University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations

1984

FOURTH MOMENT AND SIMULATED POWERS OF MRPP STATISTICS.

ISLAMUDDIN H. TAJUDDIN University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

Recommended Citation

TAJUDDIN, ISLAMUDDIN H., "FOURTH MOMENT AND SIMULATED POWERS OF MRPP STATISTICS." (1984). *Electronic Theses and Dissertations*. Paper 2151.

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

CANADIAN THESES ON MICROFICHE

1.S.B.N.

THESES CANADIENNES SUR MICROFICHE

National Library of Canada Collections Development Branch

Canadian Theses on Microfiche Service

Ottawa, Canada K1A 0N4 Bibliothèque nationale du Canada Direction du développement des collections

Service des thèses canadiennes sur microfiche

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

> LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS RECUE

'anad'a

NL-339 (r. 82/08)

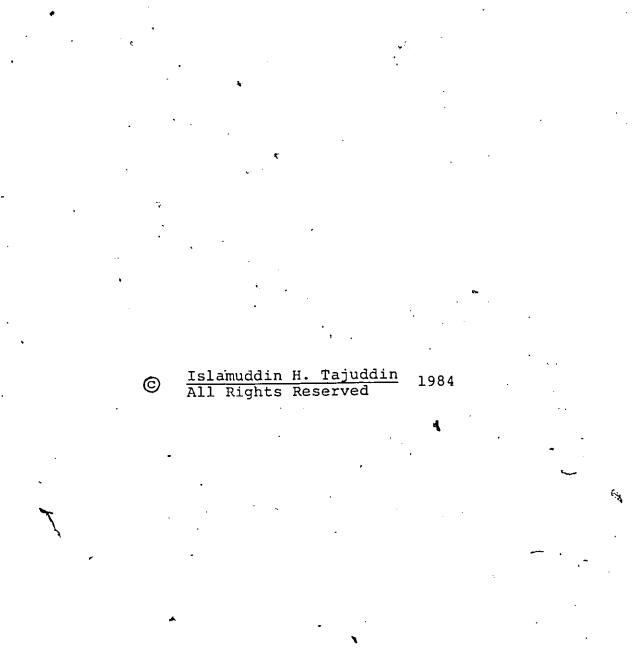
.

FOURTH MOMENT AND SIMULATED POWERS

OF MRPP STATISTICS

by

Islamuddin H. Tajuddin


()

A Dissertation Submitted to the Faculty of Graduate Studies through the Department of Mathematics in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor

ł

5

Windsor, Ontario, Canada 1984

e.

·¥

Ĵ,

FOURTH MOMENT AND SIMULATED POWERS

ABSTRACT

In classical tests of hypotheses, assumptions concerning normality and, homogeneity of variances are needed. Often practical data do not meet some of these assumptions and the idea of robustness is advanced. To avoid making assumptions underlying a tests, Mielke, Berry and Johnson introduced the MRPP (Multi-response Permutation Procedures) test. The test statistic δ is simply a weighted average of some distance measure between pairs of observations within a group. It tests H_n: Classification of data into g groups is random against H₁: Classification is done according to some a priori scheme. Special cases of & are equivalent to some well-known test statistics. When the distance measure is the Euclidean distance between ranks of observations and the weights are proportional to the size of groups, in the 2-sample case, the MRPP statistic, called δ_1 , performs better than the Wilcoxon test for some underlying distributions.

The null distribution of δ is often highly negatively skewed, and is, in general, asymptotically non-normal. To account for the skewness, Mielke and others have recommended the use of the Pearson Type III approximation, determined by the first three moments of δ .

iv

-

We define 23 symmetric functions in order to obtain the fourth moment of δ . In the case of two equal samples, an explicit result for the fourth moment of δ_1 is obtained. We obtain empirical powers of δ_1 , considering 10,000 samples for both small and large samples, using a Pearson type approximation based on four moments, as well as the Type III approximation. These powers are compared with those of the Wilcoxon test against various shifts in location for several underlying distributions, viz., uniform, normal, logistic, 10% 3N, 10% 10N, Laplace, U-shaped, Cauchy, and exponential.

We conclude the dissertation by discussing the scope for further work with the use of the fourth moment.

.

DEDICATED To my parents and

my wife

•

4

•

.

ACKNOWLEDGEMENT

This dissertation was prepared under the constant supervision of Dr. Derrick S. Tracy. The author is very much indebted to him for his invaluable guidance. There was always a personal touch, encouragement and affection throughout the period of research work.

The author sincerely extends his thanks to the examiner, Dr. Paul W. Mielke, for his valuable comments and suggestions. The invaluable help of Prof. N. Shklov, even after his retirement, is greatly appreciated. Thanks are also due to the other committee members.

The author is very thankful to his former advisor, Dr. R. Ponnapalli, for his valuable help while he was here. Thanks are due to the past and present chairmen, Drs. H. R. Atkinson and D. J. Britten, for their help when needed. The help from other members of the department is also very much appreciated.

Support from NSERC and the University Scholarship and teaching assistantship is gratefully acknowledged.

vii

TABLE OF CONTENTS

ABSTRACT	iv
DEDICATION	vi .
ACKNOWLEDGEMENT	vii
LIST OF TABLES	×,
LIST OF ILLUSTRATIONS	xii
CHAPTER	
I. INTRODUCTION l.l The Testing Problem l.2 Non-parametric Methods and Robust	
Procedures 1.3 Permutation Tests 1.4 The MRPP Test Statistic 1.5 Applications. 1.6 Asymptotic Behavior of & 1.7 The Pearson Family of Distributions 1.8 Scope of Our Study	3 5 6 10 12 14 16
II. FOURTH MOMENT OF MRPP STATISTIC 2.1 Nature of Computations. 2.2 Notation	20 20 22
2.3 Symmetric Functions Arising in Computing the Fourth Moment 2.4 Sums Over All Indices Running From 1 to	23
• N in Terms of Sums Over Indices Taking on Distinct Values 2.4.1 Relationship Between Σ and Σ	26
When the Summand is a Product of At Most Three Terms	26
2.4.2 Relationship Between E and E When the Summand is a Product of Four Terms 2.5 Combinatorial Methods	31 44 '
2.6 The Fourth Moment Under the Null Hypothesis	54
III. SOME RESULTS CONCERNING A SPECIAL MRPP STATISTIC 3.1 The Special MRPP Statistic	64 64
3.2 Symmetric Functions When $\Delta_{IJ} = R(x_{I}) - R(x_{J}) $	64
3.3 Fourth Moment of δ_1	86

€ 1		
IV.	POWER OF SOME MRPP TESTS 4.1 Test Statistics	90 90 91
\mathcal{I}	4.2 Transformations 4.2.1 Pearson Type I Approximation	91
	4.2.2 Pearson Type VI Approximation	92
	4.2.3 Pearson Type III Approximation	.93
•	4.3 Methodolody	94
	4.4 Results for Large Samples	95
	4.5 Results for Small Samples	125
٩	· • •	
· v.	SCOPE FOR FURTHER STUDY	154
APPENDIX		
. م	APS: Generating All Possible Samples	160
A.1 A.2		165
A • 4	GINATT. COmpleting roat nemeroe	
REFERENC	CES .	171
VITA AUC	CTORIS	174

≈ 7

LIST OF TABLES

-	<u> Fable</u>	1	Page
	2.1	The Twelve Symmetric Functions as Defined by Mielke	24
	2.2	List of 23 Symmetric Functions Required in Expressing the Fourth Moment of MRPP Statistic	2 5 ·
	2.3 .	Use of Occupancy Model to Obtain Different Graphs and Coefficients Corresponding to the Terms in the Expansion of $\Sigma \Delta_{12} \Delta_{13} \Delta_{45} \Delta_{67}$	50
	2.4	Use of Occupancy Model to Obtain Different Graphs and Coefficients Corresponding to the Terms in the Expansion of $\Sigma \Delta_{12} \Delta_{34} \Delta_{56} \Delta_{78}$	[.] 52
	3 . 1	Values of β_1 , β_2 , $2\beta_2 - 3\beta_1 - 6$ and κ for Selected N	. T + 6 <u>3</u>
•	4.1	Empirical Powers, When Underlying Distribution is Uniform, $N_1 = N_2 = 40$	 96
	4.2	Empirical Powers, When Underlying Distribution is Normal, $N_1 = N_2 = 40$	99
	4.3	Empirical Powers, When Underlying Distribution is Logistic, $N_1 = N_2 = 40$	102
	4.4	Empirical Powers, When Underlying Distribution is $.1N(0,9) + .9N(0,1)$, $N_1 = N_2 = 40$	105
	4.5	Empirical Powers, When Underlying Distribution is $.1N(0,100) + .9N(0,1)$, $N_1 = N_2 = 40$	108
	4.6	Empirical Powers, When Underlying Distribution is Laplace (Double Exponential), $N_1 = N_2 = 40$	111
J	4.7 \	Empirical Powers, When Underlying Distribution is U-Shaped, $N_1 = N_2 = 40$	114
	4.8	Empirigal Powers, When Underlying Distribution is Cauchy, $N_1 = N_2 = 40$	117
	•	۲ ۲	-

x

<u>Table</u>		<u>Page</u>
4.9	Empirical Powers, When Underlying Distribution is Exponential, $N_1 = N_2 = 40$	120
4.10	Empirical Powers, When Underlying Distribution is Uniform, $N_1 = N_2 = 10$	126
4.11	Empirical Powers, When Underlying Distribution is Normal, $N_1 = N_2 = 10$	129
4.12	Empirical Powers, When Underlying Distribution is Logistic, $N_1 = N_2 = 10$	132
4.13	Empirical Powers, When Underlying Distribution is $.1N(0,9) + .9N(0,1)$, $N_1 = N_2 = 10$	135
4.14	Empirical Powers, When Underlying Distribution is $.1N(0,100) + .9N(0,1), N_1 = N_2 = 10$	138
4.15	Empirical Powers, When Underlying Distribution is Laplace (Double Exponential), $N_1 = N_2 = 10$	141
4.16	Empirical Powers, When Underlying Distribution is U-Shaped, $N_1 = N_2 = 10$	144
4.17	Empirical Powers, When Underlying Distribution is Cauchy, $N_1 = N_2 = 10$	147
4.18	Empirical Powers, When Underlying Distribution is Exponential, $N_1 = N_2 = 10$	150

∕ .

4

xi

Ø

L

LIST OF ILLUSTRATIONS

4

Figure		
4.1 Power of MRPP Tests, $N_1 = N_2 = 40$,		
Underlying Distribution: Uniform	98	
4.2 Underlying Distribution: Normal	101	
4.3 Underlying Distribution: Logistic	104	
4.4 Underlying Distribution: 10% 3N	107	
4.5 Underlying Distribution: 10% 10N	110	
4.6 Underlying Distribution: Laplace	113	
4.7 Underlying Distribution: U-Shaped	116	
4.8 Underlying Distribution: Cauchy	119	
4.9 Underlying Distribution: Exponential	122	
4.10 Power of MRPP Tests, $N_1 = N_2 = 10$,		
Underlying Distribution: Uniform	128	
4.11 Underlying Distribution: Normal	131	
4:12 Underlying Distribution: Logistic	134	
4.13 Underlying Distribution: 10% 3N	137	
4.14 Underlying Distribution: 10% 10N	140	
4.15 Underlying Distribution: Laplace	143	
4.16 Underlying Distribution: U-Shaped	146	
4.17 Underlying Distribution: Cauchy	149	
4.18 Underlying Distribution: Exponential	152	

\$

4

xii

CHAPTER I

INTRODUCTION

1.1 The Testing Problem

The classical approach to testing a hypothesis concerning a set of parameters assumes that we know all about the population but for the values of the parameters under the null hypothesis. Often the underlying population is assumed to be normal. In testing equality of several means, homogeneity of variances is assumed. χ We assume that the k populations have common variance, in order to arrive at the F statistic. Sampling distributions of many test statistics are obtained on the assumption that the parent population is normal. A large proportion of multivariate theory is based on normal theory. Often, in the classical methods, the data are subjected to some appropriate transformations in order to meet the assumptions of normality and homogeneity. But, sometimes, it is not easy to find a suitable transformation. Kendall (1979, p. 496) indicates that it is difficult to decide whether the standard procedures are likely to be approximately valid or misleading. He points out that the difficulty in using a transformation is that we must have

knowledge of the underlying distribution before we know which transformation is best applied. As an alternate approach, he discusses permutation tests, which we describe in section 1.3.

Many articles have been written about the shortcomings of classical tests. In a review paper, Huber (1972, p. 1042) points out, "The theory of estimation originated with problems where almost all of the statistical variability is due to measurements of errors." If we consider an estimator $\hat{\theta}$ of θ , we see that $\hat{\theta}$ is expressed in the form $\hat{\theta} = k\theta + \varepsilon$, where k = 1 for an unbiased estimator and ε is assumed to be $N(0,\sigma^2)$. Huber quotes Gauss (1821) as saying that he had obtained the normal distribution as a distribution of errors to suit the mean. The mean as a location parameter is much criticized in the literature, since it is highly affected by extreme values and thus any inference based on the mean, concerning heavy tailed-populations, becomes less powerful.

Boneau (1960) remarks that psychological data too frequently have an exasperating tendency to manifest themselves in a form which violates one or more of the assumptions underlying the usual tests of significance. The researcher usually attempts to transform them in such a way that the assumptions are tenable, or he may look

elsewhere for a statistical test.

A solution to the problem of classical tests is to devise testing procedures that do not make any assumption about the form of the distribution; that is, to follow a distribution-free approach or use non-parametric methods. Here one develops a test statistic whose distribution does not depend on the distribution from which the sample is drawn. An alternative solution is to develop robust tests that are insensitive to the violation of assumptions underlying them. We discuss these in the following section.

1.2 Non-parametric Methods and Robust Procedures

Non-parametric tests assume that the parent population is continuous and, sometimes, that it is symmetric. Most of the tests are based on the ranks of the observations. These tests are easy to use and the theory behind them is simple to understand. However, obtaining the distribution of a test statistic under the alternative hypothesis is often extremely difficult. The non-parametric test that competes with the classical t-test is the Wilcoxon test. The asymptotic relative efficiency (ARE) of the Wilcoxon test relative to the t-test when data is from a normal population is 0.955. That is, we have to take about 5% more observations when using a Wilcoxon test instead of a t-test. On the other hand, the ARE of the Wilcoxon

test relative to the t-test is 1.5 when the underlying distribution is a double exponential and 3 when it is an exponential. It is at least 0.864 for any underlying distribution. Therefore, using the Wilcoxon test, we are protected from a heavy loss when the underlying distribution is non-normal but pay a little premium when the data is normal. For this reason some authors (e.g., Keppel 1973) prefer to use the Wilcoxon test instead of the t test all the time. The Kruskal-Wallis H test performs similarly relative to the F test. In section 1.3, we discuss permutation tests that are distribution free tests but are not limited to the rank of the observations. Below, we discuss robust procedures.

By a robust test we mean a test which is not affected severely upon violation of the assumptions underlying it. According to Box and Anderson (1955), a statistical criterion should be insensitive to extraneous factors, e.g., non-normality of data and the presence of outliers, etc., and should be sensitive to a change in factors to be tested; that is, the test should be powerful as well. Andrews et al. (1972) have carried out a study on robustness of several test statistics, e.g., the trimmed mean, the sine wave, Hampel statistic , etc. They have shown empirically that these statistics generally perform better than the classical statistics.

Unlike the classical tests, robust tests can handle non-normal data. However, many do not like this solution because robust procedures are based on empirical studies of some limited number of cases. One determines the performance, say the power, of a robust test, by evaluating it against some limited number of alternatives, for a limited number of underlying distributions, for a specified level of significance and for limited sizes of samples. There is a critical discussion in Bickel's (1976) paper, "Another look at Robustness". Bickel himself and, earlier, Andrews et al (1972), point out that there is no clear understanding about the definition of robustness among statisticians.

1.3 Permutation Tests

Let there be a random sample X_{ij} , $j=1, \ldots, n_i$ of size n_i from a distribution function $F(x_i)$, for $i=1,\ldots,$ $c(\geq 2)$. Let the c samples be mutually independent with distribution functions F_1,\ldots, F_c , which may or may not be continuous. Then the hypothesis of interest is /

 $H_0:F_1(x) = \ldots = F_c(x)$ for all $x \in R$.

Let $N=\sum_{i=1}^{C}n_i$. Then the null hypothesis implies that the joint distribution of $E_N=(x_{11},\ldots,x_{cn_c})$ remains invariant under the N! permutations of the coordinates of

 E_N among themselves. Equivalently, this implies that the joint distribution of E_N remains invariant under all possible partitionings into c subsets of sizes n_1, \ldots, n_c , respectively.

A test that considers the above principle, that is, calculates every possible test statistic and compares the values of the observed test statistics on the basis of this, is called a "permutation test."

Detailed theory of permutation tests are given in Puri and Sen (1970) and Hoeffding (1952). Permutation tests are due to Fisher (1935). In using these tests, we do not require any assumption except that the observations are drawn independently. We now discuss a permutation test based on multi-responses, that is, where x_{ij} are rresponse vectors for each $j=1,\ldots, n_i$, $i=1,\ldots, c$. This is called the multi-response permutation procedure (MRPP) test statistic.

1.4 The MRPP Test Statistic

The MRPP test statistic, as introduced by Mielke, Berry and Johnson (1976), is used to test the hypothesis

- H_o: Classification of a set of data into g subgroups is random against the alternative.
- H₁: Classification is done according to some a priori scheme.

The description of the test statistic is as follows.

Let there be a set of r-vector (r21) observations $\{X_1, \ldots, X_N\}$. Suppose KSN observations are partitioned into g subgroups such that the ith subgroup has $n_i \ge 2$ observations, i=1,...,g. Let A_{IJ} be some distance measure between the observations X_I and X_J . Then the MRPP test statistic δ is defined as

$$\delta = \frac{1}{\substack{g \\ \sum \\ i = 1 \\ j \le 1}} \sum_{i=1}^{g} \sum_{I \le J \le N^{\Delta} IJ} S_{i}(I) S_{i}(J), \qquad (1.1)$$

where $K = \sum_{i=1}^{9} n_i$ and S is an indicator function with $S_i(I) = I$ if X_T is in the ith subgroup and 0 otherwise.

We note that the test statistic is simply a weighted average of the distances between pairs of observations within a subgroup.

The assumptions underlying this test are:

(i) the data are at an ordinal level or a higher level, and

(ii) when r≥2, responses are measured on each individual. These response measurements are commensurate with one another, i.e., each of the r response measurements have an appropriate scale of measurement.

The test is carried out using a permutation procedure and, since X_{τ} , I=1,...,N, are, in general, r-response

measurements, on an individual, it is termed "the multiresponse permutation procedure (MRPP) test statistic". Throughout this dissertation, we shall denote it by δ .

When classification is done according to some a priori scheme, there will be some cluster pattern and, hence, δ will take on a smaller value. Therefore, the test rejects H_0 when δ is smaller than δ_{α} - the α th percentile of δ . The probability of every possible value of δ under H_0 is the same. There are $M = \frac{N!}{g}$ possible classifica- $\frac{1}{i=1}n_i!(N-K)!$

,tions. This gives an exact probability distribution of δ under H_.

With larger N, M becomes very large. For instance, when $n_1=n_2=\frac{N}{2}=10$, there are 184,756 different possible classifications. It then becomes difficult to obtain an exact distribution. This difficulty is resolved by considering an approximate distribution of δ using the first few moments obtained under the exact distribution. For this purpose Mielke et al. (1976) have defined 12 symmetric functions which give the first three exact moments of δ . These symmetric functions are listed in Table 2.1.

Mielke (1979b, p. 1542) has revised the MRPP test statistic (1.1). Following the same notation, the revised version of δ is

$$= 2 \sum_{i=1}^{g} [K(n_i-1)]^{-1} \sum_{I \leq J^{\Delta} IJ} S_i(I) S_i(J)$$

Versions (1.1) and (1.2) are special cases of the latést version of the MRPP test statistic (Mielke et al. 1981a, 1981b) defined as follows:

Consider the set of observations $\{x_1, \ldots, x_N\}$, which are classified into g disjoint subgroups, not necessarily exhaustive. The ith subgroup, carries $n_i \ge 2$ observations. The left-over observations $(N - \sum_{i=1}^{q} n_i = N - K = n_{g+1} \ge 0)$ belong to the (g+1)th subgroup. Then the MRPP test statistic δ is

 $\delta_{s} = \sum_{i=1}^{g} c_{i} \xi_{i}, \qquad (1.3)$

where $c_i > 0$ are some weights with $\sum_{i=1}^{g} c_i = 1$ and i=1

 $\xi_{i} = \begin{pmatrix} n_{i} & -1 \\ 2 \end{pmatrix} I_{\zeta J}^{\Delta} I_{J} S_{i} (I) S_{i} (J) \text{ is an average distance}$ measure within the ith subgroup.

The distance measure Δ_{IJ} could be, for example,

$$\Delta_{IJ} = ||X_{I} - X_{J}||^{\nu}, \nu > 0$$
 (1.

We note that $c_i = \frac{\binom{n}{2}i}{\underset{i=1}{\overset{g}{\underset{\sum}{\Sigma}}\binom{n}{2}}}$ in (1.3) yields (1.1),

while
$$c_i = \frac{n_i}{g} = \frac{n_i}{K}$$
 in (1.3) gives (1.2).
 $i=1^{\sum_{i=1}^{n} i}$

9

4)

(1.2)

When the subgroups are all equal in size, both choices of c_i $(=\frac{1}{g})$ above give the same δ . However, when the n_i 's are not all equal, the first choice is an inefficient choice for detecting location shifts when K=N (Mielke et al. 1981a). Different choices of the $\{c_i\}$ and Δ , in general, give different MRPP test statistics.

