
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Extending a set-theoretic implementation of Montague Semantics Extending a set-theoretic implementation of Montague Semantics

to accommodate n-ary transitive verbs. to accommodate n-ary transitive verbs.

Maxim Roy
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Roy, Maxim, "Extending a set-theoretic implementation of Montague Semantics to accommodate n-ary
transitive verbs." (2005). Electronic Theses and Dissertations. 2053.
https://scholar.uwindsor.ca/etd/2053

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2053&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2053?utm_source=scholar.uwindsor.ca%2Fetd%2F2053&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Extending a set-theoretic implementation of Montague

Semantics to accommodate n-ary transitive verbs

By
Maxim Roy

A Thesis

Submitted to the Faculty of Graduate Studies and Research

through the School of Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Science at the University of Windsor

Windsor, Ontario, Canada
2005

© 2005 Maxim Roy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09850-3
Our file Notre reference
ISBN: 0-494-09850-3

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Natural-language querying of databases remains an important and challenging area.

Many approaches have been proposed over many years yet none of them has provided a

comprehensive fully-compositional denotational semantics for a large sub-set of natural

language, even for querying first-order non-intentional, non-modal, relational databases.

One approach, which has made significant progress, is that which is based on Montague

Semantics. Various researchers have helped to develop this approach and have

demonstrated its viability. However, none have yet shown how to accommodate

transitive verbs of arity greater than two. Our thesis is that existing approaches to the

implementation of Montague Semantics in modem functional programming languages

can be extended to solve this problem. This thesis is proven through the development of a

compositional semantics for n-ary transitive verbs (n > 2) and implementation in the

Miranda programming environment.

[Keywords: Compositional, non-intentional, Montague Semantics, set-theoretic,

relational database, denotational]

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

To Sicily

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to thank my supervisor Dr. R. A. Frost for his valuable suggestions, remarks,
comments, discussion and encouragement.

I would also like to thank Dr. T. Collet-Najem, Dr. S. Goodwin and Dr. C. Ezeife for
reading my thesis report and for their valuable comments.

And a special thanks to my lovely wife Sicily for her encouragement and support.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract.. iii

Dedication..iv

Acknowledgements..v

List of Tables.. ix

List of Figures... ix

Chapter 1 Preface..1

1.1 Introduction..1

1.2 Outline of the report.. 1

Chapter 2 Introduction.. 2

2.1 Problem addressed.. 2

2.2 Montague’s Approach...2

2.3 Set-theoretic treatment of Montague Semantics.. 3

2.4 Limitation of Set-theoretic approach... 3

2.5 Thesis Statement... 3

2.6 How the new semantics will be evaluated?...4

2.7 Why this thesis is important..5

2.8 Contribution to Computational linguistics, Computer science and Software

Engineering.. 5

Chapter 3 Montague Semantics.. 7

3.1 Introduction to Montague Semantics.. 7

3.2 Subject-Predicate and Determiner-noun rules..10

3.3 Conjoined Sentences, Verb Phrases and Term Phrases... 12

3.4 Anaphoric Pronouns as bound variables; Scope Ambiguities and related

Clauses...13

3.5 Transitive verbs, Meaning Postulates And Non-Specific Reading............................. 16

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Adverbs And Infinitive Complement Verbs... 18

3.7 Negation...19

Chapter 4 Montague and Transitive verbs...20

4.1 Montague’s approach to transitive verbs... 20

4.2 Frost’s approach to transitive verbs..21

4.3 Other researchers treatment of transitive verbs in Montague-like Semantics...........22

Chapter 5 Overview of use of Montague Semantics in Database Query

Processing.. 23

5.1 Overview...23

5.2 Montague Semantics in Database querying... 23

5.3 Natural language Interfaces based on SQL.. 25

5.4 Limitation of SQL-based approaches...26

Chapter 6 An overview of an existing implementation of a set-theoretic version of a

sub-set of Montague Semantics.. 27

6.1 Overview of existing approach... 27

6.2 An overview of an extension of the set-theoretic approach to accommodate

negation... 30

Chapter 7 The Problem and initial approaches...34

7.1 The Problem- To extend set-theoretic approach to accommodate n-ary

transitive verbs..34

7.2 Approach 1.. 34

7.3 Approach 2 .. 35

7.4 Critical analysis of Approach 2 ..43

Chapter 8 The Final Approach... 44

8.1 The approach... 44

8.2 Example implementation 1: A solar-system database...45

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3 Example implementation 2: A database about books and authors...........................49

Chapter 9 Evaluation of the Final Approach.. 51

9.1 Overview.. 51

9.2 A grammar for example query processor#l... 51

9.3 Example queries for solar system processor.. 54

9.4 Example queries for the authors and books processor...57

9.5 Syntactic/Semantics correspondence..58

9.6 Orthogonality... 59

Chapter 10 Conclusion.. 60

10.1 What has been achieved.. 60

10.2 Contribution to Computational Linguistics and Computer Science........................ 60

10.3 Suggestions for Future Work.. 61

Bibliography.. 62

Related Publications by the Author..64

Appendix A: Program listing..65

Appendix B: A Survey...70

Vita Auctoris...117

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 2-1. Categories used in PTQ grammar... 9
Table 4-1. Coverage of Natural-Language Semantics...25

List of Figures

Figure 6 -1. Approach 1...34

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 PREFACE

1.1 Introduction

This report describes the development of an efficient compositional semantics for

natural-language queries, which include quantification, nouns, proper nouns, term

phrases, verb phrases, negation, coordination (“and” and “or”) and n-ary transitive verbs

(n > 2). It is important because it will increase the capability of natural-language query

interfaces to databases.

1.2 Outline of the report
This report is about extending a set-theoretic version of Montague Semantics to

accommodate n-ary transitive verbs where n > 2. Chapter 1 contains the thesis statement

and motivation for it. Chapter 2 of the report is a general introduction to Montague

Semantics. The use of Montague Semantics in database query processing is described in

Chapter 3. Chapter 4 describes Montague’s approach to transitive verbs. Chapter 5 gives

an overview on the use of Montague Semantics in database-query processing. Chapter 6

contains an overview of an existing implementation of a set-theoretic version of a sub-set

of Montague Semantics and an extension of the set-theoretic approach to accommodate

negation. Chapter 7 discusses the problem addressed in this thesis work - to extend an

existing set-theoretic approach to accommodate n-ary transitive verbs where n > 2 , and

summarizes two initial approaches that were developed and analyzed as part of this thesis

work. Chapter 8 describes the final approach, which we claim supports the thesis.

Chapter 9 of the report contains future directions and conclusions. A comprehensive

survey on the use of Montague-like semantics is also attached as appendix at the end of

the report.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 INTRODUCTION

2.1 Problem addressed

Natural-language querying of databases remains an important and challenging area.

Many approaches have been proposed over many years yet none of them has provided a

fully-compositional denotational semantics for a large sub-set of natural language even

for querying first-order non-intentional, non-modal, relational databases. One approach,

which has made significant progress, is that which is based on Montague Semantics.

Various researchers have helped to develop this approach and have demonstrated its

viability (see appendix B for a comprehensive survey on the use of Montague and

Montague-like compositional semantics in natural-language database query processing).

After conducting the survey it was found that no one have yet shown how to

accommodate transitive verbs of arity greater than two, which is the subject of my thesis.

2.2 Montague’s Approach

One of the most influential functional approaches to natural-language interpretation was

developed by Richard Montague. In the early seventies, Montague (1971) developed an

approach to the interpretation of natural language in which he claimed that we could

precisely define the syntax and semantics for substantial sub-sets of natural languages

such as English. In particular, he claimed that the objects denoted by phrases of a natural

language denote functions in a function space constructed over a set of objects of a few

primitive types. For each syntactic category of a natural language, Montague claimed that

there is a corresponding semantic type, and for each syntactic rule that shows how a

complex syntactic construct can be built from simpler constructs, there is a corresponding

semantic rule that shows how the meaning of the complex construct can be computed

from the meaning of its parts. Montague was one of the first to develop a compositional

semantics for a substantial part of English (details in Chapter 3 & 4). By compositional

semantics we mean that the meaning of a compound sentence is determined by the

meanings of its constituents and the way they are put together to form the sentence.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Set-theoretic treatment of Montague Semantics
Montague’s approach has been used in the past as the basis for the development of

natural-language processors. However, direct implementation of Montague semantics is

not computationally viable owing to the fact that the interpretation of phrases involving

quantification requires characteristic functions to be applied to all, possibly-infinite

number of, representations of entities in the universe of discourse. One approach to

overcome this problem was proposed by Frost and Launchbury (1989). In that approach,

noun and verb phrases denote sets directly rather than denoting characteristic functions of

sets. A fully-compositional simple natural-language database-query processor was built

which could accommodate nouns, intransitive verbs, (two-place) transitive verbs, proper

nouns, adjectives, determiners, conjunction, disjunction and arbitrarily-nested

quantification. The approach was subsequently extended to accommodate negation (Frost

and Boulos 2002)(details in Chapter 4).

2.4 Limitation of the set-theoretic approach

The approach to natural-language database-query processing developed by Frost and

Launchbury (FL) is very limited in its scope. It does not accommodate modality,

intentionality, or transitive verbs with arity greater than two. Work on the first two of

these limitations is being undertaken but is a long-term project. The third limitation is the

subject of this report.

2.5 Thesis Statement

“It is possible to extend the set-theoretical compositional semantics developed by Frost et

al to accommodate n-ary transitive verbs, (n > 2) by re-defining all denotations to involve

sets of attributes rather than simple entities, without loss of compositionality. ”

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 How the new semantics will be evaluated?
Below we state some specific objectives for our semantics:

1) We will state examples of types of questions that our semantics will be able to

handle, give a small grammar for example languages, and show that relatively

small sets of semantic definitions can be used to compute the values for languages

with hundreds of thousands of queries.

2) The new semantics will maintain the orthogonality of the old semantics, i.e. that

the meaning of all (disambiguated) words is independent of context, and that the

rules of composition are also independent of context.

3) The new semantics will maintain the syntactic/semantic correspondence i.e.

phrases of the same syntactic category denote functions of the same semantic type.

To demonstrate that our semantics meets these objectives we will implement

illustrative example query processors based on our semantics, in Miranda, and then:

a) Define example query languages and compute their size, and show results from

execution of example queries.

b) Discuss the Miranda program, showing how words are given a single meaning,

and give examples of queries where the context is different.

c) Give the results of using the Miranda type inference system (::) on examples of

phrases of the same syntactic category to show that they denote functions of the

same semantic type.

Orthogonality and the syntactic/semantic relationship guarantee that our semantics

will be compositional in the sense that the meaning of expressions of a very large query

language can be computed using a very small number of semantic rules.

We are using the functional programming language Miranda only to help to

investigate and illustrate our approach to the problem. We will use two problem domains

to illustrate the approach. One domain handles queries about the solar system and the

other domain handles queries about authors and books.

The objective of our research is not to create a Miranda program for a particular set of

queries but to develop a compositional semantics, which could be implemented in

different programming languages and which could be used for various databases.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7 Why the thesis is important
The FL approach is unable to deal with queries such as “When did Hall discover

Phobos?”, “With what did Hall discover Phobos?” and “When and who discovered

Deimos?” This thesis provides an approach on how to deal with such queries. This thesis

is important because it will increase the capability of natural-language query interfaces to

databases. The originality of our approach is that implementation of transitive verbs are

higher-order functions which return sets of attribute values as results rather than just truth

values or lists of entities as in the FL approach.

Our final result is a compositional semantics for quantifications, negation, nouns,

proper nouns, term phrases and n-place transitive verbs and helps in building more

powerful NL interfaces than existing NL interfaces which convert queries to SQL (which

can’t handle all forms of negation).

2.8 Contribution to Computational Linguistics, Computer

Science and S/W Engineering
Our research contributes to computational linguistics as we are extending an existing

linguistics theory and demonstrating the tractabily of its implementation. Montague’s

semantics didn’t provide much about how to handle n-place transitive verbs and here in

this thesis work we are extending Montague’s semantics by developing a new approach

to handle n-place transitive verbs. As discussed in the sub-section 4.2 no one else appears

to have solved this problem.

It has a contribution to Computer Science as we are developing a denotational

semantics for a natural language by mapping from each syntactic category into a suitable

semantic domain. By doing so, we are adding to the growing belief that the denotational

semantics approach to programming-language specification has application in natural-

language interface design. In computer science, denotational semantics is one of the

approaches to formalize the semantics of computer programs. Denotational semantics is a

standard tool for language design and definition. The compositional nature of a

denotational semantics is a real boon for proving properties of programs and languages.

Montague semantics, which we are extending, is a form of denotational semantics for

idealized fragments of English.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It also has a contribution to engineering as we are developing a new semantic

approach for natural-language query processing, which is efficient and has good software

engineering characteristics such as modularity and orthogonality.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 MONTAGUE SEMANTICS

3.1 Introduction to Montague Semantics
Model-theoretic semantics of natural language is a way of analyzing the meanings of NL

expressions. The technique was introduced by Richard Montague (1971) in two classical

papers entitled “Universal Grammar” and “The Proper Treatment of Quantification in

Ordinary English” which is known as PTQ. Universal Grammar, which is a

predominantly theoretical paper, refers to the branch of mathematics called universal

algebra from which the main techniques were adopted. PTQ, on the other hand, applies

these theoretical principles to ‘ordinary English’. Grammars based on Montague’s PTQ

are called Montague grammars.

Richard Montague (1971) was one of the first to develop a compositional semantics

for English. Later Partee (1973) describes some extensions to Montague grammar.

Bennet (1974) also worked on some extensions. Thomason Richmond (1975) gave an

introduction to Montague semantics. Partee's "Montague Grammar and Transformational

Grammar" (1975) was seen as the first introductory text to describe Montague Semantics.

Dowty, Wall & Peters later published another comprehensive text called "Introduction To

Montague Semantics" (1981).

A Montague grammar is a grammar for a particular fragment of natural language

which consists of three components: the Syntax, a syntactic analysis of the expressions of

the fragment, the Translation, translating natural language into a logical language, and the

Model Theory or the Semantics, a (model-theoretic) interpretation of the expressions of

the logical language

The translation is “meaning preserving”, hence, the meaning assigned to the formula

of the logical sentence by the interpretation is also the meaning assigned to the natural

language sentence that the formula translates.

In order to be familiar with Montague’s PTQ grammar, one should have some

knowledge about lambda calculus. The lambda calculus was developed by Alonzo

Church (1941). Church recognized that an expression containing x, such a s x

defines a function of x. He introduced the notation: Xx [formula containing x] as a name

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for that function. The expression Xx [formula containing x] is called an /-expression or

^-abstraction. A rule of ̂ -conversion may be written as follows:

A.x [..jc] (a) => [....a....]

In the formula [.. . .a], each free occurrence of x is replaced with a , the result is

[••••a..........]•

The following description of Montague Semantics is derived from the book

“Montague Semantics” by Dowty, Wall and Peters (1981).

Montague gave some examples of using lambda notation in natural language to define

the semantics of expressions. For example considering the following two sentences:

“Every man eats.” and “Every man sleeps.”. The usual translation of this sentence in

predicate logic is:

V x (M (x)^ E (x)) and Vx(M(x) -» S (x))

These sentences are instances of a more general sentence whose translation is a second-

order logic formula, i.e. they are ^-conversions of the ^-expression:

XY [Vx (M (x) —> Y (x))] .

the first conversion is

Ay [Vx (M (x) -» Y (x))] (E)

and the second one is

AY [Vx (M (x) —> Y (x))] (S)

In his theory Montague made a distinction between the sense (intension) of an

expression and reference (extension). The reference of an expression corresponds to

semantic (truth) value of this expression; the sense corresponds to the meaning of the

expression. The distinction between sense and reference is important when operators such

as believe are used. For example, “John believes A” cannot be described as function of

the references of its parts but can be described as a function of the senses of these parts.

The intensionality in natural language is induced by prepositional attitude verbs such as:

think, believe, regret etc.

In the rules below of the PTQ grammar we shall denote by a 1 the intension of an

expression a and by a e the extension of an expression a. The cancellation rule ei, which

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is important in simplification of the expressions produced by the translation of sentences

in natural language, is: a 1,e= a e,1= a

Considering the intensionality, the expressions for determinants every and a will be:

Ip [lQ[Vx(Pe (x) ^ Qe (x))]] and !P [lQ [3x(P e (x) AQe (x))]] respectively.

Before introducing the rules of the PTQ grammar the categories used in the PTQ

grammar are explained below:

Category Name Categorical Definition of Name Nearest Transformational Equivalent

t t Sentence

CN CN Common noun
IV IV Intransitive Verb
T t/IV Term Phrases and Proper Name
IAV IV/IV Intransitive Adverb
TV IV/T (=IV/(t/IV)) Transitive Verb
T/CN (t/IV)/CN Determiner
t/t t/t Sentence Adverb
IV/t IV/t Sentence-complement Verb
IV//IV IV//IV Infinitive-complement Verb
IAV/T (IV/IV)/T Preposition

Table: 2-1. Categories used in PTQ grammar

In a categorical grammar an expression of category A/B (or of A//B) combines with

an expression of category B to give an expression of category A. The different between

A/B and A//B is that both are distinct categories but denote values of the same logical

type.

Syntactic rules in the PTQ grammar forming complex expressions have the following

general form:

S„: If a e Pa and |3e Pb then Fn(a, P) e Pc, where Fn(a, p) is.............

Here n is the number of the syntactic rule, A and B are the syntactic categories of the

input expressions, C is the syntactic category of the new expression formed by the rule

and Fn is the name of the structural operation of the rule and in place of the ellipsis is a

description of what this operation does.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now some of the rules of PTQ grammar with examples are described. Readers who are

familiar with Montague Semantics can skip to chapter 4 on page 20.

3.2 Subject-Predicate and Determiner-noun rules
One of the first rules described in PTQ is S4, which is a syntactic rule and is called the

subject-predicate rule. This rule takes a term phrase and a verb phrase and combines them

to form a sentence. The rule is as follows:

S4: If a e PT and p g P]y then F4(0 ,. P) g P ̂where F4(ct, P) aP , and p is the result of

replacing the first verb in p by its third person singular present form.
Each syntactic rule Sn has associated with it a translation rule Tn with the same numerical

subscript. The translation rule associated with S4 is as follows:

T4: If a e Pt and pe Prv and a , p translate into a , p respectively, then F4(a, P)
translates into a (p 1)

Now let us consider a simple English sentence and translate it according to the rule.

For example, let us consider the sentence: Tom talks.

Tom translates into A.P [Pe(t)]

where P is a variable over properties of individuals and t is an individual constant

corresponding to the person called Tom.

Now translating the sentence according to the rule T4 will be as follows:

Tom talks
1 .Tom => A.P [Pe (t)]
2 . t a l k s => t a l k '
3.A.P [Pe (t) l (t a l k 1) [From 1,2 by T4]
4 . t a l k ® '1 (t) [Lambda co n v ers io n]
5 . t a l k ' (t) [C a n c e l la t io n ru le]

Now let us consider the second rule S2 that is called the Determiner-Noun rule. This

rule combines words like every with words like human to produce partial sentences like

every human or a with dog to give partial sentences like a dog etc. The rule is as

follows:

S2: If a e Pt/cn and Pe Pcn then Fa(a, P) e P t , where F2(a, P) = a p and a is a

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

except in the case where a is a and the first word in (3 begins with a vowel; here a is an.

The associated translation rule of S2 is T2, which is as follows:

T2: If a e P t/cn and p e: Pcn and o t , [3 translate into (x , p respectively, then F 2 (ix. [3)

translates into a (p ')

The below example sentences can be translated first using the rule T2 and then the rule

T4. For Example,

Every human walks.
The sun shines.
A dog barks.

The words every, the and a can be translated as follows according to Montague:

every translates into: AP [AQ Vx [Pe(x) —» Qe(x)]]

the translates into: AP [AQ 3x [Vx [Pe(x) <=> x = y] a Qe(y)]]

a translates into: AP [AQ 3x [P 6(x) a Qe(x)]]

Now translating the first sentence above according to the rules T2 and T4 is as follows:

Every human w a lk s.
1. e v e ry => AP [AqVx [Pe (x)-» Qe (x)]]
2 . human => human'
3 . e v e ry human => AP [AQVx [Pe (x) -» Qe (x)]] (human'1)

[From 1 ,2 by T2]
4 . AqVx [human'6' 1 (x) —> Qe (x)] [Lambda c o n v e rs io n]
5 .AqVx [human'(x) —> Qe (x)] [C a n c e l la t io n Rule]
6 . walks => w alks '
7 . e v e ry human walks => AqVx [human'(x) -» Qe (x] (w a lk s '1)

[From 5 ,6 by T4]
9 . Vx [human' (x) —» w a lk s '6,1 (x)] [Lambda co n v e rs io n]
10 . Vx [human' (x) —» w a lk s ' (x)] [C a n c e l la t io n Rule]

Similarly the other two sentences can be translated using the rule T2 and the rule T4.

The sun shines can be translated into:

3x [Vx [sun’(x) x = y] a shines’(y)]

And A dog barks can be translated into:

3x [dog’(x)A barks’(x)]

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Conjoined Sentences, Verb Phrases and Term Phrases

The first conjunction rule described in PTQ is SI la, which takes two sentences such as

Tom talks and every human walks and combines them by rule S ll to produces

sentences like tom talks and every human walks. The rule is as follows:

S lla: If a , Pe Pt , then Fna(a, P) e Pt , where Fna(a, P) = a and p

The associated translation rule o f S l l a i s T l l a which is:

T lla: If a , Pe Pt and a ,p translate into a , P respectively, then Fna(a, p) translates

into [a a P]

For example, with the help of the rule T1 la we can translate a simple English sentence

like Tom talks and every human walks, into :

[talk’(t) a Vx [human (x) -» walks’(x)]]

where Tom talks can be translated into talk’(t) and every human walks can be

translated into Vx [human (x) —> walks’(x)] [Derived in section 2]

The rule SI lb is as follows:

S llb : If a , Pe Pt , then Fn(a, P) e Pt , where Fnb(a, P) = a or p

The associated translation rule of SI lb is T1 lb, which is:

T llb : If a, Pe Pt and a ,P translate into a , p respectively, then Fnb(a, P) translates

into [a v p]

Another three conjunction rule are S12a, S12b and S13. The rules S12a and S12b take

two verb phrases (member’s of Piv) and combines them together. And the rule S13 takes

two term phrases (member’s of PT) and combines them together. The rules S12a, S12b

and S13 are as follows:

S12a: If a , Pe Piv, then Fi2a(a, P) e Prv , where Fi2a(a, P) = a and p

S12b: If a , Pe Piv, then Fi2b(a, P) e Piv , where Fi2b(ci, P) — cc or P

S13: If a , Pe Prv, then Fn(a, P) e Prv , where F 13 (a, p) = a or p

The associated translation rule of S I2 a , SI2b and SI 3 are:

T12a: If a, Pe Piv and a ,p translate into a , p respectively, then Fi2a(a, P) translates

into Xx [a (x) a P (x)]

T12b: If a, Pe Prv and a ,P translate into a , p respectively, then Fi2b(a, p) translates

into Xx [a (x) v P(x)]

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T13: If a , Pe P t and a ,(3 translate into a , p respectively, then Fi3(a, P) translates into

IP [a (P) v p ’(P)]

Now let as consider a simple English sentence for example Every human walks or

talks. And translate the sentence with the help of the rule T12b.

