.47268 a.u. was obtained for the ground state energy of lithium. This
dramatic improvement was obtained with just a six-term core and a single term valence

orbital function. The success indicated that correlation effects within the core have a



significant impact on the variational energies of lithium.

The final adjustment made by James and Coolidge was to abandon the separate
orbital concept altogether by including the interelectronic coordinates r;3 and 753 in their
wavefunction. This change allowed correlation effects between the valence orbital and
the core to be taken into account, and with a new ten term wavefunction, they improved
the ground state energy of lithium by a few parts in 10°. Hence, the importance of
polarization effects between the core and the outer electron in determining energy levels
for three electron systems was also demonstrated.

At this point, one may wonder why the use of interelectronic coordinates in the
trial wavefunction for lithiurn had not been introduced sooner. Eight years had gone
by since Hylleraas had first introduced and shown the importance of using such coor-
dinates in calculations for few electron systems. The reason they were not introduced
sooner is probably because the inclusion of these coordinates for three electron systems
enormously complicates the calculation of the radial integrals. With the inclusion of the

interelectronic coordinates, these integrals turn out to be of the general form,
I(j1, 2, 33, 12, Jo3, Jar; @, B, ) = /ds“"f"’%"‘?"f‘z”'gsd?e—ml_Brrwa- (1.4)

This integral may be evaluated by expanding powers of r;; in terms of a series of Legendre
functions. However, a numerical summation of an infinite series is required if all three
powers J12, j23, and j3; are odd. James and Coolidge got around this problem by including
only one nonzero power of r;; in each of their terms constituting the wavefunction.

Due to the difficulty of solving radial integrals of the form (1.4), improvements over
the James and Coolidge results using Hylleraas type trial wavefunctions did not come
until almost thirty years later. In 1963, Berggren and Wood (2] extended the wavefunction
of James and Coolidge by adding terms alternating between the inclusion of coordinates
r93 and 73 up to the third power. The addition of these terms allowed for an improved
description of the core-valence correlation, and their 14 term wavefunction led to an

improved value of —7.47631 a.u. for the ground state energy of lithium. In the same year,

)



a similar extension was also made by Burke [4] who obtained a slightly better value of
—T7.47695 a.u. Although these extensions by Burke, and Berggren and Wood yielded some
improvement in the ground state energy of lithium, it was clear that even more elaborate
extensions were necessary if any further improvements were to be made. Such extensions
became possible that same year with the discovery of a reasonably efficient algorithm
for dealing with the case mentioned above where all three powers of the interelectronic
coordinates are odd. In addition to this discovery made by Ohrn and Nordling [28], a
computationally useful expansion for arbitrary powers of the interelectronic coordinates
was introduced by Sack [34] a year later. Perkins [30], in 1968, also provided a similar
expansion but for only the integral powers of the coordinates r;;. With the introduction
of these powerful computational tools, the door was now open for calculations with more
complex Hylleraas type wavefunctions.

In 1968, Larsson [24] made use of the new computational tools for his lithium calcu-
lation which involved the most complex Hylleraas type wavefunctions anyone had ever
used up until then. He performed calculations for various basis set sizes up to a size
which included 60 different radial terms. The terms he used were selected on the basis of
their ability to improve the ground state energy, and with these trial and error selection
processes he obtained a final energy of —7.478025 a.u.

While various Hylleraas type variational calculations were being studied during the
1960’s, the usefulness of Z-expansions for predicting atomic properties, such as the cor-
relation energy, were also being explored [7][5][39]. To make meaningful predictions for
the atomic properties, the expansions were carried up to second-order. The second-order
coefficient £(® of the Z-expansion (1.1) was derived from electron-pair eigenfunctions.
This method for calculating £?) appears to have been first pointed out by Bacher and
Goudsmit [1] in 1934. However, it wasn’t until almost three decades later that the method
was used to extend the Z-expansions for the lithium isoelectronic sequence.

In 1960, Sinanoglu [37] showed that the first order wavefunction ¥(!), [see Egs. (3.11)

and (3.15)], can be obtained rigorously in terms of the first order wavefunctions of in-



dependent two-electron systems. For example, if ¢ (152 15), ¢'V(152s 3Sp), V(1525
35,), and ¢V(1s2s 1S) are first-order corrections to the two-electron states, then the

first-order wavefunction for the lithium ground state can be written as

(15225 28) = 2~/ 4 {¢§;)(132 1§) e + 2~/
X [¢512)(1823 350) - ¢§12)(1323 IS)] as + ¢§12)(1828 351)b3} ’ (15)

where a = 1sa, b = 133, and ¢ = 2sa are one electron hydrogenic solutions for nuclear
charge Z, the subscripts denote electrons, and a: and 3 represent spin up and spin down,
respectively. A is the three particle antisymmetrizer (2.11). The first-order corrections
to the two-electron states can be obtained individually by variational or other methods.

With the first-order wavefunction ¥(!), the nonrelativistic energies can be calculated
to third order, with second and third-order energies € and £® written as a weighted
sum of electron-pair energies and certain single-electron energies. In 1965, such a calcu-
lation was carried out to second-order by Chisholm and Dalgarno [7] for the ground state
lithium isoelectronic sequence. They obtained the pair energies from direct two-electron
variational calculations, and presented a method for evaluating the single-electron ener-
gies exactly. With this work, they concluded that the nonrelativistic eigenvalues of the

15225 2S states of the lithium sequence were given by
Eps)(Z) = —1.1252% + 1.02280521Z — 0.40814899 + O(Z™1). (1.6)

Several years later, a similar calculation was done by Chisholm et al. for the 1s22p 2P

state of the lithium isoelectronic sequence [5] with the result
Eep)(Z) = —1.125Z% + 1.02280521Z — 0.52717136 + O(Z™'). (1.7)

It turned out, however, that the calculated second order energies in (1.6) and (1.7) were

slightly off. In 1969, an improved value for the pair energy £2)(1s2s !S) had been used



by Horak et al. [39], and this led to a slightly more accurate value for £(?)(1s%2s 25)
than that of Chisholm and Dalgarno. They also made a correction to one of the single-
electron energy terms used in the calculation of the second order coefficient £ (1s22p
2P) of Eq. (1.7). With these adjustments they obtained £(2(1s?2s 2S) = 0.4081652 and
£®(1s22p 2P) = 0.5285786 for the 1s22s 2S and 1s?2p 2P state expansion, respectively.

A few years later, Seung and Wilson [36] carried out a similar calculation for the
15225 28 state up to the third order. Their work led to the result that the nonrelativistic

energy for this state is given by

Eps)(Z) = -1.125Z% +1.022805Z — 0.4083
—-0.0230(1/2) + O(Z7?). (1.8)

To obtain this result, they used the same pair energies as Chisholm and Dalgarno, how-
ever, their calculation for the single-electron terms was less extensive. These terms were
evaluated only appraximately using variationally determined representations of the two-
electron pair functions. From Table 1.1 below, we see how the second and third order
Z-expansions compared to some of the variational calculations for the lithium ground
state.

During the 1970’s, Larsson’s work was extended with Hylleraas type variational calcu-
lations for various states of lithium, and for the ground state of the lithium isoelectronic
sequence [31]. Despite this progress, however, the next significant gains with these types
of calculations did not come until 1986 with the ground state lithium calculation by King
and Shoup [23]. The importance of the King and Shoup calculation was their employ-
ment of a more systermnatic method for extending the basis set size. Instead of increasing
the size of the basis by using trial and error techniques, they simply included all possible
permutations of the powers of the coordinates that added to a fixed sum. This unbiased
approach of extending the basis set later proved useful for convergence studies.

In 1989, King extended his calculation to the ground state lithium isoelectronic se-



Table 1.1: Comparison of a few lithium ground state calculations.

Method Author Energy (a.u.)
Variational  James and Coolidge®* -7.47607
Variational  Burke® —-7.47695
Variational  Larsson® —7.478025
Perturbation Horak et ald —7.46461

Perturbation Seung and Wilson® —7.47262

*Reference [21].
®Reference [4].
<Reference [24].
4Reference [39).
*Reference [36].

quence and to some excited S states [22]. With a total of 602 terms, they obtained
the nonrelativistic ground state energy with an accuracy of a few parts in 10%. A few
years later, another dramatic improvement was made by McKenzie and Drake [25]. The
main difference between their wavefunction and previous wavefunctions was the use of
a multiple basis set, that is, their basis set was divided into sectors with different scale
factors ¢, B3, and 7. Using up to 1134 terms in their basis set, the result they obtained
for the ground state energy of lithium was two orders of magnitude more accurate than
previously obtained values. This result remained to be one of the most accurate until
the recent calculation by Yan and Drake in 1995 [38]. They improved upon the multiple
basis set method by using a better partitioning of the different sectors, and they also
discovered an asymptotic expansion method which they used to deal with the slowly
convergent integrals [11]. This latter improvement allowed them to carry out computa-
tionally efficient calculations with significantly larger basis set sizes. Their nonrelativistic
calculations for the 1s22s 25, 1522p 2P, and 1523d 2D states of lithium converged to a

few parts in 10!° — 10!, These are the most accurate values to date.



Chapter 2

The Lithium Calculation

In order to determine the energies and states of lithium and other three electron systems,

we must first determine the form of the Hamiltonian. Once this is done, we may proceed

to solve the Schrédinger equation to find nonrelativistic solutions of our system. However,

as we shall see below, no exact analytic solutions are possible for three electron systems.

As a result, we shall turn to the variational method in Hylleraas coordinates as a means

of obtaining appraximate high precision solutions for these systems.

2.1 The Hamiltonian

Assuming infinite nuclear mass, the nonrelativistic Hamiltonian (in atomic units with

e = i = 1) for three electrons in a Coulomb potential is given by

3

1 ) 21 K&l
H==-32 Vh-2) g+l ) gy

i=1 i=1 j>i

where Z is the nuclear charge. Now substituting r = R/Z, we obtain
o
i>i 14

1, 11
H==32 Vi-2 o+z2

3 3
i=1 i=1 ° =1

10

(2.2)



the Hamiltonian in Z-scaled atomic units. The form of the V? operators is derived in
Appendix A.

From Eq. (2.2), we see that the eigenvalue equation, H¥ = EV¥, cannot be solved
exactly. This is due to the fact that the interelectron interaction terms, r;;, cause the
equation to be nonseparable. As a result, we resort to the variational method for finding

solutions.

2.2 The Variational Method

The variational method is one of the principal methods used to obtain approximate
energy levels and wave functions of a system for which no exact analytic solution exists.

The general form of the variational principle is stated as follows:

Theorem 1 The mean value of the Hamiltonian H,

(i) = £y = S (2:3)

is stationary if and only if the state vector |¥) to which it corresponds is an eigenvector

of H, and the stationary values of (H) are eigenvalues of H.

A proof of this theorem may be found in many quantum mechanics books (for ex-
ample, Messiah [26]). In essence, the theorem allows us to apply the variational method
in lieu of solving Schrédinger’s equation. In doing so, it creates a means for setting up
appraximate solutions of Schrédinger’s equation.

The main idea behind the method is to choose a wavefunction ¥,., which may be
expressed in terms of a finite linear combination of linearly independent functions whose
coefficients are the parameters with respect to which (H),. = E., is minimized. That is,

¥, is expanded as
M
Ty =) ad; (2.4)

1=0

11



and the coefficients are determined from the condition 8F.,./8¢c; = 0, fori =0,... , M.
This procedure is equivalent to solving the following generalized eigenvalue equation

Hc = AOc, (2.5)

where H is the Hamiltonian matrix with matrix elements given by H;; = (®;| H|®,), O
is the overlap matrix with matrix elements O;; = (®; |®,), and c is a column vector with
elements c;. To illustrate the equivalence of these procedures, we begin by substituting
(2.4) into (2.3) with ¥ = ¥,,

(‘I’trl H I‘Iltr>

(Per |Per)
> ciciHy (2.6)
> crciOi’ '

Etr

Next, we differentiate with respect to the coefficients

aEt" Zi C: H‘k .
—ack = ———E,-j te;0n - (Z c; cJ-Oij> ZO:LC Zc c;H
- z: C‘Hi]; Egr 2 C.O;l; (2 7)

Z‘l] G CJO'U Z:] T

Finally, setting (2.7) equal to zero we get the generalized eigenvalue equation (2.5).

We have thus shown that the variational principle leads us to solve Eq. (2.5) for the
coefficients ¢; and the corresponding eigenvalues A;, ¢ = 0,..., M. We shall now show
that the lowest of these eigenvalues is necessarily greater than or equal to the true ground

state eigenvalue. That is, we shall prove that

(Wer| H |Per)

> Eo, 2.8
(T [Ty =0 (2.8)

Etr =

where Ej is the smallest eigenvalue of H.

12



To this end, we begin by choosing an arbitrary eigenfunction ¥, of the state space
of space of the system. For convenience, we assume that ¥, is normalized so that
(T |¥e) = 3, lci]? = 1. Now, if this function ¥,, is expanded in a complete set of
eigenstates of H, denoted ®;, with corresponding eigenvalues E;, wheret =0,1,2,..., M,

then we get

M M

Ew = (Ve H|TW) =) ) ci(®lH|2))¢
i

M M

= DD ciciE; (34 |2;)
F

i
M

2 led* B
i

M
> Eo)lal’ = Fo, (2.9)

which proves (2.8).

More generally, it can also be shown that for a spectrum which is bounded from below,
the remaining exact energies F;, E,,...,Ey, will always lie below the corresponding
higher trial energies A1, Ag, ..., Aar. This is known as the Hylleraas-Undheim-MacDonald
(HUM) Theorem. It follows from the matrix interleaving theorem which states that if
an extra row and column is added to the matrices H and O then the M old eigenvalues
interleave the M +1 new ones. As a result, all but the highest of the M +1 new eigenvalues
will lie below the M old eigenvalues, and as the size of the matrices approaches infinity,
the exact spectrum of the bound states will be approached from above.

In the case of the lithium calculation, the trial wavefunction was written as

N N,
T=A (co¢o +> ) c,w¢,w> , (2.10)

p=1 v=1

where A is the three-particle antisymmetrizer given by

13



A= (1) — (12) — (13) — (23) + (123) + (132), (2.11)

N is the number of sets of exponential parameters a,, 8, and v, being used, N, is the
number of terms for a given set p, ¢g and the c,,,, are the linear variational coefficients, and
@0 and the ¢, are basis functions. The numbers in parentheses in Eq. (2.11) represent
permutation operators which act to interchange the spacial and spin coordinates of the
three particle wavefunction. For example, the operator (123) represents the permutation
in which coordinate 1 takes the place of coordinate 3, coordinate 2 takes the place of
coordinate 1, and coordinate 3 takes the place of coordinate 2.

The function ¢ is of the form
¢o = (15>, Z2)p(2, Z - 2), (2.12)

where ¢(1s2, Z) is a variationally determined core wavefunction and ¢(2[,Z — 2) is the
hydrogenic wavefunction with angular quantum number [ and nuclear charge Z. The
inclusion of ¢, as a single term in the basis set is mainly for the purpose of improving
upon the variational eigenvalue for a given basis set size for the higher states. To see
how this works, consider the eigenvalues of (2.12), given by

_Z-2

— (2.13)

Eo = E(182, Z)

Equation (2.13) gives the correct first several figures of the true energy for the higher
states. For example, using a 135 term core wavefunction we obtain the following values

for the 1s22p 2P and 1s23d 2D states of lithium
Eo(15*2p®P) = —7.404 913 412 a.u.,

and

Eo(1s%3d2D) = —7.335 468 968 a.u.

14



The actual values determined variationally without the core function [38] are given by
—7.410 156 521 8(13) a.u. and —7.335 523 541 10(43) a.u. for the 1s22p 2P and 1s?3d 2D
states respectively. Thus, we see that there is agreement between Ej and the variational
eigenvalues to two significant figures for the P-state and four significant figures for the
D-state. For the S-state the agreement is only to one significant figure. This result shows
that it is numerically advantageous to include ¢, in the basis set for the higher states

and rewrite the variational priniciple for AE = FE — Ep, so that

AE(w) = & 7\”‘ f; %) _ min, (2.14)

In this way, the variational principle is applied to H — Ey, which yields the correction
to Eg directly, so that several significant figures in the evaluation of the matrix elements
are saved.

