
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Flexible multi-layer virtual machine design for virtual laboratory in Flexible multi-layer virtual machine design for virtual laboratory in

distributed systems and grids. distributed systems and grids.

Dohan Kim
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Kim, Dohan, "Flexible multi-layer virtual machine design for virtual laboratory in distributed systems and
grids." (2005). Electronic Theses and Dissertations. 2119.
https://scholar.uwindsor.ca/etd/2119

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2119?utm_source=scholar.uwindsor.ca%2Fetd%2F2119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Flexible multi-layer virtual machine design
for virtual laboratory

in distributed systems and grids

by

DohanKim

A Thesis

Submitted to the Faculty of Graduate Studies and Research

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada 2005

©2005, Dohan Kim

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1*1 Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09786-8
Our file Notre reference
ISBN: 0-494-09786-8

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

/ 0 2 ' ? 3 S ' /

ABSTRACT

Virtual laboratories recently began to provide environments for modelling and simulation

of scientific problems, such as DNA sequencing, aerodynamic analysis of aircraft design,

and global weather prediction. Although the performance of commodity computers and

networks has been increased significantly, these scientific problems have not been

handled in an efficient manner within a reasonable time frame in a single administrative

domain due to their size and complexity. Computational grids provide the means by

which geographically dispersed administrative domains share their resources in a

coordinated way, allowing virtual laboratory users to have illusions that they are

accessing a large virtual computer.

We propose a flexible Multi-layer Virtual Machine (MVM) design intended to improve

efficiencies in distributed and grid computing and to overcome the known current

problems that exist within traditional virtual machine architectures and those used in

distributed and grid systems. This thesis presents a novel approach to building a virtual

laboratory to support e-science by adapting MVMs within the distributed systems and

grids, thereby providing enhanced flexibility and reconfigurability by raising the level of

abstraction. The MVM consists of three layers. They are OS-level VM, queue VMs, and

components VMs. The group of MVMs provides the virtualized resources, virtualized

networks, and reconfigurable components layer for virtual laboratories. We demonstrate

how our reconfigurable virtual machine can allow software designers and developers to

reuse parallel communication patterns. In our framework, the virtual machines can be

created “on-demand” and their applications can be distributed at the source-code level,

compiled and instantiated in runtime.

iii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

DEDICATION

To my grandmother for her endless love,

To my parents for their unwavering support and love

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Kent, who gave me the opportunity to work on

this Grid research. This thesis work had been a great learning experience for me, and I

would like to thank him for his advice and guidance on this research.

I would like to express my special thanks to my committee members Dr. Schlesinger and

Dr. Aggarwal. I would like to thank Dr. Aggarwal for his professional advice on this

research. I feel really fortunate that he is my committee member. I would like to express

my gratitude to him for his valuable suggestions. I am also highly grateful to Dr.Ngom

who agreed to chair the committee.

I would like to thank my colleagues at University of Windsor for their help and advice

during this research.

Finally, I would like to thank all my family and friends for all their support.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE OF CONTENTS

ABSTRACT..iii

DEDICATION.. iv

ACKNOWLEDGEMENTS.. v

LIST OF TABLES.. viii

LIST OF FIGURES...ix

1 INTRODUCTION..1

2 BACKGROUND ANALYSIS AND RELATED WORKS.. 4

2.1 Virtual Laboratory... 4
2.2 Distributed Systems...4
2.3 Grids..4
2.4 Categories of Virtual Machines... 5

2.4.1 OS-level VMs and Virtual Machine Monitor (VMM)6
2.4.2 Virtual OS... 8
2.4.3 Language-level VMs..8
2.4.4 Queue-based Virtual Machines... 9

2.5 Process / VM Migration... 9
2.6 Resource Partitioning..10
2.7 Hardware V irtualization..11

2.7.1 CPU V irtualization.. 11
2.7.2 Memory and I/O Virtualization...11
2.7.3 Full Virtualization...12
2.7.4 Paravirtualization..13

2.8 Network Virtualization.. 14
2.8.1 Programmable Network... 14
2.8.2 Network Components Virtualization.. 15

2.9 Model Driven Software Engineering... 16
2.9.1 Model and Metamodel.. 16
2.9.2 Model Driven Architecture...17
2.9.3 Software Component Modeling.. 18

2.10 Related works...19
2.10.1 Grid Computing on OS-level Virtual Machines... 19
2.10.2 Virtual OS based Distributed Systems..20
2.10.3 VM TestBed.. 21

3 A PROPOSED VIRTUAL MACHINE (MVM).. 23

3.1 Building a virtual computer using MVMs..24
3.2 OS-level VM layer... 26
3.3 Queue VM Layer...28

vi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.4 Components VM Layer... 29
3.5 The type (b) and type (c) MVM..30
3.6 Application Model... 32

4 A PROPOSED FRAMEWORK FOR VIRTUAL LABORATORY.................... 33

4.1 Virtualized Resources..34
4.1.1 Virtual Back-Ends.. 34
4.1.2 Virtual Front-Ends..37
4.1.3 Virtual Clusters... 39

4.2 Virtualized Networks..41
4.2.1 Connectivity component... 41
4.2.2 Partitioning and mapping procedure.. 44

4.3 Policy-based Reconfigurable Components.. 49

5 IMPLEMENTATION AND PERFORMANCE ANALYSIS.................................53

5.1 Overview of MVM toolkit...53
5.2 Implementation and specification of the MVM toolkit.. 57

5.2.1 Implementation of the MVM toolkit.. 57
5.2.2 MVM toolkit v.0.1.0 protocol description...60

5.3 Experimental results and analysis...63

6 CONCLUSION AND FUTURE WORK... 68

6.1 Conclusion...68
6.2 Future work............................ 69

BIBLIOGRAPHY... 70

APPENDIX: Interoperability and porting issue with MVM toolkit.................... 79

VITA AUCTORIS...82

v ii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF TABLES

Table 1 Four Modeling layers of the OMG [OMGOl].. 16
Table 2 A usage of virtual topology in a MPI program... 41
Table 3 The updated super peer list in the bootstrap node... 45
Table 4 MVM toolkit v.0.1.0 Command Messages.. 60
Table 5 MVM toolkit v.0.1.0 Response Messages (SUCCESS).....................................61
Table 6 MVM toolkit v.0.1.0 Response Messages (FAILURE)..................................... 62

v i i i

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF FIGURES

Figure 1 (a) Instruction Set Architecture (ISA) Interface [SmitOl, page: 7]................... 6
(b) Application Binary Interface (ABI) Interface [SmitOl, page: 7].................. 6

Figure 2 Virtual switch and steps of port creation [Jian03, page : 5]..............................15
Figure 3 MDA Process [Klas04].. 17
Figure 4 Architecture for a VM-based Grid Service [Figu03, page: 12]........................ 19
Figure 5 Virtual Internetworking on Overlay Infrastructure [Jian03, page: 2].............. 22
Figure 6 Multi-layer Virtual Machine Architecture (type (a))...23
Figure 7 Virtual Parallel Computer using MVMs.. 25
Figure 8 Multi-layer Virtual Machine Architecture (type (b))...................................... 30
Figure 9 Multi-layer Virtual Machine Architecture (type (c))...................................... 31
Figure 10 Job and its header for MVM application..32
Figure 11 Proposed Virtual Laboratory Framework...34
Figure 12 Virtual Front-End and Virtual Cluster.. 38
Figure 13 Simple Virtual Topology... 42
Figure 14 Connectivity Component... 43
Figure 15 Policy-integration for multi-domain environments [Josh04, pp: 50].............49
Figure 16 Initial phase of MVM (No MVM process loaded)..55
Figure 17 MVM toolkit starts its operation by SOAP invocation................................... 55
Figure 18 Spawns VM threads by on-demand method...55
Figure 19 Awakes other nodes in a job group by SOAP invocation..............................56
Figure 20 UML Diagram of core MVM toolkit modules...58
Figure 21 Running MVM toolkit on Globus 3.2.1... 64
Figure 22 Elapsed time for 3 and 5 MVM nodes for the “random walk” program........65
Figure 23 Elapsed time for random walk program (MPICH2 & MVM)........................ 65
Figure 24 Latency and throughput with different message sizes.....................................66

ix

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 INTRODUCTION

In recent decades, virtual laboratories have provided an environment to test various

research models, in the modelling phase, for cost and time saving [PrenOO]. A virtual

laboratory can be dynamically organized, whereby its topology is adapted on-demand by

research communities. Our goal is to create a virtual laboratory framework, using multi­

layer virtual machines, in which virtual machines are scalable, reconfigurable, and

flexible. Our design goals are as follows:

(1) Reconfigurability: The group of virtual machines is able to be reconfigurable for

particular uses. Reconfigurable virtual machines allow virtual laboratory users to test

various research models for reduced cost and time.

(2) Flexibility: The proposed framework will consist of a wide variety of machines with

different architectures; virtual laboratory users do not need to be aware of such details.

The proposed framework should not define the internal structure of any of the service

components including data and resource types. It is up to the virtual laboratory users or

experimenters to (re)configure test models.

(3) Decentralized Maintenance: The proposed framework is organized by communities in

the virtual laboratory and each community should be organized in a decentralized way.

For easy maintenance, each community is organized as a virtual cluster for the test model

experiment, where virtual machines are reconfigurable for each usage case.

(4) Dynamicity: The proposed framework should also allow virtual machines to be

created on-demand and dynamically instantiated through real or virtual networks while

providing a simplified and logical view of the underlying systems.

(5) Simplicity: The proposed framework should provide virtual laboratory users with an

efficient access point or interface to a group of host systems, as if they were using a

single system.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(6) Fault/Attack Isolation: Each host system is capable of running multiple test models

and if one test model suffers from faults or attacks, side effects of the system should be

minimized.

However, these objectives cannot be perfectly met with current system designs, as

demonstrated by the following example usage cases.

(1) Developers or experimentalists create complex configurations for parallel

computations on current grid middleware. Then they experiment with basically the same

programs but different configurations on different architectures. In current system

designs, grid middleware is not fully integrated with a wide variety of dynamic

configuration model, therefore, we should use the configuration model every deploy-time

rather than run time.

(2) Developers or experimentalists create high performance pipelined applications on

current virtual machines with multiple stages of connections. Then they experiment with

basically the same programs but different stages of connections. In current system

designs, virtual machines are not integrated with dynamic connection model for each

stage, therefore, either programming efforts or different deploy-time configurations are

required to specify the connection model for each stage.

(3) Developers or experimentalists create a virtual topology for parallel applications.

Then they experiment with basically the same programs, but with different virtual

topologies using the same or different number of nodes. In current parallel system

designs, for instance, MPI, we have to rewrite and recompile the program, to test another

virtual topology model in the same program.

(4) Developers or experimentalists send jobs to the resource broker that performs job

discovery, scheduling, and management on a group of resources. Then they want to

change the behaviour of the resource broker, in that some nomadic resources are added to

the existing resources. In current system designs, resource brokers are static entities and

cannot be dynamically adapted for a wide variety of resource usage models.

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The hypothesis of the thesis is as follows:

“We assert that the reconfigurable and layered virtual machine can overcome the known

above problems and provide the enhanced efficiency and reconfigurability for virtual

laboratory in distributed and grid systems in comparison with currently established

methods and techniques.”

This paper presents the new virtual machine architecture for a virtual laboratory

framework that meets the goals described above. The new architecture allows a set of

virtual machines to be connected together for a larger virtual computer, while virtual

machines are reconfigurable for each resource, job, and connectivity scenario. This multi­

layer, flexible virtual machine architecture should allow virtual laboratory framework to

gracefully scale to a large number of nodes, and allow us to reconfigure the virtual

machine itself at run time rather than deploy-time. We divide a group of virtual machines

by the general processing element nodes and control processing element nodes. The

control processing element nodes act as traditional resource brokers, allowing us to

reconfigure and adapt for a wide variety of resource usage models.

The rest of this paper is organized as follows. Chapter 2 presents a background analysis

for the thesis. Chapter 3 describes the design of the Multi-layer Virtual Machine (MVM)

for the virtual laboratory, and its three layers. We discuss the functionality of each layer,

and the design consideration for each layer. Chapter 4 discusses the design of the virtual

laboratory framework by using MVMs. It also includes the reconfigurable policy and

connectivity components. Chapter 5 presents an implementation and observations from a

virtual laboratory using MVMs. Finally, Chapter 6 presents concluding remarks.

3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 BACKGROUND ANALYSIS AND RELATED WORKS

2.1 Virtual Laboratory

According to Preney et al [PrenOO], a virtual laboratory is a Turing compliant modeling

environment where discussions, data exchange and experiments all take place, providing

a modeling system environment to model arbitrary models. The ideal virtual laboratory,

defined by Preney et al [PrenOO], allows collaborating researchers to integrate and utilize

the following features within a virtual administrative domain : (a) create, publish, execute,

modify, destroy and test their research models; (b) query databases of existing knowledge

and models; (c) select machines, algorithms, and data structures in order to generate and

deploy software codes necessary to publish or execute a given research model

automatically with minimal researcher assistance; (d) enforce the security, copyright,

administrative, costing, and information policies of the involved parties. Building an ideal

virtual laboratory, as specified above is still a work in progress, and theoretical limits (i.e.

Godel’s incompleteness theorem) exposed by the modeling itself still need to be

overcome [PrenOO].

2.2 Distributed Systems

Tanenbaum [Tane95] defines a distributed system as, “a collection of independent

computers that appear to the users of the system as a single computer”, and clarified two

aspects with this definition. The first clarification concerns hardware, where the

distributed system is composed of a collection of independent computers, and the second

clarification concerns software; the user can think of the distributed system as one single

computer [Tane95].

2.3 Grids

According to Foster [FostOl], distributed-computing technology should evolve to

accommodate the range of resource types (including the flexibility and control in sharing

relationships) to establish dynamic collections of individuals, institutions, and resources;

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

a ’’grid problem” is defined as “coordinated resource-sharing and problem-solving in

dynamic, multi-institutional virtual organizations”. These dynamic collections are called

“Virtual Organizations” or VOs [FostOl]. Research and development efforts to build

scalable VOs have been conducted in grid communities, but a challenging problem still

remains: the achievement of seamless, dynamic, cross-organizational VO sharing. “Open

grid services architecture”, defined standard mechanisms for the creating, discovering,

and naming of “grid service instances”, while “service” is defined as a network-enabled

entity providing some capability [Fost02]. The benefits of service-oriented grid

architectures in combination with web services technologies have been explained by the

former’s ability to make use of advantageous characteristics (such as service description,

discovery, and binding of service descriptions to network protocols) of the latter, with

these “virtualized” services allowing consistent resource access across multiple

heterogeneous environments by location transparency, and also multiple logical resource

instances to be mapped onto the same physical resource [Fost02].

2.4 Categories of Virtual Machines

According to Goldberg [Gold74], a “virtual machine” (VM) is defined as, “an isolated

duplicate of a real existing computer system, in which statistically-dominant subset of the

virtual processor’s instructions are being executed on host processor in a native way”.

Virtual machines have been studied since the late 1960s and are experiencing resurgence

in commercial and research areas. OS-level virtual machines, in addition to virtual OSes,

language-level virtual machines and queue-based virtual machines can be deployed in

distributed systems and grid environments.

A typical computer system has three components; these are hardware, operating system,

and application programs. There are two key interfaces in a typical computer system;

respectively, these are called ISA and ABI (See Figure 1 below).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Application Softw are Application Software

System Catls
I I .. 1........ ,

S y stem C alls
I I I■* + t |

Operating S ystem |
* T T

Operating S ystem

S y stem ISA 1 U se r ISA System ISA U se r ISA

Hardware
Hardware

Figure 1 [SmitOl, page: 7]

(a) Instruction Set Architecture (ISA) Interface

(b) Application Binary Interface (ABI) Interface

In Figure 1 (a), the ISA interface consists of both the user ISA (non-privileged instruction

set architecture) and the system ISA (privileged instruction set architecture). The user

ISA is available to both the operating system and application software, whereas the

system ISA is only available to the operating system; only privileged operations can be

permitted to manipulate the processor, memory and I/O directly [SmitOl]. As shown in

Figure 1 (b), the main components of ABI interface are the user ISA and “system calls”.

Between application programs and an operating system, the “system calls” interface is

provided to manage and protect hardware resources from unauthorized accesses [SmitOl].

Two major types of virtual machines are ISA VMs and ABI VMs; ISA VMs manipulate

and support both the user ISA and the system ISA, whereas ABI VMs manipulate and

support both user ISA and “system calls” [SmitOl]. OS-level VMs [Wald02] are in the

former category but language-level VMs (e.g. Java Virtual Machine) and virtual OSes

[Jian03a], [DikeOl] are in the latter.

2.4.1 OS-level VMs and Virtual Machine Monitor (VMM)

OS-level VMs (i.e. classic VMs) are categorized as ISA VMs, with the same ISA

execution environments of the entire operating systems [Figu03]. “Virtual machine

monitor” [Shri76] is involved in the OS-level VMs between hardware and guest

operating systems (VMs). The original purpose of OS-level virtual machines is to

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

multiplex expensive hardware resources by virtualization of the hardware interface; this

virtualization of the hardware layer, called a virtual-machine monitor (VMM), allows

multiple, concurrent guest OSes to be hosted on the same hardware platform [Crea81].

“Disco” projects [Bugn97] and commercial “VMware” [SugeOl] adapt VMM

approaches; “Disco” projects [Bugn97] adapts VMM to run multiple commodity

operating systems on a scalable multiprocessor, whereas “VMware” [SugeOl] adopts

VMM to run several guest OSes on intel-based PC platform. VMM emulates underlying

hardware resources for guest OSes, with guest OSes then operating as though they are

real hardware; in this case, all I/O and privileged instructions must be trapped by VMM,

with the VMM also ensuring correct scheduling of CPU time slice amongst guest OSes

[Crea81]. Other purposes, such as providing isolation and security, were considered for

these guest operating systems on VMM; specifically, because of inherent VMM

characteristics, it protects other guest operating systems if a malicious user compromises

one underlying guest operating system, compelling him or her to break one more level

(i.e., VMM) in order to compromise an entire system [Figu03].

