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ABSTRACT 

This thesis applies the theory of naturalistic decision making (NDM) in human 

physcology model for the study of dialogue management system in major approaches 

from the classical approach based upon finite state machine to most recent approach 

using partially observable markov decision process (POMDP). While most of the 

approaches use various techniques to estimate system state, POMDP-based system uses 

the belief state to make decisions. In addition to the state estimation POMDP provides a 

mechanism to model the uncertainty and allows error-recovery. However, applying 

Markovian over the belief-state space in the current POMDP models cause significant 

loss of valuable information in the dialogue history, leading to untruthful management of 

user’s intention. Also there is a need of adequate interaction with users according to their 

level of knowledge. To improve the performance of POMDP-based dialogue 

management, this thesis proposes an enabling method to allow dynamic control of 

dialogue management. There are three contributions made in order to achieve the 

dynamism which are as follows: Introduce historical belief information into the POMDP 

model, analyzing its trend and predicting the user belief states with history information 

and finally using this derived information to control the system based on the user 

intention by switching between contextual control modes. Theoretical derivations of 

proposed work and experiments with simulation provide evidence on dynamic dialogue 

control of the agent to improve the human-computer interaction using the proposed 

algorithm. 
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CHAPTER 1 

 

Introduction 

Dialogue is a conversation between two or more agents, be they human or machine. 

Research on dialogue usually follows two main directions: human-human dialogue and 

human-computer dialogue. The later is involved in a dialogue system, a computer 

program that communicates with a human user in a natural way. Previous research work 

has been focusing on spoken dialogue systems, which are defined as computer systems 

that human interact on a turn-by-turn basic and in which spoken natural language 

interface plays an important part in the communication recently, it has been extended to 

multimodal dialogue systems, which are dialogue systems that process two or more 

combined user input modes - such as speech, pen, touch, manual gestures, gaze, and head 

and body movements - in a coordinated manner with multimedia system output. Both 

spoken dialogue system and multimodal dialogue system need a central management 

module called the dialogue manager [1]. The dialogue manager (DM) is the program 

which coordinates the activity of several subcomponents in a dialogue system and its 

main goal is to maintain a representation of the current state of the ongoing dialogue. 

This thesis report describes the sequential decision making and control problems in 

dynamic environments with incomplete and uncertain information using the Partially 

Observable Markov Decision Process (POMDP) frame work with trend information 

available. Designing agents that can act under uncertainty is mostly done by modeling the 

environment as a Partially Observable Markov Decision Process. In POMDPs, an agent 
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interacts with a stochastic environment at discrete time steps. The agent takes actions, 

and as a result, receives observations and rewards. The agent then has to find a way of 

choosing actions, or policy, which maximizes the total reward received over time. Most 

POMDP planning methods try to construct a Markovian state signal using a model of the 

environment and the history of actions and observations experienced by the agent. This 

signal is called a belief state. Planning methods then use reward information in order to 

associate an (optimal) action to each belief state.  

The information related to the belief states of the past by different user will be learned by 

the agent. This history helps the agent to predict the forward trend of the belief state 

which intern understand the user’s knowledge about the domain and the intention of 

participation. The multimodal dialogue management system is studied with naturalistic 

decision making which is theory of human psychology for best decision making. The 

trend predicted with the history information will reduce the uncertainty of the state of the 

agent and thereby understanding the user. Belief states can identify more precisely the 

hidden state of the system. If the hidden state were known with better precision, the 

action choices of the agent could be better as well. The changes in the trend of the belief 

state in the belief space with the history information space will help in the process of 

effective planning for the construction of a real truthful, relevant, clear, informative 

dialogue management. 
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1.1  The Problem Statement 

Various approaches of dialogue management have been proposed in the last twenty years, 

including the classical approach based upon finite state machine and the current approach 

based upon the popular POMDP model. Finite state machine based approach is only 

suitable to the well structured task and is lack of flexibility. Frame based approach uses a 

frame to record the information and is more flexible than finite state machine based 

approach. Bayes network and Markov Decision Process based approach are probabilistic 

which can solve some uncertainties to some degree but still have drawbacks such as 

defects in solving observation uncertainties. Although POMDP based approach is the 

current popular approach, it still has its own problems to be taken care of. Despite its 

known problem of scalability, the POMDP-based approach demonstrates undeniable 

advantages in the handling of input uncertainty over other approaches. However, 

applying the Markovian over the belief-state space in the current POMDP models causes 

significant loss of valuable information in dialogue history, leading to untruthful 

recognition of user intention. In other perspective, the POMDP-based approach only 

models the user and maintains the knowledge at the control level. However the POMDP 

model does not analyzes the user intention and level of domain knowledge and treats 

every user in the same way no matter how much domain knowledge they have and what 

is their intention. 
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1.2  Contribution 

There are three contributions made in this thesis.  First, belief history information is 

introduced into the POMDP based dialogue management system. Secondly, the history 

information is used by the dialogue manager and analyzes the trend of belief states to find 

the rate of change in trend and also predicts the next belief state using machine learning 

techniques. Third, based on the change in belief trend allows the agent to handle different 

user switching between contextual control modes in different stages to improve the 

human - computer interaction.  

We have modeled a dialogue manager for a Software requirement customization and 

modified the traditional POMDP dialog manager.  The modified architecture with the 

trend analyzed values in belief history will help the agent to know well about the user 

intention and the knowledge in the domain thereby making decisions in an improved 

way. The experiments under 5 scenarios are conducted to evaluate the proposed method. 

The results of the experiments prove that the concept and they demonstrate that the 

proposed method achieves the expected results. 
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1.3 Organization of the thesis 

In the remaining of part this thesis, chapter 2 provides the preliminary information on 

different components of dialogue management system. Chapter 3 provides a literature 

review about the major approaches of dialogue management. Chapter 4 discusses the 

previous work on history information space and trend and then conducts an analysis of all 

the major approaches but the POMDP-based approach. Chapter 5 discusses the proposed 

method of belief state trend analysis and prediction to analyze the change in user 

intention thereby switching the contextual control mode to handle different user groups.  

Three types of experiments are presented in chapter 6, whose results show that the new 

approach is more accurate in the recognition of user intention, thus making agents more 

attractive and useful when providing services. Finally, chapter 7 ends with conclusions 

and points out directions for future work. 
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1.4 Motivation 

In the last decades, there has been a tremendous development in the field of virtual 

reality, particularly the research related to dialogue management system. The dialogue 

management system is a setup made to help the human by an agent. In short, agent is a 

replacement of human to help other human. The system has to behave and produce result 

similar to the way as how a human does. The researches so far done are to improve the 

algorithm used in the agent to identify the state which is uncertain and reduces the 

ambiguity to the maximum. Use of POMDP algorithm will help the agent to reduce the 

ambiguity to a certain level and still it loses the information related to the domain which 

is solved by adding a domain constraint module given by Libian. The study of 

Naturalistic decision making theory states clearly that pattern analysis and decision 

making in human brain. Applying the NDM theory in the dialogue management system 

will help the agent to classify the user type and the prediction of the user’s next possible 

states with the past experience by the agent in the dialogue history. This will reduce the 

ambiguity of the agent state in the dynamic environment thus the decision making 

happens more efficient. This motivates me to conduct a research on this particular 

technology and solve the challenges associated with POMDP based dialog manager by 

introducing belief trend and based on four-mode concept. 
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CHAPTER 2 

 

Preliminary  

In this chapter, the definition of the dialogue system and dialogue manager will be 

introduced and also the basic issues in the dialogue system and dialogue manager will be 

discussed. 

2.1 Spoken Dialogue System 

Spoken dialog systems (SDS) help people achieve a task using spoken language. For 

example, a person might use an SDS to buy a train ticket over the phone, to direct a robot 

to clean a bedroom, or to control a music player in an automobile. Building SDS is a 

challenging engineering problem in large part because automatic speech recognition 

(ASR) and understanding technology are error-prone. More specifically, speech 

recognition accuracy is relatively good for constrained speech limited to, for example, 

digits, place-names, or short commands, but accuracy degrades rapidly as the domain 

language becomes less constrained. Furthermore, as spoken dialog systems become more 

complex, not only do the demands on the speech recognition and understanding 

components increase, but also user behavior becomes less predictable. Thus, as task 

complexity increases, overall there is a rapid increase in uncertainty, and principled 

methods of dealing with this uncertainty are needed in order to make progress in this 

research area [2]. 

 The goal of dialogue management in a spoken dialogue system is to take actions based 

on observations and inferred beliefs.  Dialogue management plays a crucial role in the 
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overall performance of the system since speech recognition is often quite poor, due to 

noisy or unexpected input.  With robust dialogue management, the system can still take 

actions that maintain the task at hand.  Unfortunately, coming up with a suitable set of 

dialogue management strategies is no easy task.  Traditional methods typically involve 

authoring and tuning complicated hand-crafted rules that require considerable 

deployment time and cost.  Statistical methods, on the other hand, hold the promise of 

robust performance from models that can be trained on data and optimized, so long as the 

data is representative of what the dialogue system can expect to encounter during 

deployment [2].   

[3] Identified that the main purpose of a spoken dialogue system is to provide an interface 

between a human user and a machine usually computer-based application such as a 

database or expert system. Also Mctear identified that the main tasks of the dialogue 

system include processing the user's input and recovering from the errors. Based on this, 

Mactear categorized different dialogue strategies into three types: finite state or graph 

based approach, frame based approach and agent based approach. Later in 2006, [4] 

identified that current spoken dialogue system had been extended to multimodal dialogue 

system, which means that the dialogue systems can process two or more combined user 

input modes such as speech, pen, touch, manual gestures, gaze, and head and body 

movements, etc in a coordinated manner with multimedia system output. Bui meanwhile 

identified that the central module of the spoken dialogue system and multimodal system 

is the dialogue manager (DM). The function of the DM is to coordinate the activity of 

corresponding subcomponents in a dialogue system and its main goal is to maintain a 

representation of the current state of the ongoing dialogue. 
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Spoken dialogue systems can be classified into three main types, according to the 

Methods used to control the dialogue with the user: 

(1) Finite state- (or graph-) based systems; 

(2) frame-based systems; and 

(3) agent-based systems. 

The type of dialogue control strategy used has a bearing on how the system accomplishes 

two of its main tasks: processing the user’s input and recovering from errors [5]. It 

discussed each component in the spoken dialogue system and their functionalities.  

The involved components explained in [5] are as follows:  

• Speech recognition which converts an input speech utterance consisting of a sequence 

of acoustic-phonetic parameters into a string of words.  

• Language understanding, the component is analyzing a string of words with the aim of 

producing a meaning representation for the recognized utterance. The produced meaning 

representation can be used by the following dialogue management component.  

• Dialogue Management is the control component of the interaction between the system 

and the user. It is also responsible for coordinating with other components of the system.  

• Communication with external system is, for example, a database system, expert system, 

or other computer application.  

• Response generation which is the specification of the message to be output by the 

system. 

