
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2008

An evaluation between Bloom Filter join and PERF join in An evaluation between Bloom Filter join and PERF join in

Distributed Query Processing Distributed Query Processing

Ming Pei
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Pei, Ming, "An evaluation between Bloom Filter join and PERF join in Distributed Query Processing" (2008).
Electronic Theses and Dissertations. 1004.
https://scholar.uwindsor.ca/etd/1004

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1004?utm_source=scholar.uwindsor.ca%2Fetd%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

AN EVALUATION BETWEEN BLOOM

FILTER JOIN AND PERF JOIN IN

DISTRIBUTED QUERY PROCESSING

By

Ming Pei

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2007

© 2007 Ming Pei

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-42276-2
Our file Notre reference
ISBN: 978-0-494-42276-2

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Nowadays, with the explosion of information and the telecommunication era's

coming, more and more huge applications encourage decentralization of data

while accessing data from different sites [HFBOO]. The process of retrieving data

from different sites called Distributed Query Processing. The objective of

distributed query optimization is to find the most cost-effective of executing query

across the network [OV99].

Semijoin [BC81] [BG+81] is known as an effective operator to eliminate the

tuples of a relation which are not contributive to a query. 2-way semijoin [KR87]

is an extended version of semijoin which not only performs forward reduction like

traditional semijoin does, but also provides backward reduction always in cost-

effective way. Bloom Filter[B70] and PERF [LR95] are 2 filter based techniques

which use a bit vector to represent of the original join attributes projection during

the data transmission. Compare with generating a bit array with hash function in

bloom filter, Pert join is based on the tuples scan order to avoid losing

information caused by hash collision.

In the thesis, we will apply both bloom filter and perf on 2-way semijoin

algorithms to reduce transmission cost of distributed queries. Performance of

propose algorithms will compare against each others and IFS (Initial Feasible

Solution) through amount of experiments.

Keywords:

Distributed Query Processing, Semijoin, Bloom Filter, Perf Join.

- in -

Dedication

To my family

- IV -

Acknowledgements

First I would like to thank my supervisor, Dr. Joan Morrissey, for her academic

advice, for her support and help throughout my master study. She has guided me

in my whole master study, got me interested in the research, and carefully

reviewed each update of the thesis. I would like to express my admiration for her

dedication to teaching and research.

I would also like to thank my external reader, Dr. Yuntong Wang, my internal

Reader, Dr. Jianguo Lu, and my thesis committee chair, Dr. Robert Kent for their

great suggestions and valuable time given to review my thesis.

I would like to thank Dr. Liwu Li, for his guidance. His sudden and unexpected

death was a shock to everyone. He is sincerely missed.

I also should give my thanks to my managers and colleagues in my work who

gave me lots of encouragement during my thesis composition period.

- v -

Table of Content
Abstract iii

Dedication iv

Acknowledgements v

Table of Content vi

List of Figures viii

Chapter 1 Introduction ...1

Chapter 2 Background Review 4

2.1 Definition and Notation 4

2.2 Cost Model 4

2.3 Join Operation 5

2.4Semijoin Operation 6

2.4.1 The SDD-1 Query-Processing Algorithm 8

2.4.2 The General Algorithm (AHY) 9

2.5 DQP strategies based on semijoin 11

2.5.1 2-way semijoin 11

2.5.2 Composite Semijoin 13

2.5.3 Domain-Specific Semijoin 14

2.5.4 Bloom Filter join (Hash Semijoin) 15

2.5.5 PERF Join 17

Chapter 3 Implementation of Algorithms 20

3.1 Assumption 20

3.2 Algorithms Description ...21

3.2.1 Algorithm Bloom Filter 21

3.2.2 Algorithm PERF 23

3.2.3 Example of Proposed Algorithms 24

Chapter 4 Experiment and Evaluation 29

4.1 Methodology 29

4.2 Test Query and Platform 30

4.2.1 Test Query (query generator) 30

4.2.2 Platform Implementation 32

- vi -

4.3 Result Evaluation 35

4.3.1 Effects of the Selectivity Level 39

4.3.2 Effects of the Number of Relations 42

4.3.3 Effects of the Number of Attributes 43

4.3.4 Effects of the Domain Size 44

4.4 Evaluation and Discussion 45

Chapter 5 Conclusion and Future work 47

5.1 Conclusion 47

5.2 Future Work 48

Appendix: Testing Environment 50

Bibliography 51

Vita Auctoris 59

- vn -

List of Figures

Figure 1: Example of Join , 6

Figure 2: Example of IFS vs. Semijoin 8

Figure 3: 2-way semijoin 12

Figure 4: hash semijoin 16

Figure 5: Example of PERF 18

Figure 6: Example of PERF 18

Figure 7: Table of a Query 25

Figure 8: Example XML of a Query 32

Figure 9: Hierarchy of classes 33

Figure 10: Experiment Result of Algorithm IFS, BF and PERF 35

Figure 11: Transmission Cost Comparison of IFS, BF and PERF 36

Figure 12: Reduction Rate Comparison between BF and PERF 37

Figure 13: Reduction Rate of PERF over BF 38

Figure 14: Reduction Rate with High Selectivity Level (0) 39

Figure 15: Reduction Rate with Medium Selectivity Level (1) 40

Figure 16: Reduction Rate with Low Selectivity Level (2) 41

Figure 17: Reduction Rate with Different Relation 42

Figure 18: Reduction Rate with Different Attribute 43

Figure 19: Reduction Rate with Different Domain Size 44

- viii -

Chapter 1 Introduction

Database system once was built centralized to meet the needs of structured

information. The increasing demand for efficient means of accessing data

coupled with the need to manage increasingly large volumes of data has made

distributed relational databases critically important in modern IT systems.

Distributed relational database was brought into reality to achieve the

advantages of performance, reliability, availability, and modularity.

A distributed database system is defined as a network which consists of

processors (nodes) located dispersedly but interconnected to each other via

communication channels [V02]. Distributed database is stored on several

computers and each site varies in size and complexity. The sites connect to each

other via network but self-maintained locally. An essential feature of distributed

database is to allow users to access the data at the same time from

geographically disperse locations and to retrieve target data set by means of

queries.

Distributed Query Processing is the procedure that retrieves data from different

sites [AHY83] [HF01]. To run a query in a distributed database, each site

processes the query and returns the results to the final query site as an answer.

Thus, query optimization becomes a major issue of distributed query processing.

The objective is to find the most cost-effective way to execute query over the

network. Typically, a given distributed query is processed in three phases as

shown in [RK91] [KR87] [TC92] [BRP92] [BRJ87] [CL84]:

-1 -

(1) Local processing phase: Selections and projections are performed at local

nodes on the joining and target attribute.

(2) Reduction phase: A sequence of semijoins is used to reduce the size of a

relation cost-effectively, with a result of a decrease cost of data transmission.

(3) Final query processing phase: at query site, the final query will be

performed after all relations involved in the query are transmitted to this site.

Due to the local processing costs are negligible by comparing with the

communication costs of data transmission. The principal challenge is to design

and develop efficient query processing strategies to minimize the communication

cost focus on the phase (2) and (3). Semijoin, who acts as powerful size reducer

in phase 2, only transfers parts of relations during the distributed query

processing against sending the whole relation as join does. Lots of heuristic

algorithms are proposed based on semijoin.

As an extended version of semijoin, 2-way semijoin [KR87] not only performs

forward reduction as the traditional semijoin operator does, but also provides

backward reduction in an always cost-effective way. By using a bit array to

represent the join attribute projection, filter technology can achieve the same

result as a semijoin but at much lower cost. Two filter-based techniques which

are bloom-filter join (Hash Semijoin) [TC92] and perf (Partially Encoded Record

Filter) join [LR95] will be discussed in detail afterward. Bloom-filter uses a search

filter which is generated with hash function to represent the semijoin projection,

while perf join minimize the cost of backward reduction in 2-way semijoin by

sending a scan ordered bit array. They have similar storage and transmission

efficiency. However, with bloom-filter, semijoin may encounter losing join

information as a result of hash collusion. Regardless of existing weakness, these

2 kinds of techniques are most powerful reducers with significantly cheaper

transmission cost.

- 2 -

In this thesis, two filter based approaches will be implemented by applying Bloom

Filter and PERF into a 2-way semijoin based algorithm. We will evaluate the

reduction effect between two algorithms and IFS strategy by amount of

experiments. The rest of thesis is organized as follows: Chapter 2 reviews the

back ground of query optimization, several operators and core algorithms are

presented; Chapter 3 does description of bloom-filter and perf join algorithm

respectively; Chapter 4 evaluates the performance of two algorithms by

experiments; In Chapter 5, we make final conclusion and future work.

- 3 -

Chapter 2 Background Review

2.1 Definition and Notation

In query processing, we need use the following notation and definition to

construct and describe a query strategy:

Projection: The projection of relation R on a set of attributes A is denoted by

R[A]. It is obtained by discarding all columns of relation R that are not in A and

eliminating duplicated rows if necessary.

Selection: The selection of these tuples whose A-attribute values equal to a

specified constant in relation R is denoted by R.A=constant (operators other than

"=" e.g., > and * are also allowed)

Benefit: the data reduced by semijoin,

Net benefit: the value of benefit minus cost, if the net benefit is greater than 0,

we call it is a cost-effective.

Schedule: the cost of data transmission used for reducing an involved relation

and the transmission of the reduced relation to the query computer

2.2 Cost Model

In distributed query processing, query optimizer considers all the possible ways

to execute a query and decides on the most efficient way based on the cost.

