Operator space tensor products and the second dual of a Banach algebra.

Haiping Cao
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Cao, Haiping, "Operator space tensor products and the second dual of a Banach algebra." (2006).
Electronic Theses and Dissertations. 2935.
https://scholar.uwindsor.ca/etd/2935

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Operator Space Tensor Products and the Second Dual of a Banach Algebra

by

Haiping Cao

Abstract

A Thesis Submitted to the Faculty of Graduate Studies and Research through the Department of Mathematics and Statistics in Partial Fulfillment of the Requirements for the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada
2006
(c) 2006 Haiping Cao

Library and
Archives Canada
Published Heritage Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothèque et
Archives Canada
Direction du
Patrimoine de l'édition
395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence ISBN: 978-0-494-17115-8 Our file Notre référence ISBN: 978-0-494-17115-8

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:
L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Abstract

This thesis explores a possible operator space framework for the study of the second dual of a Banach algebra A. We prove some new characterizations for A to be Arens regular and we try to unify, for the Arens regularity problem, two of current approaches: by considering weakly almost periodic functionals on A and by considering the topological center of $A^{* *}$. Motivated by this study, we define two operator space tensor products, namely, the extended projective tensor product and the normal projective tensor product. We investigate the properties of these two products; and compare them with other operator space tensor products. It is shown that the extended projective tensor product is injective, and the normal projective tensor product can linearize a class of bilinear maps under the condition that the pair of operator spaces has certain type of Kaplansky density property.

Acknowledgements

I would like to thank my advisor Dr. Zhiguo Hu for showing me through word and deed, philosophy in Mathematics and life. She always took time out of busy schedule to impart invaluable advices, that has significantly contribute to my academic and personal development. Lastly, thanks for her guidance, support through Research Assistantship, and comments on the final manuscript of this thesis. All of these are definitely helpful for me to finish this thesis.

I am grateful to Dr. Daniel Britten and Dr. Mehdi S. Monfared for their kind helping in my graduate study. I would like to thank Dr. Jessica X. Chen for serving as the external reader for my thesis.

I would also like to thank the Department of Mathematics and Statistics and the Faculty of Graduate Studies and Research for providing me with financial support through Graduate Assistant Scholarship and International Graduate Scholarship, respectively, which make my time at University of Windsor an enjoyable experience.

Contents

Abstract iii
Acknowledgements iv
Chapter 1. Introduction 1
Chapter 2. Haagerup Tensor Product 3
2.1. Multiplicatively bounded bilinear mappings 3
2.2. Haagerup tensor product and its properties 7
2.3. Row and Column Hilbert Operator Spaces 13
2.4. Multilinear decomposions 15
2.5. Some tensor product computations 18
2.6. Comparison with $\Gamma_{c}(V, W)$ and $\Gamma_{r}(V, W)$ 20
Chapter 3. Extended and Normal Haagerup Tensor Products 24
3.1. Infinite matrices 24
3.2. Extended Haagerup tensor product 27
3.3. Normal Haagerup tensor product 34
Chapter 4. The Second Dual of a Banach Algebra 37
4.1. Preliminaries 37
4.2. Characterizations of Arens regularity 38
4.3. Topological centers 42
4.4. Some new characterizations of Arens regularity 46
4.5. The second dual of a completely contractive Banach algebra 49
Chapter 5. Extended and normal projective tensor products 52
5.1. Extended and normal projective tensor products 52
5.2. Comparison with other operator space tensor products 62
5.3. Some open questions 64
Bibliography 65

CHAPTER 1

Introduction

In the operator space theory, three most interesting operator space tensor products are frequently considered: the projective tensor product $\hat{\otimes}$, the injective tensor product $\stackrel{\vee}{\otimes}$, and the Haagerup tensor product $\stackrel{h}{\otimes}$ - see [11] for overview. All of these tensor products are norm closures of the algebraic tensor product with the underlying operator space norms. Projective tensor product is closely related to completely bounded bilinear maps: $C B(V \hat{\otimes} W, X) \cong C B(V \times W, X)$, and it has the dual relationship with the injective tensor product via $V \stackrel{\vee}{\otimes} W \hookrightarrow\left(V^{*} \hat{\otimes} W^{*}\right)^{*}$. The Haagerup tensor product, however, is dual to itself: $V \stackrel{h}{\otimes} W \hookrightarrow\left(V^{*} \stackrel{h}{\otimes} W^{*}\right)^{*}$ (or $\left.V^{*} \stackrel{h}{\otimes} W^{*} \hookrightarrow\left(V^{h}{ }_{\otimes} W\right)^{*}\right)$, and linearizes the multiplicatively bounded bilinear maps, that is, $C B(V \stackrel{h}{\otimes} W, X) \cong M B(V \times W, X)$.

When V and W are dual operator spaces, algebraic tensor product $V \otimes W$ will naturally inherits the relatively weak*-topology from $\left(V_{*}{ }^{h} W_{*}\right)^{*}$. Taking the weak*closure gives the weak*-Haagerup tensor product, which turned out to be same as the extended Haagerup tensor product $V \stackrel{e h}{\otimes} W$ since they have the same predual $V_{*} \stackrel{h}{\otimes} W_{*}$ (cf. [4], [11]). In fact, the extended Haagerup tensor product has general form: for any two operator spaces V and $W, V \stackrel{e \wedge}{\otimes} W=M B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)$, which is a subspace of $M B\left(V^{*} \times W^{*}, \mathbb{C}\right)$. The extended Haagerup tensor product has many same properties as the Haagerup tensor product has, such as injectivity, selfduality, preserving complete contraction, etc. Effros-Kishimoto in [9] defined the normal Haagerup tensor product $V \stackrel{\sigma \wedge}{\otimes} W$ of two dual operator spaces V and W as $\left(V_{*}^{e h} \otimes W_{*}\right)^{*}$. It is finally connected with normal bilinear maps: for any dual operator space $X, C B^{\sigma}(V \stackrel{\sigma h}{\otimes} W, X) \cong M B^{\sigma}(V \times W, X) . \stackrel{\sigma \wedge}{\otimes}$ is automatically projective for weak*-closed subspaces due to the dual relationship with the extended Haagerup tensor product. The details about the tensor products $\stackrel{e \wedge}{\otimes}$ and $\stackrel{\sigma \hat{\otimes}}{\otimes}$ are presented in Chapter 2 and Chapter 3.

In Chapter 4, first we review some well-known results on the second dual of a Banach algebra. Then we explore some new characterizations of Arens regularity. The second dual $A^{* *}$ of a Banach algebra A has two natural products extending the multiplication on A, namely the first Arens product and the second Arens product. Generally, these two products may not coincide. When they coincide, A is called Arens regular. There are already some characterizations for A to be Arens regular expressed at A^{*}-level and $A^{* *}$-level. At these two levels, there are two concepts, i.e., the space $\operatorname{wap}(A)$ of weakly almost periodic functionals on A and the topological center $Z\left(A^{* *}\right)$ of $A^{* *}$ with respect to each Arens product, to describe the non-Arens regularity of A. It is known that $A \subseteq Z\left(A^{* *}\right) \subseteq A^{* *}, \operatorname{wap}(A) \subseteq A^{*}$, and A is Arens regular iff $Z\left(A^{* *}\right)=A^{* *}$ iff $\operatorname{wap}(A)=A^{*}$, and A is strongly Arens irregular iff $Z\left(A^{* *}\right)=A$. We attempt to unify these approaches. Via certain bilinear map, some interesting subspaces of A^{*} are introduced such as $\varphi(\widetilde{S}), \varphi(W)$, and $\varphi(\widetilde{Z})$, from which a candidate to $\operatorname{wap}(A)$ playing a similar role as A to $Z\left(A^{* *}\right)$ is investigated.

Suppose A is a Banach algebra with an operator space structure. It is shown that the multiplication m on A is in $C B(A \times A, A)$ if and only if the first and the second Arens products are in $C B\left(A^{* *} \times A^{* *}, A^{* *}\right)$. A more general conclusion is obtained for bilinear maps $m: X \times Y \rightarrow Z$. From these observations, we realize that the study of $A^{* *}$ may be related to some generalized operator space projective tensor products.

Motivated by the study of the second dual of a Banach algebra, in Chapter 5, we define and study the extended projective tensor product $\stackrel{e \wedge}{\otimes}$ and the normal projective tensor product $\stackrel{\sigma \wedge}{\otimes}$. They do not have many nice properties as extended and normal Haagerup tensor products have any more. Even if some properties like injectivity still hold, the way to get them is totally different. This is mainly owing to the lack of self-duality of the projective tensor product. In this chapter, we also prove a few identifications, such as $C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right) \cong C B^{\sigma-w}\left(V^{*}, W\right)$, and the conditional identification $C B^{\sigma}\left(V_{1}^{*} \otimes \hat{\otimes} V_{2}^{*}, W^{*}\right) \cong C B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, W^{*}\right)$. As subspaces of $\left(V^{*} \hat{\otimes} W^{*}\right)^{*}$, the extended projective tensor product, the normal spatial tensor product, and the injective tensor product are related to each other. The extended projective tensor product and the extended Haagerup tensor product are also compared.

Owing to the time limit, we leave some interesting questions open at the end of this thesis.

CHAPTER 2

Haagerup Tensor Product

Operator space Haagerup tensor product is one of important objects in the pertinent fields. It is projective, injective, and self-duality. It linearizes the multiplicatively bounded bilinear map. Besides, it has the multilinear decomposition property which plays a key role in the later study of extended Haagerup tensor product. This chapter reviews most of these interesting properties of Haagerup tensor product, some of which are proved in a way different from the original one.

2.1. Multiplicatively bounded bilinear mappings

In this section, we give a quick review of multiplicatively bounded norm, and two decompositions of an element in $M_{n}(V \otimes W)$, where V and W both are operator spaces (cf. [11]). We give a proof of the second decomposition in Lemma 2.1.4.

Let V, W and X be operator spaces, $v \in M_{m, r}(V)$ and $w \in M_{r, n}(W)$. The matrix inner product of v and w is $v \odot w \in M_{m, n}(V \otimes W)$ given by

$$
v \odot w:=\left[\sum_{k=1}^{r} v_{i k} \otimes w_{k j}\right] .
$$

If $v=\alpha \otimes v_{0}$ and $w=\beta \otimes w_{0}$ with $\alpha \in M_{m, r}, \beta \in M_{r, n}$, then we can get another useful formula for the matrix inner product.

LEMmA 2.1.1. $\left(\alpha \otimes v_{0}\right) \odot\left(\beta \otimes w_{0}\right)=\alpha \beta \otimes v_{0} \otimes w_{0}$, where $\alpha \in M_{m, r}, \beta \in M_{r, n}, v_{0} \in V$, and $w_{0} \in W$.

Proof. Since $v_{i k}=\alpha_{i k} \otimes v_{0}$ and $w_{k j}=\beta_{k j} \otimes w_{0}$ for $1 \leq i, j \leq n$ and $1 \leq k \leq r$, we have

$$
\begin{aligned}
\left(\alpha \otimes v_{0}\right) \odot\left(\beta \otimes w_{0}\right) & =v \odot w=\left[\sum_{k=1}^{r} v_{i k} \otimes w_{k j}\right] \\
& =\left[\sum_{k=1}^{r} \alpha_{i k} \otimes v_{0} \otimes \beta_{k j} \otimes w_{0}\right]
\end{aligned}
$$

$$
=\left[\left(\sum_{k=1}^{r} \alpha_{i k} \beta_{k j}\right) \otimes v_{0} \otimes w_{0}\right]=\alpha \beta \otimes v_{0} \otimes w_{0}
$$

Here we list some properties of matrix inner product without proof.
(1) For any $\alpha \in M_{m, r}, \beta \in M_{r, n}$, and $w \in M_{r, n}(W)$,

$$
\alpha \odot w=\alpha w \quad \text { and } \quad v \odot \beta=v \beta
$$

(2) For any $\alpha \in M_{m, r}$ and $w=\gamma \otimes w_{0} \in M_{r, n} \otimes W$,

$$
\alpha \odot w=\alpha \gamma \odot w_{0}
$$

(3) For any $v \in M_{m, r}(V), w \in M_{r, s}(W)$, and $x \in M_{s, n}(X)$,

$$
(v \odot w) \odot x=v \odot(w \odot x)
$$

(4) For any $\alpha \in M_{g, m}, \beta \in M_{n, h}, v \in M_{m, r}(V)$, and $w \in M_{r, n}(W)$,

$$
\alpha(v \odot w) \beta=(\alpha v) \odot(w \beta)
$$

(5) For any $v^{\prime} \in M_{m, r}(V), v^{\prime \prime} \in M_{n, s}(V), w^{\prime} \in M_{r, m}(W)$, and $w^{\prime \prime} \in M_{s, n}(W)$, let $v=v^{\prime} \oplus v^{\prime \prime}$ and $w=w^{\prime} \oplus w^{\prime \prime}$. Then

$$
v \odot w=\left(v^{\prime} \oplus v^{\prime \prime}\right) \odot\left(w^{\prime} \oplus w^{\prime \prime}\right)=\left(v^{\prime} \odot w^{\prime}\right) \oplus\left(v^{\prime \prime} \odot w^{\prime \prime}\right)
$$

Notice that the fifth property follows from

$$
\left(\left(v^{\prime} \oplus v^{\prime \prime}\right) \odot\left(w^{\prime} \oplus w^{\prime \prime}\right)\right)_{i j}= \begin{cases}\sum_{1 \leq k \leq r} v_{i k}^{\prime} \otimes w_{k j}^{\prime} & \text { if } 1 \leq i, j \leq m \\ \sum_{r+1 \leq k \leq r+s} v_{i k}^{\prime \prime} \otimes w_{k j}^{\prime \prime} & \text { if } m+1 \leq i, j \leq m+n \\ 0 & \text { otherwise }\end{cases}
$$

Let $\varphi: V \times W \rightarrow X$ be a bilinear mapping and $\tilde{\varphi}: V \otimes W \rightarrow X$ its linearization. Then we have the (n, l)-th amplification of φ, namely $\varphi^{n, l}: M_{n, l}(V) \times M_{l, n}(W) \rightarrow$ $M_{n}(X)$, which is defined by

$$
\varphi^{n, l}(v, w)=\widetilde{\varphi}^{(n)}(v \odot w)=\left[\sum_{k=1}^{l} \varphi\left(v_{i k}, w_{k j}\right)\right] \in M_{n}(X)
$$

where $\widetilde{\varphi}^{(n)}$ is the n-th amplification of the linear mapping $\widetilde{\varphi}$. When $l=n$, we shortly denote $\varphi^{n, l}$ by φ^{n}.

The multiplicatively bounded norm of φ is defined by

$$
\|\varphi\|_{m b}=\sup \left\{\left\|\varphi^{n, l}\right\|: n, l \in \mathbb{N}\right\}=\sup \left\{\left\|\varphi^{n}\right\|: n \in \mathbb{N}\right\}
$$

We say that φ is multiplicatively bounded (resp., multiplicatively contractive) if $\|\varphi\|_{m b}<\infty$ (resp., $\|\varphi\| \leq 1$). Let $M B(V \times W, X)$ denote the linear space of all multiplicatively bounded bilinear mappings $\varphi: V \times W \rightarrow X$ with the norm $\|\cdot\|_{m b}$.

Using the linear space identifications $M_{n}(M B(V \times W, X)) \cong M B\left(V \times W, M_{n}(X)\right)$, we may define an operator space matrix norm on $M B(V \times W, X)$.

Lemma 2.1.2. Let V and W be operator spaces, $v \in M_{p}(V)$, and $w \in M_{q}(W)$. Then $v \otimes w=\left(v \otimes I_{q}\right) \odot\left(I_{p} \otimes w\right)$. That is, we can express the Kronecker product in terms of the matrix inner product.

Proof. Suppose that

$$
v=\alpha \otimes v_{0} \in M_{p} \otimes V
$$

and

$$
w=\beta \otimes w_{0} \in M_{q} \otimes W
$$

Since, by the scalar matrix tensor product, we may write $\alpha \otimes \beta$ as a matrix product

$$
\alpha \otimes \beta=\left(\alpha \otimes I_{q}\right)\left(I_{p} \otimes \beta\right)
$$

we have

$$
\begin{aligned}
v \otimes w & =\left(\alpha \otimes v_{0}\right) \otimes\left(\beta \otimes w_{0}\right)=(\alpha \otimes \beta) \otimes\left(v_{0} \otimes w_{0}\right) \\
& =\left(\alpha \otimes I_{q}\right)\left(I_{p} \otimes \beta\right) \otimes v_{0} \otimes w_{0}=\left(\left(\alpha \otimes I_{q}\right) \otimes v_{0}\right) \otimes\left(\left(I_{p} \otimes \beta\right) \otimes w_{0}\right) \\
& =\left(v \otimes I_{q}\right) \odot\left(I_{p} \otimes w\right)
\end{aligned}
$$

In the fourth step, we used Lemma 2.1.1.
Lemma 2.1.3. Given linear spaces V and W and $u \in M_{n}(V \otimes W)$, there exist $r \in \mathbb{N}, v \in M_{n, r}(V)$, and $w \in M_{r, n}(W)$ such that

$$
u=v \odot w=\left[\sum_{k=1}^{r} v_{i k} \otimes w_{k j}\right] .
$$

Proof. Let $U_{n}=\left\{v \odot w: \quad v \in M_{n, r}(V), w \in M_{r, n}(W), r \in \mathbb{N}\right\}$. We want to show that $U_{n} \supseteq M_{n}(V \otimes W)=M_{n} \otimes V \otimes W$.

In fact, $M_{n} \otimes V \otimes W=\operatorname{span}\left\{E_{i, j} \otimes v \otimes w: v \in V, w \in W, i, j=1, \cdots, n\right\}$, where $E_{i, j}$ is the $i j$-th unit matrix in M_{n}. Note that $E_{i, j}=e_{i}^{[n, 1]} e_{j}^{[1, n]}$. So, by Lemma 2.1.1, $E_{i, j} \otimes v \otimes w=\left(e_{i}^{[n, 1]} \otimes v\right) \odot\left(e_{j}^{[1, n]} \otimes w\right) \in U_{n}$. It remains to show that U_{n} is a linear space. U_{n} is clearly closed under the scalar multiplication.

Now given $u_{i}=v_{i} \odot w_{i}(i=1,2)$ with $v_{1} \in M_{n, r}(V), w_{1} \in M_{r, n}(W), v_{2} \in M_{n, s}(V)$, and $w_{2} \in M_{s, n}(W)$. Let $v=\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)$ and $w=\left(\begin{array}{ll}w_{1} & w_{2}\end{array}\right)^{T}$. Then $v \in M_{n, r+s}(V), w \in$ $M_{r+s, n}(W)$, and

$$
v \odot w=v_{1} \odot w_{1}+v_{2} \odot w_{2}=u_{1}+u_{2} .
$$

Then we complete the proof.

Lemma 2.1.4. Given linear spaces V and W and $u \in M_{n}(V \otimes W)$, there exist $p, q \in \mathbb{N}, v \in M_{p}(V), w \in M_{q}(W), \alpha \in M_{n, p q}$, and $\beta \in M_{p q, n}$ such that

$$
u=\alpha(v \otimes w) \beta
$$

Proof. Let $U_{n}=\left\{\alpha(v \otimes w) \beta: \alpha \in M_{n, p q}, \beta \in M_{p q, n}, v \in M_{p}(V), w \in M_{q}(W)\right\}$. Now we show $U_{n} \supseteq M_{n}(V \otimes W)=\operatorname{span}\left\{E_{i, j} \otimes v \otimes w: v \in V, w \in W, i, j=1, \cdots, n\right\}$. Note that $E_{i, j} \otimes v \otimes w=e_{i}^{[n, 1]}(v \otimes w) e_{j}^{[1, n]} \in U_{n}$, it remains to show that U_{n} is a linear space.

Clearly, U_{n} is closed under the scalar multiplication. Let $u_{1}=\alpha_{1}\left(v_{1} \otimes w_{1}\right) \beta_{1}$ and $u_{2}=\alpha_{2}\left(v_{2} \otimes w_{2}\right) \beta_{2}$. Then we have

$$
\begin{aligned}
u_{1}+u_{2} & =\alpha_{1}\left(v_{1} \otimes w_{1}\right) \beta_{1}+\alpha_{2}\left(v_{2} \otimes w_{2}\right) \beta_{2} \\
& =\left(\begin{array}{llll}
\alpha_{1} & 0 & 0 & \alpha_{2}
\end{array}\right)\left(\begin{array}{cccc}
v_{1} \otimes w_{1} & 0 & 0 & 0 \\
0 & v_{1} \otimes w_{2} & 0 & 0 \\
0 & 0 & v_{2} \otimes w_{1} & 0 \\
0 & 0 & 0 & v_{2} \otimes w_{2}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
0 \\
0 \\
\beta_{2}
\end{array}\right) \\
& =\alpha(v \otimes w) \beta
\end{aligned}
$$

where $\alpha=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & \alpha_{2}\end{array}\right), v=\left(\begin{array}{cc}v_{1} & 0 \\ 0 & v_{2}\end{array}\right), w=\left(\begin{array}{cc}w_{1} & 0 \\ 0 & w_{2}\end{array}\right)$, and $\beta=\left(\begin{array}{c}\beta_{1} \\ 0 \\ 0 \\ \beta_{2}\end{array}\right)$. That completes the proof.

2.2. Haagerup tensor product and its properties

Before going to the properties, we recall the operator space Haagerup tensor product norm. The readers can find most results of this section in [11] and [3, Lemma 2.2.6]. We deduce Corollary 2.2.3 and Proposition 2.2.4 from Proposition 2.2 .2 and [11, Theorem 7.1.2], respectively. Both Lemma 2.2.7 and Lemma 2.2.8 were used in the proof of [11, Theorem 9.2.5] without proof. From our point of view, they are not trivial. So, we present detailed proofs here.

Given operator spaces V and W and $u \in M_{n}(V \otimes W)$, the operator space Haagerup tensor norm of u is defined by

$$
\|u\|_{h}=\inf \left\{\|v\|\|w\|: u=v \odot w, v \in M_{n, r}(V), w \in M_{r, n}(W), r \in \mathbb{N}\right\}
$$

Theorem 2.2.1. Let V and W be operator spaces. Then $\|\cdot\|_{h}$ is an operator space matrix norm on $V \otimes W$, and for any $u \in M_{n}(V \otimes W)$,

$$
\|u\|_{\vee} \leq\|u\|_{h} \leq\|u\|_{\wedge}
$$

Proof. Suppose $u_{1} \in M_{m}(V \otimes W), u_{2} \in M_{n}(V \otimes W)$, and $\varepsilon>0$. Then there exist $v_{1} \in M_{m, r}(V), w_{1} \in M_{r, m}(W), v_{2} \in M_{n, l}(V)$, and $w_{2} \in M_{l, n}(W)$ such that $u_{i}=v_{i} \odot w_{i}$ with $\left\|w_{i}\right\|=1$ and $\left\|v_{i}\right\| \leq\left\|u_{i}\right\|_{h}+\varepsilon(i=1,2)$. So,

$$
\begin{aligned}
\left\|u_{1} \oplus u_{2}\right\| & =\left\|\left(v_{1} \oplus v_{2}\right) \odot\left(w_{1} \oplus w_{2}\right)\right\| \leq\left\|v_{1} \oplus v_{2}\right\| \\
& =\max \left\{\left\|v_{1}\right\|,\left\|v_{2}\right\|\right\} \leq \max \left\{\left\|u_{1}\right\|_{h},\left\|u_{2}\right\|_{h}\right\}+\varepsilon
\end{aligned}
$$

Since ε is arbitrary, we have obtained $\mathbf{M 1}{ }^{\prime}$. For any $u \in M_{n}(V \otimes W)$ and $\varepsilon>0$, we may choose $v \in M_{n, r}(V)$ and $w \in M_{r, n}(W)$ with $u=v \odot w$ and $\|v\|\|w\|<\|u\|_{h}+\varepsilon$. Then for $\alpha, \beta \in M_{n}$, we have

$$
\|\alpha u \beta\|=\|(\alpha v) \odot(w \beta)\| \leq\|\alpha v\|\|w \beta\| \leq\|\alpha\|\|v\|\|w\|\|\beta\| \leq\|\alpha\|\left(\|u\|_{h}+\varepsilon\right)\|\beta\|
$$

Again, since ε is arbitrary, we obtained M2.
Let us suppose that $f \in M_{p}\left(V^{*}\right)$ and $g \in M_{q}\left(W^{*}\right)$ are complete contractions. Then by Lemma 2.1.2 and property (1) of the matrix inner product in Section 1, we have

$$
\begin{aligned}
(f \otimes g)^{(n)}(v \odot w) & =\left[\sum_{k=1}^{r} f\left(v_{i k}\right) \otimes g\left(w_{k j}\right)\right]_{n, n} \\
& =\left[\sum_{k}^{r}\left(f\left(v_{i k}\right) \otimes I_{q}\right) \odot\left(I_{p} \otimes g\left(w_{k j}\right)\right)\right]_{n, n} \\
& =\left[\sum_{k}^{r}\left(f\left(v_{i k}\right) \otimes I_{q}\right)\left(I_{p} \otimes g\left(w_{k j}\right)\right)\right]_{n, n} \\
& \left.=\left[f\left(v_{i k}\right) \otimes I_{q}\right)\right]_{n, r}\left[I_{p} \otimes g\left(w_{k j}\right)\right]_{r, n}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left\|(f \otimes g)^{(n)}(v \odot w)\right\| & \left.\leq \|\left[f\left(v_{i k}\right) \otimes I_{q}\right)\right]_{n, r}\| \|\left[I_{p} \otimes g\left(w_{k j}\right)\right]_{r, n} \| \\
& =\left\|\left[f\left(v_{i k}\right)\right]_{n, r} \otimes I_{q}\right\|\left\|I_{p} \otimes\left[g\left(w_{k j}\right)\right]_{r, n}\right\| \\
& \leq\left\|f^{(n, r)}(v)\right\|\left\|g^{(r, n)}(w)\right\| \leq\|v\|\|w\| .
\end{aligned}
$$

It follows from the definition of the injective tensor matrix norm that

$$
\|u\|_{\vee} \leq\|v\|\|w\| \leq\|u\|_{h}+\varepsilon
$$

Letting $\varepsilon \rightarrow 0$, we have $\|u\|_{V} \leq\|u\|_{h}$.
For any matrices $v \in M_{m}(V)$ and $w \in M_{n}(W)$, we have from Lemma 2.1.1 that

$$
\|v \otimes w\|_{h} \leq\|v\|\|w\| .
$$

That is, the Haargerup tensor norm is a subcross norm. Since the projective tensor norm is the largest subcross norm (cf. [11, Theorem 7.1.1]), $\|u\|_{h} \leq\|u\|_{\wedge}$.

We let

$$
V \otimes_{h} W=\left(V \otimes W,\|\cdot\|_{h}\right),
$$

and define the Haagerup tensor product $V \stackrel{h}{\otimes} W$ of V and W to be the completion of the operator space $V \otimes_{h} W$.