• Speech output is the component to apply text-to-speech synthesis or pre-recorded 

speech techniques to output the system's message. In Bui's research work, he described 
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the multimodal dialogue system containing components of Input, Fusion, Dialogue 

Manager (DM), Knowledge Sources, Fission, and Output.  Inputs of a multimodal 

dialogue system can be any subset of the modalities. The following fusion component 

receives the extracted information from the input modalities and passes the processed 

information usually a semantic structure to a dialogue manager. Dialogue manager takes 

this semantic structure as the observation to generate appropriate response. By 

coordinating with other component, DM sends its output to the fission component. The 

information received by the fission component along with output component will also be 

processed to generate human natural language responses to the human user. The Fig 2.1 

illustrates the overall multimodal dialogue system structure and relations among all the 

components.  

Dialogue manager is the most important component in the (multimodal) dialogue system. 

The main functions of the DM include, coordinating with other components, identifying 

the intention of the user's intention and deciding what to respond to the user at what time 

steps. In [7], the main tasks of dialogue manager are identified as following:   

• Updating the dialogue context on the basis of interpreted communication  

• Providing context-dependent expectations for interpretation of observed signals as 

communicative behavior.  

• Interfacing with task/domain processing (e.g., database, planner, execution module, 

other back-end system), to coordinate dialogue and non-dialogue behaviors and 

reasoning. 
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Figure 2.1: Overall Multimodal Dialogue System Structure 

2.2 Dialogue Manager 

Dialogue Manager is the core module of the system. The main tasks of DM are [7]:  

 Updating the dialogue context on the basis of interpreted communication. 

  Providing context-dependent expectations for interpretation of observed signals 

as communicative behavior. 
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 Interfacing with task/domain processing (e.g., database, planner, execution 

module, other back-end system), to coordinate dialogue and non-dialogue 

behavior and reasoning. 

 Deciding what content to express next and when to express it. 

The term "dialogue context" can be viewed as the totality of conditions that may 

influence the understanding and the generation of communicative behavior [8]. This 

definition is quite vague, and Bunt restricts to "local" aspect of the dialogue context (also 

called local context) which can be changed through communication. Local context factors 

can be grouped into five categories of conceptually different information dimensions: 

Linguistic, cognitive, Physical, semantic, and social as shortly described in table 1. More 

detail about these contexts is described in [8]. 

Linguistic 

context 

Surrounding linguistic material, `raw' as well as analyzed 

Semantic 

context 

Semantic context state of the underlying task; facts in the task domain. 

Cognitive 

context 

Participants' states of processing and models of each other's states. 

Physical and 

Perceptual 

Availability of communicative and perceptual channels; partners' 

presence and attention. 

Social 

Context communicative rights, obligations and constraints of each 

participant. 
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The dialogue manager may draw on a number of knowledge sources, which are 

sometimes referred to collectively as the dialogue model. A dialogue model might 

include the following types of knowledge relevant to dialogue management: 

A dialogue history: A record of the dialogue so far in terms of the propositions that have 

been discussed and the entities that have been mentioned. This representation provides a 

basis for conceptual coherence and for the resolution of anaphora and ellipsis. 

A task record: A representation of the information to be gathered in the dialogue. This 

record, often referred to as a form, template, or status graph, is used to determine what 

information has not yet been acquired. This record can also be used as a task memory [6] 

for cases where a user wishes to change the values of some parameters, such as an earlier 

departure time, but does not need to repeat the whole dialogue to provide the other values 

that remain unchanged. 

A world knowledge model: This model contains general background information that 

supports any commonsense reasoning required by the system, for example, that 

Christmas day is December 25. A domain model: A model with specific information 

about the domain in question, for example, flight information. A generic model of 

conversational competence: This includes knowledge of the principles of conversational 

turn-taking and discourse obligations. 

A user model: This model may contain relatively stable information about the user that 

may be relevant to the dialogue such as the user’s age, gender, and preferences—as well 

as information that changes over the course of the dialogue, such as the user’s goals, 

beliefs, and intentions. 
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After that the knowledge sources probably used in the DM are discussed, it comes to the 

problem of modeling based on the knowledge sources. Therefore, the distinction between 

Dialogue modeling and dialogue management modeling [9] should be also explained 

here. The goal of dialogue modeling is to develop general theories of dialogues such as 

task oriented and to investigate the similarities between the courses of the dialogues. 

Dialogue modeling is to provide dialogue management with theoretical support. While, 

the goal of dialogue management modeling is to combine dialogue model with task 

model under particular domain to design algorithms which support a machine's decision 

making in a dialogue, or it can be said that it takes the viewpoint of a dialogue system 

designer. Dialogue manager executes based on the dialogue policy. Dialogue policy is 

"What the system should do next to respond to the users", which maps from a set of states 

in the state space to a set of actions. Usually, the actions of a dialogue manager can be 

divided into five types including: greeting, submitting, initiative, repeating and 

confirmation. And at each stage, the action taken by the system can receive different 

results or it can receive various rewards or costs. In some stage, such as the first round of 

the dialogue, the greeting should always be the most appropriate action taken by the 

system. While during the whole dialogue, the action of initiative, repeating and 

confirmation are always not clear. At each round, different actions correspond to different 

rewards. In the past efforts made on the dialogue management, various approaches have 

been proposed to resolve the dialogue policy generation problem. 
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CHAPTER 3 

 

Literature Survey 

In this Chapter, Dialogue management approaches and their classification are discussed 

in the first section. In the second and third section Information state, Probabilistic are 

discussed. In the third section literature review about prediction of user metal states in 

spoken dialogue system is done. The last three sections discuss about decision making 

processes and techniques involved 

 

3.1 Dialogue Management Approaches Classification 

There has been an active research conducted in the past two decades towards dialogue 

management. There are two aspects to dialogue control one is the extent to which one of 

the agents maintains the initiative in the dialogue and the ways in which the flow of the 

dialogue is managed. Dialogue control may be system-led, user-led, or mixed-initiative. 

In a system-led dialogue the system asks a sequence of questions to elicit the required 

parameters of the task from the user. In a user-led dialogue the user controls the dialogue 

and asks the system questions in order to obtain information. The control strategy of a 

dialogue system may use finite states, frame slots, autonomous agents [3] or Bayesian 

networks and decision graphs approach [10]. Some dialogue strategies may be generated 

by the plan-based approach [13] and this is based on the view that humans communicate 

to achieve goals, collaborative agent-based approach [11] and this evaluates the dialogues 
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as collaboration between two intelligent agents to achieve mutual understanding of the 

dialogue or theorem proving approach [12]. Different dialogue management approaches 

have been classified into several categories by the researchers. According to [14] task 

model and dialogue model are used; approaches to dialogue management can be 

classified into four categories in Table 3.1. 

 

Table 3.1 Classifying dialogue management models 

[4]. For example, the frame based approach is usually used by combining with 

probabilistic method. Basically, there are main five types of dialogue management 

including finite state machine, frame base, Bayes network, Markov Decision Process 

based and POMDP based approach based upon the recent development of information 

state and probabilistic methods. 

3.1.1 Information State Approaches 

Dialogue systems can provide a great test bed for theories of dialogue, since they can 

straightforwardly manifest behavior of an implemented theory as the dialogue progresses; 

however, this is true only in so far as the system incorporates an accurate representation 

of the theory. To help in this regard, [15] present a method of specifying a dialogue 

theory that makes it straightforward to implement, and, as described in the following 

sections, tools to help implement a dialogue theory specified along these lines.  

To overcome the limitations of previous approaches, Information state-based approach is 

a dialogue theory with five different components; each has its own functionality [15].  An 
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informational component is to track the intentional structure and user models. Formal 

representation is for the discourse representation structures, modal operators within a 

logic etc. A set of update rules for updating the information state and a set of dialogue 

moves to trigger the update of information state. An update strategy is to decide which 

rule to apply.  The general idea of this approach is to develop the multi-layer dialogue 

model. In this model, each level contains an information state representing current status 

of the layer. Trindikit toolkit is developed based on this approach followed by GodiS [16] 

and EDIS [17]. Several other applications of this approach include MATCH system for 

multimodal city help [18], Virtual Music Center [19], etc. 

Frame based approach can realize the mix imitative dialogue and tolerant redundant 

information brought by the users. The sequence of the questions or the information to be 

gathered is not pre-determined, which is based on the current context to generate next 

question to ask. However, Mctear in 2002 summarized that the next step only based on 

the current context is not enough. More complicated domain in which the state of the 

world is dynamic or the knowledge level of the user is varied can not apply for the frame 

based approach. 

3.1.2 Probabilistic Approaches 

The improvement in the performance of dialogue management has been concentrated by 

serveral research groups recently. This approach can be considered as the extension of the 

information state approaches [20]. The techniques include Markov Decision Process 

(MDP) or Partially Observable Markov Decision Process (POMDP). The basic idea is to 

overcome the limitations of Multilayer dialogue model and to provide dynamically 

changing actions and dialogue strategy based on rewards of the current state. The 
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dialogue model is designed to use optimal strategy using some reinforcement learning. 

The system actions are modeled to system's question and answers, the rewards are pre-set 

by the system to rate the dialogue or it is provided to the user to rate the system at the end 

of each dialogue [22]. In [2], dynamic programming, Q-learning or sampling-based 

reinforcement learning is used to optimize the dialogue cost function. Inductive logic 

programming is to extract rules from the result of reinforcement learning. Apart from the 

MDP and POMDP techniques, Bayesian Networks are also used to recognize the 

dialogue acts or to control the dialogue strategy.  

Wai et al. [22] proposed to use of Belief networks (BN) for mixed-initiative dialogue 

modeling. They applied their approach into the CU FOREX system which is a bilingual 

hotline for real time foreign exchange inquiries. The author adopted Belief networks in 

mixed-initiative dialog modeling involving the following two processes: inferring the 

informational goal of a user's query and verifying the input query against domain-specific 

constraints. In the process of goal identification, a BN is trained for each domain-specific 

Informational goal and then it is used to make a binary decision based on the concepts 

present in the input query. With the decisions across all BNs combined, the output goal 

can be identified regarding the input query. Followed by the backward inference process, 

the validity of the input query will be verified. The system responses can be generated 

based on the result of the spurious and missing concepts detection process. In 2003, Wai 

et al. migrated their dialog model from the simple foreign exchange domain to air travel 

information service domain. In this work, they described the scalability and portability of 

a Belief Network based mixed initiative dialog model across application domains. 
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Paek and Horvitz [23] proposed using Decision Networks as the dialogue model to 

manage a hidden sub dialog. Paek and Horvitz stated that the problem that when the 

dialogue system attempts to solicit information from the user, it may have to engage in a 

hidden sub dialog or error handling in a particular state. They considered that hidden sub 

dialogs generally centers on illocutionary repairs including asking for repeating or 

conforming, etc.  It is described that there are three advantages by applying the decision 

network in dialog management: first the propagation of uncertainties over time to assist 

recognition, second the ability to leverage key contextual dependencies, such as the 

acoustic environment, and the consideration of the stakes involved in taking real-world 

actions. Williams et al. in [24] stated that this approach selects the action only based on 

the immediate maximum expected utility and in this scenario this proposal can be treated 

as a POMDP that greedily selects the actions. 