Cost-based query processing assigns an estimated "cost" to each possible query

plan, and chooses the plan with the smallest cost. Costs are used to estimate the

runtime cost of evaluating the query. Total time and response time are two cost

models used to measure the query execution plan. The total time cost model is

the sum of the every single operation happened during the query processing;

while the response time model is the elapsed time from the query initiation to the

it's end. [AHY83]

- 4 -

The execution cost of a query involves both I/O and CPU spending for local

processing at each participating site and communication cost between the

networks. It is so happened that network transmission cost is relatively more

significant comparing to local processing time. To simplify the problem, typically,.

local processing is considered negligible and transmission cost is stressed as the

major concern. Data transmission cost from one site to another can be

represented as a linear function:

CT = Tmrg + Ttr

Tmrg is the fixed time for initialization, while Ttr is the time of data transmitted from

one site to another.

2.3 Join Operation

Join, one of the essential operations, retrieves data from different site and

relations. It is a common yet highly time-consuming query operation. As shown in

Figure 1, given relation R-i and relation R2 on attribute A, a join of Ri and R2 is

denoted as Ri.A= R2.A [YC84], where R1 and R2 are joining relations and A is the

joining attribute. Join is obtained by concatenating each row of R1 with each row

of R2 wherever the A-attribute values of the 2 rows are equal. Typically, in

distributed system, it is very likely that the two relationships are not in the same

site. In that case, sequence of operations will be applied to optimize queries.

Usually the comparatively smaller sized relation will be transferred to remote site

for join operation.

- 5 -

Join

Rj

A

2

9

7

5

C

f

e

g
c

A

2

B

c

C

f

A

1

1

2

B

a

b

c

Figure 1: Example of Join

However, some problems may rise during this processing. One is that result

relation can be greater than total participating relations and therefore actually

increase the cost instead of reducing it. Another problem is that network

resources are largely wasted by transmission of an entire relation, while only a

small percentage of tuples are required.

2.4 Semijoin Operation

As discussed in the previous chapter, some problems exist in join operator.

Therefore, the theory of semijoin is introduced in late seventies. One of the

objects of semijoin is to reduce inter-site communication cost. As a relation

algebraic operation, semijoin selects a set of tuples in one relation that match

one or more tuples of another relation on the joining domains in [BC81-1J.

A semijoin from relation R<\ to relation R2 on attribute A is denoted by Ri~A->R2,

where R1 is the sending relation, R2 is the reduced relation, and A is the joining

attribute. It obtained by shipping Ri[A] which is the projection over attribute A of

R1 to the site where R2 resides, then make join with R^A] and R2.

Here in the following instance, a semijoin from relation Rj to Rj on attribute A is

denoted as Rj - A—>Rj. Relation Rj and Rj resides on different sites respectively.

- 6 -

The result of this semijoin is the projection on the attributes of R of the join of Rj

and Rj. There are 2 steps during one semijoin operation:

(1) Send Rj[A] from site Ri to Rj

(2) Reduce Rj by eliminating tuples whose attribute A are not matching any

value in Rj [A].

The cost of this semijoin is the size of projection which we denote as s(Rj[A]); the

benefit is s(Rj) - s(Rj') (suppose this semijoin reduces Rj to Rj'). If a semijoin has

benefit exceeding the cost we say it is a cost-effective semijoin.

To impress that semijoin operator acts as a size reducer in distributed query

processing. We compare its efficiency with IFS (Initial Feasible Solution). IFS is

defined as, for a given query, all the relations involved in the query from different

site are retrieved and directly shipped to the query site where the join will be

executed. As a basic and simple query processing, IFS will also be use to

compare against the 2 proposed algorithms in the later section. The a) and b) of

figure 1 shows the cost comparison between semijoin and IFS. We can save 6

units cost during the transmission by replacing the IFS with semijoin.

- 7 -

IFS Semijoin

Ri

A

1

1

2

3

8

B

a

b

c

a

e

Ship 10

A

2

9

7

5

7

6

C

f

e

g
c

V

X

Ri

A

1

1

2

3

8

B

a

b

c

a

e

Ri[A]

A

1

2

3

8

c

^ v Ship 10 >

3hip4

Rf
2 f «

Rj

A

2

9

7

5

7

6

C

f

e

9

c

V

X

Ship 2

Cost = 22
Query
Site Cost =16

Figure 2: Example of IFS vs. Semijoin

AHY [AHY83] and SDD-1 [BC81] are two important algorithms base on semijoin.

Both of them are under the assumption that at least one copy of each relation

participated in the query has been chosen, then involved the reduction and

assembled to the final query site.

2.4.1 The SDD-1 Query-Processing Algorithm

Algorithm SDD-1 [BC81] is the first technique based on semijoin in distributed

query processing. Under the assumption of the network bandwidth being the

bottleneck, the object of SDD1 Algorithm is to process the queries with a cost of

inter-site data transfer as minimized as possible.

Three essential phases are involved in SDD-1 processing:

The first phase: Translate an adjective language query Q into a relational

calculus form, known as an envelope, which can specify a data set as the result

toQ.

- 8 -

The second phase: Construct relational operations called reducer P and select a

site S so that the cost of compiling P and transferring results to S is the minimum

between all reducers and sites. The major issue of this phase is using a greedy

optimization algorithm to derive the sequence of semijoins that will retrieve the

set of data needed for the query.

The third phase: Finish the local processing of Q from phase 2 at Site S. The

execution in this phase uses the data from the 2nd phase and only involves local

computing, therefore not discussed further in this section.

Although SDD-1 is an optimization algorithm, it still has few drawbacks and

limitations. Because the selecting semijoins maximize immediate gain due to

SDD-1 only pick up local optimal strategies. It will ignore the higher-cost semijoin

which would result in increasing the benefits and decreasing the costs of other

semijoins at each step of the strategy. Therefore, this algorithm may not be able

to select the global minimum cost solution.

2.4.2 The General Algorithm (AHY)

In 1983, Apers, Hevner and Yao devised Algorithm General (Algorithm AHY)

[AHY83] by improving Algorithm Serial and Parallel to deal with general query in

distributed database. They figured out that it is cheaper to complete final join

after relations are reduced by semijoin. They identified optimization objectives as

the minimization of either response time or total execution time.

Algorithm General are constructed by following 4 phases

1) Local processing using selection and projection

2) Generate candidate relation schedules, consider each of a join attributes a

simple query

a) Compute minimal response time for each join attribute by applying

algorithm Parallel to each simple query.

b) Compute minimal total time by applying algorithm Serial to each

schedule.

- 9 -

3) Integrate the candidate schedules by doing procedures Response, Total and

Collective.

4) Remove schedule redundancies, if necessary

There are three versions of procedures for Algorithm General. Procedure

Response is used to reduce response time, while Procedure Total and Collective

are used to minimize the total time.

A. Procedure Response

1) Candidate Schedule Generating and Ordering: For each relation Rj, generate

candidate schedules on joining attribute dy, j = 1, 2, ..., a. Sort these

candidate schedules in ascending order of arrival time.

2) Schedule Integration; For each candidate schedule in ascending order,

construct an integrated schedule for Ri that consists of the parallel

transmission of candidate schedule, and select the integrated schedule with

minimum response time.

B. Procedure Total

1) Generating Candidate Schedules: For each schedule containing a

transmission of a join attribute dy, add another candidate schedule to

minimize the total time:

2) Select the best candidate schedule: Select BESTy with minimal total time of

transmitting relation R.

3) Order the candidate schedule: BESTy on joining attribute dy, j=1, 2, ... , a, so

that ARTn + C (S! * SLTn) < ... <ARTia+ C (si * SLTia), SLTy defines the

accumulated attribute selectivity of the BESTy into R.

4) Integrate Schedules: Upon each candidate schedule BESTij; j=1, 2, ..., a, an

integrated schedule will be formed for relation R. Select the integrated

schedule that results in the minimum total time value.

- 1 0 -

C. Procedure Collective

Because procedure Total does not consider the existence of redundant data

transmissions in generating all candidate schedules, algorithm General may not

be optimal. Procedure Collective is used to remove the most costly data

transmissions.

Algorithm AHY (General) is an efficient algorithm which derives close to optimal

query processing strategy. It can be applied to any general distributed query

environment.

2.5 DQP strategies based on semijoin

To minimize the transmission overhead in most cost-effective way, researchers

derives lots of algorithms and techniques based on semijoin to deal with variant

circumstance. The following section will introduce some of them.

2.5.1 2-way semijoin

Kang and Roussopoulos proposed an extended version of semijoin which called

2-way semijoin [KR87]. A 2-way semijoin between 2 relations Rj and Rj over a

attribute A can be denoted as t: R<-A->Rj, or {s : R-A->Rj, sr
: Rj-A->R}. This

extended semijoin is used to reduce the size of both relations Rj and Rj for the

final processing in 2 directions:

Forward processing s: relation R is first projected on join attribute (ay), noted

as R |A|, and is sent to Rjto reduce the size of Rj by eliminating tuples whose

attribute does not match to Rj |A|.

Backward processing sr: During the forward process, R |A| is divided into R

|A|m and R |A|nm- R |A|m is a set of values in R |A| that have match in Rj |A| and

R |A|nm is R |A|- R |A|m. R |A|m or R |A|nm. whichever is less, will be sent back to

R to reduce its size.

-11 -

The cost of a 2-way semijoin is not as simple as C(s) + C(sr). In most cases, the

cost shall be computed as s(R[A]) + s*min[Ri[A], Ri[A]nm]. C(s) + C(sr) is valid

only if sr is delayed until s is finished, because then Rj'[A] = R[A]m. And the

benefit of a 2-way semijoin is the sum of benefits of s and s r : [s(Rj) - s(R|')] +

[s(Rj) - s(Rj')]. Figure 2 shows how the 2-way semijoin works.

2-Way Semijoin

Ri

A

1

1

2

3

8
\

B

a

b

c

a

e

\ *

2

J

c

Ri[A]

Ship 4 A__5

9 e

LA
5 ĉ

6 x

Rr y

Cost = 9

Figure 3: 2-way semijoin

It is known that an extended semijoin shall replace the tradition semijoin if it is

proved more cost effective. Comparisons of reduction power effects between 2-

way semijoin and traditional semijoin is given in [KR87].

