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Abstract

Natural-language querying of databases remains an important and challenging area. 

Many approaches have been proposed over many years yet none of them has provided a 

comprehensive fully-compositional denotational semantics for a large sub-set of natural 

language, even for querying first-order non-intentional, non-modal, relational databases. 

One approach, which has made significant progress, is that which is based on Montague 

Semantics. Various researchers have helped to develop this approach and have 

demonstrated its viability. However, none have yet shown how to accommodate 

transitive verbs of arity greater than two. Our thesis is that existing approaches to the 

implementation of Montague Semantics in modem functional programming languages 

can be extended to solve this problem. This thesis is proven through the development of a 

compositional semantics for n-ary transitive verbs (n > 2 ) and implementation in the 

Miranda programming environment.

[Keywords: Compositional, non-intentional, Montague Semantics, set-theoretic, 

relational database, denotational]
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Chapter 1 PREFACE

1.1 Introduction

This report describes the development of an efficient compositional semantics for 

natural-language queries, which include quantification, nouns, proper nouns, term 

phrases, verb phrases, negation, coordination (“and” and “or”) and n-ary transitive verbs 

(n > 2). It is important because it will increase the capability of natural-language query 

interfaces to databases.

1.2 Outline of the report
This report is about extending a set-theoretic version of Montague Semantics to 

accommodate n-ary transitive verbs where n > 2. Chapter 1 contains the thesis statement 

and motivation for it. Chapter 2 of the report is a general introduction to Montague 

Semantics. The use of Montague Semantics in database query processing is described in 

Chapter 3. Chapter 4 describes Montague’s approach to transitive verbs. Chapter 5 gives 

an overview on the use of Montague Semantics in database-query processing. Chapter 6  

contains an overview of an existing implementation of a set-theoretic version of a sub-set 

of Montague Semantics and an extension of the set-theoretic approach to accommodate 

negation. Chapter 7 discusses the problem addressed in this thesis work - to extend an 

existing set-theoretic approach to accommodate n-ary transitive verbs where n > 2 , and 

summarizes two initial approaches that were developed and analyzed as part of this thesis 

work. Chapter 8  describes the final approach, which we claim supports the thesis. 

Chapter 9 of the report contains future directions and conclusions. A comprehensive 

survey on the use of Montague-like semantics is also attached as appendix at the end of 

the report.

1
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Chapter 2 INTRODUCTION

2.1 Problem addressed

Natural-language querying of databases remains an important and challenging area. 

Many approaches have been proposed over many years yet none of them has provided a 

fully-compositional denotational semantics for a large sub-set of natural language even 

for querying first-order non-intentional, non-modal, relational databases. One approach, 

which has made significant progress, is that which is based on Montague Semantics. 

Various researchers have helped to develop this approach and have demonstrated its 

viability (see appendix B for a comprehensive survey on the use of Montague and 

Montague-like compositional semantics in natural-language database query processing). 

After conducting the survey it was found that no one have yet shown how to 

accommodate transitive verbs of arity greater than two, which is the subject of my thesis.

2.2 Montague’s Approach

One of the most influential functional approaches to natural-language interpretation was 

developed by Richard Montague. In the early seventies, Montague (1971) developed an 

approach to the interpretation of natural language in which he claimed that we could 

precisely define the syntax and semantics for substantial sub-sets of natural languages 

such as English. In particular, he claimed that the objects denoted by phrases of a natural 

language denote functions in a function space constructed over a set of objects of a few 

primitive types. For each syntactic category of a natural language, Montague claimed that 

there is a corresponding semantic type, and for each syntactic rule that shows how a 

complex syntactic construct can be built from simpler constructs, there is a corresponding 

semantic rule that shows how the meaning of the complex construct can be computed 

from the meaning of its parts. Montague was one of the first to develop a compositional 

semantics for a substantial part of English (details in Chapter 3 & 4). By compositional 

semantics we mean that the meaning of a compound sentence is determined by the 

meanings of its constituents and the way they are put together to form the sentence.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3 Set-theoretic treatment of Montague Semantics
Montague’s approach has been used in the past as the basis for the development of 

natural-language processors. However, direct implementation of Montague semantics is 

not computationally viable owing to the fact that the interpretation of phrases involving 

quantification requires characteristic functions to be applied to all, possibly-infinite 

number of, representations of entities in the universe of discourse. One approach to 

overcome this problem was proposed by Frost and Launchbury (1989). In that approach, 

noun and verb phrases denote sets directly rather than denoting characteristic functions of 

sets. A fully-compositional simple natural-language database-query processor was built 

which could accommodate nouns, intransitive verbs, (two-place) transitive verbs, proper 

nouns, adjectives, determiners, conjunction, disjunction and arbitrarily-nested 

quantification. The approach was subsequently extended to accommodate negation (Frost 

and Boulos 2002)(details in Chapter 4).

2.4 Limitation of the set-theoretic approach

The approach to natural-language database-query processing developed by Frost and 

Launchbury (FL) is very limited in its scope. It does not accommodate modality, 

intentionality, or transitive verbs with arity greater than two. Work on the first two of 

these limitations is being undertaken but is a long-term project. The third limitation is the 

subject of this report.

2.5 Thesis Statement

“It is possible to extend the set-theoretical compositional semantics developed by Frost et 

al to accommodate n-ary transitive verbs, (n > 2 ) by re-defining all denotations to involve 

sets of attributes rather than simple entities, without loss of compositionality. ”

3
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2.6 How the new semantics will be evaluated?
Below we state some specific objectives for our semantics:

1) We will state examples of types of questions that our semantics will be able to 

handle, give a small grammar for example languages, and show that relatively 

small sets of semantic definitions can be used to compute the values for languages 

with hundreds of thousands of queries.

2) The new semantics will maintain the orthogonality of the old semantics, i.e. that 

the meaning of all (disambiguated) words is independent of context, and that the 

rules of composition are also independent of context.

3) The new semantics will maintain the syntactic/semantic correspondence i.e. 

phrases of the same syntactic category denote functions of the same semantic type.

To demonstrate that our semantics meets these objectives we will implement 

illustrative example query processors based on our semantics, in Miranda, and then:

a) Define example query languages and compute their size, and show results from 

execution of example queries.

b) Discuss the Miranda program, showing how words are given a single meaning, 

and give examples of queries where the context is different.

c) Give the results of using the Miranda type inference system (::) on examples of 

phrases of the same syntactic category to show that they denote functions of the 

same semantic type.

Orthogonality and the syntactic/semantic relationship guarantee that our semantics 

will be compositional in the sense that the meaning of expressions of a very large query 

language can be computed using a very small number of semantic rules.

We are using the functional programming language Miranda only to help to 

investigate and illustrate our approach to the problem. We will use two problem domains 

to illustrate the approach. One domain handles queries about the solar system and the 

other domain handles queries about authors and books.

The objective of our research is not to create a Miranda program for a particular set of 

queries but to develop a compositional semantics, which could be implemented in 

different programming languages and which could be used for various databases.

4
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2.7 Why the thesis is important
The FL approach is unable to deal with queries such as “When did Hall discover 

Phobos?”, “With what did Hall discover Phobos?” and “When and who discovered 

Deimos?” This thesis provides an approach on how to deal with such queries. This thesis 

is important because it will increase the capability of natural-language query interfaces to 

databases. The originality of our approach is that implementation of transitive verbs are 

higher-order functions which return sets of attribute values as results rather than just truth 

values or lists of entities as in the FL approach.

Our final result is a compositional semantics for quantifications, negation, nouns, 

proper nouns, term phrases and n-place transitive verbs and helps in building more 

powerful NL interfaces than existing NL interfaces which convert queries to SQL (which 

can’t handle all forms of negation).

2.8 Contribution to Computational Linguistics, Computer 

Science and S/W Engineering
Our research contributes to computational linguistics as we are extending an existing 

linguistics theory and demonstrating the tractabily of its implementation. Montague’s 

semantics didn’t provide much about how to handle n-place transitive verbs and here in 

this thesis work we are extending Montague’s semantics by developing a new approach 

to handle n-place transitive verbs. As discussed in the sub-section 4.2 no one else appears 

to have solved this problem.

It has a contribution to Computer Science as we are developing a denotational 

semantics for a natural language by mapping from each syntactic category into a suitable 

semantic domain. By doing so, we are adding to the growing belief that the denotational 

semantics approach to programming-language specification has application in natural- 

language interface design. In computer science, denotational semantics is one of the 

approaches to formalize the semantics of computer programs. Denotational semantics is a 

standard tool for language design and definition. The compositional nature of a 

denotational semantics is a real boon for proving properties of programs and languages. 

Montague semantics, which we are extending, is a form of denotational semantics for 

idealized fragments of English.

5
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It also has a contribution to engineering as we are developing a new semantic 

approach for natural-language query processing, which is efficient and has good software 

engineering characteristics such as modularity and orthogonality.

6
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Chapter 3 MONTAGUE SEMANTICS

3.1 Introduction to Montague Semantics
Model-theoretic semantics of natural language is a way of analyzing the meanings of NL 

expressions. The technique was introduced by Richard Montague (1971) in two classical 

papers entitled “Universal Grammar” and “The Proper Treatment of Quantification in 

Ordinary English” which is known as PTQ. Universal Grammar, which is a 

predominantly theoretical paper, refers to the branch of mathematics called universal 

algebra from which the main techniques were adopted. PTQ, on the other hand, applies 

these theoretical principles to ‘ordinary English’. Grammars based on Montague’s PTQ 

are called Montague grammars.

Richard Montague (1971) was one of the first to develop a compositional semantics 

for English. Later Partee (1973) describes some extensions to Montague grammar. 

Bennet (1974) also worked on some extensions. Thomason Richmond (1975) gave an 

introduction to Montague semantics. Partee's "Montague Grammar and Transformational 

Grammar" (1975) was seen as the first introductory text to describe Montague Semantics. 

Dowty, Wall & Peters later published another comprehensive text called "Introduction To 

Montague Semantics" (1981).

A Montague grammar is a grammar for a particular fragment of natural language 

which consists of three components: the Syntax, a syntactic analysis of the expressions of 

the fragment, the Translation, translating natural language into a logical language, and the 

Model Theory or the Semantics, a (model-theoretic) interpretation of the expressions of 

the logical language

The translation is “meaning preserving”, hence, the meaning assigned to the formula 

of the logical sentence by the interpretation is also the meaning assigned to the natural 

language sentence that the formula translates.

In order to be familiar with Montague’s PTQ grammar, one should have some 

knowledge about lambda calculus. The lambda calculus was developed by Alonzo

Church (1941). Church recognized that an expression containing x, such a s  x .........

defines a function of x. He introduced the notation: Xx [formula containing x] as a name

7
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for that function. The expression Xx [formula containing x] is called an /-expression or 

^-abstraction. A rule of ̂ -conversion may be written as follows:

A.x [ ..jc ] (a) => [....a....]

In the formula [ .. . .a ...... ], each free occurrence of x is replaced with a , the result is

[••••a..........]•

The following description of Montague Semantics is derived from the book 

“Montague Semantics” by Dowty, Wall and Peters (1981).

Montague gave some examples of using lambda notation in natural language to define 

the semantics of expressions. For example considering the following two sentences: 

“Every man eats.” and “Every man sleeps.”. The usual translation of this sentence in 

predicate logic is:

V x (M (x )^  E (x)) and Vx(M(x) -» S (x) )

These sentences are instances of a more general sentence whose translation is a second- 

order logic formula, i.e. they are ^-conversions of the ^-expression:

XY [Vx (M (x) —> Y (x) ) ] . 

the first conversion is

Ay  [Vx (M (x ) -» Y (x) ) ] (E) 

and the second one is

AY [Vx (M (x ) —> Y (x) ) ] (S)

In his theory Montague made a distinction between the sense (intension) of an 

expression and reference (extension). The reference of an expression corresponds to 

semantic (truth) value of this expression; the sense corresponds to the meaning of the 

expression. The distinction between sense and reference is important when operators such 

as believe are used. For example, “John believes A” cannot be described as function of 

the references of its parts but can be described as a function of the senses of these parts. 

The intensionality in natural language is induced by prepositional attitude verbs such as: 

think, believe, regret etc.

In the rules below of the PTQ grammar we shall denote by a 1 the intension of an 

expression a  and by a e the extension of an expression a. The cancellation rule ei, which

8
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is important in simplification of the expressions produced by the translation of sentences 

in natural language, is: a 1,e= a e,1= a

Considering the intensionality, the expressions for determinants every and a will be:

Ip  [lQ[Vx(Pe ( x ) ^  Qe (x ) ) ] ] and !P [lQ [3x(P e (x) AQe ( x ) ) ] ]  respectively.

Before introducing the rules of the PTQ grammar the categories used in the PTQ 

grammar are explained below:

Category Name Categorical Definition of Name Nearest Transformational Equivalent

t t Sentence

CN CN Common noun
IV IV Intransitive Verb
T t/IV Term Phrases and Proper Name
IAV IV/IV Intransitive Adverb
TV IV/T (=IV/(t/IV)) Transitive Verb
T/CN (t/IV)/CN Determiner
t/t t/t Sentence Adverb
IV/t IV/t Sentence-complement Verb
IV//IV IV//IV Infinitive-complement Verb
IAV/T (IV/IV)/T Preposition

Table: 2-1. Categories used in PTQ grammar 

In a categorical grammar an expression of category A/B (or of A//B) combines with 

an expression of category B to give an expression of category A. The different between 

A/B and A//B is that both are distinct categories but denote values of the same logical 

type.

Syntactic rules in the PTQ grammar forming complex expressions have the following 

general form:

S„: If a e  Pa and |3e Pb then Fn(a, P) e Pc, where Fn(a, p) is.............

Here n is the number of the syntactic rule, A and B are the syntactic categories of the 

input expressions, C is the syntactic category of the new expression formed by the rule 

and Fn is the name of the structural operation of the rule and in place of the ellipsis is a 

description of what this operation does.

9
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Now some of the rules of PTQ grammar with examples are described. Readers who are 

familiar with Montague Semantics can skip to chapter 4 on page 20.

3.2 Subject-Predicate and Determiner-noun rules
One of the first rules described in PTQ is S4, which is a syntactic rule and is called the 

subject-predicate rule. This rule takes a term phrase and a verb phrase and combines them 

to form a sentence. The rule is as follows:

S4: If a e  PT and p g P]y then F4(0 ,. P) g P  ̂where F4(ct, P) aP , and p is the result of

replacing the first verb in p by its third person singular present form.
Each syntactic rule Sn has associated with it a translation rule Tn with the same numerical

subscript. The translation rule associated with S4 is as follows:

T4: If a e  Pt and pe  Prv and a , p translate into a ,  p respectively, then F4(a, P) 
translates into a  ( p 1)

Now let us consider a simple English sentence and translate it according to the rule. 

For example, let us consider the sentence: Tom talks.

Tom translates into A.P [Pe(t)] 

where P is a variable over properties of individuals and t is an individual constant 

corresponding to the person called Tom.

Now translating the sentence according to the rule T4 will be as follows:

Tom talks 
1 .Tom => A.P [ Pe ( t)  ]
2 . t a l k s  => t a l k '
3.A.P [Pe ( t ) l  ( t a l k 1) [ From 1,2  by T4]
4 . t a l k ® '1 ( t)  [Lambda co n v ers io n ]
5 . t a l k ' ( t )  [ C a n c e l la t io n  ru le ]

Now let us consider the second rule S2 that is called the Determiner-Noun rule. This 

rule combines words like every with words like human to produce partial sentences like 

every human or a with dog to give partial sentences like a dog etc. The rule is as 

follows:

S2: If a e  Pt/cn and Pe Pcn then Fa(a, P) e P t , where F2(a, P) = a  p and a  is a

10
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except in the case where a  is a and the first word in (3 begins with a vowel; here a  is an. 

The associated translation rule of S2 is T2, which is as follows:

T2: If a e  P t/cn  and p e: Pcn and o t , [3 translate into (x , p respectively, then F 2 (ix. [3) 

translates into a  ( p ')

The below example sentences can be translated first using the rule T2 and then the rule

T4. For Example,

Every human walks.
The sun shines.
A dog barks.

The words every, the and a can be translated as follows according to Montague: 

every translates into: AP [AQ Vx [ Pe(x) —» Qe(x)]] 

the translates into: AP [AQ 3x [Vx [Pe(x) <=> x = y] a  Qe(y)]] 

a translates into: AP [AQ 3x [ P 6( x ) a  Qe(x)]]

Now translating the first sentence above according to the rules T2 and T4 is as follows:

Every human w a lk s.
1. e v e ry  => AP [AqVx [ Pe (x)-» Qe (x )]]
2 . human => human'
3 . e v e ry  human => AP [AQVx [Pe (x) -» Qe (x) ] ] (human'1)

[From 1 ,2  by T2]
4 . AqVx [human'6' 1 (x) —> Qe (x)] [ Lambda c o n v e rs io n ]
5 .AqVx [human'(x) —> Qe (x) ] [C a n c e l la t io n  Rule]
6 . walks => w alks '
7 . e v e ry  human walks => AqVx [human'(x ) -» Qe (x] ( w a lk s '1)

[From 5 ,6  by T4]
9 . Vx [human' (x) —» w a lk s '6,1 (x) ] [ Lambda co n v e rs io n ]
10 . Vx [human' (x) —» w a lk s '  (x) ] [C a n c e l la t io n  Rule]

Similarly the other two sentences can be translated using the rule T2 and the rule T4. 

The sun shines can be translated into:

3x [Vx [sun’(x) x = y] a  shines’(y)]

And A dog barks can be translated into:

3x [ dog’(x)A barks’(x)]

11
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3.3 Conjoined Sentences, Verb Phrases and Term Phrases

The first conjunction rule described in PTQ is SI la, which takes two sentences such as 

Tom talks and every human walks and combines them by rule S ll  to produces 

sentences like tom talks and every human walks. The rule is as follows:

S lla: If a , Pe Pt , then Fna(a, P) e Pt , where Fna(a, P) = a  and p 

The associated translation rule o f S l l a i s T l l a  which is:

T lla: If a , Pe Pt and a  ,p translate into a , P respectively, then Fna(a, p) translates 

into [a a  P]

For example, with the help of the rule T1 la  we can translate a simple English sentence 

like Tom talks and every human walks, into :

[ talk’(t) a  Vx [ human (x) -» walks’(x)] ] 

where Tom talks can be translated into talk’(t) and every human walks can be 

translated into Vx [ human (x) —> walks’(x)] [ Derived in section 2]

The rule SI lb is as follows:

S llb : If a , Pe Pt , then Fn(a, P) e Pt , where Fnb(a, P) = a  or p 

The associated translation rule of SI lb is T1 lb, which is:

T llb : If a, Pe Pt and a  ,P translate into a ,  p respectively, then Fnb(a, P) translates 

into [a v  p ]

Another three conjunction rule are S12a, S12b and S13. The rules S12a and S12b take 

two verb phrases (member’s of Piv) and combines them together. And the rule S13 takes

two term phrases (member’s of PT) and combines them together. The rules S12a, S12b

and S13 are as follows:

S12a: If a , Pe Piv, then Fi2a(a, P) e Prv , where Fi2a(a, P) = a  and p 

S12b: If a , Pe Piv, then Fi2b(a, P) e Piv , where Fi2b(ci, P) — cc or P 

S13: If a , Pe Prv, then Fn(a, P) e Prv , where F 13 (a, p) = a  or p 

The associated translation rule of S I2 a , SI2b and SI 3 are:

T12a: If a, Pe Piv and a  ,p translate into a , p respectively, then Fi2a(a, P) translates 

into Xx [a  (x) a  P (x)]

T12b: If a, Pe Prv and a  ,P translate into a , p respectively, then Fi2b(a, p) translates 

into Xx [a (x) v P(x)]

12
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T13: If a , Pe P t and a  ,(3 translate into a , p respectively, then Fi3(a, P) translates into 

IP  [a  (P) v  p ’(P)]

Now let as consider a simple English sentence for example Every human walks or 

talks. And translate the sentence with the help of the rule T12b.