1.5 Applications

The MRPP tests have a wide range of applications, because the assumptions underlying these tests are minimal. The tests require that data be at least at ordinal level and, for more than one response from individuals, each of the response measurements should be commensurate with each other. An MRPP test examines whether a classification scheme indicates some difference among the subgroups or not. Suppose that N individuals in a population are asked about their level of education, length of service after These N completing the education and current income. individuals can be classified according to sex or by colour or race or by any scheme of interest. Say they are classified according to the sex of an individual. Then the MRPP test δ tests whether or not there is a difference in socio-economic status of males and females, assuming that the above three responses are indicators of socio-economic status. This illustrates the usefulness of the MRPP test for data commonly encountered by social

scientists. Mielke et al. (1976, pp. 1416-1418) have demonstrated applications with actual social science data. Mielke et al. (1981a, 1982) have also shown applications in atmospheric sciences.

There has been an attempt to equate the ordinal variable with an interval variable in order to utilize interval level statistics, especially in multiple regression and ANOVA, e.g., Labovitz (1967). Alternatively, Hawkes (1971) and Somers (1968) have tried to develop multivariate analysis for ordinal data. The MRPP test gives a better approach to resolving some of the problems associated with these data.

When all observations are classified into g subgroups, the classification problem can be related to the g-sample problem. Under H_0 , classification is random and one may look upon the g samples as coming from the same parent population. Mielke, Berry, Brockwell and Williams (1981b) consider the univariate case, i.e., r=1 and N=K. In case the distance measure is the square of the Euclidean distance between ranks of observations and the weights are proportional to the number of observations in a subgroup, the MRPP-test, called δ_2 here, is equivalent to the Wilcoxon test for g=2 and is asymptotically equivalent to the Kruskal Wallis test for g>2. When the distance measure is simply the Euclidean distance between the ranks of observations, the MRPP test, called δ_1 , performs better than δ_2^{-}

the Wilcoxon test - for some underlying distribution (see results, Chapter IV). Mielke and Berry (1982) have demonstrated that two MRPP tests jointly perform better than the sign test or the Wilcoxon signed-ranks test in the case of paired observations for the following underlying populations - Normal, Uniform, Laplace, Logistic and U-shaped. Mielke and Iyer (1982) have shown that the permutation version of the classical univariate technique and the Friedman test for randomized blocks with Pearson's and Spearman's correlation measures are special cases of MRPP tests. Still and White (1981) have emphasized the use of randomized tests in psychological data. Berry and Mielke (1983) have shown the suitability of MRPP tests in ANOVA.

We find applications of MRPP tests in different dis-

1.6 Asymptotic Behavior of δ

Mielke et al. (1976, p. 1421) give simulated values of skewness for different size configurations and different proportions p of unclassified observations such that $n_{g+1}=Np$, $o\leq p<1$. The results indicate that for p=0, the distribution of δ is highly negatively skewed and skewness increases with increase in N for the same value of g.

When p=o, the MRPP test statistic is a special case of Mantel and Valand's (1970) test statistic T. We note that T and δ are conceptually the same, both being based on distance measures between pairs of observations. However, Mantel and Valand (1970) used a normal approximation to carry out the test, which is shown to be incorrect and thus any inference drawn is invalid (Mielke 1978). Because of the skewness that remains in the asymptotic case also, an approximation based on at least 3 moments is recommended. O'Reilly and Mielke (1980) discuss the situation of asymptotic normality of the distribution of δ and recommend an approximation by the Beta Type I distribution in the absence of normality of δ . Brockwell et al. (1982) consider the univariate case of the MRPP test with $\Delta_{xv} = |x-y|^{\nu}$, v>0. They establish that for v=2, the asymptotic distribution of δ is the chi-square distribution, while for $v \neq 2$, it is dependent on the underlying distribution of observations; i.e., the asymptotic distribution is non-invariant.

Mielke et al. (1976), Mielke (1978, 1979 a, b), O'Reilly and Mielke (1980) have recommended the use of the Beta Type I for the approximate distribution of δ . In using this approximation with three moments, one has to choose arbitrarily a value of one of the parameters of the Beta density which is determined by four moments.

However, Mielke et al. (1981a, b and later) have confined themselves to the use of the Pearson Type III distribution as an approximation to the null distribution, since this also accounts for skewness and it is determined by three moments. In this dissertation, we obtain the fourth moment of δ and choose an appropriate approximation from among the Pearson family of distributions.

In the next section, we discuss the Pearson family of distributions.

1. 7 The Pearson Family of Distributions

The Pearson family of curves is defined by the differential equation,

$$\frac{dy}{dx} = \frac{y(x+a)}{b_0 + b_1 x + b_2 x^2} , \qquad (1.5)$$

where y = f(x) is a probability function or a frequency function. The above equation is a limiting case of the hypergeometric series. Elderton and Johnson (1969) give a detailed exposition of fitting of Pearson curves. We present here only the points pertaining to our study.

Pearson curves are divided into 12 types - 3 are main types: Type I, Type IV and Type VI, depending on the roots of $b_0 + b_1 x + b_2 x^2 = 0$. The other 9 are called "transition types". These are either (limiting forms of the main types or are their special cases. Fitting of a particular type to given data is decided by either looking at a (β_1, β_2) plot or considering the Pearson's criterion κ as given below:

$$\kappa = \frac{\beta_1 (\beta_2 + 3)^2}{4 (4\beta_2 - 3\beta_1) (2\beta_2 - 3\beta_1 - 6)}$$
(1.6)

Classification on the basis of κ is shown schematically in the following

 $\kappa = 1$ κ =`∞ к = О κ κ>1 Type I Type IV Type VI Type III Type III Type V includes Types Normal includes Type XI VIII, IX & XII when $\beta_2 = 3$ as special Type II (VII) when $\beta_2 < 3(>3)$ -includes Type X as its special case-

1.8 Scope of Our Study

In section 1.5, we discussed applications of MRPP tests. However, in section 1.6, we noticed that the asymptotic distribution of δ is, in general, non-normal and non-invariant. Mielke et al. (1976) have used an approximation to the null distribution of δ by a Beta Type I distribution. They used the first three exact moments with an arbitrary value of one of the parameters of the Beta density. The complete determination of a Beta density requires the first four moments. Mielke (1979b) and O'Reilly and Mielke (1980) have recommended its use in order to account for the high value of skewness associated with the null distribution of δ . However, since 1981, Mielke et al. have adopted the use of the Pearson Type III distribution which is determined by using the first three moments of the test statistic. MRPP tests generally cover a wide range of situations and it is not known whether or not the Pearson Type III approximation will be good in every situation. This leads us to calculate the exact fourth moment of δ , with the motivation that the use of the fourth moment will give a better approximation to the null distribution of δ .

The aim of Chapter II is to derive the general expression for the fourth moment of δ , defined by (1.3).

This derivation involves heavy, cumbersome algebra. Therefore, to reduce the labour, we adopt a simple notation in section 2.2 If we look at (1.3), it can be noted that δ^4 will involve sums of the distance functions of the form ${}^{\Lambda}I_1J_1 {}^{\Lambda}I_2J_2 {}^{\Lambda}I_3J_3 {}^{\Lambda}I_4J_4$ associated with the product of indicator functions. The expectations of the product of indicator functions depend on whether $I_k=J_\ell$ or $I_k=I_\ell$ or $J_k=J_\ell(k\sharp\ell)$, and whether the observations are in the same subgroup or in different subgroups. This situation is simplified by considering two types of sums:

- (i) Sums with no restriction on the indices of the Δ 's
- (ii) Sums with all the indices of the A's being different.

We obtain relationships between these two types of sums in section 2.4. In section 1.4, we indicated that Mielke et al. (1976) required 12 symmetric functions in order to express the first three moments of δ in terms of these functions. We need an additional 23 symmetric functions, which will be defined in section 2.3. These symmetric functions and earlier ones from (Mielke et al. 1976) are expressed in terms of a second type of sum. The relationships between the two types of sums, which we obtain in section 2.4, can also be seen by the careful use of a combinatorial method that we describe in section 2.5. The combinatorial method serves as a check of some

of the computations we make in section 2.4. Finally, in the last section of Chapter II, we obtain an expression of the fourth moment in terms of the symmetric functions defined. We partially check the result of the fourth. moment through an independent computer program which calculates every possible value of δ for small sets of data.

In Chapter III, we obtain the fourth moment of δ_1 , in the case of $n_1 = n_2 = N/2$. Since the distance measure is the Euclidean distance between the ranks of observations, this involves some further algebra in the simplification of the 23 symmetric functions involved in the expression of the fourth moment. We show these calculations in section 3.2. The symmetric functions in the case of δ_1 are simple polynomials in N. The long expression of the fourth moment of δ , for the case of δ_1 , is simplified to a simple polynomial in N. The last section of this chapter indicates that for small samples, i.e., N ≤ 34 , Pearson Type I approximation will be suitable, while for large samples, i.e., N>34, the Pearson Type VI seems to be appropriate.

In Chapter IV, we carry out a simulation study, on the basis of 10,000 independent samples, to obtain powers of δ_1 and δ_2 , against various shifts in locations and for different underlying populations. Empirical powers of δ_1 are obtained using the Pearson Type suggested in Chapter III,

as well as the Pearson Type III distribution.

0

Finally, in the last chapter we discuss the scope for further work. In this dissertation, powers of δ_1 and δ_2 are calculated for the case of two equal samples. The cases of unequal samples and g (>2) samples, both with equal and unequal sizes, are proposed for future study. We also discuss applications of MRPP tests in one-way analysis of variance where the use of four moments yields better results than when only three moments are used.

CHAPTER II

FOURTH MOMENT OF MRPP STATISTIC

2.1 Nature of Computations

The MRPP statistic δ defined by (1.3) is written as

$$\delta = \sum_{i=1}^{q} \kappa_{i} \sum_{j=1}^{\Sigma \Delta} J_{j} J_{2} \sum_{i}^{S} (J_{1}) S_{i} (J_{2}), \qquad (2.1)$$

where the second summation extends over J_1 and J_2 , each running from 1 to N and $K_i = c_i / [n_i (n_i - 1)]$, i = 1, ..., g, the c_i 's being weights. The indices J_1 and J_2 need not be distinct, since ${}^{\Lambda}J_1J_2 = 0$ for $J_1=J_2$.

From'(2.1),

$$\delta^{4} = i_{1}, i_{2}, i_{3}, i_{4} \sum_{\ell=1}^{4} \{K_{i_{\ell}} \delta_{J_{2\ell-1}} J_{2\ell} \delta_{i_{\ell}} (J_{2\ell-1}) \delta_{i_{\ell}} (J_{2\ell})\},$$
(2.2)

where the inner summation extends over J_1, \ldots, J_8 , each running from 1 to N. The indices i_1, i_2, i_3, i_4 run from 1 to g.

The expectation of δ^4 involves the expectations of

$$\underset{l=1}{\overset{4}{\prod}} \{ S_{i_{\ell}} (J_{2\ell-1}) S_{i_{\ell}} (J_{2\ell}) \} \text{ for various choices of } i_{\ell},$$

 $l=1,\ldots,4$. To simplify the sum of these expectations, the sums over unrestricted values of indices are expressed in terms of the sums over distinct values. It can be seen from (2.1) or (2.2) that for $i_1=i_2=i_3=i_4$, one of the terms in the expansion of δ^4 is

$$\sum_{i} \kappa_{i}^{4} (J_{1} J_{2} J_{1} J_{2})^{4} \sum_{\ell=1}^{8} S_{i} (J_{\ell}).$$

Before the expectation of the above term can be taken, the factor $(J_1^{\Sigma}J_2^{\ \Delta}J_1J_2)^4$ requires to be expanded. This expansion involves 23 different types of distance function, defined in section 2.3. Most of the terms in the expansion carry coefficients which are not easily obtained by combinatorial methods. Actual enumeration of possible ways of arriving at a specific term is needed. Another approach to expanding $(J_1^{\Sigma}J_2^{\ \Delta}J_1J_2)^4$ is to first write it as

 ${}^{\Sigma\Delta}J_1J_2{}^{\Delta}J_3J_4{}^{\Delta}J_5J_6{}^{\Delta}J_7J_8$ with sum over J_1, \ldots, J_8 , running from 1 to N. Then the sum is split in a systematic manner, into two sums - one with two indices taking on the same values, and the other with two different values of indices. Since, in the beginning, it is difficult to know with certainty how many different terms are in the expansion, the latter cumbersome approach is used. The combinatorial method is employed to check some of the results of

the massive calculations.

To reduce the use of multi-level symbols and for ease of computation, the following notation is adapted.

- 2.2 Notation
 - (i) A simple summation sign "∑" means that the sum is taken over every index that is involve¢ in the summand as a subscript of △. Each index runs from 1 to N.

 - (iii) An index J_1 is indicated by i, e.g., $\sum_{j=1}^{2} J_{j} J_{2}^{j}$ indicated by $\sum_{j=1}^{2} J_{j}$. This convention is used only with summation signs.
 - (iv) Let J₁, J₂,..., J_K be the indices of a sum. Suppose l<K of the indices take on values distinct from all the others. Then without any loss it can be assumed that an index J_i(i=1,2,...,l) takes on a value 1 to N distinct from every index J_i(j≠i).
 - (a) A sum with indices J_1, J_2, \ldots, J_K taking on values 1 to N, with the restriction that indices $J_i, i=1,2,\ldots,\ell$, take on distinct value from every other index J_j (j+i), is denoted by ℓ_{ℓ}^{Σ} .

(b) A sum with indices J_1, \ldots, J_K taking on values 1 to N with the restriction that an index $J_i, i=1, \ldots, l-1$, takes a distinct value from every index J_j (j≠i) and the index J_l takes on a distinct value from Index J_1 to J_S , is denoted by $l_{\pm,S}^{\Sigma}$. Note that when S=K then $l_{\pm,S}^{\Sigma}$ is $l_{\pm,...}^{\Sigma}$

2.3 Symmetric Functions Arising in Computing the

Fourth Moment

As pointed out in section 2.1, there are 23 different types of distance function. These are symmetric functions needed to extend Mielke's (1976, p. 1412) model, which are necessary to obtain the fourth moment of an MRPP statistic. For the sake of completeness, the 12 symmetric functions defined by Mielke are first presented both in Mielke's notation and then the notation of section 2.2. This is then followed by a table of additional symmetric functions required in computing the fourth moment of an MRPP test statistic.

Table 2.1

The Twelve Symmetric Functions as Defined by Mielke

•

9

¢

Notation of Sec. 2.2
Mielke's Notation

$$D(1) = \frac{1}{N(2)} \frac{1}{2} \Delta_{12}$$

$$D(1) = \frac{1}{N(2)} J_{1}^{\Gamma} J_{2}^{\Delta} J_{1} J_{2}$$

$$D(2) = \frac{1}{N(2)} \frac{1}{2} \Delta_{12}^{2}$$

$$D(2) = \frac{1}{N(2)} J_{1}^{\Gamma} J_{2} \Delta_{11}^{\Delta} J_{12}$$

$$D(3) = \frac{1}{N(3)} \frac{1}{2} \Delta_{12} \Delta_{13}$$

$$D(4) = \frac{1}{N(4)} \frac{1}{2} \Delta_{12} \Delta_{34}$$

$$D(2") = \frac{1}{N(4)} J_{1} J_{2}^{\Gamma} J_{3} J_{4} J_{1} J_{2} \Delta_{3} J_{4}$$

$$D(5) = \frac{1}{N(2)} \frac{1}{2} \Delta_{12}^{\Delta}$$

$$D(3) = \frac{1}{N(2)} J_{1}^{\Gamma} J_{2} \Delta_{3}^{\Delta} J_{1} J_{2} \Delta_{3} J_{3} J_{4}$$

$$D(5) = \frac{1}{N(2)} \frac{1}{2} \Delta_{12}^{\Delta}$$

$$D(3) = \frac{1}{N(2)} J_{1}^{\Gamma} J_{2} \Delta_{3}^{\Delta} J_{1} J_{2} \Delta_{3} J_{3} J_{4}$$

$$D(6) = \frac{1}{N(3)} \frac{1}{2} \Delta_{12}^{\Delta} J_{13}$$

$$D(3') = \frac{1}{N(3)} J_{1}^{\Gamma} J_{2} J_{3}^{\Delta} \Delta_{1} J_{2} \Delta_{3} J_{1} J_{3}$$

$$D(7) = \frac{1}{N(3)} \frac{1}{2} \Delta_{12} \Delta_{13} \Delta_{23}$$

$$D(3^{*}) = \frac{1}{N(3)} J_{1} J_{2} J_{3} \Delta_{3} J_{1} J_{2} \Delta_{3} J_{1} J_{3} \Delta_{3} J_{2} J_{3}$$

$$D(8) = \frac{1}{N(4)} \frac{1}{2} \Delta_{12}^{2} \Delta_{34}$$

$$D(3") = \frac{1}{N(4)} J_{1} J_{2}^{\Gamma} J_{3} J_{4} \Delta_{1} J_{2} \Delta_{3} J_{4} J_{2} J_{3} J_{4}$$

$$D(9) = \frac{1}{N(4)} \frac{1}{2} \Delta_{12} \Delta_{13} \Delta_{14}$$

$$D(3^{**}) = \frac{1}{N(4)} J_{1} J_{2}^{\Gamma} J_{3} J_{4} \Delta_{1} J_{2} \Delta_{3} J_{3} J_{4} J_{2} J_{4} J_{4} J_{1} J_{2} \Delta_{3} J_{4} J_{4} J_{4} J_{4} J_{5} J_{5} J_{5} J_{1} J_{2} \Delta_{3} J_{4} J_{5} J$$

where J_i (i=1,...6) takes on distinct values from 1 to N

Table 2.2

List of 23 Symmetric Functions Required in Expressing the Fourth Moment of MRPP Statistic $D(13) = \frac{1}{N(2)} \stackrel{\Sigma}{\neq} \stackrel{A}{12}$ $D(14) = \frac{1}{N(3)} \stackrel{\Sigma}{\neq} \stackrel{\Lambda}{12} \stackrel{\Lambda}{13}$ $D(16) = \frac{1}{N(3)} \frac{\sum \Delta^2}{\neq^2} 12^{\Delta} 13^{\Delta} 23$ $D(15) = \frac{1}{N(3)} \stackrel{\Sigma}{\neq} \stackrel{\Delta^2}{12} \stackrel{\Delta^2}{13}$ $D(17) = \frac{1}{N(4)} \stackrel{\Sigma \Delta^{3}}{\neq} 12^{\Delta} 34$ $(D18) = \frac{1}{N(4)} \stackrel{\Sigma}{\neq} \stackrel{\Delta^2}{12} \stackrel{\Delta^2}{34}$ $D(19) = \frac{1}{\sqrt{4}} \stackrel{\Sigma^{\Delta}}{\neq} \frac{1}{12} \stackrel{\Sigma^{\Delta}}{12} \frac{13}{14}$ $D(20) = \frac{1}{m(4)} \stackrel{\Sigma}{\neq} \stackrel{\Delta}{12} \stackrel{\Delta}{13} \stackrel{\Delta}{24}$ D.(21) = $\frac{1}{m(4)} \neq 12^{\Delta} 12^{\Delta} 13^{\Delta} 34$ $D(22) = \frac{1}{N(4)} \stackrel{\Sigma \Delta}{\neq} 12^{\Delta} 13^{\Delta} 24^{\Delta} 34$ $D(23) = \frac{1}{M(4)} \neq 12^{\Delta} 13^{\Delta} 23^{\Delta} 14$ $D(24) = \frac{1}{N(5)} \underset{\neq}{\Sigma^{\Delta}}^{2}_{12} \underset{34}{}^{\Delta}_{35}$ $D(25) = \frac{1}{m(5)} \stackrel{\Sigma \Delta^2}{\neq} 12^{\Delta} 13^{\Delta} 45$ $D(26) = \frac{1}{N(5)} \stackrel{\Sigma \Delta}{\neq} 12^{\Delta} 13^{\Delta} 14^{\Delta} 15$ $D(27) = \frac{1}{\sqrt{(5)}} \stackrel{\Sigma^{\Delta}}{\neq} 12^{\Delta} 13^{\Delta} 34^{\Delta} 45$ $D(28) = \frac{1}{M(5)} \neq 12^{\Delta} 13^{\Delta} 14^{\Delta} 25$ $D(29) = \frac{1}{M(5)} \stackrel{\Sigma^{\Delta}}{\neq} 12^{\Delta} 13^{\Delta} 23^{\Delta} 45$ $D(30) = \frac{1}{N(6)} \stackrel{\Sigma}{\neq} \stackrel{\Delta^2}{12} \stackrel{\Delta_{34}}{}_{56}$ $D(32) = \frac{1}{M(6)} \stackrel{\Sigma \Delta}{\neq} 12^{\Delta} 13^{\Delta} 45^{\Delta} 46$ $D(31) = \frac{1}{M(6)} \stackrel{\Sigma \Delta}{\neq} 12^{\Delta} 13^{\Delta} 14^{\Delta} 56$ $D(33) = \frac{1}{M(6)} \stackrel{\Sigma^{\Delta}}{\neq} 12^{\Delta} 13^{\Delta} 24^{\Delta} 56$ $D(34) = \frac{1}{N(7)} \stackrel{\Sigma \Delta}{\neq} 12^{\Delta} 13^{\Delta} 45^{\Delta} 67$

and

$$D(35) = \frac{1}{N^{(8)}} \stackrel{\Sigma^{\Delta}}{\neq} 12^{\Delta} 34^{\Delta} 56^{\Delta} 78$$

As discussed in section 2.1, to evaluate the expectation of (2.2) the sums over unrestricted indices are to be expressed in terms of sums with distinct values of indices. This leads to the following section.