OS-level VMs also provide security monitoring services such as intrusion

prevention/detection [Garf03] and secure logging [King02] systems. OS-level VMs are

useful for intrusion prevention and detection systems; because running doubtful events on

real systems (to test attacks) might compromise the system, a better approach is to clone

the real system by OS-level VMs in order to test suspicious events [ChenOl]. Secure

logging systems through OS-level VMs [King02] has been demonstrated. A major

shortcoming of current intrusion logging systems can be the fact that an attacker, after

he/she takes control over the system, can easily alter the logging system so it cannot be

trusted; moving logging software out of the operating system and into the virtual-machine

monitor can help to replay the operating system’s execution before, during, and after any

potential attacker compromises the system [King02].

Another advantage of OS-level VMs allows running unmodified-legacy applications to

migrate and operate seamlessly without residual dependencies, because the entire virtual

machine state can be encapsulated and migrated between VMMs [Osma02], [Sapu02].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.4.2 Virtual OS

Virtual OS technology [DikeOl], [Jian04] is similar to OS-level VM technology in that it

allows multiple guest operating systems (virtual OSes) to be hosted on the same hardware

platform with fault/attack isolation [Jian04] but its basic difference lies in the fact there is

no hardware emulation layer in the virtual OS technology [DikeOl]. The virtual OS

kernel and its processes run as processes on the host kernel; as a result, a user space

virtual machine, using simulated hardware, can be run by the host kernel [DikeOl]. As

shown by Ensim [Ensi03], user Mode Linux [DikeOl], [Buch02] and Linux BSD’s Jail

[KampOO], along with most other virtual OS technology, adapt virtualization at the

system-call level [Bavi04]. Virtualization at the system-call level can be achieved by

modification of a kernel code which interacts with hardware [Buch02]. According to

Dike [DikeOl], linux virtual OS, running on a linux host, can be implemented by a

special tracing process using ptrace linux system-call; processes in user mode will have

their system-calls intercepted and virtualized, but in kernel mode processes should be

released from the tracing mechanism and directly run into the host kernel. For a linux

virtual OS, hardware interactive assembler instructions in virtual OS kernel (such as

interrupt, exception handling, and access functions) can be replaced with signal system-

calls, which allows multiple user mode kernels on each virtual device to be hosted on a

host kernel [Buch02].

2.4.3 Language-level VMs

Language-level VMs are categorized as ABI VMs, manipulating and supporting both

user ISA and “system calls” [SmitOl]. The main purposes of language-level VMs are to

provide portability, platform independence, and security [Lind97]. These VMs are mainly

deployed for use with application programs rather than operating systems; Java virtual

machine [Lind97] and Mite virtual machine [Thom99] are examples of language-level

VMs. These VMs provide non-native instruction sets, exposing only high-level interfaces

to the resources of underlying hardware, while allowing separate and independent

designing [HarrOl] from the application software.

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.4.4 Queue-based Virtual Machines

The purpose of queue-based VMs is to separate encoding of the implementation from

abstract design and to allow for modeling of arbitrary computing systems [PrenOO].

Queue-based VM consists of a broker and an arbitrary computable entity; the broker is

represented by the enqueuing portion of the incoming queue and the dequeuing portion of

the outgoing queue of the computing system, whereby the queues here are generic and

any type of queues can be adapted (i.e. FIFO queue, priority queue, etc) [Pren99]. This

virtual machine can be used to create systems representing all of Flynn’s architectural

models (i.e., SISD, SIMD, MISD, MIMD) [Flyn66], allowing set of virtual machines to

be connected and composed together for a larger virtual computer [Pren99]. Queue-based

VMs are fully generic by decoupling the arbitrary computer system from broker and

computable entity, allowing us to enforce various policies on these virtual machines in an

efficient way (i.e. security policy, fault tolerant handling, etc) [PrenOO].

2.5 Process / VM Migration

Process migration is defined by Milojicic [MiloOO] as an “act of transferring a process

between two machines” whereby dynamic load distribution, fault resilience, eased system

administration, and data access locality are enabled. Process migration at user-level is

deployed in many systems, including Condor [Litz92] and MPVM [Casa95], to support

cluster computing. Some system-level facilities provided by operating systems (such as

inter-process communication) inherently cannot be supported by user-level process

migration, whereas object-based process migrations such as those found in Globus

[Fost96] and Legion [Grim97] require programming controls on middleware

environments without supporting legacy applications for process migration [Osma02].

OS-level VM based process migrations have been suggested [Kozu02], [Sapu02],

[Osma02] to support legacy applications with a VM by capsules [Sapu02] that can be

dynamically instantiated. The advantage of process migration with OS-level VMs is that

the latter can encapsulate all volatile execution states of processes, permitting mobile

users to suspend their work in one computer and seamlessly resume their work at another

computer [Kozu02]. Migrating all states of a running computing environment (including

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

disks, memory, CPU registers, and I/O devices) across low bandwidth networks has been

discussed, with “optimized capsules migration” (copy-on-write disks, which trace only

the updates to capsule disks, “ballooning zeros” for any unused memory, hashing, etc)

between different VMMs [Sapu02]. The mechanism of a “ballooning technique”, first

introduced by [Wald02], requests from the operating system a large number of unused

memory pages, which it then “zeros” to help memory states to be easily compressed.

Hashing is used to speed up capsule transfer by checking local storage and examines

caches; only the data blocks with different hash values would be transferred to reduce the

amount data inside capsule [Sapu02].

“Remote computational service” architecture, as discussed by [Schm02], can also be used

to help “capsule” migration. “Remote computational service”, based on stateless display

consoles and cacheable computing sessions, can be connected to session servers via

display networks, allowing both the possibilities for active sessions to migrate between

session servers, and access to high performance back-end servers which might support

clustering and load balancing; users can then access remotely by simply applying low-

level, stateless appliance-like consoles while keeping persistent computing sessions

[Schm02].

2.6 Resource Partitioning

By using resource-scheduling algorithms [Rajk98], resource partitioning for virtual

machines can be achieved by resource reservation, allocation, and scheduling; memory

allocation limits can be reserved before a virtual machine boots, with other resources

allocation such as CPU and network being specified for each virtual machine (Sugarman,

2001). VMs are not allowed to exceed their share of resources; for example, when a

process inside a VM needs to perform computational jobs requiring a lot of memory, this

VM alone normally would have to swap and experience a low performance, while other

VMs remained unaffected [DikeOl]. According to [Wald02], the goals of performance

isolation and efficient memory utilization often conflict; a possible solution first

introduced by [Wald02] to cope with this is to use an ‘idle memory tax’ (defined as

reclaiming more idle pages from inactive VMs), which can specify the maximum fraction

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of idle pages requested from a VM, thereby enabling each VM to use a larger portion of

its memory without exceeding full share, while efficiently maintaining memory partition.

2.7 Hardware Virtualization

2.7.1 CPU Virtualization

CPU virtualization for a virtual machine can be accomplished by timesharing whereby

each guest OS, in turn, gains access to a CPU for a certain period of time allowing the

schedule policy of VMMs to control context switching amongst OS-level VMs [Crea81].

According to Barham [Barh03], the x86-based architecture for a traditional CPU at

privileged levels can be described as a series of concentric rings, with OS code executing

in ring 0 (most privileged), ring 3 (least privileged) is used for application purposes, and

rings 1 and 2 are seldom used; for CPU virtualization with VMs in x86-based architecture,

VMM should execute in ring 0 while guest OSes (OS-level VMs) should execute in ring

1, thereby preventing guest OSes from directly executing privileged instructions in ring 0,

while guest OSes are isolated from running applications. One method of avoiding CPU-

virtualization overhead discussed by Whitaker [Whit02], is to have a guest OS issue a

virtual instruction (such as an idle-with-timeout) allowing a guest OS to be removed from

scheduler considerations until its timer fires or until a signal arrives, thereby helping a

guest OS to avoid wasting its slice of physical CPU by executing OS idle loops

2.7.2 Memory and I/O Virtualization

According to Bugnion [Bugn97], “a machine address refers to actual hardware memory,

while a physical address is a software abstraction used to provide the illusion of hardware

memory to a virtual machine”. Robin [RobiOO] demonstrated that an extra level of

address translation can be used to both virtualize physical memory and control VM

physical-to-machine address mappings; physical addresses can be mapped to machine

addresses using the TLB (Translation Lookaside Buffer) of the processor while the VMM

can protect and manage the page table for each guest OS. A VMM can use the data

structure for each VM to control the mapping of physical page numbers to machine page

numbers, as whenever a guest OS issues an instruction to access the TLB or its own page

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

table, a VMM can intercept this instruction, preventing the VM from updating actual

MMU states; Sugerman [SugeOl] first introduced ‘shadow page tables’ which can be

maintained by a VMM for a processor’s TLB to perform machine-to-physical address

mapping, avoiding additional overhead during virtual-to-machine address mapping.

For the purposes of I/O virtualization, Robin [RobiOO] demonstrated that a VMM should

intercept each VMs access to I/O devices and forward them to physical I/O devices in

order to virtualize the latter; during this process, one special device driver for each type

of device can be used (rather than the real device driver in every I/O device) by first

introducing a “monitor call” which directs all command arguments to the VMM into a

single trap for simplicity and efficiency.

2.7.3 Full Virtualization

According to Creasy [Crea81], traditional virtual-machine monitors (VMMs) provide

each guest OS (VM) with a full hardware virtualization; virtual hardware exposed to each

VM should be functionally the same as the underlying machine so that a virtual-machine

monitor can host unmodified multiple operating systems while giving guest OSes (VMs)

the illusion they are running directly on physical hardware. For a full hardware

virtualization, all hardware-specific instructions by VMs should be intercepted by a

VMM; whenever guest OSes (VMs) or applications execute privileged instructions

(including hardware instructions) by traps, VMM should intercept these traps prior to a

VM interaction with the hardware, and whenever VMs are required to execute non­

privileged instructions (such as simple arithmetic operations), those non-privileged

instructions are allowed to directly execute on the CPU without VMM intervention

[RobiOO]. Whitaker [Whit02] pointed out that traditional mainframe hardware, especially

the processor, wa s designed to be virtualizable, but the Intel IA-32-based processor

architecture is not completely virtualizable; some x86 sensitive instructions, which might

affect the states of a VMM or other VMs, were not trapped in user-mode, for example,

some x86 instructions (ex. pushl, popl) access the interrupt-enabled flag in this mode

without being trapped. Therefore, full virtualization is not possible in the Intel IA-32-

based processor architecture; for full hardware virtualization on Intel-based architecture,

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

inserting manual traps by binary rewriting (thereby emulating full virtualization) was one

solution suggested by [SugeOl].

2.7.4 Paravirtualization

According to Whitaker [Whit02], traditional VMMs with full hardware virtualization

demonstrated performance drawbacks because large amounts of memory are consumed

by each VM in order for the latter to access its own copy of resources and devices. Xen

[Barh03] and Denali [Whit02] systems apply ‘paravirtualization’, which is the

virtualization of a subset of the processor’s instruction set with specialized virtual devices

to enhance performance. A ‘paravirtualization’ system replaces hardware interrupts with

its own event system to provide control transfer between VMM and VMs; for example,

Xen systems allow VMs read access to page tables, but a VMM intercepts the write

access for updates from VMs by Xen’s trapping mechanism [Barh03] to enhance its

performance. An ‘isolation kernel’, similar to a VMM , can also be used as a

‘paravirtualization’ system; the Denali isolation kernel (which provides a simplified

interface of an underlying architecture) removes deprecated and rarely used machine

instructions and modified some instructions (such as nonvirtualizable instructions in the

x86 architecture), then adds particular virtual instructions (thereby enabling guest OSes to

be directly executed onto the physical processor in some cases) for the isolation kernel’s

instruction set [Whit02],

Another example of ‘paravirtualization’ in Denali systems is shown by its replacing of

complex BIOS bootstrap functionality of guest OSes with the simple procedure of a

VMM loading a VM image into memory [Whit02]. For the purpose of minimizing I/O

virtualization overhead for each VM, a Denali system drastically reduces the number of

I/O devices (supported by guest OSes), keeping only those found in a typical system,

such as a network interface card, serial device, keyboard, timer, and a console; thousands

of the modified guest OSes (VMs) can be hosted on an ‘isolation kernel’ by this

‘paravirtualization’ approach [Whit02]. Using these methods of ‘paravirtualization’, the

isolation kernel should be resident in physical memory, while VMs should be paged on

demand; whenever page fault is taken by the VM, the isolation kernel verifies the virtual

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

address, allocates new page tables, and initiates a read action from the VM’s swap region

[Whit02]. For improved performance, an ‘isolation kernel’ should mandates each VM’s

access to a subset of virtualized address spaces, with the kernel itself being mapped into

those address spaces inaccessible to VMs, thereby avoiding excessive TLB (Translation

Look-aside Buffer) flushing onto VM/VMM crossings while providing the means for the

sharing of memory between VMs [Pete02a]. An isolation kernel can also choose a select

number of active VMs to be in memory; as the remaining VMs are swapped to second

storage, this process periodically redistributes physical memory from inactive to active

VMs [Whit02]. However, if existing native operating systems are to be used in either Xen

or Denali systems, drastic porting efforts might be required [Bavi04].

2.8 Network Virtualization

2.8.1 Programmable Network

The goal of a programmable network is to simplify the network services for their

deployment [Camp99a], [Camp99c]. As stated in [Camp99a], a programmable network

decouples control software from communication hardware to virtualize network

infrastructures. According to Campbell [Camp99a], several prototypes of programmable

networks have been suggested by a number of research groups. One class of

programmable network suggested by Campbell [Camp99c] is a spawning network

(whereby a child network operates on a subset of its parents’ network resources,

independently performing despite the limitations in their parents’ resource and

partitioning models), allowing the creation, deployment, and management of new

network topologies, through the virtual network operating system’s “life cycle”

(composed of profiling, spawning, and management) process. A virtual network should

be defined as a “profiling process” (the selection of topology from the parent link and

nodes and the specifying of resource requirements for virtual links, including bandwidth

and capacity) before spawning [Camp99c]. The main procedure in the “spawning

process” is the dynamic instantiation of profiling scripts (such as setting up topology), the

allocation of resources, the creation of virtual network components, and the bootstrapping

of network services [Camp99c]. The “management process” in the virtual network

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

operating system’s life cycle depends upon the “per-virtual-network” policy, which

allows the management, control, refinement, and monitoring of virtual network resources

[Camp99c]. Campbell [Camp99c] demonstrated that programmable network can be used

to architect, compose and deploy virtual networks by his example of spawning networks.

2.8.2 Network Components Virtualization

Physical network devices can be abstracted as distributed computing objects such as

virtual switches [Merw97b], virtual routers [Camp99b] and virtual ATM [Merw97a],

[Merw97b] in a virtual network [Camp99a]. According to Jiang [Jian03c], virtual

network interfaces can be dynamically created, configured or deleted even when the

virtual machine is active; when a new request for adding/deleting a virtual network

interface arrives, a virtual machine accommodates this new request by renewing VM

kernel data structure after proper authentication. A virtual switch is also created for each

virtual LAN, with packet forwarding then performed by the former at data link (layer 2)

level; the Unix/Linux poll system-call can be used to emulate a physical switch, whereby

a UDP Daemon polls the arrival of data and manipulates forwarding or dropping

incoming requests [Jian03b]. When the proper VM connect request for virtual LAN

arrives, a new port can be allocated for the virtual machine by a virtual switch, enabling a

physical connection to be established between the virtual machine host and the virtual

switch, as shown in the figure below:

S rtp I ; Km$mi f e w a r » vHo*
M n rp tx tc a a M l

Figure 2 Virtual switch and steps of port creation [Jian03b, page : 5]

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Basic differences between a physical switch and a virtual switch include the lack of

hardware constraints to the number of ports possible for the latter, as well as the

capability of virtual switches to use various packet queuing/forwarding policies which

can be dynamically adapted for loss rate, bandwidth, congestion, and delay [Jian03c]. As

a result, network component virtualization can avoid the need for a restart when it is used

in a dynamic, adaptive VM overlay network [Jian03b].

2.9 Model Driven Software Engineering

2.9.1 Model and Metamodel

In the context of model driven software engineering, a model of a system is defined by

Kleppe [Klep03] as “a description or specification of (part of) a system and its

environment for certain purposes, and it should be written in a well-defined language; a

well-defined language was defined as a language with well-defined form (syntax), and

meaning (semantics), which is suitable for automated interpretation by a computer”.

According to Nytun [Nytu02], the metamodel is by itself another model to define other

models; the metamodel identifies possible structures and the meaning to elements in a

model. The Object Management Group [OMGOl] proposed four modeling layers, called

MO, M l, M2, M3 (see table 1). Each layer provides a service to its upper layer and serves

as a client to its lower layer [EstrOl].

Table 1 : Four Modeling layers of the OMG [OMGOl]

Layer Description

M3 :meta-metamodel The infrastructure for a metamodeling architecture. Defines the

language for specifying metamodels.

M2: metamodel An instance of a meta-metamodel. Defines the language for

specifying a model.

M l: model An instance of a metamodel. Defines a language to describe an

information domain.

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

An instance of a model. Defines a specific information domainMO: user objects

(user data)

As denoted in Table 1, the meta-metamodel layer (M3) defines the language for

specifying metamodels, and the metamodel layer (M2) defines the language for

specifying models. The model layer (M l) defines the language for specifying information

domains, and the user objects layer (MO) contains user objects and user data respectively

[OMGOl]. According to Kleppe [Klep03], any number of levels could potentially be used.

However, instead of defining an M4 layer, the OMG mandates that all elements of layer

M3 be instances of the M3 layer itself. The OMG [OMGOl] proposed Meta-Object

Facility (MOF) as a standard M3 language, allowing modeling languages (e.g. UML,

CWM) to be instances of the MOF.

2.9.2 Model Driven Architecture

Model driven architecture (MDA) is a framework for software development made by

Object Management Group (OMG) and has three primary goals: they are portability,

interoperability, and reusability [OMGOl]. The MDA process defines three steps (see

Figure 3).

