University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

2001

Algorithm design for smart vision sensors.

Hongmei. Gao
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation

Gao, Hongmei., "Algorithm design for smart vision sensors." (2001). Electronic Theses and Dissertations. Paper 926.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please

contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at $19-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F926&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F926&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F926&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/926?utm_source=scholar.uwindsor.ca%2Fetd%2F926&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g9., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

ALGORITHM DESIGN FOR SMART VISION
SENSORS

by

Hongmei Gao

A Thesis
Submitted to the Facuity of Graduate Studies and Research
through the Department of Electrical & Computer Engineering
in Partial Fulfiliment of the Requirements for
the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
2001

©2001 Hongmei Gao

i+l

:l‘auonal Library él::lmque nal
Otawa ON. KIA ONA Otirws ON K1 0N
Canada Canada
Your e Vote réldrarce
Our B Notre réldvence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or ::Il
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés

reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.
0-612-67612-9

Canadi

University of Windsor

Abstract

Design of smart vision sensors attracts a lot of academic and industrial interests, as
solutions to many existing production problems require the inclusion of intelligent
sensors into the manufacturing processes. The goal of this thesis is to provide algorithm

design for smart vision sensors.

Two algorithms are developed in this thesis. The first one is based on the correlation
analysis method for images and can be implemented to find the 2-dimensional position of
a target. In particular, the problem of finding the deviations along both X and Y directions
is formulated as a matching process between the saved template, which represents the
reference position, and the picture of a real static target captured by a ‘vision’ element
such as a CCD camera, through correlation analysis of the 2-D spatial shift. It is an
efficient and simple method for deviation identification of target position with high noise
rejection ability. Using this method, 2-D position deviation can be found very accurately
with high reliability.

The second algorithm, which is based on locating the critical points of a planar shape, can
be applied to identifying the pattern and finding the 2-dimensional position deviation and
rotation angle of a target. The problems of finding the deviations along both horizontal (X
direction) and vertical (Y direction) directions and the rotation angle are formulated as a
process of locating the critical points of the planar shape. And the shape recognition can
be achieved by comparing the shape numbers between the saved template image and the

image of a real target. It is an efficient, accurate and effective method.

It is noted that the size of the captured image by the vision element can be reduced in our

design in order to accommodate fast real-time application with reasonable accuracy and
reliability.

It is also pointed out that the procedures for both methods can be applied to the design of

University of Windsor

a smart vision sensor. Also, because we mainly use software solution for the design, it is
very flexible to update the sensor functions and to augment this sensor into a closed-loop

architecture design.

The examples show that our design idea exhibits good performance and can be applied to

the design of a real high-performance and cost-saving smart vision sensor.

University of Windsor

Acknowledgments

My sincere appreciation goes to my supervisor Dr. Xiang Chen for his guidance, support

and encouragement throughout the course of this research.

I would also like to thank Dr. James Soltis and Dr. Robert Gaspar for their support,

comments and suggestions and for their agreeing to serve as committee members. Thanks

Dr. Govinda Raju for attending my defense.

Thanks are also directed to other faculty members, fellow graduate students and friends

for their encouragement.

Finally, [would like to thank my husband, my daughter and my parents for their constant

love, encouragement, and support.

University of Windsor

Table of Contents

Abstract.olooooooootoooo-.ooo.'ooo.o..oo.l.o.t..'o.o'o.ooo'o.o...co.oc.o..l...o.ouolooonooololoiii

Acknowledgments.......... ceeccsseressessasnsarenss cresertstscesesrrsesessaces ceeescnces “V
List of Figures.......... cesresasesesesesessesasecns ceestcesttecesetetesrcesesensasesnans eeeeViii
List ofTables..’.....l. (A AN R A N R NN]l'.....l....l..I...l...’..........‘.‘.ox
Chapter 1 Introduction............... . ceesnicnses SR |
1.1 Motivation of The Research....................cooviiiiiiiiiiinn.... 1
1.2 Literature SUIVEY......coociinniinuitiiiiiieeiieeneeeeeeereeennrensienes 4
1.3 Design of A Smart Vision Sensor..............ccceeiiiiiiiieinininninn 6
1.4 Thesis Organization........c..coeuiieiniiiiiiirieinenneneeeeeneenennnnnn 7
Chapter2 Methods for Image Processing and

Chapter 3

Shape Pattern Recognition..............ccccceeeeeeeeee. ceresescrened
2.1 INtroduction........cccooiiiiiniiiiiiiiii e eaene 8
2.2 Correlation Analysis........ccooeiiiiniiieiieiiiiiiiiieiieeireereeneeen 8
2.3 Directional Flow-Change Method..............cocoviiiiiiiiiiinn... 10
2.4 Preliminary Results...... ..o 16
Algorithm Design for Smart Vision Sensors

Based on The Correlation Method...... cecessescersansene ceeess20
3.1 INtroduction.........coiviiiiimiii i e e e eans 20
3.2 Histogram and Cumulative Probability Density Function......... 20
3.3 Gray-Level Transformation............cccoiviiiiuiiiiciiiiinnnnnen... 21

University of Windsor

3.4 Algorithm Design Based on The Correlation Method...............22
3.5 Examples...c.oneninii e 31
Chapter 4 Algorithm Design for Smart Vision Sensors
Based on The Directional Flow-Change Method............38
4.1 INtroduction..........ccooiiiiiiiiiiii i e e e eeeaens 38
4.2 Image BInanzation............c.cocoiiiiiiiiiiiiiiiiiiiiieeeeennnn. 38
4.3 Image Edge Detection.........c..ooouiiiiniiiieiniiiiiiiiiieeennnnn. 38
4.4 Noise Reduction...........ccoeuiriiniiiiiiiiiiiiiiiiiei e e, 40
4.5 Contour TraCing......cccvvurnmrneniiniieiiiiciitiieeeeeieeneeeeennnns 42
4.6 Pattern Recognition...........ocvveiniiniiiiiiiiiiiiiiiiiierneennennens 45
4.7 Deviation Calculation............ccoeveiviiiiiiiiiiiiiiiiiiienene. 47
4.8 Rotation Angle Calculation..............c.coooviiiiiniiiiininnn... ...48
4.9 Algorithm Design Based on
The Directional Flow-Change Method................................ 48
410 EXamples......coooniiiimiiiii i e 50
Chapter S Conclusions and Future Work........... ceestecescrtesrsesanes ...69
5.1 ConcluSionscouiuiiiniiiiii i 69
5.2 Comments on Potential Applicationceeeviiiiiiiinnn. 70
5.3 Recommendations for Future Work..................cooiiiiinain 71
References.................. PP b
Appendix A Correlation Theorem......... cresesesesesnsnns coensesens T i
Appendix B Matlab Code for Algorithm Based on The
Correlation Method........................ cescasenenes cecesseceses T8
Appendix C Matlab Code for Algorithm Based on The
Directional Flow-Change Metheod..............................85
C.1 ImageBinarizationc.cccoueiuiiuiiniieniernncieineaneencnn 85
C.2 Edge Detection and Noise Reduction...........c..cooiiieiiiinnnnne. 87
C.3 Algorithm Based on The Directional Flow-Change Method.. ... 91
Vita AUCtOriS......ccceeiernnninincnnceiennsccceranenens S (.

University of Windsor

List of Figures
Number Page
Figure 1.1 A Real Engineering Problem and The Solution............ccccooeiieiiiii.. 3
Figure 1.2 Block Diagram of A Smart Vision Sensor............ccoceveeieiiiieiniinennnn.. 6
Figure 2.1 Numbering Scheme for 8-Connectivity Chain Code.............c..cooeeeennie. 11
Figure2.2 & Function of A CUurve.........coovniiiimiiiiii i e 17
Figure 2.3 & Functionof AShape........coooiiiniiiiii e 19
Figure 3.1 Gray-Level Transformation.............ccociiiiiiiiiiiiiiiiiiiicii e 21
Figure 3.2 Image of Foam Barriers..........cooeieiiiiiiiiiiiiiiiiiiii e 22
Figure 3.3 Image of The Template..........cooooiiiiniiiiiiiiiiiiii e, 23
Figure 3.4 An Extreme Case Showing That The Deviation Is ‘—a’........................ 23
Figure 3.5 An Extreme Case Showing That The Deviation Is “b’.............ccccceun.. 24
Figure 3.6 Flow Chart of The Algorithm Based on The Correlation Method........... 25
Figure 3.7 Intensity Distribution of The Input Image.............ccceeeieiniiiiiiininenn.. 26
Figure 3.8 The Correlation Between The Template and The Cropped Image............30
Figure 3.9 An Image with Very Low Contrast...........ccoiieiiiiiiiiiiiiieiiieeeeennnn. 31
Figure 3.10 Contrast-Enhanced Image...........coouiiiiiiiiiiiiiiiiiiiiiiiiieieeen 31
Figure 3.11 Histogram of The Input Image (Figure 3.9).........ccccceiiiiiiiiiniannnnnn.. 32
Figure 3.12 Cumulative Probability Density Function of The Input Image............... 32
Figure 3.13 Histogram of The Contrast-Enhanced Image...............c.ccocooiiiiiion. 33
Figure 3.14 Cumulative Probability Density Function of The
Contrast-Enhanced Image.........ccooomemiiieiiiiiiiiiiiceriereeees 33
Figure 3.15 The Edged Image of The Cropped Image............cccooeniniiiiieininnnnnn.. 34
Figure 3.16 The Edged Image of The Templateccoeeeeeimininininieneniinreaenenaaes 34
Figure 3.17 Correlation Result........ ..o iiiiiiiieeietereeeeeeesnneennens 35
Figure 3.18 Contrast-Enhanced Image Compared with The Template Image............ 36
Figure 3.19 Imageof ADifferentShape............ccoiiiiiiiiiiiiiieieeeees .36

University of Windsor

Figure 3.20
Figure 3.21
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21

Figure 4.22

Figure 4.23

Figure 4.24

Figure 4.25

Figure 4.26

Figure 4.27
Figure 4.28

Figure 4.29
Figure 4.30

Figure 4.31

Figure 4.32

Figure 4.33

Figure 4.34

Imageof The Template...........cooinniiiiiiiiiiii s 36
Correlation Result.o e eee, 37
Digital Implementation of A Gradient Operator...............ccccoveneeann.... 39
The Original Contour and The Chosen Point..............c.cooeiiiiiia 41
The Image After The 1% LayerIsFilled...........ccooooiiniinieinininnnnnnns 41
The Image After The 2™ Layer Is Filled..........coovvmneeerineeeiiinnnnnnn 41
Numbering Scheme for 8-Connectivity Chain Code.............c....o........ 42
Diagram of Contour Tracingon Point AL..............c..coooiiiiiiiiiiii 43
Diagram of Contour Tracingon Point A2.......o 43
Rotation Angle Calculation............oooiiiiiiiiiii e 48
Flow Chart of The Algorithm Based on
The Directional Flow-Change Method..............ccoiiiiiiiiiiiiiiia 49
INput IMage.ccvniiiiii e Sl
Histogram of The Input Image...........ccoeieiniiiiiiiiiiiiiiieanne. S1
Binary Image.oooinini i e 52
Binary Image with Some NOiSe.ccoiiiiiiiiiiiiiiiiiiiiiiieiieceeenans 52
The Edged Image. ..o e e 53
The Image after Noise Reduction...............coooiiiiiiiiiiiiiiiiiiin... 53
é Function of The Closed Contour........c..cooeiiiiiiiiiiiiiiiiiiiiieieeene 54
The 6 Functionafter AFilter....... 55
Critical Points Found by The Algorithm..........................oooollL .56
Rotation Angle Calculation...........coooeiiiiiiiiiiiiiiiiiiiiiiiieeieenaee 57
Template Image. ..o e 58
Input Image with Deviation...........ccoiiiiiiiiiiiiiiiiiiiiiie i ecaraeeeeee 58
Input Image with Counter Clockwise Rotation............coceeveieiiennennee. 59
Input Image with Clockwise Rotation...........ccoovieiiiineiiiiiieiinenennees 59
A Special Shape (Template).........coooimiiiiiiiiiiiiiiaiereeeeeeeans 61
A Special Shape (Input Image)........cooiimiiiiiiii e 62
ATemplate.ot el 62
O Function of The Template. ..o eeeees 63
Input Image with ROtation...........cccoiiiiiiiniiiiiiiiiiiiiirieeeceeenaaas 63
6 Function of The Rotated Image...........cccoimiiiiiiiiiiiiiiiiiiaiand 64
6 Functions of The Unrotated Image (Top)

and The Rotated Image (Bottom)ccceoiniiiiniiniiiriieiccreeenead 65
Rotated Image with The Both Special Critical Points........................... 66
Rotated Image with The 2™ Special Critical Point..................ceuuunn.... 67
Rotated Image with The 1* Special Critical Point..............cccceeeenen....d 67
Rotated Image with The Both Special Critical Points Removed............. 68

University of Windsor

List of Tables
Number Page
Table 2.1 Angle Coding Scheme.coooiiiiiii e 15
Table 4.1 Angle Coding Scheme.........ccocoiiiiiiiiiiiiiiiii e 46
Table4.2 Resultof Example 2.... ...t eeas 60
Table 4.3 Result of Example 4....... ..o 66

University of Windsor

Chapter 1

Introduction

1.1 Motivation of The Research

Design of smart vision sensors attracts a lot of academic and industrial interests, as
solutions to many existing production problems require the inclusion of intelligent
sensors into the manufacturing processes. The current research and design interests
concentrate on hardware implementations and vision processing algorithms (see [1, 12,
20, 23, 24, 38, 42)).

The optical hardware currently used in non-contact smart vision sensors includes laser
scanners, photo-diodes and cameras. Among them, the camera systems capture the image
information of objects through a non-scanning approach and, hence, orovide an efficient
information source for conducting real-time software based position measurement and
pattern recognition. Another advantage of using cameras is their low cost compared with

laser scanners.

The significance of this thesis is that the algorithms developed can be used to design a
real smart vision sensor, which can not only analyze and recognize the pattern of a
product, but also find the 2-dimensional deviation or rotation angle of the product

position compared with its reference template.

The significance of the design is also illustrated by a real engineering problem existing in
the foam barrier assembly line for automobile door handle escutcheons. The motivation

of the research is originally from this real engineering problem.

The story is that assembling is an important process in manufacturing door handle

escutcheons. A door handle escutcheon consists of two parts: an escutcheon and a sheet

Introduction 1

University of Windsor

foam barrier. The escutcheon is the cover plate that lies behind the door handle in an
automobile, while the foam barrier serves as a sealing layer on door handle escutcheon to
avoid the ingress of dust and other unwanted material during the opening and closing of
doors. This procedure requires that the foam barrier be fitted on the inner surface of the
escutcheon through the hole on the escutcheon. Locating the foam barrier on the
conveyor, which carries foam barriers in stream, picking up the barrier and pressing it
onto the escutcheon are surprisingly difficult and time-consuming work. The practical
difficulty is that the positions of foam barriers may deviate from their expected position
due to the possible stretching behavior of foam material. The existing assembly platform
lacks automatic locating and actuating functions and hence can not handle the assembly
line automatically. The pre-configured robotic arm can not handle the foam barriers with
position uncertainty because there is no position sensor involved in this process. On the
other hand, simply adding a traditional position sensor to the robotic arm system can not

solve this problem because:

1. Finding the correct positions of foam barriers involves a searching process, which can

not be performed by the existing sensors.

2. It is difficult to identify special features on the foam material as the position indication.

3. The existing vision sensors are also not a suitable economic solution to this process
and many other similar manufacturing problems because these sensors are usually

designed to passively capture vision related features, but do not possess the capability of
auto-searching for a target.

Clearly, new effective and economic solutions, one of which is shown in Figure 1.1, need
to be figured out to accommodate such kind of engineering problems. A smart vision
sensor needs to be developed to guide the robotic arm intelligently in lieu of the position
changes of the foam barriers on the conveyor because of the possible stretching behavior
of the foam material or other disturbance. In order to enhance the productivity of the door
handle escutcheons, the new smart vision sensor should possess the following
capabilities.

1. It can recognize the pattern of a product.

Introduction 2

University of Windsor

Practical Practical
Problem Difficulty
Yy y
Locating the Foam Barrier On Position Uncertainty Due to
the Conveyor and Pressing It Possible Stretching Behavior
onto the Escutcheon of Foam Barriers
Smart Vision
Sensor Based

Control System

' '

Control System Smart Vision
for the Robotic Sensor
Arm

Figure 1.1 A Real Engineering Problem and The Solution

2. It can find the 2-D deviation and the rotation angle of the product position compared

with its reference position.

3. It possesses searching capability to lock in the position (pattern) if there exists
deviation between the real pattern and the template due to the position change of the

object.

4. It should be in modular form in the sense that it can be easily re-configured to adapt to
the changing products on the assembly line.

The proposed design in this thesis is targeted on providing such kind of smart vision

sensor.

Introduction 3

University of Windsor

1.2 Literature Survey

In this section, some literature survey results for correlation method and shape pattem

recognition methods are summarized.