From (2.10), the form of ¢,,, is given by
,‘U(rl, Io, r3) = rJluur;Quur;auu r.;l;uv 12;3;40 ;:;I“U e Gur- -B,r2— ‘7,,."3))(1;11\;;)“2"8 (rl, I, r3)X1:
(2.15)
where
Vilwass = T Z (Lyma; lama| Lilg; L Mi2) (lie Mi2; lama| Lials; LM)
x Ylmlx (rl )lemz (r2)Ylaﬂm (r3) ? (2°16)
and
x1 = a(1)B8(2)a(3) — f(1)a(2)a(3) (2.17)

is the spin function with Ms = 1/2.
Now, from (2.15) we see that in addition to finding the optimum linear coefficients
Cuv, We must also find the optimum nonlinear parameters «,, G, and v,. To this end,

N sets of exponential parameters are chosen and the generalized eigenvalue problem

15



(2.5) is first solved to find the linear coefficients c,, and the corresponding variational
eigenvalue ) for a given state. Next, the exponential parameters are separately optimized
for each set, and the variational eigenvalue is recalculated with the new optimized values.
However, optimization of these nonlinear parameters is not as straight forward as the
optimization of the linear parameters. The reason for this is that the equation dE/8p =
0, where p represents any nonlinear parameter, is transcendental. This fact leads us
to apply Newton’s method to find the zeros of the first derivatives of the variational
energy with respect to each of the nonlinear parameters. The implicit dependence of
E on the nonlinear parameters through the linear coefficients vanishes as a result of
the condition 8E/dc,, = 0 used for the optimization of the linear coefficients. Thus,
in order to optimize the nonlinear parameters, we only have to be concerned with the

explicit dependence of E on these parameters. This explicit dependence is given by

(00, /8p| H | V) + (Vor| H 0T/ Op)
(Ter [Ter)
(8¢ /Op |Wir) + (Yir |0, /Op)] (Per| H |Per)
(Ve |P0r)
2 (Werl H|0¥er/3p)  2E (¥r |0V.r/Dp)
(‘Iltr I‘I’tr) (\Iltr I‘Iltr)
2 (\I’trl H-F Ia“ptr/ap>
(\I’tr I\Iltr) )

OFE/8p

(2.18)

Once the first derivatives are known, the second derivatives are estimated by taking the
difference between two slightly differing pre-chosen exponential parameter sets. Newton’s
method is then employed to find the zeros of the first derivatives, and given that the initial
exponential parameters are chosen close to a minimum, the procedure converges within
several iterations.

To illustrate this procedure in more detail, consider one of the exponential parameters
p and its first derivative Dy = E/9p I p=p, to be given by (pg, Do), and suppose another
value for p is chosen close to p, in the direction of decreasing energy. If we label this

other value p,, and calculate the first derivative D,, we have a second point which may
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be labeled (p;, D1). Now, through any two points there is a unique line which may be
exptrapolated using the special case of Lagrange’s classical formula for two points [32],

_ (z — ) (z—z)
P(z) = - o) (2.19)

where the two points are give by (z;,y;) and (z,,¥;). Since we want the value of p at

OE /8p = 0, we set P(z) = 0, and rearrange (2.19), to obtain

_ (zayr — T13)
T = -—————(yl ) (2.20)

Substituting (z1,%1) = (g, Do), and (z2,¥2) = (py, D1) into (2.20), we get

(p1Do = poDs)
- ) 2.21
p2 ( DO _ Dl) ( )
This procedure is then repeated with the points (p,, D), and (p,, D2) to find (p3, Ds),
and this point may then be used together with (p,, D;) to find the next point, and so
on, until the changes in the derivatives and in the successive values of the energy are

sufficiently small.

2.3 Construction of the Basis Sets

The basis set constructions used for the results obtained in this thesis are those of Yan
and Drake [38]. In generating the finite basis sets, all terms from (2.15) are nominally
included such that

Tyo + J240 + I3, + T12,, + Jo3,, + Ja1,, < Q, (2.22)

where (2 is a nonnegative integer. This systematic method for selecting terms for the
basis sets allows a meaningful convergence study of the eigenvalues to be performed as

Q is progressively increased. However, this method alone does not guarantee adequate
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convergence. To be sure that the correct energy eigenvalues are obtained, a system-
atic search for possible classes of terms yielding a significant lowering of the eigenvalues
must also be carried out. For example, the angular coupling for a given total angular

momentum L, is given by

S states (L = 0) : (ll,lg,ls) = (0,0,0)4, and
P states (L = 1): (I,12,l3) =(0,0,1)4, (0,1,0)5,

where ({),l,,13) denotes the angular momenta being used, and the subscripts A and B
label the different nonlinear parameters for a given block of terms. Yan and Drake [38]
found that the inclusion of at least a few (0, 1,0) g terms for the P states, which describe
the core polarization, are necessary for adequate convergence. With the use of only the
(0,0,1) 4 terms, the energy eigenvalue for the 1s22p 2P state of lithium converged to an
incorrect value of -7.410 136 34 a.u., even for basis set sizes as large as 1500 terms.

In order to increase the rate of convergence of the basis sets for a given total number
of terms, the total basis set used is split up into different sectors with different scale
factors @, B, and «, which are optimized separately. This separation into different sectors
increases the convergence of the basis sets by improving the representation of different
correlations among the three electrons. The first block (0,0, L) 4 is partitioned into five

sectors covering the different distance scales as follows:

sector 1: all j12, Jaz =0, Jj31 =0;
sector 2: all j12, Ja3 =0, Ja3 #0;
sector 3: all 12, Jas #0, ja =0; (2.23)
sector 4: j12 =0, Jjo3 #0, Jja1 #0;
sector 5:  Ji2 #0, Juzs #0, Jja1 #0.
Thus, there are five sectors for the S states, and six sectors for the P states, since they

contain the additional block (0,1,0)p. The sizes of each of these sectors are controlled
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by assigning an ; value to each of them according to

{Qh 921931 Q4, 95} = {Qw Q, Qr (Qy 8)min’ (Qy 8)min}1 for L = 0, and
{le 921 Q31 Q4; QS) fzﬁ} = {Qv Q1 Q) (Qy 8)miny (Qy 8)min1 Q - 2}1 for L = 11 (2'24)

where (@, b)min denotes the minimum of a and b.

2.4 Calculation of the Integrals

In the above discussion of the variational method, it was shown that the variational
eigenfunctions and eigenvalues may be found by solving the general eigenvalue problem
(2.5). To solve this equation, the matrix elements of H and O must be evaluated. In
this section, proceedures for solving the general form of the integrals involved in the
evaluation of these matrix elements is presented.

Let us define, ®(ry,72,73,712,723,731) = r}’é’ré’g“r:',’f‘@ (r1,72,73), where d (ry,72,73) =

i r2rj3e-an-Bri-13 Now, consider an integral of the form

I = /dl‘ldl’zdl'sq’(rl,7‘2,7‘3,7‘12,7‘23,7‘31)Y,r:m;(Fl)Yl;m;(?z)Y,gm;(Fs)
xyllmx(?l)ylzmz(?ﬁylsms (Fs) (2.25)

All the matrix elements of H and O may be reduced to the evaluation of integrals of
this form. To evaluate this integral, we begin by substituting the expansions derived by

Perkins [30], for the interelectronic coordinates. For example, the expansion for r{3? is

(l) (?)

2k -2k
= Z Py, (cosfya) Z Corzquakrg ST T 12 gy~ 1272k (2.26)
q12=0 ky12=0
where L{) = 22 and L2 = w2 _ 4, f ] f d L) = d L) =
12 2 12 qy2 for even values of v;q9, an oC an

3(v12 + 1) for odd values of vy . Also, s12 = min(r1,72) and g12 = max(r,r2), and the
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coefficients Cy,,q,,%,, are given by

Sqiov
c 2241 [ vie+2 |\ TV 2k +2t—wp (2.27)
= .
vi2q12k12 Vig + 2 %y + 1 polry 2k12 +2q10 -2t +1

q12+2k12 vi2—q12—2k2

where Sg,,0,, = min|gi2—1, 3(v12+1)]. Now, if we define, F(vgk)12 = Cuypq12k12513 919
and write similar expressions for r33° and 33, Eq. (2.25) becomes

1 1 1 2 2 2
T

Z Z Z Z Z Z /‘rl(:lr,1'.‘_,41‘21'\.,(11‘3<I>F(vql‘:)12F(vqk:)23F(vq!‘:)31

@12=0 g23=0 q31=0 k12=0 k23=0 k31=0

xI(q12, g23, gn1) (2.28)
where
T = / dQldQZdaalfllzm'l (?1 )Y[;.,n,’2 (?2) Y’ (7‘3 ) )/llml (7’1) lama (rQ))/lsms (7'3)
)(13(,12 (COS 012) qu (COS 023) qu (COS 931) . (229)

is the angular part of the integral and d); = sin 6;d6:d¢;.

From Egs. (2.26) and (2.28), we have the terms s;; and g;; denoting the smaller and
greater of r; and r; respectively. It would therefore be convenient to break up the radial
part of (2.28) into different regions covering the various possibilities of the relative sizes
of ry, rp, and r3. For example, an integral over a function, F(r|,rs,r3) = f(r1)f(r2) f(r3),

may be split up in the following way

/:o f(ry)dry /o'” f(r2)dr, /0‘°° f(r3)drs = / f(rl)drl/ f(ra) dr2/ f(r3)drs

/ f(ry)dr, f (r3)drs f (r2)dry

3

/ feadry [ fedr [ firs)drs

/ f(rz)dm/ f(r;;)drs/ f(r1)dr,
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/ f(rs)drs f (r1)dry f (re)dre

/ f(rs)drs / f(ra)drs / f(r)dr.

(2.30)

The first term on the right of (2.30), represents the region where, 7y < 7o < 13, and
the following terms represent the regions, 7} < 13 < 19, Ta < 7, < 13, Tg < T3 < Ty,

r3 <1 < 19, and 13 < 19 < 1}, respectively.

Let us define
2k -2k +2k v -2k
W = 7‘17'27’31"”1"127“736 ary g 61'26 7r33q12+ mgillz Q12 lzsg?’s 2392:?3 q23—2k23
q31+2k31 _v31—q31—-2k3;
X 831 931 (2.31)

so that for the first region, we have

W( I) -_— ” 1.{1 1—12 7..73 e Qfle ﬂf?e ‘77'31.?12 121. 12—q12 12,'.@3 231. 23—q23 23
q31 +2k31,_v31 —q31 -2k
X'Il ! 113 ! 1 :“d1 1d72d73

O {o o]
j 2k 2k - jo+2 - -2k 2k -
= / T_{1+2+912+931+ 12+ 3, ar;drl/ r,{ﬁ- +vi2-q124+ @3 12+ 23, Br-zdr2
0

ri

(o o)
% / 1_;3+2+v23+0:u —”3—%’—2,‘3‘—2’:236—de3- (232)

Now, we introduce the following definition

wW(l,m,n;a,B,7) E/ dx:r'e“m’/ dyy"‘e“’”/ dzz"e 7, (2.33)
0 z v

The general analytic expression for this integral, derived by Drake and Yan (11}, is

- P
W(l,mn;e,B,7) = ! Z(l l+m+n+p+2)! ( o )

(@ + B + v)i+min+3 +1+p)l(l+m+2+p) \a+B8+7
a+
. L 2.
><2F1(1,l+m+n+p+3,l+m+p+3,a+ﬁ+7), (2.34)
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where o F] is the hypergeometric function. Equation (2.34) is valid for{ > 0, [+m+1 > 0,
andl+m+n+220.
With definition (2.33), (2.32) may be rewritten more succinctly as

W(1) = W1 +2+g12 + 931 + 2k1a + 2k31, Ja + 2 + v12 — @12 + Goz — 2k12 + 2ka3,

J3+ 2+ Vg3 +U31 — qas — @31 — 2k3; — 2ka3; 2, B,7)

Integrals for the other five regions may be written in a similar way using (2.33). After
writing the integrals in this way Eq. (2.28) may be rewritten as

I ' 1 ' ! [ . . -
I = I(llmplzmz,lsms;llmhlzmz,lsms;Jh.72,]3,”12,023,1131,Q,ﬁ,’)‘)
1 1 1 2 2 2
AV 2 A ng) Lsy L

= Z Z Z Z Z Z CvuqukmCvaaqzakzscvmqusxT(qmwQ23r‘I3l)[W(jl +2

912=0 ¢23=0 q31 =0 k12=0 k23=0 k3, =0
+qi2 + 2k12 + @31 + 2k31,J2 + 2 + V12 — qu2 + @3 — 2k12 + 2ko3, J3 + 2 + U

—q3 — 2k + U1 — g31 — 2ka1; ¢, 8,7) + W(j1 + 2 + qu2 + 2k12 + +ga1 + 2ka1, s
+2 + go3 + 2ko3 + va1 — g31 — 2ka1,J2 + 2+ vi2 — qu2 — 2k12 + V23 — Qs
—2kn;a,B,7) + W(j2 + 2 + g1z + 2k12 + @a3 + 2k, 1 + 2 + V12 — Q12 — 2k12

+qa1 + 2ka1, 3 + 2 + vz — gas — 2ks + Uz — @31 — 2k31; 8, 0,7) + W(ja + 2+ qi2
+2k12 + qo3 + 2ko3, J3 + 2 + Va3 — a3 — 2ka3 + g31 + 2k31, 51 + 2 + 12 — Q2

—2k12 + vs1 — g1 — 2k31; 8,7, @) + W(Js + 2 + gz + 2ko3 + @31 + 2ka1, 1 + 2 + @2
+2k12 + U1 — g3y — 2k3y, J2 + 2 + V12 — iz — 2k12 + U2z — @z — 2ks357, @, B)
+W(Js + 2 + gz + 2ka3 + ga1 + 2ka1, Jo + 2 + qua + 2k12 + V23 — Qa3 — 2ka3, 1 + 2

+v12 — Q12 — 2k12 + U1 — ga1 — 2kay; Y, B, )]
1 1 1 2 2 2
Lg2) Lgs) L:(’I) L(l2) Lg3) Lgl)
-~ I ' 1 ] ' 1
Z Z Z Z Z Z 1(q12, 23, ga1, lymy, lamy, lymy; Limy, lama, l3mg)
712=0 ¢23=0 g3, =0 k12=0 k23 =0 k31 =0
X In(q12, g3, 31, k12, ka3, kar; g1, Ja, 33, V12, V23, Va1, @, B, ) (2.35)

where [y is the radial part.
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Evaluating Eq. (2.29), see Appendix B, we obtain

~ ! 1 1 ’ ’ ' n n n
I = (_1)m1+m2+"'3(_1)012+023+%1 (11’12713,11,[2,[3)% Z (nl’n2’n3) 1 2 3
923 431 12

ninzng

n, g ng ) ( L L n, )
x(m'l—ml my —m, My — Mg -m, m; m; —m
I, I na Ii I n3 L L n I, Iy
x(—m'2 mgy m;—mg)(—m:', mg m:',—mg)(O 0 0)(0 0
y ( L I3 ns ) ( iz g1 ™ ) ( g3 Q12 N2 ) ( @31 g3 N3 )
0 0 0 0 0 O 0 0 O 0O 0 o

= I(q121 d23, 931, ; l;m,l: l;m;, l:;m:;; llml y l2m21 l3m3)

for the angular part of the part of the integral. In the case of the S states the angular
integral is particularly simple since, l; = [; = m; = m; = 0, so that (2.36) simply reduces

to
1

m%z.m%amx .

Fe (2.37)

This result is easily arrived at by applying the triangle selection rule together with

Eq. (2.36) and the relation

{ a b0 }:(—1)"""‘”’0 [(2a +1)(2A+ 1) V%6040 4.5- (2.38)
A BC

Thus, for the S states, Eq. (2.35) reduces to
Ly LR Ly Ly

1
1=§ z E E—I y k12, ka3, ka1 71, 72, 73, V12, Va3, Va1, @, B, 7).
L 2. 2. (2q12 + 1) r(q12, k12, ko3, k31 71, Ja, Ja, V12, Va3, V31, @, B, )
012=0 k12=0 k23=0 k3; =0
(2.39)

23

ng
0

(2.36)



In general, it can be seen from the 3-j symbols in Eq. (2.36), that all of the sums

l;+ll+n1, Q12 + q31 + 1
L+l +1n2, go+ qiz +ng
l;',+l3+n3, gs1 + @23 + 13

must be even in order for the integral I to be nonzero. Also, from (2.36) we see that the

triangle selection rule requires that

lg12 — @1l < 1y <|qi2 + g3,
|gas — q12| < 7ng <|gas + qu2| ,and

|ga1 — qe3| < 7a <|ga1 + gasl . (2.40)

Now, from (2.26), we see that the sum over the ¢;;'s is infinite for odd values of v;j,
where 7,j = 1,2,3. However, if at least one of the v;;’s is even, the sums over the g¢;;’s
in (2.35) become finite due to the triangle inequalities (2.40). If all of the v;;’s are odd
numbers, then a numerical surnmation of an infinite series is required. In the past, these
infinite summations have made calculations for the larger basis sets very time consuming.
Recently, however, this problem has been overcome by Drake and Yan [11]. They used an
asymptotic-expansion method which accelerated the rate of convergence of these infinite

series. A concise description of this method is give in the following section.

2.4.1 The Asymptotic-Expansion Method

If vy9, Va3, and v3; are all odd numbers, then it can be seen from (2.26) that the sum-
mations over g2, g3, and g3; will be from zero to infinity. However, the ¢’s are related
by the triangle inequalities (2.40) so that, in fact, only one of the summations over the
q’'s will be from zero to infinity. For example, if we choose the summation over g;5 to
be infinite, then the summations over g3 and ¢3; become finite. The upper limits are

obtained from the relations (2.40). Thus, if all three powers vis, v23, and v are odd,
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(2.35) may be written as
I=Y"T(q), (2.41)
q=0

where

1 1 2 2 2
Ly L) L Ly LY

T(g) = Z Z Z Z Z Haq12, 928, 31, ymy, lymy, lymg; Lymy, yma, Lsms)

923=0 ¢31 =0 k12=0 k23=0 k3, =0
XIR(q121 423, q311k121 k231 k3l;j11j21 j31 V12, U3, V31, O, ﬁy 7)1 (2'42)

and ¢ = qy2.