Every human walks or talks.
1. e v e ry  human => iQVx [human' (x )—»Qe (x) ]

[Derived i n  s e c t i o n  2]
2 . w alk  => w alk '
3 . t a l k  => t a l k '
4 . w alk  o r  t a l k  => Ix [w a lk '(x )  v t a l k ' ( x )  ] [From 2 ,3  by T12b]
5 . e v e ry  human walks o r  t a l k s  =>

iQVy [human (y) —>• Qe (y) ] (Xx [walk' (x) v t a l k ' ( x )  ] 1 )
[From 1 ,4  by T4]

6. Vy [human' (y) —> Ix [w a lk '(x )  v t a l k ' ( x )  ] 6,1 (y) ]
[Lambda co n v ers io n ]

7. Vy [human' (y ) —> Xx [walk' (x) v t a l k ' ( x )  ] (y) ]
[ C a n c e l la t io n  Rule]

8 . Vy [human' (y) —» [w alk '(y) v t a l k ' ( y )  ] ]
[Lambda c o n v e r s i o n ]

3.4 Anaphoric Pronouns as bound variables; Scope Ambiguities 
and related clauses

The rule that deals with pronouns is the rule S14. The rule S14 is as follows:

S14: If a e  P t , pe  Pt, then Fi4>n(a, P) e  Pt 

The translation rule of S14 is:

T14: If a e  Pt , Pe Pt and a  ,P translate into a , P respectively, then Fi4 n(a, p) 

translates into a  (Xxn p ‘)

Now for example we will use the rule T14 to translated sentences like A women sings 

and she dances. Pronouns are translated as follows:

hen translates into IP  [ Pe(xn)]

So the translation is of the above example using the rule T14 is as follows:

A women sings and she dances.
1 .h e 2 => IP  [Pe (x2) 1
2 . s in g  => s i n g '
3 . dance => d a n c e s '
4 .h e 2 s in g s  => IP  [ Pe (x2)] ( s i n g '1) [From 1 ,2  by T4]
5 . s i n g '1,e( x2 ) [Lambda co n v e rs io n ]
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6. s i n g '  ( x2 ) [C a n c e l la t io n  Rule]
7 .h e 2 dances  => A.P [ Pe (x2)] ( d a n c e '1) [From 1,3  by T4]
8 . d a n c e '1,6 (x2) [Lambda convers ion ]
9 . d a n c e '  (x2) [ C a n c e l la t io n  Rule]
1 0 .h e 2 s in g s  and he2 dances =>

[ s in g '  (x2) a  dance ' (x2) ]
11. a  woman => ),P 3x [ woman' (x) a  Pe (x) ]
1 2 .a  woman s in g s  and she dances  ==>
A,P3x [woman' (x) a  Pe (x)] (Xx2 [ s in g '  (x2)Adance' (X;,)]1)

[From 10,11 by T14]
1 3 .3x [ woman' (x) a  A.x2 [ s in g '  (x2) a  d an ce ' (x2)] 1,e(x)]

[Lambda conven tion ]
1 4 .3x [ woman' (x) a  A,x2 [ s in g '  (x2) a  dan ce ' (x2) ] (x) ]

[ C a n c e l la t io n  Rule]
1 5 .3x [woman'(x) a  [ s in g '( x )  a  d a n c e ' ( x ) ]]

[Lambda co n v ers io n ]

To illustrate how S14 accounts de dicto/de re ambiguities in complements of verbs 

like believe, the syntactic rule S7 has been introduced . The rule S7 is as follows:

S7 : If a e  Piv/t , Pe Pt , then F7(a, P) e Piv, where F7(a, p) = a  that p 

The translation rule of S7 is :

T7 : If a e  Piv/t , Pe Pt and a  ,P translate into a  , P respectively, then F7(a, P) 

translates into a  ( p ')

For example the sentence Tom believes that a dog barks can be translated as 

described below with the help of the rule T7.

Tom b e l i e v e s  t h a t  a dog b a r k s .
1 .a  dog b a rk s  => 3x [ dog ' (x) a  b a r k s '  (x) ]
2 . b e l i e v e  => b e l i e v e '
3 . b e l i e v e  t h a t  a  dog b a rk s  =>

b e l i e v e '  (3x [ dog ' (x) a  b a r k s '  ( x ) ] 1 ) [From 1 ,2  by T7]
4 . Tom => A,P [ Pe (t ) ]
5 . Tom b e l i e v e  t h a t  a  dog b a rk s  =>

X,P[Pe ( t ) ]  ( b e l i e v e '  (3x[dog ' (x) a  b a r k s '  (x) ] 1 ) x
[From 3 ,4  by T4]

6 . b e l i e v e '  (3x [dog' (x) a  b a r k s '  ( x ) ] 1 ) 1 ,e ( t)
[Lambda c o n v e rs io n ]

7 . b e l i e v e ' ( t ,  3 x [d o g '(x )  a  b a r k s ' ( x ) ] 1 )
[R e la t io n a l  n o t a t i o n  and  C a n c e l l a t io n  r u le ]

Another way of translating the above sentence is:

14
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Tom believes that a dog barks.
1. h e2 b a rk s  => b a r k '  (x2)
2. b e l i e v e  t h a t  he2 b a rk s  =>

b e l i e v e '  ( [b a rk '  (x2) ] x ) [By T7]
3 . Tom b e l i e v e s  t h a t  he5 b a rk s  =>

A,P[Pe ( t ) ]  ( b e l i e v e '  ( [b a rk ' (x2) ] 1 ) 1) [By T4]
4 . b e l i e v e '  ( [b a rk ' (x2) ] 1) 1,0 ( t)  [Lambda co n v ers io n ]
5 . b e l i e v e ' ( t , [ b a r k ' ( x 2) ] 1) [ R e la t io n a l  n o t a t i o n  and

C a n c e l l a t io n  r u le ]
6 . a  dog => A.P 3x [ dog ' (x) a  Pe (x) ]
7 . Tom b e l i e v e s  t h a t  a dog b a rk s  =>

A,P3x [dog' ( x ) a  Pe (x)] ( Xx2 [ b e l i e v e '  ( t ,  [b a rk ' (x2) ] 1) ] 1)
[By T14]

8 .3 x [d o g ' ( x ) a  X x2 [believe' (t, [bark' (x 2)]1)]:l ,e(x)]
[Lambda co n v e rs io n ]

9 .3 x [d o g ' (x) a  b e l i e v e '  ( t ,  [b a rk ' (x) ] 1) ]
[Lambda co n v ers io n ]

Similarly, the sentence Every human believes that a dog barks can be translated into: 

3x[dog’(x) a  Vy[human’(y) —> believe’ ( y , [bark’(x)]1)]] 

and

Vy[human’(y) —> 3x[dog’(x) a  believe’ ( y , [bark’(x)]1)]]

The rule S3 which is a relative clause rule takes a common noun and a sentence and 

outputs a new phrase of the category common noun(CN). The rule S3 is as follows:

S3: If a e  P cn and (3 e Pt , then F3,n (a, (3) e P cn where F3,n (a, (3) = a  such that p 

The translation rule of S3 is:

T3: If a e  Pcn, P^ Pt and a  ,p translate into a , p respectively, then F3>n(a, P) 

translates into Xxn [a (xn) a  P )]

For example English sentences like Every dog such that it barks runs can be 

translated using the rule T3. The translation is:

Every dog such that it barks runs
1. he2 b a rk s  => b a r k '  (x2) [ p r e v io u s ly  d e r iv e d ]
2. dog such  t h a t  i t  b a rk s  =>

Xx2 [ d o g '(x 2) a  b a r k ' ( x 2)] [By T3]
3 . ev e ry  dog such  t h a t  i t  b a rk s  =>

A,PA,QVx [Pe (x) —> Qe (x)] (A,x2 [dog '(x2) a  b a rk ' (x2) ] x) [By T2] 
4 . A,QVx [A,x 2 [dog (x2) a  b a r k ' t x ; . ) ] 1 ,e (x) -> Qe (x)]

[Lambda co n v e rs io n ]
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5.A,QVx[Ax2 [d o g ' ( x 2 ) a  b ark ' (x2 )] (x) —> Qe (x)]
[C a n c e l la t io n  Rule]

6  . A,QVx [ [dog '(x) a  b a r k '( x  ) ] —> Qe (x) ]
[Lambda convers io n ]

7 . e v e ry  dog such  t h a t  i t  b a rk s  ru n s  =>
A,QVx [[dog' (x) a  bark ' (x ) ] Qe (x) ] ( r u n s '1) [By T4]

8 . Vx [ [ dog' (x) a  bark ' (x ) ] —» r im s ' (x) ]
[Lambda c o n v e rs io n ,  C a n c e l l a t io n  Rule]

3.5 Transitive verbs, Meaning Postulates And Non-Specific 
Readings

The rule S5 combines a transitive verb with a term phrase and outputs an IV-phrase 

(Intransitive Verb). The rule S5 is as follows:

S5: If a e  Ptv, P^ P t, then Fs(a, p) e Piv where F5(a, P) = aP
The translation rule of S5 is:
T5: If a e  Ptv, P^ P t and a  ,P translate into a , p respectively, then F5(a, P) translates 
into a  ( p ‘)
For example sentence like Tom seeks a dog. can be translates using the rule T5 as 
follows:

Tom seeks a dog
1 .se e k = >  s e e k '
2 . a  dog => A,Q3x [dog' (x) a  Qe (x) ] [P re v io u s ly  d e r iv e d ]
3 . s eek  a  dog => s e e k '  (XQ 3x[dog ' (x) a  Qe (x) ] 1 )

[From 1 ,2  by T5]
4 . Tom seek s  a  dog =>

A.P [Pe ( t ) ]  ( s e e k ' (A.Q 3x[dog ' (x) a  Qe ( x ) ] 1 ) 1) [By T4]
5. s e e k '  (A.Q 3x [dog' ( x ) a  Qe ( x ) ] 1) 1 ,e ( t)  [Lambda co n v ers io n ]
6 . s e e k '  (XQ3x [dog' ( x ) a  Qe ( x ) ] 1) ( t)  [ C a n c e l l a t io n  Rule]
7 . s e e k '  ( t ,  A,Q3x [dog' (x) a  Qe ( x ) ] 1) [R e la t io n a l  n o ta t io n ]

At this point no more simplification is possible.

Another way of translating the above sentence is:

Tom seeks a dog.
1. h e0 => XP[Pe (x0)] [Basic  e x p re s s io n ]
2. seek  => s e e k '
3 . seek  him0 =>

se e k '  (A.P[Pe ( x q ) ] 1 ) [By T5]
4 . Tom seeks  him0 =>

A,P[Pe ( t ) ]  ( s e e k ' ( IP  [Pe (x0) ] 1) 1 [By T4]
5 . s e e k '  ( A.P [ Pe (x0) ] 1) 1 ,e (t)  [ Lambda co n v e rs io n ]
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6. s e e k ' ( t  , AP [ Pe (x0) ] 1) [ C a n c e l la t io n  R ule and
R e la t io n a l  N o ta tio n ]

7. a  dog => AQ 3x [ dog ' (x) a Qe (x) ] [P re v io u s ly  d e riv e d ]
8 . Tom se e k s  a dog =>

AQ 3x [ dog ' (x) a Qe (x) ] (Ax0 [se e k ' ( t , l P  [ Pe (x0) ] ] 1)
[By T14]

9 .3 x  [ dog ' (x) a Ax0 [ s e e k ' ( t  , AP [Pe (x0) ] 1) ] 1 ,e (x) ]
[Lambda c o n v e rs io n ]

1 0 .3x [dog ' (x) a Ax0 [ s e e k '( t ,A P  [Pe (x0) ] 1) ] (x) ]
[C a n c e lla t io n  ru le ]

1 1 .3x [dog ' (x) a [se e k ' ( t ,  AP [ Pe ( x ) ] 1)]]
[Lambda co n v ers io n ]

Montague introduced a special notation:

8* = AyAx [ 8( AP[Pe(y)]')(x)], where 8 e ME f (tv)

So, now we can continue from 11 from above:
1 1 .3x [dog' (x) a  [ s e e k '( t  , AP [ Pe ( x ) ] 1) ] ]
12 . 3x [dog' (x) a  [ s e e k ' ( AP [ Pe (x) ] l ) ( t)  ] ]

[R e la t io n a l  n o ta t io n ]
1 3 .3 x [d o g ' (x) a  [ Xz  [se e k ' (AP [Pe (x) ] x) (z) ( t)  ] ]

[A ,-conversion]
14 . 3x [dog' (x) a  [ Xy  [Az [se e k ' ( AP [ Pe (y) ] l ) (z) ] ] (x) ( t)  ] ]

[A ,-conversion]
1 5 .3 x [d o g '(x )  a [ seek  , (x) ( t)  ] ] [5* n o ta t io n ]
1 6 .3 x [d o g '(x )  a [ s e e k '. ( t ,  x ) ]] [R e la tio n  n o ta t io n ]

The verb be is not translated into a non-logical constant be’ , but is translated as :

be translates into A,® Ax ®(Ay [ x = y ]‘)e

This is the most complex expression assigned as a translation of any English word in 

Montague semantics (according to Dowty et al, 1981). The best way to understand it 

is to first compute a translation using it. Some examples are derived below.

Tom is John.
1. be => A® Ax ® ( Ay [ x = y I 1) 6 [B asic  e x p re s s io n ]
2 . John => AP [ Pe (j )] [B asic  e x p re s s io n ]
3 .b e  John =>

A® Ax ®( Ay [ x = y ] 1) 6 ( AP [ Pe ( j ) ] i ) [ B y  T5]
4.  Ax AP [Pe (j  ) ] 6,1 (Ay [ x = y  ] x) [Lambda co n v e rs io n ]
5 . Ax AP[Pe ( j ) ]  ( A y  [ x = y ] 1 ) [C a n c e lla t io n  Rule]
6. Ax [Ay [ x = y ] 1,e ( j ) ]  [Lambda c o n v e rs io n ]
7 . Ax [ x = j ] [Lambda co n v e rs io n ]
8 . Tom i s  John => AP [ Pe ( t ) ]  (Ax [ x = j ] 1 ) [By T4]
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9. Ax [ x  = j ] e,:L ( t)  [ Lambda co n v ers io n ]
10. Ax [ x  = j ] ( t)  [C a n c e lla t io n  Rule]
1 1 .t  = j  [Lambda co n v ers io n ]

Tom i s  a  human.
1 .a  human => AQ 3x [human'(x) a Qe (x)] [P re v io u s ly  d e riv e d ]
2. be a  human => A<I>Ax <I> ( Ay [x = y ] 1) e ( AQ3x [human' (x) a

Qe ( x ) ] 1 ) [By T5]
3.XQXx O (A.y [ x = y ] x) e ( XQ 3z [human' (z) a Qe ( z ) ] 1 )

[A lp h ab e tic  v a r i a n t  o f  2]
4 . Ax AQ3z [human'(z) a Qe ( z ) ] 1 (Ay [ x = y ] 1)®

[Lambda c o n v e rs io n ]
5. Ax AQ3z [human'(z) a Qe (z)] (Ay[ x = y I 1)

[C a n c e lla t io n  Rule]
6 . Ax 3z[hum an '(z) a Ay[ x = y ] 1,e(z)]  [Lambda c o n v e rs io n ]
7 . X x  3z [hum an'(z) a  Xy  [ x = y ] (z)]  [C a n c e lla t io n  Rule]
8. Ax 3z [hum an'(z ) a x = z] [Lambda c o n v e rs io n ]
9 .Tom i s  a  human => AP[P®(t)] (Ax3z [human'(z) a x = z ] x) [By T4]
10. Ax 3z [h\aman' (z) a x = z ] 1,e(t)  [Lambda co n v e rs io n ]
11.A,x 3z [human' (z) a x = z ] ( t)  [C a n c e lla t io n  Rule]
1 2 .3z [human'(z) a t=  z ] [Lambda c o n v e rs io n ]
13.human'(t) [By principle of first-order logic with identity]

3.6 Adverbs And Infinitive Complement Verbs

The PTQ grammar includes both sentence adverbs such as necessarily and verb-phrases 

adverbs such as slowly. The adverb necessarily which doesn’t translate into a non-logical 

constant is translated in terms of a special symbol . The adverb necessarily translates 

into Xp [ p]e where p is a variable over propositions.

For example sentence like Necessarily Tom talks. Can be translated as follows: 

N e c e s s a r i ly  Tom t a lk s
1. h e2 t a l k s  => t a l k '  (x2) [p re v io u s ly  d e r iv e d ]
2 .n e c e s s a r i l y  => Xp  [ p ] e [B asic  E x p ress io n ]
3 .n e c e s s a r i ly  h e2 t a l k s  => Xp [ p ] e ( [ t a l k '  (x2) ] x) [By T2]
4.  [ t a l k '  (x2) ] [Lambda c o n v e rs io n  and C a n c e l la t io n  r u le  ]
5 .n e c e s s a r i ly  Tom t a l k s  =>

^P[Pe ( t ) ]  ( Xx2 [ t a l k '  (x2) ] i ) [By T14]
6.A,x2 [ t a l k '  (x2)] ( t)  [Lambda c o n v e rs io n  and C a n c e l la t io n  Rule]
7. [ t a l k ' ( t ) ]  [Lambda c o n v e rs io n ]

And sentence like Tom runs slowly can be translated as: 
slowly’(Arun’)(t)
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3.7 Negation
Montague didn’t explain in details how to deal with negation but gave a rough idea about 

it. The rule S17 deals with negation. The rule S17 is:

S17: If a e  PT and Pe PIV, then F17a(a, p), Fnb(a, p), Fi7c(a, p), F17d(a, p), Fne(a, p) 

e Pt, where:

Fi7a(a, P) = ap  and P is the result of replacing the first verb in p by its negative third 

person singular present;

Fi7b(a, P) =aP and p is the result of replacing the first verb in p by its third person 

singular future;

Fi7c(a, P) = ap  and p is the result of replacing the first verb in p by its negative 

third person singular future;

Fi7d(a, P) =ap and P is the result of replacing the first verb in p by its third person

singular present perfect; and 

Fi7e(a, P) = ap  and P is the result of replacing the first verb in p by its negative 

third person singular present perfect;

The translation of S17 is as follows:

T17: If a e  Pt, Pe Piv and a  ,P translate into a , P respectively, 

then:

Fi7a(a, P) translates into - ia  ( p ‘)

Fnb(a, P) translates into Fa ( P ')

Fi7c(a, P) translates into —.Fa ( p ')

Fi7d(a, P) translates into Pa ( P ')

Fi7e(a, P) translates into -iPa ( P ‘)

Where the negation and tense operators (P and F) are given wider scope than the 

translation of the subject term phrase.

For example the sentence every human doesn’t run can be translated to:

—iVx[human’(x) —> run’(x)] 

or Vx[human’(x) —> -irun’(x)]
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Chapter 4 MONTAGUE AND TRANSITIVE VERBS

4.1 Montague’s approach to transitive verbs

Montague didn’t mention much about n-place transitive verbs where n>2. In his 

semantics he described briefly how to handle 2-place transitive verbs and stated that it 

could be extended to handle n-place transitive verbs. Below we describe with examples 

how 2-place transitive verbs are handled in Montague’s Semantics.

According to Montague, the semantic type of transitive verbs like “orbits” is as 

follows:

f(TV ) = f(IV/T) = «  s, f(T) > ,f(IV)>

= « s , « s ,  f(IV)>, t » , « s , e > t »

= < < s ,« s ,« s ,e > , t» , t» ,« s ,e > t»

As discussed in the previous chapter the rule S5 combines a transitive verb with a term 

phrase and outputs an IV-phrase (Intransitive Verb). The rule S5 is as follows:

S5: If a e  Ptv, pe  P t, then Fs(a, (3) e Piv where Fs(a, P) = ap  

The translation rule of S5 is:

T5: If a e  P tv , P^ P t  and a  ,p translate into a , p respectively, then F5(a, P) translates 

into a  ( P ')

For example sentence like Phobos orbits Mars, can be translates using the rule T5 as 

follows:

Phobos orbits Mars

1 .o r b i t s  => o r b i t s '

2 .Mars=> A.Q [Qe (e_mars) ]

3 .o r b i t s  Mars => o r b i t s '  (XQ [Qe (e_m ars) ] 1 )

[From 1 ,2  by T5]

4 . Phobos => XP [Pe (e_phobos) ]

5 . Phobos o r b i t s  Mars=>

A.P [Pe (e_phobos) ] ( o r b i t s '  (A.Q [Qe (e_mars) ] 1 ) x) [By T4]

6. ( o r b i t s '  (XQ [Qe (e_mars) ] 1) 1 ,e) (e_phobos) [Lambda c o n v e rs io n ]

7 . o r b i t s '  (XQ [Qe (e_mars) ] 1) (e_phobos) [C a n c e lla t io n  Rule]
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8.orbits' (e_phobos, A q  [Qe (e_mars)] x) [Relational notation]

At this point no more simplification is possible.

