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A bstract
This thesis explores a possible operator space framework for the study of the 

second dual of a Banach algebra A. We prove some new characterizations for A  

to be Arens regular and we try  to unify, for the Arens regularity problem, two of 

current approaches: by considering weakly almost periodic functionals on A  and by 

considering the topological center of A**. Motivated by this study, we define two 

operator space tensor products, namely, the extended projective tensor product and 

the normal projective tensor product. We investigate the properties of these two 

products, and compare them with other operator space tensor products. It is shown 

tha t the extended projective tensor product is injective, and the normal projective 

tensor product can linearize a class of bilinear maps under the condition tha t the pair 

of operator spaces has certain type of Kaplansky density property.
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CHAPTER 1

Introduction

In the operator space theory, three most interesting operator space tensor prod-
A

ucts axe frequently considered: the projective tensor product 0 , the injective tensor
V h

product 0 , and the Haagerup tensor product 0  — see [11] for overview. All of 

these tensor products are norm closures of the algebraic tensor product with the 

underlying operator space norms. Projective tensor product is closely related to com­

pletely bounded bilinear maps: C B (V  0  VP, X )  = C B (V  x VP,X ) ,  and it has the
v /  a \ *

dual relationship with the injective tensor product via V  0  VP «—► I V* 0  VP* 1 . The

h (  h \ *
Haagerup tensor product, however, is dual to itself: V  0  VP I V* 0  VP* I (or 

h f  h \ *
V* 0  VP* I V  0  VP ) ), and linearizes the multiplicatively bounded bilinear maps,

that is, C B (V  0  VP, X )  “  M B ( V  x W ,X ).

When V  and VP axe dual operator spaces, algebraic tensor product V  0  VP will
/  h V

naturally inherits the relatively weak*-topology from I V* 0  W t 1 . Taking the weak - 

closure gives the weak*-Haagerup tensor product, which turned out to  be same as
eh

the extended Haagerup tensor product V  0  W  since they have the same predual
h

V’t 0  Wt (cf. [4], [11]). In fact, the extended Haagerup tensor product has general
eA

form: for any two operator spaces V  and W , V  0  W  = M B a(V* x VP*,C), which 

is a subspace of M B(V*  x VP*,C). The extended Haagerup tensor product has 

many same properties as the Haagerup tensor product has, such as injectivity, self­

duality, preserving complete contraction, etc. Effros-Kishimoto in [9] defined the
<rA

normal Haagerup tensor product V  0  VP of two dual operator spaces V  and VP as
eh \  *

Vt 0  VP* . It is finally connected with normal bilinear maps: for any dual operator

ah  . aA
space X ,  C B a(V  0  VP, X )  =  M B a(V  x VP, A ). 0  is automatically projective for 

weak*-closed subspaces due to the dual relationship with the extended Haagerup
eA <j A

tensor product. The details about the tensor products 0  and 0  are presented in 

Chapter 2 and Chapter 3.
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1. INTRODUCTION 2

In Chapter 4, first we review some well-known results on the second dual of a 

Banach algebra. Then we explore some new characterizations of Arens regularity. 

The second dual A** of a Banach algebra A has two natural products extending the 

multiplication on A, namely the first Arens product and the second Arens product. 

Generally, these two products may not coincide. When they coincide, A  is called 

Arens regular. There are already some characterizations for A  to  be Arens regular 

expressed at A*-level and A**-level. At these two levels, there are two concepts, i.e., 

the space wap{A) of weakly almost periodic functionals on A  and the topological 

center Z(A**) of A** with respect to each Arens product, to describe the non-Arens 

regularity of A. It is known that A C Z(A**) C A**, wap(A) C A*, and A  is 

Arens regular iff Z(A**) = A** iff wap(A) =  A*, and A is strongly Arens irregular 

iff Z(A**) — A. We attem pt to unify these approaches. Via certain bilinear map, 

some interesting subspaces of A* are introduced such as <p(S), p{W), and <p(Z), from 

which a candidate to wap(A) playing a similar role as A to Z(A**) is investigated.

Suppose A is a Banach algebra with an operator space structure. It is shown tha t 

the multiplication m  on A is in C B (A  x A, A) if and only if the first and the second 

Arens products are in CB(A** x A**, A**). A more general conclusion is obtained for 

bilinear maps m  : X  x Y  —* Z. Prom these observations, we realize tha t the study of 

A** may be related to some generalized operator space projective tensor products. 

Motivated by the study of the second dual of a Banach algebra, in Chapter 5, we
eA

define and study the extended projective tensor product <g> and the normal projective
(7 A

tensor product They do not have many nice properties as extended and normal

Haagerup tensor products have any more. Even if some properties like injectivity

still hold, the way to get them is totally different. This is mainly owing to the lack

of self-duality of the projective tensor product. In this chapter, we also prove a few

identifications, such as C B a{V* x  W*, C) =  C B a~w(V* ,W ),  and the conditional iden- 
crA (  a \  *

tification C B a{V* ® V2*,W*) = CB°{V* x  V2*, W ) .  As subspaces of f V* ® W* j  , 

the extended projective tensor product, the normal spatial tensor product, and the 

injective tensor product are related to  each other. The extended projective tensor 

product and the extended Haagerup tensor product are also compared.

Owing to the time limit, we leave some interesting questions open at the end of 

this thesis.
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CHAPTER 2

Haagerup Tensor Product

Operator space Haagerup tensor product is one of important objects in the perti­

nent fields. It is projective, injective, and self-duality. It linearizes the multiplicatively 

bounded bilinear map. Besides, it has the multilinear decomposition property which 

plays a key role in the later study of extended Haagerup tensor product. This chap­

ter reviews most of these interesting properties of Haagerup tensor product, some of 

which are proved in a way different from the original one.

2.1. M u ltip lica tiv e ly  b o u n d ed  b ilinear m appings

In this section, we give a quick review of multiplicatively bounded norm, and two 

decompositions of an element in Mn(V  ® W ),  where V  and W  both are operator 

spaces (cf. [11]). We give a proof of the second decomposition in Lemma 2.1.4.

Let V, W  and X  be operator spaces, v G M m<r(V) and w G Mrn̂(W). The m a tr ix  

in n e r p ro d u c t of v and w is v © w G Mm<n(y ® W )  given by

If v = a  ® vq and w — (3 <g> wo with a  G Mm>r, (3 G M r<n, then we can get another 

useful formula for the matrix inner product.

Lemma 2.1.1. (a<8>v0)Q(f3®w0) — aj3®vo®w0, where a  G Mmir,0  G Mr,„,u0 € V, 

and Wo G W.

P r o o f . Since u,*, =  ® vQ and wkj = (3kl ® w0 for 1 < i, j  < n  and 1 <  A: < r,

we have

r

.k=l

r

,k=l
r

.k=l
3
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2.1. MULTIPLICATIVELY BOUNDED BILINEAR MAPPINGS

( y ]  Otikfikj) ®  V0 ®  W 0
k= 1

a f t  <g> vq <8> w o .

a

Here we list some properties of matrix inner product without proof.

(1) For any a  € Mm<r, /3 G Mr,n, and w G Mr<n(W),

a Q w  = aw and v Q  j3 = v(3.

(2) For any a  G Mm>r and w = 7 <g> wo G Mr<n <g> W,

a Q w  = 07 © wq.

(3) For any v G Mm,r{V),w  G Mr,s(VF), and x  G M ^n(X),

(v Q w ) Q  x = v Q (w  Q  x).

(4) For any a  G Mg>m, (3 G Mn>h, u G Mm,r (V), and w  G MP,n(W),

a(v Q w )0  = (av) Q (w(3).

(5) For any 7/  G Mm>r{V),v"  G Mn<s(V),w ' G Mr,m(W), and w" G Ma,n(W), let

u =  7/  © u" and w — w' ® w". Then

v Q w  = (vr © uw) O (tt/ © u/') =  (7/  0  ti/) © (uw © w ").

Notice that the fifth property follows from

((?/ © v") © («/ © w"))ij —

E  v ' i k ® w 'ki i f l
1 <k<r

E  v i k ® w kj  i i r n  +  l  < i , j  < m  +  n ,
r+l<fc<r+s

0 otherwise.

Let ip \ V  x W  —► be a bilinear mapping and <p : V  ® VF —> X  its linearization. 

Then we have the (n, / ) - th  a m p lifica tio n  of tp, namely ipn’1 : M nti(V) x  Mi<n(W) —* 

Mn(X),  which is defined by

ipn,l(v ,w ) =  ^ n\ v Q w )  - Y , v ( v ik,wkj)
k=l

€ Mn(X),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1. MULTIPLICATIVELY BOUNDED BILINEAR MAPPINGS 5

where i p ^  is the n-th amplification of the linear mapping (p. When I = n, we shortly 

denote <pn’1 by <pn.

The m u ltip lica tive ly  b o u n d ed  n o rm  of <p is defined by

We say tha t <p is multiplicatively bounded (resp., multiplicatively contractive) if 

IM|m& < oo (resp., ||(^|| < 1). Let M B (V  x W ,X )  denote the linear space of all 

multiplicatively bounded bilinear mappings p>: V  x W  —► X  with the norm || • ||mb.

Using the linear space identifications M n(M B (V  x W, X )) =  M B (V  x W, Mn(X)),  

we may define an operator space matrix norm on M B (V  x W, X ) .

Lem m a  2.1.2. Let V  and W  be operator spaces, v € MP(V), and w € Mq(W). 

Then v <g> w — (v <g> Iq) O (Ip ® w). That is, we can express the Kronecker product in 

terms of the matrix inner product.

P r o o f . Suppose that

Since, by the scalar matrix tensor product, we may write a  ® (3 as a matrix product

we have

v ® w = (a ® Vo) <8> (P ® wq) — (a ® /?) ® (vo ® Wo)

— (a ® I q) ( I p  ® /3) ® v0 ® w0 — ((a  ® Ig) ® v0) ® ((Ip ® 0) ® w0)

=  (V ®  Ig )  ©  ( I p  ®  W) .

Lem m a  2.1.3. Given linear spaces V  and W  and u e  M n(V  ® W ), there exist 

r e  N, v € Mn r(V), and w  € M rn̂{W) such that

I M I m &  =  sup{||^nii|| : n , l €  N} =  sup{||<pn || : n  G N}.

v — a  <S> vo €  Mp ® V

and

w = (3 ® wq € M q ® W.

a  ® /? =  (a  ® / g) ( /p ® /?),

In the fourth step, we used Lemma 2.1.1. □

r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1. MULTIPLICATIVELY BOUNDED BILINEAR MAPPINGS 6

P r o o f .  Let Un — {vQ w  : v G Mn>r(V), w G Mrtn(W), r G N}. We want to show 

tha t Un D Mn(V  ® W ) = Mn <g> V  ® W.

In fact, Mn <g> V  ® W =  span{Eij ® v< 8 > w :v€ .V ,w € .W ,i , j  = l , - - -  , n}, where 

Eitj is the i j-th  unit matrix in Mn. Note tha t Eitj  = So, by Lemma 2.1.1,

E ij ® v ® w  = (ej"’1' <g> v) O (ê 1,n̂ 0 w) £ Un. It remains to show tha t I/„ is a linear 

space. Un is clearly closed under the scalar multiplication.

Now given ut =  ViQwt (i = 1,2) with Vi G Mnir(V),w i G Mrn̂{W ),v2 G M ntS(V), 

and G Ms,n(W). Let v - (i>i V2) and u; =  (w\ w2)T ■ Then v G M ntr+s(V),w  G 

MP+S)„(W ), and

u Q tu =  Ui O Wi +  v2 © W2 = Ui +  u2- 

Then we complete the proof. □

Lem m a 2.1.4. Given linear spaces V  and W  and u G Mn(V  <g> W ), there exist 

p,q E N, 1; G MP(V), w G Mq(W), a  G M niPq, and (3 G MW)„ such that

u — a(v  ® w)/3.

P r o o f .  Let Un = {a(v  ® w)p  : a  G M n^ ( 3  G G Mp(V ),w  G A f,(W )}.

Now we show t/„ D Mn(V  ® W ) =  sp an fS ij ® u ® tc : u G V,w E W , i , j  = 1, • • • , n}. 

Note tha t E^j ® u ® w — ej”’1' (u ® G C/„, it remains to show tha t Un is a linear

space.

Clearly, Un is closed under the scalar multiplication. Let u\ = a\{v\ ® W\)f3i and 

u2 — a 2{v2 ® w2)(32- Then we have

u i + u 2 — ai(u! ® uii)/?! +  a 2{v2 ® w2)02

I  V\ ® Wi 0

=  ( a i  0 0 a 2 )

=  a(v<g>w)/3,

0 V \® w 2 0 0

0 0 v2 ®Wi 0

V 0 0 0 v2 <8> w2 }

(  f t  \  
0

0

V f t  /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2. HAAGERUP TENSOR PRODUCT AND ITS PROPERTIES 7

( fa\
where a:

Vi 0

0 v2

0 \
1, and /3 

0 w2 I

0 

0

\  fa J
That completes the proof. □

2.2. H aag eru p  te n so r p ro d u c t and  its  p ro p e rtie s

Before going to the properties, we recall the operator space Haagerup tensor prod­

uct norm. The readers can find most results of this section in [11] and [3, Lemma

[11, Theorem 7.1.2], respectively. Both Lemma 2.2.7 and Lemma 2.2.8 were used in 

the proof of [11, Theorem 9.2.5] without proof. From our point of view, they are not 

trivial. So, we present detailed proofs here.

Given operator spaces V  and W  and u € Mn(V 0  W), the operator space 

H aag eru p  te n so r n o rm  of u is defined by

T heorem  2.2.1. Let V  and W  be operator spaces. Then || • ||/, is an operator 

space matrix norm o n V  0  W , and for any u  €  Mn(V 0  W),

P r o o f . Suppose u\ G M m( V 0 W ) , u 2 G Mn(V 0 W ) ,  and e > 0. Then there exist

Since e is arbitrary, we have obtained M l'.  For any u  € M n(V 0  W )  and e > 0, we 

may choose v 6 Mn r̂(V) and w G M Ttn(W)  with u =  v © w and |M ||M | < IMk +  e - 

Then for a, /3 G Mn, we have

M l  =  | | ( q u )  ©  { w p ) \ \  <  i i h i i M I  <  l l « l l l l « l l l k l l l l / ? l l  <  l l « l l ( N U  +  e ) l l / J | | -

2.2.6]. We deduce Corollary 2.2.3 and Proposition 2.2.4 from Proposition 2.2.2 and

u\\h = in f{ ||i/|||M | : u = v Q w , v  G M n<r(V),w  G Mr<n(W ),r  G N }.

w| |v <  I M U  ^  II«IIa .

with ||iUi|| — 1 and ||ui|| <  ||« i|k  + £ (i — 1,2). So,

||Ul © U21| =  || («1 © V2) © (wi © IU2)|| < ||wi ® u2||

=  m ax{||u i||, ||u2||} <  m axd lu ilk , ||u2|U} +  £-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2. HAAGERUP TENSOR PRODUCT AND ITS PROPERTIES 8

Again, since e is arbitrary, we obtained M 2 .

Let us suppose tha t /  E MP(V*) and g E Mq(W*) are complete contractions. 

Then by Lemma 2.1.2 and property (1) of the matrix inner product in Section 1, we 

have

( f  ® g){n){vQ w ) = Y 2  ® 9(wkj)
,k=1

r

^ 2 i f ( V i k )  ®  I g )  ©  ( I p  ®  g(wkj ))
. k

r

Hence,

J2 ( f M  ® Ig)(Ip ® g(wkj))
_ A:

=  [/(»,».) ® /,) ]„ . [/, ® »(«!«)],,„ ■

||(/®s)<n)(oo«-)|| < ||[ /M ® /J ,J I ||[ /,® sM ,,J |

=  II [ /("« )]„ , ® h W f  ® II

< Il/<” ,r)(")llll9<r’")(«')ll < IMIIMI-

It follows from the definition of the injective tensor matrix norm that

IMIv < IMIIMI < N |h  +  £-

Letting e —> 0, we have ||uj|v <  ||«||/».