Proposition 2.2.2. Let V, W and X be operator spaces. Then we have a complete isometry

$$
M B(V \times W, X) \cong C B(V \stackrel{h}{\otimes} W, X)
$$

Proof. Let $\varphi \in M B(V \times W, X)$ and $\tilde{\varphi}$ its unique linearization. Then by the definition of the n-th amplification of φ and $\tilde{\varphi}$, we have $\varphi^{n}(v, w)=\widetilde{\varphi}^{(n)}(v \odot w)$. We want to show $\left\|\varphi^{n}\right\|=\left\|\widetilde{\varphi}^{(n)}\right\|$ for each $n \in \mathbb{N}$, and hence $\|\varphi\|_{m b}=\|\widetilde{\varphi}\|_{c b}$. In fact,

$$
\begin{aligned}
\left\|\varphi^{n}\right\| & =\sup \left\{\left\|\varphi^{n}(v, w)\right\|:\|v\| \leq 1,\|w\| \leq 1, v \in M_{n}(V), w \in M_{n}(W)\right\} \\
& =\sup \left\{\left\|\widetilde{\varphi}^{(n)}(v \odot w)\right\|:\|v\| \leq 1,\|w\| \leq 1, v \in M_{n}(V), w \in M_{n}(W)\right\} \\
& \leq \sup \left\{\left\|\widetilde{\varphi}^{(n)}(u)\right\|:\|u\|_{h} \leq 1, u \in M_{n}(V \otimes W)\right\}=\left\|\widetilde{\varphi}^{(n)}\right\| .
\end{aligned}
$$

Conversely, for every $u \in M_{n}(V \otimes W)$ with $\|u\| \leq 1$ and $\varepsilon>0$, we can find $v \in M_{n, r}(V), w \in M_{r, n}(W)$ such that $u=v \odot w$ and $\|v\|\|w\| \leq 1+\varepsilon$. Then

$$
\begin{aligned}
\left\|\widetilde{\varphi}^{(n)}(u)\right\| & =\left\|\widetilde{\varphi}^{(n)}(v \odot w)\right\|=\left\|\varphi^{n}(v, w)\right\| \\
& \leq\left\|\varphi^{n}\right\|\|v\|\|w\| \leq\left\|\varphi^{n}\right\|(1+\varepsilon)
\end{aligned}
$$

Since ε is arbitrary, $\left\|\widetilde{\varphi}^{(n)}\right\|=\sup _{\|u\| \leq 1}\left\|\widetilde{\varphi}^{(n)}(u)\right\| \leq\left\|\varphi^{n}\right\|$. Therefore, $\left\|\varphi^{n}\right\|=\left\|\widetilde{\varphi}^{(n)}\right\|$.
Corollary 2.2.3. Let V and W be operator spaces and $\varphi: V \times W \rightarrow M_{n} a$ bilinear map. Then $\|\varphi\|_{m b}=\left\|\varphi^{n}\right\|$, where $\varphi^{n}: M_{n}(V) \times M_{n}(W) \rightarrow M_{n}\left(M_{n}\right)$ is the n-th amplification of φ.

Proof. Let $\widetilde{\varphi}: V \stackrel{h}{\otimes} W \rightarrow M_{n}$ be the unique linearization of φ. Then $\|\varphi\|_{m b}=$ $\|\widetilde{\varphi}\|_{c b}=\left\|\widetilde{\varphi}^{(n)}\right\|$, where $\widetilde{\varphi}^{(n)}$ is the n-th amplification of the linear map $\widetilde{\varphi}$. From the proof of the identification $M B(V \times W, X) \cong C B(V \stackrel{h}{\otimes} W, X)$, we have $\left\|\widetilde{\varphi}^{(n)}\right\|=\left\|\varphi^{n}\right\|$. Therefore, $\|\varphi\|_{m b}=\left\|\varphi^{n}\right\|$.

When $n=1$, we have the following property of completely bounded bilinear maps.
Proposition 2.2.4. Let V and W be operator spaces and $\varphi: V \times W \rightarrow \mathbb{C} a$ bilinear map. Then $\|\varphi\|_{c b}=\|\varphi\|$.

Proof. Recall that $\|\varphi\|_{c b}=\sup _{n \in \mathbb{N}}\left\{\left\|\varphi_{n}\right\|\right\}$, where $\varphi_{n}: M_{n}(V) \times M_{n}(W) \rightarrow M_{n^{2}}$ is the n-th joint amplification of φ. By the operator space identification $C B(V \times W, \mathbb{C}) \cong$ $C B(V \hat{\otimes} W, \mathbb{C}),\|\varphi\|_{c b}=\|\widetilde{\varphi}\|_{c b}=\|\widetilde{\varphi}\|=\|\varphi\|$, where $\widetilde{\varphi}$ is the unique linearization of φ such that $\widetilde{\varphi}(v \otimes w)=\varphi(v, w)$.

Proposition 2.2.5. Let V and W be operator spaces. For any u in $V \otimes_{h} W$ with $\|u\|_{h} \leq 1$, there exists a representation

$$
u=v \odot w=\sum_{k=1}^{r} v_{j} \otimes w_{j}
$$

with $\|v\| \leq 1,\|w\| \leq 1$ such that v_{1}, \cdots, v_{r} are linearly independent in V, and w_{1}, \cdots, w_{r} are linearly independent in W.

Lemma 2.2.6. Let V and W be operator spaces and $u \in V \otimes W$. Let $u=$ $\sum_{i=1}^{n} v_{i} \otimes w_{i}=\sum_{k=1}^{m} v_{k}^{\prime} \otimes w_{k}^{\prime}$ be two representations of u such that each of the sets $\left\{v_{1}, \cdots, v_{n}\right\},\left\{w_{1}, \cdots, w_{n}\right\},\left\{v_{1}^{\prime}, \cdots, v_{m}^{\prime}\right\}$, and $\left\{w_{1}^{\prime}, \cdots, w_{m}^{\prime}\right\}$ is linearly independent. Then span $\left\{v_{1}, \cdots, v_{n}\right\}=\operatorname{span}\left\{v_{1}^{\prime}, \cdots, v_{m}^{\prime}\right\}$ and $\operatorname{span}\left\{w_{1}, \cdots, w_{n}\right\}=\operatorname{span}\left\{w_{1}^{\prime}, \cdots, w_{m}^{\prime}\right\}$.

Proof. By Hahn-Banach Theorem, we can choose $f_{s} \in V^{*}$ such that $f_{s}\left(v_{k}^{\prime}\right)=$ $\delta_{s k}(s, k=1, \cdots, m)$. Now the map $f_{s} \otimes i d: V \otimes W \rightarrow W$ is given by $\sum_{j=1}^{r} x_{j} \otimes$ $y_{j} \mapsto \sum_{j=1}^{r} f_{s}\left(x_{j}\right) y_{j}$. Then $\left(f_{s} \otimes i d\right)(u)=\sum_{k=1}^{m} f_{s}\left(v_{k}^{\prime}\right) w_{k}^{\prime}=w_{k}^{\prime}$. On the other hand, $\left(f_{s} \otimes i d\right)(u)=\sum_{i=1}^{n} f_{s}\left(v_{i}\right) w_{i}$. Hence, $w_{k}^{\prime} \in \operatorname{span}\left\{w_{1}, \cdots, w_{m}\right\}$. The remaining cases follow similarly.

Lemma 2.2.7. Let V^{\prime} and W^{\prime} be operator spaces, $V \subseteq V^{\prime}$ and $W \subseteq W^{\prime}$ subspaces of V and W, respectively. Then the inclusion $\operatorname{map} V \stackrel{h}{\otimes} W \rightarrow V^{\prime} \stackrel{h}{\otimes} W^{\prime}$ is an isometry.

Proof. Let $u \in V \otimes W$. Then its Haagerup tensor product norm in $V \otimes W$ is same as its Haagerup norm in $V^{\prime} \otimes W^{\prime}$. In fact,

$$
\|u\|_{V \otimes W}^{h}=\inf \left\{\|v\|\|w\|: u=v \odot w, v \in M_{1, r}(V), w \in M_{r, 1}(W), r \in \mathbb{N}\right\}
$$

and

$$
\|u\|_{V^{\prime} \otimes W^{\prime}}=\inf \left\{\|v\|\|w\|: u=v \odot w, v \in M_{1, r}\left(V^{\prime}\right), w \in M_{r, 1}\left(W^{\prime}\right), r \in \mathbb{N}\right\}
$$

So, it is clear that $\|u\|_{V_{\otimes W}^{h}} \geq\|u\|_{V^{\prime},{ }_{\otimes}^{\prime} W^{\prime}}$. By Lemma 2.2.6, we have $\|u\|_{V^{\prime},{ }_{\otimes}^{\prime} W^{\prime}} \geq$ $\|u\|_{V \otimes W}^{h}$ as well.

Lemma 2.2.8. Let V, V^{\prime}, W, and W^{\prime} be operator spaces. If $\varphi: V \rightarrow V^{\prime}$ and $\psi: W \rightarrow W^{\prime}$ are complete isometries, then $\varphi \otimes \psi$ is an isometry.

Proof. The inclusion mapping $\varphi(V) \stackrel{h}{\otimes} \psi(W) \rightarrow V^{\prime} \stackrel{h}{\otimes} W^{\prime}$ is isometric by Lemma 2.2.7. It suffices to show the map

$$
V \otimes_{h} W \rightarrow \varphi(V) \otimes_{h} \psi(W), \quad \sum_{i=1}^{n} v_{i} \otimes w_{i} \mapsto \sum_{i=1}^{n} \varphi\left(v_{i}\right) \otimes \psi\left(w_{i}\right)
$$

is an isometry.
Suppose $u^{\prime} \in \varphi(V) \otimes_{h} \psi(W)$. Then u^{\prime} has a representation $\sum_{i=1}^{n} \varphi\left(v_{i}^{\prime}\right) \otimes \psi\left(w_{i}^{\prime}\right)$, where $v_{i}^{\prime} \in V$ and $w_{i}^{\prime} \in W$. Let $u=\sum_{i=1}^{n} v_{i}^{\prime} \otimes w_{i}^{\prime}$. Then $u \in V \otimes_{h} W$ and $\varphi \otimes \psi(u)=u^{\prime}$, i.e., $\varphi \otimes \psi: V \otimes_{h} W \rightarrow \varphi(V) \otimes_{h} \psi(W)$ is onto.

Let $u_{1}=\sum_{i=1}^{n} v_{i}^{1} \otimes w_{i}^{1}$ and $u_{2}=\sum_{k=1}^{m} v_{k}^{2} \otimes w_{k}^{2}$ be two elements in $V \otimes_{h} W$ with $u_{1} \neq u_{2}$. Then we can write $u_{1}-u_{2}$ as $\sum_{j=1}^{l} \widetilde{v_{j}} \otimes \widetilde{w_{j}} \neq 0$ with $\widetilde{w_{j}}$ linearly independent, where $1 \leq l \leq m+n$. So, $\widetilde{v_{j_{0}}} \neq 0$ for some j_{0}. Then

$$
(\varphi \otimes \psi)\left(u_{1}-u_{2}\right)=(\varphi \otimes \psi)\left(\sum_{j=1}^{l} \widetilde{v_{j}} \otimes \widetilde{w_{j}}\right)=\sum_{j=1}^{l} \varphi\left(\widetilde{v_{j}}\right) \otimes \psi\left(\widetilde{w_{j}}\right)
$$

Since $\widetilde{w_{j}}$ are linearly independent and ψ is isometric, $\psi\left(\widetilde{w_{j}}\right)$ are linearly independent. Again since $\varphi\left(\widetilde{v_{j_{0}}}\right) \neq 0,(\varphi \otimes \psi)\left(u_{1}-u_{2}\right) \neq 0$. So, $\varphi \otimes \psi$ is one-one.

Now we show that $\varphi \otimes \psi: V \otimes_{h} W \rightarrow \varphi(V) \otimes_{h} \psi(W)$ is isometric. First we show that $\|(\varphi \otimes \psi)(u)\|_{h} \geq\|u\|_{h}$. For each $u \in V \otimes_{h} W,(\varphi \otimes \psi)(u) \in \varphi(V) \otimes_{h} \psi(W)$, so, by Lemma 2.2.7

$$
\|(\varphi \otimes \psi)(u)\|_{h}=\inf \left\{\left\|\left[\varphi\left(v_{i}\right)\right]_{1, r}\right\|\left\|\left[\psi\left(w_{i}\right)\right]_{r, 1}\right\|\right\}
$$

where the infimum is taken over all decompositions $(\varphi \otimes \psi)(u)=\left[\varphi\left(v_{i}\right)\right] \odot\left[\psi\left(w_{i}\right)\right]$ with $\left[\varphi\left(v_{i}\right)\right] \in M_{1, r}(\varphi(V)),\left[\psi\left(w_{i}\right)\right] \in M_{r, 1}(\psi(W))$, and $r \in \mathbb{N}$. But this infimum is just

$$
\inf \left\{\left\|\varphi^{(1, r)}(v)\right\|\left\|\psi^{(r, 1)}(w)\right\|:(\varphi \otimes \psi)(u)=\varphi^{(1, r)}(v) \odot \psi^{(r, 1)}(w)\right\}
$$

where $v=\left[v_{i}\right] \in M_{1, r}(V), w=\left[w_{i}\right] \in M_{r, 1}(W)$, and $r \in \mathbb{N}$.
Thus for any $\varepsilon>0$, there exist $v \in M_{1, r}(V)$ and $w \in M_{r, 1}(W)$ such that $(\varphi \otimes$ $\psi)(u)=\varphi^{(1, r)}(v) \odot \psi^{(r, 1)}(w)$ and $\|(\varphi \otimes \psi)(u)\|_{h} \geq\left\|\varphi^{(1, r)}(v)\right\|\left\|\psi^{(r, 1)}(w)\right\|+\varepsilon$. Since $\varphi^{(1, r)}$ and $\psi^{(r, 1)}$ are isometries, $\|(\varphi \otimes \psi)(u)\|_{h} \geq\|v\|\|w\|+\varepsilon \geq\|u\|_{h}$, where we use the fact that $u=v \odot w$ since $(\varphi \otimes \psi)(u)=\varphi^{(1, r)}(v) \odot \psi^{(r, 1)}(w)=(\varphi \otimes \psi)(v \odot w)$ and $\varphi \otimes \psi$ is one-one. Therefore, $\|(\varphi \otimes \psi)(u)\|_{h} \geq\|u\|_{h}$.

On the other hand, for $u=v \odot w \in V \otimes_{h} W$ with $v \in M_{1, r}(V)$ and $w \in M_{n, 1}(W)$, we have

$$
\begin{aligned}
\|(\varphi \otimes \psi)(u)\|_{h} & =\left\|\sum_{k=1}^{r} \varphi\left(v_{k}\right) \otimes \psi\left(w_{k}\right)\right\|_{h} \\
& =\left\|\varphi^{(1, r)}(v) \odot \psi^{(r, 1)}(w)\right\|_{h} \\
& \leq\left\|\varphi^{(1, r)}(v)\right\|\left\|\psi^{(r, 1)}(w)\right\| \\
& =\|v\|\|w\| .
\end{aligned}
$$

Taking the infimum over all such representations of u gives $\|(\varphi \otimes \psi)(u)\|_{h} \leq\|u\|_{h}$.

Proposition 2.2.9. Let V, V^{\prime}, W and W^{\prime} be operator spaces. For all complete contractions $\varphi: V \rightarrow V^{\prime}$ and $\psi: W \rightarrow W^{\prime}$, the corresponding mapping

$$
\varphi \otimes \psi: V \stackrel{h}{\otimes} W \rightarrow V^{\prime} \stackrel{h}{\otimes} W^{\prime}
$$

is a complete contraction.
If φ and ψ are complete isometries (resp., completely quotient mappings), then the same is true for $\varphi \otimes \psi$.

Proof. We have the commutative diagram

By [11, Theorem 9.2.4], the two vertical mappings are isometries. Now we note that if φ and ψ are completely contractive, isometric, or complete quotient mappings, then that is also the case for the mappings $\varphi^{(n, 1)}$ and $\psi^{(1, n)}$. Thus, it suffices to show that the mapping $\varphi \otimes \psi$ is a contraction, isometry, or quotient mapping.

Suppose that $\|\varphi\|_{c b} \leq 1$ and $\|\psi\|_{c b} \leq 1$. Then the proof of $\|\varphi \otimes \psi\| \leq 1$ is contained in the last part in the proof of Lemma 2.2.8.

The case of isometry is just Lemma 2.2.8.
Finally, given $u^{\prime} \in V^{\prime} \otimes_{h} W^{\prime}$ with $\left\|u^{\prime}\right\|_{h}<1$, there exist $v^{\prime} \in M_{1, r}\left(V^{\prime}\right)$, $w^{\prime} \in$ $M_{r, 1}\left(W^{\prime}\right)$ such that $u^{\prime}=v^{\prime} \odot w^{\prime}$ and $\left\|v^{\prime}\right\|,\left\|w^{\prime}\right\|<1$. If φ, ψ are complete quotient mappings, then $\varphi^{(1, r)}$ and $\psi^{(r, 1)}$ are quotient mappings. So, there exist $v \in M_{1, r}(V)$
with $\|v\|<1$ and $w \in M_{r, 1}(W)$ with $\|w\|<1$ such that

$$
v^{\prime}=\varphi^{(1, r)}(v) \quad \text { and } \quad w^{\prime}=\psi^{(r, 1)}(w)
$$

It follows that $u=v \odot w \in V \otimes_{h} W$ satisfying $\|u\|_{h}<1$ and $(\varphi \otimes \psi)(u)=u^{\prime}$. So, $\varphi \otimes \psi$ is a quotient mapping.

The above assertion that the Haagerup tensor product preserves both quotient maps and complete isometries shows that it is both projective and injective. The proposition below shows that Haagerup tensor product also possesses associativity.

Proposition 2.2.10. Let V, W and X be operator spaces. Then we have the following complete isometry

$$
(V \stackrel{h}{\otimes} W) \stackrel{h}{\otimes} X \cong V \stackrel{h}{\otimes}(W \stackrel{h}{\otimes} X)
$$

2.3. Row and Column Hilbert Operator Spaces

Let H be a Hilbert space. In this section, we consider two natural operator space structures on a H.

First, we use the column identification

$$
C: H \cong B(\mathbb{C}, H)
$$

where $C(\xi)(a)=a \xi(\xi \in H, a \in \mathbb{C})$, to determine an operator space structure on H. To be more specific, for $\xi \in M_{n}(H)$, we have the amplification

$$
C^{(n)}(\xi): \mathbb{C}^{n} \rightarrow H^{n}
$$

and we define the column matrix norm of ξ by

$$
\|\xi\|_{c}=\left\|C^{(n)}(\xi)\right\|
$$

Let H_{c} denote H with this operator structure, and we refer to it as the column Hilbert operator space or simply the column Hilbert space determined by H. That is

$$
H_{c} \cong B(\mathbb{C}, H)
$$

For each $\xi \in M_{m, n}\left(H_{c}\right)$,

$$
\begin{aligned}
\|\xi\|_{c} & =\left\|C^{(m, n)}(\xi)\right\|=\left\|C^{(m, n)}(\xi)^{*} C^{(m, n)}(\xi)\right\|^{1 / 2}=\left\|\left[C\left(\xi_{j i}\right)^{*}\right]_{n, m}\left[C\left(\xi_{i j}\right)\right]_{m, n}\right\|^{1 / 2} \\
& =\left\|\left[\sum_{k=1}^{m} C\left(\xi_{k i}\right)^{*} C\left(\xi_{k j}\right)\right]\right\|^{1 / 2}=\left\|\left[\sum_{k=1}^{m}\left\langle\xi_{k j} \mid \xi_{k i}\right\rangle\right]\right\|^{1 / 2}
\end{aligned}
$$

From the definition, we have the natural complete isometry

$$
M_{m, n}\left(H_{c}\right) \cong B\left(\mathbb{C}^{n}, H^{m}\right)
$$

for all $m, n \in \mathbb{N}$, since for all $k \in \mathbb{N}$,

$$
M_{k}\left(M_{m, n}\left(H_{c}\right)=M_{k m, k n}\left(H_{c}\right) \cong B\left(\mathbb{C}^{k n}, H^{k m}\right)=M_{k}\left(B\left(\mathbb{C}^{n}, H^{m}\right)\right) .\right.
$$

This shows that $M_{m, n}\left(H_{c}\right)$ is also an operator space.
In particular, $\left(H_{c}\right)^{m}=M_{m, 1}\left(H_{c}\right) \cong B\left(\mathbb{C}, H^{m}\right) \cong\left(H^{m}\right)_{c}$, which means that the sum of column Hilbert space is also a column Hilbert space.

Recall that if H is a Hilbert space, then we may define the complex conjugate space \bar{H} by the identity map

$$
J: H \rightarrow \bar{H}, x \mapsto \bar{x}
$$

with the usual addition and conjugate multiplication, that is

$$
\bar{x}+\bar{y}=\overline{x+y} \quad \text { and } \quad a \cdot \bar{x}=\overline{\bar{a} x} .
$$

Then \bar{H} is a Hilbert space with the inner product given by

$$
\langle\bar{x} \mid \bar{y}\rangle=\langle y \mid x\rangle .
$$

Now we use the Banach space identification $\theta: \bar{H} \rightarrow H^{*}$, where $\theta(\bar{\xi})(\eta)=\langle\eta \mid \xi\rangle$. The natural isometry

$$
R: H \rightarrow H^{* *}=B\left(H^{*}, \mathbb{C}\right)=B(\bar{H}, \mathbb{C})
$$

given by

$$
R(\eta)(\bar{\xi})=\theta(\bar{\xi})(\eta)=\langle\eta \mid \xi\rangle
$$

determines an operator space matrix norm on H. We denote H with this operator structure by H_{r}, and refer to it as row Hilbert operator space. That is

$$
H_{r} \cong B(\bar{H}, \mathbb{C}) \cong B(H, \mathbb{C})
$$

For $\xi \in M_{m, n}\left(H_{r}\right)$, then

$$
\|\xi\|_{r}=\left\|R_{m, n}(\xi)\right\|=\left\|\left[\sum_{k=1}^{n}\left\langle\xi_{i k} \mid \xi_{j k}\right\rangle\right]\right\|^{1 / 2}
$$

Similarly, we have $\left(H_{r}\right)^{n}=M_{1, n}\left(H_{r}\right) \cong\left(H^{n}\right)_{r}$.

Theorem 2.3.1. For any Hilbert spaces H and K, there are natural completely isometric identifications

$$
B(H, K) \cong C B\left(H_{c}, K_{c}\right)
$$

and

$$
B\left(K^{*}, H^{*}\right) \cong C B\left(H_{r}, K_{r}\right)
$$

The operator duals of column and row Hilbert spaces are related with their Banach duals in the following way.

$$
\left(H_{c}\right)^{*}=C B\left(H_{c}, \mathbb{C}\right)=B(H, \mathbb{C})=B\left(H^{* *}, \mathbb{C}\right)=\left(H^{*}\right)_{r}
$$

Let $K=H^{*}$ in the above identities. Then

$$
\left(K_{r}\right)^{*}=\left(H_{c}\right)^{* *}=H_{c}=\left(K^{*}\right)_{c}, \quad \text { i.e., } \quad\left(H_{r}\right)^{*}=\left(H^{*}\right)_{c} .
$$

2.4. Multilinear decomposions

In this section, we summarize a few nice properties of Haagerup tensor product without proof. A different description of the Haagerup tensor product norm is also presented.

Proposition 2.4.1. Let V and W be operator spaces. Then a linear functional

$$
F: V \stackrel{h}{\otimes} W \rightarrow \mathbb{C}
$$

is bounded if and only if there exist a Hilbert space H and completely bounded linear mappings

$$
\varphi: V \rightarrow\left(H_{c}\right)^{*} \quad \text { and } \quad \psi: W \rightarrow H_{c}
$$

such that

$$
F(v \otimes w)=\varphi(v) \psi(w)
$$

In this case, we can choose φ and ψ such that

$$
\|F\|=\|\varphi\|_{c b}\|\psi\|_{c b} .
$$

More general, we have the following decomposition theorem for multilinear mappings.

Theorem 2.4.2. Let V_{1}, \cdots, V_{n} be operator spaces and H_{0}, H_{n} Hilbert spaces. Then a linear mapping

$$
\varphi: V_{1} \stackrel{h}{\otimes} \cdots \stackrel{h}{\otimes} V_{n} \rightarrow B\left(H_{n}, H_{0}\right)
$$

is completely bounded if and only if there exist Hilbert spaces H_{1}, \cdots, H_{n-1} and completely bounded mappings $\psi_{k}: V_{k} \rightarrow B\left(H_{k}, H_{k-1}\right)(k=1, \cdots, n)$ such that

$$
\varphi\left(v_{1} \otimes \cdots \otimes v_{2}\right)=\psi_{1}\left(v_{1}\right) \cdots \psi_{n}\left(v_{n}\right) .
$$

In this case we can choose $\psi_{k}(k=1, \cdots, n)$ such that

$$
\|\varphi\|_{c b}=\left\|\psi_{1}\right\|_{c b} \cdots\left\|\psi_{n}\right\|_{c b} .
$$

Theorem 2.4.3. Let V and W be operator spaces. Then the natural embedding

$$
V^{*} \stackrel{h}{\otimes} W^{*} \hookrightarrow(V \stackrel{h}{\otimes} W)^{*}
$$

is completely isometric.

This property of Haagerup tensor product is called self-duality. When one of the two underlying operator spaces is finite-dimensional, the above embedding actually becomes surjective. This fact was observed in [11]. Here we give a complete proof.

Corollary 2.4.4. Let V and W be operator spaces. If either V or W is finitedimensional, then we have the complete isometry

$$
V^{*} \stackrel{h}{\otimes} W^{*} \cong(V \stackrel{h}{\otimes} W)^{*} .
$$

Proof. Assume that either V or W is finite-dimensional. Then $V \stackrel{h}{\otimes} W=V \otimes_{h} W$. It is easy to see that every functional in $\left(V \otimes_{h} W\right)^{*}$ has the form $\sum_{i=1}^{n} f_{i} \otimes g_{i}$ for some $f_{i} \in V^{*}$ and $g_{i} \in W^{*}(1 \leq i \leq n)$, where $n=\min \{\operatorname{dim}(V), \operatorname{dim}(W)\}$. So, the natural embedding in Theorem 2.4.3 is surjective. Therefore, $V^{*} \otimes_{h} W^{*}=\left(V \otimes_{h} W\right)^{*}$.

The relationship between the Haagerup tensor product and the injective tensor product is also indicated by the form of the Haagerup tensor product norm given as follows.