2.4 <u>Sums Over All Indices Running From 1 to N in Terms</u> of Sums Over Indices Taking on Distinct Values

In this section, the relationship between Σ and $\frac{\Sigma}{#}$ for various summands is given. The calculations involved are of varied difficulty. Some are straightforward, while some require a systematic approach.

This section is divided into two sub-sections. In the first sub-section general results are obtained and the relationships of interest are then deduced from them. The latter section involves some tedious calculations. Therefore results of interest are obtained directly.

2.4.1 Relationships Between Σ and Σ When the Summand is a Product of At Most Three Terms

Let α , β , $\gamma \in S=\{1,2,\ldots\}$ - the set of natural numbers. Then

Gl: $\forall \alpha \in S$ $\Sigma \Delta_{12}^{\alpha} = \Sigma \Delta_{12}^{\alpha}$ G2: $\forall \alpha, \beta \in S$ $\Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} = \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} + \Sigma \Delta_{12}^{\alpha+\beta}$. G3: $\forall \alpha, \beta \in S$ $\Sigma \Delta_{12}^{\alpha} \Delta_{34}^{\beta} = 1 = 1 + \dots + 1 + 2 \times 1 + 2 \times$

$$\begin{aligned} G4: \quad \Psi \alpha, \ \beta, \ \gamma \in S, \ \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{23}^{\gamma} &= \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{23}^{\gamma}, \\ g5: \quad \Psi \alpha, \ \beta, \ \gamma \in S, \\ \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{14}^{\gamma} &= 2 \Sigma \Delta_{12}^{\gamma} \Delta_{13}^{\alpha} \Delta_{14}^{\gamma} + \Sigma \Delta_{12}^{\alpha+\beta} \Delta_{13}^{\gamma}, \\ &= 2 \Sigma \Delta_{12}^{\gamma} \Delta_{13}^{\alpha} \Delta_{14}^{\gamma} + \Sigma \Delta_{12}^{\alpha+\beta} \Delta_{13}^{\gamma} + \Sigma \Delta_{12}^{\alpha+\gamma} \Delta_{13}^{\beta}, \\ &= 2 \Sigma \Delta_{12}^{\gamma} \Delta_{13}^{\alpha} \Delta_{14}^{\gamma} + \Sigma \Delta_{12}^{\alpha+\beta} \Delta_{13}^{\gamma} + \Sigma \Delta_{12}^{\alpha+\gamma} \Delta_{13}^{\beta}, \\ &= 2 \Sigma \Delta_{12}^{\gamma} \Delta_{13}^{\alpha} \Delta_{24}^{\gamma} + \Sigma \Delta_{12}^{\alpha+\beta+\gamma} \\ G6: \quad \Psi \alpha, \ \beta, \ \gamma \in S, \\ &\Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{24}^{\gamma} &= 1 \Sigma \Delta_{12}^{\gamma} \Delta_{13}^{\beta} \Delta_{24}^{\gamma} + \Sigma \Delta_{12}^{\alpha+\beta} \Delta_{13}^{\gamma} + \Sigma \Delta_{12}^{\alpha+\gamma} \Delta_{13}^{\beta}, \\ &= 2 \Sigma \Delta_{12}^{\gamma} \Delta_{13}^{\alpha} \Delta_{24}^{\gamma} + \Sigma \Delta_{12}^{\alpha+\beta} \Delta_{13}^{\gamma} + \Sigma \Delta_{12}^{\alpha+\beta} \Delta_{13}^{\gamma}, \\ &= 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\alpha} \Delta_{24}^{\gamma} + \Sigma \Delta_{12}^{\alpha+\beta} \Delta_{13}^{\gamma} + \Sigma \Delta_{12}^{\alpha+\beta} \Delta_{13}^{\gamma}, \\ &= 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\alpha} \Delta_{45}^{\gamma} + 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{14}^{\gamma} + 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{14}^{\gamma}, \\ &= 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\alpha} \Delta_{45}^{\gamma} + 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{14}^{\gamma} + 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{14}^{\gamma}, \\ &= 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\alpha} \Delta_{45}^{\gamma} + 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{14}^{\gamma} + 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{14}^{\gamma}, \\ &= 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\alpha} \Delta_{45}^{\gamma} + 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{14}^{\gamma} + 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{14}^{\gamma}, \\ &= 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\alpha} \Delta_{45}^{\gamma} + 2 \Sigma \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{14}^{\gamma}, \\ &= 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\alpha} \Delta_{13}^{\gamma} + 2 \Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{14}^{\gamma}. \end{aligned}$$

 $= \sum_{\neq \Delta} \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{45}^{\gamma} + 2 \sum_{\neq 12} \Delta_{13}^{\alpha} \Delta_{34}^{\beta} + 2 \sum_{\neq \Delta} \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{24}^{\gamma}$ + $2\Sigma \Delta_{12}^{\alpha} \Delta_{13}^{\beta} \Delta_{14}^{\gamma}$ + $2\Sigma \Delta_{13}^{\alpha} \Delta_{13}^{\beta} \Delta_{23}^{\gamma}$ + $\Sigma \Delta_{12}^{\alpha+\beta} \Delta_{34}^{\gamma}$ + $Z \Delta_{13}^{\alpha+\beta} \Delta_{14}^{\gamma}$ + $Z \Delta_{13}^{\gamma} \Delta_{13}^{\gamma}$ + $Z \Delta_{13}^{\alpha+\beta} \Delta_{14}^{\gamma}$ + $4 \stackrel{\Sigma}{\neq} \stackrel{\alpha+\beta}{12} \stackrel{\gamma}{13} + 2 \stackrel{\Sigma}{\neq} \stackrel{\alpha+\gamma}{12} \stackrel{\beta}{13} + 2 \stackrel{\Sigma}{\neq} \stackrel{\beta+\gamma}{12} \stackrel{\alpha}{13}$ + $2\sum_{\neq}^{\Delta} 12^{\alpha+\beta+\gamma}$ (Using G5). $\Sigma \Delta_{12}^{p} \Delta_{34}^{\Delta} 56 = 1^{\Sigma}_{\neq} \cdot 4^{\Delta}_{12}^{p} \Delta_{34}^{\Delta}_{56} + 2\Sigma \Delta_{12}^{p} \Delta_{13}^{\Delta}_{45}$ $= 1^{\Sigma}_{\neq} ... {}^{\Delta p}_{12} {}^{\Delta}_{34} {}^{\Delta}_{56} + 4^{\Sigma}_{1\neq} ... {}^{\Delta p}_{12} {}^{\Delta}_{13} {}^{\Delta}_{45} + 4^{\Sigma}_{12} {}^{\Delta}_{12} {}^{\Delta}_{13} {}^{\Delta}_{14}$ $= 2 \frac{5}{2 \neq .4} \frac{4}{12} \frac{2}{34} \frac{4}{56} + 2 \frac{5}{1 \neq ...} \frac{4}{12} \frac{5}{23} \frac{4}{45} + 4 \frac{5}{2 \neq 3} \frac{4}{12} \frac{5}{12} \frac{4}{13} \frac{4}{45}$ $+ \frac{4}{12} \cdot \cdot \frac{5}{12} \cdot \frac{5}{34} + \frac{45}{12} \cdot \frac{5}{12} \cdot \frac{13}{14} + \frac{45}{12} \cdot \frac{13}{12} \cdot \frac{13}{14} + \frac{13}{14} \cdot \frac{13}{14} + \frac{13}{14} \cdot \frac{13}{14} \cdot \frac{13}{14} + \frac{13}{14} \cdot \frac{13}{14} \cdot \frac{13}{14} + \frac{13}{14} \cdot \frac{1$ + $4_{2\frac{5}{4}}$. ${}^{P}_{12}{}^{\Delta}_{13}{}^{\Delta}_{45}$ + $8_{2\frac{5}{4}}$. ${}^{\Delta}_{12}{}^{\Delta}_{13}{}^{\Delta}_{24}$ + $4\frac{5}{4}{}^{\Delta}_{12}{}^{P+1}{}^{\Delta}_{34}$ + $8 \overset{p+1}{\underset{\neq}{}} \overset{\lambda}{\underset{12}{}} \overset{p+1}{\underset{13}{}} \overset{+}{\underset{13}{}} \overset{4 \overset{p}{\underset{12}{}} \overset{\lambda}{\underset{13}{}} \overset{\lambda}{\underset{14}{}} \overset{14}{\underset{13}{}} \overset{\lambda}{\underset{13}{}} \overset{\lambda}{\underset{14}{}} \overset{\lambda}{\underset{13}{}} \overset{\lambda}{\underset{13}{}} \overset{\lambda}{\underset{13}{}} \overset{\lambda}{\underset{14}{}} \overset{\lambda}{\underset{13}{}} \overset{$ $= 3^{\Sigma}_{\neq} .. 12^{\Delta}_{34} .. 56^{\Delta}_{56} + 2^{\Sigma}_{2\neq} .. 12^{\Delta}_{12} .. 34^{\Delta}_{35} + 8^{\Sigma}_{\neq} .. 12^{\Delta}_{13} .. 45^{\Delta}_{45}$ + $16\xi^{\Delta p}_{12}^{\Delta}_{13}^{\Delta}_{34}$ + $4\xi^{\Delta p}_{12}^{\Delta}_{13}^{\Delta}_{14}$ + $4\xi^{\Delta p}_{12}^{\Delta}_{13}^{2}_{13}$ + $8 \Sigma^{\Delta p}_{12} + 8 \Sigma^{\Delta p}_{13} + 8 \Sigma^{\Delta p}_{12} + 8 \Sigma^{\Delta p}_{13} + 4 \Sigma^{\Delta p+1}_{23} + 4 \Sigma^{\Delta p+1}_{23} + 4 \Sigma^{\Delta p+1}_{23} + 4 \Sigma^{\Delta p+1}_{23}$ + $8\Sigma^{p+1}_{12}$ + $4\Sigma^{p}_{12}$ + $4\Sigma^{p}_{12}$ $= \frac{1}{4} \Delta_{12}^{P} \Delta_{34} \Delta_{56} + \frac{4}{4} \Delta_{12}^{P} \Delta_{34} \Delta_{35} + \frac{8}{4} \Delta_{12}^{P} \Delta_{13} \Delta_{45}$

 $+ \frac{16\Sigma}{4} \frac{p}{12} \frac{13}{33} \frac{p}{34} + \frac{8\Sigma}{4} \frac{p}{12} \frac{p}{13} \frac{p}{24} + \frac{8\Sigma}{4} \frac{p}{12} \frac{p}{12} \frac{13}{13} \frac{p}{14}$ $+ 2 \sum_{\neq} \Delta_{12}^{p} \Delta_{34}^{2} + 8 \sum_{\neq} \Delta_{12}^{p} \Delta_{13} \Delta_{23} + 4 \sum_{\neq} \Delta_{12}^{p+1} \Delta_{34}$ + $16\Sigma\Delta_{12}^{p+1}\Delta_{13} + 8\Sigma\Delta_{12}^{p}\Delta_{13}^{2} + 4\Sigma\Delta_{12}^{p+2}$ (Using G5).

The relationships given by Gl through G4 are trivial. There is however, a need to deduce the following specific results from G5 through G8.

 $\Sigma \Delta_{12} \Delta_{13} \Delta_{14} = \frac{\Sigma}{4} \Delta_{12} \Delta_{13} \Delta_{14} + \frac{3\Sigma}{4} \Delta_{12}^{2} \Delta_{13} + \frac{\Sigma}{4} \Delta_{12}^{3}$ (2.3) $\sum_{\substack{\Sigma \land 2 \\ 12 \end{cases}}}^{2} \sum_{13 \land 14}^{2} = \sum_{\neq}^{2} \sum_{12 \land 13 \land 14}^{2} + \sum_{\neq}^{2} \sum_{12 \land 13}^{3} \sum_{13}^{4} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{12 \land 13}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{13 \land 14}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{13 \land 14}^{2} \right) \sum_{13 \land 14}^{2} + \left(\sum_{\neq}^{2} \sum_{13 \land 14}^{2} + \left(\sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2}$ $+ \sum_{\neq}^{\Sigma} \Delta_{12}^4$ (2.4) $\sum_{\Delta} 12^{\Delta} 13^{\Delta} 24 = \sum_{\neq} 12^{\Delta} 13^{\Delta} 24 + \sum_{\neq} 12^{\Delta} 13^{\Delta} 23 + 2 \sum_{\neq} 2^{\Delta} 12^{\Delta} 13$ $+ \frac{5}{4} \sum_{12}^{3}$ (2.5) $\Sigma \Delta_{12}^{2} \Delta_{13} \Delta_{24} = \frac{2}{2} \Delta_{12}^{2} \Delta_{13} \Delta_{24} + \frac{2}{2} \Delta_{12}^{2} \Delta_{13} \Delta_{23} + \frac{2}{2} \Delta_{12}^{3} \Delta_{13}$ $+ \sum_{\pm} \Delta_{12}^4$ (2.6) $\Sigma^{2}_{\Sigma^{\Delta}12^{\Delta}13^{\Delta}34} = \Sigma^{\Delta}12^{\Delta}13^{\Delta}24$ $= \frac{1}{4} \sum_{12}^{2} \sum_{13}^{4} \sum_{34}^{4} + \frac{1}{4} \sum_{12}^{2} \sum_{13}^{4} \sum_{23}^{4} + \frac{1}{4} \sum_{12}^{4} \sum_{13}^{2} \sum_{13}^{2} \sum_{13}^{2} \sum_{13}^{4} \sum$ $+ \Xi \Delta_{12}^{3} \Delta_{13} + \Xi \Delta_{12}^{4}$ (2.7)

$$\begin{split} \Sigma \Delta_{12} \Delta_{13} \Delta_{45} &= \frac{\Gamma}{2} \Delta_{12} \Delta_{13} \Delta_{45} + 4 \frac{\Gamma}{2} \Delta_{12} \Delta_{13} \Delta_{24} + 2 \frac{\Gamma}{2} \Delta_{12} \Delta_{13} \Delta_{14} \\ &+ 2 \frac{\Gamma}{2} \Delta_{12} \Delta_{13} \Delta_{23} + \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{34} + 8 \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13} \\ &+ 2 \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13} \Delta_{45} + 2 \left(\frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13} \Delta_{34} + \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13}^{2} \Delta_{24} \right) \\ \Sigma \Delta_{12}^{2} \Delta_{13} \Delta_{45} &= \frac{\Gamma}{2} \Delta_{12}^{\mathbf{N}} \Delta_{14} + 2 \left(\frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13} \Delta_{34} + \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13}^{2} \Delta_{24} \right) \\ &+ \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13} \Delta_{45} + 2 \left(\frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13} \Delta_{23} \right) + \frac{\Gamma}{2} \Delta_{12}^{3} \Delta_{34} \\ &+ 6 \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13} + 2 \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13}^{2} + 2 \frac{\Gamma}{2} \Delta_{12}^{4} \Delta_{12}^{2} + 2 \frac{\Gamma}{2} \Delta_{13}^{2} \Delta_{34} \\ &+ 6 \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13} \Delta_{45}^{2} + 4 \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13}^{2} + 2 \frac{\Gamma}{2} \Delta_{13}^{2} \Delta_{14} + 6 \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13}^{2} + 2 \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13}^{2} + 2 \frac{\Gamma}{2} \Delta_{13}^{2} \Delta_{14} + 6 \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13}^{2} + 2 \frac{\Gamma}{2} \Delta_{13}^{2} \Delta_{14} + 2 \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13}^{2} + 2 \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13}^{2} + 2 \frac{\Gamma}{2} \Delta_{13}^{2} \Delta_{13}^{2} + 2 \frac{\Gamma}{2} \Delta_{12}^{2} \Delta_{13}^{2} + 2 \frac{\Gamma}{2} \Delta_{13}^{2} + 2 \frac{\Gamma}{2} \Delta_{13}^{2} + 2 \frac{\Gamma}{2} \Delta_{12}^{$$

 $+8\sum_{\neq}^{2}\sum_{12}^{\Delta}\sum_{13}^{\Delta}\sum_{23}^{2} + 2\sum_{\neq}^{2}\sum_{12}^{\Delta}\sum_{34}^{2} + 4\sum_{\neq}^{\Delta}\sum_{12}^{\Delta}\sum_{34}^{2} + 8\sum_{\neq}^{\Delta}\sum_{12}^{\Delta}\sum_{13}^{2} + 16\sum_{\neq}^{\Delta}\sum_{12}^{\Delta}\sum_{13}^{2} + 4\sum_{\neq}^{\Delta}\sum_{12}^{4} .$ (2.12)

2.4.2 Relationships Between Σ and Σ When the <u>summand</u> is a Product of Four Terms

In this subsection, the relationships between Σ and Σ involve some tedious computations. The computational work is reduced considerably by employing the following rules of switching the indices.

Rules of Switching Indices

Let a sum be extended over a set of indices S = { i₁, i₂,..., i_k }.

Rule 1: Let $S_1 \subseteq S$, so that the indices of S_1 take on values independent of each other. Then any two indices of S_1 can be switched without altering the conditions over which the sum is extended. E.g.:

$$1_{\pm}^{\Sigma} \cdot \cdot \cdot \cdot 12^{\Delta} 13^{\Delta} 45^{\Delta} 67 = 1_{\pm}^{\Sigma} \cdot \cdot \cdot \cdot \cdot 12^{\Delta} 34^{\Delta} 56^{\Delta} 17,$$

while

 1_{\neq}^{Σ} . $^{\Delta}12^{\Delta}23^{\Delta}45^{\Delta}67 \stackrel{\neq}{} 1_{\neq}^{\Sigma}$. $^{\Delta}12^{\Delta}13^{\Delta}45^{\Delta}67$.

Here $S_1 = \{2,3,4,5,6,7\}$ or $\{1\}$ or any of the subsets of $\{2,3,4,5,6,7\}$. In the first case index 3 is switched with index 7 and index 4 is switched with index 6 while in the second case index 1 is switched with index 2, which together do not belong to S_1 .

Rule 2: Let $S_2 \subseteq S$, such that for any index $k \in S_2$ and any $\ell \in S_2 \ \ell \neq k$, k and ℓ take on distinct values. Then any two indices of S_2 can be switched. e.g.:

$$2_{\neq}^{\Sigma}$$
. $^{\Delta}12^{\Delta}23^{\Delta}45^{\Delta}67 = 2_{\neq}^{\Sigma}$. $^{\Delta}12^{\Delta}13^{\Delta}45^{\Delta}67$.