In calculating the integral I, we note that Eq. (2.41) is essentially composed of the
W integral. The hypergeometric functions contained in this integral, Eq. (2.34), are
calculated using the backward recursion relation

s+t

oFi(l,8+t;8,2) =1+ ( )22F1(1,3+t+1;s+1;z). (2.43)

A derivation of this result is given in Appendix C. To deal with the infinite sum over g,
the asymptotic-expansion method is employed. This method follows from the asymptotic
behaviour of T'(q) as ¢ — oo. From the W integral, Eq. (2.34), we see that W ~ 1/¢2,
and from (2.27) we see that Cugx ~ 1/q¢?*1/2. Combining the asymptotic behaviour
from W and the Cyg’s in (2.35), we find that

1
T(q) ~ ek g (2.44)
where
\ = ‘U122+ 1 + ‘U232+ 1 + 'U312+ 1 4 (245)

To take advantage of the asymptotic behaviour of T'(g), Eq. (2.41) is split up into two
parts
N )
I=3 T@)+ ) T (246)
q=0

q=N-+1
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This way, the first N terms are calculated directly from (2.35), and the remaining T'(q)

terms may be estimated, for each g, from their asymptotic expansions

T(q) = Z pre=d (2.47a)

1.—0

provided that NV is chosen sufficiently large. Substituting (2.47a) into (2.46), we obtain

- ST > ()

g=N+1 \i=0

- D@HZA(;HQM)

=0

= Z T(q) + Z An(E+ A), (2.48)

=0

where (y(%) = Y io 41 1/K* is the Riemann zeta function with the first N terms sub-
tracted. It can now be seen that the second sum in (2.48) converges as 1/(N +1)***, and
for N sufficiently large (i + A) ~ 1/(N +1)*** so that only the first few coefficients A;
need to be determined.

To determine these coefficients the infinite summation (2.47a) is truncated, and the
new upper limit is taken to be some integer M. It is assumed that for a suitable choice
of M, the directly calculated T'(q) are given exactly by the truncated expansion, and for
q large enough, this assumption is true to machine precision. Hence, for a large enough
q and a suitable value of M we may use our calculated values of T'(q) to obtain the

following M + 1 system of equations

A Ay Au
TIN=-M) = Zomp Yo T =
T(IN-M+1) = Ao + Ay ot Au

(N-M+1)»  (N-M+1)1+ (N—-M+1)M+2
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A A
T(N) = (1’3‘;* + (N)}“ +"'+UVT‘%’ (2.49)

which may be solved for the M + 1 unknowns, A;, where i = 0,..., M. Therefore, the
final estimate of the integral is obtained from

N M
I=3 T(q)+ ) Aln(i+ ) (2.50)
q=0 i=0
The calculation is carried out by increasing N until I no longer changes to machine
accuracy. The size of N required for convergence depends on the size of M, that is, the
larger M is the smaller N needs to be to achieve the same convergence. However, as M
gets larger, the time required to solve (2.49) becomes greater and calculation become less
efficient. Therefore, the limits of M and NV are adjusted so as to optimize the convergence

and time required for the calculation.
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Chapter 3

Calculation of the Z-Expansions

A Z-expansion of a particular state is simply the energy of that state expressed as a
power series in Z~!. To see how the Z-expansion is found, we begin by breaking up our

Hamiltonian for the three electron case, Eq. (2.2), so that we have

H = Ho+ Hy (3.1)
where
Ho = —lzaj vl (3.2)
2 i=1 ' Ti
and R
1 1 1 1 1 1
H == — == —+—=+—]. 3.3
! VA Zl:; Tij VA (T12 T13 1‘23) ( )
We next define V = (# + % + %5), and A = Z~!, so that, (3.1) becomes
H = Hy+ AV. (3.4)

With the Hamiltonian written this way, A = Z~! appears explicitly as a perturbation
parameter multiplying the electron-electron Coulomb interaction terms.

Now, if we were to ignore AV in the total Hamiltonian (3.4), we would have a solution
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to the eigenvalue problem for the noninteracting three-electron system. The eigenvalue

equation for this system would be
HoU©® = cOg© (3.5)
where the eigenfunctions would be a simple product of one electron orbitals,
UL = Unitymi ma, (1) Cnatzmiyma, (£2) Ungiomigma (F3) (3.6)

(with the notation Wy 1.my;m,; (Tj) = Ra,i,(15)Yi,m; (6, #) |sm,)) and the eigenvalues would

be given by the sum of hydrogenic eigenvalues

€O =¢. +6n, +€ng (3.7)
where €,, = —1/2n?. Thus, we would have the eigenvalues and the complete set of

eigenfunctions for the unperturbed Hamiltonian Hy. However, we seek the eigenvalues
for the Hamiltonian (3.4). To this end, we use the fact that the ¥ form a complete

set, so that the eigenfunctions of (3.4) may be expanded in a series involving all the vl

as follows
&, =00+ Cu(N) T, (3.8)
k#n
where
Cak(A) = ACYY + X2C + .-, (3.9)
and
En = i Ne® =@ £ Al 4 A2 .. (3.10)
i=0

The subscripts in these equations denote the particular eigenstate or eigenvalue, the
superscripts in brackets denote the order of the correction, and ®,, and ¢, are the eigen-

functions and eigenvalues, respectively, corresponding to the Hamiltonian (3.4). To be
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more compact, we rewrite (3.8) as

On=> NP =00+ A0P + NP .. (3.11)
1=0
where
v® =Y e, (3.12)
k#n

Using this notation, we have

(Ho + AV)®, = £,®, (3.13)
or
(Ho+AV) D M09 =, ) " Ngld) (3.14)
=0 1=0

Expanding out the first few terms explicitly, we have

(Ho + AV) (TP + 20D + 2203 +..) = (9 + Al + 222 +...)
x (TO + AT + N2TD +...)(3.15)

Now, collecting coefficients of equal powers of A yields a series of equations. For
example, the terms of the zeroth power in A yield Eq. (3.5), and the terms of first power
in A gives us

VIO 4 Hoo) = £OgW) 4 (g© (3.16)

If we now take a scalar product of (3.16) with ¥%, and assume that the complete basis

set is orthonormal, that is, < ‘Ilfco) | o0 5= Orn , We obtain
) =< ¢O | vV | O > (3.17)

This is the second coefficient of our energy expansion (3.10), and it is just the expectation
value of the potential with states ¥ which are known exactly (3.6). Since the states

¥ are known exactly, an exact analytic solution for the value of €§ from (3.17) may
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be found. However, in general we have
el =< ¢O | v | gD > (3.18)

which contains the states \Ilgk—l), and for k£ > 1, these states are not known exactly. As
a result, only the first two coefficients, £® and 55.1), of our energy expansion (3.10) may
be determined exactly. An analytic calculation of these two terms as well as the least
squares technique to determine some of the higher terms will be presented in the next
two sections. These calculations will be done for the 1522s 25 and 1522p 2P states of the

lithium isoelectronic sequence.

3.1 Analytic Calculation of = and =\

Before we proceed with the analytical calculation for the first two energy coefficients from
(3.10), we multiply this expansion by Z2 = A~2 so that the energy is expressed back in

atomic units. That is,

E, = Z2%,
= 220+ ZeP + P+ Z7 %P + .- (3.19)

Equation (3.19) is the Z-expansion equation.

In order to calculate the first coefficient 55‘0) we refer to the separable eigenvalue
equation (3.5) which has eigenvalues given by (3.7). Now the energy terms &y, &n,, and
Eng from (3.7) correspond to the hydrogen states \Il,.m,,,,lm_l (r1), \Il,,zl.‘,,mz,,,,2 (r), and
Wnatzmy,m.g (T3) respectively, and are simply the hydrogen energies —1 /2n? (in Z-scaled

atomic units), where j = 1, 2, or 3. Thus, for the 15225 2S and 1s22p 2P states these
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energies are given by

(0) © 1
€8 T Ep T2 573
= 2n;
_ 11 1
T2 2 222
9
= —= 3.20
2 (3.20)

Next we present the less trivial analytical calculation for the second energy coefficient,

M.
In order to simplify the notation, we begin by writing out our product of hydrogen

wave functions (3.6) as

’ o©

1s221

) = [W1,(r)a(1)) [F1,(r2)B(2)) [¥a(ra)e(3)) (3.21)

where a and 3 represent spin up and spin down respectively, and the subscript { in
the third state represents the quantum label s or p. Now, due to the Pauli exclusion
principle, the total wavefunction is the antisymmetrized product of the spin-orbitals.

The antisymmetrizing of (3.21) may be expressed as

| g©

1s221

) = Al (r1)a(1)) [91,(ra)B(2)) [ ¥au(ra)(3)) (3.22)

where A is the three particle antisymmetrizer given by (2.11). Writing (3.22) out explic-

itly, we obtain

[#0) = 2 19u(r)a(0) 191 (r)B) [¥u(rs)(@) = [Fara)a()

X [T14(r)B(1) [La(ra)ex(3) ~ [W1s(rs)ex(3)) [X1a(r2)B(2) | Zu(r1) (D))
— [ T1a(r)e(1)) [T1a(r3)B(3)) [ Pa(ra)e(2) + [ T1s(ra)ex(2))

X [1a(rs)B(3)) [La(r1)ex(1)) + [W1a(ra)ex(3)) [Tra(ri)B(L)) [T(r2)ex(2))]
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Rewriting the orbital and spin part separately, this becomes

o) = % (191 (r1) T1a(ra) Tau(r1)) [(1)B(2)(3)) — [L1s(r2) T1(r1) Pa(7s))
x 1B(1)a(D)a(3)) — [T1o(rs) U1s(r2) Tae(r)) la(1)B(2)x(3))
— | 1a(T1) 1 (r3) Tau(rs)) |a(1)(2)B(3)) + | ¥1s(2) ¥1s(T3) ¥au(71))
x [a(1)a(2)B(3)) + [U14(rs) U1y (rs) Tar(r2)) 1B()a(D)x(3))]
= e [T () Falr) (VAR — B1(2)a(E)
+ | W14(r3) e (r1) Tau(r2)) (1B(Dx(2)x(3)) — le(1)e(2)5(3)))
@ 14(r2) 10 (r3) Tan(r1)) (Jx(1)e(2)B(3)) — |a(1)B(D)x(3)))]

To be more compact, let us set

[u) = |¥14(r1) ¥1s(r2) Pulrs)) (3.23)

[v) = |¥145(r3) ¥ 1s(r1) Pau(r2)) (3.24)
and

lw) = |¥14(r2) ¥1s(r3) Tau(r1)) - (3.25)

Using this more compact notation, and suppressing the spin coordinates, the second

energy coefficient of the Z-expansion can be written as

= (50| V ][0
= [(u] ({(aBal — (Bac]) + (v] ((Baa| — (aaB]) + (w| ({cab| — (abel)]
V (lu) (JaBa) — |Baa)) + [v) (|Baa) — |aaf)) + |w) (|aaf) — |efa))]
= (u] V|u) ((efel efa) + (fac| Baa)) + (v| V |v) ((Bee| faa) + (aaf] aaf))
+ (w|V |w) ((caf]| eaf) + (afal afa)) — (u| V |v) (Bac| foc)
~ (U] V|w) (efe| aBa) — (v] V |u) (Bac| Bac) — (v| V |w) (aaB| acf)
~ (w| V [u) (afe| aBa) — (w|V |v) (eaf| caf)
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= % /// V(2u'u + 20*v + 2w'w — v'v — v'u —v'w — wu
—v*w — w*v)d>rid3rydirs. (3.26)

Now, without loss of generality, let us choose the magnetic quantum number m equal to
zero for the Wo; state. With this choice for m, the states u, v, and w will be real and the

above integral simplifies to

e = —///( 1 ) (u? + v* + w? — w — uw — vw) d*rid®ryd’rs, (3.27)
12 7‘13 7’23

where we have written out V explicitly.
Evaluation of the above integral (3.27) may be further simplified by grouping integrals
that are the same and eliminating cases that vanish due to the orthogonality of ¥,(r)

and ¥y (7). For example, integrals such as

/// u-r—‘lldsrldsr2d37‘3 /// \Ill_,(rl)‘III,(rz)‘Ilzl(rg)ri‘lll_,(rl)‘Ills(rg)‘llﬂ(rs)d3r1d3r2d3r3,
13 13
(3.28)

and

1 1
/// v;—vd3r1d3r2d3r3 = // q’],(T‘1)‘I’2[(7’2)‘Iﬁ,(T3)r—\Ill_,(rl)\Ifgl(1’2)\1/1,(1‘3)(137'1(137‘2(131'3
12 12
(3.29)

are clearly identical, and integrals of the type

/// ”%”dsrldarzdsrs = /// ‘1’13(7‘1)‘1’13(7‘2)‘1’21(7‘3)%‘1’13(7‘1)‘1’21(7'2)‘1’13(7'3)437‘1(137‘26137‘3
= / ‘I’I,(Tl [/ ‘Ilm(rs)lllls(r;,)dsrs] d3ry / \Ilf,('rz)dsrg (3.30)

are equal to zero. A summary of all such possible integrals is shown in Table 3.1.

From Table 3.1 we see that there are three distinct types of integrals which have
nonzero values. There are six integrals of type (A), three integrals of type (B), and three



Table 3.1: The different types of integrals involved in the calculation of e,

INTEGRALS OF TYPE (A) INTEGRALS OF TYPE (B)
1] ulud"rldsrzdsr;, = []T u%a-ud"rld:’rgdrrs #0 | [f u;:—zud"rld"rgdsr;, #0

| JIJ visvdridPrayd®rs = [[Tv-vdridrad®rs #0 | [[f v vd®rid®rad®rs #0 |

ri12
| [ wiswd®rd®ryd®rs = J[[wi-wd®rd®rod®rs # 0 | [[[ wiswd®ridorad®rs #0 |
INTEGRALS OF TYPE (D) INTEGRALS OF TYPE (C)

JIJ uvdiridiryd®rs = [ff u—l-vd3r1d3r2d3r3 =0 | [JfJ ulvd"rldsrgd:’rs #0
| [ usswd®n1dradrs = [T u—wdridroyd®rs =0 | [[f u;swdrid’red®rs #0 |
| JJJ viswdrid®rydPrs = [T vo—wd rid rdr3 =0 | [[f va-wd ridrad®rs #0 |

integrals of type (C). Let us choose to evaluate the integrals

///u—udsrldsrzdsrs = A, (3.31)

13

/ / / v—vd3r1d3r2d3r3 = B, (3.32)
™13

/ / / uiwd3r1d3r2d3r3 =C (3.33)
T13

from each of the three distinct types. Thus, the integral for the second coefficient (3.27)

and

reduces to

M = % (6A+3B —3C). (3.34)

Techniques for the evaluation of the general form of the integrals (3.31), (3.32), and
(3.33) are given in Appendix D. In the following two sections, we make use of the results
derived in Appendix D to calculate the first order energy corrections sg,) and sglp) , for the
15225 25 and 1s22p %P states, respectively.

In Table 3.2 the principal and angular quantum numbers for the two states for which
the integrals to be evaluated are shown. For the particular state being evaluated, the
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Table 3.2: The principal and angular quantum numbers for the 1s22s 2S and 1s22p 2P
states.

| Integrals State nyng [ng[ny[ny|ng [LL|B]L L]
A= [[Tuludrid®r,drs [1s22s2S[1 1 [2 1 J1 [2 JoJoJoJoJo]Jo
1s2p“P |1 |1 2 [[1 {1 {2 [f[o]JOo[1fjOofO]1
B = [[fv;;vd°rid°ryd®r; |1s°2s%S |1 [2 [1 |1 ]2 |1 JoJO |0 JfOo 0 O
1s22p2P |1 |2 |1 |1 |2 |1 JJoft[ofo]1]oO
C = [JTu;Lwd®rd®rd®r; [1s%2s%S |1 |1 |2 |l2 |1 |1 JofoJoJo]Jo]o
1s22p2P |1 |1 |2 [2 1 |1 Jojo[1]1]o]0O

corresponding quantum numbers are substituted into into (D.17) in order to determine

the value of the angular part of the integral.