For any matrices v E Mm(V) and w E M n(W ), we have from Lemma 2.1.1 that

||v <8> w\\h < IMHMI-

That is, the Haargerup tensor norm is a subcross norm. Since the projective tensor 

norm is the largest subcross norm (cf. [11, Theorem 7.1.1]), \\u\\h, <  |M |a- Cl

We let

V ® h W = ( V ® W , \ \ - \ \ h),
h

and define the H aag eru p  te n so r p ro d u c t V  <g> W  of V  and W  to be the completion 

of the operator space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2. HAAGERUP TENSOR PRODUCT AND ITS PROPERTIES 9

P ro p o s i t io n  2.2.2. Let V , W  and X  be operator spaces. Then we have a complete 

isometry

M B (V  x W, X )  “  C B{V  © W ,X ).

P r o o f .  Let tp € M B ( V  x W, X )  and tp its unique linearization. Then by the 

definition of the n-th amplification of tp and <p, we have tpn(v,w) — tp(n\ v  © w). We 

want to show ||<̂ n|| — ||<̂ (n |̂| for each n G N, and hence ||y?||m& =  ||^||c6- In fact,

M  =  sup{||<£>n(n, tn)|| : ||v|| <  1, |M | < l , v  € Mn{V),w  €  Mn(W)}

= su p { ||^ n)(u © io)|| : ||u|| < 1, ||u;|| <  l , v  € Mn(V ),w  € M n{W)}

< s u p { | |^ ( u ) | |  : ||u ||h <  l , u  € M n(V  © W )} = ||£<">||.

Conversely, for every u € Mn(V  © IT) with ||u|| < 1 and e > 0, we can find 

v € Mnr{V) , w € Mr n̂(W)  such tha t u = v Q w  and ||u||||to|| < 1 +  e. Then

<  I I ^ I I I M I I H I - <  11̂ 11( 1 +  e)-

Since e is arbitrary, ||</5(n)|| =  sup ||<̂ (n^(u)|| < ||</?"||. Therefore, ||<^"|| =  □
IHI<i

COROLLARY 2.2.3. Let V  and W  be operator spaces and tp : V  x IT —► Mn a 

bilinear map. Then ||v?||m& =  ||<̂ n ||; where tpn : Mn(V) x Mn(W)  —> M n(Mn) is the 

n-th amplification of tp.

~  hP r o o f .  Let ip : V  © W  —> Mn be the unique linearization of tp. Then —

||^||c6 — | | ^ n |̂|, where t p ^  is the n-th amplification of the linear map ip. Prom the 

proof of the identification M B ( V  x W ,X )  =  C B (V  ®W, X ) ,  we have ||v?^|| =  | | | | . 

Therefore, ||< |̂|TO() =  ||<̂ n ||. □

When n  — 1, we have the following property of completely bounded bilinear maps.

P ro p o s i t io n  2.2.4. Let V  and W  be operator spaces and tp : V  x IT —» C  a 

bilinear map. Then ||</?||C(> =  ||y?||.

P r o o f .  Recall tha t ||<̂ ||c& =  sup{||^n||}, where pn : M n(V) x M n(W) —> M ni is
n€N

the n-th joint amplification of ip. By the operator space identification C B (V  x W, C) =
A___________________ _ _

C B ( V ©IT,C), ||^ |U  =  ||¥>||c6 =  ||? || =  Ill’ll) where tp is the unique linearization of tp 

such tha t iip(v © w) = tp(v, w). □
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2.2. HAAGERUP TENSOR PRODUCT AND ITS PROPERTIES 10

PROPOSITION 2.2.5. Let V  and W  be operator spaces. For any u in V <S>hW with 

|MU < there exists a representation

r

u — v Q w  — Vj <g> w j
k=1

with ||u|| <  1, ||w|| <  1 such that Ui,• • • ,v r are linearly independent in V, and 

Wi, ■ • • , wr are linearly independent in W .

Lemma 2.2.6. Let V  and W  be operator spaces and u  G V  <8> W . Let u —
n m

£ > i  <g> v'k <g> w'k be two representations of u such that each of the sets
i=1 fc=l
{vi,- • • ,vn}, {wi, ■ ■ ■ ,w „ }, {uj, • • ■ :v'm}, and {w[,  • • • , w'm} is linearly independent.

Then span{vi, • • • , vn} — span{v[, ■ • • , v'm} and span{wi, - • • , w„}= span{w[, • • • , w'm}.

PROOF. By Hahn-Banach Theorem, we can choose f s € V* such tha t f 8{v'k) =
T

5sk (s ,k  =  1, • • • ,m ). Now the map f s ® i d : V ® W  —* W  is given by ^  xj ®
j=i

r m
Vj fs(x j)Vj■ Then ( f s ® id)(u) =  f»(v'k)wk =  w'k- On the other hand,

i=i fc=i

( fa <8> id)(u) =  f a(vi)wi. Hence, w'k G span{wi ,- --  ,w m}. The remaining cases
i=l

follow similarly. □

Lemma 2.2.7. Let V ' and W ' be operator spaces, V  C V' and W  C W ' subspaces
h h

of V  and W , respectively. Then the inclusion map V  <8> W  —* V '®  W ' is an isometry.

P r o o f .  Let u € V  (8> W . Then its Haagerup tensor product norm in V  ® W  is 

same as its Haagerup norm in V' <g> W '. In fact,

\\u\\ h — inf{||u||||w || : u — v O w, v G Ml r (V), w G Mr^(W ),  r G N}v<s>w

and

Wu Wv 4 w , = inf{IMIIMI : u = v Q w , v €  M hr(V ') ,w  G MrA(W ') ,r  G N}.

So, it is clear that llull h > Hull h ■ By Lemma 2.2.6, we have ||u|| h >v®w ~  V '®w V'®w' —
||u|| h as well. □

Lemma 2.2.8. Let V , V', W , and W  be operator spaces. I f  <p : V  —> V' and 

ip : W  —» W ' are complete isometries, then tp®%p is an isometry.
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2.2. HAAGERUP TENSOR PRODUCT AND ITS PROPERTIES 11

h h
P r o o f .  The inclusion mapping p (V )  ® tp(W) —*• V' 0  W '  is isometric by Lemma 

2.2.7. It suffices to show the map

n  n

V  0 /* W  -> (p(V) ®h ip(W) , ^ 2  Vi ® Wi i-> ^ 2  vivi) ® ^{Wi)
i=l  i=1

is an isometry.
n

Suppose u' G p(V)®h'!p(W). Then v! has a representation ^  p(v[)<S)'p(w,i), where
i=l

n

v\ G V  and w[ G W. Let u = wi■ Then u G V  <S>h W  and p  0  ip(u) =  u1, i.e.,
i=1

p  <S) ip '■ V  <S>hW p(V) xp{W) is onto.
n m

Let Ui =  v- ®w\ and 1x2 =  v\ ® wk ^wo elements in V ® h W  with U\ ^  u2■ 
i=i  k=1

1 _  __
Then we can write U\ — U2 as vj  ® Wj ^  0 with Wj linearly independent, where

  3 = 1

1 < I < m  +  n. So, Vjn 7̂  0 for some j 0. Then

' i
® ip)(ui -  u2) = {p®  tp )Q 2  Vj®Wj) = '£2 <p{vj) ® i/f(wj):

j=1 j=1

Since 55̂  are linearly independent and tp is isometric, tp(wj) are linearly independent. 

Again since p(vj0) 7̂  0, (p  ® — 1̂2) 7̂  0. So, p ® tp  is one-one.

Now we show that p  0  ip : V  0  ̂W  —► <^(K) 0 * ip(W) is isometric. First we show 

that || 0  ip)(u)\\h > Hallh. For each u € V  ®h W, (p ® ip)(u) G p{V) <S>h V’(VF), so,

by Lemma 2.2.7

where the infimum is taken over all decompositions (p  0  tp)(u) — [p{vi)\ © [ip(wi)\ 

with [p{vi)\ G M i<r(p(V)), [ip(wi)\ G Mr!i(xp(W)), and r G N. But this infimum is 

just

in f{ ||^ 1’rl (u ) || | |^ r’1l(«;)|| : (p ® ip )(u ) =  p^1,r\ v )  © ,

where v = [u*] € M ^r(V ),w  =  [10,] G M rti(W ),  and r G N.

Thus for any e > 0, there exist v G M\^r{V) and w € Mr>1(VF) such that (p 0  

•0)(a) =  p(1,r)(v) © x p ^ ( w )  and ||(y? 0  ip)(u)\\h > lM 1’rHu)llll^ r’1Hu,)|| +  £■ Since 

pV-rt and ‘ip(r’1') are isometries, ||(¥> ® ^  IMIIIHI +  £ > IMk> where we use

the fact tha t u = v Q w  since (p® ip)(u) =  p^l,r\v )Q x p lj’l \ w )  =  (p® ip)(vO w )  and 

p ®  xp is one-one. Therefore, ||(y> 0  %p)(u)\\h > ||n|U-
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On the other hand, for u = v © w € with v € M\,r{V) and w € Mn^(W ),

we have

<p(vic) ® ^{Wk)\\h
fc=l

=  lM 1,r)(v) o  ^ (r,1)(w)IU

Taking the infimum over all such representations of u gives ||(v?® V0(u )'IU ^  IMI&- ^

P r o po sitio n  2.2.9. Let V, V ' , W  and W ' be operator spaces. For all complete 

contractions ip : V —* V' and tp : W  —*► W ', the corresponding mapping

i p ® i p : V ® W  —* V '®  W '

is a complete contraction.

I f  ip and tp are complete isometries (resp., completely quotient mappings), then 

the same is true for ip ® ip.

P r o o f . We have the commutative diagram

M n(V ® h W ) Mn{V'® h W')

Mn,l {V )® h M 1,n{W) y<n’1)0V,(1’n)> Mn:1(V ')® h M hn(W')

By [11, Theorem 9.2.4], the two vertical mappings are isometries. Now we note tha t if 

g> and ip are completely contractive, isometric, or complete quotient mappings, then 

tha t is also the case for the mappings tp(n'1') and ip^'n\  Thus, it suffices to show tha t 

the mapping ip ® ip is a contraction, isometry, or quotient mapping.

Suppose that ||< |̂|c6 <  1 and ||V4|ci> < 1- Then the proof of <  1 is contained

in the last part in the proof of Lemma 2.2.8.

The case of isometry is just Lemma 2.2.8.

Finally, given u' €  V' ®h W '  with ||u'||h < 1, there exist v' € w' G

Mrti{W')  such that v! — v‘' © w' and |j-y'||, ||u/|| <  1. If ip,ip are complete quotient 

mappings, then and are quotient mappings. So, there exist v G M ijr(V)
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2.3. ROW AND COLUMN HILBERT OPERATOR SPACES 13

with INI < 1 and w € M r i(W )  with ||w|| < 1 such that

v' = ip^'r\ v )  and w' =

It follows tha t u = v 0  w € V  ®h W  satisfying |\u\\h < 1 and {<p <g> ip)(u) =  u'. So, 

is a quotient mapping. □

The above assertion tha t the Haagerup tensor product preserves both quotient 

maps and complete isometries shows tha t it is both projective and injective. The 

proposition below shows tha t Haagerup tensor product also possesses associativity.

P r o p o s i t i o n  2.2.10. Let V ,W  and X  be operator spaces. Then we have the 

following complete isometry

{V ®W)<& X  = V  ® (W  0  X ) .

2.3. R ow  an d  C olum n H ilb e rt O p e ra to r  Spaces

Let H  be a Hilbert space. In this section, we consider two natural operator space 

structures on a H.

First, we use the column identification

C  : H  “  B(C ,H ),

where C(£)(a) — a f  (£ 6 H ,a  € C), to determine an operator space structure on H . 

To be more specific, for £ € Mn(H), we have the amplification

C (n)(0  : <Cn Hn,

and we define the column matrix norm of £ by

IlflU =  r w (f)ll.

Let Hc denote H  with this operator structure, and we refer to it as the co lum n 

H ilb e rt o p e ra to r  space  or simply the column Hilbert space determined by H. That 

is

Hc ^ B ( C , H ) .
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For each £ € Mm<n(Hc),

l l ^ l l c  =  | | C ' ( m , n ) ( 4 ) l l  =  | | C ( m ’" ) ( 0 ^ ( m ’n ) ( 0 H 1 / 2  =  l | [ C ( ^ ) 1 n , m [ C ( ^ ) ] m , n | | 1 / 2

m m

fe=i fc=i

From the definition, we have the natural complete isometry

Mm n̂(Hc) =  B(Cn,H m)

for all m, n € N, since for all k € N,

M k(Mm,n(Hc) = MkmM{Hc) = B (C kn, H km) = M k(B(Cn,H m)).

This shows tha t Mm n̂(Hc) is also an operator space.

In particular, (Hc)m = Mm^{Hc) =  B (C ,H m) =  (H m)c, which means that the 

sum of column Hilbert space is also a column Hilbert space.

Recall that if i f  is a Hilbert space, then we may define the complex conjugate 

space H  by the identity map

J  : H  —> H, x  i—► x  

with the usual addition and conjugate multiplication, tha t is

x  + y = x  + y and a ■ x  = ax.

Then H  is a Hilbert space with the inner product given by

(x\y) = (y|*>-

Now we use the Banach space identification 6 : H  —> H*, where 0(£)(rj) — (rj | £). 

The natural isometry

f? : i f  —> H** =  B(H*,C)  =  B ( H ,C)

given by

R(v)(0 = 0(4)(»/) = { n \0
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2.4. MULTILINEAR DECOMPOSIONS 15

determines an operator space matrix norm on H. We denote H  with this operator 

structure by Hr, and refer to it as row H ilbert operator space. That is

Hr ^ B ( H , C )  = B(H,  C).

For £ € Mm,n(ifr ), then

ll«l|r =  l|A»»(f)ll =  | l E ( 6 »IW ]l|,/a.
k=l

Similarly, we have (Hr)n = M ^n(Hr) =  (Hn)r.

THEOREM  2.3.1. For any Hilbert spaces H  and K , there are natural completely 

isometric identifications

B (H ,K )  =  C B (H c,K c)

and

B (K * ,H * )9 iC B (H r,K r).

The operator duals of column and row Hilbert spaces are related with their Banach 

duals in the following way.

(Hc)* =  C B (H c, C) -  B (H ,C ) = B {H *\  C) -  (H*)r.

Let K  — H* in the above identities. Then

(.Kr)* = (Hcr  = Hc = (K*)c, i.e., (Hry  = (H*)c.

2.4. M ultilinear decom posions

In this section, we summarize a few nice properties of Haagerup tensor product 

without proof. A different description of the Haagerup tensor product norm is also 

presented.

P r o p o s i t io n  2.4.1. Let V  and W  be operator spaces. Then a linear functional

F :  V ® W  - * C
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is bounded i f  and only i f  there exist a Hilbert space H  and completely bounded linear 

mappings

^  : V  {Hc)* and il> :W -> H c

such that

F(v ® w) = tp(v)4>(w).

In this case, we can choose tp and ip such that

11*11 =  H U M *

More general, we have the following decomposition theorem for multilinear map­

pings.

T heorem  2.4.2. Let Vi, • • - ,Vn be operator spaces and H0,H n Hilbert spaces. 

Then a linear mapping

<p:V1® -- -® V n -+ B {H n,Ho)

is completely bounded i f  and only i f  there exist Hilbert spaces Hi, • • • , Hn-1 and com­

pletely bounded mappings ipk : V* —* B(Hk, H k-1) (k = 1, • • • , n) such that

p ( v x <g> ■ • • <g> V2 ) =  1 p l (V i )  ■ ■ ■ 1pn{vn )- 

In this case we can choose ipk {k =  1, • • • ,n) such that

l l ^ l l c b  =  H V h llcb ■ ■ ' llV^nllcb-

T heorem  2.4.3. Let V  and W  be operator spaces. Then the natural embedding

v* 0  w * «-»(v  d  w y

is completely isometric.