Other important groups of researchers have delved their efforts into probabilistic 

techniques such as (fully observable) Markov Decision Process (MDP) or a Partially 

Observable Markov Decision Process (POMDP) as the dialogue model to resolve the 

action outcome and observation uncertainties existed in the human-computer interaction 

process. [25] and [26] all cast the dialogue management problem as the MDP problem 

with the assumption that a good dialogue strategy is minimizing an objective function 

that reflects the costs of all the important dialogue dimensions. Levin et al. stated that 

allowing a user to change the course of dialogue or to change request during dialogue in a 

mixed-initiative system could result in a branching factor and make the tree prohibitively 

large. Therefore, they adopt the Markov Decision process approach. The operation of the 

dialogue manager based on the Markov Decision Process described by Levin et al .  
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Initialization: start from initial state  

Iterate until done (final state is reached)  

Next Action: Choose and perform next action  

Get new input 

Next State: Update state with new input 

Roy et al. was the first group to treat dialogue management as a problem of partially 

observable Markov decision process [27]. They noticed that the MDP approach cannot 

handle noise and ambiguity in speech utterances. They used POMDP models to generate 

dialogue strategy and used, rather than estimated system state, belief state to represent 

user intention. They conducted experiments and claimed that the POMDP-based dialogue 

system made fewer mistakes than MDP-based dialogue system. With increased errors in 

automated speech recognition in real-life situations, the advantage of uncertainty 

handling is obvious. 

[28] Address several challenges for applying statistical dialog managers based on 

Partially Observable Markov Models to real world problems: to deal with large numbers 

of concepts, [28] use individual POMDP policies for each concept. To control the use of 

the concept policies, the dialog manager uses explicit task structures. The POMDP 

policies model the confusability of concepts at the value level. In contrast to previous 

work, [28] use explicit confusability statistics including confidence scores based on real 

world data in the POMDP models. Since data sparseness becomes a key issue for 

estimating these probabilities, [28] introduce a form of smoothing the observation 

probabilities that maintains the overall concept error rate.  
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3.1.2.1 POMDP Models  

POMDP Model can be divided into two types including flat POMDP which the state only 

contains user belief component and factored POMDP which extends the state of flat 

POMDP to integrate user action and dialogue state. In the following of this section, both 

Flat POMDP model and factored POMDP model will be reviewed. 

3.1.2.1.1 Flat POMDP Model  

In a POMDP system, the state of the system is not observable and therefore unknown to 

the decision process. Action selection depends on the decision made over belief state, 

denoted by b. Formally, a POMDP is defined as a tuple { S, Am, T, O, Z, R} , where S is 

a set of states, Am is a set of actions the system may take, T is the transition model that 

defines transition probability, O is a set of observations from user's actions, Z is the 

observation model that defines the observation probability, and R defines the immediate 

expected real valued reward r(s, am). And also b is the agent's belief state and π is the 

agent's policy to select action. With the assumption that the state and O are both discrete 

and based on the above notation and definition, the operation process of POMDP can be 

described as following:  

POMDP system carries out two tasks. The first task is to compute or update belief state, 

and the second is to find an optimal policy [29]. With the latest belief state and the offline 

computed optimal policy, the agent can perform appropriate action checking to select 

action to take. For the first task, the belief state is updated at each time step based upon 

the Bayes filter algorithm. Bayes filter algorithm is under the Markov assumption. The 

Markov decision process makes assumption that the action of nature only depend on the 

current state and action as opposed to the state or action histories. In [30], the Markov 
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Assumption and Bayes Filters framework were describes as following. Markov 

assumption is with underlying assumption that the world is static; the noise is 

independent and perfect models no approximation error. The Markov assumption allows 

the recursive Bayesian updating to be used to efficiently combine evidence. The Markov 

Assumption illustrated in Dynamic Bayes network is shown in Fig 5.1. 

 

Figure 3.1: Markov Assumption illustrated in Dynamic Bayes Network 

 

The expected observation probability depends on local information. Here the local 

information means that distribution depends only on information obtained at the current 

stage. And the posterior probability over state depends on the previous state and newly 

taken action.   

Based on the above Markov assumption, Bayes filter is the probabilistic method to 

estimate state in dynamic environment. The estimation of state computation process is 

shown in Fig 5.2.  Thus, the computation of belief state uses the following equation, 

where a is the normalizing constant,  is the observation model or 

named sensor model and  is the action model or named transition model.  
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Equation 1 the estimation of state computation process 

 

Equation 2 Estimation of State using Bayes Filter 

For the current belief state, Eq. 2 constitutes the flat POMDP model that selects an 

optimal policy as the maximum of all the expected value function V
π
(b) with a 

discounted future reward starting from b for a policy π. 

 

Equation 3: Optimal policy Computation 
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3.1.2.1.2 Factored POMDP 

In 2005, William et al. casted the spoken dialogue system as a factored POMDP to use 

this model as general framework for existing POMDP dialog manager. In this model, the 

POMDP state variable s ϵ S into three components such as:  1) the user's goal, su ϵ Su; 2) 

the user's action au ε Au; 3) history / state of the dialogue sd ϵ Sd. Thus, the POMDP state 

s is given by the tuple (su, au, Sd) and from the system's perspective; all those components 

are unobservable [32]. 

1) The user's goal, su gives the current goal or intention of the user. For example, user 

goal include a complete travel itinerary, a product the user would like to purchase or 

requesting information about a calendar. 

2) The user's action au, gives the user's most recent actual action. For example, specifying 

a place the user would like to travel, responding to yes/no question, or a null response 

indicating the user took no action.  

3) The dialogue history/state Sd, indicates any relevant history or state information. For 

example, particular slot has not been stated, if there any ungrounded items, a dialogue 

designer might wish to penalize asking an open question.  

The POMDP action am ε Am is the action the machine takes in the dialog such as 

greeting the user or asking a question. At each time step t, the POMDP receives a single 

observation but it maintains a distribution over all possible user actions au. The factored 

POMDP is given by decomposing the POMDP transition function which is as follows: 
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The first term indicates the user goal model. At each time step t, it is assumed that the 

user's goal depends on the previous goal and the machine action. 

  

The second term is the user action model which indicates what action the user is likely to 

take at each time step t. It is assumed that the user's action depends on the current goal 

and preceding machine action. 

 

 The third term is the dialogue model which indicates how the user and system actions 

affect the dialogue history. The current state or history of the dialogue depends on the 

previous history / state of the dialogue, user's action and system action.  

 

Thus, the transition function of POMDP is given by,  

 

 

The observation function of POMDP is given by,  
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The confidence score and rewards are not specified as this model is associated with a 

particular user goal and design objectives of the target system respectively. At each time 

t, the actions are selected depends on the belief state to maximize the cumulative long 

term reward by substituting and simplifying the above equations.  

 

Equation 4 Belief Update Equation 

 

This model is tested with a simulated dialogue management problem in a travel domain 

in which the user is trying to buy a ticket to travel and compared the results with 

handcrafted policies and MDP baseline [33]. The results proved that POMDP maintains a 

well formed distribution over user goals and in case of certainty; it reflects in particular 

user goals. Since this model assumes the flat listing of flat components, the spoken 

dialogue systems with hierarchical components may result in poor performance.  

3.2 Naturalistic Decision Making 

The study of naturalistic decision making (NDM) has also evolved as a focused effort to 

describe how people make decisions in the real world. While some earlier researchers 

described decision making as being based on recognizing patterns in the situation that 

were matched to known patterns in memory, the area of NDM largely blossomed around 

the work of Gary Klein. NDM rejects certain previous research on decision theory (e.g., 

utility theory) as being largely normative instead of descriptive; therefore, such research 

fails to capture critical aspects of how people – particularly experts – actually make 
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decisions [35]. NDM specifically seeks to provide rich descriptions of how people make 

decisions in the real world, as opposed to within artificially contrived and constrained 

laboratory tasks. The environment in which NDM focuses may encompass ill-structured 

problems, uncertainty, time stress, risk, multiple and changing goals, multiple individuals 

and experienced decision makers. 

3.2.1 Recognition-Primed decision (RPD) 

Recognition-Primed Decisions (RPD) involves non-optimizing and non-compensatory 

strategies and requires little conscious deliberation. RPDs are marked by an absence of 

comparison among options. They are induced by a starting point that involves recognition 

matches that in turn evoke generation of the most likely action [35]. 

It has been tested applications of the model in a variety of tasks and domains, including 

fire ground command, battle planning, critical care nursing, corporate information 

management, and chess tournament play. These studies have shown good support for the 

validity and utility of the model presented in Figure 3.2 as it applies to individual 

decision makers. [35] Coding was evaluated as having 87% to 94% inter-rate reliability. 
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Figure 3.2: Complex RDP Strategy 

3.2.2 Predicting User Mental States in SDS 

[34] Propose a model for predicting the user mental state which can be integrated in the 

architecture of a spoken dialogue system as shown in Figure 3.3 As can be observed, the 

model is placed between the natural language understanding (NLU) and the dialogue 

management phases. The model is comprised of an emotion recognizer, an intention 

recognizer and a mental-state composer. The emotion recognizer detects the user 

emotional state by extracting an emotion category from the voice signal and the dialogue 

history. The intention recognizer takes the semantic representation of the user input and 
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predicts the next user action. Then, in the mental-state composition phase, a mental-state 

data structure is built from the emotion and intention recognized and passed on to the 

dialogue manager.  

 

Figure 3.3 Integration of mental-state prediction into the architecture of a spoken 

dialogue system. 

 

 

3.3 Contextual Control Model 

Hollnagel in 1993 developed a Contextual Control Model (COCOM) to control and 

analyze team behavior based on cognitive modes. This model argued that the system 

decides what action to take next according to the context of situation. He observed that 

this approach is reactive both in the environment and individual perspective of the user. 



Chapter 3 Literature Survey                    

30 

The degree of control varies between four modes namely; scrambled opportunistic, 

tactical and strategic modes. He further argued that the team behavior should be analyzed 

as macro rather than micro level. These control modes of team behavior varies in terms of 

forward planning. 

3.3.1 Testing COCOM by Assessing Team Behavior  

In 2001, Stanton et al tested this COCOM with a team of people in a simulated energy 

distribution system. The results confirmed Hollnagel's model in two different ways. First, 

the team behavior could be categorized reliably into the four control modes provided a 

useful way of distinguishing between experimental conditions. Second, the progression 

between control modes conformed to the linear progression [36]. This model depicts the 

dynamism of the environment by determining how the operator should quickly shift to 

another mode depending upon the situation. If the action taken is correct then we can 

achieve the goal in short time and if the situation is already in a scrambled mode and the 

decision taken is incorrect, the goal will be removed and sets a panic situation in the 

environment. They explored the relationship between control modes and system states to 

see if different interfaces and proximity of personnel provide control teams with greater 

opportunity for strategic control and less demand for scrambled control. A framework is 

also set to transfer the control directly from scrambled to tactical and vice versa. 
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Figure 3.4 : Internal structure of Contextual Control Model [COCOM] 

3.3.2 COCOM for Dynamic Decision Making 

In 2006, Karen Feigh and Amy Pritchett introduced this COCOM in the design of support 

systems for dynamic decision making in Airline operations. They tested this model with 

the human operator and concluded that the regulation for dynamic systems has 

implication for both internal and external dynamic systems, for example: flight schedule. 

