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Abstract

In this thesis, we present several methods which may be used to calculate the
Laplace transform of order statistics of Erlang random variables. These methods
are based on a probabilistic interpretation of the Laplace transform. A Markov

chain analysis is included. Special cases and generalizations are discussed.
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1. INTRODUCTION

Laplace transforms have a nice probabilistic interpretation (van Dantzig; Roy;
Kleinrock). In fact, if X is a continuous, non-negative random variable with some
probability density function (p.d.f.) f(z), and Z is a continuous random variable,
independent of X, with pdf. g(z) = se™** (s > 0,z > 0), then the Laplace

transform of f(z) is
L(s) = / ~ e~ f(z)dz = P(X < 2),5 > 0. (L)
0

More generally, if any non-negative random variable X has the cumulative distri-
bution function (c.d.f) F(z) and Z is defined as before, then the Laplace Stieltjes

transform of F(z) is
L(s) =/0 e **dF(z),s> 0. . (1.2)

Thus, L(s) is the probability that the value taken by X is less than the value
taken by Z. This interpretation of the Laplace transform can be quite useful if
we are interested in the probability that a given random event will occur prior
to some catastrophe, where the time until the catastrophe occurs is exponentially
distributed. Intuitively, we can think of this situation as a race of fixed distance,
where X and Z are the race completion times of two racers. Thus, L(s) is simply the
probability that racer “X” wins the race. It can be easily verified (see Properties
3.1 and 3.3 in chapter 3) that if X is exponentially distributed with parameter A

(X ~ exp(A)), then
A

Ls) = Ats

(1.3)
Through the use of this interpretation, one can avoid extensive calculation by re-
placing integration with counting procedures.

Laplace transforms are useful, among other reasons, in finding the moments

of a random variable X. The moment generating function of X, Mx(t), can be
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manipulated in the following manner.
Mx(t) = E(e'X) = E(e=9%) = Lx(-t). (14)

Hence, L(s) can be used to obtain M(t), and both L(s) and M(t) can be used to

obtain moments of X.
We note that a Laplace transform is also an expected value of a random variable.
For instance, consider a random variable Z ~ exp(s). Further, consider any non-

negative random variable X. Now define the random variable Y as follows.
0if X>2
lf X< 2

Y =
Hence

E(Y)=0P(Y =0)+1P(Y =1)
=0P(X > 2) +1P(X < 2)
=P(X < 2)
= L(s)

= E(e™*X). . (1.5)

Order statistics are an important topic of study (see David) as they have a wide
variety of applications. One such application is within the field of reliability pre-
diction. It is of great advantage to be able to predict the reliability of a commercial
or industrial manufacturing process. In particular, one may wish to predict the
probability of a quota being filled prior to an incoming demand, or of a process
remaining within production tolerance levels. “A k-out-of-n structure functions iff
at least k out of n components function.” (ref: Barlow and Proschan). Thus, the

structure fails when the k-th order statistic occurs.
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An application of order statistics is in queueing theory. Suppose two customers,
A and B, arrive at a queueing system with two servers. where each server has a
line containing at least one customer. A and B decide to wait in different lines
so the first of them to reach a server can obtain service for both. In this case,
we are interested in the smallest order statistic. If the service for each customer
is exponential, then the waiting time of A and B is the minimum of two Erlang
random variables. By finding the probability that this minimum is less than some
(artificial) catastrophe variable Z, Z ~ ezp(s), we are finding the Laplace transform
of the minimum.

Erlang random variables are a special case of Gamma random variables, and can
be considered to be the sum of a number of exponential random variables. One
important application of Erlang random variables is within queueing theory since
they lend themselves nicely to applications where a single process can be modeled
as a sequence of individual exponential processes.

Work on the Laplace transforms of order statistics of exponentially distributed
random variables has been completed by Roy (1997). In this thesis, we shall
concentrate on Laplace transforms of order statistics of Erlang random variables.

Calculation of these Laplace transforms shall be completed using several methods.



2. DIRECT CALCULATION

One method by which the Laplace transform may be calculated is by direct
application of the definition of a Laplace transform. Before we proceed further, let

us state more formally a definition which was referred to in chapter 1.

Definition 2.1. If F(z) is the c.d.f. of a continuous, non-negative random variable
X, then L(s) = [;~ e~**dF(z) is the Laplace Stieltjes transform of F(z). If f(z) is
the p.d.f. of that same random variable, then L(s) = f(;” e~ ** f(z)dz is the Laplace

transform of f(z).

We shall first consider two independent and identically distributed (i.i.d.) two-
stage Erlang random variables. That is, consider two Erlang random variables Y;

and Y;, where

Y1 =Xu+ X2
Ys = X1 + X9,

and where the X;;'s are i.i.d. exponential random variables with parameter A for

i,j = 1,2. Define Z to be a random variable which is exponentially distributed

with parameter s.
Suppose we wish to determine the Laplace transform for maz(Y;,Y2). Since

each Y; (i = 1,2) is the sum of the same two i.i.d. exponential random variables,

the common p.d.f. of the ¥;'s for i =1,2 is
£() = Neye™™. (2.1)
Hence, using integration by parts, the common c.df. of the Y;’s for i = 1,2 is
Fly)=P(Y <y)=-ye™M —e MW 41 (2.2)

We shall use the standard formula for the p.d.f. of order statistics of i.i.d. random

variables, as given by Hogg and Craig, with some slight notational deviation. Let
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1,Y3,...,Y, denote a set of n i.id. random variables, for some n € N. Let
Y1), Yi2) - - -+ ¥(n) denote the order statistics of these n random variables. Then the

p.d.f. of the k-th order statistic, W = Y(x), is given by

n!

90 () = i PN L~ F)"™*f(w) (23)

where, for our purposes, w > 0. Otherwise, g (w) =0.
Thus, the p.d.f. of the second order statistic, Y(2) = maz(1, Y2), shall be repre-
sented notationally by g(5)(w) and, using (2.3), is derived as follows.
2!
9(2)(w) = TioiE W) f(w) (by(2.3))
= 2(~Awe™ Y — =AW 4 1) A2y~ v
= —2X%wle AW _ 92)A2ye=2Aw 4 9)\2ye—2w, (2.4)
The following property will prove useful in the calculations to come.

Property 2.1.

/ whe ™ "Wdw = M= 0,1,...,n>0.
0

Proof. This follows directly from the definition of the Gamma function.l

Returning to the task at hand, we wish to calculate L3)(s), where L(3)(s) is the
Laplace transform of g()(w). Now, directly applying the definition of a Laplace

transform to (2.4) and using Property 2.1, we obtain
o0
Lia)(s) = /(; e™*"g(g)(w)dw

= ~2\3 / - wle~(At+alug,, _ 9)2 / = we~ (A +a)wg,,
0 0

+2)2 / - we—A+)wgy,
0

2 1 1
— _9\3 _ 2 2
= MmN oy

4)3 _ 2)2 + 22
(2A+3s)?  (2A+38)2 T (A+38)?"

(2.5)

5



Suppose we also wish to determine L(;)(s). A similar set of calculations shows

that
2)2 + 4)3
@A +38)? " (2A+ )3

The preceeding demonstration was for the simple case where we have only two

L(l)(-?) =

(2.6)

iid. two-stage Erlang random variables (and hence only two order statistics). Of
course, we can consider more complex cases. Let us consider a situation in which

we have five i.i.d. three-stage Erlang random variables. That is,
),i = Xil +Xi2 + Xiayi = 11 2)31415)

where the X;’s are i.i.d. exponential random variables with parameter \ for i =
1,2,3,4,5 and j = 1,2,3. Now suppose we are interested in calculating L(3)(s) in

this case. We have the common p.d.f.
1 3 -y
fly) = 3N’ (2.7)
and the common c.d.f.
F(y) = —%Azyze“\” ~Aye™ W —e M 4] (2.8)

for the Yi’s, 1 = 1,2,3,4,5. Again, we use the standard formula (2.3) to obtain the

p.d.f. for the second order statistic Y(3).