RIM

first
transformation,

P8M

second
transformation

Code Code

Figure 3 MDA Process [Klas04]

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The first step is to build a model with a high level of abstraction that is independent of

implementation methodologies. The model with a high level of abstraction is called a

Platform Independent Model (PIM). The second step, the PIM is transformed into one or

more Platform Specific Models (PSMs). A PSM specifies the model in terms of the

specific implementation technology (e.g. EJB model). The final step is to transform a

PSM to code (e.g. Java, SQL). The MDA allows software development procedure to be

mainly focused on producing a high and abstract level of the system. Thus high level

models should be written in a standard, well-defined language (e.g. Unified Modeling

Language (UML) in combination with the Object Constraint Language (OCL)), in a

manner that is consistent, precise, and contain enough information on the system

[Klas04],

2.9.3 Software Component Modeling

According to [Wiki], a software component is the “software technology for encapsulating

software functionality, often in the form of objects (from Object Oriented Programming),

in some binary or textual form, adhering some IDL (interface description language) so

that the component may exist autonomously from other components”. The component

models can be specified as the four modeling viewpoints. They are interface models,

static behaviour models, dynamic behaviour models, interaction protocol models

[Rosh03]:

1. Interface models specify the access points that allow a component to interact with

other components in a system.

2. Static behaviour models shows the functionality of a component in a discrete manner,

i.e., at a particular instance during the system’s operation.

3. Dynamic behaviour models provide a continuous view of a component, thereby

describing different states in its execution.

4. Interaction protocol models provide an external view of a component, thereby

describing its interactions with other components.

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bilke [Bilk02] pointed out that components do not exist independently of component

platforms where runtime environments are provided. In this sense, to develop

components is subject to a dedicated component platform. Ziadi [Ziad02] proposed a

“platform independent component model”, which can be considered as the PIM (Platform

Independent Model) of the MDA, allowing the modeling of software components to be

independent of any platform environment; OCL meta-level constraints and mapping rules

(i.e. generating source class skeletons and IDL files) can be useful to map platform

independent component models to platform specific models.

2.10 Related works

2.10.1 Grid Co mputing on OS-level Virtual Machines

By using a ‘VM life cycle’, the mechanism of grid computing on OS-level virtual

machines have been illustrated. Grid computing on an OS-level virtual machine involves

a physical, virtual machine O/S image, application image, and user data server [Figu03].

The steps of a ‘VM life cycle’, in grid environments, are as follows:

Virtual bacK-ervds

/

/ m

| V1

internet

— ► middleware
— » VM startup
— ► data session

Figure 4 Architecture for a VM-based Grid Service [Figu03, page: 12]

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

According to Figure 4, user X (or Service Provider S on behalf of users A, B, and C)

queries the availability of resources for use by information services such as Globus MDS,

[Fost96] or GIS [AlleOl], using middleware Front end ‘F \ Then, grid middleware

establishes a data session between physical server P and image server I, either by

GridFTP [Fost02] or on-demand transfers [Figu03]. When the data session is established

between physical and image server, the former downloads images from image server and

is then able to reduce transfer delay later by caching the VM state; once the download is

complete, a physical machine allocates a slice of its resources for a VM image [Figu03],

then instantiates a VM while providing it with an IP or virtual Ethernet address [Sund03].

Virtual back-ends are groups of VMs which are mapped slices of physical machines; data

sessions for application downloads are then established between operating systems inside

VMs and the application server [Figu03]. These transfers can also be achieved by on-

demand transfers. Users can then execute applications with SSH or Globus GRAM

[Fost02] either by interactively using remote display protocols such as VNC [Rich98], or

batch modes [Figu03].

2.10.2 Virtual OS based Distributed Systems

The hosting of application services by virtual OSes as a distributed-system utility has

been suggested [Jian03b]; specifically, Service-On-Demand Architecture (SODA) hosted

upon service Hosting Utility Platforms (HUP), providing on-demand creation of

application services in distributed systems’ environments. These application services,

including guest operating systems (virtual OSes), are dynamically created and

automatically bootstrapped as a group of virtual service nodes, and each virtual service

node is represented as a virtual machine, providing administration isolation in addition to

fault and attack isolation [Jian03b]. The components of Service-On-Demand Architecture

(SODA) are middleware entities SODA Agent, SODA Master, SODA Daemon, and

Service Switch; initially, the Application Service Provider (ASP) requests service

creation to the SODA Agent with a resource requirement, after which the SODA Master

checks whether the resource requirement of ASP can be satisfied with the HUP resource

availability [Jian03b]. If the resource requirement can be acceptable on HUP, SODA

Master consults the SODA Daemon, with the latter downloading application service

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

images and bootstrapping virtual service nodes; after the service bootstraps, Service

Switch will accept client requests and redirect to the appropriate virtual service node

[Jian03b]. A similar approach is that available with the Denali [Whit02] and Xenoserver

[Hand03] projects, both providing isolation between internet services on shared hardware

in distributed/grid environments. These application services can complement web service

based grid platform [Fost02] due to its resemblance to service-oriented architecture

[Jian03b]

2.10.3 VM TestBed

According to Jiang [Jian03b], VM overlay networks can be deployed to test and monitor

underlying physical networks and applications running the VMs. Virtual-machine

monitor-based overlay supports distributed virtualization (with each node able to provide

simultaneously-running multiple services in a multiplex manner) allowing each

application to be run as a part of the overlay, and not globally scheduled to run [Pete02b].

In Virtual Internetworking on Overlay Infrastructure (VIOLIN) suggested by [Jian03b],

network components such as routers, switches, and end-hosts can be virtualized on top of

overlay infrastructure to be user-configurable on demand, easily arranged for different

testbeds associated with VM based distributed systems. The components of this

architecture consist of virtual end-hosts (i.e. virtual machines in physical hosts) and

virtual routers (i.e. virtual machines with multiple virtual interfaces, having the capability

of forwarding between each virtual LAN) [Jian03b]. Virtual LANs can be organized by

individual virtual switches which connect multiple virtual end-hosts, and are responsible

for packet forwarding (at the data link layer); this architecture creates a VM network for

the various services of distributed systems with no modifications of the real internet

infrastructure, making the testing of a VM network for different services of distributed

systems easier [Jian03b]. The figure 5 illustrates relations between overlay infrastructure

of virtual components, and underlying internet. Sundaraj [Sund03] first suggested

Physical, VMD (Virtual Machine Daemon), and VM layers for the monitoring and testing

of VM networks; the first is an underlying IP network, while VMD layers are an overlay

in this architecture and able to manage VMs, monitoring both the resources provided by

underlying physical networks and the resources requested by VMs in VM layers.

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

I l 3 l a u i I. ^
O • MktUt h ■«

41 Vw»iK-«e(
-s. !wu!«K*ia

Figure 5 Virtual Internetworking on Overlay Infrastructure [Jian03b, page: 2]

According to Jiang [Jian03c], the major steps for testing VM networks are as follows:

first, specified VM and VM networks are required by using a well-defined script

language; second, the logical entities in the testbed should be mapped onto virtual

machines in VM networks; third, VM networks should perform virtual-node and virtual-

topology creation; finally, the test of distributed systems or grid services (either batch-

oriented or interactive) can be conducted with experimenters monitoring and managing

VM networks at run time. By monitoring the VMD layer, Sundaraj [Sund03]

demonstrated that it is possible to adapt communication and computation behaviour of

VMs in the VM layer, allowing VMD routing rules and topology to be changed for the

purpose of efficiently migrating VMs and/or deploying various services in distributed

systems or grid.

2 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 A PROPOSED VIRTUAL MACHINE (MVM)

As the first step towards developing a logical framework that matches the vision of our

design goals, we have devised a Multi-layer Virtual Machine (MVM) (see Figure 6). We

propose to build a large, logical, high performance virtual computer on existing systems.

Therefore, our strategy is to keep underlying systems intact, without any dramatic

changes to the host OSs. Studies on hardware virtual machines to enable network

reconfiguration are currently being conducted by FPGA (Field Programmable Gate Array)

research groups [Scha04]. However, this model does not fit our scalable virtual machine

design goal, as it is mainly used for homogeneous platforms with homogeneous

computing techniques. As stated in Chapter 1, the MVM is designed to overcome

existing grid middleware difficulties. The proposed MVM middleware is intended to

provide an alternative method to traditional grid middleware methodologies or

complement them. The MVM1 consists of three layers: OS-level VM, Queue VMs, and

Components VMs. The OS-level VM is a virtualized operating system that can be

migrated within the network. The Queue VMs consist of broker and processing entity.

The Components VMs allow us to reconfigure VM interface logics at run time to control

VM itself, for a wide variety of job, resource, and connectivity models. Detailed

descriptions of each different layer will be presented in Section 3.2-3.4.

Application Application Application Application

Components VM Components VM Components VM Components VM

Queue VM Queue VM Queue VM Queue VM

OS-level VM OS-level VM

Virtual Machine Monitor (VM M)

Hardware
t

■ \

Multi-layer Virtual Machine
(MVM)

Figure 6 Multi-layer Virtual Machine Architecture (type (a))

1 type (b) and type(c) MVM is discussed in Section 3.5

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Building a virtual computer using MVMs

This paper presents a design for a large distributed and parallel reconfigurable virtual

computer for a virtual laboratory, on heterogeneous platforms. The schematic diagram for

the virtual computer using MVMs is shown in Figure 7. One of our design goals stated in

Chapter 1 is for decentralized maintenance. We take advantage of existing super peer

based P2P architecture. The experimenter joins a virtual community and then retrieves

nodes information. Then one or more strong peers with a high bandwidth can be selected

as super peers, either statically or dynamically. The processing element of the super peer

will act as a control processing element, while the processing elements of the remaining

nodes will act as general processing elements. The role of the control processing element

is to control the general processing elements. According to our interface logics, the

control processing element will schedule general processing elements, sequence jobs, and

manage the connectivity for the general processing elements. Actual computations for

the experiment will be conducted by general processing elements. Interface logics consist

of logical, reconfigurable components. Our logical components, such as connectivity and

sharing rules, will be further mapped to physical connectivity and sharing rules. In many

existing systems, the configurations are too coupled with underlying architecture, so we

had to rewrite every different configuration for every job and resource scenario. However,

virtual laboratory users might not need to be aware of such details of underlying

architecture. Our logical components in the Components VM will provide a logical layer

and raise the level of abstraction, providing a simplified view of the system.

The VM interface controller in Figure 7 will buffer incoming data according to different

queue types (i.e. FIFO queue, priority queue, etc) and set policies according to the

interface logics. The VM decoder allows us to obtain actual data in different architectural

types by referencing interface logics. In contrast, the VM encoder allows us to convert

data, instruction, and protocol for a specific use. In our MVM design, there are two kinds

of memory types: VM external memory and VM internal memory. The VM external

memory is the super peer’s shared disk space or backend data storage, while the VM

internal memory is the disk space for the general processing element.

2 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

External VM bus

VM interface logic

1. Enqueuing

2. Dequeuing

VM Interface controller

VM Decoder

VM C<)n tro l P E VM External
Memory

3. Enqueuing

4. Dequeuing

VM Encoder

VM Interface controller

VM interface logic

PE

B E? <Q &o ° O Q _
9r «

2

I

VM Inter
Control

face
er

PE

> m 5? c*
O cj.g* n

S'

VM Interface
Controller

3e.

S'

PE

§ 3
I 3 >5 e.

B EP <
I S 2O Q .S* «

PE

3 S ’

Bg12 os aS- a

VM Interface
Controller

Virtual Cluster

VM
Cc

Interface
mtroller

(For each VM node)

1. Enqueuing : VM
interface controller
2. Dequeuing : VM
Decoder
3. Enqueuing: VM
Encoder
4. Dequeuing: VM
Interface controller

Figure 7 Virtual Parallel Computer using MVMs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As the data staging technique [Flin02] reduces latency by moving data to a nearby

surrogate, we prefetch often used files, in the super peer’s external memory, in order to

improve the performance of the virtual cluster. We refer to a group of MVMs as the

virtual cluster in that it is dynamically organized, for the specific experiment by the

research communities in the virtual laboratory, and it is not confined by physical

locations. Once the community is organized, it can be a Virtual Organization (VO) in grid

jargon, as it has the same sharing rules across the nodes in the community. In Figure 7,

we emulate real data communication paths for the MVMs with our external VM bus and

internal VM buses. However, we can replace the internal VM buses with other network

communication models, such as the ring, and the star, without loss of generality.

3.2 OS-level VM layer

We take advantage of existing OS-level VM technology to satisfy parts of our design

goals, especially fault/attack isolation. What if one experiment generates a fault and

freezes host OS? What if the host OS is compromised by an attack during the experiment?

In our MVM design, distinct OS-level VMs can be multiplexed on the Virtual Machine

Monitor (VMM). In addition to the isolation feature of the OS-level VM technology, the

OS-level VM can be used to set up a virtual network, which allows the setting up and

testing of experimental services. Let us consider the following scenario.

1. Alice participates in two research projects, for example, neural network project “a”

and biochemistry project “b”.

2. Alice joins community “a” and community “b” for each project, in the virtual

laboratory.

3. Alice wants to use her own real machine, as if two independent networkable

machines are running on her machine, with its own processor, sharing and resource

management rules.

In this case, Alice can allocate two OS-level VMs on VMM for each community. Alice is

then able to customize each OS-level VM for each community with its own specific

sharing, connectivity, jobs, and resource management rules as if two autonomous

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dedicated host machines are running for each community. We may consider downloading

and installing the OS-level VM when we join a community, and simply discard it when

we leave the community. Current ongoing projects, such as VMPlant [Krsu04] and

SODA [Jian03a], shows that the on-demand, dynamic instantiation of VMs can be

incorporated into the grid resource and grid data management framework. In a similar

way, we can store a wide variety of OS-level VMs in the virtual backend, and then

retrieve and assemble them with the Queue VMs by utilizing existing grid middleware

methods.

The OS-level VM in the MVM can also facilitate the underlying system to be maintained

in a partitioned way. All manipulations inside the OS-level VMs do not affect the

configuration values in another OS-level VM on the underlying system. We often find

that multi-user systems restrict the privileges of users for system protection. They also

restrict some system facilities, such as the logging and monitoring the programs at the

system level. In certain circumstances, a user or a group of users need some system

facilities to run and monitor their experimental programs. Thus, in this situation, the OS-

level VM technology is a viable choice for them to have their own OS on the underlying

system, while keeping the OS-level VM from damaging the underlying system. Another

advantage of adapting the OS-level VM as a building block of the MVM is that we can

migrate the processes in the OS-level VM including the OS-level VM itself. As we stated

in Section 2.5, when a virtual machine suffers from a fault or failure, we can use VM-

based checkpoint technology [Schm02]. In this case, we have two choices: the first

choice is that we migrate a group of Queue VMs in MVM to another node, without

migrating the OS-level VMs; the second choice is that we migrate the whole MVM,

including the Queue VMs, to another idle node. The “check-pointing jobs” [Buyy99] are

types of jobs that periodically save their status to the files system, and thus can be aborted

and resumed anytime. When they are restarted, they resume execution from the last

checkpoint. The “checkpoint-jobs” can facilitate the migration of jobs between the

MVMs. However, additional efforts are required to modify usual jobs to the checkpoint

jobs.

2 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Queue VM Layer

Queue VM consists of a broker and an arbitrary computable entity. The arbitrary

computable entity is categorized by the control processing elements and general

processing elements in MVM. The key part of the Queue VM is the broker that provides

all of the mapping, between a computing system’s external input and output interfaces,

and their corresponding internal computable entities [Pren99]. We further divide the

broker in the Queue VM into our VM interface logic, VM interface controller, and VM

encoder/decoder. Our design of the Queue VM in the MVM is folly generic and flexible,

so that we can (re)configure and control how to interface an arbitrary computer system.

We advocate that “enqueuing” and “dequeuing” are the most common characteristics of

any computer systems available. Any computer system should enqueue and dequeue its

data including instructions. The actual computation is dependent how to take items in the

queue, and how to decode these items. Once we can configure how to do this process at

run time, it will give us a chance to build a flexible and scalable system, on the arbitrary

computing systems. Furthermore, it will give us strong and versatile features of system

design, which allows us to accommodate a large number of different architectures.

Suppose that computational jobs are fed into the group of Queue VMs, consisting of

arbitrary architectures. As shown in Figure 7, the “enqueuing” and “dequeuing” portions

of the VM can extend to a group of computer systems. We do not know how the

processing elements are alike. However, we are able to look at the queue, pick up items

in the queue by using the interface logics, and then apply various rules to these items.

These rules contain the information on how to decode the items, and how to run the items

in a group of nodes. When a group of Queue VMs are organized under the certain sharing

rules for the specific experiment, it provides a Single System Image (SSI), as if one

broker and one processing element are running to the external user. In this case, the

broker can be regarded as the super peer VM node, and the virtual cluster in Figure 7 can

be regarded as the processing element. When we look at the inside of the SSI in Figure 7,

we find that it follows the Flynn’s MIMD (Multiple Instruction and Multiple Data Stream)

architecture [Flyn66], in that each connected VM can provide either instruction stream, or

data stream, for the parallel computation. We might also have several queues for the

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

enqueuing process in the Queue VM, so that we can assign different queues to different

jobs, allowing each job to be run concurrently in each queue in SSI. Thus, we can

simulate the parallel computer architecture by organizing a group of Queue VMs in the

MVMs.

3.4 Components VM Layer

Although our VM middleware shares the same key problems (resource discovery,

allocation, management, authorization/authentication, policy enforcement, etc) with the

existing grid middleware, our approach to cope with the problems is to “configure and

customize”, by using lightweight component-based technology. Another advantage of the

component-based technology is the reusability. Once we register the connectivity,

resource and job profiles for a certain experiment, we might use the same profiles with

different parameters for later use. The Components VM layer, in our MVM, allows us to

reconfigure the virtual machine itself. When we organize a virtual cluster for the

experiment, we might apply different jobs and resource usage scenarios, for later

experiment. When an experimenter sends a job and its header to the broker node, the

broker node (super peer) first sees the job header. The job header includes the component

names of the job, resource and connectivity profiles. The broker node then retrieves each

component, and organizes the virtual cluster by the “connectivity profile” component.