When a 2-way semijoin reduce Relation Rto Ri', Cost of this 2-way semijoin for

relation R, is Ctw= w*sy * min[Rj |A|m, R |A|nm]; Benefit of this 2-way semijoin for

relation R is Btw = w*(|R|- |R|'|). It is observed that w > w*Sij and (|R|- |R'|) >

min[R |A|m, R |A|nm], therefore, net value of this 2-way semijoin Dtw = Btw - Qw ^

0. A semijoin Rj-A^Rj is cost effective, while the 2 way semijoin Ri*-A->Rj is cost

- 1 2 -

effective as well. It is concluded that 2-way semijoin is always cost-effective no

matter whether only one or none can be reduced cost-effectively using traditional

semijoin.

Based on the study on 2-way semijoin, they developed a new join algorithm for

the purpose of reducing I/O cost, a n-way pipeline algorithm. [RK91] The main

goal of this pipeline algorithm is to eliminate the needs of shipping, storing, and

retrieving foreign relations and(or) intermediate results on the local disks of the

query site during the processing of a join, even an N-way join.

2.5.2 Composite Semijoin

Composite semijoin was proposed to deal with situations where multiple columns

are involved in projection and transmission [PC90]. Typically a processing

algorithm will generate numerous semijoins preformed with common source and

common destination sites. However, in a situation like this, it may be of more

assistance to perform semijoins as one composite against as several single sites.

The authors demonstrate the possible enhancement of two classic semijoin

algorithms applying composite semijoin. One is variations on Algorithm General

response-time version [AHY83], using selectivity as major estimation scheme.

The other is variations on Algorithm W, using "worst case elimination" as the

measurement of attribute size after semijoin. Experimental results reveal that

composite semijoin typically will be more beneficial against common semijoin up

to 24%.

Composite semijoin is not always a superior strategy. Sometimes it may produce

higher response time. Hypothetically, composite semijoin results at least as good

performance if not better. This is more likely to be true if composite semijoin is

replacing a parallel semijoin not a serial one. Therefore it is safe to say that it is a

better approach combining semijoin and composite semijoin.

- 1 3 -

2.5.3 Domain-Specific Semijoin

In the distribute database system, many query optimization algorithms proposed

for fragmented databases apply semijoins to reduce the size of the fragments of

joining relations, then send the resulting to the final processing site. While the

traditional semijoin can not process 2 fragments due to it may eliminate tuples

before they are compared with all tuples of other joining relations. Chen and Li

devise a new semijoin operator named domain-special semijoin which can be

performed in a fragment-to-fragment manner [CL90]. It exploits the semantic

information associated with the joining fragmented relations and provides more

flexibility. As a query strategy we often use both domain-specific semijoins and

semijoins. They work together can guarantee the reduction effect at least as

good as the best way with only semijoin reduction.

We define the domain-specific semijoin as follows:

Rik (A = B] Rjm = { r| rDRi; r.ADRjm [B]D(Dom[Ri.B]-Dom[Rjm.B])}

Where A,B are the joining attributes, Rik and Rjm are two fragments of the joining

relations Ri and Rj respectively. Compare with running semijoin in the

horizontally partitioned database from the fig listed blow:

To estimate the size of intermediate query processing result, let Rik' be RJK (A = B]

Rjm. According to the definition of domain-specific semijoin, the number of tuples

reduced by Rjk (A = B] Rjrn is given by:

|Rik| -1 Rik'| = |Rik| (| Dom[Rik.A]nDom[Rjm.B] | / |Dom[Rik.A]|)(1 - (| Rjm [B]| /1

Dom[Rjm.B] |)).

The benefit of Rik (A = B] Rjm is Ctran(|Rik| -1 Rik'|)w(Ri), where is the unit

transmission cost and w(Ri) is the width of Ri.

The cost of Rik (A = B] R jm is (Ctran|Rim[B]|) w(Rj.B) .

With the estimation we can perform domain-specific semijoin with fragmented

relations by following steps:

- 14-

(1) Calculate its estimated benefit and cost according to the formulas

presented in the previous section.

(2) If it is found to be profitable, include it in the current query-processing

strategy; otherwise, ignore it.

(3) Update the related information in the database profile according to the

suggested formulas in the previous section if the domain-specific semijoin

is included in the current strategy.

Because domain-specific semijoin operation not only takes advantage of

fragmentation design but also avoid unnecessary processing. We can get that for

a given query, there is always a strategy using both domain-specific semijoins

and semijoins in the fragment -fragment manner. It is at least as good as the

best strategy than using semijoin reductions only.

2.5.4 Bloom Filter join (Hash Semijoin)

Tseng and Chen introduce hash semijoin as a cost saving semijoin operator in

[TC92].

In a hash semijoin, also called bloom filter join, a search filter, which can be

viewed as an array of bits, is transmitted between relations instead of the

semijoins' projection. Initially, all bits in the array are set to 0. d hash functions

hash each value in the projection into d bit addresses, setting each of the d bits

to 1. Same hash function applied to the values of join attributes in apprentice

relation Rj and generate another sequence of bit addresses. If all these d bits are

1 in the array, tuples in Rj containing this value will be selected as a semijoin

result. Rj <x R| is denoted as a hash-semijoin of Rj and Rj. Based on the

assumption, for a specific F, the size of the bit array, the search filter is optimal

when the bit array is half full of 1 bits, F = (d/ln2)|R,|.

However, the array of the bits may not be an accurate semijoin results, because

information may lose in representing a value with bits. If a bit is set to 1, it is

- 1 5 -

either the attribute actually presented or a different attribute falsely dropped due

to a collision. The possibility that a value is falsely accepted by the search filter is

known as a false drop, f, and the false drop probability is f = (1/2)d. Then the net

benefit of the hash semijoin is BHy = (1-Sy-f)Wj|Rj| - (d/ln2)|Ri|. A hash semijoin

program shall replace a tradition semijoin program if BHy- BTy- fCj >0, as it is

more cost-effective. Figure 3 shows how the hash semijoin works.

Bloom Filter Join

Ri R,[A] BF(R[A])

Query
Site

Ship 4

Cost = 14+8bits

Ri

A

1

1

2

3

8

B

a

b

c

a

e

1

2

3

8

Hash

^ \ S h i p 10

1

1

1

0

0

0

1

Ship 8 bits A

2

9

7

5

7

6

C

f

e

g
c

V

X

eA
False Drop

Figure 4: hash semijoin

Tseng and Chen's define that a semijoin program is more cost-effective if its

summation of the potential costs of all the semijoins contained is less. The

potential cost of a semijoin operation is defined as the total of the cost of

executing the semijoin operation and the cost of transmitting the result of the

semijoin operation. Upon such assumption, a backward replacement algorithm,

to replace traditional semijoin with hash semijoin, therefore is formed. The

replacement algorithm works backward through the execution tree of a

- 1 6 -

distributed query, from the leave nodes to the root node. The mechanism of this

algorithm works as follows:

Step 1: Identify nodes in the execution tree, sort and mark a node by its level

Step 2: Let the lowest node be Rj, the direct predecessor of this node be Rj,

Ri-A^Rj.

Step 3: If Rj ? nil, replace the traditional semijoin between Rj and Rj with a hash

semijoin if CTy - CHy- fQ > 0 and accumulate CHy and (sy + f)Cj to the potential

cost of Rj, otherwise accumulate CTy and SyCj

Step 4: Apply step 3 to next lowest node and end the process at the highest level.

This algorithm assumes that the semijoin program contains only traditional

semijoins, which is represented by an execution tree with each node having only

one direct predecessor.

Dr. Morrissey and her colleagues find that the combination of semijoins and

hash-semijoin [M099] can make better performance than use semijoin only.

They also improve that the collision caused by hash function in the filter does not

have a huge impact on the performance even the collision rate at 50% [MOL00].

2.5.5 PERF Join

PERF join is a novel 2-way join presented by Li and Ross [LR95]. It is designed

to minimize the transmission cost during the backward phase of 2-way join.

The acronym of PERF is "Positionally Encoded Record Filters". It is based on

physically tuple scan order fashion. Suppose there is a join between 2 relations R

and S. the PERF is a bit vector with number of n bit (n = cardinality of relation R)

which is used to represent the join information of relation S. The jth bit of the

vector will set to 1 only if the jth tuple of R appears in the join result. The

following figure shows the PERF for Relation R over the join with S.

- 1 7 -

R

A

B

C

D

E

F

1

2

3

4

5

6

PERF(R)

1

0

0

0

s
3

5

9

8

7

1

a

d

c

r

t

s

Figure 5: Example of PERF

The basic idea of PERF join is mainly based on the 2-way semijoin. In 2-way

semijoin, join attribute is projected on relation Rj, and is sent to Rj to reduce the

size of Rj. During the process, Rj |A|m or Rj |A|nm, which is less, will be sent back

to R to reduce its size. Instead of transmitting Rj |A|m or Rj |A|nm back to relation

Ri, PERF join sends a bit vector that contains one bit for every tuple in R, |A|.

Figure 4 the principle of PERF join.

%

A

1

1

2

3

8

B

a

b

c

a

e

\

PERF Join

Ri[A]

1

2

3

8

<.

VV
2 c Ship 2

Ship 4

Ship 4 bits

0

1

0

0

PhRKKilAD

Ri'
^ Ship 2

•""""̂ Query ^
s*. Site ^ S ^

Cost = 8+4bits

2 f

Rj

A

2

9

7

5

7

6

C

f

e

g

c

V

X

X

Figure 6: Example of PERF

- 1 8 -

It is known that PERF bit vector is significantly smaller in size than the 2-way

semijoin result Rj |A|m or Rj |A|nm> and at least has the same storage and

transmission efficiency as a hash filter. Moreover, PERF is based on the tuple

scan order, the order of bits in the bits vector which is the same tuple order of R\

|A| that Rj initially sent. Therefore, the PERF join does not suffer any loss of join

information incurred by hash collision. Another observation is that PERF join is

generated after applying a real join, it shall carry complete join information and is

thereby able to handle more complicated and inequality join queries, such as

cyclic join queries.