Every human walks or talks.
1. e v e ry human => iQVx [human' (x)—»Qe (x)]

[Derived i n s e c t i o n 2]
2 . w alk => w alk '
3 . t a l k => t a l k '
4 . w alk o r t a l k => Ix [w a lk '(x) v t a l k ' (x)] [From 2 ,3 by T12b]
5 . e v e ry human walks o r t a l k s =>

iQVy [human (y) —>• Qe (y)] (Xx [walk' (x) v t a l k ' (x)] 1)
[From 1 ,4 by T4]

6. Vy [human' (y) —> Ix [w a lk '(x) v t a l k ' (x)] 6,1 (y)]
[Lambda co n v ers io n]

7. Vy [human' (y) —> Xx [walk' (x) v t a l k ' (x)] (y)]
[C a n c e l la t io n Rule]

8 . Vy [human' (y) —» [w alk '(y) v t a l k ' (y)]]
[Lambda c o n v e r s i o n]

3.4 Anaphoric Pronouns as bound variables; Scope Ambiguities
and related clauses

The rule that deals with pronouns is the rule S14. The rule S14 is as follows:

S14: If a e P t , pe Pt, then Fi4>n(a, P) e Pt

The translation rule of S14 is:

T14: If a e Pt , Pe Pt and a ,P translate into a , P respectively, then Fi4 n(a, p)

translates into a (Xxn p ‘)

Now for example we will use the rule T14 to translated sentences like A women sings

and she dances. Pronouns are translated as follows:

hen translates into IP [Pe(xn)]

So the translation is of the above example using the rule T14 is as follows:

A women sings and she dances.
1 .h e 2 => IP [Pe (x2) 1
2 . s in g => s i n g '
3 . dance => d a n c e s '
4 .h e 2 s in g s => IP [Pe (x2)] (s i n g '1) [From 1 ,2 by T4]
5 . s i n g '1,e(x2) [Lambda co n v e rs io n]

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. s i n g ' (x2) [C a n c e l la t io n Rule]
7 .h e 2 dances => A.P [Pe (x2)] (d a n c e '1) [From 1,3 by T4]
8 . d a n c e '1,6 (x2) [Lambda convers ion]
9 . d a n c e ' (x2) [C a n c e l la t io n Rule]
1 0 .h e 2 s in g s and he2 dances =>

[s in g ' (x2) a dance ' (x2)]
11. a woman =>),P 3x [woman' (x) a Pe (x)]
1 2 .a woman s in g s and she dances ==>
A,P3x [woman' (x) a Pe (x)] (Xx2 [s in g ' (x2)Adance' (X;,)]1)

[From 10,11 by T14]
1 3 .3x [woman' (x) a A.x2 [s in g ' (x2) a d an ce ' (x2)] 1,e(x)]

[Lambda conven tion]
1 4 .3x [woman' (x) a A,x2 [s in g ' (x2) a dan ce ' (x2)] (x)]

[C a n c e l la t io n Rule]
1 5 .3x [woman'(x) a [s in g '(x) a d a n c e ' (x)]]

[Lambda co n v ers io n]

To illustrate how S14 accounts de dicto/de re ambiguities in complements of verbs

like believe, the syntactic rule S7 has been introduced . The rule S7 is as follows:

S7 : If a e Piv/t , Pe Pt , then F7(a, P) e Piv, where F7(a, p) = a that p

The translation rule of S7 is :

T7 : If a e Piv/t , Pe Pt and a ,P translate into a , P respectively, then F7(a, P)

translates into a (p ')

For example the sentence Tom believes that a dog barks can be translated as

described below with the help of the rule T7.

Tom b e l i e v e s t h a t a dog b a r k s .
1 .a dog b a rk s => 3x [dog ' (x) a b a r k s ' (x)]
2 . b e l i e v e => b e l i e v e '
3 . b e l i e v e t h a t a dog b a rk s =>

b e l i e v e ' (3x [dog ' (x) a b a r k s ' (x)] 1) [From 1 ,2 by T7]
4 . Tom => A,P [Pe (t)]
5 . Tom b e l i e v e t h a t a dog b a rk s =>

X,P[Pe (t)] (b e l i e v e ' (3x[dog ' (x) a b a r k s ' (x)] 1) x
[From 3 ,4 by T4]

6 . b e l i e v e ' (3x [dog' (x) a b a r k s ' (x)] 1) 1 ,e (t)
[Lambda c o n v e rs io n]

7 . b e l i e v e ' (t , 3 x [d o g '(x) a b a r k s ' (x)] 1)
[R e la t io n a l n o t a t i o n and C a n c e l l a t io n r u le]

Another way of translating the above sentence is:

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tom believes that a dog barks.
1. h e2 b a rk s => b a r k ' (x2)
2. b e l i e v e t h a t he2 b a rk s =>

b e l i e v e ' ([b a rk ' (x2)] x) [By T7]
3 . Tom b e l i e v e s t h a t he5 b a rk s =>

A,P[Pe (t)] (b e l i e v e ' ([b a rk ' (x2)] 1) 1) [By T4]
4 . b e l i e v e ' ([b a rk ' (x2)] 1) 1,0 (t) [Lambda co n v ers io n]
5 . b e l i e v e ' (t , [b a r k ' (x 2)] 1) [R e la t io n a l n o t a t i o n and

C a n c e l l a t io n r u le]
6 . a dog => A.P 3x [dog ' (x) a Pe (x)]
7 . Tom b e l i e v e s t h a t a dog b a rk s =>

A,P3x [dog' (x) a Pe (x)] (Xx2 [b e l i e v e ' (t , [b a rk ' (x2)] 1)] 1)
[By T14]

8 .3 x [d o g ' (x) a X x2 [believe' (t, [bark' (x 2)]1)]:l ,e(x)]
[Lambda co n v e rs io n]

9 .3 x [d o g ' (x) a b e l i e v e ' (t , [b a rk ' (x)] 1)]
[Lambda co n v ers io n]

Similarly, the sentence Every human believes that a dog barks can be translated into:

3x[dog’(x) a Vy[human’(y) —> believe’ (y , [bark’(x)]1)]]

and

Vy[human’(y) —> 3x[dog’(x) a believe’ (y , [bark’(x)]1)]]

The rule S3 which is a relative clause rule takes a common noun and a sentence and

outputs a new phrase of the category common noun(CN). The rule S3 is as follows:

S3: If a e P cn and (3 e Pt , then F3,n (a, (3) e P cn where F3,n (a, (3) = a such that p

The translation rule of S3 is:

T3: If a e Pcn, P^ Pt and a ,p translate into a , p respectively, then F3>n(a, P)

translates into Xxn [a (xn) a P)]

For example English sentences like Every dog such that it barks runs can be

translated using the rule T3. The translation is:

Every dog such that it barks runs
1. he2 b a rk s => b a r k ' (x2) [p r e v io u s ly d e r iv e d]
2. dog such t h a t i t b a rk s =>

Xx2 [d o g '(x 2) a b a r k ' (x 2)] [By T3]
3 . ev e ry dog such t h a t i t b a rk s =>

A,PA,QVx [Pe (x) —> Qe (x)] (A,x2 [dog '(x2) a b a rk ' (x2)] x) [By T2]
4 . A,QVx [A,x 2 [dog (x2) a b a r k ' t x ; .)] 1 ,e (x) -> Qe (x)]

[Lambda co n v e rs io n]

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.A,QVx[Ax2 [d o g ' (x 2) a b ark ' (x2)] (x) —> Qe (x)]
[C a n c e l la t io n Rule]

6 . A,QVx [[dog '(x) a b a r k '(x)] —> Qe (x)]
[Lambda convers io n]

7 . e v e ry dog such t h a t i t b a rk s ru n s =>
A,QVx [[dog' (x) a bark ' (x)] Qe (x)] (r u n s '1) [By T4]

8 . Vx [[dog' (x) a bark ' (x)] —» r im s ' (x)]
[Lambda c o n v e rs io n , C a n c e l l a t io n Rule]

3.5 Transitive verbs, Meaning Postulates And Non-Specific
Readings

The rule S5 combines a transitive verb with a term phrase and outputs an IV-phrase

(Intransitive Verb). The rule S5 is as follows:

S5: If a e Ptv, P^ P t, then Fs(a, p) e Piv where F5(a, P) = aP
The translation rule of S5 is:
T5: If a e Ptv, P^ P t and a ,P translate into a , p respectively, then F5(a, P) translates
into a (p ‘)
For example sentence like Tom seeks a dog. can be translates using the rule T5 as
follows:

Tom seeks a dog
1 .se e k = > s e e k '
2 . a dog => A,Q3x [dog' (x) a Qe (x)] [P re v io u s ly d e r iv e d]
3 . s eek a dog => s e e k ' (XQ 3x[dog ' (x) a Qe (x)] 1)

[From 1 ,2 by T5]
4 . Tom seek s a dog =>

A.P [Pe (t)] (s e e k ' (A.Q 3x[dog ' (x) a Qe (x)] 1) 1) [By T4]
5. s e e k ' (A.Q 3x [dog' (x) a Qe (x)] 1) 1 ,e (t) [Lambda co n v ers io n]
6 . s e e k ' (XQ3x [dog' (x) a Qe (x)] 1) (t) [C a n c e l l a t io n Rule]
7 . s e e k ' (t , A,Q3x [dog' (x) a Qe (x)] 1) [R e la t io n a l n o ta t io n]

At this point no more simplification is possible.

Another way of translating the above sentence is:

Tom seeks a dog.
1. h e0 => XP[Pe (x0)] [Basic e x p re s s io n]
2. seek => s e e k '
3 . seek him0 =>

se e k ' (A.P[Pe (x q)] 1) [By T5]
4 . Tom seeks him0 =>

A,P[Pe (t)] (s e e k ' (IP [Pe (x0)] 1) 1 [By T4]
5 . s e e k ' (A.P [Pe (x0)] 1) 1 ,e (t) [Lambda co n v e rs io n]

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. s e e k ' (t , AP [Pe (x0)] 1) [C a n c e l la t io n R ule and
R e la t io n a l N o ta tio n]

7. a dog => AQ 3x [dog ' (x) a Qe (x)] [P re v io u s ly d e riv e d]
8 . Tom se e k s a dog =>

AQ 3x [dog ' (x) a Qe (x)] (Ax0 [se e k ' (t , l P [Pe (x0)]] 1)
[By T14]

9 .3 x [dog ' (x) a Ax0 [s e e k ' (t , AP [Pe (x0)] 1)] 1 ,e (x)]
[Lambda c o n v e rs io n]

1 0 .3x [dog ' (x) a Ax0 [s e e k '(t ,A P [Pe (x0)] 1)] (x)]
[C a n c e lla t io n ru le]

1 1 .3x [dog ' (x) a [se e k ' (t , AP [Pe (x)] 1)]]
[Lambda co n v ers io n]

Montague introduced a special notation:

8* = AyAx [8(AP[Pe(y)]')(x)], where 8 e ME f (tv)

So, now we can continue from 11 from above:
1 1 .3x [dog' (x) a [s e e k '(t , AP [Pe (x)] 1)]]
12 . 3x [dog' (x) a [s e e k ' (AP [Pe (x)] l) (t)]]

[R e la t io n a l n o ta t io n]
1 3 .3 x [d o g ' (x) a [Xz [se e k ' (AP [Pe (x)] x) (z) (t)]]

[A ,-conversion]
14 . 3x [dog' (x) a [Xy [Az [se e k ' (AP [Pe (y)] l) (z)]] (x) (t)]]

[A ,-conversion]
1 5 .3 x [d o g '(x) a [seek , (x) (t)]] [5* n o ta t io n]
1 6 .3 x [d o g '(x) a [s e e k '. (t , x)]] [R e la tio n n o ta t io n]

The verb be is not translated into a non-logical constant be’ , but is translated as :

be translates into A,® Ax ®(Ay [x = y]‘)e

This is the most complex expression assigned as a translation of any English word in

Montague semantics (according to Dowty et al, 1981). The best way to understand it

is to first compute a translation using it. Some examples are derived below.

Tom is John.
1. be => A® Ax ® (Ay [x = y I 1) 6 [B asic e x p re s s io n]
2 . John => AP [Pe (j)] [B asic e x p re s s io n]
3 .b e John =>

A® Ax ®(Ay [x = y] 1) 6 (AP [Pe (j)] i) [B y T5]
4. Ax AP [Pe (j)] 6,1 (Ay [x = y] x) [Lambda co n v e rs io n]
5 . Ax AP[Pe (j)] (A y [x = y] 1) [C a n c e lla t io n Rule]
6. Ax [Ay [x = y] 1,e (j)] [Lambda c o n v e rs io n]
7 . Ax [x = j] [Lambda co n v e rs io n]
8 . Tom i s John => AP [Pe (t)] (Ax [x = j] 1) [By T4]

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9. Ax [x = j] e,:L (t) [Lambda co n v ers io n]
10. Ax [x = j] (t) [C a n c e lla t io n Rule]
1 1 .t = j [Lambda co n v ers io n]

Tom i s a human.
1 .a human => AQ 3x [human'(x) a Qe (x)] [P re v io u s ly d e riv e d]
2. be a human => A<I>Ax <I> (Ay [x = y] 1) e (AQ3x [human' (x) a

Qe (x)] 1) [By T5]
3.XQXx O (A.y [x = y] x) e (XQ 3z [human' (z) a Qe (z)] 1)

[A lp h ab e tic v a r i a n t o f 2]
4 . Ax AQ3z [human'(z) a Qe (z)] 1 (Ay [x = y] 1)®

[Lambda c o n v e rs io n]
5. Ax AQ3z [human'(z) a Qe (z)] (Ay[x = y I 1)

[C a n c e lla t io n Rule]
6 . Ax 3z[hum an '(z) a Ay[x = y] 1,e(z)] [Lambda c o n v e rs io n]
7 . X x 3z [hum an'(z) a Xy [x = y] (z)] [C a n c e lla t io n Rule]
8. Ax 3z [hum an'(z) a x = z] [Lambda c o n v e rs io n]
9 .Tom i s a human => AP[P®(t)] (Ax3z [human'(z) a x = z] x) [By T4]
10. Ax 3z [h\aman' (z) a x = z] 1,e(t) [Lambda co n v e rs io n]
11.A,x 3z [human' (z) a x = z] (t) [C a n c e lla t io n Rule]
1 2 .3z [human'(z) a t= z] [Lambda c o n v e rs io n]
13.human'(t) [By principle of first-order logic with identity]

3.6 Adverbs And Infinitive Complement Verbs

The PTQ grammar includes both sentence adverbs such as necessarily and verb-phrases

adverbs such as slowly. The adverb necessarily which doesn’t translate into a non-logical

constant is translated in terms of a special symbol . The adverb necessarily translates

into Xp [p]e where p is a variable over propositions.

For example sentence like Necessarily Tom talks. Can be translated as follows:

N e c e s s a r i ly Tom t a lk s
1. h e2 t a l k s => t a l k ' (x2) [p re v io u s ly d e r iv e d]
2 .n e c e s s a r i l y => Xp [p] e [B asic E x p ress io n]
3 .n e c e s s a r i ly h e2 t a l k s => Xp [p] e ([t a l k ' (x2)] x) [By T2]
4. [t a l k ' (x2)] [Lambda c o n v e rs io n and C a n c e l la t io n r u le]
5 .n e c e s s a r i ly Tom t a l k s =>

^P[Pe (t)] (Xx2 [t a l k ' (x2)] i) [By T14]
6.A,x2 [t a l k ' (x2)] (t) [Lambda c o n v e rs io n and C a n c e l la t io n Rule]
7. [t a l k ' (t)] [Lambda c o n v e rs io n]

And sentence like Tom runs slowly can be translated as:
slowly’(Arun’)(t)

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.7 Negation
Montague didn’t explain in details how to deal with negation but gave a rough idea about

it. The rule S17 deals with negation. The rule S17 is:

S17: If a e PT and Pe PIV, then F17a(a, p), Fnb(a, p), Fi7c(a, p), F17d(a, p), Fne(a, p)

e Pt, where:

Fi7a(a, P) = ap and P is the result of replacing the first verb in p by its negative third

person singular present;

Fi7b(a, P) =aP and p is the result of replacing the first verb in p by its third person

singular future;

Fi7c(a, P) = ap and p is the result of replacing the first verb in p by its negative

third person singular future;

Fi7d(a, P) =ap and P is the result of replacing the first verb in p by its third person

singular present perfect; and

Fi7e(a, P) = ap and P is the result of replacing the first verb in p by its negative

third person singular present perfect;

The translation of S17 is as follows:

T17: If a e Pt, Pe Piv and a ,P translate into a , P respectively,

then:

Fi7a(a, P) translates into - ia (p ‘)

Fnb(a, P) translates into Fa (P ')

Fi7c(a, P) translates into —.Fa (p ')

Fi7d(a, P) translates into Pa (P ')

Fi7e(a, P) translates into -iPa (P ‘)

Where the negation and tense operators (P and F) are given wider scope than the

translation of the subject term phrase.

For example the sentence every human doesn’t run can be translated to:

—iVx[human’(x) —> run’(x)]

or Vx[human’(x) —> -irun’(x)]

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 MONTAGUE AND TRANSITIVE VERBS

4.1 Montague’s approach to transitive verbs

Montague didn’t mention much about n-place transitive verbs where n>2. In his

semantics he described briefly how to handle 2-place transitive verbs and stated that it

could be extended to handle n-place transitive verbs. Below we describe with examples

how 2-place transitive verbs are handled in Montague’s Semantics.

According to Montague, the semantic type of transitive verbs like “orbits” is as

follows:

f(TV) = f(IV/T) = « s, f(T) > ,f(IV)>

= « s , « s , f(IV)>, t » , « s , e > t »

= < < s ,« s ,« s ,e > , t» , t» ,« s ,e > t»

As discussed in the previous chapter the rule S5 combines a transitive verb with a term

phrase and outputs an IV-phrase (Intransitive Verb). The rule S5 is as follows:

S5: If a e Ptv, pe P t, then Fs(a, (3) e Piv where Fs(a, P) = ap

The translation rule of S5 is:

T5: If a e P tv , P^ P t and a ,p translate into a , p respectively, then F5(a, P) translates

into a (P ')

For example sentence like Phobos orbits Mars, can be translates using the rule T5 as

follows:

Phobos orbits Mars

1 .o r b i t s => o r b i t s '

2 .Mars=> A.Q [Qe (e_mars)]

3 .o r b i t s Mars => o r b i t s ' (XQ [Qe (e_m ars)] 1)

[From 1 ,2 by T5]

4 . Phobos => XP [Pe (e_phobos)]

5 . Phobos o r b i t s Mars=>

A.P [Pe (e_phobos)] (o r b i t s ' (A.Q [Qe (e_mars)] 1) x) [By T4]

6. (o r b i t s ' (XQ [Qe (e_mars)] 1) 1 ,e) (e_phobos) [Lambda c o n v e rs io n]

7 . o r b i t s ' (XQ [Qe (e_mars)] 1) (e_phobos) [C a n c e lla t io n Rule]

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.orbits' (e_phobos, A q [Qe (e_mars)] x) [Relational notation]

At this point no more simplification is possible.

Now Montague introduced a special notation:

5* = XyXx [8 (AP[Pc(y)]')(x)], where 8 € ME f (TV)

where 8* is the binary relation associated with the denotation 8 of the transitive verb.

Note here that Montague does not give the meaning of the transitive verbs, for example

[orbits] directly, consequently, his treatment of transitive verbs is very difficult to

understand.

Now we continue from 8 from above:

8. o r b i t s ' (e_j?hobos, AQ [Qe (e_m ars)] x)

9. o r b i t s ' (XQ [Qe (e_mars)] x) (e_phobos)

[R e la t io n a l n o ta t io n]

10. Xz [o r b i t s ' (AQ [Qe (e_mars)] x) (z) (e_phobos)]

[A,-conversion]
11. [Ay [Az [o r b i t s ' (AQ [Qe(y)]1) (z)]] (e_mars) (e_phobos)]

[A-conversion]
12. [o r b i t s ' , (e_mars) (e jphobos)] [8* n o ta t io n]

13. o r b i t s ' , (e jp h o b o s, e_m ars) [R e la tio n n o ta t io n]

So in Montague semantics Phobos orbits Mars is derived as orbits *(ejphobos,

e_mars)

4.2 Frost’s approach to Transitive verbs
Below we derive the same expression (Phobos orbits Mars) in a simplified statement of

Montague’s transitive verbs (no intensionality), using an approach developed by Frost

(unpublished communication). In this approach transitive verbs (for example “orbit”)

denote functions such as:

orbit => Az z (AyAx orbit_rel(x,y)).

Therefore, Phobos orbits Mars

1. Phobos => (Ap p e_phobos)

2. Mars => (Aq q e_mars)

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. orbits => Xz z (XyXx orbit_rel(x,y))

4. orbits Mars =̂> Xz z (XyXx orbit_rel(x,y)) (Aq q em ars) [From 2 and 3]

5. Phobos orbits Mars =>

(Xp p e_phobos) (Xz z (XyXx orbit_rel(x,y)) (Xq q e_mars)) [From 1 and 4]

6. (Xp p e_phobos) ((Xq q e_mars)(XyXx orbit_rel(x,y))) [Lambda conversion]

7. (Xp p e_phobos) (XyXx orbit_rel(x,y) e_mars) [Lambda conversion]

8. (Xp p e_phobos) (Xx orbit_rel(x,e_mars)) [Lambda conversion]

9. (Xx orbit_rel(x,e_mars) e_phobos) [Lambda conversion]

10. orbit_rel(e_phobos, e mars) [Lambda conversion]

Note that this approach does not accommodate intensional and modal aspect of

sentences. However, it was useful when developing the set-theoretic semantics for

transitive verbs described in the next chapter.

4.3 Other researchers’ treatment of transitive verbs in Montague-
like semantics

McCawley (1974), Karttunen (1976), Ross (1976) and Larson (1997) talked about

intensional transitive verbs but didn’t discuss n-ary transitive verbs, n > 2.

The book "English Verb Classes and Alternations: A Preliminary Investigation" by

Beth Levin also talks about transitive verbs but nothing about n-place transitive verbs.

(Miyagawa, Tsujioka, 2004) describes how to handle 3-place verbs in Japanese

language, but nothing about other cases, n>3.

Other researchers like Partee, Dowty and Peter have talked about Montague semantics

but have not provided any approaches to handle n-place transitive verbs.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 OVERVIEW OF USE OF MONTAGUE

SEMANTICS IN DATABASE QUERY PROCESSING

5.1 Overview
There are many advantages to provide users with natural-language interfaces to data

sources. In particular, when speech-recognition technology is used, it is useful to phrase

queries in some form of pseudo natural-language as it is very difficult to “speak” a

language such as SQL.

There are two ways to construct natural-language processors: by translation to a

formal language such as SQL, or by direct interpretation by an evaluator based on some

form of compositional semantics. The second approach has some advantages: 1)

information concerning sub-phrases of the query, such as cost and size, can be presented

to the user in an intelligible form before the query is processed, 2) for query-debugging

purposes, the user can ask for the value of sub-phrases to be presented before the whole

query is evaluated, 3) and the sub-set of natural-language can be readily extended if the

evaluator has a modular structure based on the compositional semantics.