Now Montague introduced a special notation:

5* = XyXx [ 8 (  AP[Pc(y)]')(x)], where 8  € ME f  (TV) 

where 8* is the binary relation associated with the denotation 8 of the transitive verb. 

Note here that Montague does not give the meaning of the transitive verbs, for example 

[orbits] directly, consequently, his treatment of transitive verbs is very difficult to 

understand.

Now we continue from 8 from above:

8. o r b i t s '  (e_j?hobos, AQ [Qe (e_m ars) ] x)

9. o r b i t s '  ( XQ [ Qe (e_mars) ] x) (e_phobos)

[R e la t io n a l  n o ta t io n ]

10. Xz  [ o r b i t s '  (AQ [Qe (e_mars) ] x) (z) (e_phobos) ]

[A,-conversion]
11. [Ay [Az [ o r b i t s '  ( AQ [ Qe(y)]1) (z) ] ] (e_mars) (e_phobos)]

[A-conversion]
12. [ o r b i t s ' ,  (e_mars) (e jphobos) ] [8* n o ta t io n ]

13. o r b i t s ' ,  (e jp h o b o s, e_m ars) [R e la tio n  n o ta t io n ]

So in Montague semantics Phobos orbits Mars is derived as orbits *(ejphobos, 

e_mars)

4.2 Frost’s approach to Transitive verbs
Below we derive the same expression (Phobos orbits Mars) in a simplified statement of 

Montague’s transitive verbs (no intensionality), using an approach developed by Frost 

(unpublished communication). In this approach transitive verbs (for example “orbit”) 

denote functions such as:

orbit => Az z (AyAx orbit_rel(x,y)).

Therefore, Phobos orbits Mars

1. Phobos => (Ap p e_phobos)

2. Mars => (Aq q e_mars)
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3. orbits => Xz z (XyXx orbit_rel(x,y))

4. orbits Mars =̂> Xz z (XyXx orbit_rel(x,y)) (Aq q em ars) [ From 2 and 3]

5. Phobos orbits Mars =>

(Xp p e_phobos) (Xz z (XyXx orbit_rel(x,y)) (Xq q e_mars)) [ From 1 and 4]

6. (Xp p e_phobos) ((Xq q e_mars)(XyXx orbit_rel(x,y))) [ Lambda conversion]

7. (Xp p e_phobos) (XyXx orbit_rel(x,y) e_mars) [ Lambda conversion]

8. (Xp p e_phobos) (Xx orbit_rel(x,e_mars)) [ Lambda conversion]

9. (Xx orbit_rel(x,e_mars) e_phobos) [ Lambda conversion]

10. orbit_rel(e_phobos, e mars) [Lambda conversion]

Note that this approach does not accommodate intensional and modal aspect of 

sentences. However, it was useful when developing the set-theoretic semantics for 

transitive verbs described in the next chapter.

4.3 Other researchers’ treatment of transitive verbs in Montague- 
like semantics

McCawley (1974), Karttunen (1976), Ross (1976) and Larson (1997) talked about 

intensional transitive verbs but didn’t discuss n-ary transitive verbs, n > 2.

The book "English Verb Classes and Alternations: A Preliminary Investigation" by 

Beth Levin also talks about transitive verbs but nothing about n-place transitive verbs.

(Miyagawa, Tsujioka, 2004) describes how to handle 3-place verbs in Japanese 

language, but nothing about other cases, n>3.

Other researchers like Partee, Dowty and Peter have talked about Montague semantics 

but have not provided any approaches to handle n-place transitive verbs.
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Chapter 5 OVERVIEW OF USE OF MONTAGUE 

SEMANTICS IN DATABASE QUERY PROCESSING

5.1 Overview
There are many advantages to provide users with natural-language interfaces to data 

sources. In particular, when speech-recognition technology is used, it is useful to phrase 

queries in some form of pseudo natural-language as it is very difficult to “speak” a 

language such as SQL.

There are two ways to construct natural-language processors: by translation to a 

formal language such as SQL, or by direct interpretation by an evaluator based on some 

form of compositional semantics. The second approach has some advantages: 1) 

information concerning sub-phrases of the query, such as cost and size, can be presented 

to the user in an intelligible form before the query is processed, 2) for query-debugging 

purposes, the user can ask for the value of sub-phrases to be presented before the whole 

query is evaluated, 3) and the sub-set of natural-language can be readily extended if  the 

evaluator has a modular structure based on the compositional semantics.

5.2 Montague Semantics in Database querying:
According to (Yonezaki and Enomoto 1980), Montague’s Intensional Logic (IL) can be 

useful to the theory of databases in designing database systems, which handle historical 

data and provide a formal description of database semantics. However, they noted that 

direct implementation is impractical.

Variations of Montague Semantics have been proposed used as a semantic basis in a 

number of implemented systems for natural language (e.g. Clifford 1990), but none 

discussed transitive verbs, n >2.

(Frost and Launchbury, 1989) describe how in a functional-programming language, 

efficient natural-language parsers and interpreters can be implemented using a se- 

theoretic version of Montague Semantics. Frost and Launchbury refer to the book by 

Dowty, Wall and Peters (1981). It appears that Frost and Launchbury were amongst the 

first to use Montague semantics in database query processing.
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It would also appear that Frost and Launchbury were the first to use a set-theoretic 

based implementation of Montague semantics. For example instead of interpreting 

‘every’ like in Montague as:

[every] = ApAq [ Vp(x) -» q(x) ]

Frost and Launchbury used:

[every] f l =  Ap ).q p c  q

(Frost and Saba 1990) implemented some of the concepts of Montague that can be 

used in natural-language interface to databases in an executable attribute grammar.

(Lapalme and Lavier 1990) showed how a larger part of Montague Semantics can be 

implemented in a pure higher-order functional programming language, but did not use a 

set-theoretic approach and were not concerned with efficiency.

(Frost and Boulos, 2002) developed an extension to the set-theoretic-based 

compositional semantics to accommodate phrases that include the word ‘no’. The 

approach is based on an extended set theory in which ‘negative’ phrases denote infinite 

sets represented in complement form.
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The below table shows the research on Montague Semantics in database query 

processing:

Year Authors Work
1980 Yonezaki and Enomoto Montague's Intensional 

Logic (IL) can be useful in 
designing database systems 
which handle historical data

1989 Frost and Launchbury Implementation of a set- 
theoretic version of sub-set 
of Montague Semantics

1990 Lapalme and Lavier Montague Semantics can be 
implemented in a pure 
higher-order functional 
programming language

1990 Frost and Saba Used Montague Semantics 
to implement natural- 
language interfaces to 
databases

2002 Frost and Boulos Implemented compositional 
semantics for database 
queries based on a set- 
theoretic version of 
Montague semantics to 
accommodate negation

Table 4.1: Coverage of Natural-Language Semantics

5.3 Natural-language Interfaces based on SQL

Many of natural-language interfaces that have been developed are based on an SQL type 

approach. The following references are provided so that reader can compare SQL-based 

approaches with the Montague-based approach described in this thesis.

(Hasting, 1991) describes the design and implementation of an SQL based speech- 

recognition database-query system.

(Androutsopoulos, 1995) talks about using a language called TSQL2 in a natural 

language interface. The paper (Androutsopoulos, 1995) focuses on the TSQL2 in a 

natural-language interface for temporal databases and also in some point on the semantics 

of TSQL2.
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(Reis and Mamede, 1997) present the Edite system, which is a natural-language 

interface to databases, and explore the advantage of joining natural-language processing 

with the expressiveness of graphical interfaces. Edite, a natural-language front-end for 

relational databases, is multi-lingual (Portuguese, French, English, Spanish). It is capable 

of answering written questions related to tourism by transforming them into SQL queries. 

The answer can be a list of resources, text, images or graphics depending of the 

questions. At present, the database contains 53000 tourism resources, arranged on 253 

distinct types, which corresponds to 209 tables.

(Stratica, 2002) talks about a natural language processor for querying Cindi, which is 

also an SQL-based system.

A reliable natural-language interfaces to household appliances, which is also, an SQL- 

based interface is described in (Yates and Etzioni, 2003).

(Popescu, Etzioni and Kautz 2003) introduces a theoretical framework, which is the 

foundation for the fully implemented Precise NLI and proved that Precise guarantees a 

map for each question to the corresponding SQL query, for a broad class of semantically- 

tractable natural-language questions.

5.4 Limitation of SQL-based approaches

SQL-based approaches have several limitations. For example, the Edite system (Resi and 

Mamede, 1997) described in the previous section has some disadvantages such as -  

regarding the linguistic coverage it only accepts questions, no imperative or declarative 

statements are allowed. Moreover, another limitation is the set of restrictions imposed on 

the design and conception of the database. Most of the SQL-based approaches are also 

unable to handle negation, modality and intensionality.
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Chapter 6 AN OVERVIEW OF AN EXISTING IMPLEMENTATION 

OF A SET-THEORETIC VERSION OF A SUB-SET OF MONTAGUE 

SEMANTICS

6.1 Overview of existing approach

Direct implementation of Montague semantics is impractical. A set-theoretic version of a 

first-order subset of Montague’s approach, developed by Frost and Launchbury (FL 

1989), is discussed in this section. However a simple conversion of Montague’s treatment 

of negation does not work in this set-theoretic semantics, and is discussed later.

The following are examples of the types of the objects denoted by words and phrases 

of some syntactic categories in the FL semantics. These types are explained further later 

on. The notation x - > y denotes the type of functions from type x to type y.

noun :: {entity}
intransverb:: {entity}
propernoun :: {entity} -> bool
determiner :: {entity} -> {entity} -> bool
transverb :: ({entity -> bool}) -> {entity}

The following are examples of denotations of some words in the FL semantics. These 

denotations are also explained in more detail later.

d_planet = {"mars", "earth" ..}
d_spins = {"earth", "mars", "phobos", "deimos"..}
d_mars = Xs "mars" member s
d_every = XsXt s subset t
d_no = XsXt (s intersect t)={}

The following example illustrates how the meaning of a simple statement is evaluated. 

Note that d_«x>> denotes meaning of the expression x.

d_<<every planet spins>>
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=> X x X y(x subset y) d_planet d_spin 
=> X y (d_planet subset y) d_spin 
=> (d_planet subset d_spin)
=> True

We now explain these examples further. To do this, we use the notation of the 

functional-programming language Miranda. This notation is easier to read than lambda 

notation and also provides an environment in which one can experiment with the 

definitions.

According to Montague, noun and verb phrases denote characteristic functions. In the 

FL semantics, nouns and verb phrases denote sets of entities. These sets can be 

represented by lists in Miranda, for example:

d_moon = ["deimos", "phobos" .. 
d_planet = ["mars", "earth" ..
d_spins = ["mars", "earth", "phobos", "deimos" ..

In the FL semantics, proper nouns (names) are implemented as functions, which take a 

list as input, and which return the boolean value True if the list contains the entry related 

to the proper noun, and False otherwise. For example, assuming that the function 

member has been defined appropriately:

d_sol s = member s "sol"
d_mars s = member s "mars"
d_earth s = member s "earth"

Accordingly, d_<<mars spins >> => True owing to the fact that application of 

d_mars to d_spins returns the value True because "mars" is a member of the list 

denoted by d_spins.

Quantifiers are implemented as higher-order functions, which take a list as input and 

which return a function of type list -> bool as output. For example, assuming that the 

functions subset and intersection have been defined appropriately:

d_every s t = subset s t
d_a s t = intersection s t ~= []
d_no s t = intersection s t = []
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Accordingly, <<every p lan e t spins>> => True owing to the fact that partial 

application of the higher-order function d every to d p lanet returns the function f such 

that f t  = subset [ "mars" , "earth" ] t  . Application of f to d sp ins returns True 

because ["m ars", "earth"] is a subset of ["mars", "e a rth " , "phobos", "deimos"]

Frost’s approach to transitive verbs is described in sub-section 4.2. When converted to 

set-theoretic form, a transitive verb is implemented as a function whose argument is a 

predicate on sets. When it is applied to a particular predicate, it returns a set of entities as 

result. An entity is in the result set if the predicate is true of the entity’s image under the 

associated relation. For example, 2-place transitive verbs are defined as shown in the 

following example:

d_orb it p = [x | (x, image_x) <- c o lle c t o rb it_ re l ;  p image_x ]
where
o rb it_ re l  = [ ( "luna", "e a rth " ), ("phobos", "mars")

("deimos", "m ars"), ( " e a r th " , " s o l" ) , 
e t c .

This definition uses a programming construct called a list comprehension. The 

general form of a list comprehension is: [body | q u a lif ie rs ]  where each qualifier is 

either a generator, of the form var ^ exp or a filter, which is a Boolean expression used 

to restrict the range of the variables introduced by the generators. The collect function 

used in the above definition converts a relation of tuples <a,b> to a relation of tuples 

<a,c> where c is the image of a under the original relation. For example, applying 

collect to the relation o rb it  r e i  above returns the following:

c o lle c t  o rb it_ re l  => [("luna", ["e a rth " ]) ,
("phobos", ["mars" ] ) ,
("deimos", ["m ars"]),
(" e a r th " , [" so l" ] ) ,
("mars", [" so l" ])]

Therefore, the meaning of the phrase “orbits mars” is obtained by applying d o rb i ts  to 
d_mars :

d _o rb its  d_mars => [x| (x, image_x) -  c o lle c t  o rb it_ re l ;  d_mars image_x] 
=> [x| (x,  image_x) [("luna",  [ "ea r t h" ] ) ,

("phobos", ["mars"] ) ,
("deimos", ["mars"]).
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("earth", ["sol"]),
("mars", ["sol"])] ;
d_mars image_x]

=> ["phobos", "deimos"]

Passive verb phrases can be interpreted by simply inverting the order of the columns 
of the binary relation, which is used in the definition of the transitive verb.

The resulting semantics has been used in the implementation of a natural-language 
query processor, which is constructed as an executable specification of an attribute 
grammar. The processor is accessible at the following URL:

http ://www. cs .uwindsor. ca/users/r/richard/miranda/wage demo .html

6.2 An overview of an extension of the set-theoretic approach to 

accommodate negation

A problem with the FL semantics is that the denotation of the word “no” only works in 

some syntactic contexts, and fails in others, as illustrated below. For example the 

denotation of “sol orbits no moon” is:

=> <<sol orbits no moon >>
=> <<sol>> ( <<orbits>> ( <<no>> <<moon>>)
=> d_sol (d_orbits (d_no d_moon))
=> d_sol [ x | (x , image_x) <- collect orbut_rel;

(d_no d_moon) image_x]
=> d_sol [ x | (x, image_x) <- collect orbit_rel;

(intersection d_moon image_x) = []]
=> d_sol [x | (x, image_x) <- collect orbit_rel;

(intersection ["deimos", "phobos"] image_x ) = [] ]
=> d_sol [ "deimos", "phobos", "mars" , "earth" ]
=> member [ "deimos" , "phobos", "mars", "earth"] "sol
=> False

Which is not the expected answer. The reason for the failure is that when collect is 
applied to orbit rel it generates the following relation:

[("deimos", ["mars']), ("phobos", ["mars"]),
("mars", ["sol"]), ("earth", ["sol"])]

Owing to the fact that the images of “deimos”, “phobos”, “earth” and “mars” have 

empty intersections with list [' deimos", "phobos" ], the meaning of the sub-expression 

“orbit no moon” is computed to be: [ "deimos", "phobos", "mars", "earth" ] . This
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list does not include “sol”, and consequently, the evaluation of « s o l  orbits no m o o n »  

returns the incorrect result False.

Frost and Boulos(2002) have developed a method for accommodating negation which 

is based on the notion that a set can be represented in two ways: explicitly by 

enumerating all of its members, or implicitly by enumerating all of the members of its 

complement. In cases where a set is computed as the denotation of a phrase that involves 

a negation, it is represented using its complement.

To implement this approach, a new type set is introduced, which can be defined in 

Miranda as follows, where [string] is the type list of strings and string is a synonym 

for the type list of characters:
set ::= SET [string] | COMP [string]

The following are two examples of objects of type set. The first example represents 

the set whose members are “ phobos” and “ deimos” . The second example denotes the 

set of all entities in the universe of discourse except “ phobos” and “ deimos” , i.e. the set 

of “non moons”.

SET [ ' 'phobos ' ' , ' ' deimos' ' ]  COMP[ ’ 'phobos' ' ,  ' ' deimos' ' ]

To determine the cardinality of a set we define the function cardinality in terms of the 

cardinality of the set of all entities in the universe of discourse, where # computes the 

length of a list, and all entities denotes the set of all entities in the universe of discourse.
cardinality (SET s) = #s
cardinality (COMP s) = #all_entities - (#s)

Operators on sets are redefined as follows:

c_member (SET s) e = member s e
c_member (COMP s) e =~(member s e)
c union (SET s) (SET t) = SET (union s t)
c union (SET s) (COMP t) = COMP (t -- s)
c union (COMP s) (SET t) = COMP (s -- t)
c_union (COMP s) (COMP t) = COMP (intersection s t)
c_ intersection (SET s) (SET t) = SET (intersection s t)
c_ intersection (SET s) (COMP t) = SET (s -- t)
c intersection (COMP s) (SET t) = SET (t -- s)
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c_intersection (COMP s) (COMP t) = COMP (union s t) 
c_subset (SET s) (SET t) = subset s t
c_subset (SET s) (COMP t) = (t--s) = t
c_subset (COMP s) (SET t) = (#(union t s) = #all_entities)
c_subset (COMP s) (COMP t) = subset t s

Evaluation of the denotation of the phrase “non moon that spins” would result in the 
following operation:

c_intersection COMP [''phobos'', ''deimos'']
SET [''mars'', ''earth'', ''phobos'', ''deimos'']

=> SET [''mars'', ''earth'']

Redefinition of nouns and quantifiers is straightforward:

d_moon = SET [''deimos'', ''phobos'']
d_planet = SET [''earth'',''mars'']
d_spins = SET [''earth'',''deimos'',''mars''
d_thing = COMP []
d sol s = c_member s ''sol''
d_mars s = c_member s ' 'mars''
d every s t = c_subset s t
d_a s t = cardinality (c_intersection s t) >
d_no s t = cardinality (c_intersection s t) =

The denotation of each transitive verb is redefined. In order to simplify the coding of 

denotations of transitive verbs, the common parts of such definitions can be abstracted 

into a higher-order function make_denotation_of_tv defined as follows:
make_denotation_of_tv r p

= COMP (firsts_of r -- result), if p (SET []) = True 
= SET result, otherwise 

where
result = [x | (x,image_x) <- collect r; p image_x] 

firsts_of [] = []
firsts_of ((x,y)crest) = x : firsts_of [(a,b)|(a,b) <- rest; a~=x] 

This function can now be used to define the denotations of various transitive verbs. For 

example:
d_orbits = make_denotation_of_tv orbit_rel
d_discovered = make_denotation_of_tv discover_rel 
discover_rel = [(''hall'',''phobos''), (''hall'',''deimos'')

(''kuiper'',''uranus''),(''galileo'',''europa'')] 
orbit_rel = [(''luna'',''earth''), (''phobos'',''mars'')

(''deimos'',''mars''), (''earth'',''sol'')
(''mars'',''sol'')]
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In the revised semantics, the denotation of “orbits no planet” is:
<<orbits no planet>>

=> <<orbits>> («no» <<planet>>)
=> d_orbits (d_no d_planet)
=> COMP (firsts_of orbit_rel -- result)

where result = [x|(x,image_x) <- collect orbit_rel;
(d_no d_planet image_x)]

=> COMP (firsts_of orbit_rel -- result)
where result = [x|(x,image_x) <- collect orbit_rel;

(c_intersection [''earth'',''mars''] image_x) = []] 
=> COMP ([''deimos'', ''phobos'', ''mars'', ''earth''] -- 

[''earth'', ''mars''])
=> COMP [''phobos'', ''deimos'']

Meaning that everything except phobos and deimos “orbits no moon”. Evaluation of “sol 

orbits no planet” now returns the expected answer:
<<sol>> <<orbits no planet>>

=> d_sol (COMP [''phobos'', ''deimos'']) from above 
=> member (COMP [''phobos'', ''deimos'']) ''sol''
=> True
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Chapter 7 THE PROBLEM AND INITIAL APPROACHES

7.1 The Problem: To extend set-theoretic approach to 

accommodate n-ary transitive verbs where n > 2

The approach to natural-language database-query processing developed by Frost, 

Launchbury (FL) is very limited in its scope. It does not accommodate modality, 

intensionality, or transitive verbs with arity greater than two. Work on the first two of 

these limitations is being undertaken but is a long-term project. The third limitation is the 

subject of this thesis.