Proposition 2.4.5. Let V and W be operator spaces. For each $u \in M_{n}(V \otimes W)$, there exist contractive elements $f \in M_{n, r}\left(V^{*}\right)$ and $g \in M_{r, n}\left(W^{*}\right)$ such that

$$
\|u\|_{h}=\left\|(f \odot g)^{(n)}(u)\right\|
$$

Thus

$$
\|u\|_{h}=\sup \left\{\left\|(f \odot g)^{(n)}(u)\right\|: f \in M_{n, r}\left(V^{*}\right)_{\|\cdot\| \leq 1}, g \in M_{r, n}\left(W^{*}\right)_{\|\cdot\| \leq 1}, r \in \mathbb{N}\right\}
$$

Proof. First, we need to explain $f \odot g$. It is an element of $M_{n}\left(V^{*} \stackrel{h}{\otimes} W^{*}\right) \subseteq$ $M_{n}\left((V \stackrel{h}{\otimes} W)^{*}\right) \cong C B\left(V \stackrel{h}{\otimes} W, M_{n}\right)$. So, $(f \odot g)^{(n)}: M_{n}(V \stackrel{h}{\otimes} W) \rightarrow M_{n^{2}}$. For $u \in M_{n}\left(V \otimes_{h} W\right)$, there exist finite-dimentional subspaces of V and W, say, V_{1} and W_{1}, respectively, such that $u \in M_{n}\left(V_{1} \otimes_{h} W_{1}\right)$. Then u has the same norm in $M_{n}\left(V_{1} \stackrel{h}{\otimes} W_{1}\right)$ as in $M_{n}(V \stackrel{h}{\otimes} W)$. By Effros-Ruan [11, Lemma 2.3.4], there exists a complete contraction $\varphi: V_{1} \stackrel{h}{\otimes} W_{1} \rightarrow M_{n}$ such that $\|u\|_{h}=\left\|\varphi^{(n)}(u)\right\|$.

Since V_{1} and W_{1} are finite-dimensional, by Corollary 2.4.4, we have

$$
C B\left(\left(V_{1} \stackrel{h}{\otimes} W_{1}\right)^{*}, M_{n}\right) \cong M_{n}\left(\left(V_{1} \stackrel{h}{\otimes} W_{1}\right)^{*}\right) \cong M_{n}\left(V_{1}^{*} \stackrel{h}{\otimes} W_{1}^{*}\right),
$$

and hence we may regard φ as a contractive element in $M_{n}\left(V_{1}^{*} \otimes W_{1}^{*}\right)$. Then there exist $f \in M_{n, r}\left(V_{1}^{*}\right)$ and $g \in M_{r, n}\left(W_{1}^{*}\right)$ such that $\varphi=f \odot g$ with $\|f\| \leq 1$ and $\|g\| \leq 1$. Since $B\left(\mathbb{C}^{n}, \mathbb{C}^{r}\right)$ and $B\left(\mathbb{C}^{r}, \mathbb{C}^{n}\right)$ are injective operator spaces (cf. [2, Theorem 1.2.10]), f and g have corresponding extensions, namely $\tilde{f} \in M_{n}\left(V^{*}\right)$ and $\tilde{g} \in M_{n}\left(W^{*}\right)$, respectively,
such that $\|\widetilde{f}\| \leq 1,\|\widetilde{g}\| \leq 1$ and

$$
\left\|(\tilde{f} \odot \tilde{g})^{(n)}(u)\right\|=\left\|(f \odot g)^{(n)}(u)\right\|=\left\|\varphi^{(n)}(u)\right\|=\|u\|_{h}
$$

where the first step is true since $u \in M_{n}\left(V_{1} \otimes W_{1}\right)$.
Now suppose $f \in M_{n, r}\left(V^{*}\right)$ and $g \in M_{r, n}\left(W^{*}\right)$ are contractive. Then

$$
\begin{aligned}
\left\|(f \odot g)^{(n)}(u)\right\| & \leq\|f \odot g\|_{c b}\|u\|_{h} \\
& =\|f \odot g\|_{h}\|u\|_{h} \\
& \leq\|f\|\|g\|\|u\|_{h} \leq\|u\|_{h}
\end{aligned}
$$

Therefore,

$$
\|u\|_{h}=\sup \left\{\left\|(f \odot g)^{(n)}(u)\right\|\right\}
$$

where the supremum is taken over all $f \in M_{n, r}\left(V^{*}\right), g \in M_{r, n}\left(W^{*}\right),\|f\| \leq 1,\|g\| \leq 1$, and $r \in \mathbb{N}$.

2.5. Some tensor product computations

The following proposition can be found in [11, Proposition 9.3.1]. In [11], the identifications (1) and (2) were proved in different ways. In light of the similarity of these identifications, we give a unified proof of Proposition 2.5.1, which is consistent with the proof of (2) given in [11].

Proposition 2.5.1. Let V be an operator space and H a Hilbert space. Then we have the following natural complete isometries.

$$
\begin{align*}
& H_{c} \stackrel{h}{\otimes} V \cong H_{c} \stackrel{\vee}{\otimes} V . \tag{1}\\
& V \stackrel{h}{\otimes} H_{r} \cong V \stackrel{\vee}{\otimes} H_{r} . \tag{2}\\
& V \stackrel{h}{\otimes} H_{c} \cong V \hat{\otimes} H_{c} . \tag{3}\\
& H_{r} \stackrel{h}{\otimes} V \cong H_{r} \hat{\otimes} V . \tag{4}
\end{align*}
$$

Proof. For (1), it suffices to show that for all $u \in M_{n}\left(H_{c} \otimes V\right)$,

$$
\|u\|_{h} \leq\|u\|_{\mathrm{V}}
$$

So, it suffices to show that $\|u\|_{V} \leq 1$ implies $\|u\|_{h} \leq 1$.
Suppose $u \in M_{n}\left(H_{c} \otimes V\right)$ with $\|u\|_{V} \leq 1$. Now for all $f \in M_{n, s}\left(\left(H_{c}\right)^{*}\right)=$ $M_{n, s}\left(\left(H^{*}\right)_{r}\right)$ and $g \in M_{s, n}\left(V^{*}\right)$ with $\|f\| \leq 1,\|g\| \leq 1$, let $H_{1}=\operatorname{span}\left\{f_{i j}, i=\right.$ $1, \cdots, n, j=1, \cdots, r\}$ and e_{1}, \cdots, e_{p} its orthonormal basis. Writing $f_{i j}=\sum_{k=1}^{p} c_{i j}^{k} e_{k}$, we have by the discussion in $[10$, Section 3.4$]$ that $\|f\|=\left\|\left[C^{1} \cdots C^{p}\right]\right\|$, where $C^{k}=$ $\left[c_{i j}^{k}\right] \in M_{n, s}(k=1, \cdots, p)$.

Following the notation in [3], $e=\left(\begin{array}{c}e_{1} \\ \vdots \\ e_{p}\end{array}\right) \in M_{p, 1}\left(\left(H^{*}\right)_{r}\right)=B\left(H, \mathbb{C}^{p}\right)$ with $\|e\|_{r}=$ 1. Since $e \otimes g=\left(\begin{array}{c}e_{1} \otimes g \\ \vdots \\ e_{p} \otimes g\end{array}\right) \in M_{s p, n}\left(V^{*} \otimes\left(H^{*}\right)_{r}\right) \subseteq M_{s p, n}\left(\left(V \otimes H_{c}\right)^{*}\right)$, it follows that

$$
\begin{aligned}
f \odot g & =\left[\sum_{l=1}^{r} f_{i l} \otimes g_{l j}\right]=\left[\sum_{l=1}^{r} \sum_{k=1}^{p} c_{i l}^{k} e_{k} \otimes g_{l j}\right] \\
& =\sum_{k=1}^{p} C^{k}\left(e_{k} \otimes g\right)=C(e \otimes g)
\end{aligned}
$$

where $C=\left[C^{1} \cdots C^{p}\right] \in M_{n, s p}$. So, we have

$$
\begin{aligned}
(C(e \otimes g))^{(n)}(u) & =\left[C(e \otimes g)\left(u_{i j}\right)\right] \\
& =\left(\begin{array}{cccc}
C & & & \\
& C & & \\
& & \ddots & \\
& & & \\
& &
\end{array}\right)\left[(e \otimes g)\left(u_{i j}\right)\right] \\
& =\left(I_{n} \otimes C\right)\left((e \otimes g)^{(n)}(u)\right)
\end{aligned}
$$

Then,

$$
\begin{aligned}
\left\|(f \odot g)^{(n)}(u)\right\| & =\left\|\left(I_{n} \otimes C\right)\left((e \stackrel{\vee}{\otimes} g)^{(n)}(u)\right)\right\| \\
& \leq\left\|\left(I_{n} \otimes C\right)\right\|\left\|(e \stackrel{\vee}{\otimes} g)^{(n)}(u)\right\| \\
& \leq\|C\|\left\|(e \stackrel{\vee}{\otimes} g)^{(n)}\right\|\|u\|_{\vee} \\
& =\|f\|\left\|(e \stackrel{\vee}{\otimes} g)^{(n)}\right\|\|u\|_{V} \\
& \leq\|e \stackrel{\vee}{\otimes} g\|_{c b} \leq 1
\end{aligned}
$$

where the fourth step follows from $\|C\|=\|f\|(\leq 1)$ and in the last step we use the fact that both e and g are contractive. So, $\|u\|_{h} \leq 1$ by Proposition 2.4.5 and the proof of (1) is complete.
$(2),(3)$, and (4) can be similarly proved.
The following propositions and their proofs can be found in [11].

Proposition 2.5.2. Let V be an operator space, H and K Hilbert spaces. Then we have a complete isometry

$$
\left(\left(K_{c}\right)^{*} \stackrel{h}{\otimes} V \stackrel{h}{\otimes} H_{c}\right)^{*} \cong C B(V, B(H, K))
$$

Proposition 2.5.3. Let H and K be operator spaces. Then we have the complete isometries

$$
H_{c} \stackrel{h}{\otimes}\left(K_{c}\right)^{*} \cong \mathcal{K}(K, H)
$$

and

$$
\left(K_{c}\right)^{*} \stackrel{h}{\otimes} H_{c} \cong \mathcal{T}(K, H)
$$

Proposition 2.5.4. Let H and K be Hilbert spaces. Then we have the complete isometries

$$
H_{c} \stackrel{\otimes}{\otimes} K_{c} \cong H_{c} \stackrel{h}{\otimes} K_{c} \cong H_{c} \stackrel{\vee}{\otimes} K_{c} \cong(H \otimes K)_{c}
$$

and

$$
H_{r} \stackrel{\otimes}{\otimes} K_{r} \cong H_{r} \stackrel{h}{\otimes} K_{r} \cong H_{r} \stackrel{\vee}{\otimes} K_{r} \cong(H \otimes K)_{r}
$$

2.6. Comparison with $\Gamma_{c}(V, W)$ and $\Gamma_{r}(V, W)$

Let V and W be operator spaces. we say that a linear map $\varphi: V \rightarrow W$ factors through column Hilbert space if there is a Hilbert space H and a commutative diagram of completely bounded maps

We define

$$
\gamma_{c}(\varphi)=\inf \left\{\|\psi\|_{c b}\|\phi\|_{c b}: \varphi=\psi \circ \phi, \phi: V \rightarrow H_{c}, \psi: H_{c} \rightarrow W\right\}
$$

If no such a factorization exists, we set $\gamma_{c}(\varphi)=\infty$.
If $\varphi_{1}, \varphi_{2}: V \rightarrow W$ factor through the column Hilbert space $\left(H_{1}\right)_{c}$ and $\left(H_{2}\right)_{c}$, respectively, that is, there exist $\phi_{k}: V \rightarrow\left(H_{k}\right)_{c}$ and $\psi_{k}:\left(H_{k}\right)_{c} \rightarrow W(k=1,2)$ such that $\varphi_{1}=\psi_{1} \circ \phi_{1}$ and $\varphi_{2}=\psi_{2} \circ \phi_{2}$, then let $L=H_{1} \oplus H_{2}, \phi(v)=\left(\phi_{1}(v), \phi_{2}(v)\right)$, and $\psi\left(\xi_{1}, \xi_{2}\right)=\psi_{1}\left(\xi_{1}\right)+\psi_{2}\left(\xi_{2}\right)$ for all $v \in V$ and $\left(\xi_{1}, \xi_{2}\right) \in H_{1} \oplus H_{2}$. It is clear that $\varphi_{1}+\varphi_{2}=\psi \circ \phi$. Now let $\Gamma_{c}(V, W)$ be the linear space of linear maps $\varphi: V \rightarrow W$ with $\gamma_{c}(\varphi)<\infty$. Effros-Ruan proved that γ_{c} really determines a norm on $\Gamma_{c}(V, W)$ (cf. [10, Lemma 5.1]), and so $\Gamma_{c}(V, W)$ becomes a normed space.

If $\varphi=\left[\varphi_{i j}\right] \in M_{n}\left(\Gamma_{c}(V, W)\right)$, then we may define a map $\tilde{\varphi}: V \rightarrow M_{n}(W)$ by $\widetilde{\varphi}(v)=\left[\varphi_{i j}(v)\right]$, each entry of which factors through a column Hilbert space as given in the following commutative diagram

We want to find a factorization of $\widetilde{\varphi}$ through some column Hilbert space K in a natural way. That is of the form $\tilde{\varphi}=\psi \circ \phi$, where $\phi: V \rightarrow K_{c}$ and $\psi: K_{c} \rightarrow M_{n}(W)$. Since $M_{n^{2}, 1}(W) \cong M_{n}(W)$ as operator spaces, there exists a linear map from V to $M_{n^{2}, 1}(W)$ corresponding to $\tilde{\varphi}$, we still denote it by $\widetilde{\varphi}$.

Let $K=\oplus H_{i j}$. Then $K_{c}=\oplus\left(H_{i j}\right)_{c}$. We define $\phi: V \rightarrow K_{c}$ and $\psi: K_{c} \rightarrow$ $M_{n^{2}, 1}(W)$ by

$$
\phi(v)=\left(\phi_{11}(v), \cdots, \phi_{n n}(v)\right)^{t}
$$

and

$$
\psi\left(\xi_{11}, \cdots, \xi_{n n}\right)^{t}=\left(\psi_{11}\left(\xi_{11}\right), \cdots, \psi_{n n}\left(\xi_{n n}\right)\right)^{t}
$$

for $v \in V, \xi_{i j} \in H_{i j}$. Then $\psi \circ \phi=\widetilde{\varphi}$. This shows that $\widetilde{\varphi} \in \Gamma_{c}\left(V, M_{n}(W)\right)$.
Conversely, suppose a linear map $\tilde{\varphi}: V \rightarrow M_{n}(W)$ factors through H_{c}, i.e., $\widetilde{\varphi}=\psi \circ \phi$, where $\phi: V \rightarrow H_{c}$ and $\psi: H_{c} \rightarrow M_{n}(W)$ are completely bounded. We define $\varphi=\left[\varphi_{i j}\right] \in M_{n}\left(\Gamma_{c}(V, W)\right)$ by

$$
\varphi_{i j}(v)=(\widetilde{\varphi}(v))_{i j}
$$

and $\psi_{i j}: H_{c} \rightarrow W$ by

$$
\psi_{i j}(\xi)=(\psi(\xi))_{i j}
$$

for all $v \in V$ and $\xi \in H$. Then

$$
\varphi_{i j}(v)=(\psi \circ \phi(v))_{i j}=\psi_{i j}(\phi(v))=\left(\psi_{i j} \circ \phi\right)(v) .
$$

Clearly, each $\psi_{i j}$ is completely bounded. So, $\varphi_{i j}$ factors also through H_{c} and then $\varphi \in M_{n}\left(\Gamma_{c}(V, W)\right)$.

Therefore, we have the linear space identifications $M_{n}\left(\Gamma_{c}(V, W)\right) \cong \Gamma_{c}\left(V, M_{n}(W)\right)$ ($n \in \mathbb{N}$), and so we can define a natural operator space matrix norm on $\Gamma_{c}(V, W)$ to make $\Gamma_{c}(V, W)$ an operator space.

In general, $\|\varphi\|_{c b} \leq \gamma_{c}(\varphi)$, and hence $\Gamma_{c}(V, W) \subseteq C B(V, W)$. If either V or W is a column Hilbert space, then $\|\varphi\|_{c b}=\gamma_{c}(\varphi)$ and $\Gamma_{c}(V, W)=C B(V, W)$.

Proposition 2.6.1. Let V and W be operator spaces and W_{1} a subspace of W. Then the corresponding inclusion

$$
\Gamma_{c}\left(V, W_{1}\right) \hookrightarrow \Gamma_{c}(V, W)
$$

is completely isometric.

Theorem 2.6.2. Let V and W be operator spaces. Then we have a complete isometry

$$
(W \stackrel{h}{\otimes} V)^{*} \cong \Gamma_{c}\left(V, W^{*}\right)
$$

Corollary 2.6.3. Let V, W, and X be operator spaces. Then we have a complete isometry

$$
\Gamma_{c}((W \stackrel{h}{\otimes} V), X) \cong \Gamma_{c}\left(V, \Gamma_{c}(W, X)\right)
$$

Proof. First we suppose X is a dual operator space, say, $X=\left(X_{*}\right)^{*}$. Then from Theorem 2.6.2 we have the natural complete isometries

$$
\Gamma_{c}((W \stackrel{h}{\otimes} V), X) \cong\left(X_{*} \stackrel{h}{\otimes} W \stackrel{h}{\otimes} V\right)^{*} \cong \Gamma_{c}\left(V,\left(X_{*} \stackrel{h}{\otimes} W\right)^{*}\right) \cong \Gamma_{c}\left(V, \Gamma_{c}(W, X)\right)
$$

For a general X, we have the following commutative diagram

where the bottom map is completely isometric and the vertical maps are completely isometric injections by [10, Proposition 5.2]. We need to show the top map

$$
\Phi: \Gamma_{c}(W \stackrel{h}{\otimes} V, X) \rightarrow \Gamma_{c}\left(V, \Gamma_{c}(W, X)\right) \text { determined by } \Phi(\varphi)(v)(w)=\varphi(w \otimes v)
$$

is onto.
For any $\widetilde{\varphi} \in \Gamma_{c}\left(V, \Gamma_{c}(W, X)\right)$, by the argument in the first paragraph of this proof, there exists a map $\varphi \in \Gamma_{c}\left(W \stackrel{h}{\otimes} V, X^{* *}\right)$ such that $\widetilde{\varphi}(v)(w)=\varphi(w \otimes v)$. Due to the fact that $W \otimes V$ is dense in $W \stackrel{h}{\otimes} V, \varphi$ is valued in X, and hence it is in $\Gamma_{c}(W \stackrel{h}{\otimes} V, X)$.

Let V and W be operator spaces. we say that a linear map $\varphi: V \rightarrow W$ factors through row Hilbert space if there is a Hilbert space H and a commutative diagram of completely bounded maps

Let $\Gamma_{r}(V, W)$ be the corresponding operator space. Then we have the following result

$$
(V \stackrel{h}{\otimes} W)^{*} \cong \Gamma_{r}\left(V, W^{*}\right)
$$

and

$$
\left.\Gamma_{r}(V \stackrel{h}{\otimes} W), X\right) \cong \Gamma_{r}\left(V, \Gamma_{r}(W, X)\right)
$$

The proofs are similar to the corresponding parts of $\Gamma_{c}(V, W)$. In particular, we have now the identification

$$
\Gamma_{r}\left(V, W^{*}\right) \cong \Gamma_{c}\left(W, V^{*}\right)
$$

CHAPTER 3

Extended and Normal Haagerup Tensor Products

Based on the Haagerup tensor product, two more operator space tensor products are introduced - the extended and normal Haagerup tensor products. These two tensor products are not usual tensor products any more in the sense that they are not norm closures of the correponding algebraic tensor products. However, due to the self-duality of the Haagerup tensor product, they have some nice properties and both have the Haagerup tensor product as certain weak*-dense subspace. Most of results in the chapter can be found in [12]. We start with the general theory of infinite matrices, which is a bridge between mapping spaces and matrix spaces.

3.1. Infinite matrices

Given an operator space V, and index sets I and J, we let $M_{I, J}(V)$ denote the vector space of matrices $F=\left[v_{i j}\right]_{i \in I, j \in J}$, for which finite submatrices are uniformly bounded in norm, i.e., $\sup _{F^{\prime}}\left\|F^{\prime}\right\|<\infty$, where the supremum is taken over all finite submatrices F^{\prime} of F.

As usual, we denote $M_{J, J}(V)$ by $M_{J}(V)$. It can be seen that, as linear spaces, $M_{I, J}$ can be identified with $B\left(l^{2}(J), l^{2}(I)\right)$, and in particular, $M_{J}=M_{J}(\mathbb{C})$ can be identified with $B\left(l^{2}(J)\right)$ as linear spaces.

In fact, suppose $\left\{e_{j}\right\}$ and $\left\{f_{i}\right\}$ are orthonormal bases of $l^{2}(J)$ and $l^{2}(I)$, respectively. We define a linear map $\varphi: M_{I, J} \rightarrow B\left(l^{2}(J), l^{2}(I)\right)$ by $\left\langle\varphi(B) e_{j} \mid f_{i}\right\rangle=b_{i j}$, where $B=\left[b_{i j}\right] \in M_{I, J}$. Obviously, φ is one-one.

For each $b \in B\left(l^{2}(J), l^{2}(I)\right)$, let $B=\left[b_{i j}\right]_{i \in I, j \in J}$, where $b_{i j}=\left\langle b e_{j} \mid f_{i}\right\rangle$. We want to show $B \in M_{I, J}$.

Suppose S and T are finite subsets of I and J, respectively. Let $B^{S, T}$ denote the $S \times T$ submatrix of B. Then

$$
\left\|B^{S, T}\right\|=\sup \left\{\left\|B^{S, T} \alpha\right\|: \alpha \in \mathbb{C}^{T} \text { and }\|\alpha\| \leq 1\right\}
$$

$$
\begin{aligned}
& =\sup \left\{\left\langle B^{S, T} \alpha \mid B^{S, T} \alpha\right\rangle^{1 / 2}: \alpha \in \mathbb{C}^{T} \text { and } \sum_{j \in T}\left|\alpha_{j}\right|^{2} \leq 1\right\} \\
& =\sup \left\{\left(\sum_{i \in S}\left(\left|\sum_{j \in T} b_{i j} \alpha_{j}\right|^{2}\right)\right)^{1 / 2}: \alpha \in \mathbb{C}^{T} \text { and } \sum_{j \in T}\left|\alpha_{j}\right|^{2} \leq 1,\right\}
\end{aligned}
$$

where we use the fact that $B^{S, T}$ is a finite matrix and $B^{S, T} \alpha \in \mathbb{C}^{S}$.
On the other hand, we have

$$
\begin{aligned}
\|b\| & =\sup \left\{\|b \xi\|: \xi \in l^{2}(J) \text { and }\|\xi\| \leq 1,\right\} \\
& =\sup \left\{\left(\sum_{i \in I}\left(\left|\sum_{j \in J}\left\langle b c_{j} e_{j} \mid f_{i}\right\rangle\right|^{2}\right)\right)^{1 / 2}: \xi=\sum_{j \in J} c_{j} e_{j} \text { and } \sum_{j \in J}\left\|c_{j}\right\|^{2} \leq 1\right\} \\
& =\sup \left\{\left(\sum_{i \in I}\left(\left|\sum_{j \in J} c_{j}\left(\left.b e_{j}\left|f_{i}\right\rangle\right|^{2}\right)\right)^{1 / 2}: \xi=\sum_{j \in J} c_{j} e_{j} \text { and } \sum_{j \in J}\left\|c_{j}\right\|^{2} \leq 1\right\}\right.\right. \\
& =\sup \left\{\left(\sum_{i \in I}\left(\left|\sum_{j \in J} c_{j} b_{i j}\right|^{2}\right)\right)^{1 / 2}: \xi=\sum_{j \in J} c_{j} e_{j} \text { and } \sum_{j \in J}\left\|c_{j}\right\|^{2} \leq 1\right\} .
\end{aligned}
$$

Clearly, $\sup _{\substack{S \subseteq I T \subseteq J}}\left\|B^{S, T}\right\|=\|b\|<\infty$, and hence $B \in M_{I, J}$. Obviously, $b=\varphi(B)$. Therefore, $\varphi: M_{I, J} \rightarrow B\left(l^{2}(J), l^{2}(I)\right)$ is onto.

Now we can define the operator space matrix norm on $M_{I, J}$ by using the above linear space identification. So far, $M_{I, J}$ is an operator space with the norm

$$
\|F\|=\sup _{F^{\prime}}\left\|F^{\prime}\right\|,
$$

where F^{\prime} is taken over all finite submatries of F. In particular, if we order the set of finite submatries of F by inclusion, then it is a directed set and

$$
\|F\|=\lim _{F^{\prime}}\left\|F^{\prime}\right\| .
$$

Let $a \in M_{I, K}, b \in M_{K, L}$, and $c \in M_{L, J}$. Then abc makes sense by the above identification. For a subset $S \subseteq K$, we let $P_{K}(S): l^{2}(K) \rightarrow l^{2}(S)$ be the orthogonal projection. Similarly, we can define $P_{L}(T): l^{2}(L) \rightarrow l^{2}(T)$ for $T \subseteq L$. Now we restrict to finite subsets $F \subseteq K$ and $G \subseteq L$, and we may regard $\left\{P_{K}(F)\right\}_{F}$ and $\left\{P_{L}(G)\right\}_{G}$ as nets of projections, where finite sets are ordered by inclusion relationship. Now both nets converge to the identity operator in the strong operator topology.

Remark 3.1.1. As an infinite matrix, $P_{K}(F)$ has its (i, j) th entry $\left(P_{K}(F)\right)_{i j}=$ $\left\langle P_{K}(F) f_{i} \mid f_{j}\right\rangle$, where $\left\{f_{i}\right\}_{i \in K}$ and $\left\{f_{i}\right\}_{i \in F}$ are the orthonormal bases of $l^{2}(K)$ and $l^{2}(F)$, respectively. If $i \in F$, then $P_{K}(F) f_{i}=f_{i}$. Otherwise, $P_{K}(F) f_{i}=0$. So,

$$
\left(P_{K}(F)\right)_{i j}= \begin{cases}\delta_{i j} & \text { if } i \in F \\ 0 & \text { otherwise }\end{cases}
$$

Now, $a P_{K}(F) b P_{L}(G) c$ is a well-defined operator in $B\left(l^{2}(J), l^{2}(I)\right)$. Note that all $a, P_{K}(F), b, P_{L}(G), c$ are bounded, so, $a P_{K}(F) b P_{L}(G) c \rightarrow a b c$ in SOT when $P_{K}(F) \xrightarrow{\text { SOT }}$ $i d$ and $P_{L}(G) \xrightarrow{S O T} i d$. Thus

$$
\sum_{k \in F ; l \in G} a_{i k} b_{k l} c_{l j} \rightarrow(a b c)_{i j},
$$

i.e., we can express the entry of an infinite matrix product as a limit of finite sums. This fact will be used in the sequel when we consider an infinite matrix product.

If H and K are Hilbert spaces with bases $\left(e_{j}\right)_{j \in J}$ and $\left(f_{i}\right)_{i \in I}$, then $H \cong B\left(l^{2}(J)\right)$ and $K \cong B\left(l^{2}(I)\right)$. So, we may identify $B(H, K)$ with $M_{I, J}$, i.e., $B(H, K) \cong M_{I, J}$, which is important in the later discussion.

