
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2012

Repetitive querying of large random heterogeneous
datasets in RDBMS using materialized views
Ammar Albalkhi
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Albalkhi, Ammar, "Repetitive querying of large random heterogeneous datasets in RDBMS using materialized views" (2012).
Electronic Theses and Dissertations. Paper 311.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/72786294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/311?utm_source=scholar.uwindsor.ca%2Fetd%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

i

REPETITIVE QUERYING OF LARGE RANDOM HETEROGENEOUS

DATASETS IN RDBMS USING MATERIALIZED VIEWS

 By

Ammar Albalkhi

A Thesis

Submitted to the Faculty of Graduate Studies

Through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2012

ii

© Ammar Albalkhi, 2012

All Rights Reserved

iii

REPETITIVE QUERYING OF LARGE RANDOM HETEROGENEOUS

DATASETS IN RDBMS USING MATERIALIZED VIEWS

by

Ammar Albalkhi

APPROVED BY:

Dr. A. Azab

Department of Engineering

Dr. J. Morrissey

School of Computer Science

Dr. R. Kent, Advisor

School of Computer Science

Dr. Y.Tsin, Chair of Defense

School of Computer Science

iv

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone‘s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances in my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

v

ABSTRACT

A methodology has been developed to increase time efficiency of querying large

heterogeneous datasets repetitively by applying materialized views on repetitive complex

queries. Additionally, a simple user interface is provided to demonstrate the utility of this

research methodology. The programs demonstrate sufficiently that the core design can be

used to deploy a complete system which could be used in different domains. The

methodology as developed in this research is presented as an experimental proof-of-

concept prototype based on an abstract design.

vi

DEDICATION

To my Wife

To my kids

To my teachers

To all who believe that success is the loveliest word ever

It is to you that this

thesis is dedicated

vii

ACKNOWLEDGEMENTS

Souzan, I thank you for believing in me and in my ability to achieve my goals.

Without your encouragement, I most certainly would never have the chance to earn every

degree I have been awarded since I started my educational path.

Dr.Kent, I thank you for giving me the chance to achieve my dream, supporting and

criticizing this thesis.

Dr.Morrissey, and Dr.Azab, I thank you for your comments, questions and support.

I would also like to thank Dr.Frost for providing me with all the techniques needed to

write this thesis.

I would like to thank Dr.Tsin who was my first prof when I was enrolled in the Master‘s

program. Thank you for believing in me.

I thank Prof.Finlay who was the proof-reader of this thesis.

viii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. III

ABSTRACT .. V

DEDICATION ... VI

CHAPTER I .. 1

INTRODUCTION ... 1
1.1 Context and purpose of thesis ... 1
1.2 Justification of thesis ... 3
1.2.1 Traditional Databases.. 5
1.2.1 Non-traditional Databases ... 7
1.3 Electronic Patient Records (EPR) .. 9

CHAPTER II ... 10

REVIEW OF LITERATURE .. 10
2.1 Record selection .. 10
2.2 Dimensional selection ... 17
2.3 Literature summary ... 30

CHAPTER III .. 31

MATERIALIZED VIEWS DESIGN AND METHODOLOGY .. 31
3.1 Materialized views .. 31
3.2 Postgres MV’s ... 32
3.3 Hypothesis ... 35
3.4 Methodology ... 36

CHAPTER IV .. 39

IMPLEMENTATION AND RESULTS... 39
4.1 Interface .. 39
4.2 Algorithms ... 41
4.3 Interface implementation ... 55
4.4 Database implementation .. 57
4.5 Results ... 58
4.6 Contribution .. 62
4.7 Phase 1 .. 63
4.8 Phase 2 .. 63

CHAPTER V ... 66

CONCLUSION .. 66
5.1 Thesis achievement ... 66
5.2 Comments .. 67
5.3 Future work ... 68

APPENDIX A ... 70

JAVA CLASSES ... 70
A.1 Database Javabeans ... 70
A.2 GUI classes ... 72
A.3 Swing classes .. 74

IV

ix

APPENDIX B ... 81

SQL SAMPLE CODE .. 81
B.1 MV’s manipulation ... 81
B.2 Prototype functions ... 86

BIBLIOGRAPHY ... 93

VITA AUCTORIS .. 95

x

LIST OF FIGURES

Figure 1 Traditional DB properties ... 6
Figure 2 Traditional DB .. 7

Figure 3 Non-Traditional DB.. 8
Figure 4 Non-Traditional DB properties... 8
Figure 5 Postgres DB limitation ... 40
Figure 6 Disk/ Cache comparison ... 41
Figure 7 Complex query example1 ... 44

Figure 8 Table mapit which maps MV to a complex query ... 46
Figure 9 Complex query example 2 ... 46
Figure 10 Table mapit updated ... 47
Figure 11 Complex query example3 ... 47

Figure 12 Mapit updated 3 .. 48
Figure 13 (µ) Total number of old records / total number of new records 52

Figure 14 New records Rn, old records Ro, and the ratio between Rn/Ro (µ) 53
Figure 15 µ values according to cycles(weeks) .. 53

Figure 16 Importance of µ .. 54
Figure 17 Java interface used in this thesis ... 56
Figure 18 Postgres environment ... 57

Figure 19 Time comparison with and without using MV using Windows(OS) 58
Figure 20 Time comparison with and witout using MV using UNIX (OS) 59

Figure 21 Size of database when using MV‘s .. 61
Figure 22 Chart of size of the database when using MV‘s ... 61

1

CHAPTER I

INTRODUCTION

1.1 Context and purpose of thesis

The focus of this thesis is to provide an answer to the following question: How can one

design and implement a relational database system approach, using materialized views,

that allows for comparison of the time and space dependencies in implementing and

maintaining complex queries applied to heterogeneous large datasets? A consequent

aspect of answering this question affirmatively, which we do in this thesis, is to

demonstrate, through experiments, that utilizing materialized views to support efficient

queries in heterogeneous data sets is well justified.

In general, data interoperability refers to the ability of different information-

technology systems and software applications to communicate, to exchange data

effectively, and to use the information that has been exchanged [RYENG11]. In the

healthcare context, for instance, patient data and other health records are stored,

heterogeneously, in databases which reflect differences in, among other things:

 Naming of columns

 Data types (eg. dates, times, postal codes, numeric data types)

Current research, as reviewed and referenced in Chapter II, is considered in order to

validate the purpose and motivation for this thesis and to position the work, relative to

current research achievements. The research can be broadly categorized into two different

groups: record selection and dimensional selection.

The main objective of this thesis is to develop an algorithm which improves time

efficiency when retrieving search results from repetitive complex queries that are issued

2

on heterogeneous random datasets [MISTR00], and which are stored in heterogeneous

databases. The second objective of this research is to obtain a methodology which

represents the format of heterogeneous data, and to reform this format in a relational

database by applying a renaming method. In general, renaming depends on an alias

clause when deploying MV‘s.

The storing and retrieving of patient records in different health organizations in

different formats provided the primary and immediate motivation behind this research

since each health organization uses a different type of presentation for data.

Notwithstanding this important application domain, that similar problems exist in other

domains as well and this underscores the need to find effective solutions.

A good example of a differing format is the address of the patient. Some health

organizations use the zip code as part of the address column itself, whereas others use a

separate column for it, calling it ―area code‖.

Electronic Patient Records (EPR) [GLASR05] have the potential to bring huge

benefits to patients, practitioners, administrators and researchers. Storing and sharing

health information electronically can speed up clinical communication, reduce the

number of errors, and assist doctors in diagnosis and treatment. Administrators and

researchers can access aggregate data for population based decision making and study.

Patients can have more control of their own healthcare. Electronic data also has a vast

potential to improve the quality of healthcare audit and research. However, increasing

access to data through EPR also brings new risks to the privacy and security of health

records.

3

The problem of aggregating data started when analysts discovered that patient records

are stored in heterogeneous databases, established and maintained by multiple data

provider agencies, and they do not follow any standard type of database which makes

sense in real life. Now, after storing the records of patients, if anyone wants to share these

records or collect them into one database it represents a tremendous set of problems.

The suggested use of XML is to join these records and then use the XML Schema to

control the format of these records. Joining all the records using XML, produces huge

datasets of data stored in very large tables which have a tremendous number of columns

and records [HU91].

Many systems will be faced by problems in organizing, storing and retrieving medical

records. A major issue is that different record parts may reside in different information

systems, nationally or internationally. A challenge, therefore, is how to provide a

seamless integration of possibly globally- distributed information. Furthermore, modern

information systems as envisioned must be generic and extendable in the sense that the

kinds of information they must be able to manage is not fully known at design-time. The

systems will evolve over time, and they must be designed for this integration process

[LI10b].

1.2 Justification of thesis

A continuing problem in many organizations is the challenge of data mining within

heterogeneous datasets. One such scenario involves health care information gathered by

multiple autonomous agencies, where a need exists to share certain kinds of information,

but policies restrict or prohibit the consolidation of data within a single standard

repository and schema.

4

Techniques for handling complex, often repeated queries to support data mining,

using methodologies within standard query languages and database platforms, do not

extend easily to dealing with issues of heterogeneity and interoperability. In particular,

minimization of costs in achieving query results is vital.

In this research, I investigate distinct strategies for database materialization of views

from the underlying heterogeneous datasets. These include arbitrary datasets which have

few, or no, constraints and which lack standardization.

In practice, there are various applications that store and retrieve data about patients.

However, sharing patient data among regions, countries and organizations is a problem

since this information is considered to be confidential, which leads to finding efforts to

solve the independent-platform problem based on different types of legacy databases

using semantic schema to represent data. Also problematic is exchanging the format of

the data sets in the domains with semi-structured data, such as is found in the health care

domain and one of its important branches, Electronic Patient Records (EPR).

In order to make decisions quickly and correctly in health care environments, the

decision support applications need to run very large and complex queries over EPR

which may take an unacceptably long time to complete. Techniques such as query

optimization and indexing can reduce query response times to some extent, but to achieve

acceptable query response times, techniques are needed to pre-compute the frequently

asked queries (views) and store (materialize) their results, also known as materialized

views, in an EPR database. This poses a tradeoff between time and space and imposes the

materialization of the most beneficial views.

5

Electronic patient records are very diverse, and it is difficult to standardize them to a

desirable level of detail (even among hospitals and clinics within the same city). They are

themselves quite complex information entities and divide patients accurately into groups

with similar health patterns. In evidence-based medicine, the information extracted from

the medical literature and the corresponding medical decisions provide key information

to leverage the decision made by the professional [HU91]; therefore, the system acts as

an assistant for the healthcare professionals and provides recommendations to the

healthcare professionals. It is difficult to plan for effective information systems

management and also to predict medical diagnosis, treatment costs, and length of stay in

a hospital [HU91]. Inherent in this complex system is another serious problem, which is

the cost of a centralized database requiring a certain protocol to be followed.

1.2.1 Traditional Databases

In traditional databases there is an important property, which is known as join (see

Figure1). In fact, this property (join) connects important objects in any database, tables

and views.

There are different kinds of join according to Postgres documentation:

 One to one

 One to many

 Many to many

Figure 2 shows different kinds of join in traditional DB.

6

According to the Postgres documentation, Meta data, or data dictionary, is a

document used to describe data and store information about data. Any traditional

database should have a data dictionary to control the behavior of the data stored in it.

Another factor in database efficiency is the presence of constraints. Primary key,

foreign key, unique, not null and check are important data constructs in database

management. These constraints produce time efficiency and keep the referential integrity

of any record in a database.

It was mentioned in the Postgres documentation that normalization is a factor in

traditional databases, as a process to govern the integrity of records and data in each table.

Figure 1 Traditional DB properties

Traditional DB Structures

 Normal Forms (1
st

, 2
nd

, etc)

• Tables (columns and rows)
• Synonyms, data dictionary

• Views

• Supports Join (SQL) – normalization

7

Figure 2 Traditional DB

1.2.1 Non-traditional Databases

In heterogeneous databases there is an absence of join between objects (see Figure 3).

Objects are connected using the union and union all clauses. Such databases lack

standardization and lack metadata or data dictionary.

Figure 4 presents non-traditional DB properties.

A good example of heterogeneous databases is an EPR database where there are no,

or few, constraints. Actually, these kinds of databases apply de-normalization, instead of

normalization, which leads to the process of homogenization.

8

Figure 3 Non-Traditional DB

Figure 4 Non-Traditional DB properties

The process for converting data from non-traditional databases to traditional ones is

called homogenization. In other words, homogenization is the methodology to make

uniform in consistency, especially to render data uniform in consistency by emulsifying

the non-standard contents [LI10b].

Non-Traditional DB Structures

 Normal Forms (1
st

, 2
nd

, etc)

 Tables (columns and rows)

 No data dictionary

 Views

 Supports Union (SQL)

 – de-normalization

9

1.3 Electronic Patient Records (EPR)

In general, the patient record system is a non-traditional database; therefore, a database

with simple constraints is required to govern the rules and control this kind of database.