In this report we claim that it is possible to extend the set-theoretical compositional 

semantics developed by Frost et al to accommodate n-ary transitive verbs (n >2) by re­

defining all denotations to involve sets of attributes rather than simple entities.

Below we describe two initial approaches to extend the set-theoretic approach to 

accommodate n-ary transitive verbs, n > 2, neither of which were entirely satisfactory. 

The final approach is described in chapter 8.

We describe some details of the approaches using the Miranda programming notation, 

which provides concise, formal and testable definitions.

7.2 Approach 1
Below we discuss one of the possible strategies, which we considered but found not to 

be viable.
In this approach, we tried to handle time aspect (discrete time points, not intervals) 

without modifying the set-theoretic version of Montague semantics as discussed in 

chapter 5. We tried to leave all the definitions of the “binary” transitive verbs as they are 

and projected binary relations (e.g. discover) from the n-ary relations (e.g. discover time) 

so that the existing semantics still works. For example,

discover time discover
Hall Phobos 1873 Hall Phobos

Figure 6.1 : Approach 1
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In this approach, we use the “discover_time” relation when we need to deal with time. So 

in this case we will need two definitions of the “discover” semantic function one to 

handle questions with non-time and another to handle questions that involves time. For 

example,

non time: did hall ^discover phobos ] 1

using the discover function as currently defined, 

time: when did hall [discover phobos]

a new discover function

The problem in this approach is that we not only need to have two definitions for

“discover” but also two definitions for “phobos” “hall” etc. Also the one to one
• 1 2 correspondence is lost as [discover phobos] has same syntax as [discover phobos] but

the first one returns a set of entities and the second one returns a set of tuples so the 

return type is not same. For example,
non_time << discover phobos >> => [hall]
with_time << discover phobos >> => [(hall, 1870)]

Therefore, we need to change (“lift”) all instances of “discover’ to the time version and 

change other denotations that are required. This approach loses the syntactic 

category/semantic type correspondence and therefore loses compositionality.

7.3 Approach 2

In approach 2, we present semantics, which accommodate 3-place transitive verbs by 

handling the time aspect (again discrete time points, not intervals). This will allow us to 

accommodate phrases such as “discovered phobos in 1873”.

Therefore, the definitions of all denotations of words have to be little more complex 

than before. For example the definition of “Hall” has to be a little more complex. In the 

previous semantics « “Hall”»  denotes a set of properties that are true of the entitynaii • 

Now, in the extended semantics « ”Hall”»  will denote a set of properties with time 

stamps. By different time stamps we mean different conditions. For example

Time 0 means forever
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Time -100 means True 

And [ ] means False 

In this approach, transitive verbs are higher-order functions, which return sets of 

attribute values as results rather than just truth values.

The semantics for 3-place transitive verbs in presented below:

Definitions:
In the modified semantics, nouns and verb phrases denote sets of tuples with the entities 

and time stamps in it. These sets can be represented by lists in Miranda, for example: 
planet = [ ENTTIME e_mars to , ENTTIME e_uranus to , ENTTIME e_earth to]

spin = [ENTTIME e_deimos to , ENTTIME e_phobos to ,
ENTTIME e_Uranus to , ENTTIME e_europa to ,
ENTTIME e mars to , ENTTIME e earth to  ]

where entity 
time
entity_time

= NAME [char]
= TIME num
= ENTTIME entity time

e_mars = NAME "mars"
tO = TIME 0

In the modified semantics, proper nouns (names) are implemented as functions, which 

take a list as input, and which return list with time stamp in it if the list contains the entry 

related to the proper noun, and the empty list otherwise. For example:
mars ents = [ENTTIME s t | ENTTIME s t <- ents; s = NAME "mars"]

Accordingly, d_<<earth spins>> => [enttime (name "earth") (time o)] hereby

0 we mean spins forever.

Quantifiers are implemented as higher-order functions, which are defined as follows: 
every s t = s, if subset s t 

= [] , otherwise 
a s t = [ENTTIME y ttt | (ENTTIME y tt) <- s;

(ENTTIME z  ttt) <- t; y =  z]
no s t = [] , if res ~= []

= [ENTTIME (NAME "true") (TIME (-100))], otherwise 
where res = a s t

Accordingly, d_<<every planet spins>>=> [ENTTIME (NAME "mars") (TIME 0),
ENTTIME (NAME "uranus")(TIME 0),
ENTTIME (NAME "earth") (TIME 0)]

which lists all the planets, time o means that they have been spinning forever.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The words “and” and “or” are also implemented as higher-order functions, which are 

defined as follows:

term_or g h = r
where r s = (g s) ++ (h s) , if g s ~= [] \/ h s ~= []

= [] , otherwise
term_and p q = r

where r s = [] , if p s = [] \/ q s = []
= (p s) ++ (q s) , otherwise

In the modified semantics transitive verbs are implemented as follows:

make_transitive_verb rel p =
mkset [ENTTIME x t| (x, s) <- collect rel;

(ENTTIME y t)<- (p s); p s ~= []]
collect [] = []
collect ((EET x y z):t) = (x, (ENTTIME y z):

[ENTTIME b c |(EET a b c) <- t; a = x]): 
collect[EET 1 m n|(EET 1 m n)<- t;l ~= x]

discover_rel = [ EET (NAME "hall") (NAME "phobos") (TIME 1873),
EET (NAME "galileo") (NAME "europa") (TIME 1820),
EET (NAME "kuiper") (NAME "uranus") (TIME 1860),
EET (NAME "hall") (NAME "deimos") (TIME 1875)]

orbit_rel = [ EET e_deimos e_mars to, EET e_phobos e_mars to,
EET e_mars e_sol to, EET e_earth e_sol to]

For example, in the new modified semantics evaluation of “discover europa” returns 

[ (Galileo, 1 8 2 0 ) ], which is the name of the discoverer and the time. Also evaluation 

of “orbits mars” now returns [(deimos, 0), (phobos, 0)] instead of just [deimos, 
phobos] as in previous semantics.

By applying the new collect function to the relation orbit rel, the following is obtained:

collect orbit_rel = [(NAME "deimos",[ENTTIME (NAME "mars")(TIME 0)]),
(NAME "phobos",[ENTTIME (NAME "mars")(TIME 0)]), 
(NAME "mars", [ENTTIME (NAME "sol") (TIME 0)]), 
(NAME "earth", [ENTTIME (NAME "sol" (TIME 0)])]

So, the final result will be as follows:

orbit mars = mkset[ENTTIME x t| (x, s) <-
[(NAME "deimos", [ENTTIME (NAME "mars")(TIME 0)]),
(NAME" phobos", [ENTTIME (NAME "mars")(TIME 0)]),
(NAME "mars", [ENTTIME (NAME "sol") (TIME 0)]),
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(NAME "earth", [ENTTIME (NAME "sol") (TIME 0)])];
(ENTTIME y t)<- (mars s) ; mars s ~= [] ]

[ENTTIME (NAME "deimos") (TIME 0),
ENTTIME (NAME "phobos") (TIME 0)]

Similarly, <<discovered_by Hall>> will now return
[ENTTIME (NAME "phobos") (TIME 1873),
ENTTIME (NAME "deimos") (TIME 1875)].

Example queries:

Below are some example queries, which a Miranda program implementing approach 2 

can handle.

Q : mars spins
A:[ENTTIME (NAME "mars") (TIME 0)]

The statement “mars spins” returns the entity mars and time 0 which means mars has 

been spinning forever.

Q: mars (orbits sol)
A: [ENTTIME (NAME "mars") (TIME 0)]

Similarly, the statement “mars orbits sol” returns the entity mars and time 0 which means 

mars has been orbiting sol forever. Here the entity mars is returned as answer, which is 

redundant information, but we return the entity and time in order to keep all the return 

types same of all same structure.

Q: (mars $term_and phobos ) spin
A: [ENTTIME (NAME "mars") (TIME 0),ENTTIME (NAME "phobos") (TIME 0)]

In the same way the query “mars and phobos spins” returns the entity mars and time 0 

and entity phobos and time 0 which means they both have been spinning forever.

Q: hall (discovered (phobos $term_and deimos))
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A: [ENTTIME (NAME "hall") (TIME 1873),ENTTIME (NAME "hall") (TIME
1875)]

The statement “hall discovered phobos and deimos” returns the entity hall and time 1873 

and the entity hall again and the time 1875 which means hall discovered phobos in 1873 

and deimos in 1875. The answer is a little ambiguous, as it doesn’t state which time is for 

phobos and which time is for deimos, but the order is preserved.

Q: hall (discovered (phobos $term_and europa))
A: []

The statement “hall discovered phobos and europa” returns the empty list, which means 

that the statement is false, so hall didn’t discover both phobos and europa. We use the 

empty list to denote false.

Q: hall (discovered (phobos $term_or europa))
A: [ENTTIME (NAME "hall") (TIME 1873)]

The statement “hall discovered phobos or europa” returns the entity hall and time 1873 

which means hall discovered one of the moons above which is hall discovered phobos in 

1873. The answer is ambiguous, as it doesn’t state if the time is for phobos or europa. We 

need to do other queries to find out the right answer.

Q: hall (discovered (no moon)
A: []

The statement “hall discovered no moon” returns empty list, which means that the 

statement is false.

Q: no man (discovered (no moon))
A: []
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The query “no man discovered no moon” returns the empty list, which means that the 

statement is false.

Q: no planet (discovered (no moon))
A: [ENTTIME (NAME "true") (TIME (-100))]

The query “no planet discovered no moon” returns a strange result. However, it is not the 

empty list so it indicates that the statement is True.

Q: when did (hall (discover phobos))
A: [ENTTIME (NAME "hall") (TIME 1873)]

The query “when did hall discover phobos?” returns the entity hall and the time 1873 
which means that hall discovered phobos in 1873.

Putting all the pieces together (approach 2):

Below we present the full program that handles 3-place transitive verbs for a small sub­

set of English. The program can answer various questions about the solar system. Please 

note that the objective of our research is not to create a Miranda program for a particular 

set of queries but to develop a compositional semantics. We use Miranda only to 

formalize the definitions and illustrate an example of their use.

entity : :: = NAME [char]
e_mars = NAME "mars"
e deimos = NAME "deimos"
e hall = NAME "hall"
e_phobos = NAME "phobos"
e galileo = NAME "galileo
e europa = NAME "europa"
e kuiper = NAME "kuiper"
e_uranus = NAME "uranus"
e sol = NAME "sol"
e earth = NAME "earth"
time ::= TIME num
tO = TIME 0
tl = TIME 50
entity_time ::= ENTTIME entity time
planet = [ENTTIME e_mars tO, ENTTIME e_uranus tO, ENTTIME e_earth tO]
planets = planet
moon = [ENTTIME e_deimos to,
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ENTTIME e_phobos tO,
ENTTIME e_europa to] 

moons = moon
spin = [ENTTIME e_deimos to, ENTTIME e_phobos to,

ENTTIME e_uranus to, ENTTIME e_europa to,
ENTTIME emars tO, ENTTIME e_earth tO ] 

spins = spin
man = [ENTTIME e_kuiper to, ENTTIME e_hall to, ENTTIME e_galileo to]
men = man
mars ents = [ENTTIME S t ENTTIME S t < - ents s = NAME "mars"]
hall ents = [ENTTIME S t ENTTIME S t <- ents s = NAME "hall"]
phobos ents = [ENTTIME S t ENTTIME S t <- ents s = NAME "phobos"]
galileo ents = [ENTTIME S t ENTTIME S t <- ents s = NAME "galileo"]
europa ents = [ENTTIME S t ENTTIME S t <- ents s = NAME "europa"]
kuiper ents = [ENTTIME s t ENTTIME s t <- ents s = NAME "kuiper"]
deimos ents = [ENTTIME s t ENTTIME s t < - ents s = NAME "deimos"]
uranus ents = [ENTTIME s t ENTTIME s t <- ents s = NAME "uranus"]
sol ents = [ENTTIME s t ENTTIME s t <- ents s = NAME "sol"]
earth ents = [ENTTIME s t ENTTIME s t <- ents s = NAME "earth"]
set_ent_time ::= SET_ENT_TIME [entity_time]
every s t = s, if subset s t 

= [] , otherwise
a S  t = [ENTTIME y ttt | (ENTTIME y tt) <- S ; (ENTTIME z ttt) <- t; y=z]
no s t = [] , if res ~= []

= [ENTTIME (NAME "true") (TIME (-100))], otherwise 
where res = a s t

intersect = a
union s t = s + +  ( t - - s )
subset x y = (x -- y) = []
noun_and s t = [ENTTIME y tt I (ENTTIME y tt) <- s] ++ [ ENTTIME z ttt
| (ENTTIME Z ttt) <- t]
noun_or s t = union s t
verb_and s t = f

where f ents = s ents ++ t ents
term_or g h = r

where r s = (g s) ++ (h s) , if g s ~= [] \/ h s ~= []
= [] , otherwise

term_and p q = r
where r s = [] , if p s = [] \/ q s = []

= (p s) ++ (q s) , otherwise

make_transitive_verb rel p = mkset [ENTTIME x t| (x, s) <- collect rel;
(ENTTIME y t)<- (p s); p s ~= []]

collect [] = []
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collect ((EET x y z):t) = (x, (ENTTIME y z):[ENTTIME b c |
(EET a b c) <- t; a = x]): collect
[EET 1 m n | (EET 1 m n) <- t; 1 ~= x]

entity_entity_time ::= EET entity entity time 
entity_setentity_time ::= E_setET entity [entity__time] time
discover_rel = [ EET (NAME "hall") (NAME "phobos") (TIME 1873),

EET (NAME "galileo") (NAME "europa") (TIME 1820),
EET (NAME "kuiper") (NAME "uranus") (TIME 1860),
EET (NAME "hall") (NAME "deimos") (TIME 1875)]

orbit_rel = [ EET e_deimos e_mars t o ,  EET e_phobos e_mars t o ,
EET e_deimos e_sol to, EET e_phobos e_sol to,
EET e_mars e_sol to, EET e_earth e_sol to]

discovered = discover
discover = make_transitive_verb discover_rel
is_discovered_by = make_transitive_verb (invert discover_rel)
orbit = make_transitive_verb orbit_rel
orbits = orbit
is_orbited_by = make_transitive_verb (invert orbit_rel)
invert rel = [ EET y x z | EET x y z <- rel]
remove_dup [ ] = [ ]
remove_dup ((ENTTIME x y): es) = (ENTTIME x y): remove_dup es,

if -member1 x es 
= remove_dup es, otherwise

member 1 p [] = False
memberl p ((ENTTIME x y):es) = True \/ memberl p es, if p=x

= False \/ memberl p es, otherwise
how_many s t = #(remove_dup (a s t )) 
which = a 
what x = x
does [TIME 0] = [TIME 100]
does [] = []
is = does
when f res = res
did res = res ~= [ ]
who x = x
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7.4 Critical analysis of Approach 2
We can see from the example queries of approach 2 that some of the answers returned by 

the Miranda program are ambiguous. Some times we need to ask more questions to 

resolve this ambiguity. Investigation also showed that if we want to extend this approach 

to accommodate 4-place and 5-place transitive verbs, adding more information to 

different relations (e.g. discover_rel, orbit rel) is not sufficient. We also need to change 

the definition of all the denotations of words (e.g. hall, phobos, deimos etc). Hence, the 

approach has lost “extensibility” as the old definitions require substantial changes, to 

accommodate extra arguments for verbs. Also loss of orthogonality as different 

definitions are required for n=3, n=4 n=5 verbs etc. To overcome this problem we 

developed another approach, which is described in the next chapter.
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Chapter 8 THE FINAL APPROACH

8.1 The approach

In this approach transitive verbs are higher-order functions, which return sets of attributes 

values (things) as results rather than just truth-values as in the FL approach. In the new 

modified semantics [discover phobos] will return all information that is available in 

the relation e.g.

d_<< "discover phobos" >> => [[Person "Hall",
Moon "Phobos",
TIME 18 70,
Implement "with a telescope"...etc]

And question like “Did hall discovered phobos” should return yes or no plus some other 

information like when and with what etc. Phrases such as “who” “when” “how_many”, 

“with what”, etc will filter out all the unnecessary information.

The following are examples the types of the objects denoted by words and phrases of 

some syntactic categories in the modified semantics.

noun
intransverb
propernoun
determiner
transverb

[[things]]
[[things]]
[[things]] -> [[things]]
[[things]] -> [[things]] -> [[things]] 
([[things]] -> [[things]]) -> [[things]]

where things denote sets of attributes values.

Below we show how an illustrative example query processor based on the new 

semantics can be implemented in Miranda.
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8.2 Example implementation 1: A solar-system database

In the modified semantics nouns and verb phrases denote sets of sets with the entities in 

it. These sets can be represented by lists of lists in Miranda, for example:

entity == [char] 
time == num

things : Person entity
Implement entity
Moon entity
Time time
Planet entity
Sun entity
Color entity

planet = [[Planet "mars"], [Planet "uranus"], [Planet "earth"]]
moon = [[Moon "phobos"], [Moon "deimos"], [Moon "europa"]]

In the modified semantics, proper nouns (names) are implemented as functions, which 

take a list of lists as input, and which return a list of lists if the list contains the entry 

related to the proper noun, and empty list otherwise. For example:

mars 1 = [ s | s <- 1; member s (Planet "mars")]

Accordingly, d_<<mars spins>> => [[Planet "mars"]], which indicates that the 

planet mars spins, as the statement is true.

Quantifiers are implemented as higher-order functions, which are defined as follows:

every s t = s, if subset s (remove t)
= [], otherwise

remove t = [ [a] | a:aa <- t]
subset x y True , if (x -- y) = []

= False, otherwise
a s t = [l:mm | 1:11 <- s; m:mm <- t; 1 = m]
no s t = [] , if res ~= []

= [[Value "true"]], otherwise 
where res = a s t
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Accordingly, d_<<every moon spins>> => [[Moon "phobos"],
[Moon "deimos"], 
[Moon "europa"]]

which is non-empty indicating True.

The words “and” and “or” are also implemented as higher-order functions, which are 

defined as follows:
term_or g h = r

where r s = (g s) ++ (h s) , if g s ~= [] \/ h s ~= []
= [] , otherwise

noun_and s t = union s t
union s t = s + +  ( t - - s )
verb_and s t = f

where f ents = s ents ++ t ents
term_and p q = r

where r s = [] , if p s = [] \/ q s =
= (p s) ++ (q s) , otherwise

The denotation of the phrase (term_and p q) is a function r which takes a list of 

entities s as input and which return a list of entities by appending the values (p s ) and

(q s).
From example,

(phobos $term_and deimos) spin => [[Moon "phobos"],[Moon "deimos"]]

In the modified semantics transitive verbs are implemented as follows:

make_transitive_verb rel p = mkset [x : t| (x, s) <- collect rel;
t <- (p s) ; p s ~= [] ]

collect [] = []
collect ((x:t):r) = (x,t:[s | (a:s)<- r; a = x]): collect

[1: f I (1: f) <- r; 1 ~= x]
discover_rel = [[(Person "hall"),

(Moon "phobos"),
(Time 1873),
(Implement "with telescope")],
[(Person "hall"),
(Moon "deimos"),
(Time 1875),
(Implement "with telescope")],
[(Person "kuiper"),
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(Moon "uranus"),
(Time 1860),
(Implement "with telescope")], 
[(Person "galileo"),
(Moon "europa"),
(Time 1820) ,
(Implement "with telescope")]]

orbit rel [[(Moon "deimos"),
[(Moon "phobos"),
[(Planet "mars"),
[(Planet "earth"),

(Planet "mars")], 
(Planet "mars")], 
(Sun "sol")],
(Sun "sol")]]

discovered = discover
discover = make_transitive_verb discover_rel
orbit = make_transitive_verb orbit_rel
orbits = orbit

For example, in the new modified semantics evaluation of <<discover europa>> 
returns [[Person "galileo",

Moon "europa",
Time 1820,
Implement "with telescope"]].