Calculation of &) for the 1s22s 2S States

From Table 3.2 we see that the angular momentum quantum numbers for the 15?2s 2S

state are all zero. Thus, Eq. (D.18) becomes

I=ZR(I¢) (2k+1)k00 k 0O k 0O k 00
q__k” 0 0O g 00 0 00 qg 00

ZRY;)&I:,O - Rg), (3.35)

since by the triangular rule, the 3-j symbols vanish for k£ # 0. Thus, we have

I = (0)
= / d"‘l/ 7‘%‘”‘2/ T‘gdrsRn,o(T‘l)Rn,o(rz)Rngo(rs)
0 (i}
X ERnQO(rl )Rn;O(r2)Rn;0(r3) ’ (3.36)

where 75, is the greater of r; and r;, where i and j are the subscripts of the radial integrals

represented by R®), see Eq. (D.5). Now using relation (D.20), and Egs. (D.21), (D.22),

ij 2
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and (D.23) we calculate the integrals A, B, and C. Calculating integral A, we get

A = / / / u—ud3rld3r2d3r3 R{9(10, 10, 20, 10, 10, 20)

T13

= / rlRlo(rl)drl / r%Rfo(rg)drg rgRgo(r;,)drs
0 0 0

e ] (= o}
= 4/ rirfe‘”‘drlci/ r2e'2”dr2%/ r2(2 — r3)e "dry
o ™ 0

1 73 e <] 2! o0
= 2 [;—/ r2e”™dr, +/ rle"z"‘drl] [5] / (4r§ —4r3 —r3) e "drs
3 JG r3 0

17

S (3.37)
and calculating integrals B, and C, we have
£ = /// "_”ds"‘ds’?dsrs R9(10,20, 10, 10,20, 10)
= / 2r1dr1/ 1‘2(2 - Tz)e-Terz/ ,,.3 27'3d,'.3
o 0
B 8 (3.38)
and
¢ = /// “‘wdsrldsﬁds"s R9(10,10, 20, 20, 10, 10)
N / 1(2 = r)e™"/2%dr, / "%e_%d"z/ L7‘3(2—7':'.)«‘3‘3'3/%11'3
0 o o >
16
T T9 (3.39)

Thus, substituting (3.37), (3.38), and (3.39) into Eq. (3.34), we find that for the 1s%2s

2S states the second coefficient of the Z-expansion is

a) 5965

3.40
€20 = 5g39° (3.40)
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Calculation of ¢ for the 1s22p 2P States

The integrals for the 1s22p 2P states are calculated in a similar way. For each of the
distinct integral cases A, B, and C, the angular momentum quantum numbers from Table
3.2 are substituted into the angular part of the integral Eq. (D.17), and with the use
of the triangular rule and Eq. (B.4), Io may be determined for each case. This angular
part of the integral is then substituted into Eq. (D.18), and the resultant integral is
evaluated with the use of relation (D.20), and Eqgs. (D.21), (D.22), and (D.23). Following
this procedure, we find that I = 1 for the integrals A and B. Therefore, for these two
integrals, we have

A = R©(0,10,21,10,10,21)

- / rfdrl/m’f'gdm/ d1'3 T‘I)R (7‘2)R§1(7’3)
= f —rle“z"‘dr /Qrge 2rzd1‘2/®7'ge-r3dr3
3Jo 7> 0 0

- 59 (3.41)
243

and

B = R®(10,21,10,10,21,10)
= / TldTI/ rzdrz/ d1'3 Rfo r;)R% (Tg)R o(T3)

1 _
= —/ rle'2"‘dr/ re "’drg/ ——r§e 23y
3 Jo (] o ™
5

- 3 (3.42)

However, for integral C, we find that I = 1/3. Thus, in this case, we have that
C = ‘”(10 21,10, 10, 21, 10)

= 3 / ridr / r2dr, /Q rgdrs:—;Rxo(Tl)Rzl(rl)Rfo(rz)Rzl(Ts)Rm(Ts)
0 0 >
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2 [*r o o
< _ - _
= = / —-z—r:l’e 3m/2dp / r2e” 22 dr, / r3e=3/2dr,
9/ 13 0 0

112

6_55 . (3.43)

Thus, substituting (3.41), (3.42), and (3.43) into Eq. (3.34), we find that for the 1s22s

2P states the second coefficient of the Z-expansion is

ay _ 57397

Eop = 25188" (3.44)

3.2 Linear Least Squares Method For Obtaining the
Remaining Coefficients

In the previous sections, the first two coefficients of the Z-expansion, Eq. (3.19), were
calculated for the 1s22s 2S and 1s22p 2P states. We now wish to find the next sev-
eral coefficients of this expansion. In this thesis, improved electron-pair energies are
obtained by performing a least squares fit of helium variational eigenvalue data provided
by G. W. F. Drake. Using these improved electron-pair energies and the exact single-
electron energy solutions given by Chisholm and Dalgarno (7], and Chisholm et al. [5],
values for the second order coefficient €5 for the 2S and 2 P-states may be determined
to 12 significant figures (see the Results and Discussion chapter). Next, we will turn to
the linear least squares method [32] for obtaining approximate values for the next several
coefficients 55.3), 55.4), ... for these states.

The general principle of the least squares method is to find a “smooth” functional

appraximation to a given set of N data points (z;,y;). This is done by minimizing

X2 = i [?—’—'—Uyﬁlr (3.45)
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where

y(z:) = Zak(m)¢k(zi) (3.46)

is the function modeling the data and o; is the measurement error of the i** data point.
In Eq. (3.46), the {¢,}, K = 1, ..., m are arbitrary fixed functions of z;, and the ax(m) are
the parameters with respect to which x2 is minimized. The m in the parentheses denotes
the dependence of these parameters on the set {¢,}. To carry out the minimization, we
take the derivative of x? with respect to all the parameters ax(m), and set the result

equal to zero, so that (3.45) becomes

N

Z ;1'2' [y* ZGJ )®; (17:)] b (), (3.47)

i=1 !

where k = 1,...,m. In doing this we obtain m equations which are solved for the m
unknown parameters a;(m).
Before applying this method to find some of the other coefficients of our Z-expansion,

we subtract the first three terms from both sides of (3.19), to obtain
E,—2%® - &) - = 771e® 4 77240 .. (3.48)

This is done because we have alrea,dy determined the first two coefficients € and =
analytically, and the third coefficient £?) will be determined by the above method. Hence,
subtracting these three terms from both sides allows us to fit the remaining coefficients
with a higher accuracy. From Eq. (3.48), we make the associations y; = Ey,, — Z2cn o _
Zie®) — 2, ar(m) = éen )(m), and {¢;(Z:)} = {Z; G-y After calculating the & ®(m)
, it remains to determine the uncertainties for each of these estimated parameters. To

find these uncertainties we make use of the bootstrap method [18] described below.
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3.2.1 The Bootstrap Method

The basic idea of the bootstrap method is to generate a number of synthetic data sets
from the actual data set, and to calculate the standard deviation of corresponding pa-
rameters obtained by finding the least squares fit for each data set. For example, the
first parameters a{”(m), a{? (m), . ..,a{™ (m) found from taking the least squares fit of N
synthetic data sets will yield a distribution around the first parameter a;(m) calculated
from the actual data set. This distribution may then be used to determine the standard
deviation for the first parameter. The method used for generating the synthetic data sets

and calculating the standard deviation of each parameter is the following:

1. For actual input data (Z;, E1), (Z2, E2), - - ., (Zn, En), the least squares fit to Eq. (3.48)
is determined, and the deviations A; = E,.(Z;) — E; are calculated.

2. Next, N random integers R;, uniformly distributed in the range 1 to IV, are gener-
ated, and the deviations Ag, are added to the original E; to obtain new energies
E; = E; + Apwhr, [w;, where w; = 1/0? is the weight of the i** energy.

3. The new energies E, constitute the first synthetic data set for which a least squares

fit is then found, and new parameters e ,6:53), e ,EZN) are obtained.

4. This Procedure is repeated many times until the desired number of synthetic data

sets is generated.

5. Finally, the average value and standard deviation for each of the parameters D 5 .

is calculated.
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Chapter 4

Results And Discussion

The Tables 4.1 and 4.2 illustrate the convergence of the nonrelativistic energies with
increasing Q. If F(S) represents the explicit dependence of the energy on 2, then the
fourth and fifth columns of the tables are defined as

difference = E(Q) — E(2 — 1), (4.1)

and
EQ-1)-E(Q—-2)
EQ)-E(Q-1) °’

ratio = R(Q) = (4.2)

respectively. For a constant ratio R(f2), each series of eigenvalues in Tables 4.1 and 4.2
would converge as a geometric series to the value

Ewtrap. = E(me) + R—1 y

but it turns out that the values of R are not constant. The values of R vary slightly
with 2, however this variation with Q is smooth enough for a useful extrapolation of
the energies to the limit 2 — oo. To take the variation of R with 2 into account, the

extrapolations are done by assuming the functional form [10]
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RQ) =1+ % (4.4)

and determining the values of a and b by performing a least squares fit of the points
(22, R(2)). The extrapolation converges for b < 1. Since there is no absolute guar-
antee that the total amount of the extrapolation is correct, this amount is taken as a
conservative estimate of the uncertainty in the extrapolated values.

For the 2S-states, all the numerical calculations from the smallest basis set to the one
containing 919 terms were done in double precision (approximately 16 decimal places).
In order to acheive convergence to the energy values listed in Tables 4.1 and 4.2 for a
given basis set size, the calculations ran from about 30 iterations, for the smallest basis
set to about 8 iterations for the 919-term basis set, with each iteration providing a step
toward optimization of the nonlinear parameters. The last four of the 8 iterations for the
919-term basis set were performed using quadruple precision (approximately 32 decimal
digits). Quadruple precision calculations were also performed for the 1590 and 2210-term
basis sets, however an optimization of the nonlinear parameters was not carried out in
these cases. This was due to the large computational time required for the optimization of
these largest basis sets (2 > 7). For example, approximately 330 hours of CPU time are
required for just two iterations of the 1590-term basis set using an IBM RISC/6000 350
workstation. It is also generally true (as long as the nonlinear parameters remain close
to the optimimum values) that an improvement in the energy due to an optimization
of the nonlinear parameters is small in comparison with the improvement possible by
increasing the basis set size to the next Q2. Thus, as long as there is no evidence of
numerical instability, which may be detected by erratic behaviour of the ratios R(S),
optimization of these largest basis sets is not necessary.

The nonlinear parameters for the largest basis sets can be extrapolated from graphs
showing the variation of these parameters with increasing basis size 2. In this thesis,
however, the nonlinear parameters used for the largest basis sizes (2 > 7) were simply

those obtained from the near by optimized Q2 = 7 basis set parameters.
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Results for the 2P-states with nuclear charge 3 < Z < 10 were obtained from Zong-
Chao Yan at the Harvard-Smithsonian Center for Astrophysics, and an extension up to
Z =15 was carried out in this thesis. These results were calculated in a similar fashion
as those above for the 2S-states. However, computer memory limitations prevented the
extension up to Z = 15 from being carried out beyond Q > 10.

Figures 4.1 to 4.6 show the variation of the nonlinear parameters as a function of
1/Z. From these figures we see that some of the nonlinear parameters exhibit “irregular
behaviour” for Z > 5, or 6. This irregular behaviour (charactarized by sharp jumps in the
nonlinear parameters) may be the result of incomplete optimization for the §2 > 7 basis
set sizes, or it may be due to the existence of multiple minima on the energy surface. To
determine which of these is the case, a closer study exploring the multiple root structure

of the energy surface is needed.



Table 4.1: Nonrelativistic energies for the 15225 2S states of the lithium isoelectronic

sequence, in atomic units.

Z=3
2 No. of terms Energy Difference Ratio
2 19 —7.477 555 720 32
3 51 —7.477 995 835 14 —0.000 440 114 82
4 121 —7.478 053 567 30 —0.000 057 732 16 7.623
5 257 —7.478 059 464 46 —0.000 005 897 16 9.790
6 503 —7.478 060 228 08 —0.000 000 763 62 7.723
7 919 —7.478 060 310 78 —0.000 000 082 70 9.234
8 1590 —7.478 060 321 03 —0.000 000 010 26 8.061
9 2210 —7.478 060 322 54 —0.000 000 001 50 6.828
Extrapolation —7.478 060 322 74(20)
Z=4
Q No. of terms Energy Difference Ratio
2 19 —14.324 365 883 92
3 51 —14.324 715 319 21 —0.000 349 435 28
4 121 —14.324 758 497 16 —0.000 043 17795  8.093
5 257 —14.324 762 509 32 —0.000 004 012 16 10.762
6 503 —-14.324 763 099 39 —0.000 000 590 07  6.800
7 919 —14.324 763 165 56 —0.000 000 066 17  8.917
8 1590 —14.324 763 174 52 —0.000 000 008 96  7.388
9 2210 —14.324 763 175 61 —0.000 000 001 09  8.195
Extrapolation —14.324 763 175 78(17)
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Table 4.1 (Continued).

Z=5
2 No. of terms Energy Difference Ratio
3 51 —23.424 566 701 01
4 121 —23.424 601 544 40 —0.000 034 843 39
5 257 —23.424 605 116 47 —0.000 003 572 07 9.754
6 503 —23.424 605 654 16 —0.000 000 537 69 6.643
7 919 —23.424 605 710 24 —0.000 000 056 08 9.588
8 1590 —23.424 605 719 36 —0.000 000 009 12 6.149
9 2210 —23.424 605 720 32 —0.000 000 000 96 9.500

Extrapolation —23.424 605 720 50(18)

Z=206
2 No. of terms Energy Difference Ratio
3 51 —34.775 475 415 28
4 121 —34.775 506 714 18 —0.000 031 298 90
5 257 —34.775 510 611 47 —0.000 003 897 29 8.031
6 503 —34.775 511 199 23 —0.000 000 587 76 6.631
7 919 —34.775 511 266 59 —0.000 000 067 37 8.725
8 1590 —34.775 511 273 93 —0.000 000 007 33 9.186
9 2210 —34.775 511 274 95 —0.000 000 001 02 7.165

Extrapolation —34.775 511 275 11(16)

46



Table 4.1 (Continued).

zZ=1
2 No. of terms Energy Difference Ratio
3 51 —48.376 863 363 39
4 121 —48.376 894 128 34 —0.000 030 764 95
5 257 —48.376 897 718 71 —0.000 003 590 37  8.569
6 503 —48.376 898 260 95 —0.000 000 542 24  6.621
7 919 —48.376 898 310 50 —0.000 000 049 55 10.943
8 1590 —48.376 898 317 47 —0.000 000 006 97  7.109
9 2210 —48.376 898 318 30 —0.000 000 000 83  8.398

Extrapolation —48.376 898 318 43(13)

Z =28
2 No. of terms Energy Difference Ratio
3 51 —64.228 507 126 82
4 121 —64.228 538 145 79 —0.000 031 018 97
5 257 —64.228 541 520 49 —0.000 003 374 70  9.192
6 503 —64.228 542 027 78 —0.000 000 507 29  6.652
7 919 —64.228 542 074 85 —0.000 000 047 07 10.777
8 1590 —64.228 542 081 04 —0.000 000 006 19  7.604
9 2210 —64.228 542 081 87 —0.000 000 000 83  7.457

Extrapolation —64.228 542 082 00(13)
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Table 4.1 (Continued).

z=9
2 No. of terms Energy Difference Ratio
3 51 —82.330 302 805 99
4 121 —82.330 334 349 54 —0.000 031 543 55
5 257 —82.330 337 576 74 —0.000 003 227 20 9.774
6 503 —82.330 338 039 07 —0.000 000 462 33 6.980
7 919 —82.330 338 089 14 —0.000 000 050 07 9.234
8 1590 —82.330 338 095 52 —0.000 000 006 38 7.848
9 2210 —82.330 338 096 49 —0.000 000 000 97 6.577
Extrapolation —82.330 338 096 65(16)
Z =10
2 No. of terms Energy Difference Ratio
3 51 —102.682 195 705 64
4 121 —102.682 227 858 93 —0.000 032 153 29
5 257 —102.682 230 992 82 —0.000 003 133 89 10.260
6 503 —102.682 231 427 96 —0.000 000 435 14  7.202
7 919 —102.682 231 474 96 —0.000 000 047 00  9.258
8 1590 —102.682 231 480 65 —0.000 000 005 69  8.260
9 2210 —102.682 231 481 62 —0.000 000 000 97  5.896
Extrapolation —102.682 231 481 79(17)
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Table 4.1 (Continued).

Z =11
2 No. of terms Energy Difference Ratio
3 51 —125.284 159 109 78
4 121 —125.284 186 776 09 —0.000 027 666 31
5 257 —125.284 190 320 77 —0.000 003 544 68 7.805
6 503 —125.284 190 701 36 —0.000 000 380 59 9.314
7 919 —125.284 190 746 48 —0.000 000 045 12 8.435
8 1590 —125.284 190 752 02 —0.000 000 005 54 8.144
9 2210 —125.284 190 753 06 —0.000 000 001 04 5.357

Extrapolation —125.284 190 753 24(18)

Z=12
2 No. of terms Energy Difference Ratio
3 51 —150.136 165 037 27
4 121 —150.136 192 994 58 —0.000 027 957 31
5 257 —150.136 196 184 18 —0.000 003 189 60 8.765
6 503 —150.136 196 553 34 —0.000 000 369 16 8.640
7 919 —150.136 196 597 48 —0.000 000 044 14 8.363
8 1590 —150.136 196 602 81 —0.000 000 005 33 8.281
9 2210 —150.136 196 603 69 —0.000 000 000 88 6.057

Extrapolation —150.136 196 603 84(15)
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Table 4.1 ( Continued).

Z =13
2 No. of terms Energy Difference Ratio
3 51 —177.238 205 001 86
4 121 —177.238 232 822 28 -0.000 027 820 42
5 257 —177.238 236 160 79 —0.000 003 338 51 8.333
6 503 —177.238 236 512 46 —0.000 000 351 67 9.493
7 919 —177.238 236 552 30 —0.000 000 039 84 8.827
8 1590 —177.238 236 557 87 —0.000 000 005 57 7.153
9 2210 —177.238 236 558 89 —0.000 000 001 02 5.461

Extrapolation —177.238 236 559 11(22)

Z =14
2 No. of terms Energy Difference Ratio
3 51 —206.590 270 865 35
4 121 —206.590 298 667 99 —0.000 027 802 64
5 257 —206.590 301 824 55 —0.000 003 156 56 8.808
6 503 —206.590 302 166 14 —0.000 000 341 59 9.241
7 919 —206.590 302 205 34 —0.000 000 039 20 8.714
8 1590 ~—-206.590 302 210 55 —0.000 000 005 21 7.524
9 2210 —206.590 302 211 43 —0.000 000 000 88 5.920

Extrapolation —206.590 302 211 61(18)
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Table 4.1 (Continued).