Given operator spaces V and W, if V and W are dual operator spaces, then we let $C B^{\sigma}(V, W)$ be the space of weak*-weak* continuous maps in $C B(V, W)$.

We already knew that $C B\left(V, M_{n}\right) \cong M_{n}\left(V^{*}\right)$ as operator spaces. In fact, as shown in the following, it has a more general version

$$
C B\left(V, M_{I, J}\right) \cong M_{I, J}\left(V^{*}\right) .
$$

To see this, we define a linear map $\varphi: M_{I, J}\left(V^{*}\right) \rightarrow C B\left(V, M_{I, J}\right)$ by $\varphi(F)(v)=$ $\left[F_{i j}(v)\right]$ for each $F=\left[F_{i j}\right] \in M_{I, J}\left(V^{*}\right)$. Then that φ is one-one and onto can be similarly proved as we did for $M_{I, J} \cong B\left(l^{2}(J), l^{2}(I)\right)$. It remains to show that $\varphi(F)(v) \in M_{I, J}$ and $\varphi(F) \in C B\left(V, M_{I, J}\right)$. Actually, for $v \in V$,

$$
\begin{aligned}
\|\varphi(F)(v)\| & =\sup _{F^{\prime}}\left\|\varphi\left(F^{\prime}\right)(v)\right\| \leq \sup _{F^{\prime}}\left\|\varphi\left(F^{\prime}\right)\right\|_{c b}\|v\| \\
& =\sup _{F^{\prime}}\left\|F^{\prime}\right\|\|v\|=\|F\|\|v\| \infty,
\end{aligned}
$$

where F^{\prime} is a finite submatrix of $F, F^{\prime} \in M_{n}\left(V^{*}\right)$ for some $n \in \mathbb{N}$, and hence $\varphi\left(F^{\prime}\right) \in C B\left(V, M_{n}\right) \cong M_{n}\left(V^{*}\right)$. In particular, $\|\varphi(F)\|_{c b}=\|F\| \leq \infty$, i.e., $\varphi(F) \in$ $C B\left(V, M_{I, J}\right)$.

Using this linear space (in fact, Banach space) identification, we can define the operator space matrix norm on $M_{I, J}\left(V^{*}\right)$ and $M_{I, J}\left(V^{*}\right)$ becomes an operator space.

Since $M_{I, J} \cong B\left(l^{2}(J), l^{2}(I)\right)$ and $B\left(l^{2}(J), l^{2}(I)\right)$ is an dual operator space (cf. [2, Theorem 1.4.5]), $C B^{\sigma}\left(V^{*}, M_{I, J}\right)$ makes sense.

Proposition 3.1.2. Let V be an operator space. Then we have a natural linear space identification $C B^{\sigma}\left(V^{*}, M_{I, J}\right) \cong M_{I, J}(V)$ induced by $C B\left(V^{*}, M_{I, J}\right) \cong M_{I, J}\left(V^{* *}\right)$.

Proof. Let $\varphi \in C B^{\sigma}\left(V^{*}, M_{I, J}\right)$. Then there exists a matrix $F=\left[F_{i j}\right] \in$ $M_{I, J}\left(V^{* *}\right)$ such that $\varphi(f)=\left[F_{i j}(f)\right]$ for all $f \in V^{*}$. By the hypothesis that φ is weak*-weak* continuous, $F_{i j}$ is continuous in the weak*-topology on V^{*} for all i, j. It follows that $F_{i j} \in V$, and thus $F=\left[F_{i j}\right] \in M_{I, J}(V)$.

Conversely, let $F=\left[v_{i j}\right] \in M_{I, J}(V)$ and $\varphi(f)=\left[f\left(v_{i j}\right)\right]\left(f \in V^{*}\right)$. Then $\varphi \in$ $C B\left(V^{*}, M_{I, J}\right)$. Now we want to show that $\varphi: V^{*} \rightarrow M_{I, J}$ is weak*-weak* continuous, which is equivalent to showing that $P_{i, j} \circ \varphi: V^{*} \rightarrow \mathbb{C}$ is weak*-continuous (i.e., $\left.P_{i, j} \circ \varphi \in V\right)$ for all $(i, j) \in I \times J$, where $P_{i, j}: M_{I, J} \rightarrow \mathbb{C}$ is the canonical (i, j) th projection. Note that $\left(P_{i, j} \circ \varphi\right)(f)=f\left(v_{i j}\right)=\left\langle v_{i j}, f\right\rangle$. So, $P_{i, j} \circ \varphi=v_{i j} \in V$ for all $(i, j) \in I \times J$.

3.2. Extended Haagerup tensor product

Recall we used $M B\left(V_{1} \times V_{2}, W\right)$ to denote the linear space of all multiplicatively bounded bilinear maps $\varphi: V_{1} \times V_{2} \rightarrow W$ with the norm $\|\cdot\|_{m b}$ and we have the operator space identification $M B\left(V_{1} \times V_{2}, W\right) \cong C B\left(V_{1} \stackrel{h}{\otimes} V_{2}, W\right)$. If V_{1}, V_{2}, and W are dual operator spaces, then we say $\varphi \in M B\left(V_{1} \times V_{2}, W\right)$ is normal if it is weak*weak ${ }^{*}$ continuous in each variable. Let $M B^{\sigma}\left(V_{1} \times V_{2}, W\right)$ be the operator subspace of $M B\left(V_{1} \times V_{2}, W\right)$ consisting of normal maps in $M B\left(V_{1} \times V_{2}, W\right)$.

The extended Haagerup tensor product $V_{1} \stackrel{e h}{\otimes} V_{2}$ of V_{1} and V_{2} is defined as the space of all normal multiplicatively bounded bilinear functionals $u: V_{1}^{*} \times V_{2}^{*} \rightarrow \mathbb{C}$ and we use $\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}\right)_{\sigma}^{*}$ to denote the subspace of $C B\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}, \mathbb{C}\right)\left(=\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}\right)^{*}\right)$ corresponding to $M B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, \mathbb{C}\right)$, i.e.,

$$
V_{1} \stackrel{e h}{\otimes} V_{2}=\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}\right)_{\sigma}^{*}=M B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, \mathbb{C}\right)
$$

We use $\|\cdot\|_{\text {eh }}$ to denote the operator space matrix norm on $V_{1}{ }^{e h} V_{2}$ induced by the identification $M_{n}\left(M B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, \mathbb{C}\right)\right)=M B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, M_{n}\right)$.

Similar to the decomposition theorem as stated in Theorem 2.4.2, we have the following version of decomposition theorem for multilinear maps.

Theorem 3.2.1. Let V_{1}, \cdots, V_{p} be operator spaces. Then a multilinear map

$$
\varphi: V_{1} \times \cdots \times V_{p} \rightarrow B\left(H_{p}, H_{0}\right)
$$

is multiplicatively contractive if and only if there exist Hilbert spaces H_{1}, \cdots, H_{p-1} and complete contractions $\varphi_{k}: V_{k} \rightarrow B\left(H_{k}, H_{k-1}\right)$ such that

$$
\varphi\left(v_{1}, \cdots, v_{p}\right)=\varphi_{1}\left(v_{1}\right) \cdots \varphi_{p}\left(v_{p}\right)
$$

and

$$
\|\varphi\|_{m b}=\left\|\varphi_{1}\right\|_{c b} \cdots\left\|\varphi_{p}\right\|_{c b} .
$$

If each V_{k} is a dual space and φ is normal, then we may assume that each φ_{k} is weak*-continuous.

For Banach spaces X and Y, any bounded linear map $T: X \rightarrow Y^{*}$ has a unique weak *-weak ${ }^{*}$ continuous extension $\widetilde{T}: X^{* *} \rightarrow Y^{*}$ with $\|\widetilde{T}\|=\|T\|$. In fact, \widetilde{T} is given by $\widetilde{T}=\pi^{*} \circ T^{* *}$, where $\pi: Y \rightarrow Y^{* *}$ is the canonical embedding. According to Blecher-Le Merdy [2, 1.4.8], this statement has its operator space version. That is, each completely bounded linear map $T: X \rightarrow Y^{*}$ has a unique weak*-weak* continuous extension $\widetilde{T}: X^{* *} \rightarrow Y^{*}$ such that $\|\widetilde{T}\|_{c b}=\|T\|_{c b}$. In the following, we show that there is a corresponding extension theorem for bilinear maps.

Proposition 3.2.2. Let V_{1}, V_{2}, and W be operator spaces, and $\varphi: V_{1} \times V_{2} \rightarrow W^{*} a$ multiplicatively bounded bilinear map. Then φ admits a (necessarily unique) normal extension $\tilde{\varphi}: V_{1}^{* *} \times V_{2}^{* *} \rightarrow W^{*}$. This extension is multiplicatively bounded and $\|\widetilde{\varphi}\|_{m b}=\|\varphi\|_{m b}$.

Proof. We may assume that W^{*} is a weak*-closed subspace of some $B(H)$ (cf. [2, Lemma 1.4.7]). By Theorem 3.2.1, there exist a Hilbert space L and two completely bounded maps $\psi_{1}: V_{1} \rightarrow B(L, H)$ and $\psi_{2}: V_{2} \rightarrow B(H, L)$ such that $\varphi\left(v_{1}, v_{2}\right)=$ $\psi_{1}\left(v_{1}\right) \psi_{2}\left(v_{2}\right)$ for all $v_{1} \in V_{1}, v_{2} \in V_{2}$, and $\|\varphi\|_{m b}=\left\|\psi_{1}\right\|_{c b}\|\psi\|_{c b}$. By the argument
preceding this proposition, ψ_{1} and ψ_{2} admit weak ${ }^{*}$-weak ${ }^{*}$ continuous extensions $\widetilde{\psi_{1}}$: $V_{1}^{* *} \rightarrow B(L ; H)$ and $\widetilde{\psi_{2}}: V_{2}^{* *} \rightarrow B(H, L)$ with $\left\|\widetilde{\psi_{i}}\right\|_{c b}=\left\|\psi_{i}\right\|_{c b}(i=1,2)$. We define $\widetilde{\varphi}: V_{1}^{* *} \times V_{2}^{* *} \rightarrow B(H)$ by $\widetilde{\varphi}\left(\widetilde{v_{1}}, \widetilde{v_{2}}\right)=\widetilde{\psi_{1}}\left(\widetilde{v_{1}}\right) \widetilde{\psi_{2}}\left(\widetilde{v_{2}}\right)\left(\widetilde{v_{1}} \in V_{1}^{* *}\right.$ and $\left.\widetilde{v_{2}} \in V_{2}^{* *}\right)$. Since $\|\widetilde{\varphi}\|_{m b} \leq\left\|\widetilde{\psi_{1}}\right\|_{c b}\left\|\widetilde{\psi_{2}}\right\|_{c b}=\left\|\psi_{1}\right\|\left\|\psi_{2}\right\|=\|\varphi\|_{m b}$, we have $\|\widetilde{\varphi}\|_{m b}=\|\varphi\|_{m b}$. Finally, $\widetilde{\varphi}$ is valued in W^{*}, since φ is valued in $W^{*}, V_{1} \times V_{2}$ is weak*-dense in $V_{1}^{* *} \times V_{2}^{* *}$, and $\widetilde{\varphi}$ is normal.

Now Let V_{1}, V_{2}, and W be operator spaces. From Proposition 3.2.2, it follows immediately that

$$
M B\left(V_{1} \times V_{2}, W^{*}\right)=M B^{\sigma}\left(V_{1}^{* *} \times V_{2}^{* *}, W^{*}\right)
$$

In particular,

$$
\left(V_{1} \stackrel{h}{\otimes} V_{2}\right)^{*}=\left(V_{1}^{* *} \stackrel{h}{\otimes} V_{2}^{* *}\right)_{\sigma}^{*}
$$

By the definition of the extended Haagerup tensor product, we have the operator space identification

$$
\left(V_{1} \stackrel{h}{\otimes} V_{2}\right)^{*} \cong V_{1}^{*} \stackrel{e h}{\otimes} V_{2}^{*}
$$

Proposition 3.2.3. Let V_{1} and V_{2} be operator spaces. Then the inclusion map $V_{1} \stackrel{h}{\otimes} V_{2} \rightarrow V_{1} \stackrel{e h}{\otimes} V_{2}$ is a completely isometric injection.

Proof. We have the following commutative diagram

in which the top and right mappings are complete isometries by the injectivity and self-duality of the Haargerup tensor product. The bottom mapping is the completely isometric embedding owing to the definition of the extended Haargerup tensor product. So, the left map is a completely isometric injection.

Lemma 3.2.4. Let V_{1} and V_{2} be operator spaces. Then each $u \in M_{n}\left(V_{1} \stackrel{\text { eh }}{\otimes} V_{2}\right)$ has a representation of the form $u=v_{1} \odot v_{2}$, where $v_{1} \in M_{n, J}\left(V_{1}\right)$ and $v_{2} \in M_{J, n}\left(V_{2}\right)$. In particular, if $\|u\|_{\text {eh }} \leq 1$, then we can choose v_{1} and v_{2} such that $u=v_{1} \odot v_{2}$ and $\|u\|_{e h}=\left\|v_{1}\right\|\left\|v_{2}\right\|,\left\|v_{1}\right\| \leq 1$ and $\left\|v_{2}\right\| \leq 1$.

Proof. Apparently, it suffices to show the last part of the statements. Suppose $\|u\|_{\text {eh }} \leq 1$. By Thereom 3.2.1 and the identifications

$$
\begin{aligned}
M_{n}\left(V_{1} \stackrel{e h}{\otimes} V_{2}\right) & \cong M_{n}\left(\left(V_{1}^{*}{ }_{\otimes}^{\ell} V_{2}^{*}\right)_{\sigma}^{*}\right) \subseteq M_{n}\left(C B\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}, \mathbb{C}\right)\right) \\
& \cong C B\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}, M_{n}\right) \cong M B\left(V_{1}^{*} \times V_{2}^{*}, M_{n}\right),
\end{aligned}
$$

there exist H_{1} and contractions $v_{1}: V_{1}^{*} \rightarrow B\left(H_{1}, \mathbb{C}^{n}\right)=M_{n, J}$ and $v_{2}: V_{2}^{*} \rightarrow$ $B\left(\mathbb{C}^{n}, H_{1}\right)=M_{J, n}$, i.e., $v_{1} \in C B^{\sigma}\left(V_{1}^{*}, M_{n, J}\right)=M_{n, J}\left(V_{1}\right)$ and $v_{2} \in C B^{\sigma}\left(V_{2}^{*}, M_{J, n}\right)=$ $M_{J, n}\left(V_{2}\right)$, such that $u\left(f_{1}, f_{2}\right)=v_{1}\left(f_{1}\right) v_{2}\left(f_{2}\right)$ and $\|u\|_{e h}=\|u\|_{c b}=\left\|v_{1}\right\|_{c b}\left\|v_{2}\right\|_{c b}=$ $\left\|v_{1}\right\|\left\|v_{2}\right\|$. In this case, we use the notation $u=v_{1} \odot v_{2}$.

If $v_{1} \in M_{n, J}\left(V_{1}\right)$ and $v_{2} \in M_{J, n}\left(V_{2}\right)$, then $v_{1} \odot v_{2}$ can be written into $\left[\sum_{k \in J} v_{i k}^{1} \otimes v_{k j}^{2}\right]$. According to Proposition 3.2.3, $V_{1} \stackrel{h}{\otimes} V_{2}$ can be treated as a subspace of $V_{1} \stackrel{e}{\otimes} V_{2}$. The following lemma shows that in this case, the index set J in Lemma 3.2.4 can be chosen to be the set \mathbb{N} of natural numbers.

Lemma 3.2.5. Let V and W be operator spaces. Then each $u \in V \stackrel{h}{\otimes} W$ with $\|u\|_{h}<1$ has a representation $u=v \odot w$ with $\|v\|<1,\|w\|<1$ and $\|u\|_{h}=\|v\|\|w\|$, where $v \in M_{1, \mathrm{~N}}(V), v_{2} \in M_{\mathrm{N}, 1}(W)$.

Proof. Suppose $\|u\|_{h}<1$. Since $V \otimes W$ is norm dense in $V \stackrel{h}{\otimes} W$, there exists $u_{1}=\sum_{k=1}^{n_{1}} v_{k}^{1} \otimes w_{k}^{1} \in V \otimes W$ such that $\left\|u-u_{1}\right\|<\frac{1-\|u\|_{h}}{2}$ with $\left\|u_{1}\right\|_{h} \leq\|u\|_{h}$. Let $v_{1}=\left(v_{1}^{1}, \cdots, v_{n_{1}}^{1}\right)$ and $w_{1}=\left(w_{1}^{1}, \cdots, w_{n_{1}}^{1}\right)^{t}$. Then $u_{1}=v_{1} \odot w_{1}$ and v_{1}, w_{1} can be chosen such that $\left\|v_{1}\right\| \leq\|u\|_{h}^{1 / 2}$ and $\left\|w_{1}\right\| \leq\|u\|_{h}^{1 / 2}$. For $u-u_{1} \in V \stackrel{h}{\otimes} W$, there exists $u_{2}=\sum_{k=n_{1}+1}^{n_{2}} v_{k}^{2} \otimes w_{k}^{2} \in V \otimes W$ such that $\left\|u-u_{1}-u_{2}\right\|_{h}<\frac{1-\|u\|_{h}}{2^{2}}$ with $\left\|u_{2}\right\|_{h}<\frac{1-\|u\|_{h}}{2}$. Let $v_{2}=\left(v_{n_{1}+1}^{2}, \cdots, v_{n_{2}}^{2}\right)$ and $w_{2}=\left(w_{n_{1}+1}^{2}, \cdots, w_{n_{2}}^{2}\right)^{t}$. Then $u_{2}=v_{2} \odot w_{2}$ and v_{2}, w_{2} are chosen such that $\left\|v_{2}\right\|<\left(\frac{1-\|u\|_{h}}{2}\right)^{1 / 2}$ and $\left\|w_{2}\right\|<$ $\left(\frac{1-\|u\|_{h}}{2}\right)^{1 / 2}$. Continuing this process, for each $m \in \mathbb{N}$, we can find $u_{m}=\sum_{k=n_{m-1}+1}^{n_{m}} v_{k}^{m} \otimes$ $w_{k}^{m} \in V \otimes W$ such that $\left\|u-u_{1}-\cdots-u_{m}\right\|<\frac{1-\|u\|_{h}}{2^{m}}$ with $\left\|u_{m}\right\|_{h} \leq \frac{1-\|u\|_{h}}{2^{m-1}}$. Let $v_{m}=\left(v_{n_{m-1}+1}^{m}, \cdots, v_{n_{m}}^{m}\right)$ and $w_{m}=\left(w_{n_{m-1}+1}^{m}, \cdots, w_{n_{m}}^{m}\right)^{t}$. Then $u_{m}=v_{m} \odot$ $w_{m},\left\|v_{m}\right\|<\left(\frac{1-\|u\|_{h}}{2^{m-1}}\right)^{1 / 2}$ and $\left\|w_{m}\right\|<\left(\frac{1-\|u\|_{h}}{2^{m-1}}\right)^{1 / 2}$. Let $v=\left(v_{1}, v_{2}, v_{3}, \cdots\right)$ and $w=\left(w_{1}, w_{2}, w_{3}, \cdots\right)^{t}$. Then $u=v \odot w$ is uniformly convergent in norm. Now $\|v\|=\sqrt{\sum_{m=1}^{\infty}\left\|v_{m}\right\|^{2}}<\sqrt{\|u\|_{h}+\frac{1-\|u\|_{h}}{2}+\frac{1-\|u\|_{h}}{2^{2}}+\cdots}=1$, i.e., $\|v\|<1$. Similarly, $\|w\|<1$.

Let $u \in M_{n}\left(V_{1} \stackrel{e h}{\otimes} V_{2}\right) \subseteq M B\left(V_{1}^{*} \times V_{2}^{*}, M_{n}\right)$ and $u=v_{1} \odot v_{2}$, where $v_{1} \in M_{n, J}\left(V_{1}\right)$ and $v_{2} \in M_{J, n}\left(V_{2}\right)$. For all $f_{1} \in V_{1}^{*}$ and $f_{2} \in V_{2}^{*}$,

$$
\begin{aligned}
\left\langle f_{1} \otimes f_{2}, u\right\rangle & =\left\langle f_{1}, v_{1}\right\rangle\left\langle f_{2}, v_{2}\right\rangle \\
& =\lim _{F}\left[\sum_{k \in F} f_{1}\left(v_{i k}^{1}\right) f_{2}\left(v_{k j}^{2}\right)\right],
\end{aligned}
$$

where the limit is taken over finite subsets F of J. We let v_{i}^{F} be the submatrix of $v_{i}(i=1,2)$ corresponding to F. Then $v_{1}^{F} \odot v_{2}^{F} \in M B\left(V_{1}^{*} \times V_{2}^{*}, M_{n}\right)$ and

$$
\left\langle f_{1} \otimes f_{2}, u\right\rangle=\lim _{F}\left\langle f_{1}, v_{1}^{F}\right\rangle \odot\left\langle f_{2}, v_{2}^{F}\right\rangle=\lim _{F}\left\langle f_{1} \otimes f_{2}, v_{1}^{F} \odot v_{2}^{F}\right\rangle
$$

Thus, $\|u\|_{m b} \leq \frac{\varliminf_{m}}{F}\left\|v_{1}^{F} \odot v_{2}^{F}\right\|_{m b}$.
On the other hand, $v_{1}^{F} \odot v_{2}^{F} \in M_{n}\left(V_{1}^{*} \otimes_{h} V_{2}^{*}\right)$, So,

$$
\left\|v_{1}^{F} \odot v_{2}^{F}\right\|_{m b}=\left\|v_{1}^{F} \odot v_{2}^{F}\right\|_{h} \leq\left\|v_{1}^{F}\right\|\left\|v_{2}^{F}\right\| \leq\left\|v_{1}\right\|\left\|v_{2}\right\| .
$$

Then $\|u\|_{e h}=\|u\|_{m b} \leq \frac{\lim }{F}\left\|v_{1}^{F} \odot v_{2}^{F}\right\|_{m b} \leq\left\|v_{1}\right\|\left\|v_{2}\right\|$, and hence the lemma below is immediate by Lemma 3.2.4.

Lemma 3.2.6. Let V_{1} and V_{2} be operator spaces. Then for each $u \in M_{n}\left(V_{1} \stackrel{e h}{\otimes} V_{2}\right)$, we have

$$
\|u\|_{e h}=\inf \left\{\left\|v_{1}\right\|\left\|v_{2}\right\|\right\}
$$

where the infimum is taken over all the decompositions of the form $u=v_{1} \odot v_{2}, v_{1} \in$ $M_{n, J}\left(V_{1}\right), v_{2} \in M_{J, n}\left(V_{2}\right)$, and J is any index set.

Remark 3.2.7. By the argument immediately previous to Lemma 3.2.6, we get for each $u \in V_{1} \stackrel{e h}{\otimes} V_{2}$,

$$
u^{F}=v_{1}^{F} \odot v_{2}^{F} \rightarrow u
$$

in the weak*-topology determined by $V_{1}^{*} \otimes V_{2}^{*}$. But $v_{1}^{F} \odot v_{2}^{F} \in V_{1} \otimes V_{2}$. So, the algebraic tensor product $V_{1} \otimes V_{2}$ is weak ${ }^{*}$-dense in $V_{1} \stackrel{\text { eh }}{\otimes} V_{2}$.

Let $\varphi_{1}: V_{1} \rightarrow W_{1}$ and $\varphi_{2}: V_{2} \rightarrow W_{2}$ be completely bounded maps. Then the completely bounded map

$$
\left(\varphi_{1}^{*} \stackrel{h}{\otimes} \varphi_{2}^{*}\right)^{*}:\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}\right)^{*} \rightarrow\left(W_{1}^{*} \otimes W_{2}^{*}\right)^{*}
$$

sends $V_{1} \stackrel{e h}{\otimes} V_{2}$ to $W_{1} \stackrel{e h}{\otimes} W_{2}$ since φ_{1}^{*} and φ_{2}^{*} are weak*-weak* continuous. Note that $\left(\varphi_{1}^{*} \stackrel{h}{\otimes} \varphi_{2}^{*}\right)^{*}$ is the unique weak*-weak* continuous extension of the algebraic tensor product $\varphi_{1} \otimes \varphi_{2}: V_{1} \otimes V_{2} \rightarrow W_{1} \otimes W_{2}$, where the algebraic tensor product $X \otimes Y$ is embedded into $X \stackrel{e h}{\otimes} Y$ via $x \otimes y \mapsto \widetilde{x \otimes y}$ by Proposition 3.2.3. We let $\varphi_{1}{ }_{\otimes}^{e h} \varphi_{2}$ denote the restriction of $\left(\varphi_{1}^{*} \stackrel{h}{\otimes} \varphi_{2}^{*}\right)^{*}$ to $V_{1} \stackrel{e h}{\otimes} V_{2}$. We show that the injectivity of $\stackrel{e h}{\otimes}$ in the following.

Theorem 3.2.8. Let V_{1}, V_{2}, W_{1}, and W_{2} be operator spaces. If $\varphi_{k}: V_{k} \rightarrow W_{k}(k=$ 1,2) are complete isometries (resp. contractions), then

$$
\varphi_{1} \stackrel{e h}{\otimes} \varphi_{2}: V_{1} \stackrel{e h}{\otimes} V_{2} \rightarrow W_{1} \stackrel{e h}{\otimes} W_{2}
$$

is a complete isometry (resp. contraction).

Proof. Suppose $\varphi_{k}(k=1,2)$ are complete isometries. We have the following commutative diagram

in which the top and bottom mappings are completely isometric inclusions by the definition of the extended Haagerup tensor product. By Effros-Ruan [11, Corollary 4.1.9], $\varphi_{k}^{*}(k=1,2)$ are complete quotient maps. Then $\varphi_{1}^{*} \stackrel{h}{\otimes} \varphi_{2}^{*}: W_{1}^{*} \stackrel{h}{\otimes} W_{2}^{*} \rightarrow V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}$ is also a complete quotient map, since the Haagerup tensor product is projective, and hence $\left(\varphi_{1}^{*} \stackrel{h}{\otimes} \varphi_{2}^{*}\right)^{*}$ is a complete isometry. That means the right column mapping is complete isometry, so is the left column mapping.

If $\varphi_{k}(k=1,2)$ are complete contractions, then so is $\left(\varphi_{1}^{*} \stackrel{h}{\otimes} \varphi_{2}^{*}\right)^{*}$ by Effros-Ruan [11, Proposition 3.2.2] and the property of Haagerup tensor product. Therefore, the left column mapping is also a complete contraction.