1.2.1 Correlation Method

The correlation method for image processing has been applied to solving problems in
different fields [3, 7, 8, 27, 30, 35], such as:

1. Automatic defect classification [7] —It requires that consistent quality images are
captured on all tools. Image metrics have been developed and the variance of these

metrics have been correlated to matching classifiers.

2. Obtaining a color motion stereo [27] —3-D shape recovery in motion stereo is
formulated as a matching optimization problem of multiple color stereo images, which

can be carried out with circular decorrelation of a color signal.

3. Chemical structure matching [3] —It is a process of matching the 3-D structure of
molecules in chemical database within the framework of binary correlation matrix

memories.

4. Image registration in remote sensing [35] —Registration is the process, which makes

the pixels in two images precisely coincide to the same points on the ground.

5. Template matching [30] —Localization of a known pattern within the given images
represents one of the most important tasks of digital image processing. This is carried out

via correlating the pattern with the image in various positions (relevant sub-regions).

There are also some other applications. But the common point of all these applications is
that the correlation analysis result actually returns the singularity in spatial comparison of
two images or patterns. The template matching provides a good motivation of applying
the correlation method to designing a smart vision sensor for position measurement
which is going to be addressed in this thesis, since the position deviations, when reflected

in images, are featured exactly by the singularity in spatial comparison.

Introduction 4

University of Windsor

1.2.2 Shape Recognition

In many applications of robotics and computer vision, object recognition is of paramount
importance {10, 29, 43, 45, 46]. With regard to object recognition, shape representation
and recognition is fundamental. Planar shapes arise in a variety of important computer
vision applications including character recognition, biomedical application,
manufacturing inspection, etc. This problem has, not surprisingly, received considerable
attention in literatures [6, 25, 36, 37]. Some of the current research results are

summarized as follows:

1. Curvature function [4, 26, 34] —It is an information preserving representation of a
shape. It has invariant properties with regard to scaling, translation and rotation. It is a 1-
D function.

2. Fourier descriptors [34, 39] —A shape is characterized by interpreting its boundary

points as complex numbers and generating spectra from those representations using FFT.

3. Coordinate function [34] —It uses the contours of the objects directly. It does not need
the representation of the shape.

4. Contour coding by chain codes [5, 15] —It is a more compact form to represent the

shape.

5. Cntical points [22, 44] —The major features of a shape are almost concentrated at the
critical points with high curvature. It is a good idea to use the relatively simple features of
the polygon formed by connecting every two neighboring critical points to characterize
the original contour.

There are also some other methods such as: medial axis transformation, etc., which can

also be applied in shape recognition.

In human perception, the major features of a shape are almost concentrated at the critical
points with high curvature. The basis of the method is to divide a curve into segments and
then use relatively simpie features to characterize the shape. There are many methods
based on locating the critical points for shape recognition in the past [15, 16, 17, 22, 28,

Introduction 5

University of Windsor

31, 40, 44]. Using the critical points to characterize the contour of a shape provides a
good motivation of applying it to designing a smart vision sensor for pattern recognition,
position measurement and rotation angle calculation. The position deviation and the
rotation angle, when reflected in images, can be featured by the coordinates of the critical
points. The polygon formed by connecting every two neighboring critical points can be
used to characterize the contour of a shape, hence can be used to identify the pattern of

the shape. In this thesis, Directional Flow-Change Method [22] is used for this purpose.

1.3 Design of A Smart Vision Sensor

The block diagram of a smart vision sensor is shown in Figure 1.2.

Template
. Image l . Position Error or
Vision - Processing Rotation Angle and
Target —» - —->®-—> > >
arge Element A"a'Ys's Algorithm The Pattem of The
Algorithm + Target

Figure 1.2 Block Diagram of A Smart Vision Sensor

In this configuration, a vision element (for example, a CCD camera) is needed to capture
the image of an object. Then the image analysis algorithm is applied to processing the
captured image. The processing algorithm is used to compare the processed image with
the template, which represents both the reference position of the object and the pattern of
the object.

The spatial shift between the two images will be obtained and translated into the physical
position deviation of the object compared with the reference position. The rotation angle

between the two images and the pattern of the object can also be obtained.

In this thesis, two algorithms based on Correlation Method and Directional Flow-Change
Method are presented. It is pointed out that many other analysis methods such as Fast
Fourier Transform [34, 39], etc., can also potentially be applied to the sensor design.

University of Windsor

1.4 Thesis Organization

This thesis is organized as follows: Chapter 1 presents the research background,
motivation for the research, literature survey results and the design idea. Chapter 2
introduces the correlation analysis method. A review of the Directional Flow-Change
Method [22] is also provided. At the end of the chapter, some preliminary results are
given. Chapter 3 introduces the Histogram, Cumulative Probability Density Function and
Gray-level Transformation. The algorithm, which is based on the Correlation Method, is
developed for finding the 2-D deviation of the input image compared with the template
image. Chapter 4 presents the image binarization, edge detection and noise reduction,
contour tracing, pattern recognition, deviation calculation and rotation angle calculation
of the input image compared with the template. The algorithm based on the Directional
Flow-Change method, which can identify the pattern of a planar shape and find the 2-D
deviation or the rotation angle, is devcloped. Chapter 5 concludes this thesis by

summarizing the two algorithms and making recommendations on future work.

Introduction 7

University of Windsor

Chapter 2
Methods for Image Processing and

Shape Pattern Recognition

2.1 Introduction

In this chapter, the correlation analysis method is introduced first. Then, the DFCM
method, which can identify the pattern of a planar shape, is reviewed. Finally, some

preliminary results are given at the end of the chapter.

2.2 Correlation Analysis

One of the principle applications of correlation method in image processing is in the area
of template matching. The maximum correlation value indicates the closest match. This is
called the method of maximum likelihood. For dissimilar signals, the peak of the
correlation function is an indicator of good or bad matches between two signals [35].
Definition 2.1 Given two M x N matrices G and F,

g - Bin f;l - f;.v
G={ |,F=

vee .oe cer .
g."l i gllN fm it ftl.‘V

the cross correlation of matrices G and F is a 2M —1)x(2N —-1) matrix R, R=[r,],

i=-M+1, - M+2, ..., -1, 0,1, ., M-1;j==-N+1, -N+2, ..., -1,0,1, ..,
N -1, and

Methods for Image Processing and Shape Pattern Recognition 8

University of Windsor

1= fuluinion - @.1)

M N
k= £

-

l=l

Note that, in the above expression, the terms, the subscript indices of which are out of

range, are zZ€ros.

The cross-correlation describes the general dependence between two data sets. It has its

maximum value when the two matrices are aligned so that they are shaped as similarly as

possible.

For the correlation analysis between two images, F and G represent the gray levels of the
pixels. If two images are sufficiently similar, except for a relative spatial shift, it should
result in a maximum value at the point of the best alignment. Therefore the spatial shifts
along X and Y directions between two images can be calculated as follow:

i=-M+l, -M+2, ...-1,0,1, ... M-1;

deviations(X,Y) = max(r,),
j==N+1, -=N+2, .., -1,0,1, .., N-1.

However, there is a problem with equation (2.1) when there is a large change in the
image brightness. Suppose image F is the template image, which is constant. But large
changes in the image brightness in the input image G can lead to false correlation peaks.
When applying the equation (2.1) to the images, the value of R will then largely depend
on G and will not give a correct indication of the match. This problem can be solved by

using normalized cross-correlation. The match measurement can be computed as follows:

c,= zifug(,-u,.n . (2.3)
k=l =l
M N 5 s
k=033 fu1. Q.4)
k=l [=1
M N > 1im
2=y 8,17, @2.5)
k=1 I=1
L =c, k2. (2.6)

Since k1 is a constant as long as the template does not change, it can be ignored in

Methods for Image Processing and Shape Pattern Recognition 9

University of Windsor

locating the relatively maximum correlation. This definition is less sensitive to the mean
value and it can be used to prevent false correlation peaks arising from the changes in the
mean image gray level. Without this, the correlation will be the highest where the image
has the highest gray levels, not where the pattern match is the best. There are also some

other definitions for normalized cross-correlation.

Using the edged images to do correlation can also solve this problem.

2.3 Directional Flow-change Method

The Directional Flow Change Method (DFCM) [22] is based on the directional flow-
change concept, which extracts shape features for shape recognition. It can locate critical
points. evaluate angles, code angles, and finally get a set of shape numbers for shape
recognition. It has good performance in efficiency, accuracy and effectiveness. The
original purpose of the DFCM method is to identify the pattern of a planar shape. In this

thesis, the method is improved to do pattern recognition, deviation calculation and

rotation angle calculation.

This method is based on the concept of directional flow-changes along the contour points.
When tracing the contour clockwise starting from any arbitrary point, all the points on the
contour can be treated as an array:

@ ={P:sP\sD2ss Py}

where N is the total number of contour points, p, and p,_, are the starting point and the
ending point, respectively. Since the contour of an object is a closed curve, ¢ becomes a
periodic function of period N, which means p_, =py_,and p, =p,,, for 0Sk<N-1.
A portion of a contour consisting of 2J+1 points p,_,,..., p,,..., p,., is denoted by ¢.(J),

where J =W with 0<y<l1. Jis called the ‘Supported Length’ and y is called the
*Supported Rate’ [16, 17].

Methods for Image Processing and Shape Pattern Recognition 10

University of Windsor

2.3.1 Concept of Chain Codes

Chain code [15] can be used to represent the boundary of an object by a connected
sequence of straight-line segments of specified direction. It is a more compact form to
represent the shape. A chain code representation based on the 8-connectivity of the
segments is adapted. Two consecutive pixel points define a segment. The direction of

each segment is coded by using a numbering scheme, which is show in Figure 2.1.

7 40 1
6 ¢ 2
5 v4 3

Figure 2.1 Numbering Scheme for 8-Connectivity Chain Code

Assume that {d .d,,...d,} represent the 8-directional chain codes of the contour
O ={PysP.s P:»- Py} - Where d, is the direction of the segment from point p, to p,_,. A
function G,(d,), 0<a <7, is defined for testing whether chain code d, is in the
adirection, i.e.

Definition 2.2 Function G_(d,) is defined as follow:

G(d)-l if d =a
27710 otherwise.

(2.7)

2.3.2 Concept of Directional Flow-Change

Definition 2.3 The input flow in the & direction of a contour segment with length J at

Methods for Image Processing and Shape Pattern Recognition Il

University of Windsor

=1

point p, € ¢ is definedas Y G,(d,).

k=1-J

Definition 2.4 The output flow in the & direction of a contour segment with length J at

i+J-1
point p, € ¢ isdefinedas Y G,(d,).
k=i

Definition 2.5 The flow-change in the a direction at point p, € ¢ with contour segment

of length J on both sides of p, is defined as:

i+S =1 i=i

0,1,) =| Y. G, (d) - Y G (d,). (2.8)
k=i

k=i-J

Definition 2.6 The directional flow-change at point p, € ¢ with contour segment of

length J on both sides of p, is defined as:

3
8(i,J) = Y |6,(6)= 8s (b D). 2.9)

a=0

To compute the directional flow-changes for all points on the contour is very efficient
because the input and output flow of a point can be obtained from the input and output

flow of its previous point with additional simple update operations as follows:

i-1

Y G,(d;) = 3 .G,(d,)~Gp(d,_;) +G,(d)), 2.10)
k=i+l-J k=i-J
i+J i+vJ-1
3G, (d,)= ;Ga(d,t)-—Ga(d,.HGa(d” ;). 2.11)
k=i+l =i

From physical scenario’s point of view, the existence of curvature at a point p, of a curve
segment ¢ (J) will cause a directional flow-change at p,. In other words, if there is a
significant amount of directional flow-change &(i,J) detected at point p,, the curve
segment ¢@,(J) should have non-ignorable curvature at this point and point p, is

probably a critical point.

Definition 2.7 A critical point p; € ¢ is a point, which satisfies the following conditions

Methods for Image Processing and Shape Pattern Recognition 12

University of Windsor

simultaneously:

Step 1. 6(i,J)>txJ forsometwith 0.8 <r<1.

Step 2. 6(i,J) 2d(k,J) for all k with i—L<k<i+L, where L is an integer such that
05/<L<J.

Step 3. If p, is the next critical point after p; , then there exists at least a point p; with

i < j <k suchthat 6(j,J)<6x8(i,J), where 0.5< 8 <1.

Step 4. Let p; be the previous critical point before p,; p,.be the first point after p; such
that J(k',J)<0xd(",J); and p, be the first point after p, such that

O6(k,J)<0x6(i,J); If there are m points {p,,,..., D, } between p,. and p, such that

8, J)=--=8(,,J), then i=[-;-(il+i,.)].

Step 5. |i — k|2 L If p, is a critical point other than p,.

2.3.3 Algorithm for Detecting Critical Points
Based on Definition 2.7, the critical point detecting algorithm is presented as follows:

Step 1. Pick a number ¥ between 0.01 and 0.05. Let J =yxN .

Step 2. Choose the values for 6, ¢t and L such that 0.5<6<1, 08<:<1 and
0.5J<sL<sJ.

Step 3. Critical_points — NULL.

Step 4. Starting from p,, search for the first two points p,and p, with p <k such that
o(p,J)2txJ; 6(,J)<d(p,J),forall 0< i<k and 8(k,J)<OxdI(p,J).

StepS. i—k; dek.

Step 6. Increase i while searching for the first point p,. and all points p, withp'<d'
such that &(p'.J)>d(j,J) for all j°s with d<j<d'; d&(p',J)>txJand

Methods for Image Processing and Shape Pattern Recognition 13

University of Windsor

6(d'.J)<0x6(p',J). At every new point p,, check if (i mod N) = k. If true, then
output Critical_points and terminate.

Step 7. If more than one such p,. points between p, and p,. are found in step 6, say

{Di1»s Dim }» then candidate «— [%(il +1i,)]; otherwise candidate « p'.

If Critical_points = NULL, then
(a) Add p_pdidare tO Critical_points;
(b) previous « candidate;
(c) d « d';Go to step 6.
Step 8. If (candidate — previous) 2 L, then
(@) Add p,,..,,. to Critical_points;
(b) previous « candidate;
else if 8(previous,J) < 8(candidate,J), then

previous « candidate .

Step 9. d « d'; Go to step 6.

2.3.4 Shape Description

By locating the critical points, a polygon with these critical points as vertices can be
formed to approximate the contour of the shape. Thus, the sides of the approximating
polygon are those line segments connecting every two neighboring critical points. Two
connecting sides form an angle at a critical point. Consequently, the angles can be
computed easily and the resulting sequence of successive angles can be used to
characterize the contour. The possible range of an angle computed by the method is from
0" to 360°.

To facilitate shape matching, a sequence of angles are converted into a sequence of angle
codes, called ‘Angle String’, based on the coding scheme shown in Table 2.1.

In this angle coding scheme, if an angle is between 160° and 200°, it will be removed

Methods for Image Processing and Shape Pattern Recognition 14

University of Windsor

from the sequence because it is close to a straight line and is too sensitive to be treated as
a curving feature.

Table 2.1 Angle Coding Scheme

Angle Size Angle Code Angle Size Angle Code

0~29 0 200~209 8
30~39 1 210~239 9
40~69 2 240~249 A
70~79 3 250~279 B
80~109 4 280~289 C
110~119 5 290~319 D
120~149 6 320~329 E
150~159 7 330~359 F

An angle string such as 42B22 can be treated as a hexadecimal number for comparison.

To reduce possible over-sensitivity in shape recognition, the following rules are applied
to angle strings:

1. Code 7 can be either removed from the string or changed into code 6.
2. Code 8 can be either removed from the string or changed into code 9.
3. Code 1 can be changed to either code 0 or code 2.
4. Code 3 can be changed to either code 2 or code 4.
5. Code § can be changed to either code 4 or code 6.
6. Code 4 can be changed to either code 9 or code B.

7. Code C can be changed to either code B or code D.

Methods for Image Processing and Shape Pattern Recognition 15

University of Windsor

8. Code E can be changed to either code D or code F.

By applying the above rules, some additional angle strings can be generated.

Definition 2.8 A ‘Shape Number’ is defined as a permutation of an angle string such that

this permutation forms an integer of the minimum angle.

Thus, the above angle strings can be converted into the corresponding shape numbers.

2.3.5 Shape Recognition
The shape recognition scheme can be described as follows:

Given any shape, a finite set of shape numbers can be generated by the method described
above. Let A={A,,...A4,} and B = {B,,....B») be the sets of shape numbers associated
with shape S; and shape Sz, respectively. Then S, and S; are of the same shape if there

exist some 4; € A and some B; € B suchthat 4, =B;.

2.4 Preliminary Results

Definition 2.9 The directional flow-change at point p, € ¢ with contour segment of

length J on both sides of p, is defined as:

7
8, J) = 3 |8,))|. 2.12)
a=0

This is the revision of Definition 2.6, which could cause some problems in some cases.
For example, suppose there is a curve as shown in Figure 2.2. There are total 11 pixels
with /=5 (Supported Length). For the 6™ pixel p;, the flow-changes 6,(i,5) in the

direction 0, 1,2, ..., 6, 7 are:
6,(i,5) =0, 9,(i,5)=0, 9,(i,5) =5, 08,(i,95)=0,

64(ia5) = 19 65(i,5) = 4’ 56(ia5) = 0’ 57(i’5) =0.