Using the above rules, when required, the following results are obtained:

$$\Sigma \Delta_{12} \Delta_{13} \Delta_{24} \Delta_{34} = \sum_{\neq \Delta} \Delta_{12} \Delta_{13} \Delta_{24} \Delta_{34} + 2\sum_{\neq \Delta} \Delta_{12}^{2} \Delta_{13}^{2} + \sum_{\neq \Delta} \Delta_{12}^{4}.$$

$$(2.13)$$

$$\Sigma \Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15} = 2\sum_{\neq A}^{\Sigma} A \Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15} + 22\sum_{\neq 3}^{\Sigma} \Delta_{12}^{2} \Delta_{13} \Delta_{14} - + \Sigma \Delta_{12}^{3} \Delta_{13} \Delta_{14} \Delta_{15} + 32\sum_{\neq A}^{\Sigma} \Delta_{12}^{2} \Delta_{13} \Delta_{14} + 3\sum_{\neq A} \Delta_{12}^{3} \Delta_{13} + \sum_{\neq A} \Delta_{12}^{4}$$

$$= 3\sum_{\neq A}^{\Sigma} A \Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15} + 5\sum_{\neq A} \Delta_{12}^{2} \Delta_{13} \Delta_{14} + \Delta_{\neq A}^{\Sigma} \Delta_{12}^{3} \Delta_{13} + 3\sum_{\neq A} \Delta_{12}^{2} \Delta_{13}^{2} + \sum_{\neq A} \Delta_{12}^{4}$$

$$= \sum_{\neq A} \Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15} + 5\sum_{\neq A} \Delta_{12}^{2} \Delta_{13} \Delta_{14} + \Delta_{\neq A}^{\Sigma} \Delta_{12}^{3} \Delta_{13} + 3\sum_{\neq A} \Delta_{12}^{2} \Delta_{13}^{2} + \sum_{\neq A} \Delta_{12}^{4}$$

$$= \sum_{\neq A} \Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15} + 6\sum_{\neq A} \Delta_{12}^{2} \Delta_{13} \Delta_{14} + 4\sum_{\neq A} \Delta_{12}^{3} \Delta_{13} + 3\sum_{\neq A} \Delta_{12}^{2} \Delta_{13}^{2} + \sum_{\neq A} \Delta_{12}^{4}$$

$$= \sum_{\neq A} \Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15} + 6\sum_{\neq A} \Delta_{12}^{2} \Delta_{13} \Delta_{14} + 4\sum_{\neq A} \Delta_{12}^{3} \Delta_{13} + 3\sum_{\neq A} \Delta_{12}^{2} \Delta_{13}^{2} + \sum_{\neq A} \Delta_{12}^{4}$$

$$= \sum_{\neq A} \Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15} + 6\sum_{\neq A} \Delta_{12}^{2} \Delta_{13} \Delta_{14} + 4\sum_{\neq A} \Delta_{12}^{3} \Delta_{13} + 3\sum_{\neq A} \Delta_{12}^{2} \Delta_{13}^{2} + \sum_{\neq A} \Delta_{12}^{4}$$

$$= \sum_{\neq A} \Delta_{12} \Delta_{13}^{2} \Delta_{13}^{2} + \sum_{\neq A} \Delta_{12}^{4} \Delta_{13}^{2} + 2\sum_{A} \Delta_{12}^{2} \Delta_{13}^{2} \Delta_{14}^{2} + 2\sum_{A} \Delta_{12}^{2} \Delta_{13}^{2} \Delta_{14}^{2} + 2\sum_{A} \Delta_{12}^{2} \Delta_{13}^{2} \Delta_{14}^{2} + 2\sum_{A} \Delta_{12}^{2} \Delta_{13}^{2} \Delta_{13}^{2} + 2\sum_{A} \Delta_{12}^{2} \Delta_{13}^{2} \Delta_{23}^{2} + 2\sum_{A} \Delta_{12}^{2} \Delta_{13}^{2} + 2\sum_{A} \Delta_{12}^{2} \Delta_{13}^{2} \Delta_{23}^{2} + 2\sum_{A} \Delta_{12}^{2} \Delta_{13}^{2} + 2\sum_{A} \Delta_{12}^{2} + 2\sum_{A} \Delta_{12}^{2} + 2\sum_{A} \Delta_{12}^{2} + 2$$

$$\begin{split} {}^{\Sigma \Delta}{}_{12}{}^{\Delta}{}_{13}{}^{\Delta}{}_{23}{}^{\Delta}{}_{45} &= 1\frac{7}{4} \cdot \cdot \cdot ^{\Lambda}{}_{12}{}^{\Delta}{}_{13}{}^{\Lambda}{}_{23}{}^{\Lambda}{}_{45} + 2\Sigma^{\Lambda}{}_{12}{}^{\Delta}{}_{13}{}^{\Lambda}{}_{23}{}^{\Lambda}{}_{14} \\ &= 2\frac{7}{4} \cdot \cdot \cdot ^{\Lambda}{}_{12}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{23}{}^{\Lambda}{}_{45} + 21\frac{7}{4} \cdot \cdot \cdot ^{\Lambda}{}_{12}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{23}{}^{\Lambda}{}_{24} \\ &+ 2\Sigma^{\Lambda}{}_{12}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{23}{}^{\Lambda}{}_{45} + 6\frac{7}{4}{}^{\Lambda}{}_{12}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{23}{}^{\Lambda}{}_{14} \\ &= \frac{7}{4}{}^{\Lambda}{}_{12}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{23}{}^{\Lambda}{}_{45} + 6\frac{7}{4}{}^{\Lambda}{}_{12}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{23}{}^{\Lambda}{}_{14} \\ &= \frac{7}{4}{}^{\Lambda}{}_{12}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{23}{}^{\Lambda}{}_{25} + 6\frac{7}{4}{}^{\Lambda}{}_{12}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{23}{}^{\Lambda}{}_{24} \\ &+ 6\frac{7}{4}{}^{\Lambda}{}_{12}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{14}{}^{\Lambda}{}_{25} + 1\frac{7}{4}{}^{\Gamma}{}_{12}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{24} \\ &+ \Sigma^{\Lambda}{}^{2}{}^{\Lambda}{}_{12}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{14}{}^{\Lambda}{}_{25} + 2\frac{7}{2}\frac{7}{4}{}^{\Lambda}{}^{\Lambda}{}^{\Lambda}{}_{21}{}^{\Lambda}{}_{23}{}^{\Lambda}{}_{24} \\ &+ \frac{7}{4}{}^{\Lambda}{}^{\Lambda}{}^{2}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{14}{}^{\Lambda}{}_{25} + 2\frac{7}{4}{}^{\Gamma}{}^{\Lambda}{}^{\Lambda}{}^{\Lambda}{}^{\Lambda}{}^{\Lambda}{}_{24} \\ &+ \frac{7}{4}{}^{\Lambda}{}^{\Lambda}{}^{\Lambda}{}_{13}{}^{\Lambda}{}_{14}{}^{\Lambda}{}_{25} + 2\frac{7}{4}{}^{\Lambda}{}^{\Lambda}{}^{\Lambda}{}^{\Lambda}{}^{\Lambda}{}_{23}{}^{\Lambda}{}_{13} \\ &+ 2\frac{7}{4}{}^{\Lambda}{}$$

34 $+ \sum_{\neq}^{2} \sum_{12}^{\Delta} \sum_{13}^{\Delta} 34 + \sum_{\neq}^{2} \sum_{12}^{\Delta} \sum_{13}^{\Delta} 24 + \sum_{\neq}^{\Delta} \sum_{12}^{\Delta} 2^{\Delta} 13^{\Delta} 14$ + $3 \sum_{\neq 12}^{\Sigma \Delta} \frac{2}{13} \sum_{23}^{\Delta} + 3 \sum_{\neq 12}^{\Sigma \Delta} \frac{3}{12} \sum_{13}^{\Delta} + \sum_{\neq 12}^{\Sigma \Delta} \frac{2}{13}$ + \sum_{12}^{4} (Using (2.4)). (2.17) ${}^{\Sigma\Delta}12^{\Delta}13^{\Delta}24^{\Delta}35 = 1_{\neq}^{\Sigma} \cdot \cdot \cdot \cdot 12^{\Delta}13^{\Delta}24^{\Delta}35 + 1_{\neq}^{\Sigma} \cdot \cdot \cdot \cdot 12^{\Delta}13^{\Delta}24$ + $\Sigma \Delta^2_{12} \Delta_{13} \Delta_{34}$ $= 2_{\neq3}^{\Sigma} 3^{\Delta} 12^{\Delta} 13^{\Delta} 24^{\Delta} 35^{+} 1_{\neq}^{\Sigma} ... {}^{2} 12^{\Delta} 23^{\Delta} 24^{\Delta} 25^{+} 1_{\neq}^{\Sigma} ... {}^{2} 12^{\Delta} 23^{\Delta} 24^{+} 1_{\neq}^{\Sigma} ... {}^{2} 12^{\Delta} 23^{+} 1_{\neq}^{\Sigma} ... {}^{2} 12^{+} 12$ + $2^{\Sigma}_{\neq \dots}$ $^{\Delta}_{12}$ $^{\Delta}_{13}$ $^{\Delta}_{24}$ + $1^{\Sigma}_{\neq \dots}$ $^{\Delta}_{12}$ $^{\Delta}_{23}$ + $^{\Sigma}_{12}$ $^{\Delta}_{13}$ $^{\Delta}_{34}$ $= 2^{\Sigma}_{\neq} \cdot \cdot^{\Delta} 12^{\Delta} 13^{\Delta} 24^{\Delta} 35 + 2^{\Sigma}_{\neq} \cdot \cdot^{\Delta} 12^{\Delta} 13^{\Delta} 23^{\Delta} 14$ $+ \frac{\Sigma}{4} \frac{12}{13} \frac{13}{14} + \frac{\Sigma}{4} \frac{12}{12} \frac{12}{13} + \frac{\Sigma}{4} \frac{12}{12} \frac{13}{13} + \frac{\Sigma}{4} \frac{12}{12} \frac{13}{13} \frac{13}{34}$ + $\sum_{\neq}^{\Sigma^{\Delta}} \sum_{12}^{2} \sum_{13}^{\Delta} \sum_{23}^{2} + \sum_{\neq}^{\Sigma^{\Delta}} \sum_{12}^{3} \sum_{13}^{13} + \sum_{2}^{\Delta} \sum_{12}^{2} \sum_{13}^{2} \sum_{34}^{3} 34$ (Using Rule $= 3^{\Sigma}_{\neq} ... ^{\Delta}_{12} 12^{\Delta}_{13} 24^{\Delta}_{35} + {}^{2\Sigma}_{\neq} 12^{\Delta}_{13} 23^{\Delta}_{23} 14$ + $2\Sigma \Delta^{2}_{12} \Delta_{13} \Delta_{23}$ + $\Sigma \Delta^{2}_{12} \Delta_{13} \Delta_{14}$ + $\Sigma \Delta^{2}_{12} \Delta^{2}_{13}$ $+ \sum_{\neq 12}^{\Sigma\Delta} 13^{\Delta}34 + \sum_{\neq 12}^{3} 12^{\Delta}13 + \sum_{12}^{2} 12^{\Delta}13^{\Delta}34$

$$\begin{split} &= \sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{24} \Delta_{35} + \sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{24} \Delta_{34}) \\ &+ 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{23} \Delta_{14} + \sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14}) \\ &+ 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{34} + 3\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{23} + 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13}^{2}) \\ &+ 2\sum_{\neq=1}^{\Sigma} (\Delta_{13} \Delta_{13} + \sum_{\neq=1}^{\Sigma} (\Delta_{13} \Delta_{14} \Delta_{25}) + 2\sum_{\neq=1}^{\Sigma} (\Delta_{13} \Delta_{14} \Delta_{15}) \\ &= 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{56} + 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15}) \\ &= 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{56} + 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15}) \\ &= 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{56} + 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{25}) \\ &+ 1\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{56} + 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{25}) \\ &+ 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{45} + 4\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15}) \\ &= 3\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{56} + 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15}) \\ &= 3\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{56} + 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15}) \\ &= 3\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{25} + 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{24}) \\ &+ 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{14} \Delta_{25} + 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{24}) \\ &+ 2\sum_{\neq=1}^{\Sigma} (\Delta_{13} \Delta_{14} \Delta_{25} + 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{24}) \\ &+ 2\sum_{\neq=1}^{\Sigma} (\Delta_{13} \Delta_{14} \Delta_{25} + 2\sum_{\neq=1}^{\Sigma} (\Delta_{12} \Delta_{13} \Delta_{24}) \\ &+ 4\sum_{\neq=1}^{\Sigma} (\Delta_{13} \Delta_{23} + \sum_{\neq=1}^{\Sigma} (\Delta_{13} \Delta_{34} + 4\sum_{\neq=1}^{\Sigma} (\Delta_{13} \Delta_{24}) + 4\sum_{\neq=1}^{\Sigma} (\Delta_{13} \Delta_{14} \Delta_{15}) \\ \end{array}$$

$$= \frac{z}{4} \sum_{i=1}^{n} \sum_{i=1$$

Ċ,

Ç

 $+ 2 \sum_{\neq}^{\Sigma} ..^{\Lambda} 12^{\Lambda} 13^{\Lambda} 24 + 4 \sum_{\neq}^{\Sigma} 12^{\Lambda} 13^{\Lambda} 24 + 4 \sum_{\neq}^{\Sigma} 12^{\Lambda} 13^{\Lambda} 23 + 2 \sum_{\neq}^{\Lambda} 12^{\Lambda} 13^{\Lambda} + 2 \sum_{\neq}^{\Lambda$

Using the result of (2.9), on simplification $\Sigma^{\Delta} 12^{\Delta} 13^{\Delta} 24^{\Delta} 56 \stackrel{=}{\neq} {}^{\Delta} 12^{\Delta} 13^{\Delta} 24^{\Delta} 56 \stackrel{+}{+} {}^{4} {}^{\Delta} 12^{\Delta} 13^{\Delta} 24^{\Delta} 35$ $+ \frac{\Sigma^{\Delta}}{4} 12^{\Delta} 13^{\Delta} 23^{\Delta} 45 + \frac{4\Sigma^{\Delta}}{4} 12^{\Delta} 13^{\Delta} 14^{\Delta} 25$ + $2 \sum_{\neq 1}^{\Sigma} 12^{\Delta} 13^{\Delta} 24^{\Delta} 34^{+} 10 \sum_{\neq 1}^{\Sigma} 12^{\Delta} 13^{\Delta} 23^{\Delta} 14^{+}$ + $2\sum_{\neq}^{\Sigma} 12^{\Delta} 13^{\Delta} 45$ + $8\sum_{\neq}^{\Sigma} 12^{\Delta} 13^{\Delta} 34$ + $6\sum_{\neq}^{\Sigma} 12^{\Delta} 13^{\Delta} 24$ $+ 4 \frac{5}{4} \frac{5}{12} \frac{2}{13} \frac{1}{14} + 10 \frac{5}{4} \frac{2}{12} \frac{1}{13} \frac{2}{23} + \frac{5}{4} \frac{3}{12} \frac{3}{34}$ + $4 \sum_{\pm} \Delta_{12}^{2} \Delta_{13}^{2}$ + $8 \sum_{\pm} \Delta_{12}^{3} \Delta_{13}$ + $2 \sum_{\pm} \Delta_{12}^{4}$ (2.20) $\Sigma^{\Delta} 12^{\Delta} 13^{\Delta} 45^{\Delta} 46 = 1^{\Sigma}_{\neq} ..^{\Delta} 12^{\Delta} 13^{\Delta} 45^{\Delta} 46 + 21^{\Sigma}_{\neq} ..^{\Delta} 12^{\Delta} 13^{\Delta} 14^{\Delta} 25$ + $\Sigma \Delta_{12}^{2} \Delta_{13} \Delta_{14}$ + $\Sigma \Delta_{12}^{2} \Delta_{13}^{2} \Delta_{14}^{4}$ 15 $= 2\frac{5}{24}3^{\Delta}12^{\Delta}13^{\Delta}45^{\Delta}46 + 1\frac{5}{44}...\frac{2}{12}^{\Delta}34^{\Delta}35$ $+2_{2\neq3}^{\Sigma}_{12}^{\Delta}_{13}^{\Delta}_{14}^{\Delta}_{25} + 2_{1\neq}^{\Sigma}_{\pm}^{\Delta}_{12}^{\Delta}_{13}^{\Delta}_{24} + A,$ where $A = \Sigma \Delta_{12}^{2} \Delta_{13}^{\Delta} 14^{+} \Sigma \Delta_{12}^{\Delta} 13^{\Delta} 14^{\Delta} 15$. $= 2 \frac{\Sigma}{2 \neq} \cdot 4^{\Delta} 12^{\Delta} 13^{\Delta} 45^{\Delta} 46^{+} 2 \frac{\Sigma}{2} 3^{\Delta} 12^{\Delta} 13^{\Delta} 24^{\Delta} 25$

+ $2\frac{\Sigma}{2\neq3}^{\Delta^2_{12}}^{\Delta_{34}}^{\Delta_{35}}^{\Delta_{35}}^{+}_{2\neq\ldots}^{\Sigma}^{\Delta^2_{12}}^{\Delta_{13}}^{\Delta_{14}}^{\Delta_{14}}$ + ${}^{2}_{2\not=.4}^{\Sigma}_{-.4}^{-.4}_{-.12}^{-.13}_{-.14}^{-.14}_{-.25}$ + ${}^{4}_{2\not=..}^{\Sigma}_{-..}^{-.2}_{-.12}^{-.13}_{-.13}^{-.24}_{-.24}$ + $2\sum_{\neq}^{\Sigma}\Delta_{12}^{3}\Delta_{13}$ + A $= 2^{\Sigma}_{\neq} \cdot 5^{\Delta} 12^{\Delta} 13^{\Delta} 45^{\Delta} 46 + 2^{\Sigma}_{\neq} \cdot 4^{\Delta} 12^{\Delta} 13^{\Delta} 24^{\Delta} 45$ + $3 \neq 4^{\Delta} 12^{\Delta} 13^{\Delta} 24^{\Delta} 25^{+} 2 \neq ..^{\Delta} 12^{\Delta} 13^{\Delta} 23^{\Delta} 24^{\Delta}$ + $2_{3\neq4}^{\Sigma} 4^{\Delta} 12^{\Delta} 13^{\Delta} 14^{\Delta} 25$ + $2_{2\neq}^{\Sigma} ..^{\Delta} 12^{\Delta} 13^{\Delta} 24$ $+2\overset{\Sigma}{\neq}.4\overset{\Delta^{2}}{12}\overset{\Delta_{34}}{33}\overset{\Delta_{35}}{+}2\overset{\Sigma}{\neq}3\overset{\Delta^{2}}{12}\overset{\Delta_{23}}{23}\overset{\Delta_{34}}{34}$ $+ \sum_{\neq} \Delta_{12}^{2} \Delta_{13} \Delta_{14} + \sum_{\neq} \Delta_{12}^{2} \Delta_{13}^{2} + 4 \sum_{\neq} \Delta_{12}^{2} \Delta_{13}^{2} \Delta_{24}^{2}$ + $4 \frac{\Sigma}{\neq} \frac{12}{12} \frac{13}{23} \frac{13}{23} + 2 \frac{\Sigma}{\neq} \frac{3}{12} \frac{13}{13} + A$ $= 2 \sum_{\neq \dots}^{\Sigma} 12^{\Delta} 13^{\Delta} 45^{\Delta} 46 + 2 \sum_{\neq \dots}^{\Sigma} 12^{\Delta} 13^{\Delta} 24^{\Delta} 45$ + 2ξ . $^{\Delta}12^{\Delta}13^{\Delta}24$ + 3ξ . $^{\Delta}12^{\Delta}13^{\Delta}24^{\Delta}25$ + $2 \sum_{\neq} 12^{\Delta} 13^{\Delta} 24^{\Delta} 23^{+} \sum_{\neq} 12^{\Delta} 13^{\Delta} 23^{+}$ + ${}^{2}_{3\neq}$. ${}^{\Delta}_{12}{}^{\Delta}_{13}{}^{\Delta}_{14}{}^{\Delta}_{25}$ + ${}^{2\Sigma}_{\neq}{}^{\Delta}_{12}{}^{\Delta}_{13}{}^{\Delta}_{14}{}^{\Delta}_{23}$ + $2 \sum_{\neq}^{\Sigma \Delta^{2}} 12^{\Delta} 13^{\Delta} 34$ + $2 \sum_{\neq}^{\Sigma \Delta^{2}} 12^{\Delta} 13^{\Delta} 23$ + $2 \neq .5^{\Delta} 12^{\Delta} 34^{\Delta} 35$ + $2\Sigma \Delta_{12}^{2} \Delta_{23}^{2} \Delta_{34}^{2}$ + $2\Sigma \Delta_{12}^{2} \Delta_{13}^{2}$ + $\Sigma \Delta_{12}^{2} \Delta_{13}^{2} \Delta_{14}^{2}$

$$39$$

$$+ 4\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 24}^{2} + 4\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 23}^{2} + 2\sum_{\neq}^{2} \sum_{12^{A} 12^{A} 13}^{2} + A$$

$$= 2\sum_{\neq}^{2} \ldots^{A} 12^{A} 13^{A} 45^{A} 46^{+2} 2\sum_{\neq}^{2} \ldots^{A} 12^{A} 13^{A} 24^{A} 45$$

$$+ 23\sum_{\neq}^{2} \ldots^{A} 12^{A} 13^{A} 14^{A} 25^{+} 3\sum_{\neq}^{2} \ldots^{A} 12^{A} 13^{A} 24^{A} 25$$

$$+ 4\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 23^{A} 14^{+} 5\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 34^{+}}^{2} 8\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 23^{A} 23^{A} 45^{+} 4\sum_{\neq}^{2} \sum_{12^{A} 34^{A} 35^{+} 2\sum_{\neq}^{2} \sum_{12^{A} 34^{A} 35^{+} 4\sum_{\neq}^{2} \sum_{12^{A} 34^{A} 35^{+} 2\sum_{\neq}^{2} \sum_{12^{A} 34^{+} 2\sum_{\neq}^{2} \sum_{12^{A} 34^{+} 32}^{2} \sum_{13^{A} 34^{+} 35^{+} 2\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 24^{+} 2\sum_{\neq}^{2} \sum_{12^{A} 23^{A} 23^{A} 14^{+} 4\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 24^{+} 4\sum_{\neq}^{2} \sum_{12^{A} 23^{A} 23^{A} 14^{+} 4\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 45^{+} 46^{+} 3\sum_{\neq}^{2} \ldots^{A} 12^{A} 13^{A} 34^{A} 35^{+} 23\sum_{\neq}^{2} 4^{A} 12^{A} 13^{A} 45^{A} 46^{+} 3\sum_{\neq}^{2} \ldots^{A} 12^{A} 13^{A} 34^{A} 35^{+} 23\sum_{\neq}^{2} 4^{A} 12^{A} 13^{A} 24^{A} 45^{+} 8\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 23^{A} 14^{+} 4\sum_{\neq}^{2} \sum_{12^{A} 34^{A} 35^{+} 43\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 14^{A} 25^{+} 6\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 34^{+} 2\sum_{\neq}^{2} \sum_{13^{A} 4}^{A} 14^{+} 4\sum_{\neq}^{2} \sum_{12^{A} 34^{A} 35^{+} 43\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 24^{+} 2\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 24^{+} 42\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 24^{+} 42\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 14^{+} 4\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 24^{+} 2\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 14^{+} 4\sum_{\neq}^{2} \sum_{12^{A} 13^{A} 34^{+} 2\sum_{\neq}^{2} \sum_{12^{A} 12^{A} 13^{+} 3^{+} A^{+} 2\sum_{q}^{2} \sum_{q}^{2} \sum_$$

5

(2.21a)

 $3 \stackrel{\Sigma}{\neq} 4^{\Delta} 12^{\Delta} 13^{\Delta} 45^{\Delta} 46 = 3 \stackrel{\Sigma}{\neq} 5^{\Delta} 12^{\Delta} 13^{\Delta} 45^{\Delta} 46 + 3 \stackrel{\Sigma}{\neq} 4^{\Delta} 12^{\Delta} 13^{\Delta} 34^{\Delta} 45$ $= \stackrel{\Sigma^{\Delta}}{\neq} 12^{\Delta} 13^{\Delta} 45^{\Delta} 46 + 2 \stackrel{\Sigma}{\neq} \Delta 12^{\Delta} 13^{\Delta} 34^{\Delta} 45 + \stackrel{\Sigma}{\neq} \Delta \stackrel{2}{12} \Delta 13^{\Delta} 34^{\Delta} 45$ $3 \stackrel{\Sigma}{\neq} .. \stackrel{\Delta}{} 12^{\Delta} 13^{\Delta} 34^{\Delta} 35 = \stackrel{\Sigma}{\neq} \Delta 12^{\Delta} 13^{\Delta} 14^{\Delta} 25 + \stackrel{\Sigma^{\Delta}}{} \Delta \stackrel{2}{12} \Delta 13^{\Delta} 34.$