Lemma 3.2.9. let V_{1}, V_{2}, W_{1}, and W_{2} be operator spaces. If $\varphi_{k}: V_{k} \rightarrow W_{k}$ are completely bounded ($k=1,2$), then for any index set $J, v_{1} \in M_{1, J}\left(V_{1}\right)$, and $v_{2} \in$ $M_{J, 1}\left(V_{2}\right)$, we have

$$
\left(\varphi_{1}^{e h} \varphi_{2}\right)\left(v_{1} \odot v_{2}\right)=\varphi_{1}^{(1, J)}\left(v_{1}\right) \odot \varphi_{2}^{(J, 1)}\left(v_{2}\right)
$$

Proof. By Remark 3.2.7, we have $\dot{v}_{1} \odot v_{2}=\lim _{F \subseteq J} v_{1}^{F} \odot v_{2}^{F}$, where $v_{1}^{F} \in M_{n, F}\left(V_{1}\right)$, $v_{2}^{F} \in M_{F, n}\left(V_{2}\right)$, and $F \subseteq J$ is finite. Then

$$
\begin{aligned}
\left(\varphi_{1} \stackrel{e h}{\otimes} \varphi_{2}\right)\left(v_{1} \odot v_{2}\right) & =\lim _{F}\left(\varphi_{1} \stackrel{e f}{\otimes} \varphi_{2}\right)\left(v_{1}^{F} \odot v_{2}^{F}\right) \\
& =\lim _{F} \varphi_{1}^{(1, F)}\left(v_{1}^{F}\right) \odot \varphi_{2}^{(F, 1)}\left(v_{2}^{F}\right)=\varphi_{1}^{(1, J)}\left(v_{1}\right) \odot \varphi_{2}^{(J, 1)}\left(v_{2}\right)
\end{aligned}
$$

THEOREM 3.2.10. Let V_{1} and V_{2} be operator spaces. Then we have a completely isometric inclusion

$$
V_{1}^{*} \stackrel{e h}{\otimes} V_{2}^{*} \hookrightarrow\left(V_{1}^{e h} V_{2}\right)^{*}
$$

Proof. Suppose $\varphi \in\left(V_{1} \stackrel{h}{\otimes} V_{2}\right)^{*}\left(=V_{1}^{*} \stackrel{e h}{\otimes} V_{2}^{*}\right)$. Then by Theorem 2.4.2, there exist a Hilbert space H and completely bounded maps $\psi_{1}: V_{2} \rightarrow B(H, \mathbb{C})=H_{r}$ and ψ_{2} : $V_{1} \rightarrow B(\mathbb{C}, H)=H_{c}$ such that $\varphi\left(v_{1} \otimes v_{2}\right)=\psi_{1}\left(v_{1}\right) \psi_{2}\left(v_{2}\right)$ and $\|\varphi\|_{c b}=\left\|\psi_{1}\right\|_{c b}\left\|\psi_{2}\right\|_{c b}$. Then composing the map

$$
\psi_{1} \stackrel{e h}{\otimes} \psi_{2}: V_{1} \stackrel{e h}{\otimes} V_{2} \rightarrow B(H, \mathbb{C}) \stackrel{e h}{\otimes} B(\mathbb{C}, H)
$$

and the multiplication map

$$
m: B(\mathbb{C}, H) \stackrel{e h}{\otimes} B(H, \mathbb{C}) \rightarrow \mathbb{C}
$$

given by $a \otimes b \mapsto a b$ gives a completely bounded map

$$
\tilde{\varphi}=m \circ\left(\psi_{1} \stackrel{e h}{\otimes} \psi_{2}\right): V_{1} \stackrel{e h}{\otimes} V_{2} \rightarrow \mathbb{C},
$$

since m is contractive. So, we get an extension $\widetilde{\varphi}$ of φ and $\|\widetilde{\varphi}\|_{c b} \geq\|\varphi\|_{c b}$. On the other hand,

$$
\begin{aligned}
\|\tilde{\varphi}\|_{c b} & \leq\|m\|_{c b}\| \| \psi_{1} \stackrel{e h}{\otimes} \psi_{2}\|\leq\| m\left\|_{c b}\right\| \psi_{1}\left\|_{c b}\right\| \psi_{2} \|_{c b} \\
& \leq\left\|\psi_{1}\right\| c b\left\|\psi_{2}\right\|_{c b}=\|\varphi\|_{c b}
\end{aligned}
$$

where the second step follows from Theorem 3.2.8. Therefore, $\|\widetilde{\varphi}\|_{c b}=\|\varphi\|_{c b}$, i.e., $\left(V_{1} \stackrel{h}{\otimes} V_{2}\right)^{*} \rightarrow\left(V_{1} \stackrel{\text { eh }}{\otimes} V_{2}\right)^{*}, \varphi \mapsto \widetilde{\varphi}$, is isometric.

Let $n \in \mathbb{N}$. Then $M_{n}\left(\left(V_{1} \stackrel{h}{\otimes} V_{2}\right)^{*}\right)=C B\left(V_{1} \stackrel{h}{\otimes} V_{2}, M_{n}\right)$ and $M_{n}=B\left(\mathbb{C}^{n}\right)$. By the decomposition theorem for operators in $C B\left(V_{1} \stackrel{h}{\otimes} V_{2}, M_{n}\right)$ and the same argument
as above, we see that the map $\left[\varphi_{i j}\right] \mapsto\left[\widetilde{\varphi}_{i j}\right]$ is isometric. Therefore, the embedding $\left(V_{1} \stackrel{h}{\otimes} V_{2}\right)^{*} \rightarrow\left(V_{1} \stackrel{e h}{\otimes} V_{2}\right)^{*}, \varphi \mapsto \widetilde{\varphi}$, is completely isometric.

3.3. Normal Haagerup tensor product

Given dual operator spaces V_{1}^{*} and V_{2}^{*}, the normal Haagerup tensor product of V_{1}^{*} and V_{2}^{*} is defined as the operator space dual of $\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}\right)_{\sigma}^{*}$ and denoted by $V_{1}^{*} \stackrel{\text { oh }}{\otimes} V_{2}^{*}$. That is to say

$$
V_{1}^{*} \stackrel{\sigma h}{\otimes} V_{2}^{*}=\left(\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}\right)_{\sigma}^{*}\right)^{*} .
$$

According to the definition of extended Haagerup tensor product, we have the complete isometry

$$
V_{1}^{*} \stackrel{\sigma h}{\otimes} V_{2}^{*}=\left(V_{1} \stackrel{e h}{\otimes} V_{2}\right)^{*} .
$$

From this identification and self-duality of the extended Haagerup tensor product, we conclude immediately that

$$
V_{1}^{*} \stackrel{e h}{\otimes} V_{2}^{*} \hookrightarrow V_{1}^{*} \stackrel{\sigma h}{\otimes} V_{2}^{*}
$$

is a complete isometry, and hence

$$
V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*} \hookrightarrow V_{1}^{*} \stackrel{\sigma h}{\otimes} V_{2}^{*}
$$

is also a complete isometric embedding. In fact, we can say more about this embedding.

Proposition 3.3.1. Let V_{1} and V_{2} be operator spaces. Then $V_{1}^{*}{ }^{h} V_{2}^{*}$ is dense in $V_{1}^{*} \stackrel{\text { ch }}{\otimes} V_{2}^{*}$ in the weak*-topology determined by $V_{1} \stackrel{\text { eh }}{\otimes} V_{2}$ and hence $V_{1}^{*} \otimes V_{2}^{*}$ is weak ${ }^{*}$-dense in $V_{1}^{*}{ }_{\otimes}^{\sigma h} V_{2}^{*}$.

Proof. Let us consider the inclusion map $i: V_{1} \stackrel{e h}{\otimes} V_{2} \rightarrow\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}\right)^{*}$. Then $\operatorname{ker}(i)=\{0\}$ and hence $i^{*}\left(\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}\right)^{* *}\right)$ is weak ${ }^{*}$-dense in $\left(V_{1} \stackrel{e h}{\otimes} V_{2}\right)^{*}=V_{1}^{*} \stackrel{\sigma h}{\otimes} V_{2}^{*}$. But $V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}$ is weak ${ }^{*}$-dense in $\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}\right)^{* *}$. Therefore, $V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}$ is weak*-dense in $V_{1}^{*} \stackrel{\sigma h}{\otimes} V_{2}^{*}$.

By the definition of the extended Haagerup tensor product and the normal Haagerup tensor product, we have $V_{1}^{*} \stackrel{\text { hh }}{\otimes} V_{2}^{*}=\left(V_{1} \stackrel{e h}{\otimes} V_{2}\right)^{*}$ and hence

$$
C B^{\sigma}\left(V_{1}^{*} \stackrel{\sigma h}{\otimes} V_{2}^{*}, \mathbb{C}\right) \cong V_{1} \stackrel{e h}{\otimes} V_{2} \cong M B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, \mathbb{C}\right)
$$

We show in the following that the above \mathbb{C} can be replaced by any dual operator space.

Theorem 3.3.2. Let V_{1}, V_{2}, and W be operator spaces. Then we have a complete isometry

$$
C B^{\sigma}\left(V_{1}^{*} \otimes V_{2}^{* h}, W^{*}\right) \cong M B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, W^{*}\right)
$$

Proof. Let $\varphi \in M B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, W^{*}\right)$ and $w \in W \subseteq W^{* *}$. Then $w \circ \varphi: V_{1}^{*} \times$ $V_{2}^{*} \rightarrow \mathbb{C}$ is normal and multiplicatively bounded since w is weak*-continuous and φ is multiplicatively bounded, and hence it is an element of $V_{1} \stackrel{e \ell}{\otimes} V_{2}$. Then we may define a complete bounded map

$$
\varphi_{*}: W \rightarrow V_{1} \stackrel{e h}{\otimes} V_{2}, \quad w \mapsto w \circ \varphi,
$$

since $\left\|\varphi_{*}\right\|_{c b} \leq\|\varphi\|_{m b}$.
Let $\varphi_{\sigma h}=\left(\varphi_{*}\right)^{*}$. Then $\varphi_{\sigma h}: V_{1}^{*} \stackrel{\sigma h}{\otimes} V_{2}^{*} \rightarrow W^{*}$ is weak*-weak* continuous and completely bounded with $\left\|\varphi_{\sigma h}\right\|_{c b}=\left\|\varphi_{*}\right\|_{c b} \leq\|\varphi\|_{m b}$.

For all $f_{1} \in V_{1}^{*}, f_{2}^{*} \in V_{2}^{*}$ and $w \in W$,

$$
\begin{aligned}
\varphi_{\sigma h}\left(f_{1} \otimes f_{2}\right)(w) & =\left(f_{1} \otimes f_{2}\right)\left(\varphi_{*}(w)\right)=\left(f_{1} \otimes f_{2}\right)(w \circ \varphi) \\
& =(w \circ \varphi)\left(f_{1}, f_{2}\right)=\varphi\left(f_{1}, f_{2}\right)(w) .
\end{aligned}
$$

So, $\varphi_{\sigma h}$ is the unique weak ${ }^{*}$-extension of φ on $V_{1}^{*}{ }^{\sigma h} V_{2}^{*}$ satisfying $\varphi_{\sigma h}\left(f_{1} \otimes f_{2}\right)=$ $\varphi\left(f_{1}, f_{2}\right)$. In particular, we have $\|\varphi\|_{m b} \leq\left\|\varphi_{\sigma h}\right\|_{c b}$. So, $\left\|\varphi_{\sigma h}\right\|_{c b}=\|\varphi\|_{m b}$. Therefore, $M B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, W^{*}\right) \rightarrow C B^{\sigma}\left(V_{1}^{*} \stackrel{\sigma h}{\otimes} V_{2}^{*}, W^{*}\right), \varphi \mapsto \varphi_{g h}$, is an isometry.

For the surjectivity of this map, we can restrict $\varphi_{\sigma h}$ to $V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}$ and denote the restricted map by $\left.\varphi_{\sigma h}\right|_{\otimes}$. Then $\left.\varphi_{o h}\right|_{\otimes} \in C B^{\sigma}\left(V_{1}^{*} \stackrel{h}{\otimes} V_{2}^{*}, W^{*}\right) \cong M B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, W^{*}\right)$ by the property of Haagerup tensor product.

For each $n \in \mathbb{N}$, we have the commutative diagram

where the bottom and the two vertical maps are isometric and hence so is the top map. Therefore, $C B^{\sigma}\left(V_{1}^{*} \stackrel{\sigma h}{\otimes} V_{2}^{*}, W^{*}\right) \cong M B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, W^{*}\right)$ as operator spaces.

If V_{1}^{*} and V_{2}^{*} are replaced by $V_{1}^{* *}$ and $V_{2}^{* *}$, respectively, then $V_{1}^{* *}{ }_{\otimes}^{\sigma h} V_{2}^{* *}=$ $\left(V_{1} \stackrel{h}{\otimes} V_{2}\right)^{* *}$. So, $C B^{\sigma}\left(V_{1}^{* *} \stackrel{\sigma}{\otimes} V_{2}^{* *}, W^{*}\right)=C B^{\sigma}\left(\left(V_{1} \stackrel{h}{\otimes} V_{2}\right)^{* *}, W^{*}\right)=C B\left(V_{1} \stackrel{h}{\otimes}\right.$ $\left.V_{2}, W^{*}\right)$ and $M B^{\sigma}\left(V_{1}^{* *} \times V_{2}^{* *}, W^{*}\right)=M B\left(V_{1} \times V_{2}, W^{*}\right)$. Then the above identification is exactly Proposition 2.2.2.

CHAPTER 4

The Second Dual of a Banach Algebra

In this chapter, we start with a few facts and characterizations concerning Arens regularity and topological centers of Banach algebras. In Section 4.4, we prove some new results on Arens products. The second dual of a completely contractive Banach algebra is briefly discussed in Section 4.5.

4.1. Preliminaries

Let X, Y, and Z be normed spaces over \mathbb{C} and m a bounded bilinear map from $X \times Y$ into Z. We define two adjoint maps of m, namely $m^{*}: Z^{*} \times X \rightarrow Y^{*}$ and $m_{*}: Y \times Z^{*} \rightarrow X^{*}$ as follows.

For $f \in Z^{*}, x \in X$, and $y \in Y$, let

$$
\begin{aligned}
& m^{*}(f, x)(y)=f(m(x, y)) . \\
& m_{*}(y, f)(x)=f(m(y, x)) .
\end{aligned}
$$

In particular, if $X=Y=Z$ and $m: X \times X \rightarrow X$, then we have

$$
\begin{gathered}
m^{*}: X^{*} \times X \rightarrow X^{*}, \\
m^{* *}: X^{* *} \times X^{*} \rightarrow X^{*}, \\
m^{* * *}: X^{* *} \times X^{* *} \rightarrow X^{* *}
\end{gathered}
$$

It can be seen that in general $m^{* * *}$ is a natural extension of m. Obviously, we have the counterparts of m_{*} and another natural extension of m, namely $m_{* * *}$.

Definition 4.1.1. Let A be a Banach algebra and let $m: A \times A \rightarrow A$ be the multiplication on A. Then the first Arens product on $A^{* *}$ is $m^{* * *}$, denoted by $*_{1}$. The second Arens product on $A^{* *}$ is $m_{* * *}$, denoted by $*_{2}$.

More precisely, if $a \in A, f \in A^{*}, F, G \in A^{* *}$, then $f *_{1} a, G *_{1} f \in A^{*}$ and $F *_{1} G \in A^{* *}$ are defined as follows.

$$
\begin{aligned}
f *_{1} a(b) & =f(a b) \quad(b \in A) . \\
G *_{1} f(a) & =G\left(f *_{1} a\right) . \\
F *_{1} G(f) & =F\left(G *_{1} f\right) .
\end{aligned}
$$

Similarly, $a *_{2} f, f *_{2} F \in A^{*}$ and $F *_{2} G \in A^{* *}$ are defined as follows.

$$
\begin{aligned}
a *_{2} f(b) & =f(b a) \quad(b \in A) . \\
f *_{2} F(a) & =F\left(a *_{2} f\right) . \\
F *_{2} G(f) & =G\left(f *_{2} F\right) .
\end{aligned}
$$

4.2. Characterizations of Arens regularity

The main references for this section are Arens [1] and Duncan-Hosseiniun [7]. By the definition of the Arens products, the following lemma is immediate.

Lemma 4.2.1. The first (resp. second) Arens product is weak*-weak* continuous on the left (resp. right). That is,
(a) if $F_{\alpha} \rightarrow F$ in the weak*- topology, then $F_{\alpha} *_{1} G \rightarrow F *_{1} G$ in the weak*topology;
(b) if $G_{\beta} \rightarrow G$ in the weak*- topology, then $F *_{2} G_{\beta} \rightarrow F *_{2} G$ in the weak*topology.

Lemma 4.2.2. The two Arens products agree if one of the factors is in A. That is, if $G \in A$ and $F \in A^{* *}$, then $F *_{1} G=F *_{2} G$ and $G *_{1} F=G *_{2} F$.

Proof. Let $\pi: A \rightarrow A^{* *}$ be the canonical embedding of A into $A^{* *}$. Then we can get the following equalities.

$$
\begin{align*}
f *_{1} a & =f *_{2} \pi(a) . \tag{1}\\
\left(f *_{2} F\right) *_{1} a & =\left(f *_{2} F\right) *_{2} \pi(a) . \tag{2}
\end{align*}
$$

$$
\begin{equation*}
F *_{1} \pi(a)=F *_{2} \pi(a) . \tag{3}
\end{equation*}
$$

And

$$
\begin{gather*}
a *_{2} f=\pi(a) *_{\mathrm{i}} f . \tag{4}\\
a *_{2}\left(F *_{1} f\right)=\pi(a) *_{1}\left(F *_{1} f\right) . \tag{5}\\
\pi(a) *_{1} F=\pi(a) *_{2} F . \tag{6}
\end{gather*}
$$

Obviously, (1) and (4) hold. (2) and (5) follows from (1) and (4), respectively.
For (3), let $f \in A^{*}$. Then $\left[F *_{1}(\pi(a))\right](f)=F\left(\pi(a) *_{1} f\right)=F\left(a *_{2} f\right)$ by (4). But $\left[F *_{2} \pi(a)\right](f)=\pi(a)\left(f *_{2} F\right)=\left(f *_{2} F\right)(a)=F\left(a *_{2} f\right)$. Therefore, (3) is true. Similarly, (6) is true.

Definition 4.2.3. Let A be a Banach algebra. A is called Arens regular if the two Arens products agree on $A^{* *}$.

Let A be a commutative Banach algebra. Then for $F \in A^{* *}, f \in A^{*}$ and $a \in$ $A, f *_{1} a=a *_{2} f$ and thus $F *_{1} f=f *_{2} F$. So, $F *_{1} G=G *_{2} F$ for all $F, G \in A^{* *}$. Immediately, we have the following

Proposition 4.2.4. Let A be a commutative Banach algebra. Then $A^{* *}$ is commutative under either Arens product if and only if A is Arens regular.

THEOREM 4.2.5. Let A be a Banach algebra. Then the following statements are equivalent.
(1) A is Arens regular.
(2) For each $F \in A^{* *}$, the mapping $G \mapsto F *_{1} G$ is weak*-continuous.
(3) For each $F \in A^{* *}$, the mapping $G \mapsto G *_{2} F$ is weak*-continuous.
(4) For each $f \in A^{*}$, the mapping $b \mapsto f *_{1} b$ is weakly compact.
(5) For each $f \in A^{*}$, the mapping $b \mapsto b *_{2} f$ is weakly compact.
(6) Given bounded sequences $\left\{a_{n}\right\},\left\{b_{m}\right\}$ in A and $f \in A^{*}$, the iterated limits $\lim _{n} \lim _{m} f\left(a_{n} b_{m}\right)$ and $\lim _{m} \lim _{n} f\left(a_{n} b_{m}\right)$ are equal when they both exist.

Proof. (1) $\Rightarrow(2)$. Let A be Arens regular and $\left\{G_{\beta}\right\}$ be a net in $A^{* *}$ which is weak*-convergent to G. Then for $f \in A^{*}$,

$$
F *_{1} G(f)=F *_{2} G(f)=G\left(f *_{2} F\right)=\lim _{\beta} G_{\beta}\left(f *_{2} F\right)
$$

$$
=\lim _{\beta} F *_{2} G_{\beta}(f)=\lim _{\beta} F *_{1} G_{\beta}(f) .
$$

$(2) \Rightarrow(1)$. Suppose (2) holds and let $F, G \in A^{* *}$. Since A is weak*-dense in $A^{* *}$, there exists a net $\left\{G_{\beta}\right\}_{\beta}$ in A weak*-convergent to G in the weak*-topology. So, by Lemma 4.2.2,

$$
F *_{1} G=\lim _{\beta} F *_{1} G_{\beta}=\lim _{\beta} F *_{2} G_{\beta}=F *_{2} G .
$$

It follows that A is Arens regular.
$(1) \Leftrightarrow(3)$. Similar to $(1) \Leftrightarrow(2)$.
(1) \Rightarrow (4). Let A be Arens regular and $f \in A^{*}$. Let $T_{f}: A \rightarrow A^{*}$ be defined by $a \mapsto f *_{1} a$ and $\pi: A^{*} \rightarrow A^{* * *}$ the canonical embedding of A^{*} into $A^{* * *}$. Then

$$
\begin{aligned}
T_{f}^{* *}(F)(G) & =F\left(T_{f}^{*}(G)\right)=F\left(G *_{1} f\right)=F *_{1} G(f) \\
& =F *_{2} G(f)=G\left(f *_{2} F\right)=\pi\left(f *_{2} F\right)(G) .
\end{aligned}
$$

So, $T_{f}^{* *}\left(A^{* *}\right) \subseteq \pi\left(A^{*}\right)$. By Dunford-Schwartz [8, Theorem VI. 4.2], T_{f} is weakly compact.
(4) \Rightarrow (2). Suppose $T_{f}: A \rightarrow A^{*}, b \mapsto f *_{1} b$ is weakly compact for all $f \in A^{*}$. Then $T_{f}^{*}: A^{* *} \rightarrow A^{*}, F \mapsto F *_{1} f$. Let $\pi: A^{*} \rightarrow A^{* * *}$ be the canonical embedding. By [8, Theorem VI. 4.2], for each $F \in A^{* *}$, there exists an $f \in A^{*}$ such that

$$
F\left(T_{f}^{*}(G)\right)=\left(T_{f}^{* *}(F)\right)(G)=(\pi(f))(G)=G(f)
$$

Now let $\left\{G_{\beta}\right\}$ be weak*- convergent to G. Then $T_{f}^{*}\left(G_{\beta}\right)$ is weakly convergent to $T_{f}^{*}(G)$. So, for any $F \in A^{* *}, F\left(G_{\beta} *_{1}(f)\right)=F\left(T_{f}^{*}\left(G_{\beta}\right)\right)$ weak*-converges to $F\left(G *_{1} f\right)=F *_{1} G(f)$ in the weak*-topology. i.e., the mapping $G \mapsto F *_{1} G$ is weak*-weak* continuous.
(4) $\Leftrightarrow(6)$ and (5) $\Leftrightarrow(6)$. It follows from the Grothendieck's criterion for weakly compactness (cf. [13, Theorem 3.1]).

Corollary 4.2.6. Let A be an Arens regular Banach algebra, B a closed subalgebra of A and J a closed bi-ideal of A. Then B and A / J are Arens regular.

Before proving this corollary, we give two useful lemmas.

Lemma 4.2.7. Let A_{1} and A_{2} be Banach algebras. Let T be a continuous homomorphism of A_{1} into A_{2}. Then $T^{* *}$ is a homomorphism of $A_{1}^{* *}$ with the first (resp. second) Arens product into $A_{2}^{* *}$ with the first (resp. second) Arens product.

The proof of this lemma can be found in [5].

Lemma 4.2.8. Let A and B be Banach algebras. If A is Arens regular and h : $A \rightarrow B$ is a continuous homomorphism of A onto B, then B is Arens regular.

Proof. First, we show $h^{* *}$ is onto. Since h is continuous linear mapping from A onto $B, B=h(A)=\operatorname{ker}\left(h^{*}\right)^{\perp}$ (cf. [8, Lemma VI. 2.8]) and then $\operatorname{ker}\left(h^{*}\right)=\{0\}$, i.e., h^{*} is one-one continuous linear mapping. By Dunford-Schwartz [8, Theorem VI. 6.2], we also know that if the range of h^{*} is closed, then the range of $h^{* *}$ is $\operatorname{ker}\left(h^{*}\right)^{\perp}=B^{* *}$. But the range of h^{*} is closed if and only if the range of h is closed. Therefore, $h^{* *}$ is onto.

Now we show that B is Arens regular. By Lemma 4.2.7,

$$
h^{* *}(F) *_{1} h^{* *}(G)=h^{* *}\left(F *_{1} G\right)=h^{* *}\left(F *_{2} G\right)=h^{* *}(F) *_{2} h^{* *}(G)
$$

for all F, G in $B^{* *}$. But as we proved above, the range of $h^{* *}$ is exactly $B^{* *}$, Thus B is Arens regular.

Proof of Corollary 4.2.6. Let T be the inclusion map of B into A. Then it is a continuous homomorphism of B into A. By Lemma 4.2.7, for all $F, G \in B^{* *}$,

$$
T^{* *}\left(F *_{1} G\right)=T^{* *}(F) *_{1} T^{* *}(G)=T^{* *}(F) *_{2} T^{* *}(G)=T^{* *}\left(F *_{2} G\right) .
$$

Since $T^{* *}$ is one-one, $F *_{1} G=F *_{2} G$ for all $F, G \in B^{* *}$. So, B is Arens regular.
Since the canonical mapping $q: A \rightarrow A / J$ is a continuous homomorphism of A onto A / J and A is Arens regular, A / J is Arens regular by Lemma 4.2.8.

In the sequel, we always use $\left(A^{* *}, *_{1}\right)$ (resp. $\left.\left(A^{* *}, *_{2}\right)\right)$ to denote the second dual of A with the first (resp. second) Arens product.

Proposition 4.2.9. Let A be a Banach algebra. Then A has a bounded right (resp. left) approximate identity if and only if $\left(A^{* *}, *_{1}\right)$ (resp. $\left(A^{* *}, *_{2}\right)$) has a right (resp. left) identity.

Proof. Suppose A has a bounded right approximate identity $\left\{e_{\lambda}\right\}$ and $\left\|e_{\lambda}\right\| \leq M$ for all λ. Since the bounded ball in $A^{* *}$ is weak*-compact, there exists a subnet $\left\{e_{\lambda_{\beta}}\right\}$ of $\left\{e_{\lambda}\right\}$ weak *-convergenet to a point E in $A^{* *}$. We show that E is the right identity of $\left(A^{* *}, *_{1}\right)$, i.e., for all $f \in A^{*}, F *_{1} E(f)=F(f)$. But $F *_{1} E(f)=F\left(E *_{1} f\right)$, it suffice to show $E *_{1} f=f$.

In fact, for all $a \in A, E *_{1} f(a)=E\left(f *_{1} a\right)=\lim _{\lambda_{\beta}} e_{\lambda_{\beta}}\left(f *_{1} a\right)=\lim _{\lambda_{\beta}}\left(f *_{1} a\right)\left(e_{\lambda_{\beta}}\right)=$ $\lim _{\lambda_{\beta}} f\left(a e_{\lambda_{\beta}}\right)=f\left(\lim _{\lambda_{\beta}} a e_{\lambda_{\beta}}\right)=f(a)$.