Methods for Image Processing and Shape Pattern Recognition 16

University of Windsor

P;

Figure 2.2 5 Function of A Curve

According to Definition 2.6, the directional flow-change at point p; is:
3
8(i.5) = Y 18,(i:5) = 8,4 (i.5) HS-1-4 0.
a=0

No directional flow change is directed at point p,. But obviously, it could be a critical
point. Using Definition 2.8, the & value of this point can be calculated as:

7
5(i5) =Y |6,(5) ES+1+4=10.

a=0

Non-ignorable directional flow-change is detected at this point. Therefore, it could be a
critical point.

Definition 2.10 Given any shape, a finite set of shape numbers can be generated by the
modified method. Let A={4,,....4,} and B = {B,,....B») be the sets of shape numbers
associated with shape S, and shape S, respectively. Then S, and S; are of the same shape
if there exist some 4; € A and some B; € B such that 4, = B; and if the corresponding

side lengths of the polygons, which are used to represent the contours the shapes, are also

Methods for Image Processing and Shape Pattern Recognition 17

University of Windsor

approximately the same.

Two supplemental procedures as described below are implemented for the algorithm of
critical point detection. The third one will be introduced in Chapter 4.6. Comparing with
the DFCM method developed in [22], the modified method (with the new definitions and

the supplemental procedures) has better performance and is more accurate.

1. A Low Pass Filter Introduced to The 6 Function

If the & Function is processed through a low pass filter, a smoother & function, which
will result in better performance for the algorithm, can be obtained. This filter just takes
the average value of § Function for L/2 points (L/4 points on both sides of a certain
point).

2. A Supplemental Procedure Implemented

The DFCM method could cause some problems. For example, suppose there is a J
function as shown in Figure 2.3. According to step 4 of the algorithm for detecting the
critical points in Chapter 2.3.3, two points p, and p,, which satisfy the following

conditions, can be found:

o(p.J)2txJ; 6(j,J)<d(p,J),forall 0< <k and 6(k,J)<O@x(p,J).

Therefore, point p, is a critical point. And according to step 6, two points p,. and p,.

are also found, which satisfy the following conditions:
o(p',J)>txJ,6(d',J)<60xd6(p',J).

But the condition 8(p'.J)>8(j,J) for all j°s with d £ j<d' (d=k) is not satisfied

because at least 6(d,J)>d(p',J) . But actually, p,. could be a critical point. So if the
value of k is changed such that & locates on the point MIN, which has the local minimum

value, this problem can be solved.

Methods for Image Processing and Shape Pattern Recognition 18

University of Windsor

RN

brd
pp‘

/\p;

MIN

» 5

Figure 2.3 § Function of A Shape

Therefore, in the algorithm for detecting the critical points, a new procedure is added
following step 4 to change the value of & so that k& will be the local minimum value. This

procedure will make the algorithm more complete and accurate. The same thing should
be done for step 6.

Methods for Image Processing and Shape Pattern Recognition 19

University of Windsor

Chapter 3

Algorithm Design for Smart Vision Sensors

Based on The Correlation Method

3.1 Introduction

In this chapter, the Histogram and Cumulative Probability Density Function, and Gray-
Level Transformation are introduced first. Then the algorithm, which is based on the
correlation method, is developed for finding the deviation of the target in the input image
compared with the reference position of the template. Finally, two examples will be given

to demonstrate the effectiveness of the algorithm.

3.2 Histogram and Cumulative Probability Density Function

The histogram and the Cumulative Probability Density Function (CPDF) of an image are
defined as follows:

Definition 3.1 Given an image with Mx N pixels, let f{i, /) be the discrete gray-level at
the pixel (i,), i=1, 2, ..., M; j=I, 2, ..., N. The histogram H(z) of this image is defined as
the total number of pixels at which f{i, j))=z. The CPDF is defined as:

CPDF(z) =2[H(i)/(MxN)]. G.1)

The image histogram describes the statistical distribution of the gray-level intensities
over the image without reference to their locations, but only to their frequencies of
occurrence. It is calculated simply by counting the number of pixels in each gray level.
With the histogram, a distribution of gray levels of pixels in an image can be described. It

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 20

University of Windsor

is a useful tool for image contrast enhancement. The appropriate gray-level thresholds

can be obtained from the histogram as the percentage of the total number of the pixels in
the image.

The CPDF of an image is the fraction of pixels with gray-levels up to a given value over
the all pixels. It is a single-valued monotonic function since it can only increase as each

histogram value is accumulated from the minimum gray level. The asymptotic maximum
value for the CPDF is one.

3.3 Gray-Level Transformation

Point processing in an image means that the processing of a certain pixel in the image
depends on the information on the pixel itself without considering the status of its
neighborhood. One method for point processing is the Gray-Level Transformation. It is a
quite straightforward method. A conversion table or algebraic expression will be stored,
and the gray-level transformation for each pixel will be carried out either by table lookup
or by algebraic computation. Figure 3.1 shows a gray-level transformation, which can be

used in image contrast enhancement.

Gray Level

i Gray Level
>

1
[}
]
[}
]
13
i

0 ow hight %5

Figure 3.1 Gray-Level Transformation

Clearly, it can be seen that the intensity of pixels with gray-level lower than ‘low!’ are
set to O and those with gray-level higher than ‘highl’ are set to 255. Then do linear

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 21

University of Windsor

stretching for the remaining pixels. By doing such transformation, the dark part of the
image becomes darker and the bright part becomes brighter.

3.4 Algorithm Design Based on The Correlation Method

To explain the idea, a sheet foam barrier on a conveyor is used as an example to show the

algorithm design of the smart vision sensor. A typical image of sheet foam barriers on the

conveyor is shown in Figure 3.2.

Figure 3.2 Image of Foam Barriers

Figure 3.3 shows the template image indicating the reference position of a complete foam
barrier within a captured image. The vision sensor is designed to identify the position
deviation of the real foam barrier on the conveyor by comparing the real image with the
template image.

It is assumed that the input image covers up to the range of two foam barriers so that it is
guaranteed that at least one complete foam barrier is included in the image. There are
three cases for the position relationship between the reference position and the on-line
foam barrier position:

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 22

University of Windsor

Figure 3.3 Image of The Template

Case 1. The target foam barrier locates around the middle of the image (Figure 3.2).

Case 2. The target foam barrier locates at the top of the image (Figure 3.4). This extreme
case shows that the vertical deviation is ‘-a’ (Figure 3.2).

Direction of
movement

Figure 3.4 An Extreme Case Showing That The Deviation Is ‘—a’

Case 3. The target foam barrier locates at the bottom of the image (Figure 3.5). And this

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 23

University of Windsor

extreme case shows that the deviation is ‘+b’ (Figure 3.2).

Direction of
movement

Figure 3.5 An Extreme Case Showing That The Deviation Is ¢5°’.

Thus, for this algorithm, the measurable range is -a~+b along the vertical direction.

Six steps are conducted to implement the algorithm, the flow chart of which is also
shown in Figure 3.6.

Step 1. Enhance the contrast of the input image.

Step 2. Find the approximate position of the complete foam barrier in the input image.
Step 3. Crop the input image to the same size as that of the template image.

Step 4. Find the edges of the template image and the cropped image.

Step S. Calculate the correlation between the edged template image and cropped image.

Step 6. Calculate the deviations in both X-direction and Y-direction.

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 24

University of Windsor

Chapter 3.2
Contrast Enhancement |—# Chapter 3.3

l Chapter 3.4.1

Detection of The
Approximate Position of —# Chapter 3.4.2
The Target Foam Barrier

'

Image Size Reduction # Chapter 3.4.3

'

Edge Detection of
The Template iImage and |— Chapter 3.4.4
The Cropped Image

'

Correlation Calculation
Between The Edged Templatq—p Chapter 3.4.5
and The Cropped Image

'

Deviation Caiculation
in X and Y Directions ® Chapter 3.4.6

Figure 3.6 Flow Chart of The Algorithm Based on The Correlation Method

3.4.1 Enhance The Contrast of The Input Image

Because of the difficulties experienced in evaluating the criteria for image enhancement,
and the fact that image enhancement is so problem-oriented, no general approaches are
available that can be used universally. There are several ways to address this problem,
one of which is the deterministic gray-level transformation. This method will be used
together with the CPDF of the input image to enhance the contrast of the image.

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 25

University of Windsor

A preferred captured image is an image, the pixels of which in the ‘White Part’ have the
maximum gray level 255 (called value ‘high’), and the pixels of which in the ‘Black Part’
have the minimum gray level 0 (called value ‘/ow’). But in most real cases, because of
the variable light luminance, different reflection factor of the target material and some

other disturbance, the captured image could be very bad with the following situation.
1. Neither the value of ‘high’ is 255, nor the value of ‘low’ is 0.

2. Not all the pixels in the ‘White Part’ of the image have the same brightness; neither do
the pixels in the ‘Black Part’.

3. Sometimes, the contrast might be very low, which means the values of ‘high’ and ‘low’

are very close.

Therefore, enhancing the contrast of the image is necessary. The distribution of the

intensity of an image is shown in Figure 3.7.

TThemmberofpixels

i
A Gray Level
. 2

high 255

Figure 3.7 Intensity Distribution of The Input Image

In order to enhance the contrast of an image, thé histogram and the CPDF of the image
need to be obtained first. Then the values of ‘highl’ and ‘low!’ in Figure 3.1 can be
found. Starting from the lowest gray-level, the number of pixels increases until the sum
reaches 20% of the total number of the pixels in the image, which can be expressed as:

CPDF (lowl) =20% . 3B.2)

The corresponding gray-level is called “low!’. Using the formula as shown in equation
(3.3), the value of ‘highl’ can also be obtained. Starting from the highest gray-level, the

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 26

University of Windsor

number of pixels increases until the sum reaches 20% of the total number of the pixels in

the image, which can be expressed as:
CPDF (highl) =1-20% =80%. 3.3)

The corresponding gray-level is called ‘highl’. With the values of ‘lowl!’ and ‘highl’
found, the gray-level transformation method mentioned in Chapter 3.3 can be used to
process the image and the contrast-enhanced image can be obtained.

3.4.2 Find The Approximate Position of The Complete Foam Barrier in
The Input Image

In order to reduce the computing time required to run the program, as well as to improve
the positioning accuracy and the reliability, the input image should be cropped to the

same size as that of the template.

One obvious characteristic of the foam barriers is that a narrow black band lies between

every two neighboring foam barriers. The following 4 steps can be conducted to find the

approximate position of the target foam barrier.

Step 1. Looking for the 1* ‘Black Band’ in the input image

Suppose (i) represents the gray level of a certain pixel (i) in the input image
(M x N pixels). Using equation (3.4), the summation of the gray levels of all the pixels in
each row is carried out.

N
¥ =Y GG, j)- G4

=1
Then the maximum value ‘MaxValue’ can be found according to the following equation.

MaxValue=max()(i)). 3.9

If a certain y(i) is less than or equal to 20% of the ‘MaxValue’, the corresponding row is
called a ‘Black Line’; otherwise, it is called a “White Line’.

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 27

University of Windsor

The following procedures are conducted to find the 1** ‘Black Band’.

First of all, the 1¥ ‘Black Line’ should be found. Then check the succeeding 4 lines to see
if there are at least 3 ‘Black Lines’. If this condition is satisfied, it means that the 1*
‘Black Band’, which has at least 4 ‘Black Lines’ out of 5 lines, is found. The allowable
one ‘White Line’ may be caused by some noise. Therefore, this algorithm has the ability
of fault tolerance. The 1% ‘Black Band’ is ‘Band0’ as shown in Figure 3.2. Obviously,
the part above this band does not include the target foam barrier, but is an empty area,
from which a foam barrier was just picked up.

It is explained implicitly in step 1 why the contrast of the image needs to be enhanced. In
the case when the contrast is too low, and 20% is still used to look for the ‘Black Band’,

it will result in a failure.

Step 2. Looking for the 1* ‘White Band’ in the input image

‘White Band’ is defined as a band, which has at least 4 ‘White Lines’ out of 5
consecutive horizontal lines. Following a similar procedure as step 1, the 1% ‘White
Band’ can be found, which is shown as ‘Bandl’ in Figure 3.2. This band should be the

approximate beginning of the target foam barrier.

Step 3. Looking for the 2" ‘Black Band’

Following the same procedure as step 1, the 2™ ‘Black Band’, which is shown as ‘Band2’

in Figure 3.2, can be found. This should be the approximate end of the target foam

barrier.

Step 4. Looking for the approximate ‘Central Line’ of the target foam barrier

A foam barrier may be found between the 1¥ ‘White Band’ and the 2™ ‘Black Band’.
Now, the ‘Central Line’ needs to be found, which represents the approximate vertical

central position of the target foam barrier. The position of the ‘Central Line’ (Figure 3.2)
can be calculated as:

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 28

University of Windsor

Central=(Bandl +Band2)/2. 3.6)

3.4.3 Crop The Input Image to The Same Size as That of The Template
Image

In the 1* case as shown in Figure 3.2, it is easy to crop the image. Both below and above
the ‘Central Line’, two image sections with M/2 rows respectively (M is the number of

total rows of the template image) are retained.

But special attention needs to be paid to case 2 (Figure 3.4) and case 3 (Figure 3.5). In
case 2, the width of the part above the ‘Central Line’ is less than M/2 rows and in case 3,
the width of the part below the ‘Central Line’ is less than M/2 rows too. Therefore, in
these 2 cases, a different method needs to be used. In case 2, the image section with M
rows starting from the first row is retained, and in case 3, the image section with M rows

starting from the last row is retained.

3.4.4 Find The Edges of The Template Image and The Cropped Image

In order to prevent false correlation peaks arising from the changes in the mean image
gray-level, the edges of the template and the cropped image have to be detected first.
Then the correlation is performed between the two edged images. The built-in function
‘edge’ in Matlab can be used to detect the edge of an image. This function normalizes
any edge values to 1 and non-edge values to 0. That is why the false correlation peak
problem can be solved.

The normalized definition of the cross-correlation can also be used to solve the problem.

3.4.5 Calculate The Correlation Between The Template Image and
Cropped Image

In equation (2.1), if F and G represent the gray-levels of two images, then the summation
is carried out for those values of k and /, such that the computation is restricted within the

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 29

University of Windsor

region of supported area only, the overlapping area between the two images. This
corresponds to the shaded area in Figure 3.8. The location of (i, j) for which 7, has the

maximum value denotes the correct displacement between images G and F.

Ciopped Image
)

\ Tme

ﬂ_l'_'\ vL /
T’

Figure 3.8 The Correlation Between The Template and The Cropped Image

The cross-correlation between the template and the cropped image is calculated by
sliding the cropped image over the template, multiplying the two arrays pixel-by-pixel,
and summing the result. A useful way to think of area correlation is that, if the two
images are identical, the correlation becomes a spatial statistic on a single image and
behaves similarly, with a peak for zero lag (shift) and a decrease as the lag increases. The
point, which has the maximum correlation value, indicates the X and Y deviations. For
the complete overlap, the correlation reaches the maximum. It is anticipated that the

correlation will decrease fairly rapidly away from this peak as the shift between the 2
images increases.

The correlation calculation is performed between the edged template image and the edged
cropped image in this chapter.

3.4.6 Caliculate The Deviations in Both X-direction and Y-direction

As long as step 3.4.5 is finished, it is not difficult to find the deviations in both X-
direction and Y-direction. The point with the maximum correlation value should be found
first. Then some corrections need to be done because the final deviations are related to

the value of ‘Central’, M (number of the total rows of the template image), M/ (number

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 30

University of Windsor

of the total rows of the input image), and the X-Y deviations found in step 3.4.5.

3.5 Examples

To demonstrate the effectiveness of the method, let us look at an example. Figure 3.9 is
an image with very low contrast. The histogram and the CPDF of the image are
illustrated in Figure 3.11 and Figure 3.12 respectively.

Figure 3.9 An Image with Figure 3.10 Contrast-Enhanced
Very Low Contrast Image

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 3

University of Windsor

Histogram Operation

-

H@)
. E3BaBBEBEE

Figure 3.11 Histogram of The Input Image (Figure 3.9)

Cumulative Probability Density Function

-

v

Fraction of Total Pixels
© 0o 0 o o 0 9 9 o
- N W a2 O N o W
LA v v v v L L4 v v
e .

o
S

100 180 20 20 00
Gray Level

o
] 8

Figure 3.12 Cumulative Probability Density Function of The Input Image

Following the algorithm mentioned in Chapter 3.4.1, the contrast-enhanced image as
shown in Figure 3.10 can be obtained. It can be seen that the contrast of the image is

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 32

University of Windsor

greatly enhanced although the original image has very low contrast. The dark part in the
image becomes darker and the bright becomes brighter.

The histogram and the CPDF of the contrast-enhanced image are illustrated in Figure
3.13 and Figure 3.14 respectively.