 $3 \neq 4^{\Delta} 12^{\Delta} 13^{\Delta} 24^{\Delta} 45 = \frac{5^{\Delta}}{4} 12^{\Delta} 13^{\Delta} 24^{\Delta} 45 + \frac{5^{\Delta}}{4} 12^{\Delta} 13^{\Delta} 24^{\Delta} 34$ Using these results, (2.4) and (2.14) in (2.21a), we get $\sum_{i=1}^{\Sigma} 12^{i} 13^{i} 45^{i} 46 = \sum_{i=1}^{\Sigma} 12^{i} 13^{i} 45^{i} 46 + \sum_{i=1}^{\Sigma} 12^{i} 13^{i} 14^{i} 15$ + $4\sum_{\neq}^{\Delta}12^{\Delta}13^{\Delta}24^{\Delta}45$ + $4\sum_{\neq}^{\Delta}12^{\Delta}13^{\Delta}14^{\Delta}25$ + $2\xi^{\Delta}_{\neq}$ 12 $13^{\Delta}_{24}^{\Delta}_{34}$ + $8\xi^{\Delta}_{\neq}$ 12 $13^{\Delta}_{23}^{\Delta}_{14}$ + $2 \sum_{\pm}^{2} \Delta_{12}^{2} \Delta_{34}^{2} \Delta_{35}^{2} + 8 \sum_{\pm}^{2} \Delta_{12}^{2} \Delta_{13}^{2} \Delta_{34}^{2}$ $+ 8 \frac{5}{4} \frac{12}{12} \frac{13}{13} \frac{14}{14} + 4 \frac{5}{4} \frac{12}{12} \frac{13}{13} \frac{14}{24} + 8 \frac{5}{4} \frac{12}{12} \frac{13}{13} \frac{13}{23}$ $+ \begin{array}{c} \sum \Delta_{12}^{2} \Delta_{34}^{2} + 6 \begin{array}{c} \sum \Delta_{12}^{2} \Delta_{13}^{2} + 8 \begin{array}{c} \sum \Delta_{12}^{3} \Delta_{13} + 2 \begin{array}{c} \sum \Delta_{4}^{4} \\ \neq 12 \end{array} \right) \cdot$ ${}^{\Sigma \Delta}12 {}^{\Delta}13 {}^{\Delta}45 {}^{\Delta}67 = 1 {}^{\Sigma}_{\neq} \dots {}^{\Delta}12 {}^{\Delta}13 {}^{\Delta}45 {}^{\Delta}67 + {}^{4}1 {}^{\Sigma}_{\neq} \dots {}^{\Delta}12 {}^{\Delta}13 {}^{\Delta}14 {}^{\Delta}56$ + $4\Sigma\Delta_{12}\Delta_{13}\Delta_{14}\Delta_{15}$ $= 2 \stackrel{\Sigma}{\neq} .. \stackrel{\Delta}{12} \stackrel{\Delta}{13} \stackrel{\Delta}{45} \stackrel{\Delta}{67} + \stackrel{4}{4} \stackrel{\Sigma}{\neq} .. \stackrel{\Delta}{12} \stackrel{\Delta}{13} \stackrel{\Delta}{24} \stackrel{\Delta}{56}$ $+ 4_{2\neq ...}^{\Sigma} 12^{\Delta} 13^{\Delta} 14^{\Delta} 56 + 2^{\Sigma}_{\neq ...}^{\Delta} 12^{\Delta} 34^{\Delta} 56$ $+ \frac{12}{2 \neq ..} \frac{5}{12} \frac{13}{13} \frac{14}{14} \frac{5}{25} + \frac{12}{2 \neq ..} \frac{5}{12} \frac{13}{12} \frac{5}{13} \frac{5}{45}$ + ${}^{4}_{2\neq}$. ${}^{2}_{12}$ ${}^{\Delta}_{13}$ ${}^{\Delta}_{14}$ + ${}^{16}_{2\neq}$. ${}^{2}_{12}$ ${}^{\Delta}_{13}$ ${}^{2}_{24}$ + $4 \sum_{\neq 12}^{\Sigma \Delta_{34}^3} + 8 \sum_{\neq 12}^{\Sigma \Delta_{34}^3} + 4 \sum_{\neq 12}^{\Sigma \Delta_{13}^3} + 4 \sum_{\neq 12}^{\Sigma \Delta_{13}^3} + 4 \sum_{\neq 12}^{\Delta_{13}^3} + 4 \sum_{\neq 12}^{\Delta_{13}$

 $= 3^{\Sigma}_{\neq} ..^{\Delta}_{12} 12^{\Delta}_{13} 13^{\Delta}_{45} 67^{+}_{67} 83^{\Sigma}_{\neq} ..^{\Delta}_{12} 12^{\Delta}_{13} 24^{\Delta}_{56}$ + ${}^{4}_{3}$ ${}^{5}_{4}$. ${}^{6}_{12}$ ${}^{13}_{13}$ ${}^{6}_{14}$ ${}^{56}_{56}$ + ${}^{5}_{4}$ ${}^{2}_{12}$ ${}^{6}_{34}$ ${}^{56}_{56}$ + $24_{3\overset{\Sigma}{\neq}}$. $^{\Delta}12^{\Delta}13^{\Delta}14^{\Delta}25$ + $^{8}3\overset{\Sigma}{\neq}$. $^{\Delta}12^{\Delta}13^{\Delta}24^{\Delta}35$ + $4\frac{5}{4}$ 12^{4} 13^{4} 23^{4} 45^{4} $4\frac{5}{4}$ 12^{4} 34^{4} 35^{4} + $16^{2}_{42}^{12}_{12}^{13}_{13}^{45}$ + $20^{2}_{42}^{12}_{13}^{13}_{23}^{14}_{14}$ + $36\sum_{\neq}^{\Sigma}a_{12}^{2}a_{34}^{4}$ + $2\sum_{\neq}^{\Sigma}a_{234}^{2}$ + $24\sum_{\neq}^{\Sigma}a_{12}^{2}a_{34}^{2}$ + $24\sum_{\neq}^{\Sigma}a_{12}^{2}a_{13}^{4}a_{24}^{2}$ $+ 4 \Sigma^{\Delta}_{12}^{2} {}^{\Delta}_{13}^{\Delta}_{14} + 4 \Sigma^{\Delta}_{12}^{3} {}^{\Delta}_{34} + 28 \Sigma^{\Delta}_{12}^{2} {}^{\Delta}_{13}^{2}_{33}$ $+ 4 \sum_{\neq}^{\Sigma} 12^{\Delta} 13^{2} + 8 \sum_{\neq}^{\Sigma} 12^{\Delta} 13^{2} + 4 \sum_{\perp}^{\Sigma} 12^{\Delta} 13^{\Delta} 14^{\Delta} 15$ $= \stackrel{\Sigma^{\Delta}}{\neq} 12^{\Delta} 13^{\Delta} 45^{\Delta} 67^{+} 4 \stackrel{\Psi^{\Delta}}{\neq} 12^{\Delta} 13^{\Delta} 45^{\Delta} 46$ + $8\frac{5}{4}$ 12^{Δ} 13^{Δ} 24^{Δ} 56^{+} $4\frac{5}{4}$ 12^{Δ} 13^{Δ} 14^{Δ} 56^{+} + $\frac{5}{4}^{2}_{12}^{2}_{34}^{3}_{56}$ + $\frac{32}{4}^{2}_{12}^{1}_{13}^{14}_{25}^{14}_{25}^{1}_{25}^{1}_{13}^{1}_{14}^{1}_{25}^{1}_{25}^{1}_{15}^{1}$ + $24 \frac{5}{4} 12^{13} 24^{35} + 4 \frac{5}{4} 12^{13} 23^{4} 45$ + $4\xi^{\Delta}_{\pm}12^{\Delta}_{\pm}13^{\Delta}_{\pm}14^{\Delta}_{\pm}15$ + $6\xi^{\Delta}_{\pm}2^{\Delta}_{\pm}34^{\Delta}_{\pm}35$ + $16 \frac{2}{4^{2}} \frac{12^{4}}{12^{4}} \frac{13^{4}}{45} + \frac{40 \frac{5}{4}}{12^{4}} \frac{12^{4}}{12^{4}} \frac{13^{4}}{23^{4}} \frac{13^{4}}{14}$ + $8 \xi^{\Delta}_{12}^{\Delta}_{13}^{\Delta}_{24}^{\Delta}_{34}^{+} + 40 \xi^{\Delta}_{12}^{2}_{13}^{\Delta}_{34}^{+}$

$$\frac{22}{42}$$

$$+ 28\frac{1}{2}a^{2}\frac{1}{12}a^{1}\frac{1}{3}a^{1}\frac{1}{4} + 24\frac{1}{2}a^{2}\frac{1}{12}a^{1}\frac{1}{3}a^{2}\frac{1}{4} + 2\frac{1}{2}a^{2}\frac{1}{12}a^{2}\frac{1}{3}\frac{1}{4}$$

$$+ 4\frac{1}{2}a^{3}\frac{1}{12}a^{3}\frac{1}{3}\frac{1}{4} + 28\frac{1}{2}a^{2}\frac{1}{12}a^{1}\frac{1}{3}a^{2}\frac{1}{2} + 16\frac{1}{2}a^{2}\frac{1}{2}a^{2}\frac{1}{3}\frac{1}{4}$$

$$+ 24\frac{1}{2}a^{3}\frac{1}{12}a^{1}\frac{1}{3}\frac{1}{4}\frac{1}{2}a^{1}\frac{1}{3}a^{2}\frac{1}{2}\frac{1}{3}a^{1}\frac{1}{2}a^{1}\frac{1}{3}a^{2}\frac{1}{2}a^{1}\frac{1}{3}a^{2}\frac{1}{3}\frac{1}{4}a^{2}\frac{1}{12}a^{1}\frac{1}{3}a^{2}\frac{1}{3}\frac{1}{4}a^{2}\frac{1}{12}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{12}\frac{1}{12}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{2}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{2}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{2}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{2}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{2}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{2}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{2}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{2}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{2}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}a^{1}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5}\frac{1}{4}a^{1}\frac{1}{3}a^{1}\frac{1}{4}a^{1}\frac{1}{5$$

•

. •

.

۲ .

•

 $+ 6 \frac{5}{4} \Delta_{12}^{2} \Delta_{34}^{\Delta} 56 + 48 3 \frac{5}{4} \dots^{\Delta}_{12} \Delta_{13}^{\Delta} 34^{\Delta}_{35}$ $+ 9^{6} 3 \frac{5}{4} \dots^{\Delta}_{12} \Delta_{13}^{\Delta}_{14} \Delta_{35}^{\Delta} + 48 3 \frac{5}{4} \dots^{\Delta}_{12} \Delta_{13}^{\Delta}_{24} \Delta_{35}$ $+ 8 3 \frac{5}{4} \dots^{\Delta}_{12} \Delta_{13}^{\Delta}_{14} \Delta_{15}^{\Delta} + 72 \frac{5}{4} \Delta_{12}^{2} \Delta_{13}^{\Delta}_{45}$ $+ 24 \frac{5}{4} \Delta_{12}^{\Delta}_{13} \Delta_{23}^{\Delta}_{45}^{\Delta} + 24 \frac{5}{4} \Delta_{12}^{\Delta}_{13}^{\Delta}_{34}^{\Delta}_{35}$ $+ 96 \frac{5}{4} \Delta_{12}^{2} \Delta_{13}^{\Delta}_{24}^{\Delta} + 96 \frac{5}{4} \Delta_{12}^{\Delta}_{13}^{\Delta}_{23}^{\Delta}_{14}^{\Delta}$ $+ 12 \frac{5}{4} \Delta_{12}^{2} \Delta_{34}^{2} + \frac{40 \frac{5}{4} \Delta_{12}^{2} \Delta_{13}^{\Delta}_{14}^{\Delta}_{14}^{\Delta}_{14}^{\Delta}_{12}^{\Delta}_{12}^{\Delta}_{13}^{\Delta}_{34}^{\Delta}_{35}$ $+ 12 \frac{5}{4} \Delta_{12}^{2} \Delta_{34}^{2} + 32 \frac{5}{4} \Delta_{12}^{\Delta}_{13}^{\Delta}_{13}^{\Delta}_{14}^{\Delta}_{15}^{\Delta}_{12}^{\Delta}_{13}^{\Delta}_{23}^{\Delta}_{14}^{\Delta}_{35}^{\Delta}_{35}^{\Delta}_{34}^{\Delta}_{35}^{\Delta}_{34}^{\Delta}_{35}^{\Delta}_{34}^{\Delta}_{35}^{\Delta}_{35}^{\Delta}_{34}^{\Delta}_{35}^{\Delta}_{35}^{\Delta}_{34}^{\Delta}_{35}^{\Delta}_{34}^{\Delta}_{35}^{\Delta}_{35}^{\Delta}_{34}^{\Delta}_{35}^{\Delta}_{35}^{\Delta}_{34}^{\Delta}_{35}^{\Delta}_{35}^{\Delta}_{34}^{\Delta}_{34}^{\Delta}_{35}^{\Delta}_{34}^{\Delta}_{35}^{\Delta}_{34}^{\Delta}_$

Upon further simplification and using the result of (2.14), we get

 ${}^{\Sigma\Delta}12^{\Delta}34^{\Delta}56^{\Delta}78 = \frac{5}{4} {}^{\Delta}12^{\Delta}34^{\Delta}56^{\Delta}78 + 24\frac{5}{4}{}^{\Delta}12^{\Delta}13^{\Delta}45^{\Delta}67$ $+ 12\frac{5}{4}{}^{\Lambda}12^{\Delta}34^{\Delta}56 + 96\frac{5}{4}{}^{\Delta}12^{\Lambda}13^{\Delta}24^{\Delta}56$ $+ 48\frac{5}{4}{}^{\Lambda}12^{\Lambda}13^{\Lambda}45^{\Lambda}46 + 32\frac{5}{4}{}^{\Lambda}12^{\Lambda}13^{\Lambda}14^{\Lambda}56$ $+ 96\frac{5}{4}{}^{\Lambda}12^{\Lambda}13^{\Lambda}45 + 32\frac{5}{4}{}^{\Lambda}12^{\Lambda}13^{\Lambda}23^{\Lambda}45$ $+ 48\frac{5}{4}{}^{\Lambda}12^{\Lambda}34^{\Lambda}5 + 192\frac{5}{4}{}^{\Lambda}12^{\Lambda}13^{\Lambda}24^{\Lambda}35$ $+ 48\frac{5}{4}{}^{\Lambda}12^{\Lambda}34^{\Lambda}35 + 192\frac{5}{4}{}^{\Lambda}12^{\Lambda}13^{\Lambda}24^{\Lambda}35$ $+ 192\frac{5}{4}{}^{\Lambda}12^{\Lambda}13^{\Lambda}14^{\Lambda}25 + 16\frac{5}{4}{}^{\Lambda}12^{\Lambda}13^{\Lambda}14^{\Lambda}15$

$$+ 16 \sum_{\neq} \Lambda_{12}^{3} \Lambda_{34} + 192 \sum_{\neq} \Lambda_{12}^{2} \Lambda_{13}^{\Lambda} 34$$

$$+ 192 \sum_{\neq} \Lambda_{12}^{\Lambda} \Lambda_{13}^{\Lambda} \Lambda_{23}^{\Lambda} \Lambda_{14} + 48 \sum_{\neq} \Lambda_{12}^{\Lambda} \Lambda_{13}^{\Lambda} \Lambda_{24}^{\Lambda} 34$$

$$+ 96 \sum_{\neq} \Lambda_{12}^{2} \Lambda_{13}^{\Lambda} \Lambda_{14} + 96 \sum_{\neq} \Lambda_{12}^{2} \Lambda_{13}^{\Lambda} \Lambda_{24} + 12 \sum_{\neq} \Lambda_{12}^{2} \Lambda_{34}^{2}$$

$$+ 64 \sum_{\neq} \Lambda_{12}^{3} \Lambda_{13} + 96 \sum_{\neq} \Lambda_{12}^{2} \Lambda_{13}^{\Lambda} \Lambda_{23} + 48 \sum_{\neq} \Lambda_{12}^{2} \Lambda_{13}^{\Lambda}$$

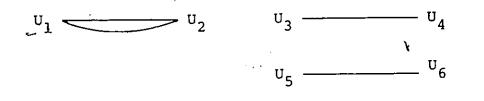
$$+ 8 \sum_{\neq} \Lambda_{12}^{4} \dots \qquad (2.23)$$

2.5 Combinatorial Methods

9

This section presents an occupancy model which is applied to obtain the relationships between Σ and $\frac{\Sigma}{4}$. This gives an alternative approach to the method of section 2.4 and hence can be used to check the results of lengthy calculations made in that section.

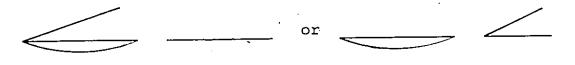
An Occupancy Model


Let there be M pairs of identical items, labelled A_{ij} , i = 1, ..., M, j=1,2. Let A_{i1} be linked with A_{i2} through a string S_i for i = 1, ..., M. Suppose all strings S_i (i=1,..., M) are identical and stretchable to any length. Suppose also that there are 2M identical urns, each big enough to carry any number of items.

All the items occupy K ($\leq 2M$) urns with a condition that each member of a pair of items A_{ij} , j = 1, 2, must occupy a different urn. Given any specific occupancy pattern of K urns (K>2), J urns (J = (1, ..., K-2)) are to be vacated. The items of an urn to be vacated move together into one of the K-J occupied urns without violating the condition of the model. How many different occupancy patterns of K-J urns are there for a given K (K>2) and for J = 1,..., K-2? If items are distinguished by their labels, what is the number of ways of arriving at a specific occupancy pattern of K-J urns?

We consider the case for M = 4, which is pertinent here in obtaining the relationships between Σ and Σ , for some cases in the following.

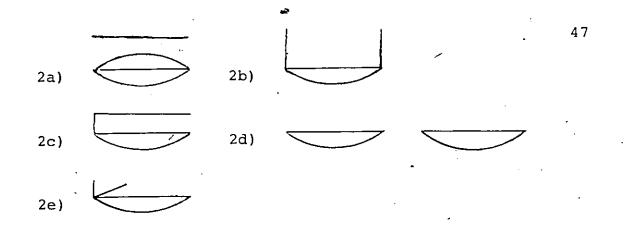
As an illustration, we consider the expansion of $\Sigma \Delta^2_{12} \Delta_{34} \Delta_{56}$ in terms of sums over distinct values of indices.


The indices of the above term correspond to K = 6 occupied urns - two of the urns carrying each of the two pairs of items, while the remaining 4 urns carry the other 4 items. This occupancy pattern is represented by the following graph:

The labelling is immaterial, since the urns are all identical (urns are labelled for reference purposes only).

Given the above occupancy pattern of 6 urns, we find various possible occupancy patterns of 6-J urns, for J = 1, 2, 3, 4, by moving all the items of an urn into one of the 6-J urns, still meeting the conditions of the model.

When J = 1, there can be only two different occupancy patterns of 5 urns, which correspond to the following graphs:



The first graph can occur when any of the urns U_3 , U_4 , U_5 or U_6 could have been vacated and its contents transferred to U_1 or U_2 ; equivalently the contents of U_1 or U_2 might have transferred to one of the urns U_3 , U_4 , U_5 , U_6 . If items are distinguished, the first graph can happen in $4 \ge 2 = 8$ ways.

Therefore, it is apparent that the expansion of $\Sigma^{2}_{12}_{34}_{56}$ will have $\Sigma^{2}_{12}_{13}_{45}^{45}$ as one of its terms with a coefficient of 8.

•The second graph is a result of combining the contents of U₃ or U₄ with U₅ or U₆. This can happen in 2 x 2 = 4 ways, indicating that another term in the expansion of $\Sigma \Delta^2_{12} \Delta_{34} \Delta_{56}$ is $\Xi \Delta^2_{12} \Delta_{34} \Delta_{35}$ with a coefficient of 4.

When J = 2, the different possible occupancy patterns of 4 urns can have the following graphs:

•,

The terms corresponding to the above graphs and their coefficients are given below:

Graph .	Corresponding Term	Coefficient of,the Term	One of the Possible Ways of Arriving at the Coefficient
2a)	$\underbrace{\overset{\Sigma}{\neq}}_{\overset{\Lambda}{12}}\overset{3}{\times}_{34}$	$2 \times 2 = 4$	The contents of U_3 , U_4 are combined with the contents of U_1 , U_2 or U_2 , U_1 .
2b)	⁻ ∑ ² ¥ ^Δ 12 ^Δ 13 ^Δ 24	$4 \times 2 = 8$	The contents of U_3 or U_4 with the contents of U_5 or U_6 are combined with the contents of U_1 and U_2 .
2c)	$\frac{\Sigma}{\neq}^{2}$ 12 ^{Δ} 13 ^{Δ} 34	8 x 2 = 16	First the contents of either U_3 , U_4 , U_5 or U_6 are combined with the contents of U_1 or U_2 . Then the contents of a member of the pair (U_3 , U_4 or U_5 , U_6) not com- bining with U_1 or U_2 , combines with the counter- part of the urn combining U_1 or U_2 .
2d)	$\sum_{\neq}^{\Sigma} \Delta_{12}^{2} \Delta_{34}^{2}$	2	The contents of U_5 and U_6 are combined with the contents of U_3 and U_4 or U_4 and U_3 respectively.