The goal is to homogenize a non-traditional database and reshape the contents of it to be

stored in simple and, preferably, open-source database tools, such as Postgres as one

example. Later on, the standards in the new database [GONG08] can be applied.

The remainder of this thesis is organized as follows. In Chapter II a review of the

relevant research literature on approaches using materialized views, is presented.

Chapter III presents a detailed discussion of our approach to materialized views and

technology and the hypothesis and research methodology used to conduct this research.

Chapter IV discusses implementation and the results obtained from our applicative work.

Finally, in Chapter V, the thesis is included and is given some additional comments

regarding the research and possibilities for further work.

10

Chapter II

REVIEW OF LITERATURE

Many research efforts dealing with Electronic Patient Records (EPR) problems have been

proposed. However, until recently, EPR systems have only used materialized views in

minimal and restricted ways to address many real-world combinational applications.

The main reason for using materialized views to solve EPR problems is that

materialized views can accomplish tasks, particularly supporting queries, through

cooperation while allowing users to retain their privacy.

Current research can be categorized into two different groups: Record selection; and

Dimensional selection. These are discussed below.

2.1 Record selection

[GONG08] address the problem of how to eliminate the result of frequent ―jitter‖

phenomenon for materialized view set, which dynamic materialized view selection

algorithm generally has. In particular, they focus on how to enhance the overall query

response performance of data warehousing which is not very high. The authors refer to

implementing data cubes efficiently.

The authors state that they use the DCO-SM (The Dynamic Capacity Optimizer)

algorithm and the CBDMVS (clustering-based dynamic materialized view selection)

algorithm separately for eliminating the ―jitter‖, and test their dynamic adjustment

performance and consumed cost respectively. The CBDMVS algorithm determines the

corresponding direct view from the materialized view set. If CBDMVS algorithm finds a

direct view, it will immediately return the result.

11

Both DCO-SM and CBDMVS are dynamic materialized view selection algorithms; a

major aspect of algorithm performance is to update materialized view effectively. So,

firstly, it needs to compare the query response performance in the data warehouse when

the above two algorithms are running. Secondly, it needs to compare the cost which

algorithms consume.

The authors state that they use a hardware platform consisting of: CPU P4 3.0G,

RAM 1G; the operation system is Windows Server 2003; database platform is SQL

Server 2000. Experimental data comes from oilfield exploration and development data. In

order to facilitate experiments, the test data warehouse includes four dimension tables

and one fact table which is 400MB. The authors claim to eliminate the jitter which

dynamic selection algorithm generally has.

Gong and Zhao state the work of a greedy algorithm, BPUS (Benefit per unit space),

based on the lattice model. Also, they state and discuss the issue of materialized view

selection with the B-tree index. They mention the PBS (Predictive Block Sampling)

algorithm which determines the size of materialized view as selection criteria.

Gong and Zhao claim that their algorithm makes a high response performance to one

category query and a poor response performance to other types of query. Therefore, the

algorithm eliminates the ―jitter‖, which a dynamic selection algorithm generally has, and

improves the overall query response performance.

It was mentioned, further, by the authors that when updating certain category

materialized view, they just need to calculate the gain of this category instead of the

whole materialized view set. Therefore, they have greatly reduced the computational cost

for updating materialized view. The authors do not mention any future work.

12

Segoufin and Vianu [SEGOU05] address rewriting a query in terms of views using a

specific language. In particular, Segoufin et al address how views determine queries if

views provide enough information to uniquely determine the answer to that specific

query. The authors refer to complexity of answering queries using materialized views.

Also, the authors refer to the foundations of databases.

The authors state that they use conjunctive queries (CQ) and first-order logic to solve

the problem. They state that determinacy is decided for special classes of CQs, such as

CQs with Boolean or unary answer. Segoufin et al state that determinacy says: views

provide enough information to uniquely determine the answer to all queries while

rewriting queries is equivalent to determinacy and it remains open whether rewriting

queries is decidable for regular path views and queries.

They state, further, that concerning FO and CQ, for FO, determinacy is clearly un-

decidable. However, FO is complete for FO-to-FO rewritings. For CQ, determinacy is

decidable and CQ is complete for CQ-to-CQ rewritings. The authors claim that the

problem is only settled for some special fragments of CQs. They show that determinacy

is decidable for Boolean or single unary CQ views and arbitrary CQ queries.

Furthermore, CQ is complete for rewritings of such queries and views.

The authors discuss determinacy and its connection to rewriting for a variety of view

and query languages ranging from FO to CQ in both the unrestricted and finite cases.

While the questions were settled for many languages, several interesting problems remain

open.

13

Lijuan et al [LIJUA09] address the problem of materialized views as requiring a

larger search, greater time consumption and excluding query probability and distribution,

and the changes in data sources can‘t be reflected in data warehouse immediately.

The authors state, in particular, how to improve the CVLC (candidate view lattice

construction) and IGA (island genetic algorithm) by using EMVSDIA (Efficient

Materialized Views Selection Dynamic Improvement Algorithm).

They refer to implementing data cubes efficiently. Also, they refer to automated

selection of materialized views and indexes in Microsoft SQL Server.

Lijuan et al [LIJUA09] state that EMVSDIA is a two-step algorithm. In the first part,

the input is CV. During the second part, the views with sharply reduced benefits should

be replaced by those views which own large query probability. The authors state that the

time-cost of EMVDSIA is better than Priority Based Selection PBS . EMVSDIA is fit

for running on-line. When dimension is not high, the effect of EMVSDIA is not better

than FPUS algorithm, which is based on query frequency in unit space.

Lijuan et al [LIJUA09] state that with the candidate view algorithm (CVLV), the

multi-dimensional data grid diagram is pruned and those views which have no effects on

the view overall cost decrease are excluded. So the algorithm search space is reduced

accordingly and the algorithm implementation efficiency and speed are boosted.

They state that EMVSDIA is designed based on CVLV and IGA. The authors claim

that EMVSDIA is excellent in both large and medium-sized data warehouse. Also,

considering query distribution, query probability and dependence of views, EMVSDIA

selects high quality views and increases the responding query ability.

14

Lijuan et al mention that many static selection algorithms have many defects such as

time complexity non-running on-line. Although FPUS makes some improvement on

some aspects and could run on-line, it did not take into account the dependence

relationship among views. EMVSDIA overcomes the above shortcomings.

Experimentation demonstrates that EMVSDIA has excellent implementation efficiency

and reaches expectant effects.

Yu et al [YU03] address the problem of how to select a set of materialized views

under certain resource constraints for the purpose of minimizing the total query

processing cost. In particular, the search space for possible materialized views may be

exponentially large. The authors refer to implementing data cubes efficiently. Also the

authors refer to materialized view selection for multidimensional datasets.

Yu et al state that there is a new evolutionary algorithm which fits the maintenance-

cost view-selection problem well. First, a pool of bit string genomes is generated

randomly. The authors discuss that the constraint handling technique and stochastic

ranking can deal with constraints effectively. Their algorithm is able to find a near-

optimal feasible solution and helps to solve the problem well. The authors discuss the

Heuristic Algorithm, the maintenance-cost view selection problem, A multidimensional

data warehouse, and the difficulty of maintenance-cost view-selection problem.

The authors claim that with the new constrained evolutionary algorithm, constraints

are incorporated into the algorithm through a stochastic ranking procedure. No penalty

functions are used. It is mentioned by the authors that the algorithm is based on a novel

constraint-handling technique—stochastic ranking. Although stochastic ranking has been

used in numerical constrained optimization, its suitability for combinatorial optimization

15

is unclear. This paper demonstrates that a revised stochastic ranking scheme can be

applied to constrained combinatorial optimization problems successfully.

Shukla et al [SHUKL00] address the problem of how OLAP applications use pre-

computation of aggregate data to improve query response time. This problem has been

well-studied in recent database literature. In particular, the question is asked concerning

how all aggregates are computed from a single cube because many real world

applications require aggregates over multiple fact tables. The authors refer to

Materialized view selection in a multidimensional database. Also the authors refer to the

fundamentals of a database System.

Shukla et al [SHUKL00] state that they assume a relational approach to OLAP. This

means that each cube of a multi-cube model corresponds to a fact table. However, it is

not restricted to the relation model. They propose aggregate selection algorithms based

on the new benefit model. They ran four experiments on the database schema by

restricting the pre-computation to specific tables and specific derived metrics. They also

restrict the measurement of the average query cost to the tables of the database. They

state there are actually two drops in the average query cost corresponding to the picking

of detailed level aggregates from the two virtual lattices. They assume the average query

cost of the set of aggregates picked using the simple cost model can be four times the

average query cost of the set of aggregates picked using complex global.

The authors discuss the lattice framework for multidimensional datasets. Then they

present the cost model for single cube schemas. They also state an average query cost

metric, which makes visualization of the selected and aggregated set for pre-computation

easier.

16

The authors claim that using their algorithm quantifies the improvement in average

query cost (average query response time) that can be achieved by the use of the complex

cost model.

It was mentioned by the authors that they propose three different algorithms, Simple

Local, Simple Global, and Complex Global, which pick aggregates for pre-computation

from multi-cube schemas. They state that they show for multi-cube workloads,

substantial performance improvements can be realized by using multi-cube algorithms

instead of the previously proposed single cube algorithms. In particular, the complex cost

model considers join costs, leading to a much better set of aggregates picked for

aggregation.

Mistry et al [MISTR00] address the problem of how to find an efficient plan for the

maintenance of a set of materialized views by exploiting common sub-expressions

between different view maintenance expressions. In particular, they discuss how to

efficiently select expressions and indices that can be effectively shared by transient

materialization; additional expressions and indices for permanent materialization; and the

best maintenance plan – incremental or re-computation for each view.

The authors refer to automated selection of materialized views and indexes in SQL

databases. Also, the authors refer to efficiently updating materialized views.

The authors state that they extend the volcano query optimization framework, which

handle parametric query optimization to generate optimal maintenance plans. They also

extend the Query DAG representation. They compute the minimum overall maintenance

cost of the given set of permanently materialized views, given a fixed set of additional

views to be transiently materialized. They address the problem of determining the

17

respective sets of transient and permanently materialized views that minimize the overall

cost.

The authors state that their techniques can generate significant speedup in view

maintenance cost, and the increase in cost of optimization is acceptable.

The authors discuss the work of transiently materialized view selection (Multi-Query

Optimization). The authors claim that they use a subroutine, the previously mentioned

technique for computing time as the best maintenance policy given fixed sets of

permanently and temporarily materialized views. The costs of the materialization of

transiently materialized views and maintenance of permanently materialized views are

taken into account by this step. They propose a greedy heuristic that picks up views in

iteratively order of benefit. Benefit is defined as the decrease in the overall

materialization cost if this view is transiently or permanently materialized in addition to

the views already chosen. Then, depending upon whether transient or permanent

materialization of the view produces the greater benefit, the view is categorized as such.

It was mentioned by the authors that they find solutions that exploit commonality

between different tasks in view maintenance to minimize the cost of maintenance. Their

techniques have been implemented on an existing optimizer, and they have conducted a

performance study of their benefits. Future work includes implementing the extensions to

handle limited space.

2.2 Dimensional selection

Kabra et al [KABRA06] address that there are two significant problems with most

implementations of the view replacement model, namely (a) the unnecessary overhead of

18

the access control predicates when they are redundant, and (b) the potential of

information leakage through channels such as user-defined functions and operations that

cause exceptions and error messages.

In particular, there are several models for fine-grained access control, but the

majority of them follow a view replacement strategy. The authors refer to extending

relational database systems to automatically enforce privacy policies. Also the authors

refer to secured databases.

The authors state that they use the ―validity propagation‖ approach to infer

authorization since it can be used for multiple sub-expressions at a low cost. The authors

state that authorization is maintained as a group property in the optimizer‘s memo

structure. They state that authorized views (which replace the relations) in a query plan

are all marked as authorized, and any expression generated during optimization is marked

as authorized if all its inputs have been marked as authorized. They mention that the

validity propagation approach modifies the optimizer to infer authorization of expressions

as follows. An expression is represented by a group (or equivalence node) signifying a

group of equivalent expressions.

Kabra et al [KABRA06] discuss Oracle‘s Virtual Private Database (VPD) model, the

policy based security management feature of Sybase Adaptive Server Enterprise, and

Cell-level access control. The authors claim that redundancy removal can give very

significant performance improvements with low optimization overhead and can, in fact,

reduce optimization costs greatly. It is feasible to modify an optimizer to generate safe

plans. They believe that their approach would reduce the overheads to a reasonable

fraction of the optimization costs for the same query (with redundancy removal).

19

It was mentioned by the authors that their study shows leakage of information

through USFs (unsafe function), exceptions and error messages can be efficiently tackled

by choosing good, safe plans.

The authors mention that they will extend their prototype to include conditioned

authorization, which will reduce optimization time and carry out a more detailed

performance study.