() = e Flw)(1 ~ F(w))* /()
= 20f(w) F(w)(1 - F(w))3. (2.9)

Using (2.7), (2.8), and a little algebraic manipulation, we obtain

f(w)F(w) = _% Awte=2Aw _ % Ayle—2rv _ % Ayle—Dw 4 % Au2e—tw

(2.10)



and

(1= F(w))* = (1 - F(w))*(1 - F(w))

- (i_ Mule=2w ¢ \3y3e-2Aw | 932y 20-Dw | gy ~Dw e—zxw)
X (-;—Azwze"“" + Awe Y + e“"")

Aufe-3rw ¢ Lys, 5.-32u + Lytyte-3rw + 135, 5e-30w
4 4

+ /\4w4e—34\w +A3w33-34\w + A4w4e—3¢\w + 2A3w3e‘3'\w

Q0| r—

+ 2A2w28-3kw + ’\3w3e—3kw + 2,\2w28—3kw + 2Awe—34\w

+ _;_ A2u2e=3A | \pe—Phu | o~Bw

_ % ASyfe-3w % ASySe-3rvw g Myle=Hw | 4)3,3,-3w

+ gz\zw2 + 3Awe ™3 4 g=3Aw, (2.11)

Using (2.10) and (2.11) we obtain the p.d.f. of Y{9) as follows.

92 (w) = 20f(w)F(w)(1 - F(w))?

—

_gAllwloe—SAw _ ?'\louﬁe—SAw _ %‘?AQwSe—SAw - 20’\8w7e—5kw

_ 4?5 ATwSe=5M _ 15264,5e=5M _ £3Syde—5rw _ % A10,, 95w
_ % A0y Be—52w _ %ﬁ A8a0Te=52W _ 40ATuSe~5Aw _ 4538y, 5e—5rw
— 30A5wte=5M _ 10N e % \9q,Be—SAw _ 12_5 A8y T e~5Mu
_ % ATwSe=5M0 _ 402615e—5A _ 45251,46—520 _ 30\4y,3e-5Aw

— 10M3u2e=5w 4 Ti' A0y Be—thw l;, AyTe—tw | 19,7 6 —trw
+40 A6w5e—4lw +45 /\5111‘ e—llw +30 A4w3e-4:\w +10 A3w2 e—(Aw
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= 9 \11,10,~52w _ 5310, 9,~5Aw _ 9019,,8¢=5M0 _ 5038y, 75w
8

~ 85A7wle 52 — 100A8wBe 32 — 8OASwie~5M — 40N wle AW
— 1003w %\gwse"’“" + 12—51\8w7e"‘“"’ + %X’wse“‘\"’
+ 4028w~ 4 45050t~ 4 J0Mtwle A + 1003 wle M.
(2.12)
Applying Property 2.1 to result (2.12), and after some simplification, we obtain

L(s) as follows.

o0
Liy)(s) = /0 9(2)(w)e™*“dw

A 11
= —2268000 (5 T ) — 1814400 (

A
Sy ) —806400( +)
A )¢ A\
-252000(&\“) -61200(5“8) 12000(5“ )
A \° A\ A
‘1920(5,\4» ) '20(5,\+ ) “2°<5A+s>
A \? A8 A\’
+504oo(4/\ ) +37800(4A+8) +162oo(4,\+8>

A 8 A \° A\
+4800(4A ) +1080(m) + 80(4/\-{- )

+2o( 4;; )3. (2.13)

Thus, we see from results such as (2.5) and (2.13) that the larger the number of

Erlang random variables or stages per Erlang variable involved in the problem, the
more involved the calculations become. That is, for a particular i € N, the number
of steps required to calculate L;)(s) increases as the numl;er of Erlang variables or
the number of stages per Erlang variable increases.

In addition, calculations in the above examples are further simplified by the fact
that the Erlang variables are i.i.d.. For Erlang variables which are not identically
distributed, the calculations become more complicated. The next two chapters of



this thesis will introduce methods which allow for fairly easy calculation in under
either of these conditions. In addition, these new methods produce more aestheti-

cally and intuitively pleasing results.



3. A PROBABILISTIC AND COMBINATORIAL APPROACH

We shall begin this chapter with some needed properties (see Roy) followed by
a simple demonstration of how probabilistic interpretation can aid in calculating
Laplace transforms. Properties 3.1, 3.2, 3.3, 3.4, and 3.5 are well known and are
stated here as a necessity for the following results. Generalizations and examples

will be given throughout the chapter.

Property 3.1. If X and Y are independent, continuous, non-negative random
variables with respective p.d.f.’s f(z) and g(y) = se™*V, then P(X <Y) = Lx(s).
Proof. P(X <Y) = [;° [ se=*¥ f(z)dydr = Io e~*=f(z)dz = Lx(s).®
Property 3.2. If X),X3,..., X, are independent and exponentially distributed

random variables with respective parameters Ay, X,,... )\, where k € N, then

min(Xy, Xo, ..., Xi) ~ ezp(zi-;l Xi).
Proof. Let W represent min(Xi, X3,...,Xi). Then the cumulative distribution
function of W is
Fw(w) = P(W < w)
= P(min(X,, Xa,..., Xi) S w)
=1- P(min(X),Xa,...,Xi) > w)

=1-P(X)>w, X2 >w,..., Xk > w)

k
=1- H P(X; > w) (by independence of the X;'s)

i=1

k
i=1

=1 — e~ (Tta1 N)w
which is the c.d.f. of an exponential random variable with parameter Zf;.l Ai. B
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Property 3.3. If X; and X; are independent and exponentially distributed ran-
dom variables with respective parameters A, and )y, then P(X) <X,) = xl—‘}rz

Proof.

oo poo
P(X1 < X) =/ / z\le‘*"‘z\ge“\“’dzgdxl
0 31

(= <]
= / ,\le—(»\x-i-h):xdzl
0

A\l
AL+ A2

Property 3.4. If X1, Xs,..., X are independent and exponentially distributed
random variables with respective parameters Ay, As, . .. yAk, where k € N, then for

each j € N with j <k,

P(Xj < Xl,XJ’ <X2,...,Xj < Xj_l,Xj <Xj+1,...,Xj (Xk))

= P(X; = min(Xy, Xa,..., X))
Aj
Ef:l '\i ’

Proof. We first recognize that
P(Xj = min(Xl,Xz, .o ,Xk)) = P(Xj < min(X;, Xz, vy Xj..l, Xj+1, oo ,Xk)).

Then, by Property 3.2, we have that min(Xy, Xy, ..., X;-1, Xit1,..., X)) is ex-
ponentially distributed with parameter 2%1 Ai. Hence, by Property 3.3,
i#)

Aj
k
/\j + E:;} Ai
Aj

= R |
Ai

P(Xj < min(Xy, Xo,..., Xj-1, Xit1r.. . Xk)) =

=]

11



Property 3.5. IfY is an exponentially distributed random variable, and s and t

are non-negative real numbers, then
P(Y>s+tlY >s)=P(Y >t).
This is known as the “memoryless property”of the exponential distribution.

Proof. Suppose Y ~ ezp()). Then,

P(Y >s+t)
P(Y > s)
e—AMs+t)

PY>s+tlY >s)=

e"’k‘
Y

=P(Y >t)B

We are now ready to consider an example. As at the beginning of chapter 2,
define two Erlang random variables Y; = X;; + X2 and Y2 = Xa; + X5, where
the X;; ~ exp(\) for i, = 1,2. Again, define Z to be a random variable which is
exponentially distributed with parameter s.

Again, suppose we wish to determine L(3)(s), the Laplace transform of the second
order statistic. By Property 3.1, this is equivalent to calculating P(Y{3) < Z). That
is the probability that both Y) and Y5 are less than Z. There are (;) = 6 cases
where this is possible, as follows. Note that the order from left to right represents
first place through fifth place, respectively.

(1) X11,Xa2,X01,X22,2
(2) X21,X22, X11,X12, 2
(3) Xu,Xa1,X12,X22,2
(4) X21,X11,X22,X12, 2
(5) X11,Xn,X22,X12,2
(6) Xa21,X11,X12,X22,2

12



Thus, P(Y{3) < Z) is the sum of the probabilities of these six disjoint cases.

We now calculate the probability of each of these cases. We start by considering
a race between three participants; X;;, X2;, and Z. A racer will be considered
to have finished racing once it has defeated all participants against whom it is
competing. In a way, we can consider this situation to be an exponential relay race
with three teams. Team Y; has two successive members, X;; and X;2. Similarly,
team Y3 has two members. Team Z has one member. For team Y;, once Xy,
finishes racing, X2 begins to race. Once X); and X;; have both completed the
race, team Y) is done racing. Analogous comments can be made for teams Y, and
Z.