The “connectivity profile” component specifies the logical topology, along with the stage

information for the pipeline applications. The “resource profile” component includes

resource scheduling policy, and sharing policy. The resource scheduling policies includes

First Come First Served, Select-Least-Loaded, Select-Fixed-Sequence, etc [Buyy99]. The

resource sharing policy describes logical sharing rules across the virtual cluster. The “job

profile” component includes the resource requirement and the resource limitation for the

job. The above profile also includes timeout value, queue types (e.g. FCFS, SJFS,

priority), number of queues, queue sizes, job sizes, byte orders (little endian, big endian),

etc. The resource requirement module describes the required resources, such as maximum

and minimum number of nodes, memory space, bandwidth, etc. The resource limitation

module describes the limitation of the resources for the job, such as timeout for the

resource usage, minimum CPU speed (MIPS), minimum memory, and minimum disk

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

space. When we first conduct the experiment, we can store our configuration values into

a file. These configuration values will be default values, for later use. However, when we

conduct our next experiment with a slight change of the configuration, we can specify the

changed values into the parameters or update and retrieve the configuration components.

We do not have to reboot our MVMs in this case. This runtime reconfiguration

configuration capability facilitates the reduced maintenance cost and time. We further set

the interface logics by using the Components VM, which determine the behaviour of the

broker in the MVM. The policy enforcement will be established at the broker as well.

The broker is the key module of Queue VM, represented by the enqueuing portion of the

incoming queue, and the dequeuing portion of the outgoing queue, of the computing

system. It provides a uniform interface to access, while hiding the complexity of the

underlying system. Our plug-in Components VM determines how we manipulate the

broker, and how we adapt and translate it, into a particular usage scenario. In that sense,

the Components VM provides a semantic for the Queue VM. The “policy-based

reconfigurable components” are described in Section 4.3.

3.5 The type (b) and type (c) MVM

/ / / s
Application j Application sj Application 1 Application

/ I /
Components VM Components VM

1
Components VM | Components VM

' "✓ 7
Queue VM

i
Queue VM Queue VM J Queue VM

7
Operating System

/
/ /

Hardware
/

j * MVM

Figure 8 Multi-layer Virtual Machine Architecture (type (b))

Whenever we virtualize something in a computer system, we can often reduce

management cost by providing a predefined interface for virtualization. For instance, if

we virtualize the OS, the management cost can be lessened. As our virtual laboratory

aims to provide a certain degree of self-configuring and self-management capabilities, the

virtualized OS is also an essential feature. However, there are trade-offs for OS

3 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

virtualization. The trade-offs are we have to modify the underlying system, and the

additional performance cost that is required to map virtual operations to system level

operations. The advantage of the type (b) MVM is that we do not need to modify the

underlying system. Although the OS-level VM layer does not exist in the type (b) MVM

(see Figure 8), it provides the basic functionalities of the MVM, such as reconfigurability,

and flexibility. However, fine-grained resource customization and partitioning are not

supported in the type (b) MVM. In type (b) of MVM, Queue VMs provides a uniform

interface to a group of heterogeneous systems, thereby allowing the collaboration of a

wide variety of distributed, heterogeneous systems. The Queue VMs are also utilized as

virtualized queues for virtual networks. Once the connectivity information has been given,

those virtualized queues are dynamically connected and organized, providing a virtual

network for heterogeneous processing elements.

~7~
Application

Components VM

Queue VM

~7~
Application

£
Components VM

c
Queue VM

~7~
Application

Component'. VM

Queue VM

Application

Components VM

Queue VM

Virtual OS Virtual OS

Operating System

Hardware

> MVM

Figure 9 Multi-layer Virtual Machine Architecture (type (c))

The type (c) MVM uses a user-level OS (virtual OS) technology, whereby the virtual OS

kernel and its processes run as processes on the host kernel [DikeOl]. Thus, the resource

partitioning and customization are not fully supported. The type (c) MVM is not required

to essentially modify the underlying operating system. It can be dynamically created on-

demand, and automatically bootstrapped, while providing administration isolation, in

addition to a certain degree of fault and attack isolation. Thus, it can be used for utility

computing architectures and service hosting environments [Jian03a], in addition to the

virtual laboratory framework.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Application Model

The application model is not particularly defined in the MVM. Program developers or

experimenters should choose the application model required for the specific experiment.

Prior to an experimenter sending a job to the broker node (super peer), the experimenter

sets basic configurations by using a user interface. The basic configurations include the

application profile, job and resource profiles, and connectivity profile. The experimenter

can reuse and edit those configurations, by utilizing software component technology, in

which the components are stored in the backend server. The user interface displays the

information of each component that was previously used. After the experimenter edits

properties of the above profiles, the experimenter should update it or store the profiles

using different names to the backend server. Once the experimenter finishes setting up

the configurations, the user interface program attaches a header to the job. The header

consists of the names of each configured component. Figure 10 describes the application

model in the MVM, consisting of the job and its header. In Figure 10, the application

profile includes the encoding and decoding information of the job, and the management

policy. The encoding and decoding information specifies whether the payload is a job or

data. It also describes data types and language types, such as Java, C, C++, etc. The

management policy is used to encapsulate and decapsulate the job header, additionally it

handles the congestion and fault situations. The management protocol should be

supported by the Queue VM in MVM. The situation whereby major congestion often

occurs in the MVMs is where the number of the general processing elements is too high,

compared with the capacity of the control processing element. In this case, we need to

partition the virtual cluster, into two or more sub clusters. Congestions and fault

situations will be discussed in Section 4.2.2 and Section 4.3 respectively.

job header

Job Application profile job and resource profile Connectivity profile (opt.)

Figure 10 Job and its header for MVM application

3 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 A PROPOSED FRAMEWORK FOR VIRTUAL LABORATORY

The proposed virtual laboratory has three different layers to provide dynamic and flexible

test environments, for a wide range of research communities: they are the virtualized

resources, virtualized networks, and policy-based reconfigurable components. For

scalability, the virtual front-ends and the virtual clusters in virtualized resources are

organized in a decentralized way. However, a pure decentralized system is known to have

several drawbacks, such as bandwidth overuse by message flooding, and maintenance

difficulties [Dasw02]. We advocate using the “super peer based P2P system” for

aggregating virtual resources. It has super peers for the delegation of each peer group.

The virtual community has one or several peer groups, whereby each peer group has a

super peer. The super peer in each peer group acts as the virtual front-end, in that it

provides a group of peers with virtual back-end information. This data includes URI

location of the virtual backend, and the ways on how to retrieve information from the

virtual back-end. We adopt the k-redundant super peers’ system for our virtual laboratory,

whereby the k-redundant super peers are used for system availability and redundancy

[Yang03]. We use 2-redundant super peers, for the virtual front-end in the virtual

laboratory. The redundant super peer node periodically checks the heartbeat of the super

peer node, and updates the connection status of the super peer. The “failover” and

“failback” are popular methods of the cluster recovery model [Buyy99], and we take

advantage of this process between the super peer and the redundant super peer in the

virtual front-end. The redundant super peer will also be used to share the load of super

peer. A virtual switch will be maintained for each super peer (See Figure 2). When the

failure occurs, the redundant super peer node takes over some ports for the virtual switch

in the super peer. The super peer then forwards the requests from ports that have been

taken over, to the redundant super peer.

The descriptions of virtualized resources are presented in Section 4.1. The descriptions of

virtualized networks and policy-based reconfigurable components in the proposed virtual

laboratory framework are presented in Section 4.2 and Section 4.3 respectively.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / / /
Applications for Inner VOs Domain Applications for In ter VOs Domain

E-science applications Applications for inter-VO collaborations
General Utilities / E-science problems (Grand Challenge, etc) /

MVM Policy-Based Reconfigurable Components

Security Handlings Fault Tolerance Scheduling, Monitoring
Components VMs

Authentication
Authorization

MVM Checkpointing
MVM Failure Recovety

MVM Monitoring
Partitioning, Mapping

Virtualized Networks

MVM Connectivity Components (Virtual Topologies)
Virtual Queues (Queue VMs), Virtual Switches, etc

P2P Overlay

Virtualized Resources

is
V irtual Clusters Virtual Front-ends V irtual Back-ends

Virtualized hardware
OS-level VMs, data, etc

Virtual Broker nodes Virtual Storage, Virtual
Information Servers, etc

Figure 11 Proposed Virtual Laboratory Framework

4.1 Virtualized Resources

4.1.1 Virtual Back-Ends

The virtual back-ends in our virtual laboratory design consists of several remote servers

that provide the virtual front-ends and virtual clusters with our VM image, resource

discovery service, bootstrapping service, components storage, etc. There are two choices

when using the virtual back-ends for the virtual clusters. One method is to use a virtual

front-end (super peer) as a data surrogate for cache, such that a super peer retrieves data

3 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the virtual back-end in advance, and then disseminate the data to the virtual cluster.

The other method is that the virtual front-end only provides the virtual cluster with

references for the virtual back-end. In this case, the virtual cluster has to retrieve the

actual data from the virtual back-end by using the references of the virtual front-end. The

trade-off of performance improvement on the first method is we have to manage cache

consistency protocol [Wu04], in addition to policy enforcement, when the maximum

capacity of the super peer is reached, and, seldom used cached data will be replaced with

essential data. For simple cache consistency management, instead of prefetching file

blocks from the back-end servers, our approach is to prefetch whole files from the back­

end servers, found in [Flin02]. Servers in the virtual back-end can be one of these types;

high performance computers, or workstation clusters, secondary data storages. Service-

oriented grid architectures, such as OGSA, virtualize back-end servers as “services”. The

components of the back-end servers are as follows:

o Bootstrap Nodes: The bootstrap nodes keep super peer lists for each community in

the virtual laboratory. After a participant node instantiates the MVM, the node first

finds the super peer for the community, by looking up the lists in the bootstrap nodes.

In case the first super peer in the list is not available, the node then finds the second

super peer in the list. This process will be continued to the end of the list, if the node

cannot find the right super peer for its community. Peer groups in the community

periodically select their super peer and update the lists in the bootstrap nodes.

o Information Service Servers: The information service servers maintain the resource

lists and contact details for each node, so that the super peer can discover resources

by using them. Whenever the virtual laboratory users connect to the super peer, it first

registers its resource information to the information service server. The super peer

will aggregate the nodes according to the resource information retrieved from the

information service servers. The directory servers will be used for our information

service servers to provide a well defined syntax for objects with distinguished names.

o Image Servers: The image servers allow the MVMs to be instantiated anywhere in the

community, and to be migrated on-demand. The image servers archive the static

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MVM states, including the OS-level VM and Queue VM image in the MVM. The

images in our virtual laboratory are virtualized images for dedicated raw machines, in

that they provide additional abstraction layers for the existing systems.

o Data and Application Servers: The data servers provide the participant nodes with

user data and applications for the virtual laboratory. The user data includes

information that is required to operate specific experiments. The application servers

provide the participant nodes with the executable applications for the MVM. The

application may be model itself, if the VM decoder supports for translating the model

into executable file. In case the executable UML technology [Luz04] or MDA

process are incorporated into our VM decoder, we envision experimenting with a

wide range of models in the modeling phase. In this situation, our queuing

mechanism and the model executable engine (VM decoder) should be interfaced and

connected by the VM interface controller with VM interface logics, and the network

connections should be controlled by the connectivity component in the MVM. There

are several on-going projects related to the model executable virtual machine

[Balc03] and they are works in progress.

o Authentication and Authorization Servers: Authentication servers issue, revoke, and

manage PKI-based certificates for virtual communities. Authorization servers issue,

revoke, and manage role attribute certificates and policy attribute certificates. We

adopt the Role-based Access Control (RBAC) [Sand96] method using attribute

certificates for our virtual laboratory, as it facilitates managing and enforcing

authorization in large-scale scalable systems. The Policy Management Points (PMPs),

Policy Decision Points (PDPs), and the policy repositories are located in the virtual

backend for above scheme.

o Component Servers: The component servers provide the Components VM with the

reconfigurable components. The component servers act as component repositories for

a wide variety of configuration components for MVMs. In the modeling phase, we do

not define the specific component model for the specific platform. The “platform

independent component model” [Ziad02] will be mapped to the “platform dependent

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

component model”. However, the component servers should provide the runtime

reconfigurability for the MVMs, so they should maintain the platform dependent

components for MVMs. Thus, we should store the platform dependent components in

the component repositories, after we finish translating the “platform independent

component model” to the “platform dependent component model”. Although the

components are constrained to the specific environment, they are considered as

logical, as they give only logical configurations for the specific experiment. It is up to

the control processing element to determine and map these logical configurations.

4.1.2 Virtual Front-Ends

The virtual front-end is the super peer module of our virtual laboratory. We use the term

“virtual front-end” rather than “front-end”, in that the virtual front-end node is itself a

MVM node with additional flexibility, reconfigurability, and dynamicity.

When an input packet arrives at the virtual front-end, the first step is to process a header

by decapsulating the input packet. After the header processing is complete, the jobs and

data are enqueued. Then the virtual front-end node sets policies by using the

reconfigurable components (see Figure 12). These policies include the scheduling,

connectivity management, and sharing rules policies. We enforce the policies for the

virtual cluster at the broker module of the virtual front-end node. As we stated in Section

3.1, the broker module is configured by our Components VM in the MVM. Thus, the

policies that are enforced by the Components VM can be reused, or shared by

disseminating the components to the nodes in the virtual cluster.

The main role of the virtual front-end is to schedule the incoming jobs in the Queue VM

to the available resources in the virtual cluster. The scheduling problems in parallel

computing, such as the “process-to-processor mapping problem”, are known to be “NP-

complete problems” in its general form [Traf02]. The design of the local and global

scheduler is beyond the scope of this thesis. However, by using our Components VM, we

can configure scheduling policies to our schedulers in the virtual front-end nodes, such as

First Come First Served, Select-Least-Loaded, and Select-Fixed-Sequence [Buyy99],

giving flexibility to the local and global schedulers. For a specific experiment in the

virtual community, the virtual front-end controls the connectivity and sharing rules for

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the virtual cluster. The connectivity and sharing rules consist of the logical components,

and are manipulated by the Components VM in the MVM. Thus, we should map the

logical connectivity and sharing rules to the physical connectivity and sharing rules for

the virtual cluster. We will discuss the “connectivity component” and their mapping

procedure in Section 4.2.1 and Section 4.2.2, respectively. We introduce the partitioning

strategy in Section 4.2.2, in order to avoid of congestion and to partition the virtual

community in an efficient way. In summary, the Queue VM in the super peer’s MVM

will act as the virtual front-end for the virtual cluster, and the components of Components

VM will be retrieved from the component servers in the virtual backend for the specific

experiment. Finally, the Components VM in the front-end will map these logical

components to the actual job situations for the virtual cluster.

User Inpu t

Virtual
Front-End

inb2

ore

Header processing

[Reconfigurable
Components]

A

Job
Configs

Resource
Configs

Policies

rp«1 r ps2

p i p
— n —

c .reXJsreS
3'ore

Scheduler and Distributor Virtual Resource Monitor Connectivity Management

Virtual
Cluster

are
sreS
S'ore

vm nodel

vm node2

vm node3

vm node4

vm node6

vm node7
^ vm nodes

vm nodes

A
Bre

vm node#l(jobl, d a ta l) , node #2(jobl, data2)
vm node #3(jobl, data3), node # 4 (jobl, data4)
vm node #5(iob2. datal).....................................

Sample
Connectivity

Figure 12 Virtual Front-End and Virtual Cluster

3 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.3 Virtual Clusters

The virtual cluster in our virtual laboratory is dynamically and on-demand organized as a

group of MVMs. The virtual front-end node initially retrieves the available resource

information of the virtual cluster from the information service server. Then the virtual

front-end node notifies a group of available nodes in the community to organize the

virtual cluster. The notified nodes respond by trying to connect to the virtual front-end

node. The virtual front-end node instantiates the virtual switch module and then allocates

its ports to the nodes. When the appropriate “MVM connect request” arrives to the virtual

switch, then a new port can be allocated for the MVM by the virtual switch. This enables

a physical connection to be established between the MVM node and the virtual switch in

the virtual front-end node. The virtual switch polls the arrival of data from each node and

then manipulates the forwarding or dropping of incoming requests. Each node is then

identified by the port number of the virtual switch, and will be further organized by the

connectivity rules. The “logical connectivity” component describes the connectivity of

the virtual cluster by the logical node id numbers. The node id numbers can be replaced

with the port numbers and the virtual switch numbers. The virtual switch sets the

maximum number of ports. However, within the port ranges, it is not required to allocate

ports in advance. When every successful “incoming request” arrives to the virtual switch,

a new port is allocated until the maximum port number is reached. The virtual switch can

also be organized in a hierarchical way. Consider that five hundred nodes join the

specific experiment, and the maximum number of ports is twenty. Suppose further, that

we adapt the simple partitioning scheme, such as one virtual switch for each twenty

nodes. We might create twenty virtual switches, in addition to the higher level virtual

switch, for twenty virtual switches. The remaining nodes might be used for redundancy

purposes. In this situation, the higher level virtual switch allocates its ports for only

virtual switches, and each virtual switch acts as a port for the high level virtual switch.

Although the dynamic, virtual parallel computer (see Figure 7) is recursively organized,

the recursive hierarchy should be hidden to the experimenter’s perspective. The

experimenter initially sends a job to only a single virtual front-end (super peer), and the

selected virtual front-end then gives some capable nodes to the super peer roles if

3 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

required. The initial virtual switch in the front-end can be at the highest hierarchy level.

We can connect the virtual switch and the node element by linking both the Queue VM s

in the MVMs. Thus, at the highest level, we see the control processing element equipped

with a virtual switch as well as a virtual cluster. At the next highest level, we still see the

control processing element equipped with a virtual switch, and a virtual cluster. This

recursive view can be maintained until the virtual cluster is required to split. The control

processing elements at the higher level are only concerned with the control processing

elements at the next level, and cascade the updates to next level by allowing each VM

node to reconfigure their components. The Beowulf-class systems [Salm98] also showed

how to organize the cluster system by using the tree of switches. However, virtual

clusters with virtual switches are used for our system to accommodate geographically

distributed computing resources and users. Thus, the latency between the virtual switches

and general processing elements should be considered in this situation. We might set the

range of latency for a virtual switch or reconstruct the virtual cluster periodically,

allowing only nodes within the range to be connected to the virtual switch.