Karde and Thakare [KARDE10] address the problem of how query response time

plays an important role in timely access to information and it is the basic requirement of

successful business application. In particular, Karde and Thakare discuss how to use

multiple materialized views to efficiently process a given set of queries.

The authors refer to algorithms for materialized view design in data warehousing

environment. The authors state that the space constraint is an important factor while

selecting the views to be materialized. The authors discuss the greedy heuristic

algorithm, 0-1 integer programming, and genetic algorithm. They claim that the

materialized view selection in distributed environment for query processing is also an

open issue because it may happen that there are some replicas of materialized view

present over the network.

It was mentioned by the authors that materialized views can be subdivided into a

number of parts so that any one of the parts can be selected as per the query, which is also

an open area for research. Therefore, the node selection, materialized view selection and

maintenance of materialized views in a distributed environment and its implication for

fast query processing and query optimization can be explored in the future work.

20

Li et al [LI10b] address the problem of how abstract materialized view selection is

one of the key techniques for speeding up query answer in a data warehouse

environment. In particular, an important question is how to use a novel shuffled frog

leaping (SFL) algorithm for materialized view selection.

The authors refer to ―Materialized view selection and maintenance using multi-query

optimization‖. Also the authors refer to ―Data warehouse configuration‖.

The authors state that the proposed SFL algorithm is an effective method for

materialized view selection. The authors state that the proposed SFL algorithm

unanimously outperforms the greedy heuristic algorithm (GHA) and the genetic

algorithm (GA) in terms of total maintenance costs; they state that the SFL algorithm can

find the global optimal solution within a reasonable amount of running time. They

mention that the SFL algorithm can avoid being trapped in local optima and improve the

quality of solutions by combining the benefits of the mimetic algorithm and the particle

swarm optimization algorithm. In addition, the adopted infeasible solution repair

algorithm also further improves the quality of solutions.

They discuss the materialized view selection model algorithm, shuffled frog leaping

(sfl) algorithm, greedy heuristic algorithm (GHA), and genetic algorithm (GA).

The authors claim that the experimental results show the proposed algorithm

provides a good choice for practical data warehouse design and the decision support

system.

It was mentioned by the authors that an efficient materialized view selection

algorithm is obtained by using the recently introduced shuffled frog leaping (SFL)

21

algorithm. Experimental results on the standard test data sets show that the proposed

algorithm is an effective and efficient algorithm for materialized view selection.

Ryeng et al [RYENG11] address the problem of semantic caching augments cached

data with a semantic description of the data. These semantic descriptions can be used to

improve execution time for similar queries by retrieving some data from the cache and

issuing a remainder query for the rest. In particular, they discuss how to make an

improvement over traditional page caching since caches are no longer limited to only

base tables but are extended to contain intermediate results. The authors refer to paving

the way for an adaptive database cache. Also the authors refer to adaptive database

caching with DB Cache.

Ryeng et al [RYENG11] propose a distributed semantic caching method where sites

make autonomous caching decisions based on locally available information, thereby

reducing the need for centralized control.

The authors state that they generated query workloads consisting of 200 queries from

the TPC-H benchmark queries, varying all substitution parameters of the benchmark. The

substitution parameters are drawn either from a uniform distribution or from a skewed

distribution where 80% of the values are drawn from 20% of the domain.

Ryeng et al discuss the execution time and cache hits of repeated executions of our

query workload. These measurements are only meaningful on a relative scale, so

execution time was measured relative to a baseline execution without caching. During

this execution, the caching code was completely disabled. Cache hits were measured

relative to the number of queries in the workload. Their results indicate several ways to

further improve query processing by semantic caching.

22

Ryeng et al mention semantic caching and predicate-based caching augment cached

data with a semantic description of the data. The benefits of semantic caching include

low overhead and reduced network traffic cache tables. Semantic caching has also been

applied to deductive databases and web querying systems, and all these systems are built

for a single query entry point to the system.

The authors claim that they implement the method in the DASCOSA-DB distributed

database system prototype and use this implementation to do experiments that show the

applicability and efficiency of their approach. They state that execution times for queries

with similar sub-queries are significantly reduced and that overhead caused by cache

management is marginal.

It was mentioned by Ryeng et al that they have developed a new method for

semantic caching in a distributed database system with autonomous sites, where caching

policies and decisions can vary from site to site and workload statistics are sparse.

They have implemented the semantic cache in the DASCOSA-DB (Database

Support for Computational Science Applications). Also, they mention that the cost of re-

computing the cached data is also important. The savings made possible by caching the

result of a complex query are sometimes higher than the savings from caching the results

of less time-consuming queries with a higher hit rate.

Ryeng et al [RYENG11] address the problem of semantic caching augments cached

data with a semantic description of the data. These semantic descriptions can be used to

improve execution time for similar queries by retrieving some data from the cache and

issuing a remainder query for the rest.

23

In particular, they discuss how to improve traditional page caching since caches are

no longer limited to only base tables but are extended to contain intermediate results.

The authors refer paving the way for an adaptive database cache. Also, the authors

refer to adaptive database caching with DB Cache.

Ryeng et al [RYENG11] state that they propose a distributed semantic caching

method where sites make autonomous caching decisions based on locally available

information, thereby reducing the need for centralized control.

The authors state that they generated query workloads consisting of 200 queries from

the TPC-H benchmark queries, varying all substitution parameters of the benchmark. The

substitution parameters are drawn either from a uniform distribution or from a skewed

distribution where 80% of the values are drawn from 20% of the domain.

They discuss that the execution time and cache hits of repeated executions of their

query workload. These measurements are only meaningful on a relative scale, so

execution time was measured relative to a baseline execution without caching. During

this execution, caching code was completely disabled. Cache hits were measured relative

to the number of queries in the workload.

Li et al [LI10b] address the problem of how queries that involve aggregate functions,

very common in decision support environments, must first compute the aggregate in a

sub-query before they can use its value in a comparison.

In particular, they discuss how there is intra-query redundancy between a main query

block and a sub-query block, where redundancy means overlap in the ―from‖ clause and

possibly in the ―where‖ clause. The authors refer to ―an inflationary fixed point in

24

XQuery ―. Also, the authors refer to ―moving selections into linear least fix-point

queries‖.

Li et al state that they use new approach to translating practical lass of Xpath queries

over (possibly recursive) DTDs to SQL queries with a simple lfp operator found in many

commercial RDBMS.

The authors state that in many applications, one would prefer a lightweight tool that

provides the capability of answering Xpath queries within the immediate reach of

commercial RDBMS instead of using a heavy-duty system. Finally, one cannot use the

encoding and indexing approaches to answer xml queries over xml views.

Li et al state the work of the middleware-based approach which provides clients with

an xml view of the relations representing the XML data. They also mention the first

technique to rewrite recursive path queries over recursive DTDs to SQL for schema-

based XML storage. The translation consists of two phases. The authors claim that they

provide not only the capability of answering important Xpath queries within the

immediate reach of most commercial RDBMS, but also the query answering ability for

certain xml views.

It was mentioned by Li et al that the novelty of the approach consists of a notion of

extended Xpath expressions capable of capturing DTD recursion and Xpath recursion in a

uniform frame work; and they develop an efficient algorithm for translating an Xpath

query over a recursive DTD to an equivalent extended Xpath expression that

characterizes all matching paths, without incurring exponential blowup and better still,

optimizing the query by filtering unnecessary computation based on the structural

25

properties of the DTD during the translation. They also develop an efficient algorithm for

rewriting an extended Xpath expression into an equivalent sequence of SQL queries.

Several extensions are targeted for future work. They recognize that several factors

affect the efficiency of the SQL queries produced by their translation algorithms, and

they are currently developing a cost model in order to provide better guidance for Xpath

query rewriting.

Li et al [LI11] address the problem of how the P2P network allows all computers to

communicate and share resources as equals and does not depend on a central server for

control. In such an environment, tracing how data is copied between peers and how data

modifications are performed are not easy because data replications and modifications are

performed independently by autonomous peers.

In particular, they discuss how this creates inconsistencies in exchanged information

and results in a lack of trustworthiness. The authors refer to ―Declarative networking:

Language, execution and optimization‖. Also, the authors refer to materialized views in

general.

Li et al state that they consider the fault tolerance issue. Their method can cope with

the failure of one peer. If multiple failures occur simultaneously, they may not be able to

recover the lineage information for tracing. For example, when two related peers

suddenly leave the network at the same time, especially when a peer and its backup peer

leave together, it is hard to recover the correct lineage. However, they assume that such

events are quite rare in their context.

Li et al state that their framework incurs a maintenance cost; it would be more

efficient than the centralized approach in which all the histories are maintained in one or

26

more servers. In such a case, the processing cost for query processing and maintenance

would become the bottleneck for the whole system.

Li et al discuss P2P databases, data provenance, and data space management,

declarative networking, and materialized views. The authors claim that in their approach

they use a rule for the parameter k, which determines the policy of materialized view

maintenance. The parameter k is initially fixed to some value (e.g., k = 2), when P2P

record exchange is started. An alternative strategy would be to treat k as a variable,

allowing different k values to be selected for different peers. This option is interesting,

especially when some peers have large storage and high processing power. However, to

simplify the algorithms, they do not consider this option and leave the problem for the

future.

It was mentioned by Li et al that for efficient query processing, data replication and

caching are popular techniques. Taking into account the practical requirements of tracing,

they add features to their traceable P2P record exchange framework. Although the

storage and maintenance cost will increase, the query processing cost can be reduced and

failure of peer to peer communication can be overcome. They consider the trade-off

between query processing cost and maintenance cost when evaluating the total cost

reduction.

Future research can be summarized as follows. Enhancement of query expression

power: the authors will enhance the strategies to handle more complex tracing queries

(e.g., tracing queries that involve aggregation requirements). The effectiveness and

limitations of the declarative language-based approach will become clearer.

27

Efficient coupling with DBMSs: For implementing their framework, Li et al assume

that a local record management system in each peer is implemented using a conventional

RDBMS. They would like to use more powerful and robust DBMS functionalities that

can come from the tight coupling of the record management system and the underlying

RDBMS.

They are developing a prototype system of their P2P record exchange framework,

and they have also designed a P2P network simulator that can be used for simulating their

prototype system as a virtualP2P network. These developments will provide a positive

feedback and help to improve their fundamental framework.

Calvanese et al [CALVA11] address the problem of answering a query based only

on the pre-computed answers to a set of views. In particular, they discuss how this

problem is largely unexplored in the context of description logic ontologies. Different

from traditional databases, description logics may express several forms of incomplete

information, and this poses challenging problems in characterizing the semantics of

views.

Calvanese et al refer to ―information integration using logical views‖. Also, the

authors refer to complexity of answering queries using materialized views. The authors

state another interesting issue is to investigate the impact of both extending and

restricting the language used to express the query and the views on the complexity of

view-based query answering, with the goal of singling out more cases where the problem

is tractable.

Calvanese et al state that their work shows, for all DLs, the complexity of view-

based query answering under the model-centered semantics is the same as the complexity

28

of computing certain answers without UNA (unique name assumption). The authors state

that query rewriting has been studied for the case of conjunctive queries (with or without

arithmetic comparisons), disjunctive views, queries with aggregates, recursive queries

and non-recursive views, queries with negated goals, and in the presence of integrity

constraints of limitations in accessing the views, and rewriting techniques for query

optimization.

Calvanese et al claim that their research constitutes a first systematic study of the

semantics and the complexity of view-based query answering in DLs. The framework

they have introduced distinguishes between different semantics for the problem,

corresponding to different variants of the notion of solution.

They have related view-based query answering to privacy-aware information access,

and we have presented several algorithms and complexity results for various DLs, both in

the model-centered and in the TBox-centered semantics.

It was mentioned by Calvanese et al that they exploit the relationship between

description logics and disjunctive databases in the study of view-based query answering.

In particular it is possible to reduce the usual reasoning tasks in Description Logics (e.g.,

instance checking and query answering) to reasoning in disjunctive data-log programs.

The computational results presented in this paper are compatible with those that

would be obtained by encoding view-based query answering in disjunctive data-log.

Hence, it would be interesting to explore whether the correspondence between

description logics and disjunctive databases can be extended to view-based query

answering.

29

Bahloul [BAHLO09] addresses the problem of not investigating automatically and

generating materialized views from access control rules defined over base relations and to

control the rules needed to improve materialized views efficiency.

In particular, Bahloul discusses how to automatically ensure confidentiality of

materialized views based on basic access control rules, and how to identify formal tools

to tackle this problem and resort to an adaptation of query rewriting techniques.

Bahloul refers to view security as the basis for data warehouse security. Also,

Bahloul refers to administering permissions for distributed data. Also they mention a

scalable algorithm for answering queries using views.

Bahloul considers fine-grained authorization policies that are defined and enforced in

the database through authorization views. Authorization views specify the accessible data

by projecting out of specific columns in addition to selecting rows. This framework

allows fine-grained authorization at the cell level.