In the dynamic system, the individual’s transition between COCOM controls modes to 

maintain the control over the dynamic condition, which in turn depends on the current 

context of the situation. The main feature of this model is availability of time. If there is 

time available is too short, then the control will be in opportunistic mode. There are 

several behaviors which they determine using this model namely, perception, situation 

assessment, communication, coordination, analysis, alternative generation and 

comparison of alternatives and tracked how these behaviors changes under different 



Chapter 3 Literature Survey                    

32 

contexts. Traditionally, support systems are designed to use single human activity, 

decision making and ignores several behaviors required to obtain successful goals. This 

analysis proved that, along with decision making other activities like judgment, 

coordination, information gathering, and solution generation can also be considered to 

achieve optimal solution for a particular situation [37]. They further extended their 

framework of COCOM to design and test multi-mode support systems for airline 

operations to improve airline recovery from irregular operations and airline rescheduling 

tasks [38]. It provides a useful framework to view the changes in cognitive work in 

response to contextual features such as time limit and information availability. Control in 

this model is conceptualized as planning what to do in the short-term and within the time 

horizon of the system with which the human is interacting. 

3.4 Information based theory for Belief state history in 

POMDP based DM 

Information space informally speaking is the space contained all the observations have 

been obtained, all the actions have been taken by the agent and the initial state. This 

space linearly grows with the new observation obtained and the actions applied. The way 

of manipulating this space has been divided mainly to three methods: traditional 

approach, nondeterministic approach and probabilistic approach. Under each approach, 

lots of strong assumptions have been made to make the method sufficiently generate 

policies. In the section 3.4.1 will give the overview of the history information space and 

then main dialogue management approaches except for POMDP-based approach will be 

analyzed upon history information space. 
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3.4.1 An Analysis with History Information Space  

The formal definition of history information space is as following [20]: The set of all 

observation histories is denoted as YF, and is obtained by a Cartesian product of k copies 

of the observation space:    

 

 

The set of all action histories is the Cartesian product of k-1 copies of the action space U.  

Planning under information space is based on the information state which is always 

known. Iq denotes the initial condition space, the above mentioned known state which 

means the initial state i0, is given, then Iq ε X. At the stage k or time step k, the history 

space at stage k is expressed by the following: 

 

 

With the definition of the observation history and action histories, the definition of the 

history information space is the union of each information stage Ik over all K ε {0} U N 

as the following:   

 

 

Traditional approaches try to use the history information space to estimate the state and 

conduct action based on the estimated state. Now, the planning can be taken in the 

information space without knowing the exact state. The plan can be expressed as 

πt: IU 
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3.4.2 POMDP based DM with Belief state history 

Analyzing the belief history information shows that the compact of Ihist of history 

information space into a derived information space in a compressed form of N, X, or 

results in loss of important information. The consequence is inflexibility for human-robot 

interaction as in the FSM-based approach, incapable of handling any ambiguity as in the 

frame/Bayes/MDP-based approaches, and insufficiency in dealing with uncertainties as in 

the POMDP-based approach. To overcome the shortcomings while retaining the 

advantages of POMDP-based approaches, this paper proposes a modified planning 

strategy as illustrated below.  

 

In this approach, both Ik and I'k-1 are still in the form of belief state, and state updating 

still uses the existing POMDP models. The addition of in the modified approach, 

however, introduces an important element to dialogue management, i.e., the history of 

belief state or the dynamics of belief state. Although the historical information of 

observations and actions is not maintained explicitly in I’k-1, the union IK and l'k-1 in 

above equation diminishes the negative effect of Markov assumption and allows 

POMDP-based dialogue management to plan for actions with not only the current belief 

state but also the updated history before reaching the current state. 
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CHAPTER 4 

 

Previous work on History Information Space and Trend 

Dialogue management is fundamentally a problem of planning under the influence of 

uncertainty. This chapter analyzes the usage of trend information in different fields and 

how those trending information is helping to reduce the uncertainty in the corresponding 

field. Trading strategies are discussed in this chapter. Different techniques used for 

detecting the changes in the trend and at which point are discussed.  Finally an analysis of 

the belief state information in terms of trend used to find the knowledge of the user on 

domain is analyzed. 

4.1 Trend analysis and trading strategy 

This approach consists of three steps, namely partitioning, analysis and prediction. A 

modification of the commonly used k-means clustering algorithm is used to partition 

stock price time series data. After data partition, linear regression is used to analyze the 

trend within each cluster. The results of the linear regression are then used for trend 

prediction for windowed time series data. The approach is efficient and effective at 

predicting forward trends of stock prices. Using our trend prediction methodology, we 

propose a trading strategy TTP (Trading based on Trend Prediction) [40]. 
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4.1.1 Methodology for Trend Analysis 

Data mining approach in this methodology consists of the following steps 

 

Figure 4.1  Schematic view of windowed time series 

1. Initialization. 

Select window lengths ωtr and ωte for training and test data respectively. 

Select a test period. 

Select training period. 

2. Data Mining. 

Create N training series of window length ωtr from training period. 

Normalize each series individually such that the first ωte values of the series fall between 

0 and 1. 

Partition the training data into k clusters, which are represented by their cluster centers. 

We use the k-means clustering to group the training data based on attributes into k 

groups. k > 1 is a pre-specified integer number. 

Classify all the clusters into two distinct classes using a linear regression model [6].A 

model is built based on the last ωtr values of each cluster center. Class “UP” is labeled if 

the gradient is positive and “DOWN” otherwise. 
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3. Test models on test data. 

Form a test series dataset with the window length ωtr . Normalize them individually. 

Consequently, values will fall between 0 and 1. 

Assign a cluster label ci = j to time series i in test data such that cluster j (j =1, 2, · · · , k) 

has the smallest Euclidean distance to the normalized series i. 

Assign the class (“UP” or “DOWN”) of cluster j to time series i, where time series 

i has cluster label j.  

Calculate returns for a selected trading strategy. 

4.2 1-2-3 Trend Change Method 

[41] This method of finding the change in the trend is practiced in the stock market. This 

method can be used where there are not a lot of data are available for mining but still 

needs to draw trend line and find the strategy to analyze the movement of graph.   

The procedure to this method is given below: 

Draw a trend line from the highest high (Point C in the figure 4.2) to the lowest low (A) 

on the chart such that price does not cross the trend line until after the lowest low (point 

1), then follow these steps. 

 

Figure 4.2 1-2-3 Trend change method 

Step 1: Find where price closes above a down-sloping trend line. This is shown in the 

chart as point 1 and a trend line pierce is the first indication of a trend change. 
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Step 2: Price tests a recent low. The recent low is at point A and the test is at point 2. 

Point 2 can be below point A but it must be clear that price is moving up, not continuing 

down. 

Step 3: Price closes above a recent high. I show the high as point B and price completes 

the 1-2-3 trend change method when it rises above B at point 3. The high (point B) 

should be between points A and 2. 

4.3 Frequent Pattern Mining 

Frequent item sets play an essential role in many data mining tasks that try to find 

interesting patterns from databases, such as association rules, correlations, sequences, 

episodes, classifiers, clusters and many more of which the mining of association rules is 

one of the most popular problems. The original motivation for searching association rules 

came from the need to analyze so called supermarket transaction data, that is, to examine 

customer behavior in terms of the purchased products. Association rules describe how 

often items are purchased together. For example, an association rules “beer ⇒ chips 

(80%)” states that four out of five customers that bought beer also bought chips. Such 

rules can be useful for decisions concerning product pricing, promotions, store layout and 

many others 

Let Ʈ be a set of items. A set X = {i1, . . . , ik} ⊆ Ʈ is called an itemset, or a k-itemset if it 

contains k items. 

A transaction over Ʈ is a couple T = (tid, I) where tid is the transaction identifier and I is 

an itemset. A transaction T = (tid, I) is said to support an itemset X ⊆ I, if X ⊆ I. 

A transaction database D over I is a set of transactions over Ʈ. We omit Ʈ whenever it is 

clear from the context. 
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The cover of an itemset X in D consists of the set of transaction identifiers of transactions 

in D that support X: 

cover (X, D) := {tid | (tid, I) ∈ D, X ⊆ I}. 

The support of an itemset X in D is the number of transactions in the cover of X in D: 

Support (X, D) := |cover(X, D)|. 

The frequency of an itemset X in D is the probability of X occurring in a transaction  

T ∈ D: frequency(X, D) := P(X) = support(X, D) / |D|. 

Note that |D| = support ({}, D). We omit D whenever it is clear from the context. 

An itemset is called frequent if its support is no less than a given absolute minimal 

support threshold σabs, with 0 ≤ σabs ≤ |D|.  

4.3.1 The Apriori Algorithm 

The first algorithm to generate all frequent itemsets and confident association rules was 

the AIS algorithm by Agrawal et al. [44], which was given together with the introduction 

of this mining problem. Shortly after that, the algorithm was improved and renamed 

Apriori [44] by exploiting the monotonicity property of the support of itemsets and the 

confidence of association rules. The same technique was independently proposed by 

Mannila et al. [45]. Both works were cumulated afterwards. 

4.3.2.1.1 Itemset Mining 

Assume for simplicity that items in transactions and itemsets are kept sorted in their 

alphabetical order unless stated otherwise. The itemset mining phase of the Apriori 

algorithm is given in Algorithm 1 below. We use the notation X[i], to represent the ith 

item in X. The k-prefix of an itemset X is the k-itemset {X[1], . . . , X[k]}. 
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Figure 4.3 Apriori - Itemset mining 

The algorithm performs a breadth-first search through the search space of all itemsets by 

iteratively generating candidate itemsets Ck+1 of size k +1, 13starting with k = 0 (line 1). 

An itemset is a candidate if all of its subsets are known to be frequent. More specifically, 

C1 consists of all items in Ʈ, and at a certain level k, all itemsets of size k + 1 in Bd−(Fk) 

are generated. This is done in two steps. First, in the join step, Fk is joined with itself. The 

union X ∪ Y of itemsets X, Y ∈ Fk is generated if they have the same k − 1-prefix 
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(lines 20–21). In the prune step, X ∪ Y is only inserted into Ck+1 if all of its k-subsets 

occur in Fk (lines 22–24). To count the supports of all candidate k-itemsets, the database, 

which retains on secondary storage in the horizontal database layout, is scanned one 

transaction at a time, and the supports of all candidate itemsets that are included in that 

transaction are incremented (lines 6–12). All itemsets that turn out to be frequent are 

inserted into Fk (lines 14–18). Note that in this algorithm, the set of all itemsets that were 

ever generated as candidate itemsets, but turned out to be infrequent, is exactly Bd − (F). 