Also evaluation of “orbits mars” now return
[[Moon "deimos", Planet "mars"], 
[Moon "phobos", Planet "mars"]]

By applying the new collect function to the relation orbit_rel, the following is obtained:
collect orbit_rel = [(Moon "deimos", [[Planet "mars"]]),

(Moon "phobos", [[Planet "mars"]]),
(Planet "mars", [[Sun "sol"]]),
(Planet "earth", [[Sun "sol"]])]

So, the final result will be as follows: 

orbit mars = mkset [x : t| (x, s) <-
(Moon "deimos", [[Planet "mars"]] ) ,
(Moon "phobos", [[Planet "mars"]] ) ,
(Planet "mars", [ [Sun "sol"]]) ,
(Planet "earth", [ [Sun "sol"]])] ;
t <-(mars s); mars s [] ]

=[[Moon "deimos", Planet "mars"], 
[Moon "phobos", Planet "mars"]]

Similarly, verb discover will be treated as follows: 

discovered p = mkset [x : t| (x, s) <- collect discoverrel;
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t <- (p s) ; p S~= [] ]

collect discover rel discover rel
Hall [[Phobos, 1873, Telescope] Hall Phobos 1873 Telescope

[Demios, 1875, Telescope]] collect Hall Deimos 1875 Telescope
Kuiper [[Uranus, 1860, Telescope]] *— Kupier Uranus 1860 Telescope
Galileo [[Europa, 1820, Telescope]] Galileo Europa 1820 Telescope

discovered phobos => 
mkset [x : t| (x, s) <- collect
[(Person "Hall", [[Moon "phobos",Time 1873,Implement "with telescope"],

[Moon "deimos",Time 1875,Implement "with telescope"]]),
(Person "kuiper", [[Moon "uranus",Time 1860,Implement "with telescope"]]),
(Person "galileo",[[Moon "europa",Time 182 0,Implement "with telescope"]])];

t <-(Phobos s); Phobos s~ = []]

discovered phobos => [[Person "hall",
Moon "phobos",
Time 1873,
Implement "with telescope"]]

Similarly, <<discovered_by Haii>> will now return
[[ Moon "phobos",

Person "hall",
Time 1873,
Implement "with telescope"],

[ Moon "deimos",
Person "hall",
Time 1875,
Implement "with telescope"]]

And phrases like <<when did hall discover phobos>> will filter out necessary 

information. For example:

<<hall discovered phobos>> => [[ Person "hall",
Moon "phobos",
Time 1873,
Implements "with telescope"]]

And <<when did hall discover phobos>> => [Time 1873]

The complete program listing is given in the appendix.
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8.3 Example implementation 2: A database about books and 

authors
Now, we can use the definitions of every, a, no, term_and, term_or, transitive verbs etc in 

a new application.

In this semantics nouns phrases denote set of sets with the entities in it. 
book = [[Book "Hamlet"], [Book "Merchant of Venice"],

[Book "Rage of Angels"],[Book "If Tomorrow Comes"]]

where entity == [char] 
time == num

things : : = Name entity
| Book entity
| Place entity
| Time time
j Value entity

In this semantics, proper nouns (names) are implemented as functions, which take a list 

of lists as input, and which return a list of lists if  the list contains the entry related to the 

proper noun, and empty list otherwise. For example

Shakespeare 1 = [ (a:as) | (a:as) <- 1; a = (Name "Shakespeare")]

In this semantics transitive verbs are implemented as the above application. So, the same 

definition of transitive verb of our approach can be used for the verbs like “write”.

By applying new collect to the relation written_rel, the following is obtained:

written_rel = [[(Name "Shakespeare"),
(Book "Hamlet"),
(Time 1573),
(Place "England")],
[(Name "shakespeare"),
(Book "Merchant of Venice"),
(Time 1575),
(Place "England")],
[(Name "Sidney"),
(Book "Rage of Angels"),
(Time 1950),
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(Place "USA")],
[(Name "Sidney"),
(Book "If Tomorrow Comes"),
(Time 1940),
(Place "USA")]]

collect written_rel =
[(Name "shakespeare",[ [Book "Hamlet", Time 1573, Place "England"],

[Book "Merchant of Venice",Time 1575,Place "England"]])
(Name "Sidney", [[Book "Rage of Angels", Time 1950,Place "USA"],

[Book "If Tomorrow Comes", Time 1940,Place "USA"]])]

So, the final result will be as follows: 
wrote hamlet = mkset [x : t| (x, s) <-
[(Name "shakespeare",[[Book "Hamlet", Time 1573, Place "England"],

[Book "Merchant of Venice", Time 1575,Place"England"]])
(Name "sidney", [[Book "Rage of Angels", Time 1950,Place "USA"],

[Book "If Tomorrow Comes", Time 1940,Place "USA"]])];
t <-(hamlet s); hamlet s ~= []]

= [[Name "shakespeare",
Book "Hamlet",
Time 1573,
Place "England"]]

Similarly, <<was_written_by Shakespeare>> return
[[Book "Hamlet", Name "shakespeare", Time 1573,Place "England"],
[Book "Merchant of Venice",Name "shakespeare",Time 1575,Place "England"]]

which is everything that Shakespeare wrote.

And phrases like <<when Shakespeare wrote hamlet>>,<<where did Shakespeare 
write hamlet>> etc will filter out necessary information.

For example:
<<Shakespeare wrote hamlet>> => [[Name" shakespeare", Book "Hamlet",

Time 1573,Place "England"]]
And << when Shakespeare wrote hamlet >> => [Time 1573]

<< where did Shakespeare wrote hamlet>> => [Place "England"]

The complete program listing is given in the appendix.
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Chapter 9 EVALUATION OF THE FINAL 

APPROACH

9.1 Overview

Below we again specify the objectives for our semantics as discussed in as in chapter 2:

a) We will state examples of types of questions that our semantics will be able to 

handle, give small grammars for them, and compute the sizes of the example 

languages.

b) The new semantics will maintain the orthogonality of the old semantics- i.e. that 

the meaning of all (disambiguated) words is independent of context, and that the 

rules of composition are also independent of context.

c) The new semantics will maintain the syntactic/semantic correspondence i.e. 

phrases of the same syntactic category denote functions of the same semantic type.

And the thesis statement is

“It is possible to extend the set-theoretical compositional semantics developed by Frost et 

al to accommodate n-ary transitive verbs, (n > 2) by re-defining all denotations to involve 

sets of attributes rather than simple entities, without loss of compositionality. ”

We now discuss how our approach meets these objectives and proves the thesis.

9.2 A Grammar for example query processor #1

Below we present a small grammar based on our semantics, which can answer various 

questions about our solar system:

A small grammar (recursive)::

query ::= term_phrase
| who term_phrase
| when term_phrase
| with_what term_phrase
| which term_phrase
| how many term_phrase
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verb_phrase ::= transitive_verb_phrase 
| intransitive_verb_phrase

transitive_verb_phrase ::=transitive_verb join_term_phrase

intransitive_verb_phrase ::= intransitiveverb
| intransitiveverbs join_verb intransitive_verb

join_term_phrase ::= term_phrase
| term_phrase term J o in  join_term_phrase

term_phrase ::= properjiouns 
| det_phrase

det_phrase ::= determiner noun_phrase

noun_phrase ::= noun
| noun noun J o in  noun_phrase 
| adjective noun

adjective ::= red

determiner ::= a | no | every

term Jo in  and | or

verb J o in  ::= and | or

nounJoin::= and | or

transitive_verb ::= discover | orbit

intranstive verb ::= spin

noun ::= moon | planet

proper noun ::= Hall | Galileo | Phobos | Deimos

The above grammar is recursive, so the size of the language is infinitive and can’t be 

calculated. Below we present a small grammar of depth recursion 2 and calculate its size.
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Non-Recursive:

Query1555920 ::= termphrase40verb phrase6483
| who term_phrase4 verb_phrases6483 
| when1 term_phrase40 verb_phrases6483 
| withjwhat’ term_phrase40 verb_phrases6483 
| which1 term_phrase40 verb_phrase6483 
| how_many’ term_phrase40 verb_phrase6483

verb_phrase6483 ::= transitive_verb_phrase6480 
| intransitive_verb__phrase3

transitive_verb_phrase6480 ::= transitive_verb2 term_phrase40
| transitive_verb2 term_phrase40 term join2 term_phrase40

intransitive_verb_phrase3 ::= intransitiveverb1
| intransitiveverb1 join_verb2 intransitive verb1

term_phrase40 ::= proper nouns6 
| det_phrase34

det_phrase34 ::= noun_phrase34

noun_phrase34 ::= noun2
| noun2 noun_join2 noun2 
| noun2 nounjoin2 adjective1 noun2 
| adjective1 noun2 noun join2 noun2

1 'y ^ 1 0

| adjective noun noun J o in  adjective noun 

adjective1 ::=red'

3 1 1  1determiner ::=a | no | every

2 1 1  term join  ::=and | or

2 1 1  verb J o in  and | or

9  i i

noun Jo in  ::= and | or

2 1 1  transitive_verb ::= discover | orbit

intranstiveverb1 spin1

2 1 1noun ::=moon | planet
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propernoun6 ::= Hall1
| Galileo1 
| Phobos1 
| Deimos1 
| Europa1 
| Mars1

From the above we can see that even for a small non-recursive grammar the size of the 

language is 1555920. This language is a sub-set of the language that can be interpreted by 

our small example query processor. Therefore, the example illustrates the 

compositionality of the approach as small semantic definitions can be used to interpret 

expressions of very large languages.

9.3 Example queries for solar system processor:

Below are some example queries about solar system, which the new semantics can 
accommodate:

Q: hall (discovered phobos)
A: [[Person "hall",Moon "phobos", Time 1873,Implements "with telescope"]]
The query "hall discovered phobos" returns a list containing entity 
hall, entity phobos, time 1873 and implement telescope which means hall 
discovered phobos in 1873 with a telescope. So the query returns all 
the information, which is related with hall's discovery of phobos.

Q: which person (discovered deimos)
A: [[Person "hall"]]
The query "which person discovered deimos" returns a list containing 
entity hall that is the name of the person who discovered deimos.

Q: which person (discovered europa)
A: [[Person "galileo"]]
The query "which person discovered europa" returns a list containing 
entity galileo that is the name of the person who discovered europa.

Q: how_many planets spin 
A: 3

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The query "how_many planet spins" computes how many planets spin by 
doing intersection on the spins set and the planet set and returns 
3 (according to the information in our database) that means the number 
of planets that spin.

Q: which moon (orbit mars)
A:[[Moon "phobos"],[Moon "deimos"]]
The query "which moon orbit mars" returns a list containing the entity 
phobos in a list and entity deimos in another list which is the names 
of the moons that orbit mars.

Q: which moon spins
A: [[Moon "phobos"],[Moon "deimos"],[Moon "europa"]]

The query "which moon spins" return a list containing the entity phobos 
in a list, entity deimos in a list and entity europa in a list which is 
the names of the moons that spin.

Q: which planet (orbit sol)
A:[[Planet "mars"],[Planet "earth"]]
The query "which planet orbit sol" returns a list containing the entity 
mars in a list and entity earth in another list which is the names of 
the planets that orbit sol.

Q: a moon spins
A: [[Moon "phobos"],[Moon "deimos"],[Moon "europa"]]
The statement "a moon spins" return a list containing the entity phobos 
in a list and entity deimos in a list and europa in a list which is the 
names of the all moons that spins instead of just returning true or 
false, which is little ambiguous. Here as the query is not returning an 
empty list therefore the statement is true, if the query returns an 
empty list then the statement is false.

Q:what (was_discovered_by hall)
A:[[Moon "phobos"],[Moon "deimos"]]
The query "what was discovered by hall" returns a list containing 
entity phobos, and entity deimos in a list which is all the things that 
hall discovered.

Q: with_what did (hall (discovered phobos))
A: [Implements "with telescope"]
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The query "with what hall discovered phobos" returns a list containing 
entity telescope that is the implement that hall used to discover
phobos.

Q: when did (hall (discovered (phobos $term_and deimos)))
A: [Time 1873,Time 1875]
The query "when hall discovered phobos and deimos" returns a list
containing time 1873, and time 1875 which is the times when hall
discovered phobos and deimos. The answer is little ambiguous, as it
doesn't specify which time is for phobos and which time is for deimos. 
We need additional query to the database to get that information.

Q: hall (discovered phobos)
A: [[Person "hall",Moon "phobos",Time 1873,Implements "with
telescope"]]
The statement "hall discovered phobos" return a list containing the 
entity hall, entity phobos, time 1873, implement telescope in a list 
that is all information that has to do with hall's discovery of phobos 
instead of just returning true or false. This is a little ambiguous. 
Here as the statement is not returning an empty list therefore the 
statement is true, if the query returns an empty list then the 
statement is false.

Q: which moon (was_discovered_by hall)
A: [[Moon "phobos"],[Moon "deimos"]]
The query "which moon was discovered by hall" returns a list containing 
the entity phobos in a list, and the entity deimos in a list which is 
names of all the moons that were discovered by hall.

Q :every planet spins
A: [ [Planet "mars"], [Planet "uranus"], [Planet "earth"]]
The query "every planet spins" return a list containing the entity mars 
in a list and entity uranus in a list and earth in a list which is the 
names of the all planets that spins instead of just returning true or 
false.

Q:((when $verb_and who) (discovered phobos))
A:[Time 1873,Person "hall"]
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The query "when and who discovered phobos" returns a list containing 
the time and the name of the person who discovered phobos.

9.4 Example queries for the authors and books processor:

Below are some example queries about authors and books, which the new semantics can 
accommodate:

Q: (when $verb_and where_did)(Shakespeare (write hamlet))
A: [Time 1573,Place "England"]
The query "when and where Shakespeare wrote hamlet" returns a list 
containing the time entity 1573 and the place entity England, which is 
the time and place when and where Shakespeare wrote hamlet.

Q: what (was_written_by Shakespeare)
A: [Book "Hamlet", Book "Merchant of Venice"]
The query "what was written by Shakespeare" returns a list containing 
the book entity Hamlet and the book entity Merchant of Venice
(according to our database) which is the names of all the books/plays 
that Shakespeare wrote.

Q: who (wrote hamlet)
A: [Name "Shakespeare"]
The query "who wrote hamlet" returns a list containing the entitiy
shakespeare which is the name of the author who wrote hamlet.

Q: how_many books (were_written_by shakespeare)
A: 2
The query "how_many books were written by shakespeare" computes how 
many books shakespeare wrote by doing intersection on the books set and
the set returned from the query (written by Shakespeare) and returns
2 (according to the information in our database) which is the number of 
books Shakespeare wrote.

Q: what (was_written_by Sidney)
A: [Book "Rage of Angels", Book "If Tomorrow Comes"]
The query "what was written by Sidney" returns the book entity "rage of 
angels" and the book entity "if tomorrow comes" which is all the books 
Sidney wrote according to the information in our database.

Q: when did (Shakespeare (write hamlet))
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A: [Time 1573]
The query "when did Shakespeare write hamlet" returns a list containing 
the time entity 1573, which is the time, when Shakespeare wrote hamlet.

9.5 Syntactic/Semantics correspondence
The resulting semantics is fully-compositional. In this approach there is a 

syntactic/semantic correspondence, that is, phrases of the same syntactic category denote 

functions of the same semantic type. The type of the denotation of the phrase “every 

planet” is of the same type as the denotation of the proper noun “Earth”. This is 

consistent with FL’s implementation of Montague’s approach, which states that words 

and phrases of the same syntactic category should denote semantic values of the same 

type. For example using the Miranda type inference system on examples of phrases of the 

same syntactic category shows that they denote functions of the same semantic type. For 

example, in our semantics all term phrases has the same semantic type:
Hall
Hall $and Kuiper 
A moon
A (moon $or planet) 
every moon 
no planet

[[things]]->[[things]] 
[[things]]->[[things]] 
[[things]]->[[things]] 
[[things]]->[[things]] 
[ [things]]->[[things]] 
[[things]]->[[things]]

And all verb phrases have the same semantic type:
discovered phobos
discovered (phobos $and deimos)
orbits mars
was_discovered_by hall 
was_discovered_by (hall $or kuiper) 
spins
every moon spins 
hall (discovered (every moon)) 
hall (discovered phobos) 
discovered (no planet)

[things]
[things]
[things]
[things]
[things]
[things]
[things]
[things]
[things]
[things]
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All noun phrases have the same semantic type:
moon
planet
moon $noun_and planet

[[things]] 
[[things]] 
[[things] ]

From above we can see that words and phrases of the same syntactic category denote 

semantic values of the same type in our semantics.

9.6 Orthogonality
The semantics is orthogonal like Montague’s. Many words that appear in different 

syntactic contexts denote a single function therefore avoiding the need to assign different 

meaning in these different contexts. For example in the phrases like 

1) Hall discovered phobos.

Phobos was discovered by Hall.

Hall and deimos

Above Hall has the same meaning in these three different contexts.

2) Every moon spins.

Hall discovered every moon.

Here also every has the same meaning for different contexts.

So our semantics is highly orthogonal as in our semantics the meaning of the majority the 

words are independent of context. But there is some loss of orthogonality for “and” as we 

need three different “and” (noun and, verb and, and term and) to handle nouns, terms and 

verbs. However, this was also a problem with the FL approach.

Orthogonality and the syntactic/semantic relationship guarantee that our semantics 

will be compositional in the sense that the meaning of expressions of a very large query 

language can be computed using a very small number of semantic rules. As our semantics 

meets all the objects therefore we can say that our thesis is proven.
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Chapter 10 CONCLUDING COMMENTS

10.1 What has been achieved?
a) The Thesis Statement:

“It is possible to extend the set-theoretical compositional semantics developed by 

Frost et al to accommodate n-ary transitive verbs, (n > 2) by re-defining all 

denotations to involve sets of attributes rather than simple entities, without loss of 

compositionality. ” 

has been proven by:

1. Developing a grammar, even limited to of depth of recursion of 2, for small sub­

set for a tiny database, defined by 80 lines of semantics and database, can 

answer approximately 1,500,000 queries.

2. Showing the results from execution of example queries.

3. Showing that the new semantics maintains orthogonality.

4. And also showing that the new semantics maintains the syntactic/semantic 

correspondence.

b) A new way to think of semantics for transitive verbs with the arity greater 

than 2, has been developed.

c) The new approach can be used to define the semantics for transitive verbs of arbitrary 

n by adding necessary information to the relations and by declaring the new attributes. 

Existing definitions don’t need to be changed. Hence the approach is highly extensible.

10.2 Contribution to Computational Linguistics and Computer 

Science
Our research has contribution to computational linguistics as we have extended an 

existing linguistics theory developed by Montague and demonstrated the tractability of its 

implementation. Montague didn’t provide much about how to handle n-place transitive 

verbs and in our thesis work we have extending the Montague Semantics to handle n-ary 

transitive verbs.
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Montague’s approach to transitive verbs is convoluted (see page 20,21). Our approach 

is to handle n-place transitive verbs in an extending set-theoretic approach of Montague 

semantics where transitive verbs using ^.-notation are defined as: “az z(ky  Ax verb(x,y))” 

which is a straightforward denotation of transitive verbs in Montague style.