In case one of ports dies from the heavy load or failure, the virtual switch deallocates the

port, and notifies another candidate node in the community. Then, the virtual switch

allocates the new port for the candidate node. During this procedure, the virtual switch

maintains a table for each port, and its corresponding physical address. For the pipelined

applications, the virtual switch also maintains stage information for nodes in the table,

activating the appropriate nodes at each stage. The results for each stage are routed to the

nodes for the next stage by the virtual switch. However, in some cases, it is desirable to

have the direct connections between the nodes in the virtual cluster, avoiding the message

routing overhead in the virtual switch. In this situation, according to the connectivity

configuration, the virtual switch commands the nodes for the direct connections, such that

the queue VM in each MVM connects to each other. The problems we have to deal with

are how we authenticate and authorize between nodes in the virtual community. We will

briefly discuss these issues in Section 4.3.

4 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Virtualized Networks

4.2.1 Connectivity component

When we run certain kinds of parallel applications, we need to have a virtual topology in

order to specify the logical arrangement of tasks. In some situations, we are also required

to specify each stage in the virtual topology for high performance pipelined computing2,

such as the butterfly computation of the Fast Fourier Transform (FFT) [KentOl],

However, in current parallel applications, we need to denote the virtual topology at the

program level. Table 2 shows the method of usage of the Message Passing Interface

(MPI) program model, for the virtual topology specified in Figure 13(a).

Table 2: A usage of virtual topology in a MPI program for Figure 13(a)

1 /* new communicator */
2
T.

MPI_Comm graphcomm;
J
4 /* number of nodes in the virtual topology */
5
£

int num_of_nodes = 7;
0
7 /* Array of integers describing node degrees. The ith entry is the total number of
8 neighbors of the first i graph nodes */
9 int index[7] = {1,2,3,4,7,10,12};
10
11 /* Array of integers describing graph edges */
12 intedges[12] = {5,5,6,6,1,2,7,3,4,7,5,6};
13
14 /* Whether or not the rank reordering is allowed */
15 int mapping = 0;
16
17 /* New communicator with virtual topology (graph)*/
18 MPI_Graph_Create (M PIW ORLDCOM M , num_of_nodes, index, edges, 19

mapping, graphcomm);

2 Parallel operations in this paper are denoted as “coarse grained parallel operations” rather than “fine
grained parallel operations”. “Task parallel” operations are categorized in “coarse grained parallel
operations” while “instruction level parallel” and “loop-level parallel” operations are categorized in “fine
grained parallel operations”.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 13 Simple Virtual Topology

Consider the situation, where we have modified the virtual topology specified in Figure

13(a) by replacing it with another virtual topology, which uses the same number of

vertices in the same program. In current parallel system designs, for instance, MPI, we

have to rewrite and recompile the program, to test another virtual topology model in the

same program. Consider also, the situation where we use the Directed Acyclic Graph

(DAG) model, to specify each stage of computation. We also need an additional

programming effort to specify each stage in the MPI program. Thus, whenever we

modify the virtual topology or stages of computations in basically the same program, we

have to rewrite and recompile the MPI programs.

In Section 3.1, we stated that every MVM node has light-weight reconfigurable

components that determine the intrinsic behaviour of each node. Meanwhile, MVM

nodes in the virtual front-end determine the essential behaviours of the virtual cluster.

The “connectivity component ” only belongs to the MVM nodes in the virtual front-end.

Each user in the virtual laboratory is able to edit or create a new “connectivity

component”, and then upload it to component storage in the virtual back-end. Otherwise,

they are able to simply reuse the existing “connectivity component”. Once we run a

parallel job with a “connectivity component” (see Figure 14), we do not need to

recompile it, whenever we modify a virtual topology, or stage information in basically

the same program. The component-based software technology allows this

“reconfigurable” functionality [WegdOl]. Our Components VM adopts the component-

based software technology, in order to provide the MVM with the runtime

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reconfigurability. Figure 14 describes a simplified view of the “connectivity component”.

It has a “connectivity profile” as an input, and five external interfaces: retrieve, update,

add, delete, and store. To denote the virtual topology in Figure 13, the “connectivity

profile” includes the fields corresponding to lines 5, 9, and 12 of the above MPI program

in Table 2, along with the type of virtual topology and the stage information for each

node. We do not specifically define the file format for “connectivity profile”. However, it

should follow the standard file format, and should be well structured to support efficient

add, delete, query and update the virtual topology data. The retrieve interface is used to

retrieve current virtual topology information. This information is utilized when the

Components VM maps the process topology (virtual topology) into the processor

topology. The update interface allows us to reconfigure virtual topology, including the

stage information. The add interface and delete interface are used to add new virtual

topology, and delete old virtual topology, respectively. The store interface allows us to

save the added and modified virtual topology, and then generates another “connectivity

profile”. The newly generated “connectivity profile” is then transferred to the

experimenter’s node and/or the virtual backend for later use. The Components VM,

outside the running parallel program, dynamically applies virtual topologies, along with

their stage information to the virtual cluster. By using our virtual parallel computer, a

wide range of traditional coarse grained parallel operations can be performed in a similar

way to fine grained parallel operations, since the parallel procedure is transparent at the

program level. We often find that parallel program debugging is much more difficult,

than serial program debugging. Thus, we envision our virtual parallel computer as a

means to lessen debugging difficulties, for the sub domain of parallel programming.

retrieve

update,.

add.
o

delete.
o —

store.
o -

?J
a £

Graph Cartesian
topology topology

- Connectivity
v. Profile

Figure 14 Connectivity Component

4 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After the virtual topology information is retrieved by the Components VM, the

Components VM then conducts the “virtual topology” to the “processor topology”

through our mapping procedure, for the virtual cluster.

4.2.2 Partitioning and mapping procedure

As we mentioned earlier in Section 4.1, the bootstrap nodes maintain the super peer lists,

for the virtual community. The super peer lists are kept on a regional basis in the

bootstrap nodes. When an experimenter participates in a certain experiment, his/her

MVM node downloads the super peer list of his/her region from the bootstrap node. It

contacts the super peers in the list consecutively, and measures the delay between each

super peer node and itself. Then, it attempts to connect the super peer that has the least

delay from the node. The MVM node does not connect to the super peer until it receives

the “ACK” message from the super peer. When the super peer reaches its maximum

capacity, it responds to the MVM node by a “NAK” message. If the MVM node receives

the “NAK” message from a super peer, it attempts to connect the super peer that has the

next minimum delay from the MVM node. This procedure continues until the MVM node

is accepted by the super peer that responds to the MVM node by the “ACK” message.

The super peer partitions the nodes in the virtual cluster, once it has reached its maximum

number of nodes considering its capacity. In this situation, the highest level of a super

peer selects the next highest level of super peers, and keeps a hierarchical tree for each

partition, where each edge in the hierarchical tree denotes the communication cost.

Whenever the higher level super peer finishes the partitioning of the virtual cluster and

selects the next higher level super peers, the higher level super peer updates the super

peer list in the bootstrap nodes by removing itself and adding the next level super peers

(see Table 3). In the super peer list shown in Table 3, the super peer that conducts the

partitioning (ip address: 137.231.54.69) is replaced with the newly selected super peers

(ip address: 137.231.54.42, 137.231.54.77, 137.220.231.57, 137.220.231.65) after the

partitioning. If the next level super peer’s maximum capacity is “a” number of nodes, and

the “b” number of nodes are allocated for the partitioning, it still has a - b of nodes,

where a > b, are available for new nodes. Thus, after a partitioning takes place, the newly

participating nodes attempt to contact the newly generated super peers. By using the

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

virtual switch modules along with the above method, we emulate the hierarchical tree of

switches, which has been widely adopted for clustering systems, such as Beowulf-class

[Salm98].

Table 3 : The updated super peer list in the bootstrap node
(Note : This list is an artificial for illustration)

Super peer list (Before Partitioning) Super peer list (After Partitioning)

Windsor, ON, CA : 137.207.120.219

137.207.101.155

(137.231.54.69)

137.232.33.45

Windsor, ON, CA 137.207.120.219

137.207.101.155

* (137.231.54.69)

(137.231.54.42)

(137.231.54.77)

(137.220.231.57)

(137.220.231.65)

137.232.33.45

* denotes “not available” for new connections

The maximum hierarchical level of the tree is subject to the maximum setting value of

the routing metric (hop count) of the peer group, avoiding a certain peer group to be

expanded indefinitely. Thus, the super peer that has already reached at the maximum

level in the hierarchical tree does not partition its virtual cluster, and simply sends the

“NAK” message for the new connection attempts, if it already reached the full capacity.

Using this method, we avoid the saturation of the super peer due to the large number of

nodes in the virtual cluster. The other reason for partitioning the virtual cluster is to

efficiently map “virtual topology” to “processor topology”. We divide the virtual cluster

into the “affinity groups”, in order to minimize the communication costs inside each

group, once the mapping procedure is fulfilled. The min-sum clustering algorithm

[Vega03] and k-medoids clustering algorithm [Kull04] can be applied for the above

purpose. The min-sum clustering problem [Vega03] is defined as,

“Consider a set V o f n points endowed with a distance function 5 : V x V —> R. These

points have to be partitioned into a fixed number k o f disjoint subsets C,, C2, ...,,Ck so

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as to minimize the cost o f the partition, which is defined to be the sum over all clusters o f

the pairwise distance in a cluster. ”

To find an optimal solution for the above problem turns out to be NP-hard, however, the

polynomial time approximation algorithms are presented in [Vega03]. The k-medoids

clustering algorithm using k-medoids heuristic is widely used because of its simplicity

[Kull04], This algorithm starts with a set of arbitrary k nodes that has been chosen as an

initial solution. Then, this solution is iteratively improved as described in [Kull04]. In

each iteration, the input nodes are partitioned into k sets, by associating each node with

its closest node in the current solution; The k-medoids of the sets in the partitions are

returned as the output of each iteration. The k-medoid is acquired by recomputing each

cluster center (medoid) and has the highest “network affinity” in the current partition. The

“network affinity” metric was introduced in [Hata98], allowing us to measure the affinity

of a certain node to other nodes in a partition. The “network affinity” of node i in the

partition is defined as,

d)

where D , , is the distance from node i to node /' and IP I denotes the number of the‘>J J \ \

available nodes in the partition. Let us denote the number of iterations by /. Then the

worst case complexity of computing k-medoids is 0 (n 2l) and each iteration requires

0(nk) time for the k-medoids heuristic [Kull04]. The second phase takes into account

only the clusters that have more nodes than their predefined partition capacities. The

lower valued “network affinity” nodes in the cluster are reassigned to the other closest

clusters in which the predefined capacity has not been reached, so that the capacity

constraint is met in the end. The second phase iterations also require 0(nk) time for the

worst case complexity.

Each super peer at each level, keeps track of the total number of the nodes in its rooting

subtree, and updates it for every partitioning. The weight of an inner node vertex (super

peer) in the hierarchical tree denotes the total number of nodes in its rooting subtree. The

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multi-level mapping using the tree architecture is presented in [Hata98], Our job

distribution scheme is similar to the multi-level mapping. For each mapping procedure, at

first, all processes are assigned to the super peer at a certain level in the hierarchical tree.

The appropriate level is determined by the privilege of a user, and it will be described in

Section 4.3. Then, it distributes the processes to the nodes at the next higher level, by

referencing the weights of the nodes. A node with a higher weight is assigned first. The

total count number of processes is subtracted when each distribution to the inner node is

complete. This procedure is recursively applied to the tree in a breadth first manner until

the total count is zero. Thus, all processes are placed at the lowest level super peer(s) in

the hierarchical tree in the end.

Once the job distribution is complete to each partition, we have to select “good nodes”

for mapping inside the partition. In the initial phase of mapping, we might first select the

nodes inside “module”s, according to the “module” size and its performance, where the

“module” [Hata98] is a group of processing elements that has a high communication path

between them, such as Massive Parallel Processing (MPP), and Symmetric

Multiprocessing (SMP) machines. However, in a dynamic environment where the heavy

workload is assigned and varied, we need to distribute the workload efficiently to the

available processing elements, while taking into account the performance for each

parallel application. Our selection of “good nodes” for mapping inside the partition is as

follows:

Let Ai (t j) be a normalized value of “network affinity” at at time instant t . , and Cj (t j)

be the fraction3 of the computational power of the processing element that is available to

a task at time instant t j . Our formula to measure the quality of node for mapping inside

the partition is defined as

W , V l , t j) = A 4 (f y) + (1- X) C, (t j) (2)

where 0 < A < 1, tj > 0 , j = 0, 1, 2, ... and At , C, lies in the interval [0, 1].

3 The measurement o f C (is discussed in [Subh99],

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In above formula, t- denotes the time instant for each measurement, and the

measurement delay is ignored. The average quality of nodes for mapping in the partition

k at time instant t . is defined as

where | p k(f) \ denotes the number of nodes in the partition k at time instant t j , tj > 0 , j =

“network affinity” and the available “computational power”. In case we run a

“communication-bound” parallel application, we can give a higher X . Conversely, if we

run a “computation-bound” parallel application, we can give a lower X . Note that, when

X = 1, we ignore the available “computational power”, and select the nodes according to

the “network affinity”. When X = 0, we ignore the “network affinity”, and select the

nodes according to the available “computational power”. In our criteria, the “good node”

for our mapping procedure is located in a dense region, and high “computational power”

is available. In contrast, the “bad node” for mapping is located in a sparse region, and low

“computational power” is available. The highest Wt at the first time instant of the

partition is chosen as an initial super peer. We assign the nodes in the virtual topology

into the nodes in the virtual cluster, by using the Wt value in above formula, where the

node with the higher Wt value is assigned first. Although the Wt value of node i at a time

instant tjA is high, the node might be measured as a low Wj value at a time instant .

This situation happens when the node suffers from a heavy load or network congestion,

acquiring the low priority, for the next mapping procedure as a result.

tj) = (3)

0 , 1 , 2 , , and 0 < X < 1.

According to the above formula, we can give a “weight relationship” between the

4 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Policy-based Reconfigurable Components

According to Appleby [Appl04], “policy-based computing” is “a software paradigm that

incorporates a set of decision-making technologies into its management components in

order to simplify and automate the administration of computer systems”. The policy

components in the MVM are designed to achieve the above viewpoint, allowing dynamic

adjustment of the behaviour of the group of MVMs at runtime without modifying its

internal implementation. The policies in our virtual laboratory framework are deployed

and reconfigured at different levels of abstraction. We divide the policies into three

levels: inter-domain level, domain (virtual community) level, and general node level.

The inter-domain level policies may require a mediator to manage semantic heterogeneity

and integration of multiple heterogeneous policies for each domain. We mandate that

inter-domain resource sharing in the virtual laboratory be subject to the inter-domain

policies. Figure 15 depicts how the inter-domain policies are generated.

r ~ -- -------- n * S * \

ViOfl
f t . I K ,

-*
p . . lie* M-rfing*

r s tr u c t ur in*
L » . m m m* - ^

polKy might be
to hart it*

complete, cs

Figure 15 Policy-integration for multi-domain environments [Josh04, pp:50]

The domain level policies apply to the virtual community to specify the security rules,

resource sharing rules, privileges for each participant, fault recovery mechanisms,

scheduling and monitoring mechanisms, and so forth. The domain-level policies include

how and when the partitioning takes place, and how to monitor each partition. For both

inter-domain and domain level policies, the Policy Management Point (PMP), Policy

Decision Point (PDP), and policy repository should be located in the virtual back-ends.

Our “policy-based reconfigurable components” are located in the Policy Enforcement

Point (PEP) that is the broker module of the highest level super peer in the hierarchical

tree. Once the highest level super peer in the virtual community enforces these policies,

4 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the lower level super peers in the hierarchical tree retrieve them from the highest level

super peer if needed.

The general node level policies determine the interface logics, such as encoding/decoding

types, queue type, maximum number of Queue VMs, and so forth. They also specify how

to monitor the performance and availability of each node, and what metrics are used for

them. The general node level policies do not require external PDP and PMP, thereby

allowing the user to set his/her policies for MVM.

The “Policy-based Reconfigurable Components” consist of three main building blocks:

security handlings, fault tolerance, and scheduling/monitoring.

The security handlings deal with both authentication and authorization. The

authentication policy specifies what kind of authentication mechanism is used for a

certain virtual community. It also includes whether the credential repository service is

used, and if used, how the credentials can be retrieved from the credential repository

service. For scalability, we advocate the PKI-based GSI authentication model [Fost02],

which supports “single sign on” and “delegation” capabilities. However, the dynamic

policy reconfiguration is not necessarily required for authentication in the current phase

of our virtual laboratory. Meanwhile, the authorization policy determines whether a

certain user is allowed to do an action by using a certain amount of resources. The Role-

based Access Control (RBAC) [Sand96] is emerging as an authorization mechanism for

large-scale systems in which both policies and user roles are stored in attribute

certificates to provide integrity. It is based on user-to-role assignment and role-to-

permission assignment, thereby avoiding the complexity of traditional access control

mechanism and reducing management cost as a result [Zhau04]. Each user in a virtual

community is assigned to an appropriate role in accordance with his/her resource

contribution to the virtual community. When a user sends a job with job profile to the

broker module of its super peer, the super peer determines, based on the user’s role

information, whether it should manipulate or reject the request or forward it to the higher

level super peer in the hierarchical tree. After receiving a job with a job profile from the

user, the super peer decapsulates the job profile that includes resource requirement for the

specific job. It then queries to the PDP, whether the resource requirement for the user is

5 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

legitimate. The PDP retrieves role ACs, policy ACs, and X.509 PKCs from the policy

and credential repository or the user’s file system, then checks whether the user and

his/her role is valid and whether the resource requirement is legitimate for his/her role. If

the request is permitted, PDP sends an “ACK” message to the super peer (PEP), allowing

the super peer to schedule or forward the submitted job from the user. Otherwise, the

super peer simply rejects and returns the request from a user with a warning message.

[Zhau04] describes the detailed steps of RB AC-based authorization.