Z=15
2 No. of terms Energy Difference Ratio
3 51 —238.192 354 015 19
4 121 —-238.192 384 131 35 —0.000 030 116 16
5 257 —238.192 387 291 90 —0.000 003 160 55 9.529
6 503 —238.192 387 645 79 —0.000 000 353 89 8.931
7 919 —238.192 387 687 65 —0.000 000 041 86 8.454
8 1590 —238.192 387 692 48 —0.000 000 004 83 8.667
9 2210 —238.192 387 693 38 —0.000 000 000 90 5.367

Extrapolation —238.192 387 693 56(18)
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Table 4.2: Nonrelativistic energies for the 1522p 2P states of the lithium isoelectronic
sequence, in atomic units.

Z =3
2 No. of terms Energy Difference Ratio

4 56 —7.410 146 240 952

5 139 —17.410 155 057 909 —0.000 008 816 956
6 307 —7.410 156 274 821 —0.000 001 216 912 7.245
7 623 —7.410 156 490 483 —0.000 000 215 662 5.643
8 1175 —7.410 156 524 272 —0.000 000 033 789 6.383
9 1846 —7.410 156 530 070 —0.000 000 005 798 5.828
10 2466 —17.410 156 530 955 —0.000 000 000 885 6.550
11 3047 —7.410 156 531 185 —0.000 000 000 230 3.843
Extrapolation —7.410 156 531 252(67)

Z =4
2 No. of terms Energy Difference Ratio

4 56 —14.179 313 470 581

5 139 —14.179 330 528 846 —0.000 017 058 265
6 307 —14.179 332 918 492 —0.000 002 389 646 7.138
7 623 —14.179 333 238 248 —0.000 000 319 756 7.473
8 1175 —14.179 333 282 444 —0.000 000 044 195 7.235
9 1846 —14.179 333 290 202 —0.000 000 007 758 5.697
10 2466 —14.179 333 291 213 —0.000 000 001 011 7.673
11 3047 —14.179 333 291 472 —0.000 000 000 259 3.905
Extrapolation —14.179 333 291 542(70)
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Table 4.2 (Continued).

Z=5_
2 No. of terms Energy Difference Ratio
4 56 —23.204 416 706 02
5 139 —23.204 437 896 83 —0.000 021 190 81
6 307 —23.204 440 728 17 —0.000 002 831 34 7.484
7 623 —23.204 441 127 99 —0.000 000 399 82 7.082
8 1175 —23.204 441 180 80 —0.000 000 052 81 7.571
9 1846 —23.204 441 189 86 —0.000 000 009 06 5.829
10 2466 —23.204 441 190 98 —0.000 000 001 12 8.089
11 3047 —23.204 441 191 31 —0.000 000 000 33 3.394
Extrapolation —23.204 441 191 42(11)
Z=6
2 No. of terms Energy Difference Ratio
4 56 —34.482 076 048 46
5 139 —34.482 099 271 11 —0.000 023 222 65
6 307 —34.482 102 715 58 —0.000 003 444 47 6.742
7 623 —34.482 103 111 19 —0.000 000 395 61 8.707
8 1175 —34.482 103 167 48 —0.000 000 056 29 7.028
9 1846 —34.482 103 176 67 —0.000 000 009 19 6.122
10 2466 —34.482 103 177 78 —0.000 000 001 11 8.286
11 3047 —34.482 103 178 19 —0.000 000 000 41 2.684
Extrapolation —34.482 103 178 34(15)
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Table 4.2 (Continued).

Z=1
2 No. of terms Energy Difference Ratio
56 —48.011 024 850 90
139 —48.011 050 050 88 —0.000 025 199 98
307 —48.011 053 805 56 —0.000 003 754 68 6.712
623 —48.011 054 210 24 —0.000 000 404 68 9.278
1175 —48.011 054 268 21 —0.000 000 057 97 6.981
1846 —48.011 054 279 07 —0.000 000 010 86 5.338
2466 —48.011 054 280 17 —0.000 000 001 10 9.906
3047 —48.011 054 280 54 —0.000 000 000 38 2.922
Extrapolation —48.011 054 280 66(12)
_Z =28
1 No. of terms Energy Difference Ratio
4 56 —63.790 714 553 94
5 139 —63.790 736 011 83 —0.000 021 457 &9
6 307 —63.790 739 072 10 —0.000 003 060 27 7.012
7 623 —63.790 739 503 42 —0.000 000 431 32 7.095
8 1175 —63.790 739 566 00 —0.000 000 062 58 6.892
9 1846 —63.790 739 576 54 —0.000 000 010 54 5.937
10 2466 —63.790 739 577 72 —0.000 000 001 18 8.932
11 3047 —63.790 739 578 09 —0.000 000 000 37 3.189
Extrapolation —63.790 739 578 21(12)
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Table 4.2 (Continued).

Z =9
2 No. of terms Energy Difference Ratio
4 56 —81.820 856 247 55
5 139 —81.820 877 306 35 —0.000 021 058 80
6 307 —81.820 880 414 73 —0.000 003 108 38 6.775
7 623 —81.820 880 836 63 —0.000 000 421 91 7.368
8 1175 —81.820 880 900 23 —0.000 000 063 59 6.634
9 1846 —81.820 880 910 44 —0.000 000 010 21 6.229
10 2466 —81.820 880 911 50 —0.000 000 001 06 9.654
11 3047 —81.820 880 911 &9 —0.000 000 000 40 2.656
Extrapolation -—81.820 880 912 03(14)
Z =10
2 No. of terms Energy Difference Ratio
4 56 —102.101 299 252 851
5 139 —102.101 320 579 421 —0.000 021 326 569
6 307 —102.101 323 786 036 —0.000 003 206 616 6.651
7 623 —102.101 324 217 958 —0.000 000 431 922 7.424
8 1175 —102.101 324 281 583 —0.000 000 063 625 6.789
9 1846 —102.101 324 292 317 —0.000 000 010 734 5.928
10 2466 —102.101 324 293 431 —0.000 000 001 114 9.638
11 3047 —102.101 324 293 685 —0.000 000 000 254 4.388
Extrapolation —102.101 324 293 732(47)
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Table 4.2 (Continued).

Z =11
2 No. of terms Energy Difference Ratio
4 56 —124.631 952 538 7
5 139 —124.631 974 018 5 —0.000 021 479 8
6 307 —124.631 977 293 0 —0.000 003 274 5 6.560
7 623 —124.631 977 738 9 —0.000 000 445 9 7.344
8 1175 —124.631 977 805 4 —0.000 000 066 5 6.705
9 1846 —124.631 977 8159 —0.000 000 010 5 6.333
Extrapolation —124.631 977 817 7(18)
Z =12
2 No. of terms Energy Difference Ratio
4 56 —149.412 757 501 3
5 139 —149.412 779 532 5 —0.000 022 031 2
6 307 —149.412 782 807 6 —0.000 003 275 1 6.727
7 623 —149.412 783 251 5 —0.000 000 443 9 7.378
8 1175 —149.412 783 319 6 —0.000 000 068 1 6.518
9 1846 —149.412 783 329 6 —0.000 000 010 0 6.810
Extrapolation —149.412 783 331 3(17)
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Table 4.2 (Continued).

Z=13
Q2 No. of terms Energy Difference Ratio
4 56 —176.443 676 192 6
5 139 —176.443 698 446 9 —0.000 022 254 3
6 307 —176.443 701 737 6 —0.000 003 290 7 6.763
7 623 —176.443 702 193 2 —0.000 000 455 6 7.223
8 1175 —176.443 702 262 2 —0.000 000 069 0 6.603
9 1846 —176.443 702 272 9 —0.000 000 010 7 6.449
Extrapolation —176.443 702 274 8(19)
Z=14
2 No. of terms Energy Difference Ratio
4 56 —205.724 681 924 1
5 139 —205.724 704 192 7 —0.000 022 268 6
6 307 —205.724 707 546 6 —0.000 003 353 9 6.640
7 623 —205.724 708 005 9 —0.000 000 459 3 7.302
8 1175 —205.724 708 076 6 —0.000 000 070 7 6.496
9 1846 —205.724 708 087 6 —0.000 000 011 0 6.427
Extrapolation —205.724 708 089 6(20)
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Table 4.2 (Continued).

Z =15

2 No. of terms Energy Difference Ratio
4 56 —237.255 755 093 3

5 139 —237.255 777 962 9 —0.000 022 869 6

6 307 —237.255 781 344 7 —0.000 003 381 8 6.763
7 623 —237.255 781 808 0 —0.000 000 463 3 7.299
8 1175 —237.255 781 879 7 —0.000 000 071 7 6.462
9 1846 —237.255 781 890 7 —0.000 000 011 0 6.518

Extrapolation —237.255 781 892 6(19)
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4.1 Z-Expansions From the Least Squares Fit

In Tables 4.1 and 4.2, we have listed the extrapolated energies obtained from the varia-
tional eigenvalues. The computation time required to obtain the variational eigenvalues
for the construction of each of these tables is about 280 hours using an IBM RISC/6000
350 workstation and about 150 hours if the IBM RISC System/6000 3CT is used for the
final largest basis set. Since a large amount of computation time is required to obtain
these results, it is advantageous at some point to simply determine the nonrelativistic
energies of the 1s22s 25 and 1s22p 2P states from their Z-expansions. The first two
coefficients € and (" for these expansions were determined analytically in the pre-
vious chapter. In this section, electron-pair energies are found and used to determine
more accurate values for the third coefficient =) of these expansions. Achieving higher
accuracy for £ is important since it is the accuracy in this coefficient which ultimately
limits the accuracy to which the energies from Eq. (1.1) may be calculated. Finally, the
least squares method is used to determine the next several coefficients of expansion (3.48)
for the 2S and 2P-states, and from the expansions for these states, the nonrelativistic

energies for 3 < Z < 92 are calculated.

4.1.1 The Electron-Pair Energies

For Tables 4.3 to 4.13, the average values of £(?) for each of the states were obtained
by applying the bootstrap method, described in the previous chapter, to the eigenvalues
for the corresponding states which were provided by G. W. F. Drake. The form of the
function used for the fit is given by

Ep — 2% - Ze) = @ L 72718 . 7720 4. (4.5)

where the €@ values are given by £® = — Zf:; 1/2n2, where n is the principal quantum
number, and the (! values were obtained from Sanders and Scherr [35]. In Tables 4.3

to 4.13, the numbers in parentheses in the average values of (?) denote the uncertainties
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in the final figures quoted, which in this case are the standard deviations obtained from
the bootstrap method.

Table 4.3 was used to determined the number of data sets (original+synthetic) that
are needed to produce an average value which converges to the last figure for which
the uncertainty is quoted. For example, it may be seen from Table 4.3 that about 10
data sets are needed for the average value of £(?(1s2? !S) to converge to the last figure
containing the uncertainty. To ensure that statistically meaningful standard deviations
were obtained for the average values, the number of data sets used to obtain the results
listed in Tables 4.4 to 4.13 was chosen to be 100. As seen from Table 4.3, the standard
deviations do not change with the use of data sets larger than 100.

One important point that arises in applying the least squares method is which number
of parameters m yields the best fit to a data set of size N. If we choose m = N, we can
make y? given by Eq. (3.45) equal to zero. However in doing so, we lose all the smoothing
properties of the least squares method. It turns out that the best fit is achieved as soon
as a value of m is reached after which no significant decrease occurs in x? [33]. This is
the general rule used to determine the number of parameters needed to yield the best
values in Tables 4.5, 4.7, 4.9, 4.11, and 4.13.

Another point that must be considered is whether the standard deviation obtained
from the bootstrap method accurately represents the uncertainty in the average values
of the coefficients. This point is addressed in Tables 4.4 to 4.13. In these tables, the
change in the average values for £2) may be seen for various parameter sizes and ranges
of data sets used, and this change may be used as a guideline in determining where the
uncertainty lies. In Tables 4.4 to 4.13 the change generally occurs in the 13** significant
figure. For example, from Tables 4.4, 4.6, 4.8, 4.10, and 4.12, it may be seen that the
average values for £(® for the various parameter sizes having the same order of magnitude
for x?, agree to the first 12 significant figures. Also, from Tables 4.5, 4.7, 4.9, 4.11, and
4.13, it may be seen that there is no change in the first 12 figures of the average value

for €@ when the first or last several data values are omitted. From these results, we
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conclude that the uncertainty obtained from the bootstrap method is a factor of 10 too
small in some cases, for example, see Table 4.9. In such cases, the uncertainty was
estimated by comparing neighbouring values and taking the largest difference between
neighbouring values as the uncertainty. In doing so, the following values were obtained

for the electron-pair energies

eP(1s21S) = —0.157 666 429 469 3(4),
e®(1s2528) = —0.114 510 136 167 2(4),
e®(152535) = —0.047 409 304 175 4(6),
e@(1s2p 'P) = —0.157 028 662 934 7(2),

and
e (1s2p 3P) = —0.072 998 983 472 6(8).

Comparing the first value £ (152 1S) with Morgan's value [27] of —0.157 666 429 469 14,
we see that they agree within the uncertainty quoted in the result obtained here. The
above results for the electron-pair energies are much more accurate than the ones used

by Horak et al. [39], which were accurate to only 6 or 7 significant figures.
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4.1.2 The S and P-state Lithium Z-Expansions

With the improved electron-pair energies, better values for the second order coefficients

£ (15225 2S) and £ (15%2p 2P) may be obtained using [39]
eP (1221 2L) = P (152 1S) + %5(2)(1321 L) + gem(ls% 3L) + ¢, (4.6)

where | = s, or p depending on the state being evaluated, and ((2!) is a sum of single-
electron integrals which are evaluated exactly by Chisholm and Dalgarno [7] for the
S-state and by Chisholm et al. [5] for the P-state. Expression (4.6) may be derived by
noting that the solution ¥(!) of (3.16) can be written in terms of first order independent
two-electron systems. For example, ¥(!) for the ground state of lithium is given by
Eq. (1.5).

Substituting the above electron-pair energies into Eq. (4.6), we get
(15225 25) = —0.408 166 165 261 15(8), (4.7)

and
P (1s%2p 2P) = —0.528 578 868 140 59(11). (4.8)

Now using values of €@, 1), and £ from Egs. (3.20), (3.40), (3.44), (4.7), and (4.8),
and the function being fitted given by (3.48), the boostrap method may be applied to
obtain the next several coefficients of the Z-expansions for the S and P-states. Tables
4.14 to 4.21 show the results obtained for the third order coefficient of these expansions.
The first two tables 4.14 and 4.15 were obtained to determine the number of data sets
needed to acheive convergence in the third order coefficients £(®, and the remaining
tables were constructed to determine the uncertainty in the coefficients. This was all
done using a similar procedure to the one presented above for obtaining the electron-pair
energies. In this case however, it is seen from Tables 4.14 to 4.21 that the third order

coefficients of the Z-expansion are determined to only 5 or 6 significant figures. Also, it
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Table 4.3: Convergence with the number of data sets used. (11 parameters).

Number of Average value
data sets for e (152 15)

2 —0.157 666 429 469 37(4)

6 —0.157 666 429 469 34(3)

10 -0.157 666 429 469 33(4)

20 —0.157 666 429 469 33(4)

50 —0.157 666 429 469 33(5)

100 -0.157 666 429 469 33(4)

200 —0.157 666 429 469 33(4)

1000 —0.157 666 429 469 33(4)

Table 4.4: £ (152 1S) for various parameter sizes. (100 data sets).

Number of Average value x?
parameters for e (152 15)
6 —0.157 666 401 1(44) 13 % 109
7 —0.157 666 432 23(31) 5.1 x 10!
8 —0.157 666 429 214(26) 4.8 x 108
9 —0.157 666 429 493 4(21) 2.9 x 10°
10 —0.157 666 429 467 20(17) 1.3 x 102
11 —0.157 666 429 469 33(4) 3.4 x 10~
12 —0.157 666 429 468 95(10) 1.6 x 10
13 —0.157 666 429 468 30(50) 1.7 x 107!
14 —0.157 666 429 460 75(15) 4.8 x 1072
15 —0.157 666 429 493 54(52) 2.0 x 10°
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Table 4.5: £®)(1s2 1S) for data sets consisting of various ranges for Z. (100 data sets).

Range for Z Average value Number of
for €@ (152 1S) parameters

218 —0.157 666 429 469 33(4) 11
318 —0.157 666 429 469 94(1) 10
4-18 —0.157 666 429 469 00(8) 10
5—18 —0.157 666 429 469 34(6) 9
6—18 —0.157 666 429 469 1(2) 9
7-18 —0.157 666 429 469 4(6) 8
8—-18 —0.157 666 429 469 2(2) 8
9-18 —0.157 666 429 469 7(4) 8
2-14 —0.157 666 429 469 7(2) 11
2-15 —0.157 666 429 469 50(6) 11
2-16 —0.157 666 429 469 47(3) 11
2-17 —0.157 666 429 469 45(1) 11

Table 4.6: £(®(1s2s 1S) for various parameter sizes. (100 data sets).

Number of Average value x?

parameters for €(®)(152s 1)
8 —0.114 510 136 135 95(10) 1.1 x 10°
9 —0.114 510 136 316 37(13) 6.8 x 10°
10 —0.114 510 136 154 24(10) 3.4 x 10°
11 —0.114 510 136 167 24(85) 3.0 x 103
12 —0.114 510 136 167 25(39) 3.7 x 1073
13 —0.114 510 136 163 16(15) 3.6 x 1073
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Table 4.7: Average £(®)(1s2s 1S) for data sets consisting of various ranges for Z. (100
data sets).