Conversely, suppose $\left(A^{* *}, *_{1}\right)$ has a right identity E. Then since the unit ball of A is weak*-dense in the unit ball of $A^{* *}$, there is a net $\left\{e_{\lambda}\right\}$ in A with $\left\|e_{\lambda}\right\| \leq\|E\|$ such that $\lim _{\lambda} e_{\lambda}=E$ in the weak ${ }^{*}$-topology of $A^{* *}$.

Let $f \in A^{*}$. Since $F(f)=F *_{1} E(f)=F\left(E *_{1} f\right)$ holds for all $F \in A^{* *}, f=E *_{1} f$. For all $x \in A$ and $f \in A^{*}$, we have

$$
\begin{aligned}
f(x) & =E *_{1} f(x)=E\left(f *_{1} x\right)=\lim _{\lambda} e_{\lambda}\left(f *_{1} x\right) \\
& =\lim _{\lambda} f\left(x e_{\lambda}\right)=f\left(\lim _{\lambda} x e_{\lambda}\right) .
\end{aligned}
$$

Hence $x=\lim _{\lambda} x e_{\lambda}$ in the weak topology of A. Then there exists a net $\left\{a_{\gamma}\right\}$ such that each a_{γ} is a convex combination of e_{λ} and $\left\|x a_{\gamma}-x\right\| \rightarrow 0$ for all $x \in A$. Therefore, A has a right bounded approximate identity.

4.3. Topological centers

Although Arens regular Banach algebras are nice, unfortunately, many important Banach algebras are not Arens regular. For example, the group algebra $L_{1}(G)$ is never Arens regular unless G is finite. A natural question is how to describe the non-Arens regularity of a Banach algebra. As we will discuss, the topological center with respect to each Arens product is one of such measurements. The main reference for this section is [15].

Definition 4.3.1. Let A be a Banach algebra. The topological centers of $A^{* *}$ are defined as follows.

$$
\begin{aligned}
& Z_{1}\left(A^{* *}\right)=\left\{F \in A^{* *}: G \mapsto F *_{1} G \text { is weak*-weak }{ }^{*} \text { continuous on } A^{* *}\right\} . \\
& Z_{2}\left(A^{* *}\right)=\left\{G \in A^{* *}: F \mapsto F *_{2} G \text { is weak*-weak }{ }^{*} \text { continuous on } A^{* *}\right\} .
\end{aligned}
$$

Clearly, $A \subseteq Z_{1} \bigcap Z_{2} \subseteq A^{* *}$. Furthermore, $Z_{1}=A^{* *}$ or $Z_{2}=A^{* *}$ if and only if A is Arens regular.

Denote the algebraic center of $A^{* *}$ with respect to the first (resp. second) Arens product by $C_{1}\left(A^{* *}\right)$ (resp. $C_{2}\left(A^{* *}\right)$). Then

$$
C_{1}\left(A^{* *}\right)=\left\{F \in A^{* *}: F *_{1} G=G *_{1} F \text { for all } G \in A^{* *}\right\}
$$

and

$$
C_{2}\left(A^{* *}\right)=\left\{F \in A^{* *}: F *_{2} G=G *_{2} F \text { for all } G \in A^{* *}\right\} .
$$

Proposition 4.3.2. $C_{1}\left(A^{* *}\right) \subseteq Z_{1}\left(A^{* *}\right)$ and $C_{2}\left(A^{* *}\right) \subseteq Z_{2}\left(A^{* *}\right)$.
Proof. For any $F \in C_{1}\left(A^{* *}\right)$, the mapping $G \mapsto F *_{1} G$ is just the mapping $G \mapsto G *_{1} F$. But the latter is automatically weak*-weak* continuous on $A^{* *}$, so $F \in Z_{1}\left(A^{* *}\right)$.

Similarly, we can get the second inclusion.
Corollary 4.3.3. If A is a commutative Banach algebra, then $C_{1}=C_{2}=Z_{1}=$ Z_{2}.

Proof. We show $Z_{1}=C_{1}$. By Proposition 4.3.2, it suffice to show $Z_{1} \subseteq C_{1}$. Let $Z_{1}^{\prime}=\left\{F \in A^{* *}: F *_{1} G=F *_{2} G\right.$ for all $\left.G \in A^{* *}\right\}$.

Claim. $Z_{1}=Z_{1}^{\prime}$. Clearly, $Z_{1}^{\prime} \subseteq Z_{1}$. Conversely, for each $G \in A^{* *}$, there exists a net $\left\{G_{\alpha}\right\}$ in A such that $G_{\alpha} \rightarrow G$ in the weak*-topology. For any $F \in Z_{1}, F *_{1} G_{\alpha} \rightarrow$ $F *_{1} G$ in the weak*-topology. On the other hand, $F *_{1} G_{\alpha}=F *_{2} G_{\alpha} \rightarrow F *_{2} G$ in the weak*-topology. So, for all $F \in Z_{1}$ and $G \in A^{* *}, F *_{1} G=F *_{2} G$.

By the argument immediate preceding to Proposition 4.2.4, $Z_{1}^{\prime} \subseteq C_{1}$, therefore, $Z_{1} \subseteq C_{1}$. The proof that $Z_{2}=C_{2}$ is similar.

Proposition 4.3.4. Z_{1} and Z_{2} are subalgebras of $A^{* *}$.
Proof. It follows from the associativity of the Arens products.
Let A be a Banach algebra. We define

$$
A^{*} A=\left\{f *_{1} a: f \in A^{*}, a \in A\right\}
$$

and

$$
A A^{*}=\left\{a *_{2} f: f \in A^{*}, a \in A\right\} .
$$

If $A^{*}=A^{*} A$ (resp. $A^{*}=A A^{*}$), we say A^{*} factors on the left (resp. right).
Definition 4.3.5. An element E of $A^{* *}$ is said to be a mixed identity if for all $F \in A^{* *}, \quad F *_{1} E=E *_{2} F=F$.

By Proposition 4.2.9, we have the following result immediately.
Proposition 4.3.6. Let A be a Banach algebra. Then $A^{* *}$ has a mixed identity E if and only if A has a BAI $\left\{e_{\alpha}\right\}$ such that $e_{\alpha} \rightarrow E$ in the weak ${ }^{*}$ topology.

Proof. It follows from Proposition 4.2.9 and its proof.
For convenience, we use $\langle f, a\rangle$ or $\langle a, f\rangle$ to denote the duality between A^{*} and A.
Proposition 4.3.7. Let A be a Banach algebra. If $\left(A^{* *}, *_{1}\right)$ (resp. $\left.\left(A^{* *}, *_{2}\right)\right)$ has an identity E, then E is a mixed identity of $A^{* *}$.

Proof. Let E be the identity of $\left(A^{* *}, *_{1}\right)$. We need to show that for all $F \in$ $A^{* *}, E *_{2} F=F$. For $F \in A^{* *}$, there exists a bounded net $\left\{F_{\alpha}\right\}$ in A such that $F_{\alpha} \rightarrow F$ in the weak ${ }^{*}$ - topology. Then $E *_{2} F_{\alpha} \rightarrow E *_{2} F$ in the weak*-topology. But $E *_{2} F_{\alpha}=E *_{1} F_{\alpha}=F_{\alpha} \rightarrow F$ in the weak*-topology. So, $E *_{2} F=F$ and E is a mixed identity of A^{*}.

The $\left(A^{* *}, *_{2}\right)$ case can be similarly proved.
Proposition 4.3.8. Let A be a Banach algebra with a BAI. Then the following statements are true.
(a) A^{*} factors on the left if and only if $\left(A^{* *}, *_{1}\right)$ is unital.
(b) A^{*} factors on the right if and only if $\left(A^{* *}, *_{2}\right)$ is unital.
(c) If A^{*} factors on both sides, then the identities of $\left(A^{* *}, *_{1}\right)$ and $\left(A^{* *}, *_{2}\right)$ are the same.

Proof. (a). Suppose A^{*} factors on the left. Since A has a BAI, $A^{* *}$ has a mixed identity E. Then for all $F \in A^{* *}, F *_{1} E=F$. We want to show $E *_{1} F=F$. i.e., for each $f \in A^{*},\left\langle f, E *_{1} F\right\rangle=\langle f, F\rangle$.

Since each $f \in A^{*}$ has the form $g *_{1} a$ for some $g \in A^{*}$ and $a \in A$, we have

$$
\begin{aligned}
\left\langle E *_{1} F, f\right\rangle & =\left\langle E *_{1} F, g *_{1} a\right\rangle=\left\langle a *_{2}\left(E *_{1} F\right), g\right\rangle=\left\langle a *_{1} E *_{1} F, g\right\rangle \\
& =\left\langle a *_{1} F, g\right\rangle=\left\langle a *_{2} F, g\right\rangle=\left\langle F, g *_{1} a\right\rangle=\langle F, f\rangle .
\end{aligned}
$$

Therefore, $E *_{1} F=f$ for all $F \in A^{* *}$.
Conversely, suppose E is the identity of $\left(A^{* *}, *_{1}\right)$. We show $A^{*} \subseteq A^{*} A$.
Since $E \in A^{* *}$, there exists a net $\left\{e_{\alpha}\right\}$ in A such that $e_{\alpha} \rightarrow E$ in the weak*topology. Then for each $F \in A^{* *}, e_{\alpha} *_{1} F \rightarrow E *_{1} F=F$ in the weak*-topology of $A^{* *}$. So, for each $f \in A^{*}$,

$$
\left\langle F, f *_{1} e_{\alpha}\right\rangle=\left\langle F, f *_{2} e_{\alpha}\right\rangle=\left\langle e_{\alpha} *_{2} F, f\right\rangle=\left\langle e_{\alpha} *_{1} F, f\right\rangle \rightarrow\langle F, f\rangle,
$$

i.e., $f *_{1} e_{\alpha} \rightarrow f$ in the weak topology of A^{*}. By the Cohen's factorization Theorem (cf. [14, Theorem 32.22]), $A^{*} A$ is norm (and hence weakly) closed in A^{*}. So, f is in $A^{*} A$.
(b). The proof is similar to the proof of (a).
(c). Let E_{1}, E_{2} be the identities of $\left(A^{* *}, *_{1}\right)$ and $\left(A^{* *}, *_{2}\right)$, respectively. Then we show E_{1} is the identity of $\left(A^{* *}, *_{2}\right)$. By Proposition 4.3.7, it suffices to show that for each $F \in A^{* *}, \quad F *_{2} E_{1}=F$. This is true since $F *_{2} E_{1}=F *_{2}\left(E_{1} *_{2} E_{2}\right)=F *_{2} E_{2}=F$. For the second and the fourth steps we use the assumption that E_{2} is a unit of $\left(A^{* *}, *_{2}\right)$, and for the third step we use the fact that E_{1} is a mixed unit of $A^{* *}$.

Definition 4.3.9. Let X be a normed space. A sequence $\left\{x_{n}\right\}$ in X is said to be weakly Cauchy if $\left\{f\left(x_{n}\right)\right\}$ is Cauchy in \mathbb{C} for all $f \in X^{*}$.
X said to be weakly sequentially complete if every weakly Cauchy sequence in X is weakly convergent.

Proposition 4.3.10. Let A be weakly sequentially complete Banach algebra with a sequential BAI. Then the following statements are equivalent.
(a) A^{*} factors on the left.
(b) A^{*} factors on the right.
(c) A is unital.

Proof. $(a) \Rightarrow(c)$. Assume (a) holds. Let $\left\{e_{n}\right\}$ be a sequential BAI. Then any $f \in A^{*}$ is of the form $f=g *_{1} a$ for some $g \in A^{*}$ and $a \in A$. Since $a e_{n} \rightarrow a$ in the norm topology of $A,\left\langle f, e_{n}\right\rangle=\left\langle g, a e_{n}\right\rangle \rightarrow\langle g, a\rangle$ in \mathbb{C}. This show that the sequence $\left\{e_{n}\right\}$ is weakly Cauchy. Since A is weakly sequentially complete, $\left\{e_{n}\right\}$ is weakly convergent to some element e of A. It is immediate to see that e is the identity of A.
$(c) \Rightarrow(b)$. It is trivial.
$(b) \Rightarrow(c)$. The proof is similar to the proof of $(a) \Rightarrow(c)$.
$(c) \Rightarrow(a)$. It follows from Proposition 4.3.8, since the identity of A is also the identity of $\left(A^{*}, *_{1}\right)$.

Corollary 4.3.11. A weakly sequentially complete Banach algebra A with a sequential BAI can not be Arens regular unless it is unital.

4.4. Some new characterizations of Arens regularity

In this section, we prove some new characterizations for a Banach algebra A to be Arens regular, which were obtained when we attempted to unify some of existing approches to the study of Arens regularity.

Given a Banach algebra A, let

$$
Z=\left\{G \in A^{* *}: \text { for each } f \in A^{*}, G *_{1} F_{\alpha}(f) \rightarrow G *_{1} F(f) \text { whenever } F_{\alpha} \xrightarrow{w *} F\right\}
$$

and

$$
S=\left\{f \in A^{*}: \text { for each } G \in A^{* *}, G *_{1} F_{\alpha}(f) \rightarrow G *_{1} F(f) \text { whenever } F_{\alpha} \xrightarrow{w *} F\right\}
$$

Then $Z=Z_{1}\left(A^{* *}\right)$ and it is easy to see that $S=\operatorname{wap}(A)$, where

$$
\operatorname{wap}(A)=\left\{f \in A^{*}: a \mapsto f *_{1} a, A \mapsto A^{*}, \text { is weakly compact }\right\} .
$$

By Dunford-Schwartz [8, Theorem VI.4.7], for each $f \in A^{*}, T_{f}$ is weakly compact if and only if $T_{f}^{*}: A^{* *} \rightarrow A^{*}$ is weak*-weakly continuous, where $T_{f}(a)=f *_{1} a$. So, $f \in \operatorname{wap}(A)$ if and only if $f \in S$.

Let $W=\left\{(G, f) \in A^{* *} \times A^{*}: G *_{1} F_{\alpha}(f) \rightarrow G *_{1} F(f)\right.$ whenever $\left.F_{\alpha} \xrightarrow{w *} F\right\}$, $\widetilde{Z}=Z \times A^{*}$, and $\widetilde{S}=A^{* *} \times S$. Then $\widetilde{Z} \subseteq W, \widetilde{S} \subseteq W, P_{1}(\widetilde{Z})=Z$, and $P_{2}(\widetilde{S})=S$, where P_{1}, P_{2} are the natural projections. Clearly,

$$
A \text { is Arens regular } \Longleftrightarrow W=A^{* *} \times A^{*}
$$

For $(G, f) \in A^{* *} \times A^{*}$, we define a map $\varphi_{G, f}: A^{* *} \rightarrow \mathbb{C}$ by

$$
\varphi_{G, f}(F)=\left\langle G *_{1} F, f\right\rangle .
$$

Obviously, $\varphi_{G, f}$ is linear and bounded. So, $\varphi_{G, f} \in A^{* * *}$. In particular, $(G, f) \in W$ if and only if $\varphi_{G, f}$ is weak*-continuous, i.e., $\varphi_{G, f} \in A^{*}$.

Then we get a bilinear map $\varphi: A^{* *} \times A^{*} \rightarrow A^{* * *}$ given by $\varphi(G, f)=\varphi_{G, f}$. We note that $\varphi(a, f)=f *_{1} a$ and φ is weak*-weak* continuous with respect to the first variable. Also, we have $W=\varphi^{-1}\left(A^{*}\right)$. Therefore,

$$
A \text { is Arens regular } \Longleftrightarrow \varphi^{-1}\left(A^{*}\right)=A^{* *} \times A^{*}
$$

Lemma 4.4.1. Let A be a Banach algebra and let φ be defined as above. Then $A^{*} A \subseteq \varphi(\widetilde{Z}) \subseteq \varphi(W) \subseteq A^{*}$.

Proof. The last two inclusions are clear by the arguments above. Recall that $A^{*} A=\left\{f *_{1} a: f \in A^{*}, a \in A\right\}$. So, to get the first inclusion, let $f \in A^{*}$ and $a \in A$. Then $a \in Z$ and thus $(a, f) \in \widetilde{Z}$. Therefore, $f *_{1} a=\varphi(a, f) \in \varphi(\widetilde{Z})$.

We consider now the relation between $A^{*} A$ and $\varphi(\widetilde{S})$.
Proposition 4.4.2. Let A be a Banach algebra. Then
(1) $\varphi(\widetilde{S}) \subseteq S$.
(2) $\varphi(\widetilde{S})=S \subseteq A^{*} A$ if A has a BAI.
(3) $A^{*} A \subseteq S$ if A is a right ideal in $A^{* *}$ (i.e., $A A^{* *} \subseteq A$). In particular, if A has a BAI and A is a right ideal in $A^{* *}$, then $\varphi(\widetilde{S})=S=A^{*} A$.

Proof. (1) Let $(G, f) \in \widetilde{S}$. For each $E \in A^{* *}$, if $F_{\alpha} \xrightarrow{w *} F$, then $\left\langle E *_{1} F_{\alpha}, \varphi(G, f)\right\rangle=$ $\left.\left.\varphi_{G, f}\left(E *_{1} F_{\alpha}\right)=\left\langle G *_{1}\left(E *_{1} F_{\alpha}\right), f\right\rangle=\left\langle\left(G *_{1} E\right) *_{1} F_{\alpha}\right), f\right\rangle \rightarrow\left\langle\left(G *_{1} E\right) *_{1} F\right), f\right\rangle$, since $f \in S$. Therefore, $\varphi(G, f) \in S$.
(2) Suppose A has a BAI $\left(e_{\alpha}\right)$. We first prove that $S \subseteq A^{*} A$. Let $f \in S$. Then $f *_{1} e_{\alpha}$ is relatively weakly compact in A^{*}. Without loss of generality, we may assume that $f *_{1} e_{\alpha} \rightarrow g$ weakly in A^{*}. Since $\left(e_{\alpha}\right)$ is a right BAI, by the Cohen's Factorization Theorem (cf. [14, Theorem 32.22]), $A^{*} A$ is a norm (and hence weakly) closed linear subspace of A^{*}. In particular, we have $g \in A^{*} A$.

On the other hand, since $\left(e_{\alpha}\right)$ is a left BAI of A, for all $a \in A$,

$$
\left\langle f *_{1} e_{\alpha}, a\right\rangle=\left\langle f, e_{\alpha} a\right\rangle \rightarrow\langle f, a\rangle,
$$

i.e., $f *_{1} e_{\alpha} \rightarrow f$ in the weak ${ }^{*}$-topology of A^{*}. It follows that $f=g \in A^{*} A$. Therefore, $S \subseteq A^{*} A$.

To get the equality $\varphi(\widetilde{S})=S$, we only need to prove that $S \subseteq \varphi(\widetilde{S})$. Let $f \in S$ and E be a weak ${ }^{*}$-cluster point of $\left(e_{\alpha}\right)$ in A^{*}. From the above arguments, we may assume that $e_{\alpha} \xrightarrow{w^{*}} E$ in $A^{* *}$ and $f *_{1} e_{\alpha} \xrightarrow{w} f$ in A^{*}. Then, for all $G \in A^{* *}$, we have

$$
\begin{aligned}
\left\langle\varphi_{E, f}, G\right\rangle & =\left\langle E *_{1} G, f\right\rangle=\lim _{\alpha}\left\langle e_{\alpha}, G *_{1} f\right\rangle \\
& =\lim _{\alpha}\left\langle G, f *_{1} e_{\alpha}\right\rangle=\langle G, f\rangle .
\end{aligned}
$$

Therefore, $f=\varphi_{E, f}=\varphi(E, f) \in \varphi(\widetilde{S})$.
(3) Let $f \in A^{*}$ and $a \in A$. For any $G \in A^{* *}$, if $F_{\alpha} \xrightarrow{w^{*}} F$ in $A^{* *}$, we have $\left\langle G *_{1} F_{\alpha}, f *_{1} a\right\rangle=\left\langle a *_{1} G *_{1} F_{\alpha}, f\right\rangle \rightarrow\left\langle a *_{1} G *_{1} F_{\alpha}, f\right\rangle$ since $a *_{1} G \in A$.

Remark 4.4.3. A proof to the inclusion $(S=) \operatorname{wap}(A) \subseteq A^{*} A$ can be found in the proof of [16, Theorem 3.1], which contains an oversight on $\left(e_{\alpha}\right):\left(e_{\alpha}\right)$ was only assumed to be a left BAI of A there.

Corollary 4.4.4. Let A be a Banach algebra with a BAI. If A is Arens regular, then A^{*} factors on both sides.

Proof. Under the Hypothesis that A is Arens regular, $S=A^{*}$ is obviously. From Proposition 4.4.2(2), $S \subseteq A^{*} A \subseteq A^{*}$. So, A^{*} factors on the left. The right case can be proved similarly, since one can also prove that $S \subseteq A A^{*}$ when A has a BAI.

Proposition 4.4.5. Let A be a Banach algebra. Then $A^{*} A \subseteq \varphi(\widetilde{S})$ if A is Arens regular. In particular, if A has a BAI, then A is Arens regular if and only if $A^{*} A=\varphi(\widetilde{S})$ and $\left(A^{* *}, *_{1}\right)$ is unital.

Proof. Assume A is Arens regular. Then $S=\operatorname{wap}(A)=A^{*}$. In this case, for all $f \in A^{*}$ and $a \in A,(a, f) \in \widetilde{S}$ and $f *_{1} a=\varphi(a, f) \in \varphi(\widetilde{S})$. Therefore, $A^{*} A \subseteq \varphi(\widetilde{S})$.

Now suppose that A has a BAI. Then $\left(A^{* *}, *_{1}\right)$ has a right identity E. Assume A is Arens regular. Then, by Proposition 4.4.2(2), $\varphi(\widetilde{S})=S \subseteq A^{*} A \subseteq \varphi(\widetilde{S})$, i.e., $A^{*} A=\varphi(\widetilde{S})$. In this case, E is also a left identity of $\left(A^{* *}, *_{1}\right)$. So, $\left(A^{* *}, *_{1}\right)$ is unital.

Conversely, assume $A^{*} A=\varphi(\widetilde{S})$ and $\left(A^{* *}, *_{1}\right)$ is unital. Then $A^{*}=A^{*} A$ (see Lau-Ülger [15, Proposition 2.2(a)]). Therefore, by Proposition 4.2.2(1), $A^{*}=A^{*} A=$ $\varphi(\widetilde{S}) \subseteq S$, i.e., A is Arens regular.

4.5. The second dual of a completely contractive Banach algebra

We start this section with the following two definitions, which are adopted from [11]. In Proposition 4.5.3, we consider the completely bounded norm of the adjoints of a bilinear map. We present a characterization of a completely contractive Banach algebra in Proposition 4.5.5.

Definition 4.5.1. Let A be an associative algebra over \mathbb{C}. We call A a completely contractive Banach algebra if A is a complete operator space and the multiplication is a completely contractive bilinear mapping, i.e., for all $m, n \in \mathbb{N}$ and for all $a=$ $\left[a_{i j}\right] \in M_{m}(A)$ and $b=\left[b_{k l}\right] \in M_{n}(A)$,

$$
\left\|\left[a_{i j} b_{k l}\right]\right\| \leq\|a\|\|b\| .
$$

Definition 4.5.2. Let A be a completely contractive Banach algebra and V an A-bimodule. Then V is called an operator A-bimodule if V is a complete operator space and the left and right A-module operations

$$
\rho_{l}: A \times V \rightarrow V, \quad(a, v) \mapsto a v
$$

and

$$
\rho_{r}: V \times A \rightarrow V, \quad(v, a) \mapsto v a
$$

are completely bounded.
Proposition 4.5.3. Let X, Y and Z be operator spaces and $m: X \times Y \rightarrow Z a$ bilinear map. Then $\left\|m^{*}\right\|_{c b} \leq\|m\|_{c b}$ and $\left\|m_{*}\right\| c b \leq\|m\|_{c b}$.

Proof. We only prove the inequality $\left\|m^{*}\right\|_{c b} \leq\|m\|_{c b}$. Recall that $m^{*}: Z^{*} \times X \rightarrow$ Y^{*} is defined by $\left\langle m^{*}(f, x), y\right\rangle=\langle f, m(x, y)\rangle$.

Let $n \in \mathbb{N}, f=\left[f_{i j}\right] \in M_{n}\left(Z^{*}\right)$ and $x=\left[x_{k l}\right] \in M_{n}(X)$. Then $\left(m^{*}\right)_{n}: M_{n}\left(Z^{*}\right) \times$ $M_{n}(X) \rightarrow M_{n^{2}}\left(Y^{*}\right)$ sends (f, x) to $\left[m^{*}\left(f_{i j}, x_{k l}\right)\right] \in M_{n^{2}}\left(Y^{*}\right) \cong C B\left(Y, M_{n^{2}}\right)$. So,

$$
\left\|\left(m^{*}\right)_{n}(f, x)\right\|=\left\|\left[m^{*}\left(f_{i j}, x_{k l}\right)\right]\right\|_{c b}=\left\|\left[m^{*}\left(f_{i j}, x_{k l}\right)\right]^{\left(n^{2}\right)}\right\|,
$$

where $\left[m^{*}\left(f_{i j}, x_{k l}\right)\right]^{\left(n^{2}\right)}$ is the n^{2}-th amplification of $\left[m^{*}\left(f_{i j}, x_{k l}\right)\right]$ which is treated as a map from Y to $M_{n^{2}}$.

We note that $f \in M_{n}\left(Z^{*}\right) \cong C B\left(Z, M_{n}\right)$ and hence $\|f\|_{c b}=\left\|f^{(n)}\right\|=\left\|f^{\left(n^{3}\right)}\right\|$. Also, we have $m_{n, n^{2}}: M_{n}(X) \times M_{n^{2}}(Y) \rightarrow M_{n^{3}}(Z)$. Now, for $y=\left[y_{s t}\right] \in M_{n^{2}}(Y)$, we have

$$
\begin{aligned}
\left\|\left[m^{*}\left(f_{i j}, x_{k l}\right)\right]^{\left(n^{2}\right)}(y)\right\|_{M_{n^{4}}} & =\left\|\left[\left\{m^{*}\left(f_{i j}, x_{k l}\right), y_{s t}\right)\right]\right\|_{M_{n^{4}}} \\
& =\left\|\left[\left\langle f_{i j}, m\left(x_{k l}, y_{s t}\right)\right\rangle\right]\right\|_{M_{n^{4}}} \\
& =\left\|f^{\left(n^{3}\right)}\left(\left[m\left(x_{k l}, y_{s t}\right)\right]\right)\right\|_{M_{n^{4}}} \\
& \leq\left\|f^{\left(n^{3}\right)}\right\|\left\|\left[m\left(x_{k l}, y_{s t}\right)\right]\right\|_{M_{n^{3}}(Z)} \\
& =\|f\|\left\|m_{n, n^{2}}(x, y)\right\| \\
& \leq\|f\|_{c b}\left\|m_{n, n^{2}}\right\|\|x\|\|y\| \\
& \leq\|m\|_{c b}\|x\|\|f\|\|y\|
\end{aligned}
$$

i.e.,

$$
\left\|\left[m^{*}\left(f_{i j}, x_{k l}\right)\right]^{\left(n^{2}\right)}\right\| \leq\|m\|_{c b}\|x\|\|f\|
$$

Therefore,

$$
\left\|\left(m^{*}\right)_{n}(f, x)\right\| \leq\|m\|_{c b}\|x\|\|f\|
$$

for all $n \in \mathbb{N}, f \in M_{n}\left(Z^{*}\right)$ and $x \in M_{n}(X)$. It follows that $\left\|m^{*}\right\|_{c b}=\sup _{n \in \mathbb{N}}\left\|\left(m^{*}\right)_{n}\right\| \leq$ $\|m\|_{c b}$.