This property of Haagerup tensor product is called self-duality. When one of the 

two underlying operator spaces is finite-dimensional, the above embedding actually 

becomes surjective. This fact was observed in [11]. Here we give a complete proof.
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C o r o l l a r y  2.4.4. Let V  and W  be operator spaces. I f  either V  o r W  is finite- 

dimensional, then we have the complete isometry

v * ® w * ^  cv  © w y .

h
P r o o f .  Assume tha t either V  or W  is finite-dimensional. Then V©IV =  V ® hW.

n
It is easy to see tha t every functional in (V ©ft IV)* has the form "52 fi  © g, for some

i—1
f i  e  V* and gi G W* (1 <  i < n), where n  =  m in{d im (V ),d im (W )} .  So, the natural 

embedding in Theorem 2.4.3 is surjective. Therefore, V* ®h IV* — (V  ©ft W)*. □

The relationship between the Haagerup tensor product and the  injective tensor 

product is also indicated by the form of the Haagerup tensor product norm given as 

follows.

P r o p o s i t io n  2.4.5. Let V  and IV be operator spaces. For each u G Mn(V  © W ),  

there exist contractive elements f  G Mn>r(V*) and g € MTjn(W*) such that

INI* =

Thus

IHU -  s u p { | | ( /© 5 ) (n)(u)|| : /  G M n,r{V*)M^ , g  G Mr>n(W*)i m i ,r  N ).

h
P r o o f .  First, we need to explain /  © g. It is an element of Mn(V* © W*) C 

Mn((V ® W)*) “  C B {V  ® W ,M n). So, ( /  © p)W : Mn(V  © W )  -» M„2. For 

u € M n{V ©/, W),  there exist finite-dimentional subspaces of V  and W ,  say, Vi 

and W\, respectively, such tha t u G Mn(Vl ©/, Wi). Then u has the same norm in
h h

Mn(Vi © W\) as in Mn(V  © IV). By Effros-Ruan [11, Lemma 2.3.4], there exists a 

complete contraction tp': Vi © IVi —> M n such tha t ||u||ft =  ||<̂ n̂^(ii)||.

Since Vi and IVi are finite-dimensional, by Corollary 2.4.4, we have

C B W  © Wi)*,Mn) “  Mn((V © IVj)*) “  Mn(Vf  © M7),

h
and hence we may regard tp as a contractive element in Mn (V f  © W ?). Then there exist 

/  G M ntr(Vf)  and g G M rtn(W f ) such tha t p = fQ g  with j |/|| <  1 and j|p|| <  1. Since 

B{Cn, Cr) and B (Cr , Cn) are injective operator spaces (cf. [2, Theorem 1.2.10]), /  and 

g have corresponding extensions, namely /  G Mn(V*) and g G Mn(W*), respectively,
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such tha t ll/ll <  1, H5II < 1 and

ll(7©9)(">wil = ll( /0 9 )w WII = lMn)(«)ll = MU,

where the first step is true since u € Mn( \ \  ® Wi).

Now suppose /  € Mn^(V*) and g € M r,n(W*) axe contractive. Then

l l ( / © s ) ( n ) ( « ) l l  <  l l / o j I U I N U  
=  l l / © 5 l k l M k  
<  l l / l l l k l l l M k  <  I M U -

Therefore,

||utk =  su p { ||( /O p )(n)(u)||},

where the supremum is taken over all /  6 Mnir(V*),g €  Mr<n(W*), | |/ | | <  1, ||g|| <  1, 

and r 6  N. □

2.5. Some tensor product com putations

The following proposition can be found in [11, Proposition 9.3.1]. In [11], the 

identifications (1) and (2) were proved in different ways. In light of the similarity of 

these identifications, we give a unified proof of Proposition 2.5.1, which is consistent 

with the proof of (2) given in [11],

P r o po sitio n  2.5.1. Let V  be an operator space and H  a Hilbert space. Then we 

have the following natural complete isometries.

H C® V  “  HC®V.  (1)

V ® H t “  V ® H r. (2)

V ® H C “  V ® H C. (3)

Hr ® V  “  Hr ®V. (4)

PROOF. For (1), it suffices to show tha t for all u € Mn(Hc <g> V ),

I M k  <  M | v .
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So, it suffices to show that ||u ||v <  1 implies ||u||h <  1.

Suppose u G M n{Hc ® V ) with ||u||v <  1. Now for all /  G M„iS((ifc)*) =  

Mn,s((H*)r) and g G MStn{V*) with ||/ || <  1, ||p|| < 1, let Hi -  spa n {fa ,i =
p

1, • • • , n , j  = 1, • • • ., r} and e i, • ■ • , ep its orthonormal basis. Writing f a  =  ^
fc=i

we have by the discussion in [10, Section 3.4] tha t ||/ | | =  || [C1 • • • Cp] ||, where Ck — 

[ 4 ]  € Mn,a (k — 1, • • • ,p).

Following the notation in [3], e =

1. Since e® g =

\  eP ® 5 /  

/ © S  =

V ep /

fa  ® 9u
Ll=i
p

r p

E E  cficfc ® gij
i=i fc=i

=  'YJ Ck{ek ®g) = C {e® g),
k = 1

where C = [C1 ■ • • Cp\ G M„)Sp. So, we have

(C '(e® p)){B)(u) =  [C (c® 5)(i*y)]
/ C \

C

[(e ® g){uij)}

Then,

\  "  /
=  (In <8> C)((e <g> gYn\u ) ) .

t l ( /© 5 )(n)(«)ll =  ||( /» ® C )((e ®p)W («))ll

<  l l ( / n © C ) | | | | ( e ® p ) W ( u ) | |

<  | | C | | | | ( e ® p ) W | | | | t i J | v

=  ll/llll(e© 5)(n)||||«||v

< | |e ® 5 |U < l ,
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where the fourth step follows from ||C|| =  | |/ | |  (<  1) and in the last step we use the 

fact tha t both e and g are contractive. So, ||u||h < 1 by Proposition 2.4.5 and the 

proof of (1) is complete.

(2), (3), and (4) can be similarly proved. □

The following propositions and their proofs can be found in [11].

P r o p o s i t io n  2.5.2. Let V  be an operator space, H  and K  Hilbert spaces. Then 

we have a complete isometry

((K c)* ® V ® H c)* ^ C B (V ,B (H ,K )) .

P r o p o s i t io n  2.5.3. Let H  and K  be operator spaces. Then we have the complete 

isometries

Hc ® (K c)* ^JC (K ,H )

and

{Ke)* ® H c = T (K , H).

P r o p o s i t io n  2.5.4. Let H  and K  be Hilbert spaces. Then we have the complete 

isometries

Hc ® K c = Hc ® K c = Hc ® K c = (H ® K )c

and

Hr ® K r “  Hr ® K r “  Hr ® K r “  (H  ® K )r.

2.6. Comparison w ith  TC(V ,W )  and r r (V, W )

Let V  and W  be operator spaces, we say th a t a linear map ip : V  —► W  factors 

through colum n H ilbert space if there is a Hilbert space H  and a commutative 

diagram of completely bounded maps

Hc

V  ► W.

We define

7c(¥>) =  in fflM U IM U  : ^  =  V’ ° 0, ^  : V  -* Hc, tjj : Hc -► W }.
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If no such a factorization exists, we set 7C(<̂ ) =  oo.

If if i, <p2 : V  —» W  factor through the column Hilbert space {Hi)c and ( # 2)0 

respectively, tha t is, there exist <pk : V  —> (Hk)c and ipk '• (Hk)c —* W  ( k  = 1,2) such 

th a t <pi =  ip\ o <pi and <p2 — ip 2 o <p2, then let L = H i®  H2, <p(v) — {(pi{v) , (p2(v)), 

and ip(£ 1,^2) =  V>i(£i) +  ^ 2(62) for all u G V and (£1,62) € #1 © # 2- It is clear that 

(pi <p2 = ip o (p. Now let rc(V, W) be the linear space of linear maps <p : V  —► W  

with 7c(<p) < 00. Effros-Ruan proved that 7C really determines a norm on rc(V, W ) 

(cf. [10, Lemma 5.1]), and so TC(V, W ) becomes a normed space.

If <p =  [ipij] G Mn(Tc(V, IE)), then we may define a map ip : V  —*• M n(W ) by 

tp(v) =  [^ij(u)], each entry of which factors through a column Hilbert space as given 

in the following commutative diagram

(fftf)c  

4>ij

V  w.

We want to find a factorization of ip through some column Hilbert space I f  in a 

natural way. That is of the form ip =  ip op, where <p :V  —> K c and ip : K c —> Mn(W ). 

Since Mnail(W) =  M n(W ) as operator spaces, there exists a Unear map from V  to 

M n2ti(W ) corresponding to ip, we still denote it by ip.

Let K  = ®Hij. Then K c = ®{Hij)c. We define <p : V  —► K c and ip : K c ■—> 

Mn*tl(W ) by

<P(V) = (<Pu(v),--- ,<Pnn(v)y

and

^ (6 1, - "  ,£nn)* =  ( lM £ l l ) , - ”  in te rn ) )*

for v G V, £ij G H{j. Then ip o (p — ip. This shows tha t ip G TC(V, M n(W )).

Conversely, suppose a linear map ip : V  —> Mn(W ) factors through Hc, i.e., 

ip =  ip o cp, where <p : V  —► H c and ip : Hc —* M n(W ) are completely bounded. We 

define =  [pi3] G M n(Tc(V, W )) by

<Pij(v) = (£(«))«

and ipij : H c —> W  by

% { 0  =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6. COMPARISON WITH r c(V,W ) AND IY(V,W) 

for all v € V  and £ G H. Then

22

<Pij(v ) =  (V>0 (t>{v))ij = -  (ipij o <j>)(v).

Clearly, each ipij is completely bounded. So, ipij factors also through Hc and then 

ip € M n(Tc(V ,W )).

Therefore, we have the linear space identifications Mn(rc(V, W )) =  r c(V, Mn(W )) 

(n €  N), and so we can define a natural operator space matrix norm on r c(V, W ) to 

make r c(V, W ) an operator space.

In general, ||<£>||c6 <  7c{<p), and hence TC(V ,W )  G CB(V, W ). If either V  or W  is 

a column Hilbert space, then ||y?||c6 =  7c(<p) and r c(F, W ) =  C B (V , W ).

P r o p o s i t io n  2.6.1. Let V  and W  be operator spaces and Wi a subspace o fW .  

Then the corresponding inclusion

r c(v ,w 1) ^ r c(v ,H 0

is completely isometric.

THEOREM 2.6.2. Let V  and W  be operator spaces. Then we have a complete 

isometry

(w ® vy  “ rc(v, w).

COROLLARY 2.6.3. Let V, W , and X  be operator spaces. Then we have a complete 

isometry

rc((w <1 vy x) s  rc(v, re(w, x)).

P r o o f .  First we suppose X  is a dual operator space, say, X  — (X ,)*. Then from 

Theorem 2.6.2 we have the natural complete isometries

rc({w ® v),x) s  (x, 0 w  0 vy  s  re(v, (x. ® wy) s  re(v,rc(w;x)).

For a general X ,  we have the following commutative diagram

Te(w k > v ,x )  ------ ► r c(y ,r c(VF,x))

rc(w4v,x**)---- ► rc(v,rc(w,x**)),
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where the bottom map is completely isometric and the vertical maps are completely 

isometric injections by [10, Proposition 5.2]. We need to  show the top map

$  : r c(W  ® V, X )  —► TC(V, r c(W, X )) determined by $((p)(v)(w) =  p(w  <S> v )

is onto.

For any ip G TC(V, r c(W, X )), by the argument in the first paragraph of this proof,
h

there exists a map cp G r c(W<g> V, X**) such tha t p(v)(w) = tp(w<g>v). Due to the fact
h h

tha t W  <8> V  is dense in W  <8> V, p  is valued in X ,  and hence it is in r c(W <S> V, X ) .  □

Let V  and W  be operator spaces, we say tha t a linear map <p : V  —* W  factors 

through row H ilbert space if there is a Hilbert space H  and a commutative 

diagram of completely bounded maps

Hr

V  — »• w.

Let rr(V, W ) be the corresponding operator space. Then we have the following result

(v® w y  ^ r r{v,w*),

and

Tr(v  4 w), X ) *  r r (v, r r (w , x)).
The proofs are similar to the corresponding parts of TC(V, W ). In particular, we have 

now the identification

rr(v;vr) ^ r c{w,v*).
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CHAPTER 3

Extended and Normal Haagerup Tensor Products

Based on the Haagerup tensor product, two more operator space tensor products 

are introduced -  the extended and normal Haagerup tensor products. These two 

tensor products are not usual tensor products any more in the sense tha t they are 

not norm closures of the correponding algebraic tensor products. However, due to 

the self-duality of the Haagerup tensor product, they have some nice properties and 

both have the Haagerup tensor product as certain weak*-dense subspace. Most of 

results in the chapter can be found in [12]. We start with the general theory of infinite 

matrices, which is a bridge between mapping spaces and matrix spaces.

3.1. Infinite m atrices

Given an operator space V, and index sets I  and J , we let M itj(V )  denote the 

vector space of matrices F  = [vy]i€/ j€ j ,  for which finite submatrices are uniformly 

bounded in norm, i.e., sup 1111 < oo, where the supremum is taken over all finite
F'

submatrices F' of F.

As usual, we denote M jtj(V )  by M j(V ). It can be seen tha t, as linear spaces, 

M jtj  can be identified with B (l2(J ) ,l2( I )), and in particular, M j = M j(C ) can be 

identified with B (l2(J)) as linear spaces.

In fact, suppose {ej} and {/*} are orthonormal bases of l2(J) and I2(I), respec­

tively. We define a linear map <p : M ^ j  —► B (l2(J ) ,l2( I )) by (ip(B)ej\fi) = bij, where 

B  =  [bij] €  M i'j. Obviously, ip is one-one.

For each b € B (l2(J ) ,l2(I)), let B  =  [6y]»e/jgj, where =  (bej\fi). We want to 

show B  6 M itj.

Suppose S  and T  axe finite subsets of I  and J , respectively. Let B S,T denote the 

5  x T  submatrix of B. Then

||B s , t || =  sup{||Bs,rQ;|| : a  €  CT and ||c>;|| <  1}
24
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3.1. INFINITE MATRICES 25

=  su p { (JS ^ a |B s,Ta )1̂ 2 : a  E CT and Y ,  \aj\2 <  1}
j €T

=  sup{ Y  M / ) )  : a € C T and Y  lQil2 £  h  }>
\ i e S  j € T  J j e T

where we use the fact tha t B S,T is a finite matrix and B s,ra  € C5.

On the other hand, we have

H&H -  sup{|j6̂ 11 : £ € l2(J) and ||£|| <  1, }

= suplf^d^bcjejl/i)!2)̂  :£ = J2c3ei and INI2 < 1}
\ « e /  j e J  J  j e J  j e J

= sup{(5:(l Y  cA bej \ f i ) \2) ]  : Z = Y  ci ei and Y  Ill'll2 -  ^
V ie /  jeJ  J  j e J  j € J

=  sup{ f e d  Y  CA / ) )  : £ =  Y  ci ei and Y  Ill'll2 - * } -
\ i e i  j e J  J j e J  j e J

Clearly, sup ||Bs ,r || =  ||6|| <  oo, and hence B  € M /j.  Obviously, b = <p{B).
SCI,TCJ

Therefore, tp : M ^j —► B (l2(J ) ,l2(I)) is onto.

Now we can define the operator space matrix norm on M /,j by using the above 

linear space identification. So far, M jtj  is an operator space with the norm

11*11=  sup ||F%
F'

where F ' is taken over all finite submatries of F. In particular, if we order the set of

finite submatries of F  by inclusion, then it is a directed set and

11*11 =  fim ||F '||.

Let a 6 M IfK,b  €  M k ,l , and c € MLtJ. Then abc makes sense by the above 

identification. For a subset S  C K ,  we let Pk (S) : l2(K )  —> l2(S) be the orthogonal 

projection. Similarly, we can define P l ( T ) : l2(L) —> l2(T) for T  C L. Now we restrict 

to finite subsets F  C K  and G C L, and we may regard {Pk (F )}f  and {Pl (G)}g as 

nets of projections, where finite sets are ordered by inclusion relationship. Now both 

nets converge to the identity operator in the strong operator topology.
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R e m a r k  3.1.1. As an infinite matrix, P k ( F ) has its (i , j ) th  entry (Px(F))ij = 

(P i((F )fi\fj), where {fi}ieK and {/t}ieF are the orthonormal bases o f l2(K ) and 

l2(F), respectively. I f  i G F, then P x{F )fi = fi. Otherwise, P n (F )fi = 0. So,

Now, aPK{F)bPi{G)c is a well-defined operator in B(l2(J) , l2(I)).  Note tha t all 

o, Pk (F), b, Pl (G), c  axe bounded, so, aPK{F)bPi{G)c —► abc in SOT when Pk (F) 

id and Pl (G) S—̂  id. Thus

fceF.teG

i.e., we can express the entry of an infinite matrix product as a limit of finite sums. 