The probability of case (1) above can be derived as follows. We see that X;;
is the first to complete the race. By Property 3.4, the probability that X;; wins

against X and Z is

A

P(Xy = min(Xu1, Xa1,2)) = P(Xu1 < min(X2,2)) = 53——.

(3.1)

Once X, finishes the race, X2 must begin to race. By Property 3.5, X3, and
Z start the race from the beginning against X)2. That is, by the “memoryless
property”, it does not matter how much time has already passed during the race;
it is as if X7, and Z had never started racing at all. In case (1), X is the next to
finish. By Property 3.4, X2 does so with probability

A

P(Xlz = min(xlzax211 Z)) = P(X12 < min(Xgl,Z)) = -2T-{-_3

(3.2)

Now team Y has no participants remaining. Again, by the memoryless property
of the exponential distribution, X3, and Z restart the race. In case (1), X3; must
win against Z and does so with probability

P(Xar = min(Xa1,2)) = P(Xn1 < 2) = 12 (3.3)

13



Since X3; has completed the race, X292 must begin to race. X wins against Z
with probability

R
P(Xy2 = min(X2,2)) = P(X22 < 2) = A+ (3.4)

Thus, the overall probability of case (1) is obtained by multiplying equations
(3.1) through (3.4). That is,
P(case (1)) = P(X;; = min(Xy, X21, Z2)) x P(X12 = min(X12, X21, Z))
x P(X21 = min(X21,2)) x P(X22 = min(Xs2, Z))
= P(X); < min(Xa, Z2)) x P(X12 < min(Xy;, Z))

X P(X2; < Z) x P(X22 < 2)
2\
= DT RO TR 3.5)
The probabilities in (3.5) are actually conditional probabilities but the conditioning

notation has been suppressed by application of the memoryless property.
A symmetrical argument, reversing all values of i, shows the overall probability
of case (2) to also be the value given in result (3.5).

Similar arguments show the overall probabilities of cases (3) through (6) to each

be .
A A
(2,\+s) (A+s)‘ (3.6)
By (3.5), (3.6) and Property 3.1,

Ly(s) = X - + 4A_‘
B = A+ 92 (A+98)?  (A+8)’(A+3)
Notation. Let Y1,Y3,...,Y: represent k arbitrarily distributed Erlang random

(3.7)

variables. The notation
(rirg... T%)
shall represent the state where Y3,Ya,...,Y: have ry, ..., i respective stages

remaining.

14



Diagram 3.1.

(2:2)

B

@ O 0

(0.0)

Diagram 3.1 gives a visual representation of all possible outcomes of the race
where Y{3) < Z. Under our analogy, the notation (r; r3) represents the state where
teams Y) and Y; have r; and r; members, respectively, remaining to finish the race.

It shall be implicitly understood that the one member of team Z does not finish

18



racing until all other participants have finished the race. Each path from the state
(2 2) to the state (0 0) represents one of the six possible outcomes listed above.
The path representing case (1) is highlighted in Diagram 31

Comparing (2.5) to (3.7), we see that the two results appear nothing alike. How-
ever, algebraic manipulation quickly reveals that the two results are equivalent.
However, result (3.7) is more intuitive and more aesthetically pleasing than result
(2.5).

Now suppose we wish to determine L(;)(s). By Property 3.1, this is equivalent
to calculating P(Y(;) < Z). That is, the probability that at least one of ¥; and
Y; is less than or equal to Z. There are () [(3) + (3)(})] = 6 cases where this is

possible, as follows.

(1) X1, X2
(2) X21, X2
(3) Xi1,Xa1, X1z
(4) X21,X1.Xn
(5) X11,X21,X22
(6) X21, X11.X12

Thus, P(Y(1) < Z) is the sum of the probabilities of these six disjoint cases. Note
that it makes no difference which racers finish in which order so long as at least one
team defeats team Z.

We calculate the probability of each of these cases in the same manner as before.
The probability of case (1) equals the probability that X7, finishes first multiplied
by the probability that X, finishes second. That is,

. , A A
P(X11 = min(X11, X2, 2)) P(X12 = min(X12, X21, Z)) = (2A +s) (2A+ 8)

= (2)\,\4- s)z' (38)
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A symmetrical argument, reversing all values of i, shows the overall probability
of case (2) to also be the value given in result (3.8).

Similar arguments show the overall probabilities of cases (3) through (6) to each

be 3
( ui 8) : (39)

Diagram 3.2.

(2:2)

a 2.1)
(0,2) (3) (2.0)

(91) )
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By (3.8), (3.9) and Property 3.1,

2)2 43

Lins) = @ +92 T @tap

(3.10)

Diagram 3.2 gives a visual representation of all possible outcomes of the race
where Y(;) < Z. It shall be implicitly understood that the one member of team Z
does not finish racing until at least one of the other teams has completed the race.
Each path from the state (2 2) to a state of the form (i 0) or (0 j) (i,5 = 1,2)
represents one of the six possible outcomes listed above. The path representing
case (1) is highlighted in Diagram 3.2.

Comparing (2.6) to (3.10), we see that the two results are identical. Thus, at
least for the first order statistic, the probabilistic approach does not improve the
appearance of our end result.

We now generalize the preceding results to the case where we have two arbitrarily

distributed Erlang random variables.

Property 3.6. Let Y and Y; represent two Erlang random variables with
ng
=) XijnieNi=1.2
J=1

and where X;; ~ exp(\:),i=1,2,5 =1,2,...,n;. Then,

ny ny—-r n
n1+n2—r1—1) AT\
Lip(s) = E ( —

+ i (ﬂ.l +ny —-rg— 1) A"t \p"2T2

Z\ 0 m-l s
and
ny n n
n; +n2—r1—1) A"t A
Liy(8) = (
@) ,fi:l ng 1 (A1 + Az +8)" T (A ¢ g)m
+ 22 (nl +ng—rg — 1) ALM ™
= n -1 (M+A+ s)t"*'"’“"(l\z +38)ra’
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Proof. We begin in the state (ny nz). If we decrease the i-th component by a
(i.e. complete a stages of the i-th Erlang random variable), we shall say that we
have moved a steps in the direction D;, i = 1,2. When we say we have reached
a state, we shall mean that the state has been reached prior to the catastrophe Z,
Z ~ exp(s). For example, suppose we reach the state (r, r;). Then we have
moved a total of ny — 7, steps in direction D; and ny — ry steps in direction D,
prior to catastrophe. Also, when we say we have reached a state where the i-th
component is zero (i = 1,2), we shall mean that this is the first state in which that

component has been zero unless it was stated to be zero in a previous state.

To calculate L(;)(s) = P(Y(;) < Z), we want to ensure that at least one of Y;
and Y2 has occurred prior to Z. That is, one of the two components of the state

reaches zero prior to catastrophe. Now,

P(Y{1) < Z) = P(at least one of Y, Y; is less than Z)
= P(Y1 =min(1,Y?,2) or Y2 = min(11,Ys, 2))
= P(i =min(, Y2, 2)) + P(Y2 = min(N, Y2, 2))
(almost surely disjoint events)
= P(we reach (0 r3),r2 =1,2,...,n3)
+ P(we reach (r; 0),r; =1,2,...,n,)
= i‘: P(we reach (r; 0)) + i P(we reach (0 r3)).

ri=1 ra=1

(3.11)

In order to reach the state (r) 0), we must first reach (r, 1) and then (r; 0).
From (n; ny) to (r; 0), there were a total of n; — ry steps in direction D, and nj
steps in direction D;. However, we must reserve one step in the direction Dy until

the very last step since that is when the zero component must appear for the first

19



time. The total number of ways of rearranging ny —ry Dy’'s and np — 1 Dy’s is

(np—ri+np—1)! (n1+n2-—r1—l)

(ny— 1) (ng —1)! — ng -1 (3.12)

The probability of reaching the state (r; 0) along any of these paths can be
obtained by the same reasoning used in the previous exa.niple. That is, among the

three exponential variables X;,, X2j, and Z, Property 3.4 yields

3 Al
P(Ki = min(Xi Ko 2) =y
and
P(Xaj, = min(Xyj,, X2, Z)) ey
2z = 1j1s 2252s YR
for j; =1,2,...,n; and j; = 1,2,...,no. Since we complete n; — r; stages of Y;

and ny stages of Ya, the probability of reaching (r, 0) in a given way is

Al nm-r /\2 n2 ’\lnl—rg 1\2"’
— Y — 1 = rprr (3.13)
Al+ A2 +s A+ A+ (A1 + A )72
We have a similar calculation for the probability of reaching state (0 r2).
By (3.12) and (3.13), for fixed r;, we obtain

n+nog—ry— 1) A{‘""Ag"’
P(we reach (r; 0)) = . 3.14
( (r10)) ( ng—1 (A1+A2+8)M+m—n ( )
Similarly, for fixed ry, we obtain
n+ny—ry— 1) | A A2
P(we reach (0 rp)) = . 3.15
( ( 2)) ( n'l — 1 (Al + /\2 + s)ﬂ.l'f‘ﬂz—"ﬂ ( )

Applying results (3.14) and (3.15) to (3.11), the result for L(;)(s) follows.

