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Abstract

After more than two decades of research on the topic, automatic face recognition is finding its appli-

cations in our daily life; banks, governments, airports and many other institutions and organizations

are showing interest in employing such systems for security purposes. However, there are so many

unanswered questions remaining and challenges not yet been tackled. Despite its common occur-

rence in images, blur is one of the topics that has not been studied until recently.

There are generally two types of approached for dealing with blur in images: 1) identifying the

blur system in order to restore the image, 2) extracting features that are blur invariant. The first

category requires extra computation that makes it expensive for large scale pattern recognition ap-

plications. The second category, however, does not suffer from this drawback. This class of features

were proposed for the first time in 1995, and has attracted more attention in the last few years.

The proposed invariants are mostly developed in the spatial domain and the Fourier domain. The

spatial domain blur invariants are developed based on moments, while those in the Fourier domain

are defined based on the phase’ properties.

In this dissertation, wavelet domain blur invariants are proposed for the first time, and their perfor-

mance is evaluated in different experiments. It is also shown that the spatial domain blur invariants

are a special case of the proposed invariants.

The second contribution of this dissertation is blur invariant descriptors that are developed based

on an alternative definition for ordinary moments that is proposed in this dissertation for the first

time. These descriptors are used for face recognition with blurred images, where excellent results

are achieved. Also, in a comparison with the state-of-art, the superiority of the proposed technique

is demonstrated.
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Chapter 1

Introduction and Preliminary Concepts

and Definitions

1.1 Introduction

The face is known to be a very important communication channel in our daily lives, through which

we express our feelings and understand others’, recognize people, and so on. Such abilities are so

integrated in our brain that we do not even realize what a complicated task is being done.

The face is indeed the most favourable biometric feature that everyone carries around with no will of

losing it, making it an easy and non-invasive medium for identification, recognition, human-computer

interaction, to call a few. Such unique properties have caused a growing demand in automatic face

recognition systems by governments, banks, law enforcement, airports, etc., and the accessibility of

powerful computers and fast networks made the realization of such systems only a pattern recognition

problem.

In its simplest setup, the face recognition problem tries to identify an individual from a set of images

of different people. The images are mostly taken in controlled environments, in order to avoid pose

and illumination variations. The currently available face recognition systems report relatively higher

recognition rate in comparison with human on such databases.

However, our natural embedded face recognition system proves to be more robust as soon as the

imaging condition is not ideal [9, 38, 27]. Changes in pose and illumination and those caused by blur,

1



1. INTRODUCTION AND PRELIMINARY CONCEPTS AND DEFINITIONS

face expression, occlusion, make-up, and natural processes such as ageing and weight changes are a

few challenges that are encountered by practical face recognition systems. Some of these challenges

have received attention of researchers in the field. For example, pose and illumination variations

are two topics that have been studied comprehensively, and there is even a designated database for

them [22].

On the other hand, other topics have not been addressed. Ageing, for example, is a challenge

that face recognition systems need to deal with as they must accommodate such changes by their

subjects. However, the lack of a suitable database to this date has hindered a real-world study on

this issue, forcing the researchers to synthetically model it [40]. Another recently raised concern is

the vulnerability of automatic face recognition systems to cosmetic surgery [29]. The logic behind

this issue is as the same as the one for ageing, plus the fact that the probability of being caught in

such a situation is low. However, if a bank wants to use such systems to identify their costumers,

they are required to respect their decision, and that leads to a challenge that should be accepted by

the researchers.

Contrastingly with the issues that might be considered as the worries of tomorrow, blur, which is one

of the inevitable challenges in unconstrained face recognition problems[9], has been overlooked until

recently. Movement of the subject, an unfocused camera, or a long distance between the subject

and the camera introduce blur to the acquired image, which can drastically affect the performance

of a face recognition system. Having robust to blur or blur invariant techniques that can tackle such

problems sounds necessary. Most of the techniques that have been proposed so far are based on

deblurring the query image prior to recognition, which requires a preprocessing step and translates

into extra computation. With an increasing volume of videos from surveillance cameras and the need

of going through a lot of them to find a suspect in some instances, a deblurring step before recognition

is definitely not a reasonable idea. Thus, using features that are robust - or even better, invariant -

to blur is an alternative approach that can eliminate the need for such tedious preprocesses.

The first category of blur invariants [18] was introduced for the first time with a similar intention:

to avoid deblurring which is an ill-posed problem. The proposed blur invariants were developed

based on geometric moments and in the spatial domain. It was not almost until ten years later

when other researchers showed interest in developing such features as well, but unfortunately most

of their efforts were shown to be redundant [30]. Along with the moment based blur invariants,

another set of such invariants were developed in the Fourier domain [18]. Unlike the first set, the

proposed modifications and extensions on this set of invariants are promising.

Unlike the Fourier domain blur invariants, the moment based blur invariants have not been employed

2



1. INTRODUCTION AND PRELIMINARY CONCEPTS AND DEFINITIONS

in challenging pattern recognition problems. Most of the applications that have been reported

for these invariants are image registration and remote sensing [20]. This became a motivation

to use these invariants for face recognition to explore their performance in such problems. Also,

the available blur invariants are developed either in the spatial domain or Fourier domain, which

raises this question: is it possible to develop blur invariants in the wavelet domain in order to take

advantage of the extra properties that this domain has? In the next chapter, moment based blur

invariants in the wavelet domain are proposed for the first time as an answer to this question. In

chapter 3, the moment based blur invariants are employed for face recognition. Also an alternative

way of dealing with moments is proposed in that chapter in order to increase their discriminablity,

which yields promising results.

The preliminary definitions and concepts that are required in this dissertation are given in the next

two sections. Section 1.2 is dedicated to wavelet transform. In this section, the general concepts

of wavelet transform are reviewed, and three different types of wavelet transforms for 1D and 2D

signals are presented. Section 1.3 provided a review of geometric moments for 1D and 2D signals.

1.2 Wavelet Transform

Wavelet transform [12] has been used widely in many fields such as JPEG2000 [70]. A growing

number of publications deal with hardware implementation of this transform [60, 33, 49, 66] which

demonstrate its utility in the area of DSP and Pattern Recognition. A multi-resolution analysis

of signals with localization in both time and frequency is the advantage of wavelet transform over

Fourier and cosine transforms [12, 48]. Also, having different alternatives for the basis function in

wavelet transform makes it more adaptable for different problems than Fourier transform since in

the latter only one kind of basis function can be used.

In the rest of this section, continuous and discrete wavelet transforms are reviewed. Also, a specific

type of discrete wavelet transform is introduced, which is shift invariant.

1.2.1 Continuous Wavelet Transform

The continuous wavelet transform (CWT) of a 1D continuous signal f(x) at shift u and scale s with

wavelet function ψ(x) is [46]

f̂ψ(s, u) =

∫ +∞

−∞

1√
s
f(x)ψ∗

(
x− u

s

)

dx. (1.1)

where ψ∗(·) is the complex conjugate of ψ(·).

3



1. INTRODUCTION AND PRELIMINARY CONCEPTS AND DEFINITIONS

1.2.2 Discrete Wavelet Transform

The wavelet coefficients of 1D discrete signal x are calculated with a cascade of discrete convolutions

and sub-sampling.

aj+1[n] =
(
h̄ ⋆ aj [n]

)
↓ 2, (1.2)

dj+1[n] = (ḡ ⋆ aj [n]) ↓ 2, (1.3)

where a0 = x, j = 0, · · · , J − 1, h and g are scaling and wavelet filters, respectively, h̄[n] = h∗[−n],
and ḡ[n] = g∗[−n]. aj+1 is the approximation coefficient and dj+1 is the detail coefficient at level

j + 1.

If x is a 2D discrete signals, the wavelet coefficients are calculated as follows:

aj+1[n1, n2] =
(
h̄h̄ ⋆ aj [n1, n2]

)
↓ 2, (1.4)

d1j+1[n1, n2] =
(
h̄ḡ ⋆ aj [n1, n2]

)
↓ 2, (1.5)

d2j+1[n1, n2] =
(
ḡh̄ ⋆ aj [n1, n2]

)
↓ 2, (1.6)

d3j+1[n1, n2] = (ḡḡ ⋆ aj [n1, n2]) ↓ 2. (1.7)

where a0 = x, j = 0, · · · , J − 1, aj+1 is the approximation coefficient, and dij+1 is the ith detail

coefficient at level j + 1. The block diagram of the discrete wavelet decomposition is illustrated in

Figure 1.1.

1.2.3 Shift Invariant Discrete Wavelet Transform

DWT suffers from a major drawback: it is not shift invariant (also called translation invariant in

the literature), and this is due to the dyadic sub-sampling [47, 31]. In order to make the moments

2

2

2

2

2

2

ColumnsRows

ja 1+ja

1

1+jd

2

1+jd

3

1+jd

h

g

h

h

g

g

Figure 1.1: Decomposition in Discrete Wavelet Transform
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1. INTRODUCTION AND PRELIMINARY CONCEPTS AND DEFINITIONS

invariant to shift, it is necessary to have a shift invariant wavelet transform. There have been several

different techniques developed to produce shift invariant wavelet transforms. Continuous Wavelet

Transform (CWT) does not suffer from the same drawback as its counterpart in the discrete domain

[46]. Therefore, it is typically utilized when the wavelet transform is only required at a few specific

scales. Mallat proposed a scheme [45] that is an approximation of CWT, which was later proved

to be shift invariant[67]. À trous algorithm [46] is the simplest and yet an effective technique

that is proposed to make DWT invariant to shift. In this technique, the sub-sampling operator

is removed, and the filters are instead up-sampled at each level by inserting zeros between every

two coefficients [46]. Over Complete DWT (OCDWT) [6] is another proposed technique which

guarantees an approximately shift invariant implementation of wavelet transform if the level below

is fully sampled. Shift invariance has been also achieved by calculating the wavelet transform of all

shifts [34].

In this dissertation, the à trous algorithm is used. In this algorithm, scaling and wavelet filters at

scale j + 1 are defined as

hj+1[k] = hj [k]↑2 =







hj [
k
2 ], k even

0, k odd
(1.8)

gj+1[k] = gj [k]↑2 =







gj [
k
2 ], k even

0, k odd
(1.9)

where h0[k] = h[k] and g0[k] = g[k]. The wavelet coefficients of 1D discrete signal x are calculated

with a cascade of discrete convolutions.

aj+1[n] = h̄j ⋆ aj [n], (1.10)

dj+1[n] = ḡj ⋆ aj [n], (1.11)

where a0 = x, j = 0, · · · , J − 1. In this dissertation, the wavelet coefficients (either approximation

or detail) of signal x at level f0f1· · ·fL−1 are called
ψL

Wx, which is related to x as

ψL

Wx[n] = ψ̄L ⋆ x[n], (1.12)

where

ψL[n] = f0 ⋆ · · · ⋆ fL−1[n], (1.13)

5
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ColumnsRows

jh

jh

jh

jg

jg

jg

ja 1+ja

1

1+jd

2

1+jd

3

1+jd

Figure 1.2: Decomposition in Redundant Wavelet Transform

and f is either h or g.

Similarly, if x is a 2D discrete signal, its wavelet coefficients are calculated as follows:

aj+1[n1, n2] = h̄j h̄j ⋆ aj [n1, n2], (1.14)

d1j+1[n1, n2] = h̄j ḡj ⋆ aj[n1, n2], (1.15)

d2j+1[n1, n2] = ḡjh̄j ⋆ aj[n1, n2], (1.16)

d3j+1[n1, n2] = ḡj ḡj ⋆ aj [n1, n2]. (1.17)

where a0 = x, and j = 0, · · · , J − 1. The block diagram of this transform is presented in Figure 1.2.

The wavelet coefficients (either approximation or detail) of signal x at level f1
0 f

1
1 · · ·f1

L−1−f2
0f

2
1 · · ·f2

L−1

are called
ψL

Wx, which is related to x as

ψL

Wx[n1, n2] = ψ̄L ⋆ x[n1, n2], (1.18)

where

ψL[n1, n2] = ψ1
L[n1]ψ

2
L[n2], (1.19)

ψ1
L[n1] = f1

0 ⋆ · · · ⋆ f1
L−1[n1], (1.20)

ψ2
L[n2] = f2

0 ⋆ · · · ⋆ f2
L−1[n2], (1.21)

and f is either h or g.

6



1. INTRODUCTION AND PRELIMINARY CONCEPTS AND DEFINITIONS

1.2.4 Vanishing Moment

The wavelet function ψ ∈L2(Z) has Mψ vanishing moments (also called zero moments) if

∫ +∞

−∞

tpψ (t) dt = 0, for p ≤Mψ. (1.22)

The number of vanishing moments of ψ is equal to the number of zeros of its Fourier transform,ψ̂ (w),

at w = 0 [46]. Mψ depends on the number of zeros of g’s Fourier transform, ĝ (w), at w = 0, Mg,

and its repetition in obtaining ψ, N . Since the scaling filter designed such that ĥ (0) =
√
2, we can

easily show that Mψ = NMg. Therefore, if ψL ∈ L2
(
Z
2
)
, and it consists of Ni wavelet filters on

the ith dimension (i = 1, 2), then it has Mψi
L
= NiMg on that dimension.

1.3 Moments

In this section, some of the basic terms for moments are defined and explained.