- 1 9 -

Chapter 3 Implementation of Algorithms

In this chapter, we present perf join and bloom filter algorithms based on 2 way

semijoin algorithm [535N] [Y2005] by replacing the join attributes projection with

perf and bloom filter respectively.

3.1 Assumption

The algorithms we proposed are based on the following assumptions.

1) We assume the relational data in the Distributed Database Management

System has no fragmentation or replication.

2) Only select-project-join (SPJ) query is considered. There is no set

operations like UNION, INTERSECTION, PRODCT, and DIFFERENCE

involved in the research.

3) A query consists of a number of relations, each of them residence at

different site, and the result made available at the query site. Each relation

can have a number of join attributes

4) We assume the cost model is C(X) = C0 + X, where Co = 0 for simplicity. X

is the amount of data transmitted.

5) We assume that we have a perfect hash function which the filter size is

the same as the domain size.

6) When a semijoin operation occurred between 2 relations. Only the

currently involved join attributed size will be reduced while other attributes

properties will has no change.

-20-

3.2 Algorithms Description

The basic idea of our proposed algorithm is use bloom filter and perf filter to

instead of the original semijoin projection during the procedure of data

transmission.

3.2.1 Algorithm Bloom Filter

In this algorithm, we will apply bloom filter both in forward reduction phase and

backward reduction phase. In the forward reduction phase, we construct the

bloom filter for join attribute projection. While in the backward reduction phase,

we need to build a bloom filter for the join match set. The detail steps of the

algorithm are listed below.

Steps of Algorithm BF:

1. Arrange all relations by size in ascending order such that S(R|) < S(Rj) <

S(Rk)<...<Rm.

2. For each joining attribute, we get a list of relations which contain this

attribute by the order of stepl.

3. Generate an execution schedule R -> Rj -> Rk...Rm • • • Rk ~>Rj ~> Ri for each

of joining attribute. Rj -> Rj -> Rk...-> Rm is forward reduction while Rm..->

Rk ->Rj -> R we call backward reduction.

4. Start to execute schedules. The schedule with the smallest first projection

size will be executed first.

5. For each predicate between the 2 relations in forward reduction phase of

the schedule. We generate the bloom filter which has the same bit number

with domain size base on our assumption. If the bloom filter size is smaller

than projection size and net benefit is greater than 0, we execute this

- 2 1 -

bloom filter join by sending the bloom filter form Rj to Rj. Otherwise we

ignore it and execute the bloom filter join between next 2 relations over the

join attribute. For example, if the net benefit of R-> Rj < 0 or BF(R[A]) >

|Ri[A]|, we ignore this and execute Rj -> Rk

6. Once a semijoin has been done in forward reduction phase. We need to

record it in an arraylist which we called semijoin list. And also keep the join

match set and non match set in a data structure.

7. Start backward reduction follow the schedule. For relation Rj, R over join

attribute A, if it exists in the in bloom filter execution list, it means the

bloom filter join from Rj to Rj on attribute A has been done already in the

forward reduction phase, thus, we could find out the match set (mset) or

non match set (nm_set) for R,[A] of relation Rj and generate another bloom

filter for either match set or none match set due to both of them will have

the same size in bloom filter. Compare the size of bloom filter for the

match set and min {mset, nmset}. send the smaller one back to R to

reduce R. The transmission cost is the size of the smaller one which has

been sent. If there is no record of relation Rj, R over join attribute in the

executed bloom filter join list which means there was no bloom filter join

executed from R to Rj on attribute A. so we need to consider to do the

bloom filter by the term of net benefit >0 and also the bloom filter size is

smaller than projection size.

8. Repeat steps 4,5,6,7 till all of schedules have been processed.

9. Output the transmission cost which is the sum of every reduced relation

size plus the transmission cost in every single schedules.

-22-

3.2.2 Algorithm PERF

Compare with 2-way Semijoin, PERF join is has better performance if and only if

1<W (A) * min (p(R), 1- p(R)). It means that PERF join can not exceed 2-way

semijoin all the time. There still exists chance for 2-way semijoin could have less

transmission cost than PERF join when min (p(R), 1- p(R)) is very low. To make

better efficiency, we apply one of them which have lower cost into the back

reduction phase of 2-way semijoin algorithm. Therefore the new algorithm could

perform at least as the old one. The core of this algorithm is based on Algorithm

UPSJ [Yang05]. The detail steps of the algorithm are listed below.

Steps of Algorithm PERF:

1. Arrange all relations by size in ascending order such that S(Rj) ^ S(Rj) <

S(Rk)<...<Rm.

2. For each joining attribute, we get a list of relations which contain this

attribute follow the order from step 1.

3. Generate an execution schedule Rj -> Rj -> Rk.. .Rm- • Rk ~^Rj ~> Ri for each

of joining attribute. Rj -> Rj -> Rk...-> Rm is forward reduction while Rm.. .->

Rk ->Rj -> R, is backward reduction.

4. Start to execute schedules. The schedule with the smallest first projection

size will be executed first.

5. For each predicate between the 2 relations in forward reduction phase of

the schedule, only execute the semijoin by the term if the net benefit is

greater than 0. Otherwise execute the next predicate. For example, if the

net benefit of Rj-> Rj ^ 0, we ignore this and execute Rj -> Rk

-23-

6. Once a semijoin has been done in forward reduction phase. We need to

record it in an arraylist which we called semijoin list. And also keep the join

match set and non match set in a data structure.

7. Start backward reduction follow the schedule. For a semijoin between

relation Rj, R\ over join attribute A, if it exists in the semijoin list, it means

the semijoin from Ri to Rj on attribute A has been done already during the

forward reduction phase. Thus, we could generate the bit vector PERF(Rj)

for the projection of Ri[A]. while we could also find out the match set(mset)

and non match set(nm_set) for R[A] of relation Rj. compare the size of

PERF(Rj) and min(m_set, nm_set), send the smaller one back to Ri to

reduce Rj. The transmission cost is the size of the smaller one which has

been sent. If the semijoin between relation Rj, Rj over join attribute A does

not exist in the executed semijoin list which means there was no semijoin

happened from Rj to Rj on attribute A. so we need to consider to do the

semijoin or not by the term of net benefit >0. If net benefit > 0, we do this

semijoin, the cost is |Rj [A]| * width of A. otherwise we leave 2 relations

without executing semijoin.

8. Repeat steps 4,5,6,7 till all of schedules have been processed.

9. Output the transmission cost which is the sum of every reduced relation

size plus the transmission cost in every single schedules.

3.2.3 Example of Proposed Algorithms

The following example will show how the algorithm Pert join and Bloom Filter join

work. Suppose we have a query "List the P#, PNAME and total quantity for all

parts that are current on order from suppliers who supply that part to jobs." In this

query, there are two joining attribute which are P# and S#. Assume that each

relation is located at different network node. After the local processing, the query

can be represented as the SQL listed below:

-24-

"select * from PARTS, ORDER, SPJ where PARTS.P#=ON-ORDER.P#=SPJ.P#

and ON-ORDER.S#=SPJ.S#."

We can use figure7 which is listed above to represents the query data. In the

table, the size of relation is denoted as Si, the selectivity and the size for each

individual are represented by by and py. We set join attribute domain size for the

P# is 1000 while domain size for the S# is 500 here.

Relation

R1:On-Order

R2:S-P-J

R3: Parts

Size

Si

1000

2000

3000

P#

bn

400

400

900

Pn

0.4

0.4

0.9

S#

bi2

100

450

-

Pi2

0.2

0.9

-

Figure 7: Table of a Query

Example of Algorithm BF

Stepl: There are 2 joining attributes in the query, for each joining attribute, get a

list of the relations which have that attribute.

P#: Ri, R2, R3

S#: Ri, R2

Step2: Order the relations by ascending size.

R-i < R2 < R3

Step3: Construct execution schedule for each join attribute.

P#: R 1 ^R 2 ^R 3 ^R 2 ^R 1

S#: R ^ R z ^ R ,

We separate each of schedules to two phase which are forward reduction phase

and backward reduction phase. For example, in schedule of P#, Ri->R2->R3 is

forward reduction phase while R3->R2->Ri is backward reduction phase.

- 2 5 -

Step4: Order the schedules by ascending size of join attribute projection of the

first relation of each schedule.

S#: R-|->R2^Ri Ri[S#] = 100

P#: R1^R2-»R3^R2^Ri R1[P#] = 400

Step5: Start to execute the schedule for S#: Ri->R2~>Ri.

1) Execute the forward reduction phase R^R 2 :

We need to decide the bloom filter join form R1 to R2 over attribute S#

should be executed or not. The BF(R1 [S#]) = domain size/8 =500/8= 63

bytes which is smaller than the projection size of S#. The benefit is 1600

which derived by size of R2*(1- p (Ri [S#])). The Net Benefit = Benefit -

Cost=1600-63>0, so we need to do this bloom filter join. After execute this

bloom filter join, Relation R2 has been reduced to R2' with the size 400

derived from 2000 * 0.2. The attribute size and selectivity of joining

attribute has been updated to 90, and 0.18 respectively. We record this

bloom filter join in the bloom filter join list.

2) Execute the backward reduction phase R2->Ri:

First we search the bloom filter join list to see the bloom filter join between

Ri and R2 over the attribute S# exists or not. In this case, it is in, which

means that the bloom filter join from Ri to R2 has been done. We can

generate bloom filter for the match set, which is also 500/8=63. For here,

because the size of match set m_set= 20(100*0.2) is smaller, Then we

just need to send the match set back to the relation Ri. And the relation Ri

will be reduced to Ri' with the size 180.