5.2 Montague Semantics in Database querying:
According to (Yonezaki and Enomoto 1980), Montague’s Intensional Logic (IL) can be

useful to the theory of databases in designing database systems, which handle historical

data and provide a formal description of database semantics. However, they noted that

direct implementation is impractical.

Variations of Montague Semantics have been proposed used as a semantic basis in a

number of implemented systems for natural language (e.g. Clifford 1990), but none

discussed transitive verbs, n >2.

(Frost and Launchbury, 1989) describe how in a functional-programming language,

efficient natural-language parsers and interpreters can be implemented using a se-

theoretic version of Montague Semantics. Frost and Launchbury refer to the book by

Dowty, Wall and Peters (1981). It appears that Frost and Launchbury were amongst the

first to use Montague semantics in database query processing.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It would also appear that Frost and Launchbury were the first to use a set-theoretic

based implementation of Montague semantics. For example instead of interpreting

‘every’ like in Montague as:

[every] = ApAq [Vp(x) -» q(x)]

Frost and Launchbury used:

[every] f l = Ap).q p c q

(Frost and Saba 1990) implemented some of the concepts of Montague that can be

used in natural-language interface to databases in an executable attribute grammar.

(Lapalme and Lavier 1990) showed how a larger part of Montague Semantics can be

implemented in a pure higher-order functional programming language, but did not use a

set-theoretic approach and were not concerned with efficiency.

(Frost and Boulos, 2002) developed an extension to the set-theoretic-based

compositional semantics to accommodate phrases that include the word ‘no’. The

approach is based on an extended set theory in which ‘negative’ phrases denote infinite

sets represented in complement form.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The below table shows the research on Montague Semantics in database query

processing:

Year Authors Work
1980 Yonezaki and Enomoto Montague's Intensional

Logic (IL) can be useful in
designing database systems
which handle historical data

1989 Frost and Launchbury Implementation of a set-
theoretic version of sub-set
of Montague Semantics

1990 Lapalme and Lavier Montague Semantics can be
implemented in a pure
higher-order functional
programming language

1990 Frost and Saba Used Montague Semantics
to implement natural-
language interfaces to
databases

2002 Frost and Boulos Implemented compositional
semantics for database
queries based on a set-
theoretic version of
Montague semantics to
accommodate negation

Table 4.1: Coverage of Natural-Language Semantics

5.3 Natural-language Interfaces based on SQL

Many of natural-language interfaces that have been developed are based on an SQL type

approach. The following references are provided so that reader can compare SQL-based

approaches with the Montague-based approach described in this thesis.

(Hasting, 1991) describes the design and implementation of an SQL based speech-

recognition database-query system.

(Androutsopoulos, 1995) talks about using a language called TSQL2 in a natural

language interface. The paper (Androutsopoulos, 1995) focuses on the TSQL2 in a

natural-language interface for temporal databases and also in some point on the semantics

of TSQL2.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Reis and Mamede, 1997) present the Edite system, which is a natural-language

interface to databases, and explore the advantage of joining natural-language processing

with the expressiveness of graphical interfaces. Edite, a natural-language front-end for

relational databases, is multi-lingual (Portuguese, French, English, Spanish). It is capable

of answering written questions related to tourism by transforming them into SQL queries.

The answer can be a list of resources, text, images or graphics depending of the

questions. At present, the database contains 53000 tourism resources, arranged on 253

distinct types, which corresponds to 209 tables.

(Stratica, 2002) talks about a natural language processor for querying Cindi, which is

also an SQL-based system.

A reliable natural-language interfaces to household appliances, which is also, an SQL-

based interface is described in (Yates and Etzioni, 2003).

(Popescu, Etzioni and Kautz 2003) introduces a theoretical framework, which is the

foundation for the fully implemented Precise NLI and proved that Precise guarantees a

map for each question to the corresponding SQL query, for a broad class of semantically-

tractable natural-language questions.

5.4 Limitation of SQL-based approaches

SQL-based approaches have several limitations. For example, the Edite system (Resi and

Mamede, 1997) described in the previous section has some disadvantages such as -

regarding the linguistic coverage it only accepts questions, no imperative or declarative

statements are allowed. Moreover, another limitation is the set of restrictions imposed on

the design and conception of the database. Most of the SQL-based approaches are also

unable to handle negation, modality and intensionality.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 AN OVERVIEW OF AN EXISTING IMPLEMENTATION

OF A SET-THEORETIC VERSION OF A SUB-SET OF MONTAGUE

SEMANTICS

6.1 Overview of existing approach

Direct implementation of Montague semantics is impractical. A set-theoretic version of a

first-order subset of Montague’s approach, developed by Frost and Launchbury (FL

1989), is discussed in this section. However a simple conversion of Montague’s treatment

of negation does not work in this set-theoretic semantics, and is discussed later.

The following are examples of the types of the objects denoted by words and phrases

of some syntactic categories in the FL semantics. These types are explained further later

on. The notation x - > y denotes the type of functions from type x to type y.

noun :: {entity}
intransverb:: {entity}
propernoun :: {entity} -> bool
determiner :: {entity} -> {entity} -> bool
transverb :: ({entity -> bool}) -> {entity}

The following are examples of denotations of some words in the FL semantics. These

denotations are also explained in more detail later.

d_planet = {"mars", "earth" ..}
d_spins = {"earth", "mars", "phobos", "deimos"..}
d_mars = Xs "mars" member s
d_every = XsXt s subset t
d_no = XsXt (s intersect t)={}

The following example illustrates how the meaning of a simple statement is evaluated.

Note that d_«x>> denotes meaning of the expression x.

d_<<every planet spins>>

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=> X x X y(x subset y) d_planet d_spin
=> X y (d_planet subset y) d_spin
=> (d_planet subset d_spin)
=> True

We now explain these examples further. To do this, we use the notation of the

functional-programming language Miranda. This notation is easier to read than lambda

notation and also provides an environment in which one can experiment with the

definitions.

According to Montague, noun and verb phrases denote characteristic functions. In the

FL semantics, nouns and verb phrases denote sets of entities. These sets can be

represented by lists in Miranda, for example:

d_moon = ["deimos", "phobos" ..
d_planet = ["mars", "earth" ..
d_spins = ["mars", "earth", "phobos", "deimos" ..

In the FL semantics, proper nouns (names) are implemented as functions, which take a

list as input, and which return the boolean value True if the list contains the entry related

to the proper noun, and False otherwise. For example, assuming that the function

member has been defined appropriately:

d_sol s = member s "sol"
d_mars s = member s "mars"
d_earth s = member s "earth"

Accordingly, d_<<mars spins >> => True owing to the fact that application of

d_mars to d_spins returns the value True because "mars" is a member of the list

denoted by d_spins.

Quantifiers are implemented as higher-order functions, which take a list as input and

which return a function of type list -> bool as output. For example, assuming that the

functions subset and intersection have been defined appropriately:

d_every s t = subset s t
d_a s t = intersection s t ~= []
d_no s t = intersection s t = []

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Accordingly, <<every p lan e t spins>> => True owing to the fact that partial

application of the higher-order function d every to d p lanet returns the function f such

that f t = subset ["mars" , "earth"] t . Application of f to d sp ins returns True

because ["m ars", "earth"] is a subset of ["mars", "e a rth " , "phobos", "deimos"]

Frost’s approach to transitive verbs is described in sub-section 4.2. When converted to

set-theoretic form, a transitive verb is implemented as a function whose argument is a

predicate on sets. When it is applied to a particular predicate, it returns a set of entities as

result. An entity is in the result set if the predicate is true of the entity’s image under the

associated relation. For example, 2-place transitive verbs are defined as shown in the

following example:

d_orb it p = [x | (x, image_x) <- c o lle c t o rb it_ re l ; p image_x]
where
o rb it_ re l = [("luna", "e a rth "), ("phobos", "mars")

("deimos", "m ars"), (" e a r th " , " s o l") ,
e t c .

This definition uses a programming construct called a list comprehension. The

general form of a list comprehension is: [body | q u a lif ie rs] where each qualifier is

either a generator, of the form var ^ exp or a filter, which is a Boolean expression used

to restrict the range of the variables introduced by the generators. The collect function

used in the above definition converts a relation of tuples <a,b> to a relation of tuples

<a,c> where c is the image of a under the original relation. For example, applying

collect to the relation o rb it r e i above returns the following:

c o lle c t o rb it_ re l => [("luna", ["e a rth "]) ,
("phobos", ["mars"]) ,
("deimos", ["m ars"]),
(" e a r th " , [" so l"]) ,
("mars", [" so l"])]

Therefore, the meaning of the phrase “orbits mars” is obtained by applying d o rb i ts to
d_mars :

d _o rb its d_mars => [x| (x, image_x) - c o lle c t o rb it_ re l ; d_mars image_x]
=> [x| (x, image_x) [("luna", ["ea r t h"]) ,

("phobos", ["mars"]) ,
("deimos", ["mars"]).

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

("earth", ["sol"]),
("mars", ["sol"])] ;
d_mars image_x]

=> ["phobos", "deimos"]

Passive verb phrases can be interpreted by simply inverting the order of the columns
of the binary relation, which is used in the definition of the transitive verb.

The resulting semantics has been used in the implementation of a natural-language
query processor, which is constructed as an executable specification of an attribute
grammar. The processor is accessible at the following URL:

http ://www. cs .uwindsor. ca/users/r/richard/miranda/wage demo .html

6.2 An overview of an extension of the set-theoretic approach to

accommodate negation

A problem with the FL semantics is that the denotation of the word “no” only works in

some syntactic contexts, and fails in others, as illustrated below. For example the

denotation of “sol orbits no moon” is:

=> <<sol orbits no moon >>
=> <<sol>> (<<orbits>> (<<no>> <<moon>>)
=> d_sol (d_orbits (d_no d_moon))
=> d_sol [x | (x , image_x) <- collect orbut_rel;

(d_no d_moon) image_x]
=> d_sol [x | (x, image_x) <- collect orbit_rel;

(intersection d_moon image_x) = []]
=> d_sol [x | (x, image_x) <- collect orbit_rel;

(intersection ["deimos", "phobos"] image_x) = []]
=> d_sol ["deimos", "phobos", "mars" , "earth"]
=> member ["deimos" , "phobos", "mars", "earth"] "sol
=> False

Which is not the expected answer. The reason for the failure is that when collect is
applied to orbit rel it generates the following relation:

[("deimos", ["mars']), ("phobos", ["mars"]),
("mars", ["sol"]), ("earth", ["sol"])]

Owing to the fact that the images of “deimos”, “phobos”, “earth” and “mars” have

empty intersections with list [' deimos", "phobos"], the meaning of the sub-expression

“orbit no moon” is computed to be: ["deimos", "phobos", "mars", "earth"] . This

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

list does not include “sol”, and consequently, the evaluation of « s o l orbits no m o o n »

returns the incorrect result False.

Frost and Boulos(2002) have developed a method for accommodating negation which

is based on the notion that a set can be represented in two ways: explicitly by

enumerating all of its members, or implicitly by enumerating all of the members of its

complement. In cases where a set is computed as the denotation of a phrase that involves

a negation, it is represented using its complement.

To implement this approach, a new type set is introduced, which can be defined in

Miranda as follows, where [string] is the type list of strings and string is a synonym

for the type list of characters:
set ::= SET [string] | COMP [string]

The following are two examples of objects of type set. The first example represents

the set whose members are “ phobos” and “ deimos” . The second example denotes the

set of all entities in the universe of discourse except “ phobos” and “ deimos” , i.e. the set

of “non moons”.

SET [' 'phobos ' ' , ' ' deimos' '] COMP[’ 'phobos' ' , ' ' deimos' ']

To determine the cardinality of a set we define the function cardinality in terms of the

cardinality of the set of all entities in the universe of discourse, where # computes the

length of a list, and all entities denotes the set of all entities in the universe of discourse.
cardinality (SET s) = #s
cardinality (COMP s) = #all_entities - (#s)

Operators on sets are redefined as follows:

c_member (SET s) e = member s e
c_member (COMP s) e =~(member s e)
c union (SET s) (SET t) = SET (union s t)
c union (SET s) (COMP t) = COMP (t -- s)
c union (COMP s) (SET t) = COMP (s -- t)
c_union (COMP s) (COMP t) = COMP (intersection s t)
c_ intersection (SET s) (SET t) = SET (intersection s t)
c_ intersection (SET s) (COMP t) = SET (s -- t)
c intersection (COMP s) (SET t) = SET (t -- s)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c_intersection (COMP s) (COMP t) = COMP (union s t)
c_subset (SET s) (SET t) = subset s t
c_subset (SET s) (COMP t) = (t--s) = t
c_subset (COMP s) (SET t) = (#(union t s) = #all_entities)
c_subset (COMP s) (COMP t) = subset t s

Evaluation of the denotation of the phrase “non moon that spins” would result in the
following operation:

c_intersection COMP [''phobos'', ''deimos'']
SET [''mars'', ''earth'', ''phobos'', ''deimos'']

=> SET [''mars'', ''earth'']

Redefinition of nouns and quantifiers is straightforward:

d_moon = SET [''deimos'', ''phobos'']
d_planet = SET [''earth'',''mars'']
d_spins = SET [''earth'',''deimos'',''mars''
d_thing = COMP []
d sol s = c_member s ''sol''
d_mars s = c_member s ' 'mars''
d every s t = c_subset s t
d_a s t = cardinality (c_intersection s t) >
d_no s t = cardinality (c_intersection s t) =

The denotation of each transitive verb is redefined. In order to simplify the coding of

denotations of transitive verbs, the common parts of such definitions can be abstracted

into a higher-order function make_denotation_of_tv defined as follows:
make_denotation_of_tv r p

= COMP (firsts_of r -- result), if p (SET []) = True
= SET result, otherwise

where
result = [x | (x,image_x) <- collect r; p image_x]

firsts_of [] = []
firsts_of ((x,y)crest) = x : firsts_of [(a,b)|(a,b) <- rest; a~=x]

This function can now be used to define the denotations of various transitive verbs. For

example:
d_orbits = make_denotation_of_tv orbit_rel
d_discovered = make_denotation_of_tv discover_rel
discover_rel = [(''hall'',''phobos''), (''hall'',''deimos'')

(''kuiper'',''uranus''),(''galileo'',''europa'')]
orbit_rel = [(''luna'',''earth''), (''phobos'',''mars'')

(''deimos'',''mars''), (''earth'',''sol'')
(''mars'',''sol'')]

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the revised semantics, the denotation of “orbits no planet” is:
<<orbits no planet>>

=> <<orbits>> («no» <<planet>>)
=> d_orbits (d_no d_planet)
=> COMP (firsts_of orbit_rel -- result)

where result = [x|(x,image_x) <- collect orbit_rel;
(d_no d_planet image_x)]

=> COMP (firsts_of orbit_rel -- result)
where result = [x|(x,image_x) <- collect orbit_rel;

(c_intersection [''earth'',''mars''] image_x) = []]
=> COMP ([''deimos'', ''phobos'', ''mars'', ''earth''] --

[''earth'', ''mars''])
=> COMP [''phobos'', ''deimos'']

Meaning that everything except phobos and deimos “orbits no moon”. Evaluation of “sol

orbits no planet” now returns the expected answer:
<<sol>> <<orbits no planet>>

=> d_sol (COMP [''phobos'', ''deimos'']) from above
=> member (COMP [''phobos'', ''deimos'']) ''sol''
=> True

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7 THE PROBLEM AND INITIAL APPROACHES

7.1 The Problem: To extend set-theoretic approach to

accommodate n-ary transitive verbs where n > 2

The approach to natural-language database-query processing developed by Frost,

Launchbury (FL) is very limited in its scope. It does not accommodate modality,

intensionality, or transitive verbs with arity greater than two. Work on the first two of

these limitations is being undertaken but is a long-term project. The third limitation is the

subject of this thesis.

In this report we claim that it is possible to extend the set-theoretical compositional

semantics developed by Frost et al to accommodate n-ary transitive verbs (n >2) by re­

defining all denotations to involve sets of attributes rather than simple entities.

Below we describe two initial approaches to extend the set-theoretic approach to

accommodate n-ary transitive verbs, n > 2, neither of which were entirely satisfactory.

The final approach is described in chapter 8.

We describe some details of the approaches using the Miranda programming notation,

which provides concise, formal and testable definitions.

7.2 Approach 1
Below we discuss one of the possible strategies, which we considered but found not to

be viable.
In this approach, we tried to handle time aspect (discrete time points, not intervals)

without modifying the set-theoretic version of Montague semantics as discussed in

chapter 5. We tried to leave all the definitions of the “binary” transitive verbs as they are

and projected binary relations (e.g. discover) from the n-ary relations (e.g. discover time)

so that the existing semantics still works. For example,

discover time discover
Hall Phobos 1873 Hall Phobos

Figure 6.1 : Approach 1

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this approach, we use the “discover_time” relation when we need to deal with time. So

in this case we will need two definitions of the “discover” semantic function one to

handle questions with non-time and another to handle questions that involves time. For

example,

non time: did hall ^discover phobos] 1

using the discover function as currently defined,

time: when did hall [discover phobos]

a new discover function

The problem in this approach is that we not only need to have two definitions for

“discover” but also two definitions for “phobos” “hall” etc. Also the one to one
• 1 2 correspondence is lost as [discover phobos] has same syntax as [discover phobos] but

the first one returns a set of entities and the second one returns a set of tuples so the

return type is not same. For example,
non_time << discover phobos >> => [hall]
with_time << discover phobos >> => [(hall, 1870)]

Therefore, we need to change (“lift”) all instances of “discover’ to the time version and

change other denotations that are required. This approach loses the syntactic

category/semantic type correspondence and therefore loses compositionality.

7.3 Approach 2

In approach 2, we present semantics, which accommodate 3-place transitive verbs by

handling the time aspect (again discrete time points, not intervals). This will allow us to

accommodate phrases such as “discovered phobos in 1873”.

Therefore, the definitions of all denotations of words have to be little more complex

than before. For example the definition of “Hall” has to be a little more complex. In the

previous semantics « “Hall”» denotes a set of properties that are true of the entitynaii •

Now, in the extended semantics « ”Hall”» will denote a set of properties with time

stamps. By different time stamps we mean different conditions. For example

Time 0 means forever

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time -100 means True

And [] means False

In this approach, transitive verbs are higher-order functions, which return sets of

attribute values as results rather than just truth values.

The semantics for 3-place transitive verbs in presented below:

Definitions:
In the modified semantics, nouns and verb phrases denote sets of tuples with the entities

and time stamps in it. These sets can be represented by lists in Miranda, for example:
planet = [ENTTIME e_mars to , ENTTIME e_uranus to , ENTTIME e_earth to]

spin = [ENTTIME e_deimos to , ENTTIME e_phobos to ,
ENTTIME e_Uranus to , ENTTIME e_europa to ,
ENTTIME e mars to , ENTTIME e earth to]

where entity
time
entity_time

= NAME [char]
= TIME num
= ENTTIME entity time

e_mars = NAME "mars"
tO = TIME 0

In the modified semantics, proper nouns (names) are implemented as functions, which

take a list as input, and which return list with time stamp in it if the list contains the entry

related to the proper noun, and the empty list otherwise. For example:
mars ents = [ENTTIME s t | ENTTIME s t <- ents; s = NAME "mars"]

Accordingly, d_<<earth spins>> => [enttime (name "earth") (time o)] hereby

0 we mean spins forever.

Quantifiers are implemented as higher-order functions, which are defined as follows:
every s t = s, if subset s t

= [] , otherwise
a s t = [ENTTIME y ttt | (ENTTIME y tt) <- s;

(ENTTIME z ttt) <- t; y = z]
no s t = [] , if res ~= []

= [ENTTIME (NAME "true") (TIME (-100))], otherwise
where res = a s t

Accordingly, d_<<every planet spins>>=> [ENTTIME (NAME "mars") (TIME 0),
ENTTIME (NAME "uranus")(TIME 0),
ENTTIME (NAME "earth") (TIME 0)]

which lists all the planets, time o means that they have been spinning forever.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The words “and” and “or” are also implemented as higher-order functions, which are

defined as follows:

term_or g h = r
where r s = (g s) ++ (h s) , if g s ~= [] \/ h s ~= []

= [] , otherwise
term_and p q = r

where r s = [] , if p s = [] \/ q s = []
= (p s) ++ (q s) , otherwise

In the modified semantics transitive verbs are implemented as follows:

make_transitive_verb rel p =
mkset [ENTTIME x t| (x, s) <- collect rel;

(ENTTIME y t)<- (p s); p s ~= []]
collect [] = []
collect ((EET x y z):t) = (x, (ENTTIME y z):

[ENTTIME b c |(EET a b c) <- t; a = x]):
collect[EET 1 m n|(EET 1 m n)<- t;l ~= x]

discover_rel = [EET (NAME "hall") (NAME "phobos") (TIME 1873),
EET (NAME "galileo") (NAME "europa") (TIME 1820),
EET (NAME "kuiper") (NAME "uranus") (TIME 1860),
EET (NAME "hall") (NAME "deimos") (TIME 1875)]

orbit_rel = [EET e_deimos e_mars to, EET e_phobos e_mars to,
EET e_mars e_sol to, EET e_earth e_sol to]

For example, in the new modified semantics evaluation of “discover europa” returns

[(Galileo, 1 8 2 0)], which is the name of the discoverer and the time. Also evaluation

of “orbits mars” now returns [(deimos, 0), (phobos, 0)] instead of just [deimos,
phobos] as in previous semantics.

By applying the new collect function to the relation orbit rel, the following is obtained:

collect orbit_rel = [(NAME "deimos",[ENTTIME (NAME "mars")(TIME 0)]),
(NAME "phobos",[ENTTIME (NAME "mars")(TIME 0)]),
(NAME "mars", [ENTTIME (NAME "sol") (TIME 0)]),
(NAME "earth", [ENTTIME (NAME "sol" (TIME 0)])]

So, the final result will be as follows:

orbit mars = mkset[ENTTIME x t| (x, s) <-
[(NAME "deimos", [ENTTIME (NAME "mars")(TIME 0)]),
(NAME" phobos", [ENTTIME (NAME "mars")(TIME 0)]),
(NAME "mars", [ENTTIME (NAME "sol") (TIME 0)]),

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(NAME "earth", [ENTTIME (NAME "sol") (TIME 0)])];
(ENTTIME y t)<- (mars s) ; mars s ~= []]

[ENTTIME (NAME "deimos") (TIME 0),
ENTTIME (NAME "phobos") (TIME 0)]

Similarly, <<discovered_by Hall>> will now return
[ENTTIME (NAME "phobos") (TIME 1873),
ENTTIME (NAME "deimos") (TIME 1875)].

Example queries:

Below are some example queries, which a Miranda program implementing approach 2

can handle.

Q : mars spins
A:[ENTTIME (NAME "mars") (TIME 0)]

The statement “mars spins” returns the entity mars and time 0 which means mars has

been spinning forever.

Q: mars (orbits sol)
A: [ENTTIME (NAME "mars") (TIME 0)]

Similarly, the statement “mars orbits sol” returns the entity mars and time 0 which means

mars has been orbiting sol forever. Here the entity mars is returned as answer, which is

redundant information, but we return the entity and time in order to keep all the return

types same of all same structure.

Q: (mars $term_and phobos) spin
A: [ENTTIME (NAME "mars") (TIME 0),ENTTIME (NAME "phobos") (TIME 0)]

In the same way the query “mars and phobos spins” returns the entity mars and time 0

and entity phobos and time 0 which means they both have been spinning forever.