Bahloul proposes a more flexible model by inferring the set of authorizations views

to control access to the materialized view; she allows users to access even a part of the

materialized view.

Bahloul states that she builds on the Bucket algorithm for query rewriting algorithms

in data integration and then when applying the original bucket algorithm, the

authorization view is considered as irrelevant. The idea behind using the bucket

algorithm is that it exploits the predicates in the query to significantly prune the number

of candidate conjunctive rewritings that need to be considered.

Bahloul states the problem of how to automatically coordinate the access rights of

the warehouse with those of sources. The author proposes a theory that allows automated

30

inference of such permissions for the warehouse by a natural extension of the standard

SQL grant/revoke model from systems with redundant and derived data.

Bahloul claims that she discusses ingredients for an automated method to derive

access control rules for materialized views by selecting the appropriate access control

rules that are attached to underlying base tables. She adapts the bucket query rewriting

algorithm.

2.3 Literature summary

After reviewing these research papers it is clear that MV‘s were used primarily in

traditional databases, in particular, warehousing databases. As such, there is considerable

scope for studying MV‘s used with heterogeneous data sets.

Regardless of the varieties of algorithms used in the previous research papers, there

were two different techniques. The first one was built upon the algorithm which depends

on the fields mentioned in the where clause to be indexed, while the second approach was

built on the algorithm which depends on eliminating certain columns or records

(horizontal and vertical selection).

31

CHAPTER III

MATERIALIZED VIEWS DESIGN AND METHODOLOGY

3.1 Materialized views

Materialized views are database objects that store query results. In fact, they are actual

tables that store queries results. It was mentioned in all research papers that complex

queries take a long time to get back the desired results. In fact, many techniques were

used to speed up those kinds of queries where time plays a critical factor in the data

retrieval process. One of the most effective techniques is using Indices on columns which

are used frequently in the select statement. The problem found with the EPR data, was

how to get enough information about the columns of tables which were obtained from

many public service institutions, which led us to have a lack of standards [LI11].

By storing pre-queried information it was not needed to run the real query when data

is obtained. This is typically called "caching" outside of the database environment. In

other words, a view is taken and turned it into a real table that holds real data, rather than

employing a gateway to a select query. It was hypothesized that materialized views

should speed up the queries regardless of the ability of adding indexes on the base table.

In the next chapter this theory will be proved to be true.

Materialized views are schema objects that can be used to summarize, pre-compute,

replicate, and distribute data. A materialized view provides the results of a query in a

separate schema object. The existence of a materialized view is transparent to SQL and

will improve the performance of SQL execution [LI10b].

32

Materialized views (MV) are different from standard Views in that MVs are actual

physical objects that are built from the data in other tables; or, as in our case, they are

built from the same tables, but with different query results. When using physical objects,

in other words materialized views, they could be indexed, partitioned and clustered to

improve performance.

Materialized views, or MVs, also reduce network loads in respect of multi-master

replication; also, replicating data with materialized views increases data availability and

greatly enhances the performance and reliability of the replicated database. When using

MVs, the data based on both column and row level clustering could be replicated; in

other words, data can be replicated that is needed thereby cutting down and reducing

network traffic.

3.2 Postgres MV’s

Materialized views do not require a dedicated network connection. So the refresh process

can be applied by scheduling a job. Then refresh materialized views manually on-demand

or by using database/tables trigger.

The refresh process is sometimes called night batch job which means that the

interface, which is used, is responsible for the update process. The night batch job will

assure the database consistency which means updating the database before issuing any

repetitive complex query. Sometimes it is used for validating the data which is received

at any time.

By using the interface, as the engine for the night batch job, there is no need to write

specific database triggers for the update procedure. The interface which could be any

high level object oriented programming language is responsible for the incremental

33

update of the all records, which let the night batch job an independent database platform

process.

There are four types of MV‘s in Postgres:

1. Snapshot

2. Very Lazy

3. lazy

4. Eager

The first type, Snapshot, creates MV‘s as stored tables selecting everything from a

view or a table. Sometimes tables can be stored by selecting the where clause, the group

by clause, the order by clause, and aggregating functions. This type could be refreshed at

interval time using certain types of trigger.

Snapshot MV‘s are easy to setup and to be created but expensive when full

refreshment is applied [LIJUA09]. Snapshot MV‘s are the only ones that can be used at

the current time according to given input. Later, all kinds could be applied.

The second type is called Very Lazy MV‘s, which are, in a way, very much like the

first ones, but with one main difference which occurs when synchronized rows are

updated. This leads to the need for tracking rows which have been updated.

The third type is the lazy one; it starts out as the snapshot type. The refreshment

phase takes place at the end of each transaction.

The last type is the eager MV‘s. This type of materialized views is like the lazy

MV‘s but each statement is updated. Eager MV‘s use triggers after DML (insert, update,

and delete).

34

It was mentioned in some research papers [LI11,LIJUA09] that materialized views

performance reduces bottleneck O(f(n)) query to O(1).

In general, reducing the system resource requirements by pre-computing and storing

results of complex queries allows for the automatic rewriting of complex queries, and

they are transparent to the database front-end. They have maintenance requirements.

They can apply complex relationships and they can be refreshed on demand or on a

schedule.

In this research, different types of materialized views were applied. Our milestone

was the snapshot technique according to the nature of the current database. We claim

that regardless of the type of materialized view, they can all be applied on any

heterogeneous database. They have the following qualities:

 It is useful for summarizing, pre-computing, replicating and distributing data.

 It provides faster access for expensive and complex joins.

 It is transparent to back-end users.

 It has grouping compatibility.

 It has aggregate compatibility.

It was found that there are two methodologies for creating materialized views:

 Current state: using "CREATE TABLE AS"

 Optimal: "CREATE MATERIALIZED VIEW" grammar

Also, to update materialized views, one of the following had to be followed:

 Current state: Periodically create new snapshots, or maintain using triggers

 Optimal: Built-in refresh via multiple strategies

35

The current state method was chosen so this technique could be applied in any future

database, which leads us to use the snapshot type.

3.3 Hypothesis

This research has a main assumption which is, by applying MV‘s on random

heterogeneous datasets to obtain results from repetitive complex queries, time efficiency

is increased. The hypothesis of this research has two sub-assumptions. The first one is,

if MV‘s are employed with existing datasets, time efficiency is increased. The second

assumption is, if MV‘s are applied on new inserted datasets, time efficiency is still

increased. The first sub-assumption is called ―static deployment‖. The second sub-

assumption is called ―dynamic deployment‖, sometimes is referred to as ―incremental

update‖.

To achieve acceptable query response times, different techniques were needed that

pre-compute the frequently, complex, and asked queries (views) and store (materialize)

the results of the database queries in what is called materialized views. This poses a trade

off between time and space and imposes materialization of the most beneficial views in

different kinds of domains [RYENG11]. Time efficiency can be achieved through

applying MV‘s on the complex queries of a heterogeneous database aided by applying

different types of MV‘s.

This leads to our Statement of Hypothesis, namely:

 Statement of Hypothesis:

By applying Materialized Views to heterogeneous data sets, one obtains degrees

of homogeneity that support straightforward and effective management of space

36

resources, while improving significantly the time complexity of achieving

repetitive queries.

In addition, periodic and incremental updates from various data providers can be

efficiently managed so as to integrate new data into MVs without substantial

negative impact on query time or space complexity.

In the next chapter, this hypothesis will be demonstrated with experiments, results,

SQL code samples, and mathematical formulas. A demonstration of this hypothesis can

be accomplished through achieving the following steps:

 Developing a prototype database system such is outlined in Figure 18.

 Validating the prototype system against a known system used in healthcare

projects.

The objectives of this thesis research include, therefore:

 Automation of querying functionality on non-traditional databases.

 Designing and building an interface that supports the continuous querying of

different datasets (see Figure 17).

 Implementing a system interface that completes query processes of all data at all

times.

 Developing a schema that provides efficiency improvements.

 Using a semantic layer for mapping the MV‘s that have been used .

3.4 Methodology

The research methodology involves the following steps:

1. Create the prototype system to test the prototype data

37

2. Use the Postgres database to obtain heterogeneous data sets and to store

them in mega-tables, which contain approximately 1 million records and

255 columns

 Use SQL and PL/SQL to create and deploy MV‘s

 Use scripts to create data in the prototype system

3. Apply MV‘s on mega-tables

4. Create java interface to deploy the above three steps

 Use Java abstract classes

 Use Java beans

5. Map complex queries to the MV‘s using the Java interface

6. Record the time spent after applying MV‘s on the large datasets

Snapshot MV‘s are used according to the type of data available, considering the lack

of constraints and the lack of standardization:

 No trigger is used

 Snapshot MV‘s are the basic form of using MV‘s

 Maintenance is done manually

Also, various technologies are employed, such as Postgres MV, PL/SQL, Postgres PL,

and Java, which is the programming language used to construct the user interface (UI)

employed herein. This UI is designed and constructed based on:

 Abstract classes which is used with any database

 Java class to connect to the database

 Java class to register the required drivers

 Java class to implement the GUI

38

 Java class to show mapping

 Java class to drive the whole process

The above methodology and technologies are explicated in the following section and

implemented to achieve results, which will prove the research hypothesis.

39

CHAPTER IV

IMPLEMENTATION AND RESULTS

4.1 Interface

The nature of the datasets within this research scope is random datasets with no

constraints.

When building a new application that has an interface to manipulate the legacy data,

there are several aspects to be considered. The key aspects include:

 Obtaining the data.

 Extracting the data from old resources.

 Mapping the data from its current form to a new one in order to use it with the

new interface.

Data was obtained from different resources, such as MS Word, Excel, Oracle, and

other database types. The problem was in considering the autonomous nature of many

public service institutions and how they gather and deal with data in different ways

[YU03]. Postgres SQL was selected because a database is needed which can combine

with XML, an extensible type system, a powerful procedural language, has transactions

uses MVCC to manage concurrency instead of locking, and has common table

expressions including recursive, and analytic functions along with several hundred new

features. Postgres SQL is very strong on data integrity, stricter at complying with SQL

specifications, and the fact that it is an open-source database permitted access to all

features and capabilities relevant for this research study.

The Postgres system consists of three top level components:

40

1. Backend

2. Postmaster

3. Frontend

The backend is the database itself where all SQL statements are handled. The postmaster

is the supervisor thread which establishes the connections with the backend. The

frontend is the interface which interacts with the user requests.

Postgres is a high performance, full-featured professional DBMS that is free of cost

and available under open source licensing. The Postgres system has limitations presented

in Figure 5.

Limitation type Postgres Limitation

Database size Unlimited

Table size 64 Terabytes

Row size Limited by table size

Column size 1 Gigabyte

Rows in table Unlimited

Columns per row 1600

Figure 5 Postgres DB limitation

Based on the results of various health surveys and other data sets obtained in our

laboratory, through collaborative and contract research projects, it was obvious that it is

needed to employ tables which have a huge number of columns. Mega tables were

created to obtain the information from heterogeneous databases with respect to any data

loss which could occur when importing data using indexes and constraints [SHUKL00].

41

These mega tables may contain upwards of 1 million records and 255 columns. It

was found that executing any query on these tables would slow down the retrieving

process time and a way should be found to improve that process [YU03, RYENG11].

The solution is to use materialized views to increase the efficiency time of any

repetitive complex query request.

Disk storage technologies Memory based technologies

Complexity – Seek times limited by

electromechanical devices

Complexity: Seek times result of direct

access, microprocessors

Performance: millisecond Performance: micro- to nano-second

Capacity: Terabytes Capacity: Gigabytes

Cost: ~ $100/100GB Cost: ~ $100/GB

Figure 6 Disk/ Cache comparison

Figure 6 shows the comparison between using the MV‘s technology and the select

gateway technology.

System performance measurements were obtained to compare the results of query

sets against different views. First-time queries, repeated queries, and the effect of view

updates on queries were studied. Experimental findings are related to theoretical results

of complexity analysis of critical algorithms and system components.

4.2 Algorithms

The following algorithm was applied to existing data and records.

 Algorithm 1:

 Purpose: Using MV‘s general case

42

 Assumptions: Time spent when using MV‘s is less than the time spent

without applying them

 Input:

 Tables with 255 columns and more than 900,000 records

 Set of repetitive complex queries

 Output:

 Set of materialized views

Pseudo-code

This algorithm is used for existing data (static deployment)

 Accept a complex query to get the results

 If this query is issued for the first time then

 Read records from table/s

 Apply union/all , sorting, grouping and aggregation functions

 Map an MV to this query

 Else (repetitive usage)

Read records from MV

Complexity:

In the beginning, we had to discuss the complexity of the queries without employing our

algorithm. When we investigated complex queries [CALVA11], we took into

consideration the worst case scenario which might have included union/all, aggregation,

grouping, and sorting [KARDE10]. We require the following formula:

Formula 1:

Ttot=Tr+Tu+Tc+Tg+To

43

Where:

Ttot is the total time needed to retrieve data from a complex query.