Also owing to the one-to-one correspondence between the syntax and semantic rules, 

our semantics can be readily implemented in a syntax-directed evaluator with a speech- 

recognition front-end.

10.3 Suggestions for Future Work
This approach could be extended to handle queries like “which planet lies between 
earth and mars?”. Currently our approach doesn’t handle this type of construct. It can 

also be extended to include negation using the set-theoretic approach to accommodate 

negation developed by Frost and Boulos (2002). Also queries like “John and Mary 
went to dinner at 7 pm” are not handled by our approach as the statement has 

different meaning like did they go together or separately. They investigation of such 

extensions is appropriate future work.
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Appendix A -  Program listing

Program listing:

Below we present an illustrative example query processor, based on our semantics in 
Miranda, which can answer various questions about our solar system:

entity == [char] 
time == num
things ::= Person entity

| Implements entity 
| Moon entity
| Time time
| Planet entity
| Sun entity

planet = [[Planet "mars"], [Planet "uranus"], [Planet "earth"]] 
planets = planet
moon = [[Moon "phobos"], [Moon "deimos"], [Moon "europa"]] 
moons = moon
spin = [[Moon "phobos"], [Moon "deimos"],

[Planet "uranus"], [Moon "europa"],
[Planet "mars"], [Planet "earth"],
[Sun "sol"]]

spins = spin
people = [[Person "hall"], [Person "galileo"], [Person "kuiper"]]

mars 1 = s s < - 1; member s (Planet "mars")]
hall 1 = s s < - 1; member s (Person "hall")]
phobos 1 = s s < - 1; member s (Moon "phobos")]
galileo 1 = s s < - 1; member s (Person "galileo")]
europa 1 = s s < - 1; member s (Moon "europa")]
kuiper 1 = ' s s < - 1; member s (Person "kuiper")]
deimos 1 = s s < - 1; member s (Moon "deimos")]
uranus 1 = 1 s s < - 1; member s (Planet "uranus")]
sol 1 = s s <- 1; member s (Sun "sol")]
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earth 1 = [ s | s <- 1; member s (Planet "earth")]

every s t = s, if subset s (remove t)
= [], otherwise

remove t = [ [a] | a:aa <- t]
subset x y True , if (x -- y) = []

= False, otherwise
a s t = [l:mm | 1:11 <- s; m:mm <- t; 1 = m]
no s t = [] , if res ~= []

= [[Value "true"]], otherwise 
where res = a s t

intersect s t = s -- (s--t)
union s t = s + +  ( t - - s )
noun_and s t = union s t
verb_and s t = f

where f ents = s ents ++ t ents

term_or g h = r
where r s = (g s) ++ (h s) , if g s ~= [] \/ h s ~= []

= [] , otherwise

term_and p q = r
where r s = [] , if p s = [] \/ q s = []

= (p s) ++ (q s) , otherwise

make_transitive_verb rel p = mkset [x : t| (x, s) <- collect rel; t <-
(p s) ; p s ~= [] ]

collect [] = []
collect ((x:t):r) = (x,t:[s | (a:s)<- r; a = x]):

collect [1:f | (1:f) <- r; 1 ~= x]

discover_rel =
[[(Person "hall"), (Moon "phobos"), (Time 1873), (Implement "with telescope")],
[(Person "hall"), (Moon "deimos"), (Time 1875), (Implement "with telescope")],
[(Person "kuiper"), (Moon "uranus"),(Time 1860), (Implement "with telescope")],
[(Person "galileo"),(Moon "europa"),(Time 1820), (Implement "with telescope")]]

orbit rel = [[(Moon "deimos") ,(Planet "mars")].
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[(Moon "phobos") ,(Planet "mars")], 
[(Planet "mars") ,(Sun "sol")], 
[(Planet "earth") ,(Sun "sol")]]

discovered = discover
discover = make_transitive_verb discover_rel 
is_discovered_by = make_transitive_verb (invert discover_rel)

orbit = make_transitive_verb orbit_rel 
orbits = orbit
is_orbited_by = make_transitive_verb (invert orbit_rel)
invert rel = [ (y:x:ys):s |(x:y:ys):s <- rel]
how_many s t = # (intersect s t )
which = intersect
what x = x
does x =x
is = does
when x = x
did x = x
who x = x

Below we present an illustrative example query processor, based on our semantics in 
Miranda, which can answer various questions about authors and books:

entity == [char] 
time == num
things ::= Name entity

| Book entity
| Place entity
| Time time
| Value entity

book = [[Book "Hamlet"], [Book "Merchant of Venice"],
[Book "Rage of Angels"], [Book "If Tomorrow Comes"]] 

books = book
author = [[Name "Shakespeare"], [Name "Sidney"]] 
authors =author
Shakespeare 1 = [ (a:as) | (a:as) <- 1; a = (Name
"shakespeare")]
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Sidney 1 = [ (a:as) (a:as) < - 1; a = (Name "sidney")]
hamlet 1 = [ (a:as) (a:as) <- 1; a = (Book "Hamlet")]
merchant_of_venice 1 = [ (a:as) (a:as) <- 1; a = (Book "Merchant of Venice")]
rage of angels 1 [ (a:as) (a:as) <- 1; a = (Book "Rage of Angels")]
if tomorrow_comes 1 = [ (a:as) (a:as) <- 1; a = (Book "If Tomorrow Comes")]

every s t = s, if subset s t 
= [] , otherwise 

a s t = [1 | 1 <- s; m <- t; 1 = m]
no s t = [] , if res ~= []

= [Value "true"], otherwise 
where res = a s t

intersect s t = [1 | l<-s; m<-t; n<- m; member 1 n ]
first_element (e:es)= e
union s t = s + +  ( t - - s )
subset x y = (x -- y) = []
noun_and s t = union s t
verb_and s t = f

where f ents = s ents ++ t ents
term_or g h = r

where r s = (g s) ++ (h s) , if g s ~= [] \/ h s ~= []
= [], otherwise

term_and p q = r
where r s = [] , if p s = [] \/ q s = []

= (p s) ++ (q s) , otherwise

make_transitive_verb rel p = mkset [x : 11 (x, s) <- 
t <-(p s); p s

collect rel ; 
•= [ ] ]

collect [] 
collect ((x:t):r)

= []
= (x,t:[s I (a:s)<- r; a = x]):

collect [1:f I (1:f) <- r; 1 ~= x]
written_rel =
[[(Name "shakespeare") 
[(Name "shakespeare"), 
[(Name "sidney"),
[(Name "sidney"),

(Book "Hamlet"), (Time 1573)
(Book "Merchant of Venice"),(Time 1575) 
(Book "Rage of Angels"), (Time 1950)
(Book "If Tomorrow Comes"), (Time 1940)

(Place "England")], 
(Place England")], 
(Place "USA")], 
(Place "USA")]]

wrote = write
write = make_transitive_verb written_rel
was_written_by = make_transitive_verb (invert written_rel)

died = [[(Name "shakespeare"), (Time 1620)],
[(Name "Sidney") , (Time 0)]]

born = [[(Name "shakespeare"), (Time 1530)],
[(Name "sidney"), (Time 1920)]]

lived = [[(Name "shakespeare"),(Place "England")],
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[(Name "sidney") , (Place "USA")]]

lives = lived 
live= lives

invert [] = []
invert ((x:y:ys):es) = (y:x:ys): invert es
how_many s t = # (intersect s t )
which s t = [1 | 1 <- s; m <- t; n <- m; 
what x = [a | (a:b:C:s)<-x]
does x = x 
is = does
when 1 = [ u | v<- 1; u <- v; a_time u]
a_time (Time x) = True
a_time any = False
where_does = where_did
where_did 1 = [ u | v<- 1; u <- v; a_place
a_place (Place x) = True
a_place any = False

did x = x
who x = [a | (a:s) <-x]

member 1 n]

u]
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Appendix B -  A Survey

A Survey on: Use of Montague and Montague-like Compositional 

Semantics in Natural Language Database Query Processing

Introduction:
This is a survey on the use of Montague and Montague-like compositional semantics in 

natural-language database-query processing. In section 1 of the survey compositional 

semantics is introduced. Composition semantics for natural language is described in 

section 2. Section 3 contains semantics in parsing natural-language, and natural-language 

interfaces to databases are described in section 4. Finally, in section 5 of the survey, 

Compositional Semantics for Natural Language Database Queries is described

1. Compositional Semantics
Compositional Semantics, abbreviated in this survey to CS, is defined as a functional 

dependence of the meaning of an expression on the meaning of its parts. It is called 

compositional semantics because of the crucial part played by the principle of 

compositionality: that the meaning of the whole sentence is composed from meanings of 

its parts. The books [Schmidt, 1986] & [Stoy, 1997] are good introductions to 

compositional semantics.

2. Compositional Semantics for Natural Language

2.1 General introduction to Computational Linguistics

Computational Linguistics (CL) originated from the Machine Translation Research of the 

‘50s and ‘60s. The study of computer processing, understanding and generation of human 

language is known as Computational Linguistics (CL). Computational linguistics is 

sometimes regarded as a subfield of artificial intelligence. In different applications such 

as machine translation, speech recognition, information retrieval, intelligent web
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searching and intelligent spelling checking, techniques from computational linguistics are 

used. Computational linguistics is devoted exclusively to the design and analysis of 

natural-language processing systems.

The paper [Blackburn and Bos, 2003] gives a good introduction to the Computational 

Semantics of Natural Language. This paper introduces the basics of natural-language 

semantics. It describes first-order logic, lambda calculus and underspecified 

representations such as scope ambiguities (e.g. John advertised one house on every street) 

and Montague’s approach. More general information on computational linguistics can be 

found in [Lewis and Carl, 1985] and [Tore, 2002].

2.2 Meaning of Words

Semantics is concerned with the meaning of words and how they combine to form 

sentence meanings. There are many ways of representing word meanings but one way, 

which has proven to be one of most useful, is in the field of machine translation involving 

associating words with semantic features, which correspond to their sense components. 

The book [Dowty, 1979] on Word meaning and Montague Grammar is a good 

introduction to areas related to meaning of words.

[Thomason, 1991] talks about some possible problems in lexical semantics, which 

the author thinks are both exciting and challenging and which can be solved by 

cooperative research between linguists and computer scientists.

[Thomason, 2001] proposed an approach, the logical approach, which they claim has 

never produced a very satisfactory account of word meaning but is successful in the 

semantic interpretation of syntactic structure. For example the natural way to define ‘x is 

water soluble’ is as follows:

If x were put in some water, then x would dissolve in the water.

The definition of ‘water-soluble’ is obtained by using eventualities in place of times (This 

formula uses more or less standard formalization techniques in event-centered semantics, 

for example [Push(e) A Past(e) A Pusher(e) = Charlie A Pushee(e) = Piano] is used to 

represent Charlie pushed the piano .)
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Vx [ water-soluble(x) <-» VeiVy [ put_in(ei) a  movee(ei) = x a  container(ei) = y a  

water(y)] —> 3e [ Dissolving(e) a  dissolvee(e) = x a  medium(e) = y ] a  —iAb(e)] -»

3 [culmination(e) = e2 a  dissolved(e2) a  disolvee(e2 ) = x a  medium(e2) = y ]]

In words: x is water-soluble if and only if necessarily if an event el of putting x in a 

quantity of water occurs then el is the inception of a dissolving eventuality e involving 

the same x and quantity of water, which unless something abnormal about e will 

culminate in a state in which x is dissolved.

An extension to Montague’s framework is proposed and some of its applications in 

the semantics of words are illustrated in [Thomason, 2002],

2.3 Montague and Montague-style Semantics and extensions

Model-theoretic semantics of natural language is a way of analyzing the meanings of NL 

expressions. Richard Montague introduced the technique in two classical papers entitled 

Universal grammar [Montague 1974] and The proper Treatment of Quantification in 

Ordinary English [Montague, 1970], which is known as PTQ. Universal Grammar, which 

is a predominantly theoretical treatise, refers to the branch of mathematics called 

universal algebra from which the main techniques were adopted. PTQ, on the other hand, 

applies these theoretical principles to ‘ordinary English’. Grammars based upon 

Montague’s PTQ are called Montague grammars.

A Montague grammar is a grammar for a particular fragment of natural language 

which consists of three components: the syntax which is a syntactic analysis of the 

expressions of the fragment, the translation translating natural language into a logical 

language and the model theory or the semantics, and a (model-theoretic) interpretation of 

the expressions of the logical language

Montague-style semantics (see Dowty, Wall and Peters, 1981) has been used in 

natural-language processing. Montague Semantics has been one of the most influential 

theories in the semantics of natural languages in the tradition of truth-conditional, model- 

theoretic and intensional semantics. A Montague grammar is a theory of the semantic 

effects of composition.
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Montague Semantics can be implemented and has been used as a semantic basis in a 

number of implemented systems for natural language querying [e.g. Clifford 1990, Frost 

and Launchbury 1989, Frost and Boulos 2002].

[Frost and Launchbury, 1981], [Frost and Saba 1990] and [Frost and Boulos, 2002] 

describe an efficient implementation of Montague’s semantics in a set-theoretic 

framework [details are given in section 5.2]

[Groenendijk and Stokhof, 1990] propose a new logical system as the semantic 

component of a Montague-style grammar that extends the compositionality of DPL 

(dynamic predicate logic) to the sub-sentential level. In DLP (Dynamic Predicate Logic) 

a sentence such as “Every farmer who owns a donkey beats it” can be translated into the 

formula as follows:

Vx[[ farmer(x) a  3y [donkey(y) a  own(x, y)]] —» beat(x ,y ) ]

In DLP the above translation is equivalent to :

VxVy [[ farmer(x) a  donkey(y) a  own(x, y)] —» beat(x ,y ) ]

It is a continuation of their work [Groenendijk and Stokhof, 1989] on dynamic predicate 

logic.

A recent approach extending the classical Montague semantics can be found in 

[Muskens, 1995]. In his book the author presents a semantics of possibly-contradictory 

beliefs and other propositional attitudes.

[Malinowski, 1996] suggests semantics for illocutionary logic (Serale’s and 

Vanderveken’s), which is based on Montague’s intensional logic.

[Eijck 1999] proposed that a Montague-style architecture for NL semantics provide 

proper treatment both of quantification and of context use and context change. In his 

paper, the author refers to the work done by [Groenendijk and Stokhof, 1989, 1990].

[Nelken and Francez, 2000] suggest a new semantic interpretation of interrogative 

NPs (noun phrases), which play an important role in driving the interpretation of wh- 

questions such as “which women”. The authors used a formal language called Intensional 

Logic with Questions (ILQ) which extends Montague’s IL. The authors added two 

operators: the interrogative operator (?) used for yes/no questions and the binding 

interrogative operator (?x) used for constituent questions. For example, here the authors 

interpret the interrogative determiner “which” as:
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[ Det which ] = AP^Q. ?x (P(x) a  Q (x ))  

which is similar to the standard interpretation of the determiner “a” : 

a: XPXQ 3x (P(x) a  Q (x ))

So the meaning of the sentence “which woman kissed John” can be interpreted as 

follows:

[Which woman kissed John]

= [INP which woman] ([yp kissed John])

= XQ. ?x ( woman(x) a  Q (x ))  (Ay. kiss (y, John))

= ?x ( woman(x) a  kiss (x, John))

The authors refer to some of the work done by [Eijck, 1996]

[Onet and Doina, 2001] describe the fundamentals of intensional logic and introduce 

some methods for treating quantitative natural sentences. Authors split quantitative 

sentences in three categories: definite quantity sentences (e.g. “Four women cry”), 

indefinite quantity sentences (e.g. “Most women cry”), restrictive quantity sentences (e.g. 

“Maximum five children answer”) and tried to translate them in to intensional logic.

In [Cimiano, 2003 ] the author presents a approach to map natural-language wh- 

questions into F(rame)-logic queries based on Montague-style compositional semantics 

where semantic representation is constructed on the basis of Lexicalized Tree Adjoining 

Grammar LTAG-style derivation tress.

[Perez , 2003] shows how semantic interpretation and parsing of a sentence can be 

accomplished in a compositional way by defining semantic rules that work in a one-to- 

one correspondence with the syntactic ones.

Coverage of Natural-Language Semantics

Year Authors Work

1972 Montague R. Natural-language semantics 

for noun, pronoun, 

intransitive verbs
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1989 Frost and Launchbury Implementation of a set- 

theoretic version of sub-set 

of Montague Semantics

1990 Clifford Used semantics as a basis to 

implement systems for 

Natural-language querying

1990 Groenendijk and Stokhof Proposed a system which 

use Montague Semantics to 

extend the compositionality 

of DLP (Dynamic Predicate 

Logic)

1990 Frost and Saba Used Montague Semantics 

to implement natural- 

language interfaces to 

databases

2001 Onet and Doina Extended Montague 

Semantics to handle 

quantitative natural 

sentences e.g. “Four women 

cry” etc..

2002 Thomoson Used Montague framework 

in semantics of words

2002 Frost and Boulos Implemented compositional 

semantics for database 

queries based on a set- 

theoretic version of 

Montague semantics to 

accommodate negation

Table: Coverage of Natural-Language Semantics

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.4 Alternative approaches to Montague Semantics

Rather than Montague semantics, other approaches have been used in natural language. 

[Hardt, 1996] presents a dynamic framework, a dynamic logic system, with extensions 

for the discourse center (a distinguished discourse entity that is the topic of a discourse), 

VP ellipsis (Verb Phrase ellipsis) and paycheck pronouns. (A paycheck pronoun is a 

pronoun, which exhibits sloppy identity, for example “Smith spent his paycheck. Jones 

saved it.”. Here “it” is not an ordinary bound pronoun, nor is it an ordinary free pronoun.

[Shan, 2001] introduces a new variable-free dynamic semantics, which means 

denotational semantics for natural language where meanings of constituents are updates 

to information states. The author continued the work done by [Groenendijk and Stokhof, 

1990]

Shan [2001] analyzed sentences such as “A man walks in the park. He whistles.” For 

example, the author wrote e for the type of an individual, e —> 1 for the type of a property 

and e —» e —» 1 for the type of a two-place relation. So, the derivation of the sentence “ A 

man walks in the park” is translated as follows:

A: (e —» 1) —» e = Ip. { v | * 6 p (v )}

Man: e -+ 1, WITP: e -> 1, WITP(A(MAN)):1 

And, whistles denotes some property WHISTLE: e —> 1 and “he” denotes 

HE: e  ̂e -Xv.v

where  ̂ (“in”) is a new binary type constructor where type ct  ̂x is like 
a —»x in that they may have the same models, namely functions from a  to x .
So now “He whistles” can be derived as follows:

g ► (WHISTLE) (HE): e ► 1 = ^v: WHISTLE(v) 

where g * is a type-shift operation such as

g ► : (a—»P) —> (a  ̂ a ) —» ( ct  ̂ P ) = Xf. Xv. Xs. f  (v(s))

[Fox and Pollard 2002] present PTCT (Property Theory with Curry Typing) where a

language of types joins the language of terms and well-formed formula. [Shan, 2002]
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characterizes the similarity between several semantics accounts for interrogatives, focus, 

intensionality, variable binding & quantifications by using monads. A monad is a 

structure from category theory.

[Bemardi, 2003] describe a logical system, which has the ability to compute the 

semantics of both declaratives and interrogative sentences. For example, the author 

analysed sentences such as:

Q: Did Tarantino direct Titanic? AY(Y((direct titanic) tarantino))

A: No Ap -ip

Q(A) By twice beta-reduction -{(direct titanic) tarantino)

The authors also considered “what” as an example:

Q: what did Cameron direct? AY(YA x((direct x) cameron))

A: Titanic AP P(titanic)

Q(A) :By twice beta-reduction ((direct titanic) cameron)

3. Semantics in Parsing Natural Language

Semantic parsing is a difficult problem in natural-language analysis [Hirst, 1987]. During 

sentence analysis, the question of the appropriate interaction of syntax and semantics has 

been of interest for a long time. The early work on semantic parsing was done in 70’s 

[Siklossy 1972; Reeker, 1976] with emphasis on cognitive modelling of human language 

learning and on discovering mechanisms for language acquisition.