1.3.1 Moments for Continuous Signals

The pth order ordinary geometric moment of 1D continuous signal f(x) in the spatial domain is

defined by [59]

mf
p =

∫ +∞

−∞

xpf(x)dx. (1.23)

The centroid of signal f(x) is [59]

cf =
mf

1

mf
0

. (1.24)

The pth order central moment of 1D continuous signal f(x) in the spatial domain is defined by [59]

µfp =

∫ +∞

−∞

(
x− cf

)p
f(x)dx. (1.25)

1.3.2 Moments for Discrete Signals

The pth order ordinary geometric moment of 1D discrete signal x in the spatial domain is defined

by

mx
p =

∑

n

npx[n]. (1.26)

The centroid of signal x is

cx =
mx

1

mx
0

(1.27)

7



1. INTRODUCTION AND PRELIMINARY CONCEPTS AND DEFINITIONS

The pth order central moment of 1D discrete signal x in the spatial domain is defined by

µxp =
∑

n

(n− cx)
p
x[n]. (1.28)

If the discrete signal x is 2D, its ordinary geometric moment of order (p+ q) in the spatial domain

is defined by

mx
p,q =

∑

n1

∑

n2

np1n
q
2x[n1, n2]. (1.29)

The centroid of signal x is

cx1 =
mx

1,0

mx
0,0

, cx2 =
mx

0,1

mx
0,0

. (1.30)

The central moment of order (p+ q) of 2D discrete signal x in the spatial domain is defined by

µxp,q =
∑

n1

∑

n2

(n1 − c1)
p
(n2 − c2)

q
x[n1, n2]. (1.31)

It is worth mentioning that there are some other definitions available for moments which happen

to be orthogonal as well. However, only geometric moments are exploited in this dissertation for

proposing new algorithms. This does not deny the possibility of developing them based on orthogonal

moments. This matter is discussed further in Chapter 3.
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Chapter 2

Blur Invariants: A Novel Representation

in the Wavelet Domain

2.1 Introduction

Signal acquisition is the first step in all signal processing tasks, and is always accompanied with

different sources of degradation. The effect of some of the degradations is considerably high, which

could vastly affect expected outcomes. People in surveillance photos and body parts in medical im-

ages are real-world subjects that are not ideally controllable when acquiring images. Environmental

situations might also have a negative effect on the quality of signals, e.g. weather condition and long

distances between camera and subject can deteriorate images. Deteriorations in images are basically

of two types: geometric distortions, and radiometric degradations. The first type includes the dis-

tortions such as translation, scaling, and rotation. There are many different approaches in literature

which are proposed for dealing with these problems. Hu, for the first time, proposed descriptors

that are invariant to some of the basic linear geometric distortions [26]. Recently a novel approach

has been put forward by Flusser et al. [15], where implicit moment invariants are introduced for

dealing with nonlinear deformations. For surveys on similar invariants refer to [64, 74, 20].

Unlike geometric distortions, there are fewer research works carried out on radiometric degradations.

They are generally introduced to images due to the movement of subject, unfocused camera, and

non-ideal image capturing environment. The general model that is commonly used for the observed

9



2. BLUR INVARIANTS: A NOVEL REPRESENTATION IN THE WAVELET DOMAIN

signal is

g(x) = Hf(x) + n(x) (2.1)

In this model, g is the observed signal, f and n are the actual signal and noise, respectively, and

H is the degradation operator. It is assumed that H is linear and space-invariant, and the general

model can be simplified to

g(x) = f(x) ⋆ h(x) + n(x), (2.2)

where ‘⋆’ denotes the convolution, and h is the Point Spread Function (PSF) of the system.

The proposed approaches for dealing with blur can be categorized into two types: 1) blind restora-

tion, and 2) direct analysis. In blind restoration techniques, the purpose is to identify the blur system

model and extract the actual signal [65, 32]. The main application of these methods is in signal

restoration. There are also similar techniques in which the effort is to only restore the features of

degraded signals [23], with their main application in pattern recognition. Although these techniques

have been vastly used, they suffer from major drawbacks: deblurring is an ill-posed problem, and

because of the identification part, they are computationally expensive, while it is not required to

identify the blur system in many applications.

The second type of techniques focus on developing descriptors that are inherently invariant to blur.

The main advantage of these methods is that they do not go through the process of identifying

the blur system. Flusser et al. [18] established this type for the first time. Their invariant de-

scriptors were developed in the spatial domain and based on geometric moments. Their assumption

was that the blur operator is symmetric. Later, they represented a closed format of the invariants

[19], and added extra properties to the descriptors in order to make them invariant to geometric

distortions while changing their assumption for the blur systems to centrally symmetric[17, 69].

They also developed these invariants for 1D signals [16]. Utilizing complex moments, Flusser and

Zitovà [21] proposed descriptors that are both invariant to centrally symmetric blur and rotation.

Liu and Zhang [39] also developed similar blur invariants using complex moments. Metari and De-

schênes [50] exploited the Mellin transform properties in order to define a different representation of

geometric-moment-based blur invariant descriptors. They also showed that their proposed descrip-

tors are invariant to a few geometric distortions as well. Instead of using geometric moments, Zhang

et al. [76] employed Legendre moments in order to define their invariants in the spatial domain. On

the other hand, Ji and Zhu [28] proved that the Zernike moments ,Zpq, are inherently invariant to

Gaussian blur when p = q.

Along with the blur invariant descriptors defined in the spatial domain, there are some other meth-

ods that are developed in the Fourier domain. Flusser and Suk [16] proposed their Fourier based

10
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invariants for 1D signals based on the tangent of the phase of signals, and proved that they are

invariant to blur. They developed this representation for 2D signals and showed their relationship

with their invariants in the spatial domain [17]. These invariants were later developed for nD signals

and made to be invariant to some of the geometric distortions [14]. Ojansivu and Heikkilä [57], how-

ever, showed that Flusser’s invariants are sensitive to noise when implemented in the Fourier domain

because of their use of tangent operator. They proposed a different representation of invariants in

the Fourier domain. Subsequently, they made them invariant to the affine transform as well [56].

Blur moment invariants showed their practicality in a vast area of research: image registration

[17, 55], remote sensing [5, 4], forgery detection [41], recognition [19, 39, 10], stereo matching [61],

and control point extraction [3].

In this chapter, wavelet domain descriptors are proposed which are invariant to centrally symmetric

blur systems. The immediate advantages of these invariants come from the domain that they are

developed in: the different alternatives that exist for wavelet functions and the benefit of analysing

signals at different scales in the wavelet domain. The wavelet domain blur invariants are first de-

veloped for 1D continuous signals. With a slight modification they are also presented for 1D and

2D discrete signals. This chapter is organized as follows. In section 2.2, the representation of blur

in the wavelet domain for 1D continuous signals is shown first. Then, the relationship between the

moments of the blurred signal in the wavelet domain and those of the original signal in the same

domain are extracted. Using this relation, the blur invariants for 1D continuous signals are proposed

and proved. The performance of these invariants is evaluated in section 2.3 against noise and blur

changes and compared with the performance of the spatial domain blur invariants. Section 2.4 is

devoted to extracting blur invariants for 1D discrete signals. In section 2.5, the performance of the

developed invariants is evaluated in an experiment with two electroencephalography (EEG) signals.

The wavelet domain blur invariants for 2D discrete signals are proposed in section 2.6, and analysed

comprehensively in section 2.7 in three different experiments. There might be some special cases

where the spatial domain and wavelet domain blur invariants cannot discriminate different signals.

This discussion comes in section 2.8. The chapter is concluded in section 2.9.

2.2 Blur Invariants for 1D Continuous Signals

For 1D continuous signals, the wavelet transform is calculated with CWT (eq. 1.1), and the moments

are obtained using (1.23) - (1.25).

11
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2.2.1 Blur in the Wavelet Domain for 1D Continuous Signals

First, it will be shown that how (2.2) would be presented in the wavelet domain. Also for the sake

of simplicity, noise is not shown in the equations. However, its effect on the invariants will be shown

in section 2.3. The wavelet transform of blurred continuous signal g(x) at shift u and scale s with

wavelet function ψ(x) is

ĝψ(s, u) =

∫ +∞

−∞

1√
s
g(x)ψ∗

(
x− u

s

)

dx. (2.3)

Replacing g(x) by its equivalent in (2.2) gives

ĝψ(s, u) =

∫ +∞

−∞

∫ +∞

−∞

1√
s
h(y)f(x− y)ψ∗

(
x− u

s

)

dydx. (2.4)

Substituting z for x− y, the above equation changes to

ĝψ(s, u) =

∫ +∞

−∞

h(y)

∫ +∞

−∞

1√
s
f(z)ψ∗

(
z − (u− y)

s

)

dzdy

=

∫ +∞

−∞

h(y)f̂ψ(s, u− y)dy (2.5)

which shows that the wavelet transform of g(x) is the convolution of h(x) by the wavelet transform

of f(x):

ĝψ(s, u) = f̂ψ(s, u) ⋆ h(u). (2.6)

2.2.2 Moments in the Wavelet Domains for 1D Continuous Signals

Before expressing the relation between the moments of ĝψ(u, s) and those of f̂ψ(u, s) and h(u), it is

shown how the moments of f(x) in the wavelet domain are related to those in the spatial domain.

Rewriting moments of continuous signals (eq. 1.3) for f̂ψ(u, s), the wavelet transform of f(x) with

wavelet function ψ(·) at shift u and scale s, we have the following:

mf̂ψ

p (s) =

∫ +∞

−∞

upf̂ψ(s, u)du

=
1√
s

∫ +∞

−∞

∫ +∞

−∞

upf(x)ψ∗

(
x− u

s

)

dxdu

=
√
s

∫ +∞

−∞

∫ +∞

−∞

(x− sy)p f(x)ψ∗(y)dxdy. (2.7)

In (2.7), y is substituted for
(
x−u
s

)
. Considering the fact that (a+ b)

p
=
∑p

k=0

(
p
k

)
akbp−k, the

relation between the ordinary moments of signal f(x) in the wavelet domain and the spatial domain

can be extracted:

mf̂ψ

p (s) =

p
∑

k=0

(
p

k

)

sk+
1
2 (−1)kmf

p−km
ψ
k . (2.8)
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It can be concluded from (2.8) that the moments of the wavelet transform of a signal with a wavelet

function which has Mψ vanishing moments are zero up to order Mψ − 1. Therefore, it would be

impossible to calculate the centroid (eq. 1.24) for such signals since the denominator can become

zeros. This also makes it impossible to take advantage of central moments. In order to be able to

take advantage of central moments for such signals, a generalized definition of centroid is proposed,

which appeared in [42] for the first time.

Definition 1. If the moments of signal f(x) are zero up to order M − 1, its centroid is defined as

ςf =
mf
M+1

(M + 1)mf
M

. (2.9)

It is trivial to show that cf is a special case of ςf , where M = 0.

The relation between the pth order central moment of ĝψ(s, u) and the central moments of f̂ψ(s, u)

and h(x) can be extracted by rewriting (1.25) for ĝψ(s, u) with the generalized centroid definition

(2.9), using (2.6), and considering the fact that ς ĝ
ψ

= ς f̂
ψ

+ ch.

µĝ
ψ

p (s) =

∫ +∞

−∞

(

u− ς ĝ
ψ
)p

ĝψ(s, u)du

=

∫ +∞

−∞

∫ +∞

−∞

(

u− ς ĝ
ψ
)p

f̂ψ(s, u)h(v − u)dvdu

=

p
∑

k=0

(
p

k

)

µf̂
ψ

k (s)µhp−k. (2.10)

If the employed wavelet function hasMψ vanishing moments, by defining q+Mψ = p, µ́q(s) = µp(s),

and
(
q
l

)

Mψ
=
(
q+Mψ
l+Mψ

)
, the above equation can be simplified into:

µ́ĝ
ψ

q (s) =

q
∑

l=0

(
q

l

)

Mψ

µ́f̂
ψ

l (s)µhq−l. (2.11)

It shows that the central moments of ĝψ(s, u) of a certain order are related to the central moments

of f̂ψ(s, u) and h(x) of the same and lower orders.

2.2.3 Wavelet Domain Blur Invariants for 1D Continuous Signals

In order to extract blur invariant features, it is necessary to look for combinations of moments such

that those of h(x) would be eliminated. It is assumed that h(x), the PSF, is symmetric and energy-

preserving. When h(x) is symmetric, i.e. h(x) = h(−x), its odd order moments are zero. And

because of the energy-preserving property, the integral
∫ +∞

−∞
h(x)dx, which is µh0 , equals one.
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Theorem 1: If q is odd, then Cq(s), which is defined as follows, is invariant to blur in the wavelet

domain with wavelet function ψ(·).

Cq(s) = µ́q(s)−
1

µ́0(s)

q−1

2∑

l=1

(
q

q−2l

)

Mψ
(
2l
0

)

Mψ

Cq−2l(s) µ́2l(s) (2.12)

Proof When q = 1, C ĝ
ψ

1 (s) = C f̂
ψ

1 (s) = 0.

For q = 3, it can be trivially shown that C ĝ
ψ

3 (s) = C f̂
ψ

3 (s).