Q: hall (discovered (phobos $term_and deimos))

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: [ENTTIME (NAME "hall") (TIME 1873),ENTTIME (NAME "hall") (TIME
1875)]

The statement “hall discovered phobos and deimos” returns the entity hall and time 1873

and the entity hall again and the time 1875 which means hall discovered phobos in 1873

and deimos in 1875. The answer is a little ambiguous, as it doesn’t state which time is for

phobos and which time is for deimos, but the order is preserved.

Q: hall (discovered (phobos $term_and europa))
A: []

The statement “hall discovered phobos and europa” returns the empty list, which means

that the statement is false, so hall didn’t discover both phobos and europa. We use the

empty list to denote false.

Q: hall (discovered (phobos $term_or europa))
A: [ENTTIME (NAME "hall") (TIME 1873)]

The statement “hall discovered phobos or europa” returns the entity hall and time 1873

which means hall discovered one of the moons above which is hall discovered phobos in

1873. The answer is ambiguous, as it doesn’t state if the time is for phobos or europa. We

need to do other queries to find out the right answer.

Q: hall (discovered (no moon)
A: []

The statement “hall discovered no moon” returns empty list, which means that the

statement is false.

Q: no man (discovered (no moon))
A: []

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The query “no man discovered no moon” returns the empty list, which means that the

statement is false.

Q: no planet (discovered (no moon))
A: [ENTTIME (NAME "true") (TIME (-100))]

The query “no planet discovered no moon” returns a strange result. However, it is not the

empty list so it indicates that the statement is True.

Q: when did (hall (discover phobos))
A: [ENTTIME (NAME "hall") (TIME 1873)]

The query “when did hall discover phobos?” returns the entity hall and the time 1873
which means that hall discovered phobos in 1873.

Putting all the pieces together (approach 2):

Below we present the full program that handles 3-place transitive verbs for a small sub­

set of English. The program can answer various questions about the solar system. Please

note that the objective of our research is not to create a Miranda program for a particular

set of queries but to develop a compositional semantics. We use Miranda only to

formalize the definitions and illustrate an example of their use.

entity : :: = NAME [char]
e_mars = NAME "mars"
e deimos = NAME "deimos"
e hall = NAME "hall"
e_phobos = NAME "phobos"
e galileo = NAME "galileo
e europa = NAME "europa"
e kuiper = NAME "kuiper"
e_uranus = NAME "uranus"
e sol = NAME "sol"
e earth = NAME "earth"
time ::= TIME num
tO = TIME 0
tl = TIME 50
entity_time ::= ENTTIME entity time
planet = [ENTTIME e_mars tO, ENTTIME e_uranus tO, ENTTIME e_earth tO]
planets = planet
moon = [ENTTIME e_deimos to,

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ENTTIME e_phobos tO,
ENTTIME e_europa to]

moons = moon
spin = [ENTTIME e_deimos to, ENTTIME e_phobos to,

ENTTIME e_uranus to, ENTTIME e_europa to,
ENTTIME emars tO, ENTTIME e_earth tO]

spins = spin
man = [ENTTIME e_kuiper to, ENTTIME e_hall to, ENTTIME e_galileo to]
men = man
mars ents = [ENTTIME S t ENTTIME S t < - ents s = NAME "mars"]
hall ents = [ENTTIME S t ENTTIME S t <- ents s = NAME "hall"]
phobos ents = [ENTTIME S t ENTTIME S t <- ents s = NAME "phobos"]
galileo ents = [ENTTIME S t ENTTIME S t <- ents s = NAME "galileo"]
europa ents = [ENTTIME S t ENTTIME S t <- ents s = NAME "europa"]
kuiper ents = [ENTTIME s t ENTTIME s t <- ents s = NAME "kuiper"]
deimos ents = [ENTTIME s t ENTTIME s t < - ents s = NAME "deimos"]
uranus ents = [ENTTIME s t ENTTIME s t <- ents s = NAME "uranus"]
sol ents = [ENTTIME s t ENTTIME s t <- ents s = NAME "sol"]
earth ents = [ENTTIME s t ENTTIME s t <- ents s = NAME "earth"]
set_ent_time ::= SET_ENT_TIME [entity_time]
every s t = s, if subset s t

= [] , otherwise
a S t = [ENTTIME y ttt | (ENTTIME y tt) <- S ; (ENTTIME z ttt) <- t; y=z]
no s t = [] , if res ~= []

= [ENTTIME (NAME "true") (TIME (-100))], otherwise
where res = a s t

intersect = a
union s t = s + + (t - - s)
subset x y = (x -- y) = []
noun_and s t = [ENTTIME y tt I (ENTTIME y tt) <- s] ++ [ENTTIME z ttt
| (ENTTIME Z ttt) <- t]
noun_or s t = union s t
verb_and s t = f

where f ents = s ents ++ t ents
term_or g h = r

where r s = (g s) ++ (h s) , if g s ~= [] \/ h s ~= []
= [] , otherwise

term_and p q = r
where r s = [] , if p s = [] \/ q s = []

= (p s) ++ (q s) , otherwise

make_transitive_verb rel p = mkset [ENTTIME x t| (x, s) <- collect rel;
(ENTTIME y t)<- (p s); p s ~= []]

collect [] = []

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

collect ((EET x y z):t) = (x, (ENTTIME y z):[ENTTIME b c |
(EET a b c) <- t; a = x]): collect
[EET 1 m n | (EET 1 m n) <- t; 1 ~= x]

entity_entity_time ::= EET entity entity time
entity_setentity_time ::= E_setET entity [entity__time] time
discover_rel = [EET (NAME "hall") (NAME "phobos") (TIME 1873),

EET (NAME "galileo") (NAME "europa") (TIME 1820),
EET (NAME "kuiper") (NAME "uranus") (TIME 1860),
EET (NAME "hall") (NAME "deimos") (TIME 1875)]

orbit_rel = [EET e_deimos e_mars t o , EET e_phobos e_mars t o ,
EET e_deimos e_sol to, EET e_phobos e_sol to,
EET e_mars e_sol to, EET e_earth e_sol to]

discovered = discover
discover = make_transitive_verb discover_rel
is_discovered_by = make_transitive_verb (invert discover_rel)
orbit = make_transitive_verb orbit_rel
orbits = orbit
is_orbited_by = make_transitive_verb (invert orbit_rel)
invert rel = [EET y x z | EET x y z <- rel]
remove_dup [] = []
remove_dup ((ENTTIME x y): es) = (ENTTIME x y): remove_dup es,

if -member1 x es
= remove_dup es, otherwise

member 1 p [] = False
memberl p ((ENTTIME x y):es) = True \/ memberl p es, if p=x

= False \/ memberl p es, otherwise
how_many s t = #(remove_dup (a s t))
which = a
what x = x
does [TIME 0] = [TIME 100]
does [] = []
is = does
when f res = res
did res = res ~= []
who x = x

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.4 Critical analysis of Approach 2
We can see from the example queries of approach 2 that some of the answers returned by

the Miranda program are ambiguous. Some times we need to ask more questions to

resolve this ambiguity. Investigation also showed that if we want to extend this approach

to accommodate 4-place and 5-place transitive verbs, adding more information to

different relations (e.g. discover_rel, orbit rel) is not sufficient. We also need to change

the definition of all the denotations of words (e.g. hall, phobos, deimos etc). Hence, the

approach has lost “extensibility” as the old definitions require substantial changes, to

accommodate extra arguments for verbs. Also loss of orthogonality as different

definitions are required for n=3, n=4 n=5 verbs etc. To overcome this problem we

developed another approach, which is described in the next chapter.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8 THE FINAL APPROACH

8.1 The approach

In this approach transitive verbs are higher-order functions, which return sets of attributes

values (things) as results rather than just truth-values as in the FL approach. In the new

modified semantics [discover phobos] will return all information that is available in

the relation e.g.

d_<< "discover phobos" >> => [[Person "Hall",
Moon "Phobos",
TIME 18 70,
Implement "with a telescope"...etc]

And question like “Did hall discovered phobos” should return yes or no plus some other

information like when and with what etc. Phrases such as “who” “when” “how_many”,

“with what”, etc will filter out all the unnecessary information.

The following are examples the types of the objects denoted by words and phrases of

some syntactic categories in the modified semantics.

noun
intransverb
propernoun
determiner
transverb

[[things]]
[[things]]
[[things]] -> [[things]]
[[things]] -> [[things]] -> [[things]]
([[things]] -> [[things]]) -> [[things]]

where things denote sets of attributes values.

Below we show how an illustrative example query processor based on the new

semantics can be implemented in Miranda.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2 Example implementation 1: A solar-system database

In the modified semantics nouns and verb phrases denote sets of sets with the entities in

it. These sets can be represented by lists of lists in Miranda, for example:

entity == [char]
time == num

things : Person entity
Implement entity
Moon entity
Time time
Planet entity
Sun entity
Color entity

planet = [[Planet "mars"], [Planet "uranus"], [Planet "earth"]]
moon = [[Moon "phobos"], [Moon "deimos"], [Moon "europa"]]

In the modified semantics, proper nouns (names) are implemented as functions, which

take a list of lists as input, and which return a list of lists if the list contains the entry

related to the proper noun, and empty list otherwise. For example:

mars 1 = [s | s <- 1; member s (Planet "mars")]

Accordingly, d_<<mars spins>> => [[Planet "mars"]], which indicates that the

planet mars spins, as the statement is true.

Quantifiers are implemented as higher-order functions, which are defined as follows:

every s t = s, if subset s (remove t)
= [], otherwise

remove t = [[a] | a:aa <- t]
subset x y True , if (x -- y) = []

= False, otherwise
a s t = [l:mm | 1:11 <- s; m:mm <- t; 1 = m]
no s t = [] , if res ~= []

= [[Value "true"]], otherwise
where res = a s t

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Accordingly, d_<<every moon spins>> => [[Moon "phobos"],
[Moon "deimos"],
[Moon "europa"]]

which is non-empty indicating True.

The words “and” and “or” are also implemented as higher-order functions, which are

defined as follows:
term_or g h = r

where r s = (g s) ++ (h s) , if g s ~= [] \/ h s ~= []
= [] , otherwise

noun_and s t = union s t
union s t = s + + (t - - s)
verb_and s t = f

where f ents = s ents ++ t ents
term_and p q = r

where r s = [] , if p s = [] \/ q s =
= (p s) ++ (q s) , otherwise

The denotation of the phrase (term_and p q) is a function r which takes a list of

entities s as input and which return a list of entities by appending the values (p s) and

(q s).
From example,

(phobos $term_and deimos) spin => [[Moon "phobos"],[Moon "deimos"]]

In the modified semantics transitive verbs are implemented as follows:

make_transitive_verb rel p = mkset [x : t| (x, s) <- collect rel;
t <- (p s) ; p s ~= []]

collect [] = []
collect ((x:t):r) = (x,t:[s | (a:s)<- r; a = x]): collect

[1: f I (1: f) <- r; 1 ~= x]
discover_rel = [[(Person "hall"),

(Moon "phobos"),
(Time 1873),
(Implement "with telescope")],
[(Person "hall"),
(Moon "deimos"),
(Time 1875),
(Implement "with telescope")],
[(Person "kuiper"),

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Moon "uranus"),
(Time 1860),
(Implement "with telescope")],
[(Person "galileo"),
(Moon "europa"),
(Time 1820) ,
(Implement "with telescope")]]

orbit rel [[(Moon "deimos"),
[(Moon "phobos"),
[(Planet "mars"),
[(Planet "earth"),

(Planet "mars")],
(Planet "mars")],
(Sun "sol")],
(Sun "sol")]]

discovered = discover
discover = make_transitive_verb discover_rel
orbit = make_transitive_verb orbit_rel
orbits = orbit

For example, in the new modified semantics evaluation of <<discover europa>>
returns [[Person "galileo",

Moon "europa",
Time 1820,
Implement "with telescope"]].

Also evaluation of “orbits mars” now return
[[Moon "deimos", Planet "mars"],
[Moon "phobos", Planet "mars"]]

By applying the new collect function to the relation orbit_rel, the following is obtained:
collect orbit_rel = [(Moon "deimos", [[Planet "mars"]]),

(Moon "phobos", [[Planet "mars"]]),
(Planet "mars", [[Sun "sol"]]),
(Planet "earth", [[Sun "sol"]])]

So, the final result will be as follows:

orbit mars = mkset [x : t| (x, s) <-
(Moon "deimos", [[Planet "mars"]]) ,
(Moon "phobos", [[Planet "mars"]]) ,
(Planet "mars", [[Sun "sol"]]) ,
(Planet "earth", [[Sun "sol"]])] ;
t <-(mars s); mars s []]

=[[Moon "deimos", Planet "mars"],
[Moon "phobos", Planet "mars"]]

Similarly, verb discover will be treated as follows:

discovered p = mkset [x : t| (x, s) <- collect discoverrel;

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t <- (p s) ; p S~= []]

collect discover rel discover rel
Hall [[Phobos, 1873, Telescope] Hall Phobos 1873 Telescope

[Demios, 1875, Telescope]] collect Hall Deimos 1875 Telescope
Kuiper [[Uranus, 1860, Telescope]] *— Kupier Uranus 1860 Telescope
Galileo [[Europa, 1820, Telescope]] Galileo Europa 1820 Telescope

discovered phobos =>
mkset [x : t| (x, s) <- collect
[(Person "Hall", [[Moon "phobos",Time 1873,Implement "with telescope"],

[Moon "deimos",Time 1875,Implement "with telescope"]]),
(Person "kuiper", [[Moon "uranus",Time 1860,Implement "with telescope"]]),
(Person "galileo",[[Moon "europa",Time 182 0,Implement "with telescope"]])];

t <-(Phobos s); Phobos s~ = []]

discovered phobos => [[Person "hall",
Moon "phobos",
Time 1873,
Implement "with telescope"]]

Similarly, <<discovered_by Haii>> will now return
[[Moon "phobos",

Person "hall",
Time 1873,
Implement "with telescope"],

[Moon "deimos",
Person "hall",
Time 1875,
Implement "with telescope"]]

And phrases like <<when did hall discover phobos>> will filter out necessary

information. For example:

<<hall discovered phobos>> => [[Person "hall",
Moon "phobos",
Time 1873,
Implements "with telescope"]]

And <<when did hall discover phobos>> => [Time 1873]

The complete program listing is given in the appendix.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3 Example implementation 2: A database about books and

authors
Now, we can use the definitions of every, a, no, term_and, term_or, transitive verbs etc in

a new application.

In this semantics nouns phrases denote set of sets with the entities in it.
book = [[Book "Hamlet"], [Book "Merchant of Venice"],

[Book "Rage of Angels"],[Book "If Tomorrow Comes"]]

where entity == [char]
time == num

things : : = Name entity
| Book entity
| Place entity
| Time time
j Value entity

In this semantics, proper nouns (names) are implemented as functions, which take a list

of lists as input, and which return a list of lists if the list contains the entry related to the

proper noun, and empty list otherwise. For example

Shakespeare 1 = [(a:as) | (a:as) <- 1; a = (Name "Shakespeare")]

In this semantics transitive verbs are implemented as the above application. So, the same

definition of transitive verb of our approach can be used for the verbs like “write”.

By applying new collect to the relation written_rel, the following is obtained:

written_rel = [[(Name "Shakespeare"),
(Book "Hamlet"),
(Time 1573),
(Place "England")],
[(Name "shakespeare"),
(Book "Merchant of Venice"),
(Time 1575),
(Place "England")],
[(Name "Sidney"),
(Book "Rage of Angels"),
(Time 1950),

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Place "USA")],
[(Name "Sidney"),
(Book "If Tomorrow Comes"),
(Time 1940),
(Place "USA")]]

collect written_rel =
[(Name "shakespeare",[[Book "Hamlet", Time 1573, Place "England"],

[Book "Merchant of Venice",Time 1575,Place "England"]])
(Name "Sidney", [[Book "Rage of Angels", Time 1950,Place "USA"],

[Book "If Tomorrow Comes", Time 1940,Place "USA"]])]

So, the final result will be as follows:
wrote hamlet = mkset [x : t| (x, s) <-
[(Name "shakespeare",[[Book "Hamlet", Time 1573, Place "England"],

[Book "Merchant of Venice", Time 1575,Place"England"]])
(Name "sidney", [[Book "Rage of Angels", Time 1950,Place "USA"],

[Book "If Tomorrow Comes", Time 1940,Place "USA"]])];
t <-(hamlet s); hamlet s ~= []]

= [[Name "shakespeare",
Book "Hamlet",
Time 1573,
Place "England"]]

Similarly, <<was_written_by Shakespeare>> return
[[Book "Hamlet", Name "shakespeare", Time 1573,Place "England"],
[Book "Merchant of Venice",Name "shakespeare",Time 1575,Place "England"]]

which is everything that Shakespeare wrote.

And phrases like <<when Shakespeare wrote hamlet>>,<<where did Shakespeare
write hamlet>> etc will filter out necessary information.

For example:
<<Shakespeare wrote hamlet>> => [[Name" shakespeare", Book "Hamlet",

Time 1573,Place "England"]]
And << when Shakespeare wrote hamlet >> => [Time 1573]

<< where did Shakespeare wrote hamlet>> => [Place "England"]

The complete program listing is given in the appendix.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9 EVALUATION OF THE FINAL

APPROACH

9.1 Overview

Below we again specify the objectives for our semantics as discussed in as in chapter 2:

a) We will state examples of types of questions that our semantics will be able to

handle, give small grammars for them, and compute the sizes of the example

languages.

b) The new semantics will maintain the orthogonality of the old semantics- i.e. that

the meaning of all (disambiguated) words is independent of context, and that the

rules of composition are also independent of context.

c) The new semantics will maintain the syntactic/semantic correspondence i.e.

phrases of the same syntactic category denote functions of the same semantic type.

And the thesis statement is

“It is possible to extend the set-theoretical compositional semantics developed by Frost et

al to accommodate n-ary transitive verbs, (n > 2) by re-defining all denotations to involve

sets of attributes rather than simple entities, without loss of compositionality. ”

We now discuss how our approach meets these objectives and proves the thesis.

9.2 A Grammar for example query processor #1

Below we present a small grammar based on our semantics, which can answer various

questions about our solar system:

A small grammar (recursive)::

query ::= term_phrase
| who term_phrase
| when term_phrase
| with_what term_phrase
| which term_phrase
| how many term_phrase

51

verb_phrase
verb_phrases
verb_phrases
verb_phrases
verb_phrase
verb_phrase

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

verb_phrase ::= transitive_verb_phrase
| intransitive_verb_phrase

transitive_verb_phrase ::=transitive_verb join_term_phrase

intransitive_verb_phrase ::= intransitiveverb
| intransitiveverbs join_verb intransitive_verb

join_term_phrase ::= term_phrase
| term_phrase term J o in join_term_phrase

term_phrase ::= properjiouns
| det_phrase

det_phrase ::= determiner noun_phrase

noun_phrase ::= noun
| noun noun J o in noun_phrase
| adjective noun

adjective ::= red

determiner ::= a | no | every

term Jo in and | or

verb J o in ::= and | or

nounJoin::= and | or

transitive_verb ::= discover | orbit

intranstive verb ::= spin

noun ::= moon | planet

proper noun ::= Hall | Galileo | Phobos | Deimos

The above grammar is recursive, so the size of the language is infinitive and can’t be

calculated. Below we present a small grammar of depth recursion 2 and calculate its size.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Non-Recursive:

Query1555920 ::= termphrase40verb phrase6483
| who term_phrase4 verb_phrases6483
| when1 term_phrase40 verb_phrases6483
| withjwhat’ term_phrase40 verb_phrases6483
| which1 term_phrase40 verb_phrase6483
| how_many’ term_phrase40 verb_phrase6483

verb_phrase6483 ::= transitive_verb_phrase6480
| intransitive_verb__phrase3

transitive_verb_phrase6480 ::= transitive_verb2 term_phrase40
| transitive_verb2 term_phrase40 term join2 term_phrase40

intransitive_verb_phrase3 ::= intransitiveverb1
| intransitiveverb1 join_verb2 intransitive verb1

term_phrase40 ::= proper nouns6
| det_phrase34

det_phrase34 ::= noun_phrase34

noun_phrase34 ::= noun2
| noun2 noun_join2 noun2
| noun2 nounjoin2 adjective1 noun2
| adjective1 noun2 noun join2 noun2

1 'y ^ 1 0

| adjective noun noun J o in adjective noun

adjective1 ::=red'

3 1 1 1determiner ::=a | no | every

2 1 1 term join ::=and | or

2 1 1 verb J o in and | or

9 i i

noun Jo in ::= and | or

2 1 1 transitive_verb ::= discover | orbit

intranstiveverb1 spin1

2 1 1noun ::=moon | planet

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

propernoun6 ::= Hall1
| Galileo1
| Phobos1
| Deimos1
| Europa1
| Mars1

From the above we can see that even for a small non-recursive grammar the size of the

language is 1555920. This language is a sub-set of the language that can be interpreted by

our small example query processor. Therefore, the example illustrates the

compositionality of the approach as small semantic definitions can be used to interpret

expressions of very large languages.

9.3 Example queries for solar system processor:

Below are some example queries about solar system, which the new semantics can
accommodate:

Q: hall (discovered phobos)
A: [[Person "hall",Moon "phobos", Time 1873,Implements "with telescope"]]
The query "hall discovered phobos" returns a list containing entity
hall, entity phobos, time 1873 and implement telescope which means hall
discovered phobos in 1873 with a telescope. So the query returns all
the information, which is related with hall's discovery of phobos.

Q: which person (discovered deimos)
A: [[Person "hall"]]
The query "which person discovered deimos" returns a list containing
entity hall that is the name of the person who discovered deimos.

Q: which person (discovered europa)
A: [[Person "galileo"]]
The query "which person discovered europa" returns a list containing
entity galileo that is the name of the person who discovered europa.

Q: how_many planets spin
A: 3

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The query "how_many planet spins" computes how many planets spin by
doing intersection on the spins set and the planet set and returns
3 (according to the information in our database) that means the number
of planets that spin.

Q: which moon (orbit mars)
A:[[Moon "phobos"],[Moon "deimos"]]
The query "which moon orbit mars" returns a list containing the entity
phobos in a list and entity deimos in another list which is the names
of the moons that orbit mars.

Q: which moon spins
A: [[Moon "phobos"],[Moon "deimos"],[Moon "europa"]]

The query "which moon spins" return a list containing the entity phobos
in a list, entity deimos in a list and entity europa in a list which is
the names of the moons that spin.

Q: which planet (orbit sol)
A:[[Planet "mars"],[Planet "earth"]]
The query "which planet orbit sol" returns a list containing the entity
mars in a list and entity earth in another list which is the names of
the planets that orbit sol.

Q: a moon spins
A: [[Moon "phobos"],[Moon "deimos"],[Moon "europa"]]
The statement "a moon spins" return a list containing the entity phobos
in a list and entity deimos in a list and europa in a list which is the
names of the all moons that spins instead of just returning true or
false, which is little ambiguous. Here as the query is not returning an
empty list therefore the statement is true, if the query returns an
empty list then the statement is false.

Q:what (was_discovered_by hall)
A:[[Moon "phobos"],[Moon "deimos"]]
The query "what was discovered by hall" returns a list containing
entity phobos, and entity deimos in a list which is all the things that
hall discovered.

Q: with_what did (hall (discovered phobos))
A: [Implements "with telescope"]

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The query "with what hall discovered phobos" returns a list containing
entity telescope that is the implement that hall used to discover
phobos.