This fact will be used in the sequel when we consider an infinite matrix product.

If H  and K  are Hilbert spaces with bases (ej)je j  and then H  =  B(l2(J))

which is important in the later discussion.

Given operator spaces V and W,  if V  and W  are dual operator spaces, then we 

let C B a{V, W)  be the space of weak*-weak* continuous maps in CB(V,  W).

We already knew tha t CB(V, Mn ) =  Mn(V*) as operator spaces. In fact, as shown 

in the following, it has a more general version

To see this, we define a linear map (p : —* CB(V, M jtj)  by (p(F)(v) =

[Fjj(u)] for each F  — [Fy] € M itj(V*). Then tha t p  is one-one and onto can be 

similarly proved as we did for M ^ j = B(l2(J) , l2(I)).  It remains to show tha t 

tp(F)(v) €  M /,j and <p(F) G CB(V, M itj). Actually, for v G V,

where F ' is a finite submatrix of F, F ' G Mn(V*) for some n  G N, and hence

p(F ')  G CBiy ,  Mn) Mn(V*). In particular, ||<?(F)|U =  ||F || <  oo, i.e., <p(F) G 

C B (V ,M j,j ).

(P x(F ))i j = {
Sij i f i G F

0 otherwise

and K  =  B(l2(I)).  So, we may identify B( H, K)  with Afyj, i.e., B( H, K)  =  Mj tj,

= sup||v>(F')(u)|| < supj|^(F')|U||v||
F> F'

=  s u p | |F '| | | f y H ||F | | |H |< o o ,
F'
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3.2. EXTENDED HAAGERUP TENSOR PRODUCT 27

Using this linear space (in fact, Banach space) identification, we can define the 

operator space matrix norm on M i j (V*) and becomes an  operator space.

Since M ItJ =  B (l2(J ) ,l2(I)) and B (l2(J ) ,l2( I )) is an dual operator space (cf. [2, 

Theorem 1.4.5]), C B a{V* ,M j j ) makes sense.

P r o p o s i t io n  3.1.2. Let V  be an operator space. Then we have a natural linear 

space identification C B a(V*, M ^j) = induced byCB(V*, M i j ) = M jtj(V**).

PROOF. Let p  € C B a(V*, Then there exists a m atrix F  = [Fy] €

such tha t p ( f )  = [Fy(/)] for all /  €  V*. By the hypothesis tha t p  is 

weak*-weak* continuous, Fy is continuous in the weak*-topology on V* for all i , j .  

It follows tha t Fij 6 V, and thus F = [Fy] 6 M jtj(V ).

Conversely, let F  =  [uy] e  M ^ j(V )  and <p(f) = [/(% )] ( /  € V*). Then <p € 

CB(V*, Now we want to show tha t p  :V* M itj  is weak*-weak* continuous, 

which is equivalent to showing tha t Pij o p  : V* —* C is weak*-continuous (i.e., 

Pij o ip €  V) for all (i, j )  € I  x J, where Pitj : M j j  —> C is the canonical ( i , j ) th  

projection. Note th a t (Ptj  o <p)(f) — f(v i j) =  ( % ,/ ) .  So, Pij o ip =  Vij € V  for all 

{i, j )  € I  x J. □

3.2. E x ten d ed  H aag eru p  te n so r  p ro d u c t

Recall we used M B ( \ \  x V2, W ) to denote the linear space of all multiplicatively 

bounded bilinear maps <p : Vj x V2 —̂► W  with the norm || • ||mf, and we have the 

operator space identification M B (V i x V2, W ) =  C B(V ] ® V2, W ). If Vj, V2, and W  

are dual operator spaces, then we say p  € M B (V i x V2, W ) is normal if it is weak*- 

weak* continuous in each variable. Let M B a( \ \  x V2,W )  be the operator subspace 

of M B (V i x V2,W )  consisting of normal maps in M B (V i x V2, W ).
eh

The ex ten d ed  H aag eru p  te n so r  p ro d u c t V] ® V2 of Vi and V2 is defined as 

the space of all normal multiplicatively bounded bilinear functionals u : Vj* x V̂* —> C 

and we use (Vj* ® Vj")* to  denote the subspace of C B (V {  (g> V2*, C) (=  (V{ <8> V2*)*) 

corresponding to M B a(Vj* x V2*, C), i.e.,

Pi I  V2 = (P ; ® V2*)Z = M B a{V* x V2*, C).
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eh
We use || • m  to denote the operator space matrix norm on Vi <S> V2 induced by the 

identification Mn{M B a{V* x V*, C)) =  M B a{V* x V*, Mn).

Similar to the decomposition theorem as stated in Theorem 2.4.2, we have the 

following version of decomposition theorem for multilinear maps.

THEOREM 3.2.1. Let Vi, ■ • • , Vp be operator spaces. Then a multilinear map

</>:Vi x . . - x V p ^  B (H P,H 0),

is multiplicatively contractive i f  and only i f  there exist Hilbert spaces H i, ■ ■ • , Hp-1 

and complete contractions <Pk '■ Vk —+ B(Hk, H k-i) such that

■ ■ ■ , Vp) =  <Pl(Vi) • ■ ■ ipp(vp)

and

ll^llmb =  H^l11c6 ■ ■ ■ ll̂ pllcfc- 

I f  each Vk is a dual space and ip is normal, then we may assume that each ifik is 

weak*-continuous.

For Banach spaces X  and Y , any bounded linear map T  : X  —* Y* has a unique 

weak*-weak* continuous extension T  : X** —> Y* with ||T|| =  ||T ||. In fact, T  is 

given by T  — n* o T**, where n : Y  —> Y** is the canonical embedding. According 

to Blecher-Le Merdy [2, 1.4.8], this statement has its operator space version. That 

is, each completely bounded linear map T  : X  —y Y* has a unique weak*-weak* 

continuous extension T  : X** —> Y* such that ||T’||cfc =  ||T ||ci). In the following, we 

show tha t there is a corresponding extension theorem for bilinear maps.

P r o p o s i t io n  3.2.2. Let Vi, Vi,and W  be operator spaces, and ip : Vi x Vi —*■ W* a 

multiplicatively bounded bilinear map. Then <p admits a (necessarily unique) normal 

extension ip : Vi** x Vi** —» W *. This extension is multiplicatively bounded and 

ll l̂lmft =  Ĥ llmb-

PROOF. We may assume that W* is a weak*-closed subspace of some B (H )  (cf. [2, 

Lemma 1.4.7]). By Theorem 3.2.1, there exist a Hilbert space L  and two completely 

bounded maps tpi : Vi —» B (L ,H )  and t/>2 : Vi —> B (H ,L ) such tha t <p{vi,u 2) =  

ipi(vi)ip2{v2) for all vi €  Vi, v2 €  Vi, and ||(/>||m6 =  ||^ i|U I|^IU - By the argument
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preceding this proposition, and ^  admit weak*-weak* continuous extensions '■ 

V r  -  B (L ,H )  and J 2 : V2** -> B (H ,L )  with | |^ |U  =  | |^ |U  (* =  1,2). We define 

<p : Vf* x Vf* —► B (# )  by <p(v\,v2) = (wl € Vj** and 5  ̂ € V2**). Since

||£||m& <  HV’ilUIIV^IU =  IhMllhfell =  IMImb, we have ||£||m6 =  Finally, $  is

valued in W*, since tp is valued in W *, Vi x V2 is weak*-dense in Vj** x V2*, and <p is 

normal. □

Now Let Vi,V2, and W  be operator spaces. From Proposition 3.2.2, it follows 

immediately that

M B(V! x V2, W*) = MB°{V** x V2**, W*).

In particular,

(Vr ®  v2y = (vr ®  Vj,**)*.

By the definition of the extended Haagerup tensor product, we have the operator 

space identification

(Vi ®  v2y s  v* ® y 2*.

P r o p o s i t io n  3.2.3. Let Vi and V2 be operator spaces. Then the inclusion map
h  eh

Vi <g> V2 —;► Vi ® V2 is a completely isometric injection.

P r o o f . We have the following commutative diagram

h h
y * * ® v 2Vi ® v2 — ► v r® v r

^ ® v2  ► (v; 4 v2*)*,
in which the top and right mappings are complete isometries by the injectivity and 

self-duality of the Haargerup tensor product. The bottom mapping is the completely 

isometric embedding owing to the definition of the extended Haargerup tensor prod­

uct. So, the left map is a completely isometric injection. □

eh
Lem m a  3.2.4. Let V\ and V2 be operator spaces. Then each u G M„(V i ® V2) has 

a representation o f the form u — vx Q v2, where V\ G Mnj(V \)  and v2 G M j>n(V2). 

In  particular, i f  ||u ||e/, <  I, then we can choose V\ and v2 such that u = v\ © v2 and

IM U =  IM IIM I, IM I < 1 and ||u2|| <  1.
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PROOF. Apparently, it suffices to show the last part of the statements. Suppose 

IM|e/i <  1. By Thereom 3.2.1 and the identifications

Mn{V1t v 2) Mn((V* ® V*)l) C M n{CB{V? ® V£,C))

=  CB{V* 4  V*, Mn) S* M B(V*  x 1/;, Mn),

there exist Hi and contractions V\ : —»• B (H i,C n) — Mn>j  and v2 : V2 —>

B (C n,H i) = Mj,n, i.e., vi e  C B °{V ^M n,j) = Mn,j(Vx) and v2 €  CB*(V?, Mj,n) = 

Mj,n(V2), such tha t u ( / i , / 2) =  Ui(/i)u2( /2) and |M U  =  ||u |U  =  HuilUIM U =  

||ui||||u2||. In this case, we use the notation u — v\ 0  v2. □

If Vi e  Mn}J(Vi) and v2 € M ji„(V2), then ViOv2 can be written into vik ® vki
UeJ

h eh
According to Proposition 3.2.3, Vi<S>V2 can be treated as a  subspace of V\ ® V2. 

The following lemma shows tha t in this case, the index set J  in Lemma 3.2.4 can be 

chosen to be the set N of natural numbers.

h
Lemma 3.2.5. Lei V  and W  be operator spaces. Then each u €  V  <g> W  with 

IMU < 1 has a representation u =  v Q w  with ||v|| < 1, ||w|| < 1 and |MU =  IMUMH, 

where v G v2 € Mpj,i(VP).

h
PROOF. Suppose ||u|U < 1. Since V  <8> W  is norm dense in V  ® W , there ex-

m
ists ui — v\ ® w \ € V  <g> W  such tha t ||u — «i|| <  *~|uNh with |M |U  <  ||u||/>- 

fc=i
Let vi — (v*,••• :vn J  an(l Wi =  (w},--- ,w* )*.' Then Ui =  Vi © wy and Vi,wi 

can be chosen such tha t |M || <  ||it||^2 and |Mi|| <  ||u ||^ 2. For u — u\ € V  <S> W ,
”2 i—ii iithere exists u2 — w \ € V  ® W  such that ||u — U\ — u2\\h < —

fc=ni+l

with ||u2|U < Let v2 = (t£l+1,--- ,v 22) and w2 = (w*l+1, - "  Then

u2 — v2 0  w2 and v2,w 2 are chosen such tha t ||u2|| <  j  and ||u;2|| <

( 1_|| II \  nm
— j . Continuing this process, for each m  G N, we can find um = ^

'  fc=nm_ i+ l

w™ € V  ® W  such that ||u -  ui -  ■ ■ ■ -  um|| < 1~Mh with ||um||/i < 1 jJI-l'1 •

Let vm =  , < J  and wm =  (tc™m_1+1,--- Then um =  vm ©

wm, ||um|| < 7 and |Mm|| < ^1ji_ ljh j  '  . Let v =  (vu v2,v3, ■ ■ •) and

w =  (wi,w2,w2, • • •) . Then u — v © w is uniformly convergent in norm. Now 

IMI = y j f l M 2 < \ /N U  +  lz? A + izSik +  --- =  1, i-e-, Hull < 1. Similarly, 

IMII < l . m_1 □
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Let u  6  M„(Vi 0  V2) C MB(Vf  x V̂ *, Mn) and u  =  v i &  v2, where Vi G MniJ(Vi) 

and G Mj!n(V2). For all / i  G Vi* and f 2 G V̂ *,

( / l ® / 2 , u )  =  < /i,V i)(/2,U 2>

-- lim
F J ]  h { vlk)h(v lj)

Jc€F

where the limit is taken over finite subsets F  of J . We let v f  b e  the submatrix of 

Vi (i =  1,2) corresponding to F . Then v f  <3 v f  € M B (V f x  V f, M n) and

</i ® f i i  u) =  lim</i, u f ) O ( /2, v[ ) =  lim (/i <g> / 2, v f  © v f ).
F F

Thus, llitllmft < lim ||v f © v f ||m6.
F

On the other hand, v f  © v f  G Mn(V f 0 /, V?.), So,

IIv f  © v f |U =  ||v f © v f ||h <  ||v f ||||v f || <  M M .

Then ||u ||e/i =  IM|mi> < lim ||v f © v f\\mb <  ll^illll^ll) and hence th e  lemma below is
F

immediate by Lemma 3.2.4.

eh
Lemma 3.2.6. Let Vi and V2 be operator spaces. Then for each u G Mn(V\  0  V2), 

we have

IM U  = in f{ ||v i||||v2||},

where the infimum is taken over all the decompositions of the form  u =  v\ © v2, v\ G 

i) ,v 2 G Mj^n(V2), and J  is any index set.

R em ark  3.2.7. By the argument immediately previous to Lemma 3.2.6, we get
eh

fo r each u G Vi 0  V2,
F F ^  F 

U  =  V {  ©  v £  —► U

in the weak*-topology determined by V f  0 V f . B u tv f  Q v f  G V\®V2. So, the algebraic
eh

tensor product V i® V 2 is weak*-dense m Vi 0  V2.

Let ipi : Vi —► Wi and ip2 : V2 —* W2 be completely bounded maps. Then the 

completely bounded map

: ( v f ® v A
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eh eh
sends V\ 0  V2 to Wi 0  W2 since and ip2 are weak*-weak* continuous. Note that 

h . .
(93* 0  <̂2)* is the unique weak*-weak* continuous extension of the algebraic tensor 

product ip\ <g> (p2 : Vi 0  V2 —■► W\ 0  W2, where the algebraic tensor product X  ® Y
eh , — eh

is embedded into X  0  Y  via x ® y * -+ x < 8 y b y  Proposition 3.2.3. We let tpx 0  <p2 

denote the restriction of 0  ^ )* to  V\ <g> V2. We show that the injectivity of 0  in

the following.

T h e o r e m  3.2.8. Let Vi,V2, W \, and W2 be operator spaces. I f  ipk '■ Vk —* Wfc (k  =  

1, 2) are complete isometries (resp. contractions), then

eh eh eh
<Pi 0  <P2 ■ Vj 0  V2 —*■ ® W2

is a complete isometry (resp. contraction).