C ĝ
ψ

3 (s) = µ́ĝ
ψ

3 (s)

=

3∑

l=0

(
3

l

)

Mψ

µ́f̂
ψ

l (s)µh3−l

= µ́f̂
ψ

3 (s) = C f̂
ψ

3 (s). (2.13)

If (2.12) is valid for 1, 3, ..., q − 2, it can be proved that it is valid for q as well:

C ĝ
ψ

q (s) = µ́ĝ
ψ

q (s) − 1

µ́ĝ
ψ

0 (s)

q−1

2∑

l=1

(
q

q−2l

)

Mψ
(
2l
0

)

Mψ

C ĝ
ψ

q−2l(s) µ́
ĝψ

2l (s)

=

q
∑

k=0

(
q +Mψ

k

)

µ́f̂
ψ

q−k(s)µ
h
k

− 1

µ́f̂
ψ

0 (s)

q−1

2∑

l=1

(
q

q−2l

)

Mψ
(
2l
0

)

Mψ

C f̂
ψ

q−2l(s)

2l∑

k=0

(
2l +Mψ

k

)

µ́f̂
ψ

2l−k(s)µ
h
k

= C f̂
ψ

q (s) +

q
∑

k=1

(
q +Mψ

k

)

µ́f̂
ψ

q−k(s)µ
h
k

− 1

µ́f̂
ψ

0 (s)

q−1

2∑

l=1

(
q

q−2l

)

Mψ
(
2l
0

)

Mψ

C f̂
ψ

q−2l(s)

2l∑

k=1

(
2l +Mψ

k

)

µ́f̂
ψ

2l−k(s)µ
h
k

= C f̂
ψ

q (s) +

q
∑

k=1

(
q +Mψ

k

)

µ́f̂
ψ

q−k(s)µ
h
k

− 1

µ́f̂
ψ

0 (s)

q−1

2∑

l=1

2l∑

k=1

(
2l+Mψ

k

)
(

q
q−2l

)

Mψ
(
2l
0

)

Mψ

C f̂
ψ

q−2l(s) µ́
f̂ψ

2l−k(s)µ
h
k

= C f̂
ψ

q (s) +

q
∑

k=1

(
q +Mψ

k

)

µ́f̂
ψ

q−k(s)µ
h
k

− 1

µ́f̂
ψ

0 (s)

q−1
∑

k=1

q−1

2∑

l=[ k+1

2
]

(
q +Mψ

k

)
(
q−k
q−2l

)

Mψ
(
2l−k
0

)

Mψ

C f̂
ψ

q−2l(s) µ́
f̂ψ

2l−k(s)µ
h
k

= C f̂
ψ

q (s) +

(
q +Mψ

q

)

µ́f̂
ψ

0 (s)µhq

q−1
∑

k=1

(
q +Mψ

k

)

µhk
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×



µ́f̂
ψ

q−k(s)−
1

µ́f̂
ψ

0 (s)

q−1

2∑

l=[ k+1

2
]

(
q−k
q−2l

)

Mψ
(
2l−k
0

)

Mψ

C f̂
ψ

q−2l(s) µ́
f̂ψ

2l−k(s)





= C f̂
ψ

q (s) +

(
q +Mψ

q

)

µ́f̂
ψ

0 (s)µhq +

q−1
∑

k=1

(
q +Mψ

k

)

µhkJq,k(s). (2.14)

When k is odd, µhk is zero. Hence, the second term in (2.14) becomes zero. The only term in (2.14)

that is dependent on the moments of h is Jq,k(s). In order to prove that the proposed invariant is

independent of PSF, it is necessary to show that when k is even, Jq,k(s) = 0 .

Jq,k(s) = µ́f̂
ψ

q−k(s)−
1

µ́f̂
ψ

0 (s)

q−1

2∑

l= k
2

(
q−k
q−2l

)

Mψ
(
2l−k
0

)

Mψ

C f̂
ψ

q−2l(s) µ́
f̂ψ

2l−k(s)

= µ́f̂
ψ

q−k(s)−
1

µ́f̂
ψ

0 (s)

q−k−1

2∑

l=0

(
q−k

q−k−2l

)

Mψ
(
2l
0

)

Mψ

C f̂
ψ

q−k−2l(s) µ́
f̂ψ

2l(s)

= µ́f̂
ψ

q−k(s)−
1

µ́f̂
ψ

0 (s)

q−k−1

2∑

l=1

(
q−k

q−k−2l

)

Mψ
(
2l
0

)

Mψ

C f̂
ψ

q−k−2l(s) µ́
f̂ψ

2l(s)

− 1

µ́f̂
ψ

0 (s)

(
q−k
q−k

)

Mψ
(
0
0

)

Mψ

C f̂
ψ

q−k(s) µ́
f̂ψ

0 (s)

= C f̂
ψ

q−k(s)− C f̂
ψ

q−k(s)

= 0. (2.15)

Since Jq,k(s) is zero when k is odd, the only remaining term in (2.14) is C f̂
ψ

q (s). Therefore, C ĝq(s) =

C f̂q(s). 2

Corollary 1: Flusser’s invariants [16] are a special case of (2.12).

Proof To obtain Flusser’s invariants, it is assumed that ψ(·) is the Dirac delta function. In this

case, Mψ = 0 which implies that ψ(·) is not a wavelet function anymore. Therefore, p=q +Mψ=q

and µp= µ́q. By setting s = 1 at all time, it is trivial to show that f̂ψ(x, 1) is equivalent to f(x),

since the signal is convolved by the Dirac delta function. From here, (2.12) is rewritten with the

new assumptions.

Cfp = µp −
1

µ0

p−1

2∑

l=1

(
p

p−2l

)

0
(
2l
0

)

0

Cfp−2lµ2l

= µp −
1

µ0

p−1

2∑

l=1

(
p

p− 2l

)

Cfp−2lµ2l. (2.16)

which is the definition of Flusser’s blur invariants [16]. 2
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2.3 Experiment 1: Blur and Noise Analysis

In this section, the performance of the proposed invariants is demonstrated by applying it to 1D

signals, and comparing to Flusser’s invariants [16]. Two different types of wavelet functions were

employed to demonstrate the performance of the invariants under the change of this parameter. The

first wavelet function is Coiflet of order 1 (Mψ = 2) [11]. There is no closed-form representation for

this orthogonal wavelet. The second wavelet function belongs to the crude wavelet class. The wavelet

function that is employed here is a hyperbolic kernel , which, unlike Coiflet, has an explicit expression

(2.17). This wavelet function is comprehensively studied in [35, 36, 37], and different properties are

extracted. For the experiments of this section, n and β were set to 4 and 1 respectively. This wavelet

function has two vanishing moments as well.

ψn,β (x) = −nβ2 sechn (βx)
(
n− (n+ 1) sech2 (βx)

)
(2.17)

For this experiment, 1000 1D signals with the length of 200 and in the range of [-1 1] were artificially

generated. Figure 2.1 shows one of the signals. The signals were blurred by calculating N -point

neighbourhood averaging with a neighbourhood of 5, 7, 9, 11, 13, 15, 17, 19, 21, and 23. In order

to study the effect of noise on the performance of the invariants, the signals were also contaminated

with additive noise. The added noise was Gaussian with zero mean and the standard deviation of

0 (no noise), 0.001, 0.002, 0.008, 0.02, 0.04, and 0.08. The wavelet transform of the signals were

obtained with the wavelet functions described above at 3 scales, s = 2, 4, and 8. The invariants for

all of the original and blurred signals were calculated up to order 11 (q = 9, p = q +Mψ = 11).

However, the invariants of order 3 (q = 1, p = q +Mψ = 3) are not reported since they are zero.

Then, based on the following equation, the similarity between the original signals and their blurred

versions was measured

R =

∣
∣
∣
∣
∣

CXp − COp
COp

∣
∣
∣
∣
∣

(2.18)

where COp and CXp are the pth order invariants of the actual and blurred signals respectively. The

closer CXp is to COp , the smaller R becomes.

Figures 2.2 and 2.3 show the medians of the similarity measures for invariants obtained with Coiflet

and hyperbolic wavelet functions respectively. Both figures show invariants of three orders: 5, 7,

and 9, and consists of 9 plots: 3 representing the results acquired with Flusser’s invariants, and

the other 6 results with the proposed invariants at two scales: 4 and 8. Every plot has several

graphs representing different levels of noise. The x−axis represents the number of neighbourhoods

in averaging,N , and the y−axis shows the similarity measure, R. The results acquired with Flusser’s
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Figure 2.1: One of the artificial signals that was used in experiment I.

invariants are repeated in both figures for the sake of comparison. Also, Table 2.1 shows the eleventh

order invariants of one the signals for different levels of noises.

The first noticeable property of the invariants is that by increasing the order of the invariants, R

increases as well. The reason of this rise is because the invariants also increase exponentially with

respect to their order.

By changing the noise level, the similarity changes from 0% to 30% in Flusser’s invariants and 25%

in the wavelet based invariants, which is 5% less than the one in the spatial domain (Figures 2.2

and 2.3). The wavelet based invariants show a generally better robustness than Flusser’s invariants

in this experiment. However, it is impossible to make a general statement about the robustness of

invariants in the wavelet domain than those in the spatial domain. The reason is that there are

various wavelet functions available with different properties, which requires a comprehensive study

of its own.

A slight increase in similarity is observable by the increase of N in Flusser’s invariants. It is also

noticeable in the proposed invariants at scale 4, but it becomes less evident for the invariants at

scale 8, specially for invariants with Coiflet. The similarity measure is also slightly less for these

invariants. Since a higher scale is equivalent to a lower resolution, the effect of blur and noise is less

significant. However, the risk of losing the properties of signals also increases. Therefore, a proper

selection of scales is substantial.

Comparing the results obtained by Flusser’s invariants and those of the wavelet based invariants

indicates that the later is generally performing better. Employing different wavelet functions also

17



2. BLUR INVARIANTS: A NOVEL REPRESENTATION IN THE WAVELET DOMAIN

5 11 17 23

0.05

0.09

0.14

Flusser
p 

= 
5

5 11 17 23

0.05

0.09

0.14

Coiflet, s = 4

5 11 17 23

0.05

0.09

0.14

Coiflet, s = 8

5 11 17 23

0.07

0.13

0.2

p 
= 

7

5 11 17 23

0.07

0.13

0.2

5 11 17 23

0.07

0.13

0.2

5 11 17 23

0.09

0.18

0.26

p 
= 

9

5 11 17 23

0.09

0.18

0.26

5 11 17 23

0.09

0.18

0.26

Figure 2.2: Median of similarity measures calculated for Flusser’s invariants and the proposed in-

variants with Coiflet wavelet of order 1 at scales 4 and 8. Every plot shows the effect of different

levels of noise. The x-axis represents N , which is the number of neighbourhood for averaging, and

the y-axis shows the similarity measure R.
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Figure 2.3: Median of similarity measures calculated for Flusser’s invariants and the proposed in-

variants with Hyperbolic wavelet of order 4 at scales 4 and 8. Every plot shows the effect of different

levels of noise. The x-axis represents N , which is the number of neighbourhood for averaging, and

the y-axis shows the similarity measure R.
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Table 2.1: Eleventh order invariants of an artificial signal that was used in experiment I. The

invariants are shown for different levels of noise variances and two numbers of neighbourhoods in

averaging. The scale, s, is 2.

Noise Flusser Coiflet (s = 2) Hyperbolic (s = 2)

N=7 N=11 N=7 N=11 N=7 N=11

0.000 -1.26e+31 -1.26e+31 5.51e+30 5.51e+30 1.59e+32 1.59e+32

0.001 -1.26e+31 -1.26e+31 5.50e+30 5.50e+30 1.59e+32 1.59e+32

0.002 -1.26e+31 -1.27e+31 5.52e+30 5.53e+30 1.59e+32 1.60e+32

0.008 -1.33e+31 -1.32e+31 5.79e+30 5.74e+30 1.69e+32 1.68e+32

0.020 -1.12e+31 -1.13e+31 4.88e+30 4.92e+30 1.37e+32 1.38e+32

0.040 -1.59e+31 -1.57e+31 6.92e+30 6.84e+30 2.12e+32 2.09e+32

0.080 -9.81e+30 -9.81e+30 4.28e+30 4.28e+30 1.16e+32 1.16e+32

did not have any major influence on the performance of the invariants, but provide a different

range of values (Table 2.1). As it is mentioned above, it is possible that with a different choice of

wavelet function contrary results would be obtained. The application that the proposed invariants

are supposed to be used could have a significant influence on the choice of the wavelet function,

since different types of wavelet functions are sensitive to different properties in signals [46]. It might

be even useful to employ multiple wavelet functions in order to extract different moment invariants

for a comprehensive analysis.

2.4 Blur Invariants for 1D Discrete Signals

DWT is the common appraoch for wavelet decomposition of discrete signals. However, this tool is

not shift invariant. In order to preserve the shift invariance property, the à trous algorithm (eq. 1.10

and 1.11) is used. Also, the moment definitions for discrete signals (1.26 - 1.28) are employed in

this section. Having chosen the proper wavelet transform, the representation of blur and moments

in the wavelet domain will be extracted.
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2.4.1 Blur in the Wavelet Domain for 1D Discrete Signals

The wavelet transform of a blurred signal with wavelet function ψL is

ψL

Wy[n] = ψ̄L ⋆ y[n], (2.19)

where y[n] = b ⋆ x[n], is a discrete representation of (2.2), with b as the blur system, and x as the

original signal. Substituting y with its equivalent gives

ψL

Wy[n] = ψ̄L ⋆ b ⋆ x[n]

= b ⋆ ψ̄L ⋆ x[n] = b ⋆
ψL

Wx[n]. (2.20)

Eq. (2.20) implies that the wavelet transform of blurred signal y is the convolution of blur system

b with the wavelet transform of original signal x.