Tr is the time needed to read all records from all tables mentioned in the query.

Tu is the time needed to apply union/all on tables.

Tc is the time needed to apply aggregation functions on the records.

Tg is the time needed to apply grouping by operator when aggregation functions are used.

T0 is the time needed to apply order by operator (sorting)

Tr could be represented as Tr= ∑
 ,where tk represents the time needed to read

all records from one table k.

Tk= ∑
 ,where ti represents the time needed to read one record in one table.

Tr= ∑
 ∑

 , where z is the total number of tables and n is the total number of

record residing in each table.

Let us assume that Tcalc=Tu+Tc+Tg+To.

This means that Tcalc represents the time needed for all kinds of calculations including

joining records from different tables, applying aggregation functions, grouping records,

and finally sorting the result.

The previous formula would be written as formula2:

Ttot= ∑
 ∑

 +Tu+Tc+Tg+To

Ttot=Tr+Tcalc

Without using MV‘s, time needed is O (N) + O(C) where C is the time needed for any

calculation on the N records. The worst case for Algorithm1 is O (N) +O (1) →O (N).

All operations for joining, calculating aggregation functions, grouping, and sorting

would be eliminated because the result of any complex query would be saved into an

44

independent object in the database. This algorithm is used to prove the first hypothesis,

which is referred to as static deployment.

It is important to mention that there is a price to be paid for first time usage of

Algorithm1 since there is time for creating MV‘s. However, this algorithm is useful for

repetitive complex queries. This Algorithm can be called ―naming queries‖. It fires the

query and stores it in a meaningful name.

Figure 7 shows a complex query sample:

Figure 7 Complex query example1

Example Query #1:

SELECT count(*)

 AS count,
sum(bigone.c0)

 AS sum,
avg(bigone.c0)

 AS avg, bigone.c1
, bigone.c0

 FROM bigone

 WHERE
bigone.c0 > 800000

 GROUP BY
bigone.c0, bigone.c1

ORDER BY count

45

In Figure 7, bigone is a mega table where c0 is the first column, which its data type is a

number, and c1 is a text column.

The first algorithm would take any complex query and store the result of it as an MV.

The complex query is mapped to a specified MV using a table called ―mapit‖ which has

five columns: Id, name, Text, mvid, and time. Following is the description of the ―mapit‖

table:

 Id is the primary key of the table which will play the role of a controlling

constraint for this table.

 Name is an indexed field which contains the keywords of the complex query or it

could be the description of the complex query.

 Text is the column which has the text of the SQL statement issued by the complex

query.

 Mvid is the id of the MV connected to this complex query.

 Time is an indexed column which would record the time of creating this record in

the table. This column has a default value which is the now () function.

As a result every time the user fires a certain complex query, the ―mapit‖ table is the

semantic layer mapping the query to the MV. Figure 8 presents table ―mapit‖ which has

the Id, name, date of creation and the text of the query.

Id Name Text Mvid Time

1 Ag fun on

bigone

group by

c0,c1

SELECT count(*)

AS count, sum(bigone.c0)

AS sum, avg(bigone.c0)

AS avg, bigone.c1 , bigone.c0

FROM bigone WHERE

bigone.c0 >800000 GROUP BY

bigone.c0, bigone.c1

ORDER BY count

Mv1 12/10/2011 12:30:30

46

Figure 8 Table mapit which maps MV to a complex query

The ―mapit‖ table converts the query into another query which is ―select * from mv1‖.

Another example of a complex query is presented in Figure9.

Figure 9 Complex query example 2

After deploying Algorithm1, the ―mapit‖ table would be presented in Figure 10.

Id Name Text Mvid Time

1 Ag fun on

bigone group

by c0,c1

SELECT count(*)

AS count, sum(bigone.c0)

AS sum, avg(bigone.c0)

AS avg, bigone.c1 , bigone.c0

FROM bigone WHERE

bigone.c0 >800000 GROUP BY

bigone.c0, bigone.c1

ORDER BY count

Mv1 12/10/2011 12:30:30

2 Bigone&

bigone1c1,c2

SELECT c1,c2

FROM bigone UNION

 SELECT c1,c2 FROM bigone1

WHERE c0 < 100000

AND c1 LIKE ‗%text%‘

Mv2 13/10/2011 09:30:30

Example Query #2:

SELECT c1,c2

 FROM bigone

UNION

 SELECT c1,c2

 FROM bigone1

 WHERE c0 < 100000

 AND c1 LIKE ‘%text%’

47

Figure 10 Table mapit updated

The last sample of a complex query is the worst case scenario, where this complex

query produces an idol complex query. Such complex query is illustrated in Figure 11.

Figure 11 Complex query example3

Figure 11 presents an idol complex query since this query has union, grouping, and

sorting.

Table ―mapit‖ would have a new record as a result of deploying the previous

complex query. The new record is shown in Figure 12.

Example Query #3:

SELECT c1, c2, c7, c123, count(*)

 FROM bigone

UNION

SELECT c1, c2, c7, c123, count(c0)

 FROM bigone1

 WHERE c0<100000

 AND c7 LIKE ’%c1Text%’

 AND NOT IN
(‘c123Text’,’c3text’,’c4text’)

GROUP BY c1, c2, c7, c123

ORDER BY c123

48

Id Name Text Mvid Time

3 Bigone&bigone1

All

SELECT c1, c2, c7, c123,

count(*) FROM bigone

UNION SELECT c1, c2, c7,

c123, count(c0)

 FROM bigone1 WHERE

c0<100000 AND c7

LIKE ‘%c1Text%‘ AND NOT

IN (‗c123Text‘,‘c3text‘,‘c4text‘)

GROUP BY c1, c2, c7, c123

ORDER BY c123

Mv3 15/10/2011

12:20:44

Figure 12 Mapit updated 3

Space complexity:

Let S tot=S o+ S m where Stot is the total size of the database after applying MV‘s

S o is the original size of the database before applying any MV

S m is the size of all MV‘s which are used for all repetitive complex queries.

Without using MV‘s, space needed is O (N) where N is the space needed for the original

database before adding MV‘s

After deploying MV‘s to present all repetitive complex queries the space needed is O (N)

+ O(M) where M is the space needed for all MV‘s when using algorithm1.

It is clear that O (M) is a fixed size in this phase where algorithm1 is used for existing

records (static view) and no increment update is issued.

 Algorithm 2:

 Purpose: Increase the time efficiency when accepting new records

 Assumptions: Time spent when using the hybrid Algorithm would be

more efficient than applying regular readings

 Input:

49

 New Records

 Set of complex queries

 Output:

 Set of temporary materialized views

Pseudo-code:

This algorithm is used for new data (dynamic deployment)

 Read only new records adding to any query, by using a where clause depending

on the timestamp column in the mega tables

 Create temporary MV for each query

 Map each temp MV to its original MV

 Drop all temp MV‘s

 Read records from MV

Complexity:

Let m be the number of records per cycle (week, day, hour, minute, second)

Let n be the number of cycles.

Assume that a fixed number of records would be inserted in the mega tables for each

cycle.

Time needed to read the original tables after inserting the new records is calculated with

this formula:

Ttot= ∑
 =m∑

 m=m.n(n+1)/2=m.n2→O(N2)

When Algorithm2 is implied, the formula would be:

Ttot= ∑
 =m∑

 =m.n→O(N)

50

All records which include both the new and the old records are not needed to be read.

A timestamp field is added in each mega table. This field is indexed to increase query

performance efficiency. When inserting new records into the mega tables, the second

algorithm is implied. For any new query, extra where clause, is added, depending on the

date field.

The first Algorithm is applied, which creates MV on the new records only by

creating temporary MV‘s which are called TMV‘s. Then the records are inserted from the

temporary TMV‘s into the old MV‘s. Then the temporary MV‘s are dropped to save

space.

Let us assume the following query Q1:

Select col1,col2, col3 from table1 union all select col2,col22,col30 from table2

Order by col1

Now, to create an MV, the following command is issued:

Create table mv1 as select col1,col2, col3 from table1 union all select col2,col22,col30

from table2 Order by col1;

The new status of table mapit is represented in the following table:

Id Name Text Mvid Time

3 Any

descriptive

name

Select col1,col2,col3 from table1

union all select col2,col22,col30

from table2

Order by col1

Mv1 15/03/2012 12:20:44

51

To obtain new records in a new cycle the same query is issued with new where clause so

that Q1new will be:

Select col1,col2, col3 from table1 where timestamp > 15/03/2012 12:20:44 union all

select col2,col22,col30 from table2 where timestamp > 15/03/2012 12:20:44

Order by col1

Then, the temp MV is created and it is called TMV1.

Create table tmv1 as Select col1,col2, col3 from table1 where timestamp > 15/03/2012

12:20:44 union all select col2,col22,col30 from table2 where timestamp > 15/03/2012

12:20:44 order by col1;

The last step is to insert the new records results into the original MV‘s and drop the

temporary ones.

Insert into mv1 select * from tmv1;

Drop table tmv1.

At the end of this process Mv1 has the new data sets.

Let µ= the ratio between the total number of old records and the total number of new

records in the entire existing tables.

µ=Rn/Ro → 0=<µ<<<1

To demonstrate the process after applying the hybrid algorithm, consider the

following scenario to explain the changes in efficiency. 1000 records every cycle are

accepted. The cycle is one week and in the beginning 10000 records are stored in the

database. However, the result would be presented in Figure 13 which shows the values of

µ through 17 weeks:

52

Week R0 Rn µ

1 10000 1000 0.1000

2 11000 1000 0.0909

3 12000 1000 0.0833

4 13000 1000 0.0769

5 14000 1000 0.0714

6 15000 1000 0.0667

7 16000 1000 0.0625

8 17000 1000 0.0588

9 18000 1000 0.0556

10 19000 1000 0.0526

11 20000 1000 0.0500

12 21000 1000 0.0476

13 22000 1000 0.0455

14 23000 1000 0.0435

15 24000 1000 0.0417

16 25000 1000 0.0400

17 26000 1000 0.0385

Figure 13 (µ) Total number of old records / total number of new records

The same values, which are presented in Figure 13, are now represented in Figure 14

which shows the values in a chart type. The Y axis represents number of new records

which are accepted in a cycle. The X axis presents number of cycles (here number of

weeks).

53

Figure 14 New records Rn, old records Ro, and the ratio between Rn/Ro (µ)

The value of µ is shown more clearly in the Figure 15 where µ is the ratio of Ro/Rn

decreased every next cycle (week).

Figure 15 µ values according to cycles(weeks)

It was found that the more cycles the system has, the more µ decreases in value.

Figure 16 shows the importance of Algorithm2 by showing time saved for reading

new records only.

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R0

Rn

µ

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

µ

µ

Week

Ro/Rn

54

 Time for DML

Using Oracle or

Postgres

Time for DML

Using

Algorithm2

Saving

of new

records

of old records

100K 1000 K T(1100) T(100) 1000K

100K 1200K T(1300) T(100) 1200K

… …

….. …..

100K 60000K T(60100) T(100) 60000K

Figure 16 Importance of µ

Two important fields were added to each table in the new database. The first one is a

primary key constraint. It is named ―Id‖. The second field is a timestamp. It is called

―timestamp‖. The main purpose behind adding these two fields was to obtain two flags

for each table. Actually, the ―Id‖ field is a flag for each record in each table and for later

usage.

The second field is produced to help us in applying our algorithms when it comes to

the stage of accepting new records in each table.

In simple words, these two fields provide the solution for homogenizing the database

and to play the role of a physical layer to transfer the data which is collected from non-

traditional databases into a traditional one.

Space complexity:

Let S tot=S o+ S Tm where Stot is the total size of the database after applying MV‘s

55

S o is the original size of the database before applying any MV

S Tm is the size of all temporary MV‘s which are used for new records.

Without using MV‘s, space needed is O (N) where N is the space needed for the database

after adding MV‘s in phase1.

After deploying incremental update to present all new records the space needed is O (N)

+ O(TM) where TM is the space needed for adding only new records to the original

MV‘s.

O (TM) is a variant size in this phase where algorithm2 is used for new records (dynamic

view) and an increment update is issued. TM based on µ which is the ratio between the

number of new records and the number of the existing ones.

TM depends on the complexity of the repetitive query which means the space needed for

copying only new records into the original MV‘s

4.3 Interface implementation

The selection of a suitable environment to implement the job of the MV‘s was not an

easy process. A simple, object-oriented, multithreaded, distributed, and portable language

was required. Java was the solution according to the nature of the data sets. Java is an

independent platform language which helped the research to be deployed in different

environments and domains.

Another aspect was the connectivity choice. An application programming interface

that allows any programmer to access a database management system from a Java code

was required [MISTR00, SEGOU05]. JDBC is a solution that allows multiple

implementations to exist and be used by the same application. This interface provides a

56

mechanism for dynamically loading the correct Java packages and drivers and registering

them with the JDBC driver manager. JDBC supports creating and executing all DML

statements like update, insert, and delete with respect to DDL statements, such as creating

objects in the database.