After that, there is no more relation to be considered in the schedule S#. The

transmission cost of schedule S# is 63+20 bytes, the size of relation Ri and R2

has been reduced to 180 and 400 respectively. The execution schedule for S#

has been done.

- 2 6 -

We start to process next schedule for P# with the same process with schedule

S#. Our algorithm keeps running until there are no more schedules left. After that,

all reduced the relations will be sent to the final query site to participate the global

query. The output of our algorithm is sum of all reduced the relations' size plus

each sum of the cost occurred in the every single schedule.

Example of Algorithm PERF:

For the pert join, the process from stepl to step 4 will be same as the Algorithm

BF. It will generate same execution schedules for the query listed below:

S#: R i ^ R 2 ^ R i

P#: R i ^ R 2 ^ R 3 ^ R 2 ^ R i

Step5: Start to execute the schedule for S#: Ri->R2->Ri.

1) Execute the forward reduction phase Ri->R2:

We need to decide the semijoin form Ri to R2 over attribute S# should be

executed or not. The cost is 100. Benefit is 1600 which derived by size of

R2*(1- p (R1[S#]». The Net Benefit = Benef i t - Cost=1600-100=1500>0,

so we need to do this semijoin. After execute this semijoin, Relation R2

has been reduced to R2'. The size of R2' is 400(2000 * 0.2) now. The

attribute size and selectivity of joining attribute has been updated to 90,

0.18 respectively. We record this semijoin in the semijoin list.

2) Execute the backward reduction phase R2->Ri:

First we search the semijoin list to see the semijoin between Ri and R2

over the attribute S# exists or not. In this case, it is in, which means that

the semijoin from Ri to R2 has been done and site R2 already has the join

attribute projection information of Ri[S#]. It can generate PERF (R-i[S#])

which size is |d|/8 = 100/8=13 bytes. The size of match set m_set=20

(100*0.2), and the size of none match set n m s e t = 80. Comparing the

size between PERF (Ri [S#]) and min (m s e t , nmse t) , we find the

smaller one is the PERF (Ri). Then we can do PERF join on back

- 2 7 -

reduction phase. The cost is the size of PERF which is 13 and the relation

R-i will be reduced to R-i' with the size 180.

After that, there is no more relation to be considered in the schedule S#. The cost

of schedule S# is 100+13 bytes, the size of relation Ri and R2 has been reduced

to 180 and 400 respectively.

We start to process next schedule for P# with the same process with schedule

S#. Our algorithm keeps running until there are no more schedules left. After that,

all reduced the relations will be sent to the final query site to participate the global

query. The output of our algorithm is sum of all reduced the relations' size plus

each sum of the cost occurred in the every single schedule.

-28-

Chapter 4 Experiment and Evaluation

To evaluate the actual performance of the proposed algorithms, we carried out

multitudinous experiments based on various scenarios and queries. In this

chapter, we describe our methodology, present detail of our experiments, and

discuss the final result.

4.1 Methodology

The platform for evaluating the proposed algorithms has to achieve the following

objectives.

1. To measure the performance enhancement of Algorithm PERF and

Algorithm BF over the IFS respectively.

2. To compare the performance of Algorithm PERF and Algorithm BF under

a wide variety of distributed queries.

The following formulas are used to calculate the performance enhancement

between the algorithms:

IFS vs. Proposed algorithm:

Cost(IFS)-Cost(Proposed Algorithm)
*100%=Percentage Improved

Cost(IFS)

Algorithm 1 vs. Algorithm 2:

Cost(Algorithm 1)-Cost(Algorithm 2)
*100%=Percentage Improved

Cost(Algorithm 1)

- 2 9 -

From experiment, we need to find out the answers for the following involved

questions.

1. How does the number of the relations in the query affect the performance?

2. How does the number of attributes in the query affect the performance?

3. How does the selectivity of the attributes affect the performance?

4. How does the domain size affect the performance?

4.2 Test Query and Platform

The experiment system involves query generator, proposed algorithms and the

analysis program. Some details will be given later in this section.

4.2.1 Test Query (query generator)

The experiments system takes large amount of queries as input to evaluate

proposed algorithms. The form of a query we have already represented in Figure

8. It contains the following characteristics:

• Number of relations: Each query consists of arbitrary number of relations from

3-6.

• Number of join attributes: Each relation have arbitrary number of join

attributes from 2-4.

• Relation cardinality: the number of tuples or records in a relation. Each

relation in the query has between 500 and 4000 tuples.

• Attributes domain size: the total number of distinct attribute values an

attributed can possible contain. We fix all join attribute domain size to 1000 in

our experiment system.

• Selectivity: the ratio of distinct attribute values out of the number of all

possible values of a join attribute. Suppose the cardinality of the joining

-30-

attribute is |d|, the domain of the d is Dom, p=|d|/Dom (d). Generally, the

selectivity of an attribute is an estimate of the ability of the attribute to reduce

the size of the relations. A joining attribute has high selectivity if the ratio is

low while low ratio denotes the high selectivity. For example, a selectivity of

0.1 is considered high while a selectivity of 0.9 is low.

• Query Type: In our experiment platform, the relations is picked from 3 to 6,

the arbitrary number of joining attributes is form 2-4. Selectivity is divided to 3

level which are high (0.1-0.4), med (0.4-0.7), low (0.7-0.9). We use these 3

factors to name a query type. A type of 6-3-0 represents a query which has 6

relations, 3 joining attributes and the selectivity range of the attribute is from

0.1 to 0.4. With this rule, we will have 36 different kind of queries total. For

each kind of query type, we will generate 10 queries with random data, and

get the average output as final result

We save these kind of information as XML format file. The example fragment of

XML file listed below in Figure 8 denotes one query. 360 pieces of fragment like

this one constructs the input queries file of our propose algorithms.

- 3 1 -

<?xml version='1.0' ?>

<query1 type="3-2-0" domain = "1000">

<relation name="R1" size="1000">

ottribute name="P#" selectivity="0.4" size="400" />

<attribute name="S#" selectivity="0.2" size="100" />

</relation>

<relation name="R2" size="2000">

ottribute name="P#" selectivity="0.4" size="400" />

ottribute name="S#" selectivity="0.1" size="100" />

</relation>

<relation name="R3" size="3000">

ottribute name="P#" selectivity="0.1" size="100" />

</relation>

</query1>

Figure 8: Example XML of a Query

4.2.2 Platform Implementation

The experiment platform is developed with Microsoft C# based on object-oriented

concept. Several classes as show in the following figure are constructed in this

program to represent the data structures used in the algorithm. The hierarchy of

basic class tree is illustrated in Figure 9.

-32-

Class QueryMaker

G
en

er

'

Class Query

' '

Class Algorithms (IFS, PERF, BF)

O
ut

pu
t

•4

Class Database

A
na

ly
si

s

'

Class Result

set

set

Class Schedule

Class Relation

Class Attribute

Class Semijoin

Class
Sorter

Figure 9: Hierarchy of classes.

The descriptions of above classes are as follows:

• Query Maker: for each kind of query type (etc 6-4-0), generate 10

queries' xml nodes. Save all these nodes to one xml file, the detail rule

of this process has been introduced in 4.2.1

• Query: For each query node in the read in xml file, we generate a query.

Each query has an arraylist to save the schedules of the query. The

process of the query generating is also the process of initialization for

schedule, relation, and attribute.

• Schedule: Represent the sequence of the relation execution. Each

schedule instance contains a list of relation ordered by the size of the

-33-

projection of the attribute it refers to. It also has an array list to mark the

semijoin which has been executed by which 2 relations. The cost used to

record how many bytes has been transferred during this schedule.

• Relation: Represent the relation's information like name, size and

contained attributes. Attributes list use to keep the joining attributes

information of this relation.

• Attribute: Represent single joining attribute information in a relation

such as cardinality, name, selectivity and size.

• Sorter: use to sort the size or cost etc....

• Semijoin: represent a semijoin was executed by which 2 relations over

the joining attributed. In the backward reduction phase, we need to

decide whether we should apply the proposed join to the schedule by the

term of checking a semijoin has been done between these 2 relation

during the forward reduction phase or not.

• Algorithms: take a query as input, run it with algorithm IFS, HASH,

PERF respectively, and output is the total cost for each of algorithm. The

total cost is the summation of the transmission total cost and total

reduced relation size.

• Database: once an instance of a single query has been done by the

algorithms. We will insert the query result data into the database.

• Result: use to analysis and display the experiment data.

-34-

4.3 Result Evaluation

After a 10 queries for 36 types of queries as input to our proposed algorithms, we

have the experiment result data listed below:

Type

3-2-0

3-2-1

3-2-2

3-3-0

3-3-1

3-3-2

3-4-0

3-4-1

3-4-2

4-2-0

4-2-1

4-2-2

4-3-0

4-3-1

4-3-2

4-4-0

4-4-1

4-4-2

5-2-0

5-2-1

5-2-2

5-3-0

5-3-1

5-3-2

5-4-0

5-4-1

5-4-2

6-2-0

6-2-1

6-2-2

6-3-0

6-3-1

6-3-2
6-4-0

6-4-1

6-4-2

AVG

F

IFS

3854

7388

7152

5848

8630

12696

9588

15052

12494

7610

9392

10124

10776

13910

13874

15582

14510

18976

11120

11934

13766

13414

14960

17238

14876

16694

24092

11226

14572

17206

13182

20586

21894
16192

27624

26086

14003

igure 10: E

BF

758

2190

4838

834

2518

5762

1132

2800

5446

826

2240

4208

1134

2820

5434

1556

2880

5888

1060

2528

4356

1426

2792

4708

1502

2876

5878

918

2516

4826

1094

3564

5304
1630

4708

5974

3081

ixperimenl

IMP(BF)