2.4.2 Moments in the Wavelet Domain for 1D Discrete Signals

The ordinary moment of order p of
ψL

Wx is

m
ψL
Wx
p =

∑

n

np
ψL

Wx[n]

=
∑

n

∑

l

npx[l]ψL[l − n] =
∑

l

∑

k

(l − k)
p
x[l]ψL[k]

=

p
∑

i=0

∑

l

∑

k

(
p

i

)

(−1)i lp−ix[l]kiψL[k] =

p
∑

i=0

(
p

i

)

(−1)imx
p−im

ψL
i , (2.21)

where l− n is substituted with k. If ψL has MψL vanishing moments, mψL
i in (2.21) will be zero for

i<MψL . This forces the moments of
ψL

Wx to also be zero for p<MψL . Considering this and similar to

the case for continuous signals, the generalized definition of centroid (eq. 2.9) can be used in (1.28)

to overcome this problem. Therefore, the central moment of order p of
ψL

Wy is

µ
ψL
Wy
p =

∑

n

(

n− ς
ψL
Wy

)p
ψL

Wy[n] =
∑

n

∑

l

(

n− ς
ψL
Wy

)p
ψL

Wx[l]b[n− l]

=
∑

l

∑

k

((

l − ς
ψL
Wx

)

+
(
k−cb

)

)p
ψL

Wx[l]b[k]

=

p
∑

i=0

∑

l

∑

k

(
p

i

)(

l − ς
ψL

Wx

)i
ψL

Wx[l]
(
k−cb

)p−i
b[k]

=

p
∑

i=0

(
p

i

)

µ
ψL
Wx
i µbp−i, (2.22)
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where l − n is substituted with k. Also, it is trivial to show that ς
ψL
Wy = ς

ψL
Wx + cb. Since µ

ψL
Wx
i is

zero for i < MψL , p should be equal to or greater than MψL . Therefore, by defining q +MψL = p,

µ́q = µp, and
(
a
b

)

M
=
(
a+M
b+M

)
, (2.22) is modified to

µ́
ψL

Wy
q =

q
∑

i=0

(
q

i

)

MψL

µ́
ψL

Wx
i µbq−i. (2.23)

2.4.3 Wavelet Domain Blur Invariants for 1D Discrete Signals

It is clear from (2.23) that the central moments of a blurred signal are related to those of the original

signal and the blur system. To have wavelet domain blur invariants based on these moments, it is

required to find a combination of them such that the moments of the blur system are not present

any longer.

Theorem 2: For
ψL

Wx, which is the wavelet transform of x with wavelet function ψL, C
ψL
Wx
q is in-

variant to symmetric and energy-preserving blur systems.

C
ψL
Wx
q =







µ́
ψL
Wx
q − 1

µ́
ψL
Wx
0

q−1

2∑

l=0

(
q

q−2l

)

MψL
(
2l
0

)

MψL

C
ψL
Wx
q−2l µ́

ψL
Wx
2l , l is odd

0, l is even.

(2.24)

Proof Refer to the proof of Theorem 1. 2

Theorem 2 is applicable when the blur system is energy-preserving. However, such systems are not

always realistic. The next theorem eliminates this restriction.

Theorem 3: For
ψL

Wx, which is the wavelet transform of x with wavelet function ψL, D
ψL
Wx
q is

invariant to symmetric blur systems.

D
ψL
Wx
q =







ν́
ψL
Wx
q −

q−1

2∑

l=0

(
q

q−2l

)

MψL
(
2l
0

)

MψL

D
ψL
Wx
q−2l ν́

ψL
Wx
2l , l is odd

0, l is even,

(2.25)

where ν́xq = µ́xq/µ́
x
0 .

Proof Assume b̃ is a non-energy-preserving system. Such systems could be represented as

b̃ = cb, (2.26)
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Figure 2.4: The two EEG signals that are used in experiment 1.

where c and b are a constant and an energy-preserving system, respectively. It is trivial to show

that µb̃q = cµbq, and from here c can be found as the zero order moment of the non-energy-preserving

system, µb̃0. Remember that the zero order moment of an energy-preserving system is equal to 1.

Assuming that y and z are both blurred versions of x by blur systems b̃ and b, respectively, it can

trivially be shown that ν́
ψL
Wy = ν́

ψL
Wz .

Without loss of generality, ν can be replaced in (2.24) to achieve blur invariants with no restriction

on the energy of the system, given in (2.25). It should also be mention that since ν
ψL

Wx
0 becomes 1

for all signals, the term before the summation in (2.24) does not appear in (2.25) any more. 2

2.5 Experiment 2: Blur Analysis

In this section, the blur invariants are evaluated in an experiment with blurred EEG signals. Wavelet

function Daubechies of order 2 (DB2), which has 2 vanishing moments [11], is used in this exper-

iment, and is carried out at level ghh, which means that the wavelet transform of the signals is

obtained by applying the highpass filter followed twice by the lowpass filter.

Figure 2.4 shows the two EEG signals that are used for this experiment. They are chosen from the

database generated by Andrzejak et al. [2]. The signals are blurred by averaging on N neighbour-

hoods, where N is 11 and 21, and energies of 0.7 and 0.4, respectively.

Table 2.2 represents the invariants of order 5 to 11 of the original signals and their blurred ones.

It is clear that blur intensity and system energy changes do not affect the invariants significantly.

Also, the two different signals can be perfectly distinguished from each other using the invariants.
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Table 2.2: Invariants of the EEG signals degraded with different blur systems. The wavelet filter is

Daubechies of order two at level ghh. O.M. stands for the order of magnitude of the blur invariants.

N is the number of neighbourhoods in averaging. N = 0 refers to the original signal.

q/O.M.
5/7 7/13 9/19 11/25

N/mb̃
0

S
ig
.
1 0 56.49 130.22 617.55 4317.66

11/0.7 56.48 130.18 617.25 4314.94

21/0.4 56.53 130.44 618.98 4330.91

S
ig
.
2

0 -0.41 0.21 -0.16 0.19

11/0.7 -0.41 0.20 -0.16 0.19

21/0.4 -0.40 0.20 -0.16 0.18

2.6 Blur Invariants for 2D Discrete Signals

Similar to the case for 1D discrete signals in order to preserve the shift invariance property, it is

required to use the à trous algorithm (eq. 1.14 - 1.17). Also, the moment definitions for discrete

signals (eq. 1.29 - 1.31) are employed in this section.

2.6.1 Blur in the Wavelet Domain for 2D Discrete Signals

The representation of (2.2) for 2D discrete signals is

y[n1, n2] = b ⋆ x[n1, n2], (2.27)

were y and x are the blurred and original signals, respectively, and b models the blur system. The

wavelet transform of a blurred signal with wavelet function ψL is

ψL

Wy[n1, n2] = ψ̄L ⋆ y[n1, n2]. (2.28)

Substituting y with its equivalent in (2.27) gives

ψL

Wy[n1, n2] = ψ̄L ⋆ b ⋆ x[n1, n2]

= b ⋆ ψ̄L ⋆ x[n1, n2]

= b ⋆
ψL

Wx[n1, n2]. (2.29)

Eq. (2.29) implies that the wavelet transform of blurred signal y is the convolution of blur system

b with the wavelet transform of original signal x.
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2.6.2 Moments in the Wavelet Domain for 2D Discrete Signals

The ordinary moment of order (p+ q) of
ψL

Wx is

m
ψL
Wx
p,q =

∑

n1

∑

n2

np1n
q
2

ψL

Wx[n1, n2]

=
∑

n1

∑

n2

∑

n3

∑

n4

np1n
q
2x[n3, n4]ψL[n3 − n1, n4 − n2]

=
∑

n3

∑

n4

∑

n5

∑

n6

(n3 − n5)
p
(n4 − n6)

q
x[n3, n4]ψL[n5, n6]

=

p
∑

i=0

q
∑

j=0

∑

n3

∑

n4

∑

n5

∑

n6

(
p

i

)(
q

j

)

(−1)
i+j

np−i3 nq−j4 x[n3, n4]n
i
5n

j
6ψL[n5, n6]

=

p
∑

i=0

q
∑

j=0

(
p

i

)(
q

j

)

(−1)
i+j

mx
p−i,q−jm

ψL
i,j , (2.30)

where n3 − n1 and n4 − n2 are substituted with n4 and n5, respectively. If ψL has Mψ1
L
and Mψ2

L

vanishing moments on the first and second dimensions, respectively, mψL
i,j in (2.30) will be zero if

i<Mψ1
L
or j<Mψ2

L
. This forces the moments of

ψL

Wx to also be zero if p<Mψ1
L
or q<Mψ2

L
, therefore

it is not possible to use the original definition of centroid (eq. 1.30) for this type of signals. It is,

however, possible to extend the generalized definition of centroid for 2D signals as well.

Definition 2. If the moments of x are zero up to order M1 − 1 and M2 − 1 on the first and second

dimensions, respectively, its centroid is defined as

ςx1 =
mx
M1+1,M2

(M1 + 1)mx
M1,M2

, ςx2 =
mx
M1,M2+1

(M2 + 1)mx
M1,M2

. (2.31)

If M1 and M2 are zero, then it is easy to show that ςx1 and ςx2 would become cx1 and cx2 , respectively.

By simply substituting cx1 and cx2 in (1.31) with ςx1 and ςx2 , the central moments of the wavelet

transform of signals can be calculated. Therefore, the central moment of order (p+ q) of
ψL

Wy is

µ
ψL

Wy
p,q =

∑

n1

∑

n2

(

n1−ς
ψL
Wy
1

)p(

n2−ς
ψL
Wy
2

)q
ψL

Wy[n1, n2]

=
∑

n1

∑

n2

∑

n3

∑

n4

(

n1−ς
ψL
Wy
1

)p(

n2−ς
ψL
Wy
2

)q
ψL

Wx[n3, n4]b[n1−n3, n2−n4]

=
∑

n3

∑

n4

∑

n5

∑

n6

((

n3−ς
ψL
Wx
1

)

+
(
n5−cb1

)

)p((

n4−ς
ψL
Wx
2

)

+
(
n6−cb2

)

)q

×
ψL

Wx[n3, n4]b[n5, n6]

=

p
∑

i=0

q
∑

j=0

∑

n3

∑

n4

∑

n5

∑

n6

(
p

i

)(
q

j

)(

n3−ς
ψL
Wx
1

)i(

n4−ς
ψL
Wx
2

)j
ψL

Wx[n3, n4]
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×
(
n5−cb1

)p−i (
n6−cb2

)q−j
b[n5, n6]

=

p
∑

i=0

q
∑

j=0

(
p

i

)(
q

j

)

µ
ψL
Wx
i,j µ

b
p−i,q−j , (2.32)

where n3−n1 and n4−n2 are substituted with n4 and n5, respectively. Also, it is trivial to show that

ς
ψL

Wy
i = ς

ψL
Wx
i + cbi , where i = 1, 2. Since µ

ψL
Wx
i,j is zero for i<Mψ1

L
or j<Mψ2

L
, p and q should be equal

to or greater than Mψ1
L
and Mψ2

L
, respectively. Therefore, by defining r +Mψ1

L
= p, s +Mψ2

L
= q,

µ́r,s = µp,q, and
(
a
b

)

M
=
(
a+M
b+M

)
, (2.32) is modified to

µ́
ψL
Wy
r,s =

r∑

i=0

s∑

j=0

(
r

i

)

M
ψ1
L

(
s

j

)

M
ψ2
L

µ́
ψL
Wx
i,j µ

b
r−i,s−j . (2.33)

2.6.3 Wavelet Domain Blur Invariants for 2D Discrete Signals

Based on (2.33), the central moments of the blurred signal depend on the central moments of the

original signal and the blur system. In order to have blur invariant descriptors based on the central

moments, it is required to extract a combination of them in which the moments of the blur system

are not present any longer. The blur system is assumed to be centrally symmetric, which is a general

format for different blur systems, e.g. defocus, atmosphere turbulence, linear motion,

b [n1, n2] = b [−n1,−n2] . (2.34)

The odd moments of such systems are zero. This property is exploited in order to extract blur

invariant descriptors.

Theorem 4: For
ψL

Wx, which is the wavelet transform of x ∈ L1
(
Z
2
)
with wavelet function ψL ∈

L2
(
Z
2
)
, C

ψL
Wx
r,s is invariant to centrally symmetric and energy-preserving blur operators.

C
ψL
Wx
r,s =







µ́
ψL
Wx
r,s − 1

µ́
ψL
Wx
0,0

r∑

i=0

s∑

j=0
︸ ︷︷ ︸

0<i+j<r+s

(
r
r−i

)

M
ψ1
L

(
s
s−j

)

M
ψ2
L

(
i
0

)

M
ψ1
L

(
j
0

)

M
ψ2
L

C
ψL
Wx
r−i,s−j µ́

ψL
Wx
i,j , (r + s) odd

0, (r + s) even.

(2.35)

Proof It is trivial to show that (2.35) holds for (r + s) = 1, 3. When r = 1, s = 0 or r = 0, s = 1,

then C
ψL
Wy
1,0 = C

ψL
Wy
0,1 = C

ψL
Wy
1,0 = C

ψL
Wy
0,1 = 0.

When r = 3, s = 0,

C
ψL

Wy
3,0 = µ́

ψL

Wy
3,0
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=

3∑

i=0

0∑

j=0

(
3

i

)

M
ψ1
L

(
0

j

)

M
ψ2
L

µ́
ψL
Wx
i,j µ

b
3−i,0−j

= µ́
ψL
Wx
3,0 = C

ψL
Wx
3,0 . (2.36)

It also holds for r = 0, s = 3.

When r = 2, s = 1,

C
ψL
Wy
2,1 = µ́

ψL
Wy
2,1

=

2∑

i=0

1∑

j=0

(
2

i

)

M
ψ1
L

(
1

j

)

M
ψ2
L

µ́
ψL
Wx
i,j µ

b
2−i,1−j

= µ́
ψL
Wx
2,1 = C

ψL
Wx
2,1 . (2.37)

The same holds for r = 1, s = 2.