If the number of candidate k + 1-itemsets is too large to retain into main memory, the 

candidate generation procedure stops and the supports of all generated candidates is 

computed as if nothing happened. But then, in the next iteration, instead of generating 

candidate itemsets of size k + 2, the remainder of all candidate k+1-itemsets is generated 

and counted repeatedly until all frequent itemsets of size k + 1 are generated.[44] 

 

4.4 Dialogue Management Approaches Analyzed Upon History 

Information Space 

According to the theory of information space [42], the only information available to a 

decision process at stage K of a dialogue is the history of all observations Yk at that stage 

and the history of all actions Uk-1 that have been taken before that stage. Let Y, U denote 

the observation space and the action space respectively. Given an initial condition η0, Yk 

and Uk-1 are two Cartesian products of observation and action spaces respectively at their 

corresponding stages. 
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If ηo belongs to an initial condition space I0, a history information space is formed as the 

union of I0 and IK = Io x Ú k-1 x ÝK for up to the k
th

 stage. 

 

An information-feedback plan π = (π1, π2,…)  then maps Ihist into a sequence of actions 

µ1, µ2, µ3,…. ϵ U 

π: Ihist             U 

An optimal plan π * maximizes a given stage-additive cost function.  

The history information space includes all the information which is so complicated. In the 

perspective of finding practical solution, it is not easy to manipulate the history 

information space under this complicated information space. In this case, the history 

information space is usually mapped to another derived space by the information 

mapping function to resolve the manipulation problem of the history information space. 

With the derived information space, some information loses result in the 

inappropriateness of the generated policies. In this section, different approaches will be 

discussed with the corresponding information mapping method upon the history 

information theory.  
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4.5 Analysis of history information space in dialogue 

management approaches with trend information 

This section analyzes the belief state information generated by the POMDP model on 

each turn and extracts trend from the data.  Information space informally speaking is the 

space contained all the observations have been obtained, all the actions have been taken 

by the agent and the initial state. This space linearly grows with the new observation 

obtained and the actions applied. The way of manipulating this space has been divided 

mainly to three methods: traditional approach, nondeterministic approach and 

probabilistic approach. Under each approach, lots of strong assumptions have been made 

to make the method sufficiently generate policies. The main dialogue management 

approaches except for POMDP-based approach will be analyzed upon dialogue history 

information space in terms of trend. 

In section 4.3 dialogue management approaches is analyzed with history information 

space. The history information has the condensed form of the observation and action 

histories at the point K. This space has no information about the user’s activity and about 

their belief from the point 0 to K.  

In Section 4.1, 4.2 we have discussed about the trend analysis which seeks out and 

examines systematic historical patterns in financial statements or other quantitative data.  

Such analysis of data over time can vary from primarily descriptive techniques to more 

complex cause-and-effect methods. Trend analysis usually involves choosing one fiscal 

period as a base period and then expressing subsequent quantities as a percentage of the 

data associated with this base period.  In the case of stock, changes in all items could be 

assessed in relation to the base period.  Significant changes can then be investigated 
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further.  Note that trend analysis can be performed to determine changes in the number of 

physical units.  

Trend analysis is valuable when one wants to use historical data to predict future values 

or to calculate expected values for comparison to actual current values. Trend analysis is 

also useful for identifying unexpected variances that may indicate strategic or operational 

changes or entity weaknesses worthy of additional exploration and analysis.  

 

4.6 Conclusion 

In this chapter, we discussed briefly about the methods used to analyze the change in 

trend with small amount of data and also the dialogue management approaches analysis 

with history information space. This chapter also discusses about the belief history 

information loss in the information space which is useful for making decision based on 

the user’s activity. From the literature, it is evident that the issues and limitations of both 

the research areas are still remaining unsolved. As the coin has two sides, each approach 

has its own drawback to be taken care of in future. 
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CHAPTER 5 

 

The Proposed Method 

This chapter gives a detailed explanation about the contribution of this thesis. Dialogue 

management is fundamentally a problem of planning under the influence of uncertainty. 

This chapter first uses the theory of information space to examine the POMDP-based 

approach of dialogue management, and then proposes a new approach for better 

recognition of user intention using the trend of belief state history and predicting next 

user belief state. The advantages of the new approach will be demonstrated with 

experiments in the next chapter. 

5.1 Shortcoming with the Current Models 

 The POMDP-based approach avoids the need to estimate system state by using a set of 

probability distribution over belief state in the planning process. Together with the action 

at the K
th

 stage, previous belief state, the system uses new observations to update the 

belief state and plans for action at the next stage. In the process, the state of the system 

and the user is hidden in the information space. As defined in Eq. 3 for the flat model and 

Eq. 4 for the factored model, history information state is mapped to a probability 

distribution over the unknown system state. As this conversion is based upon on the 

Bayes filter theory, which in turn is under the Markov assumption, the POMDP-based 

approach plans for actions with only the current belief state, which is clearly illustrated in 

the b elements in both Eq. 3 and Eq. 4. 
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In POMDP models, actions Am at the previous stage lead to observations probability Z at 

the Kth stage, which corresponds to the Cartesian product of U k-1 x Y k in Ik. It is a 

simplification of Ihist into Ik, resulting a complete loss of history information, including 

changes in belief states, series of observations, and sequences of actions. The simplified 

version of Eq. 4 uses the following formula. 

 

Equation 5 Simplified version of eq: 4 

 

Planning with POMDP models is better than all the other existing approaches as it does 

not rely on estimated system state, and is able to handle input uncertainty. However, the 

elimination of I0 U I1 U I2 U I3 U…. Ik-1 from Ihist makes it impossible to trace changes in 

belief state and to retrieve the historical information of observations and actions. In other 

words, belief state is a static probability distribution over the current system state only. 

As a consequence, the POMDP-based approach is unable to deal with uncertainty in 

belief state itself, which corresponds to uncertainty in either user's actions or the 

observation of user's actions.  

In a another perspective, the POMDP-based dialogue management approach only models 

the user's goal or it can be considered as a user modeling rather than a task modeling or 

machine state modeling. Although, when dealing with the observation uncertainties and 

action uncertainties, the POMDP-based approach outperforms than other approaches. 

This advantage is even more obvious when the error rate of the input is high. The 

POMDP based approach tries to listen correctly at its best. While, what if the user's goal 
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it's trying to listen is not correct itself at the beginning? The task will finally end up with 

the failure although DM listens correctly. Usually the dialogue systems make a 

assumption that the user can always answer the questions from the agent. However, in the 

real life condition, the user is always lack of domain knowledge and provides 

unreasonable information to the agent. This situation will be worst when the user can not 

actually understand the question generated by the agent. If the dialogue management 

approaches only models the user without its own domain knowledge level inference, the 

task cannot achieved. In the process of the human computer interaction, if the computer 

can appropriately influence the user and guide the user, the task is more probably to be 

achieved. 

5.2 Change-Point Analysis for Detecting Changes in trend 

Change-point analysis is a powerful new tool for determining whether a change has taken 

place.  It is capable of detecting subtle changes missed by control charts.  Further, it 

better characterizes the changes detected by providing confidence levels and confidence 

intervals.  When analyzing historical data, especially when dealing with large data sets, 

change-point analysis is preferable to control charting.  A change-point analysis is more 

powerful, better characterizes the changes, controls the overall error rate, is robust to 

outliers, is more flexible and is simpler to use.   

There are numerous approaches to performing a change-point analysis.  The one used in 

this paper has been implemented in Taylor [43]. The procedure used by Taylor [43] for 

performing a change-point analysis iteratively uses a combination of cumulative sum 

charts (CUSUM) and bootstrapping to detect the changes 
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Bootstrapping results in a distribution free approach with only a single assumption, that 

of an independent error structure.  Both control charting and change-point analyses are 

based on the mean-shift model.  Let X1, X2, ... represent the data in time order.  The 

mean-shift model can be written as  

Xi = i + i 

Where i is the average at time i.  Generally i = i-1 except for a small number of values 

of i called the change-points.  i is the random error associated with the i-th value.  It is 

assumed that the i are independent with means of zero.  [43] Provides a procedure for 

detecting a departure from this assumption. Once a change has been detected, an estimate 

of when the change occurred can be made.  One such estimator is the CUSUM estimator.  

Let m be such that: 

 

|Sm|  =   

 

5.3 Belief State trend analysis - The proposed work 

This section discusses the existing POMDP models with the limitations and the summary 

of the methods and terminologies involved in my proposed frame work. This section also 

contains the mathematical derivations and algorithmic approach to discuss my proposed 

work.  

5.3.1 Method description  

As discussed in the chapter 3, POMDP models are problem of planning under 

uncertainty. In order to improve the efficiency of the POMDP models, the uncertainty 
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about the environment has to be reduced by providing the maximum information that can 

be prepared, In POMDP-based approach for dialogue management machine state is 

calculated with the observation and transition probability distribution defined in the 

domain as POMDP specification. The dialogue management agent should be given 

adequate information about the environment to make better decisions against the world. 

The information focused in this thesis is the user activity, knowledge and intention. 

In section 4.4 dialogue management approaches analysis with history information space 

states that the Cartesian product of information at all the time or all the point till k are 

carried but in the condensed form. This let to loss of information related to the belief 

history. Belief history is the only evidence as how the user had conversed. Condensed 

form of information which is Ihist drops belief history in turn user’s activity. Recording 

the user’s activity will led to the decision making related to particular user not in a 

generic way as the dialogue management with just the POMDP model mentioned. 

Though all the POMDP techniques have better approach by overcoming issues of the 

previous models, they have their own limitations. As evident from the literature, it is 

clearly know that these approaches fail to handle uncertainty and predicts the real-world 

state as static. And the decision made by the machine depends only on the current state 

alone in long- term and short-term goals. These models were developed to handle 

extremely large systems with millions of dialogue state and complex applications but 

none of the models concentrate to overcome the POMDPs natural property of predicting 

static belief states. 

To provide innate interaction between the human and machine, it is always intelligent to 

equally concentrate more on both the technical and decision making mechanism. The 
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machine should be trained to handle random situations and able to hold overall control of 

the system in order to provide a more natural way of service to the users. We have 

proposed a framework to provide a dynamic system by modifying the POMDP model 

and integrating Contextual Control Modes for dynamic decision making mechanism by 

analyzing the user’s activity and inferring their knowledge in the domain and the user’s 

goal stability in terms of trend in the belief history on all the states 

We have made two contributions in this thesis. First, we have analyzed the belief history 

in terms of trend to infer the user’s activity and extract the rate of change in the trend 

which in turn indicates the significant change in user’s intention and making the decision 

accordingly. And also customized the mathematical evaluation of POMDP model 

depending upon the framework proposed. Second, we have incorporated Contextual 

Control Modes in Dialogue Management to handle the decision making mechanism in the 

dialogue manager. 

5.3.2 Modified POMDP Approach with belief trend 

Analysis in the previous subsections shows that the compact of Ihist of history information 

space into a derived information space in a compressed form of Ik results in loss of 

important information. The belief states B’(s) calculated for every iteration and the action 

Am is chosen from the set of actions against the environment. To overcome the 

shortcomings while retaining the advantages of POMDP-based approaches, we propose a 

modified planning strategy as illustrated below. The modified approach concentrates on 

the belief state values and these values are recorded for analysis. This information is 

stated as belief history Bhist of a user. 
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Bhist =   B0 X B1 X B2 X....... Bk 

Equation 6 Belief history 

 

B0 is the initial belief calculated by the POMDP model when the agent initiates the 

conversation with the user. B1, B2 ..Bk  are the belief calculated in the subsequent iterations.  