Graph	Corresponding Term	Coefficient of the Term	One of the Possible Ways of Arriving at the Coefficient
2e)	$\sum_{\neq}^{\Sigma^{\Delta}} 12^{\Delta} 13^{\Delta} 14$	$4 \times 2 = 8$	The contents of each member of the pairs $U_3 U_4$, $U_5 U_6$ combine with the contents of U_1 or U_2 .

When J = 3, the different possible occupancy patterns of 3 urns correspond to the following graphs:

With considerations similar to the cases of J = 1 and 2, the above graphs correspond to the terms of $\sum_{\neq} \Delta_{12}^3 \Delta_{13}^4$, $\sum_{\neq} \Delta_{12}^2 \Delta_{13}^2$ and $\sum_{\neq} \Delta_{12}^2 \Delta_{13} \Delta_{23}^2$ respectively. The coefficients of these terms are 16, 8 and 4 respectively.

Finally when J = 4, the only possible graph is \bigcirc which corresponds to the term $\sum_{i=1}^{4} A_{12}$ having coefficient 4.

In the expansion of $\Sigma {}^2_{12} {}^{\Lambda}_{34} {}^{\Lambda}_{56}$, one considers various cases of equality of indices. The above sum is partitioned into sums over distinct values of indices. There are 6 indices and we considered above J indices (J=1, 2, 3, 4) to be equal to the other $6 {}^{-}_{3}J$ indices. The case for J = 0 is a trivial case for which the corresponding term is

 $\sum_{\neq}^{\Sigma} 12^{\Delta}34^{\Delta}56$ with a coefficient of 1. Now, considering the terms arising in each of the cases J=0, 1, 2, 3, 4 we obtain

 $\Sigma \Delta_{12}^{2} \Delta_{34} \Delta_{56} = \sum_{\neq}^{2} \Delta_{12}^{2} \Delta_{34} \Delta_{56} + 8 \sum_{=}^{2} \Delta_{12}^{2} \Delta_{13} \Delta_{45} + 4 \sum_{\neq}^{2} \Delta_{12}^{2} \Delta_{34} \Delta_{35}$ $+ 4 \sum_{=}^{2} \Delta_{12}^{3} \Delta_{34} + 8 \sum_{=}^{2} \Delta_{12}^{2} \Delta_{13} \Delta_{24} + 16 \sum_{=}^{2} \Delta_{12}^{2} \Delta_{13} \Delta_{34}$ $+ 8 \sum_{=}^{2} \Delta_{12}^{2} \Delta_{13} \Delta_{14} + 8 \sum_{=}^{2} \Delta_{12}^{2} \Delta_{13} \Delta_{23} + 2 \sum_{=}^{2} \Delta_{12}^{2} \Delta_{34}^{2}$ $+ 16 \sum_{=}^{2} \Delta_{12}^{3} \Delta_{13} + 8 \sum_{=}^{2} \Delta_{12}^{2} \Delta_{13}^{2} + 4 \sum_{=}^{2} \Delta_{12}^{4} \Delta_{12}^{4}.$

This confirms the relationship given by (2.12).

The combinatorial method can be used in this manner to obtain any relationship of the last section. One needs to enumerate carefully the different graphs, then determining the coefficient of a term corresponding to any graph is straightforward.

The expressions for $\Sigma_{12}^{\Lambda}_{13}^{\Lambda}_{45}^{\Lambda}_{67}$ and $\Sigma_{12}^{\Lambda}_{34}^{\Lambda}_{56}^{\Lambda}_{78}$ by the method of the last section, involve very cumbersome calculations. With the use of the combinatorial method, one needs only to identify different possible terms of the expansion and compute the coefficients using the occupancy model.

The expansion of these terms are indicated by the following tables:

49

	in the Expansion o		· · · · · · · · · · · · · · · · · · ·
o. of Urns o be Vaca- ed J	Different Graphs Corresponding to the Value of J	No. of Ways of Arriving at the Graph	The Term Corresponding to the Graph
0	∠ <u>·</u>	. 1	$\stackrel{\Sigma^{\Delta}}{\neq} 12^{\Delta} 13^{\Delta} 45^{\Delta} 67$
1	<u> </u>	1	$\stackrel{\Sigma}{\neq} \stackrel{2}{12} \stackrel{3}{34} \stackrel{5}{56}$
		8	$\stackrel{\Sigma}{=}{}^{12}12^{13}24^{56}$
		4	$\stackrel{\Sigma^{\Delta}}{\neq} 12^{\Delta} 13^{\Delta} 14^{\Delta} 56$
		4	$\neq^{\Sigma\Delta} 12^{\Delta} 13^{\Delta} 45^{\Delta} 46$
2.22	△ ·	. 4	$\overset{\Sigma}{\neq}{}^{12}12^{13}23^{45}$
、	<u> </u>	16	$\stackrel{\Sigma}{\neq}{}^{2}12^{\Delta}13^{\Delta}45$
47		6	$\stackrel{\Sigma}{\neq}{}^{2}12^{\Delta}34^{\Delta}35$
		24	$\overset{\Sigma}{\overset{\Sigma}{}}{\overset{12}{}}{\overset{13}{}}{\overset{34}{}}{\overset{45}{\overset{5}}}$
		4	$\stackrel{\Sigma}{\neq}{}^{12}12^{13}14^{15}$
(32	$\stackrel{\Sigma^{\Delta}}{\neq} 12^{\Delta} 13^{\Delta} 14^{\Delta} 25^{\circ}$

Table 2.3

2

50

Ъ,

Table 2.3 (cont'd.)

			· · · · · · · · · · · · · · · · · · ·
No: of Urns to be Vaca- ted J	Different Graphs Corresponding to the value of J	No. of Ways of Arriving at the Graph	The Term Corres- ponding to the Graph
3	\bigtriangleup	· 40	$\stackrel{\Sigma}{\neq} 12^{\Delta} 13^{\Delta} 23^{\Delta} 14$
	· · ·	8	$\stackrel{\Sigma}{\neq}{}^{\Delta}$ 12 $^{\Delta}$ 13 $^{\Delta}$ 24 $^{\Delta}$ 34
		28	$\underset{\neq}{\overset{\Sigma}{\overset{\Delta}}}^{2}_{12}{\overset{\Delta}{\overset{1}}}_{13}{\overset{\Delta}{\overset{1}}}_{14}$
		40	$\underset{\neq}{\overset{\Sigma}{}}^{2}^{12^{\Delta}13^{\Delta}34}$
		24	$\tilde{\boldsymbol{z}}^{2}_{12}^{\Delta_{13}}_{24}$
	$\bigcirc \bigcirc$	2	$ \sum_{\substack{\Sigma \\ \neq}}^{2} 12^{\Delta} 34 $
	\ominus —	- 4	$\overset{\Sigma}{\neq}\overset{3}{12}\overset{3}{2}34$
4	\bigcirc . ·	28 ~	$\sum_{\neq}^{\Sigma} \sum_{12}^{2} 13^{\Delta} 23$
		16	$\sum_{\neq}^{\Sigma} \Delta^2_{12} \Delta^2_{13}$
	Θ	24	$\overset{\Sigma}{\overset{\Delta}{\overset{3}{\neq}}}^{3}_{12}$ 13
5	\bigcirc	4	≨ [∆] 12

Table 2.4

Use of the Occupancy Model to Obtain Different Graphs and Coefficients Corresponding to the Terms in the Expansion of $\Sigma^{\Lambda}12^{\Lambda}34^{\Lambda}56^{\Lambda}78$

No. of Urns to be Vaca- ted J	Different Graphs Corresponding to the Value of J	No. of Ways of Arriving at the Graph	The Term Corres- ponding to the Graph
0.		'1	$\stackrel{\Sigma}{\neq}{}^{\Delta}12^{\Delta}34^{\Delta}56^{\Delta}78$
. 1	<u> </u>	. 24	^{∑∆} 12 ^Δ 13 ^Δ 45 ^Δ 67
;		12	$\stackrel{\Sigma}{\neq}{}^{2}12.34^{\circ}56$
·		96	^{ΣΔ} 12 ^Δ 13 ^Δ 24 ^Δ 56
	K_	32	^{∑∆} 12 [∆] 13 [∆] 14 [∆] 56
		48	^{∑∆} 12 [∆] 13 [∆] 45 [∆] 4⁄6
2	\triangle	32	$\stackrel{\Sigma}{\neq}{}^{12}12^{13}23^{45}$
•	6 -	96 ·	^{∑∆} 2 ≇ ^Δ 12 ^Δ 13 ^Δ 45
		- 48	≨ ² ≨ [∆] 12 [∆] 34 [∆] 35
		192	$\stackrel{\Sigma}{\neq}{}^{12}12^{13}34^{45}$
,-		. 16	$\stackrel{\Sigma}{\neq}{}^{\Delta}12^{\Delta}13^{\Delta}14^{\Delta}15$

L.-

•••

- . -

52 19

Table 2.4 (cont'd.)

۰.

No. of Urns to be Vaca- ted J	Different Graphs Corresponding to the Value of J	No. of Ways Arriving at the Graph	The Term Corres- ponding to the Graph
		192	$\stackrel{\Sigma}{\neq}{}^{\Delta}$ 12 $^{\Delta}$ 13 $^{\Delta}$ 14 $^{\Delta}$ 25
3	\bowtie	192	^{∑∆} 12 [∆] 13 [∆] 23 [∆] 14
		48	^{∑∆} 12 [∆] 13 [∆] 24 [∆] 34
	K.	. 96	$\overset{\Sigma}{\neq} \overset{2}{12} \overset{1}{2} \overset{1}{3} \overset{1}{14}$
		192	$\stackrel{\Sigma}{\neq} \stackrel{2}{12} \stackrel{13}{\times} 34$
		96	$\stackrel{\Sigma}{\neq}{}^{2}12^{\Delta}13^{\Delta}24$
	\bigcirc \bigcirc	12	$\stackrel{\Sigma}{\neq} \stackrel{2}{12} \stackrel{2}{34} \stackrel{2}{34}$
	\ominus	16	$\underset{\neq}{\overset{\Sigma}{}}^{3}_{12} \overset{3}{}_{34}$
4	\bigcirc	96	[∑] ² 12 ^Δ 13 ^Δ 23
		48	[∑] ² ² ² ² 13
	$\boldsymbol{\diamond}$	64	$\overset{\Sigma^{3}}{\neq}^{12}$
5	\bigcirc	8	$\overset{\Sigma}{\neq}^{4}$ 12

Ϋ.

2.6 The Fourth Moment Under the Null Hypothesis

In this section we obtain an expression for the fourth moment of δ , defined by (2.1). The result is expressed in terms of the 23 symmetric functions defined in section 2.3. The computation of $E(\delta^4)$ requires the relationships given in section 2.4.

The test statistic is

$$\delta = \sum_{i=1}^{q} \kappa_{i} \Sigma \Delta_{J_{1}J_{2}} S_{i}(J_{1}) S_{i}(J_{2}).$$

The fourth power of δ can be expressed as a sum of products of r-part partitions (r= 1, 2, 3, 4) and their coefficients.

Dwyer and Tracy (1964) define a combinatorial coefficient $C(P) = (p_1^{\pi_1} \dots p_s^{\pi_s})$ of P as the number of ways that the distinct units of P may be collected into distinct parcels described by the specified partition of P. For the r-part partition $p_1^{\pi_1} \dots p_s^{\pi_s}$, the partition coefficient

$$C(P) = (p_1^{\pi_1} \dots p_s^{\pi_s}) = \frac{P!}{(p_1!)^{\pi_1} \dots (p_s!)^{\pi_s} \pi_1! \dots \pi_s!}$$

where $\sum_{i=1}^{s} p_i \pi_i = p$ (weight) and $\sum_{i=1}^{s} \pi_i = r$ (order).

The multinomial theorem is then expressed as

$$[1]^{p} = \Sigma(p_{1} \dots p_{r}) [p_{1} \dots p_{r}],$$

where the summation applies to every r-part partition of p and r=1,..., p.

Using the multinomial theorem, δ^4 can be written as

$$\delta^4 = \Sigma (p_1 \cdot \cdot \cdot p_r) [p_1 \cdot \cdot \cdot p_r],$$

where $K_i \Sigma_{J_1 J_2} S_i (J_1) S_i (J_2)$ takes the place of x and the summation applies to every r-part partition of 4, r = 1, 2, 3, 4.

In the notation of Dwyer and Tracy (1964),

 $\delta^{4} = [4] + 4[31] + 3[22] + 6[211] + [1111], (2.24)$ where x_i is K_i^{\sum_1}J₂S_i(J₁)S_i(J₂).

. The expectation of each of the terms the right side of (2.24) is calculated as follows:

$$E([4]) = E(\sum_{i} K_{i}^{4} (\Sigma \Delta J_{1} J_{2} S_{i} (J_{1}) S_{i} (J_{2}))^{4})$$

$$= E(\sum_{i} K_{i}^{4} \Sigma \Delta J_{1} J_{2}^{\Delta} J_{3} J_{4}^{\Delta} J_{5} J_{6}^{\Delta} J_{7} J_{8} \xrightarrow{4}{2 = 1} \{S_{i} (J_{22-1}) S_{i} (J_{22})\})$$

$$= \sum_{i} K_{i}^{4} \Sigma \{\Delta J_{1} J_{2}^{\Delta} J_{3} J_{4}^{\Delta} J_{5} J_{6}^{\Delta} J_{7} J_{8}^{E} (\underbrace{4}_{2=1}^{4} S_{i} (J_{22-1}) S_{i} (J_{22}))\}$$

Expressing the sum over J_1 to J_8 of the sum over distinct values of indices and then taking expectations of the product of indicator functions,

$$E([4]) = \frac{5}{1} \frac{1}{4} \frac{1}{4} \frac{1}{7} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1$$

ł

56

,

Using symmetric functions defined in section 2.3 and rearranging the terms, we get

$$E([4]) = \sum_{i=1}^{2} \kappa_{i}^{4} \{8n_{i}^{(2)}D(13) + 16n_{i}^{(3)}[4D(14) + 3D(15)] + 6D(16)] + 4n_{i}^{(4)}[4D(17) + 3D(18)]$$

+
$$48n_{i}^{(4)}[2D(19) + 2D(20) + 4D(21) + D(22)$$

+ $4D(23)] + 16n_{i}^{(5)}[3D(24) + 6D(25) + D(26)]$

+ $12D(27)+12D(28) + 2D(29) + 4n_{i}^{(6)} [3D(30)$

+ 8D(31)] +
$$48n_{i}^{(6)}$$
 [D(32) + 2D(33)]

+
$$24n_{i}^{(7)}D(34) + n_{i}^{(8)}D(35)$$
}. (2.25)

The expectation of the 1/4 second term of R.H.S. of (2.24) is $E([31]) = \sum_{i \neq j} \kappa_{i}^{3} \kappa_{j} E(\Sigma \Delta_{J_{1}} J_{2}^{S_{1}} (J_{1}) S_{i} (J_{2}))^{3}$ $(\Sigma \Delta_{J_{7}} J_{8}^{S_{j}} (J_{7}) S_{j} (J_{8}))$

The first factor in the braces can be written as

$$(\Sigma \Delta_{J_1 J_2} S_i (J_1) S_i (J_2))^3$$

= $\Sigma \Delta_{J_1 J_2} \Delta_{J_3 J_4} \Delta_{J_5 J_6} g_{i=1}^{6} S_i (J_2)$

$$= \frac{\sum}{4} \sum_{j=1}^{A} \sum_{j=1$$

Multiplying each of the terms of the right side above by $\Sigma \Delta_{J_7 J_8} S_j (J_7) S_j (J_8)$ and taking expectations on the product of indicator functions, we get

$$E([31]) = \sum_{i \neq j} K_{i j}^{3K} \{\sum_{i j} J_{1}^{2} J_{2}^{A} J_{3}^{A} J_{4}^{A} J_{5}^{J} J_{6}^{A} J_{7}^{J} J_{8}^{n} i^{(6)} n_{j}^{(2)} / N^{(8)} + 12 \sum_{i \neq j} J_{1}^{J} J_{2}^{A} J_{1}^{J} J_{3}^{A} J_{4}^{J} J_{5}^{A} J_{6}^{J} J_{7}^{n} i^{(5)} n_{j}^{(2)} / N^{(7)}$$

+
$$24\Sigma^{\Delta}_{J_1}J_2^{\Delta}_{J_1}J_3^{\Delta}_{J_2}J_4^{\Delta}_{J_5}J_6^{n_1}_{j_1}N^{(6)}$$

$$+ 8 \sum_{\neq} J_{1} J_{2}^{\Delta} J_{1} J_{3}^{\Delta} J_{1} J_{4}^{\Delta} J_{5} J_{6}^{n_{1}^{(4)} n_{j}^{(2)} / N^{(6)}}$$

$$+ 6 \sum_{\neq} J_{1} J_{2}^{\Delta} J_{3} J_{4}^{\Delta} J_{5} J_{6}^{n_{1}^{(4)} n_{j}^{(2)} / N^{(6)}}$$

$$+ 8 \sum_{\neq} J_{1} J_{2}^{\Delta} J_{1} J_{3}^{\Delta} J_{2} J_{3}^{\Delta} J_{4} J_{5}^{n_{1}^{(3)} n_{j}^{(2)} / N^{(5)}}$$

$$+ 24 \sum_{\neq} \Delta_{J_{1}} J_{2}^{\Delta} J_{1} J_{3}^{\Delta} J_{4} J_{5}^{n_{1}^{(3)} n_{j}^{(2)} / N^{(5)}}$$

$$+ 4 \sum_{\neq} \Delta_{J_{1}} J_{2}^{\Delta} J_{3} J_{4}^{A} J_{5}^{n_{1}^{(3)} n_{j}^{(2)} / N^{(5)}}$$

$$+ 4 \sum_{\neq} \Delta_{J_{1}} J_{2}^{\Delta} J_{3} J_{4}^{A} n_{1}^{(2)} n_{j}^{(2)} / N^{(4)}$$

In terms of symmetric functions, the above becomes

$$E([31]) = \sum_{i \neq j} K_{i}^{3} K_{j} n_{j}^{(2)} \{ 4n_{i}^{(2)} D(17) + 24n_{i}^{(3)} D(25) + 8n_{i}^{(3)} D(25) + 8n_{i}^{(3)} D(29) + 6n_{i}^{(4)} D(30) + 8n_{i}^{(4)} [D(31) + 3D(33)] + 12n_{i}^{(5)} D(34) + n_{i}^{(6)} D(35) \}.$$

$$(2.26)$$

The expectation of 1/3 the third term on right side of (2.24) is

$$E([22]) = \sum_{i \neq j}^{2} K_{i}K_{j}E \{ (\Sigma \Delta_{J_{1}}J_{2}S_{i}(J_{1})S_{i}(J_{2}))^{2} \\ (\Sigma \Delta_{J_{5}}J_{6}S_{j}(J_{5})S_{j}(J_{6}))^{2} \}$$

The term in the braces is

$$\begin{array}{l} & \left(\sum_{i=1}^{n} J_{1} J_{2}^{\Delta} J_{3} J_{4} L_{=1}^{4} S_{i} (J_{\ell}) + 4 \sum_{i=1}^{n} J_{1} J_{2}^{\Delta} J_{1} J_{3} L_{=1}^{3} S_{i} (J_{\ell}) \right) \\ & + 2 \sum_{i=1}^{n} \Delta_{i} J_{2} L_{=1}^{2} S_{i} (J_{\ell}) \cdot (\sum_{i=1}^{n} J_{1} J_{2}^{\Delta} J_{3} J_{4} L_{=5}^{8} S_{j} (J_{\ell}) \\ & + 4 \sum_{i=1}^{n} J_{5} J_{6}^{\Delta} J_{5} J_{7} L_{=5}^{7} S_{j} (J_{\ell}) + 2 \sum_{i=1}^{n} \Delta_{i} J_{1} J_{2} L_{=5}^{2} S_{j} (J_{\ell}) \right) .$$

Taking the expectation of each of the terms in the above product, E([22]), in terms of symmetric functions, becomes

$$E([22]) = \prod_{i \neq j} K_{i}^{2} K_{j}^{2} \{4n_{i}^{(2)} n_{j}^{(2)} D(18) + 8(n_{i}^{(3)} n_{j}^{(2)}) + n_{i}^{(2)} n_{j}^{(4)} D(30) + n_{i}^{(2)} n_{j}^{(4)} D(30) + 16n_{i}^{(3)} n_{j}^{(3)} D(32) + 4(n_{i}^{(4)} n_{j}^{(3)} + n_{i}^{(3)} n_{j}^{(4)}) + D(30) + D(34) + n_{i}^{(4)} n_{j}^{(4)} D(35) \}.$$

$$(2.27) \implies$$
The expectation of 1/6 the fourth term of the R.H.S.

$$(2.24) \text{ is }$$

$$E([211]) = i \neq j \neq k^{2} k^{2} k^{2} k^{2} k^{2} k^{2} k^{2} k^{2} E\{ (\Sigma \Delta_{J_{1}} J_{2}^{S_{1}} (J_{1}) S_{1} (J_{2}) \}^{2}$$

$$(\Sigma \Delta_{J_{5}} J_{6}^{S_{1}} (J_{4}) S_{1} (J_{6}) (\Sigma \Delta_{J_{7}} J_{8}^{S_{k}} (J_{7}) S_{k} (J_{8}) \}.$$
The factor $(\Sigma \Delta_{J_{1}} J_{2}^{S_{1}} (J_{1}) S_{1} (J_{2}))^{2}$ in the braces is

of

$$\begin{array}{c} \uparrow \\ \stackrel{\Sigma^{\Delta}}{=} J_{1} J_{2} J_{3} J_{4} \ell \stackrel{4}{=} 1^{S_{1}} (J_{\ell}) + 4 \Sigma^{\Delta} J_{1} J_{2} J_{1} J_{3} \ell \stackrel{3}{=} 1^{S_{1}} (J_{\ell}) \\ + 2 \Sigma^{\Delta} J_{1} J_{2} \ell \stackrel{2}{=} 1^{S_{1}} (J_{\ell}). \end{array}$$