In order to show that (2.35) is invariant to blur for all of the orders, it is required to employ a

different representation of (2.33),

µ́
ψL
Wy
r,s =

r∑

k=0

s∑

l=0

(
r +Mψ1

L

k

)(
s+Mψ2

L

l

)

µ́
ψL
Wx
r−k,s−lµ

b
k,l. (2.38)

If (2.35) is valid for (r + s) = 1, 2, · · · , O − 2, where O is odd, it can be proved that it is also valid

for (r + s) = O.

C
ψL
Wy
r,s = µ́

ψL
Wy
r,s − 1

µ́
ψL
Wy
0,0

r∑

i=0

s∑

j=0
︸ ︷︷ ︸

0<i+j<r+s

(
r
r−i

)

M
ψ1
L

(
s
s−j

)

M
ψ2
L

(
i
0

)

M
ψ1
L

(
j
0

)

M
ψ2
L

C
ψL

Wy
r−i,s−j µ́

ψL

Wy
i,j

=

r∑

k=0

s∑

l=0

(
r +Mψ1

L

k

)(
s+Mψ2

L

l

)

µ́
ψL
Wx
r−k,s−lµ

b
k,l

− 1

µ́
ψL
Wx
0,0

r∑

i=0

s∑

j=0
︸ ︷︷ ︸

0<i+j<r+s

(
r
r−i

)

M
ψ1
L

(
s
s−j

)

M
ψ2
L

(
i
0

)

M
ψ1
L

(
j
0

)

M
ψ2
L

C
ψL
Wx
r−i,s−j

i∑

k=0

j
∑

l=0

(
i+Mψ1

L

l

)(
j +Mψ2

L

k

)

µ́
ψL
Wx
i−k,j−lµ

b
k,l

= C
ψL
Wx
r,s +

r∑

k=0

s∑

l=0
︸ ︷︷ ︸

0<k+l

(
r +Mψ1

L

k

)(
s+Mψ2

L

l

)

µ́
ψL
Wx
r−k,s−lµ

b
k,l

− 1

µ́
ψL
Wx
0,0

r∑

i=0

s∑

j=0
︸ ︷︷ ︸

0<i+j<r+s

(
r
r−i

)

M
ψ1
L

(
s
s−j

)

M
ψ2
L

(
i
0

)

M
ψ1
L

(
j
0

)

M
ψ2
L

C
ψL

Wx
r−i,s−j

i∑

k=0

j
∑

l=0
︸ ︷︷ ︸

0<k+l

(
i+Mψ1

L

l

)(
j +Mψ2

L

k

)

µ́
ψL

Wx
i−k,j−lµ

b
k,l
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= C
ψL
Wx
r,s +

r∑

k=0

s∑

l=0
︸ ︷︷ ︸

0<k+l

(
r +Mψ1

L

k

)(
s+Mψ2

L

l

)

µ́
ψL
Wx
r−k,s−lµ

b
k,l

− 1
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ψL

Wx
0,0

r∑

i=0

s∑

j=0
︸ ︷︷ ︸

0<i+j<r+s
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k=0
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∑
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︸ ︷︷ ︸
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(
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M
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L

(i+M
ψ1
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l
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(
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)

M
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L

(j+M
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)

(
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)

M
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C
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ψL
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i−k,j−lµ
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k,l
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ψL

Wx
r,s +

r∑

k=0

s∑

l=0
︸ ︷︷ ︸

0<k+l

(
r +Mψ1

L

k

)(
s+Mψ2
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l

)

µ́
ψL
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r−k,s−lµ

b
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− 1
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ψL
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0,0

r∑

k=0

s∑

l=0
︸ ︷︷ ︸

0<k+l

r∑

i=l

s∑

j=k
︸ ︷︷ ︸

i+j<r+s

(
r +Mψ1

L

k

)(
s+Mψ2

L

l

)

µbk,l

(
r−k
r−i

)

M
ψ1
L

(
t−l
s−j

)

M
ψ2
L

(
i−k
0

)

M
ψ1
L

(
j−l
0

)
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L
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ψL
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r,s +
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s∑
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︸ ︷︷ ︸
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(
r +Mψ1

L

k

)(
s+Mψ2
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l

)

µbk,l

×










µ́
ψL
Wx
r−k,s−l −

1

µ́
ψL
Wx
0,0

r∑

i=l

s∑

j=k
︸ ︷︷ ︸

i+j<r+s

(
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)

M
ψ1
L

(
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s−j
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M
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(
i−k
0
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(
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r−i,s−j µ́
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








= C
ψL
Wx
r,s +

r∑

k=0

s∑

l=0
︸ ︷︷ ︸

0<k+l

(
r +Mψ1

L

k

)(
s+Mψ2

L

l

)

µbk,lJr−k,s−l. (2.39)

In order to prove that C
ψL

Wy
r,s = C

ψL

Wx
r,s , it is required to prove that the second term in (2.39) is equal

to zero. Since it is assumed that the blur operator is centrally symmetric, µbk,l is zero when (k + l)

is odd. Therefore, it is only required to show that Jr−k,s−l is zero for even orders.

Jr−k,s−l = µ́
ψL
Wx
r−k,s−l −

1

µ́
ψL
Wx
0,0

r∑

i=l

s∑

j=k
︸ ︷︷ ︸

i+j<r+s

(
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r−i

)

M
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L

(
s−l
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)

M
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L

(
i−k
0

)
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L

(
j−l
0

)

M
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L

C
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Wx
r−i,s−j µ́

ψL
Wx
i−k,j−l

= µ́
ψL
Wx
r−k,s−l −

1
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ψL
Wx
0,0
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︸ ︷︷ ︸
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r−k−i
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ψ2
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)

M
ψ1
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)
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L

C
ψL
Wx
r−i−k,s−j−lµ́

ψL
Wx
i,j
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= µ́
ψL
Wx
r−k,s−l −

1

µ́
ψL

Wx
0,0

r−k∑

i=0

s−l∑

j=0
︸ ︷︷ ︸

0<i+j<r+s−k−l
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r−k−i
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L

(
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)
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r−i−k,s−j−lµ́
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Wx
i,j
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0,0
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)
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(
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M
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(
0
0

)

M
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L

(
0
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)

M
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C
ψL
Wx
r−k,s−lµ́

ψL
Wx
0,0

= C
ψL
Wx
r−k,s−l − C

ψL
Wx
r−k,s−l = 0. (2.40)

Having Jr−k,s−l = 0, the only term remaining in (2.39) is C
ψL
Wy
r,s . Therefore, C

ψL
Wy
r,s = C

ψL
Wx
r,s .

Theorem 4 is only valid when the blur operator is centrally symmetric and energy-preserving. In

order to eliminate the energy-preserving restriction, a modification is necessary. A non-energy-

preserving system b̃ could be represented as

b̃ = mb̃
0,0b, (2.41)

where b is an energy-preserving system. Therefore by introducing νyp,q = µyp,q/µ
y
0,0 and equivalently

ν́yr,s = µ́yp,q/µ́
y
0,0, m

b̃
00 will be eliminated by becoming equal to one, and Theorem 4 could be modified

accordingly.

Theorem 5: For
ψL

Wx, which is the wavelet transform of x ∈ L1
(
Z
2
)
with wavelet function ψL ∈

L2
(
Z
2
)
, D

ψL

Wx
r,s is invariant to centrally symmetric blur operators.

D
ψL

Wx
r,s =







ν́
ψL
Wx
r,s −

r∑

i=0

s∑

j=0
︸ ︷︷ ︸

0<i+j<r+s

(
r
r−i

)

M
ψ1
L

(
s
s−j

)

M
ψ2
L

(
i
0

)

M
ψ1
L

(
j
0

)

M
ψ2
L

D
ψL
Wx
r−i,s−j ν́

ψL
Wx
i,j , (r + s) odd

0, (r + s) even.

(2.42)

Proof The proof is similar to that of Theorem 4.

Corollary 2: The spatial domain blur invariants [17] are a special case of the proposed invariants

in the wavelet domain.

Proof Assume h and g are equal to 1. They are obviously not wavelet filters any more. Then, ψ1 is

found from (1.19), which is also 1, and it would have no vanishing moments (Mψ1
1
=Mψ2

1
= 0). The

wavelet transform (eq. 1.18) of signal x with this wavelet function is equivalent to itself (
ψL

Wx = x).

Also, r +Mψ1
L
= r + 0 = p, s +Mψ2

L
= s + 0 = q, µp,q = µ́r,s, and

(
a
b

)

0
=
(
a
b

)
. Replacing these
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changes in (2.35) produces (2.43),

Cxp,q =







µxp,q −
1

µx0,0

p
∑

i=0

q
∑

j=0
︸ ︷︷ ︸

0<i+j<p+q

(
p

p− i

)(
q

q − j

)

Cxr−i,s−jµ
x
i,j , (p+ q) odd

0, (p+ q) even

(2.43)

which is the blur invariant in the spatial domain.

2.7 Experiment 3

In this section, the performance of the proposed technique is evaluated on three different problems.

The first experiment is designed to study how different types of blur affect the proposed invariants;

three benchmark images are artificially degraded, and the changing of the value of the proposed blur

invariants with different wavelet functions at different branches are studied. By branch, we mean all

the possible combinations of wavelet and scaling filters at a certain level. For example, the branches

when L = 1 are g − g, g − h, h− g, and h− h.

In the second experiment, a database of different objects are degraded with different blurs and noises

in order to evaluate the performance of the invariants in a recognition task. In this experiment, the

spatial domain invariants [17] are also employed for the sake of comparison.

In the third experiment, real-world degraded images are acquired, and the invariants are used for

registration. The spatial domain blur invariants are used here as well for a comparison.

Three different wavelet functions are employed for these experiments: Coiflet of orders 1 and 2

[11], and Daubechies of order 3 [11]. These wavelet filters have 2, 4, and 6 vanishing moments,

respectively.

2.7.1 Blur Effect

In the first experiment, three well-known benchmark photos are employed: Lena, Barbara (this photo

is cropped in order to only include the face region), and Elaine, the sizes of which were 128×128.

These photos are first degraded with circular averaging, energy preserving filters of different radii

(5, 10, and 15). The original images and the degraded ones are represented in Figure 2.5. The blur

invariants (eq. 2.35) of all these images were calculated with Coiflet of order 1 at three different

levels. The calculated moments are of 9 different orders, and they are represented in Table 2.3.

For the sake of clarity, the order of magnitudes of moments are shown beside the order of the

moments in the table. Furthermore, the same experiment is repeated after degrading these photos
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with Gaussian blur of size 10, 20, and 30 with standard deviation 2, 5, and 7 respectively. Nine of

the blur invariants of these images are calculated with Coiflet of order 2 at three different levels,

which are represented in Table 2.4. As the tables read, the different subjects of the photos are

distinguishable from each other using the moments, and the blur intensity increase does not affect

the blur invariant descriptors. The small observed changes in their values are particularly because

the signals are finite-extended. Candocia discusses this issue [7], and points out the specific criteria

that are required to have similar features perfectly invariant when the signal is finite-extended.

The photos are also degraded by motion filters which are not energy-preserving (Figure 2.6). The

first filter represents a horizontal motion of length 20 and decreases the image energy by half. More

specifically, the zero order moment of the filter is 0.5 (mb
00 = 0.5). The second filter describes a

vertical motion of the same length and increases the image energy by half (mb
00 = 1.5). Since the

maximum value of each pixel is 255, saturation happens if the intensity is greater than 170. It means

that a homogeneous increase of energy is not possible in this case, which introduces a non-uniform

change of intensity.

Since the filters are not energy-preserving any more, the blur invariants in Eq. (2.42) are utilized.

The employed wavelet function was Daubechies of order 3. The value of 9 different moments are

represented in Table 2.5. It shows that the change in the values of moments is very negligible

once the images are degraded with the first filter. The change becomes a little more considerable

in degraded images with the second filter and in moments of higher orders and further branches,

specifically in Elaine’s image. However, it is still possible to perfectly distinguish between different

images using their blur invariants.

2.7.2 Noise Effect

In the second experiment, the blur invariants are employed in a simple pattern recognition appli-

cation. In this experiment, ten images (Figure 2.7) from the COIL-100 database [52] are chosen.

These images are blurred with disk, Gaussian (with its σ equal to one fifth of the size of the mask),

and motion (at angles 0, 30, 60, and 90) blurs with mask of sizes of 5×5, 9×9, 13×13, 17×17, and

21×21. These 300 blurred photos form the test set of the experiment, and are contaminated with

Gaussian and salt and pepper noises. Then, their blur invariants are calculated, compared to those

of the original images, and are classified based on the distance between them. The wavelet based

moment invariants of orders up to 13 (r+ s = 13) are calculated with Daubechies of order 3 at four

different branches: 1) hhg − hhg, 2) ghh− ghh, 3) hhhg − hhhg, and 4) ghhg − ghhg. In order to

make a comparison, the blur invariants proposed in [17] is also used in this experiment.
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Table 2.3: blur invariants of degraded images with disk filters. Coiflet of order 1 is employed for this experiment.