PROOF. Suppose (k =  1,2) axe complete isometries. We have the following 

commutative diagram

V iS v i  ------ ► (Vi*®V2*)*

w1t w 2 ---- ► (Wy&WJ)*,
in which the top and bottom mappings axe completely isometric inclusions by the 

definition of the extended Haagerup tensor product. By Effros-Ruan [11, Corollary 

4.1.9], (p*k (k = 1,2) are complete quotient maps. Then <p\(gnp*2 : W (0  W2* —> V*0 V f

is also a complete quotient map, since the Haagerup tensor product is projective, and
h

hence 0  ip2)* is a complete isometry. That means the right column mapping is 

complete isometry, so is the left column mapping.
h

If ipk (k — 1,2) axe complete contractions, then so is 0  <p2)* by Effros-Ruan 

[11, Proposition 3.2.2] and the property of Haagerup tensor product. Therefore, the 

left column mapping is also a complete contraction. □

Lem m a 3.2.9. let Vi,V2,W i, and W2 be operator spaces. I f  <pk '■ Vk —* Wk are 

completely bounded (k  =  1,2), then for any index set J , Vi 6 M 1)j(V 1), and v2 €  

Mj, 1(^2), we have

(<Pi ® <pz)(vi 0  v2) =  ^ (i1,J)(vi) O ip{2J,1){v2).
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P r o o f .  By Remark 3.2.7, we have v\ 0  v2 =  lim v f  © v f ,  where v f  E 1),
FCJ

v f  E 2), and F  C J  is finite. Then

eh eh „ . _
(v?i 0  ^ 2;(vi O v2) =  lim(^i 0  <£2X 1̂ O v£)

= lim</?i1,F)(vf) © <̂ F,1)(v f) =  ^ ’̂ (vi) 0  p f ' l)(v2).
F

□

T h e o r e m  3.2.10. Let Vi and V2 be operator spaces. Then we have a completely 

isometric inclusion

v f  0  v f  ^  (vi I  v 2y .

P r o o f .  Suppose <p E (Pi © V2)* (=  VJ"® V̂ *). Then by Theorem 2.4.2, there exist 

a Hilbert space H  and completely bounded maps ipi : V2 —■* B (H , C) =  Hr and : 

Pi -> B (C ,H ) = Hc such that <p(vi ® v2) =  ^ ( v i ) ^ ^ )  and IM U  =  H^ilUII^IU- 

Then composing the map

® ih  ■ Vi. ® V2 B (tf, C) ® B(C, ff)

and the multiplication map

r o :B ( C , t f ) ® B ( t f ,C ) - » C

given by a ® b »->■ afc gives a completely bounded map

^  eh eh
ip =  m  o (V>! ® ^ 2) : Vi 0  P2 —’- C,

since m is contractive. So, we get an extension ip of <p and \[ip\\a> > IM|c&- On the 

other hand,

II^IU < HmiidllH^i®^!! < IHUIIV'ilUIIV’alU 

< HiMUlliMU = IM U,

where the second step follows from Theorem 3.2.8. Therefore, |M U  =  |MU> i.e.,
h  eh

(Pi ® V2)* —*■ (14 ® V2)*, <p •-» ip, is isometric.

Let n  € N. Then,M n((Vi ® P2)*) =  CB(Pj ® P2,M n) and Mn -  B(C")- By
/»

the decomposition theorem for operators in CB(V\ ® V2, Mn) and the same argument
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as above, we see th a t the map [pij] [y%] is isometric. Therefore, the embedding
h eh ^

(Vi 0  V2)* —> (Vi 0  V2)*, v51— V7, is completely isometric. □

3.3. N orm al H aag eru p  te n so r  p ro d u c t 

Given dual operator spaces and V2*, the n o rm al H aag e ru p  te n so r p ro d u c t
h

of Vj* and V2 is defined as the operator space dual of (V* 0  V2*)* and denoted by
ah

V* 0  V2 . That is to  say

v r ® ^ *  =  ((v1* 0 v2* ) x

According to the definition of extended Haagerup tensor product, we have the 

complete isometry

v ;  ® v ;  = (Vx 0 v2y.

From this identification and self-duality of the extended Haagerup tensor product, 

we conclude immediately that

v ;  t v* w vx* 0 v2*

is a complete isometry, and hence

V* 0  V* ^  V* 0  V2*

is also a complete isometric embedding. In fact, we can say more about this embed­

ding.
h

PROPOSITION 3.3.1. Let Vi and V2 be operator spaces. Then Vj* 0  V2 is dense in
ah eh

V *0  V2* in the weak*-topology determined by V10V2 and hence V*<S)V2 is weak*-dense
ah

in V{ 0  V2 .
eh h

PROOF. Let us consider the inclusion map i : V  0  V2 —> (V{ 0  V2 y .  Then
h  eh ah

ker(i) — {0} and hence i*{(V* 0  V2*)**) is weak*-dense in (Vx 0  V2)* =  V* 0  V2*. 

But Vj* 0  V2 is weak*-dense in (Vj* 0  V2*)‘*. Therefore, V{ 0  V2* is weak*-dense in 

v ;  0  V2*. □

By the definition of the extended Haagerup tensor product and the normal Haagerup
ah eh

tensor product, we have V,* 0  V2 = (Vi 0  V2)* and hence

CB°(V*  0  V2*, C) “  Vi 0  V2 “  M B°(V*  x V2*, C).
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We show in the following that the above C can be replaced by any dual operator 

space.

THEOREM 3.3.2. Let VJ, V2, and W  be operator spaces. Then we have a complete 

isometry

C B °(V {  ® VJ*, W*) ^  M B a(V!* x V.2*, W*).

P r o o f .  Let <p €  M B a(V{ x VJ*, VF*) and w 6  W  C VF**. Then w o ip : VJ* x 

VJ* —► C is normal and multiplicatively bounded since w is weak*-continuous and p  is
eh

multiplicatively bounded, and hence it is an element of Vi (2) VJ. Then we may define 

a complete bounded map

eh
p* : W  —» VJ <g> VJ, w i—► w o p,

since ||<p*||c& <  IMImb-
ah

Let p ah = (p*)*- Then p ah : VJ* <8> VJ* —► VF* is weak*-weak* continuous and 

completely bounded with||<Arh|U =  II^IU  < IMLb- 

For all /1 6 VJ*, f 2 € VJ* and w €  VF,

Pahi f l  ® f 2) {w)  =  . (/1 ® f 2 ) ( p* ( w) )  =  ( f i  ® / 2)(ty O <p)

=  ( w o  p ) ( f u  / 2) =  v>(/i, / 2)M -

ah
So, is the unique weak-extension of on Vi* ® satisfying <pah(fi ® / 2) =  

p t f u h ) -  In particular, we have |M |mb < \ \p a h \\cb- So, \ \p a h \\cb =  IMImb- Therefore,
ah

M B a{V* x VJ*, VF*) —*• C B a(V* ® VJ*, W*), p  p , is an isometry.
/»

For the surjectivity of this map, we can restrict p„h to VJ* <S> VJ* and denote the

restricted map by p ah\h- Then p ah\h € C B a( \J* <8> VJ*, VF*) =  M B a( \J* x VJ*,VF*)
® ®

by the property of Haagerup tensor product.

For each n  €  N, we have the commutative diagram

Mn(C B a(V* ® VJ*, VF*)) ------ ► M n(M B a(Vi x VJ*, VF*))

C £ CT(F;® VJ*,Tn(VF)*) ------ ► M B a(V{ x VJ*,Tn(VF)*),

where the bottom and the two vertical maps are isometric and hence so is the top
oh

map. Therefore, C B a(XJ* ® VJ*, VF*) =  M B cr( \J* x VJ*,VF*) as operator spaces. □
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<rh
If Vi* and V2 are replaced by V?*' and V£*, respectively, then V** <8> V2* — 

. So, C B °{V “ ® V2**,W*) = C B a j  = .CB{VX ®

V2, W*) and M B a(V{* x V2**, W*) =  M B(V\ x V2, W*). Then the above identifica­

tion is exactly Proposition 2.2.2.
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CHAPTER 4 

The Second Dual of a Banach Algebra

In this chapter, we start with a few facts and characterizations concerning Arens 

regularity and topological centers of Banach algebras. In Section 4.4, we prove some 

new results on Arens products. The second dual of a completely contractive Banach 

algebra is briefly discussed in Section 4.5.

4.1. Prelim inaries

Let X ,Y ,  and Z  be normed spaces over C and m  a bounded bilinear map from 

X  x Y  into Z. We define two adjoint maps of m, namely m* : Z* x  X  —► Y* and 

m„ : Y  x Z* —» X*  as follows.

For /  € Z*, x  € X ,  and y € Y , let

™ *(f,x){y) = f(m (x ,y )) .  

fn * (y j){x )  = f(m (y ,x )) .

In particular, if X  — Y  — Z  and m  : X  x  X  —> X ,  then we have

m* : X* x  X  X *, 

m *• : X** x  X* -►X *, 

m*** : X** x X ** -* X ” .

It can be seen tha t in general m*** is a natural extension of m. Obviously, we have 

the counterparts of m* and another natural extension of m, namely m***.

D e f in i t io n  4.1.1. Let A  be a Banach algebra and let m  : A  x  A  —► A be the 

multiplication on A . Then the first Arens product on A** is m***, denoted by *i. The 

second Arens product on A** is m**„, denoted by *2.
37
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More precisely, if a G A , f  G A*,F ,G  G A**, then /  *1 a, G  *1 /  € 

F  *1 G  G A** are defined as follows.

/  a(b) = f(ab) (b G A). 

G * i f ( a )  =  G ( f  *! a). 

F  *i G( f )  =  F(G  *i / ) .

Similarly, a *2 f ,  f  *2 F  G A* and F  *2 G e  A** are defined as follows.

a *2 f(b) = f{ba) (b e  A), 

f  *2 F(a) = F ( a * 2 f ) .  

F  *2 G( f )  =  G ( f  *2 F).

4.2. Characterizations o f Arens regularity

The main references for this section are Arens [1] and Duncan-Hosseiniun [7]. By 

the definition of the Arens products, the following lemma is immediate.

Lem m a 4.2.1. The first (resp. second) Arens product is weak*-weak* continuous 

on the left (resp. right). That is,

(a) i f  Fa —> F  in the weak*- topology, then Fa *1 G —> F  G in the weak*- 

topology;

(b) i f  Gg —» G in the weak*- topology, then F  *2 Gp —> F  *2 G in the weak*- 

topology.

Lem m a 4.2.2. The two Arens products agree i f  one of the factors is in A. That

is, i f  G e  A  and F  G A**, then F  * \G  — F  *2 G and G  *1 F  =  G *2 F.

P r o o f .  Let -k : A —> A** be the canonical embedding of A  into A**. Then we

can get the following equalities.

/  *j a = f  *2 v(a).  (1)

( f * 2 F ) * i a = ( f * 2 F ) * 2n(a). (2)

38

A* and
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F  *17T(a) = F  *2 7r(a). (3)

And

a *2 f  =  7r(a) *i /• 

a *2 (-F *i / )  =  7r(a) *i (F *i / ) .  

7r(a) *i F  = 7r(a) *2 -F-

(4)

(5)

(6)

Obviously, (1) and (4) hold. (2) and (5) follows from (1) and (4), respectively.

For (3), let /  E A*. Then [F (7r(a))](/) =  F(n(a ) *1 / )  =  F (a *2 f ) by (4). But 

[F *2 n(a)](f) =  tt(a )( / *2 F ) •= ( /  *2  ■P’)(a) =  *2  /)■ Therefore, (3) is true.

D e f in i t io n  4.2.3. Let A  be a Banach algebra. A  is called Arens regular i f  the 

two Arens products agree on A**.

Let A  be a commutative Banach algebra. Then for F  €  A **, /  €  A* and a 6 

A , f * i a  = a * 2 f  and thus F  *1 f  = f  *2 F.  So, F  *1 G — G *2 F  for all F, G €  A**. 

Immediately, we have the following

P r o p o s i t io n  4.2.4. Let A  be a commutative Banach algebra. Then A** is com­

mutative under either Arens product i f  and only i f  A  is Arens regular.

T h e o r e m  4.2.5. Let A  be a Banach algebra. Then the following statements are 

equivalent.

(1) A is Arens regular.

(2) For each F  6 A**, the mapping G 1—> F  *1 G is weak*-continuous.

(3) For each F  €. A**, the mapping G 1—► G *2 F  is weak*-continuous.

(4) For each f  E  A*, the mapping b f  * ib  is weakly compact.

(5) For each f  € A*, the mapping b i-» b *2 /  is weakly compact.

(6) Given bounded sequences {an}, {bm} in A  and f  E  A*, the iterated limits 

lim lim /(an5m) and lim lim f ( a nbm) are equal when they both exist.
n  m  m  n

PROOF. (1) =$> (2). Let A  be Arens regular and {Gp} be a net in A** which is 

weak*-convergent to G. Then for f  E  A*,

Similarly, (6) is true. □

F n G ( f )  -  F * 2 G( f )  = G ( f * 2 F )  = \ imG0( f * 2 F )
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=  lim F  *2 Gp(f)  = lim F  *i G@(f).

(2) o  (1). Suppose (2) holds and let F,G  e  A**. Since A  is weak*-dense in A**, 

there exists a net {Gp}p in A  weak*-convergent to  G in the weak*-topology. So, by 

Lemma 4.2.2,

F  *! G =  lim F  *i Gp =  lim F  *2 Gp = F  *2 G.

It follows that A  is Arens regular.

(1) O  (3). Similar to  (1) O  (2).

(1) => (4). Let A  be Arens regular and /  € A*. Let Tf : A  —> A* be defined by 

a f  *i a and n : A* —> A*** the canonical embedding of A* into A***. Then

TJ*(F)(G) -  F(T*f (G)) = F ( G * l f )  = F * 1 G( f )  

= F  *2 G(f )  — G{ f  *2 F)  =  7r ( /  *2 F)(G).

So, Tj*{A**) C it (A*). By Dunford-Schwartz [8, Theorem VI. 4.2], Tj  is weakly 

compact.

(4) (2). Suppose Tf  : A  —> A*, b f  b is weakly compact for all /  €  A*.

Then TJ : A** —> A*, F  t-* F  *i f .  Let n : A* —► A*** be the canonical embedding. 

By [8, Theorem VI. 4.2], for each F  €  A**, there exists an /  € A* such that

F(T}(G)) = (Tf*(F))(G) = (tr(/))(G ) =  G(f ) .

Now let {Gp} be weak*- convergent to G. Then Tf(Gp)  is weakly convergent 

to TJ(G).  So, for any F  e  A**,F{Gp *i ( /))  =  F(TJ(Gp))  weak*-converges to 

F(G *i f )  = F  *i G(f )  in the weak*-topology. i.e., the mapping G n  F  *i G is 

weak*-weak* continuous.

(4) ^  (6) and (5) O  (6). It follows from the Grothendieck’s criterion for weakly 

compactness (cf. [13, Theorem 3.1]). □

COROLLARY 4.2.6. Let A  be an Arens regular Banach algebra, B  a closed subal­

gebra of A  and J  a closed bi-idecd of A. Then B  and A / J  are Arens regular.

Before proving this corollary, we give two useful lemmas.
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Lem m a 4.2.7. Let A \ and A 2 be Banach algebras. Let T  be a continuous homo­

morphism of A \ into A 2. Then T** is a homomorphism of A** with the first (resp. 

second) Arens product into A\* with the first (resp. second) Arens product.

The proof of this lemma can be found in [5].

Lem m a 4.2.8. Let A  and B  be Banach algebras. I f  A  is Arens regular and h : 

A  —> B  is a continuous homomorphism of A  onto B , then B  is Arens regular.

P r o o f .  First, we show h** is onto. Since h is continuous linear mapping from A  

onto B, B  =  h(A)  =  fcer(h*)-L (cf. [8, Lemma VI. 2.8]) and then ker{h*) — {0}, i.e., 

h* is one-one continuous linear mapping. By Dunford-Schwartz [8, Theorem VI. 6.2], 

we also know tha t if the range of h* is closed, then the range of h** is fcer(/i*)-L =  B**. 

But the range of h* is closed if and only if the range of h is closed. Therefore, h** is 

onto.

Now we show tha t B  is Arens regular. By Lemma 4.2.7,

h” (F) *! h**(G) = h**(F *! G) = h**(F *2 G) =  h**{F) *2 h**(G)

for all F, G in B**. But as we proved above, the range of h** is exactly B**, Thus B  

is Arens regular. □

P roof o f Corollary 4.2.6. Let T  be the inclusion map of B  into A. Then it is 

a continuous homomorphism of B  into A. By Lemma 4.2.7, for all F,G  € B**,

T**(F *j G) = T**(F) *j T**(G) =  T**(F) *2 T**{G) =  T**(F *2 G).

Since T** is one-one, F  G =  F  *2 G  for all F ,G  € B**. So, B  is Arens regular.