61

Using this, we get

j₀s

$$E([211]) = \sum_{i \neq j \neq k} K_{i}^{2} K_{j} K_{k} n_{j}^{(2)} n_{k}^{(2)} \{2n_{i}^{(2)} D(30) + 4n_{i}^{(3)} D(34) + n_{i}^{(4)} D(35)\}.$$
(2.28)

The expectation of the last term of the R.H.S. of (2.24)

$$= i_{\neq j \neq k \neq \ell} \sum_{k=1}^{K_{i}K_{j}K_{k}K_{\ell}n_{i}} \sum_{j=1}^{(2)} \sum_{k=1}^{(2)} \sum_{j=1}^{(2)} \sum_{k=1}^{(2)} \sum_{j=1}^{(2)} \sum_$$

Combining (2.25) through (2.29) and placing $K_i = c_i/n_i^{(2)}$, we get

$$E_{16}^{64} = \frac{1}{1} \left[\left(\frac{C_{i}}{n_{i}} \right)^{4} \left(8n_{i}^{(2)} D(13) + 64n_{1}^{(3)} D(14) + 48n_{i}^{(3)} D(15) \right. \\ + 96n_{1}^{(3)} D(16) + 16n_{i}^{(4)} D(17) + 12n_{1}^{(4)} D(18) + 96n_{i}^{(4)} \\ \cdot [D(19] + D(20) + 2D(21)] + 48n_{1}^{(4)} [D(22) + 4D(23)] \\ + 48n_{1}^{(5)} [D(24) + 2D(25)] + 16n_{1}^{(5)} D(26) \\ + 192n_{1}^{(5)} [D(27) + D(28)] + 32n_{1}^{(5)} D(29) + 12n_{1}^{(6)} D(30) \\ + 32n_{1,4}^{(6)} D(31) + 48n_{1}^{(6)} [D(32) + 2D(33)] + 24n_{1}^{(7)} D(34) \\ + n_{1}^{(8)} D(35)] \right] \\ + 4\frac{r}{i^{2}} \left[\frac{C_{1}^{(3)}}{(n_{1}^{(2)})^{3}} \frac{C_{1}}{n_{1}^{(2)}} - \left(4n_{1}^{(2)}n_{1}^{(2)} D(17) \right) \right] \\ + 24n_{1}^{(3)} n_{1}^{(2)} D(25) + 8n_{1}^{(3)} n_{1}^{(2)} D(29) \\ + 6n_{1}^{(4)} n_{1}^{(2)} D(30) + 8n_{1}^{(4)} n_{1}^{(2)} D(31) + 24n_{1}^{(4)} n_{1}^{(2)} D(33) \\ + 12n_{1}^{(5)} n_{1}^{(2)} D(34) + n_{1}^{(6)} n_{1}^{(2)} D(35) \right] \\ + 3\frac{r}{i^{2}} \left[\frac{C_{1}C_{2}}{n_{1}^{(2)}n_{1}^{(2)}} \right]^{2} \left(4n_{1}^{(2)} n_{1}^{(2)} D(18) \right] + 8(n_{1}^{(3)} n_{1}^{(2)} \\ + n_{1}^{(2)} n_{1}^{(3)}) (D24) + 2(n_{1}^{(4)} n_{1}^{(2)} + n_{1}^{(2)} n_{1}^{(4)} n_{1}^{(4)} D(30) \right] \\ \left(+ 16n_{1}^{(3)} n_{1}^{(3)} D(32) \right]$$

ý

+ $4(n_{i}^{(4)}n_{j}^{(3)} + n_{i}^{(3)}n_{j}^{(4)}D(34) + n_{i}^{(4)}n_{j}^{(4)}D(35) \}]$ + $6\sum_{\substack{i\neq j\neq k}} \frac{C_1^2 \cdot C_j \cdot C_k}{(n_i^{(2)}) n_j^{(2)} n_k^{(2)}} \{2n_i^{(2)}n_j^{(2)}n_k^{(2)}D(30)\}$ + $4n_{i}^{(3)}n_{j}^{(2)}n_{k}^{(2)}D(34) + n_{i}^{(4)}n_{j}^{(2)}n_{k}^{(2)}D(35)$ + $\sum_{i\neq j\neq k\neq l} C C C C D(35)$. (2.30)

The above result has been checked for several cases in the following manner.

A computer program, named APS, in Appendix A.1 generates all possible samples of sizes n_1 , n_2 with $2 \le n_1 \le 10$ and $n_1+n_2 = N$. The fourth moment is obtained considering every possible value of the test statistic and is compared with the one obtained using (2.30). Checks are made for various 2-sample configurations and for the following distance functions:

a) $\Delta_{xy} = |x-y|$; b) $\Delta_{xy} = |R(x) - R(y)|$ and c) $\Delta_{xy} = |R(x) - R(y)|^2$, where R(x) is the rank of x in the combined sample.

The test statistic for the case of (b) above is discussed in detail in the next chapter.

CHAPTER III

SOME RESULTS CONCERNING A SPECIAL MRPP STATISTIC

3.1 The Special MRPP Statistic

An interesting case of the MRPP test statistic is obtained from (1.3) by letting g=2, $C_1 = \frac{n_1}{N}$, $C_2 = 1 - C_1$ and $\Delta_{IJ} = |R(x_I) - R(x_J)|$, where R(y) is the rank of y in the combined sample. This test statistic is designated by δ_1 . When the underlying sampling distribution is Laplace, logistic or a U-shaped distribution, then the empirical power of δ_1 is higher than that of the Wilcoxon test (Chapter IV).

The symmetric functions for the Δ as given above are simply functions of N - the total number of observations. The long expression for the fourth moment, as given by (2.30), is simplified to a simple expression involving n_i (i=1,...,g) and N. We obtain a simplified form of the fourth moment of δ_1 taking $n_1=n_2=N/2$. In this case the fourth moment of δ_1 is a simple polynomial in N.

3.2 Symmetric Functions When $\Delta_{IJ} = |R(x_I) - R(x_J)|$

When the distance function is the Euclidean distance between ranks of observations, symmetric functions are

simple polynomials in N - the number of observations. Mielke (1981b, p. 723) has listed the results for the first twelve symmetric functions. We calculate all the symmetric functions, defined in section 2.3, for the above case and for completeness sake show the calculations carried on in the first twelve symmetric functions as well.

From section 2.3,

$$D(1) \equiv \frac{1}{N^{(2)}} \stackrel{\Sigma\Delta}{\neq} \stackrel{=}{12} = \frac{1}{N^{(2)}} \stackrel{\Sigma}{I,J} |I-J|$$
$$= \frac{2}{N^{(2)}} \stackrel{\Sigma}{I < J} (\stackrel{J-I}{J-I}) \stackrel{\Sigma}{\rightarrow}$$
$$= \frac{N+1}{3}.$$

$$D(2) = \frac{1}{N^{(2)}} \sum_{\neq} \Delta_{12}^{2} = \frac{1}{N^{(2)}} \sum_{I,J} (I-J)^{2}$$
$$= \frac{2}{N^{(2)}} [N \sum_{I} I^{2} - (\sum_{I} I)^{2}]$$
$$= \frac{N(N+1)}{6}. \qquad (3.2)$$

$$D(3) = \frac{1}{N^{(3)}} \sum_{\neq} \Delta_{12} \Delta_{13} = \frac{1}{N^{(3)}} \sum_{\neq} |I-J| |I-K|$$

$$= \frac{1}{N^{(3)}} \left[\sum_{I} \left(\sum_{J=1}^{L} |I-J| \right)^{2} - \sum_{I,J} \left(|I-J|^{2} \right) \right]$$

$$= \frac{N+1}{60} (7N+1). \qquad (3.3)$$

65

(3.1)

.).

$$D(4) = \frac{1}{N^{(4)}} \sum_{\neq}^{\Sigma\Delta} 12^{\Delta} 34$$

= $\frac{1}{N^{(4)}} [(\Sigma\Delta_{12})^{2} - 4\Sigma\Delta_{12}^{\Delta} 13^{-2\Sigma\Delta_{12}^{2}}]$
= $\frac{1}{N^{(4)}} [(\Sigma|I-J|)^{2} - 4\Sigma|I-K| - 2\Sigma\Sigma_{1,J}^{\Sigma} (I-J)^{2}]$

Using previous results, on simplification we get

$$D(4) = \frac{(N+1)}{45} (5N+4). \qquad (3.4)$$

$$D(5) \equiv \frac{1}{N^{(2)}} \underset{\neq}{\Sigma} \overset{3}{12}$$

$$= \frac{1}{N^{(2)}} \underset{r,J}{\Sigma} |I-J|^{3} = \frac{(N+1)(3N^{2}-2)}{30}. \qquad (3.5)$$

$$D(6) = \frac{1}{N^{(3)}} \sum_{\neq} \Delta_{12}^{2} \Delta_{13}$$

$$= \frac{1}{N^{(3)}} \sum_{\neq} (I-J)^{2} |I-K|$$

$$= \frac{1}{N^{(3)}} [I, \sum_{j=1}^{N} (I-J)^{2} |I-K| - \sum_{j=1}^{N} |I-J|^{3}]$$

$$= \frac{(N+1)}{180} (11N^{2} + 4N - 6). \qquad (3.6)$$

$$D(7) = \frac{1}{N^{(3)}} \stackrel{\Sigma}{\neq} {}^{\Delta} 12^{\Delta} 13^{\Delta} 23$$

= $\frac{1}{N^{(3)}} \stackrel{\Sigma}{I,J,K} |I-J| |I-K| |J-K|$

· Ie - -

$$\int_{N} \left(\sum_{i=1}^{6} \sum_{j>J>K} (I-J) (I-K) (J-K) \text{ (using symmetry)} \right)$$

$$= \frac{N(N+1)(N+2)}{30}.$$

$$D(8) \equiv \frac{1}{N^{(4)}} \sum_{\neq} \Delta_{12}^{2} \Delta_{34}$$

$$= \frac{1}{N^{(4)}} \sum_{\neq} (I-J)^{2} |K-L|$$

$$= \frac{1}{N^{(4)}} \left[\sum_{i,J} (I-J)^{2} \sum_{K,L} |K-L| - 4N^{(3)} D(6) - 2N^{(2)} D(5) \right]$$

$$= \frac{N+1}{90} (5N^{2}+3N-2).$$

$$(3.8)$$

$$D(9) \equiv \frac{1}{1+1} \sum_{i=1}^{2} \Delta_{12} \Delta_{24}$$

$$9) \equiv \frac{1}{N^{(4)}} \sum_{\neq}^{\Delta} 12^{\Delta} 13^{\Delta} 24$$

$$= \frac{1}{N^{(4)}} \sum_{\neq}^{\Sigma} |I-J| |I-K| |J-L|$$

$$= \frac{1}{N^{(4)}} [\Sigma| I-J| |I-K| |J-L| - N^{(3)} D(7) - 2N^{(3)} D(6)$$

$$- \frac{(2)}{N} D(5)].$$

Now,

∕ير

$$I,J^{\Sigma},K,L$$
 $|I-J||I-K||J-L|$

 $= 2 \sum_{I>J} (I-J) (I^2 - (N+1) I + \frac{N(N+1)}{2}) (J^2 - (N+1) J + \frac{N(N+1)}{2})$

$$= \frac{1}{6} \sum_{I} [I^{6} - 3(N+1)I^{5} + \frac{1}{2}(11N^{2} + 15N + 2)I^{4} - \frac{(N+1)}{2}]$$

$$\cdot (8N^{2} + 14N - 6)I^{3} + \frac{(N+1)}{2}(3N^{3} + 9N^{2} + N - 4)I^{2} - \frac{N}{2}$$

$$\cdot (N+1)^{2}(3N-2)I]$$

$$= \frac{N(N^{2} - 1)}{420}(17N^{4} - 39N^{2} + 24).$$

Using the above result with previous results, we get

$$D(9) = \frac{N+1}{1260} (51N^2 + 59N - 2).$$
 (3.9)

In a similar way, we find

$$D(10) = \frac{1}{N^{(4)}} \stackrel{\Sigma^{\Delta}}{\neq} 12^{\Delta} 13^{\Delta} 14$$

= $\frac{1}{N^{(4)}} \stackrel{\Sigma}{\neq} |I-J| |I-K| |I-L|$

$$= \frac{1}{N^{(4)}} \left[\sum_{I} \left(\sum_{J} |I-J| \right)^{3} - 3N^{(3)} D(6) - N^{(2)} D(5) \right]$$

 $= \frac{N+1}{420} (18N^2 + 13N - 4).$ (3.10)

$$D(11) \equiv \frac{1}{N(5)} \stackrel{\Sigma \Delta}{\neq} 12^{\Delta} 13^{\Delta} 45$$

$$= \frac{1}{N^{(5)}} \sum_{\neq} |\mathbf{I} - \mathbf{J}| |\mathbf{I} - \mathbf{K}| |\mathbf{L} - \mathbf{M}|$$

$$69$$

$$= \frac{1}{N^{(5)}} [I_{1,\overline{J},K} | I-J| | I-K|_{I,J} | I-J| - 4N^{(4)}D(9)$$

$$-2N^{(4)}D(10) - N^{(4)}D(8) - 2N^{(3)}D(7)$$

$$- 8N^{(3)}D(6) - 2N^{(2)}D(5)]$$

$$= \frac{N+1}{1260} (49N^{2}+59N+6). \qquad (3.11)$$

$$D(12) = \frac{1}{N^{(6)}} \sum_{\neq} |I-J| | K-L| | M-P|.$$

$$= \frac{1}{N^{(6)}} [I_{1,J} | I-J| | K-L| | M-P|.$$

$$= \frac{1}{N^{(6)}} [(I_{1,J} | I-J|)^{3} - 12N^{(5)}D(11) - \widehat{N}^{(4)}.$$

$$. (24D(9) + 8D(10) + 6D(8) - N^{(3)}(8D(7))$$

$$+ 24D(6) - 4N^{(2)}D(5)]$$

$$= \frac{N+1}{945} (35N^{2}+49N+12). \qquad (3.12)$$

We now proceed to obtain the symmetric functions D(13) through D(35).

$$D(13) = \frac{1}{N^{(2)}} \stackrel{\Sigma}{\neq} \stackrel{A}{12} = \frac{1}{N^{(2)}} \stackrel{\Sigma}{I,J} (I-J) \stackrel{A}{=} \frac{N(N+1)(2N^2-3)}{30}.$$
 (3.13)

$$D(14) = \frac{1}{N^{(3)}} \sum_{\neq} \Delta_{12}^{3} \Delta_{13}$$

$$= \frac{1}{N^{(3)}} \sum_{\neq} |I-J|^{3} |I-K|$$

$$= \frac{1}{N^{(3)}} [I_{I,J,K} |I-J|^{3} |I-K| - \Sigma (I-J)^{4}]$$

$$= \frac{N+1}{420} (16N^{3}+4N^{2}-25N-8). \qquad (3.14)$$

$$D(15) = \frac{1}{N^{(3)}} \sum_{\neq} \Delta_{12}^{2} \Delta_{13}^{2}$$

$$= \frac{1}{N^{(3)}} [I_{I,J} \sum_{\neq} (I-J)^{2} (I-K)^{2} - I_{r,J} (I-J)^{4}]$$

$$= \frac{N(N+1)(2N^{2}-3)}{60}. \qquad (3.15)$$

$$D(16)^{s} = \frac{1}{N^{(3)}} \sum_{\neq} \Delta_{12}^{2} \Delta_{13}^{A} 23$$

$$= \frac{1}{N^{(3)}} [I_{J,J} \sum_{\neq} (I-J)^{2} |I-K| |J-K|]$$

70

The above is simplified by observing symmetry among different inequalities in I,J,K. We obtain

$$D(16) = \frac{4}{N^{(3)}} \sum_{K < J < I} (I-J)^{2} (I-K) (J-K) + \frac{2}{N^{(3)}}$$

Σ (I-J)²(K-I) (J-K) I<K<J

71

$$= \frac{1}{N^{(3)}} \left[\frac{4N^{(3)}}{2520} (N+1) (N+2) (5N^2-3) + \frac{2N^{(3)}}{2520} \right]$$

$$= \frac{N+1}{315} (N+2) (5N^2-3) \left[(3.16) \right]$$

$$D(17) = \frac{1}{N^{(4)}} \frac{5}{4} a_{12}^3 a_{34} \right]$$

$$= \frac{1}{N^{(4)}} \frac{5}{4} |1-7|^3| K-L|$$

$$= \frac{1}{N^{(4)}} \left[\frac{5}{4} |1-7|^3| K-L| \right]$$

$$= \frac{1}{N^{(4)}} \left[\frac{5}{4} |1-7|^3| K-L| \right]$$

$$= \frac{N+1}{630} (21N^3+9N^2-32N-16) . \qquad (3.17)$$

$$D(18) = \frac{1}{N^{(4)}} \frac{5}{4} a_{12}^2 a_{34}^2$$

$$= \frac{1}{N^{(4)}} \left[\frac{5}{4} a_{12}^2 a_{34}^2 \right]$$

$$= \frac{1}{N^{(4)}} \frac{5}{4} a_{12}^2 a_{34}^2$$

$$= \frac{1}{N^{(4)}} \left[\frac{5}{4} a_{12}^2 a_{34}^2 \right]$$

$$= \frac{1}{N^{(4)}} \frac{5}{4} (1-3)^2 (K-L)^2$$

$$= \frac{1}{N^{(4)}} \left[(\frac{5}{4} x_{12} a_{12}^2 - 4N^{(3)} D(15) - 2N^{(2)} D(13) \right]$$

$$= \frac{N(N+1)}{180} (5N^2+N-6) . \qquad (3.18)$$

$$D(19) = \frac{1}{N^{(4)}} \frac{1}{4} a_{12}^2 a_{13}^2 a_{14}^2$$

d:

.

ł

$$= \frac{1}{N^{(4)}} \underset{I}{\overset{\Sigma}{\neq}} (I-J)^{2} |I-K| |I-L|$$

$$= \frac{1}{N^{(4)}} [\underset{I}{\overset{\Sigma}{\downarrow}} (I-J)^{2} (\underset{K}{\overset{\Sigma}{\downarrow}} (I-K))^{2} - N^{(3)} D(15)$$

$$- 2N^{(3)} D(14) - N^{(2)} D(13)]$$

$$= \frac{N+1}{2520} (59N^3 + 19N^2 - 88N - 32).$$
 (3.19)

$$D(20) = \frac{1}{N^{(4)}} \sum_{\neq}^{\Sigma} \sum_{12^{\Delta}}^{2} 13^{\Delta} 24$$

= $\frac{1}{N^{(4)}} \sum_{\neq}^{\Sigma} (I-J)^{2} |I-K| |J-L|$
= $\frac{1}{N^{(4)}} [\Sigma (I-J)^{2} |I-K| |J-L| - N^{(3)} (D(16))$

 $+ 2D(14) - N^{(2)}D(13)$

Here, $\Sigma (I-J)^{2} | I-K| | J-L|$ $= I^{\Sigma}_{,J} (I-J)^{2} (I^{2} - (N+1)I + \frac{N(N+1)}{2}) (J^{2} - (N+1)J)$ $+ \frac{N(N+1)}{2} = \frac{N^{2}(N^{2} - 1)^{2}}{90} (2N^{2} - 3)$

Using this, we get

2

$$D(20) = \frac{N+1}{630} (14N^3 + 12N^2 - 17N - 12). \qquad (3.20)$$

$$D(21) = \frac{1}{N^{(4)}} \frac{1}{2} \Delta_{12}^{2} \Delta_{13}^{\Delta_{34}}$$

$$= \frac{1}{N^{(4)}} \frac{1}{2} (I-J)^{2} |I-K| |K-L|$$

$$= \frac{1}{N^{(4)}} [\Sigma (I-J)^{2} |I-K| |K-L| - N^{(3)} [D(16)]$$

$$+ D(15) + D(14) - N^{(2)} D(13)]$$
The first term in the bracket, $I, J, K, L^{(I-J)^{2}} |I-K| |K-L|$

$$= \frac{1}{N^{J}} \frac{1}{N} (I-J)^{2} |I-K| (K^{2} - (N+1)K + \frac{N(N+1)}{2})$$

$$= \frac{N}{12} \frac{1}{I, J} |I-J| (6I^{2} - 6 (N+1)I + (N+1) (2N+1))(2J^{2} - 2 (N+1)J + N(N+1))$$

$$= \frac{N^{2} (N^{2} - 1)}{2520} (53N^{4} - 129N^{2} + 88) \text{ (on simplification)}$$
Using the above result, we get

73 ·

$$D(21) = \frac{N+1}{2520} (53N^3 + 45N^2 - 54N - 32).$$
 (3.21)

Now, we come to some results which involve some cumbersome algebra.

$$D(22) \equiv \frac{1}{N^{(4)}} \stackrel{\Sigma^{\Delta}}{\neq} 12^{\Delta} 13^{\Delta} 24^{\Delta} 34$$
$$= \frac{1}{N^{(4)}} \stackrel{\Sigma}{\neq} |I-J| |I-K| |J-L| |K-L|$$

We first examine carefully the sum of the above summand over each of the 24 inequalities in I, J, K, L. Noting the symmetry in different inequalities, the above sum can be written as

$$\sum_{i=1}^{S} |I-J| |I-K| |J-L| |K-L|$$

$$= 8 \{ I > J > K > L | |I-J| |I-K| |J-L| |K-L|$$

$$+ K > J > L > L | |I-J| |I-K| |J-L| |K-L|$$

$$+ L > K > I > J | |I-J| |I-K| |J-L| |K-L| \}$$

We evaluate each of the terms in the bracket above, as follows: To obtain the first term, consider