To obtain Ly)(s)=P(Y(2) < Z), we wish to ensure that both ¥; and Y; have
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occurred prior to Z. Thus,

P(Y(2) < Z) = P(both Y; and Y2 occur before Z)
= P(we reach (0 0))
=PY1<Y2<ZorYy<Y; <2)
=P <Vh<Z2)+PYa<Y<2)
(almost surely disjoint events)
= P(we reach (0 r3) then (00),r; =1,2,...,n2)
+ P(we reach (r; 0) then (00),r; =1,2,...,n;)

= i P(we reach (0 rg) then (0 0))

ry=1

+ il: P(we reach (r; 0) then (0 0))

r=1

= :V_l: P(we reach (r; 0))P(we reach (0 0) from (r, 0))

r=1

+ f: P(we reach (0 r;))P(we reach (0 0) from (0 r3)).
ra=1
(3.16)

Now P(we reach (r; 0)), for fixed r;, and P(we reach (0 r2)), for fixed ry, are
given by results (3.14) and (3.15) respectively. Also, starting at state (r; 0), there
is only one way to reach state (0 0); that is, we must complete the remaining r,

stages of Y; prior to Z occurring. But

. A
P(Xli = mm(Xh-,Z)) = Al ':'8
fori=1,2,...,n; and so, for fixed ry,
YA
P(reach (0 0) from (r, 0)) = ( P s) . (3.17)
1
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Similarly, for fixed ra,

P(reach (0 0) from (0 rp)) = ( ’\;\: 8)". (3.18)

By results (3.14) and (3.17), for fixed ry,

P(we reach (ry 0) then (0 0))

ny+nyg—r—1 AT - A \"
(") e ()
_[(mtnp-r1 — 1 A"
- ( ng -1 ) A1+ A2 +8)MFM (A + )

Similarly, by results (3.15) and (3.18), for fixed ra,

(3.19)

P(we reach (0 r2) then (0 0))

_ (n1 +ng~rg — 1) AMA™
n—-1 ('\l + A+ s)m+nz—r2(A2 + 3)"2 .

Applying results (3.19) and (3.20) to (3.16), the result for L3)(s) follows.B

(3.20)

Notation. When we say that a variable is Erlang with parameters (n, A) we shall

mean that it has n stages which are each exponential with rate parameter .

Example 3.1. Let Y; and Y; represent two Erlang random variables with respec-

tive parameters (4,3) and (2,2). Calculate L(;)(5) and L2)(5).

Solution. We have that n; = 4,np = 2,A\; = 3,A2 = 2 and s = 5. Then by
Property 3.6 we have

‘4 - 4-r102 2 - 402—-r;
e =% (1) X (3 o
r=l1 r=1
_(4\ 3322 3\ 3222 23122  (1)3022
= (I)W‘“(l)ﬁ"*(l)l_of* (1)Tof
() ()5
3)10° " \3/ 10
432+ 1080 + 2400 + 4000 + 648 + 810
- 10000

= 0.9370



and

4 2
5-r\ 3422 5-rg\ 3422
Lo =3 (1) e+ 2 (37 e

n=1 r3=1
4\ 3422 3\ 3422 2\ 3422 1\ 3422
(Jﬁﬁi*(Jﬁﬁﬁ*(Jﬁﬁﬁ*(Jﬂﬁa
() ()
3/)10°M! 3/10'
_ 663552 + 622080 + 518400 + 324000 + 9072 + 3240
409600000 4900000

= 0.0077.8

Corollary 3.1. In Property 3.6, if ny = nz =n and A; = Ay = ), then we obtain

the more compact results

2 /n—-r-1 A\
L(l)(s)=2z( n-1 )(2A+s)
r=1

and

Mm—r—1 A A"/ AN
L(”("-2Z( )(2A+s> (A-i-s)'

We shall now verify that the formulas given in Property 3.6 give the same results
as those obtained in the two variable example solved earlier. Setting n; = ny =

n=2and A\; = A = A, we use Corollary 3.1 to obtain

oo =23 (1) (&)
-2 |() (&) () ()]

W
@r+3)? " (@r+3s)
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and

oo =23 (1) (o) ()

r=1

-+[() () (5:) () () ()
1/)\2\+s A+s 1/\2\ +s A+s
2! At
S BT+ @ te’0hts)
We see that these are results (3.10) and (3.7) respectively.

Example 3.2. Let Y; and Y; represent two Erlang random variables with common

parameters (3,10). Calculate L(;)(20).

Solution. We have that n = 3, =10 and s = 20. Then by Corollary 3.1 we have

L(1)(20) =2rz::1 (5;,-) (%)s_,

(B Q@+ O®]

1024 256 64
17
~ 256
=~ 0.0664.8

We now generalize the preceding results to the case where we have an arbitrary

number of arbitrarily distributed Erlang random variables.

Notation. Let Y},Y3,...,Y: represent k arbitrarily distributed Erlang random

variables with ny, ng,...,n, stages respectively. The notation
() .. o)

shall represent the state where Y;,Y>,...,Y; have r1,rs,..., 1% respective stages
remaining just after m of the k Erlang variables have zero stages remaining; i.e. just

after m of k state components have reached zero. Define r‘(o) =n;1i=1,2,...,k
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In order to obtain the Laplace transform, Ly)(s), of the u-th order statistic, we
will consider all paths from the initial state (n; ny...ni) to states where exactly
u of the k components are zero. Let the positions of the zeros, as they appear in
order, be i;,12,...,1y.

For some m € {1,2,..., k}, define notation for multinomial coefficients as follows.

Let

( Cc )_ C!
Ciy-.»Ciy...,Ce) ~ Ci}---Ci e+ - Cil’

where C; = rf"'"l) - rf"') fori #im,i=12,...,C;

C= 2:-;1 C; and let

= r,(":—l) -1, and

m

( D ) _n
Dm)Dm-{-lv“'aDk Dm+l!"'Dk!’

where D; =r§m-l) —rgm),i=m+1,...,k,Dm =r™ Y _1 and D=Y% D,

i=m

Property 3.7. Let Y),Ya,...,Y; represent k Erlang random variables with

¢
=) XgmeNi=12,.. .k
i=1

where X;; ~ ezp(\i),i = 1,2,...,k;5 = 1,2,...,n;. Let i, iy,...,i, be the posi-
tions of the zeros as they appear in the k-tuple state for a given path. Thus, r,(":) =
0,m=1,2,...,k. Forl<m< u,define A(m)={1,2,...,k}\ {i1,d2,...,im-1},
for some 1,,13,...,im € {1,2,...,k} and m < k. Define the function f,, by

fm= fm(ila 2,...,4m, fgm—l), "gm—l), .o ,T,(gm-l)a"gm)- r;m)’ cee !T£M))

= (Gu o) M
C[,...,C{m,...,Ck i=1 2GEA(M)A¢+3
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Then,