Histogram Operation
14000 v v v

12000%

10000 |

H(z)

1] 50 100 150 200 230 300
Gray Level 2

Figure 3.13 Histogram of The Contrast-Enhanced Image

Cumulative Probability Density Function
1 v v T T

o
[21)
Y

o
~
T

IJ—

o
o
Y

Fraction of Total Pixels

o
(3]
T

o

’'S
L

N

a3

0 50 100 150 20 250 300
Gray Level

Figure 3.14 Cumulative Probability Density Function of
The Contrast-Enhanced Image

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 33

University of Windsor

Figure 3.15 and 3.16 are the edged images of the template and the cropped image
respectively, which are going to be used to perform the correlation calculation.

Figure 3.15 The Edged Image of The Cropped Image

Figure 3.16 The Edged Image of The Template

Suppose the maximum value of the autocorrelation of the template image is

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 34

University of Windsor

‘MaxAutoCor’. In order to show the degree of the match between the input image and the
template image, all the correlation values are scaled by a factor ‘1/MaxAutoCor’. If the
correlation value after the scaling is 1, it means that the input image and the template
have the best match. From Figure 3.17, which is the correlation result, it can be seen that
the correlation reaches the maximum on the best match point, whereas on the other

points, the correlation values decrease rapidly.

o7
os{ -
04

03
024
01

200

-200 -200

Figure 3.17 Correlation Result

Position errors found by the algorithm are:
X-deviation=34 (pixels), Y-deviation=-7 (pixels).
Position errors found manually are:
X-deviation=33 (pixels), Y-deviation=-7 (pixels).

Figure 3.18 is a diagram showing the position relationship between the contrast-enhanced
image and the template image.

Algorithm Design for Smart Vision Sensors Based on The Correlation Method s

University of Windsor

Figure 3.18 Contrast-Enhanced Image Compared with The Template Image

The result shows that the algorithm developed in this thesis has very high solution and

noise rejection ability.

Let us look at another example shown in Figure 3.19, 3.20 and Figure 3.21.

Figure 3.19 Image of A Different Shape Figure 3.20 Image of The Template

Algorithm Design for Smart Vision Sensors Based on The Correlation Method 36

University of Windsor

-200 -200

Figure 3.21 Correlation Result

The algorithm also works well for a different shape.
Position errors found by the algorithm are:

X-deviation=-30 (pixels), Y-deviation=-20 (pixels).
Position errors found manually are:

X-deviation=-30 (pixels), Y-deviation=-20 (pixels).

Algorithm Design for Smart Vision Sensors Based on The Correlation Method

37

University of Windsor

Chapter 4

Algorithm Design for Smart Vision Sensors

Based on The Directional Flow-Change Method

4.1 Introduction

Some algorithms are developed in this chapter for image binarization, edge detection,
noise reduction, contour tracing, pattern recognition, deviation calculation and rotation
angle calculation. Based on the modified DFCM method, an algorithm, which can be
applied to the smart vision sensor design, is obtained. Implementation of the algorithm is
presented in details. At the end of this chapter, 4 examples are given to demonstrate the
efficiency of the algorithm.

4.2 Image Binarization

The operation that converts a grayscale image into a binary image is known as
binarization, which is carried out using a threshold value. Each pixel in the input image is
assigned a new value (1 or 0) according to its intensity value. The threshold can be
obtained from the histogram of the image.

4.3 Image Edge Detection

By using differentiation, a sharpening effect can be expected on the edge of the image.
For a 2-D image function f{x,y), where f{x,y) represents the intensity value of a certain
point (x,y), a vector gradient G r(x,y) can be formed as [9]:

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 38

University of Windsor

G (x,y) = @.1)

PIRY |

The direction of this vector is toward the maximum rate of increase of the image function

fix.y), while its magnitude is represented by:

2 O 2qn2
IGF[(ax) +(ay)] . 4.2)

For discrete images, the coordinate system is chosen as shown in Figure 4.1, with Jf /ox
pointing to the horizontal rightward direction and J&f/dy pointing to the vertical
downward direction. Equation 4.2 can then be implemented digitally by:

|G ISR - FG+LEN? + (k) - fUk+1))212, (4.3)

which is commonly called ‘Three-point Gradient’. This implementation is accurate, but is
computationally expensive. If the absolute values of the terms inside the brackets under

the square root are taken for the value of |G|, i. e.,
|G UK - fFU+LE)+1 fULK) - FUk+D)], 4.4)

computational advantages can be achieved.

Gk) o/ Gk+1)
°o —p °

of /oy

(+1,k)

Figure 4.1 Digital Implementation of A Gradient Operator

By comparing the value |G| of each pixel with the threshold value, a new value 1 or 0 will

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 39

University of Windsor

be assigned to each pixel.

In order to implement the following Noise Reduction algorithm, the edge of a planar
shape must be a closed contour. Therefore, when the edge detection algorithm is
implemented, the threshold value is chosen as 1, which guarantees the edge will be a

closed curve. After the gradient operation and subsequent thredholding operation have
been performed, a closed contour is extracted.

4.4 Noise Reduction

A filling algorithm is developed and applied to reducing the noise presented in the binary

image.

When the image section inside the contour (edge) is filled with ‘white’ and the rest image
section is converted into ‘black’, an image without noise can be obtained. But if there is

too much noise presented in the input image, a further step should be performed.

The following steps are conducted to remove the noise presented in the input image.

Stepl: Randomly choose a point inside the contour as the starting point
Step 2: Process the adjacent 4 pixels of the starting point

Checking the adjacent 4 pixels of the starting point along vertical and horizontal
directions, if the pixel is ‘black’ (The gray level is 0), change it to ‘white’ (The gray level
is 1) and record its coordinates; otherwise, keep it ‘white’ and do not record its
coordinates. This procedure is called ‘Filling the 1* layer’.

Step 3: Repeat the procedure until all the pixels inside the closed contour become
‘white’

The same procedure should be conducted for the adjacent 4 pixels of each pixel, whose
coordinates are recorded in step 2. If the pixel is ‘black’, change it to ‘white’ and record
its coordinates until all the adjacent pixels around the recorded pixels become ‘white’.

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 40

University of Windsor

This procedure is called as: Filling the 2™ layer.

An example image is shown in Figure 4.2 with the chosen pixel inside the contour.
Figure 4.3 shows the image after the first layer is filled and Figure 4.4 shows the image
after the second layer is filled. All the Figures are color-inverted for display purpose.

The above procedure should be repeated until all the pixels inside the closed contour
become ‘white’. After the previous 3 steps are performed, the noise, which appears as

white spots or lines inside the closed contour, will be removed.

Figure 4.2 The Original Contour and The Starting Point

Figure 4.3 The Image After The First Layer Is Filled

Figure 4.4 The Image After The Second Layer Is Filled

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 41

University of Windsor

Step 4. Change the all pixels outside the contour to be ‘black’

The noise outside the closed contour often consists of some white spots and lines. If all

the pixels outside the contour are converted to be ‘black’, all the noise will be removed.

As long as Step 1 to Step 4 are finished, an ideal binary image is obtained. All the noise

in the image will be removed.

4.5 Contour Tracing

The contour tracing algorithm can be described in terms of ‘an observer’, who ‘walks’
along the object boundary starting from any given point on the closed contour. The
search proceeds from top to bottom and from left to right in the image space to find the
first point on the boundary. If the point is found, then it will be taken as the starting point
for the tracing process. From this initial point, searching starts in the directions 0, 1, 2, 3,
4, 5, 6, 7 respectively (Figure 4.5). If a point on the boundary is found, record its chain
code, which is its direction, and take this point as a new starting point. The process is

repeated until the contour is closed.

The following four steps are conducted to obtain the chain codes of the closed contour of

a shape.

I(7) B(0) C()

1
H(6) A D(2)

< >

Na

v

G(5) F(4) EQ3)

Figure 4.5 Numbering Scheme for 8-Connectivity Chain Code

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method

42

University of Windsor

Step 1: Choose the top-left pixel on the contour as the starting point

Suppose the chosen top-left pixel is point A1 as shown in Figure 4.6. The chain code of
point A1 can be found by checking the intensity values of the pixels in directions 2, 3, 4
and 5 (Figure 4.5). If the intensity value of pixel D in direction 2 is 1, then the chain code
of point 41 is 2. If not, continue to check the intensity value of pixel E in direction 3, and
so on, until the chain code for Pixel A1 is found. Then a new point A2 is chosen as the

new starting point as shown in Figure 4.7.

Figure 4.6 Diagram of Contour Tracing on Point A1

Figure 4.7 Diagram of Contour Tracing on Point 42

Step 2: Create an array Binary(8)

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 43

University of Windsor

Now the new starting point is treated as point 4 in Figure 4.5. Checking the intensity
value of pixel B first, the value Binary(0) can be set according to its intensity value. If it
is 1, then set the value Binary(0) as 1; otherwise, set it as 0.

Following the same procedure: checking the intensity values of the pixels in the rest 7
directions, the values of BinarA(2), Binary(3),..., and Binary(7) can be determined by the
intensity values of pixels C, D, E, F, G, H, and I For the image shown in Figure 4.7, the
contents of the array Binary[8] for pixel A2 are:

Binany(0)=0,
Binarny(1)=0,
Binarny(2y=1, €4¢——— Transition
Binary(3)=1,
Binarny(4)=1,
BinanA5)=1,
Binary(6)=1, 4——— Transition

Binary(7)=0 .

Step 3: Generate the chain code from the array Binary[8]

Now two positions in the array need to be found where the value transits. The chain code
of pixel A2 to the next pixel is either 6 or 2 (the two positions in the array where the value
transits. They represent the edge of the image). How to decide which is going to be the

desired chain code? Since the contour is being traced clockwise, the rules as described
follows can be used.

Subtracting the previous chain code from these two values and taking the absolute values
of them, the following equations are obtained.

Differencel =|6 — previous _chain _code }=|6 -2 |= 4,

Difference2 =|2 — previous _chain _code |=|2-2}=0.

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method “

University of Windsor

Because Differencel equals to 4 and Difference2 does not equal to 4, the desired chain
code is 2 instead of 6. The reason is that the absolute value of the difference between two
opposite direction codes is 4. In this case, direction 6 is corresponding to pixel A1, which
has already been processed in step 1 and has been recorded on the contour. Therefore, 2
is the desired chain code.

If the elements of the array Binary[8] have the following values:
Binan/(1)~1,
Binany(2)=1, 4—— Transition
Binan/ (3)=0,
Binan(4)=0,
BinanA5)=0,
Binan/(6)=1, €4——— Transition
Binan(7)=1 ,
Binan (8)=1 .

the two positions need to be found as the arrows pointing to. Then the rules described

above can be used to determine which one is the chain code.

Step 4: Repeat the step 2 and step 3 until the tracing process reaches the original
starting point

If the tracing process reaches the original starting point, terminate the tracing process;
otherwise, go to step 2.

4.6 Pattern Recognition

Before discussing the pattern recognition, a simplified coding scheme as shown in Table
4.1 is introduced in this section. It is used to code the angles of the polygon, which
represents the contour of a shape approximately.

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 45

University of Windsor

Table 4.1 Angle Coding Scheme

Angle Angle Code Angle Angle Code
0~22 0 180~206 8
22~44 1 206~228 9
4466 2 228~250 A
66~88 3 250~272 B
88~110 4 272~294 C
110~132 5 294~316 D
132~154 6 316~338 E
154~180 7 338~360 F

After coding the angles, the corresponding angle string and the shape number can be
obtained. The shape number of the template image was generated and saved before the
input image is processed. And the shape number of the input image can also be found.
Comparing it with that of the template, if they are not equal, they do not belong to the
same pattern; otherwise, compare the side lengths of the corresponding polygons to see if
the two patterns match or not. When comparing the side lengths of the polygons, the

reference point should be the vertex, which has the minimum angle.

For the polygon, all the angles of which are the same, a new reference will be used,
which is the side of the polygon with the minimum side length.

As we know that the resolution of an image is limited, therefore, when an image is
rotated over a certain degree, the rotated image may not be exactly the same as the
original one. And the § function may change too. If the § value of a non-critical point,
which has the local maximum value, becomes a little bit greater than the specified
threshold after the image rotation, this point may become a critical point after the image

is rotated. While in some other cases, the & value of a critical point may become a little

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 46

University of Windsor

bit less than the threshold and can not be treated as a critical point anymore after the
image is rotated. Surely, it will generate different shape numbers after image rotation and
result in pattern recognition failure. In order to make the algorithm more robust, the
following scheme is figured out to solve the problem.

A region is defined for the § function, whose maximum and minimum & values are
120% and 80% of the original threshold respectively. If the & value of a critical point
falls into this region, this point may be treated as either a critical point or not. For
example, there are two such kind of critical points as shown in Example 4 in Chapter
4.10.4, they are treated as special critical points. For these two special critical points, both
critical points can be kept, or one critical point is removed, or the other is removed, or
both are removed. Therefore, there are 4 different shape numbers for the same input
image. As long as one of the shape numbers is the same as that of the template and the
side lengths are also approximately the same, they belong to the same pattemn. By adding

this new procedure, the method becomes more accurate and robust to cover more cases.

If the input image and the template belong to the same pattern, then complete the

following steps to calculate the deviations or the rotation angle.

4.7 Deviation Calculation

Since a polygon can be used to approximate the contour of a certain shape, the average of
critical point coordinates can also be used to represent the position of the contour. The
deviation along X direction will be the difference between the averages of the coordinates
of the critical points of the input image and the template along X-direction. And a similar
formula can be used for the calculation of the deviation along Y direction.

Deviation-X=Average of Critical Point Coordinates along X-direction (input image)
- Average of Critical Point Coordinates along X-direction (Template) (4.5)
Deviation-Y=Average of Critical Point Coordinates along Y-direction (input image)

- Average of Critical Point Coordinates along Y-direction (Template) (4.6)

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 47

University of Windsor

4.8 Rotation Angle Calculation

horizontal axis

Figure 4.8 Rotation Angle Calculation

The vectors are defined clockwise as the connections of every two neighboring critical
points. The angles between the vectors and the horizontal axis can be found. The angle
will range from 0° to 360°. By calculating the differences between every 2 corresponding
angles of the input image and the template, and taking the average of them, the rotation

angle can be obtained. When calculating the rotation angle, the reference point is the
same as that in Chapter 4.6.

4.9 Algorithm Design Based on The Directional Flow-Change
Method

8 steps are conducted to implement the algorithm, the flow chart of which is shown in

Figure 4.9. In this Figure, ‘Flagl’ is used to indicate if the deviation calculation or the
rotation angle calculation is needed.

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 48

University of Windsor

image Binarization —> Chapter 4.2
Edge Detection of The
Binary Image ——& Chapter 4.3
Noise Reduction of The
Edged Image ——» Chapter 4.4
Directional Flow-Change Chapter 2.4
Calculation Chapter 4.5
4 ; : Chapter 2.3.3
Critical Point Detection Chapter 2.4
Calculation of Shape Chapter 2.3.4
Numbers and Side Lengthsi ' Chapter 4.6

Patterns Do Not
Match

Deviation

Calculaton | Chapter4.7

Pattems Match or Not?

Chapter 4.6

Rotation Angle
Calculation

Figure 4.9 Flow Chart of The Algorithm Based on
The Directional Flow-Change Method

— Chapter 4.8

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method

49

University of Windsor

Step 1: Get the binary image of the input image.

Step 2: Get the edge of the binary image.

Step 3: Reduce the noise of the edged image.

Step 4: Calculate the directional flow-changes of the all pixels on the contour.
Step 5: Detect the critical points of the closed contour.

Step 6: Calculate the angles of the polygon formed by connecting every two neighboring

critical points. Convert the sequence of angles into a sequence of angle codes, and then

the shape numbers can be found.

Step 7: Compare the shape numbers and the side lengths of the polygons to see if the two

patterns do match or not. If yes, go to step 8; otherwise, terminate the algorithm.

Step 8: Calculate the position deviations of the input image along X and Y directions

compared with the template or calculate the rotation angle of the input image compared
with the template.

4.10 Examples

In order to test and illustrate the performance of the algorithm, some examples are given.

4.10.1 Example 1
Typical figures are presented as well as the corresponding steps.
Step 1: Get the binary image of the input image

Figure 4.10 is the input image with low contrast.

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 50

University of Windsor

Figure 4.10 Input Image

Figure 4.11 is the histogram H(z) of the input image.

Figure 4.11 Histogram of The Input Image

In order to convert a gray level image into a binary image, the threshold value needs to be
found first. A simple method is presented as follows for this purpose.

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 51

University of Windsor

The two points with the local maximum values, should be found first. Then the midpoint

of the two points can be obtained easily. The corresponding gray level of the midpoint
will be treated as the threshold value, which is 96 in this example.

By applying the threshold value 96, a binary image can be obtained as shown in Figure
4.12.

Figure 4.12 Binary Image

In order to test the noise reduction algorithm, a binary image with noise (Figure 4.13) is
generated by adding some noise in the previous binary image (Figure 4.12).

Figure 4.13 Binary Image with Some Noise

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 52

University of Windsor

Step 2: Get the edge of the binary image

The edged image of Figure 4.13 is shown in Figure 4.14.

Figure 4.14 The Edged Image

Step 3: Reduce the noise of the edged image

By applying the noise reduction algorithm, Figure 4.15 can be obtained.