Range for Z Average value Number of
for £®)(1s2s 15) parameters

2-18 —0.114 510 136 167 24(10) 11
3—-18 —0.114 510 136 167 26(37) 10
418 —0.114 510 136 166 50(28) 10
5—-18 —0.114 510 136 168 48(22) 9
6— 18 —0.114 510 136 166 85(49) 9
718 —0.114 510 136 163 85(13) 8
2-15 —0.114 510 136 167 17(30) 11
2-16 —0.114 510 136 167 40(28) 11
2-17 —0.114 510 136 167 32(15) 11

Table 4.8: £)(1s2s 3S) for various parameter sizes. (100 data sets).

Number of Average value x°
parameters for £ (1525 35)
8 —0.047 409 303 400(79) 6.4 x 10°
9 —0.047 409 304 253 8(60) 5.7 x 10°
10 —0.047 409 304 168 40(54) 3.8 x 10°
11 —0.047 409 304 176 111(50) 2.1 x 1Q°
12 —0.047 409 304 175 398(25) 5.3 x 10~
13 —0.047 409 304 175 120(10) 4.8 x 10!
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Table 4.9: Average c(?(1s2s 3S) for data sets consisting of various ranges for Z. (100
data sets).

Range for Z Average value Number of
for (1525 35) parameters

2-18 —0.047 409 304 175 398(25) 12
3-18 —0.047 409 304 175 537(25) 11
4-18 —0.047 409 304 175 245(15) 10
5—18 —0.047 409 304 175 266(53) 10
6—18 —0.047 409 304 175 739(40) 9
7-18 —0.047 409 304 175 376(89) 9
2—-15 —0.047 409 304 175 666(56) 12
2-16 —0.047 409 304 175 553(81) 12
2-17 —0.047 409 304 176 440(56) 11

Table 4.10: ¢®(1s2p ! P) for various parameter sizes. (100 data sets).

Number of Average value x?
parameters for £ (1s2p ' P)
8 —0.157 028 661 887(70) 1.9 x 10°
9 _0.157 028 662 811 1(90) 3.4 x 108
10  —01570286629521(11) 3.8 x 10°
11 —0.157 028 662 934 679 4(95) 1.8 x 10!
12 —0.157 028 662 934 546 (22) 7.2 x 10-2
13 —0.157 028 662 934 540 (12) 9.6 x 102
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Table 4.11: Average £(®)(1s2p ! P) for data sets consisting of various ranges for Z. (100
data sets).

Range for Z Average value Number of
for e (1s2p ' P) parameters

2-18 —0.157 028 662 934 679 4(95) 12
3-18 —0.157 028 662 934 570(19) 11
4-18 —0.157 028 662 934 560(84) 11
5—-18 —0.157 028 662 934 939(12) 9
6—18 —0.157 028 662 934 934(43) 9
7-18 —0.157 028 662 934 62(13) 9
2-15 —0.157 028 662 934 723(25) 12
2-16 —0.157 028 662 934 740(13) 11
2-17 —0.157 028 662 934 582(36) 11

Table 4.12: £ (1s2p 3P) for various parameter sizes. (100 data sets).

Number of Average value X2
parameters for e®(1s2p 3 P)
3 —0.072 998 988 18(39) 79 %100
9 —0.072 998 983 282(11) 7.6 x 108
10 —0.072 998 983 455 2(15) 1.0 x 104
11 —0.072 998 988 478 41(37) 2.6 x 1072
12 —0.072 998 988 472 618(34) 9.5 x 105
13 —0.072 998 988 473 334 7(85) 1.1 x 1074
14 —0.072 998 988 473 129(11) 2.9 x 10~2
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was found that omitting the first data point (Z = 3, E,,,), see Tables 4.20, 4.21, 4.22,
and 4.23, yielded more stability in the values for £ and the higher coefficients, and
resulted in more accurate values in the energies obtained from these expansions. This
result makes sense physically since the higher order terms of the Z-expansion Eq. (1.1)
are of the form 1/Z", where n = 1,2,3,..., so that the accuracy of our finite expansion
determined from the fit increases with increasing Z. Hence, omitting the first data point
(Z = 3, E,,) tends to yield a better fit to our finite expansion. Another important point
to note, which is partially illustrated by Tables 4.22, and 4.23 is that the Z-expansions
became “unphysical” when the number of parameters used was equal to or larger than
eight. That is, the higher order coefficients obtained in the expansions using a number
of parameters greater or equal to eight became unusually large (of the order 10° for
eight parameters, and up to 10® for nine or ten parameters). Also, the uncertainties
(determined by the boostrap method) in these higher order coefficients are in some cases
larger than the values of the coefficients themselves, which is another indication that these
values are not physically meaningful. Thus, the higher order coefficients 3 ,e®, ...
the Z-expansions are taken from the third columns of Tables 4.22, and 4.23. These
higher order coefficients together with the lower order coefficients £(®, ¢(), and ¢ from
Eqgs. (3.20), (3.40), (3.44), (4.7), and (4.8) form the Z-expansions used to obtain the
nonrelativistic values in the third column of Tables 4.24 and 4.26.

From Tables 4.24, 4.26, 4.27 and 4.28 it is seen that the nonrelativistic values obtained
from the Z-expansions are accurate to 8 and 7 figures after the decimal for the 2S and 2P-
states, respectively, for Z = 15. The accuracy increases for increasing nuclear charge Z.
Also, from Tables 4.24, 4.25, and 4.26 a comparison is made between the nonrelativistic
energies obtained in this thesis and those obtained by K. T. Chung (8], [40] using the
multiconfiguration interaction method and those of F. W. King [22] using the variational
method with Hylleraas type wavefunctions. It is seen from these tables that King's
results are more accurate than those of Chung, and the results obtained in this thesis

have improved these best previous results by about three orders of magnitude. Also, from
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from Table 4.25, we see that King’s results are higher than the ones obtained in this
thesis by 1 x 10~%a.u. (0.22cm™!) for Z = 3 to 2 x 10~%a.u. (0.44cm™!) for Z = 10. These
differences do not vary much with Z, and the Z-expansions formed from a least squares
fit of King’s results would be less accurate for a given Z. For Z = 3 the difference between
King’s result, and the one obtained in this thesis is of the same order of magnitude as
the QED correction shown in Table 4.32. This shows that King’s results would not be
accurate enough to extract good QED corrections for the lower Z values, and it also

demonstrates the importance of having very accurate nonrelativistic values.

4.1.3 Comparison With Experiment

To make a meaningful comparison with experiment, one must include the relativistic and
mass polarization effects with the nonrelativistic values. These effects were calculated
using first order perturbation theory, by K. T. Chung [8], [9] for the 15*2s 2S states,
and by Wang et al. [40] for the 1s22p 2P states. The perturbations are given by the
expectation values (H, + H,), (Hs), (Hy), and (Hs), where
H, = —0—223:?.‘ (4.9)
3 i

=1

(correction to the kinetic energy arising from the variation of the masses with velocity),

H, = 27 ia(r-) (4.10)
2= 9 £ i .

(Darwin term which gives the electromagnetic correction to the static coulomb interaction

due to the motion of the particles) ,

H3 = —7!'052 E (1 + gs,- . Sj) (5(1‘,’1') (411)
t,7=1
i<y
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Table 4.13: Average €?(1s2p 3P) for data sets consisting of various ranges for Z. (100
data sets).

Range for Z Average value Number of
for e (1s2p 3P) parameters

2—-18 —0.072 998 983 472 618(34) 12
3—18 —0.072 998 983 473 2 116(44) 12
4-18 —0.072 998 983 473 187(19) 12
5—18 —0.072 998 983 473 233(15) 11
6—18 —0.072 998 983 473 337(12) 10
7-18 —0.072 998 983 473 196(30) 10
2-15 —0.072 998 983 472 040(51) 13
2-16 —0.072 998 983 473 393 9(98) 13
2-17 —0.072 998 983 473 390 5(40) 12

Table 4.14: Convergence with the number of data sets used. (Eight parameters).

Number of  Average value
data sets for £ (15225 25)

2  —0.0165 483(6)

10 —0.0165 484(7)

50 —0.0165 483(6)

100 —0.0165 482(6)

200 —0.0165 481(6)

300 —0.0165 481(6)

1000 —0.0165 481(6)
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Table 4.15: Average £)(1s22p 2P) for data sets consisting of various ranges for Z. (300
data sets).

Number of  Average value
data sets for £®(1s22p 2P)

2 -0.069 831(4)

10 -0.069 827(7)

50 —0.069 826(6)

100 —0.069 827(7)

200 -0.069 827(6)

300 -0.069 827(7)

1000 —0.069 827(7)

Table 4.16: £()(1s22s 2S) for various parameter sizes. (300 data sets, and Z =
3,4,...,15).

Number of  Average value %
parameters for £®)(1522s 25)
6 —0.016 528(4) 2.5x10°
7 —0.016 556(2) 1.7x 102
8 —0.016 548 1(6) 9.6x107!
9 —0.016 535(2) 7.4x10°!
10 —0.016 570(9) 8.5%10°!

Table 4.17: Average ¥ (1522s 25) for data sets consisting of various ranges for Z. (300
data sets).

Range for Z  Average value  Number of
for €5(1s%2s 2S) parameters

3—15  —0.016 548 1(6) 8
3—14  —0.016 547(1) 8
3—13  —0.016 545 1(5) 8
4—15  —0.016 551 1(2) 7
5—15  —0.016 551 2(7) 7
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Table 4.18: £®)(1s?2p 2P) for various parameter sizes. (300 data sets, and Z =
3,4,...,15).

Number of  Average value x?
parameters for €3 (1s22p 2P)
6 —0.060 027(45)  6.4x10°
7 —-0.069 816(11)  7.1x10°
8  —0.069827(7)  4.4x10-!
9 —0.069 818(35)  4.1x10-!
10 —0.060886(37)  2.0x10~"

Table 4.19: Average <(3)(1522p 2P) for data sets consisting of various ranges for Z. (300
data sets).

Range for Z Average value = Number of
for £5(1s22p 2P) parameters

3—15  —0.069 827(7) 8
3-14  —0.069 829(12) 8
3—-13  —0.069 827(18) 8
4—15  —0.069 822(4) 7
5—-15  —0.069 819(9) 7

Table 4.20: £©®)(1s22s 2S) for various parameter sizes. (300 data sets, and Z =
4,5,...,15).

Number of  Average value x?
parameters for £(®(1s22s 25)
6 —0.016 433(1) 3.6x 10!
7 -0.016 551 1(2) 6.3x107!
8 —0.016 551(1) 7.8x10°!
9 —0.016 565(7) 8.3x107!
10 —0.016 49(6) 1.1x10°
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Table 4.21: £®(1s22p 2P) for various parameter sizes. (300 data sets, and Z =
4,5,...,15).

Number of  Average value x*
parameters for £ (1522p 2P)
& —0.069 8503) 8Ax 100
7 —0.069822(4)  3.3x10°!
8  —0.069 82(2) 3.8x10-!
9 ~0.069 87(3) 1.8x10-!
10 —0.069 46(6) 3.5x10-2

Table 4.22: Comparison of the coefficients obtained for the 1522s 25 state Z-expansion
for various parameter sizes and ranges. (300 data sets).

Coefficient Z =3,4,...,15 Z=4,5,...,15 Z=4,5,...,15

8 Parameters 7 Parameters 8 Parameters
e®) —0.016 548 1(5) —0.016 551 1(2) —0.016 552(1)
@) —0.040 70(3) —0.040 53(1) —0.040 49(6)
(3 —0.047 0(7) —0.051 1(2) —0.052(2)
£l®) —0.092(8) —0.038(2) —0.03(2)
e +0.15(5) —-0.25(1) -0.3(1)
e® —1.3(2) +0.49(3) +0.8(7)
e® +3+4 —-1.23(3) —2+2
(10) —4+4 +0.94+2
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Table 4.23: Comparison of the coefficients obtained for the 1s22p 2P state Z-expansion
for various parameter sizes and ranges. (300 data sets).

Coefficient Z =3,4,...,15 Z2=4,5,...,15 Z=4,5,...,15

8 Parameters 7 Parameters 8 Parameters
eB) —0.069 827(7) —0.069 822(4) —0.069 82(2)
@ —0.092 6(3) —0.092 9(1) —0.093(1)
e® —0.092(6) —0.086(2) —0.08(2)
(6 —0.06(6) -0.14(2) —-0.2+0.3
e —0.07+0.3 +0.4(1) —-0.9+2
e® —0.6+1 —1.5(3) —4+9
e® —1.442 +3.3(3) —-8+20
g(10) —4+2 —5+19

Table 4.24: Comparison of the nonrelativistic energies of the 1522s 25 states of the lithium
isoelectronic sequence with those of K. T. Chung.

Nonrelativistic Energy (a.u.)
This Work Chung® Z —expansion
Z (Variational method)  (Full core plus correlation)
3 —7.478 060 322 74(20) —7.478 059 7(9) —~7.478 052(65)
4 —14.324 763 175 78(17) —14.324 761 0(11) —14.324 763(15)
5 —23.424 605 720 78(48) —23.424 603 1(13) —23.424 605 5(51)
6 —34.775 511 275 11(16) —34.775 508 2(15) —34.775 511 2(23)
7  —48.376 898 318 43(13) —48.376 849 9(18) —48.376 898 3(12)
8  —64.228 542 082 00(13) —64.228 538 5(19) —64.228 542 06(72)
9 —82.330 338 096 65(16) —82.330 334 §(21) —82.330 338 09(46)
10 —102.682 231 481 79(17) —102.682 227 8(22) —102.682 231 48(31)
11 -—125.284 190 753 24(18) —125.248 189 4(22) —125.284 190 76(23)
12 -150.136 196 603 84(15) —150.136 195 8(23) —150.136 196 61(17)
13 —177.238 236 559 11(22) —177.238 235 7(23) —177.238 236 57(13)
14 —206.590 302 212 14(47) —206.590 301 7(24) —206.590 302 22(10)
15 —238.192 387 693 56(18) —238.192 387 3(24) —238.192 387 70(9)

*Reference [9).



Table 4.25: Comparison of the nonrelativistic energies of the 1s22s 25 states of the lithium
isoelectronic sequence with those of F. W. King.

Nonrelativistic Energy (a.u.)

This Work King® Z —expansion
Z | (Variational method)  (Variational method)
3 —7.478 060 322 74(20) —7.478 059 —7.478 052(65)
4 —14.324 763 175 78(17) ~14.324 763(15)
5 —23.424 605 720 78(48) —23.424 604 —23.424 605 5(51)
6 —34.775 511 275 11(16) -34.775 509 —34.775 511 2(23)
7 —48.376 898 318 43(13) —48.376 896 —48.376 898 3(12)
8 —64.228 542 082 00(13) —64.228 540 —64.228 542 06(72)
9 —82.330 338 096 65(16) —82.330 336 —82.330 338 09(46)
10 -102.682 231 481 79(17) —102.682 229 —102.682 231 48(31)

®Reference [22].

Table 4.26: Comparison of the nonrelativistic energies of the 1s22p 2P states of the

lithium isoelectronic sequence with those of Wang et al. [39].

Nonrelativistic Energy (a.u.)

This Work Wang et al.® Z-expansion

Z (Variational method) (Restricted variation method)

3 —7.410 156 531 252(67) —7.410 154 1 (9) —7.410 4(7)

4 —14.179 333 291 542(70) —14.179 323 2 —14.179 4(1)

5 —23.204 441 191 42(11) —23.204 423 2 —23.204 47(5)
6 —34.482 103 178 34(16) —-34.482 081 1 —34.482 11(2)

7 —48.011 054 280 66(12) —48.011 030 8 —48.011 06(1)
8 —63.790 739 578 21(12) —63.790 703 6 —63.790 743(7)
9 —81.820 880 912 03(14) —81.820 852 1 —81.820 883(5)
10 -—102.101 324 293 732(47) —102.101 288 1 —102.101 326(3)
11 -124.631 977 817 7(18) —124.631 979(2)
12 —-149.412 783 331 3(17) —149.412 784(2)
13 -—176.443 702 274 8(19) —176.443 703(1)
14 —205.724 708 089 6(20) —205.724 709(1)
15 -—237.255 781 892 6(19) —237.255 782 3(9)

®Reference [40).
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Table 4.27: The nonrelativistic energies (a.u.) from the Z-expansions (16 < Z < 54).