Referring to the equation derived in the section 4.2   

IK = Io x Ú k-1 x Ý k 

The above equation represents the only action history, observation history and initial 

information available in the space. Now along with the belief trend information the 

equation is derived as follows 

Ik = Io x Ú k-1 x Ý k  x T`k 

Equation 7 Derived equation with belief trend information 

 

Where T`k  =  Trend( Bhist ) 

In the equation 7 T`k   is the trend information available with Bhist up to k
th

 point.  

An information -feedback plan π = (π1, π2, π3, π4..…) then maps Ihist in to a sequence of 

actions µ1, µ2, µ3, µ….. ϵ Ú 

π 
T` : I 

T`
hist 


 U 

Equation 8 Optimal plan with belief trend 
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Where I 
T`

hist  is the history information space with belief trend up to the k
th 

stage. π 
T  

is 

the optimal plan with belief trend information π 
T`

* maximizes a given stage-additive 

cost function. 

In the new approach, T` is referred as the belief trend information which is evaluated with 

the history of belief states Bhist up to the current stage.  Belief states are recorded every 

iteration and analyzed for trend which is referred as belief trend are added to the previous 

information available in the information space. The addition of T`  in the modified 

approach, i.e trend information about the belief history or the dynamics of the user’s 

activity. The trend of belief history is added along with the observation and action history 

information which are considered already in the in the information space. 

The equation derived in Eq: 6 diminishes negative effect of Markov assumption and 

allows POMDP-based dialogue management to plan for actions with not only the current 

belief state but also the updated trend of belief history before reaching the current state. 

After every user action which is observation by the POMDP model agent, belief is 

calculated by the agent and these values are recorded and mining is done with the current 

belief and trend T`  is estimated  by the agent with the belief history till that current stage.   

The trend information about the belief history reveals the information on user’s activity 

with the conversing agent as belief are calculated by the agent at every stage depending 

upon the conversation which are the user’s action. This implies that the analyzing the 

user’s activity can be done with the agent’s belief trend history at any stage. This reduces 

the uncertainty caused due to particular type of user.  

The uncertainties that the original POMDP-based approaches fail to handle are mainly 

rise from situations in which the agent cannot differentiate the type of users and different 
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modes to treat them to achieve their goal. Every user has different level of knowledge 

about the domain and different strategy of approach to reach their goal. User with higher 

level of knowledge about the domain shouldn’t be treated same as the user who has lesser 

level of knowledge. The rate of change in the user intention indicates the user’s 

knowledge about the domain. The rate of change in the user’s intention can be observed 

from the rate of change of trend in belief history.  

Depending upon the belief trend, one of the four modes discussed in section 3.6 from 

COCOM is chosen to handle the particular type of user. This switching mode let the 

POMDP model to choose a complete different policy to treat the particular user. This 

helps the agent to make decisions dynamically with the user’s activity choosing different 

policy at different stage. This reduces uncertainty about the user knowledge and helps the 

agent to treat high level knowledge user to achieve their goal in short time also lesser 

level knowledge user to achieve the goal independent of the time factor with detailed 

explanations about the domain. In precise different actions are made by the agent 

depending upon the world. This modified approach led the agent to choose the optimal 

policy depending upon the user. Thus, this approach concentrates not only the immediate 

reward but also on the significant increase in the future reward using different policies on 

different modes. 

The figure 5.1 shown below is the architecture of the POMDP based dialogue 

management system with our modified approach, in which direct flow from state 

estimator to policy is broken and the belief state at every stage is recorded into the belief 

data store. Every time state estimator updates the belief state, it signals trend analyzer to 

generate the rate of change of trend in the belief history of the current user. The recent 
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changes in the belief trend determine the mode of operation which in turn selects the 

optimal policy π 
T
 that takes suitable action on the environment. 

 

Figure 5.1 Architecture of the proposed approach 

The next predictor module analyzes the belief history of all the users interacted with the 

dialogue management system and predicts the next belief state using the frequent pattern 

mining technique. 

This technique is compared to the naturalistic decision making model. The belief pattern 

exist in the belief history of a particular user are analyzed with the pattern in the memory. 

The predicted next belief state with the confidence is send to the trend analyzer. It then 

finds the rate of change of belief trend that chooses the mode M accordingly which in 
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turn selects the policy. The selected optimal policy π 
T` 

maps the belief and the action to 

execute on the environment. 

 The structure of the proposed system has 4 basic components they are: dialogue 

interface, I/O controller, dialogue manager and knowledge base. The proposed system is 

plugged into the dialogue manager. It has trend analyzer and predictor component which 

processes the belief values and selects the policy corresponding to the mode derived by 

the analyzer. Dialogues are generated by the I/O controller based on the policy chosen by 

the policy selector subcomponent. 

 

Figure 5.2 Structure of the proposed diagram 
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Figure 5.3 Flow chart of the proposed work 
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1. New_proposed_Method ( Bel(s), o, a ) 

2.  FOR ALL s DO 

3.                 Bel’(s)   

4. IF  Bel’(s)  < 0.05 

5.    Delete Bel’(s) 

6.    CONTINUE 

7.  Bel_history = Append_to_belief_history( Bel’(s) )  

8. Bel_precdicted, Prediction_Confidence = Predicted_next_state (Bel_history ) 

9. Bel_trend_roc = Get_ROC_belief_trend (Bel_history , Bel_precdicted, 

Prediction_Confidence  ) 

10. COCOM_mode = Select_mode (Bel_trend_roc ) 

11. IF COCOM_mode =strategic 

12.                Machine_next_action = Select_policy (policy_startergic, Bel’(s)) 

13. ELSE IF COCOM_mode =tactical 

14.       Machine_next_action = Select_policy (policy_tactical, Bel’(s)) 

15. ELSE IF COCOM_mode =opportunistic   

16.              Machine_next_action = Select_policy (policy_opportunity, Bel’(s)) 

17. ELSE IF COCOM_mode =scrambled 

18.               Machine_next_action = Select_policy (policy_scrambled, Bel’(s)) 

19. RETURN Machine_next_action 

 

20. Predict_next_state (Bel_history ) 

21. Bel_predicted = Frequent_Pattern_Mining(Bel_history) 

22. Prediction_Confidence = Get_Predicted_Confidence ( Bel_predicted ) 

23. RETURN Bel_predicted, Prediction_Confidence 

Figure 5.4 Pseudo Code   of Modified Approach 
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In the pseudo code the Bel(s), o and a are the inputs to the proposed method.  Bel(s) is the 

previous belief state of the last stage, o is the latest observation and a is the last action 

taken by the machine. By recording the previous belief state, the belief state will be 

updated based on the POMDP theory and for all the belief states with possibility less than 

0.05. The other belief states are stored in the belief store calling function 

Append_to_belief_history (). The updated belief history is sent to the 

Predicted_next_state () function to get the predicted next belief state using frequent 

pattern mining along with the confidence. The results of the prediction are sent to the 

trend analyzer to get the rate of change in the belief trend calling the function 

Get_ROC_belief_trend (). Rate of change of the belief trend is used to select one of the 

COCOM modes.  Select_policy () in turn select the optimal policy with Bel’(s). Every 

policy is mapped to a machine action i.e. Machine_next_action which is returned by our 

proposed method to execute against the environment. In the algorithm it is clearly 

mentioned that the program runs for all the states which is the number of count of states 

specified in the POMDP file N. Thus the time complexity calculated to run the proposed 

algorithm is O (N). 
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CHAPTER 6 

Experiments and Discussions 

In this chapter, the domain background applied in our case study will be introduced first 

and the implementation platform, utilized tools and corresponding details will be 

explained after. The results for the Belief Trend Analysis and prediction are explained 

first to understand the efficient trend induction to the POMDP mode for intention change. 

Finally, the results under different possible scenarios, analysis of the outcome and 

comparison with the baselines will be given. At the end of this chapter, the results under 

three scenarios and results analysis will be given.  

6.1 Applied Domain Background 

6.1.1 Ontology-based requirement model 

A frame-based dialogue system is developed by Xieshen Zhang in his thesis 

“PROPOSED ONTOLOGY-BASED REQUIREMENT MODEL” which takes the 

instantiated ontology model as knowledge base. It is applied to elicit users’ demands 

through human-machine interaction. Though to maintain the completeness and 

consistency of the customized requirements is very complicated and requires ontology 

reasoning, interactions for requirement elicitation are actually a group of slot-filling 

tasks. Questions such as whether users need a specific requirement will be proposed by 

the machine, and users will respond with their decisions on the very requirement. 

Therefore, users know what they are going to do and how it is going to be done, which 

means the requirement elicitation process can be modeled as a set of slot-filling subtasks, 

while the utterances, slots as well as value options for each slot will be retrieved from the 
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knowledge base, hence a framed-based dialogue system is capable of handling the 

interactions for requirement elicitation, in spite of its limited communication ability. 

Fig. 6.1 depicts the interface of the dialogue system proposed by implemented by [49] 

Xieshen Zhang. It is divided into three parts. The utterances generated by the dialogue 

manager are displayed in the upper left textbox. Users can type their response in the 

lower left textbox. Meanwhile, the three lists on the right side contain the selected, 

dropped and to-be-evaluated requirements respectively. 

 

Figure. 6.1: Interface of the proposed dialogue system 

An online book shopping system is used as cases study in Zhang’s [49] this research. The 

structure of a typical but simplified online book shopping system is illustrated in Fig. 6.2. 

There are basically four modules: book locating, cart management, account management 

and order placing. Book locating module is responsible for book searching and retrieving 

book information; cart management module provides a list where users can save the 
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references of the books they want to buy; account management module manages users’ 

personal, delivery and payment information; order placing module gathers information 

such as shopping list, payment, delivery, and total price, and helps users to place the 

order. It is assumed that account management is not necessary for an online book 

shopping system. Users can specify necessary information for each purchase without 

having it saved in the online bookstore. 

 

Figure. 6.2: Functionalities of an online book shopping system 

6.1.2 Implemented Domain overview 

Domain knowledge from Zhang’s [49] method is partially used in our experiment based 

on a simulated situation in which an agent provides assistance to users in need of 

software to manage online book shopping. Software is an integration of different smaller 

modules developed to perform specific tasks. The smaller modules can be used 

independently with the base module or dependent to other modules which all together 

built to the base module. In the online book shopping domain, we have 6 software 

modules and every software module is dependent of each other. They are customized 
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with Locate a book, List of relevant books, Advanced Search, List of book references, 

locate a book, Get detailed info a book, Book publication info and get publication info. 

The user is allowed to select any module to build the software with the modules needed.  

The user is not expected to have the domain knowledge and may make unreasonable 

request. The user, however, is expected to be rational who is ready to change the goal 

after an explanation by the agent. For any software to construct the user has to select 

different modules which are integrated together and form complete software. It is 

assumed that the software constructed with any one of the 6 customizations as mentioned 

below. 