Branch g − h hg − gg ghg − hhg

(r,s)/O.M.
(0,5)/12 (3,6)/22 (6,9)/38 (0,3)/10 (5,2)/20 (7,4)/30 (4,1)/36 (2,7)/26 (8,5)/16

Image Blur

L
en
a

0 -52.34 -6.98 1.71 46.03 3.65 7.85 -2.77 -2.82 -4.21

5 -52.39 -6.94 1.70 46.08 3.62 7.78 -2.74 -2.79 -4.19

10 -52.71 -6.80 1.66 46.43 3.47 7.49 -2.60 -2.64 -4.09

15 -53.23 -6.54 1.60 47.02 3.18 6.95 -2.32 -2.33 -3.93

B
a
rb
a
ra

0 4.38 -13.58 2.58 -3.09 14.65 25.80 -7.35 -16.69 -6.21

5 4.47 -13.55 2.57 -3.17 14.64 25.64 -7.28 -16.64 -6.18

10 4.35 -13.31 2.51 -3.07 14.45 25.04 -7.09 -16.36 -6.02

15 4.10 -12.97 2.42 -2.88 14.16 24.23 -6.86 -15.96 -5.81

E
la
in
e

0 50.13 -16.25 5.79 -34.15 9.84 25.46 -6.58 -10.57 -12.47

5 49.89 -16.19 5.76 -33.98 9.81 25.35 -6.56 -10.55 -12.41

10 49.26 -16.07 5.71 -33.58 9.78 25.15 -6.52 -10.50 -12.30

15 48.36 -15.91 5.63 -33.01 9.71 24.85 -6.47 -10.42 -12.15
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Table 2.4: blur invariants of degraded images with Gaussian filters. Coiflet of order 2 is employed for this experiment.

Branch h− g hg − gh ghh− hhg

(r,s)/O.M.
(6,1)/16 (3,8)/30 (10,5)/39 (1,2)/12 (8,1)/26 (9,8)/49 (0,5)/17 (6,5)/33 (9,4)/38

Image Blur

L
en
a

0 -9.54 -3.83 -7.60 -6.09 -4.36 -3.83 -20.06 3.12 -7.26

10,2 -9.31 -3.63 -7.33 -6.46 -2.27 -3.71 -19.90 3.04 -6.87

20,5 -8.49 -3.58 -7.07 -6.25 3.08 -3.61 -20.00 2.96 -6.59

30,7 -7.31 -3.51 -6.71 -5.94 10.65 -3.47 -20.14 2.87 -6.19

B
a
rb
a
ra

0 -70.08 -5.79 -31.13 16.38 -680.09 -8.57 1.68 6.24 -32.84

10,2 -68.32 -5.79 -31.17 16.39 -665.85 -8.65 1.43 6.23 -32.68

20,5 -66.97 -5.71 -30.55 16.49 -653.68 -8.43 1.41 6.14 -32.00

30,7 -65.54 -5.60 -29.78 16.49 -640.56 -8.15 1.35 6.03 -31.24

E
la
in
e

0 -51.81 -9.24 -32.71 6.66 -406.91 -17.36 19.21 7.77 -30.23

10,2 -51.64 -8.86 -32.43 6.54 -406.66 -17.11 20.04 7.63 -29.96

20,5 -51.31 -8.80 -32.16 6.60 -404.49 -16.94 19.82 7.58 -29.72

30,7 -51.01 -8.74 -31.86 6.66 -402.41 -16.74 19.57 7.51 -29.45
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Table 2.5: blur invariants of degraded images with motion, non-energy-preserving filters. Daubechies of order 3 is employed for this

experiment.

Branch g − g gg − gh hgh− hgg

(r,s)/O.M.
(2,3)/10 (9,0)/21 (7,10)/41 (4,3)/15 (2,9)/26 (6,7)/31 (1,2)/5 (10,1)/25 (7,8)/37

Image Blur

L
en
a

0 -3.11 3.16 -6.32 13.27 2.68 -7.99 -11.50 -8.17 3.15

20-0-0.5 -3.04 3.14 -6.16 12.82 2.67 -7.78 -10.87 -9.51 2.99

20-90-1.5 -2.45 2.83 -4.86 10.64 2.14 -6.23 -10.44 -7.86 2.49

B
a
rb
a
ra 0 -2.22 -5.95 -9.72 19.84 2.90 -16.88 32.27 138.32 5.24

20-0-0.5 -2.20 -5.91 -9.48 18.46 2.75 -14.87 34.23 148.12 6.78

20-90-1.5 -2.22 -5.38 -8.39 17.54 2.50 -13.24 31.28 141.17 6.10

E
la
in
e 0 -2.54 -1.77 -23.91 17.39 4.22 -21.31 11.20 57.64 10.10

20-0-0.5 -2.50 -1.77 -23.69 17.24 4.18 -21.16 11.57 59.97 10.63

20-90-1.5 -1.13 -1.77 -11.12 9.31 1.88 -11.27 9.89 40.78 5.29

3
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Figure 2.5: Images of Lena, Barbara, and Elaine in their original shape and blurred with disk filters

of different radii.

Figure 2.8 shows the average classification rate of 20 tests in the presence of Gaussian noise. The

standard deviation of the noise changes from 0 (without noise) to 25. When there is no noise, the

achieved accuracy rate with different invariants are perfect, which shows that the change of blur

intensity does not affect the classification rate at all. This, however, changes when noise is introduced

to the images. Invariants of different branches respond differently to the introduction of noise. The

invariants that are calculated at branches hhg − hhg and hhhg − hhhg show higher robustness to

noise than the spatial domain blur invariants. On the other hand, the invariants that are calculated

at branches ghhg − ghhg and ghh− ghh have poor performances comparing to the spatial domain

blur invariants.

The test is also repeated with salt and pepper noise. In this case, the density of noise is increased from

0 (no noise) to 5%, which means that 5% of the number of pixels are contaminated with this noise.

The average classification rate of twenty tests in the presence of this noise is presented in Figure

2.9. Similar to the previous test, the calculated invariants at branches hhg − hhg and hhhg − hhhg

outperformed the spatial domain invariants, while the invariants from branches ghhg − ghhg and
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Figure 2.6: Images of Lena, Barbara, and Elaine in their original shape and blurred with motion

filters of different directions and energies.

Figure 2.7: Ten images from COIL100 database that are used in the second experiment.
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Figure 2.8: Accuracy rate in the presence of Gaussian noise.

ghh− ghh show less robustness.

The reason behind a rapid drop in the performances of the calculated invariants at branches ghh−ghh
and ghhg − ghhg is that they filter most of the low frequency band, keeping the high frequencies

which are more sensitive to noise. Therefore, their accuracy rates drop significantly by the increase

of the noise intensity. hhg−hhg and hhhg−hhhg, on the other hand, filter the high frequency band,

thus show a better robustness to the noise increase. Figure 2.10 shows the magnitude response of

these filters in one dimension.

2.7.3 Registration

In this experiment, the invariants are used in a registration task. One sharp and three out of focus

photos are taken of an outdoor scene, and a part of the sharp image is chosen as the template for

registration in other degraded images. Figure 2.11 shows the source image, where the template is

illustrated in a window. The out of focus images are presented in Figure 2.12. From left to right, the

camera was focused at 50, 10, and 1 meter(s), respectively. The size of the images is 212×282 and

the template is 43×48. For this experiment, Coiflet of order 1 is exploited as the wavelet function,

and moments of orders up to 10 (r + s = 10) are calculated at branch hh − hh. For the sake of
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Figure 2.9: Accuracy rate in the presence of salt and pepper noise.
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Figure 2.10: The magnitude responses of the filters used in the second experiment.
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Figure 2.11: The source image in registration. The template is illustrated with a window.

comparison, spatial domain blur invariants of orders up to 10 are also used. For registration, a

window of the same size of the selected template is chosen, and the corresponding moments of that

section of the image are calculated. This window is moved all around the image until it scans it

thoroughly. Afterwards, the following measure is used to calculate the similarity of the template to

every subsection of the image.

Sij = exp

(

−
N∑

n=1

∣
∣
∣
∣

Byij (n)−Bx(n)

Bx(n)

∣
∣
∣
∣

)

(2.44)

In (2.44), B is the array of calculated invariants, N = 16, x is the template, and yij is a subsection

of the target photo with its centre at (i, j).

Figure 2.11 also shows where the template is registered using the wavelet and spatial domain blur

invariants. The registration with the wavelet domain blur invariants is accurate, while using the

spatial domain blur invariants, the exact location in one of the images is missed.

2.8 Discriminative Power

Flusser and Suk [17] showed that if signals are centrally symmetric, their blur invariants are equal

to zero, which means that it is impossible to distinguish between different centrally symmetric

signals. The same statement is true regarding the proposed invariants in a case where the signal

and the wavelet function are both centrally symmetric. In this case, m
ψL
Wx
p,q is zero when p + q is

odd, which can be easily inferred from (2.30). The odd order moments of a signal in the wavelet
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Figure 2.12: The registration results with spatial domain blur invariants (SDBI) and wavelet domain blur invariants (WDBI). Using

SDBIs, one of the images is not registered correctly, while using WDBIs did not cause any problem.
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domain is the summation of odd order moments of the signal in the spatial domain multiplied by

even order moments of the wavelet function and even order moments of the signal in the spatial

domain multiplied by odd order moments of the wavelet function. This also puts µ
ψL
Wx
p,q equal to

zero, and since the odd order central moments are zero, C
ψL
Wx
r,s becomes zero as well. However, if the

selected wavelet function is not centrally symmetric, m
ψL

Wx
p,q and subsequently µ

ψL

Wx
p,q would not be zero.

The reason is that the odd order moments of the wavelet function in (2.30) are not zero any more,

which proves that C
ψL

Wx
r,s is nonzero as well. Therefore, the limitedness of discriminative power which

is addressed by Flusser and Suk [17] is not an issue in the wavelet domain blur invariants.

However, there are three cases that can produce null spaces for the proposed invariants, which are

avoidable by a choice of wavelet function. First, the wavelet transform of a polynomial of order

N with a wavelet function with M vanishing moments is zero, where M>N , and therefore it will

be impossible to distinguish between different polynomials of such orders. Second, the invariants

of images that their wavelet transform with a non-symmetric wavelet function become symmetric

will be equal to zero. Third, if two images differ one another by a polynomial term of order N ,

and a wavelet function with M vanishing moments is employed, where M>N , then the proposed

invariants would not be able to discriminate them. It is always possible to avoid such null spaces

by employing an alternative wavelet function. The realization of the third case could be a gradual

change of illumination in images, and mostly it is desirable the descriptors to be invariant to such

changes. It is worth mentioning that the occurrence of such cases are fairly rare.

2.9 Conclusion

In this chapter, a new set of blur invariant descriptors is proposed. These descriptors are developed

in the wavelet domain for 1D continuous and 1D and 2D discrete signals to be invariant to centrally

symmetric blur. Defining them in the wavelet domain grants them the advantages that this domain

has, i.e. different alternatives of bases, and analysis at different scales. The spatial domain blur

invariants are also proved to be a special case of these invariants. In a discussion on the discriminative

power of the proposed blur invariants, it is shown how they would not have null space for centrally

symmetric signals, which is the problem that the conventional invariants have, and although the

chance of occurrence is low, it subsequently reduces their discriminative power.

In order to evaluate the performance of these invariants, different experiments have been carried out.

In the first experiment with artificial 1D signals in section 2.3, it is shown that the wavelet domain

blur invariants do not vary by the change of blur intensity. On the other hand, noise intensity can
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change their values to some extent. This is while the spatial domain blur invariants showed to be

more susceptible to noise. In another experiment on noise effect, which came in section 2.7.2, cases of

which the proposed blur invariants could perform not as good as the spatial domain blur invariants

are also studied. It all comes down to the choice of branches for wavelet decomposition, which could

either make these invariants perform better or worse that the conventional ones. This is expectable

since some subbands in wavelet transform are more sensitive to noise than others.

In another experiment with EEG signals in section 2.5, the invariants performed well discriminating

properly between different signals and showing very little variation due to changes in blur system

effect. In a similar experiment (section 2.7.1), three well-known images were employed and artificially

degraded with different blurring filters. The invariants successfully could put a discrepancy between

different subjects, while showing very negligible difference due to the degradations introduced by

blur.

In the third experiment, there were photos taken such that the scenes were deteriorated by defocus

blur. Then, a part of the scene, which was selected from a sharp photo, was used as templates

for image registration. Despite the presence of severe blurs, registration was performed perfectly.

The experiment was carried out with the spatial domain blur invariants which failed in one of the

registration tasks.
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Chapter 3

Face Recognition with Blurred Faces

3.1 Introduction

There has been a growing interest and research in face recognition. However, many of the proposed

systems work with only images taken under perfect conditions. There are still challenges that should

be tackled in order to have a system that works in unconstraint environments [38]. Different involved

factors in a such an environment could make having a nearly acceptable face image impossible, let

alone perfect: poor lightning condition introduces illumination to the image, a non-cooperative

subject brings on challenges such as wide pose variations and severe occlusions, and a moving

subject, an on-focused camera, or a long distance between the camera and the subject introduce

different sorts of blurs to the image. The problems related to illumination, pose, and occlusion

are hot topics in face recognition research. However, blur has been relatively overlooked for some

unknown reasons.

Blur affects faces in images in two different ways [54]: (1) the appearance of faces changes due to

blur, and (2) face images of different people tend to look similar. To alleviate this problem, there

are different types of approaches developed. One of the early stage methods for dealing with blur

was removing it. This is basically a deconvolution problem aiming at finding the parameters of

the blur system in order to perform the deconvolution [63, 8]. Xin et. al [75] came up with an

statistical model for debluring face images. In their approach, the problem of debluring is changed

into an optimization problem on their proposed model. A series of approaches adopt more than
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one image in order to reconstruct a sharp image. In Wheeler’s algorithm [73], Active Appearance

Model (AAM) was employed along with Wiener filter to acquire a sharp face image from a video

sequence. In order to avoid computational expenses, deblurring was later proposed to be shifted

to the feature extraction step: Gunturk and Batur [23] proposed a super-resolution method in the

eigneface domain which is applicable on videos.