Since the canonical mapping q : A  —► A / J  is a  continuous homomorphism of A  

onto A / J  and A  is Arens regular, A / J  is Arens regular by Lemma 4.2.8. □

In the sequel, we always use (A**, *x) (resp. (A**, *2)) to  denote the second dual 

of A  with the first (resp. second) Arens product.

P r o p o s i t io n  4.2.9. Let A  be a Banach algebra. Then A  has a bounded right 

(resp. left) approximate identity i f  and only i f  (A**,*i) (resp. (A**, *2)) has a right 

(resp. left) identity.
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P r o o f .  Suppose A  has a bounded right approximate identity {eA} and ||eA|| <  M  

for all A. Since the bounded ball in A** is weak*-compact, there exists a subnet {eA/3} 

of {eA} weak*-convergenet to a point E  in A**. We show tha t E  is the right identity 

of (A” , *1), i.e., for all f  e  A*, F  *j E( f )  = F( f ) .  But F  E ( f )  = F ( E  *1 / ) ,  it 

suffice to  show E  *1 f  =  / .

In fact, for all a € A, E * i / ( a )  =  E ( f * i  a) =  lim exJ f * i  a) =  lim (/* i a)(eXp) =
Ap

lim f {aex ) =  /(lim  aeXp) -  /(a ) .
Ap A^

Conversely, suppose has a right identity E.  Then since the unit ball of

A  is weak*-dense in the unit ball of A**, there is a net {e>} in A  with ||e.\|| <  ||i£|| 

such tha t lime;, =  E  in the weak*-topology of A**.

Let f e  A*. Since F ( f )  = F * xE ( f )  = F ( E * i f )  holds for all F  6 A**,f =  E * i f .  

For all x  € A  and /  € A*, we have

f ( x )  =  E * i  f ( x ) =  E ( f  *i x) = lim ex( f  *i x)

= lim /(a;eA) =  /(lim x eA).'
A A

Hence x  — lim xex in the weak topology of A.  Then there exists a net {a7} such tha t 

each a7 is a convex combination of ex and ||xa7 — x|| —► 0 for all x  6 A.  Therefore, A  

has a right bounded approximate identity. □

4.3. Topological centers

Although Arens regular Banach algebras are nice, unfortunately, many important 

Banach algebras are not Arens regular. For example, the group algebra L\(G ) is 

never Arens regular unless G is finite. A natural question is how to describe the 

non-Arens regularity of a Banach algebra. As we will discuss, the topological center 

with respect to each Arens product is one of such measurements. The main reference 

for this section is [15].

DEFIN ITIO N  4.3.1. Let A be a Banach algebra. The topological centers of A** are 

defined as follows.

Zi(A**) = {F  G A** : G t—> F  *1 G is weak*-weak* continuous on A**}.

Z2{A**) — {G  €  A** : F  F  *2 G is weak*-weak* continuous on A**}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3. TOPOLOGICAL CENTERS 43

Clearly, A C Z 1 (~) Z2 C A**. Furthermore, Z\ = A** or Z2 — A** if and only if A  

is Arens regular.

Denote the algebraic center of A** with respect to the first (resp. second) Arens 

product by Ci(A**) (resp. C2(A**)). Then

Ci(AM) =  {F  G A** : F * iG  = G *i F  fo r  all G  G A **}

and

C2(A**) = {F  €  A** : F * 2 G = G *2 F  fo r  all G € A**}.

P ro p o s i t io n  4.3.2. CX{A**) C Zi(A**) and C2{A**) c  Z2(A**).

P R O O F . For any F  G Ci(A**), the mapping G i- f  F  * 1  G  is just the mapping 

G G * 1  F. But the latter is automatically weak*-weak* continuous on A**, so 

F  G Zi(A**).

Similarly, we can get the second inclusion. □

COROLLARY 4.3.3. I f  A is a commutative Banach algebra, then C\ — C2 =  Z\ =

Z2.

P r o o f .  We show Z\ = C\. By Proposition 4.3.2, it suffice to  show Zi C C\. Let 

Z{ = {F  G A** : F  *i G -  F  *2 G  ̂ for all G  G A**}.

Claim. Zi = Z'x. Clearly, Z[ C Zi. Conversely, for each G  G A**, there exists a 

net {Gq} in A such tha t Ga —*• G in the weak*-topology. For any F  G Zi, F * i Ga —* 

F  *i G in the weak*-topology. On the other hand, F  *i Ga — F  *2 Ga —* F  *2 G  in 

the weak*-topology. So, for all F  G Z\ and G  G A**, F  * iG  = F  *2 G.

By the argument immediate preceding to Proposition 4.2.4, Z[ C Ci, therefore,

Zi C Ci. The proof tha t Z2 — C2 is similar. □

P ro p o s i t io n  4.3.4. Z\ and Z2 are subalgebras of A**.

P R O O F . It follows from the associativity of the Arens products. □

Let A be a Banach algebra. We define

A*A — { f  *i a : f  € A*, a G A}

and

AA* = { a*2 f  : f € A * , a € A ) .
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If A* = A*A  (resp. A* =  AA*), we say A* factors on the left (resp. right).

D e f in it io n  4.3.5. An element E  of A** is said to be a mixed identity i f  for all 

F  € A**, F  *1 E  =  E  *2 F  =  F.

By Proposition 4.2.9, we have the following result immediately.

PROPOSITION 4.3.6. Let A  be a Banach algebra. Then A** has a mixed identity 

E  i f  and only i f  A  has a B A I  {ea } such that ea —> E  in the weak* topology.

PROOF. It follows from Proposition 4.2.9 and its proof. □

For convenience, we use ( / , a) or ( a , / )  to denote the duality between A* and A.

P r o po sitio n  4.3.7. Let A  be a Banach algebra. I f  (A**,* i)  (resp. (A**,*f)) has 

an identity E , then E  is a mixed identity o f A**.

PROOF. Let E  be the identity of {A**, *i). We need to show tha t for all F  G 

A**, E  *2 F  — F . For F  €  A**, there exists a bounded net {FQ} in A  such tha t 

Fa —► F  in the weak*- topology. Then E * 2Fa -+ E  *2 F  in the weak*-topology. But 

E  *2 Fa = E  Fa = Fa —i► F  in the weak*-topology. So, E  *2 F  — F  and E  is a 

mixed identity of A*.

The (A**, *2) case can be similarly proved. □

P r o po sitio n  4.3.8. Let A  be a Banach algebra with a BAI. Then the following 

statements are true.

(a) A* factors on the left if  and only i f  (A**, *i) is united.

(b) A* factors on the right i f  and only if  (A**, *2) is unital.

(c) I f  A* factors on both sides, then the identities of (A**,* i) and (A**, *2) are 

the same.

P r o o f ,  (a). Suppose A* factors on the left. Since A has a BAI, A** has a mixed 

identity E. Then for all F  € A**, F  *i E  = F. We want to show E  * \F  — F. i.e., 

for each /  € A*, ( f , E * i  F) = ( f ,F) .

Since each /  € A* has the form g *i a for some g E A* and a € A, we have

( E * i F , f )  = ( E * i F , g  *ia)  = (a*2 {E *! F),g) = (a*i  E  *i F,g)

= (a *i F, g) = (a *2 F, g) = (F, g *i a) =  (F, f ) .
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Therefore, E  *1 F  — f  for all F  e  A**.

Conversely, suppose E  is the identity of (A**, *1). We show A* C A*A.

Since E  € A**} there exists a net {eQ} in A  such tha t eQ —> E  in the weak*- 

topology. Then for each F  € A**, ea *1 F  —> E  *\ F  — F  in the weak*-topology of 

A**. So, for each /  € A*,

( F , f *  i ea) — (F, f  *2 Cq) — (eQ *2 F, / )  =  <eQ F, f )  -  (F, / ) ,

i.e., /  ea —> /  in the weak topology of A*. By the Cohen’s factorization Theorem 

(cf. [14, Theorem 32.22]), A* A  is norm (and hence weakly) closed in A*. So, /  is in 

A*A.

(b). The proof is similar to the proof of (a).

(c). Let E i , E 2 be the identities of (A**, *i) and (A**, *2), respectively. Then we 

show E i is the identity of (A**, *2)- By Proposition 4.3.7, it suffices to show th a t for 

each F  € A**, F *2Ei = F. This is true since F *2E i = F *2{Ei*2E2) = F*2E 2 = F. 

For the second and the fourth steps we use the assumption th a t E2 is a unit of 

(j4**, *2), and for the third step we use the fact tha t E \ is a mixed unit of A**. □

D efin it io n  4.3.9. Let X  be a normed space. A sequence {x n} in X  is said to be 

weakly Cauchy i f  { f ( x n)} is Cauchy in C for all f  6 X*.

X  said to be weakly sequentially complete i f  every weakly Cauchy sequence in X  

is weakly convergent.

P r o po sitio n  4.3.10. Let A  be weakly sequentially complete Banach algebra with 

a sequential BAI. Then the following statements are equivalent.

(a) A* factors on the left.

(b) A* factors on the right.

(c) A  is unital.

P r o o f , (o) => (c). Assume (a) holds. Let {en} be a sequential BAI. Then any 

/  € A* is of the form /  =  g*i a for some g € A* and a € A. Since aen —► a in the norm 

topology of A, ( /, en) =  (g,ae„) —*■ (g,a} in C. This show tha t the sequence {en} is 

weakly Cauchy. Since A  is weakly sequentially complete, {en} is weakly convergent 

to  some element e of A.  It is immediate to see th a t e is the identity of A.

(c) (6). It is trivial.
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(b) => (c). The proof is similar to the proof of (a) => (c).

(c) =>• (a). It follows from Proposition 4.3.8, since the identity of A is also the

identity of (̂ 4*, *i). □

COROLLARY 4.3.11. A weakly sequentially complete Banach algebra A  with a se­

quential B A I can not be Arens regular unless it is unital.

4.4. Som e new characterizations o f Arens regularity

In this section, we prove some new characterizations for a Banach algebra A  to 

be Arens regular, which were obtained when we attempted to unify some of existing 

approches to the study of Arens regularity.

Given a Banach algebra A, let

Z  = {G  G A** : for each /  G A*, G *1 Fa( f ) —> G *1 F ( f ) whenever Fa ^5 F}

and

S  — { /  G A* : for each G  €  A**, G Fa( f ) —► G *i F ( f )  whenever Fa ™ P } .  

Then Z  =  Zi(A**) and it is easy to see tha t S  =  wap(A),  where

wap(A) = { /  € A* : a ■—► /  *j a, A  i—► A*, is weakly compact}.

By Dunford-Schwartz [8, Theorem VIA.7], for each /  € A*, T f is weakly compact 

if and only if T f : A** —> A* is weak*-weakly continuous, where Tf(a) = f  *i o. So, 

/  € wap(A) if and only if /  G S'.

Let W  = {(G , f ) G A** x A* : G *i Fa(f )  —> G *i F ( f )  whenever Fa ™ F}, 

Z  = Z  x A*, and S  = A** x S.  Then Z  C W,  S  C W,  PX(Z) =  Z , and P2(S) =  5 , 

where Pi, P2 are the natural projections. Clearly,

A  is Arens regular <=> W  = A** x A*.

For (G, / )  G A** x A*, we define a map ipc j ■ A** —► C  by

m / (F) =  ( G * iF , / ) .
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Obviously, ipaj  is linear and bounded. So, <paj €  A***. In particular, (G, f )  € W if 

and only if ipc,/ is weak*-continuous, i.e., ipcj € A*.

Then we get a bilinear map <p : A** x A* —> A*** given by <p(G,f) = <Pg j - We 

note tha t ip(a, f )  = f  * 1 a and <p is weak*-weak* continuous with respect to the first 

variable. Also, we have W  — <̂ _1(A*). Therefore,

A  is Arens regular 4=r> <p~x{A*) =  A** x A*.

Lemma 4.4.1. Let A  be a Banach algebra and let be defined as above. Then 

A * A C <p ( Z ) C \ p ( W) C A * .

PR O O F . The last two inclusions are clear by the arguments above. Recall tha t 

A*A = { /  *1 a : f  €  A*, a G A}. So, to get the first inclusion, let f  £  A* and a £ A. 

Then a £ Z  and thus (a, / )  £ Z.  Therefore, /  *i a =  <p(a, f ) G ^p(Z). □

We consider now the relation between A*A and <p(S).

P r o po sitio n  4.4.2. Let A  be a Banach algebra. Then

( 1 ) t p ( S ) C S .

(2) <p(S) = S  C A* A  i f  A  has a B A I

(3) A*A C S  i f  A  is a right ideal in A** ( i.e., AA** C A). In particular, i f  A  has 

a B A I and A  is a right ideal in A**, then <p(S) — S  — A*A.

P r o o f .  (1) Let (G, f )  €  S. For each E  e  A •*, if Fa ^  F, then (E * iF a , v (G , / ) )  =  

<pG, f (E * i Fa) = (G*  i ( E* i  Fa), f )  = { ( G * i E ) * i F a) , f )  -» ((G*i E)  *i F ) , f ) ,  since 

/  € S.  Therefore, <p(G,f) G S.

(2) Suppose A  has a BAI (eQ). We first prove tha t S  C A*A. Let f  € S. Then 

/ * i eQ is relatively weakly compact in A*. W ithout loss of generality, we may assume 

tha t f * \ e a —> g weakly in A*. Since (eQ) is a r ig h t BAI, by the Cohen’s Factorization 

Theorem (cf. [14, Theorem 32.22]), A*A  is a norm (and hence weakly) closed linear 

subspace of A*. In particular, we have g G A*A.

On the other hand, since (ea) is a le ft BAI of A, for all a G A,

( f  *i ea, a) = ( /, eQa) -> ( /,  a),

i.e., / * i e Q —► /  in the weak*-topology of A*. It follows tha t f  = g G A*A. Therefore, 

S  C A* A.
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To get the equality <p(S) = S,  we only need to prove that S  C <p(S). Let /  6  S  

and E  be a weak*-cluster point of (ea) in A*. Prom the above arguments, we may 

assume tha t ea ^  E  in A** and /  *i eQ /  in A*. Then, for all G  G A**, we have

G) =  (E  *x G, f )  =  lim(eQ, G *i / )
a

= lim (G ,/'* i ea) =  (G, f ) .
a

Therefore, /  =  ipEj  = <p(E,f) G ip(S).

(3) Let /  G A* and a G A. For any G G A**, if Fa F  in A**, we have 

(G *i Fa, f  *i a) — (a *i G *i Fa, f )  —> (a G Fa, f )  since a *i G  G A. □

R em ark  4.4.3. A proof to the inclusion (S  = ) wap(A) C A*A can be found in 

the proof o f [16, Theorem 3.1], which contains an oversight on (ea): (ea) was only 

assumed to be a left B A I of A  there.

C orollary  4.4.4. Let A  be a Banach algebra with a BAI. I f  A is Arens regular, 

then A* factors on both sides.

P r o o f .  Under the Hypothesis tha t A  is Arens regular, S  = A* is obviously. Prom 

Proposition 4.4.2(2), S  C A*A G A*. So, A* factors on the left. The right case can 

be proved similarly, since one can also prove tha t S  C A A* when A  has a BAI. □

P ro p o s i t io n  4.4.5. Let A  be a Banach algebra. Then A*A  C <p(S) i f  A  is 

Arens regular. In particular, i f  A  has a BAI, then A  is Arens regular i f  and only if  

A*A = ip(S) and (A**, *i) is unital.

P R O O F . Assume A  is Arens regular. Then S  = wap(A) = A*. In this case, for all 

f  € A* and a €  A, (a, f )  € 5  and /  *i a =  <p(a, / )  G <p(S). Therefore, A*A C ip(S).

Now suppose tha t A  has a BAI. Then {A**, *i) has a right identity E. Assume 

A  is Arens regular. Then, by Proposition 4.4.2(2), <p(S) = S  C A*A C <p(S), i.e., 

A*A ='<p(S).  In this case, E  is also a left identity of (A**, *i). So, {A**, *i) is unital.