VA 1323 S States 1s2p 2P States
16  —272.044 488 80(7) —271.036 910 2(7)
17  —308.146 602 40(6) —307.068 082 1(6)
18 —346.498 726 18(5) —345.349 290 0(5)
19  —387.100 858 34(4) —385.880 527 9(4)
20 —429.952 997 49(4) —428.661 791 0(4)
21  —475.055 142 52(3) —473.693 075 4(3)
22 —522.407 292 56(3) —520.974 378 1(3)
23  —572.009 446 88(3) —570.505 696 5(3)
24  —623.861 604 90(2) —622.287 028 7(2)
25 —677.963 766 13(2) —676.318 372 7(2)
26  —734.315 930 18(2) —732.599 727 3(2)

—791.131 091 15(19)
—851.912 463 23(18)
-914.943 842 65(16)
—980.225 228 65(15)
—1047.756 620 57(14)
—1117.538 017 82(13)
—1189.569 419 90(12)
—1263.850 826 37(12)
—1340.382 236 84(11)
—1419.163 650 96(10)
—1500.195 068 422(95)
—1583.476 488 961(95)
—1669.007 912 327(90)
—1756.789 338 303(86)
—1846.820 766 691(83)
—1939.102 197 313(79)
—2033.633 630 009(76)
—2130.415 064 632(73)
—2229.446 501 052(70)
—2330.727 939 146(68)
—2434.959 378 806(65)
—2540.040 819 930(63)
—2648.072 262 427(61)
—2758.353 706 212(59)
—2870.885 151 207(57)
—2985.666 597 341(55)
—3102.698 044 548(54)
—3221.979 492 766(52)

27  —792.918 096 709(18)
928  —853.770 265 422(18)
29  —916.872 436 080(16)
30 —982.224 608 473(15)
31 —1049.826 782 420(14)
32 —1119.678 957 766(13)
33 —1191.781 134 375(12)
34 —1266.133 312 128(12)
35 —1342.735 490 920(11)
36 —1421.587 670 659(10)
37 —1502.689 851 263(10)
38 —1586.042 032 661 3(95)
39 —1671.644 214 787 7(90)
40 —1759.496 397 584 8(86)
41 —1849.598 581 000 8(82)
42 —1941.950 764 989 0(79)
43 —2036.552 949 507 3(76)
44 —2133.405 134 517 7(73)
45 —2232.507 319 985 7(70)
46 —2333.859 505 880 0(68)
47 —2437.461 692 171 9(65)
48 —2543.313 878 835 4(63)
49 —2651.416 065 846 7(61)
50 —2761.768 253 183 9(59)
51 —2874.370 440 827 0(57)
52 —2989.222 628 757 6(55)
53 —3106.324 816 958 6(54)
54 —3225.677 005 414 3(52)
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Table 4.28: The nonrelativistic energies (a.u.) from the Z-expansions (55 < Z < 92).

Z

1s2s 2S States

152p 2P States

55
96
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

—3347.279 194 110 4(51)
—3471.131 383 033 3(49)
—3597.233 572 170 6(48)
—3725.585 761 510 9(47)
—3856.187 951 043 3(46)
—3980.040 140 757 9(44)
—4124.142 330 645 3(43)
—4261.494 520 697 0(42)
—4401.096 710 904 7(41)
—4542.948 901 261 0(40)
—4687.051 091 758 6(40)
—4833.403 282 390 9(39)
—4982.005 473 151 8(38)
—5132.857 664 035 2(37)
—5285.959 855 035 8(36)
—5441.312 046 148 3(36)
—5598.914 237 367 8(35)
—5758.766 428 689 7(34)
—5920.868 620 109 6(34)
—6085.220 811 623 8(33)
—6251.823 003 227 9(32)
—6420.675 194 918 4(32)
—6591.777 386 691 9(31)
—6765.129 578 545 0(31)
—6940.731 770 474 7(30)
—7118.583 962 478 0(30)
—7298.686 154 552 1(29)
—7481.038 346 694 3(29)
—7665.640 538 902 2(28)
—7852.492 731 173 2(28)
—8041.594 923 505 1(27)
~8232.947 115 895 7(27)
—8426.549 308 342 9(27)
—8622.401 500 844 8(26)
—8820.503 693 399 4(26)
—9020.855 886 005 0(26)
—9223.458 078 659 8(25)
—9428.310 271 362 2(25)

—3343.510 941 939(51)
—3467.292 392 015(49)
—3593.323 842 945(48)
~3721.605 294 684(47)
—3852.136 747 190(46)
—3984.918 200 424(44)
—4119.949 654 348(43)
—4957.231 108 930(42)
—4396.762 564 136(41)
—4538.544 019 938(40)
—4682.575 476 307(39)
—4828.856 933 216(39)
—4977.388 390 642(38)
—5128.169 848 560(37)
—5281.201 306 949(36)
—5436.482 765 789(36)
—5594.014 225 060(35)
—5753.795 684 744(34)
—5015.827 144 823(34)
—6080.108 605 282(33)
—6246.640 066 104(32)
—6415.421 527 275(32)
—6586.452 988 782(31)
—6759.734 450 610(31)
—6935.265 912 749(30)
—7113.047 375 185(30)
—7293.078 837 908(29)
—7475.360 300 908(29)
—7659.801 764 173(28)
—7846.673 227 694(28)
~8035.704 691 463(27)
—8226.986 155 470(27)
—8420.517 619 707(27)
~8616.299 084 166(26)
—8814.330 548 839(26)
—9014.612 013 720(26)
—9217.143 478 800(25)
—9421.924 944 075(25)
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(electron-electron contact term which represents the interaction between the spin mag-

netic dipole moments of the electrons),

H, = _1 Z V- V; (4.12)

(mass polarization effect which takes the finite mass of the nucleus into account),

2
1
Hy=-% -

5 (4.13)

rij(rey - Pi) - P,-]
r2

[P,--P,- +

T s,
ij=1 Y iy

<j

(orbit-orbit interaction which represents the correction due to the retardation of the
electromagnetic field produced by one of the electrons at the site of the other), where M
is the nuclear mass in a.u., and a = 1/137.035 989 5(61) is the fine structure constant.

In Tables 4.29, and 4.30 the above relativistic and mass polarization corrections cal-
culated by Chung et al. [8], [9], and [40] are added to the nonrelativistic values obtained
in this thesis. Since Chung et al. do not quote uncertainties for these corrections, the
uncertainties shown in Tables 4.29, and 4.30 had to be estimated. Chung et al. compare
their restricted configuration-interaction calculations for the relativistic corrections of
the 152 core states to the more accurate high precision variational calculations of Pekeris
[29]. The deviation between these results was used to determine the percentage error
for the relativistic corrections of the 1s? core states. To estimate the uncertainties for
the corrections shown in Tables 4.29, and 4.30 this percentage error was applied to the
differences between the corrections of the 1s22s (or 1s22p) states and those of the 1s?
core states. Estimating the uncertainties in this way is reasonable since the percentage
error in the energy difference that comes from adding an electron to the 1s% core should
be about the same as the percentage error in the core energies.

Using the above method for estimating the uncertainties, it was found that for the
2P-states with Z = 3,4, and 5 the error is in the eighth or ninth figure after the decimal,
however Wang et al. [40] round off their values to seven significant figures. Thus, the error
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in the total value for these energies (nonrelativistic + relativistic and mass polarizations
corrections) in Table 4.30 was calculated by assuming a round off error of +0.4 in the
final figures of the correction terms.

In Table 4.31, the total energies from Tables 4.29, and 4.30 are collected together and
compared with experiment to obtain the “experimental” QED corrections shown in the

second column of Table 4.32. This column was constructed using
Eqep = Eexp — (Enr + Eral), (4.14)

where the E,, are the experimental values from the fourth column of Table 4.31, the
Eng are the nonrelativistic values obtained in this thesis, and the E., are the first order
relativistic and mass polarization corrections obtained from Chung et al. [8], [40]. The
conversion from a.u. to cm™! in Table 4.31 was done by multiplying the i*# energy value
in the second column by two times the corresponding reduced Rydberg constant Ry,
calculated by Chung [8]. In Table 4.32, the experimental values for the QED energies
are compared to theoretical estimates of these terms made by McKenzie and Drake [25],
and by Chung et al. [9], [40] shown in the third and fourth columns, respectively. From
this table, it may be seen that all the theoretical QED values, except for Z = 3, of
McKenzie and Drake are consistently larger than the experimental values obtained in
this thesis. The discrepancy ranges from about 13.8% larger for Z = 9 to about 21.3%
larger for Z = 8. It may also be observed from Table 4.32 that Chung et al.’s theoretical
QED corrections are consistently smaller than the experimental values with a discrepancy
between them which decreases steadily from 69.2% for Z = 3 to 25% for Z = 10.

A possible explanation for Chung et al.’s exceptionally small value for Z = 3 is
given by McKenzie and Drake [25]. To determine the 1522s %S — 1522p %P transition
energies Chung et al. subtract the ionization potential of the 2S-state from that of the
2P-state. For each of these states, the QED effects of the core is assumed to cancel out

in the ionization potential. Thus, the QED corrections are evaluated by them only for



the valence electron using the hydrogenic formulas [3]

82403R (19
ABqeo(n,0) = 2B B snaza) - wlkom 0]} (@19
for the valence 2s electron, and
AE O LR AN 4.18
QED(n,l)—W gl ~ [Ko(n,1)] ¢ , (4.16)

for the valence 2p electron, where

c { % for J=
=

= NI

-1 for J=

In these equations, R is the Rydberg constant, n is the principal quantum number which
equals 2 in this case, Ky(n,!) are the Bethe logarithms, and Z.q is the effective nuclear
charge which Chung et al. estimate from the equation

2
_Zeg

- (4.17)

Enonrel(1322l) - Enonrel(lsz) =

McKenzie and Drake [25] point out that the effective nuclear charge obtained from
Eq. (4.17) overestimates the screening of the electron density at the nucleus leading
to a value for Z = 3 in Table 4.32 which is much too small..

The theoretical calculations for the QED corrections carried out by Mckenzie and
Drake [25] were an extension of a method developed previously for two-electron ions,
and although it yields better results than the calculations of Chung et al. [9], [40] the
discrepancy with the experimental values obtained in this thesis is still quite large.

4.1.4 Conclusion, and Suggestions for Future Work

It is evident that the variational method using multiple basis sets in Hylleraas coordi-

nates yields very accurate eigenvalues for the 2S and 2 P-states of the lithium isoelectronic
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sequence. The nonrelativistic energies presented in this thesis are the most accurate the-
oretical energies to date. However, the convergence characteristics and the extrapolated
energies obtained in Tables 4.1 and 4.2 may be improved upon further by investigating
the possibility of multiple roots in the energy surfaces (plots of the energies as a function
of the nonlinear parameters), and by extrapolating the optimum nonlinear parameters
for the larger basis sets from plots of the variational nonlinear parameters versus the
basis set size 2.

Using the nonrelativistic energies obtained in this thesis, it has been possible to calcu-
late some of the higher coefficients @), @), ... of Z-expansions for the 25 and 2 P-states.
With these expansions, the nonrelativistic energies of the higher members of the lithium
isoelectronic sequence (15 < Z < 92) may be calculated to 9 or 10 significant figures after
the decimal. The ultimate accuracy of the Z-expansions for higher Z is limited only by
the accuracy of the second order coefficients (2) which have been determined to about
12 significant figures.

With the first order relativistic and mass polarization effects calculated by Chung et
al. [8], [40], Eq. (4.14) has been used to extract the QED corrections from experimental
data, and a comparison with theoretical estimates has been made. From this comparison,
it is seen that a substantial discrepancy exists between theory and experiment. The
source of this discrepancy probably lies in the theoretical methods used to obtain the
QED corrections. To be sure, more work is needed in this area.

In order to improve the accuracy of the experimental QED correction more accurate
relativistic corrections are needed. However, there are difficulties in calculating the ma-
trix elements of the Breit interaction using the more accurate wavefunctions containing
Hylleraas coordinates. These difficulties arise from the fact that the integrals associated
with these matrix elements contain inverse powers of the interelectron coordinates (from
the Breit operator) which make these integrals very singular. Work on resolving these
difficulties is currently being carried out by Zong-Chao Yan. These corrections could also

be carried out for the higher Z members of the lithium isoelectronic sequence, however,
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the leading higher-order relativistic contributions which are proportional to Z8a* start
to become more important for the higher nuclear charge ions. Thus, these higher-order
corrections may also have to be calculated in order to obtain more accurate QED correc-
tions for higher members of the lithium isoelectronic sequence. Finally, higher precision
experimental values for Z > 3 will be needed as the theoretical work continues to increase

in accuracy.



Table 4.29: First order relativistic and mass polarization corrections added to the non-
relativistic 15?2s 25 state energies.

Z 3 4 5
Nomrel.  —7.478 060 322 74(20)  —14.324 763 175 78(17)  —23.424 605 720 96(66)
(Hy + Ha) —0.000 707 48(4) ~0.002 537 37(19) —0.006 722 88(43)
(Hs3) 0.000 095 340(89) 0.000 273 55(35) 0.000 597 386(76)
(Hs) ~0.000 023 331(2) —0.000 048 626(6) —0.000 083 357(8)
(H,) 0.000 023 635(1) 0.000 027 603(2) 0.000 030 235(3)
Total —7.478 672 158(97) —14.327 048 02(40) —23.430 784 33(88)

Z 6 7 8
Nomrel.  —34.775 511 275 11(16) —48.376 898 318 43(13)  —64.228 542 082 00(12)
(Hy+ Hy)  —0.014 754 45(85) —0.028 489 0(13) —0.050 155 7(19)
(Hsj) 0.001 111 3(14) 0.001 858 2(21) 0.002 882 8(31)
(Hs) —0.000 127 541(8) —0.000 181 166(5) —0.000 244 241(3)
(H,) 0.000 034 788(3) 0.000 035 872(3) 0.000 036 721(3)
Total —34.789 247 2(16) —48.403 674 4(25) ~64.276 022 4(36)

Z 9 10
Nonrel.  —82.330 338 096 65(16) —102.682 231 481 79(17)

(Hy + Hy)  —0.082 350 9(27) ~0.128 041 4(39)
(Hs) 0.004 228 8(42) 0.005 939 9(55)
(Hs) —0.000 316 769(9) ~0.000 398 744(19)
(H,) 0.000 035 397(3) 0.000 037 900(3)
Total —82.408 741 6(50) —102.804 693 8(68)

89



Table 4.30: First order relativistic and mass polarization corrections added to the non-
relativistic 1s22p 2P state energies.

Z 3 4 5
Nonrel.  —7.410 156 531 252(67) —14.179 333 291 542(70)  —23.204 441 191 42(10)
(H, + H,) —0.000 693 3(0) —0.002 440 5(0) —0.006 397 4(0)

(Hz) 0.000 093 6(0) 0.000 263 8(0) 0.000 571 3(0)
(Hs) —0.000 021 3(0) —0.000 032 9(0) —0.000 033 9(0)
(Hy) 0.000 019 4(0) 0.000 010 2(0) —0.000 004 1(0)
Total —7.410 758 1(1) —14.181 532 7(1) —23.210 305 3(1)

Z 6 7 8
Nonrel.  —34.482 103 178 34(15) —48.011 054 280 66(12)  —63.790 739 578 21(12)
(Hy+ Hy) —0.013 951 4(2) —0.026 831 6(4) —0.047 103 7(6)

(Hs) 0.001 057 1(1) 0.001 762 7(2) 0.002 729 5(4)
(Hs) —0.000 016 7(1) 0.000 026 4(1) 0.000 103 4(0)
(Hy) —0.000 022 6(0) —0.000 041 8(1) —0.000 061 5(1)
Total —34.495 036 8(2) —48.036 138 6(5) —63.835 071 9(7)

Z 9 10
Nonrel.  —81.820 880 912 03(14) —102.101 324 293 732(47)

(H,+ Hy) —0.077 206 3(9) ~0.119 878 2(13)
(Hs) 0.003 998 6(7) 0.005 611 8(10)
(Hs) 0.000 221 8(22) 0.000 389 6(6)
(Hy) —0.000 077 4(1) ~0.000 102 1(1)
Total —81.893 944 2(25) —102.215 303 2(18)
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Table 4.31: Comparison between theory and experiment for the 1s?2s 25 — 1s22p 2P
transition energies of the lithium isoelectronic sequence.

VA Theory Experiment
(a.u.) (em~7) (em™')

0.067 014 0(1) 14 90413(2) 14 903.871 689(10)°
0.1455153(4) 31 934.69(10) 31 933.14(2)°
0.220 479 0(9) 48 386.3(2) 48 380.8(7)°
0.204 210 4(16) 64 567.8(4) 64 555.5(7)¢
0.367 535 8(26) 80 660.3(6) 80 635.7(1.0)¢
0.440 950 5(37) 96 771.2(8) 96 730.0(1.0)¢
0.514 973 6(56) 112 981.3(1.2) 112 910.7(9)¢
0.580 390 7(70) 129 352.7(1.5) 129 250.3(L.3)¢

2Reference [6).

®Reference [14].

‘Reference [15].

4Reference [16].

OO0 ~IO Ut i W

—

Table 4.32: Comparison of Theory minus Experiment with directly calculated QED
corrections.