L@ =Y. YA Y Y Y Yk

nEA(l) I i2€A(2) [® iu€A(u) ()
v
=II Z me ,U=1,2,...,k,
m=1 \in€A(m) (™)

where [T.—, (zime A(m) 2™ fm) is a nested summation, where ) ) represents
the multiple summation over all possible values of r{™;r{™, ..., r{™ (je over
all possible states ™) where ri™, r{™ .,r‘("":) all equal zero and the values

f1 g °°

rsm-l)a "gm-l), v srl(cm-l) are known. That iS,

(m=1)
s

2= 2 )

o™ beA(m+1) Moy

where we define ety
,

Ai ‘e
Y= b= (%)
Proof. We begin in the state (n; np...nx) = (r{o) r§°’ e r,(co)). If we decrease the
i-th component by s (i.e. complete s stages of the i-th Erlang random variable), we
shall say that we have moved s steps in the direction D;, i =1,2,...,k. When we
say we have reached a state, we shall mean that the state has been reached prior
to catastrophe. When we say we have reached a state where the i-th component
is zero (i = 1,2,...,k), we shall mean that this is the first state in which that
component has been zero unless it was stated to be zero in a previous state.
To calculate L(y)(s) = P(Y(y) < Z) for u = 1,2,...,k, we want to ensure that
at least u of the k Erlang variables have occurred prior to Z. That is, u of the k
components of the state reach zero prior to catastrophe. Let I = {1,2,...,k}. For

m € I, let f,, = P(component i,, reaches zero at state r_("‘)lx("‘“)).

26



Now,

P(Y(u) < Z) = P(at least u of , Y2,...,Yi are less than Z)

= P(we reach a state with u zeros)

k
= Z Z P(component i) reaches zero at state t(l))
=1 [(1)

x P(u-1 more components reach zero|r(!))

k
= Z Z f1P(u-1 more components reach zero|r(!))
i1=1 Q)

k
= Z z f Z Z P(component i, reaches zero at state (2 |p(!))
Q=10 igrigfiy [

x P(u-2 more components reach zero|r(?))

.o

PP D DD I ISP IP I

11€A(1) [_(1) 2€A(2) (d iuEA(u) L)

Now fn can be computed as follows for m = 1,2,...u. Note that r‘(""‘"” #0.
To reach state (r{™...r{™ 0 r,(":ll co.r{™) from state (r{™"V .. r{™=1y we
moved a total of rf""l) -rg"') steps in direction D; fori =1,2,...,k. The number

of ways in which we can do this, saving one step in direction D;_, until the last step,

is
(rim -1+ Z“ﬁm(rgm'l) — ™) 3 ( C ) )
("i.':—l) -1 H#;m(fﬁm"l) -rfmp T \Gy,.., Gy - -, Ci .

with probability along any of these paths of

rf"“'” _'gm)

k N
g (E¢€A(m) Aa +s) : (3.22)
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Thus, by (3.21) and (3.22) we obtain

Jfm = P(component i,, reaches zero at state (™) |[("“1))
= (the number of ways to reach ™ from (™~1))

x P(we reach 1™ from r(™-1 along any path)
Am=1)__(m)

C ) k A i T
= a
(C]_,--.,C.'m,...,Ck g(zaeA(m)Aa+3)

Example 3.3. Let Y},Y2 and Y3 represent three Erlang random variables with

respective parameters (2, 5), (3,5) and (1,2). Calculate L)(1).

Solution. We have that k = 3,n; = 2,n3 =3,n3 = LA =X =5 and A\; = 2.
Note that since we want to calculate L)(1), our (artificial) catastrophe variable is
exponentially distrbuted with rate parameter s=1. Then by Property 3.7 we have

LoyW= Y Y n

igEA(l) [(‘)

=2 X (C'x,Cz,Cs)

§1€EA(1) [(V)

= 2 Z(Cx,cz,cs)-

i €A(l) rw i

>y 3

1=1b€A(2) p(D (Cl’cz’ Cs

(0 __(1)

M r—rg
Taita+8

3

1

p—

3

(1) (1)

3 1 C 5 ni+ng—ry 9 \ "~Ts
=2 X (,cz,cs)(ﬁ (13)
r3 =
(1)

)
)
( % )m-r, D g (123 ),..-r,
(

5 )ﬂl—fgu'{*nﬂ—rgu 2 )n;
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+(
5320 5321 2 522! 2 521
+ (0,2,0) T (1,2,0) S (1, 1,0)?,3T + (0,2,0)1_33_
0

+( 1 52! (1 )512*+( )gz_l
0,1,0/ 13° 1,0,0) 13% 0,0,0/ 13!

1875 250 25 1875 125 750 100 50

= 38561 T 2197 T 160 T 28561 T 2197 T 28s61 T 2197 T 2197
;10 10 2
169 169 T 13
23324
~ 28561
~ 0.8166.0

Corollary 3.2. In Property 3.7, let \; = X fori = 1,2,...,k. Define the function

gm by
gm =9m(i1, i21 M ] iﬂl) rsm-l), rgm—l), [ ,rim-l),fgm), rgm), soy 1'£m))
C A . ar{mm ey
= (cl,...,cim,...,ck) ((k-m+1)x+s)
Then,

L@ =Y Ya Y Yo Y Y

H1€EA(L) K1) i2€A(2) 1B fuEA(u) (W)
u
=H ( Z ZQM)au=112!"-vkv
m=1 \i,EA(m) [(m)

where [, (Zi...e A(m) o) g,,.) is a nested summation, where ) m) is as de-

fined in Property 3.7 and we define

(k=~1)

A\
z:gk—gk— ('\_*_s)

™




Corollary 3.3. In Property 3.7, let n; =nand \; =\ fori =1,2,...,k. Define
the function h,, by

b = b, 0, ) o)

D A TE (™ —rlm)
= (Dm,Dm+1,...,Dk) ((k-m-l- LA +s)

Then,
Leuy(s) = ), Y ) heY by
oy o o
ry, @ ko mg® b (4D
— S S mY Y e Y T h
( u) bi=2r,, (V=1 b3=3r,, (D=1 bu=u+lry, (w=]

u To ™)
_H[(k m+1) Z Y h,,,] v=12,...,k

m=1 bm=m+1 To (™)=1

(m~1)

where []}.—, [(k -m+ 1)2:"_:," +1 Z::: (m)=1 h,,J is a nested summation, where
>_pm is as defined in Property 3.7 and we define

=1}
k

th = h = (Aj—s)

o

Proof. We will let the first zero to appear in the first stai;e component, the second
zero in the second state component, and so on, finally putting the u-th zero in the
u-th state component. Using the style of argument from the proof of Property 3.7
with ¢,, fixed equal to m for m =1,2,...,u, the result follows.B

We shall now verify that formula (3.22) given in Property 3.7 gives the same
results as those obtained in the two variable example solved earlier. Setting k = 2,
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ny=ng=n=2, A\ =\ = A and u = 1, we use Corollary 3.3 to obtain

L(l) (3) =2 Z hl

) {82
oy A\ far (r0 =)
=232 3 (o00,) (5%5)
b,z=2 (xz): D\, D,
Zn: (2n—1-r£" A\ Zialnr)
)(7+)
(1)
r§”=l n—ry 2A+s

(1)

L2
Aoy 2""51) 22 +s
(O

=2 [(i) (Z\%)a * ((1)) (2,\1 3)2]
22 43
S @rte)’  @rte]

which agrees with (2.6), (3.10) and the result given by Corollary 3.1.

Also, setting u = 2 we obtain

Lgy(s) =2) hi(1)D_ ke

o @
=2 2 hyhy
L
(0)

= [(i) @\ + .3;()\ Yo (;) @2+ ’;\;(A +o!
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_ L Loy
@A+ 82N +3)° @A+ +9)

which agrees with (2.5), (3.7) and the result given by Corollary 3.1.

In summary, by using a probabilistic interpretation, we have found a method
to calculate the Laplace transform of an Erlang order statistic under the most
general conditions. Rather than deriving the p.d.f. of each order statistic and
applying the definition of a Laplace transform, we can represent the calculation as
a multiple, nested summation. While the notation for this summation is somewhat
cumbersome, calculating such a summation may often be preferable to the long and

tedious process of applying the definition of a Laplace transform directly.
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4. A MARKOV CHAIN APPROACH

We can also compute the Laplace transforms of order statistics of Erlang random
variables by viewing movements between states as a Markov chain. We shall first

define some notation.