Our Java interface (see Figure 17), which shows our implementation, has been

designed and constructed based on:

 Abstract classes which could be used in any database

 Java class to connect our classes to our database

 Java class to register the required drivers for the database

 Java class to implement the GUI

 Java class to show mapping

 Java class to drive the whole process

All the required abstract classes are included in Appendix B. Figure 17 illustrates the

java interface.

Figure 17 Java interface used in this thesis

57

4.4 Database implementation

Our research requires a suitable open source database which has suitable features and

powerful controlling keys. Postgres was an excellent candidate for the job process.

Postgres is a strong RDBMS where all the advantages of powerful giant databases, such

as Oracle and Msql server, are invoked.

The process of homogenizing records from non-traditional databases into Postgres is

simple and efficient. Postgres supports JDBC for our interface implementation. Such

environment is shown in Figure 18.

Figure 18 Postgres environment

58

4.5 Results

Various experiments were performed to study and confirm the feasibility of our approach:

 Select random complex queries on random data

 Record the time spent with and without using MV‘s

Primary results show that using MV on EPR gives a response time faster than using

regular view (see Figure 19 and Figure 20). Our results also showed that the space of the

database increased when new MV‘s are created (see Figure 21).

Figure 19 Time comparison with and without using MV using Windows(OS)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 5 10 15 20

Time(ms)

Time(Ms) No MV

Random complex queries

59

Figure 20 Time comparison with and witout using MV using UNIX (OS)

The same complex query time spent when applying MV‘s is at least four times less

than the time spent in retrieving data from the same complex query without using MV‘s.

Different operating systems were used to obtain a sense of background effect of O/S on

the database operations; since modern O/S do not differ substantially, it was not expected

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 2 4 6 8 10 12 14 16 18 20

Time(ms)

Time(Ms) No MV

Comparison between time spent when applying MV’s VS time
spent without applying MV’s on Unix OS

Random complex queries

Time
(MS)

60

to have any substantial effects. Windows and Unix were selected for their popularity of

usage. The results show that there is a slight difference between the times spent with

these two operating systems. Our experiments show that when using Unix, somewhat

better results are collected than when Windows OS is used.

Many factors play important roles in the experiments which were applied in this

research. It was found that timing results depend on the complexity of the query which is

used in our algorithms. Therefore, it was necessary to specify the meaning of complexity

of a query. The measurement of a query complexity is not measured by the number of

lines of that query but by using union, group by, where clause, or sorting.

Results show that time efficiency is increased by applying MV‘s on heterogeneous

datasets. Results are also able to show that in both assumptions, static and dynamic

deployment, time efficiency is still gained and increased.

Clearly, the size of the database increases when using MV‘s. The size increment of

the database relies on the complexity of the MV, which includes the results of the

complex query. The size of the original data is not changed unless new records are

inserted into the underlying tables.

MVs (#) size(Mb)

mv1 2,059

mv2 2,059

mv3 2,069

mv4 2,072

mv5 2,077

mv6 3,823

mv7 3,823

mv8 3,840

mv9 5,082

mv10 5,212

61

Figure 21 Size of database when using MV’s

Figure 22 Chart of size of the database when using MV’s

Figure 22 shows that the increment size of the database depends on the complexity of

the MV‘s. The X axis presents number of sets of complex queries which were used while

the Y axis presents the size of the database in megabyte. Results show that the more

complex query is used, the more size is increased. It was obvious that the more MV‘s are

applied the more database size increases, since each one of these MV‘s creates an

independent object that contains different datasets with different format and store these

data sets in the database.

It is important to refer to the fact that the increment size of the database could be

resolved by using more hard drives since the storing devices are cheap compared to the

cost of using RAM, although it was clear that memory prices have also declined

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 2 4 6 8 10 12 14

size(Mb)

size(Mb)

Random complex
queries

62

significantly, recently, and memory capacities have increased substantially to support

caching, in particular. It was found that with time passing, archiving should be used

continuously since this technique would help solve the problem of size increment of the

database.

In our interface an option was provided for decision makers to select an increase in

time efficiency or space efficiency. The selection would, in fact, either apply our

algorithms, which means increasing the time efficiency by applying MV‘s on each

complex query, or not apply our algorithms, which means dropping all the MV‘s in the

database at anytime.

4.6 Contribution

For each repetitive complex query, MV‘s can be applied to store the results of these

queries as independent objects in the database. By placing MV‘s the time efficiency is

gained. However, we sacrifice the space and size of the database each time the MV‘s are

applied. The size would rely on a main factor which is the complexity of the query itself.

The complexity of each repetitive query can be defined by containing grouping, union,

sorting, and complex criteria in the WHERE clause of the query.

The main condition for applying MV‘s on complex queries is that those complex

queries should be repetitive queries. If there is a one-time complex query, there is no

need to apply MV‘s on it since the time spent on MV‘s would be more than the time

needed for obtaining the results directly behind firing the query itself.

One of the impediments was how to guarantee database concurrency. In context of

the classic Readers-Writers problem, readers do not wait for writers and writers do not

wait for readers. Postgres does not support system level triggers; however, this

63

impediment was solved by creating a scheduler in our abstract interface regardless of the

programming language that was used.

The scheduler calls the functions which are responsible for creating and mapping

MV‘s inside the database. It also makes sure that the temporary MV‘s are dropped after

obtaining the new materialized records and inserting all of them into the appropriate

materialized view.

4.7 Phase 1

Each repetitive complex query should be related to an MV. The mapping process requires

a real physical table to reside inside the database. This table contains all necessary

metadata to describe the mapping procedure. Having a real physical table for the mapping

procedure would assist the researcher‘s capability of retrieving all data needed for

managing the MV‘s used in the process.

After mapping is done correctly, the interface would always refer to the suitable MV

associated with the repetitive complex query.

As shown previously, it was proved by experiments and equations that applying

MV‘s improves time efficiency when retrieving results from complex queries. The first

phase would rely on our first algorithm, which was explained in detail in section 4.1.

4.8 Phase 2

When accepting new records SQL function is used which would add to each complex

query an additional WHERE clause to grab new records only. The added WHERE clause

would rely on the date field we added to each mega table since this column would be the

main factor in the filtering process to allow reading only new records.

64

Collections of functions are provided to create temporary MV‘s for the new inserted

records and later, those temporary MV‘s could be dropped to gain space and to guarantee

database consistency.

All our functions could be called from the interface created using Java abstract

classes; however, they could be implemented in other OOP languages, such as C++. The

interface which is used would be responsible for scheduling the time for firing the

triggers needed for our functions according to the absence of system level triggers in

Postgres.

The timer, also known as ―the scheduler―, will assure the database management

system that is applying filtering and creating temporary MV‘s would always perform

updates before decision makers would be involve in any complex query. Another solution

is to use manual maintenance as Postgres snapshot MV‘s do the job. Either methodology

would assure the database consistency.

A sample of SQL code is added in Appendix C. Also, abstract Java interface classes

are in Appendix B.

This research on using MVs is innovative because it extends understanding of issues

related to retrieving data from arbitrary heterogeneous and non-traditional datasets. This

research could be applied on any heterogeneous datasets, such as surveys, healthcare, and

questionnaire databases.

We claim that our methodology is important and efficient because it provides an

optimal method for incremental update, which is sometimes mentioned as ―updating

MV‘s‖. Oracle uses an incremental update technique to refresh MV‘s. A Complete

refresh rebuilds the entire MVIEW. This is done by applying ―refresh fast on commit‖

65

statement. The update process needs deleting all records which are in the MV then

inserting the new records after all underlying tables are updated.

The incremental update, which Oracle uses, applies the following procedures:

 Delete all records which are inside the MV

 Commit the previous procedure

 Obtain all records (old and new) from the base tables

 Insert into the MV all records which were obtained in the previous step

Algorithm2 does not delete the records in any MV, which means saving the time needed

for the deletion process, which Oracle is using. Algorithm2 inserts only new records by

adding a where clause to each repetitive complex query, which means saving the time

needed to insert all records.

Actually, Algorithm2 applies the following steps:

 Obtain new records from base tables

 Insert new records in MV

The Postgres database uses the same technique Oracle uses, but by applying triggers,

functions and procedures.

Algorithm2 shows the importance of µ, which is the ratio of new records to old

records. When any DML is applied to any MV in the database, time is saved by the factor

of 1/ µ. Since µ is getting smaller after each cycle, then time saving is getting bigger,

which means time efficiency is increased after each cycle. Algorithm2 does not DML all

records (new +old), it manipulates only new records.

66

CHAPTER V

CONCLUSION

This thesis is based on the question, how can one design and implement a relational

database system approach, using materialized views, that allows for comparison of the

time and space dependencies in implementing and maintaining complex queries applied

to heterogeneous large datasets?

To achieve this goal, an open source RDBMS (Postgres) was used, which was

suitable for applying materialized views (MV‘s) on the heterogeneous datasets.

The usage of MV‘s leads to applying our two algorithms: the static algorithm

referred to as Algorithm 1, and the hybrid algorithm referred to as Algorithm 2. These

two algorithms are the primary achievements of this thesis.

5.1 Thesis achievement

The first objective, successfully achieved, was increasing time efficiency when applying

MV‘s on each repetitive complex query in the large heterogeneous data sets by using

algorithm 1.This algorithm was used to furnish the mapping road between the MV‘s and

the repetitive complex queries as explained in Section 4.2.

The second objective, also successfully achieved, increased time efficiency when

accepting new records into the database by using algorithm 2 as explained in Section 4.2.

Finally, an implementation of the two algorithms was completed with two systems.

The first one is a prototype system that is presented in the worst case scenario. The

second one is presented via a real life healthcare system. The interface is built on Java

abstract classes to connect and register the required drivers for any database and to

67

manipulate the datasets which reside in a heterogeneous form and then to homogenize

these datasets into RDBMS.

The storing and retrieving of patient records in different health organizations in

different formats was the starting point foundation of this research since each health

organization uses a different type of presentation for data.

The inventive aspect of this thesis is noted that by applying the methodology

developed through this research, health organization systems will be improved.

Specifically, they will save money as well as time. Consequently, health personnel will

help more patients in a more timely manner because they will be able to make more

effective medical decisions.

The results of this research shows that time efficiency is increased 4-10 times

depending on the complexity of the repetitive query as shown in Figure 20.

5.2 Comments

This research presented challenges which include column naming and data type shown

with different format representations in large random heterogeneous datasets. A

technique was developed that could allow supervision of a main flag in each of the

datasets, which is the ultimate way to homogenize the datasets in a certain domain.

Another challenge is satisfied by adding a timestamp flag to the datasets; by so doing,

the mechanism for the filtering process was successfully achieved. Applying MV‘s on

heterogeneous datasets in RDBMS without creative methodologies would cause time

proficiency waste. This thesis provides a full implementation of the Java interface which

is simple and flexible. The interface provides two options for time and space efficiency.

Also the developed hardcode could be used in different RDBMS‘s.

68

The contribution of this research is based on the modification of existing

heterogeneous data sets by applying MV‘s to query complex SQL statements. The two

algorithms developed were used to achieve time saving when dealing with the current

records as well as accepting new records to guarantee database consistency.

This research demonstrates that by applying MV‘s on complex queries, decision

makers are assisted in getting the required results more efficiently. This research is a

milestone for future research seeking development of all kinds of DML and DDL

statements issued with any heterogeneous large datasets.

From this research, it is now clear that MV‘s can be coupled with any SQL

statements to work with the newly developed interface, efficiently and automatically, in

any similar database system. To the best of our knowledge, this research is the first

research to query complex datasets in heterogeneous database using MV‘s. Finally,

research to date has applied MV‘s only to traditional databases. This current research

applies MV‘s to non-traditional databases where time efficiency is also improved. In this

way, the research accomplished in this thesis adds scientific value, contributing an

innovative approach to the computer science field.

We emphasize that as part of this research, we conducted a continuing broad and

deep review of the academic literature regarding the subject of querying large

heterogeneous data sets.

5.3 Future work

Our future work will consider deleting records and the effect of this process on the

database. This may include two types of deletion, namely physical and logical deletion.

69

We believe that deletion process is an essential job, since keeping historical records is

considered, in health care space, an important stage of handling data process.

Also, future work will take in consideration the archiving process of the database

after using MV‘s.