Producing overcomplete database is another approach that has become popular in tackling blur.

In this approach, a database with sharp images is artificially degraded with different blur filters.

Stainvas and Intrator [68] proposed a hybrid neural network for recognition and restoration of

blurred images. The training of the network was performed by artificially blurred images. Fiche et.

al. [13] employed a blur metric for measuring the blur intensity in the query image. Having that, a

proper set of images from their overcomplete database is used, which have the nearest blur intensity.

Nishiyama et. al. [54] proposed a classification based on the blur intensity of the query image, prior

to face recognition. Using an overcomplete database, the statistical models of blur appearance is

learnt. Based on them, the blur model of the query image is inferred, and using the corresponding

blur model, the image is deblurred.

In all of the described techniques, identification of the blur system is involved at some level before

using it for recognition. An alternative approach is to extract features that are invariant to blur. The

blur invariant techniques have been comprehensively surveyed in the last chapter. However, except

one of them, they have not been used in face recognition problems yet. Local Phase Quantization

(LPQ) which had been initially proposed by Ojansivu and Heikillä [58] for texture classification, was

employed by Ahonen et. al. [1] to produce LPQ face descriptors.

In this chapter, the blur invariants that were developed in chapter 2 are used for face recognition.

Also by introducing an alternative definition for moments, blur invariants are redefined based on

them. In the next section, the general architecture of the face recognition system that is used in this

chapter is explained. Section 3.3 studies the performance of the blur invariants from chapter 2. An

alternative definition for ordinary moments are proposed in section 3.4. Moreover, they are used in

the same section to redefine the blur invariants in the spatial domain. Two schemes are proposed in

section 3.5 which use the blur invariants of section 3.4 to produce a single feature vector. Sections

3.6 and 3.7 use the proposed schemes. Blur effect is studied on them, and their performances are

compared with a similar technique as well. Section 3.8 concludes the chapter.
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Figure 3.1: The face recognition architecture that is used in this thesis

3.2 Face Recognition System

The face recognition system that is used in this work is depicted in Figure 3.1. The system consists

of the two essential units of a pattern recognition system: a feature extractor and a classifier. In

the feature extraction unit, the blur invariants that were developed in chapter 2 or those that are

proposed in this chapter are used. The required parameters are P and Q, which define the order of

the moments, h and g, which are the wavelet filters, and L, the branch at which the blur invariants

should be calculated.

Since the focus of this thesis is on feature extraction, a simple classifier is used to make a fair

comparison possible. The classifier that is employed in this work is a k-nn with k = 1. The measure

for calculating distance is Modified Sum of Squared Error (MSSE). It should be mentioned that no

preprocessing method is used prior to feature extraction.

3.3 Experiment 1: Face Recognition with Blur Invariant on

AT&T Database

For face recognition with blur invariants, both the spatial domain and wavelet domain blur invariants

were used. The preliminary test was carried out on the AT&T (Figure 3.2) database. This database

includes 400 different images of 40 individuals, 10 of each. In the experiments of this chapter, these

images were resized to be 128×128. In order to study the blur effect on the accuracy rate, 5 out of

10 images per person were randomly chosen as the gallery set, and the rest were artificially blurred

with Gaussian filters with different standard deviations to model different intensities of defocus
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Figure 3.2: Samples from the AT&T database

blur. The standard deviation of the filters were changed from 0.2 to 5.8. Figure 3.3 shows how these

filters affect a face image. The blur invariants of orders up to 35 were calculated. For the wavelet

domain blur invariants, Coiflet or order 1 (COIF1) was used to calculate the invariants at hh− hh,

hhg − hhg, and hhhg − hhhg branches. The employed classifier was k -nn with k = 1 and Modified

Sum of Squared Error (MSSE). For a comparison with a benchmark method, eignenface technique

[72] was employed as well.

Figure 3.4 shows the average of twenty trials. The blur invariants do not show a satisfactory

performance; their accuracy rates stand very low, and decrease with the increase of blur intensity.

What proves them to be unsuitable features for face recognition is when they are compared with

eigenface, a benchmark feature extraction technique for face recognition. This method shows a

better performance, and although it drops really fast by the increase of blur, it is only for the

standard deviation of 5.8 that it stands lower than the blur invariants. The change of the number

of involved blur invariants in classification does not affect the recognition rate significantly unless it

is as low as 4, where the classification rate drops drastically. Therefore, the chance of having a good

classification rate by having a proper number of invariants is almost zero.

3.4 Blur Invariant Descriptors

There is a problem with using geometric (ordinary or central) moment based blur invariants in face

recognition applications: the bases, {xp|p ∈ N
0}, that are used in these moments are not orthog-

onal, producing redundant information [76]. An analytical discussion on information redundancy
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Figure 3.3: A face image from the AT&T database blurred with Gaussian filters of different sizes.

σ = 0 is the case for the sharp image.
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Figure 3.4: Classification accuracy rate on the AT&T database when artificially blurred with Gaus-

sian filters. The spatial and wavelet domain blur invariants neither show a good discriminative

power, nor they are invariant to blur effect. Eigenface approach shows a better classification rate

comparing to the blur invariants, however, as it is expected, is less tolerable to blur.
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of different types of moments [71] and satisfactory results [24, 51], that have been reported with

orthogonal moments, are proofs of this statement. Also because of the bases’ property, as the image

size increases, the moments tend to put more weight on further pixels from the centroid, which

means loss of information. Considering all of these in a face recognition problem, it is clear that

using the blur invariants as they are cannot be very promising.

Since the employed blur invariants are based on ordinary moments, it is desirable to find a way to

increase their discriminative power, rather than abounding them to adopt a different set of moments

and invariants. In this section, with an alternative definition for ordinary moments, which makes a

local concentration on pixels possible, the addressed problem is resolved. Also, it is shown that the

blur invariants can be redefined based on them to increase their discriminative power.

Definition 3. Assuming signal x is N1×N2, and introducing a[n, p]=(−n)p with size M1×M2, the

generalized ordinary moment (GOM) of x is defined as

KxM1×M2

p,q [n3, n4] =

t1∑

n1=−t1

t2∑

n2=−t2

a[n1, p]a[n2, q]x[n3 − n1, n4 − n2], (3.1)

where ti =
Mi

2 with i = 1, 2.

The ordinary moments in (1.29) are a special case of (3.1); if M1 = N1 and M2 = N2, then

KxM1×M2
p,q [0, 0] = mx

p,q.

AsM1 andM2 become smaller, GOMs would contain relatively more local information of the image.

The effect of Mi is studied later in this section.

An advantage that GOMs have over the ordinary moments is that if an image is shifted, its GOMs

will be shifted for the certain amount and in the same direction, without changing its value. In

another word, while shift translates into change of values in ordinary moments, it simply keeps its

nature in GOMs.

Flusser’s blur invariants in the spatial domain, which are developed based on central moments, can

be utilized with GOMs in order to have blur invariant descriptors (BID). The following theorem,

which is derived from (2.43), represents BIDs that are based on GOMs.

Theorem 6: For x ∈ L1
(
Z
2
)
, BIDxM1×M2

p,q is invariant to energy-preserving, centrally symmetric

blur operators.

BIDxM1×M2
p,q =







KxM1×M2
p,q −

1

Kx
M1×M2

0,0

p
∑

i=0

q
∑

j=0

︸ ︷︷ ︸

0<i+j<p+q

( p

p−i

)( q

q−j

)

BIDx
M1×M2

p−i,q−jKx
M1×M2

i,j , (p + q) odd

0, (p + q) even

(3.2)

Proof The proof is similar to that of Theorem 4 and Corollary 2.
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Figure 3.5: BIDs of a face image obtained with a 8×8 window. They are rescaled for representation.

BID8×8
p,q of the original face image in Figure 3.3 are shown in Figure 3.5 as an example.

It is expected that the BIDs of a blurred image to be similar to those of the original image, showing

no sensitivity to the blur intensity. However,M1 and M2 affect the BIDs’ tolerance to blur. Figures

3.6 show the BID8×8
p,q s and BID

64×64
p,q s of the images in Figure 3.3. The effect of blur becomes obvious

in Figure 3.6a as soon as σ reaches 1. This is while the BIDs in Figure 3.6b demonstrate a very high

tolerance to blur, and the descriptors stay almost the same for all σs. Figure 3.7 shows the effect of

M versus σ. The z-axis is the distance between the BIDM×M
05 of the original image in Figure 3.3

and those of the blurred images in the same figure, where M =8 : 4 : 64. The distance is calculated

with

d =
∑

n1

∑

n2

∣
∣
∣
∣
∣

BIDxM1×M2
p,q [n1, n2]−BIDyM1×M2

p,q [n1, n2]

BIDxM1×M2
p,q [n1, n2]

∣
∣
∣
∣
∣
, (3.3)

where x and y are the original and blurred signals, respectively, p is 0, and q is equal to 5. As the

figure shows, the BID of smaller window sizes are more sensitive to blur intensity variation. The

reason is that by the increase of blur intensity (which means a larger blur operator matrix), the

number of neighbouring pixels in forming a pixel in the degraded image grows. In this case, if the

chosen window for calculating the GOMs, and consequently the BIDs, does not cover all of these

pixels, then the BIDs would not be relevant, which consequences in a set of poor BIDs. On the other

hand, if the window is large enough to include those pixels as well, the BIDs will show a reasonable
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(b)

Figure 3.6: BID05 of the images in Figure 3.3 obtained with (a) a 8×8 window (b) a 64×64 window.

They are rescaled for representation.

robustness to that level of blur. This is the case for the BIDs that are calculated with windows of

larger than 32×32 in this example. Having a large window might simply secure a face recognition

system from a wide range of blur changes, however a larger window translates into losing more local

information up to a point were the window is as big as the image, and the BIDs simply become the

blur invariants that have been shown to have a very limited discriminative power for a large-scale

patter recognition problem. This issue is addressed in the first part of 3.6.

3.5 Feature Extraction Schemes for Face Recognition

Two different schemes are proposed in this section for feature extraction. With these techniques, a

single feature vector will be extracted from a set of BIDs.

50



3. FACE RECOGNITION WITH BLURRED FACES

20
40

60

0
2

4
6

0

2

4

6

8

10

12

Mσ

D
is

ta
nc

e

Figure 3.7: The distance between BIDM×M
05 of a face image and those of the blurred ones where

M = 8 : 4 : 64.

3.5.1 Eigenmoment Scheme

In this approach, similar to the technique of using eigenfaces [72], as they are called here, eigenmo-

ments (EM) are calculated for each BID. Figure 3.8 shows the structure of the EM scheme. Having

a gallery set, the BIDs of up to a certain order are calculated. Then, the EMs for each order are

calculated and stored. Using these EMs, the weights of the BIDs of query image are calculated and

concatenated after normalization. The produced vector will be used for classification.

3.5.2 Local Histogram Scheme

In this approach, which is presented in Figure 3.9, each BID is divided into a certain number of

non-overlapping regions. By defining a number of bins, the histogram of each region is obtained.

These histograms are concatenated in order to form a vector. The obtained vectors from different

BIDs are put together to build a matrix. Finally, PCA is applied on this matrix for dimension

reduction. The final feature vector can be used for classification.
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Figure 3.8: The Scheme for Eigenmoment Approach

52



3. FACE RECOGNITION WITH BLURRED FACES

B
lu

r
In

v
a
ri
a
n
t
D

e
s
c
ri
p
to

rs
o
f
D

if
fe

re
n
t
O

rd
e
rs

Gallery

Local

Histogram

Local

Histogram

Local

Histogram

Local

Histogram

PCA

Blur Invariant Descriptors of Different Orders

L
o

c
a

l

H
is

to
g

ra
m

L
o

c
a

l

H
is

to
g

ra
m

L
o

c
a

l

H
is

to
g

ra
m

L
o

c
a

l

H
is

to
g

ra
m

Blur Invariant Feature

Probe

Figure 3.9: The Scheme for Local Histogram Approach

53



3. FACE RECOGNITION WITH BLURRED FACES

0
2

4
6

0
50

100

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Mσ

A
cc

ur
ac

y 
R

at
e

Figure 3.10: Accuracy rate of the EM scheme for the AT&T database. It shows the accuracy rate

for different standard deviations and window sizes.

3.6 Experiment 2: Face Recognition with BIDs on AT&T

Database

In this experiment, the AT&T database was employed. Similar to what was earlier explained in

section 3.3, 5 out of 10 images per person were randomly chosen as the gallery set, and the rest

were artificially blurred with Gaussian filters with different standard deviations to model different

intensities of defocus blur. The standard deviation of the filters were changed from 0.2 to 5.8. BIDs

of orders up to 11 (a total of 24 BIDs) were calculated. Also, the classifier was k-nn with k = 1 and

MSSE as the measure.

In the first part of the experiment, the EM scheme was used as the feature extractor unit (Figure

3.1), M was changed from 8 to 124, and the classification was done with 20 random allocations

of gallery and probe sets. Figure 3.10 presents the average accuracy rates. The accuracy rate

of the system stays fairly the same for the mid-range Ms. Also, this value tends to remain the

same with the increase of blur intensity. However, this behaviour changes as M increases. The

classification rate on sharp images begins to drop, and the sensitivity to blur intensity increases

as well. The reason is that as the window size increases, the descriptors become more holistic,
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Figure 3.11: Accuracy rate comparison on the AT&T database versus blur intensity

losing concentration on local information. That is the problem with the blur invariants from the

previous chapter as well, which were shown to have an unsatisfactory performance in section 3.3.