Notation. Let Y,Y>,...,Y; represent k arbitrarily distributed Erlang random
variables with respective parameters (n1,A;),(n2,A2),...,(nk, Ac). Let Z be an
(artificial) catastrophe variable, where Z ~ ezp(s). Let the states of the system be
vectors of the form (ry...r¢),0 < ry < ng,...,0 < ri < ny together with a state
C (representing a catastrophe). There are 1 + l-[:;l(ng + 1) possible states. We
could order these states and label them as 1,2...,1+ HLl(n.- +1). Depending on
the order statistic of interest and on symmetry, some states can be merged into a
single state. Define a sequence of random variables {S, }. where Sy, represents the
state of the system on step n. Let Y; = 3°7%, X;j, where {X;;} are independent
exponential ();). If the system is in state s, on step n, then the system will be in
state Sp4+1 on step (n + 1), where (a) sn4+) differs from s, by one unit in only one of
the k components, or (b) s,4; represents the catasttophé, or (c) Sp+1 = 8p if the

system is in an absorbing state.

We have P(Sn41 = 8n+1|Sn = 8n,..., 81 = 81) = P(Sn+1 = $n+1|Sn = 84) so
{Sn} is a Markov chain.

Suppose state s, has form (ry...r¢). The transition probabilities are

P(Sn-H = 3n+l|Sn = 3n)

A
¢ 2 A‘.+s ifsn =(rl...r'-—1,,,1‘k) and 8y is not absotbing
32

= { 1 if s,, is absorbing

—_— if Sn41 represents the catastrophe and s, is not absorbing
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We are now ready to model the process of our “exponential relay race” as a
transition matrix. In order to understand how we will accomplish this task, consider
the two variable example considered in the previous two sections. Suppose we wish
to calculate L;)(s) or equivalently, by Property 3.1, P(Y(;) < Z). That is, we wish
to calculate the probability of eventually entering a state with at least one zero
component in one or more of the first k = 2 positions. Let all such states belong
to the set A; (ie. A; = {(00),(10),(01),(20),(02)}). Note that P(Y;) > Z)
corresponds to states in the class C. Thus the transition matrix corresponding to

computing L;)(s) is

22) [0 725 05 O 0 %57
(21) |0 0 0 o G T
(12) |0 0 0 x5 5 =n
v (11) {0 o0 0 0 #5 o5
A, 0 0 0 0 1 0
c (0 o 0 0 0 1

A; is considered to be an absorbing state for two reasons. The first reason is that
once the process enters a state with at least one zero component, it can never enter
a state with no zero components. Secondly, the process is considered to be finished
once we know that the first order statistic has occurred prior to catastrophe. C is
considered to be an absorbing state. Thus, the problem of computing L(;) becomes
that of finding the limiting probability of entering into a state in A;.

In order to simplify calculations, we can reduce the dimension of P;. All states,
except for A; and C, are transient states since once we leave one of these states we
never return to it. We now define some notation and present a method by which

to reduce the dimension of our transition matrix.
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Notation. Let Y;,Y5,...,Y: represent k Erlang random variables with respective
parameters (n,A), (n2,A),...,(nk, A). Let r = (ry ro...r) represent a typical
state, 0 < r; < nii=12,....,k. Letr =(n rg...rk)' represent the set of
all states which are allowable permutations of the state r = (r; r2...7¢). By a
permutation of a state we mean a state formed by rearrangement of the components
of the original state. By an allowable permutation of a state we mean a permuted
state with 0 < r; <n;,i=1,2,...,k. For example, if we start in the state (3 4 5),
a possible state would be (1 1 4). Permutations of (1 1 4) are (11 4),(1 41)
and (4 1 1). Allowable permutations of (1 1 4) are (1 1 4) and (1 4 1). Hence,
(114) = {(114),(141)}. Note that the initial state has only one allowable

permutation.
To reduce the dimension of the transition matrix, let Y3,Y3,..., Y represent &
Erlang random variables with respective parameters (nj, ), (ng, A), ..., (nk,A). To

compute L,)(s),u = 1,2,...,k, we let A, be the set of all states with at least u
zero components. Let P, be the transition matrix that models the process, letting
the states be A,, C, and any states which do not fall into these two sets. A,
and C are to be considered absorbing states. For each of the remaining, transient
states r = (rp ro...7%),0 < r; < n;,i = 1,2,...,k, replace it and its allowable
permutations by the single state r’ = (r; rz...7%)’. Each of these states reduces
the original number of states by up to k! — 1 states.

Consider any two “permutation states”, r} and rj. The one step transition
probability of reaching rj from r{ can be shown to simply be the probability of
reaching rj in one step from any element in rj. The one step transition probability
of reaching A, or C from r} can also be shown to be the probability of reaching A,

or C from any element in r].

Reducing the dimension of the transition matrix is only feasible when all variables
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share a common rate parameter. Otherwise, the probaBility of reaching rj from
r{ is not equal to the probability of reaching rj from any element in r]. Instead,
the probability of reaching rj from r] is a weighted average of the probabilities of
reaching rj from each state in rj. Thus, when not all variables share the same
rate parameter, reducing the dimension of the transition matrix is possible but can
often require more steps than it saves.

Unless otherwise stated, the transition matrix Py,,u = 1,2,...,k, shall now refer
to the transition matrix that has been reduced in dimension by the above described

method. Using this method, we replace the original transition matrix P; above

with
22) [0 B; O 0 %57
21 |0 0 s o o
P=@11 [0 O 0 #25 o%
A 0 0 0 1 0
c o o 0 0 1

where (22) = {(22)},(21) ={(21),(12)} and 1 1)’ = {(1 1)}.

Method 1: Fundamental Matrix Method. (ref: Winston, pp 984-987)

A transition matrix P with s states, of which m are absorbing states, can be

[

where Qis (s—m)x (s—m), Ris (s—m)xm,0ismx (s—m) and [ is themxm

written as

identity matrix.

Property 4.1. Given that the system begins in state i, the probability of ab-
sorption into absorbing state j is the (i,j) component of (I — Q)"'R, for i =
1,2,...5,j=1,2,...m.



Definition. (7 — Q)™ is called the fundamental matrix.

In order to facilitate this computation, we need to divide the matrix P; into
separate blocks or matrices. Define the four matrices Q;, R;,0; and I, as follows.
Q: is the 3 x 3 matrix obtained by deleting the row and columns of P, which
correspond to the absorbing states A, and C. R, is the 3 x 2 matrix obtained by

deleting the rows which do correspond and the columns which do not correspond

to the absorbing states. That is,

22
0 2A+s 0 0 2:\.-1-3
_ A —_
Q= |0 0 22 +s R, = 2£{>s 2X'+a
2
0 0 0 ZX:'I 2X'+.

Also, 0y is the 2 x 3 matrix of zeros obtained by deleting the rows which do not
correspond and the columns which do correspond to the absorbing states. I is the
2 x 2 identity matrix obtained by deleting the rows and columns not corresponding

to the absorbing states. Therefore, we can rewrite P} as

Q1 R,
P =
[ 02x3  Jax2
Now,
1 —2}«:0 0
x3—Q1={0 1 -5
[ 0 0 1

and so, using Maple V, we calculate (I3x3 — Ql)'l to be
L & o
(xa-Q)7'=(0 1 Ho
0 0 1
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Again with the assistance of Maple V, we obtain

Y 223 423 ) 2\ 222
22) [@gr t @mra® Dt Gare? T Barey
-1 2
(Bxs—Q1) " Ri= 1) | 55+ a@hhy o5+ G
4 2A
(1) Dits pren (4.1)

The Maple V commands needed to derive (4.1) are

> with(linalg):

> [3:=diag(18$3):

> Rl:=matrix(3,2,[0,s/(2*lambda+s),lambda/(2*lambda+s),s/(2*lambda+s),
2*lambda/(2*lambda+s),s/(2*lambda+s)]):

> Ql:=matrix(3,3,[0,2*lambda/(2*lambda+s),0,0,0,lambda/(2*lambda+s),0,0,0]):

> evalm(inverse(I3-Q1)&*R1);.

We wish to know the probability that, starting in state (2 2), we are absorbed
into state A, rather than state C. According to Property 4.1, this is given by the
(1,1) entry of (Isx3 — Q1) "'R;. That is,

2)2 + s
@r+3s)? @A +9)?