70

APPENDIX A

JAVA CLASSES

A.1 Database Javabeans

The following class is used for database connectivity

Class Mydriver

java.lang.Object

Mydriver

public class Mydriver

extendsjava.lang.Object

Constructor Summary

Constructors

Constructor and Description

Mydriver()

Method Summary

Methods

Modifier and Type Method and Description

Void connectme()

Void dropall()

java.lang.String dropit(int num)

Void exe_query(java.lang.String myquery)

java.lang.String mapit(java.lang.String s1, int num)

file:///C:/java/bin/doc/Mydriver.html%23Mydriver%2528%2529
file:///C:/java/bin/doc/Mydriver.html%23connectme%2528%2529
file:///C:/java/bin/doc/Mydriver.html%23dropall%2528%2529
file:///C:/java/bin/doc/Mydriver.html%23dropit%2528int%2529
file:///C:/java/bin/doc/Mydriver.html%23exe_query%2528java.lang.String%2529
file:///C:/java/bin/doc/Mydriver.html%23mapit%2528java.lang.String,%2520int%2529

71

Void play()

Void registerme()

Void sel_query(java.lang.String myquery)

Void showdata()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Mydriver

public Mydriver()

Method Detail

registerme

public void registerme()

connectme

public void connectme()

play

public void play()

sel_query

public void sel_query(java.lang.String myquery)

exe_query

public void exe_query(java.lang.String myquery)

mapit

public java.lang.String mapit(java.lang.String s1,

int num)

file:///C:/java/bin/doc/Mydriver.html%23play%2528%2529
file:///C:/java/bin/doc/Mydriver.html%23registerme%2528%2529
file:///C:/java/bin/doc/Mydriver.html%23sel_query%2528java.lang.String%2529
file:///C:/java/bin/doc/Mydriver.html%23showdata%2528%2529

72

dropit

public java.lang.String dropit(int num)

showdata

public void showdata()

dropall

public void dropall()

A.2 GUI classes

The following class shows a sample of the graphical user interface, which is used to

apply the methodology of this research.

Class Mygui

java.lang.Object

Mygui

All Implemented Interfaces:

java.awt.event.ActionListener, java.util.EventListener

public class Mygui

extendsjava.lang.Object

implementsjava.awt.event.ActionListener

Constructor Summary

Constructors

Constructor and Description

73

Mygui()

Method Summary

Methods

Modifier and Type Method and Description

Void actionPerformed(java.awt.event.ActionEvent e)

Void init()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Mygui

public Mygui()

Method Detail

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

Specified by:

actionPerformed in interface java.awt.event.ActionListener

init

public void init()

public class AmmarTable

java.lang.Object

java.awt.Component

file:///C:/java/bin/doc1/Mygui.html%23Mygui%2528%2529
file:///C:/java/bin/doc1/Mygui.html%23actionPerformed%2528java.awt.event.ActionEvent%2529
file:///C:/java/bin/doc1/Mygui.html%23init%2528%2529

74

java.awt.Container

java.awt.Window

java.awt.Frame

javax.swing.JFrame

AmmarTable

All Implemented Interfaces:

java.awt.image.ImageObserver, java.awt.MenuContainer, java.io.Serializable,

javax.accessibility.Accessible, javax.swing.RootPaneContainer,

javax.swing.WindowConstants

A.3 Swing classes

The following class presents the swing package, which is used to show the results of the

repetitive complex queries in a table included in the GUI.

public class AmmarTable

extendsjavax.swing.JFrame

See Also:

Serialized Form

Nested Class Summary

Nested classes/interfaces inherited from class javax.swing.JFrame

file:///C:/java/bin/doc2/serialized-form.html%23AmmarTable

75

javax.swing.JFrame.AccessibleJFrame

Nested classes/interfaces inherited from class java.awt.Frame

java.awt.Frame.AccessibleAWTFrame

Nested classes/interfaces inherited from class java.awt.Window

java.awt.Window.AccessibleAWTWindow, java.awt.Window.Type

Nested classes/interfaces inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Nested classes/interfaces inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent,

java.awt.Component.BaselineResizeBehavior, java.awt.Component.BltBufferStrategy,

java.awt.Component.FlipBufferStrategy

Field Summary

Fields inherited from class javax.swing.JFrame

accessibleContext, EXIT_ON_CLOSE, rootPane, rootPaneCheckingEnabled

Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR, E_RESIZE_CURSOR,

HAND_CURSOR, ICONIFIED, MAXIMIZED_BOTH, MAXIMIZED_HORIZ,

MAXIMIZED_VERT, MOVE_CURSOR, N_RESIZE_CURSOR,

NE_RESIZE_CURSOR, NORMAL, NW_RESIZE_CURSOR, S_RESIZE_CURSOR,

SE_RESIZE_CURSOR, SW_RESIZE_CURSOR, TEXT_CURSOR,

W_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

76

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT,

RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface javax.swing.WindowConstants

DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE, HIDE_ON_CLOSE

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS,

WIDTH

Constructor Summary

Constructors

Constructor and Description

AmmarTable()

Method Summary

Methods

Modifier and Type Method and Description

static void main(java.lang.String[] arg)

Methods inherited from class javax.swing.JFrame

addImpl, createRootPane, frameInit, getAccessibleContext, getContentPane,

getDefaultCloseOperation, getGlassPane, getGraphics, getJMenuBar, getLayeredPane,

getRootPane, getTransferHandler, isDefaultLookAndFeelDecorated,

isRootPaneCheckingEnabled, paramString, processWindowEvent, remove, repaint,

setContentPane, setDefaultCloseOperation, setDefaultLookAndFeelDecorated,

setGlassPane, setIconImage, setJMenuBar, setLayeredPane, setLayout, setRootPane,

setRootPaneCheckingEnabled, setTransferHandler, update

file:///C:/java/bin/doc2/AmmarTable.html%23AmmarTable%2528%2529
file:///C:/java/bin/doc2/AmmarTable.html%23main%2528java.lang.String%5b%5d%2529

77

Methods inherited from class java.awt.Frame

addNotify, getCursorType, getExtendedState, getFrames, getIconImage,

getMaximizedBounds, getMenuBar, getState, getTitle, isResizable, isUndecorated,

remove, removeNotify, setBackground, setCursor, setExtendedState,

setMaximizedBounds, setMenuBar, setOpacity, setResizable, setShape, setState, setTitle,

setUndecorated

Methods inherited from class java.awt.Window

addPropertyChangeListener, addPropertyChangeListener, addWindowFocusListener,

addWindowListener, addWindowStateListener, applyResourceBundle,

applyResourceBundle, createBufferStrategy, createBufferStrategy, dispose,

getBackground, getBufferStrategy, getFocusableWindowState,

getFocusCycleRootAncestor, getFocusOwner, getFocusTraversalKeys, getIconImages,

getInputContext, getListeners, getLocale, getModalExclusionType,

getMostRecentFocusOwner, getOpacity, getOwnedWindows, getOwner,

getOwnerlessWindows, getShape, getToolkit, getType, getWarningString,

getWindowFocusListeners, getWindowListeners, getWindows, getWindowStateListeners,

hide, isActive, isAlwaysOnTop, isAlwaysOnTopSupported, isAutoRequestFocus,

isFocusableWindow, isFocusCycleRoot, isFocused, isLocationByPlatform, isOpaque,

isShowing, isValidateRoot, pack, paint, postEvent, processEvent,

processWindowFocusEvent, processWindowStateEvent, removeWindowFocusListener,

removeWindowListener, removeWindowStateListener, reshape, setAlwaysOnTop,

setAutoRequestFocus, setBounds, setBounds, setCursor, setFocusableWindowState,

setFocusCycleRoot, setIconImages, setLocation, setLocation, setLocationByPlatform,

78

setLocationRelativeTo, setMinimumSize, setModalExclusionType, setSize, setSize,

setType, setVisible, show, toBack, toFront

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, applyComponentOrientation,

areFocusTraversalKeysSet, countComponents, deliverEvent, doLayout,

findComponentAt, findComponentAt, getAlignmentX, getAlignmentY, getComponent,

getComponentAt, getComponentAt, getComponentCount, getComponents,

getComponentZOrder, getContainerListeners, getFocusTraversalPolicy, getInsets,

getLayout, getMaximumSize, getMinimumSize, getMousePosition, getPreferredSize,

insets, invalidate, isAncestorOf, isFocusCycleRoot, isFocusTraversalPolicyProvider,

isFocusTraversalPolicySet, layout, list, list, locate, minimumSize, paintComponents,

preferredSize, print, printComponents, processContainerEvent, remove, removeAll,

removeContainerListener, setComponentZOrder, setFocusTraversalKeys,

setFocusTraversalPolicy, setFocusTraversalPolicyProvider, setFont,

transferFocusDownCycle, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener,

addHierarchyListener, addInputMethodListener, addKeyListener, addMouseListener,

addMouseMotionListener, addMouseWheelListener, bounds, checkImage, checkImage,

coalesceEvents, contains, contains, createImage, createImage, createVolatileImage,

createVolatileImage, disable, disableEvents, dispatchEvent, enable, enable, enableEvents,

enableInputMethods, firePropertyChange, firePropertyChange, firePropertyChange,

firePropertyChange, firePropertyChange, firePropertyChange, firePropertyChange,

79

firePropertyChange, firePropertyChange, getBaseline, getBaselineResizeBehavior,

getBounds, getBounds, getColorModel, getComponentListeners,

getComponentOrientation, getCursor, getDropTarget, getFocusListeners,

getFocusTraversalKeysEnabled, getFont, getFontMetrics, getForeground,

getGraphicsConfiguration, getHeight, getHierarchyBoundsListeners,

getHierarchyListeners, getIgnoreRepaint, getInputMethodListeners,

getInputMethodRequests, getKeyListeners, getLocation, getLocation,

getLocationOnScreen, getMouseListeners, getMouseMotionListeners, getMousePosition,

getMouseWheelListeners, getName, getParent, getPeer, getPropertyChangeListeners,

getPropertyChangeListeners, getSize, getSize, getTreeLock, getWidth, getX, getY,

gotFocus, handleEvent, hasFocus, imageUpdate, inside, isBackgroundSet, isCursorSet,

isDisplayable, isDoubleBuffered, isEnabled, isFocusable, isFocusOwner,

isFocusTraversable, isFontSet, isForegroundSet, isLightweight, isMaximumSizeSet,

isMinimumSizeSet, isPreferredSizeSet, isValid, isVisible, keyDown, keyUp, list, list, list,

location, lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove,

mouseUp, move, nextFocus, paintAll, prepareImage, prepareImage, printAll,

processComponentEvent, processFocusEvent, processHierarchyBoundsEvent,

processHierarchyEvent, processInputMethodEvent, processKeyEvent,

processMouseEvent, processMouseMotionEvent, processMouseWheelEvent,

removeComponentListener, removeFocusListener, removeHierarchyBoundsListener,

removeHierarchyListener, removeInputMethodListener, removeKeyListener,

removeMouseListener, removeMouseMotionListener, removeMouseWheelListener,

removePropertyChangeListener, removePropertyChangeListener, repaint, repaint, repaint,

80

requestFocus, requestFocus, requestFocusInWindow, requestFocusInWindow, resize,

resize, revalidate, setComponentOrientation, setDropTarget, setEnabled, setFocusable,

setFocusTraversalKeysEnabled, setForeground, setIgnoreRepaint, setLocale,

setMaximumSize, setName, setPreferredSize, show, size, toString, transferFocus,

transferFocusBackward, transferFocusUpCycle

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.awt.MenuContainer

getFont, postEvent

Constructor Detail

AmmarTable

public AmmarTable()

Method Detail

main

public static void main(java.lang.String[] arg)

81

APPENDIX B

SQL SAMPLE CODE

B.1 MV’s manipulation

The following SQL functions present samples of how to manipulate the MV‘s in the

database.