Figure 4.15 The Image after Noise Reduction

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method

s3

University of Windsor

It can be seen that all the noise presented in the edged image is removed.

Step 4: Calculate the directional folw-changes
The following parameters are chosen first:
y =03, 6 =09, (=038.

The threshold value for detecting the critical points can be obtained, which is 8 in this

example. The & Function of the closed contour is shown in Figure 4.16.

Figure 4.16 5 Function of The Closed Contour

When the § function is processed through a low pass filter, a smoother § function is
obtained as shown in Figure 4.17.

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 54

University of Windsor

Figure 4.17 The 6 Function after A Filter

Step 5: Detect the critical Points
The critical points found by the algorithm are:
24,77, 114, 143, 168, 216, 319,

which are marked by ‘A’ in Figure 4.18.

Step 6: Find the Angle String and the Shape Number

A polygon is formed by connecting every two neighboring critical points (Figure 4.18).
Starting with angle a1, a sequence of the angles of the polygon are obtained as:

124.8192 229.0075 51.1961 192.9099 120.8732 95.7709 85.5145.
The related angle string is:
5 A 2 8 5 4 3.
And the Shape Number is 285435A.

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 55

University of Windsor

Figure 4.18 Critical Points Found by The Algorithm

Step 7: Pattern Recognition

The shape number of the input image needs to be compared with that of the template
first. If they are equal, then compare the side lengths of the polygons to see if the two
patterns do match or not. Starting with the side al clockwise, the side lengths of the

polygon are:
59.6406 37.2156 35.3553 28.3019 48.0104 101.3163 25.0000.

There is a parameter ‘Times’ used to indicate which vertex has the minimum angle. For
example, when Times=3, it means that the 3™ angle a3 is the minimum angle, which will

be the reference point for side length comparison and rotation angle calculation.

If the corresponding side lengths are also approximately the same, beside the same shape
number, the input image and the template belong to the same pattern.

Step 8: Deviation Calculation or Rotation Angle Calculation

1. Deviation Calculation

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 56

University of Windsor

The averages of critical point coordinates along both X-direction and Y-direction can be
found, which are 68 (pixels) and 66.7143 (pixels) respectively. If there is a template, it is
very easy to find the deviations.

2. Rotation Angle Calculation

Figure 4.19 Rotation Angle Calculation

Starting with angle A1, which is the angle between the vector b1 and the horizontal axis,

the angles found clockwise between the vectors and the horizontal axis are:
225.0003 237.9949 178.8061 94.5286 0 304.7560 353.8298.

If there is a template, it is very easy to find the rotation angle.

4.10.2 Example 2

Figure 4.20 shows another example image, which has a different shape. The critical
points are marked by “ A’ on this figure.

Algorithm Design for Smart Vision Sensors Based on The Directional Fiow-Change Method 57

University of Windsor

Figure 4.20 Template Image

Figure 421 is an input image with deviation. Figure 4.22 is an image with
counterclockwise rotation and Figure 4.23 with clockwise rotation.

Figure 4.21 Input Image with Deviation

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 58

University of Windsor

Figure 4.23 Input Image with Clockwise Rotation

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method

59

University of Windsor

Table 4.2 shows the result by listing the angle strings, shape numbers, numbers of critical
points, and so on. The deviations and rotation angle found by the algorithm are also listed

in this table.
Table 4.2 Resuit of Example 2
Input Image with | Input Image with | Input Image
Template Deviations Counterclockwise | with Clockwise
Rotation Rotation

Angle String SC35D444A | SC35D444A | 5D444A2B3 | SC35D444A
2B3 2B3 5C3 2B3

Shape Number 2B35C35D444A 2B35C35D444A 2B35C35D444A 2B35C35D4d4A

Number of Critical Points 12 12 12 12

Side Lengths 353630352742 | 352742303031 | 322931983533 | 282841343031
303031983733 | 983733353630 | 373336272741 | 993533363734

*Angles 21 104 3308 53 21 104 3 308 53 57136 24 331 83 080334278 27
302 238 358 271 302 238 358 271 335270 28 302 284 217 336 249
18193 153 18193 153 210122183 158 68 132

*Times 10 10 7 10

Average-X (pixels) 75.8333 86.8333

Average-Y (pixels) 70.4167 91.4167

Deviation-X (pixels) 11

Deviation-Y (pixels) 21

Real Deviation-X (pixefs) 11

Real Deviation-Y (pixels) 21

Rotation Angle () 29.6734 -23.5627

Real Rotation Angle (°) 30 -22

*Angles: Indicate the angles between the vectors and the horizontal axis.
*Times: Indicates which vertex has the minimum angle.

From Table 4.2, it can be seen that all the shape numbers are the same and the

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 60

University of Windsor

corresponding side lengths are also approximately the same. Hence all of the 4 shapes
belong to the same pattern.

4.10.3 Example 3 (Special Case 1)

Figure 4.24 and Figure 4.25 have a different story. All of the angles of the two polygons

are the same.

Figure 4.24 A Special Shape (Template)

All the angles of the both polygons are 120°. The corresponding angle string is:
555555.

Therefore the shape number is 555555.

A different reference has to be used for side length comparison and rotation angle
calculation. The side of the polygon, which has the minimum length, is treated as the

reference side. This is a different case compared with example 1 and 2.

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 61

University of Windsor

Figure 4.25 A Special Shape (Input Image)

4.10.4 Example 4 (Special Case 2)

According to Chapter 4.6, some special critical points may fall into the defined region.
An example regarding this problem is given as follows.

Figure 4.26 is a template image and Figure 4.27 is its & function.

Figure 4.26 A Template

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 62

University of Windsor

Figure 4.27 6 Function of The Template

Figure 4.28 is the rotated image and Figure 4.29 is its & function.

Figure 4.28 Input Image with Rotation

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method

63

University of Windsor

Figure 4.29 5 Function of The Rotated Image

Putting the 2 & functions together as shown in Figure 4.30, some difference between
them can be observed. No special Critical point falls into the specified region for the
template. But in the rotated image, two special critical points fall into the defined region.
In such case, the both critical points can be kept (case 1 as shown in Figure 4.31), or the
first one is removed (case 2 as shown in Figure 4.32), or the second one is removed (case
3 as shown in Figure 4.33), or the both are removed (case 4 as shown in Figure 4.34). So
4 different shape numbers will be generated. But only in case 3, the shape number is the
same with that of the template, and the corresponding side lengths of the polygon are also
approximately the same with those of the template. Therefore, the input image and the

template belong to the same pattern. Table 4.3 lists the result.

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 64

University of Windsor

18F

164 ‘

14}

-

<4—

v
o] Phoy |
9 | =
sF 1 1 Y\ {20%
WY
p.1) ¢v
T *
14} v
2ty |
o SR \ .
o[A o
. ijv”h o
% 2 0 & 20 20 30

Figure 4.30 5 Functions of The Unrotated Image (Top)

and The Rotated Image (Bottom)

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 65

University of Windsor

Table 4.3 Result of Example 4

Template Input Image (Rotated Image)

Case 1l Case 2 Case 3 Case 4
*Flag 0000000 00100100
Number of Critical 7 8 7 7 6
Points
Shape Number 285435A 2855645A 255645A 285435A 25435A
Critical Points 2577114142 5192121145 5192145201 | 5192121145 | 5192 145

168 216 319 20124029312 | 240293 12 201 293 12 201 293 12

Rotation Angle (°) 13.5690
Real Rotation Angle (%) 14

*Flag: Each bit in the Flag indicates if the corresponding critical point falls into the specified region or not (I means
‘yes’ and 0 means ‘no’.

Figure 4.31, 4.32, 4.33 and 4.34 are the corresponding diagrams for the 4 cases.

Figure 4.31 Rotated Image with The Both Special Critical Points

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 66

University of Windsor

Figure 4.33 Rotated Image with The 1* Special Critical Point

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method

67

University of Windsor

Figure 4.34 Rotated Image with The Both Special Critical Points Removed

Algorithm Design for Smart Vision Sensors Based on The Directional Flow-Change Method 68

University of Windsor

Chapter 5

Conclusions and Future Work

5.1 Conclusions

The research work in this thesis is aimed at developing the algorithms, which can be used
to find the pattern of the shape of a target, as well as the position deviation and the
rotation angle of the target in the input image compared with the reference position of the
template. The ultimate goal of this research is to develop smart vision sensors for the
existing problems in manufacturing industry, such as the problem existing in the

assembly line for automobile door handle escutcheons.
The main contributions of this thesis are summarized as follows:

1. The algorithm based on the correlation analysis method is developed and has been
applied to the design of a smart vision sensor for finding the 2-D deviation of the target in
the input image.

2. The algorithm based on the Directional Flow-Change Method is developed and is
being applied to the design of a smart vision sensor for identifying the pattern of the

shape of a target, as well as the position deviation and the rotation angle.

3. The Directional Flow-Change method is modified with two revised definitions and 3
supplemental procedures, which make the algorithm for pattern recognition more

complete and more accurate.

The pros and cons of these two algorithms are summarized as follows:

1. The Algorithm Based on The Correlation Method — Method 1

It is an efficient and easy method to apply with high noise rejection and reliability. The

Conclusions and Future Work 69

University of Windsor

notable drawback is that it takes much computing time to obtain the results because of
large amount of correlation calculation involved. Besides, it is also not powerful enough

to identify the pattern of a planar shape and to calculate the rotation angle between the
input image and the template using this method.

2. The Algorithm Based on The Directional Flow-Change Method — Method 2

The algorithm based on the directional flow-change method has good performance in
efficiency, accuracy and effectiveness. Not only can it identify the pattern of a target

quickly, but also it can calculate the position deviation and the rotation angle accurately.

But this algorithm is much more complex than Method 1 and it carries lower noise

rejection. The input image has to be processed to generate an ideal one with greatly

reduced noise.

5.2 Comments on Potential Applications

Method 1 is better than Method 2 for single-pattern applications, because the pattern
recognition is unnecessary. Besides, Method 1 is also simpler to implement. Some
optimal computing methods can be conducted to reduce the computing time required to
run the program. For example, the FFT algorithm together with the correlation theorem
can be used to optimize the computing process. Another way is to change the gray level
image to binary image before the correlation operation is performed. Because the data in
a binary image is either O or 1, the correlation result will be the summation of 1’s based
on the basic and timesaving operations: 0x1=0, 1x1=1. Therefore, the computing

time required can be reduced.
Method 2 is much better for multi-pattern applications.

A smart vision sensor can be designed based on either Method 1 or Method 2 depending
on the individual engineering problem. Because it is the software solution that is mainly
adopted for the design, it is very flexible to update the sensor functions and to augment
the sensor into a closed-loop system design in practice.

Conclusions and Future Work 70

University of Windsor

5.3 Recommendations for Future Work

Further studies and work are recommended as follows:

1. Caiculate The Deviation and The Rotation Angle Simultaneously

In this thesis, the algorithm based on the directional flow-change method is able to
calculate both the deviation and the rotation angle, but not at the same time. The next step
will be calculating them simultaneously.

2. Robust Algorithm Development

For future projects and research, the coding scheme described in Chapter 2.3 is

recommended, which will be more robust and adaptable.

3. Processing of Color Images

In this thesis, all the research work targets on identifying the pattern and the position of a
planar shape, which is usually captured in a binary or a gray level image. It is
recommended that the research on pattern recognition and position measurement for

color images be continued as well.

Conclusions and Future Work 71

University of Windsor

REFERENCES

[1] G. Appenzeller, P. Weckesser, R. Dillmann, “Active Parameter Control for the Low
Level Vision System of A Mobile Robot”, Proc. IROS, pp. 1256-1263, 1996.

[2] Carlo Arcelli, Giuliana. Ramella, “Finding Contour-Based Abstractions of Planar
Patterns”, Pattern Recognition, Vol. 26, No. 10, pp1563-1577, 1993.

[3] J. Austin, A. Tumer, M. Tumer, K. Lees, “Chemical Structure Matching Using
Correlation Matrix Memories”, IEE Conference Publication, Vol. 2, No. 470, pp. 619-
624, Sep. 7-Sep. 10, 1999.

[4] Antonio Bandera, Cristina Urdiales, Fabian Arrebola, Francisco Sandoval, “On-Line
Unsupervised Planar Shape Recognition Based on Curvature Functions”, [ECON
Proceedings (Industrial Electronics Conference), Vol. 3, [EEE Comput. Soc. pp. 1268-
1272, Aug. 31-Sep. 4, 1998.

[5] Orit Baruch, Murray H. Loew, “Segmentation of Two-Dimensional Boundaries Using
Chain-code”, Pattern Recognition, Vol. 21, No. 6, pp. 581-589, 1988.

[6] Rikard Berthilsson, Anders Heyden, “Recognition of Planar Objects Using the
Density of Affine Shape”, Computer Vision and Image Understanding, Vol. 76, No. 2,
Acad. Press Inc., pp. 135-145, 1999.

[7] Jennifer Blais, Verlyn Fischer, Moalem Yoel, Matthew Saunders, “Correlation of
Digital Image Metrics to Production ADC Matching Performance”, IEEE/SEMI

Advanced Semiconductor Manufacturing Conference and Workshop, pp. 86-92, Sep. 23-
25, 1998.

[8] Giorgio Bonmassar, Eric L. Schwartz, “Improved cross-correlation for template

matching on the Laplacian pyramid”, Pattern Recognition Letters, Vol. 19, No. 8,
Elsevier Science B. V., pp. 765-770, Jun. 1998.

References

|

University of Windsor

[9] Sing-Tze Bow, “Pattern Recognition and Image Preprocessing”, New York, M.
Dekker, c1992.

[10] Gail A. Carpenter, Stephen Grossberg, “Pattern Recognition by Self-Organizing
Neural Networks”, Cambridge, Mass., MIT Press, c1991.

[11] Larry S. Davis, “Understanding Shape: Angles and Sides”, IEEE Trans. Comput.,
Vol. 26, No. 3, pp. 236-242, 1977.

(12] Wai-Chi Fang, “A System-On-A-Chip Design of A Low-Power Smart Vision
System”, Proc. 1998 IEEE Workshop on Signal Processing Systems: Design and
Implementation, pp. 63-72, 1998.

[13] Martin A. Fischler, Robert C. Bolles, ‘“Perceptual Organization and Curve
Partitioning”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8,
No. 1, pp. 100-105, 1986.

[14] H. Freeman, “Computer Processing of Line Drawing Images”, Computing Surveys,
Vol. 6, No. 1, pp. 57-98, 1974.

[15] Herbert Freeman, Larry S. Davis, “A Corner-Finding Algorithm for Chain-Coded
Curves”, IEEE Transactions on Computers, C-26: pp. 297-303, Mar. 1977.

[16] Alan M. N. Fu, Hong Yan, “Effective Classification of Planar Shapes Based on
Curve Segment Properties”, Pattern Recognition Letters, Vol. 18, pp. 55-61, 1997.

(17] Alan M. N. Fu, Hong Yan, Kai Huang, “A Curve Bend Function Based Method to

Characterize Contour Shapes”, Pattern Recognition, Vol. 30, No. 10, pp. 1661-1671,
1997.

[18] Hongmei Gao, Xiang Chen, “Theoretic Design of A Smart Vision Sensor”, 2001

[EEE Canadian Conference on Electrical and Computer Engineering, Toronto, May 13-
16, 2001.

[19] Hongmei Gao, Xiang Chen, “Application of Directional Flow-Change Method to
Design of A Smart Vision Sensor”, was accepted to present in the IASTED Intemational
Conference on Robotics and Applications (RA2001), Tampa, USA, Nov. 19-22, 2001.

[20] M. Gokstorp, “Smart Vision System for Applied Image Processing”, SPIE, Vol.

References 7

University of Windsor

3101, pp. 276-282, 1997.

[21] R. C. Gonzalez, R. E. Woods, ‘“Digital Image Processing”, Addison-Wesley,
Reading, MA, 1992.

[22] P. W. Huang, S. K. Dai, P. L. Lin, “Planar Shape Recognition by Directional Flow-
Change Method”, Pattern Recognition Letters, Vol. 20, No. 2, pp. 163-170, 1999.

[23] G. K. Knopf, S. Zhu, “Qualitative Detection of Object Movement by Mobile Camera
Systems”, Proc. ISIAC Second International Symposium on Intelligent Automation and
Control, pp. 108.1-108.6, 1998.

[24] C. Koch, “Implementing Early Vision Algorithms in Analog Hardware-An
Overview”, SPIE, Vol. 1473, pp. 2-16, 1991.

[25] K. W. Kwok, K. C. Lo, “Recognition of Curved Shapes Using Geometric
Invariants”, International Conference on Signal Processing Proceedings, ICSP Vol. 2, pp.
1096-1099, Oct. 12-Oct. 16, 1998.

[26] Farzin Mokhtarian, Alan K. Mackworth, “A Theory of Multiscale, Curvature-Based
Shape Representation for Planar Curves”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 14, No. 8, pp. 789-805, 1992.

[27] Mikhail Mozerov, Vitaly Kober, Tae S. Choi, “Color Motion Stereo Based on
Adaptive Correlation Matching”, Proceedings of SPIE - The International Society for
Optical Engineering 3808, pp. 693-701, Jul. 20-Jul. 23, 1999.