The context and content-based constraints for the extended RBAC Model is discussed in

[Josh04]. In our virtual laboratory, the PEP, which can be reconfigurable by using our

components VM, provides different interfaces to the PDP that can be invoked depending

on those constraints, such as the time, system status (failure, congestion, etc),

collaborating entities, roles, and so forth. By the above method, a user can use more

resource than the predefined resource usage limit for his/her role if a virtual cluster is idle.

The user has to use less resource if a virtual cluster is congested, and vice versa. Resource

sharing can also be dynamically applied between different virtual communities. We

might mandate that resources in a virtual community be accessible to other virtual

communities only by previous reservation and/or low congestion in a virtual community.

The automatic runtime policy reconfiguration and enforcement allows our virtual

machines to be self-configurable. It also allows us to envision the self-configuring, self-

protecting, and self-management capabilities of those found in "autonomic computing"

[Gane03] vision.

The monitoring reconfigurable policy determines how often the resources in a virtual

community are monitored, and what metrics are used to monitor them. Each monitoring

result is reported to the PEP, and then the PEP determines what policy components

should be replaced to optimize the virtual cluster. In the test phase, we might generate

some signal events to simulate fault and congestion situations, and then test how the

appropriate actions can be taken (policy components reconfigurations, failure recovery,

etc). The scheduling reconfigurable policy determines what policy will be applied for

resource scheduling in a virtual community. The optimal scheduling policy depends on

each monitoring result, allowing the scheduling policy to be dynamically adjusted for

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

systems status in the virtual community. The scheduling policy is also affected by the

resource reservation policy. The resource reservation policy determines whether the

reservation is allowed, how the reservation is made, and what requirements need to be

satisfied for resource reservation.

The fault tolerance reconfigurable components consist of MVM checkpointing and MVM

failure recovery policy components. The MVM checkpointing policy determines what

kind of checkpointing method is used for a virtual community and how often the

checkpointing is to be conducted. As the MVM is based on OS-level VM technology,

OS-level VM based checkpointing can be adopted for our virtual laboratory. The strength

of OS-level VM based checkpointing is that all volatile execution states of running

processes (including disks, memory, CPU registers, I/O devices, etc) can be capsulized

[Sapu02]. Thus, the whole running MVM, including Queue VMs and Components VMs,

and its applications can be capsulized. Suppose that we run a parallel program using a

cluster of nodes, which requires a month of computation. We can store capsules for every

node to a storage system on a daily basis. Only the data blocks with different hash values

would be transferred for each capsule update to reduce the amount data to be transferred.

In case one of the nodes has crashed due to a hardware failure and cannot be recovered,

the last checkpointed capsule of the crashed node in the storage system can be

instantiated to another available node. Other nodes do not have to start a program again

from the beginning due to a failure of a crashed node. They are able to roll back to the

previous checkpointed location, and resume parallel operations.

5 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 IMPLEMENTATION AND PERFORMANCE ANALYSIS

5.1 Overview of MVM toolkit

We have developed the Multi-layer Virtual Machine (MVM) toolkit v.0.1 to evaluate the

essential functionality of the MVM framework. This toolkit is a testing tool for MVM

framework in distributed systems and grids and it is a work in progress. The current

features of MVM toolkit v.0.1 are as follows:

o Source-code level parallel job distribution: Traditional parallel computing

architectures, such as MPI and PVM, need to (re)compile parallel jobs for every

participating node in deploy-time. MVM toolkit provides parallel job distribution at

the source-code level, allowing us to (re)compile and instantiate parallel jobs in

runtime for participating nodes.

o Component-based parallel job (re)configuration: In the MVM framework, each user

sends a job profile to a resource broker to request a unique runtime environment for

each usage case. The MVM toolkit encodes/decodes the plain-text job profile data

structure into “Simple Object Access Protocol” (SOAP) encoding/decoding format

and vice versa, intended to provide resource sharing on heterogeneous environment

by using standard web services.

o Virtual network approach for parallel job execution: When we run certain kinds of

parallel applications, we need to have a virtual topology in order to specify the logical

arrangement of tasks. In current parallel applications, we need to denote the virtual

topology at the programming level.

Message Passing API for MPI

int MPI_Send(void *buf, int count, MPIDatatype datatype, int dest, int tag, MPIComm
comm);

int MPI_Recv(void *buf, int count, MPI Datatype datatype, int source, int tag, MPI Comm
comm, MPI Status *status);

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In MPI, we have to specify the source/destination field at the source-code level to

send and receive messages for parallel computing.

Message Passing API for MVM toolkit

int enqueueVM(void *arg, char *size, int data type, Joblnfo *jobinfo);
int dequeueVM(void *arg, char *size, int data Jype, Joblnfo *jobinfo);

Note that there is no source/destination field for message passing API in the MVM

toolkit. Each user can create a virtual network in runtime, specifying the virtual

topology for the user's parallel job. All connectivity information is determined outside

the parallel program, allowing us to provide efficiency and runtime-reconfigurability

for parallel job execution. Additionally, this scheme allows grid resource scheduler or

allocator to select and map process-to-processor in heterogeneous environments in a

dynamical way, as the message passing API for MVM is not bound to specific source

or destination job id at the source-code level.

o P2P Web services and P2P socket approach: Each node has both server and client

module for socket and web services. Each node can be both a resource provider and

consumer. Each node publishes its service by using Web Service Description

Language (WSDL), and accesses other nodes by using a Simple Object Access

Protocol (SOAP) interface. Each node also has a socket server and a client module.

The socket server module acts as a communication gateway for the MVM, while the

socket client module is used for sending various requests to other nodes including a

resource broker. Each socket server process is transient in that it only exists while the

MVM parallel tasks are running.

o On-demand creation and termination: The MVM processes do not have to run all of

the time. Whenever a node is invoked from other nodes, it can initialize itself and

launch tasks for a particular use. The “on-demand” creation and termination

mechanism for the MVM is as follows:

5 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Only the Apache server runs for each node and the MVM process is not loaded yet.

/ /
MVM node

/

/
MVM node

/

Figure 16 Initial phase (No MVM process loaded)

2. After contacting a bootstrap node, the MVM client retrieves the broker address and

invokes the components of the broker node by using SOAP. The MVM client sends a

job profile data structure to the broker node at this phase.

/ / SOAP /
MVM Client MVM Components

/ /

(Broker address) http://galab.uwindsor.ca/webservices/MVM

Figure 17 MVM toolkit starts its operation by SOAP invocation

3. The MVM process is loaded by the SOAP invocation, and the process instantiates

the MVM proxy and the MVM queue threads, if required.

MVM Components

MVM Proxy <-

MVM Queue

Instantiate VM threads by on-demand method

Figure 18 Spawns VM threads by on-demand method

4. The broker node selects a job group and awakes all the nodes in that job group by

using the above method. Each node in a job group instantiates its proxy and queue

VM module if required.

5 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://galab.uwindsor.ca/webservices/MVM

Broker Components

MVM Proxy

MVM Queue
MVM node 3

MVM node 2

MVM node 1

(node 1 address) http://galabl.uwindsor.ca/webservices/MVM
(node 2 address) http://galab2.uwindsor.ca/webservices/MVM
(node 3 address) http://galab3.uwindsor.ca/webservices/MVM

Figure 19 Awakes other nodes in a job group by SOAP invocation

5. Each node now can communicate with other nodes by using its proxy with BSD

sockets.

6. The broker node generates the job instantiation messages for each participating

node, and sends these messages to each participating node in a concurrent way.

According to the job instantiation messages, queue VM spawns child processes and

initialize the Inter Process Communication (IPC) channel for local processes.

Processes in a local host enqueue or dequeue their data and instructions via the IPC

channel, and processes between different hosts enqueue or dequeue their data via

their proxies.

7. When a parallel job has finished its operation, it reports to a resource broker. The

resource broker then broadcasts a job termination message to a job group. A proxy

module for each job group reads the message, and sends a “SIGTERM” signal to all

on-demand created processes. If no MVM job is running at this phase, it returns to the

original phase.

5 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://galabl.uwindsor.ca/webservices/MVM
http://galab2.uwindsor.ca/webservices/MVM
http://galab3.uwindsor.ca/webservices/MVM

5.2 Implementation and specification of the MVM toolkit

5.2.1 Implementation of the MVM toolkit

The MVM toolkit v.0.1.0 has been implemented in C/C++, and tested in Linux OS. The

implementation and porting issues for different architectures are discussed in Appendix.

A UML (Unified Modelling Language) class diagram that displays the core entities of the

MVM toolkit and their associations is shown in Figure 20. The main entities of the MVM

toolkit are:

1. MVM Proxy: The MVM Proxy is the main communication module for the MVM

toolkit. It distributes and receive source job file, and compile the job. The proxy

module of a broker (super peer) allocates resource and generates the job instantiation

messages for job groups. When a job instantiation message has been received, it

parses and passes the message to queue VM, allowing queue VM to spawn child

processes and initialize the IPC channel. It also works as a communication gateway

between different nodes, as it multiplexes, enqueues, and dequeues the job messages

for child processes of each node.

2. MVM Components: The MVM Components is the SOAP implementation of an

abstract job profile module of the MVM toolkit. The job profile includes the resource

requirements, such as the number of nodes required, and the virtual network of these

nodes. The virtual network is mapped to the physical network according to the

components VM of a broker. The MVM Components of a broker works as an Object

Request Broker (ORB). In grid environments, heterogeneous resources provide a

wide variety of services implemented by different languages and different platforms.

We aim to interoperate between heterogeneous environments by using web services,

allowing a job profile data structure to be sent and received by remote object

invocation in a transparent way on heterogeneous platforms.

3. MVM Connectivity: The MVM Connectivity describes the logical arrangement of

tasks. It also describes the stages of tasks, whereby each task can activate its

operation in a certain stage.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r
° i

£ ,i

= 3 3 3 3

£ oi
1 „■ a, 1s m

a

s r

P S'

^ % 8> co jH to
m -S 6a g e

s - 5 | 1 1 S 't,1 0!3 s> ?5 ®S 3 is 3 a> j= -i’ —*_ _ 3 c *— er cn ia .<
- * {= e 1

■ s(U3
8 .

£3

Q>

eM 2» s i

. ? : e ; 3

a !
E ■

<3
e

! | g e a -g Sf ^ | -“ - 2 -- gj
O 3 O 05 05 ~

i S * | | | a

^ *(► ♦

i-1 §■-§ §,%! g1
= I m -a'> s i ■» -s? - s -s I

$

= 1.1 o 'i'
s s i y ^ o1

- € 8 1 ’ .1 J '5 ,:
i - 1 ! i * i g | - 2 , 3 5

¥ f s s |

s .
Ea

1 -
a> OC

I - 1 g TO Q_
< 3
</J

■E

“ i . s f t .
a> o . *
g 3 s i

§ .
i

? T3 a ?
- 2 3 1
X x x

S
>

<o -S -o

s i I
a i • * e /

St o e r- , <—S
1 .5 1 ¥

I a* s,l
^ J f -# -# 1

§ .

■ §
CO

■§ ■ s

A
s

s

x «. x x x xs j » » »

Figure 20 UML Diagram of core MVM toolkit modules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We envision to reuse a wide variety of parallel programming patterns by specifying

the connectivity profile, allowing a user to store and update his/her connectivity

profiles and experiment with different parallel communication patterns without direct

modification of parallel programs at the source-code level.

4. MVM Queue: The queue VM of the MVM toolkit enqueues and dequeues the job

instantiation messages from the upper layer, spawns child processes and initializes

IPC channel for tasks. While MVM Proxy manipulates socket communications, the

MVM Queue manipulates the IPC between its child processes. The device driver

level, generic data communication interface by queue VM is planning to be integrated

into a future version of the MVM toolkit.

5. MVM API library: The MVM API library provides an interface between MVM

applications and the MVM kernel. The MVM_INIT(Joblnfo *jobinfo, char **argv)

function initializes MVM application’s data structure. Whenever a queueVM spawns

child processes, it passes the data structure to each process. The data structure

contains the job name, job id, IP address of a process, connectivity information, and

the broker address. The data structure is generated by resource allocator module for

each child process. The MVM_INIT(Joblnfo *jobinfo, char **argv) function stores

this data structure from the MVM kernel into the application’s data structure,

allowing each child process to send or receive messages according to this data

structure. The enqueueVMQ function invokes a virtual machine module, and the

virtual machine module packs a data and enqueues the data to a destination node as

determined by the connectivity profile and resource scheduler. The dequeueVM()

function unpacks and dequeues data, stores data into a buffer, and returns a source job

id. Note that the dequeueVMQ function does not have to wait for a message from a

particular source job id. Once the task of a child process has been completed, it calls

the MVM_END(Joblnfo *jobinfo) function and waits for the “SIGTERM” signal.

When it receives the “SIGTERM” signal from the kernel, it deallocates its application

data structure and clears its IPC channel.

5 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. MVM Client: The MVM Client module first contacts the MVM bootstrap node, and

retrieves a resource broker (super peer) address. After retrieving the resource broker

address, it connects to the resource broker and then sends a data structure of job

profile to the resource broker. The resource broker determines whether or not the

resource request of the client is legitimate, and then receives source files of a job from

the client. The runtime compilation of the MVM applications is a default option of

the MVM toolkit.

5.2.2 MVM toolkit v.0.1.0 protocol description

The MVM toolkit v.0.1.0 Protocol is a textual, message-oriented protocol consisting of

Command and Response messages exchanged between MVM nodes. The protocol is

line-based and the end of a line is represented by the new line token that is a line-feed

character. The Command messages have the following format.

Synopsis

COMMAND PI P2...Pn

Description

COMMAND is the name of the command to be executed by MVM node(s), followed by

zero or more required parameters (Pl...Pn). Individual parameters are separated by one or

more delimiter character, whereby parameter names are case-insensitive. The

COMMAND consists of version, command value, and command code, separated by

delimiter character. Table 4 describes the command messages supported by the current

version of MVM toolkit.

Example: MVM/0.1 500 JOB_RESULT:MVM_INT:2*2 12 3 4

Table 4: MVM toolkit v.0.1.0 Command Messages

Command Code Value Parameters
QUERY BROKER ADDR 100 YES

6 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AUTH REQUEST4 200 YES

SCHED REQUEST 300 YES

JOB SEND 400 YES

JOB RESULT 500 YES

FINALIZE JOB 550 YES

DIST JOB 600 YES

INSTANTIATING JOB 700 YES

IPC DATA 800 YES

ENQUEUE DATA 900 YES

BARRIER REQUEST 950 YES

The response messages are sent from the target to the source to report the status of
command execution.

Synopsis

RESPONSE

Description

RESPONSE message comes in two forms: a positive response, and a negative response.

Both positive and negative responses carry no parameters. Negative responses have

minus value for status code. The RESPONSE consists of version, status value, and status

code. Table 5 and Table 6 describe the response messages supported by the current

version of MVM toolkit.

Example 1: MVM/0.1 504 RECV_JOB_SUCCESS

Example 2: MVM/0.1 -700 BARRIER_FAILURE

Table 5: MVM toolkit v.0.1.0 Response Messages (SUCCESS)

Status Code (Success) Value Parameters
AUTH REQUEST SUCCESS 501 N/A

RECV JOB SUCCESS 502 N/A

SCHED REQUEST SUCCESS 503 N/A

QUEUE JOB SUCCESS 504 N/A

INSTANTIATING JOB READY 505 N/A

COMPLETED ENQUEUE 506 N/A

4 Authentication/Authorization has not yet implemented in the current version o f MVM toolkit.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BARRIER SUCCESS

Table 6: MVM toolkit v.0.1.0 Response Messages (FAILURE)

Status Code (Failure) Value Parameters
QUERY BROKER FAILURE -100 N/A

AUTH FAILURE -200 N/A

SCHED REQUEST FAILURE -300 N/A

JOB RECV FAILURE -400 N/A

QUEUE JOB FAILURE -500 N/A

JOB COMPILE FAILURE -600 N/A

BARRIER FAILUER -700 N/A

The following example shows the typical sequence of the submission, distribution, and

instantiation of a job involved in MVM toolkit.

• MVM node to MVM Broker

> MVM/0.1 400 JOBJSEND (parameters)
< MVM/0.1 502 RECV JOB SUCCESS
> MVM/0.1 300 SCHED REQUEST (parameters)
< MVM/0.1503 SCHED REQUEST SUCCESS

• MVM Broker to all participating nodes in a job group

> MVM/0.1 600 D ISTJO B (parameters)
< MVM/0.1 504 QUEUE J O B SUCCESS
> MVM/0.1 700 INSTANTIATING JOB (parameters)
< MVM/0.1 505 INSTANTIATING J O B READY
< MVM/0.1 950 BARRIER_REQUEST (parameters) //synchronization for starting a job
> MVM/0.1 507 BARRIERSUCCESS / / in a job group

The MVM Queue module parses the parameters of INSTANTIATING J O B command,

spawns VM instances, passes the parameters to each VM instance, and binds each VM

instance with message queues. The format of INSTANTIATING JOB command is:

Syntax

6 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MVM/0.1 700 INSTANTIATING JOB. (job name):(job id):(IP address):(total stage

number): (stage number): (receiver id list):(IP addresses o f receiver ids)'.(broker IP

address)

Table 7: Parameters of INSTANTIATING_JOB Command

Parameter Description
Job Name The name o f a job
Job ID Each VM instance has a unique job id allocated by resource

scheduler
IP address The host machine’s IP address o f a VM instance
Total stage number Total stage number specified by the connectivity profile
Stage number Stage number o f a VM instance
Receiver ID list The job ID list o f receivers specified by the connectivity

profile
IP addresses o f receiver
Ids

The IP addresses o f receiver Ids

Broker IP address The super peer (resource broker) ’s IP address

5.3 Experimental results and analysis

Our approach advocates a “divide and conquer” approach to verifying the design

described in previous chapters. As our design takes a multi-layered approach, we could

test each individual layer with its components and then test interface for each layer. The

multi-layered design approach allows us to reduce the complexities of implementing and

testing for the overall design. After we have tested each layer, we test several applications

with different job and connectivity profiles. Experiments have been performed with

several applications of the MVM toolkit v.0.1.0 on Linux-based systems. Our

experimental setup consisted of five nodes: three nodes including a broker node are

located in the computer science laboratory in the University of Windsor, and two nodes

including a bootstrap node are located in the home network connected to a cable modem

with 100-Mbps Ethernet. We used the Apache web server 2.0.52, gSOAP 2.7.0s, Globus

3.2.1, POSIX IPC, POSIX Thread, and BSD Socket, running under Fedora Core 3 Linux

5 gSOAP is an Open Source SOAP toolkit for C/C++ and it is available at http://www.cs.fsu.edu/~engelen/
soap.html.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.fsu.edu/~engelen/

systems (kernel 2.6.9) for our implementation and experiment. The broker node runs on

an Intel Pentium IV 2.8 GHz with 512Mbytes of RAM, and the bootstrap node runs on an

Intel Celeron 2.4 GHz with 128Mbytes of RAM. Three other nodes run on AMD

SEMPRON 2400+ (1.7GHZ) with 256Mbytes of RAM, Intel Pentium III 800MHz with

256Mbytes of RAM, and Intel Pentium IV 1.4GHz with 512Mbytes of RAM,

respectively.