 

Figure 6.3 Software requirement customization 
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The user is allowed to choose the modules in any order to construct the software. Eg: As 

mentioned in Software requirement customization the user might choose Get publication 

info Book publication info  Reference to a book or Book publication info 

Reference to a book  Book publication info or the any other way. When the user goal 

is straight and the user has domain knowledge, the change in the intention of the user will 

be less which is determined by the change in the trend of belief state by the machine. This 

user will be considered to have domain knowledge and treated with strategic mode. 

Where in the explanation are short and technical words to explain. Pre- evaluations of 

modules are not done to save the overall user time to get the software customization task 

done. Scrambled mode is adapted when the change in the user intention is higher 

compared to that of the total transactions. 

6.2 Implementation setup  

Experiments are programmed in Eclipse IDE with Java 1.6. The setup also needs a Linux 

machine to generate alpha file from POMDP file using a POMDP solver. In this section 

the detail implementation and experimentation results of the Belief trend analysis and 

prediction is done to find the rate of change in the intention of user, thereby choosing the 

appropriate mode of operation. And also the techniques are discussed, analyzed and the 

results are shown. There are six main implementation required for this analysis: 

 Agenda -based User behavior Simulator 

 Belief History dataset generation 

 POMDP Problem Specification 

 POMDP Dialogue Management System - Ontology integrated 

 ROC of User Intention with Belief Trend Analysis 
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6.2.1 Agenda -based User behavior Simulator 

This section discuss about the simulator which does the simulation of user behavior based 

on agenda created. Agenda acts as a user goal at a particular point. Actions are taken 

based on the agenda.  

6.2.1.1 User Simulation-Based Training 

In recent years, a number of research groups have investigated the use of a two-stage 

simulation based setup. A statistical user model is first trained on a limited amount of 

dialogue data and the model is then used to simulate dialogues with the interactively 

learning DM [50]. The simulation-based approach assumes the presence of a small 

corpus of suitably annotated in-domain dialogues or out-of-domain dialogues with a 

matching dialogue format. In cases when no such data is available, handcrafted values 

can be assigned to the model parameters given that the model is sufficiently simple but 

the performance of dialogue policies learned this way has not been evaluated using real 

users. 

6.2.1.2 User Simulation at a Semantic Level 

Human-machine dialogue can be formalized on a semantic level as a sequence of state 

transitions and dialogue acts. At any time t, the user which is in a state S takes an action 

au, now the transaction of state in to the next state which is intermediate state S’. Now the 

user receives a system action am, and transactions into the next state S ‘’ here the cycle go 

again right from the state S thus restarts.  
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Assuming a Markovian state representation, user behaviour can be decomposed into three 

models: P(au|S) for action selection, P(S’|au,S) for the state transition into S’, and 

P(S’’|am,S’) for the transition into S’’. 

6.2.1.3 Goal- and Agenda-Based State Representation 

Agenda-based methods to dialogue management (Wei and Rudnicky, 1999) this approach 

describe here factors the user state into an agenda A and a goal G  

S = (A, G) and G = (C, R) 

 During the course of the dialogue, the goal G ensures that the user behaves in a 

consistent, goal-directed manner G consists of constraints C which specify the require 

venue, eg. a centrally located bar serving beer, and requests R which specify the desired 

pieces of information eg. The name, address and phone number the user agenda A is a 

stack-like structure containing the pending user dialogue acts that are needed to elicit the 

information specified in the goal. At the start of the dialogue a new goal is randomly 

generated using the system database and the agenda is initially populated by converting 

all goal constraints into inform acts and all goal requests into request acts. A bye act is 

added at the bottom of the agenda to close the dialogue. 

6.2.1.4 User Act Selection 

At any time during the dialogue, the updated agenda of length N contains all dialogue 

acts the user intends to convey to the system. Since the agenda is ordered according to 

priority, with A[N] denoting the top and A[1] denoting the bottom item, selecting the 

next user act simplifies to popping n items off the top of the stack. Hence, letting au[i] 

denote the ith item in the user act au. 
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Agenda-based user simulator is used to select the user goal and communicate with the 

POMDP-based dialogue management system and performs the action. This simulator is 

made to run N number of times specified in the configuration. Belief states are generated 

which are recorded for every iteration and also for every user. These belief states are 

stored in the repository and they are finally used for the frequent pattern analysis. 

6.2.2 Belief History dataset generation 

This ontology integrated POMDP-based system is implemented in such a way that the 

belief of the machine’s state is recorded at all the iterations. The belief recorded will have 

the machine’s belief calculated with all the attributes at that stage. Below is the sample 

CSV file which has the belief history data that is used to extract the ROC of user’s 

intention by calculating the ROC of belief trend. 

 

 Steps to prepare dataset for analysis: 

 Run the agenda-based simulator programmed in Java using command line options 

as follows 

pomdp_tool project.pomdp.dialoguesimulation.problemsim.PomdpModelCus  

"\qa-dialogue-simple-swCustomization_strategic.POMDP"  

"\qa-dialogue-simple-swCustomization_strategic.alpha"  

 "\qa-dialogue-simple-swCustomization_tactical.POMDP"  

"\qa-dialogue-simple-swCustomization_tactical.alpha"  

"\qa-dialogue-simple-swCustomization_opportunistic.POMDP" 

"\qa-dialogue-simple-swCustomization_opportunistic.alpha"  

"\qa-dialogue-simple-swCustomization_scrambled.POMDP" 

"\\qa-dialogue-simple-swCustomization_scrambled.alpha"  1000 

 



Chapter 6 Experiments and Discussions                     

67 

 The simulator uses the POMDP and alpha file to calculate the belief state at every 

stage. 

 The agenda-based simulator picks up the random goal and uses the corresponding 

agenda to achieve the user goal. 

 The user goal can be changed randomly for any user or it might not be, this 

property makes the user different from one another. 

 Belief state values are recorded and data set is stored in the local file system 

which is shown below. 
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Figure 6.4 Agenda-based simulator run of 1000 users 

The figure 6.4, above shows the performance analysis report of the POMDP-based 

dialogue management system with belief trend. The simulation output shows that on run 

for 1000 users and the total dialogue turns found to be 402. The average turns for every 

user is 4. The average reward gained every run is 10.0. Standard deviation is calculated to 

0.8944 with 95% confidence. 
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. 

A1 A2 A3 A4 A5 A6 A7 A8 

1 0 0 0 0 0 0 0 

0.05 0.28 0 0.4 0.27 0 0 0 

0.18 0.14 0.18 0.18 0.18 0.04 0.04 0.04 

0.17 0.15 0.18 0.18 0.18 0.05 0.05 0.05 

0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

0.12 0.14 0.16 0.15 0.12 0.21 0.05 0.06 

0.16 0.14 0.17 0.16 0.16 0.07 0.07 0.07 

0.06 0.29 0 0.05 0.07 0.41 0.04 0.08 

0.05 0.27 0 0.3 0.2 0.04 0.09 0.04 

0.09 0 0.51 0.06 0.12 0 0.09 0.13 

0.16 0.14 0.17 0.17 0.17 0.06 0.06 0.06 

0.15 0.14 0.17 0.19 0.14 0.12 0.04 0.05 

0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

0.12 0.14 0.16 0.15 0.12 0.21 0.05 0.06 

0.16 0.14 0.17 0.16 0.16 0.07 0.07 0.07 

0.09 0 0.54 0.07 0.11 0 0.07 0.12 

0.08 0.36 0 0.05 0.11 0.22 0.07 0.11 

0.03 0.2 0 0.03 0.05 0.59 0.04 0.07 

0.06 0 0.43 0.04 0.09 0 0.15 0.23 

0.05 0.27 0 0.32 0.21 0.04 0.07 0.04 

0.08 0.36 0 0.05 0.11 0.22 0.07 0.11 

0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

0.07 0 0.53 0.06 0.1 0 0.08 0.15 

0.06 0.26 0 0.34 0.23 0.03 0.06 0.03 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

 

Table 6.1 Sample Belief recorded data 

 

6.2.3 Dataset Analysis in Weka 

Belief dataset generated are converted into two different classes TRUE and FALSE by 

analyzing the trend at every stage. The significant change in trend is marked as TRUE 
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and which doesn’t have the significant change are marked as FALSE. This trend analysis 

is done using change point analysis for detecting trend change discussed in the section 

5.2. This analysis creates another set which has two classes as show below. 

 

A1 A2 A3 A4 A5 A6 A7 A8 

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE 

FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE 

TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE 

FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE 

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE 

FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

Table 6.2 Belief states values mapped to trend change indicator values 

 

The obtained dataset is analyzed in the weka, a machine learning tool is used. The dataset 

is divided into 66% used as training set and 34% as test set. The result of classifying the 

dataset using J48 pruned tree is summarized below. Correctly classified instances         

count is 483 which are 97.9716 % and incorrectly classified instances count 10 which are                

2.0284 %. This result is shown in the confusion matrix below in the figure 6.5 

 



Chapter 6 Experiments and Discussions                     

71 

 

Figure 6.5 Dataset is validated in weka using J48 decision tree classifier 
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6.2.4  POMDP Problem Specification 

In this section, we discuss about the problem specification of software customization 

domain in a POMDP file in the format of Tony Cassandra [7] and the dialogue 

specification parser [6] which is developed by Trung H. Bui, Dennis Hofs and Boris van 

Schooten at the Human Media Interaction research group of the University of Twente are 

used. Tony Cassandra file is the input POMDP file format which can be processed by the 

POMDP solver. It's the formal problem specification file which encoded the domain 

problem under the defined syntax and semantics. Tony Cassandra POMDP specification 

file must start 5 lines which specify the discount value, states, actions and observations at 

the beginning. The Fig 6.1 shows starting 5 lines definition. The order can be in any 

sequences and all of them must precede specifications of transition probabilities, 

observation probabilities and rewards. The transition possibilities can be specified in the 

following format: 

T:  <action>  : <start-state> : <end-state>  %f 

and observation probabilities are specified in a little similar way with transition 

probabilities in following format:  

O  :  <action> : <end-state> : <observation> %f 

The reward model are specified in this 

R: <action>  : <start-state> : <end-state> : 

<observation>  %f format. For any of the entries appeared in the above, an asterisk * for 

either < state >, < action >, < observation > indicates a wildcard which means this item 

will be expanded to all existing entities.  
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discount: %f 

values: [ reward, cost ] 

states: [ %d, <list of states> ] 

actions: [ %d, <list of actions> ] 

observations: [ %d, <list of observations> ] 

Figure 6.11: Tony Cassandra POMDP Specification File Starting Line 

In the simulated situation software customization, the POMDP file format is designed 

based on the experiences and domain knowledge. There are 8 machine states specified 

and user may take 7 kinds of actions which are observations to the machine. The system 

can perform 13 types of actions. The discount value is 0.95 in this experiment. With this 

entire specification POMDP file is created. 

The POMDP solver adopted in this experiment is 'pomdp-solve'[48]. This program solves 

problems that are formulated as partially observable Markov decision processes, a.k.a. 