{28] Hideo Ogawa, “Comer Detection on Digital Curves Based on Local Symmetry of
the Shape”, Pattern Recognition, Vol. 22, No. 4, pp. 351-357, 1989.

[29] Dietrich W. R. Paulus, Joachim Homegger, “Applied Pattern Recognition: A
Practical Introduction to Image and Speech Processing in C++”, Wiesbaden, Verlag
Vieweg, 1998.

[30] H. Penz, L. Bajla, K. Mayer, W. Krattenthaler, “High-Speed Template Matching with
Point Correlation in Image”, Proceedings of SPIE - The International Society for Optical
Engineering 3827, pp. 85-94, Jun. 14-Jun. 15, 1999.

[31] Anothai Rattarangsi, Roland T. Chin, “Scale-Based Detection of Comers of Planar

References 74

University of Windsor

Curves”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No.
4, pp. 430-449, 1992.

[32] Azriel Rosenfeld, Emily Johnston, “Angle Detection on Digital Curves”, [EEE
Trans. Comput., C-22, No. 9, pp. 875-878, 1973.

[33] Azriel Rosenfeld, Joan S. Weszka, “An Improved Method of Angle Detection on
Digital Curves”, IEEE Trans. Comput., C-24, No. 9, pp. 940-941, 1975.

[34] Francisco J. Sanchez-Marin, “Automatic Recognition of Biological Shapes with and
without Representations of Shape”, Artificial Intelligence in Medicine, Vol. 18, Elsevier
Science B. V., pp. 173-186, 2000.

[35] Robert A. Schowengerdt, “Remote Sensing-Models and Methods for Image

Processing” (Second Edition), Academic Press, 1997.

[36] M. M. Selim, “Recognition of 2-D Shapes Using Complex Neural Networks: A

Novel Approach”, Journal of Engineering and Applied Science, Vol. 45, No. 5, pp. 811-
821, Oct. 1998.

[37] Z. Shao, J. Kittler, “Shape Representation and Recognition Based on Invariant

Unary and Binary Relations”, Image and Vision Computing, Vol. 17, No. 5, Elsevier
Science Ltd., pp. 429-444, 1999.

{38] Tzung-Sz Shen, Jianbing Huang, Chia-Hsiang Menq, “Multiple-Sensor Integration
for Rapid and High-Precision Coordinate Metrology”, Proc. the 1999 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, pp. 908-915, 1999.

[39] Oliver Sidla, Emst Wilding, “Efficient Shape Recognition for the Detection of
Reusable Material in A Waste Processing Plant”, Proceedings of SPIE - The International
Society for Optical Engineering 3827, pp. 52-58, Jun. 14-Jun. 15, 1999.

[40] Cho-huak Teh, Roland T. Chin, “On the Detection of Dominant Points on Digital

Curves”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No.
8, pp. 859-872, 1989.

[41] Naonori Ueda, Satoshi Suzuki, “Learning Visual Models From Shape Contours
Using Multiscale Convex/Concave Structure Matching”, IEEE Transactions on Pattern

References 75

University of Windsor

Analysis and Machine Intelligence, Vol. 15, No. 4, pp. 337-352, 1993.

f42] C. C. Yang, M. M. Marefat, R. L. Kashyap, “Active Visual Inspection Based on
CAD Models”, Proc. [EEE, pp. 1120-1125, 1994.

[43] Tzay Y. Young, King-Sun Fu, “Handbook of Pattern Recognition and Image

Processing”, Orlando, Academic Press, c1986.

[44] P. Zhu, P. M. Chirlian, “On Critical Point Detection of Digital Shapes”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 8, pp.737-748,
1995.

[45] “Image Pattern Recognition: Algorithm Implementations, Techniques, and
Technology”, 1987, Los Angeles, California, Computer Society of the IEEE, Pattern
Recognition Society, January 12-13.

[46] “Pattern Recognition and Image Processing in Physics: Proceedings of the Thirty-

Seventh Scottish Universities' Summer School in Physics”, Dundee, July 29-August 18,
1990.

References 76

University of Windsor

Appendix A

Correlation Theorem

If the Fourier transform of f{i,/] is Flu,v] and that of g{i,j] is G{«,v), the Fourier transform
of the correlation of two functions f[ij] and g{ij] is the product of their Fourier
transforms with one of them complex conjugated. Thus,

ST, 1o gli, j1& Flu,v]1x G [u,v),
which indicates that the inverse transform of the right hand side gives the correlation of

the two functions in the [i /] domain. An analogous result is formally stated as:

Sli, 1% g°li, j1& Flu,v]e G [u,v].

These two results together constitute the correlation theorem.

Appendices

3

University of Windsor

Appendix B

Matlab Code for
Algorithm Based on The Correlation Method

% Lo a2 8 a8 b2 s 08 g8 ad ot st esdaeqgdasgsasd SAA L a2 04 0042022220222 402 204, 4

%File Name: MatCorrelation.m
%This program is used to find the 2-D position deviation of the input image compared
%with the template image along both X and Y directions.

% AR RE RN TSRS

2 222444 24

A48 44422224023

%Close all figures and clear all variables
close all;

clear all;

cd d:\matlabS3\ghm1;

zoom on;

%Initialize some variables
Thresh=0.2;
TestNumber1=4;
TestNumber2=3;
coe1=0.2;

coe2=0.8;

%Read the template image data from a file and store them in array inData(]
%M: The number of total rows of the template image

%N: The number of total columns of the template image
[Temp,map}=imread('model1’,'bmp’);

InData=double(Temp);

[M,N]=size(inData);

%Get the edge of the template image
inDataEdge=double(edge(inData));

%Read the input image data from a file and store them in array inData1[}
%M1: The number of total rows of the input image

%N1: The number of total columns of the input image
InData1=double(imread('figure92','’bmp"));

{M1 N1]=size(InData1);

%
%Step1: Enhance the contrast of the input image
%
%lInitialize the counters

Appendices 78

University of Windsor

for i=1:1:256
Counter(i)=0;
end

%Get the Histogram of the input image
fori=1:1:M1
for j=1:1:N1
k=InData1(i,j);
Counter(k+1)=Counter(k+1)+1;
end
end

figure

stem(Counter,’k’)
xiabel('Gray Level 2');
ylabel(H(2)'):
title('Histogram Operation');

%Get the Cumulative Probability Density Function of the input image
¢(1)=Counter(1);
for i=2:1:256
c{i)=c(i-1)+Counter(i);
end

figure

plot(c/(M1°N1),’k")

xiabel('Gray Level’);

ylabel('Fraction of Total Pixels');
title("Cumulative Probability Density Function');

%Find the corresponding gray-level value where the Cumulative Probability Density is approximately equal
%to coe1(20%)
for i=1:1:256

if (c(i)/(M1°N1))>=coel

break;

end
end
first=i-1;

%Find the corresponding gray-level value where the Cumulative Probability Density is approximately equal
%to coe2(80%)

fori=1:1:256
if (c(i)/(M1°N1))>=coe2
break;
end
end
last=i-1;

%Process the image

%Set the intensity of the pixels with gray-level lower than first’ to 0
%Set the intensity of the pixels with gray-level higher than ‘last’ to 255
%Do linear stretching for the remaining pixels

ratio=255.0/(last-first);

fori=1:1:M1

Appendices 79

University of Windsor

for j=1:1:N1
if InData1(ij)<=first
Contrastimage(i,j)=0:
eise if InData1(i j)>=last
Contrastimage(i.j)=255;
else Contrastimage(i.j)=round((InData1(i.j)-first)*ratio);
end
end
end
end

%Check the processing result
%Get the histogram and the Cumulative Probability Density Function of the processed image
fori=1:1:256
d(i)=0;
end

for i=1:1:M1
for j=1:1:N1
k=Contrastimage(i.j);
d(k+1)=d(k+1)+1;
end
end
figure
stem(d.'k")
xiabel('Gray Level 2');
ylabel(H(2)):
title('Histogram Operation’);

e(1)=d(1);
for i=2:1:256
e(i)=e(-1)+d(i);
end
figure
plot(e.'’k")
xiabel(Gray Level');
ylabei('Fraction of Total Pixels');
title(Cumulative Probability Density Function');

%Calculate the summation of the intensity values of each row and store it in array OutMax{]
Count=1;
Sum=0;
fori=1:1:M1
for j=1:1:N1
Sum=Sum-+Contrastimage(i.j);

end

OutMax(i)=Sum;

Sum=0;

Count=Count+1;
end
MAX=max(OutMax);
%
%Step2: Find the approximate position of the complete foam barrier in the input image
%

Appendices 80

University of Windsor

%}2.1] Find the first ‘Black Band’, which consists of at least ‘TestNumber2+1' ‘Black Lines’ out of
% TestNumber1+1' consecutive lines

Flag=0;
LineNumber=1;
while(LineNumber<=M1)
if (OutMax(LineNumber)<=(Thresh*MAX))
BlackLine=0;
for i=1:1:TestNumber1
LineNumber=LineNumber+1;
if (LineNumber>=M1)
Flag=1:
break;
else
if (OutMax(LineNumber)<=(Thresh®MAX))
BlackLine=BlackLine+1;
end
end
end
if(Flag==1)
break;
else
if(BlackLine>=TestNumber2)
break;
else
LineNumber=LineNumber+1;
end
end
else
LineNumber=LineNumber+1;
end
end

%(2.2] Find the first ‘White Band’, which consists of at least ‘TestNumber2+1’ ‘White lines’ out of
% TestNumber1+1’ consecutive lines
Flag1=0;
while(LineNumber<=M1)
if (OutMax(LineNumber)>=(Thresh*MAX))
WhiteLine=0;
for i=1:1:TestNumber1
LineNumber=LineNumber+1;
if (LineNumber>=M1)
Flag1=1;
break;
else
if (OutMax(LineNumber)>=(Thresh*MAX))
Whitel ine=WhiteLine+1;
end
end
end
if(Flag1==1)
break;
eise
if(WhiteLine>=TestNumber2)
break;

University of Windsor

else
LineNumber=LineNumber+1;
end
end

else

LineNumber=LineNumber+1;

end

end
Band1=LineNumber;

%(2.3] Find the 2nd ‘Black Band’, which consists of at least TestNumber2+1' ‘Black Lines’ out of
% TestNumberi+1’ consecutive lines
Flag2=0;

while(LineNumber<=M1)

if (OutMax(LineNumber)<=(Thresh*MAX))

BlackLine=0;
fori=1:1:TestNumbert
LineNumber=LineNumber+1;
if (LineNumber>=M1)
Flag2=1;
break;
else
if (OutMax(LineNumber)<=(Thresh*MAX))
BlackLine=BlackLine+1;
end
end
end
if(Flag2==1)
break;
else
if(BlackLine>=TestNumber2)
break;
eise
LineNumber=LineNumber+1;
end
end

else

LineNumber=LineNumber+1;

end

end

Band2=LineNumber;

%{2.4] Find the approximate position of the ‘Central Line’ of the possible foam barrier

Central=round((Band1+Band2)/2);

%

%Step3:Crop the input image to the same size as that of the template image

%

if(Central<=M/2)
inData2=inData1(1:M,:);

else if((M1-Central)}<=M/2)
InData2=inData1((M1-M+1):M1,:);

else if(mod(M,2)==0)

InData2=InData1((Centrai-M/2):(Central+(M/2-1)),:);

Appendices

82

University of Windsor

else
InData2=InData1({Central-(M-1)/2):(Centrai+(M-1)2).:);
end
end
end

%Get the edge of the cropped image
InDataEdge2=double(edge(inData2));

%

%Stepd: Find the edges of the template image and the cropped image
% L 4
%Write the 2 edged images into 2 files
imwrite(uint8(round(InDataEdge*255)),map,' modeledge.bmp');
imwrite(uint8(round(iInDataEdge2°255)),map,'online.bmp’);

%

%Step5: Calculate the correlation between the edged template image data and cropped image data
%

OutDataEdge2 =xcorr2(InDataEdge2,InDataEdge);

fori=1:1:(2°M-1)
CoordinateX(i)=i-M;
CoordinateY(i)=i-M;
end
figure;
mesh(CoordinateX,CoordinateY,OutDataEdge2);

0/° s
%Step6:Calculate the deviations in both X-direction and Y-direction
%
Flag=0;
Smax=max(max(OutDataEdge2));
for i=1:1:(2°M-1)
for j=1:1:(2°N-1)
if OutDataEdge2(i,j)>=Smax
Position1=i;
Position2=j;
Flag=1;
break;
end
end
if (Flag==1)
break;
end
end

%Calculate the deviations in both x-direction and y-direction
if(Central<=M/2)
Position1=Position1-M;
else if((M1-Central)<=M/2)
Position1=Position1-M+(M1-M+1);
else if(mod(M,2)==0)
Position1=Paosition1-M+(Central-M/2);

Appendices 83

University of Windsor

else
Position1=Position1-M+(Central-(M-1)/2);
end
end
end
Position1=Pgsition1-(M1-M)/2;
Position2=Position2-N;
% END

Appendices

University of Windsor

Appendix C

Matlab Code for Algorithm
Based on The Directional Flow-Change Method

Appendix C.1: Image Binarization

gﬁ#**#t**ttttttt*t#*#ttttt*tt##t###*t‘#“t‘tt‘ttt#‘ttt‘tt***##*tt#‘t.##t
%PFile Name: Binarization.m

%This program is used to get the binary image of an input image.

96*#****‘tt*ttt‘*ttt*tt*t#t‘**‘tt**t***t***‘#tt‘***###***‘*#*t*#**tt‘#‘#

%Close all figures and clear all variables
close alt;

clear all;

cd d:\matiab53\ghm2;

zoom on;

%Read the input image data from a file and store them in armray InData1[]
%M1: The number of the total rows of the input image

%N1: The number of the total columns of the input image
(Temp,map]=imread('Example -2','bmp");

inData1=double(Temp);

(M1.N1]=size(InData1);

%lnitialize the counters

fori=1:1:256
Counter(i)=0;

end

%Get the Histogram of the input image
fori=1:1:M1
for j=1:1:N1
k=InData1(i,j);
Counter(k+1)=Counter(k+1)+1;
end
end

figure

stem(Counter, k')
xiabel('Gray Level Z');
ylabel(H(2));
tittle(Histogram Operation®);

University of Windsor

fori=1:1:32
LocalMax(i}=max(Counter(((i-1)*8+1):(i"8)));
end

%Find the fist point, which has the local maximum value
Temparary=LocalMax(1);
Counter3=0;
for i=2:1:32
if Temparary>LocalMax(i)
FirstMax=i-1;
break;
else
Temparary=LocalMax(i);
end
end

%Find the last point, which has the local maximum value
LastMax=0;
Temparary=LocalMax(32);
for j=31:-1:i
if Temparary>LocalMax(j)
LastMax=j+1;
break;
else
Temparary=LocalMax(j);
end
end

if LastMax==0
LastMax=32;
end

%Find the threshold value for converting gray level image to binary image
MiddleMax=(FirstMax+LastMax)"4;

%Process the image
%Set the intensity of the pixels with gray-level lower than 'MiddleMax’ to 0
%Set the intensity of the pixels with gray-level higher than ‘MiddleMax’ to 1
fori=1:1:M1
for j=1:1:N1
if InData1(i,j)<=MiddleMax
Contrastimage(i.j)=0;
else
Contrastimage(i,j)=1:
end
end
end

cd d:\matlab53\ghm2;
imwrite(uint8(round(Contrastimage*®255)),map, binary.bmp’);

Appendices

86

University of Windsor

Appendix C.2: Edge Detection and Noise Reduction

gﬁtttt*t#t#ttttttt**ttt*ttt##tt#ttttttttttt#ttttttt#**tt‘ttt*tttt#tttt##
%File Name: Edgeoflmage.m

%This program is used to detect the edge of a planar shape and remove the noise
%presented in the corresponding image of the shape.