80.33%

70.36%

32.35%

85.74%

70.82%

54.62%

88.19%

81.40%

56.41%

89.15%

76.15%

58.44%

89.48%

79.73%

60.83%

90.01%

80.15%

68.97%

90.47%

78.82%

68.36%
89.37%

81.34%

72.69%

89.90%

82.77%

75.60%

91.82%

82.73%

71.95%

91.70%

82.69%

75.77%
89.93%

82.96%

77.10%

78.00%

Result of

PERF

1100

3864

6056

1110

4380

10162

1550

5260

7730

1176

3748

6966

1544

5242

8190

2140

5614

14692

1448

4174

9666

1986

5066

10672

2014

4870

13456

1160

4106

11764

1430

5820

14544
2198

8458

14806

5782

Algorithm

IMP(PERF)

71.46%

47.70%

15.32%

81.02%

49.25%

19.96%

83.83%

65.05%

38.13%

84.55%

60.09%

31.19%

85.67%

62.31%

40.97%

86.27%

61.31%

22.58%

86.98%

65.02%

29.78%

85.19%

66.14%

38.09%

86.46%

70.83%

44.15%

89.67%

71.82%

31.63%

89.15%

71.73%

33.57%
86.43%

69.38%

43.24%

58.71%

FS, BF and F

BF/PERF

45.12%

76.44%

25.18%

33.09%

73.95%

76.36%

36.93%

87.86%
41.94%

42.37%

67.32%

65.54%

36.16%

85.89%

50.72%

37.53%

94.93%

149.52%

36.60%

65.11%

121.90%

39.27%

81.45%

126.68%

34.09%

69.33%

128.92%

26.36%

63.20%

143.76%

30.71%

63.30%

174.21%
34.85%

79.65%

147.84%

87.66%

•ERF

- 3 5 -

Comparison of Transimission Cost

30000

25000

Query Type

Figure 11: Transmission Cost Comparison of IFS, BF and PERF

- 3 6 -

a
(0
c
_o
o
3

•D
0)

a.

Comparison of Reduction Rate

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

• IMP(BF)

• IMP(PERF)

T? <? VN f
\fv c>Jv nS* nT l\

> ^j^^VVV^V^V^ fc'- V V V <D" <CT <D <D

Query Type
<b' <b' <b' <b'

Figure 12: Reduction Rate Comparison between BF and PERF

Figure 11 and 12 show the transmission cost comparison of BF, PERF with IFS

and transmission reduction rate comparison of propose algorithms over the IFS.

Our propose algorithms make greater improvement on performance than IFS.

Algorithm BF exceeds the IFS over 91.82% at most while Algorithm PERF can

make at most 89.67% improvement.

-37-

Recution Rate of BF over PERF

70.00% -i

60.00% -

50.00%
c
E 40.00%
>
| 30.00%
E

20.00%

10.00%

0.00%

•A n, \
J l\

W

' VIu V V I
m

i V
- BF/PERF

I I I I 1 I I I I I I I I I I I I t > '

I I I I I I I I I I I I I I I I I I ^f

c o c o o c o c o - ^ - - < i - - * - > a - i o m i o m i o c o c o < o c D < l -
Query Type

Figure 13: Reduction Rate of PERF over BF

Figure 13 shows the improvement percentage of Algorithm BF over Algorithm

PERF derived by the formula listed in 4.1. As it is showed in the above chart, the

peak values represent the different between 2 algorithms. The larger value the

query type is, the more transmission cost can be reduced than the algorithm

PERF produced. We also noticed that with more join attributes and relations join

into the query, the different of performance between two algorithms produced

almost keep the same level in the low selectivity range. But the algorithm BF

produces perceptible enhanced performance with a higher selectivity.

Conclusion can be driven from the above figures that comparing to IFS, both

algorithm BF and PERF are able to produce a high reduction power over

distributed query transmission cost. The average results for both algorithm shows

that the BF is over-performed than PERF. However, to find out and answer for

the questions we listed in 4.1. We need to do further investigation on other

factors affecting query transmission, such as selectivity, number of relation and

join attributes, domain size etc...

- 3 8 -

4.3.1 Effects of the Selectivity Level

In this scenario, we will find how the cost reduction rate of the proposed

algorithms will be related by selectivity. As we know, selectivity is defined as a

ratio of distinct attribute values over the attribute domain size. As the most

important factor in a distributed query, it can be use to estimate the reduced size

of a join attribute during a semijoin operation. The selectivity range in the query is

between 0.1 and 0.9.

Reduction Rate with Selectivity 0 (0.1 - 0.4)

a>

c

;ti
o

R

ed
uc

100.00% -i

90.00% -

80.00% -

70.00% -

60.00% -

50.00% -

40.00% -

30.00% -

20.00% -
10.00% -

0.00% -I

3-2 3-3 3-4 4-2 4-3 4-4 5-2 5-3 5-4 6-2 6-3 6-4

Query Type

Figure 14: Reduction Rate with High Selectivity Level (0)

Figure 14 illustrates reduction rate comparison with the low selectivity level for

both algorithms. BF improves the reduction rate from a low percentage of 80.3%

to 91.82%, while Algorithm PERF does from 71.5% to 89.7%.

Experimental data shows that, both Algorithm BF and Algorithm PERF show the

great performance in high selectivity level. The more relations and join attribute a

query has, the better reduction rate that both algorithms produce. However, with

the distributed query of high selectivity, the performance of Algorithm BF

outperforms than Algorithm PERF.

- 3 9 -

• IMP(BF)

• IMP(PERF)

Reduction Rate with selectivity 1 (0.4 - 0.7)

90.00% -r

80.00% -

70.00% -
4)
« 60.00%-

| 50.00%-

'"5 40.00%
3

"g 30.00%-

20.00% -
10.00% -

0.00% -

--

- • - •

-

•

1 _L

- -

• ' I 1 •_

1
1 _•..

1

1

1 I 1 -•-

i I 1
i

•

•""

- - " - •

~i -

^B"~

^H '

i

1-

^•"~

B--

••'
•.

^B----

m—

- • - -
3-2 3-3 3-4 4-2 4-3 4-4 5-2 5-3 5-4 6-2 6-3

Query Type

L
H i

1
F

-•H
6-4

D IMP(BF)

• IMP(PERF)

Figure 15: Reduction Rate with Medium Selectivity Level (1)

As it shows in Figure 15, with medium selectivity, the lowest reduction rate that

the proposed algorithms can produce is at least 67.7% by Algorithm BF as it is

58.5% by Algorithm PERF. The highest value of improved reduction rate from BF

is 85.7% as it is 86.9% by PERF. The reduction rate begins to descend as

selectivity grows.

At a selectivity range of 0.4-0.7, the performance both algorithms produced is still

competitive and keeping growing with an increasing relation and attribute number.

Rather remarkable, BF over-performed Pert at the beginning but failed to keep

the advanced position later on after relation and attribute reach certain numbers.

-40-

Reduction Rate with Selectivity 2 (0.7 - 0.9)

to

•X3
a>

90.00%

80.00%

70.00% 1

60.00%

50.00%

40.00%

30.00%

20.00% ̂

10.00%

0.00% -F-

. 111111
• IMP(BF)

• IMP(PERF)

3-2 3-3 3-4 4-2 4-3 4-4 5-2 5-3

Query Type

5-4 6-2 6-3 6-4

Figure 16: Reduction Rate with Low Selectivity Level (2)

As it shows in Figure 16, with low selectivity, the lowest reduction rate that the

proposed algorithms can produce is at least 32.4% by Algorithm BF as it is

15.3% by Algorithm PERF. The highest value of improved reduction rate from BF

is 77.1% as it is 44.2% by PERF. Reduction rate reaches its lowest value while

selectivity decreases its own range.

When the selectivity is very low, both Algorithm BF and Algorithm PERF's

performance decrease obviously. Especially for PERF, the reduction rate is down

to around 15% under low relation and attribute. Yet, performance of both

algorithms bounced back with the growth of relations and attributes.

- 4 1 -

4.3.2 Effects of the Number of Relations

In this section, we will find how the cost reduction rate of the proposed algorithms

will be related by the number of the relations.

90.00%
80.00%

0 70.00%

w 60.00%

c 50.00%

'•g 40.00%

•§ 30.00%
tt 20.00%

10.00%

0.00%

Reduction Rate with Different Relations

DBF

• PERF

4 5

Relation Number

Figure 17: Reduction Rate with Different Relation

In figure 17, with the queries of relation range from 3 to 6, the average of

reduction cost that bloom filter join can produce better than perf does. However,

with more relation joining to the query, the performance of both algorithms is

getting better.

-42-

4.3.3 Effects of the Number of Attributes

In this section, we will examine how the number of join attributes will affect the

cost reduction rate of the proposed algorithms.

90.00%

80.00%

9 70.00%

« 60.00%

= 50.00%

t j 40.00%

| 30.00%
02 20.00%

10.00%

0.00%

Reduction Rate with Different Attributes

Attribute Number

Figure 18: Reduction Rate with Different Attribute

In figure 18, from 2 attribute to 4 attributes the average of reduction cost of bloom

filter join still better than perf. However, under the condition of involving more join

attributes, a more competitive reduce rate will be demonstrated.

-43-

4.3.4 Effects of the Domain Size

In this scenario, we are looking forward to present a methodology on measuring

that how the domain size will influence the performance of our proposed

algorithms, in a more self-revealing way. We pick up a group of queries with 3

relations, 2 join attributes and medium selectivity level (3-2-1) and try to increase

their domain size from 1000 to 2000. Due to the fact that domain size is a

responsive parameter of our algorithms - it produces a direct effect on bloom

filter size. Since domain variable will cause the change to cardinality, and

therefore shape PERF size accordingly.

Reduction Rate with Different Domain Size

80.00%

70.00%

a) 60.00%

<* 50.00%

I 40.00%
3 30.00% - y

& 20.00% -t*

10.00%

0.00%

DBF

• PERF

1000 2000

Domain Size

Figure 19: Reduction Rate with Different Domain Size

As it is illustrated in the experiment, from the Figure 19.We notice that, both of

our algorithms performance seems to increase slightly with the growth of domain

size.