In our test scenario, for a given number of iterations, four nodes of the MVM run a

“random walk” sample program in a parallel way. One node waits for four walkers,

collects the final location of each walker, and then calculates the shortest distance among

walkers. Figure 21 shows the capture screen of the MVM toolkit running on Globus 3.2.1.

It is not obligatory to run MVM toolkit on Globus tool. However, we do aim to take

advantage of some security and resource management features of the Globus toolkit.

f £ife £dtt fc*dp

, m I & e& I j§
QmckCoftfwct ^

■■■■■■■■■■M i

zj r i & ¥<■

- (O f x

[enigma@ksnt 1 globus]$ grid-proxy-init --verify
Your identity: /^-0rid/OU-01obusTe©t/OU~siOTpleCAHk©Bt2 .galab. uwiadsor .ca/GU- galab . uwindsor .ca-'€M*»dhkimEnter ©RID pass phrase For* •this identity:Creating proxy Don©Proxy Verify OKYour proxy is valid until: Mon May 2 03:19:01 2005[enigma@kentl globu©33 globusrun ~F MVM.rsl -r kentl.galab. uwindsor,cag!obus„gram_„cli©nh,_c:allback_jallaw successfulORAM Job submission successfulGLOBUS_GPJ\M„PROTOCOL„JOB__STATE__ACTIVEOLOBUS_GRAM_PROTOCOL_JOB STATE_DOHE[enigma@kentl glabu©3$

’ 0fe £c& Vtew yelp
i b f m m l
| Q u ick C o r a t t C j

May I 15:19;11 kent 1May 1 15:19;11 kent 1May 1 15:19:11 kent 1May 1 15:19:11 kent 1May 1 15:19;IX kent 1May I 15:19:11 kentlMay 1 15:19:11 kent 1May 1 15;19:11 kentlMay 1 IS:19:11 kentlMay 1 IS:19:11 kentlMay X 15:19:15 kent 1May 1 15:19:22 kentlMay 1 15:19:34 kentlMay 1 15:19:34 kentlMay 1 IS:19:34 kentlMay X 15:19:34 kent 1May 1 15:19:34 kent 1May 1 15:19:34 fcnn« \Kay 1 15:19:34 Rent 1
/ Mart !m © m ■ a -

message repeated 2 ti sending a job instantiation message to 137.207.234.1'’sending a job instantiation message to 137.207.234.1csending a job instantiation message to 137,207.234.22Queue VM is waking upwill be instantiated at this machine barrier count:1 barrier count;2

Queue Open/Send : ^random_.wa 1 k__ message repeated 2 times
r«ndom__w«l k : Closest: 1 rand©m_walk: Closest: 1 MVM: Result Data Six© :MVM: Result DataMVM: [1.000000 3.000000 JMVM; [4901.614258 Q.P000QG

2 10095.0039063 4901.614258
2*2

-368

Figure 21 Running MVM toolkit on Globus 3.2.1

6 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 22 shows the results of “random walk” sample program for different number

iterations with three and five nodes of MVMs. As shown by Figure 22, five nodes obtain

better results for the large number of iterations, while three nodes are more efficient for

the small number of iterations.

a v g . w a ll-c lo ck tim e 200
(sec)

100

13 node
□ 5 nodes

1E+05
0.176787
0.446639

1E+06

1.629599
1.261787

1E+07

16.44559
10.99786

1E+08

163.1891
109.3274

No. of
iterations

Figure 22 Elapsed time for 3 and 5 MVM nodes for the “random walk” program

180

avg. wall-clock time
(sec) 140

120

100

40

No. of
iterations1E+05 1E+06 1E+07 1E+08

0.17168 1.644858 16.42938 163.8178MMPICH2(3 nodes)
0.176787 1.629599 16.44559 163.1891□ MVM(3 nodes)
0.67168 2.144858 16.92938 164.3178m MPICH2(3, deploy:0.5)
1.17168 2.644858 17.42938H MPICH2(3, deploy: 1) 164.8178
5.17168 6.644858 21.42938H MPICH2(3, deploy:5) 168.8178

Figure 23 Elapsed time for random walk program (MPICH2 & MVM)

6 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The main performance bottleneck of the small number of iterations is the message

passing overhead. Since our experiment has been conducted with the same number of

processes for both three and five nodes, the computations with five nodes contain more

message-passing between different hosts than that of three nodes.

Figure 23 shows the performance comparison between MVM and MPICH2 v.1.0.16

deploy field in the table in Figure 23 is our assumed total time gaps between the

automatic runtime deployment of a MVM job and the manual deployment of a MPICH2

job. The first row in the table in Figure 23 shows the ideal case for MPICH2 in which the

human intervention time for deployment is ignored. The rest of them include the assumed

time gaps between the automatic runtime deployment and the manual deployment for a

parallel job.

(a) Latency of enqueueVM()/dequeueVM()

1800

1200
■A— round trip(2 nodes)
■X—round trip(loopback)

0 I ■ ' 1 1 I ■ 1 1 1 I 1 ■ 1 1 I ■ ' ' 1 I ■ ■ 1 1 I ■ ■ ■ '
0 100 200 300 400 500 600

m essage size(by tes)

(b) Throughput of enqueueVM()/dequeueVM()

oa>jOto
0.6
0 .5a;

>».a5 0 .4

0 .33Q..CO)3Oi_x:+->

round trip(2 nodes)
round trip(loopback)0.2

0 100 200 300 40 0 500 6 0 0

message size(bytes)

Figure 24 Latency and throughput with different message sizes

6 MPICH2 is an implementation o f the Message-Passing Interface (MPI). MPICH2 is 1.0.1 was released on
March 2,2005. It is available at http://www-uix.mcs.anl.gov/mpi/mpich2/

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-uix.mcs.anl.gov/mpi/mpich2/

As the number of iterations increases, five nodes of the computations gain more

performance benefit than that of the three nodes by achieving parallelism with different

hosts. The message passing latency and the throughput are important factors affecting the

MVM performance for communication bound parallel applications. Figure 24 shows the

latency and throughput of different message sizes for the message passing by use of the

enqueueVM() and dequeueVM(). We benchmark the latency of enqueueVM() and

dequeueYM() by measuring the half of the round trip delay of the different sizes of

messages. According to the latency values, the throughput values have been derived. The

throughput values grow as the message sizes increase. Besides other critical performance

factors, such as CPU, memory, network hardware and its protocol, operating systems,

applications’ algorithm, and so on, the performance of enqueueVM() and dequeueVM()

heavily rely on the message passing protocol and the VM proxy overhead. As our tool

takes an initial step towards the development of the MVM framework in grid

environments, there remains much work to do in order to achieve moderate performance

while providing essential features that are described in previous chapters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 7

6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

Whenever we virtualize something in a computer system, we can often reduce

management cost by providing a predefined interface for virtualization. For instance, if

we virtualize the network, the network management cost can be lessened. We have

described how the virtualization technology can provide runtime flexibility and

automaticity for grids. By specifying the virtual topology and network information

outside the parallel programming source codes rather than inside the programming source

codes, we could reuse parallel communication patterns by reusing virtual topologies. We

further provide parallel job distribution at the source-code level, allowing us to

(re)compile and instantiate parallel jobs in runtime rather than in deploy time. We have

demonstrated that our connectivity mechanism for parallel job execution, along with

parallel job distribution at the source-code level, can provide the runtime flexibility for

the virtual laboratory.

In grid environments, heterogeneous resources provide a wide variety of services

implemented by different languages and different platforms. We aim to interoperate

between heterogeneous environments by using our components VMs, allowing a job

profile data structure to be sent, received, and scheduled by remote component invocation

in a transparent way on heterogeneous platforms. We also have justified the

reconfigurability of our virtual machine. It allows each user to request and (re)configure a

runtime environment, and test various research models for reduced cost and time.

Although the experiment has been conducted with a small set of nodes, the MVM

enhances its performance with a bigger number of nodes and data sizes. The most

valuable experimental result is its efficiency. We could reuse a same parallel

communication pattern for different applications. We also could distribute and deploy

parallel jobs for distributed memory machines in an efficient manner. Suppose that we

modify values in an application source file and run it on multiple machines, or change

some configuration values. In traditional parallel computing architectures, such as MPI

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and PVM, we have to connect each machine, update each programming source file,

recompile or reconfigure them for each modification. In the same scenario, MVM allows

a user to modify his/her job profile or programming source file, and then simply

reconfigure a group of machines in runtime in an automatic manner. In our framework,

the virtual machines can also be “on-demand” created and destroyed. This capability can

give a further flexibility and automaticity in grid environments. It lessens human efforts

and intervention for configuring and deploying parallel jobs, reducing management and

maintenance cost as a result. These runtime functionalities of MVM allow us to move

one step closer to the autonomic computing vision described in previous chapters.

6.2 Future work

As our implementation is in its initial phase towards building the MVM framework, we

have not yet implemented all the features described in previous chapters. Our flexible

“reconfigurability” mechanism of MVM has not yet implemented in a policy-based

manner. We plan to enhance our “reconfigurability” mechanism into a policy-based

mechanism. We envision that the automatic runtime policy reconfiguration and

enforcement allows our virtual machines to be self-configurable at a certain level. The

implementation and testing of interface module for existing OS-level VMs also has to be

done to further verify our framework. The main issue of source-code level job

distribution is a security. A malicious or faulty code can harm entire system. We aim to

take advantage of the OS-shielding capability of OS-level VMs. In addition, we plan to

include the code verifier at a resource broker, avoiding the distribution of faulty code to a

job group. We also plan to enhance the MVM communication performance by

implementing generic data communication interface for our Queue VM. Finally, we plan

to extend our test for Multiple Program Multiple Data (MPMD) model by which virtual

laboratory users can distribute and run multiple different parallel source-code level jobs

to available nodes via resource brokers in an automatic manner, and then apply a wide

variety of parallel communication patterns in runtime.

6 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1], [AlleOl]

[2]. [Appl04]

[3]. [Balc03]

[4]. [Bavi04]

[5]. [Barh03]

[6]. [Bilk02]

[7]. [Buch02]

[8], [Bugn97]

G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ripeanu,
E. Seidel, B. Toonen, “Supporting Efficient Execution in
Heterogeneous Distributed Computing Environments with
Cactus and Globus”, Proc. 0/2001 ACM/IEEE
Conference on Supercomputing, pp:52-52, 2001.

K. Appleby, S.B.Calo, J.R. Giles, K.W. Lee, “Policy-based
automated provisioning”, IBM Systems Journal, vol. 43,
num. 1, utility computing, webpage: http://www.research.ib
m. com/journal/sj/431/appleby.html, 2004.

M.J. Balcer, “An Executable UML Virtual Machine”,
ModelCompilers.com, webpage:
http ://www. omg. org/ne ws/meetings/workshops/
UML%202003%20Manual/02-3_Balcer.pdf, 2003.

A. Bavier, L. Peterson, M. Wawrzoniak, S. Karlin, T.
Spalink, T. Roscoe, D. Culler, B. Chun, M.
Bowman, “Operating System Support for Planetary-Scale
Network Services, Proc. O f the 1st USENIX/ACM
Symposium on Networked Systems Design and
Implementation, pp:253-266, 2004.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, A. Warfield, “Xen and the Art
of Virtualization”, Proc. O f the 19th ACM Symposium on
Operating Systems Principles, pp:164-177, 2003.

A.Bilke, O. Klischat, E.U. Kriegel, R. Rosenmuller,"
Component-based software development - a practitioner's
view", SDPS Journal o f Design & Process science, vol. 6,
Issue: 4, pp:52-62, 2002.

K. Buchacker, V. Sieh, H. Hoxer, “Implementing a User
Mode Linux with Minimal Changes from Original Kernel”,
9th International Linux System Technology Conference,
pp: 72-82, 2002.

E. Bugnion, S. Devine, M. Rosenblum, “Disco: running
commodity operating systems on scalable multiprocessors”,
Proc. O f the Sixteenth ACM Symposium on Operating
Systems Principles, pp:143-156,1997.

7 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.research.ib

[9], [Buyy99]

[10]. [Camp99a]

[11], [Camp99b]

[12], [Camp99c]

[13], [Casa95]

[14]. [ChenOl]

[15]. [Crea81]

[16], [Dasw02]

[17], [DikeOl]

[18] [EstrOl]

[19], [Ensi03]

R. Buyya, “High Performance Cluster Computing vol.l”,
Prentice Hall, ISBN 0-13-013784-7, pp: 111,503,505, 1999.

A. Campbell, H. D. Meet, M. Kounavis, K. Miki, J.
Vicente, D. Villela, "A Survey of Programmable Networks
“, ACM Computer Communications Review,vol. 29,Issue: 2,
pp: 7-24, 1999.

A. Campbell, J. Vicente, D. Villela, “Virtuosity:
Performing Virtual Network Resource Management”, 7th
IEEE/IFIP International Workshop on Quality o f Service
(IWQOS'99), pp: 65-76, 1999.

A. T. Campbell, M. E. Kounavis, D. A. Villela, J. Vicente
K. Miki, H. G. De Meer, K. S. Kalaichelvan, "Spawning
Networks", IEEE Network Magazine vol. 13, Issue: 4, pp:
16-30, 1999.

J. Casas, D. L. Clark, R. Conuru, S. W. Otto, R. M. Prouty,
J. Walpole, “MPVM: A Migration Transparent Version of
PVM”, Computing Systems, vol. 8, Issue: 2, pp: 171-216,
1995.

P.M. Chen, B.D. Noble, “When virtual is better than real”,
Proc. O f 8th Workshop on Hot Topics in Operating Systems,
pp: 133-138, 2001.

R.J. Creasy, "The Origin of the VM/370 Time-Sharing
System," IBM Journal o f Research and Development, vol.
25, Issue: 5, pp: 483-490, 1981.

N. Daswani, H. Garcia-Molina, “Query-Flood DoS Attacks
in Gnutella”, ACM CCS, pp: 181 -192, 2002.

J. Dike, “User-mode Linux”, Proc. O f the 5th Annual
Linux Showcase and Conference, pp:3-14, 2001.

F. Estrella, Z. Kovacs, R. McClatchey, “Model and
Information Abstraction for Description-Driven Systems”,
CHEP ' 01 conference, webpage :
http:www. ihep. ac. cn/~chep01/paper/8-053.pdf, 2001.

Ensim, “Ensim Virtual Private Servers”, webpage :
http://www. ensim. com/products/materials/
datasheetjvps_051003.pdf 2003.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www

[20], [Figu03] R. Figueiredo, P. Dinda, and J. Fortes, “A Case for Grid
Computing on Virtual Machines”, Proc. O f IEEE
ICDCS 2003, pp: 550-559, 2003.

[21]. [Flin02]

[22]. [Flyn66]

[23]. [FostOl]

[24]. [Fost02]

[25], [Fost96]

[26], [Gane03]

[27]. [Garf03]

[28]. [Gold74]

[29], [Grim97]

J. Flinn, S. Sinnamohideen, N. Tolia, M. Satyanarayanan,
“Data Staging on Untrusted Surrogates”, Proc. o f the 2nd
USENIX Conference on File and Storage Technologies,
webpage: http://citeseer.ist.psu.edu/flinn02data.html, 2002.

M. Flynn, "Very High-Speed Computing Systems",
Proc. o f the IEEE, vol. 54, Issue: 12, pp:1901-1909, 1966.

I. Foster, C.Kesselman, S.Tuecke, "The Anatomy of the
Grid: Enabling Scalable Virtual Organizations,"
International J. Supercomputer Applications, vol. 15,
Issue:3, pp:200-222, 2001.

I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration”, Open
Grid Service Infrastructure WG, Global Grid Forum,
webpage: http://www.globus, org/research/papers/ogsa.pdf
2002 .

I. Foster, C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit”, International Journal o f
Supercomputer Applications and High Performance
Computing, vol.ll, Issue:2,pp:l 15-128, 1996.

A. Ganek, "Autonomic computing: implementing the
vision", Autonomic Computing Workshop, pp:l-l, 2003.

T. Garfinkel, M. Rosenblum, “A Virtual Machine
Introspection-based Architecture for Intrusion Detection”,
10thAnnual Network and Distributed System Security
Symposium, NDSS’ 2003, webpage: http://www.isoc.org
/isoc/conferences/ndss/03/proceedings/papers/l 3.pdf 2003.

R.P. Goldberg, G.J. Popek, “Formal Requirements
for Virtualizable Third Generation Architectures” In
Communications o f the ACM, vol. 17, Issue: 7, pp:
412-421, 1974.

A.S. Grimshaw, W.A. Wulf, and the Legion team, “The
Legion vision of a worldwide virtual computer”, Magazine

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://citeseer.ist.psu.edu/flinn02data.html
http://www.globus
http://www.isoc.org

o f Communications o f the ACM, -vol. 40, Issued, pp:39-45,
1997.