96###“3tt#ttt‘#Ot"‘t"tt*tttt‘ttt##tt‘tt“t‘#tttt#ttt‘*#*ttt#‘#*t*‘t#‘

clear all;
close all;
cd d:\matlab53\ghm2

%
%Part1: Edge Detection Algorithm
% oeNeee
%Load data from an image file
[Temp,map]=imread(’binary’,'’bmp’);
InData=double(Temp);
[Rows,Coloums)=size(InData);

%Process the data using the threshold value ‘1’
for i=1:1:(Rows-1)
for j=1:1:(Coloums-1)
if InData(i,j)~=InData(i+1,j) | InData(i,j)~=IinData(i,j+1)
InputData3(i.j)=1;
else
InputData3(i,j)=0;
end
end
end

%Write the edged image data into a file
imwrite(uint8(round(InputData3°255)),map,' Newedge2.bmp");

% ----- -
%Part2: Noise Reduction Algorithm

%
BrightValue3=1;

%Create a pure black image
for i=1:1:Rows
for j=1:1:Coloums
InputData2(,j)=0;
end
end

Appendices 87

University of Windsor

%
%Step1: Randomly choose a point inside the contour as the starting point
%
PointX=round(Rows/2);
PointY=round(Coloums/2);
Flag=0;

%Check if the chosen point and its surrounding 8 pixels are white
% If yes, go to Step 2
% If no, continue to search the image until the required point is found
for i=PointX:2:Rows
for j=PointY:2:Coloums
if InData(i.j)’>=1 & InData(i,j-1)==1 & InData(j,j+1)==1
if InData(i-1,j)==1 & IinData(i-1,j-1)==1 & InData(i-1,j+1)==1
if inData(i+1,j)==1 & InData(i+1,j-1)==1 & InData(i+1,j+1)==1
SearchX(1,1)=i;
SearchY(1,1)=j;
Flag=1;
end
end
end
if Flag==1 break;
end
end
if Flag==1 break;
end
end

%lf the required point is not found, continue to search the image
if Flag==
for i=PointX:2:Rows
for j=PaintY:-2:1
if InData(i,j)==1 & InData(i,j-1)==1 & InData(j,j+1)==1
if InData(i-1,j)==1 & InData(i-1,j-1)==1 & InData(i-1,j+1)==1
if InData(i+1,j)==1 & InData(i+1,j-1)==1 & InData(i+1.,j+1)==1
SearchX(1,1)=i;
SearchY(1,1)=j;
Flag=1;
end
end
end
if Flag==1 break;
end
end
if Flag==1 break;
end
end
end

%lf the required point is not found, continue to search the image
if Flag==0
for i=PointX:-2:1
for j=PointY:-2:1
if InData(i.j)==1 & InData(i,j-1)==1 & InData(j+1)==1

Appendices 88

University of Windsor

if InData(-1,j)==1 & InData(-1,j-1)==1 & InData(i-1,j+1)==1

if InData(i+1,j)==1 & InData(i+1,j-1)==1 & InData(i+1 j+1)==1

SearchX(1,1)=i;
SearchY(1,1)=j;
Flag=1;
end
end
end
if Flag==1 break;
end
end
if Flag==1 break;
end
end
end

%]f the required point is not found, continue to search the image
if Flag==
for i=PointX:-2:1
for j=PointY:2:Coloums
if InData(i.j)==1 & InData(i,j-1)==1 & inData(j,j+1)==1
if InData(i-1,j)==1 & InData(i-1,j-1)==1 & InData(i-1,j+1)==1

if InData(i+1.,j)==1 & InData(i+1,j-1)==1 & InData(i+1,j+1)==

SearchX(1,1)=i;
SearchY(1,1)=j;
Flag=1;
end
end
end
if Flag==1 break;
end
end
if Flag==1 break;
end
end
end

% -

%Step 2: Process the adjacent 4 pixels of the starting point

%Step 3: Repeat the procedure until all the pixels inside the closed contour become ‘white’

%Step 4: Change the all pixels outside the contour to be ‘black’
% *e

CounterLine=1;
inputData2(SearchX(1,1),SearchY(1,1))=BrightValue3;
k=-1;
i=2;
while(k~=1)
i=1;
k=1;
while(j<=CounterLine)
if InputData3(SearchX(i-1,j),SearchY(i-1,j)+1)==0
InputData3(SearchX(i-1,j),SearchY(i-1,j}+1)=BrightValue3;
InputData2(SearchX(i-1,j).SearchY(i-1,j)+1)=BrightValue3;
SearchX(i,k)=SearchX(i-1,j);

Appendices

89

University of Windsor

SearchY(i,k)=SearchY(i-1,j)+1;
k=k+1;
else
InputData2(SearchX(i-1,j), SearchY(i-1,j)+1)=BrightValue3;
end
if InputData3(SearchX(i-1.,j)+1,SearchY(i-1,j))==0
InputData3(SearchX(i-1.j)+1,SearchY(i-1,j))=BrightValue3;
InputData2(SearchX(i-1.j)+1,SearchY(i-1,j))=BrightValue3;
SearchX(i,k)=SearchX(i-1,j)+1;
SearchY(i,k)=SearchY(i-1,j);
k=k+1;
else
InputData2(SearchX(i-1,j)+1,SearchY(i-1,j))=BrightValue3;
end
if InputData3(SearchX(i-1,j),SearchY(i-1,j)-1)==0
InputData3(SearchX(i-1,j), SearchY(i-1,j)-1)=BrightValue3;
InputData2(SearchX(i-1,j), SearchY(i-1 j}-1)=BrightValue3;
SearchX(i,k)=SearchX(i-1.j);
SearchY(i,k)=SearchY(i-1,j)-1;
k=k+1;
else
InputData2(SearchX(i-1,j),SearchY(i-1,j)-1)=BrightValue3;
end
if InputData3(SearchX(i-1,j}-1,SearchY(i-1,j))==
InputData3(SearchX(i-1,j)-1,SearchY(i-1,j))=BrightValue3;
InputData2(SearchX(i-1,j)-1,SearchY(i-1,j))=BrightVaiue3;
SearchX(i,k)=SearchX(i-1,j)-1;
SearchY(i.k)=Search¥(i-1,);
k=k+1;
else
InputData2(SearchX(i-1,j)-1,SearchY(i-1,j))=BrightVailue3;
end
=i
end
CounterLine=k-1;
i=i+1;
end

%Dispiay the image after noise reduction
colormap(map);
image(inputData2°255);

%Write the image data after noise reduction into a file
imwrite(uint8(round(InputData2°255)),map, try.bmp’);

Appendices 90

University of Windsor

Appendix C.3: Algorithm Based on The Directional
Flow-Change Method

96*#‘t*tt‘tt‘tt*ttt*‘#‘#ttttttttt*tt*#‘##ttt*tttttttttt‘**ttt.ttttt#t“t
%File Name: DirectionalFlowChangeFinal.m

%This program is used to identify the pattern of a target and find the deviations along
%both X and Y directions or the rotation angle of the input image of the target compared

%with the reference position of the template image.

963#**#*tt‘ttt“*#t‘*t*tttttt*ttttt‘t##t*#ttt#t#*#****#*tt##*t*#ttt#tttt

clear all;
close all;

%Load the template image data from a file
{InputData2,map]=imread('polygontwice+90.bmp');

%Load the input image data from a file
[InputData,map]=imread(try.bmp');
(Rows,Coloumsj]=size(InputData);

%lnitialize some variables

%Define the ‘Supported Rate’ ‘Gamma’
BrightValue=255;

Brightvalue1=255;

Flag=0;

Gamma=0.03;

coef1=0.8;

coef2=1.2;

ThresholdLength=0.25

op e
%Step1: Get the chain codes of the closed contour and store them in array d[]
% »
%(1.1] Choose the top-left pixel on the contour as the starting point and store its coordinates in
%(StartPoint1,StartPoint2)
fori=1:1:Rows
for j=1:1:Coloums
if InputData(i,j)==BrightValue
StartPoint1=i;
StartPoint2=j;
Flag=1;
break;
end
end
if Flag==1
break;

Appendices 91

University of Windsor

end
end

Count=1;
Deadioop=0;

%Find the chain code of the chosen point
% Just check it in 4 directions
if InputData(i,j+1)==BrightValue
d(Count)=2;
=it
TempRow(Count)=i;
TempCol(Count)=j;
else if InputData(i+1,j+1)==BrightValue
d(Count)=3;
i=i+1;
=irts
TempRow(Count)=i;
TempCol(Count)=j;
else if InputData(i+1,j)==BrightValue
d(Count)=4;
i=i+1;
TempRow(Count)=i;
TempCol(Count)=j;
else if InputData(i+1,j-1)==BrightValue
d(Count)=5;
i=i+1;
i=i-1;
TempRow(Count)=i;
TempCol(Count)=j;
end
end
end
end

%[1.2] Create an array Binary{8]

%Check the gray level of the pixel, which is in the direction 0 of a certain point

%lIf itis 1, set the value Binary(0) as 1
%lf it is 0, set the value Binary(0) as 0

%Follow the same procedure to check the gray levels of the pixels in the rest 7 directions, and set the

%corresponding values of Binary(1),Binary(2),......,Binary(7) either as 1 or 0

Count=Count+1;
while(Deadloop==0)
if InputData(i-1,j)==BrightValue
Binary(1)=1;
cc(1)=0;
TempRoww(1)=i-1;
TempColl(1)=j;
else
Binary(1)=0;
end
if InputData(i,j+1)==BrightVaiue
Binary(3)=1;
cc(3)=2;

Appendices

92

University of Windsor

TempRoww(3)=i;
TempColl(3)=j+1;

else
Binary(3)=0;

end

if InputData(i+1,j)==BrightValue
Binary(5)=1.
cc(5)=4;
TempRoww(S5)=i+1;
TempColl(5)=j;

else
Binary(5)=0;

end

if InputData(i,j-1)==BrightValue
Binary(7)=1;
cc(7)=6;
TempRoww(7)=i;
TempColl(7)=j-1;

else
Binary(7)=0;

end

if InputData(i-1,j+1)==BrightValue
Binary(2)=1;
cc(2)=1;

TempRoww(2)=i-1;

TempColl(2)=j+1;

else
Binary(2)=0;

end

if inputData(i+1,j+1)==BrightValue
Binary(4)=1;
cc(4)=3;
TempRoww(4)=i+1;
TempColl(4)=j+1;

else
Binary(4)=0;

end

if InputData(i+1,j-1)==BrightvValue
Binary(6)=1;
cc(6)=5;
TempRoww(6)=i+1;
TempColl(6)=j-1;

else
Binary(6)=0;

end

if InputData(i-1,j-1)==BrightValue
Binary(8)=1;
cc(8)=7;
TempRoww(8)=i-1;
TempColi(8)=j-1;

else
Binary(8)=0;

end

Appendices

93

University of Windsor

%[1.3]Generate the chain code from the array Binary{8]
%Extend the size of Binary{] from 8 to 16
Binary(9)=Binary(1);

Binary(10)=Binary(2);

Binary(11)=Binary(3);

Binary(12)=Binary(4);

Binary(13)=Binary(5);

Binary(14)=8inary(6);

Binary(15)=Binary(7);

Binary(16)=Binary(8);

%Look for the first ‘0’ in the array Binary{]
fori=1:1:16
if Binary(i)==0;
break;
end
end

%Look for the first *1’ in the array Binary{] and save its position in ‘Chain1Start’
for j=i:1:16
if Binary(j)==
break;
end
end
Chain1Start=j;

%Look for the second ‘0’ in the array Binary[] and save its previous position in ‘Chain1End’
fori=j:1:16
if Binary(i}==0;
break;
end
end
Chain1End=i-1;
if Chain1End>8
Chain1End=Chain1End-8;
end
if Chain1Start>8
Chain1Start=Chain1Start-8;
end

%Determine if ‘Chain1Start’ or ‘Chain1End’ is the next chain code
if abs(d(Count-1)-cc(Chain1Start))==4
d(Count)=cc(Chain1End);
TempRow(Count)=TempRoww(Chain1End);
TempCol{Count)=TempColi(Chain1End);
Else
d(Count)=cc{Chain1Start);
TempRow(Count)=TempRoww(Chain1Start);
TempCol(Count)=TempColl(Chain1Start);
end
i=TempRow(Count);
=TempCaol(Count);

University of Windsor

%[1.4] Repeat the procedure until the tracing process reaches the original starting point

%Check if the tracing process reaches the starting point
% If yes, terminate the finding algorithm
it i==StartPoint1 & j==StartPoint2
break;
end
Count=Count+1;
end

%'dCount’ is the total number of the pixels of the closed contour

dCount=Count;

%

%Step 2:Calculate the directional flow-change at each point on the contour with contour segment

%of length J’ on both sides of the point

%

%Define the ‘Supported Length’ *J’

J=floor(Gamma*dCount);

if abs(J-Gamma*dCount)>0.5
J=J+1;

end

%Extend the array d[] both at the beginning point and the ending point with ‘J’ elements
%Save the extended array in e[] and the size of it becomes ‘dCount+J*2’
fori=1:1:J
e(i}=d(dCount-J+i);
end
for i=(J+1):1:(J+dCount)
e(i)=d(i-J);
end
for i=(J+dCount+1):1:(dCount+2*J)
e(i)=d(i-J-dCount);
end

%lInitialize some variables related to directional flow-change calculation

for i=1:1:dCount
GOIn(i)=0;
G1in(i)=0;
G2in(i)=0:
G3In(i)=0;
G4ain(i)=0;
GSlIn(i)=0:
G6In(i)=0;
G7in(i)=0;
GOOut(i)=0:
G10ut(i)=0;
G20ut(i)=0;
G30ut(i)=0;
G40ut(i)=0;
G50ut(i)=0;
G60ut(i)=0;
G70ut(i)=0;

end

Appendices 95

University of Windsor

%[2.1]Calculate the input flows in all 8 directions at each point on the contour with contour
%segment of length 'J’ and store them in GOIn[]~G7in[]
for i=(J+1):1:(dCount+J)
forj=1:1:J
if e(i-)==0 GOIn(i-J)=GOIn(i-J)+1;
else if e(i-)==1 G1In(i-J)=G1in(i-J)+1;
else if e(i-)==2 G2In(i-J)=G2In(i-J)+1;
else if e(i-j)==3 G3In(i-J)=G3in(i-J)+1;
else if e(i-j)==4 G4In(i-J)=G4In(i-J)+1;
else if e(i-j)==5 G5in(i-J)=G5In(i-J)+1;
else if e(i-))==6 G6In(i~J)=G6In(i-J)+1;
else G7In(-J)=G7In(i-J)+1;
end
end
end
end
end
end
end
end
end

%{2.2]Calculate the output flows in all 8 directions at each point on the contour with contour
%segment with length 'J’ and store them in GOOut[]~G70ut]]
for i=(J+1):1:(dCount+J)
forj=1:1J
if e(i+j-1)==0 GOOut(i-J)=GOOut(i-J)}+1;
else if e(i+j-1)==1 G10ut(i-J)}=G10ut(i-J)+1;
else if e(i+j-1)==2 G20ut(i-J}=G20ut(i-J)+1;
else if e(i+j-1)==3 G30ut(i-J)=G30ut(i-J)+1;
else if e(i+j-1)==4 G40ut(i-J)=G40ut(i-J)+1;
else if e(i+j-1)==5 G50ut(i-J)=G50ut(i-J)+1;
else if e(i+j-1)==6 G60ut(i-J)=G60ut(i-J)+1;
else G70ut(i-J)=G70ut(i-J)+1;
end
end
end
end
end
end
end
end
end

%{2.3]Calculate the flow changes in ail 8 directions at each point on the contour with contour segment
%of length ‘J’ on both sides of a point and store them in GOChange{]~G7Change{]
for i=1:1:dCount

GOChange(i)=abs(G0Out(i)-G0In(i));

G1Change(i)=abs(G10ut(i-G1in(i));

G2Change(i)=abs(G20ut(i)-G2in(i));

G3Change(i)=abs(G30ut(i)-G3In(i));

G4Change(i)=abs(G40ut(i)-G4In(i));

G5Change(i)=abs(G50ut(i)-G5In(i));

G6Change(i)=abs(G60ut(i)-G6In(i));

University of Windsor

G7Change(i)=abs(G70ut(i}-G7In(j));
end

%[2.4]Calculate the directional flow change at each point on the contour with contour segment
%of length ‘J’ on both sides of a point and store it in Delta[|
for i=1:1:dCount

Delta(i)=abs(G0OChange(i}+G 1Change(i)+G2Change(i}+G3Change(i}+G4Change(i)+G5Change(i}+G6Chang
e(i}+G7Change(i));
end

%
%Step 3:Detect the critical points of the closed contour
%

Deltat1=Delta;

AccumbDeita1=0;

for i=1:1:dCount
AccumbDeltat=AccumDeita1+Delta1(i);

end

%Define three variables ‘t', ‘L’ and ‘theta’
t=0.8;
ThresholdT=t"J;
L=floor(0.8°J);
if abs(L-0.7*J)>=0.5
L=L+1;
end
figure(4)
plot(Delta1,'k")
Theta=0.9;

%Extend the array Deita[] both at the beginning point and the ending point with ‘L’ elements and store the
%new data in the array Delta1[]
%The length of the array Delta1[] becomes ‘dCount+L*2’
w=ceil(L/2);
fori=1:1w
Delta1(t)=Delta(dCount-w+i);
end
for i=(w+1):1:(w+dCount)
Delta1(i)=Delta(i-w);
end
for i=(w+dCount+1):1:(dCount+2*w)
Deilta1(i)=Defta(i-w-dCount);
end
for i=(w+1):1:(dCount+w)
accum=0;
for j=-floor((w-1)2):1:ceil((w-1)/2)
accum=accum+Deita1(i+j);
end
Delta(i-w)=accum/w;
end
Delta2=Delta;
figure(2)

University of Windsor

plot(Deita,’k")