Q: when did (hall (discovered (phobos $term_and deimos)))
A: [Time 1873,Time 1875]
The query "when hall discovered phobos and deimos" returns a list
containing time 1873, and time 1875 which is the times when hall
discovered phobos and deimos. The answer is little ambiguous, as it
doesn't specify which time is for phobos and which time is for deimos.
We need additional query to the database to get that information.

Q: hall (discovered phobos)
A: [[Person "hall",Moon "phobos",Time 1873,Implements "with
telescope"]]
The statement "hall discovered phobos" return a list containing the
entity hall, entity phobos, time 1873, implement telescope in a list
that is all information that has to do with hall's discovery of phobos
instead of just returning true or false. This is a little ambiguous.
Here as the statement is not returning an empty list therefore the
statement is true, if the query returns an empty list then the
statement is false.

Q: which moon (was_discovered_by hall)
A: [[Moon "phobos"],[Moon "deimos"]]
The query "which moon was discovered by hall" returns a list containing
the entity phobos in a list, and the entity deimos in a list which is
names of all the moons that were discovered by hall.

Q :every planet spins
A: [[Planet "mars"], [Planet "uranus"], [Planet "earth"]]
The query "every planet spins" return a list containing the entity mars
in a list and entity uranus in a list and earth in a list which is the
names of the all planets that spins instead of just returning true or
false.

Q:((when $verb_and who) (discovered phobos))
A:[Time 1873,Person "hall"]

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The query "when and who discovered phobos" returns a list containing
the time and the name of the person who discovered phobos.

9.4 Example queries for the authors and books processor:

Below are some example queries about authors and books, which the new semantics can
accommodate:

Q: (when $verb_and where_did)(Shakespeare (write hamlet))
A: [Time 1573,Place "England"]
The query "when and where Shakespeare wrote hamlet" returns a list
containing the time entity 1573 and the place entity England, which is
the time and place when and where Shakespeare wrote hamlet.

Q: what (was_written_by Shakespeare)
A: [Book "Hamlet", Book "Merchant of Venice"]
The query "what was written by Shakespeare" returns a list containing
the book entity Hamlet and the book entity Merchant of Venice
(according to our database) which is the names of all the books/plays
that Shakespeare wrote.

Q: who (wrote hamlet)
A: [Name "Shakespeare"]
The query "who wrote hamlet" returns a list containing the entitiy
shakespeare which is the name of the author who wrote hamlet.

Q: how_many books (were_written_by shakespeare)
A: 2
The query "how_many books were written by shakespeare" computes how
many books shakespeare wrote by doing intersection on the books set and
the set returned from the query (written by Shakespeare) and returns
2 (according to the information in our database) which is the number of
books Shakespeare wrote.

Q: what (was_written_by Sidney)
A: [Book "Rage of Angels", Book "If Tomorrow Comes"]
The query "what was written by Sidney" returns the book entity "rage of
angels" and the book entity "if tomorrow comes" which is all the books
Sidney wrote according to the information in our database.

Q: when did (Shakespeare (write hamlet))

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: [Time 1573]
The query "when did Shakespeare write hamlet" returns a list containing
the time entity 1573, which is the time, when Shakespeare wrote hamlet.

9.5 Syntactic/Semantics correspondence
The resulting semantics is fully-compositional. In this approach there is a

syntactic/semantic correspondence, that is, phrases of the same syntactic category denote

functions of the same semantic type. The type of the denotation of the phrase “every

planet” is of the same type as the denotation of the proper noun “Earth”. This is

consistent with FL’s implementation of Montague’s approach, which states that words

and phrases of the same syntactic category should denote semantic values of the same

type. For example using the Miranda type inference system on examples of phrases of the

same syntactic category shows that they denote functions of the same semantic type. For

example, in our semantics all term phrases has the same semantic type:
Hall
Hall $and Kuiper
A moon
A (moon $or planet)
every moon
no planet

[[things]]->[[things]]
[[things]]->[[things]]
[[things]]->[[things]]
[[things]]->[[things]]
[[things]]->[[things]]
[[things]]->[[things]]

And all verb phrases have the same semantic type:
discovered phobos
discovered (phobos $and deimos)
orbits mars
was_discovered_by hall
was_discovered_by (hall $or kuiper)
spins
every moon spins
hall (discovered (every moon))
hall (discovered phobos)
discovered (no planet)

[things]
[things]
[things]
[things]
[things]
[things]
[things]
[things]
[things]
[things]

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All noun phrases have the same semantic type:
moon
planet
moon $noun_and planet

[[things]]
[[things]]
[[things]]

From above we can see that words and phrases of the same syntactic category denote

semantic values of the same type in our semantics.

9.6 Orthogonality
The semantics is orthogonal like Montague’s. Many words that appear in different

syntactic contexts denote a single function therefore avoiding the need to assign different

meaning in these different contexts. For example in the phrases like

1) Hall discovered phobos.

Phobos was discovered by Hall.

Hall and deimos

Above Hall has the same meaning in these three different contexts.

2) Every moon spins.

Hall discovered every moon.

Here also every has the same meaning for different contexts.

So our semantics is highly orthogonal as in our semantics the meaning of the majority the

words are independent of context. But there is some loss of orthogonality for “and” as we

need three different “and” (noun and, verb and, and term and) to handle nouns, terms and

verbs. However, this was also a problem with the FL approach.

Orthogonality and the syntactic/semantic relationship guarantee that our semantics

will be compositional in the sense that the meaning of expressions of a very large query

language can be computed using a very small number of semantic rules. As our semantics

meets all the objects therefore we can say that our thesis is proven.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 10 CONCLUDING COMMENTS

10.1 What has been achieved?
a) The Thesis Statement:

“It is possible to extend the set-theoretical compositional semantics developed by

Frost et al to accommodate n-ary transitive verbs, (n > 2) by re-defining all

denotations to involve sets of attributes rather than simple entities, without loss of

compositionality. ”

has been proven by:

1. Developing a grammar, even limited to of depth of recursion of 2, for small sub­

set for a tiny database, defined by 80 lines of semantics and database, can

answer approximately 1,500,000 queries.

2. Showing the results from execution of example queries.

3. Showing that the new semantics maintains orthogonality.

4. And also showing that the new semantics maintains the syntactic/semantic

correspondence.

b) A new way to think of semantics for transitive verbs with the arity greater

than 2, has been developed.

c) The new approach can be used to define the semantics for transitive verbs of arbitrary

n by adding necessary information to the relations and by declaring the new attributes.

Existing definitions don’t need to be changed. Hence the approach is highly extensible.

10.2 Contribution to Computational Linguistics and Computer

Science
Our research has contribution to computational linguistics as we have extended an

existing linguistics theory developed by Montague and demonstrated the tractability of its

implementation. Montague didn’t provide much about how to handle n-place transitive

verbs and in our thesis work we have extending the Montague Semantics to handle n-ary

transitive verbs.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Montague’s approach to transitive verbs is convoluted (see page 20,21). Our approach

is to handle n-place transitive verbs in an extending set-theoretic approach of Montague

semantics where transitive verbs using ^.-notation are defined as: “az z(ky Ax verb(x,y))”

which is a straightforward denotation of transitive verbs in Montague style.

Also owing to the one-to-one correspondence between the syntax and semantic rules,

our semantics can be readily implemented in a syntax-directed evaluator with a speech-

recognition front-end.

10.3 Suggestions for Future Work
This approach could be extended to handle queries like “which planet lies between
earth and mars?”. Currently our approach doesn’t handle this type of construct. It can

also be extended to include negation using the set-theoretic approach to accommodate

negation developed by Frost and Boulos (2002). Also queries like “John and Mary
went to dinner at 7 pm” are not handled by our approach as the statement has

different meaning like did they go together or separately. They investigation of such

extensions is appropriate future work.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Androutsopoulos I., Ritchie G. D., and Thanisch P.(1995) Experience using tsql2 in
a natural language interface. In: Proceedings o f the International Workshop on
Temporal Databases, Zurich, pp. 113-132.

[2] Androutsopoulos, I. and Ritchie G.D. and Thanisch P. (1995) Natural Language
Interfaces to Databases-an introduction. Journal of Language Engineering, Vol 1,
No l,pp . 29-81.

[3] Bennett, Michael. (1974) Some Extensions of a Montague Fragment of English,
University of California at Los Angeles: PhD. dissertation; distributed by Indiana
University Linguistics Club.

[4] Clifford J. (1990) Formal Semantics and Pragmatics for Natural Language Querying.
Cambridge University Press.

[5] Dowty, D. R., Wall, R. E. and Peters, S. (1981) Introduction to Montague Semantics.
D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo.

[6] Frost, R. A. and Launchbury, E. J. (1989) Constructing natural language interpreters
in a lazy functional language’. The Computer Journal - Special edition on Lazy
Functional Programming, 32(2) 108-121.

[7] Frost R. A. and Saba W. S. (1990) A database interface based on Montague’s
approach to the interpretation of natural language. International Journal o f Man-
Machine Studies, 33(2): 149-176.

[8] Frost, R. A. and Chitte, S. (1999) A new approach for providing natural-language
speech access to large knowledge bases. Proceedings o f the Pacific Association o f
Computational Linguistics Conference PACLING ‘99, University of Waterloo, August
1999, 82-89.

[9] Frost R.A., Boulos P. (2002) An Efficient Compositional Semantics for Natural-
Language Database Queries with Arbitrarily-Nested Quantification and Negation.
Canadian Conference on A I 2002: 252-267

[10] Hasting J. D. (1991) Design and Implementation of a Speech Recognition Database
Query System, M.S. Department, University of Wyoming.

[11] Karttunen, L. (1976) "Discourse Referents," in J. McCawley (ed.) Syntax and
Semantics 7: Notes From the Linguistic Underground, (pp. 363-385) New York:
Academic Press.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12] Lapalme, G. and Lavier, F. (1990) Using a functional language for parsing and
semantic processing. Publication 715a, Departement d’informatique et recherche
operationelle, Universite de Montreal

[13] Larson, R., M. den Dikken and P. Ludlow, (1997) “Intensional Transitive Verbs and
Abstract Clausal Complementation”, Linguistic Inquiry.

[14] Levin, Beth. (1993) English Verb Classes and Alternations: A Preliminary
investigation. Chicago: University of Chicago Press.

[15] McCawley, J. (1979) "On Identifying the Remains of Deceased Clauses," in J.
McCawley (pp. 74-85).

[16] Miyagawa, Shigeru & Takae, Tsujioka. (2004) Argument structure and ditransitive
verbs in Japanese. Journal o f East Asian Linguistics 13: 1-38.

[17] Popescu M. A., Etzioni O. and Kautz H., (2003) Towards a Theory of Natural
Language Interfaces to Databases. IUI.

[18] Reis P., Mamede N., Matias J. (1997) Edite — A Natural Language Interface to
Databases: a New Dimension for an Old Approach in "Proceeding o f the Fourth
International Conference on Information and Communication Technology in
Tourism", ENTER' 97, Edinburgh, Scotland.

[19] Ross, J. (1976) "To Have Have and to Not Have Have", in M. Jazayery, E. Polom,
and W, Winter (eds.) Linguistic and Literary Studies in Honor o f Archibald Hill.
(pp. 263-270).

[20] Stratica N., Kosseim L. and Desai B.C. (2002) A Natural Language Processor for
Querying C indi. In Proceedings o f International Conference Advances in
Infrastructure for e-Business, e-Education, e-Science, and e-Medicine on the

Internet (SSGRR 2002s), L'Aquila, Italy.

[21] Yates A. and Etzioni O. and Weld D. (2003) Reliable natural language interfaces to
household appliances. IUI-03.

[Keywords: Natural language interface, database, appliance, and planner.]

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[22] Yonezaki N. and Enomoto H. (1980) Database system based on intensional logic,

COLING-80, pp. 220-27

Related Publications by the Author

[1] Roy M. and Frost R.A. (2004) Extending Montague Semantics for Use in Natural-

Language Database-Query Processing. Canadian Conference on AI2004:567-568

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A - Program listing

Program listing:

Below we present an illustrative example query processor, based on our semantics in
Miranda, which can answer various questions about our solar system:

entity == [char]
time == num
things ::= Person entity

| Implements entity
| Moon entity
| Time time
| Planet entity
| Sun entity

planet = [[Planet "mars"], [Planet "uranus"], [Planet "earth"]]
planets = planet
moon = [[Moon "phobos"], [Moon "deimos"], [Moon "europa"]]
moons = moon
spin = [[Moon "phobos"], [Moon "deimos"],

[Planet "uranus"], [Moon "europa"],
[Planet "mars"], [Planet "earth"],
[Sun "sol"]]

spins = spin
people = [[Person "hall"], [Person "galileo"], [Person "kuiper"]]

mars 1 = s s < - 1; member s (Planet "mars")]
hall 1 = s s < - 1; member s (Person "hall")]
phobos 1 = s s < - 1; member s (Moon "phobos")]
galileo 1 = s s < - 1; member s (Person "galileo")]
europa 1 = s s < - 1; member s (Moon "europa")]
kuiper 1 = ' s s < - 1; member s (Person "kuiper")]
deimos 1 = s s < - 1; member s (Moon "deimos")]
uranus 1 = 1 s s < - 1; member s (Planet "uranus")]
sol 1 = s s <- 1; member s (Sun "sol")]

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

earth 1 = [s | s <- 1; member s (Planet "earth")]

every s t = s, if subset s (remove t)
= [], otherwise

remove t = [[a] | a:aa <- t]
subset x y True , if (x -- y) = []

= False, otherwise
a s t = [l:mm | 1:11 <- s; m:mm <- t; 1 = m]
no s t = [] , if res ~= []

= [[Value "true"]], otherwise
where res = a s t

intersect s t = s -- (s--t)
union s t = s + + (t - - s)
noun_and s t = union s t
verb_and s t = f

where f ents = s ents ++ t ents

term_or g h = r
where r s = (g s) ++ (h s) , if g s ~= [] \/ h s ~= []

= [] , otherwise

term_and p q = r
where r s = [] , if p s = [] \/ q s = []

= (p s) ++ (q s) , otherwise

make_transitive_verb rel p = mkset [x : t| (x, s) <- collect rel; t <-
(p s) ; p s ~= []]

collect [] = []
collect ((x:t):r) = (x,t:[s | (a:s)<- r; a = x]):

collect [1:f | (1:f) <- r; 1 ~= x]

discover_rel =
[[(Person "hall"), (Moon "phobos"), (Time 1873), (Implement "with telescope")],
[(Person "hall"), (Moon "deimos"), (Time 1875), (Implement "with telescope")],
[(Person "kuiper"), (Moon "uranus"),(Time 1860), (Implement "with telescope")],
[(Person "galileo"),(Moon "europa"),(Time 1820), (Implement "with telescope")]]

orbit rel = [[(Moon "deimos") ,(Planet "mars")].

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[(Moon "phobos") ,(Planet "mars")],
[(Planet "mars") ,(Sun "sol")],
[(Planet "earth") ,(Sun "sol")]]

discovered = discover
discover = make_transitive_verb discover_rel
is_discovered_by = make_transitive_verb (invert discover_rel)

orbit = make_transitive_verb orbit_rel
orbits = orbit
is_orbited_by = make_transitive_verb (invert orbit_rel)
invert rel = [(y:x:ys):s |(x:y:ys):s <- rel]
how_many s t = # (intersect s t)
which = intersect
what x = x
does x =x
is = does
when x = x
did x = x
who x = x

Below we present an illustrative example query processor, based on our semantics in
Miranda, which can answer various questions about authors and books:

entity == [char]
time == num
things ::= Name entity

| Book entity
| Place entity
| Time time
| Value entity

book = [[Book "Hamlet"], [Book "Merchant of Venice"],
[Book "Rage of Angels"], [Book "If Tomorrow Comes"]]

books = book
author = [[Name "Shakespeare"], [Name "Sidney"]]
authors =author
Shakespeare 1 = [(a:as) | (a:as) <- 1; a = (Name
"shakespeare")]

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sidney 1 = [(a:as) (a:as) < - 1; a = (Name "sidney")]
hamlet 1 = [(a:as) (a:as) <- 1; a = (Book "Hamlet")]
merchant_of_venice 1 = [(a:as) (a:as) <- 1; a = (Book "Merchant of Venice")]
rage of angels 1 [(a:as) (a:as) <- 1; a = (Book "Rage of Angels")]
if tomorrow_comes 1 = [(a:as) (a:as) <- 1; a = (Book "If Tomorrow Comes")]

every s t = s, if subset s t
= [] , otherwise

a s t = [1 | 1 <- s; m <- t; 1 = m]
no s t = [] , if res ~= []

= [Value "true"], otherwise
where res = a s t

intersect s t = [1 | l<-s; m<-t; n<- m; member 1 n]
first_element (e:es)= e
union s t = s + + (t - - s)
subset x y = (x -- y) = []
noun_and s t = union s t
verb_and s t = f

where f ents = s ents ++ t ents
term_or g h = r

where r s = (g s) ++ (h s) , if g s ~= [] \/ h s ~= []
= [], otherwise

term_and p q = r
where r s = [] , if p s = [] \/ q s = []

= (p s) ++ (q s) , otherwise

make_transitive_verb rel p = mkset [x : 11 (x, s) <-
t <-(p s); p s

collect rel ;
•= []]

collect []
collect ((x:t):r)

= []
= (x,t:[s I (a:s)<- r; a = x]):

collect [1:f I (1:f) <- r; 1 ~= x]
written_rel =
[[(Name "shakespeare")
[(Name "shakespeare"),
[(Name "sidney"),
[(Name "sidney"),

(Book "Hamlet"), (Time 1573)
(Book "Merchant of Venice"),(Time 1575)
(Book "Rage of Angels"), (Time 1950)
(Book "If Tomorrow Comes"), (Time 1940)

(Place "England")],
(Place England")],
(Place "USA")],
(Place "USA")]]

wrote = write
write = make_transitive_verb written_rel
was_written_by = make_transitive_verb (invert written_rel)

died = [[(Name "shakespeare"), (Time 1620)],
[(Name "Sidney") , (Time 0)]]

born = [[(Name "shakespeare"), (Time 1530)],
[(Name "sidney"), (Time 1920)]]

lived = [[(Name "shakespeare"),(Place "England")],

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[(Name "sidney") , (Place "USA")]]

lives = lived
live= lives

invert [] = []
invert ((x:y:ys):es) = (y:x:ys): invert es
how_many s t = # (intersect s t)
which s t = [1 | 1 <- s; m <- t; n <- m;
what x = [a | (a:b:C:s)<-x]
does x = x
is = does
when 1 = [u | v<- 1; u <- v; a_time u]
a_time (Time x) = True
a_time any = False
where_does = where_did
where_did 1 = [u | v<- 1; u <- v; a_place
a_place (Place x) = True
a_place any = False

did x = x
who x = [a | (a:s) <-x]

member 1 n]

u]

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B - A Survey

A Survey on: Use of Montague and Montague-like Compositional

Semantics in Natural Language Database Query Processing

Introduction:
This is a survey on the use of Montague and Montague-like compositional semantics in

natural-language database-query processing. In section 1 of the survey compositional

semantics is introduced. Composition semantics for natural language is described in

section 2. Section 3 contains semantics in parsing natural-language, and natural-language

interfaces to databases are described in section 4. Finally, in section 5 of the survey,

Compositional Semantics for Natural Language Database Queries is described

1. Compositional Semantics
Compositional Semantics, abbreviated in this survey to CS, is defined as a functional

dependence of the meaning of an expression on the meaning of its parts. It is called

compositional semantics because of the crucial part played by the principle of

compositionality: that the meaning of the whole sentence is composed from meanings of

its parts. The books [Schmidt, 1986] & [Stoy, 1997] are good introductions to

compositional semantics.

2. Compositional Semantics for Natural Language

2.1 General introduction to Computational Linguistics

Computational Linguistics (CL) originated from the Machine Translation Research of the

‘50s and ‘60s. The study of computer processing, understanding and generation of human

language is known as Computational Linguistics (CL). Computational linguistics is

sometimes regarded as a subfield of artificial intelligence. In different applications such

as machine translation, speech recognition, information retrieval, intelligent web

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

searching and intelligent spelling checking, techniques from computational linguistics are

used. Computational linguistics is devoted exclusively to the design and analysis of

natural-language processing systems.

The paper [Blackburn and Bos, 2003] gives a good introduction to the Computational

Semantics of Natural Language. This paper introduces the basics of natural-language

semantics. It describes first-order logic, lambda calculus and underspecified

representations such as scope ambiguities (e.g. John advertised one house on every street)

and Montague’s approach. More general information on computational linguistics can be

found in [Lewis and Carl, 1985] and [Tore, 2002].

2.2 Meaning of Words

Semantics is concerned with the meaning of words and how they combine to form

sentence meanings. There are many ways of representing word meanings but one way,

which has proven to be one of most useful, is in the field of machine translation involving

associating words with semantic features, which correspond to their sense components.

The book [Dowty, 1979] on Word meaning and Montague Grammar is a good

introduction to areas related to meaning of words.

[Thomason, 1991] talks about some possible problems in lexical semantics, which

the author thinks are both exciting and challenging and which can be solved by

cooperative research between linguists and computer scientists.

[Thomason, 2001] proposed an approach, the logical approach, which they claim has

never produced a very satisfactory account of word meaning but is successful in the

semantic interpretation of syntactic structure. For example the natural way to define ‘x is

water soluble’ is as follows:

If x were put in some water, then x would dissolve in the water.

The definition of ‘water-soluble’ is obtained by using eventualities in place of times (This

formula uses more or less standard formalization techniques in event-centered semantics,

for example [Push(e) A Past(e) A Pusher(e) = Charlie A Pushee(e) = Piano] is used to

represent Charlie pushed the piano .)

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vx [water-soluble(x) <-» VeiVy [put_in(ei) a movee(ei) = x a container(ei) = y a

water(y)] —> 3e [Dissolving(e) a dissolvee(e) = x a medium(e) = y] a —iAb(e)] -»

3 [culmination(e) = e2 a dissolved(e2) a disolvee(e2) = x a medium(e2) = y]]

In words: x is water-soluble if and only if necessarily if an event el of putting x in a

quantity of water occurs then el is the inception of a dissolving eventuality e involving

the same x and quantity of water, which unless something abnormal about e will

culminate in a state in which x is dissolved.

An extension to Montague’s framework is proposed and some of its applications in

the semantics of words are illustrated in [Thomason, 2002],

2.3 Montague and Montague-style Semantics and extensions

Model-theoretic semantics of natural language is a way of analyzing the meanings of NL

expressions. Richard Montague introduced the technique in two classical papers entitled

Universal grammar [Montague 1974] and The proper Treatment of Quantification in

Ordinary English [Montague, 1970], which is known as PTQ. Universal Grammar, which

is a predominantly theoretical treatise, refers to the branch of mathematics called

universal algebra from which the main techniques were adopted. PTQ, on the other hand,

applies these theoretical principles to ‘ordinary English’. Grammars based upon

Montague’s PTQ are called Montague grammars.