-44-

4.4 Evaluation and Discussion

In our experiment platform, after Large amount of queries with arbitrary number

of relations from 3 to 6, join attributes from 2 to 4, selectivity range from low to

high were executed as input for our propose algorithms. The output result data

show that both of Algorithm PERF and Algorithm BF make greater enhancement

over the Initial Feasible Solution (IFS). By comparing with between PERF join

and Bloom Filter join, we have following conclusion.

• The reduction rate of proposed algorithms increase by the selectivity level

increase. In another words, with same numbers of relations and attributes,

when the selectivity in the low level, our proposed algorithms have the

best performance.

• The number of relations is an important factor for both of proposed

algorithms. More relations the distributed query has, better reduction

power it would produce.

• The number of join attributes is another important factor to affect the query

performance. The query has more attributes participated will have better

performance.

• The domain size doesn't affect our proposed algorithms too much. With

the increase of domain size, the distributed under the same condition of

selectivity, relations and join attribute, the reduction rate for both

algorithms have slightly improvement.

Both our Algorithms perform better in the high level selectivity condition, while

getting worse with the selectivity level getting lower. In general speaking,

Algorithm BF performs better in almost all circumstance. Especially with a lower

selectivity, when algorithm PERF declines its performance to a great extent.

Algorithm BF can still produce a rather effective reduction rate.

A traditionally more acceptable understanding was that Pert join could perform

better than bloom filter, because it has similar data storage and never encounter

the information loss due to the hash function. However, in our experimental

-45-

environment, we assume that a perfect hash function has been applied which

means no false drop would happen. Plus, we applied bloom filter twice on both

forward reduction phase and backward reduction phase in two-way semijoin.

Especially in forward reduction phase. The bloom filter based algorithm can

effectively reduce the transmission cost while pert based 2-way join algorithm

which still send original semijoin projection. Thus it is rather safe to conclude

that two-way bloom filter based algorithm performs better than perf join.

- 4 6 -

Chapter 5 Conclusion and Future work

5.1 Conclusion

The main purpose of distributed query processing is to find the best sequence of

database operation to minimize the transmission cost. Because most of

implemented algorithms in this area are heuristic, our objective is to figure out the

near-optimal solutions.

The main approaches in distributed query processing can be classify to 3

categories, which are join based, semijoin based and filter based. Compare with

the join based algorithms always involve the large data transmission, semijoin

acts as a powerful reducer in distributed query processing which only send the

join attribute projection to instead of delivering the whole relation from one

relation to another. As a result, the tuples which are not contributive for the query

will be eliminated before they sent to final query site. Semijoin based algorithm

still spend a lot even applied it's extend version 2-way semijoin by giving extra

backward reduction. Filter based algorithms proposed as cheap prototype which

use a bit vector to represent the semijoin projection information during the data

transmission. Since bloom filter implement with hash function, the false drop

caused by hash collusion can not be avoid. Pert was brought into this field as a

novel solution. It use a small size bit vector (perf) based on tuples scan order to

encode the join information during backward reduction phase of 2-way join.

Compare with bloom filter join, it has same data storage with bloom filter and

would never involve the information loss caused by hash collusion.

From above point of view, we know that the cheapest solution is to represent the

original semijoin projection with a smaller size bit vector during the data

transmission. In this thesis, we propose two filter-based algorithms by applying

PERF and Bloom Filter technique on 2-way semijoin algorithm respectively. In

algorithm PERF, we construct the perf base on tuple scan order in backward

-47-

reduction phase while with algorithm, we apply the bloom filter for semijoin

projection in forward reduction phase while generate bloom filter for join match

set in backward way.

After run large amount experiments with distributed queries as input. Both of

algorithm PERF and algorithm BF make show their reduction power by

comparing with Initial Feasible Solution. The evaluation between 2 proposed

algorithms show that algorithm BF outperform algorithm PERF in most condition

especially with a lower selectivity. In this kind of situation, while algorithm PERF

declines its performance to a great extent. Algorithm BF can still produce a rather

effective reduction rate.

Perf should outperform BF if we just compare them simply. However, in our

experimental environment, we adopt perfect hash function to address tuple. Plus,

we applied bloom filter twice on both forward reduction phase and backward

reduction phase base on two-way semijoin. Due to the intent of perf is to reduce

the transmission cost during the backward reduction. There is still expensive cost

in forward reduction phase. With algorithm BF we proposed, it eliminates large

transmission cost in forward phase. Even think about the false drop in tolerable

range, algorithm BF can still show its good performance.

5.2 Future Work

In our experiment platform, we performed 10 queries for each kind of query over

36 query types. However, in order to get more accurate and persuasive result

from experiments, we need to endeavor larger amount of query for the proposed

algorithm. We also need to increase the size for the relations and domain to

make the result appropriate for real-life circumstances and applications.

-48-

In Algorithm BF, to simplify the question, we assume that we use the perfect

hash function which means no false drop would happen. While in the real case,

collision can not be avoided in the hash filter based algorithm. So there are still

some spaces to continue our research under the situation with collision and try to

find optimal hash function to apply on the semijoin projection to minimize the

transmission cost.

In Algorithm PERF with very high or very low semijoin selectivity, it will contain

large amount of 0 or 1. We can try to compress the encode join information by

sending the address of 1 or 0 but within Pert [LR95] to gain extra reduction

during the transmission.

- 4 9 -

Appendix: Testing Environment

Hardware:

Dell Latitude D620

Base: Intel® Core(TM) 2 CPU T5600 @1.83 GHz

Memory: 1GB Dual Channel DDR2 SDRAM at 400MHz (4x256M)

Software:

Windows XP Professional SP2

Microsoft Visual Studio 2003

Microsoft .Net Framework 1.1

- 5 0 -

Bibliography

[AHY83] Peter M. G. Apers, Alan R. Hevner, and S. Bing Yao.

"Optimization Algorithms for Distributed Queries". IEEE

Transactions on Software Engineering 9(1), Pages: 57-68, 1983.

[B70] B. Bloom, "Space/time tradeoffs in hash coding with allowable

errors," Comm. ACM, vol. 13(7), pp. 422-426, 1970.

[B95] Todd Bealor, "Semi-join Strategies For Total Cost Minimization In

Distributed Query Processing", Master Thesis, University of

Windsor, Canada, 1995.

[BC81] P.A. Bernstein and D.W. Chiu "Query Processing in a System for

Distributed Databases (SDD-1)," ACM Trans. Database Syst. Vol

6, no.4, Dec 1981.

[BC81] BERNSTEIN, P., AND CHIU, D. 1981. Using semijoins to solve

relational queries. J. ACM 28,1 (Jan.),25-40

[BL82] P.A. Black and W.S. Luk. A new heuristic for generating semi-

join programs for distributed query processing. IEEE COMPSAC,

581-588, 1982.

[BPR90] P. Boderick, J. Pyra, and J. S. Riordan. Correcting execution of

distributed queries. In Proc. of 2nd Int. Symp. on Databases in

Parallel and Distributed Systems. 1990.

[BR88] P. Bodorik and J.S. Riordon. A Threshold Mechanism for

Distributed Query Processing. InProc. ofthe 16-th Annual ACM

Computer Science Conference, pages 616(625,1988

[BR98] P. Bodorik, J. S. Riordon "Heuristic Algorithms for Distributed

Query Processing" Proc. Of the Int. Conf. on Database in Parallel

and Distributed Systems, Austin, Texas, Dec 1988.

[BRJ87] P. Bodorik, J. S. Riordon and C. Jacob"Dynamic Distributed

Query Processing Techniques" Technical Report, School of

Computer Science, Technical Uni. Of Nova Scotia, Halifax, NS,

Canada, Sept 1987

-51 -

[BRP92] P. Bodorik, J. Riordo, and J. Pyra. " Deciding to Correct

Distributed Query Processing " IEEE Transactions on

Knowledege and Data Engineering, 4(3), June 1992

[C98] Surajit Chaudhuri "An overview of query optimization in relational

systems." In Proceedings of the Sixteenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database

Systems, PODS 98, pages 34-43, 1998

[CBH84] D. Chiu, P. Bernstein, and Y. Ho, "Optimizing chain queries in a

distributed database system," Siam Journal of computing, vol.

13(1), pp. 116-134, 1984.

[CDT+OO] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A

scalable continuous query system for Internet databases.

SIGMOD Record (ACM Special Interest Group on Management

of Data), 29(2):379-391, 2000.

[CH84] D. Chiu and Y. Ho, "Optimizing star queries in a distributed

database system," in VLDB, pp. 959-967, 1984.

[CL80] A. Chen and V. Li, "A method for interpreting tree queries into

optimal semijoin expressions," in ACM SZGMOD, 1980.

[CL84] A.L.P Chen and VOK Li " Improvement Algorithms for Semijoin

Query Processing Program in Distributed Database Systems "

IEEE Trans. Computers C-33,11, Nov 1984

[CL89] J. K. AHN and S. C. MOON " Optimization Joins between Two

Fragmented Relations on a Broadcast Local Network" IEEE-TSE

15(1), 26-38(1989)

[CL90] L. Chen and V. Li, "Domain-Specific Semijoin: A New Operation

for Distributed Query Processing" Info. Sci., vol. 52, pp. 165-183,

1990.

[CP84] S. Ceri and G. Pelagatti. Distributed Database Design: Principles

and Systems. MacGraw-Hill (New York NY), 1984

[CP84] S. Ceri and G. Pelagatti. Distributed Databases: Principles and

Systems. McGraw-Hill, 1984.

- 5 2 -

[CS94] S. Chaudhuri and K. Shim Including Group-By in Query

Optimization. In Proc. of VLDB, Santiago. 1994.