%Detect the critical points of the contour (see chapter 2.3.3 for details)
CriticalNumber=0;
FlagCount=0;
for i=1:1:dCount

if Delta2(i)>=ThresholdT"coef1

break;

end

end

for j=(i+1):1:dCount
if Delta2(j)>Delta2(j)
i=j;
else
if Delta2(j)<=Theta*Delta2(i)
break;
end
end
end
Mini=j;
HighCount=0;
Minimum=Delta2(j);
for k=j:1:(dCount-1)
if Delta2(k+1)>Delta2(k)
HighCount=HighCount+1;
else
Minimum=Delta2(k+1);
Mini=k+1;
end
if HighCount>ceil(L/2)
break;
end
end
pp=Mini;

d=Mini;

for m=(dCount+1):1:(dCount+Mini)
Deita2(m)=Deita(m-dCount);
end

while(d<(dCount+pp))
for i=(d+1):1:(dCount+pp)
if Delta2(i}>=ThresholdT*coef1
break;
end
end

for j=(i+1):1:(dCount+pp)
if Deita2(j)>Delta2(i)
i=j;
else
if Delta2(j)<=Theta*Delta2(j)

Appendices 98

University of Windsor

break;
end
end
end

Mini=j;
HighCount=0;
Minimum=Delta2(j);
for k=j:1:(dCount+pp-1)
if Deita2(k+1)>Delta2(k)
HighCount=HighCount+1;
else
Minimum=Delta2(k+1);
Mini=k+1;
end
if HighCount>ceil(L/2)
break;
end
end

dd=Mini;
for m=d:1:dd
if Delta2(m)==Delta2(i)
break;
end
end
avei=m;
for m=dd:-1:d
if Delta2({m)==Delta2(i)
break;
end
end
ave2=m;
ave=round((ave1+ave2)2);
Candidate=ave;
if CriticalNumber==0
CriticaiNumber=CriticalNumber+1;
if Delta2(ave)<=ThresholdT"coef2
Flag(CriticalNumber)=1;
FlagCount=FlagCount+1;
else
Flag(CriticalNumber)=0;
end

CriticalPoints(CriticalNumber)=ave;
Previous=Candidate;
d=dd;
else if (Candidate-Previous)>=L
CriticalNumber=CriticalNumber+1;
if Delta2(ave)<=ThresholdT coef2
Flag(CriticalNumber)=1;
FlagCount=FlagCount+1;
else
Flag(CriticaiNumber)=0;

Appendices

University of Windsor

end

CriticalPoints(CriticalNumber)=ave;
Previous=Candidate;
else if Deilta2(Previous)<Deilta2(Candidate)
Previous=Candidate;
end
end
end
d=dd;
end

%Check if there are any special critical points
%lIf yes, process them
%If there is only one special critical point, run the following fragment to remove it, or skip the program to
keep it
=2*FlagCount;
if FlagCount==1
for i=1:1:CriticalNumber
if Flag(i)==1
break;
end
end
for j=i:1:(CriticalNumber-1)
CriticalPoints(j)=CriticalPoints(j+1);
end
CriticalNumber= CriticalNumber-1;
end

%lf there are two special critical points, run the following program
%Run the foliowing fragment to remove the first special critical point or skip the fragment to keep it
if FlagCount==2
for i=1:1:CriticalNumber
if Flag(i)==1
break;
end
end
for j=i:1:(CriticalNumber-1)
CriticatPoints(j)=CriticalPoints(j+1);
end
CriticalNumber= CriticalNumber-1;
end

%Run the following fragment to remove the second special critical point or skip the fragment to keep it
if FlagCount==2
for i=CriticalNumber:-1:1
if Flag(i)==1
break;
end
end
for j=i:1:(CriticaiNumber-1)
CriticalPoints(f)=CriticalPoints(j+1);
end
CriticalNumber= CriticaiNumber-1;

Appendices 100

University of Windsor

end

%Run the following fragment to remove both special critical points or skip the fragment to keep them
if FlagCount==2

for i=1:1:CriticalNumber

if Flag(i)==1

m=i;
break;

end
end
for i=CriticalNumber:-1:1

if Flag(i)==1

n=i;
break;

end
end
for i=m:1:n-2

CriticalPoints(i)=CriticalPoints(i+1);
end
for i=(n-1):1:CriticalNumber-2

CriticalPoints(i)=CriticalPoints(i+2);
end
CriticalNumber= CriticalNumber-2;

end

%Delete the last redundant critical point if the condition is satisfied
if dCount-CriticalPoints(CriticalNumber)+CiriticalPoints(1)<=L
CriticalPoints(1)=CriticalPoints(CriticaiNumber);
if CriticalPoints(1)>dCount
CriticalPoints(1)=CriticalPoints(1)-dCount;
end
CriticalNumber= CriticalNumber-1;
else if CriticalPoints(CriticalNumber)>dCount
CriticalPoints(CriticaiNumber)=CriticalPoints(CriticalNumber)-dCount;
end
end

%Find the x and y coordinates of the pixels on the closed contour and store them in arrays TempRow1[}
%and TempCol[]
TempRow1(1)=TempRow(dCount);
TempCol1(1)=TempCol(dCount);
for i=2:1:dCount
TempRow1(i)=TempRow(i-1);
TempCol1(i)=TempCoi(i-1);
end

%Display the original image and the critical points simultaneousty
%Find the x and y coordinates of the critical points and store them in
%CriticalCoordinateX[] and CriticalCoordinate Y]]

figure(3)

colormap(map);

image(inputData);

for i=1:1:CriticalNumber

Appendices 101

University of Windsor

hold on;
CriticalCoordinateX(i)=TempCol1(CriticalPoints(i));
CriticalCoordinateY (i)=TempRow1 (CriticalPoints(i));
plot(CriticalCoordinateX(i),CriticalCoordinate Y (i), kA-);
end

%

%Step 4:Calculate the angels of the polygon formed by connecting every two neighboring critical points
%

%Caiculate the side lengths of the polygon and store them in array SidelLengthf]
%(x_1,y_1): The previous point
%(x, y): The current point
%(x1,y1): The next point
x=CriticalCoordinateX(1);
y=CriticalCoordinateY(1);
x_1=CriticalCoordinateX(CriticalNumber);
y_1=CriticalCoordinateY(CriticalNumber);
for i=2:1:CriticaiNumber
x1=CriticalCoordinateX(i);

y1=CriticalCoordinateY(i);

SideLength(i-1)=sqrt((x1-x)*2+(y1-y)*2);

ThirdLength(i-1)=sqrt((x1-x_1)*2+(y1-y_1)*2);

MiddlePointX(i-1)=round((x1+x_1)2);

MiddiePointY(i-1)=round((y1+y_1)2);

x_1=x;

y_t=y;

x=x1;

y=y1
end
SideLength(CriticalNumber)=sqrt((x1-CriticalCoordinateX(1))*2+(y1-CriticalCoordinateY(1))*2);
ThirdLength(CriticaiNumber)=sqrt((CriticalCoordinateX(1}-x_1)*2+(CriticalCoordinateY(1)-y_1)*2);
MiddlePointX(CriticalNumber)=round((CriticalCoordinateX(1)+x_1)/2);
MiddlePointY(CriticaiNumber)=round((CriticalCoordinate Y(1)+y_1)/2);

%Caiculate the angles of the polygon formed by connecting every two neighboring critical points

%Check if the angle is an inner or outer angle and store them in array CriticalAngle]
CriticalAngle(1)=acos(((SideLength(1))*2+(SideLength(CriticalNumber))*2-
(ThirdLength(1))*2)/(2*SideLength(1)*SideLength(CriticalNumber)));

if InputData(MiddiePointY(1),MiddlePointX(1))==BrightValue1 CriticalAngle(1)=CriticalAngie(1)°180/3.14;
else CriticalAngle(1)=360-CriticalAngle(1)*180/3.14;

end

for i=2:1:CriticaiNumber

CriticalAngle(i)=acos(((SideLength(i))*2+(SideLength(i-1))*2-

(ThirdLength(i))*2)/(2°SideLength(i)* SideLength(i-1)));

if InputData(MiddlePointY (i), MiddlePointX(i))==Brightvalue1 CriticalAngle(i)=CriticalAngle(i)*180/3.14;

else CriticalAngle(i)=360-CriticalAngle(i)"180/3.14;

end
end
%
%Step 5:Convert the sequence of angles into a sequence of angie codes called Angle String
%Find the Shape Number of the Angle String
%

Appendices 102

University of Windsor

%Convert the sequence of angles into a sequence of angle codes called Angle String
%Store the Angle String in ‘StringCode’
StringCode=0;
for i=1:1:CriticalNumber
if CriticalAngle(i}>=0 & CriticalAngle(i)<22
AngleString(i)=0;
else if CriticalAngle(i)>=22 & CriticalAngle(i)<44
AngleString(i)=1;
else if CriticalAngle(i)>=44 & CriticalAngle(i)}<66
AngleString(i)=2;
else if CriticalAngle(i)>=66 & CriticalAngle(i)<88
AngleString(i)=3;
else if CriticalAngle(i)>=88 & CriticalAngle(i}<110
AngleString(i)=4;
else if CriticalAngle(i)>=110 & CriticalAngle(i)<132
AngleString(i)=5;
else if CriticalAngle(i)>=132 & CriticalAngie(i)<154
AngleString(i)=6;
else if CriticalAngle(i}>=154 & CriticalAngle(i)<18
AngleString(i)=7;
else if CriticalAngle(i)>=180 & CriticalAngle(i)<206
AngleString(i)=8;
else if CriticalAngle(i)>=206 & CriticaiAngle(i)<228
AngleString(i)=9;
else if CriticalAngle(i)>=228 & CriticalAngle(i)<250
AngleString(i)=10:
else if CriticalAngle(i)>=250 & CriticalAngle(i)<272
AngleString(i)=11;
else if CriticalAngle(i)>=272 & CriticalAngle(i)<294

AngleString(i)=12;
else if CriticalAngle(i)>=294 & CriticalAngle(i)<316
AngleString(i)=13;
else if CriticalAngle(i)>=316 & CriticalAngle(i)<338
AngleString(1)=14;
else AngleString(i)=15;
end
end
end
end
end
end
end
end
end
end
end
end
end

end
end
StringCode=bitshift(StringCode,4)+AngleString(i);
if i==2 | i==1

FinalNumber1=15;

FinalNumber2=15;

Appendices 103

University of Windsor

else
FinalNumber1=bitshift(FinalNumber1,4)+15;
FinalNumber2=bitshift(FinaiNumber2,4);
end
end
FinalNumber2=bitshift(FinalNumber2,4);

%Define a shape number as a permutation of an angle string such that this
%permutation forms an integer of minimum magnitude
%Store it in ‘ShapeNumber’
StringCode1=StringCode;
ShapeNumber=StringCode;
Times=1;
Max=StringCode;
for i=2:1:CriticalNumber
Temp1=bitand(StringCode, FinalNumber1);
Temp1=bitshift(Temp1,4);
Temp2=bitand(StringCode,FinalNumber2)/2*((CriticalNumber-1)*4);
Temp3=bitor(Temp1,Temp2);
if Temp3<ShapeNumber
ShapeNumber=Temp3;
Times=i;
end
if Temp3>Max
Max=Temp3;
end
StringCode=Temp3;
end

%
%Step 6:Compare the shape numbers and the side lengths of the polygons, which are used to
%approximate the planar shapes, between the input image and the template image to see if the

%two patterns do match or not.

g seeveeeseesane

%Define the template shape number, side lengths and angies between the vectors and horizontal axis
%Define the average of critical point coordinates of the template image along X and Y directions
TemplateNumber= 42287962;

TemplateLength={ 34.6554 30.0167 48.0416 101.3163 26.0192 58.2495 37.2156];
TemplateAngle=[{223.8312 240.0186 177.6136 94.5286 357.7974 304.5087 353.8298];
TemplatePerimeter=0;

TemplateX=68;

TemplateY=66.71

TemplateLengthMin=min{TemplateLength);

%Compare the shape numbers of the polygons between the input image and the template image
%If they are equal, then compare the corresponding side lengths of the two polygons

%lf they are also equal , then they belong to the same pattemn

Flag5=0;

MiniCount=0;

MiniCount1=0;

FlagMatch=0;

Flag2=0;

Flag3=0;

if ShapeNumber~=TemplateNumber

Appendices 104

University of Windsor

disp(These two shapes do not match’);
else if Max~=ShapeNumber
for i=Times:1:CriticalNumber
if abs((SideLength(i}- TemplateLength(i-Times+1)}TemplateLength(i-Times+1))>ThresholdLength
Flag5=1;
disp('2These two shapes do not match');
break;
end
end
if FlagS==
for i=1:1:(Times-1)
if abs((SideLength(i)-TemplateLength(CriticalNumber-Times+i+1))
[TemplateLength(CriticalNumber-Times+i+1))>ThresholdLength
Flag5=1;
disp('3These two shapes do not match');
break:
end
end
disp(These two shapes match’);
FlagMatch=1;
end
else
for i=1:1:CriticalNumber
if abs((SideLength(i)-TemplateLengthMin)/TemplateLengthMin)<=ThresholdLength
MiniCount=MiniCount+1;
Mini(MiniCount)=i;
end
end
for j=1:1:MiniCount
for i=Mini(j):1:CriticalNumber
if abs((SideLength(i)-TemplateLength(i-Mini(j)+1))¥TemplateLength(i-Mini(j)+1))>ThresholdLength
Flag2=1;
end
end
if Flag2==
for i=1:1:(Mini(j)-1)
if abs((SideLength(i}-TemplateLength(CriticalNumber-
Mini(j)+i+1))TemplateLength(CriticalNumber-Mini(j)+i+1))>ThresholdLength
Flag3=1;
end
end
end
if Flag2==0 & Flag3==0
disp('These two shapes match’);
FlagMatch=1;
break;
end
Flag2=0;
Flag3=0;
end
Times=Mini(j);
end
end

Appendices 105

University of Windsor

%lf the two pattems do match, complete step 7 or step 8
%
%Step 7:Calculate the deviations of the input image along the X and Y directions compared with the
%template
%
%Calculate the averages of the critical point coordinates along X and Y directions
%Calculate the X and Y deviations of the input image compared with the template
if FlagMatch==1
AverageX=0;
AverageY=0;
for i=1:1:CriticalNumber
AverageX=AverageX+CriticalCoordinateX(i);
AverageY=AverageY+CriticalCoordinateY(i);
end
AverageX=AverageX/CriticalNumber;
AverageY=AverageY/CriticalNumber;
DeviationX=AverageX-TemplateX;
DeviationY=AverageY-TempiateY;

%
%Step 8:Caiculate the rotation angle of the input image compared with the template image
%
%Calculate the rotation angle of the input image compared with the template image
ccount=1;
for i=Times:1:CriticaiNumber-1
x_1=CriticalCoordinateX(i);
y_1=CriticalCoordinateY(i);
x=CriticalCoordinateX(i+1);
y=CriticalCoordinateY(i+1);
DifferenceX1=x-x_1;
DifferenceY1=(y_1-y);
Angle1(ccount)=atan2(DifferenceY1,DifferenceX1)*180/3.1416;
ccount=ccount+1;
end
x_1=CriticalCoordinateX(CriticalNumber);
y_1=CriticalCoordinateY(CriticalNumber);
x=CriticalCoordinateX(1);
y=CriticalCoordinateY(1);
DifferenceX1=x-x_1;
DifferenceY1=(y_1-y);
Angle1(ccount)=atan2(DifferenceY1,DifferenceX1)*180/3.1416;
ccount=ccount+1;
for i=1:1:Times-1
x_1=CriticalCoordinateX(i);
y_1=CriticalCoordinateY(i);
x=CriticalCoordinateX(i+1);
y=CriticalCoordinateY(i+1);
DifferenceX1=x-x_1;
DifferenceY1=(y_1-y);
Angle1(ccount)=atan2(DifferenceY 1,DifferenceX1)*180/3.1416;
ccount=ccount+1;
end

for i=1:1:ccount-1

Appendices 106

University of Windsor

if Angle1(i)<0
Angle1(i)=360+Angle1(i);
end
if TemplateAngle(i)<0
TemplateAngle(i)=360+TemplateAngle(i);
end
end

TotalAngle=0;
for i=1:1:ccount-1
AngleDifference(i)=Angle1(i)-TemplateAngle(i);
if AngleDifference(i)<0
AngleDifterence(i)=AngleDifference(i)+360;
end
if AngleDifference(i)>180
AngleDifterence(i)=AngleDifference(i)-360;
end
TotalAngle=TotalAngle+AngleDifference(i);
end

RotationAngle=TotalAngie/(ccount-1)
if RotationAngle>180

RotationAngle=RotationAngle-180;
end

if abs{abs(RotationAngle)-180)<90
RotationAngle=RotationAngle-180

end

end

% END

Appendices

107

University of Windsor

VITA AUCTORIS

Hongmei Gao was born in October 26™, 1968 in P.R. China. She received her Bachelor's
Degree in Engineering and Master's Degree in Engineering from the Department of
Automatic Control in Beijing University of Aeronautics and Astronautics, respectively in
1990 and 1993. She is currently a candidate for the Master of Applied Science Degree in
the Department of Electrical and Computer Engineering at the University of Windsor and

hopes to graduate in summer 2001.

108

	University of Windsor
	Scholarship at UWindsor
	2001

	Algorithm design for smart vision sensors.
	Hongmei. Gao
	Recommended Citation

	tmp.1363370417.pdf.fr4IF