- Function: dropall1(integer)

-- DROP FUNCTION dropall1(integer);

CREATE OR REPLACE FUNCTION dropall1(xx integer)

 RETURNS integer AS

$BODY$

DECLARE

row record;

BEGIN

 FOR row IN

 SELECT

table_schema, table_name

 FROM

information_schema.tables

 WHERE

table_type = 'BASE TABLE'

 --AND

 --table_schema = _schema

 AND

82

table_name ILIKE ('v%')

 LOOP

 EXECUTE 'DROP TABLE ' || quote_ident(row.table_schema) || '.' ||

quote_ident(row.table_name);

 RAISE INFO 'Dropped table: %', quote_ident(row.table_schema) || '.' ||

quote_ident(row.table_name);

 END LOOP;

return 1;

END;

$BODY$

 LANGUAGE 'plpgsql' VOLATILE

 COST 100;

CREATE OR REPLACE FUNCTION cre_map(myq text)

 RETURNS text AS

$BODY$

declare

cre text='create table '||'mv' ;

cre1 text;

ins text='insert into mapq values (';

co int;--counter

myd date=now();

des text='select * from mv';

83

BEGIN

select count(*) from mapq into co;

--get the last number of mapq row to create temp mv's where mapq is the table which

--has the queries and the mv's which mapped to each one

if co<1 then

 co=1;

 else

 co=co+1;

end if;

cre1 =cre|| co ||' as ' ||myq;

des=des||co;

execute cre1; --create the mv

 Execute ins||co||','||quote_nullable(myq)||','||quote_nullable(des)||')'; --map the mv with the

query

 -- call

 --selectcre_map('select c0 from bigone where c0<100 union select c0 from bigone4

where c0<100');

RETURN cre1;

END;

 $BODY$

 LANGUAGE 'plpgsql' VOLATILE;

CREATE TABLE mapq

84

(

query_id integer NOT NULL,

query_txt text,

view_des text,

myd date default now(),

 CONSTRAINT pk_mapq PRIMARY KEY (query_id)

)

 -- this is a function which adds to any sql query the date criteria

--this is used for my 2nd algorithm which needs to filter new records

CREATE OR REPLACE FUNCTION ctext(mytxttext,mydate text)

 RETURNS text AS

$BODY$

declare

cre text='create table '||'tempmv' ;

mo text;

tal text;

ins text='insert into mv';

sql text=' select * from tempmv';

xxint;

len integer;

BEGIN

 --assuming that every query has where clause

select count(*) from mapit into xx;

85

--get the last number of mapit table to create temp mv's where mapit is the table which

--has the queries and the mv's which mapped to each one

xx=xx+1;

tal=replace(mytxt, 'where', 'where timestamp >'|| quote_nullable(mydate)||' and ');

mo =cre|| xx ||' as ' ||tal;

 Execute ins||xx||sql||xx; --insert all the new records into the mv

RETURN mo;

END;

 $BODY$

 LANGUAGE 'plpgsql' VOLATILE ;

-- This function would create the tempmv for each query then

-- it would insert new records into the approp mv

CREATE OR REPLACE FUNCTION tem_mv(myidinteger,mytxt text, mydate text)

 RETURNS text AS

$BODY$

declare

cre text='create table '||'tempmv' ;--to create the temp mvs

mo text;

sen text;

ins text='insert into mv';

sql text=' select * from tempmv';

86

len integer;

BEGIN

sen=replace(mytxt, 'where', 'where date >'|| quote_nullable(mydate)||' and ');

mo =cre|| myid ||' as ' ||sen;

 Execute ins||myid||sql||myid; --insert all the new records into the mv

RETURN mo;

END;

 $BODY$

 LANGUAGE 'plpgsql' VOLATILE;

B.2 Prototype functions

The following SQL code shows samples of how to manipulate the prototype data

Including DML.

-- Function: ins_big(integer)

-- DROP FUNCTION ins_big(integer);

CREATE OR REPLACE FUNCTION ins_big(xx integer)

 RETURNS integer AS

$BODY$

declare

x integer=2;

BEGIN

 loop

 Insert into bigone3 values(x,

'c1 text ','c2 text ','c3 text ','c4 text ','c5 text ','c6 text ','c7 text ','c8 text ','c9 text ',

87

'c10 text ','c11 text ','c12 text ','c13 text ','c14 text ','c15 text ','c16 text ','c17 text ','c18 text

','c19 text ','c20 text ','c21 text ','c22 text ','c23 text ','c24 text ','c25 text ','c26 text ','c27

text ','c28 text ','c29 text ','c30 text ','c31 text ','c32 text ','c33 text ','c34 text ','c35 text

','c36 text ','c37 text ','c38 text ','c39 text ','c40 text ','c41 text ','c42 text ','c43 text ','c44

text ','c45 text ','c46 text ','c47 text ','c48 text ','c49 text ','c50 text ','c51 text ','c52 text

','c53 text ','c54 text ','c55 text ','c56 text ','c57 text ','c58 text ','c59 text ','c60 text ','c61

text ','c62 text ','c63 text ','c64 text ','c65 text ','c66 text ','c67 text ','c68 text ','c69 text

','c70 text ','c71 text ','c72 text ','c73 text ','c74 text ','c75 text ','c76 text ','c77 text ','c78

text ','c79 text ','c80 text ','c81 text ','c82 text ','c83 text ','c84 text ','c85 text ','c86 text

','c87 text ','c88 text ','c89 text ','c90 text ','c91 text ','c92 text ','c93 text ','c94 text ','c95

text ','c96 text ','c97 text ','c98 text ','c99 text ','c100 text ','c101 text ','c102 text ','c103 text

','c104 text ','c105 text ','c106 text ','c107 text ','c108 text ','c109 text ','c110 text ','c111

text ','c112 text ','c113 text ','c114 text ','c115 text ','c116 text ','c117 text ','c118 text

','c119 text ','c120 text ','c121 text ','c122 text ','c123 text ','c124 text ','c125 text ','c126

text ','c127 text ','c128 text ','c129 text ','c130 text ','c131 text ','c132 text ','c133 text

','c134 text ','c135 text ','c136 text ','c137 text ','c138 text ','c139 text ','c140 text ','c141

text ','c142 text ','c143 text ','c144 text ','c145 text ','c146 text ','c147 text ','c148 text

','c149 text ','c150 text ',151 text ','c152 text ','c153 text ','c154 text ','c155 text ','c156 text

','c157 text ','c158 text ','c159 text ','c160 text ','c161 text ','c162 text ','c163 text ','c164

text ','c165 text ','c166 text ','c167 text ','c168 text ','c169 text ','c170 text ','c171 text

','c172 text ','c173 text ','c174 text ','c175 text ','c176 text ','c177 text ','c178 text ','c179

text ','c180 text ','c181 text ','c182 text ','c183 text ','c184 text ','c185 text ','c186 text

','c187 text ','c188 text ','c189 text ','c190 text ','c191 text ','c192 text ','c193 text ','c194

88

text ','c195 text ','c196 text ','c197 text ','c198 text ','c199 text ','c200 text ','c201 text

','c202 text ','c203 text ','c204 text ','c205 text ','c206 text ','c207 text ','c208 text ','c209

text ','c210 text ','c211 text ','c212 text ','c213 text ','c214 text ','c215 text ','c216 text

','c217 text ','c218 text ','c219 text ','c220 text ','c221 text ','c222 text ','c223 text ','c224

text ','c225 text ','c226 text ','c227 text ','c228 text ','c229 text ','c230 text ','c231 text

','c232 text ','c233 text ','c234 text ','c235 text ','c236 text ','c237 text ','c238 text ','c239

text ','c240 text ','c241 text ','c242 text ','c243 text ','c244 text ','c245 text ','c246 text

','c247 text ','c248 text ','c249 text ','c250 text ');

x=x+1;

exit when x=1000000;

end loop;

 RETURN xx;

END;

$BODY$

 LANGUAGE 'plpgsql' VOLATILE

 COST 100;

-- Function: ins_p1(integer)

-- DROP FUNCTION ins_p1(integer);

CREATE OR REPLACE FUNCTION ins_p1(xx integer)

 RETURNS integer AS

$BODY$

89

declare

x integer=500000;

BEGIN

 loop

 Insert into p1 values(

x,

'apple',

x+5,

now()

);

x=x+1;

exit when x=600000;

end loop;

 RETURN xx;

END;

$BODY$

 LANGUAGE 'plpgsql' VOLATILE

 COST 100;

-- Function: ins_p2(integer)

-- DROP FUNCTION ins_p2(integer);

CREATE OR REPLACE FUNCTION ins_p2(xx integer)

 RETURNS integer AS

$BODY$

90

declare

x integer=500000;

BEGIN

 loop

 Insert into p2 values(

x,

'banana',

x+5,

now()

);

x=x+1;

exit when x=600000;

end loop;

 RETURN xx;

END;

$BODY$

 LANGUAGE 'plpgsql' VOLATILE

 COST 100;

-- Function: test()

-- DROP FUNCTION test();

CREATE OR REPLACE FUNCTION test()

 RETURNS trigger AS

$BODY$

91

DECLARE

new_namevarchar;

new_phonenumvarchar;

BEGIN

IF(TG_OP='INSERT') THEN

INSERT INTO phonebook(name,phonenum) VALUES(NEW.name,NEW.phonenum);

END IF;

RETURN NEW;

END;$BODY$

 LANGUAGE 'plpgsql' VOLATILE

 COST 100;

ALTER FUNCTION test() OWNER TO postgres;

-- DROP TABLE p1;

CREATE TABLE p1(

pidbigint,

pname text,

pricebigint,

pdate date DEFAULT now()

)

WITH (

 OIDS=FALSE

);

-- Table: p2

92

-- DROP TABLE p2;

CREATE TABLE p2

(

pidbigint,

pname text,

pricebigint,

pdate date DEFAULT now()

)

WITH (

 OIDS=FALSE

);

--For algorithm 1

--This function is to map mv to complex query

-- and to create the mv @ the same time

93

BIBLIOGRAPHY

[BAHLO09] Bahloul S (2009) Access Control to Materialized Views: An

Inference-Based Approach. In: Proceedings of the 2011 Joint

EDBT/ICDT Ph.D. Workshop ACM New York, NY, USA©

2011.

[CALVA11] Calvanese D, Giacomo G, Lenzerini M, Rosati R (2011)

View-based query answering in Description Logics:

Semantics and Complexity. In: Journal of Computer and

System Sciences.

[GONG08] Gong A, Zhao W (2008) Clustering-based Dynamic

Materialized View Selection Algorithm. In: Fuzzy Systems

and Knowledge Discovery, 2008. FSKD '08. Fifth

International Conference.

[GLASE05]

John Glaser, PhD, ―State of Information Technology to

Support Clinical Research‖, presentation at Clinical

Research Forum, March 29, 2005, p. 13.

[HU91]

Prokosch HU et al: WING - Entering a New Phase of

Electronic Data Processing at the Giessen University Hospital.

Meth Inform Med 30 (1991) 289-298.

[KABRA06] Kabra G, Ramamurthy R, Sudarshan S (2006) Redundancy

and Information Leakage in Fine-Grained Access Control. In:

Proceedings of the 2006 ACM SIGMOD International

Conference on Management of Data ACM New York, NY,

USA ©2006.

[KARDE10] Karde P, Thakare V (2010) Selection & Maintenance of

Materialized View and Its Application for Fast Query

Processing: A Survey. In: International Journal of Computer

Science & Engineering Survey (IJCSES) Vol.1, No.2,

November 2010.

[LI11]

Li F, Ishikawa Y (2011) Using Materialized Views to

Enhance a Traceable P2P Record Exchange Framework. In:

Journal Of Advances In Information Technology, VOL. 2,

NO. 1, FEBRUARY 2011.

[LI10a] Li X, Qian X, Jiang J, Wang Z (2010) Shuffled Frog Leaping

94

Algorithm for Materialized Views Selection. In: 2010 Second

International Workshop on Education Technology and

Computer Science.

[LI10b] Li D, Han L, Ding Y (2010) SQL Query Optimization

Methods of Relational Database System. In: 2010 Second

International Conference on Computer Engineering and

Applications.

[LIJUA09] Lijuan Z, Xuebin G, Linshuang W, Qian S (2009) Efficient

Materialized View Selection Dynamic Improvement

Algorithm. In: Fuzzy Systems and Knowledge Discovery,

2009. FSKD '09. Sixth International Conference.

[MISTR00] Mistry H, Roy P, Sudarshan S (2001) Materialized View

Selection and Maintenance Using MultiQuery Optimization.

In: SIGMOD '01 Proceedings of the 2001 ACM SIGMOD

International Conference on Management of Data ACM New

York, NY, USA ©2001.

[RYENG11] Ryeng N, Hauglid J, Nørvåg K (2011) Site-Autonomous

Distributed Semantic Caching. In: SAC‘11 March 21–25,

2011, TaiChung, Taiwan. Copyright 2011 ACM 978-1-4503-

0113-8/11/03.

[SEGOU05]

Segoufin L, Vianu V (2005) Views and queries: determinacy

and rewriting. In: Proceedings of the twenty-fourth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of

Database Systems ACM New York, NY, USA ©2005.

[SHUKL00] Shukla A, Deshpande P, Naughton J (2000) Materialized

View Selection for Multi-cube Data Models. In: Advances in

Database Technology — EDBT 2000 Lecture Notes in

Computer Science, 2000, Volume 1777/2000, 269-284, DOI:

10.1007/3-540-46439-5_19.

[YU03] Yu J, Yao X, Choi C, Gou G (2003) Materialized View

Selection as Constrained Evolutionary Optimization. In:

Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on.

http://www.acm.org/publications
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/

95

VITA AUCTORIS

Ammar Soliman Albalkhi was born in 1969 in Damascus, Syria. He graduated from

Alhashimi High School in 1987 after which he went to the University of Damascus where

he obtained an honor B. Sc. (Bachelor of Engineering) degree in Electronic Engineering

in 1997. While obtaining his undergraduate degree, Ammar worked as a developer at

NICE (National Information Center). After obtaining his undergraduate degree, he

worked as a trainer/developer at New Horizons until he gained his second B.Sc.

(Bachelor of Science) degree in Computer Science, in 2009, at the University of Windsor.

He is currently a candidate for the Master‘s of Science degree in Computer Science at the

University of Windsor and will graduate in the winter of 2012.

	University of Windsor
	Scholarship at UWindsor
	2012

	Repetitive querying of large random heterogeneous datasets in RDBMS using materialized views
	Ammar Albalkhi
	Recommended Citation

	tmp.1351257124.pdf.LKRRI