When M = 8 and 12, the performance for high intensity blur is not good, the reason of which is

the involvement of neighbouring pixels due to a large blur operator, that do not fall into the same

window.

Figure 3.11 shows the best accuracy rates with the EM scheme, which was obtained when M = 64.

The accuracy rates obtained with wavelet domain and spatial domain based invariants are also

depicted in this figure. It is clear that the proposed scheme outperforms the other methods; the

classification rate for sharp images is at 0.9205 and it drops to 0.9145 where σ is equal to 5.8, a total

of 0.6% drop in the accuracy rate.

In the second part, the local histogram scheme was employed for the same experiment, while M was

changed from 8 to 64. The number of bins were set to 7, and rectangular regions to be 8×8. The

number of regions depends on M . In this experiment, it changed from 228 regions for M = 8 to 66

for M = 64. Figure 3.10 shows the average accuracy rates of the system for different Ms and σs.

Except the cases for M = 8 and 12, the system presents a very robust performance versus the blur

intensity changes.

Figure 3.13 shows the best classification rate with the local histogram scheme, which is yielded when

M = 32. Other results are also shown for the sake of comparison. It is clear that the local histogram

scheme is performing even better than the EM scheme. The classification rate for sharp images is

0.9365, and when σ is 5.8, the accuracy drops to 0.9275.
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Figure 3.12: Accuracy rate of the local histogram scheme for the AT&T database. It shows the

accuracy rate for different standard deviations and window sizes.
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Figure 3.13: Accuracy rate comparison on the AT&T database versus blur intensity. LH stands for

local histogram.
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Figure 3.14: Samples from the FRGC 1.0.4 experiment

3.7 Experiment 3: Face Recognition with BIDs on FRGC

Database

This experiment was carried out on the Face Recognition Grand Challenge (FRGC) [62]. There are

standard experiments defined on this database in order to address different challenges. The sets of

images that are allocated to each experiment are divided into three subsets with no overlaps: train,

gallery, and probe. Such an allocation makes a fair comparison possible. The FRGC 1.0.4 experiment

is selected for this part, since it has images in the probe set that are captured in controlled and

uncontrolled conditions, making many of them blurry or with severe illumination changes. This is

while all of the images in the gallery set are taken under controlled situations. The other point that

makes this problem more challenging is the fact that there is only one sample per subject in the

gallery set, with a total of 152 subjects. The probe set includes 608 images of these subjects.

The images of one of the subjects are shown in Figure 3.14. The first image is from the gallery set,

and the rest are in the probe set. The database also provides the ground truth of the images. In

this experiment, the coordination of the centres of eyes and mouths were used in order to crop the

images. The process was as follows:

1. calculate the angle (α) between the x-axis and a line that passes through both eyes,

2. tilt the image α degrees to straighten the face,
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Figure 3.15: Samples from the FRGC 1.0.4 experiment after cropping

3. find the distance between the two eyes, and call it d1,

4. call the point that is at the exact distance from both eyes p, find the distance between p and

the mouth, and call it d2,

5. put d equal to 2max(d1, d2),

6. find the point that is at the exact distance from point p and the mouth, and call it o.

7. crop a square of size d× d with its centre at o.

Figure 3.15 shows the images in Figure 3.14 after cropping. All of the images were resized to 128×128

after cropping, and their BIDs were calculated up to order 9 (a total of 18 BIDs). The BIDs were

employed in the two proposed schemes to produce the required feature vectors for classification.

Similar to the other experiments in this chapter, k-nn was used as the classifier with k = 1.

The results are reported in Table 3.1. The best results were obtained with M = 8. Also the number

of bins was equal to 2 and the regions were 6×6 in the local histogram scheme.

For the sake of comparison, the classification rate with the LPQ face descriptors [1], which have

received a broad interest in the literature, are also presented in this table. The classifier that

was used in that work was also k-nn with k = 1. The reported classification rate with the LPQ

face descriptors on this experiment is 45.90%. Using a preprocessing technique for decreasing the

illumination effect, the classification rate was boosted up to 74.5%. This rate was later increased by
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Table 3.1: Classification Rate on the FRGC 1.0.4 Experiment

Method Accuracy Rate(%) Ref.

LPQ 45.90 [1]

LPQ w/ PP 74.50 [1]

Deblur + LPQ w/ PP 79.60 [25]

BID + EM 70.23 −
BID + LH 79.77 −
BID + EM(w/ One BID) 64.97 −
BID + LH(w/ One BID) 65.95 −

5.1% using a deblurring technique [25] prior to calculation of LPQs.

This is while the recognition rate with the EM scheme is at 70.23%, which is significantly better

than what LPQ could offer on its own. With the local histogram scheme, the recognition rate is

at 79.77%, which is even higher than when LPQ was applied on enhanced and deblurred images.

It should be reiterated that no preprocessing method was used in the proposed techniques. The

table also reports the best classification rates that were achieved with only one BID. As it reads, the

classification rates are again considerably better than what could be achieved with LPQ. It should be

mentioned that the cropping process in [1] and [25] are different than what is used here. However, it

is not expected to see a significant variation in classification rate with a change in the face cropping

process.

In contrary to the conclusion in the Experiment 1, the best results were acquired when M = 8 in

both schemes. As it was explained earlier, the smaller M is, the more localized BIDs become. It

means that more information is extractable with smaller window sizes. Also, the present blur in the

images of the FRGC 1.0.4 experiment is not as severe as it was artificially produced in the previous

experiment, meaning that the blur intensity is still in a range that is tolerable by BID8×8
p,q . Using a

blur intensity inferring method, M. Nishyama et.al [53] reported that the median of blur intensity

of the blurred images in this experiment is 2.5 (σ = 2.5). Considering these two points, a better

accuracy rate with M = 8 in the FRGC 1.0.4 experiment sounds reasonable.
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3.8 Conclusion

In this chapter, it has been shown that the spatial domain and the wavelet domain blur invariant

moments are not powerful enough to be used in face recognition problems. This is mostly due to the

non-orthogonal bases for moments. However, it was shown that with an alternative definition for

moments, it is possible to increase the discriminative power to a great extent. Using the generalized

ordinary moment definition, the blur invariants were redefined, and with the use of the two proposed

schemes superb results have been achieved.

The proposed schemes were evaluated in two experiments. In the first one, the AT&T database

was artificially blurred with different blur filters in order to study the blur effect on the accuracy

rates of the proposed schemes. The analyses proved a very high classification rate along with a

high robustness to blur variation. The classification rate with the EM scheme was at 92.05% and a

considerable change in the blur intensity only could reduce this rate by 0.6%. Similarly, the local

histogram scheme performed very well with a very little drop in the classification rate: 93.65% to

92.75% for a change of standard deviation of the Gaussian filter from 0 (no blur) to 5.8.

The second experiment was carried out on the FRGC database. The images in the probe set were

taken under uncontrolled conditions, which made them blurry or poorly lightened. The classification

result with the blur invariant LPQ technique was way less than what the proposed approaches

achieved. A 33% improvement in classification rate using the proposed techniques proves their

superiority. Even the use of a preprocessing algorithm for enhancing the images could only boost

the LPQ face descriptors to show a better performance than the EM scheme. This is while the

local histogram scheme still preformed better than LPQ with preprocessing. Finally, employing

a deblurring technique made it possible to stand close to the proposed method, which was still

marginally better. Not using any technique for reducing the illumination and/or blur effects shows

that not only the proposed BIDs are invariant to blur, but also they allow changes in the lightening

condition, which is not usually under control in a face recognition system, making them an excellent

candidate for real-world face recognition problems.
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Chapter 4

Conclusions and Future Work

The final chapter is devoted to discussion and conclusion on the dissertation. Also, the unanswered

questions and possible directions for further research on the topic are introduced as the future work.

4.1 Conclusions

This dissertation is based on answering two questions that were asked in the first chapter: 1) is it

possible to develop moment based blur invariants in the wavelet domain, and 2) how useful are the

moment based blur invariants in face recognition?

The first question was answered in chapter 2. The models of most of the present blurs in images,

such as defocus and motion effects, are centrally symmetric. The development of all of the moment

based blur invariants depends on this assumption. As the first step, the blur invariant in the wavelet

domain were developed for 1D continuous signals. Shift invariance is one of the basic properties that

different types of invariants are expected to have. However vanishing moments of wavelet functions

make it impossible to use the conventional definition of centroid since the denominator becomes

zero. The problem was solved by proposing a generalized definition for centroid that can be used

for all types of signals.

After showing the plausibility of the wavelet domain blur invariants, they were developed for 1D

discrete signals. The problem with developing these invariants in the wavelet domain was to keep

the shift invariant property, which was at risk this time by the employed transform; the discrete
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wavelet transform does not preserve this property. This problem was overcome by replacing DWT

with á trous algorithm. The development of wavelet domain blur invariants for 2D discrete signals

was only a matter of expanding those for 1D discrete signals.

The performance of the proposed invariants was evaluated in different experiments. Their response

to blur variation was tested in several examples, which showed that they are truly blur invariant. The

blur invariants were used in a registration problem with real-world blurred images. The reported

results showed that the proposed features are very robust to blur effects and intensity changes.

The effect of noise was studied as well. In the related experiments, wavelet domain blur invariants

performed better than their spatial domain counterparts. The choice of wavelet decomposition

branch was the reason behind this variation. Minding this effect, it is possible to always have

superior blur invariants in the wavelet domain than in the spatial domain.

One of the interesting points about the wavelet domain blur invariants is that they engulf those in

the spatial domain as a special case. This was mathematically proved. Also, it was explained that

how the proposed invariants do not have the null space that their counterpart could suffer from.

The proposed materials in chapter 2 were published in [42, 44, 43].

The second question was answered in chapter 3. In that chapter, the wavelet and spatial domain

blur invariants were employed for face recognition with blurred images. The preliminary results

were not promising by any means. The superiority of the wavelet domain based blur invariants

in chapter 2 changed to a marginally better performance in comparison to spatial domain blur

invariants. The reason behind an unsatisfactory performance was found to be the poor bases that

the geometric moments are developed on. Since the main limitation of the ordinary moments is

because of their globality, with proposing a generalized definition for geometric moment, a more

localized concentration was made possible. Blur invariants were redefined using this new definition,

and it was analytically shown that how the descriptors respond to blur.

Two different schemes were proposed in order to take advantage of the blur invariant descriptors.

Based on the experiments, it can be concluded that the window size in calculating the generalized

ordinary moments affects the recognition rate. As the window size increases, the generalized ordinary

moments tend to become like the conventional ordinary moments. Also, a very small window size

make the blur invariant descriptors more susceptible to blur intensity.

A comparison with the state of the art (the LPQ face descriptors in this work) shows that the

proposed technique is performing much better. The proposed method’s recognition rate on the

FRGC 1.0.4 experiment was 79.60%, compared to the reported recognition rate using the LPQ face

descriptors with no preprocessing at 45.90%. What made it superior was the fact that the proposed
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technique performed even better than when the LPQ face descriptors were used on enhanced images.

4.2 Future Work

This dissertation has two main contributions: wavelet domain blur invariants and blur invariant

descriptors based on generalized ordinary moments. Although the superiority of the proposed tech-

niques are demonstrated through experiments and discussions, it is still possible to improve them

by further research.

The proposed wavelet domain blur invariants are based on geometric moments. There is a possibility

of using complex moments in order to have phase information as well. It is then possible to develop

blur invariants similar to those in the Fourier domain.

The wavelet functions that were used in the experiments of this dissertation were all compact. It is

worth studying the effect of other types of wavelet functions. A comprehensive study on the effect

of such changes in different application is interesting. Also, it might be possible to analytically learn

the effect of different types of wavelet functions.

It was demonstrated in this dissertation that the branches that represent the high frequency infor-

mation of image are not useful in the presence of noise. However, they still carry some properties

that could be helpful in some application, which requires more investigation.

The blur invariant descriptors are calculated with the generalized ordinary moments. It would cut

the computation to some extent if they were calculated directly from images.

The blur invariant descriptors were used in two different schemes in order to make the small enough

to be suitable for classifiers. The two techniques that were employed were PCA and local histogram.

There are, however, many other alternatives available that could prove more suitable.

It is always possible to substitute the geometric moments with orthogonal ones. Considering the lat-

est finding by Kautsky and Flusser [30], developing the blur invariant descriptors that are proposed

in this dissertation could be simpler. It is recommended to investigate the effect of such substitutions

in a similar application.

The proposed blur invariant descriptors for faces are developed in the spatial domain. Considering

the findings of chapter 2, It would be very simple to develop them in the wavelet domain as well to

take advantage of the properties of that domain.
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[15] J. Flusser, J. Kautsky, and F. Šroubek. Implicit moment invariants. International journal of
computer vision, 86(1):72–86, 2010.

[16] J. Flusser and T. Suk. Classification of degraded signals by the method of invariants. Signal
Processing, 60(2):243 – 249, 1997.

[17] J. Flusser and T. Suk. Degraded image analysis: an invariant approach. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 20(6):590 –603, Jun 1998.

[18] J. Flusser, T. Suk, and S. Saic. Image features invariant with respect to blur. Pattern Recog-
nition, 28(11):1723 – 1732, 1995.

[19] J. Flusser, T. Suk, and S. Saic. Recognition of blurred images by the method of moments.
Image Processing, IEEE Transactions on, 5(3):533 – 538, Mar 1996.

[20] J. Flusser, T. Suk, and B. Zitov. Moments and moment invariants in pattern recognition. Wiley
Online Library, 2009.
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