COROLLARY 4.5.4. Let A be a completely contractive Banach algebra and V an operator A-bimodule. Then V^{*} is an operator A-bimodule under the natural A-module operations.

Proof. In Proposition 4.5.3, we let $X=A, Y=Z=V$, and $m=\rho_{l}: A \times V \rightarrow V$ the left A-module action. Then it is seen immediately that $m^{*}: V^{*} \times A \rightarrow V^{*}$ is the right A-module action which is completely bounded. Similarly, the left A module action on V^{*} is also completely bounded. Therefore, V^{*} is an operator A bimodule.

We note that if A is a completely contractive Banach algebra, i.e., A is a complete operator space and the multiplication

$$
\dot{m}: A \times A \rightarrow A, \quad(a, b) \mapsto a b
$$ is completely contractive, then A itself is an operator A-bimodule. By Proposition 4.5.3, $m^{*}, m_{*}, m^{* *}, m_{* *}, m^{* * *}$ and $m_{* * *}$ are all completely bounded with $c b$-norm bounded by $\|m\|_{c b}$.

Note that $m^{* * *}$ and $m_{* * *}$ are the first and the second Arens products, respectively, and $\left.m^{* * *}\right|_{A \times A}=\left.m_{* * *}\right|_{A \times A}=m$. So, combining with $\left\|m^{* * *}\right\|_{c b} \leq\|m\|_{c b}$ and $\left\|m_{* * *}\right\|_{c b} \leq\|m\|_{c b}$, we have $\left\|m^{* * *}\right\|_{c b}=\left\|m_{* * *}\right\|_{c b}=\|m\|_{c b}$. Therefore, we have the following proposition.

Proposition 4.5.5. Let A be a Banach algebra together with an operator space structure. Then A is a completely contractive Banach algebra if and only if $A^{* *}$ is a completely contractive Banach algebra under either of Arens products.

CHAPTER 5

Extended and normal projective tensor products

Inspired by the study of the second dual of a Banach algebra, in this chapter, we define and study the extended and normal projective tensor products, which are based on the projective tensor product and parallel to the extended and normal Haagerup tensor products.

5.1. Extended and normal projective tensor products

Given operator spaces V and W, let $V \stackrel{e \wedge}{\otimes} W$ denote the subspace of $\left(V^{*} \hat{\otimes} W^{*}\right)^{*}=$ $C B\left(V^{*} \hat{\otimes} W^{*}, \mathbb{C}\right) \cong C B\left(V^{*} \times W^{*}, \mathbb{C}\right)$ corresponding to $C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)$, which is called the extended projective tensor product of V and W. And we let the normal projective tensor product $V^{*} \stackrel{\sigma \wedge}{\otimes} W^{*}$ of dual operator spaces V^{*} and W^{*} be $(V \stackrel{e \wedge}{\otimes} W)^{*}$. That is

$$
V \stackrel{e \wedge}{\otimes} W \cong C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)
$$

and

$$
V^{*} \stackrel{\sigma \wedge}{\otimes} W^{*}=(V \stackrel{e \wedge}{\otimes} W)^{*}
$$

Proposition 5.1.1. Let V and W be operator spaces. Under the operator space identifications $C B\left(V^{*} \hat{\otimes} W^{*}, \mathbb{C}\right) \cong C B\left(V^{*} \times W^{*}, \mathbb{C}\right) \cong C B\left(V^{*}, W^{* *}\right)$, we have

$$
V \stackrel{e \wedge}{\otimes} W \cong C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right) \cong C B^{\sigma-w}\left(V^{*}, W\right)
$$

where $C B^{\sigma-w}\left(V^{*}, W\right)$ denotes the space of weak*-weakly continuous completely bounded linear maps from V^{*} to W.

Proof. Let $\Phi: C B\left(V^{*} \times W^{*}, \mathbb{C}\right) \rightarrow C B\left(V^{*}, W^{* *}\right)$ be the natural complete isometry. Then Φ is given by $\langle\Phi(T)(f), g\rangle=T(f, g)\left(T \in C B\left(V^{*} \times W^{*}, \mathbb{C}\right), f \in V^{*}\right.$ and $g \in$ W^{*}).

Let $T \in C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)$. We claim that $\Phi(T)(f) \in W$ for all $f \in V^{*}$. Indeed, whenever $g_{\alpha} \xrightarrow{w *} g$ in W^{*}, we have $\left\langle\Phi(T)(f), g_{\alpha}\right\rangle=T\left(f, g_{\alpha}\right) \rightarrow T(f, g)=\langle\Phi(T)(f), g\rangle$, i.e., $\Phi(T)(f): W^{*} \rightarrow \mathbb{C}$ is normal. Therefore, $\Phi(T)(f) \in W$.

Next, we show that $\Phi(T): V^{*} \rightarrow W$ is weak*-weakly continuous. Let $f_{\alpha} \xrightarrow{w *}$ f in V^{*}. For any $g \in W^{*},\left\langle\Phi(T)\left(f_{\alpha}\right), g\right\rangle=T\left(f_{\alpha}, g\right) \rightarrow T(f, g)$. So, $\Phi(T) \in$ $C B^{\sigma-w}\left(V^{*}, W\right)$. Therefore, $\left.\Phi\left(C B^{\sigma}\left(V^{*} \times W^{*}\right), \mathbb{C}\right)\right) \subseteq C B^{\sigma-w}\left(V^{*}, W\right)$.

Finally, we have $\left.\Phi\left(C B^{\sigma}\left(V^{*} \times W^{*}\right), \mathbb{C}\right)\right)=C B^{\sigma-w}\left(V^{*}, W\right)$. In fact, for any $\widetilde{T} \in$ $C B^{\sigma-w}\left(V^{*}, W\right)$, if we define $T(f, g)=\langle\widetilde{T}(f), g\rangle\left(f \in V^{*}\right.$ and $\left.g \in W^{*}\right)$, then $\Phi(T)=$ \tilde{T}. Clearly, $T \in C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)$.

Proposition 5.1.2. Let V, W, and X be operator spaces. If W is reflexive, then we have a natural completely isometric identification

$$
C B^{\sigma}\left(V^{*} \times W^{*}, X^{*}\right) \cong C B^{\sigma}\left(V^{*}, C B^{\sigma}\left(W^{*}, X^{*}\right)\right)
$$

PROOF. Since W is reflexive, $C B^{\sigma}\left(W^{*}, X^{*}\right)=C B^{\sigma}\left(W^{* * *}, X^{*}\right) \cong C B\left(W^{*}, X^{*}\right) \cong$ $\left(W^{*} \hat{\otimes} X\right)^{*}$. So, the space on the right hand side makes sense.

Let $\Phi: C B\left(V^{*} \times W^{*}, X^{*}\right) \rightarrow C B\left(V^{*}, C B\left(W^{*}, X^{*}\right)\right)$ be the natural complete isometry given by $\langle\Phi(T)(f)(g), x\rangle=\langle T(f, g), x\rangle\left(T \in C B\left(V^{*} \times W^{*}, X^{*}\right), f \in V^{*}\right.$ and $g \in$ $\left.W^{*}, x \in X\right)$.

Let $T \in C B^{\sigma}\left(V^{*} \times W^{*}, X^{*}\right)$. Apparently, for $f \in V^{*}, \Phi(T)(f) \in C B^{\sigma}\left(W^{*}, X^{*}\right)$. The surjectivity of $\left.\Phi\right|_{C B^{\sigma}\left(V^{*} \times W^{*}, X^{*}\right)}: C B^{\sigma}\left(V^{*} \times W^{*}, X^{*}\right) \rightarrow C B^{\sigma}\left(V^{*}, C B^{\sigma}\left(W^{*}, X^{*}\right)\right)$ can be proved in a similar way as used in Proposition 5.1.1. We only need to show $\Phi(T): V^{*} \rightarrow C B\left(W^{*}, X^{*}\right)=\left(W^{*} \hat{\otimes} X\right)^{*}$ is weak*-weak* continuous on a bounded ball.

Let $f_{\alpha} \xrightarrow{w *} f$ in $\operatorname{Ball}\left(V^{*}\right)$. For any elementary tensor $g \otimes x$ in $W^{*} \otimes X$,

$$
\left\langle\Phi(T)\left(f_{\alpha}\right), g \otimes x\right\rangle=\left\langle T\left(f_{\alpha}, g\right), x\right\rangle \rightarrow\langle T(f, g), x\rangle=\langle\Phi(T)(f), g \otimes x\rangle
$$

Therefore, we have $\Phi(T)\left(f_{\alpha}\right) \xrightarrow{w^{*}} \Phi(T)(f)$ in $\left(W^{*} \hat{\otimes} X\right)^{*}$. So, $\Phi(T) \in C B^{\sigma}\left(V^{*},\left(W^{*} \hat{\otimes}\right.\right.$ $\left.X)^{*}\right)=C B^{\sigma}\left(V^{*}, C B^{\sigma}\left(W^{*}, X^{*}\right)\right)$.

So, under the assumption that W is reflexive, we have

$$
\begin{aligned}
C B^{\sigma}\left(V^{* *} \times W^{* *}, X^{*}\right) & \cong C B^{\sigma}\left(V^{* *}, C B\left(W^{* *}, X^{*}\right)\right) \cong C B\left(V, C B\left(W^{* *}, X^{*}\right)\right) \\
& \cong C B\left(V \times W^{* *}, X^{*}\right)=C B\left(V \times W, X^{*}\right)
\end{aligned}
$$

This is parallel to Proposition 3.2.2. From here, we may define some kind of tensor product to linearize the normal completely bounded bilinear maps.

When the above X is \mathbb{C}, the first space in the identification sequence is exactly $V^{*} \hat{\otimes} W^{*}$ we defined before and the last space is $(V \hat{\otimes} W)^{*}$. So, if W is reflexive, then the extended projective tensor product is the dual of projective tensor product.

Lemma 5.1.3. The algebraic tensor product $V^{*} \otimes W^{*}$ is weak*-dense in $V^{*} \otimes \hat{\otimes} W^{*}$.

Proof. First we observe that for $v \in V$ and $w \in W, \widetilde{v \otimes w} \in C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)$, where $\widetilde{v \otimes w}(f, g)=f(v) g(w)\left(f \in V^{*}\right.$ and $\left.g \in W^{*}\right)$. Obviously, $\widetilde{v \otimes w}: V^{*} \times W^{*} \rightarrow$ \mathbb{C} is separately weak*-continuous.

For $f=\left[f_{i j}\right] \in M_{n}\left(V^{*}\right)$ and $g=\left[g_{k l}\right] \in M_{n}\left(W^{*}\right)$, we have

$$
\begin{aligned}
\left\|(\widetilde{v \otimes w})_{n}(f, g)\right\|_{M_{n^{2}}} & =\left\|\left[f_{i j}(v) g_{k l}(w)\right]\right\|_{M_{n^{2}}}=\left\|\left[f_{i j}(v)\right] \otimes\left[g_{k l}(w)\right]\right\|_{M_{n^{2}}} \\
& =\left\|\left[f_{i j}(v)\right]\right\|_{M_{n}}\left\|\left[g_{k l}(w)\right]\right\|_{M_{n}}=\|f(v)\|\|g(w)\| \\
& \leq\|f\|\|g\|\|v\|\|w\| .
\end{aligned}
$$

So, for all $n \in \mathbb{N},\left\|(\widetilde{v \otimes w})_{n}\right\| \leq\|v\|\|w\|$, and hence $\|\widetilde{v \otimes w}\|_{c b} \leq\|v\|\|w\|$. That is to say, $\widetilde{v \otimes w}$ is completely bounded.

Next, we define a natural linear injection $V^{*} \otimes W^{*} \hookrightarrow\left(C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)^{*}$. For an elementary tensor $f \otimes g \in V^{*} \otimes W^{*}$, let

$$
\Phi(f \otimes g)(T)=T(f, g)\left(T \in C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)
$$

Then $|\Phi(f \otimes g)(T)|=|T(f, g)| \leq\|T\|\|f\|\|g\| \leq\|f\|\|g\|\|T\|_{c b}$ for all $T \in C B^{\sigma}\left(V^{*} \times\right.$ $\left.W^{*}, \mathbb{C}\right)$, i.e., $\Phi(f \otimes g) \in\left(C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)^{*}$. We then extend Φ to a linear map $V^{*} \otimes W^{*} \rightarrow\left(C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)^{*}$, which is still denoted by Φ.

Claim. $\Phi: V^{*} \otimes W^{*} \hookrightarrow\left(C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)^{*}$ is injective. Suppose $f_{i} \in V^{*}$ and $g_{i} \in W^{*}$ such that $\Phi\left(\sum_{i=1}^{n} f_{i} \otimes g_{i}\right)=0$. We may assume that f_{1}, \cdots, f_{n} are linearly independent. Let $w \in W$ be fixed. Then for all $\left.v \in V, \Phi\left(\sum_{i=1}^{n} f_{i} \otimes g_{i}\right) \widetilde{(v \otimes w}\right)=$ $\sum_{i=1}^{n} f_{i}(v) g_{i}(w)=0$, i.e., $\sum_{i=1}^{n} g_{i}(w) f_{i}=0$. Since f_{1}, \cdots, f_{n} are linearly independent, $g_{i}(w)=0(i=1, \cdots, n)$. Since $w \in W$ is arbitrary, we have $g_{i}=0(i=1, \cdots, n)$. Therefore, $\sum_{i=1}^{n} f_{i} \otimes g_{i}=0$.

We want to point out here that, by the same arguments, one can see that the map $v \otimes w \rightarrow C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right), v \otimes w \mapsto \widetilde{v \otimes w}$, is also injective.

For the weak*-density, we note that $\overline{V^{*} \otimes W^{*}}{ }^{* *}=\left[{ }^{\perp}\left(V^{*} \otimes W^{*}\right)\right]^{\perp}$, where ${ }^{\perp}\left(V^{*} \otimes\right.$ $\left.W^{*}\right)=\left\{T \in C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right): \Phi(f, g)(T)=0\right.$ for all $f \in V^{*}$ and $\left.g \in W^{*}\right\}$. So, $V^{*} \otimes W^{*}$ is weak*-dense in $V^{*} \stackrel{\sigma \wedge}{\otimes} W^{*}$ if and only if ${ }^{\perp}\left(V^{*} \otimes W^{*}\right)=\{0\}$. But that is true by the definition of Φ.

For operator spaces V and W, let $V^{* *} \bar{\otimes} W^{* *}$ be the abstract normal spatial tensor product of $V^{* *}$ and $W^{* *}$, i.e., the weak* closure of the algebraic tensor product $V^{* *} \otimes W^{* *}$ in $\left(V^{*} \hat{\otimes} W^{*}\right)^{*}$. We call (V, W) a bi-normal pair if $V^{* *} \bar{\otimes} W^{* *}=$ $\left(V^{*} \hat{\otimes} W^{*}\right)^{*}$.

For example, if $V^{* *}$ and $W^{* *}$ are both von Neumann algebras, then (V, W) is a bi-normal pair (cf. [11, Theorem 7.2.4]). In particular, for all C^{*}-algebras A and B, (A, B) is a bi-normal pair.

It is not clear for us whether there are bi-normal pairs (V, W) such that $V^{* *}$ and $W^{* *}$ are not von Neumann algebras.

Proposition 5.1.4. Let V and W be a bi-normal pair of operator spaces. Then the algebraic tensor product $V \otimes$ Wis weak ${ }^{*}$-dense in $C B\left(V^{*} \times W^{*}, \mathbb{C}\right)$, and hence $C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)$ is weak*-dense in $C B\left(V^{*} \times W^{*}, \mathbb{C}\right)$. Therefore, for all $n \in \mathbb{N}$, $M_{n}\left(C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)$ is weak*-dense in $M_{n}\left(C B\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)$.

Proof. As pointed out in the proof of Lemma 5.1.3, we know that the linear $\operatorname{map} v \otimes w \mapsto \widetilde{v \otimes w}, V \otimes W \rightarrow C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right) \subseteq C B\left(V^{*} \times W^{*}, \mathbb{C}\right) \cong\left(V^{*} \hat{\otimes} W^{*}\right)^{*}$ is injective, and hence it suffices to show the weak*-density.

Note that

$$
V \otimes W \subseteq V^{* *} \otimes W^{* *} \subseteq V^{* *} \bar{\otimes} W^{* *} \subseteq\left(V^{*} \hat{\otimes} W^{*}\right)^{*}
$$

Since $V_{\|\cdot\| \leq 1}\left(\right.$ resp. $\left.W_{\|\cdot\| \leq 1}\right)$ is weak ${ }^{*}$-dense in $V_{\|\cdot\| \leq 1}^{* *}\left(\right.$ resp. $\left.W_{\|\cdot\| \leq 1}^{* *}\right), V \otimes W$ is weak*dense in $V^{* *} \bar{\otimes} W^{* *}$. By the assumption, $V^{* *} \bar{\otimes} W^{* *}=\left(V^{*} \hat{\otimes} W^{*}\right)^{*}$. It follows that $V \otimes W$ is weak*-dense in $\left(V^{*} \hat{\otimes} W^{*}\right)^{*}$. Consequently, $(V \otimes W \subseteq) C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)$ is weak*-dense in $C B\left(V^{*} \times W^{*}, \mathbb{C}\right)$.

To consider the weak*-density at level n, let $f \in\left[f_{i j}\right] \in M_{n}\left(C B\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)$. For each (i, j), there exists a net $\left(f_{\alpha_{i j}}\right)_{\alpha_{i j} \in A_{i j}}$ in $C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)$ such that $f_{\alpha_{i j}} \xrightarrow{w *} f_{i j}$ in $\left(V^{*} \hat{\otimes} W^{*}\right)^{*}$. Let $A=\prod_{1 \leq i, j \leq n} A_{i j}$ and order A by $\beta \succ \alpha$ if and only if $\beta_{i j} \succ \alpha_{i j}$ for all $1 \leq i, j \leq n$. For each $\alpha=\left(\alpha_{i j}\right) \in A$, let $f_{\alpha}=\left[f_{\alpha_{i j}}\right]$. Then $f_{\alpha} \in M_{n}\left(C B^{\sigma}\left(V^{*} \times\right.\right.$ $\left.W^{*}, \mathbb{C}\right)$. We claim that $f_{\alpha} \xrightarrow{w^{*}} f$ in $M_{n}\left(\left(V^{*} \hat{\otimes} W^{*}\right)^{*}\right) \cong\left(T_{n}\left(V^{*} \hat{\otimes} W^{*}\right)\right)^{*}$.

Note that the duality between $M_{n}\left(\left(V^{*} \hat{\otimes} W^{*}\right)^{*}\right)$ and $T_{n}\left(V^{*} \hat{\otimes} W^{*}\right)$ is given by

$$
\langle f, x\rangle=\sum_{1 \leq i, j \leq n} f_{i j}\left(x_{i j}\right)
$$

for $f=\left[f_{i j}\right] \in M_{n}\left(\left(V^{*} \hat{\otimes} W^{*}\right)^{*}\right)$ and $x=\left[x_{i j}\right] \in T_{n}\left(V^{*} \hat{\otimes} W^{*}\right)$. Now for all $x=\left[x_{i j}\right] \in T_{n}\left(V^{*} \hat{\otimes} W^{*}\right)$, we have

$$
\left\langle f_{\alpha}-f, x\right\rangle=\sum_{1 \leq i, j \leq n}\left\langle f_{\alpha_{i j}}-f_{i j}, x_{i j}\right\rangle \rightarrow 0 .
$$

Therefore, $f_{\alpha} \xrightarrow{w *} f$ in $M_{n}\left(\left(V^{*} \hat{\otimes} W^{*}\right)^{*}\right)$.
Lemma 5.1.5. Let V_{1}, V_{2} and W be operator spaces, $\varphi: V_{1} \times V_{2} \rightarrow W$ a bilinear map and $\psi: W \rightarrow X$ a linear map. Then

$$
\|\psi \circ \varphi\|_{c b} \leq\|\psi\|_{c b}\|\varphi\|_{c b}
$$

and

$$
\|\psi \circ \varphi\|_{m b} \leq\|\psi\|_{c b}\|\varphi\|_{m b} .
$$

Proof. For $v_{1}=\left[v_{i j}^{1}\right] \in M_{n}\left(V_{1}\right)$ and $v_{2}=\left[v_{k l}^{2}\right] \in M_{n}\left(V_{2}\right)$, we have

$$
\begin{aligned}
\left\|(\psi \circ \varphi)_{n}\left(v_{1}, v_{2}\right)\right\|_{M_{n^{2}}(X)} & =\left\|\left[\psi \circ \varphi\left(v_{i j}^{1}, v_{k l}^{2}\right)\right]\right\|_{M_{n^{2}}(X)} \\
& =\left\|\left[\psi\left(\varphi\left(v_{i j}^{1}, v_{k l}^{2}\right)\right)\right]\right\|_{M_{n^{2}}(X)} \\
& =\left\|\psi^{\left(n^{2}\right)}\left(\left[\varphi\left(v_{i j}^{1}, v_{k l}^{2}\right)\right]\right)\right\|_{M_{n^{2}}(X)} \\
& \leq\left\|\psi^{\left(n^{2}\right)}\right\|\left\|\left[\varphi\left(v_{i j}^{1}, v_{k l}^{2}\right)\right]\right\|_{M_{n^{2}}(W)} \\
& =\|\psi\|_{c b}\left\|\varphi_{n}\left(v_{1}, v_{2}\right)\right\|_{M_{n^{2}}(W)} \\
& \leq\|\psi\|_{c c}\left\|\varphi_{n}\right\|\left\|v_{1}\right\|\left\|v_{2}\right\| \\
& \leq\|\psi\|_{c b}\|\varphi\|_{c b}\left\|v_{1}\right\|\left\|v_{2}\right\| .
\end{aligned}
$$

Therefore, $\|\psi \circ \varphi\|_{c b}=\sup _{n \in \mathbb{N}}\left\|(\psi \circ \varphi)_{n}\right\| \leq\|\psi\|_{c b}\|\varphi\|_{c b}$.
For the second inequality, we get now

$$
\begin{aligned}
\left\|(\psi \circ \varphi)^{n}\left(v_{1}, v_{2}\right)\right\|_{M_{n}(X)} & =\left\|\left[\sum_{k=1}^{n} \psi \circ \varphi\left(v_{i k}^{1}, v_{k j}^{2}\right)\right]\right\|_{M_{n}(X)} \\
& =\left\|\left[\psi\left(\sum_{k=1}^{n} \varphi\left(v_{i k}^{1}, v_{k j}^{2}\right)\right)\right]\right\|_{M_{n}(X)} \\
& =\left\|\psi^{(n)}\left(\left[\sum_{k=1}^{n} \varphi\left(v_{i k}^{1}, v_{k j}^{2}\right)\right]\right)\right\|_{M_{n}(X)} \\
& \leq\left\|\psi^{(n)}\right\|\left\|\left[\sum_{k=1}^{n} \varphi\left(v_{i k}^{1}, v_{k j}^{2}\right)\right]\right\|_{M_{n}(W)} \\
& =\left\|\psi^{(n)}\right\|\left\|\varphi^{n}\left(v_{1}, v_{2}\right)\right\|_{M_{n}(W)} \\
& \leq\|\psi\|_{c b}\left\|\varphi^{n}\right\|\left\|v_{1}\right\|\left\|v_{2}\right\| \\
& \leq\|\psi\|_{c b}\|\varphi\|_{m b}\left\|v_{1}\right\|\left\|v_{2}\right\|
\end{aligned}
$$

Therefore, $\|\psi \circ \varphi\|_{m b}=\sup _{n \in \mathbb{N}}\left\|(\psi \circ \varphi)^{n}\right\| \leq\|\psi\|_{c b}\|\varphi\|_{m b}$.

Definition 5.1.6. Let V and W be operator spaces. We say that (V, W) satisfies condition $\left(^{*}\right)$ if the unit ball of $C B^{\sigma}\left(V^{*} \times W^{*}, M_{n}\right)$ is weak*-dense in the unit ball of $C B\left(V^{*} \times W^{*}, M_{n}\right)\left(=\left(T_{n}\left(V^{*} \hat{\otimes} W^{*}\right)\right)^{*}\right)$ for all $n \in \mathbb{N}$.

It is not clear for us whether a bi-normal pair (V, W) automatically satisfies condition $\left(^{*}\right.$) (cf. Proposition 5.1.4). However, it is the case at least for the following bi-normal pairs.

According to Kaplansky Density Theorem, if \mathcal{A} is a weak*-dense *-subalgebra of a von Neumann algebra \mathcal{M}, then the unit ball of \mathcal{A} is weak*-dense in the unit ball of \mathcal{M}. Suppose V and W are *-algebras such that $V^{* *}$ and $W^{* *}$ are von Neumann algebras (e.g., it is the case when V and W are both C^{*} algebras). Then $C B\left(V^{*} \times\right.$ $\left.W^{*}, \mathbb{C}\right)=\left(V^{*} \hat{\otimes} W^{*}\right)^{*}=V^{* *} \bar{\otimes} W^{* *}$ is also a von Neumann algebra, and hence $M_{n}\left(C B\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)$ is a von Neumann algebra for each $n \in \mathbb{N}$. The algebraic tensor product $V \otimes W$ with the multiplication

$$
\left(\sum_{i} a_{i} \otimes b_{i}\right)\left(\sum_{j} c_{j} \otimes d_{j}\right)=\sum_{i, j} a_{i} c_{j} \otimes b_{i} d_{j}
$$

and the involution

$$
\left(\sum_{k} a_{k} \otimes b_{k}\right)^{*}=\sum_{k} a_{k}^{*} \otimes b_{k}^{*}
$$

is a weak*-dense $*$-subalgebra of $V^{* *} \bar{\otimes} W^{* *}$. The same is true for $M_{n}(V \otimes W)$ in $M_{n}\left(V^{* *} \bar{\otimes} W^{* *}\right)$.

So, applying Kaplansky Density Theorem shows that condition $\left({ }^{*}\right)$ is satisfied in this case.