A Montague grammar is a grammar for a particular fragment of natural language

which consists of three components: the syntax which is a syntactic analysis of the

expressions of the fragment, the translation translating natural language into a logical

language and the model theory or the semantics, and a (model-theoretic) interpretation of

the expressions of the logical language

Montague-style semantics (see Dowty, Wall and Peters, 1981) has been used in

natural-language processing. Montague Semantics has been one of the most influential

theories in the semantics of natural languages in the tradition of truth-conditional, model-

theoretic and intensional semantics. A Montague grammar is a theory of the semantic

effects of composition.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Montague Semantics can be implemented and has been used as a semantic basis in a

number of implemented systems for natural language querying [e.g. Clifford 1990, Frost

and Launchbury 1989, Frost and Boulos 2002].

[Frost and Launchbury, 1981], [Frost and Saba 1990] and [Frost and Boulos, 2002]

describe an efficient implementation of Montague’s semantics in a set-theoretic

framework [details are given in section 5.2]

[Groenendijk and Stokhof, 1990] propose a new logical system as the semantic

component of a Montague-style grammar that extends the compositionality of DPL

(dynamic predicate logic) to the sub-sentential level. In DLP (Dynamic Predicate Logic)

a sentence such as “Every farmer who owns a donkey beats it” can be translated into the

formula as follows:

Vx[[farmer(x) a 3y [donkey(y) a own(x, y)]] —» beat(x ,y)]

In DLP the above translation is equivalent to :

VxVy [[farmer(x) a donkey(y) a own(x, y)] —» beat(x ,y)]

It is a continuation of their work [Groenendijk and Stokhof, 1989] on dynamic predicate

logic.

A recent approach extending the classical Montague semantics can be found in

[Muskens, 1995]. In his book the author presents a semantics of possibly-contradictory

beliefs and other propositional attitudes.

[Malinowski, 1996] suggests semantics for illocutionary logic (Serale’s and

Vanderveken’s), which is based on Montague’s intensional logic.

[Eijck 1999] proposed that a Montague-style architecture for NL semantics provide

proper treatment both of quantification and of context use and context change. In his

paper, the author refers to the work done by [Groenendijk and Stokhof, 1989, 1990].

[Nelken and Francez, 2000] suggest a new semantic interpretation of interrogative

NPs (noun phrases), which play an important role in driving the interpretation of wh-

questions such as “which women”. The authors used a formal language called Intensional

Logic with Questions (ILQ) which extends Montague’s IL. The authors added two

operators: the interrogative operator (?) used for yes/no questions and the binding

interrogative operator (?x) used for constituent questions. For example, here the authors

interpret the interrogative determiner “which” as:

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Det which] = AP^Q. ?x (P(x) a Q (x))

which is similar to the standard interpretation of the determiner “a” :

a: XPXQ 3x (P(x) a Q (x))

So the meaning of the sentence “which woman kissed John” can be interpreted as

follows:

[Which woman kissed John]

= [INP which woman] ([yp kissed John])

= XQ. ?x (woman(x) a Q (x)) (Ay. kiss (y, John))

= ?x (woman(x) a kiss (x, John))

The authors refer to some of the work done by [Eijck, 1996]

[Onet and Doina, 2001] describe the fundamentals of intensional logic and introduce

some methods for treating quantitative natural sentences. Authors split quantitative

sentences in three categories: definite quantity sentences (e.g. “Four women cry”),

indefinite quantity sentences (e.g. “Most women cry”), restrictive quantity sentences (e.g.

“Maximum five children answer”) and tried to translate them in to intensional logic.

In [Cimiano, 2003] the author presents a approach to map natural-language wh-

questions into F(rame)-logic queries based on Montague-style compositional semantics

where semantic representation is constructed on the basis of Lexicalized Tree Adjoining

Grammar LTAG-style derivation tress.

[Perez , 2003] shows how semantic interpretation and parsing of a sentence can be

accomplished in a compositional way by defining semantic rules that work in a one-to-

one correspondence with the syntactic ones.

Coverage of Natural-Language Semantics

Year Authors Work

1972 Montague R. Natural-language semantics

for noun, pronoun,

intransitive verbs

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1989 Frost and Launchbury Implementation of a set-

theoretic version of sub-set

of Montague Semantics

1990 Clifford Used semantics as a basis to

implement systems for

Natural-language querying

1990 Groenendijk and Stokhof Proposed a system which

use Montague Semantics to

extend the compositionality

of DLP (Dynamic Predicate

Logic)

1990 Frost and Saba Used Montague Semantics

to implement natural-

language interfaces to

databases

2001 Onet and Doina Extended Montague

Semantics to handle

quantitative natural

sentences e.g. “Four women

cry” etc..

2002 Thomoson Used Montague framework

in semantics of words

2002 Frost and Boulos Implemented compositional

semantics for database

queries based on a set-

theoretic version of

Montague semantics to

accommodate negation

Table: Coverage of Natural-Language Semantics

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Alternative approaches to Montague Semantics

Rather than Montague semantics, other approaches have been used in natural language.

[Hardt, 1996] presents a dynamic framework, a dynamic logic system, with extensions

for the discourse center (a distinguished discourse entity that is the topic of a discourse),

VP ellipsis (Verb Phrase ellipsis) and paycheck pronouns. (A paycheck pronoun is a

pronoun, which exhibits sloppy identity, for example “Smith spent his paycheck. Jones

saved it.”. Here “it” is not an ordinary bound pronoun, nor is it an ordinary free pronoun.

[Shan, 2001] introduces a new variable-free dynamic semantics, which means

denotational semantics for natural language where meanings of constituents are updates

to information states. The author continued the work done by [Groenendijk and Stokhof,

1990]

Shan [2001] analyzed sentences such as “A man walks in the park. He whistles.” For

example, the author wrote e for the type of an individual, e —> 1 for the type of a property

and e —» e —» 1 for the type of a two-place relation. So, the derivation of the sentence “ A

man walks in the park” is translated as follows:

A: (e —» 1) —» e = Ip. { v | * 6 p (v)}

Man: e -+ 1, WITP: e -> 1, WITP(A(MAN)):1

And, whistles denotes some property WHISTLE: e —> 1 and “he” denotes

HE: e ̂e -Xv.v

where ̂ (“in”) is a new binary type constructor where type ct ̂x is like
a —»x in that they may have the same models, namely functions from a to x .
So now “He whistles” can be derived as follows:

g ► (WHISTLE) (HE): e ► 1 = ^v: WHISTLE(v)

where g * is a type-shift operation such as

g ► : (a—»P) —> (a ̂ a) —» (ct ̂ P) = Xf. Xv. Xs. f (v(s))

[Fox and Pollard 2002] present PTCT (Property Theory with Curry Typing) where a

language of types joins the language of terms and well-formed formula. [Shan, 2002]

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

characterizes the similarity between several semantics accounts for interrogatives, focus,

intensionality, variable binding & quantifications by using monads. A monad is a

structure from category theory.

[Bemardi, 2003] describe a logical system, which has the ability to compute the

semantics of both declaratives and interrogative sentences. For example, the author

analysed sentences such as:

Q: Did Tarantino direct Titanic? AY(Y((direct titanic) tarantino))

A: No Ap -ip

Q(A) By twice beta-reduction -{(direct titanic) tarantino)

The authors also considered “what” as an example:

Q: what did Cameron direct? AY(YA x((direct x) cameron))

A: Titanic AP P(titanic)

Q(A) :By twice beta-reduction ((direct titanic) cameron)

3. Semantics in Parsing Natural Language

Semantic parsing is a difficult problem in natural-language analysis [Hirst, 1987]. During

sentence analysis, the question of the appropriate interaction of syntax and semantics has

been of interest for a long time. The early work on semantic parsing was done in 70’s

[Siklossy 1972; Reeker, 1976] with emphasis on cognitive modelling of human language

learning and on discovering mechanisms for language acquisition.

According to Warren [1982], a complete, well-defined context in which these

questions can be considered is provided by Montague grammar with its fully formalized

syntax and semantics. [Warren, 1982] describes how to reduce the combinatorial

explosion of syntactic ambiguity by using semantics during parsing in Montague

grammar.

In [Lang and Hirschman 1988] the authors show how parsing can be improved

through interactive acquisition of semantic information.

[Mosny, 1995] proposes an approach to extract constraints, which are explicitly or

implicitly provided by a semantic part of the natural language interface to a database,

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the semantic description of the database domain and incorporate them into

information directly accessible to the parser.

[Da-Silva, Seabra and Siqueira, 1995] propose a parser that performs syntactic and

semantic analysis, simultaneously as in Montague Grammar, of assertions, which are

related to Space Science and are expressed in a restricted form of natural language.

[Chan, 1997] shows how semantic parsing can be formulated as a sequence of

processes in which multiple sources of knowledge are incorporated.

[Miller, Fox, Ramshaw and Weischedel, 2000] introduce a statistical, context-free

probabilistic parser for information extraction which shows a significant increase in

parsing accuracy.

[Lappoon et al, 2000] propose a method for learning semantic parses, which are

systems for mapping natural language to logical forms that integrate logic-based and

probabilistic methods. [Lappoon et al, 2000] also present a method for integrating

statistical and relational techniques for the automated acquisition of NLI’s from training

examples. They also claim that their approach is more robust than a purely logical

approach.

4.Natural-Language Interfaces to Databases (NLIDBs)

4.1 Overview of Natural-Language Interfaces to Databases

A natural-language interface to a database is a system that allows the user to access

information stored in a database by typing requests expressed in some natural language

such as English. The first natural-language interfaces to databases appeared in the late

sixties and early seventies. According to [Androutsopoulos, 1995], the best-known

NLIDB at that period was LUNAR [Woods, 1972], a natural-language interface to a

database containing chemical analyses of moon rocks. Some other NLIDBs developed at

that time were RENDEZVOUS, LADDER, PLANTES and PHILIQA1 [description of

and references for all of these systems can be found in Androutsopoulos, 1995]. Marjorie

and Burger describe some of the problems in natural language and database management

involved in natural-language interface development [Marjorie and Burger 1983]. More

NLIDBs were developed in eighties and nineties.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In recent years, there have been a significant number of papers on NLIDBS

published each year and NLIDBS continue to evolve, adopting advances in the general

natural- language processing field, exploring architectures that transform NLIDBs into

reasoning agents, and integrating language. [Androutsopoulos, 1995 (which is a good

introductory paper on NLIDBs)], talks about the history of NLIDBs, some advantage and

disadvantage of NLIDBs and also compares NLIDBs to formal query languages, form-

based interfaces, and graphical interfaces.

Focus on the central process of translating the natural-language questions into

database queries has also been investigated by some researchers [e.g. Copestake and

Jones 1990]. Different approaches have been applied to NLIDBs. Demers in his thesis,

introduces a lexicalist approach, which is based on unification grammars to database

NLI’s along a small-scale example [Demers, 1996]. The author claims that the solution

proposed to this approach is not only feasible but also provides reasonable complexity

and processing time for unambiguous words and expressions.

Many techniques have been developed to translate natural-language questions into

database queries. [Filipe and Mamede, 2000] mainly focus on the translation stage,

translating user questions first into a logic language and then into Structured Query

Language (SQL) [more details and examples of SQL-type interfaces are given in the next

section], which is then processed by a database-management system to return answers to

the questions.

4.2 SQL-type Interfaces

A lot of natural-language interfaces that have been developed are based on an SQL-type

approach. [Hasting, 1991] describes the design and implementation of an SQL-based

speech-recognition database-query system.

[Androutsopoulos, 1995] talks about using a language called TSQL2 in a natural-

language interface. The paper [Androutsopoulos, 1995] focuses on the TSQL2 in a

natural-language interface for temporal databases and also in some point on the semantics

of TSQL2. For example the question “ On how many Mondays was John at University of

Windsor in 2000? “ can be expressed as:

Select Snapshot Count (Distinct d.*)

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From &year_month_day (Period) As d, student_visits (Period) as t

Where d.year = 2000

AND d.day_name= “Monday”

AND VALID(t) OVERLAPS VALID(d)

AND t.student=’John’

AND t.school=’University of Windsor’

Assuming that the calendric table and year_month_day and studentvisits tables are

available.

[Reis and Mamede, 1997] present the Edite system, which is a natural-language

interface to databases, and explore the advantage of joining natural-language processing

with the expressiveness of graphical interfaces. Edite, a natural-language front-end for

relational databases, is multi-lingual (Portuguese, French, English, Spanish). It is capable

of answering written questions related to tourism by transforming them into SQL queries.

The answer can be a list of resources, text, images or graphics depending of the

questions. At present, the database contains 53000 tourism resources, arranged on 253

distinct types, which corresponds to 209 tables. This paper refers to the work done by

[Androutsopoulos, Ritchie, Thanisch, 1993].

[Stratica, 2002] talks about a natural language processor for querying Cindi, which is

also an SQL-based system.

A reliable natural-language interfaces to household appliances which is also an SQL-

based interface is described in [Yates and Etzioni, 2003].

[Popescu, Etzioni and Kautz 2003] introduces a theoretical framework, which is the

foundation for the fully implemented Precise NLI and proved that Precise guarantees a

map for each question to the corresponding SQL query, for a broad class of semantically-

tractable natural-language questions.

4.3 Other approaches to Natural-Language Interfaces

There are different approaches to natural-language interfaces. [Ryan and Root, 1988]

describe some application-specific issues in developing of natural-language interfaces.

A fully-statistical approach to a natural-language interface, which consists of three

stages of processing: parsing, semantic interpretation and discourse, is described in [Scott

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and David 1996], All of the stages are modeled as a statistical process, which are

integrated, resulting in an end-to-end system that maps input utterances into meaning-

representation frames.

A deductive object-oriented approach in the development of natural-language

interfaces that uses a deductive object-oriented database (DOOD) is described in [Werner

and Yahiko 1997]. The authors follow the approach of [Rymon, 1993] and refer to

[Androutsopoulos, Ritchie, and Thanisch, 1995] in the paper.

5 Compositional Semantics for Natural-Language Database Queries

5.1 Introduction to Semantics in Databases

Issues related to database semantics played an important role in the early days of database

research and most of the database conferences were dominated by the papers discussing

database models, conceptual design, integrity constraints and normalization. Semantics of

databases and information systems can be based on approaches, which have been

developed and successfully used by different communities such as the logic community

who are working on constraint problems, induction, non-classical semantics, the

database-theory community who are working on constraints, and the Al community who

are working on logic and reasoning, deduction, agents etc.

According to [Teskey, 1987] semantic models developed by linguists have not had

any significant impact on information retrieval.

[Kalita, Jones and McCalla 1986] describes the detailed design and implementation of

a system, which generates summary responses to queries of a relational database.

[Ranta, 1999] describes a database-query system based on the Grammatical

Framework which was demonstrated using a database of restaurants which runs in seven

European languages and the system can be modified in various levels like changing basic

grammatical structures into other structures.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In [Hausser, 2001a] the author presents a new approach where the spatio-temporal

location of propositional content is not specified precisely within a Cartesian system of

space and time coordinates instead it is characterized cognitively by the order of direct

observations entering the database of a cognitive agent. The sequence of propositions

which serves as the spatial landmarks are structured by observations of the environment

and temporal landmarks are structured by observations of cyclical events. In database

semantics, like all other inference, which navigate through the concatenated propositions,

spatio-temporal inferences are handled.

[Hausser, 2001b] describes database semantics as a declarative model of a cognitive

agent, which is called a SLIM machine and which functionally integrates the procedures

of natural-language interpretation, conceptualization and production. No one appears to

have referred to this work at this point of time.

5.2 Database interface based on Montague’s Approach

There has not been much research on building database interfaces based on Montague’s

Semantics. [Frost and Launchbury, 1989] describe how in a functional-programming

language, natural-language parsers and interpreters can be implemented. Frost and

Launchbury refer to the book by Dowty, Wall and Peters (1981) but make no reference to

any previous work on the use of Montague semantics in database query processing. It

appears that Frost and Launchbury were amongst the first to use Montague semantics in

database query processing.

It would also appear that Frost and Launchbury were the first to use a set-theoretic

based implementation of Montague semantics. For example instead of interpreting

‘every’ like in Montague as:

[every] = ApXq [Vp(x) -» q(x)]

Frost and Launchbury used:

[everyjFL^ Ap ^q p c q

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

According to [Yonezaki and Enomoto 1980], Richard Montague’s Intensional Logic

(IL), which describe semantics of natural language, can be useful to the theory of

databases in designing database systems which handle historical data and provide a

formal description of database semantics.

[Frost and Saba 1990] implemented some of the concepts of Montague that can be

used in natural-language interface to databases. The database interface is implemented in

a higher-order functional programming language and the semantic calculation is achieved

through higher-order functional application.

[Lapalme and Lavier 1990] showed how a larger part of Montague Semantics can be

implemented in a pure higher-order functional programming language.

[Frost and Boulos, 2002] describe an implementation of a compositional semantics for

database queries, based on a set-theoretic version of Montague semantics, which

accommodates phrases that include the word ‘no’. The approach is based on an extended

set theory in which ‘negative’ phrases denote infinite sets represented in complement

form.

5.3 Question-Answering

The question-answering systems developed in the 1970’s were complex Al-based

systems that converted a natural-language query into a knowledge-base query. Those

systems then searched in the knowledge base for an answer and returned the results in

natural language. Constructing and maintaining those knowledge bases was a great

problem and those systems were not scalable. The LUNAR system (Woods, 1977) is one

of the examples of those systems. Recently triggered by the Text Retrieval Conference

(TREC) Question Answering Track (Voorhees, 2001) there has been an increase in

research on text-based question answering.

According to [Main and Benson, 1983] denotational semantics can be used as a

specification technique for question-answering programs and implementation of the

principle of compiler design was suggested as principle of question answerer design.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There is an interesting paper [Zweigenbaum, 2003] in which question answering is

used in biomedicine for natural language question answering.

[Duclaye and Yvon, 2003] discussed several methods on how to improve question-

answering systems. The authors presented an unsupervised methodology starting with

one single positive learning example for automatically learning paraphrases and which is

able to filter out the invalid potential paraphrases extracted during the acquisition steps

using an EM-based validation. The authors claim that these paraphrases are useful to

improve the results of their question-answering system.

[Katz and Lin, 2003] describe how to improve precision in question answering by

selectively using relations.

5.4 Predicate-logic -based Approaches

Much research has been done on predicate-logic-based approaches for building natural-

language database interfaces. [Rayner, 1993] in his Ph.D thesis discusses abductive

equivalential translation and its application to natural-language database interfacing.

5.5 Approximate answer from cooperative sources

As databases and information systems often do not explicitly attempt to cooperate with

their users, they are sometimes hard to use. Direct answers may not always be the best

answer to database and knowledge-base queries. On the other hand, a more-useful and

less-misleading answer to a user may be an answer with extra or alternative information.

[Gaasterland, Parke and Minker, 1992] describe intelligent information systems, which

are able to exhibit cooperative behaviour.

[Pankowski, 1999] talks about semantics of approximate answers in cooperative

database systems.

5.6 Semantics of Dialogues

A computer system and a human user work cooperatively via a natural-language interface

to achieve a certain goal in task-oriented dialogues. A typical example o f task-oriented

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dialogues are information-querying interactions where the system reports information

about e.g. bus schedules on the basis of certain input-parameters of the user.

Most of the current task-oriented dialogue systems interpret user utterances by

directly mapping them onto parameters that represent the questions the user has to

answer. [Malte Gabsdi, 2001] in his master's thesis talked about interpreting questions

and answers in a prototype dialogue system.

5.7 Natural-Language Interfaces to Temporal Databases

Natural-language database interfaces have been the subject of interest in the natural

language processing community since the 1960s. Users are able to access information

stored in database through NLDBs by simple formulating requests in natural language.

Most existing NLDBs are designed to interface to database systems provided very

little facilities for manipulating time-dependent data. Most NLDBs also provide very

little temporal support. Temporal database systems are becoming increasingly interesting

in the database community. These temporal database systems are intended to store and

manipulate information not only about the present, but also about the past and future.

The work of Clifford and Warren [1983] is one of the first attempts to incorporate a

concept of time in database.

[Clifford and Warren, 1983] has discussed that formal logic has made important

contribution in understanding and specification of the semantics of database. Authors

showed that relational database model could be extended to incorporate the concept of

historical relations as well as database and also shown how ILs (reformulated IL to

include s as a basic type) can provide a semantic theory for this database concept. In this

paper the authors also suggested as interesting aspect in defining the translation of

English questions into ILs, where the authors interpret English statements as database

commands. For example, the authors interpreted the statement ‘ John earns 30k’ as a

command to record this as a fact in the database with the time-stamp taken from the

system clock when made by an authorized user.

In [Hirst, 1983] the author proposed a new approach to semantic interpretation

based on the semantic formalism of Richard Montague. In this approach author claim that

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their semantics are compositional by design and strongly typed like Montague and they

replace Montague’s semantic objects and truth conditions with the elements of the frame

language Frail and added a word sense and case slot disambiguation system. They claim

that their approach to semantic interpretation is superior to previous approaches. For

example a single noun phrase the book can be interpreted as (the ?x (book ?x)), which is

a Frail frame statement. And a descriptive adjective correspond to a lot-filler pair from

example red is represented by (color=red), so the red book would have semantic

interpretation (the ?x (book ?x(color=red))). Similarly the sentence “Nadia bought the

book from a store in the mall “ will be interpreted as

(a ?u (buy ?u (agent = (the ?x (thing ?x (propemame= “Nadia”))))

(patient = (the ?y (book ?y))) (source = (a ?z (store ?z (location =

(the ?w (mall ?w)))))))

In [Clifford, 1988] the author examines the connection between the semantics of

historical databases and the semantics of natural language querying and through a

common view of the semantics of time link them together. [Clifford, 1988] demonstrated

the use of QE-III, a formally defined English database query language whose semantics

and pragmatic theory are based on a Montague type semantics and discussed the issues

on providing both semantics and pragmatic interpretation for question within a model-

theoretic framework. For example questions in English Query Language QE-III can be

handled in the following way:

Who is Peter’s manager?

which can be interpreted as:

A,u 3x [MGR’(now)(x) A x(now) = u A AS-1 (Peter,x)]

In [Hinrichs, 1988], the author argued that a logical semantics for temporal

expressions could provide sufficient representations for natural-language inputs to an

interface such as JANUS, a natural language understanding and generation system under

joint development by BBN Labs and ISI. The author demonstrated that if narrow scopes

are given to tense quantifiers that will enable to provide adequate scope relation with

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

respect to natural-language quantifiers and to interpret such NPs relative to a given

discourse context. The author also demonstrated that how in English the narrow scope of

tense results in a fully compositional syntax and semantics of tensed sentences.

In their paper (which is a good introductory paper on temporal Databases),

Androutsopoulos, Ritchie and Thanisch, in 1998 suggest a new framework for

constructing natural language interface for temporal database as at that point of time most

of the natural language database interfaces designed had very limited facilities for

manipulating time-dependent data and didn’t support temporal linguistic mechanisms.

The authors refer to the work done by [Clifford and Warren, 1983] in temporal

databases.

[Claire, 1990] describes the implementation of formal semantics as described in

Keena and Faltz Boolean Semantics for Natural Language for Natural Language. The

author claims that his implementation avoids the intermediate step of translating Natural

Language into a formal language such as an extended version of predicate calculus which

makes his implementation free of the problems related to the syntax of such a language

like binding the variable and resolving scope ambiguities however which has

disadvantage that every denotation (i.e. semantic value) requires to be explicitly and

accurately represented in a database.

In [Kabanza, St'evexme, and Wolper, 1990] the authors present a framework, which

is an extension of classical relational database, for describing, storing and reasoning

about infinite temporal information and this framework represents infinite temporal

information by generalized tuples which are defined by linear repeating points and

constraints on these points. Authors prove that relations formed from generalized tuples

are closed under the operations of relational algebra.