Conversely, assume A*A = ip(S) and (A**,*i) is unital. Then A* =  A*A (see 

Lau-Ulger [15, Proposition 2.2(a)]). Therefore, by Proposition 4.2.2(1), A* = A*A — 

<p(S) C S,  i.e., A  is Arens regular. □
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4.5. The second dual o f a com pletely contractive Banach algebra

We start this section with the following two definitions, which are adopted from

[11]. In Proposition 4.5.3, we consider the completely bounded norm of the adjoints 

of a bilinear map. We present a characterization of a completely contractive Banach 

algebra in Proposition 4.5.5.

D efin itio n  4.5.1. Let A  be an associative algebra over C. We call A  a completely 

contractive Banach algebra i f  A  is a complete operator space and the multiplication 

is a completely contractive bilinear mapping, i.e., for all m ,n  €  N and for all a =  

[fly] £ Mm(A) and b — [&fcj] £ M n(A^,

I I M w l l l  <  MM-

D efin itio n  4.5.2. Let A  be a completely contractive Banach algebra and V  an 

A-bimodule. Then V  is called an operator A-bimodule i f  V  is a complete operator 

space and the left and right A-module operations

pi : A  x  V  —> V, (a,v)  •—> av

and

pr : V  x A —*• V, (v, a) •—► va

are completely bounded.

PROPOSITION 4.5.3. Let X , Y  and Z  be operator spaces and m  : X  x Y  —> Z  a 

bilinear map. Then Hm’ H,* <  Hmlld, and \\mt \\cb < HmHc*,.

P R O O F . We only prove the inequality ||m*||cb <  Hrrelld,. Recall th a t m* : Z* x X  —+ 

Y* is defined by (m*(f , x) , y)  = (f , m ( x , y )).

Let n  e  N, /  =  [/y] € Mn(Z*) and x  =  [xfcI] 6 Mn(X).  Then (m*)n : Mn(Z*) x  

M n{ X ) -» Mn2(Y*) sends ( /, x) to K ( ^ - , r w)] € Mn2(Y*) £* CB(Y,  Af„a). So,

||(m*)n(/,x)|| -  ||[m*(/y,rfci)]||C6= | |K ( /y , r w)](n2)||,

where [m*\ f i j ,Xki)]^  is the n2-th  amplification of [m *(/y , Xfc/)] which is treated as a 

map from Y  to  Mn2.

We note tha t /  6 Mn{Z*) “  C B { Z , M n) and hence ||/ |U  =  ||/ (n>|| =  | |/(n3)||. 

Also, we have m n>n2 : Mn(X)  x  Mn2{Y) —> Mns(Z). Now, for y -  [yst] € Mn2(Y),  we
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have

||[m * ( /y ,a :fci)](n2)(y ) | |Mn4 =  || [< « » * (/« ,« « ) ,y^>]

=  II K/tf »•*))] l|Mn4 

=  ll/(n3)( M ;cw»y*t)])llAfn4

=  ll/llll” »n,na(aJ,y)||

< ll/IUIK,n>|IIMIIMI

< IMUIWIII/IIIMI,

i.e.,

Therefore,

K ( /« ,*« ) ](na)II < IMUII*

(”»*)„(/,x)|| < IM U Ik

for all n  G N, /  € Mn(Z*) and x  €  Mn(X).  It follows-that ||m*|jcb =  sup ||(m*)n || <
n€N

||m||c6. □

C orollary  4.5.4. Let A  be a completely contractive Banach algebra and V  an 

operator A-bimodule. Then V* is an operator A-bimodule under the natural A-module 

operations.

PROOF. In Proposition 4.5.3, we let X  =  A, Y  = Z  = V, and m  = pi : A x V  V  

the left .A-module action. Then it is seen immediately tha t m* : V* x A  —► V* 

is the right ^-m odule action which is completely bounded. Similarly, the left A- 

module action on V* is also completely bounded. Therefore, V* is an operator A- 

bimodule. □

We note tha t if A  is a completely contractive Banach algebra, i.e., A is a complete 

operator space and the multiplication

rh : A  x A  —> A, (a, b) ■—► ab
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is completely contractive, then A  itself is an operator A-bimodule. By Proposi­

tion 4.5.3, and m»»* are all completely bounded with cfe-norm

bounded by ||m||c6.

Note tha t m*** and are the first and the second Arens products, respec­

tively, and m***\AxA =  ^»»*UxA =  m- So, combining with ||m***||C6 < ||m||c& and 

||m***|jc& < IM U, we have ||m***||cb =  ||m»„||ci, =  ||m||c6. Therefore, we have the 

following proposition.

P r o p o s i t io n  4.5.5. Let A  be a Banach algebra together with an operator space 

structure. Then A  is a completely contractive Banach algebra i f  and only if  A** is a 

completely contractive Banach algebra under either of Arens products.
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CHAPTER 5

Extended and normal projective tensor products

Inspired by the study of the second dual of a Banach algebra, in this chapter, we 

define and study the extended and normal projective tensor products, which axe based 

on the projective tensor product and parallel to the extended and normal Haagerup 

tensor products.

5.1. E xtended and norm al projective tensor products
eA A

Given operator spaces V  and W , let V  0  W  denote the subspace of (V * ® W*)* = 

CB(V*  <g> VP*,C) “  CB(V*  x W*,C)  corresponding to CB°{V* x W,<C), which is 

called the extended projective tensor product of V  and W . And we let the
crA

norm al projective tensor product V* ® W* of dual operator spaces V* and W* 

be |' V  ® VP^ . That is

V ® W ^ C B a{V* x vr,<c)

and
crA f  eA

v* ® w *  = [ y  ® w

P r o po sitio n  5.1.1. Let V  and W  be operator spaces. Under the operator space 

identifications CB(V*  <g> W*,C)  “  CB{V* x W*,C)  “  CB(V*,W**),  we have

6A
V  ® W  “  C B a(V* x W*,C) ^  CB°~W{V*, W ),

where C B a~w(V*: W ) denotes the space of weak*-weakly continuous completely bounded 

linear maps from V* to W .

P r o o f . Let $  : CB(V*  x W*, C) —> CB(V*,  VP**) be the natural complete isome- 

try. Then $  is given by <$(T)(/), g) =  T ( / ,  g) (T  €  CB(V* x  W ,  C), /  G V* and g € 

W*).
52
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Let T  6 CB°(V*  X W*,C).  We claim tha t $ (T )( /)  G W  for all /  G V*. Indeed, 

whenever ga ^  g in VF*, we have ($ (T )( /) ,0O) =  T ( f , g a) -► T{ f , g )  = ($ (T )(/) ,p ) ,

i.e., $ (T )( /)  : VF* —> C is normal. Therefore, $ (T )( /)  G VF.

Next, we show tha t <h(T) : F* —> VF is weak*-weakly continuous. Let f a ^5 

/  in V*. For any S G VF*, ($ (T )(/Q) ,5) =  T ( f a,g) -  T ( / , 5). So, 9(T)  G 

C B CT-"'(y*,W ). Therefore, $ ( C B a( V  x VF*),C» C C B a~v,( V ,  VF).

Finally, we have $  ( CBa(V* x W *), C )) =  C B a~w(V*, VF). In fact, for any f  G 

C B a~w(V*, VF), if we define T( f , g )  = (T ( f ) , g ) ( /  G F* and g G VF*), then $(T ) -  

f . Clearly, T  G CB°{V* x  VF*, C). □

P r o po sitio n  5.1.2. L e t V , W ,  and X  be operator spaces. I f W  is reflexive, then 

we have a natural completely isometric identification 

C B ^ V *  x W * , X *) “  C B a{ V* , CB° ( W\ X * ) ) .

P r o o f . Since VF is reflexive, C B a(W*,X*)  =  C B a{W***,X*) “  CB(W*, X*)  “  
/  a \*
I VF* ® X )  .So, the space on the right hand side makes sense.

Let $  : CB(V*  x VF*, X*) —*• CB(V*,CB(W*,  X*))  be the natural complete isom- 

etry given by (*(T) ( f ) (g) ,x)  = (T ( f , g ) , x ) (T G CB{V* x VF*, X*),  f  G V* and g G

r , i G i ) .

Let T  G C B ff(P* x VF*,X*). Apparently, for /  G V ,  $ (T ) ( /)  G C B ^V F*,**). 

The surjectivity of $ |Cb-(v*xw*,a*) : C B ^ P *  x JF*,X*) -» CB ° { V* , CB a{W*,X*))  

can be proved in a similar way as used in Proposition 5.1.1. We only need to  show 

<h(T) : V* —> CB(W*, X*)  =  ^VF* <g> X^j  is weak*-weak* continuous on a bounded 

ball.

Let f a - * f  in Ball(V*). For any elementary tensor g ® x  in VF* ® X ,

(*{T){fa) , g ® x )  = (T( fa,g) ,x)  -  (T( f , g) , x)  = {* (T) ( f ) , g  ® x).

Therefore, we have $ (T )(fa) £  $ (T ) ( /)  in ^VF* ® . So, $ (T ) G C B a(V*, (VF*®

A)*) =  C B * { V ,  C B a(W*, X*)).  □

So, under the assumption tha t VF is reflexive, we have

C B a{V** x VF**,X*) “  C5"(V**,CB(VF**,X*)) “  CB(V,CB(W**,X*) )

“  O B (P  x W**, X*) =  C £ (V  x VF, X*).
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This is parallel to Proposition 3.2.2. Prom here, we may define some kind of tensor 

product to linearize the normal completely bounded bilinear maps.

When the above X  is C, the first space in the identification sequence is exactly
eA /  A \  *

V* & W* we defined before and the last space is I V  <8> W  I . So, if W  is reflexive, 

then the extended projective tensor product is the dual of projective tensor product.

<rA
Lemma 5.1.3. The algebraic tensor product V* <g> W* is weak*-dense in V* <8> W *.

PROOF. First we observe that for v G V  and w € W , v <8> w  € C B a{V* x W*, C), 

where v <g> w ( f , g ) =  f (v)g(w)  ( /  G V* and g G W*).  Obviously, v  ® w : V* x W*  —► 

C is separately weak*-continuous.

For /  =  [fij] G M n(V*) and g =  [gkl\ G Mn(W*),  we have

\ \ (v®rw )n( f , 9 ) \ \M n2 =  || [fi j(v)9kl(w)]  |U „ 2 =  | | [ /« (« ) ]  ®  [5fcl(^)]||M „2 

-  l l [ A # ( « ) ] | | j i # m | | l f f « ( w ) ] | | J w r m  =

< ll/ liy ilH IIH I-

So, for all n  G N, ||(u 0 iu)„|| <  ||u||||t/;||, and hence ||v<8>w||c6 < IM|||w||. That is to 

say, v  <g> w is completely bounded.

Next, we define a natural linear injection V* <g> W* (C B a( V * x W*,C))*. For

an elementary tensor /  ® g G V* 0  W*, let

* ( /  ® 9)(T) = T ( f , g )  (T  G C B a{V* x V T,C )).

Then \<l>(f®g)(T)\ =  \T(f ,g)\  <  | |T ||| |/ | | | |5 || <  | | / | | |M || |r |U  for aU T  G CB°(V*  x  

W*,C), i.e., $ ( /  <8> g) G (CBC(V* x W *,C))*. We then extend $  to a linear map 

V* <g> W* —> (C B a(V * x W *,C))*, which is still denoted by $ .

Claim. $  : V* <g> W* (C B a(V* x W*,C))* is injective. Suppose /* € V* and 

gi G W* such tha t $  /* ® 9^j — 0- We may assume tha t / i , - • • , /„  are linearly

independent. Let w G W  be fixed. Then for all v €  V, $  f i  ® 9^j (v ® w ) =
n

H f i ( v)9i{w) =  0, i.e., Y.9i{w )fi  =  0. Since / i , - - • , / „  are linearly independent,
i—\ i—1
gi(w) =  0 (i = 1, • • • , n). Since w  G W  is arbitrary, we have gt =  0 (i = 1, • • • , n). 

Therefore, £  /* ® 0* =
i= 1
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We want to point out here that, by the same arguments, one can see tha t the map

v ® w —► CBaiy* x IP*, C), v ® w  i—► v ® w, is also injective.

For the weak*-density, we note tha t P* ®> W*w* = [X(P* ® IP*)]-1, where J-(P* ® 

IP*) =  { T e  C B ^ P *  x IP*,C) : ${ f , g) (T)  = 0 for all /  e  P* and g e  IP*}. So,
a/\

P* ® W* is weak*-dense in V* ® W* if and only if (V* ® W*) — {0}. But tha t is

true by the definition of $>. □

For operator spaces V  and W,  let V**® W** be the abstract normal spatial 

tensor product of V** and W**, i.e., the weak* closure of the algebraic tensor product

For example, if V** and W** are both von Neumann algebras, then (V, W ) is a 

bi-normal pair (cf. [11, Theorem 7.2.4]). In particular, for all C*-algebras A  and B, 

{A, B ) is a bi-normal pair.

It is not clear for us whether there are bi-normal pairs (V, W )  such tha t V** and 

W** are not von Neumann algebras.

PRO PO SITIO N  5.1.4. Let V  and W  be a bi-normal pair of operator spaces. Then 

the algebraic tensor product V  ® W is weak*-dense in CB(V*  x W *,C), and hence 

C B a{V* x W*,C) ^  weak*-dense in CB(V*  x W*,C). Therefore, for all n  €  N, 

Mn(C B a(V* x W *,C)) is weak*-dense in Mn(C B {V * x W *,C)) .

Since Vj|.||<i (resp. W||.||<i) is weak*-dense in (resp. W|*.jj<i), V  ® W  is weak*-

We call (P, W ) a b i-no rm al p a ir  if P**® W**

P r o o f . As pointed out in the proof of Lemma 5.1.3, we know tha t the linear 

map u ® w h  P ®  W —► C B a(V* x IP*, C) C CB(V* x IP*,C) =  (P* ® W*)*

is injective, and hence it suffices to  show the weak*-density. 

Note that

dense in V** ® W**. By the assumption, P** ® IP** . It follows th a t

P  ® IP  is weak*-dense in ( P* ® IP Consequently, (P ®  IP C) C B a(V* x IP*,C)

is weak*-dense in CB(V*  x IP*,C).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.1. EXTENDED AND NORMAL PROJECTIVE TENSOR PRODUCTS 56

To consider the weak*-density at level n, let /  €  [fij] € Mn(C B (V * x W*,C)). 

For each there exists a net ( fa^a^eA^  in C B a(V* xW* ,  C) such tha t f Qij ^  fij 

in ( V* <g> W* ] . Let A = f ]  A*j and order A  by /? >- a  if and only if fcj >~ ctij for 

all 1 <  i , j  < n. For each a — (a„) G A, let f a — [/ay]. Then f Q G M n(C B a(V* x 

W*,C)). We claim tha t f Q ™ f  in Mn ( J v *  ® ^ “  ^T„ <g> W * ^  .

Note tha t the duality between Mn ^  ̂ V* <g> ^ and Tn ^V* ® is given

by

( f , x) =  ^ 2  fiAxH)
1

for /  -  [fij\ € Mn((v*® W* )  \  and x  = [xy] G T„ (V* <g> W * ] . Now for all

x  — [xy] G Tn ^V* <g> , we have

(fa ~  f ,  x) =  Y 1  ~  /«> “ ♦ °-

T h ere fo re , f a =+ f  in  M n ® W

Lem m a 5.1.5. Let Vx, V2 and W  be operator spaces, (£> : Fi x  V2 —► W  a bilinear 

map and ip :W  —* X  a linear map. Then

\\tp °  T \\cb  <  \\rp\\d,\\<p\\cb

and

\\i’°v\\mb < I M I c & I M I m b -

P r o o f .  For vx =  [uh] G M n (Vx) a n d  v2 = lVkl\ G M „ (F 2), we have  

\\{ip o <p)n( v i , v 2)\\Mn2(X) =  || l|Mn2(X)

= II [ ^ ( T i v l p v h ) ) }  IUn2(x)

=  ||V'(n2) ([<^(4, vh)]) ||m„2(X)

<  l l^ (w2)|||| [ p i v l p v h ) }  \ \Mn2(W)

= ||^IU||V»(wi>W2)l|Mna(IV)

<  IM U IK H IM H H I

<  I I ^ I U I k l U I K | | | | u 2 ||.
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Therefore, \\%p o y>\\A =  sup \\{ip o <p)n \\ <  H^IUIMU-
neN

For the second inequahty, we get now

W(4> O <p)n ( V l , V 2) \ \Mn(X) ° vivlk^kj )
_fc=1

/t= i

I M n(X)

k=l
n

J 2 ^ V̂ Vkj)
Lfc=i

Therefore, \\il> o <̂ ||m6 =  sup ||(^  o y>)n|| <  | | ^ |UIM|m&-
n€N

I Mn(X)

I Mn(W)

=  U {n)\\\\lPn(Vl,V2)\\Mn(W)

<  I M U I I r t M I I M

<  I M U I M U I M H M | .