P(reach A;lat (2 2)) =

which is the same result we computed for L(;)(s) in the previous chapters for the
two variable example. We note that, because we reduced the dimension of the
transition matrix, we were only required to invert a 3 x 3 matrix rather than a 4 x4
matrix.

The Fundamental Matrix Method (FMM) also gives us some additional infor-
mation. That is, each element in column 1 of (I — Q)-lh represents the Laplace
transform of a different random variable. For our example, the (2,1) component

of (Isx3 — Q1) "' R, represents the probability that starting in state (2 1) (or (1 2))
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we are absorbed into A;. This is clearly the Laplace transform of the first or-
der statistic of two Erlang random variables with respective parameters (2, ) and
(1,). Thus, in deriving one Laplace transform, we simultancously find derivations
for several Laplace transforms.

In general, consider two Erlang variables with respective parameters (n, \;)
and (ng,A2). If we create a transition matrix P;, which has not been reduced in
dimension, for the purpose of deriving L(;)(s) given we start in state (n; ny), the
first column of (I — Q)'lR will contain L;)(s) for any t;vo Erlang variables with
respective parameters (r1,A;) and (ro,A\p) for 1 <r; <njand 1 < ry <ny. When
we reduce the dimension of the transition matrix in cases where there is a common
rate parameter, the element in the first column of (I -Q)"IR corresponding to
a particular permutation state, r{, represents L;)(s) starting at any state in r}.
However, if we reduce the transition matrix in cases where there is not a common
rate parameter, the element in the first column of (I - Q)'lR corresponding to a
particular permutation state, r{, represents a weighted average of L;)(s)’s starting
over all states in rj.

We now use FMM to calculate L(z)(s) = P(Y(2) < Z) in the two variable example.
That is, we wish to calculate the probability of eventually entering a state with at
least two zero components in one or more of the first k =2 positions. Let all such
states belong to the set A;. Note that Ay = {(00)}. C is as defined earlier. The

reduced transition matrix corresponding to computing L(z)(s) is



(22) [0 - 0 0
@y [0 0 s s
(r1y (o o 0 0
P,= (20 {0 O 0 0
(toy |0 0 0 0
As 0 0 0 0
c Lo o 0 0

0 5y
0 0 fr‘ﬁ
2) 0 s
2248 22+
w 0 s
0 A s
A+s s
0 1 0
0 0 1

Since we are only interested in the probability of being absorbed into A; from a

given state, we only require the first column of (Isxs — Qg)"le which is

22y
1)
COL1[(Isxs — Q2) "*Ra] = (1 1)
20y
oy

- _2A4(4043s) -

(2A+18)"(A+5)

223(42+3s)

(22+8)3(A+s)
222

22X+. R X+-$

(A+s

Jn

(4.2)

I

and so following the method used for computing L;)(s) we find that

P(reach A;|at (2 2)) =

244N +3s)

@A+ 83 (A + 9)?

which, with a little algebraic manipulation, one can show matches the results for

L(2)(s) from the previous chapters. We note that, because we reduced the dimen-

sion of the transition matrix, we were only required to invert a 5 x 5 matrix rather

than a 9 x 9 matrix.



The Maple V commands needed to derive (Isxs — Q2) "' R; and, hence, (4.2) are

> with(linalg):

> I5:=diag(185):

> R2:=matrix(5,2,{0,s/(2*lambda+s),0,s/(2*lambda+s),0,s/(2*lambda+s),
0,s/(2*lambda+s),]Jambda/(2*lambda+s),s/(2*lambda+s)]):

> Q2:=matrix(5,5,(0,2*lambda/(2*lambda+s),0,0,0,0,0,lambda/(2*lambda+s),
lambda/(2*lambda-+s),0,0,0,0,0,2*lambda/(2*lambda+s),0,0,0,
0,lambda/(lambda+s),0,0,0,0,0)):

> evalm(inverse(15-Q2)&*R2);.

In this case, the first column of (I5xs — Qg)'le will contain Ly)(s) for any two
Erlang variables with respective parameters (r;, A) and (rz,A) for 1 < r; <2 and

1<rp <2

The General Case for the Fundamental Matrix Method.

Let Y1,Y,,...,Y; represent k arbitrarily distributed Erlang random variables
with respective parameters (ny, A1), (n2, A2),-..,(nk, Ak). To compute Ly)(s),
u=12,...,k, we let A, be the set of all states with at least u zero components.
Let P, be the transition matrix that models the process and has been decreased in
dimension if convenient, letting the states be A,, C, and any states which do not
fall into these two sets. A, and C are to be considered absorbing states.

Let Q. be the matrix obtained by deleting the row and columns of P, which
correspond to the absorbing states A, and C. Let R, be the matrix obtained by
deleting the rows which do correspond and the columns which do not correspond to
the absorbing states. Let 0, be the matrix of zeros obtained by deleting the rows

which do not correspond and the columns which do correspond to the absorbing
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states. 'Let I be the 2 x 2 identity matrix obtained by deleting the rows and columns

not corresponding to the absorbing states.

Example 4.1. Let Y;,Y2 and Y3 represent three Erlang random variables with
respective parameters (2, 5), (3,5) and (1,2). Calculate L(;)(1). This is identical
to Example 3.3.

Solution. We begin at the state (2 3 1) Note that since we want to calculate
L(;)(1), our (artificial) catastrophe variable is exponentially distributed with rate
parameter 1. Let A; be the set of all states with at least one zero. The transition

matrix that models this process is

o 2
23 [0 3 0 5 0 0 & 47
22) [0 0 5 0 & 0 &
21 [0 0 0 0 0 & & &
P 13 [0 0 0 0 5 0 % &
l=
12) |0 0 0 0 0 S & &
a1 o o o o o0 o0 # 5
A, 0 0 0 0 0 0 1 O
We now wish to diwcc'le Png Qhe gur &atr?c& 81, ﬂl, Olgxs and Ipx3. We
have that
0 5 0 5 0 0] 5 1]
00 &5 0 5 0 5
00 0 0 0 5 .
Ql: 5 Rl: 7 1
00 0 0 5 O 5% o
00 0 0 0 % 5 3
and 5o 0 0 0 0 0 O] 2 L

[ & R ]
P = .
Oxe JI2x2

4



Now,

1 -F% 0 -&% o0 0]

0 1 -5 o0 -5 o

o 0o 1 o0 o0 -%
(Iexe — Q1) =

60 0 1 -5 o0

o0 o o 1 -J

0o 0 o o o0 1|

and so, using Maple V, we obtain

1 5 2 5 S0 ams
13 169 13 169 21 71
01 5 0 35 &
00 1 0 o0 &
(loxe — Q1) ™" = s Z:
00 0 1 § B
00 0 0 1 £
000 0 0 0 1|

Again, we use Maple V to obtain

-23324 5237 -
28561 28561

1848 9

2197 2197

LT TY

-1 165 169

Isxs — Q1) 'Ry =

(Iexe — Q1) Ry 03 258
2107 2197

151 18

169 169

12 1
L Tj ﬁ o

and so L(;)(1) is the (1,1) component of (Igxg — Q1) ' R;. That is,

23324
L(l)(l) = 28561 =~ (0.8166

which matches the result from Example 3.3.
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The Maple V commands needed to derive (Igxg — Ql)'lRl are

> with(linalg):

> [6:=diag(1$6):

> Rl:=matrix(6,2,[2/13,1/13,2/13,1/13,7/13,1/13,7/13,1/13,7/13,1/13,12/13,1/13)):

> Ql:=matrix(6,6,(0,5/13,0,5/13,0,0,0,0,5/13,0,5/13,0,0,0,0,0,0,5/13,0,0,0.0.5/13,0,
0,0,0,0,0,5/13,0,0,0,0,0,0}):

> evalm(inverse(I6-Q1)&*R1);.8

Method 2: Recursive Method.

Property 4.2. LetY,,Ys,..., Y, represent k Erlang random variables with respec-

tive parameters (ny, A1), (n2, A2),. .., (ng, M) Let

L(u)(8) = Lw)(my nz...n)(8) = Ph, ngmpr @ = 1,2, k,

represent the Laplace transform of the u-th order statistic starting from the state

(myng...ni). Ifn;>1,i=1,2,...,k, then

k
1
L) = g2 ML e
(u)( ) 2?:1 Ai + 38 g i&(u),(ny...ng l"'"k)( )
1 k
- Agl _
2::], Ai +s ..Z__; ‘p""""‘ 1..ng

where L(y,) .(s) = 1 whenever we start in a state that already has u zero components.
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Proof. Let Z represent the catastrophe random variable, Z ~ ezp(s).