In his doctoral thesis [Nelken, 2001] suggests the design of a natural language

interface to temporal databases, based on translating natural-language temporal questions

into SQL/Temporal, which is a recent temporal database query language .The interface is

based on two stage translation process, where in first stage question are translated into a

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two-sorted first-order logic over temporal interval and in second stage logical formulae is

translated into SQL/Temporal.

In other paper [Nelken, 2001] the author continues his work in temporal databases

and presents a Natural Language Interface to temporal database controlled by novel based

on translating natural language questions into temporal database query language, which is

done using Type-Logical Grammar framework. For example consider the NL question:

During which year did Mary work in marketing?

The meaning of the sentence is constructed as:

(year(I) A 3J (work(mary, marketing, J) A J c past A J c I))

Which can be translated into the following SQL/Temporal query:

NonSequenced Validtime

Select distinct aO.c As cl

From work’ As al.year’ As aO

Where Validtime(aO) contains

Validtime (al)

And al.c l = ‘mary’

And Al.c2 = ‘marketing’

And period (TimeStamp ‘beginning’, TimeStamp ‘now’) contains Validtime (al)

Coverage involving temporal databases in Natural-language interfaces

Years Authors Work

1983 Clifford and Warren Were first to incorporate a concept of time in

databases

1983 Hirst Proposed a approach to semantic

interpretation based on the Montague

semantics.

1988 Clifford Examines the connection between the

semantic of historical database and the

semantic of Natural language querying

through the semantics of time

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1988 Hinrichs Explains how logical semantics for temporal

expressions provide sufficient representations

for natural-language inputs to an interface.

1990 Claire Describes implementation of formal semantics

as in Keena and Faltz

1990 Kabanza, Stevenne and

Wolper

Presents framework for describing, storing and

reasoning about infinite temporal information.

1998 Androutsopoulos, Ritchie

and Thanisch

A good introductory paper on temporal

database

2001 Nelken Describes the design of natural-langauge

interface to temporal database based on

translating natural-langauge temporal

questions to SQL/temporal

Table: Coverage of NL interfaces to temporal databases

Conclusion:
There hasn’t been much work done in recent years on the use of Montague semantics in

natural-language database query processing. Since the development of Montague

Grammar a few new semantic theories [e.g., Groenendijk and Stokhof, 1991] have been

developed either to augment Montague Grammar itself or as alternate theories to deal

with some problem not dealt within the original definitions. One of the researchers in

Computer Science Michael Beeson stated ‘ I still think Montague semantics could be

developed further, but as far as I know, those who are doing natural-language processing

aren’t using it.’

I would like to thank my supervisor Dr. R. Frost for his valuable suggestions, comments,

remarks, discussion and encouragement.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix-i

Bibliography

[1] Androutsopoulos I., Ritchie G.D., Thanisch P. Time, Tense and Aspect in Natural

Language Database Interfaces. Natural Language Engineering, 4(3), pp. 229-276,

Cambridge Univ. Press, Sept. (1998)

[2] Androutsopoulos I., Ritchie G. D., and Thanisch P. Experience using tsql2 in a natural

language interface. In: Proceedings of the International Workshop on Temporal

Databases, Zurich, pp. 113-132 September (1995).

[3] Androutsopoulos, I. and Ritchie G.D. and Thanisch P. Natural Language Interfaces to

Databases-an introduction. Journal of Language Engineering, Vol 1, No 1, pp. 29-81,

(1995)

[4] Bainbridge R. I. , Montagovian Definite Clause Grammar , Proc. of the 2nd EACL,

Geneva, Switzerland, pp. 25-34, 1985

[Keywords: Compositional Semantics, Definite Clause Grammar, Friedman Warren

Algorithm, Intensional Logic, Montague Grammar, Natural Language Processing,

PROLOG]

[5] Bemardi R. and Moot R., Generalized Quantifiers in declarative and interrogative

sentences. In J. Bos and M. Kohlhase (eds.) Logic Journal of IGPL Vol. 11, N. 4, July

(2003).

[6] Bertossi L. E., Katona G., Schewe K. D., Thalheim B. Semantics in Databases,

Second International Workshop, Dagstuhl Castle, Germany, January 7-12, 2001, Revised

Papers. Springer 2003

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[7] Bettini C., Wang S. X., Bertino E., Jajodia S. Semantic assumptions and query

evaluation in temporal databases, ACM SIGMOD Record, v.24 n.2, p.257-268, May

1995

[8] Blackburn P. and Bos J. Computational Semantics for Natural Language. Course

Notes for NASSLLI, Indiana University, (2003)

[9] Bos J. and Gabsdil M. First-Order Inference and the Interpretation of Questions and

Answers. Communication Research Centre (HCRC).

[10] Chan S.W.K. Semantic Parsing as an Energy Minimization Problem, IEEE

International Conference on Intelligent Processing Systems, Beijing, October 1997.

[11] Clifford J., Warren D. S., Formal Semantics for time in databases, ACM Transaction

on Database Systems (TODS), v.8 n.2 p.214-254, June 1983

[12] Clifford J. Natural Language Querying of Historical Databases, Computational

Linguistics 14(4), 1988

[13] Clifford J. Formal Semantics and Pragmatics for Natural Language Querying.

Cambridge University Press, 1990

[14] Cimiano P. Translating Wh-Questions into F-Logic Queries In: Proceedings of 2nd

CoLogNET-ElsNET Symposium. 2003

[15] Copestake A. and Jones K.S. Natural Language Interfaces to Databases. Knowledge

Engineering Review, Volume 5, Number 5, 1990.

[16] Copestake A. and Jones K. S. Inference in a Natural Language Front End for

Databases. University of Cambridge Computer Laboratory Technical report No. 163,

(1990)

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[17] Creary L. G. and Pollard C. J. A computational semantics for natural language. In

Proceedings of the 23rd Annual Meeting of the Association for Computational

Linguistics, pages 172—179, (1985).

[18] Dalmas T., Leidner J. L., Webber B., Grover C., and Bos J. Generating annotated

corpora for reading comprehension and question answering evaluation An EACL

workshop, April (2003).

[19] Da-Silva Julia, R.M., Seabra J.R., Siqueira I.S., An intelligent parser that

automatically generates semantic rules during syntactic and semantic analysis, Systems,

Man and Cybernetics, 1995. 'Intelligent Systems for the 21st Century'., IEEE

International Conference o n , Volume: 1 , 22-25 Pages:806 - 811 vol.l Oct. (1995)

[20] Delmonte R. Getaruns: a hybrid system for summarization and question answering.

An EACL workshop, April (2003).

[21] Demers N.P. A Lexicalist Approach to Natural-Language Database Front-Ends.

Master's Thesis, University of Ottawa (1996)

[22] Dowty D., Wall R., and Peters S. Introduction to Montague Semantics, Dordrecht,

Holland: Reidel, (1981).

[23] Duclaye F., Yvon F., and Collin O. Learning paraphrases to improve a question-

answering system. An EACL workshop, April (2003).

[24] Eijck J. V. The proper treatment of context in NL. In Paola Monachesi, editor,

Computational Linguistics in the Netherlands (1999)

[25] Filipe P. P. and Mamede N. J. Databases and Natural Language Interfaces. V

Jornada de Engenharia de Software e Bases de Dados (JESBD'2000), Valladolid, Spain,

November (2000)

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[26] Fox C., Lappin S. and Pollard C. First-Order, Curry-Typed Logic for Natural

Language Semantics, in S. Wintner (ed.), Proceedings of the Seventh Workshop on

Natural Language Understanding and Logic Programming, Copenhagen, pp. 175-192.

(2002)

[27] Frost R. A. and Launchbury J. Constructing natural language interpreters in a lazy

functional language. The Computer Journal, 32(2): 108—121, April (1989)

[28] Frost R. A. and Saba W. S. A database interface based on Montague’s approach to

the interpretation of natural language. International Journal of Man-Machine Studies,

33(2): 149-176,(1990).

[29] Frost R. A. and Boulos P. An Efficient Compositional Semantics for Natural-

Language Database Queries with Arbitrarily-Nested Quantification and Negation.

Lecture Notes In Computer Science Proceedings of the 15th Conference of the Canadian

Society for Computational Studies of Intelligence on Advances in Artificial Intelligence,

pp. 252-267 , (2002)

[30] Gaasterland T., Godfrey P. and Minker J. An Overview of Cooperative Answering.

Journal of Intelligent Information Systems", vol 1, no. 2, pp. 123-157, (1992).

[31] Gabsdil M. Interpreting Questions and Answers in a Prototype Dialogue System.

Master's thesis, Universitat des Saarlandes, Saarbrucken. (2001)

[32] Gadia S. K. A Homogeneous Relational Model and Query Languages for Temporal

Databases. ACM Trans. Database System 13(4): 418-448(1988)

[Keywords: Historical database, relational calculus, relational model, temporal data,

temporal databases, time, tuple calculus]

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[33] Greenwood M. and Gaizauskas R. Using a named entity tagger to generalise surface

matching text patterns for question answering. An EACL workshop, April (2003).

[34] Groenendijk, J. & Stokhof, M., 1989, 'Dynamic predicate logic', Amsterdam: ITLI,

to appear in Linguistics and Philosophy (1989)

[35] Groenendijk J. and Stokhof M. Dynamic Montague Grammar. Faculty of

Mathematics and Computer Science, Roeterssraat, Amsterdam, Holland (1990)

[36] Gunter C. A. Semantics of Programming Languages: Structures and Techniques.

Foundations of Computing. MIT Press, (1992).

[37] Hardt D. Centering in dynamic semantics. In COLING-96. Copenhagen, (1996).

[38] Hasting J. D. Design and Implementation of a Speech Recognition Database Query

System, M.S. Department, University of Wyoming (1991)

[39] Hausser R., Database semantics for natural language. Artificial Intelligence, Vol.

130, Issue 1, pp. 27-74, July (2001)

[40] Hausser R. "Spatio-Temporal Indexing in Database Semantics," in A. Gelbukh (ed).,

2001

[41] Hinrichs E. W. Tense, Quantifiers, and Contexts, Computational Linguistics, Vol. 14

No. 2, June 1988

[42] Hirst G. A Foundation for semantic interpretation, Proceedings of the 21st Annual

Meeting, Association for Computational Linguistics, Cambridge, Mass., June 1983, 64—

73.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[43] Hirst G. Semantic interpretation and the resolution of ambiguity. Studies in Natural

Language Processing, Cambridge University Press. (1987)

[44] Introduction to Computational Linguistics Lecture Notes, Natural Language

Processing at Massachusetts Institute of Technology, Spring (2003)

[45] Kabanza F., St'evenne J.M., and Wolper P. Handling infinite temporal data. In Ninth

ACM Symposium on Principles of Database Systems, pages 392—403, Nashville,

Tennessee, Apr. 1990.

[46] Kalita J. K, Jones M. L, McCalla G. I. Summarizing natural language database

responses. Computational Linguistics, Vol. 12 Issue 2, April (1986).

[47] Kappel D. Morphological oriented and Fault tolerant Recognizing of template based

natural Language Questions on combinatorial Question Space (2002).

[48] Katz B. and Lin J. Selectively Using Relations to Improve Precision in Question

Answering. Proceedings of the EACL-2003 Workshop on Natural Language Processing

for Question Answering, April (2003).

[49] Knowles S. A Natural Language Database Interface for SQL-Tutor. Hours Project,

1999

[50] Landsbergen S. P. J. Adaptation of Montague Grammar to the Requirements of

Question-answering, Proceedings of the 8th conference on Computational linguistics,

Tokyo, Japan, pp 211-212, 1980

[51] Lang F. M., Hirschman L. Improved portability and parsing through interactive

acquisition of semantic information, Proceedings of the second conference on Applied

natural language processing Austin, Texas Pages: 49 - 57, (1988)

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[52] Lapalme, G. and Lavier, F. (1990) Using a functional language for parsing and

semantic processing. Publication 715a, Department d’informatique et recherche

operationelle, Universite de Montreal.

[53] Lappoon R. T. Integrating Statistical and Relational Learning for Semantic Parsing:

Applications to Learning Natural Language Interfaces for Databases. University of

Texas, Department of Computer science, (2000)

[54] Lappoon R. T. and Raymond M. Automated Construction of Database Interfaces:

Integrating Statistical and Relational Learning for Semantic Parsing. Proceedings of the

Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and

Very Large Corpora (EMNLP/VLC-2000), pp. 133-141, Hong Kong, October, (2000)

[55] Litkowski, K. C. Question-Answering Using Semantic Relation Triples, in

Voorhees, E. M. and Harman, D. K. (eds) Information Technology: The Eighth Text

REtrieval Conferenence (TREC-8), NIST Special Publication 500-246. Gaithersburg,

MD: National Institute of Standards and Technology, pp. 349-56, (2000).

[56] Main M. G., Benson D. B. Denotational Semantics for "Natural" Language

Question-Answering Programs. American Journal of Computational Linguistics 9(1): 11-

21 (1983)

[57] Malinowski J. Montague style semantics for illocutionary logic. Matematyka V,

Joanna Grygiel ed., Proceedings of Czestochowa Pedagogical University, pp. 76 - 82,

(1997)

[58] Marjorie T., and Burger J. Problems in natural language interface to DBMS with

examples from EUFID. ACL Proceedings, Conference on Applied Natural Language

Processing, pp. 3— 16, (1983)

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[59] Miller S., Fox Heidi, Ramshaw L., Weischedel R. A novel use of statistical parsing

to extract information from text , Source ACM International Conference Proceeding

Series archive, Proceedings of the first conference on North American chapter of the

Association for Computational Linguistics table of contents

Seattle, Washington pages: 226 - 233, (2000)

[60] Molla D., Schwitter R., Rinaldi F., Dowdall J., and Hess M. NLP for answer

extraction in technical domains. An EACL workshop, April (2003).

[61] Montague R. The proper treatment of quantification in ordinary English. In J.

Hintikka, J. Moravcsik, and P. Suppes, editors, Approaches to Natural Language.

Proceedings of the 1970.

[62] Mosny M., Semantic Information Preprocessing for Natural Language Interfaces to

Databases. Meeting of the Association for Computational Linguistics, pp. 314-316,

(1995)

[63] Muskens R. Meaning and Partiality. European Association for Logic, Language and

Information (Folli), Studies in Logic, Language and Computation, 1995.

[64] Nelken R. and Francez N., Bilattices and the Semantics of Natural Language

Questions, Technical Report LCL 9801, Laboratory for Computational Linguistics, the

Technion. (1998)

[65] Nelken R. and Francez N. The Algebraic Semantics of Interrogative NPs. The

Algebraic Semantics of Interrogative NPs. Journal Grammars, Vol. 3, N 2/3, pages 259-

273, (2000)

[66] Nelken R. and Francez N. Querying Temporal Databases Using Controlled Natural

Language. In proceedings of Coling (2000)

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[67] Nelken R. Questions, Time and Natural Language Interfaces to Temporal Databases.

PhD thesis (2001)

[68] Nyberg, E., Mitamura T., Carbonell J., Callan J., Thompson K. C., Czuba K.,

Duggan M., Hiyakumoto L., Hu N., Huang Y., Ko J., Lita L., Murtagh S., Pedro V. and

Svoboda D., The JAVELIN Question-Answering System at TREC 2002, Proceedings of

TREC 11, November (2002).

[69] Onet A., Doina T. Intensional Logic Translation for Quantitative Natural Language

Sentences. (colaborare cu A.Onet), Studia Universitatis "Babes-Bolyai", Seria

Informatica, nol, pp 41-54, (2001)

[70] Pankowski T. Semantics of approximate answers in cooperative database systems.

Proc. of Int. Conf. on Computational Intelligence on Modeling, Control and Automaton,

CIMCA1 99, Vienna, February 17-19, (1999)

[71] Partee H. Formal semantics and the lexicon. Lecture Notes Formal Semantics,

Lecture 4, RGGU, March 7 (2003)

[72] Perez, R.D. Constructive semantics for extensional PTQ, Proceedings of the Fourth

Mexican International Conference on, Pages: 33 - 39 8-12 Sept. 2003

[73] Popescu M. A., Etzioni O. and Kautz H., Towards a Theory of Natural Language

Interfaces to Databases. IUI (2003)

[74] Ranta A. A database query system based on GF (Grammatical Framework). XRCE

Grenoble June (1999).

[75] Rayner M., Abductive Equivalential Translation and its application to Natural

Language Database Interfacing. Ph.D. thesis, Royal Institute of Technology, Stockholm,

September (1993).

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[76] Reeker, L. H. The computational study of language acquisition. In Yovits, M., &

Rubinoff, M. (Eds.), Advances in Computers, Vol. 15, pp. 181—237. Academic Press,

New York. 1976

[77] Reis P., Mamede N., Matias J. Edite — A Natural Language Interface to Databases:

a New Dimension for an Old Approach in "Proceeding of the Fourth International

Conference on Information and Communication Technology in Tourism", ENTER' 97,

Edinburgh, Scotland (1997).

[78] Rosner M. and Johnson R. (edited by). Review of Computational Linguistics and

Formal Semantics, Cambridge University Press, pp. 321 (1992).

[79] Ryan K. L., Root R. and Olawsky D., Application-Specific Issues in Natural

Language Interfacer Development for a Diagnostic Expert System. Proc. of the Second

Conference on Applied Natural Language Processing,Austin, TX,pp. 109-114, (1988).

[80] Schmidt D. A., Denotational Semantics: A Methodology for Language

Development, Allyn and Bacon, Newton, MA, (1986).

[81] Scott M., Stallard D., Bobrow R. and Schwartz R., A Fully Statistical Approach to

Natural Language Interfaces. Proceedings of the Thirty-Fourth Annual Meeting of the

Association for Computational Linguistics, Morgan Kaufinann Publishers, San Francisco,

pp. 55-61,(1996)

[82] Shan C. Monads for natural language semantics. Proceedings of the 2001 European

Summer School in Logic, Language and Information student session, ed. Kristina

Striegnitz, pp. 285-298 (2001)

[83] Shan C. A variable-free dynamic semantics. Proceedings of the 13th Amsterdam

Colloquium, ed. Robert van Rooy and Martin Stokhof, pp. 204-209 (2002)

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[84] Siklossy, L. Natural language learning by computer. In Simon, H. A., & Siklossy, L.

(Eds.), Representation and meaning: Experiments with Information Processing Systems.

Prentice Hall, Englewood Cliffs, NJ. 1972

[85] Stratica N., Kosseim L. and Desai B.C. (2002) A Natural Language Processor for

Querying Cindi . In Proceedings of International Conference Advances in Infrastructure

for e-Business, e-Education, e-Science, and e-Medicine on the Internet (SSGRR 2002s),

L'Aquila, Italy July (2002).

[86] Stoy J., Denotational Semantics: the Scott-Strachey approach to Programming

Language Theory, MIT Press, (1977).

[87] Teskey F. N. Enriched knowledge representation for information retrieval.

Proceedings of the 10th annual international ACM SIGIR conference on Research and

development in information retrieval November (1987)

[88] Thomason R. H. Knowledge Representation and Knowledge of Words. Lexical

Semantics and Knowledge Representation: Proceedings of a Workshop Sponsored by the

Special Interest Group on the Lexicon of the Association for Computational Linguistics,

Association for Computational Linguistics", Somerset, New Jersey, pp. 1-8, (1991)

[89] Thomason R. H. Non-Monotonic Formalisms for Natural Language Semantics.

Linguistics Department, University of Pittsburgh, Pittsburgh. August (2002).

[90] Thomason R. H. Formalizing the Semantics of Derived Words. Linguistics

Department, University of Pittsburgh (2001)

[91] Tore A. The Understanding Computer. Lecture notes on Natural Language

Interfaces course at NTNU, (2002)

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[92] Vanderhoeft C. An Implementation Of Formal Semantics In The Formalism Of

Relational Databases. COLING 1990: 377-382

[93] Wallace M. Communicating with Databases in Natural Language. Horwood,

Chichester, (1984).

[94] Warren D. S. and Friedman J. Using Semantics in Non-Context-Free Parsing of

Montague Grammar. American Journal of Computational Linguistics Vol 8, N 3-4, pp.

123-138,(1982)

[95] Winiwarter W. and Kambayashi Y. DOA - The Deductive Object-Oriented

Approach to the Development of Adaptive Natural Language Interfaces Abstract, British

National Conference on Databases, pp. 137-138, (1997)

[96] Woods W., Kaplan R., and Webber B., The Lunar Sciences Natural Language

Information System: Final Report, BBN Report 2378, Bolt Beranek and Newman Inc.,

Cambridge, Massachusetts, 1972.

[97] Yates A. and Etzioni O. and Weld D. Reliable natural language interfaces to

household appliances. IUI-03, (2003).

[Keywords: Natural language interface, database, appliance, planner.]

[98] Yonezaki N. and Enomoto H. Database system based on intensional logic,

COLING-80", pp. 220-227, (1980)

[99] Zaenen A. and Uszkoreit H. Language Analysis and Understanding. In Joseph Cole

Ronald A., Mariani, Hans Uszkoreit, Annie Zaenen, and Victor

Zue, editors, Survey of the State of the Art in Human Language Technology,

chapter 3. Cambridge University Press, (1996).

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[100] Zelle J. M. and Mooney R. J. Learning to Parse Database Queries Using Inductive

Logic Programming, Proceedings of the 14th National Conference on Artificial

Intelligence, AAAI Press/MIT Press, Portland, OR, pp. 1050-1055, (1996).

[101] Zweigenbaum Pierre, Question answering in biomedicine Natural Language

Processing for Question Answering. An EACL workshop, April (2003).

[102] http://www.ercim.org/publication/Ercim_News/enw26/zampolli.html

[103] http://www.linguistlist.Org/issues/2/2-524.html#l

Appendix-ii
Annotated Bibliography

[1] Androutsopoulos, I. and Ritchie G.D. and Thanisch P. Natural Language Interfaces to

Databases—an introduction. Journal of Language Engineering, Vol 1, No 1, pp. 29-81,

(1995)

[Androutsopoulos, Ritchie and Thanisch’s paper in 1995, is an introductory paper on

natural language interfaces to databases which talks about history of NLIDBs, some

advantages and disadvantages of NLIDBs and also compares NLIDBs to formal query

languages, form-based interfaces and graphical interfaces. The first natural-language

interfaces to databases appeared in the late sixties and early seventies According to the

authors, the best-known NLIDB at that period was LUNAR [Woods, 1972], a natural-

language interface to a database containing chemical analyses of moon rocks. Some other

NLIDBs developed at that time were RENDEZVOUS, LADDER, PLANTES and

PHILIQA1 [description of and references for all of these systems can be found in

Androutsopoulos, Ritchie and Thanisch, 1995].]

[2] Androutsopoulos I., Ritchie G. D., and Thanisch P. Experience using tsql2 in a natural

language interface. In: Proceedings of the International Workshop on Temporal

Databases, Zurich, pp. 113-132 September (1995).