POMDPs. It uses the basic dynamic programming approach for all algorithms, solving 

one stage at a time working backwards in time. It does finite horizon problems with or 

without discounting. It will stop solving if the answer is within a tolerable range of the 

infinite horizon answer, and there are a couple of different stopping conditions (requires a 

discount factor less than 1.0). Alternatively you can solve a finite horizon problem for 

some fixed horizon length. For our experiment, among the implemented POMDP 

solution algorithms, we have used Two Pass which is selectable with command line 

options. This POMDP solver is used to generate the alpha file. This alpha file has the 
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solved policy which POMDP model will used by POMDP model. POMDP solver is 

installed in Debian Linux environment. 

 

Figure 6.6 Command line usage of POMDP solver 
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Figure 6.7 alpha file generation using POMDP solver 
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Figure 6.8 one of the POMDP files used 

The above mentioned POMDP file is used to generate the alpha file which is shown 

below in the figure 6.9. 
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Figure 6.9 Alpha file generated by POMDP solver 

Thus, POMDP solver is used in the command line with specifying the time limit to run 

every epoch with -time_limit. -pomdp to pass the argument of the POMDP input file to 

generate the alpha file. POMDP solver took 88 turns to generate the alpha file in total 

taking 0.22 secs, writing the alpha with the POMDP file in the location mentioned with 

the option -o in the command line execution. There are 4 POMDP files generated with 

different values in the specification in the same above mentioned procedure. One set of 

POMDP file along with corresponding alpha file is used one particular mode of operation 

as mentioned in the proposed work [Strategic, tactical, opportunistic, and scrambled].  
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6.2.5 ROC of User Intention with Belief Trend Analysis 

This module has the implementation of the applying the A-Priori algorithm on the belief 

data history of all the users used the application. The frequent patterns of all the belief 

history are compared to the current pattern of belief. The next pattern to the maximum 

frequency is predicted with confidence.  

This section also discusses about the implementation of the analysis of trend in the belief 

history generated in the previous module. Change point analysis discussed in the 

proposed work section 5.3 is the technique used to find the points that has change in the 

trend of the whole history. Finding the points with confidences, ROC of change in trend 

in the whole history of belief space of the current user and the proposed algorithm is 

applied. Depending upon the ROC of belief trend the user’s intention will be evaluated in 

each turn. One of the four modes in COCOM is chosen to select the corresponding 

policy. Action is chosen against the environment by the POMDP model. The action is 

parser and sent to the ontology integrated module to customize the chosen software. 

 

Figure 6.10 sample belief state value graph 
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The below figure 6.11 shows the graphical user interface of the proposed dialogue 

system. This has the observations in the left of the panel. In the middle the user-agent 

interaction history are shown. In the right of the interface window, belief state graph is 

show which updates for every iteration between user and the agent. 

 

Figure 6.11 Interface of the proposed dialogue system 
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Figure 6.12 Belief data trend graph 

 

6.3 Experiments and Results 

During the dialogue, the agent may take 12 different actions labeled as for example hello, 

SelectLocateBook, SelectListOfReferences, SelectGetBookContents etc. for conversation 

in the natural language. These actions are taken by the machine against the environment 

based on the observation by the machine from the user. Every software requirement is 

customized with a goal in the user’s mind and this is called user’s intention. At each 

selection of software requirement, belief of the user on a particular package is updated 

i.e. the probability of choosing the package requirement will be increased and finally. For 

the purpose of testing, three different scenarios are used to examine the performance of 

the original and the modified POMDP-based approach with trend analysis and prediction 

thereby choosing the mode that treats the user in cases with or without change in user 

intention. 

To compare the experimental results with the previous and existing approaches of 

POMDP, we have used a toolkit known as POMDP Toolkit developed by Bui in 2007 to 
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carry out experiments and analyze the results of the POMDP dialogue manager [Tool07]. 

Then we have to parse the specification file to generate a canonical POMDP file in Tony 

Cassandra's format. We also have installed a solver in order to create an alpha and policy 

graph file. The solvers mentioned in the toolkit are ZMDP and Perseus. In these solvers, 

we have create alpha and policy graph files separately. For time consuming and accuracy, 

we used a different solver known as pomdp-solver, as it creates both the alpha and policy 

graph files in single execution. We have used this policy graph file for comparing our 

results with existing POMDP based dialogue management systems. 

We have tested our proposed system using software requirement customization domain. 

We have done several experiments to test our system on considering five cases. 1) The 

user picks up a goal and achieves it with valid input in both traditional based POMDP 

dialogue management system and with proposed system. 2) The user picks up a goal and 

changes it on different stages before achieving it. This is demonstrated in case 2, 3 and 4.  

3) The user continues with the previous scenario and achieves the user goal again using 

valid inputs to the agent with domain knowledge. The detailed description of the cases 

and the results are described below. The discussion on the result is done in the section 6.4 

 

Case 1: In the first scenario, the user picks up a goal say choosing the software 

customization #4 with three modules “Locate a book”, “Reference to a book” and “List 

of Relevant Books”. This package is a valid one and the user in this scenario is assumed 

to know this information. This requirement is as shown in the figure 6.3 software 

customization #4. 
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Figure 6.13 User interface Scenario #1  
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Figure 6.14 Console output for scenario #1 

In the above console output it is shown that the dialogue manager stays at strategic mode 

for the whole process as the user’s intention has not been changed.  True and false 

represents the trend change status of user’s goal with the corresponding attribute. 

 

Case 2: In the second scenario, the user picks up a goal of choosing the software 

customization #3 with three modules “Advanced Search”, “List of Relevant Books” and 

“List of book references”. The user changes the goal after choosing “Advanced Search” 

and “List of Relevant Books” in the software customization #3 to Software requirement 

customization #6 “Get publication info”, “Reference to a book”, “Book publication info”. 

The change in the user goal shows significant change in the user’s intention and the belief 
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trend analysis finds the change in the intention and change the mode from strategic to 

tactical as shown below. 

 

Figure 6.15 User interface Scenario #2 

 

 

Figure 6.16 Console output for scenario #2 
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Figure 6.17 Belief data trend graph scenario #2 

The above graph shows the belief values plotted for the current user involved in the 

scenario #2. 

Case 3: In the scenario #3, the user picks the goal of customizing requirement #3 and 

selects locate a book then it selects select reference to a book in requirement #3 after 

choosing 2 modules the user changes goal to requirement #4. Finally the user changes the 

user goal for the 3rd time in the conversation choosing requirement #5.  
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Figure 6.18 User interface Scenario #3 

Figure 6.19 Output Console Scenario #3 
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Case 4: In this scenario, the user continues from the case 3 and changes the user goal 

from requirement #5 and to requirement #4 choosing reference to a book and locate a 

book modules. 

 

Figure 6.20 Output Console Scenario #4 
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Figure 6.21 User interface Scenario #4 

 

Case#5:  this scenario is continued from the previous case. The user continues to choose 

the requirement #4 in the case 4 and complete the customization as defined in the domain 

knowledge. The user goal changed till this point is observed to significantly more. The 

test case results are discussion in the next section. 
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Figure 6.22 User interface Scenario #5

 

Figure 6.23 Output console Scenario #5 
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6.4 Discussion 

Case 1: A normal dialogue between the user and the system in software customization 

domain. For each dialogue states, the dialogue manager updates its history and we have 

collected the belief state values at the end of each dialogue. In the figure 6.3 above, the 

valid software customization as defined in the ontology is performed. The probability of 

the user goal increases each stage. The intention of the user which is the belief trend 

increases steadily. This causes the dialogue management system to stay with strategic 

mode. The dialogue formed considering the user as knowledge user about the domain and 

making the conversation straight forward with no question back and forth to confirm their 

operation. This also avoids giving the user too much of information about the process, 

Thus saving the time to complete user goal in short period compared to the traditional 

POMDP-based dialogue management system. 

Case 2, 3 and 4: The change of user intention from one valid customization to other 

results in the drop of belief values in the corresponding attribute. This is detected from 

the rate of change of trend in the belief values. This causes the mode to switch from 

strategic to tactical mode as shown in the figure 6.3. When the user keeps selecting the 

modules which do not exist in one valid customization, the belief values are significantly 

changed. This causes the agent to switch from tactical to opportunistic and then to 

scrambled. In tactical mode, every requirement chosen by the user will get explanation 

about the chosen requirement. In opportunistic mode the user will receive confirmation 

for all the actions taken to choose any requirement. In scrambled mode the user will 

receive explanations and confirmation for every dialogue that is conversed with the agent 

for choosing the requirement. 
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Case 5: The user continues the dialogue conversation from case 4 and chooses one valid 

requirements finally. This activity of the user causes the recent belief state of one valid 

requirement to go higher, which causes the agent to switch from scrambled to 

opportunistic mode. This recovering back to higher level of contextual control modes 

provides the dynamic control of the dialogue management system. The traditional 

POMDP-based dialogue management system doesn’t differentiate the user group based 

on their intention on the attributes of the domain.  

 

Figure 6.24: Results comparison of proposed and previous POMDP-based DM. 

The above tables shows the results obtained using the simulator for interacting with the 

proposed system and 3 other POMDP-based dialogue management. The average number 

of unique dialogues used for 1000 run is shown in the table. The average number of 

unique dialogues used is higher than the other system which shows that the user is treated 

with different set of dialogues to get the task done which symbolizes more dynamic 

control of the strategy. The number of times the user reached goal calculates the accuracy 

which is more than previous approaches. The results are compared to show that the 

system works better than the traditional and also with two other systems previously 

developed. 
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7. Conclusion and future works 

In this thesis, the main dialogue management approaches are reviewed under the 

computer shopping system. Also the history information space theory is discussed and a 

thorough analysis of the major approaches of dialogue management approaches with the 

theory of information space reveals reasons for their problems. With the analysis, the 

problem of the original POMDP based approach is identified. The Markovian over the 

belief state in the dialogue management process is problematic because it loses some 

significant information needed for the decision making. Therefore, the POMDP-based 

approach applied in the dialogue management cannot detect uncertainties in the belief 

state which are caused by the change in the user’s intention. Change of trend in belief 

state in the process of planning for the construction of a real truthful, relevant, clear, and 

informative dialogue system.  Based on the theory, a modified approach is proposed to 

enable POMDP-based dialogue management to handle uncertainties in belief state itself. 

Experimental results demonstrate significant improvement by the new approach towards 

accurate recognition of user's intention. Finding the rate of change in the user’s intention 

switches the mode of operation that suits to the user with different level of knowledge 

about domain. The advantage is more obvious when it comes with the scenario that user 

has lack of knowledge and provides unreasonable information to the agent. Since when 

the user is asking for a help, she or he is always lack of the particular domain knowledge, 

thus the proposed modified approach can be applied to the practical project to provide 

better services to the human user. The limitations could be the scalability of the POMDP 

model is still not achieved in this proposed method and the setup is more complicated 

when comparing to the traditional POMDP as machine learning involves in the planning.  



Chapter 6 Experiments and Discussions                     

93 

For the future work, active investigation is under way to include the visualization to the 

POMDP-based dialogue management system with belief trend. Also, another important 

direction is that to investigate the more practical model to solve the POMDP based 

approach scale up problem. When the domain is complicated, the states space of POMDP 

specification file can be really huge and the POMDP solution is computation prohibitive. 

The current active researches have already put lots of efforts in this area to design more 

practical framework and POMDP solution algorithm to speed up the approximate 

solution finding process. 
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