Proposition 5.1.7. Let V and W be a pair of operator spaces satisfying condition (*). Then the linear injection

$$
\Phi: V^{*} \otimes_{\wedge} W^{*} \rightarrow\left(C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)^{*}
$$

considered in the proof of Lemma 5.1.3 is a completely isometric embedding. Therefore, we have a completely isometric embedding

$$
V^{*} \hat{\otimes} W^{*} \hookrightarrow V^{*} \stackrel{\sigma}{\otimes} W^{*}
$$

Proof. We already have the completely isometric embedding

$$
\Psi: V^{*} \hat{\otimes} W^{*} \hookrightarrow\left(V^{*} \hat{\otimes} W^{*}\right)^{* *} \cong\left(C B\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)^{*}
$$

given by $\Psi\left(\sum_{i=1}^{n} f_{i} \otimes g_{i}\right)(T)=\sum_{i=1}^{n} T\left(f_{i}, g_{i}\right)$ for all $f_{i} \in V^{*}, g_{i} \in W^{*}$, and $T \in$ $C B\left(V^{*} \times W^{*}, \mathbb{C}\right)$.

Let $i: C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right) \rightarrow C B\left(V^{*} \times W^{*}, \mathbb{C}\right)$ be the inclusion map and let $p=i^{*}$. Then $p:\left(C B\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)^{*} \rightarrow\left(C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)^{*}$ is completely bounded with $\|p\|_{c b}=\|i\|_{c b}=1$. We observe that $\Phi=p \circ \Psi$ and hence Φ is a complete contraction. To finish the proof, we only need to show that for all $n \in \mathbb{N}$ and $u \in M_{n}\left(V^{*} \otimes W^{*}\right)$, we have $\left\|\Phi^{(n)}(u)\right\| \geq\|u\|_{\wedge}$.

Let $n \in \mathbb{N}$ and $u=\left[u_{i j}\right] \in M_{n}\left(V^{*} \otimes_{\wedge} W^{*}\right) \subseteq M_{n}\left(\left(V^{*} \hat{\otimes} W^{*}\right)^{* *}\right)$, which is identified with $C B\left(C B\left(V^{*} \times W^{*}, \mathbb{C}\right), M_{n}\right)$. Then

$$
\|u\|_{\wedge}=\|u\|_{c b}=\left\|u^{(n)}\right\|
$$

where u is considered as a linear map from $C B\left(V^{*} \times W^{*}, \mathbb{C}\right)$ to M_{n} and hence $u^{(n)}$: $C B\left(V^{*} \times W^{*}, M_{n}\right) \rightarrow M_{n^{2}}$. Now

$$
\Phi: V^{*} \otimes_{\wedge} W^{*} \rightarrow\left(C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)^{*}
$$

and

$$
\Phi^{(n)}: M_{n}\left(V^{*} \otimes_{\wedge} W^{*}\right) \rightarrow M_{n}\left(\left(C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)\right)^{*}\right) \cong C B\left(C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right), M_{n}\right) .
$$

Thus,

$$
\Phi^{(n)}(u): C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right) \rightarrow M_{n}
$$

and

$$
\left\|\Phi^{(n)}(u)\right\|=\left\|\Phi^{(n)}(u)\right\|_{c b}=\left\|\left(\Phi^{(n)}(u)\right)^{(n)}\right\|
$$

where $\left(\Phi^{(n)}(u)\right)^{(n)}: C B^{\sigma}\left(V^{*} \times W^{*}, M_{n}\right) \rightarrow M_{n^{2}}$. Therefore, to get the inequality $\left\|\Phi^{(n)}(u)\right\| \geq\|u\|_{\wedge}$, we only have to prove that $\left\|\left(\Phi^{(n)}(u)\right)^{(n)}\right\| \geq\left\|u^{(n)}\right\|$. We observe that for $T \in C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right),\left(\Phi^{(n)}(u)\right)^{(n)}(T)=u^{(n)}(T)$, or $\left(\Phi^{(n)}(u)\right)^{(n)}$ is really the restriction of $u^{(n)}$ to $C B^{\sigma}\left(V^{*} \times W^{*}, M_{n}\right)$. We also note that $C B\left(V^{*} \times W^{*}, M_{n}\right) \cong$ $M_{n}\left(\left(V^{*} \hat{\otimes} W^{*}\right)^{*}\right) \cong\left(T_{n}\left(V^{*} \hat{\otimes} W^{*}\right)\right)^{*}$ and $M_{n^{2}} \cong\left(T_{n^{2}}\right)^{*}$. It can be seen that now

$$
u^{(n)}:\left(T_{n}\left(V^{*} \hat{\otimes} W^{*}\right)\right)^{*} \rightarrow\left(T_{n^{2}}\right)^{*}
$$

is weak*-weak* continuous. Therefore, it suffices to show that the unit ball of $C B^{\sigma}\left(V^{*} \times W^{*}, M_{n}\right)$ is weak*-dense in the unit ball of $C B\left(V^{*} \times W^{*}, M_{n}\right)$. By the assumption of condition $\left({ }^{*}\right)$, the statement follows.

By the definitions of $\stackrel{e \wedge}{\otimes}$ and $\stackrel{\sigma \wedge}{\otimes}$, the following operator space identification are immediate:

$$
C B^{\sigma}\left(V^{*} \stackrel{\sigma \wedge}{\otimes} W^{*}, \mathbb{C}\right)=\left(\left(V^{e \wedge} \otimes\right)^{* *}\right)_{\sigma} \cong V^{e \wedge} \otimes \otimes W \cong C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)
$$

We show below that the above \mathbb{C} can be replaced by W^{*} if (V, W) satisfies condition (*).

Proposition 5.1.8. Let V_{1}, V_{2} and W be operator spaces such that $\left(V_{1}, V_{2}\right)$ satisfies condition $\left(^{*}\right)$. Then we have completely isometric identification

$$
C B^{\sigma}\left(V_{1}^{*} \stackrel{\sigma}{\otimes} V_{2}^{*}, W^{*}\right) \cong C B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, W^{*}\right)
$$

Proof. Let $\varphi \in C B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, W^{*}\right)$ and $w \in W \subseteq W^{* *}$. Then $w \circ \varphi: V_{1}^{*} \times V_{2}^{*} \rightarrow \mathbb{C}$ is separately weak*-continuous and jointly completely bounded with $\|w \circ \varphi\|_{c b} \leq$ $\|w\|_{c b}\|\varphi\|_{c b}=\|w\|\|\varphi\|_{c b}$ (by Lemma 5.1.5). So, $w \circ \varphi$ is in $V_{1} \stackrel{e \wedge}{\otimes} V_{2}$.

Now we define a linear map

$$
\varphi_{*}: W \rightarrow V_{1} \stackrel{e \wedge}{\otimes} V_{2}, \quad w \mapsto w \circ \varphi .
$$

Then $\left\|\varphi_{*}\right\|_{c b} \leq\|\varphi\|_{c b}$. To see this, let $w=\left[w_{i j}\right] \in M_{n}(W)$. Then $\left[w_{i j} \circ \varphi\right] \in$ $M_{n}\left(V_{1} \stackrel{e \wedge}{\otimes} V_{2}\right) \subseteq M_{n}\left(C B\left(V_{1}^{*} \times V_{2}^{*}, \mathbb{C}\right)\right) \cong C B\left(V_{1}^{*} \times V_{2}^{*}, M_{n}\right)$. Note that $w \in M_{n}(W) \subseteq$ $M_{n}\left(W^{* *}\right) \cong C B\left(W^{*}, M_{n}\right)$. So,

$$
\left(\varphi_{*}\right)^{(n)}(w)=\left[w_{i j} \circ \varphi\right]_{M_{n}\left(V_{1} \stackrel{\ell}{\otimes} V_{2}\right)}=w \circ \varphi,
$$

where w is treated as a map from W^{*} to M_{n}. Therefore, by Lemma 5.1.5,

$$
\left\|\left(\varphi_{*}\right)^{(n)}(w)\right\|=\left\|\left[w_{i j} \circ \varphi\right]\right\|_{M_{n}\left(V_{1} \hat{\otimes} V_{2}\right)}=\|w \circ \varphi\|_{c b} \leq\|w\|_{c b}\|\varphi\|_{c b} .
$$

It follows that $\left\|\varphi_{*}\right\|_{c b}=\sup _{n \in \mathbb{N}}\left\|\left(\varphi_{*}\right)^{(n)}\right\| \leq\|\varphi\|_{c b}$. Hence

$$
\left\|\left(\varphi_{*}\right)^{*}\right\|_{c b b}=\left\|\varphi_{*}\right\|_{c b} \leq\|\varphi\|_{c b} .
$$

Let $\bar{\varphi}=\left(\varphi_{*}\right)^{*}$. Then $\bar{\varphi}:\left(V_{1} \stackrel{e \wedge}{\otimes} V_{2}\right)^{*}=V_{1}^{*}{ }^{\sigma} \hat{\otimes} V_{2}^{*} \rightarrow W^{*}$ is weak*-weak* continuous and completely bounded, i.e., $\bar{\varphi} \in C B^{\sigma}\left(V_{1}^{*} \stackrel{\sigma}{\otimes} V_{2}^{*}, W^{*}\right)$, and $\|\bar{\varphi}\|_{c b}=\left\|\varphi_{*}\right\|_{c b} \leq\|\varphi\|_{c b}$.

For all $f_{1} \in V_{1}^{*}, f_{2} \in V_{2}^{*}$ and $w \in W$,

$$
\begin{aligned}
\bar{\varphi}\left(f_{1} \otimes f_{2}\right)(w) & =\left(f_{1} \otimes f_{2}\right)\left(\varphi_{*}(w)\right)=\left(f_{1} \otimes f_{2}\right)(w \circ \varphi) \\
& =(w \circ \varphi)\left(f_{1}, f_{2}\right)=\varphi\left(f_{1}, f_{2}\right)(w) .
\end{aligned}
$$

So, $\bar{\varphi}$ is an extension of the linearization $\tilde{\varphi}$ of φ. Note that $\|\tilde{\varphi}\|_{C B\left(V_{1}^{*} \hat{\otimes}_{2}^{*}, W^{*}\right)}=\|\varphi\|_{c b}$ and

$$
V_{1}^{*} \hat{\otimes} V_{2}^{*} \hookrightarrow\left(C B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, \mathbb{C}\right)\right)^{*} \cong V_{1}^{*}{ }_{\otimes}^{\sigma} \hat{\otimes} V_{2}^{*}
$$

is a completely isometric embedding (Proposition 5.1.7). Thus, we have

$$
\|\bar{\varphi}\|_{c b} \geq\|\tilde{\varphi}\|_{C B\left(V_{1}+\hat{\otimes}_{2}^{*}, W^{*}\right)}=\|\varphi\|_{c b} .
$$

Therefore, $\|\bar{\varphi}\|_{c b}=\|\varphi\|_{c b}$. So far, we have the completely isometric embedding

$$
C B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, W^{*}\right) \hookrightarrow C B^{\sigma}\left(V_{1}^{*} \stackrel{\sigma}{\otimes} V_{2}^{*}, W^{*}\right), \quad \varphi \mapsto \bar{\varphi}
$$

In fact, it is onto.
To show this, let $S \in C B^{\sigma}\left(V_{1}^{*} \otimes \hat{\otimes} V_{2}^{*}, W^{*}\right)$ and $S^{\prime}: V_{1}^{*} \times V_{2}^{*} \rightarrow W^{*}$ be the completely bounded bilinear map corresponding to $\left.S\right|_{V_{1}^{*} \hat{\otimes} V_{2}^{*}}: V_{1}^{*} \hat{\otimes} V_{2}^{*} \rightarrow W^{*}$ (cf. Proposition 5.1.7). Then $S^{\prime}: V_{1}^{*} \times V_{2}^{*} \rightarrow W^{*}$ is separately weak*-weak* continuous.

Indeed, let $f_{\alpha} \xrightarrow{w^{*}} f$ in V_{1}^{*} and $g \in V_{2}^{*}$. Then $f_{\alpha} \otimes g \xrightarrow{w^{*}} f \otimes g$ in $\left(C B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, \mathbb{C}\right)\right)^{*}$ under the embedding $V_{1}^{*} \otimes V_{2}^{*} \hookrightarrow\left(C B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, \mathbb{C}\right)\right)^{*}$. Thus,

$$
S\left(f_{\alpha} \otimes g\right) \xrightarrow{w^{*}} S(f \otimes g), \quad \text { i.e., } S^{\prime}\left(f_{\alpha}, g\right) \xrightarrow{w^{*}} S(f, g) .
$$

Similarly, if $f \in V_{1}^{*}$ and $g_{\alpha} \xrightarrow{w^{*}} g$ in V_{2}^{*}, then $S^{\prime}\left(f, g_{\alpha}\right) \xrightarrow{w^{*}} S(f, g)$. Therefore, $S^{\prime} \in$ $C B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, \mathbb{C}\right)$. By the definition of $\overline{S^{\prime}}$, we have $\overline{S^{\prime}}(f \otimes g)=S(f \otimes g)$ for all $f \in V_{1}^{*}$ and $g \in V_{2}^{*}$. Due to the weak*-weak* continuity of S and $\overline{S^{\prime}}$ and the weak*-density of $V_{1}^{*} \otimes V_{2}^{*}$ in $V_{1}^{*} \stackrel{\sigma}{\otimes} V_{2}^{*}$ (cf. Lemma 5:1.3), we have $S=\overline{S^{\prime}}$.

Therefore, we have the completely isometric identification

$$
C B^{\sigma}\left(V_{1}^{*} \times V_{2}^{*}, W^{*}\right) \cong C B^{\sigma}\left(V_{1}^{*} \hat{\otimes} V_{2}^{*}, W^{*}\right)
$$

Let $\varphi_{1}: V_{1} \rightarrow W_{1}$ and $\varphi_{2}: V_{2} \rightarrow W_{2}$ be completely bounded maps. Then the completely bounded map

$$
\left(\varphi_{1}^{*} \hat{\otimes} \varphi_{2}^{*}\right)^{*}:\left(V_{1}^{*} \hat{\otimes} V_{2}^{*}\right)^{*} \rightarrow\left(W_{1}^{*} \hat{\otimes} W_{2}^{*}\right)^{*}
$$

sends $V_{1} \stackrel{e \wedge}{\otimes} V_{2}$ to $W_{1} \stackrel{e}{\otimes} W_{2}$ since φ_{1}^{*} and φ_{2}^{*} are weak*-weak* continuous. Note that $\left(\varphi_{1}^{*} \hat{\otimes} \varphi_{2}^{*}\right)^{*}$ is the unique weak*-weak* continuous extension of the algebraic tensor product $\varphi_{1} \otimes \varphi_{2}: V_{1} \otimes V_{2} \rightarrow W_{1} \otimes W_{2}$, where the algebraic tensor product $X \otimes Y$ is embedded into $X \stackrel{e \wedge}{\otimes} Y$ via $x \otimes y \mapsto \widetilde{x \otimes y}$ (see proof of Proposition 5.1.4). We let $\varphi_{1} \stackrel{e \wedge}{\otimes} \varphi_{2}$ denote the restriction of $\left(\varphi_{1}^{*} \hat{\otimes} \varphi_{2}^{*}\right)^{*}$ to $V_{1} \stackrel{e \wedge}{\otimes} V_{2}$. We show that the injectivity of $\stackrel{e \wedge}{\otimes}$ in the following

Proposition 5.1.9. Let V_{1}, V_{2}, W_{1} and W_{2} be operator spaces. If $\varphi_{i}: V_{i} \rightarrow W_{i}$ is completely isometric (resp. contractive) $(i=1,2)$, then so is $\varphi_{1} \stackrel{\varepsilon \wedge}{\otimes} \varphi_{2}: V_{1} \stackrel{e \wedge}{\otimes} V_{2} \rightarrow$ $W_{1} \stackrel{e \wedge}{\otimes} W_{2}$.

Proof. Since φ_{1} and φ_{2} are completely isometric, φ_{1}^{*} and φ_{2}^{*} are complete quotient maps, and then $\varphi_{1}^{*} \hat{\otimes} \varphi_{2}^{*}: W_{1}^{*} \hat{\otimes} W_{2}^{*} \rightarrow V_{1}^{*} \hat{\otimes} V_{2}^{*}$ is a complete quotient map.

Therefore,

$$
\left(\varphi_{1}^{*} \hat{\otimes} \varphi_{2}^{*}\right)^{*}:\left(V_{1}^{*} \hat{\otimes} V_{2}^{*}\right)^{*} \cong C B\left(V_{1}^{*} \times V_{2}^{*}, \mathbb{C}\right) \rightarrow\left(W_{1}^{*} \hat{\otimes} W_{2}^{*}\right)^{*} \cong C B\left(W_{1} \times W_{2}, \mathbb{C}\right)
$$

is a complete isometry. It follows that as a restriction of $\left(\varphi_{1}^{*} \hat{\otimes} \varphi_{2}^{*}\right)^{*}$,

$$
\varphi_{1} \stackrel{e \wedge}{\otimes} \varphi_{2}: V_{1} \stackrel{e \wedge}{\otimes} V_{2} \rightarrow W_{1} \stackrel{e \wedge}{\otimes} W_{2}
$$

is a complete isometry.
The case for complete contractions follows from the corresponding property of the projective tensor product and the fact that the completely bounded norm of a linear map is the same as the completely bounded norm of its adjoint.

5.2. Comparison with other operator space tensor products

In this section, we compare the extended projective tensor product with some other existing tensor products.
5.2.1. $\stackrel{e \wedge}{\otimes}$ and the injective tensor product. Let V and W be operator spaces. Then $V \stackrel{\vee}{\otimes} W$ is the norm closure of the algebraic tensor product $V \otimes W$ in $\left(V^{*} \hat{\otimes} W^{*}\right)^{*}$.

By definition, $V \stackrel{e \wedge}{\otimes} W=C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)$ is a closed subspace of $\left(V^{*} \hat{\otimes} W^{*}\right)^{*}$. Also, $V \otimes W \subseteq C B^{\sigma}\left(V^{*} \times W^{*}, \mathbb{C}\right)$ (see the proof of Lemma 5.1.2). Therefore, we have the completely isometric embedding

$$
V \stackrel{\vee}{\otimes} W \subseteq V \stackrel{e \wedge}{\otimes} W
$$

5.2.2. $\stackrel{e \wedge}{\otimes}$ and the normal spatial tensor product. Recall that for dual operator spaces V^{*} and W^{*},

$$
V^{*} \bar{\otimes} W^{*}={\overline{V^{*} \otimes W^{*}}}^{\omega *} \subseteq(V \hat{\otimes} W)^{*}=C B\left(V, W^{*}\right) \cong C B^{\sigma}\left(V^{* *}, W^{*}\right)
$$

and

$$
V^{*} \stackrel{e \wedge}{\otimes} W^{*}=C B^{\sigma}\left(V^{* *} \times W^{* *}, \mathbb{C}\right)=C B^{\sigma-w}\left(V^{* *}, W^{*}\right) \subseteq C B^{\sigma}\left(V^{* *}, W^{*}\right)
$$

So, both operator space tensor products are subspaces of $C B^{\sigma}\left(V^{* *}, W^{*}\right)$.

If W is reflexive, then $C B^{\sigma-w}\left(V^{* *}, W^{*}\right)=C B^{\sigma}\left(V^{* *}, W^{*}\right)$ for all operator spaces V. In this case, we have $V^{*} \bar{\otimes} W^{*} \subseteq V^{*} \stackrel{e}{\otimes} W^{*}$.

In fact, the converse is also true.
Proposition 5.2.1. Let W be an operator spaces. Then W is reflexive if and only if $C B^{\sigma-w}\left(V^{* *}, W^{*}\right)=C B^{\sigma}\left(V^{* *}, W^{*}\right)$ for all operator spaces V.

Proof. We only need to show the sufficiency. Let $V=W^{*}$. Considering the canonical embedding $i: W \rightarrow W^{* *}$, we have $i^{*} \in C B^{\sigma}\left(W^{* * *}, W^{*}\right) \cong C B^{\sigma-w}\left(W^{* * *}, W^{*}\right)$. So, i is weakly compact (cf. [8. Theorem VI.4.7]), and thus $\overline{i\left(W_{\|\cdot\| \leq 1}\right)}=W_{\|\cdot\| \leq 1}$ is weakly compact. By [6, Theorem V.4.2], W is reflexive.
(3) Considering the symmetry of the projective tensor product with respect to the two underlying operator spaces, we have $C B^{\sigma-w}\left(V^{* *}, W^{*}\right) \cong C B^{\sigma-w}\left(W^{* *}, V^{*}\right)$ and $C B^{\sigma}\left(V^{* *}, W^{*}\right) \cong C B^{\sigma}\left(W^{* *}, V^{*}\right)$. Therefore,

$$
V^{*} \stackrel{e \wedge}{\otimes} W^{*}=V^{*} \bar{\otimes} W^{*}
$$

if either V or W is reflexive such that (V, W) is a bi-normal pair. In particular, if V or W is of finite dimension, then the injective tensor product $V^{*} \stackrel{\vee}{\otimes} W^{*}$ and the above two tensor products are all the same.
5.2.3. $\stackrel{e \wedge}{\otimes}$ and the extended Haargerup tensor product. Recall for each $\varphi \in B(H)_{*}$, the right slice map $R_{\varphi}: B(H) \otimes B(K) \rightarrow B(K)$ is defined by

$$
R_{\varphi}\left(\sum_{i} a_{i} \otimes b_{i}\right)=\sum_{i} \varphi\left(a_{i}\right) b_{i} \text { for } a_{i} \in B(H) \text { and } b_{i} \in B(K)
$$

Similarly, for $\psi \in B(K)_{*}$, the left slice map $L_{\psi}: B(H) \otimes B(K) \rightarrow B(H)$ is defined by

$$
L_{\psi}\left(\sum_{i} a_{i} \otimes b_{i}\right)=\sum_{i} a_{i} \dot{\psi}\left(b_{i}\right) .
$$

The right (resp. left) slice map has the unique extension to $(B(H) * \stackrel{h}{\otimes} B(K))^{*}$ (or $\left.\left(B(H)_{*} \hat{\otimes} B(K)\right)^{*}\right)$ which is still denoted by $R_{\varphi}\left(\right.$ resp. $\left.L_{\psi}\right)$.

Let V and W be operator spaces with $V^{*} \subseteq B(H)$ and $W^{*} \subseteq B(K)$. The Fubini product $\mathcal{F}\left(V^{*}, W^{*}\right)$ is defined as the set

$$
\left\{u \in B(H) \stackrel{e h}{\otimes} B(K): R_{\varphi}(u) \in V^{*} \text { and } L_{\psi}(u) \in W^{*} \text { for all } \varphi \in B(H)_{*}, \psi \in B(K)_{*}\right\}
$$

The normal Fubini tensor product $V^{*} \dot{\otimes}_{\mathcal{F}} W^{*}\left(=(V \hat{\otimes} W)^{*}\right)$ (cf. [11, Theorem 7.2.3]) is
$\left\{u \in B(H \otimes K): R_{\varphi}(u) \in V^{*}\right.$ and $L_{\psi}(u) \in W^{*}$ for all $\left.\varphi \in B(H)_{*}, \psi \in B(K)_{*}\right\}$.
Since $B(H) \stackrel{e h}{\otimes} B(K)\left(=\left(B(H)_{*} \stackrel{h}{\otimes} B(K)_{*}\right)^{*}\right)$ can be treated as a linear subspace of $\left(B(H)_{*} \hat{\otimes} B(K)_{*}\right)^{*}(=B(H \otimes K)), \mathcal{F}\left(V^{*}, W^{*}\right) \subseteq V^{*} \bar{\otimes}_{\mathcal{F}} W^{*}$. By [4, Theorem 3.1 (ii)], $\mathcal{F}\left(V^{*}, W^{*}\right)=V^{*} \stackrel{e h}{\otimes} W^{*}$ (cf. [4, Theorem 3.1(ii)]), i.e., $V^{*} \stackrel{e h}{\otimes} W^{*}$ and $V^{*} \stackrel{e \wedge}{\otimes} W^{*}$ are both subspaces of $V^{*} \bar{\otimes}_{\mathcal{F}} W^{*}$ and they may be equal under some conditions.

Proposition 5.2.2. Let V be an operator space and H a Hilbert space. Then we have the completely isometric identification

$$
V \stackrel{e \wedge}{\otimes} H_{r} \cong V \stackrel{e h}{\otimes} H_{r} .
$$

Proof. Since $V^{*} \hat{\otimes}\left(H_{r}\right)^{*} \cong V^{*} \stackrel{h}{\otimes}\left(H_{r}\right)^{*}, C B\left(V^{*} \times\left(H_{r}\right)^{*}, \mathbb{C}\right) \cong M B\left(V^{*} \times\left(H_{r}\right)^{*}, \mathbb{C}\right)$. Then their normal parts should also be identified, i.e., $V \stackrel{\wedge}{\otimes} H_{r} \cong V \stackrel{e h}{\otimes} H_{r}$ by the definitions of the extended projective tensor product and the extended Haagerup tensor product.

5.3. Some open questions

We conclude the thesis with the following open questions.

1. What is the characterization for a pair (V, W) of operator spaces to satisfy condition (${ }^{*}$)?
2. Do we have a canonical subspace X of A^{*} such that $X \subseteq w a p(A) \subseteq A^{*}$ and X plays a role similar to what A does in the sequence $A \subseteq Z_{1}\left(A^{* *}\right) \subseteq A^{* *}$ when the strong Arens irregularity of A is concerned?
3. How can we establish the relationship between the Arens regularity of a Banach algebra A and some operator space structures, say on $A^{*} \times A^{* *}$, involving certain tensor products?

Bibliography

[1] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
[2] D. Blecher and C. Le Merdy, Operator Algebras and Their Modules, Oxford Univ. Press, New York, 2004.
[3] D. Blecher and V. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262-292.
[4] D. Blecher and R. Smith, The dual of the Haargerup tensor product, J. London Math. Soc. (2) 45 (1992), 126-144.
[5] P. Cinvin and B. Yood, The second conjugate algebra of a group algebra, Pacific J. Math. 11 (1961), 847-870.
[6] J. B. Conway, A Course in Functional Analysis, Second edition, Springer-Verlag, New York, 1990.
[7] J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A84 (1979), 309-325.
[8] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience Publishers. Inc., New York, 1958.
[9] E. Effros and A. Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiada Univ. Math. J. 36 (1987), 253-276.
[10] E. Effros and Z-J. Ruan, Self-duality for the Haargerup tensor product and Hilbert space factorizations, J. Funct. Anal. 100 (1991), 257-284.
[11] E. Effros and Z-J. Ruan, Operator Spaces, Oxford Univ. Press, New York, 2000.
[12] E. Effros and Z-J. Ruan, Operator space tensor products and Hopf convolution algebras, J. Operator Theory, 50 (2003), 131-156.
[13] A. Grothendieck, Critéres de compacie dans les espaces fonctionnels geénéranx, Amer. J. Math. 74 (1952), 168-186.
[14] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Springer-Verlag, New York, 1970.
[15] A. T. Lau and A. Ülger, Topological centers of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), 1191-1212.
[16] A. Ülger, Arens regularity sometimes implies the RNP, Pacific J. Math. (2) 143 (1990), 377-398.

VITA AUCTORIS

Haiping Cao was born in 1977 in Xinzhou, Shanxi Province, China. She obtained her B.S. degree in Mathematics in 1998 from Shanxi Teachers University. She is currently a candidate for the Master's degree in Pure Mathematics at the University of Windsor and hopes to graduate in Summer 2006.