Ly)(s) = P(Yu) < 2)
= P(reach a state with u zeros|(n; ny...ng))
= P(Y; completes 1 stage and we reach a state with u zeros)

+ P(Y2 completes 1 stage and we reach a state with u zeros)

+ P(Yi completes 1 stage and we reach a state with u zeros)

= -—ki\l—-—P(reach a state with u zeros|(n; — 1 np...ng))
21':1 Ai +s ’
A
+ —————P(reach a state with u zeros|(n; na —1...ng))
Z:';l A‘. +s
Ak :
+ —5—— P(reach a state with u zeros|(n; nz...nx — 1))
Zi:l Ai +s
1

k
= Zk X+ z’\"L(").(ﬂx»-m—lmns)(3)
=17t i=1

k
1
= Ek Ai +s Z Aip:pnn‘—l...nk’

=1 =1

Note that L,)(s) = P(Y(4) < Z) and so, whenever we start in a state that already

has u zero components, P(Y(,) < Z) =1 and hence L(,)(s) = 1.B

If we reach the state (ry...7r;—y 0 ri4y...7%), i.e. astate with a zero component

in the i-th position for some i = 1,2,...,k, then it is clear that

L(“).("x--»"i-x 0 rigr...ra) (3) = L(u-l).(r;...r;.., n.;.;...r,,)(s), u>2. (4.3)

By this reduction, we never encounter a “state” with more than one zero.

Let us confirm that Property 4.2 results in the same answers already obtained

45



for the two variable case. We have that

L) (s) = Lqy,2 2)(9)

A
=23 +3 [Lay.@ v(s) + Layee vs)]

) [Lay.0 2)(8) + 2Ly, 1y(s) + Lay.2 0)(8)]

2
) [2+ 2Ly 1y(8)]

=9 e ) (2’\4_ ) [Lay, 1y(8) + Ly, 0)(8)]

=<A) (2A+)

and

L3)(s) = L(2) (2 2)(s)
A

[L(z) @ 1y(8) + L(2).2 1)(8)]

) [Le2).0 22(8) +2Le2),02 1)(8) + L2y 2 0)(5)]

2
(2,\+ ) [2L(1y,2)(8) +2Le2),1 1)(8)] (by (4.3))
( A

2 A 2
2+ s) [2(A T s) +2Le)a 1)(8)]
2xi A 2
T @A+’ 2(2,\ ¥ s) [Lea0 n(8) + Ly 0)(s)]

- +2( A )2 [2L 1y, 01)(5)]
(2X + 8)%(A + 8)° 22+ (M)

204 A\ A
(by (4.3)) = 2A+8)2(A + 8)° +2(2)\+s) 2(A+s)

_ A4 . 4t
T @A+ +9)? T @A+ (A +s)

We see that both L(;)(s) and L(3)(s) agree with the previously obtained results.
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Note that unless otherwise specified, each step in the above two derivations invoked
the use of Property 4.2.

Example 4.2. Let Y7,Y> and Y3 represent three Erlang random variables with

common parameters (2,)). Calculate Ly)(s).

Solution. We begin in state (2 2 2). In cases where our variables are identically
distributed, it is often easier to read the necessary information from the reduced

dimension transition matrix P, where

(222) [0 2 0 0 0 0 0 0 %]
221 |0 0 B 0 5 o0 0 0 5
21y’ jo 0 0 g 0 F 0 0 Fy
111’ |o o 0 0 0 0 35 0 5
PR=(220 [0 0 0 0 0 & 0 0
210 {0 0 0 0 0 0 5 P o5
rio) (0 0 0 0 0 0 0 B 5
A; 0 0 0 0 0 0 0 1 0
Cc 0 0 0 0o 0 0 0 0 1

Now, looking at P, row by row we see that

3\
(1)Le2),222y(8) = T SL(z),(z 2 1)(8)

2) A
@)Ly, 221y(8) = Ty SL(z),(z 11y(s) + T sL(z),(z 2 oy ()

A 2\
(3)Le2),2 1 1y(8) = T sL(ﬁ).(l 11y(s) + T SL(z),(z 1 0y(s)

22
(4)L2) 2 2 0y(8) = T 35(2).(2 10y(s)

3\
(5)Le2),1 1 1y(s) = DT 35(2),(1 10)(s)

A A
6)L(2),210y(s) = T SL(z),(x 10y(s) + Pt
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2\

(M L2)10y(8) = I Fs

Using back substitution of (7) into (5) and (6), we obtain

222 + A
@A +3)®  2A+s

Lez),210y(8) =

and
622
Lavarv() = grgmrsy

Hence, substituting these results into (3) and (4), we obtain

W 222
@r+s5) @A +3)?

L2),2 2 oy(s) =

and

6A3 423 222
) + 7+
(BA+3)2@A+3) (Br+s)@A+38)?  (BA+s)(2A+9)

and so, substituting both of these into (2) we obtain

Loy@11y(s) =

Ly iy() = ey, 40
@2 Ba s @r+s)  GA+e)@A+s)  (BA+s) (2A+9)
4x4 2)3

+ 5+ :
BA+8)2A+3)°  (3A+9)(2A+3)°
Therefore, substituting L2) (2 2 1y () into (1),

; _ 3605 . 245 N 1225 ~
B2 22 = ) o @A +s) | BA+s) @A+ (BA+ )2+ s)
12)4 6A4

Gr+3)0°2A+3)  BAta@Ate)

In summary, by viewing the states of our “exponential relay race” as a Markov

chain, we have discovered two more methods by which to calculate the Laplace

transform of an Erlang order statistic under the most general conditions. Rather

than directly applying the definition of a Laplace transform, we can represent the

calculation as the limiting probability of entering a particular absorbing state in a

transition matrix.



5. CONCLUSIONS

We have presented several methods by which to calculate the Laplace transform
of order statistics of Erlang random variables. We derived these methods using a
probabilistic interpretation of the Laplace transform instead of applying the defi-
nition of the Laplace transform directly. We invoked combinatorial arguments as
well as different methods by which to find the limiting probabilities of a transition
matrix with absorbing states. While the number of operations required for each
method is unclear, each of the methods discussed within this thesis have their ad-
vantages and disadvantages. For example, suppose we have a case where we have
many Erlang random variables, each with a different number of stages and a differ-
ent rate parameter. Then the two methods presented under the Markov analysis
would result in an extremely large transition matrix which, because of the lack of
identically distributed variables, would be very difficult to decrease in dimension.
Also, the direct approach would become difficult because the general formula for
the density of an order statistic as given by Hogg and Craig would no longer be
applicable; each order statistic density function would need to be calculated indi-
vidually. Hence, in such a case, the probabilistic and combinatorial approach is
preferable since we simply substitute the given parameters of the problem into the
general formula of Property 3.7. In cases where all of the Erlang variables are
identically distributed, it is certainly feasible to invoke the order statistic density
formula as given by Hogg and Craig and then to directly apply the definition of the
Laplace transform. However, even in this simple case, the methods of chapters 3
and 4 certainly provide a more systematic and intuitive a..pptoach to the problem,

and do so without the use of integration.

The techniques discussed in this thesis have many possible applications. Among

these, as mentioned in chapter 1, are applications in queueing theory and reliability
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prediction.

Methods to calculate Laplace transforms of order statistics of Erlang random
variables are not the only possible results that can be obtained using the techniques
in this thesis. In the past, the probabilistic interpretation of the Laplace transform
has been used to find general methods of calculating Laplace transforms of order
statistics of exponential random variables (van Danzig; Roy; Kleinrock). One topic
that warrants future study is finding general methods of calculating the Laplace
transform of any linear combination of order statistics of exponential and, in gen-
eral, Erlang random variables. For example, one may be interested in calculating
the mean or range of such Laplace transforms. In future study, the probabilistic
interpretation of the Laplace transform may also be used to find various methods
by which to calculate the transform of order statistics of other types of random

variables.
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