According to Warren [1982], a complete, well-defined context in which these 

questions can be considered is provided by Montague grammar with its fully formalized 

syntax and semantics. [Warren, 1982] describes how to reduce the combinatorial 

explosion of syntactic ambiguity by using semantics during parsing in Montague 

grammar.

In [Lang and Hirschman 1988] the authors show how parsing can be improved 

through interactive acquisition of semantic information.

[Mosny, 1995] proposes an approach to extract constraints, which are explicitly or 

implicitly provided by a semantic part of the natural language interface to a database,
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from the semantic description of the database domain and incorporate them into 

information directly accessible to the parser.

[Da-Silva, Seabra and Siqueira, 1995] propose a parser that performs syntactic and 

semantic analysis, simultaneously as in Montague Grammar, of assertions, which are 

related to Space Science and are expressed in a restricted form of natural language.

[Chan, 1997] shows how semantic parsing can be formulated as a sequence of 

processes in which multiple sources of knowledge are incorporated.

[Miller, Fox, Ramshaw and Weischedel, 2000] introduce a statistical, context-free 

probabilistic parser for information extraction which shows a significant increase in 

parsing accuracy.

[Lappoon et al, 2000] propose a method for learning semantic parses, which are 

systems for mapping natural language to logical forms that integrate logic-based and 

probabilistic methods. [Lappoon et al, 2000] also present a method for integrating 

statistical and relational techniques for the automated acquisition of NLI’s from training 

examples. They also claim that their approach is more robust than a purely logical 

approach.

4.Natural-Language Interfaces to Databases (NLIDBs)

4.1 Overview of Natural-Language Interfaces to Databases

A natural-language interface to a database is a system that allows the user to access 

information stored in a database by typing requests expressed in some natural language 

such as English. The first natural-language interfaces to databases appeared in the late 

sixties and early seventies. According to [Androutsopoulos, 1995], the best-known 

NLIDB at that period was LUNAR [Woods, 1972], a natural-language interface to a 

database containing chemical analyses of moon rocks. Some other NLIDBs developed at 

that time were RENDEZVOUS, LADDER, PLANTES and PHILIQA1 [description of 

and references for all of these systems can be found in Androutsopoulos, 1995]. Marjorie 

and Burger describe some of the problems in natural language and database management 

involved in natural-language interface development [Marjorie and Burger 1983]. More 

NLIDBs were developed in eighties and nineties.
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In recent years, there have been a significant number of papers on NLIDBS 

published each year and NLIDBS continue to evolve, adopting advances in the general 

natural- language processing field, exploring architectures that transform NLIDBs into 

reasoning agents, and integrating language. [Androutsopoulos, 1995 (which is a good 

introductory paper on NLIDBs)], talks about the history of NLIDBs, some advantage and 

disadvantage of NLIDBs and also compares NLIDBs to formal query languages, form- 

based interfaces, and graphical interfaces.

Focus on the central process of translating the natural-language questions into 

database queries has also been investigated by some researchers [e.g. Copestake and 

Jones 1990]. Different approaches have been applied to NLIDBs. Demers in his thesis, 

introduces a lexicalist approach, which is based on unification grammars to database 

NLI’s along a small-scale example [Demers, 1996]. The author claims that the solution 

proposed to this approach is not only feasible but also provides reasonable complexity 

and processing time for unambiguous words and expressions.

Many techniques have been developed to translate natural-language questions into 

database queries. [Filipe and Mamede, 2000] mainly focus on the translation stage, 

translating user questions first into a logic language and then into Structured Query 

Language (SQL) [more details and examples of SQL-type interfaces are given in the next 

section], which is then processed by a database-management system to return answers to 

the questions.

4.2 SQL-type Interfaces

A lot of natural-language interfaces that have been developed are based on an SQL-type 

approach. [Hasting, 1991] describes the design and implementation of an SQL-based 

speech-recognition database-query system.

[Androutsopoulos, 1995] talks about using a language called TSQL2 in a natural- 

language interface. The paper [Androutsopoulos, 1995] focuses on the TSQL2 in a 

natural-language interface for temporal databases and also in some point on the semantics 

of TSQL2. For example the question “ On how many Mondays was John at University of 

Windsor in 2000? “ can be expressed as:

Select Snapshot Count (Distinct d.*)
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From &year_month_day (Period) As d, student_visits (Period) as t

Where d.year = 2000

AND d.day_name= “Monday”

AND VALID(t) OVERLAPS VALID(d)

AND t.student=’John’

AND t.school=’University of Windsor’

Assuming that the calendric table and year_month_day and studentvisits tables are 

available.

[Reis and Mamede, 1997] present the Edite system, which is a natural-language 

interface to databases, and explore the advantage of joining natural-language processing 

with the expressiveness of graphical interfaces. Edite, a natural-language front-end for 

relational databases, is multi-lingual (Portuguese, French, English, Spanish). It is capable 

of answering written questions related to tourism by transforming them into SQL queries. 

The answer can be a list of resources, text, images or graphics depending of the 

questions. At present, the database contains 53000 tourism resources, arranged on 253 

distinct types, which corresponds to 209 tables. This paper refers to the work done by 

[Androutsopoulos, Ritchie, Thanisch, 1993].

[Stratica, 2002] talks about a natural language processor for querying Cindi, which is 

also an SQL-based system.

A reliable natural-language interfaces to household appliances which is also an SQL- 

based interface is described in [Yates and Etzioni, 2003].

[Popescu, Etzioni and Kautz 2003] introduces a theoretical framework, which is the 

foundation for the fully implemented Precise NLI and proved that Precise guarantees a 

map for each question to the corresponding SQL query, for a broad class of semantically- 

tractable natural-language questions.

4.3 Other approaches to Natural-Language Interfaces

There are different approaches to natural-language interfaces. [Ryan and Root, 1988] 

describe some application-specific issues in developing of natural-language interfaces.

A fully-statistical approach to a natural-language interface, which consists of three 

stages of processing: parsing, semantic interpretation and discourse, is described in [Scott
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and David 1996], All of the stages are modeled as a statistical process, which are 

integrated, resulting in an end-to-end system that maps input utterances into meaning- 

representation frames.

A deductive object-oriented approach in the development of natural-language 

interfaces that uses a deductive object-oriented database (DOOD) is described in [Werner 

and Yahiko 1997]. The authors follow the approach of [Rymon, 1993] and refer to 

[Androutsopoulos, Ritchie, and Thanisch, 1995] in the paper.

5 Compositional Semantics for Natural-Language Database Queries

5.1 Introduction to Semantics in Databases

Issues related to database semantics played an important role in the early days of database 

research and most of the database conferences were dominated by the papers discussing 

database models, conceptual design, integrity constraints and normalization. Semantics of 

databases and information systems can be based on approaches, which have been 

developed and successfully used by different communities such as the logic community 

who are working on constraint problems, induction, non-classical semantics, the 

database-theory community who are working on constraints, and the Al community who 

are working on logic and reasoning, deduction, agents etc.

According to [Teskey, 1987] semantic models developed by linguists have not had 

any significant impact on information retrieval.

[Kalita, Jones and McCalla 1986] describes the detailed design and implementation of 

a system, which generates summary responses to queries of a relational database.

[Ranta, 1999] describes a database-query system based on the Grammatical 

Framework which was demonstrated using a database of restaurants which runs in seven 

European languages and the system can be modified in various levels like changing basic 

grammatical structures into other structures.
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In [Hausser, 2001a] the author presents a new approach where the spatio-temporal 

location of propositional content is not specified precisely within a Cartesian system of 

space and time coordinates instead it is characterized cognitively by the order of direct 

observations entering the database of a cognitive agent. The sequence of propositions 

which serves as the spatial landmarks are structured by observations of the environment 

and temporal landmarks are structured by observations of cyclical events. In database 

semantics, like all other inference, which navigate through the concatenated propositions, 

spatio-temporal inferences are handled.

[Hausser, 2001b] describes database semantics as a declarative model of a cognitive 

agent, which is called a SLIM machine and which functionally integrates the procedures 

of natural-language interpretation, conceptualization and production. No one appears to 

have referred to this work at this point of time.

5.2 Database interface based on Montague’s Approach

There has not been much research on building database interfaces based on Montague’s 

Semantics. [Frost and Launchbury, 1989] describe how in a functional-programming 

language, natural-language parsers and interpreters can be implemented. Frost and 

Launchbury refer to the book by Dowty, Wall and Peters (1981) but make no reference to 

any previous work on the use of Montague semantics in database query processing. It 

appears that Frost and Launchbury were amongst the first to use Montague semantics in 

database query processing.

It would also appear that Frost and Launchbury were the first to use a set-theoretic 

based implementation of Montague semantics. For example instead of interpreting 

‘every’ like in Montague as:

[every] = ApXq [ Vp(x) -» q(x) ]

Frost and Launchbury used:

[everyjFL^ Ap ^q p c q
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According to [Yonezaki and Enomoto 1980], Richard Montague’s Intensional Logic 

(IL), which describe semantics of natural language, can be useful to the theory of 

databases in designing database systems which handle historical data and provide a 

formal description of database semantics.

[Frost and Saba 1990] implemented some of the concepts of Montague that can be 

used in natural-language interface to databases. The database interface is implemented in 

a higher-order functional programming language and the semantic calculation is achieved 

through higher-order functional application.

[Lapalme and Lavier 1990] showed how a larger part of Montague Semantics can be 

implemented in a pure higher-order functional programming language.

[Frost and Boulos, 2002] describe an implementation of a compositional semantics for 

database queries, based on a set-theoretic version of Montague semantics, which 

accommodates phrases that include the word ‘no’. The approach is based on an extended 

set theory in which ‘negative’ phrases denote infinite sets represented in complement 

form.

5.3 Question-Answering

The question-answering systems developed in the 1970’s were complex Al-based 

systems that converted a natural-language query into a knowledge-base query. Those 

systems then searched in the knowledge base for an answer and returned the results in 

natural language. Constructing and maintaining those knowledge bases was a great 

problem and those systems were not scalable. The LUNAR system (Woods, 1977) is one 

of the examples of those systems. Recently triggered by the Text Retrieval Conference 

(TREC) Question Answering Track (Voorhees, 2001) there has been an increase in 

research on text-based question answering.

According to [Main and Benson, 1983] denotational semantics can be used as a 

specification technique for question-answering programs and implementation of the 

principle of compiler design was suggested as principle of question answerer design.
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There is an interesting paper [Zweigenbaum, 2003] in which question answering is 

used in biomedicine for natural language question answering.

[Duclaye and Yvon, 2003] discussed several methods on how to improve question- 

answering systems. The authors presented an unsupervised methodology starting with 

one single positive learning example for automatically learning paraphrases and which is 

able to filter out the invalid potential paraphrases extracted during the acquisition steps 

using an EM-based validation. The authors claim that these paraphrases are useful to 

improve the results of their question-answering system.

[Katz and Lin, 2003] describe how to improve precision in question answering by 

selectively using relations.

5.4 Predicate-logic -based Approaches

Much research has been done on predicate-logic-based approaches for building natural- 

language database interfaces. [Rayner, 1993] in his Ph.D thesis discusses abductive 

equivalential translation and its application to natural-language database interfacing.

5.5 Approximate answer from cooperative sources

As databases and information systems often do not explicitly attempt to cooperate with 

their users, they are sometimes hard to use. Direct answers may not always be the best 

answer to database and knowledge-base queries. On the other hand, a more-useful and 

less-misleading answer to a user may be an answer with extra or alternative information. 

[Gaasterland, Parke and Minker, 1992] describe intelligent information systems, which 

are able to exhibit cooperative behaviour.

[Pankowski, 1999] talks about semantics of approximate answers in cooperative 

database systems.

5.6 Semantics of Dialogues

A computer system and a human user work cooperatively via a natural-language interface 

to achieve a certain goal in task-oriented dialogues. A typical example o f task-oriented
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dialogues are information-querying interactions where the system reports information 

about e.g. bus schedules on the basis of certain input-parameters of the user.

Most of the current task-oriented dialogue systems interpret user utterances by 

directly mapping them onto parameters that represent the questions the user has to 

answer. [Malte Gabsdi, 2001] in his master's thesis talked about interpreting questions 

and answers in a prototype dialogue system.

5.7 Natural-Language Interfaces to Temporal Databases

Natural-language database interfaces have been the subject of interest in the natural 

language processing community since the 1960s. Users are able to access information 

stored in database through NLDBs by simple formulating requests in natural language.

Most existing NLDBs are designed to interface to database systems provided very 

little facilities for manipulating time-dependent data. Most NLDBs also provide very 

little temporal support. Temporal database systems are becoming increasingly interesting 

in the database community. These temporal database systems are intended to store and 

manipulate information not only about the present, but also about the past and future.

The work of Clifford and Warren [1983] is one of the first attempts to incorporate a 

concept of time in database.

[Clifford and Warren, 1983] has discussed that formal logic has made important 

contribution in understanding and specification of the semantics of database. Authors 

showed that relational database model could be extended to incorporate the concept of 

historical relations as well as database and also shown how ILs (reformulated IL to 

include s as a basic type) can provide a semantic theory for this database concept. In this 

paper the authors also suggested as interesting aspect in defining the translation of 

English questions into ILs, where the authors interpret English statements as database 

commands. For example, the authors interpreted the statement ‘ John earns 30k’ as a 

command to record this as a fact in the database with the time-stamp taken from the 

system clock when made by an authorized user.

In [Hirst, 1983] the author proposed a new approach to semantic interpretation 

based on the semantic formalism of Richard Montague. In this approach author claim that
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their semantics are compositional by design and strongly typed like Montague and they 

replace Montague’s semantic objects and truth conditions with the elements of the frame 

language Frail and added a word sense and case slot disambiguation system. They claim 

that their approach to semantic interpretation is superior to previous approaches. For 

example a single noun phrase the book can be interpreted as (the ?x (book ?x)), which is 

a Frail frame statement. And a descriptive adjective correspond to a lot-filler pair from 

example red is represented by (color=red), so the red book would have semantic 

interpretation (the ?x (book ?x(color=red))). Similarly the sentence “Nadia bought the 

book from a store in the mall “ will be interpreted as

(a ?u (buy ?u (agent = (the ?x (thing ?x (propemame= “Nadia”))))

(patient = (the ?y (book ?y))) (source = (a ?z (store ?z (location =

(the ?w (mall ?w)))))))

In [Clifford, 1988] the author examines the connection between the semantics of 

historical databases and the semantics of natural language querying and through a 

common view of the semantics of time link them together. [Clifford, 1988] demonstrated 

the use of QE-III, a formally defined English database query language whose semantics 

and pragmatic theory are based on a Montague type semantics and discussed the issues 

on providing both semantics and pragmatic interpretation for question within a model- 

theoretic framework. For example questions in English Query Language QE-III can be 

handled in the following way:

Who is Peter’s manager? 

which can be interpreted as:

A,u 3x [ MGR’(now)(x) A x(now) = u A AS-1 (Peter,x)]

In [Hinrichs, 1988], the author argued that a logical semantics for temporal 

expressions could provide sufficient representations for natural-language inputs to an 

interface such as JANUS, a natural language understanding and generation system under 

joint development by BBN Labs and ISI. The author demonstrated that if narrow scopes 

are given to tense quantifiers that will enable to provide adequate scope relation with
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respect to natural-language quantifiers and to interpret such NPs relative to a given 

discourse context. The author also demonstrated that how in English the narrow scope of 

tense results in a fully compositional syntax and semantics of tensed sentences.

In their paper (which is a good introductory paper on temporal Databases), 

Androutsopoulos, Ritchie and Thanisch, in 1998 suggest a new framework for 

constructing natural language interface for temporal database as at that point of time most 

of the natural language database interfaces designed had very limited facilities for 

manipulating time-dependent data and didn’t support temporal linguistic mechanisms. 

The authors refer to the work done by [Clifford and Warren, 1983] in temporal

databases.

[Claire, 1990] describes the implementation of formal semantics as described in 

Keena and Faltz Boolean Semantics for Natural Language for Natural Language. The 

author claims that his implementation avoids the intermediate step of translating Natural 

Language into a formal language such as an extended version of predicate calculus which 

makes his implementation free of the problems related to the syntax of such a language 

like binding the variable and resolving scope ambiguities however which has 

disadvantage that every denotation (i.e. semantic value) requires to be explicitly and 

accurately represented in a database.

In [Kabanza, St'evexme, and Wolper, 1990] the authors present a framework, which 

is an extension of classical relational database, for describing, storing and reasoning 

about infinite temporal information and this framework represents infinite temporal 

information by generalized tuples which are defined by linear repeating points and 

constraints on these points. Authors prove that relations formed from generalized tuples 

are closed under the operations of relational algebra.

In his doctoral thesis [Nelken, 2001] suggests the design of a natural language 

interface to temporal databases, based on translating natural-language temporal questions 

into SQL/Temporal, which is a recent temporal database query language .The interface is 

based on two stage translation process, where in first stage question are translated into a
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two-sorted first-order logic over temporal interval and in second stage logical formulae is 

translated into SQL/Temporal.

In other paper [Nelken, 2001] the author continues his work in temporal databases 

and presents a Natural Language Interface to temporal database controlled by novel based 

on translating natural language questions into temporal database query language, which is 

done using Type-Logical Grammar framework. For example consider the NL question: 

During which year did Mary work in marketing?

The meaning of the sentence is constructed as:

(year(I) A 3J (work(mary, marketing, J ) A J c  past A J c  I))

Which can be translated into the following SQL/Temporal query:

NonSequenced Validtime 

Select distinct aO.c As cl 

From work’ As al.year’ As aO 

Where Validtime(aO) contains 

Validtime (al)

And al.c l = ‘mary’

And Al.c2 = ‘marketing’

And period (TimeStamp ‘beginning’, TimeStamp ‘now’) contains Validtime (al) 

Coverage involving temporal databases in Natural-language interfaces

Years Authors Work

1983 Clifford and Warren Were first to incorporate a concept of time in 

databases

1983 Hirst Proposed a approach to semantic 

interpretation based on the Montague 

semantics.

1988 Clifford Examines the connection between the 

semantic of historical database and the 

semantic of Natural language querying 

through the semantics of time
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1988 Hinrichs Explains how logical semantics for temporal 

expressions provide sufficient representations 

for natural-language inputs to an interface.

1990 Claire Describes implementation of formal semantics 

as in Keena and Faltz

1990 Kabanza, Stevenne and 

Wolper

Presents framework for describing, storing and 

reasoning about infinite temporal information.

1998 Androutsopoulos, Ritchie 

and Thanisch

A good introductory paper on temporal 

database

2001 Nelken Describes the design of natural-langauge 

interface to temporal database based on 

translating natural-langauge temporal 

questions to SQL/temporal

Table: Coverage of NL interfaces to temporal databases 

Conclusion:
There hasn’t been much work done in recent years on the use of Montague semantics in 

natural-language database query processing. Since the development of Montague 

Grammar a few new semantic theories [e.g., Groenendijk and Stokhof, 1991] have been 

developed either to augment Montague Grammar itself or as alternate theories to deal 

with some problem not dealt within the original definitions. One of the researchers in 

Computer Science Michael Beeson stated ‘ I still think Montague semantics could be 

developed further, but as far as I know, those who are doing natural-language processing 

aren’t using it.’

I would like to thank my supervisor Dr. R. Frost for his valuable suggestions, comments, 

remarks, discussion and encouragement.
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Q: Did Tarantino direct Titanic? XY(Y((direct titanic) tarantino))

A: No Xp -ip

Q(A) By twice beta-reduction -i((direct titanic) tarantino)
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include s as a basic type) can provide a semantic theory for this database concept. In this 

paper the authors also suggested as interesting aspect in defining the translation of 

English questions into ILs, where the authors interpret English statements as database 

commands. For example, the authors interpreted the statement ‘ John earns 30k’ as a 

command to record this as a fact in the database with the time-stamp taken from the 
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[In this paper the author examines the connection between the semantics of historical 

databases and the semantics of natural language querying and through a common view of 

the semantics o f time link them together. The author demonstrated the use of QE-III, a 

formally defined English database query language whose semantics and pragmatic theory 

are based on a Montague type semantics and discussed the issues on providing both 

semantics and pragmatic interpretation for question within a model-theoretic framework. 