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ercim.org/publication/Ercim_News/enw26/zampolli.html
http://www.linguistlist.Org/issues/2/2-524.html%23l

[In this paper, the authors talk about using a language called TSQL2 in a natural-

language interface. The paper focuses on the TSQL2 in a natural-language interface for

temporal databases and also in some point on the semantics of TSQL2. For example the

question “ On how many Mondays was John at University of Windsor in 2000? “ can be

expressed as:

Select Snapshot Count (Distinct d.*)

From &year_month_day (Period) As d, student visits (Period) as t

Where d.year = 2000

AND d.day_name= “Monday”

AND VALID(t) OVERLAPS VALID(d)

AND t.student=’John’

AND t.school=’University of Windsor’

Assuming that the calendric table and year_month_day and student_visits tables are

available.]

[3] Androutsopoulos I., Ritchie G.D., Thanisch P. Time, Tense and Aspect in Natural

Language Database Interfaces. Natural Language Engineering, 4(3), pp. 229-276,

Cambridge Univ. Press, Sept. (1998)

[In their paper (which is a good introductory paper on temporal Databases) in 1998,

Androutsopoulos, Ritchie and Thanisch, suggest a new framework for constructing

natural language interface for temporal database as at that point of time most of the

natural language database interfaces designed had very limited facilities for manipulating

time-dependent data and didn’t support temporal linguistic mechanisms. The authors

refer to the work done by [Clifford and Warren, 1983] in temporal databases.]

[4] Bemardi R. and Moot R., Generalized Quantifiers in declarative and interrogative

sentences. In J. Bos and M. Kohlhase (eds.) Logic Journal of IGPL Vol. 11, N. 4, July

(2003).

[In this paper authors describe a logical system, which has the ability to compute the

semantics of both declaratives and interrogative sentences. For example, the author

analysed sentences such as:

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q: Did Tarantino direct Titanic? XY(Y((direct titanic) tarantino))

A: No Xp -ip

Q(A) By twice beta-reduction -i((direct titanic) tarantino)

The authors also considered “what” as an example:

Q: what did Cameron direct? XY(YX x((direct x) cameron))

A: Titanic XP P(titanic)

Q(A):By twice beta-reduction ((direct titanic) cameron)]

[5] Blackburn P. and Bos J. Computational Semantics for Natural Language. Course

Notes for NASSLLI, Indiana University, (2003)

[The paper [Blackburn and Bos, 2003] gives a good introduction to the Computational

Semantics of Natural Language. This paper introduces the basics of natural-language

semantics. It describes first-order logic, lambda calculus and underspecified

representations such as scope ambiguities (e.g. John advertised one house on every street)

and Montague’s approach.]

[6] Clifford J., Warren D. S., Formal Semantics for time in databases, ACM Transaction

on Database Systems (TODS), v.8 n.2 p.214-254, June 1983

[In this paper Clifford and Warren has discussed that formal logic has made important

contribution in understanding and specification of the semantics of database. Authors

showed that relational database model could be extended to incorporate the concept of

historical relations as well as database and also shown how ILs (reformulated IL to

include s as a basic type) can provide a semantic theory for this database concept. In this

paper the authors also suggested as interesting aspect in defining the translation of

English questions into ILs, where the authors interpret English statements as database

commands. For example, the authors interpreted the statement ‘ John earns 30k’ as a

command to record this as a fact in the database with the time-stamp taken from the

system clock when made by an authorized user.]

[7] Clifford J. Natural Language Querying of Historical Databases, Computational

Linguistics 14(4), 1988

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[In this paper the author examines the connection between the semantics of historical

databases and the semantics of natural language querying and through a common view of

the semantics o f time link them together. The author demonstrated the use of QE-III, a

formally defined English database query language whose semantics and pragmatic theory

are based on a Montague type semantics and discussed the issues on providing both

semantics and pragmatic interpretation for question within a model-theoretic framework.

For example questions in English Query Language QE-III can be handled in the

following way:

Who is Peter’s manager?

which can be interpreted as:

A.u 3x [MGR’(now)(x) A x(now) = u A AS-1 (Peter,x)]]

[8] Claire G. Dynamic Semantics and VP-Ellipsis. JELIA 1990: 251-266, (1990)

[[Claire, 1990] describes the implementation of formal semantics as described in Keena

and Faltz Boolean Semantics for Natural Language for Natural Language. The author

claims that his implementation avoids the intermediate step of translating Natural

Language into a formal language such as an extended version of predicate calculus which

makes his implementation free of the problems related to the syntax of such a language

like binding the variable and resolving scope ambiguities however which has

disadvantage that every denotation (i.e. semantic value) requires to be explicitly and

accurately represented in a database.]

[9] Cimiano P. Translating Wh-Questions into F-Logic Queries In: Proceedings of 2nd

CoLogNET-ElsNET Symposium. 2003

[In this paper the author presents a approach to map natural-language wh-questions into

F(rame)-logic queries based on Montague-style compositional semantics where semantic

representation is constructed on basis of Lexicalized Tree Adjoining Grammar LTAG-

style derivation tress. For example, who owns a company? can be translated as follows:

?-3 Y Y: company A X [own —> Y] .]

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] Demers N.P. A Lexicalist Approach to Natural-Language Database Front-Ends.

Master's Thesis, University of Ottawa (1996)

[In this thesis the author introduces a lexicalist approach, which is based on unification

grammars to database NLI’s along a small-scale example. The author claims that the

solution proposed to this approach is not only feasible but also provides reasonable

complexity and processing time for unambiguous words and expressions]

[11] Filipe P. P. and Mamede N. J. Databases and Natural Language Interfaces. V

Jornada de Engenharia de Software e Bases de Dados (JESBD'2000), Valladolid, Spain,

November (2000)

[In this paper the authors mainly focus to the translation stage, translating user questions

first into a logic language and then into Structured Query Language (SQL), which is that

processed by a database management system to return answer to the question.]

[12] Duclaye F., Yvon F., and Collin O. Learning paraphrases to improve a question-

answering system. An EACL workshop, April (2003).

[Duclaye and Yvon, 2003] discussed several methods on how to improve question-

answering systems. The authors presented an unsupervised methodology starting with

one single positive learning example for automatically learning paraphrases and which is

able to filter out the invalid potential paraphrases extracted during the acquisition steps

using an EM-based validation. The authors claim that these paraphrases are useful to

improve the results of their question-answering system.

[13] Frost R. A. and Launchbury J. Constructing natural language interpreters in a lazy

functional language. The Computer Journal, 32(2): 108-121, April (1989)

[In this paper the authors describe how in a functional programming language, language

parsers and interpreters can be implemented. Frost and Launchbury refer to the book by

Dowty, Wall and Peters (1981) but make no reference to any previous work on the use of

Montague semantics in database query processing. It appears that Frost and Launchbury

were amongst the first to use Montague semantics in database query processing.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It would also appear that Frost and Launchbury were the first to use a set-theoretic

based implementation of Montague semantics. For example instead of interpreting

‘every’ like in Montague as:

[every] = LpLq [Vp(x) -» q(x)]

Frost and Launchbury used:

[every]FL= Ap Xq p c q]

[14] Frost R. A. and Saba W. S. A database interface based on Montague’s approach to

the interpretation of natural language. International Journal of Man-Machine Studies,

33(2): 149-176, (1990).

[In this paper the authors implement some of the concepts of Richard Montague that can

be used in Natural Language Interface to databases .The database interface is

implemented in a higher-order functional programming language and the semantic

calculation is achieved through higher-order functional application.]

[15] Frost R. A. and Boulos P. An Efficient Compositional Semantics for Natural-

Language Database Queries with Arbitrarily-Nested Quantification and Negation.

Lecture Notes In Computer Science Proceedings of the 15th Conference of the Canadian

Society for Computational Studies of Intelligence on Advances in Artificial Intelligence,

pp. 252-267 , (2002)

[In this paper the authors describes implementation of a compositional semantics based

on a set-theoretic version of Montague semantics for a small Natural Language Query

processor. A compositional semantics for phrases that include the word ‘no’ is developed

based on an extended set theory in which ‘negative’ phrases denote infinite sets

represented in complement form.]

[16] Groenendijk J. and Stokhof M. Dynamic Montague Grammar. Faculty of

Mathematics and Computer Science, Roeterssraat, Amsterdam, Holland (1990)

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[In this paper the authors propose a new logical system as the semantic component of a

Montague -Style grammar that extends the compositionality of DPL (dynamic predicate

logic) to the subsentential level. In DLP (Dynamic Predicate Logic) a sentence such as

“Every farmer who owns a donkey beats it” can be translated into the formula as follows:

Vx[[farmer(x) a 3y [donkey(y) a own(x, y)]] —» beat(x ,y)]

In DLP the above translation is equivalent to :

VxVy [[farmer(x) a donkey(y) a own(x, y)] —» beat(x ,y)]

It is a continuation of their work [Groenendijk and Stokhof, 1989] on dynamic predicate

logic.]

[17] Hardt D. Centering in dynamic semantics. In COLING-96. Copenhagen,

(1996).

[In this paper the author presents a dynamic framework, a dynamic logic system, with

extensions for the discourse center (a distinguished discourse entity that is the topic of a

discourse), VP ellipsis (Verb Phrase ellipsis) and paycheck pronouns. (A paycheck

pronoun is a pronoun, which exhibits sloppy identity, for example “Smith spent his

paycheck. Jones saved it.”. Here “it” is not an ordinary bound pronoun, nor is it an

ordinary free pronoun.]

[18] Hausser R., Database semantics for natural language. Artificial Intelligence, Vol.

130, Issue 1, pp. 27-74, July (2001)

[In this paper authors describes database semantics as a declarative model of a cognitive

agent which is called a SLIM machine and which functionally integrates the procedures

of Natural language interpretation, conceptualization and production. No one appears to

have referred to this work at this point of time.]

[19] Hausser R. "Spatio-Temporal Indexing in Database Semantics," in A. Gelbukh (ed).,

2001

[In this paper Hausser presents a new approach where the spatio-temporal location of

propositional content is not specified precisely within a Cartesian system of space and

time coordinates instead it is characterized cognitively by the order of direct observations

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

entering the database of a cognitive agent. The sequence of propositions which serves as

the spatial landmarks are structured by observations of the environment and temporal

landmarks are structured by observations of cyclical events. In database semantics, like

all other inference, which navigate through the concatenated propositions, spatio-

temporal inferences are handled.]

[20] Hinrichs E. W. Tense, Quantifiers, and Contexts, Computational Linguistics, Vol. 14

No. 2, June 1988

[In [Hinrichs, 1988], the author argued that a logical semantics for temporal expressions

could provide sufficient representations for natural-language inputs to an interface such

as JANUS, a natural language understanding and generation system under joint

development by BBN Labs and ISI. The author demonstrated that if narrow scopes are

given to tense quantifiers that will enable to provide adequate scope relation with respect

to natural-language quantifiers and to interpret such NPs relative to a given discourse

context. The author also demonstrated that how in English the narrow scope of tense

results in a fully compositional syntax and semantics of tensed sentences.]

[21] Hirst G. A Foundation for semantic interpretation, Proceedings of the 21st Annual

Meeting, Association for Computational Linguistics, Cambridge, Mass., June 1983, 64—

73.

[In [Hirst, 1983] the author proposed a new approach to semantic interpretation based on

the semantic formalism of Richard Montague. In this approach author claim that their

semantics are compositional by design and strongly typed like Montague and they replace

Montague’s semantic objects and truth conditions with the elements of the frame

language Frail and added a word sense and case slot disambiguation system. They claim

that their approach to semantic interpretation is superior to previous approaches. For

example a single noun phrase the book can be interpreted as (the ?x (book ?x)), which is

a Frail frame statement. And a descriptive adjective correspond to a lot-filler pair from

example red is represented by (color=red), so the red book would have semantic

interpretation (the ?x (book ?x(color=red))). Similarly the sentence “Nadia bought the

book from a store in the mall “ will be interpreted as

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a ?u (buy ?u (agent = (the ?x (thing ?x (propemame= “Nadia”))))

(patient = (the ?y (book ?y))) (source = (a ?z (store ?z (location =

(the ?w (mall ?w)))))))]

[22] Kabanza F., St'evenne J.M., and Wolper P. Handling infinite temporal data. In Ninth

ACM Symposium on Principles of Database Systems, pages 392—403, Nashville,

Tennessee, Apr. 1990.

[In this paper the authors present a framework, which is an extension of classical

relational database, for describing, storing and reasoning about infinite temporal

information and this framework represents infinite temporal information by generalized

tuples which are defined by linear repeating points and constraints on these points.

Authors prove that relations formed from generalized tuples are closed under the

operations of relational algebra.]

[23] Lappoon R. T. and Raymond M. Automated Construction of Database Interfaces:

Integrating Statistical and Relational Learning for Semantic Parsing. Proceedings of the

Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and

Very Large Corpora (EMNLP/VLC-2000), pp. 133-141, Hong Kong, October, (2000)

[In this paper the authors present a method for integrating statistical and relational

techniques for the automated acquisition of NLI’s from training examples. They also

claim that their approach is more robust than a previous purely logical approach.]

[24] Main M. G., Benson D. B. Denotational Semantics for "Natural" Language

Question-Answering Programs. American Journal of Computational Linguistics 9(1): 11-

21 (1983)

[According to Main and Benson in 1983, denotational semantics can be used as a

specification technique for question-answering programs & for implementation the

principle of compiler design was suggested as principle of question answerer design.]

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[25] Mosny M., Semantic Information Preprocessing for Natural Language Interfaces to

Databases. Meeting of the Association for Computational Linguistics, pp. 314-316,

(1995)

[In this paper the author propose an approach to extract constraints, which are explicitly

or implicitly provided by a semantic part of the NLID, from the semantic description of

the database domain and incorporate them into information directly accessible to the

parser.]

[26] Nelken R. and Francez N., Bilattices and the Semantics of Natural Language

Questions, Technical Report LCL 9801, Laboratory for Computational Linguistics, the

Technion. (1998)

[In this paper authors propose a novel semantics theory of NL questions which is

composed of a compositional translation method into a formal logical meaning

representation language in a Montagovian framework.]

[27] Nelken R. and Francez N. The Algebraic Semantics of Interrogative NPs. The

Algebraic Semantics of Interrogative NPs. Journal Grammars, Vol. 3, N 2/3, pages 259-

273,(2000)

[In the paper “the algebraic Semantics of Interrogative NPs” authors Nelken and Francez,

in 2000, suggest a new semantic interpretation of interrogative NPs, which play an

important role in driving the interpretation of wh-questions such as “ which women”. The

authors used a formal language called Intensional Logic with Questions (ILQ) which

extends Montague’s IL. The authors added two operators: the interrogative operator (?)

used for yes/no questions and the binding interrogative operator (?x) used for constituent

questions. For example, here the authors interpret the interrogative determiner “which”

as:

[Det which] = XPA.Q. ?x (P(x) a Q (x))

which is similar to the standard interpretation of the determiner “a” :

a: XPXQ 3x (P(x) a Q (x))

So the meaning of the sentence “which woman kissed John” can be interpreted as

follows:

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Which woman kissed John]

= [INP which woman] ([v p kissed John])

= XQ. ?x (woman(x) a Q(x)) (Ay. kiss (y, John))

= ?x (woman(x) a kiss (x, John))]

[28] Nelken R. and Francez N. Querying Temporal Databases Using Controlled Natural

Language. In proceedings of Coling (2000)

[In this paper authors present Natural Language Interface to temporal database controlled

by novel based on translating natural language questions into temporal database query

language, which is done using Type-Logical Grammar framework.]

[29] Nelken R. Questions, Time and Natural Language Interfaces to Temporal Databases.

PhD thesis (2001)

[In his doctoral thesis, Nelken suggest the design of a natural language interface to

temporal databases, based on translating natural language temporal questions into

SQL/Temporal, which is a recent temporal database query language .The interface is

based on two stage translation process, where in first stage question are translated into a

two-sorted first-order logic over temporal interval and in second stage logical formulae is

translated into SQL/Temporal.]

[30] Nelken R. and Francez N. Querying Temporal Databases Using Controlled Natural

Language. In proceedings of Coling (2000)

[In other paper [Nelken, 2000] the author continues his work in temporal databases and

presents a Natural Language Interface to temporal database controlled by novel based on

translating natural language questions into temporal database query language, which is

done using Type-Logical Grammar framework. For example consider the NL question:

During which year did Mary work in marketing?

The meaning of the sentence is constructed as:

(year(I) A 3 J (work(mary, marketing, J) A J c past A J c I))

Which can be translated into the following SQL/Temporal query:

NonSequenced Validtime

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Select distinct aO.c As cl

From work’ As al.year’ As aO

Where Validtime(aO) contains

Validtime (al)

And a l.c l = ‘mary’

And Al.c2 = ‘marketing’

And period (TimeStamp ‘beginning’, TimeStamp ‘now’) contains Validtime

(al)]

[31] Onet A., Doina T. Intensional Logic Translation for Quantitative Natural Language

Sentences. (colaborare cu A.Onet), Studia Universitatis "Babes-Bolyai", Seria

Informatica, nol, pp 41-54, (2001)

[In this paper authors describe the fundamentals of intensional logic and introduce some

methods for treating quantitative natural sentences. Authors split quantitative sentences

in three categories: definite quantity sentences (e.g. “Four women cry”), indefinite

quantity sentences (e.g. “Most women cry”), restrictive quantity sentences (e.g.

“Maximum five children answer”) and tried to translate them in to intensional logic.]

[32] Popescu M. A., Etzioni O. and Kautz H., Towards a Theory of Natural Language

Interfaces to Databases. IUI (2003)

[In this paper authors introduce a theoretical framework, which is foundation for the fully

implemented Precise NLI and proved that Precise guarantees to map each question to the

corresponding SQL query, for a broad class of semantically tractable Natural Language

Questions.]

[33] Ranta A. A database query system based on GF (Grammatical Framework). XRCE

Grenoble June (1999).

[In his paper, Ranta describes a database query system based on Grammatical Framework

which was demonstrated concerning a database of restaurants which runs in seven

European languages and the system can be modified on various level like changing basic

grammatical structure into other structure.]

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[34] Reis P., Mamede N., Matias J. Edite — A Natural Language Interface to Databases:

a New Dimension for an Old Approach in "Proceeding of the Fourth International

Conference on Information and Communication Technology in Tourism", ENTER' 97,

Edinburgh, Scotland (1997).

[In this article the authors present the Edite system which is a Natural Language Interface

to Database and the system explore the advantage of joining natural language processing

with the expressiveness of graphical interfaces. Edite, a natural-language front-end for

relational databases, is multi-lingual (Portuguese, French, English, Spanish). It is capable

of answering written questions related to tourism by transforming them into SQL queries.

The answer can be a list of resources, text, images or graphics depending of the

questions. At present, the database contains 53000 tourism resources, arranged on 253

distinct types, which corresponds to 209 tables. This paper refers to the work done by

[Androutsopoulos, Ritchie, Thanisch, 1993].]

[35] Scott M., Stallard D., Bobrow R. and Schwartz R., A Fully Statistical Approach to

Natural Language Interfaces. Proceedings of the Thirty-Fourth Annual Meeting of the

Association for Computational Linguistics, Morgan Kaufmann Publishers, San Francisco,

pp. 55-61, (1996)

[A fully-statistical approach to a natural-language interface, which consists of three

stages of processing: parsing, semantic interpretation and discourse, is described in [Scott

and David 1996]. All of the stages are modeled as a statistical process, which are

integrated, resulting in an end-to-end system that maps input utterances into meaning-

representation frames.]

[36] Shan C. Monads for natural language semantics. Proceedings of the 2001 European

Summer School in Logic, Language and Information student session, ed. Kristina

Striegnitz, pp. 285-298 (2001)

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[In his paper, Shan characterizes the similarity between several semantics accounts for

interrogatives, focus, intensionality, variable binding & quantifications by using monads.

A monad is a structure from abstract algebra, category theory.]

[37] Shan C. A variable-free dynamic semantics. Proceedings of the 13th Amsterdam

Colloquium, ed. Robert van Rooy and Martin Stokhof, pp. 204-209 (2002)

[In his paper, in 2002, Shan introduces a new concept variable free dynamic semantics,

which means denotional semantics for Natural Language where meanings of constituents

are updates to information states. Shan [2002] analyzed sentences such as “A man walks

in the park. He whistles.” For example, the author wrote e for the type of an individual, e

-» 1 for the type of a property and e —> e —> 1 for the type of a two-place relation. So, the

derivation of the sentence “ A man walks in the park” is translated as follows:

A: (e —» 1) —» e = A,p. { v | * € p (v)}

Man: e -> 1, WITP: e -> 1, WITP(A(MAN)):1

And, whistles denotes some property WHISTLE: e —» 1 and “he” denotes

HE: e ► e =^v.v

where * (“in”) is a new binary type constructor where type a * x is like
cj—»x in that they may have the same models, namely functions from a to x .
So now “He whistles” can be derived as follows:

g ► (WHISTLE) (HE): e ► 1 = Xv: WHISTLE(v)

where g ̂ is a type-shift operation such as

g ► : (a-»P) —> (a ► a) —> (a ► P) = A,f. A,v. Xs. f (v(s))]

[38] Thomason R. H. Formalizing the Semantics of Derived Words. Linguistics

Department, University of Pittsburgh (2001)

[In this paper the authors propose an approach ,the logical approach, which they claim

has never produced a very satisfactory account of word meaning but is successful in the

semantic interpretation of syntactic structure. For example the natural way to define ‘x is

water soluble’ is as follows:

If x were put in some water, then x would dissolve in the water.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The definition of ‘water-soluble’ is obtained by using eventualities in place of times (This

formula uses more or less standard formalization techniques in event-centered semantics,

for example [Push(e) A Past(e) A Pusher(e) = Charlie A Pushee(e) = Piano] is used to

represent Charlie pushed the piano .)

Vx [water-soluble(x) Vei Vy [put_in(ei) a movee(ei) = x a container(ei) = y a

water(y)] —> 3e [Dissolving(e) a dissolvee(e) = x a medium(e) = y] a —iAb(e)] —>

3 Q2 [culmination(e) = e2 a dissolved(e2) a disolvee(e2) = x a medium(e2) = y]]

In words: x is water-soluble if and only if necessarily if an event cl of putting x in a

quantity of water occurs then el is the inception of a dissolving eventuality e involving

the same x and quantity of water, which unless something abnormal about e will

culminate in a state in which x is dissolved.]

[39] Warren D. S. and Friedman J. Using Semantics in Non-Context-Free Parsing of

Montague Grammar. American Journal of Computational Linguistics Vol 8, N 3-4, pp.

123-138,(1982)

[According to Warren [1982], a complete, well-defined context in which these questions

can be considered is provided by Montague grammar with its fully formalized syntax and

semantics. [Warren, 1982] describes how to reduce the combinatorial explosion of

syntactic ambiguity by using semantics during parsing in Montague grammar.]

[40] Yonezaki N. and Enomoto H. Database system based on intensional logic,

COLING-80", pp. 220-227, (1980)

[According to Yonezaki and Enomoto, Richard Montague’s Intensional Logic (I L),

which describe semantics of natural language, can be useful to the theory of database in

designing database systems which handles historical data and provide a formal

description of database semantics.]

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

Maxim Roy was bom in 1978 in Leningrad, Russia. He graduated from Chittagong

University School and College in Bangladesh in 1997. From there he went on to the

University o f Windsor where he obtained B.S.C.(Honours) in Computer Science in 2002.

He is currently a candidate for the Master’s degree in Computer Science at the University

of Windsor and hopes to graduate in Winter 2005.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Extending a set-theoretic implementation of Montague Semantics to accommodate n-ary transitive verbs.
	Recommended Citation

	tmp.1617207847.pdf.vuj07