[CY90] M. S. Chen and P. S. Yu "Using Join Operations as Reducers in

Distributed Query Processing" - DPDS, 1990

ieeexplore.ieee.org

[CY90] M.S. Chen and P S . Yu, " Using Combination of Join and

Semijoin Operations for Distributed Query Processing "

Processing of the 10th intem'l Conf. on Distributed Computing

Systems, pp. 328-335, May 1990

[CY91] M.-S. Chen and P. S. Yu. "Determining Beneficial Semijoins for a

Join Sequence in Distributed Query Processing" Proceedings of

the 7th lntern'1 Conf. on Data Engineering, pages 50-58, April

1991. To appear in IEEE Trans, on Parallel and Distributed

Systems.

[DG92] D. DeWitt and J. Gray. Parallel database systems: the future of

high performance database systems. Communications of the

ACM, 35(6):85-98, June 1992.

[G93] G. Graefe. Query Evaluation Techniques for Large Databases. In

ACM Computing Surveys: Vol25. No 2.. June 1993.

[GD81] M. G. Gouda and U. Dayal "Optimal Semijoin Schedules For

Query Processing in Local Distributed Database Systems" -

SIGMOD Conference, 1981 - portal.acm.org

[GGS96] S. GANGULY, A. GOEL AND A. SILBERSCHATZ, Efficient and

accurate cost models for parallel query optimization. In

Proceedings of the ACM SIGMOD/SIGACT Conference on

Principles of Database Systems (PODS) (Montreal, Canada,

June), 172-181. 1996.

[GW89] G. Graefe and K. Ward, "Dynamic query evaluation plans," in

ACM SIGMOD, pp- 358-366, 1989.

[H80] A. Hevner, The optimization of query processing in distributed

database systems. PhD thesis, Perdue University, 1980.

- 5 3 -

http://ieeexplore.ieee.org
http://portal.acm.org

[HCY94] H. I. Hsiao, M. S. Chen, P. S. Yu "On Parallel Execution of

Multiple Pipelined Hash Joins", SIGMOD Conf., Minneapolis,

1994

[HF01] R. A. Haraty and R. C. Fany" Query Acceleration in Distributed

Database Systems" 2001

[HFB00] RA Haraty, RC Fany, L Beirut " Distributed Query Optimization

Using PERF Joins " SAC (1), 2000 - portal.acm.org

[HKW+97] L. HAAS, D. KOSSMANN, E. WIMMERS AND J. YANG,

Optimizing queries across diverse data sources. In Proceedings

of the Conference on Very Large Data Bases (VLDB) (Athens,

Greece, Aug.), 276-285. 1997.

[HWY85] A. R. Hevner, O. Q. Wu, and S. B. Yao. Query optimization on

local area networks. ACM Transactions January 1985. CODEN

ATOSDO.

[KR87] H. Kang and N. Roussopoulos " Using 2-way Semijoins in

Distributed Query Processing " in Proceedings of the Third

International Conference on Data Engineering, 1987. PP. 644-

651

[KYY83] Y. Kambayaashi, M. Yoshikawa, and S. Yajima. Query

Processing for Distributed Databases Using Generalized Semi-

join. In ACM SIGMOD International Conference on Management

of Data, San Jose, CA, May 1983.

[LMH+85] G. Lehman, C. Mohan, L. Haas, D. Daniels, B. Lindsay, P.

Selinger and P. Wilms. Query Processing in R*. In Query

Processing in Database Systems Springer Verlag, 1985.

[LPP91] P. Legato, G. Paletta, and L. Palopoli " Optimization of Join

Strategies in Distributed Databases" Information Systems,

16(4):363{374, 1991

[LR95] Z. Li and K. Ross "PERF Join: An Alternative to Two-way

Semijoin and Bloomjoin" Technical Report. Columbia University,

New York. 1995

- 5 4 -

http://portal.acm.org

[M01] M. Mitzenmacher "Compressed Bloom Filters" In Twenti-eth

ACM Symposium on Principles of Distributed Computing (PODC

2001), 2001.

[M83] J. Mullin, "(1983) A second look at bloom filters," Comm. ACM,

vol. 26(8), pp. 570-541, 1983.

[M90] J.K. Mullin "Optimal semijoins for distributed database systems",

IEEE Transactions on Software Engineering 16 (1990).

[M93] James K. Mullin "Estimating the Size of a Relational Join"

Information Systems, 18(3):189- 196, 1993. ISSN 0306-4379

[M96] J. M. Morrissey "Reduction Filters for Minimizing Data Transfers

in Distributed Query Optimization" In Proceedings of CCECE'96,

Calgary, May, 1996

[MB95] J. M. Morrissey and S. Bandyopadhyay "Computer

communication technology and its effects on distributed query

optimization strategies" Electrical and Computer Engineering,

1995. Canadian Conference on Volume: 1 5-8 Sep 1995

[MB97] J. Morrissey and W. Bealor, "Minimizing data transfers in

distributed query processing: a comparative study and

evaluation," The Computer Journal, vol. 39(8), 1997.

[ML96] L.MACKERT AND G. LOHMAN, R* optimizer validation and

performance evaluation for distributed queries. In Proceedings of

the Conference on Very Large Data Bases (VLDB) (Kyoto,

Japan), 149-159.1986.

[M097] J. Morrissey and W. Osborn, "Experiments with the use of

reduction filters in distributed query optimization," in Proceedings

of the 9th IASXED International Conference on Parallel and

Distributed Systems, (Georgetown University, Washington),pp.

327-330, 1997.

-55-

[M098] J. M. Morrissey and W. K. Osborn "Distributed query optimization

using reduction filters" Electrical and Computer Engineering,

1998. IEEE Canadian Conference on Volume: 2 24-28 May

1998

[M099] J. M. Morrissey and O. Ogunbadejo "Combining semijoins and

hash-semijoins in a distributed query processing strategy"

Proceedings of the 1999 IEEE Canadian Conference on

Electrical and Computer Engineering Shaw Conference Center,

Edmonton, Alberta, Canada May 9-12 1999

[M099] J. M. Morrissey and W. K. Osborn "The effect of collisions on the

performance of reduction filters" Electrical and Computer

Engineering, 1999 IEEE Canadian Conference on Volume: 1

1999

[MOL00] J.M. Morrissey, W.K. Osborn, Y. Liang "Collisions and reduction

filters in distributed query processing" CAN CONF ELECTR

COMPUT ENG, 2000 - ieeexplore.ieee.org

[092] M. Orlowski " On Optimisation of Joins in Distributed Database

System " Technical Report1/92, School of Information Systems,

Faculty of Information Technology, Queensland University of

Technology, January 1992

[098] W. Osborn, "The use of reduction filters in distributed query

optimization," Master's thesis, The University of Windsor, 1998.

[0V91] M. T. Ozsu and P. Valduriez. Principles of Distributed Database

Systems. Prentice-Hall, 1991.

[PC90] W. Perrizo and C. Chen "Composite Semijoins in Distributed

Query Processing" Information Science, March. 1990

[PIH96+] V. Poosala, Y. loannidis, P. Harts and E. Shekita. Improved

Histograms for Selectivity Estimation. In Proc. of ACM SIGMOD,

Montreal, Canada 1996.

- 5 6 -

http://ieeexplore.ieee.org

[Q88] G. Z. Qadah, Filter-based join algorithm on uniprocessor and

distributed memory multiprocessor database machines, vol. 303

of Lecture Notes in Computer Science, pp. 388-413. Springer-

Verlag, 1988.

[RK91] N. Roussopoulos and H. Kang " A Pipeline N-way Join Algorithm

Based on the 2-way Semijoin Program " IEEE Trans, on

Knowledge and Data Engineering, Vol. 3, No. 4, Dec. 1991, pp.

486-495

[TC92] J. Tseng and A. P. Chen " Improving Distributed Query

Processing by Hash-Semijoins " Journal of Information Science

and Engineering, 1992

[URJ+83] D. Jantz, E. A. linger, R. McBride, and J. Slonim. Query

processing in a distributed data base. In Proceedings of the 1983

ACM SIGSMALL symposium on Personal andsmall computers,

pages 237-244, 1983

[V02] Patrick Valduriez "Principles of Distributed Database Systems"

(Second Edition). ISBN 7-302-05493-2/TP.3230. 2002

[VG84] P. Valduriez and G. Gardarin, "Join and semijoin algorithms for a

multiprocessor database machine," ACM Transactions on

database system, pp. 133-161, 1984.

[WC93] C. Wang and M. Chen, "On the complexity of distributed query

optimization," tech. rep., IBM Technical Report RC 18671, 1993.

[WLC91] C. Wang, V. Li, and A. Chen," Distributed Query Optimization by

One-Shot Fixed-Precision Semijoin Execution" in Proc. 7th Znt.

Con$ on Data Engineering, pp. 756-763, 1991

[Yang05] Li.Yang. "An Evaluation of PERF Joins for a Two-Way Semijoin

Based Algorithm". Master thesis, University of Windsor, 2005

[YC83] C. T. YU AND C. C. CHANG "On the design of a query

processing strategy in a distributed database environment". In

SIGMOD 83, Proceedings of the Annual Meeting (San Jose,

Calif., May 23-26). ACM, New York, pp. 30-39. 1983.

- 5 7 -

[YC84] C. T. Yu and C. C. Chang. Distributed query processing. ACM

Computing Surveys, 16(4):399-433, Dec. 1984.

[YM98] C. Yu and W. Meng. Principles of Database Query Processing

for Advanced Applications. Morgan Kauf-mann, San Francisco,

1998.

- 5 8 -

Vita Auctoris

Name: Ming Pei

PLACE OF BIRTH: Wuhan, Hubei, China

YEAR OF BIRTH: 1976

EDUCTION: M.Sc, Computer Science,

University of Windsor,

Windsor, Ontario, Canada

2004 ~ 2007

B.Sc, Computer Science,

Navy University of Engineering,

Wuhan, Hubei, China

1994-1998

- 5 9 -

	An evaluation between Bloom Filter join and PERF join in Distributed Query Processing
	Recommended Citation

	ProQuest Dissertations