□

D e f in i t io n  5.1.6. Let V  and W  be operator spaces. We say that (V, W ) satisfies 

c o n d itio n  (*) i f  the unit ball o f C B a(V* x W*, Mn) is weak*-dense in the unit ball 

ofCB(V*  x W * , M n) ( =  ( Tn{V* 0  VF*) J ) fo r a l i n e  N.

It is not clear for us whether a bi-normal pair (F, VF) automatically satisfies con­

dition (*) (cf. Proposition 5.1.4). However, it is the case at least for the following 

bi-normal pairs.

According to Kaplansky Density Theorem, if A  is a weak*-dense *-subalgebra of 

a von Neumann algebra M ,  then the unit ball of A  is weak*-dense in the unit ball 

of M .  Suppose F  and VF are *-algebras such tha t F** and VF** are von Neumann 

algebras (e.g., it is the case when V and W are both C*algebras). Then CB(V*  x 

VF*,C) =  ( v ’ 0  W*^j = F**0VF** is also a  von Neumann algebra, and hence 

Mn (C B ( V * x VF*,C)) is a von Neumann algebra for each n 6  N. The algebraic 

tensor product V  0  VF with the multiplication

ai ® C3 0  = ^ 2  0  bidi ’
hi
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and the involution

( ak ® bk)* = ^ 2  a*k ® K
k k

is a  weak*-dense *-su b algeb ra  of V**® W**. The same is true for M n(V ® W ) in 

Mn{V**®W**).

So, applying Kaplansky Density Theorem shows that condition (*) is satisfied in 

this case.

P ro p o s i t io n  5.1.7. Let V  and W  be a pair of operator spaces satisfying condition 

(*). Then the linear injection

$  : V* ®A W* -* (C B a{V* x  W*, C))*

considered in the proof o f Lemma 5.1.3 is a completely isometric embedding. There­

fore, we have a completely isometric embedding

V* ® w *  ^ V * ® W * .

P r o o f . We already have the completely isometric embedding

: V* ® W* ^  (v* ® “  (C B (V * x W ,  €))*

given by $  ( £ / <  ® g^\ (T) = Y , T{ f i , g i )  for all f  € V*,gi € W*,  and T  €
\ i= l  /  i= l

C B ( V * x W * ,  C).

Let i : C B a(V* x  W*, C) —► CB(V* x  W*, C) be the inclusion map and let p = i*. 

Then p : (C B ( V * x W*,  C))* —► (C B a{V* x  W*,C))* is completely bounded with 

IWU =  IWU =  1. We observe tha t f  =  p o $  and hence 5> is a complete contraction. 

To finish the proof, we only need to show tha t for all n  €  N and u €  Mn(V* ® W*),  

we have j|$^(w )j| >  ||«||a-

Let n  € N and u =  [iiy] € M n (V* ®A W*)  C Mn ® ^ , which is

identified with CB(CB(V* x W* , C ) , Mn). Then

IMI a =  I N U = | | u W | | ,
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where u is considered as a linear map from CB(V*  x IV*, C) to Mn and hence : 

CB(V*  x IV*, Mn) M n2. Now

$ :  v* ®A w* (CBa{v* x iv*,c))*

and

$ (n) : Mn (V* 0 A W*) -» Mn ((C 5 ff(V* x W*,C))*) s  C B {C B °{y*  x IV*,C),M n). 

Thus,

$ (n)( « ) : C B ff( r x r , C ) ^ M n

and

||*'">(«)|| = ||*<">(«)IU = ll(*("’M )(n>ll,

where : C B C{V* x W *, Mn) —» Mn2. Therefore, to  get the inequality

ll*(n)(«)|| >  IMU, we only have to  prove tha t | | ( $ ^ ( « ) ) ^ | |  >  | |u ^ || .  We observe 

th a t for T  € C B a{V* x W,C), {& n)(u))(-n\ T )  = tt(n)(T), or (*<“)(«))(") is really the 

restriction of to C B a{V* x W *, Mn). We also note tha t CB(V*  x W *, M n) =  

Mn ^ V *  0  W*^j ^  =  ( r n (v*  0  IV* ̂  and Mni S* (Tn2)*. It can be seen tha t

(n): ( T „ | r 0 r j J  - » ( r B9)*

is weak*-weak* continuous. Therefore, it suffices to show th a t the unit ball of 

C B a(V* x IV*, M„) is weak*-dense in the unit ball of CB(V*  x IV*, Mn). By the 

assumption of condition (*), the statement follows. □

eA <tA
By the definitions of 0  and 0 ,  the following operator space identification are 

immediate:

c b ° { v * ® w \ c ) =  =  v  0  iv  =  C B a{v* x r , c ) .

We show below tha t the above C can be replaced by IV* if (V, IV) satisfies condi­

tion (*).

P r o p o s i t io n  5.1.8. Let Vi, V2 and IV be operator spaces such that (Vi, V2 ) satis­

fies condition (*). Then we have completely isometric identification

CB°{V* 0  V2*, IV*) “  C B a{V* x V*, W*).

now

u
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P ro o f. Let tp e  C B a(V*xV2*, W*) and w € W  C W**. Then wotp : V*xV 2* -* C 

is separately weak*-continuous and jointly completely bounded with ||u; o  ^ l l e f a  5 ;

CA

IMUIMU =  IMIIMU (by Lemma 5.1.5). So, wo t p  is in Vi ® V2.

Now we define a linear map

eA
tp* : W  —► Vi <g> V2, w i-> w o p.

Then |MIU < IMU- To see this, let w = [uty] € Mn(W).  Then [w^ o tp] e
e A

Mn{Vi 0 F 2) C Mn(CB(V* x  V2*,C)) S  CB(V* x  V2*,Mn). Note that w € Mn(W ) C 

Mn(W**) “  C B ( W * , M n). So,

(¥,» ) ^ ( U;) — ° eA =  WOW,V ' 1 J Mn(Vi ®V2) r

where u; is treated as a map from W* to Mn. Therefore, by Lemma 5.1.5,

||(¥>.)(n)H H  =  =  IU°<HU < IMUIMU-

It follows that |M |U  =  sup ||(<£>»)(n)|| < 111/?11c6• Hence
ngN

i i (^ r iu  = ib * m < iM u .
c A  crA

Let tp = (ip*)*. Then tp : (Vi ® V2 )* =  V* ® V2 —► W* is weak*-weak* continuous
<7 A

and completely bounded, i.e., Tp € C B c (y{  <8> V2*,W*), and |M U =  IMIU ^ IMU- 

For all f i  € V i , f 2 € V2 and w € W,

<f ( f i ®h) (w)  = (fi <S) f 2)(tp*(w)) = ( f i ®  f 2)(wo<p)

= (wo(p)(f1, f 2) = tp(f1, f 2)(w).

So, Tp is an extension of the linearization tp of tp. Note that IMI a =  IMU 

and

V* ® V* w  (CB°(V* x  V*, C))* =  V* ® V* 

is a completely isometric embedding (Proposition 5.1.7). Thus, we have

IMU > IÎ Hcb(v1*®v,2*,w*) — IMI*-

Therefore, IMU — IMU- ^o far, we have the completely isometric embedding

CBa(v* x v;,w*) w cb°(v* ® v;,w*), <p̂ Tp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.1. EXTENDED AND NORMAL PROJECTIVE TENSOR PRODUCTS 61

In fact, it is onto.
OA

To show this, let S  €  C B a (V{ 0  V f , W *) and S ' : V f x V2* —> W* be the completely 

bounded bilinear map corresponding to  : Vi* ® V2* W* (cf. Proposition

5.1.7). Then S ’ : V{ x V2* —> W* is separately weak*-weak* continuous.

Indeed, let f a ~* f  in Vi* and <? € V2*. Then f a <g>g ^  f(&g in ( CBa(V* x V2*, C ))* 

under the embedding V{ ® ► (C B a(V{ x V2*, C))*. Thus,

S ( f a ®g)  -  S { f ® g ) ,  i .e , S U , j )  £  S( f ,g) .

Similarly, if /  € Vi* and ga g in V2 , then S ' ( f , gQ) —> S( f , g) .  Therefore, S' € 

C B a(yi* x V2 , C ). By the definition of S', we have S '( / 0  <?) =  S(f<8>g) for all /  € Vi* 

and g E V 2 . Due to the weak*-weak* continuity of S  and S ' and the weak*-density
a A ___

of Vi* 0  V2 in Vi* 0  V2 (cf. Lemma 5.1.3), we have S  =  S'.

Therefore, we have the completely isometric identification

oA
C B a{V* x V2*, W*) “  CB°(V*  0  Vi*, W*)

□
Let tpi : V\ —> Wi and ip2 '■ V2 —> W2 be completely bounded maps. Then the 

completely bounded map

(<Pl ® V l f  : (V 0 V ^ j  -» (iV? 0 W2*)

eA eA
sends Vi 0  V2 to W\ 0  W2 since <p\ and <p2 are weak*-weak* continuous. Note tha t 

(ip* 0  p 2)* is the unique weak*-weak* continuous extension of the algebraic tensor 

product ip\ 0  tf2 ■ Vi 0  V2 —» W\ 0  W2, where the algebraic tensor product X  <8>Y
eA .— -

is embedded into X  ® Y  via x  0  y *-► x  <g> y  (see proof of Proposition 5.1.4). We let
eA A  eA

<Pi ® v?2 denote the restriction of (<pl <g> pi)* to  V\ & V2. We show tha t the injectivity
cA

of 0  in the following

PRO PO SITIO N  5.1.9. Let Vi,V2,Wi and W2 be operator spaces. I f  p>i : Vi —► W,
eA eA

is completely isometric (resp. contractive) (i — 1,2), then so is <p\ 0  92 : Vi 0  V2 —► 

Wi 0 W2.

P r o o f .  Since <p\ and <p2 are completely isometric, and <̂2 are complete quo-
A A  A

tient maps, and then <p\ 0  <p2 : W* 0  W2 —> Vi* 0  V f is a complete quotient map.
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Therefore,

{<p\ ® <p*2y  : ( r ;  ® ^  c b (v ,* x t 2*, c )  -» ^ i t ;  ® i r 2*^ s  c ^ w i  x  w 2, c )

is a complete isometry. It follows tha t as a restriction of {<p\ <S> </?2)*,

eA eA cA
0 ( f2  ̂Vj 0 V2 —► Wj 0 W2

is a complete isometry.

The case for complete contractions follows from the corresponding property of the 

projective tensor product and the fact tha t the completely bounded norm of a  linear 

map is the same as the completely bounded norm of its adjoint. □

5.2. Com parison w ith  other operator space tensor products

In this section, we compare the extended projective tensor product with some 

other existing tensor products.

eA
5.2.1. ® and th e injective tensor product. Let V  and W  be operator spaces.

V /  A
Then T<g>lT is the norm closure of the algebraic tensor product T®IT in I V* ® IT*

eA /  a

By definition, V  <8> W  =  C B a(V* x IT*, C) is a closed subspace of ( V* <g> IT* 

Also, V  ® W  C C B a(V* x IT*, C) (see the proof of Lemma 5.1.2). Therefore, we 

have the completely isometric embedding

V eAv  <g> w  c  v  ® it .

eA
5.2.2. <g> and th e norm al spatial tensor product. Recall tha t for dual oper­

ator spaces V* and IT*,

T*ig> IT* =  T* ® W*w* C ( v  ® IT^ =  CB( V , IT*) “  C B a{V *\ VT*),

and

V* ® IT* =  C B °{V ** x IT**,C) =  CB°~W(V**, IT*) C C B C(V**, IT*).

So, both operator space tensor products are subspaces of C B a(V**, IT*).
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If W  is reflexive, then C B a~w(V**, W*) =  C B a(V**,W*) for all operator spaces
  cA

V.  In this case, we have V*® W* C V* ® W*.

In fact, the converse is also true.

P r o po sitio n  5.2.1. Let W  be an operator spaces. Then W  is reflexive i f  and 

only i f  C  B a~w (V** ,W*)  =  C B a(V**,W*) for all operator spaces V.

P r o o f . We only need to  show the sufficiency. Let V  = W*. Considering the 

canonical embedding i : W  —> W**, we have i* € CB"(W***,W*) = C B a~w(W***, W*).

So, i is weakly compact (cf. [8. Theorem VI.4.7]), and thus *(W||.||<i) =  Wj|.||<i is 

weakly compact. By [6, Theorem V.4.2], W  is reflexive. □

(3) Considering the symmetry of the projective tensor product with respect to  the 

two underlying operator spaces, we have C B a~w(V**,W*) = C B a~w(W**,V*) and 

C B °{V **, W m) = C B a(W**, V*). Therefore,

V * ® w *  =  V*® w*

if either V  or W  is reflexive such tha t (V, W)  is a bi-normal pair. In particular, if V
v

or W  is of finite dimension, then the injective tensor product V* ® W* and the above 

two tensor products axe all the same.
eA

5.2.3. ® and th e extended  Haargerup tensor product. Recall for each 

ip 6 B(H)t , the right slice map Rp : B(H) ® B(K)  —> B(K)  is defined by

Rip a< ® b^j =  ^ 2  v ( ai)bi for a{ € B(H)  and b{ e  B(K).

Similarly, for ip € B(K)*,  the left slice map : B ( H ) ® B ( K )  —> B(H)  is defined

by

The right (resp. left) slice map has the unique extension to \^B(H),  ® B ( K ) j  (or

AB ( H )» ® B ( K)  J ) which is still denoted by Rp (resp. L^).

Let V  and W  be operator spaces with V* C B(H)  and W* C B(K) .  The Fubini 

product R(V*, W*) is defined as the set

fi/i
{u  € B(H)  ® B ( K)  : Rp(u)  € V* and L+(v) € W* for all p  € B(H) . , ip  € B { K ).}
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The normal Fubini tensor product V*®fW* (— ® ) (cf. [11, Theorem

7.2.3]) is

{u € B ( H  ® K ) : R ^ u )  € V* and L ^ u )  € W* for all <p €  B( H) t ,4> 6  B ( K ),}.

eh (  h  \  *
Since B(H)  0  B( K) ( =  I B ( H )* 0  B ( K )* I ) can be treated as a linear subspace 

of ( b (H).  0  B ( K ) ^ j  (=  B ( H  0  i^)), W*)  C By [4, Theorem 3.1

eh eh eA
(ii)], F(V% W*) = V* ® W *  (cf. [4, Theorem 3.1(ii)]), i.e., V* 0  W* and F* 0  W* 

are both subspaces of V*®?W* and they may be equal under some conditions.

P r o p o s i t io n  5.2.2. Let V  be an operator space and H  a Hilbert space. Then we 

have the completely isometric identification

eA eh
V ® H r “  V ® H t .

P r o o f .  Since V*®(Hr)* “  V*®{Hr)*, C B ( V * x ( H r)*,C) “  M B ( V * x ( H r)*,C).
eA eh

Then their normal parts should also be identified, i.e., V  ® Hr =  V  ® Hr by the 

definitions of the extended projective tensor product and the extended Haagerup 

tensor product. □

5.3. Som e open questions

We conclude the thesis with the following open questions.

1. W hat is the characterization for a pair (V, W)  of operator spaces to  satisfy 

condition (*)?

2. Do we have a canonical subspace X  of A* such that X  C wap(A)  C A* and 

X  plays a role similar to what A  does in the sequence A  C Z\(A**) C A** when the 

strong Arens irregularity of A  is concerned?

3. How can we establish the relationship between the Arens regularity of a Banach 

algebra A  and some operator space structures, say on A* x A**, involving certain tensor 

products?
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