[30]. [Hand03]

[31]. [HarrOl]

[32]. [Hata98]

[33]. [Jian03a]

K.A. Fraser, S. M.Hand, T. L.Harris, I. M. Leslie,
I. A. Pratt,, “The Xenoserver computing infrastructure”,
Technical Report, University o f Cambridge,
Computer Laboratory, webpage:
http://www. cl. cam. ac. uk/TechReports/UCAM-CL-TR-
552.pdf, 2003.

T. L. Harris, “Extensible Virtual Machines”, PhD thesis,
Churchill College, University o f Cambridge, webpage:
http://www. cl. cam. ac. uk/~tlh20/papers/tim-harris-thesis-
tr.ps.gz, 2001.

T. Hatazaki, “Rank reordering strategy for MPI topology
creation functions”, In 5th European PVM/MPI User’ s
Group Meeting, volume 1497 of Lecture Notes in
Computer Science, pp: 188-195, 1998.

X. Jiang, D. Xu, “SODA: a Service-On-Demand
Architecture for Application Service Hosting Utility
Platforms ”, IEEE International Symposium on High
Performance Distributed Computing (HPDC-12), pp:174-
183, 2003.

[34], [Jian03b]

[35], [Jian03c]

[36], [Jian04]

[37], [Josh04]

X.Jiang, D. Xu, "VIOLIN: Virtual Internetworking
on OverLay Infrastructure", Department o f Computer
Sciences Technical Report CSD TR 03-027,
Purdue University, webpage:
http://www. cs.pur due. edu/homes/dxu/pubs/violin.pdf 2003.

X. Jiang and D. Xu, “vBET: a VM-Based Emulation
Testbed”, Proc. O f ACMSIGCOMM 2003 Workshops
,pp: 95-104,2003.

X. Jiang, D. Xu, R. Eigenmann, "Protection Mechanisms
for Application Service Hosting Platforms", to appear in
Proc. O f IEEE/ACM Int'l Symposium on Cluster
Computing and the Grid (CCGrid 2004), Chicago, IL,
webpage: http://www. cs.pur due. edu
/homes/dxu/pubs/CCGrid04.pdf 2004.

Joshi, J.B.D. Bhatti, R. Bertino, E. Ghafoor, A.,
“Access-Control Language for Multidomain

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www
http://www
http://www
http://www

Environments", Internet Computing, IEEE, vol.8, Issue
6, pp: 40-50, 2004

[38], [KampOO]

[39], [KentOl]

[40]. [King02]

P.H. Kamp, R. N. M. Watson, “Jails: Confining the
Omnipotent Root”, Proc. O f the 2nd International
SANE Conference, webpage:
http://phk.freebsd.dk/pubs/sane2000-jail.pdf 2000.

Kent, R.D., Majmudar, N., Schlesinger, M., “Distributing
Fast Fourier Transform Algorithms for Grid Computing”,
High Performance Computing Systems and Applications,
Kluwer Academic Publishers, Nikitas J. Dimopoulos
(eds.), pp:407-426, 2001.

S.T. King , G.W. Dunlap , S. Cinar, M. Basrai, P.M. Chen,
“ReVirt: Enabling Intrusion Analysis through Virtual
Machine Logging and Replay”, Proc. O f Symposium on
Operating Systems Design and Implementation, pp: 211-
224, 2002.

[41]. [Klas04] Klasse Ojecten, MDA information center, webpage :
http://www. klasse. nl/english/mda/mda-introduction. html,
2004.

[42], [Klep03]

[43], [Kozu02]

[44]. [Krsu04]

[45]. [Kull04]

[46]. [Lind97]

A. Kleppe, J. Warmer, W. Bast, "MDA Explained, The
Model Driven Architecture: Practice and Promise",
Addison Wesley, ISBN 0-321-19442-X, pp:16, 85, 2003.

M. Kozuch, M. Satyanarayanan, “Internet Suspend/Re
sume”, Fourth IEEE Workshop on Mobile Computing Sys
terns and Applications, pp:40-46, 2002.

I. Krsul, A. Ganguly, J.Zhang, J.A.B. Fortes, R.Figueiredo,
“VMPlants: Providing and Managing Virtual Machine
Execution Environments for Grid Computing”, SC 2004,
webpage: http ://www. sc-conference.org/sc2004/schedule
/pdfs/pap305.pdf 2004.

M. Kull, “Fast Clustering in Metric Spaces”, University o f
Tartu, Faculty o f Mathematics and Computer Science, MSc.
Thesis, webpage: http://www.egeen.ee/u/vilo/edu/Students/
Meelis Kull/Meelis_Kull_MSc_2.pdf 2004.

T. Lindholm, F. Yellin, “The Java Virtual
Machine Specification”, The Java Series, Addison-Wesley,
Reading, MA, USA, January, 1997.

7 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://phk.freebsd.dk/pubs/sane2000-jail.pdf
http://www
http://www.egeen.ee/u/vilo/edu/Students/

[47], [Litz92]

[48], [Luz04]

[49]. [Merw97a]

[50]. [Merw97b]

[51]. [MiloOO]

[52]. [Nytu02]

[53]. [OMGOl]

[54]. [Osma02]

[55]. [Pete02a]

[56]. [Pete02b]

M.J. Litzkow, M.Livny, M. W. Mutka, “Condor technical
report”, Technical Report CS-TR-92-1069, University o f
Wisconsin, webpage:
http://citeseer. ist.psu. edu/briker91 condor, html, 1992.

M.P. Luz, A. R. Silva, “Executing UML Models”, WiSME
2004, webpage: http://www. metamodel, com/wisme-2004I
/present/20.pdf, 2004.

J.E. van der Merwe, J.E., Rooney, S. Leslie, I.M.
S.A. Crosby, “The Tempest - A Practical
Framework for Network Programmability”,
IEEE Network magazines, vol. 12, Issue:3, pp:20-28, 1997.

J. E. van der Merwe I. M. Leslie, “Switchlets and dynamic
virtual ATM networks ”, Proc. O f the Fifth IFIP/IEEE
International Symposium on Integrated Network
Management, pp: 355-368, 1997.

D.S. Milojicic, F. Doughs, Y. Paindavein, R. Wheeler,
S. Zhou, “Process Migration”, A CM Computing
Surveys, vol. 32, Issue:3, pp: 241-299, 2000.

J.P. Nytun, "The UML Metamodel architecture",
webpage: http://fag.grm.hia. no/ikt2340/year2002/themes/
executableUML/notes/Metamodel.pdf 2002.

Object Management Group, "OMG Technology Explained",
webpage: http://www.omg.org, 2001.

S. Osman, D. Subhraveti, G. Su, J. Nieh, “The design and
implementation of Zap: A system for migrating computing
environments”, Proc. O f 5th USENIX Symposium on
Operating Systems Design and Implementation, pp: 361-
-376, 2002.

L.Peterson, T. Roscoe, “PlanetLab Phase 1: Transition to
an Isolation Kernel”, PlanetLab Design Notes, webpage:
http://www.planet-lab. org/pdn/pdn02-003.pdf 2002.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe,
“A Blueprint for Introducing Disruptive Technology into
the Internet”, Proc. O f ACM HotNets-I, pp: 59-64, 2002.

[57]. [PrenOO] P.D. Preney, R.D. Kent, "Toward a Model of Models. Part

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://citeseer
http://www
http://fag.grm.hia
http://www.omg.org
http://www.planet-lab

1", High Performance Computing Systems and
Applications, Andrew Pollard et al, eds, Khmer Academic
Publisher, pp:33-38, 2000.

[58]. [Pren99]

[59], [Rajk98]

[60], [Rich98]

[61]. [RobiOO]

[62]. [Rosh03]

[63], [Salm98]

[64]. [Sand96]

[65]. [Sapu02]

[66], [Scha04]

P.D. Preney, "Towards a kernel architecture for
modeling system", MSc thesis, University o f Windsor, 1999.

R. Rajkumar, K. Juwa, A. Molano, S. Oikawa, “Resource
Kernels: A Resource-Centric Approach to Real-Time
Systems”, Proc. O f the SPIE/ACM Conference on
Multimedia Computing and Networking, pp:476-490, 1998.

T. Richardson, Q. Stafford-Fraser, K. R. Wood, A. Hopper
“Virtual Network Computing”, Magazines o f IEEE Internet
Computing, vol. 2, Issue: 1, pp:33-38, 1998.

J.S. Robin, C.E. Irvine, “Analysis of the intel pentium's
ability to support a secure virtual machine monitor”, Proc.
O f the 9th USENIX Security Symposium, webpage:
http://www. usenix. org/publications/library/
proceedings/sec2000/full_papers/robin/robin.pdf 2000.

R. Roshandel, N.Medvidovic, "Modeling Multiple Aspects
of Software Components", SAVCBS '2003, Specification
and verification Component-based System, pp: 88-91,
2003.

J. Salmon, C. Stein, T.L. Sterling. "Scaling of Beowulf-
class Distributed Systems", Proc. O f ACM/IEEE
conference on Supercomputing (CDROM), pp:l-13, 1998

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman,
“Role based access control models”, IEEE Computer, 29
February, pp:38-47, 1996.

C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M.
Lam, M. Rosenblum, “Optimizing the Migration of
Virtual Computers”, ACMSIGOPS Operating
Systems Review, vol. 36, Issue: SI, pp: 377-390, 2002.

P. Schaumont, K. Sakiyama, A. Hodjat, I. Verbauwhede,
“Embedded Software Integration of Coarse-grain
Reconfigurable Systems”, 18th International Parallel and
Distributed Processing Symposium (IPDPS'04), pp: 137-
138, 2004.

7 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www

[67], [SchmOO]

[68]. [Shri76]

[69]. [SmitOl]

[70], [Subh99]

[71]. [SugeOl]

[72], [Sund03]

B. K. Schmidt, “Supporting Ubiquitous Computing with
Stateless Consoles and Computation Caches”, PhD thesis,
Department o f CS, Stanford University, webpage :
http://suif Stanford. edu/papers/schmidtOO.ps.gz, 2000.

B. D. Shriver , J. W. Anderson, L. J. Waguespack , D. M.
Hyams , R. A. Bombet, “An implementation scheme for a
virtual machine monitor to be realized on user
microprogrammable minicomputers”, Proc. O f the
annual conference, pp: 226-232, 1976.

J.E. Smith, “An overview of virtual machine architectures”,
Technical Report, University o f Wisconsin, webpage:
webpage : http://swig.stanford.edu/~fox/
cs241/readings/ smith_vm_overview.pdf 2001.

J. Subhlok, P. Lieu, Bruce B. Lowekamp, "Automatic Node
Selection for High Performance Applications on
Networks," Proc. o f the Seventh ACM SIGPLAN
Symposium on the Principles and Practice o f Parallel
Programming (Atlanta, Georgia), pp: 163-172, ACM
Press, 1999.

J. Sugerman, G. Venkitachalam, B.H. Lim, “Virtualizing
I/O Devices on VMware Workstation's Hosted Virtual
Machine Monitor”, USENIX Annual Technical Conference,
pp: 1-14, USENIX Association, 2001.

A. Sundararaj, P. Dinda, “Towards Virtual Networks for
Virtual Machine Grid Computing”, Technical Report
NWU- CS-03-27, Department o f Computer Science,
Northwestern University, webpages:
http://www. cs. northwestern. edu/~ais/nwu-cs-03-2 7.pdf
,2003.

[73], [Tane95]

[74]. [Thom99]

[75]. [Traf02]

A.S. Tanenbaum, “Distributed Operating Systems”,
Prentice Hall, Inc., ISBN 0-13-143934-0, 1995.

R. Thomas, “Mite: a basis for ubiquitous virtual machines’
PhD dissertation, University o f Cambridge Computer
Laboratory, webpage: http://rrt.sc3d.org/download
/research/mitethes.pdf, 1999.

J.L. Traff, “Implementing the MPI Process Topology
Mechanism”, Proc. o f the 2002 ACM/IEEE conference on
Supercomputing, pp: 1-14, 2002.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://suif
http://swig.stanford.edu/~fox/
http://www
http://rrt.sc3d.org/download

[76], [Vega03]

[77], [Wald02]

W. F. de la Vega, M. Karpinski, C. Kenyon, Y. Rabani,
“Approximation Schemes for Clustering Problems”. In
Proc. o f the 35th Ann. ACM Symp. on Theory o f
Computing, pp: 50-58, 2003.

C. Waldspurger, “Memory Resource Management in
VMware ESX Server”, Proc. O f the 5th symposium on
Operating systems design and implementation, pp:181-194,
2002.

[78]. [WegdOl]

[79]. [Whit02]

Wegdam M. Almeida J.P.A.,, Pires L.F. and Van Sinderen
M, “An approach to dynamic reconfiguration of distributed
systems based on object middleware”, Proc. o f 19th
Brazilian Symposium on Computer Networks (SBRC
2001), webpage: http://doc.utwente.nl/fid/1255, 2001.

A. Whitaker, M. Shaw, S.D. Gribble, “Scale and
performance in the Denali isolation kernel”, ACMSIGOPS
Operating Systems Review, vol. 36, Issue: SI, pp: 195- 209,
2002.

[80]. [Wiki]

[81]. [Wu04]

Wikipedia, The Free Encyclopedia, wepage:
http://www. wikipedia. org.

K. Wu, P. Chuang, D.J.Lilja, “An active data-aware cache
consistency protocol for highly-scalable data-shipping
DBMS architectures”, Proc. o f the first conference on
computing frontiers on Computing frontiers, pp:222-234,
2004.

[82]. [Yang03]

[83]. [Zhau04]

[84]. [Ziad02]

B. Yang and H. Garcia-Molina, “Designing a super-peer
network”, In 19th International Conference on Data
Engineering, pp: 49-60, 2003.

W.Zhau, C. Meinel, “Implementing role based access
control with attribute certificates”, Proc. O f the 6th
International Conference on Advanced Communication
Technology(ICACT 2004), vol. 1, pp:536-541, 2004.

T.Ziadi, B.Traverson, J.M. Jezequel, "From a UML
Platform-Independent Component Model to Platform
Specific Component Models", WiSME@UML'2002,
Workshop in Software Model Engineering, webpage:
http://www. metamodel. com/wisme-2002/papers/ziadi.pdf
2002.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://doc.utwente.nl/fid/1255
http://www
http://www

APPENDIX

Interoperability and porting issue with MVM toolkit

We adopt Model Driven Architecture (MDA) for our design approach for MVM toolkit

v.0.1.0. Our components in components VM are architecture-independent abstract models,

and they can be sent, received and scheduled on heterogeneous environments in a

transparent way by using web services. Our components specify the virtual topology,

parallel communication patterns, and resource characteristics in a platform independent

way. Thus, our components can be thought as Platform Independent Models (PIMs) of

MDA. The components VM maps these PIMs into Platform Specific Models (PSMs). The

implementations of components VM differ with machine architectures. However, the

implementations on heterogeneous environments should provide the same semantic view

and interface to the upper layer, and hide the complexities of the underlying systems. The

MVM toolkit v.0.1.0 maps PIMs into Linux-based models. We aim to extend our

implementation for Solaris, Sun OS and WIN32 system environments. The main issues of

the porting of MVM toolkit v.0.1.0 to different architectures are as follows:

1. I/O operations and system calls

2. Thread and IPC

3. Data type and endian type

4. Compiler and linker

5. Network protocol, socket, etc.

Generally, porting Linux-based programs to Solaris is a simple task since both Solaris

and Linux are based on UNIX. We have not modified the Linux kernel for performance

optimization in the current version of our toolkit, thus major modification is not required

to port our Linux-based implementation into Solaris-based implementation. Although the

syntax of some system calls and I/O operations are slightly different from each UNIX-

based system, we can avoid this problem by including the compiler options for different

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

syntaxes on different architectures. The MVM toolkit distributes the source-code level

jobs and invokes the local compiler to compile the jobs for the system specific

environment. For instance, the local UNIX-compliant compiler can specify an endian

type and apply the different rules for different endians. Following is a code snippet in

/usr/include/endian.h of Fedora Core 3 Linux, which applies the different rules for

different endians.

| # i f B Y T E _ O R D E R = = L I T T L E _ E N D I A N
I # d e f i n e L O N G _ L O N G _ P A I R (H I , L O) L O , H I
: # e l i f B Y T E _ O R D E R = = B I G _ E N D I A N
; # d e f i n e L O N G _ L O N G _ P A I R (H I , L O) H I , L O
: # e n d i f

The compiler types and the size of data types can be specified in a similar manner.

However, we still have to solve the data type issue when we pack the data and send them

to different architectures. For instance, the size for the long type of Linux IA-32 is four

while the size for the long type of Linux IA-64 is eight. We could avoid this problem by

the data type packing in a textual form. According to our benchmark, it gives an overhead

for message passing. This issue will be handled in the future version of our toolkit. Our

implementation of thread and IPC follows the POSIX standard. Thus, the porting of

thread and IPC modules can be achieved in the most POSIX compliant systems.

We have not yet implemented our toolkit for WIN32 systems. The requirements of the

implementation for WIN32 systems are as follows:

1. TCP/IP and our protocol set should be supported. The BSD socket library for our

implementation should be ported to WIN32 socket library. We have implemented

the socket communication modules by inheriting our basic socket library. Thus,

we plan to extend our basic socket library for WIN32 systems, allowing the most

implementation of the communication modules to be reused.

2. System calls and low-level I/O operations should be rewritten for WIN32 systems

and provide a same semantic of the Linux-based MVM toolkit.

8 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Third party libraries, such as gSOAP and POSIX IPC packages, and GNU

compiler/linker should be supported. The Cygwin toolkit is recommended to

compile and link for the WIN32 implementation of the MVM toolkit, as some of

our script files are not successfully interpreted on WIN32 shells.

7 Cygwin toolkit provides a Linux-like environment for Windows. It is available at http://www.cygwin.com

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cygwin.com

VITA AUCTORIS

NAME Dohan Kim

COUNTRY OF BIRTH South Korea

YEAR OF BIRTH 1972

EDUCATION Bachelor of Science in Physics
Kyung Hee University
Suwon, Kyung Gi, South Korea, 2000

Master of Science in Computer Science
University of Windsor
Windsor, ON, Canada, 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Flexible multi-layer virtual machine design for virtual laboratory in distributed systems and grids.
	Recommended Citation

	tmp.1617218020.pdf.WzbqK