For example questions in English Query Language QE-III can be handled in the 

following way:

Who is Peter’s manager? 

which can be interpreted as:

A.u 3x [ MGR’(now)(x) A x(now) = u A AS-1 (Peter,x)] ]

[8] Claire G. Dynamic Semantics and VP-Ellipsis. JELIA 1990: 251-266, (1990)

[[Claire, 1990] describes the implementation of formal semantics as described in Keena 

and Faltz Boolean Semantics for Natural Language for Natural Language. The author 

claims that his implementation avoids the intermediate step of translating Natural 

Language into a formal language such as an extended version of predicate calculus which 

makes his implementation free of the problems related to the syntax of such a language 

like binding the variable and resolving scope ambiguities however which has 

disadvantage that every denotation (i.e. semantic value) requires to be explicitly and 

accurately represented in a database.]

[9] Cimiano P. Translating Wh-Questions into F-Logic Queries In: Proceedings of 2nd 

CoLogNET-ElsNET Symposium. 2003

[In this paper the author presents a approach to map natural-language wh-questions into 

F(rame)-logic queries based on Montague-style compositional semantics where semantic 

representation is constructed on basis of Lexicalized Tree Adjoining Grammar LTAG- 

style derivation tress. For example, who owns a company? can be translated as follows: 

?-3 Y Y: company A X [ own —> Y ] . ]
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[10] Demers N.P. A Lexicalist Approach to Natural-Language Database Front-Ends. 

Master's Thesis, University of Ottawa (1996)

[In this thesis the author introduces a lexicalist approach, which is based on unification 

grammars to database NLI’s along a small-scale example. The author claims that the 

solution proposed to this approach is not only feasible but also provides reasonable 

complexity and processing time for unambiguous words and expressions]

[11] Filipe P. P. and Mamede N. J. Databases and Natural Language Interfaces. V 

Jornada de Engenharia de Software e Bases de Dados (JESBD'2000), Valladolid, Spain, 

November (2000)

[In this paper the authors mainly focus to the translation stage, translating user questions 

first into a logic language and then into Structured Query Language (SQL), which is that 

processed by a database management system to return answer to the question. ]

[12] Duclaye F., Yvon F., and Collin O. Learning paraphrases to improve a question- 

answering system. An EACL workshop, April (2003).

[Duclaye and Yvon, 2003] discussed several methods on how to improve question- 

answering systems. The authors presented an unsupervised methodology starting with 

one single positive learning example for automatically learning paraphrases and which is 

able to filter out the invalid potential paraphrases extracted during the acquisition steps 

using an EM-based validation. The authors claim that these paraphrases are useful to 

improve the results of their question-answering system.

[13] Frost R. A. and Launchbury J. Constructing natural language interpreters in a lazy 

functional language. The Computer Journal, 32(2): 108-121, April (1989)

[In this paper the authors describe how in a functional programming language, language 

parsers and interpreters can be implemented. Frost and Launchbury refer to the book by 

Dowty, Wall and Peters (1981) but make no reference to any previous work on the use of 

Montague semantics in database query processing. It appears that Frost and Launchbury 

were amongst the first to use Montague semantics in database query processing.
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It would also appear that Frost and Launchbury were the first to use a set-theoretic 

based implementation of Montague semantics. For example instead of interpreting 

‘every’ like in Montague as:

[every] = LpLq [ Vp(x) -» q(x) ]

Frost and Launchbury used:

[every]FL= Ap Xq p c q ]

[14] Frost R. A. and Saba W. S. A database interface based on Montague’s approach to 

the interpretation of natural language. International Journal of Man-Machine Studies, 

33(2): 149-176, (1990).

[In this paper the authors implement some of the concepts of Richard Montague that can 

be used in Natural Language Interface to databases .The database interface is 

implemented in a higher-order functional programming language and the semantic 

calculation is achieved through higher-order functional application.]

[15] Frost R. A. and Boulos P. An Efficient Compositional Semantics for Natural- 

Language Database Queries with Arbitrarily-Nested Quantification and Negation. 

Lecture Notes In Computer Science Proceedings of the 15th Conference of the Canadian 

Society for Computational Studies of Intelligence on Advances in Artificial Intelligence, 

pp. 252-267 , (2002)

[In this paper the authors describes implementation of a compositional semantics based 

on a set-theoretic version of Montague semantics for a small Natural Language Query 

processor. A compositional semantics for phrases that include the word ‘no’ is developed 

based on an extended set theory in which ‘negative’ phrases denote infinite sets 

represented in complement form. ]

[16] Groenendijk J. and Stokhof M. Dynamic Montague Grammar. Faculty of 

Mathematics and Computer Science, Roeterssraat, Amsterdam, Holland (1990)
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[In this paper the authors propose a new logical system as the semantic component of a 

Montague -Style grammar that extends the compositionality of DPL (dynamic predicate 

logic) to the subsentential level. In DLP (Dynamic Predicate Logic) a sentence such as 

“Every farmer who owns a donkey beats it” can be translated into the formula as follows: 

Vx[[ farmer(x) a  3y [donkey(y) a  own(x, y)]] —» beat(x ,y ) ]

In DLP the above translation is equivalent to :

VxVy [[ farmer(x) a  donkey(y) a  own(x, y)] —» beat(x ,y ) ]

It is a continuation of their work [Groenendijk and Stokhof, 1989] on dynamic predicate 

logic.]

[17] Hardt D. Centering in dynamic semantics. In COLING-96. Copenhagen,

(1996).

[In this paper the author presents a dynamic framework, a dynamic logic system, with 

extensions for the discourse center (a distinguished discourse entity that is the topic of a 

discourse), VP ellipsis (Verb Phrase ellipsis) and paycheck pronouns. (A paycheck 

pronoun is a pronoun, which exhibits sloppy identity, for example “Smith spent his 

paycheck. Jones saved it.”. Here “it” is not an ordinary bound pronoun, nor is it an 

ordinary free pronoun.]

[18] Hausser R., Database semantics for natural language. Artificial Intelligence, Vol. 

130, Issue 1, pp. 27-74, July (2001)

[In this paper authors describes database semantics as a declarative model of a cognitive 

agent which is called a SLIM machine and which functionally integrates the procedures 

of Natural language interpretation, conceptualization and production. No one appears to 

have referred to this work at this point of time.]

[19] Hausser R. "Spatio-Temporal Indexing in Database Semantics," in A. Gelbukh (ed)., 

2001

[In this paper Hausser presents a new approach where the spatio-temporal location of 

propositional content is not specified precisely within a Cartesian system of space and 

time coordinates instead it is characterized cognitively by the order of direct observations
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entering the database of a cognitive agent. The sequence of propositions which serves as 

the spatial landmarks are structured by observations of the environment and temporal 

landmarks are structured by observations of cyclical events. In database semantics, like 

all other inference, which navigate through the concatenated propositions, spatio- 

temporal inferences are handled. ]

[20] Hinrichs E. W. Tense, Quantifiers, and Contexts, Computational Linguistics, Vol. 14 

No. 2, June 1988

[In [Hinrichs, 1988], the author argued that a logical semantics for temporal expressions 

could provide sufficient representations for natural-language inputs to an interface such 

as JANUS, a natural language understanding and generation system under joint 

development by BBN Labs and ISI. The author demonstrated that if  narrow scopes are 

given to tense quantifiers that will enable to provide adequate scope relation with respect 

to natural-language quantifiers and to interpret such NPs relative to a given discourse 

context. The author also demonstrated that how in English the narrow scope of tense 

results in a fully compositional syntax and semantics of tensed sentences.]

[21] Hirst G. A Foundation for semantic interpretation, Proceedings of the 21st Annual 

Meeting, Association for Computational Linguistics, Cambridge, Mass., June 1983, 64— 

73.

[In [Hirst, 1983] the author proposed a new approach to semantic interpretation based on 

the semantic formalism of Richard Montague. In this approach author claim that their 

semantics are compositional by design and strongly typed like Montague and they replace 

Montague’s semantic objects and truth conditions with the elements of the frame 

language Frail and added a word sense and case slot disambiguation system. They claim 

that their approach to semantic interpretation is superior to previous approaches. For 

example a single noun phrase the book can be interpreted as (the ?x (book ?x)), which is 

a Frail frame statement. And a descriptive adjective correspond to a lot-filler pair from 

example red is represented by (color=red), so the red book would have semantic 

interpretation (the ?x (book ?x(color=red))). Similarly the sentence “Nadia bought the 

book from a store in the mall “ will be interpreted as
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(a ?u (buy ?u (agent = (the ?x (thing ?x (propemame= “Nadia”))))

(patient = (the ?y (book ?y))) (source = (a ?z (store ?z (location =

(the ?w (mall ?w))))))) ]

[22] Kabanza F., St'evenne J.M., and Wolper P. Handling infinite temporal data. In Ninth 

ACM Symposium on Principles of Database Systems, pages 392—403, Nashville, 

Tennessee, Apr. 1990.

[In this paper the authors present a framework, which is an extension of classical 

relational database, for describing, storing and reasoning about infinite temporal 

information and this framework represents infinite temporal information by generalized 

tuples which are defined by linear repeating points and constraints on these points. 

Authors prove that relations formed from generalized tuples are closed under the 

operations of relational algebra. ]

[23] Lappoon R. T. and Raymond M. Automated Construction of Database Interfaces: 

Integrating Statistical and Relational Learning for Semantic Parsing. Proceedings of the 

Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and 

Very Large Corpora (EMNLP/VLC-2000), pp. 133-141, Hong Kong, October, (2000)

[In this paper the authors present a method for integrating statistical and relational 

techniques for the automated acquisition of NLI’s from training examples. They also 

claim that their approach is more robust than a previous purely logical approach.]

[24] Main M. G., Benson D. B. Denotational Semantics for "Natural" Language 

Question-Answering Programs. American Journal of Computational Linguistics 9(1): 11- 

21 (1983)

[According to Main and Benson in 1983, denotational semantics can be used as a 

specification technique for question-answering programs & for implementation the 

principle of compiler design was suggested as principle of question answerer design.]
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[25] Mosny M., Semantic Information Preprocessing for Natural Language Interfaces to 

Databases. Meeting of the Association for Computational Linguistics, pp. 314-316, 

(1995)

[In this paper the author propose an approach to extract constraints, which are explicitly 

or implicitly provided by a semantic part of the NLID, from the semantic description of 

the database domain and incorporate them into information directly accessible to the 

parser.]

[26] Nelken R. and Francez N., Bilattices and the Semantics of Natural Language 

Questions, Technical Report LCL 9801, Laboratory for Computational Linguistics, the 

Technion. (1998)

[In this paper authors propose a novel semantics theory of NL questions which is 

composed of a compositional translation method into a formal logical meaning 

representation language in a Montagovian framework.]

[27] Nelken R. and Francez N. The Algebraic Semantics of Interrogative NPs. The 

Algebraic Semantics of Interrogative NPs. Journal Grammars, Vol. 3, N 2/3, pages 259- 

273,(2000)

[In the paper “the algebraic Semantics of Interrogative NPs” authors Nelken and Francez, 

in 2000, suggest a new semantic interpretation of interrogative NPs, which play an 

important role in driving the interpretation of wh-questions such as “ which women”. The 

authors used a formal language called Intensional Logic with Questions (ILQ) which 

extends Montague’s IL. The authors added two operators: the interrogative operator (?) 

used for yes/no questions and the binding interrogative operator (?x) used for constituent 

questions. For example, here the authors interpret the interrogative determiner “which” 

as:

[ Det which ] = XPA.Q. ?x (P(x) a  Q (x ))  

which is similar to the standard interpretation of the determiner “a” : 

a: XPXQ 3x (P(x) a  Q (x ))

So the meaning of the sentence “which woman kissed John” can be interpreted as 

follows:
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[Which woman kissed John]

= [INP which woman] ( [ v p  kissed John])

= XQ. ?x ( woman(x) a  Q(x)) (Ay. kiss (y, John))

= ?x ( woman(x) a  kiss (x, John)) ]

[28] Nelken R. and Francez N. Querying Temporal Databases Using Controlled Natural 

Language. In proceedings of Coling (2000)

[In this paper authors present Natural Language Interface to temporal database controlled 

by novel based on translating natural language questions into temporal database query 

language, which is done using Type-Logical Grammar framework.]

[29] Nelken R. Questions, Time and Natural Language Interfaces to Temporal Databases. 

PhD thesis (2001)

[In his doctoral thesis, Nelken suggest the design of a natural language interface to 

temporal databases, based on translating natural language temporal questions into 

SQL/Temporal, which is a recent temporal database query language .The interface is 

based on two stage translation process, where in first stage question are translated into a 

two-sorted first-order logic over temporal interval and in second stage logical formulae is 

translated into SQL/Temporal.]

[30] Nelken R. and Francez N. Querying Temporal Databases Using Controlled Natural 

Language. In proceedings of Coling (2000)

[ In other paper [Nelken, 2000] the author continues his work in temporal databases and 

presents a Natural Language Interface to temporal database controlled by novel based on 

translating natural language questions into temporal database query language, which is 

done using Type-Logical Grammar framework. For example consider the NL question: 

During which year did Mary work in marketing?

The meaning of the sentence is constructed as:

(year(I) A 3 J (work(mary, marketing, J ) A J c  past A J c  I))

Which can be translated into the following SQL/Temporal query:

NonSequenced Validtime
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Select distinct aO.c As cl 

From work’ As al.year’ As aO 

Where Validtime(aO) contains 

Validtime (al)

And a l.c l = ‘mary’

And Al.c2 = ‘marketing’

And period (TimeStamp ‘beginning’, TimeStamp ‘now’) contains Validtime

(al)]

[31] Onet A., Doina T. Intensional Logic Translation for Quantitative Natural Language 

Sentences. (colaborare cu A.Onet), Studia Universitatis "Babes-Bolyai", Seria 

Informatica, nol, pp 41-54, (2001)

[In this paper authors describe the fundamentals of intensional logic and introduce some 

methods for treating quantitative natural sentences. Authors split quantitative sentences 

in three categories: definite quantity sentences (e.g. “Four women cry”), indefinite 

quantity sentences (e.g. “Most women cry”), restrictive quantity sentences (e.g. 

“Maximum five children answer”) and tried to translate them in to intensional logic. ]

[32] Popescu M. A., Etzioni O. and Kautz H., Towards a Theory of Natural Language 

Interfaces to Databases. IUI (2003)

[In this paper authors introduce a theoretical framework, which is foundation for the fully 

implemented Precise NLI and proved that Precise guarantees to map each question to the 

corresponding SQL query, for a broad class of semantically tractable Natural Language 

Questions.]

[33] Ranta A. A database query system based on GF (Grammatical Framework). XRCE 

Grenoble June (1999).

[In his paper, Ranta describes a database query system based on Grammatical Framework 

which was demonstrated concerning a database of restaurants which runs in seven 

European languages and the system can be modified on various level like changing basic 

grammatical structure into other structure. ]

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[34] Reis P., Mamede N., Matias J. Edite — A Natural Language Interface to Databases: 

a New Dimension for an Old Approach in "Proceeding of the Fourth International 

Conference on Information and Communication Technology in Tourism", ENTER' 97, 

Edinburgh, Scotland (1997).

[In this article the authors present the Edite system which is a Natural Language Interface 

to Database and the system explore the advantage of joining natural language processing 

with the expressiveness of graphical interfaces. Edite, a natural-language front-end for 

relational databases, is multi-lingual (Portuguese, French, English, Spanish). It is capable 

of answering written questions related to tourism by transforming them into SQL queries. 

The answer can be a list of resources, text, images or graphics depending of the 

questions. At present, the database contains 53000 tourism resources, arranged on 253 

distinct types, which corresponds to 209 tables. This paper refers to the work done by 

[Androutsopoulos, Ritchie, Thanisch, 1993].]

[35] Scott M., Stallard D., Bobrow R. and Schwartz R., A Fully Statistical Approach to 

Natural Language Interfaces. Proceedings of the Thirty-Fourth Annual Meeting of the 

Association for Computational Linguistics, Morgan Kaufmann Publishers, San Francisco, 

pp. 55-61, (1996)

[A fully-statistical approach to a natural-language interface, which consists of three 

stages of processing: parsing, semantic interpretation and discourse, is described in [Scott 

and David 1996]. All of the stages are modeled as a statistical process, which are 

integrated, resulting in an end-to-end system that maps input utterances into meaning- 

representation frames.]

[36] Shan C. Monads for natural language semantics. Proceedings of the 2001 European 

Summer School in Logic, Language and Information student session, ed. Kristina 

Striegnitz, pp. 285-298 (2001)
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[In his paper, Shan characterizes the similarity between several semantics accounts for 

interrogatives, focus, intensionality, variable binding & quantifications by using monads.

A monad is a structure from abstract algebra, category theory.]

[37] Shan C. A variable-free dynamic semantics. Proceedings of the 13th Amsterdam 

Colloquium, ed. Robert van Rooy and Martin Stokhof, pp. 204-209 (2002)

[In his paper, in 2002, Shan introduces a new concept variable free dynamic semantics, 

which means denotional semantics for Natural Language where meanings of constituents 

are updates to information states. Shan [2002] analyzed sentences such as “A man walks 

in the park. He whistles.” For example, the author wrote e for the type of an individual, e 

-» 1 for the type of a property and e —> e —> 1 for the type of a two-place relation. So, the 

derivation of the sentence “ A man walks in the park” is translated as follows:

A: (e —» 1) —» e = A,p. { v | * € p (v )}

Man: e -> 1, WITP: e -> 1, WITP(A(MAN)):1 

And, whistles denotes some property WHISTLE: e —» 1 and “he” denotes 

HE: e ► e =^v.v

where * (“in”) is a new binary type constructor where type a  * x is like 
cj—»x in that they may have the same models, namely functions from a  to x .
So now “He whistles” can be derived as follows:

g ► (WHISTLE) (HE): e ► 1 = Xv: WHISTLE(v)

where g  ̂ is a type-shift operation such as

g ► : (a-»P) —> (a  ► a) —> ( a  ► P ) = A,f. A,v. Xs. f  (v(s))]

[38] Thomason R. H. Formalizing the Semantics of Derived Words. Linguistics 

Department, University of Pittsburgh (2001)

[In this paper the authors propose an approach ,the logical approach, which they claim 

has never produced a very satisfactory account of word meaning but is successful in the 

semantic interpretation of syntactic structure. For example the natural way to define ‘x is 

water soluble’ is as follows:

If x were put in some water, then x would dissolve in the water.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The definition of ‘water-soluble’ is obtained by using eventualities in place of times (This 

formula uses more or less standard formalization techniques in event-centered semantics, 

for example [Push(e) A Past(e) A Pusher(e) = Charlie A Pushee(e) = Piano] is used to 

represent Charlie pushed the piano .)

Vx [ water-soluble(x) Vei Vy [ put_in(ei) a  movee(ei) = x a  container(ei) = y a  

water(y)] —> 3e [ Dissolving(e) a  dissolvee(e) = x a  medium(e) = y ] a  —iAb(e)] —>

3 Q2 [culmination(e) = e2 a  dissolved(e2) a  disolvee(e2 ) = x a  medium(e2) = y ]]

In words: x is water-soluble if  and only if necessarily if an event cl of putting x in a 

quantity of water occurs then el is the inception of a dissolving eventuality e involving 

the same x  and quantity of water, which unless something abnormal about e will 

culminate in a state in which x  is dissolved.]

[39] Warren D. S. and Friedman J. Using Semantics in Non-Context-Free Parsing of 

Montague Grammar. American Journal of Computational Linguistics Vol 8, N 3-4, pp. 

123-138,(1982)

[According to Warren [1982], a complete, well-defined context in which these questions 

can be considered is provided by Montague grammar with its fully formalized syntax and 

semantics. [Warren, 1982] describes how to reduce the combinatorial explosion of 

syntactic ambiguity by using semantics during parsing in Montague grammar. ]

[40] Yonezaki N. and Enomoto H. Database system based on intensional logic, 

COLING-80", pp. 220-227, (1980)

[According to Yonezaki and Enomoto, Richard Montague’s Intensional Logic (I L), 

which describe semantics of natural language, can be useful to the theory of database in 

designing database systems which handles historical data and provide a formal 

description of database semantics. ]
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