Z Theory—Expt. QED Corr.® QED Corr.}

(em™1) (cm™1) (cm™1)
3 0.26(2) 023(2)  0.08(1)
4 1.55(10) 0.78(5)
5 5.1(5) 2.96(18)
6 12.3(8) 7.69(54)
7 25(1) 29.2 16.2(1.1)
8 41(1) 50.0 29.6(2.4)
9 71(2) 80.1 49.3(3.4)
10 102(2) 120.7 76.5(5.3)

*Reference [25].
fReference [9], and [40].
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Appendix A

Determination the Del Operators

To determine the effect of V?, operating on a member of the basis set, we begin by

writing the variable dependence of our trial wave function:
¥ = R(ry,r9,73,T12,713,T23)§2,

where Q = Yi,m, (71)Yiym (72)Yisms (73). Next, we apply V? to ¥ so that we may find the

form of the V? operators. For example,

ViU = [(ai;af,; 61) R] Q + RVYQ
_ [(BR ory + OR Ory, + OR arm) (63 ory + OR 0Oryy + 3R 3r13>
dr, 0z, Ori2 Oz, Ori3 0z, ) '\ O0r18y1  Ori2 Oy, oriz dy )’
OR Or OR Or;2 OR Ory3
(3"1 aZI + 6r12 321 + 67‘13 aZI )] Q2 + RVI{Q
- (2OR, p R moR
T10ry  T120r12  T130r

) Q + RVYQ, (A.1)

where VY acts only on the spherical part. Then,

r OR ri2 OR 13 OR ) ]
v, |(ROR e OR re k) ol g (pryig
! [(7‘1 or, + T12 0712 + T13 013 1 (RVIQ)

= I+1I (A.2)

ViU
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where,

r OR 1'12 OR 1'13 OR )]
I = |V [+ 2f—+— Q,
[ ! (Tl or, T12 a"lz T13 O3

r; OR ri2 OR T3 OR ) 2
I = + == + — - VY¥Q + (V1R) (VIQ) + RV
("1 Or, 112 37’12 T3 013 ! (ViR) (ViQ) !

Now,

r OR r)2 OR ria OR ):l
1 = |v,. (222402 Q
[ ' (7'1 Or1 T 0rp e T13 Ori3

where

v . (n BR) _2_8R+32R+ r;-r2 O*R L TiTi AR
! 1 Ory Ty Or 3"% T1T12 Or120r, T3 Oriadr ’
Vl.(m?ﬁ) 2 3R+62R+r1-r12 8%R RITELIT 2R |
T12 OT12 T12 3"12 3"12 T2 Ori0T12 T12T13 Or120r13

and

l'13 BR 2 3R 32R r)-ris 32R ri2-I13 32R
Vi- = + + + :
T3 6"13 T13 37‘13 3"13 T3 Or10ris T12T13 01120713

Using the fact that ry -r1p = 3 (r —r2 +r%,), and r13 - 113 = § (v}, — 7%, + 1%3), we get

[ = [32+32+62+2(13+_1_i _l_i)+(r¥—r§+rf2 &*
ort = or} a"13 Ty 0r;  T120T12  T130T13 T1T12 Or1207,
+T% —_— T'3 + 7'13 62 + T'%z 1‘3 + 7'23 62 )J \Il

TIT13 Or 0r3 T12T13 Or120713

Also,

r OR 4 D2 ri2 OR ri3 OR

I = + - VYQ + (V1R) (V¥Q) + RV2Q
(7'137'1 7‘123"12 7‘1331’13) 1 (V1R) (VIQ) 1
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10R 1 OR 1 3R
o, (r; - VIQ) + T120T1a (riz - VIQ) + B (riz - ViQ)

T13 0713
L +1)
r2

+(V1R) (VIQ) - R Q,
but, r1 LVYY},m, (1), so that,

ry: VlllQ = [rl : Vxll}/llml (?1)] lemz (?2)]/137"3(?3)

Similarly,

rp-ViIQ = (r;—rp) - ViQ
r; - ViQ -, VIQ

Il

= —-TI9- VI{Q,
and, ri3 - VIQ = —r3 - V¥Q. Thus,
1 3R . 1 8R . . I (L +1)
= —— " (p,- — 2 (s - RV T
I = ——a (6 VIO = — 5= (rs- V) + (ViB) (Vi) - R
1 6R 1 OR r OR rpo OR ri3 3R>
= ———(ry- V¥Q) — — = (r3- VI +(——+——+——
T12 OT12 (r2 ! ) 713 OT13 (r3 1) r1Ory  Ti120r12 Ti307m13
x (V¥Q) — RZI(ZIT;QQ
1 3R 1 R v 1 3R
= ———(p,- - (Fa - -2 (r, - VYO
T12 Or1p (r2 WQ) T13 Or13 (s VIQ) T12 OT19 (r2 VY )
1 OR ., (L +1)
T13 Or13 (r- Vi) - R r &
1 8 1 0 L{L+1)
= —_— . v —_— e — . v — —_— .
[ 2(rz Vi) T12 Or12 2(r2- V1) T13 Ora T‘f ha

Now adding I and II, we get
V3% = I+1I
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_ [az+az+a2+2(1a+_1_a +L3>
or  or}, orh rory TR8ri2  T130r3
T1T12 Or120r, TiT13 37‘13"13
2 2 2 2
Tig — T3 + T3 5 3 ” 3
+ - 2(r — = =2(r3-V§
Ti2T13 37‘1237‘13 ( 2 ) Ti2 57‘ 12 ( 3 )7‘13 Oris
L (ll + 1)
T ‘I’.
Therefore,
V2 = 32 & +82 +2(i_3_+_1_i+_1_ 3)
! or? 31‘2 or rOr;  T120r12 T3 013
ri—-ri+ry & _*_"f"'g'*'rfa d?
TiT12 Or120r, T3 3"‘ 10713
r,—ri4+ri, & 0
+ -2 vY)—-2(r V"
T127T13 Or120r13 (r2 ) ( 3 ) T3 3"13
L+ (A3)
—_——rf . .

A similar result is obtained for V2 but with the indices 1 and 2 interchanged, and also
for V2 but with the indices 1 and 3 interchanged.
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Appendix B

Evaluation of the Angular Integral I

With the use of the spherical harmonic addition theorem,

4
2qab +1

P, (cosby) =

Z )/qrwmab (?1 )anbmab (?2)

Mab

the angular integral (2.29), becomes

~ 6473
I= /dQldﬂde;; Gan TG T D) > DD A1daAs

my2 m23 m3)

where
Ay = Y5 (P Yim, () Yy (F1) Yo (1)

Az = Y’Z"‘; (F2)Y12m’ (’?2 ) Yq.xzmxz (F2)Y02:Wl23 (?2) )

and

A;; = }/l;.m; (?3)},‘3"‘3 (?3)Yq;| ma; (?3))/423"323 (F3 ) .

Then using, Y, = (=1)MY._u, we obtain

Al = (—l)m‘ Yl', —m'l (Fl))/llml (?1)(—1)m12Yq12_m12 (Fl )YQ:nm:n (?1 )v

(B.1)

(B.2)



and with the relation,

(L, Ll, L")% M” L Ll Ln L LI Lu
Y; (7’ Y, '(F) = Y i, n ';:)‘—_(—1) . 3
(7)Y LZM L Var M M -M 0 0 0

(B.3)
where, M" = M + M’ and (L, L', L")} = (2L + 1)}(2L’ + 1)¥(2L" + 1)%, we get

. (L? le nl)% lll ll ny lll ll ny s . -
A = (_1)m1+m12 —_— (_1) lYns (7'1)
2" Vi 00 0 —mi my s "

n1s
1 n
X Z (912,931, 923)% | Q12 931 Q3 Gz G Nm (1) Y, 00 (T1)
n23823 47{ 0 0 0 _m12 msl sn

where, s; = m; — m,, and ss3 = m; — m3;. Now, evaluating this further using again

relation (B.3), we get

' 1 ' ll ll n,
A= (cymrmeo—s 3T 3 (nl,nm)(ll,zl,qm,q:u,no)*( ‘ )

(47r) n1n23n0 8182350 0 0 O

o | 92 9 mas np Mgz Mo L L on Q12 gun N
0 0 0 0 0 0 —m’l m; 38 —my2 M31 S23
n .

% 1 23 To ) Ynoso(Fl)(—l)’l+323+a°

81 8923 8¢

1

where, 89 = sy3 — 8;. Similarly,

, 1 : o1l b2 e
A, = (—1)m2+m23— Z 2 (nn,nls)(lz,lz,‘hz,Q23,"o); ( : )

(4m)% .~ 0 0 0
nanang 828139,
x d23 Q12 Ni3 Nz N3 né) 1,2 [, no d23 qi2 N3
0 0 0 0 0 0 —m; Mo 89 —Mg3 M1 813

97



’
Ny N3 N
x( ; ) Y, (F) (— 1) +omto,

82 813 80

and

, . Iy I3 n3
A3 = (_1)m3+m31 Z Z (n31n12 (l3yl37q311Q231n0)% ( (:; 0 0 )

n:muno 8381280

9 @31 Q23 N2 ng niz 7 I, I3 n3 gs1 g3 T2
0 0 0 0 0 O —mg mg s3 —m31 Mgz Si2
ng N2 n{,' - “

’ ( ,, ) Vg (F)(=1)roms,

Now using, V47 [ dQ) Ya,so(T1)Yoo(T1) = V4765400550, We have
/dQldQQdQ:;Yno,o(Tl)Y r (TQ)Y "o (7’3) = (471')26,,0 06110 067). 0(5 6 " (5 "

so that,

L L n
/AldQl = (— l)m‘+m12 Z Z(Q‘nl +1) (27?'234'1)(11,11,412,(]31)2 P
"mza 81923 0 0 0

o 12 @31 N3 ny nez 0 L L m Q12 gs1 Mo
0 0 O 0O 0 O -m; my 8 —mi2 M3; S23
% q12 g1 TMNg3 ny ng 0
—M2 M3 S s1 s O

and with the relation,

( a b 0) = (—1)*"%84 460 -5(2a + 1)~ /2 (B-4)
a 0
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the integral reduces to

1 , l ll ) qi2 g3 T
/Aldﬂl = (_1)m1+m12:1_ E (2n1+1)(ll,ll7QI2y‘hl)% 1 l 1
T 00 0 0 0 0

r
g I, L ny Q12 g3 n;
I 1 [ "
-m; m; ™M —my —Mys Mgy M — M,

Following a similar procedure for the A, and Aj integrals, we get

1 . Ll I @23 Q12 T2
AdQy = (=1)™FMB_ N (2ny +1)(ly, 12, q12,923) 2
/ 4n %: ? 00 0 0 0 0

% llz ly Ng q2 qdi12 U
‘mlz mz mlz“mz —MMo3 M2 mg—m;

1 . [l I3 na gs1 Q23 T3
A3dQy = (—1)™*™ma— N (2n3 + 1)(ls,13,931,923) 2
/ 4w g ’ 0 0 0 0 0 o0

g Iy l3 ng g1 qx: ng
-'m:I; ms m:',—ms —MMg3; M3 ms—m:',

Now, substituting these evaluated integrals into Eq. (B.2), we obtain

I = (myymtmatma by 1,0, 0, 0)E D D (=1)™2tmet™Si(n) ny, ng)

my21MmM23m3) N1N2N3

” L L ony l, b ny ly I3 ng Q12 g3 M 3 qi2 N2
0 0 O 0 ¢ 0 0 0 O 0 0 O 0 0 O

1
o | B @3 T L L ny Q12 g3 n
1 [ ’
0 0 0 —m; mp m;—m —my2 M3y M) — MMy
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% 1'2 Iy Ny q23 q12 Ny gs1 d23 ng
—m’z my m; —my —Ma3 M2 My — m; —Mmg3) Ma3z M3z — m:’;
L L
oY I (B.5)
—my g MMz — g

and using the relation

S (cpyrssecrasan (A B BC a\)fCc A b
By a -8 74 B —v o v —-a 8
b
ﬂl

={abc}(al c) (B.6)
A B C a o

this may be further simplified to Eq. (2.36).
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Appendix C

Derivation of the Backward

Recursion Relation

We begin by considering

Jn(s+1+p)n o
nl(s+1) = (C.1)

F(1,3+1+p;s+1;z)=z
n=0

where (a), =a(a+1)(a+2)---(a+n —1) and (a)o = 1. Next, we make use of the fact
that

(@) = (a)a+1){(a+2)---(a+n—1)

_ (“(’Z_fz)'ll (C.2)

to rewrite Eq. (C.1) as

o0
nl(s+p+n)ls! |
F(l,s+1+ps+1;z) = Zn'(§+p'(s+n)z

n=

_ (s+p+n) o
- (s+p Z (s +n)! (C-3)
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Now, let us consider

8—1 Z(S_l+p+N)!ZN. (C4)

Flst+pisiz)= —1+p)t 2 (s—1+N)!

Letting N — 1 = n, (C.4) becomes

—1)! +p+n)!
F(l,s+p;s:2) (s(jl-i-)p)' Z (s(sin;'l)
_ (s=1t (stp+n) ,
- LS G
(s —1)! (s+p-1)! _ (3+P+"’)' 5
(s—1+p)!z -1 Z Gt . (C.5)

Finally, using (C.3), we get

F(l,s+p;sz) = 1+ (s(izi);)! (s ':!P)!

s+sz(1 s+1l4+ps+1;2), (C.6)

F(l,s+1+ps+1;z)

= 1+

which is the relation we seek.
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Appendix D

The General Form of the Integral
(1)

Involved in the Calculation of &,

The general form of the integrals (3.31), (3.32), and (3.33) may be expressed as

(¥ -19) = / [ / Rt (74) Bty 12) Rty 1) Yo, (7)Y P2 Vi Po) = R ()
R (r2) Ry (r3) Yy it (F) Yy ot (R2)Y l(T3)d3T1d3T2d37'3 (D.1)
In this Appendix, the general form of the angular part of this integral is determined and
the essential integral relations for the evaluation of the radial part are given.

To split up the radial and angular part of (D.1), we begin by making use of the
expansion

= Z mp,; (cosBy;), (D.2)

where 6;; is the angle between r; and r; and r is the lesser and r the greater of ; and

r;. This expansion may be rewritten as

= Z = (5 1) Z Vi (P Yaa ), (D3)
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where we have made use of the spherical harmonic addition theorem. Now, substituting

(D.3) into (D.1), we obtain

> 1 [} [ 47l’ e
k=0

q=—k

where

o0 00 ,,.Ic
Rg_‘) = /0 rfdrl /o r%drg /:ﬂ 1'§dr3R,‘n,l (1‘1)1?_;2,2 (T2)R:.‘3‘3 (r3) ;,;TI-R";,; (rl)Rn;l; (rg)Rn;l; (r3),
(D.5)

and

T [ Yo P 0 )Y P Y P Va0 (55) Vi (P10 ¥ g P2 Vg ()10,

(D.6)
where dQQ = sin §dfdp.
D.1 Evaluation of the Angular Part
For the angular integral (D.6) let us set ¢ = 1 and j = 3, and rewrite it as
I= / A1dQ, / AqdQ, / A3dQ;, (D.7)
where
Ay = Vi, RV () Yot (F1), (D.8)
A = Y, (T2) Yy e (72), (D.9)
and
Aa = Vi (72) Vg (73) Vi, (7). (D.10)
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Rewriting (D.8), we have
A = ()" Y;i, (7)) [Ye(FOY] 0 (F1)]

and with the complex conjugate of relation (B.3), this becomes

o a ke (k¢ A kL A
CE VI D P ) Lo (k. d) toA 1 M
4m g -my 000

Ar=[k-11| =21
XYiim, (1) Yo, (F1)- (D.11)

Now using the orthonormal relation for the spherical harmonics
2 v
[ 6 [ ointds¥, @)Y () = Sy (D.12)
0 0

together with (D.11), we have

1
B2k 1, A kL A
[ e = (—1)"2[%] L C ) Sualm
4 q —my 000

A1y

' % 1 '
k1 l kL1
= (-1)° —(k’i"l‘) v v (D.13)
i qg —-m; my 000
Similarly,

[ Aty = (- 1>"[(k bb)|P(F 6B (KB L) gy
4 q —my; m3 000

/AQsz = / l2m2 (1‘2)}/‘;"1; (1’*‘2)d92 = 612,1;6m2,m;' (D15)

and
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Substituting (D.13), (D.14), and (D.15) into (D.7), we get
- ! koLl
T = (cry, g EEED (K 4k Lo
4m 000 q —-my ™

2 A A kI I3
X 3 , (5’2";6"12'"‘;. (D16)
qg —my mg 0 0 O

Now without loss of generality, we will choose m = 0 for the wavefunctions, so that

- l kU1
10 (llrllal31 3)l (2k + 1) 1 ' ! '
000 g 00
k L, 1 kL, I
x 3 2 ) 6B (D.17)
00 O g 00

Equation (D.17) is the general equation for the angular part of integral (D.4), and with

this equation (D.4) may be written as

k
I= Z R > k. (D.18)

q=-kK

D.2 Integral Relations for the Evaluation of the Ra-
dial Part

In this section, the general integral relations for the evaluation of the radial integral (D.5)
are presented. To begin, we note that Eq. (D.5) is of the form

00 %) O k
Ff(nkrz = / / / f(rlrrmxr‘n):—:ldrldrmdr‘nt (D'lg)
o Jo Jo >
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where r, = max(rm,r,), and r« = min(r,,r,). To evaluate this integral, it must be

separated in the following way

a0 00 o) k oo
/ / / f (rl »T'm, rn) :_ildrldrmdrn = /w f (rl )drl / f (rm)drm
] 0 0 rs 0 0

1 Tm ° 1
e [ nrsdrn e h [ o),

k
T™m

X

(rm >rn) (rn> rm)

(D.20)

Next, the evaluation of (D.20) is carried out with the use of the following integral relations

/oo e *dr = :Lll , (D.21)
0 o
v =T g E;"' o nr'™ ! n(n—1)r""2 o (=1)*n!] (=1)"n!
/o e = (—a) [ (—a) + (—a)? (—a)" ] (—a)n+1’ (D.22)
and
® a—arg. _ e [,, nr™! n(n-—1)m? _(=1)"n! .
/r, e dr = —m [r - —a) + (a)? (o) ] . (D.23)
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