 $\mathbb{I} \ge \mathbb{J} \ge \mathbb{K} \ge \mathbb{L} | \mathbb{I} - \mathbb{J} | | \mathbb{I} - \mathbb{K} | | \mathbb{J} - \mathbb{L} | | \mathbb{K} - \mathbb{L} |$

$$= \sum_{1 \ge J \ge K}^{\Sigma} (I-J) (I-K) \{JK^2 - (J+K)\frac{K(K+1)}{2}\}$$

+
$$\frac{K(K+1)(2K+1)}{6}$$

= $\frac{1}{6}\sum_{1\geq J}^{\Sigma} (I + J) \sum_{K=1}^{K} \{K^4 - (3J+I)K^3 + (3IJ+3J-1)K^2\}$

1

- (3J-1)IK}

$$75$$

$$= \frac{1}{126} \frac{1}{123} (J-I) (11J^{2} - 15IJ^{4} + 5(2I - 3)J^{3} + 15IJ^{2} - 2(5I - 2)J)$$

$$= \frac{1}{5040} \frac{1}{I} I(10I^{6} - 21I^{5} - 35I^{4} + 105I^{3} - 35I^{2} - 84I + 60)$$

$$= \frac{N^{(3)} \frac{(N+1)}{20160} (5N^{4} + 18N^{3} - N^{2} - 22N + 24)$$

$$I - \frac{1}{3} \frac{1}{3} \frac{1}{6} (2J^{4} - (4I + 3)J^{3} + (2I^{2} + 6I + 1)J^{2} + (3I + 2)IJ + I^{2})$$

$$= \frac{1}{I + \frac{1}{3} \frac{1}{60} (2I^{5} - 6I^{4} + 5I^{3} - 7I + 6)$$

$$= \frac{N^{(3)}}{2520} (N + 1) (2N^{3} + 4N^{2} + 3N + 6)$$

$$= \frac{N^{(3)}}{1 - 3J^{2} K \times L} |I - J| |I - K| |J - L| |K - L| - \frac{1}{I + \frac{5}{3} - K} (I - J)^{2} (J - K)^{2}$$

$$= \frac{N^{(3)}}{1 - 3J^{2} K \times L} |I - J| |I - K| |J - L| |K - L| - \frac{1}{I + \frac{5}{3} - K} (I - J)^{2} (J - K)^{2}$$

$$= \frac{N^{(3)}}{20160} (5N^{4} + 18N^{3} - N^{2} - 22N + 24 - 8 (2N^{3} + 4N^{2} + 3N + 6))$$

- ----- <u>-----</u>

-(

-

•

$$76$$

$$= \frac{N^{(4)} (N+1)}{20160} (53N^{3}+17N^{2}+18N+8). \qquad (3.22a)$$
Using a similar approach,

$$K > J^{\Sigma}_{2L>1} |I-J| |I-K| |J-L| |K-L|$$

$$= K \ge J^{\Sigma}_{2L>2} |I-J| |I-K| |J-L| |K-L|$$

$$-_{I\Sigma} J^{\Sigma}_{2} K^{(} (I-J)^{2} (I-K)^{2} + (I-K)^{2} (J-K)^{2})$$

$$+ J^{\Sigma}_{2} I^{(} I-J)^{4}$$

$$= \frac{N^{(2)} (N+1)}{20160} (33N^{5}+160N^{4}+131N^{3}-232N^{2}-212N+48)$$

$$- \frac{N^{(2)} (N+1)}{5040} (2 (20N^{4}+42N^{3}-29N^{2}-63N+6)^{-7}$$

$$- 40N^{4} + 84N^{3} - 56N^{2} - 126N + 12)$$

$$+ \frac{N^{2} (N^{2}-1)}{60} (2N^{2}-3)$$

$$= \frac{N^{(4)} (N+1)}{20160} (33N^{4}+5N^{2}-42N-8). \qquad (3.22b)$$
and

$$L > K^{\Sigma}_{2} I > J^{|I-J||I-K||J-L||K-L|}$$

$$= L \ge \sqrt{J^{|I-J||I-K||J-L||K-L|}$$

.

76

.

$$= \frac{N^{(4)}(N+1)}{6720}(N^3+5N^2+6N). \qquad (3.22c)$$

Adding the results of (3.22a) through (3.22b), we get

$$\Sigma | I-J | | I-K | | J-L | | K-L |$$

$$= \frac{(4)}{20160} (N+1) (41N^{2}+37N-6)$$

...
$$D(22) = \frac{N(N+1)}{2520} (41N^2 + 37N - 6)$$
. (3.22)

$$D(23) = \frac{1}{N^{(4)}} \stackrel{\Sigma \Delta}{\neq} 12^{\Delta} 13^{\Delta} 23^{\Delta} 14$$

$$= \frac{1}{N^{(4)}} \sum_{\neq} |I-J| |I-K| |J-K| |I-L|$$

= $\frac{1}{N^{(4)}} [I| |I-J| |I-K| |I-L| - 2N^{(3)} D(16)]$

We can write

١

Ð

$$= \Sigma (I^{2} - (N+1) I + \frac{N (N+1)}{2}) |I - J| |I - K| |J - K|$$

The right side above is evaluated considering every possible inequality in I, J, K. Using the results, we

get

$$D(23) = \frac{1}{N^{(4)}} [N^{(3)} \frac{N(N+1)(N+2)(15N^2-23)}{1260} - 2N^{(3)} \frac{(N+1)(N+2)(5N^2-3)}{315}] = \frac{(N+1)(N+2)}{1260} (15N^2+5N-8).$$

$$D(24) = \frac{1}{N^{(5)}} \frac{5}{2}\Delta_{12}^2\Delta_{34}\Delta_{35}$$

$$= \frac{1}{N^{(5)}} [\Sigma\Delta_{12}^2\Sigma\Delta_{12}\Delta_{13} - 2N^{(3)}D(13) - 4N^{(3)}D(14) - 4N^{(3)}D(14) - 4N^{(3)}D(15) - 2N^{(3)}D(16) - N^{(3)}D(18) - 2N^{(4)}D(19) - 4N^{(21)}] [using (2.10)].$$
But,
$$\Sigma\Delta_{12}^2 \Sigma\Delta_{12}\Delta_{13} = \frac{5}{17} (I-J)^2 \frac{5}{17} \frac{5}{7} \frac{1}{7} (I-J)^2 \frac{1}{17} \frac{5}{7} \frac{1}{17} |I-K| = \frac{(2)}{N} \frac{N(N+1)}{6} - \frac{N^2}{12} \frac{(N+1)(7N^2-8)}{60}.$$
Using the above result and the results of D(13) through D(19) and D(21), upon simplification we get
$$D(24) = \frac{(N+1)}{2520} (49N^3 + 41N^2 - 42N - 24).$$

$$(3.24)$$

$$D(25) = \frac{1}{N^{(5)}} \frac{5}{7} \Delta_{12}^2 \Delta_{13}^2 \Delta_{45}^2$$

$$= \frac{1}{N^{(5)}} \frac{5}{7} (I-5)^2 |I-K| |L-M|$$

. .

J

$$= \frac{1}{N^{(5)}} [\Sigma (I-J)^{2} | I-K | \Sigma | I-J | - 2N^{(2)} D (13)$$

$$= \frac{(3)}{2N^{(3)}} (3D(14) + D(15) + D(16)) - N^{(4)} D (17)$$

)

 $+ 2D(19) + 2D(20) + 2D(21) \}$ (from (2.9)).

On simplification, we get

$$D(25) = \frac{(N+1)}{7560} (154N^{3} + 126N^{2} - 172N^{2} + 120). \qquad (3.25)$$

$$D(26) \equiv \frac{1}{N^{(5)}} \sum_{\neq}^{\Sigma} \Delta_{12} \Delta_{13} \Delta_{14} \Delta_{15}$$

$$= \frac{1}{N^{(5)}} \sum_{\neq}^{\Sigma} |I-J| |I-K| |I-L| |I-M|$$

$$= \frac{1}{N^{(5)}} [\sum_{I} (\sum_{J} |I-J|)^{4} - N^{2} D(13) - N^{3} (4D(14))$$

$$+ 3D(15) \} - 6N^{2} D(19)] (from (2.14)).$$

The first term in the bracket is

$$\sum_{I} (\sum_{J} |I-J|)^{4}$$

$$= \sum_{I} (I^{2} - (N+1)I + N \frac{(N+1)}{2})^{4}$$

$$= \sum_{I} [I^{8} - 4(N+1)I^{7} + 2(N+1)^{4}(4N+3)I^{6} - 2(N+1)(5N^{2}+7N) \frac{1}{2}(17N^{2}+16N+2)I^{4} - N(N+1)^{3}(5N+2)I^{3}]$$

$$+ \frac{N^{2}(N+1)^{3}}{2}(4N+3)I^{2} - \frac{N^{3}(N+1)^{4}}{2} + \frac{N^{4}(N+1)^{4}}{16}]$$

= $\frac{(2)}{5040^{2}}(83N^{6}-343N^{4}+560N^{2}-384)$

Using the above and earlier results, we get

$$D(26)_{f} = \frac{(N+1)}{5040} (83N^{3}+39N^{2}-110N-48). \qquad (3.26)$$

$$D(27) \equiv \frac{1}{N} \frac{5}{(5)} \frac{5}{4} \frac{1}{2^{\Delta}} \frac{1}{3^{\Delta}} \frac{24^{\Delta}}{35}$$

$$= \frac{1}{N} \frac{5}{(5)} \frac{5}{4} |I-J| |I-K| |J-L| |K-M|$$

$$= \frac{1}{N} \frac{5}{(5)} \frac{5}{4} |I-J| |I-K| |K-L| |L-M|$$

$$= \frac{1}{N} \frac{5}{(5)} [5| |I-J| |I-K| |K-L| |L-M| - \frac{2}{N} D(13)$$

$$- \frac{3}{N} \{D(14) + 2D(15) + 3D(16)\}$$

$$- \frac{4}{N} \{D(19) + 2D(21) + D(22) + 2D(23)\} \}$$
(from (2.18))

To evaluate the first term in the bracket, we first find

$$\sum_{i=1}^{N} |I-K| |K-L| (I^{2} - (N+1)I + \frac{N(N+1)}{2}) (L^{2} - (N+1)L + \frac{N(N+1)}{2})$$

$$= 2 \sum_{K>L>I} \{ (K-L) (K-I) (I^{2} - (N+1)I + \frac{N(N+1)}{2}) \}$$

$$(L^{2} - (N+1) L + \frac{N(N+1)}{2}) + (L-I) (K-L) (I^{2} - (N+1) I$$

$$+ \frac{N(N+1)}{2}) (K^{2} - (N+1) K + \frac{N(N+1)}{2}) + (L-I) (K-I)$$

$$(L^{2} - (N+1) L + \frac{N(N+1)}{2}) (K^{2} - (N+1) K + \frac{N(N+1)}{2}))]$$

$$= 2_{K} \sum_{L>I} [(L^{3} - (K + (N+1)) L^{2} + (K^{2} + N(N+1)) L - K^{3}$$

$$+ (N+1) K^{2} - N(N+1) K) I^{3} - ((K+N+1)) L^{3}$$

$$- (K^{2} + 2(N+1) K + (N+1)^{2}) L^{2} - (K^{3} - 4(N+1) K^{2}$$

$$+ (N+1)^{2} K - \frac{3N(N+1)^{2}}{2}) L - (N+1) K^{3} + (N+1) K^{2}$$

$$- \frac{N(N+1)^{2}}{2} K - \frac{N^{2}(N+1)^{2}}{4}) I^{2} - ((K-2N-2) KL^{3}$$

$$+ (K^{3} - 2(N+1) K^{2} + (N+1) (4N+3) K - \frac{N(N+1)^{2}}{2}) L^{2}$$

$$- (N+1)^{2} (K^{2} + NK + \frac{N^{2}}{4}) L + N(N+1) K (K^{2} - \frac{(N+1)}{2}) L^{2}$$

$$- \frac{N(N+1)}{2} K + \frac{N^{2}(N+1)}{4} L^{2} + N(N+1) (K^{3} - \frac{3}{2}(N+1) K^{2}$$

$$+ \frac{3}{4} N(N+1)) I + (K-N-1) K^{2} L^{3} - (N+1) (K^{3} - \frac{3}{2}(N+1) K^{2}$$

$$+ \frac{N}{4} (N+1) K L + \frac{N^{2}(N+1)^{2}}{4} K^{2}]$$

$$= \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{12} \left[3L^{7} - (7K + 7N + 13)L^{6} + (K^{2} + (20N + 32)K + (7N^{2} + 23N + 19))L^{5} + (7K^{3} - (13N + 19)K^{2} - (23N^{2} + 61N + 43)K - (N + 1)(3N^{2} + 15N + 11))L^{4} - (2(4N + 7)K^{3} - (18N^{2} + 50N + 37)K^{2} - 2(N + 1))$$

$$= (7N^{2} + 19N + 8)K + \frac{(x + 1)}{2} (N^{3} - 11N^{2} - 22N - 4) L^{3} + (6N^{2} + 12N + 5)K^{3} - (N + 1)(15N^{2} + 33N + 17)K^{2} - \frac{(N + 1)}{2} (3N^{3} + 33N^{2} + 32N - 4)K - 3N(N + 1)^{2})L^{2} + \frac{(N + 1)}{2} (4(3N - 1)K^{3} - 2(3N^{3} + 18N^{2} + 15N - 2)K^{2} - N(N + 1)(3N + 2)K - N^{2}(N + 1))L - 3N^{2}(N + 1)^{2}K^{2}]$$

$$= \frac{1}{5040} \frac{1}{K} (791K^{8} - 4(476N + 1223)K^{7} + 2(1288N^{2} + 5096N + 5663)K^{6} - 4(441N^{3} + 2856N^{2} + 5012N + 3122)K^{5} + (735N^{4} + 6510N^{3} + 17255N^{2} + 18340N + 7399)K^{4} - 2(1155N^{4} + 3780N^{3} + 5355N^{2} + 4228N + 1414)K^{3} + (1785N^{4} + 3570N^{3})$$

Ł

\$ 82

+
$$2849N^2$$
 + 1708N+644) K² - 6 (35N⁴ + 126N³

$$\frac{N^{(2)}(N+1)(N-2)}{22680}(319N^5+107N^4-883N^3-281N^2+756N+288)$$

(3.27a).

Now,

$$I_{r,K}^{\Sigma} (I-K)^{2} (I^{2} - (N+1)I_{r} + \frac{N(N+1)}{2})^{2}$$

$$= N_{\frac{\Gamma}{2}} (I^{2} - (N+1)I_{r} + \frac{N(N+1)}{2})^{2} (I^{2} - (N+1)I_{r} + \frac{(N+1)(2N+1)}{6})$$

$$= N_{\frac{\Gamma}{2}} [I^{6} - 3(N+1)I^{5} + \frac{(N+1)}{6} (26N+19)I^{4} - \frac{(N+1)^{2}}{3}$$

$$(11N+4)I^{3} + \frac{(N+1)^{2}}{12} (23N^{2} + 20N+2)I^{2} - \frac{N(N+1)^{3}}{12}$$

$$(7N+2)I_{r} + \frac{N^{2}(N+1)^{3}(2N+1)}{24}]$$

$$= \frac{N^2 (N^2 - 1)}{2520} (59N^4 - 165N^2 + 136)$$
(3.27b)

Adding (3.27a) and (3.27b), we get $\Sigma |I-J| |I-K| |K-L| |L-M|$. Using this and earlier results, we obtain

$$B4$$

$$D(27) = \frac{(N+1)}{22680}(319N^{2}+477N^{2}-22N-156) \qquad (3.27)$$

$$D(28) = \frac{1}{N^{(5)}} \frac{1}{2}\Delta_{12}\Delta_{13}\Delta_{14}\Delta_{25}$$

$$= \frac{1}{N^{(5)}} \frac{1}{2}|I-J||I-K||I-L||J-M| \qquad (2)$$

$$= \frac{1}{N^{(5)}} \frac{1}{2}|I-J||I-K||I-L||J-M| - N D(13)$$

$$= \frac{(3)}{(3D(14) + D(15) + 3D(16)) - N} (D(19)$$

$$+ 2D(20) + D(21) + 2D(23))] (using (2.17))$$
The first term in the bracket $2|I-J||I-K||I-L||J-M|$ is
$$E|I-J| (J^{2}-(N+1)J + \frac{N(N+1)}{2}) (I^{2}-(N+1)I + \frac{N(N+1)}{2})^{2}$$

$$= \frac{1}{1^{5}J}(I-J) (I^{2}-(N+1)I + \frac{N(N+1)}{2}) (J^{2}-(N+1)J - \frac{N(N+1)}{2})^{2}$$

$$= \frac{N(N^{2}-1)}{15120} (223N^{6}-815N^{4}+1096N^{2}-576)$$
Using this and earlier results, we obtain

é.

 $D(28) = \frac{(N+1)}{15120} (223N^3 + 303N^2 - 118N - 168)$

(3.28)

The remaining symmetric functions D(29) through (D35) are obtained easily using relationships given in section (2.4.2). Since calculations are straightforward, we give below the simplified results.

$$D(29) = \frac{1}{N^{(5)}} \sum_{\neq} |\mathbf{I} - \mathbf{J}| |\mathbf{I} - \mathbf{K}| |\mathbf{J} - \mathbf{K}| |\mathbf{L} - \mathbf{M}|$$

= $\frac{(N+1)(N+2)}{630} (7N^2 + 4N - 3)$ (3.29).

Ì

$$D(30) = \frac{1}{N^{(6)}} \sum_{\neq}^{\Sigma} (I-J)^{2} |K-L| |M-P|$$

= $\frac{(N+1)}{1890} (35N^{3}+35N^{2}-28N-24)$ (3.30)

$$D(31) = \frac{1}{N(6)} \underset{\neq}{\Sigma} |I-J| |I-K| |I-L| |M-P|$$

$$= \frac{(N+1)}{630} (9N^3 + 11N^2 - 5N - 6)$$
(3.31)

$$D(32) = \frac{1}{N^{(6)}} \sum_{\neq} |\mathbf{\hat{I}} - \mathbf{j}| |\mathbf{I} - \mathbf{K}| |\mathbf{L} - \mathbf{M}| |\mathbf{L} - \mathbf{P}|$$

= $\frac{(N+1)}{226800} (3087N^{3} + 4523N^{2} - 218N - 1392)$ (3.32)

$$D(33) = \frac{1}{N^{(6)}} \sum_{\neq} |I-J| |I-K| |J-L| |M-P|$$

= $\frac{(N+1)}{11340} (153N^3 + 247N^2 + 2N - 84)$ (3.33)

$$D(34) \equiv \frac{1}{N(7)} \stackrel{\Sigma}{\neq} |I-J| |I-K| |L-M| |P-Q|$$

$$= \frac{(N+1)}{18900} (245N^3 + 401N^2 + 40N - 104)$$
 (3.34)

D(35) =
$$\frac{1}{N^{(8)}} \underset{\neq}{\Sigma} |I-J| |K-L| |M-P| |Q-R|$$

$$= \frac{(N+1)}{14175} (175N^3 + 315N^2 + 86N - 48)$$
(3.35)

The values of the above symmetric functions are required in obtaining an expression of the fourth moment of δ when the distance function is the Euclidean distance between the ranks of observations.

3.3 Fourth Moment of δ_1

In the general expression of the fourth moment of the MRPP statistic, given by (2.30), if we put g=2, $C_i = \frac{n}{N}$, i=1, 2, with N=2n, we get

 $\binom{(2)}{(2n)}^{3} E(\delta_{1}^{4}) = 8D(13) + 16(n-2) \{ 4D(14) + 3D(15) \}$

+ 6D(16) + 4 { (n-2)(n-3) + n(n-1) }. { 4D(17)

+ 3D(18) + 48(n-2)(n-3) {2D(19) + 2D(20)

+ 4D(21) + D(22) + 4D(23) + 48 (n-2)

+ { (n-3)(n-4) + n(n-1) } { D(24) + 2D(25) }

$$D(34) \equiv \frac{1}{N^{(7)}} \underset{\neq}{\Sigma} |I-J| |E-K| |L-M| |P-Q|.$$

$$= \frac{(N+1)}{18900} (245N^3 + 401N^2 + 40N - 104)$$

. 86

$$D(35) = \frac{1}{N^{(8)}} \underset{\neq}{\overset{[]}{=}} |I-J| |K-L| |M-P| |Q-R|$$
$$= \frac{(N+1)}{14175} (175N^3 + 315N^2 + 86N - 48) \qquad (3.35)$$

The values of the above symmetric functions are required in obtaining an expression of the fourth moment of δ when the distance function is the Euclidean distance between the ranks of observations.

3.3 Fourth Moment of δ_1

, 1

In the general expression of the fourth moment of the MRPP statistic, given by (2.30) / if we put g=2, $C_i = \frac{n}{N}$, i=1, 2, with N=2n, we get

 $\binom{(2)}{(2n)}^{3} E(\delta_{2}^{4}) = 8D(13) + 16(n-2) \{ 4D(14) + .3D(15) \}$

+ 6D(16) + 4 { (n-2)(n-3) + n(n-1) }. {4D(17)

+ 3D(18) + 48(n-2)(n-3) {2D(19) + 2D(20)

+ 4D(21) + D(22) + 4D(23) + 48 (n-2)

+ { $(n-3)^{(n-4)}$ + n(n-1) } { D(24) + 2D(25) }

+ $16(n-2)(n-3)(n-4){D(2'6) + 12D(27) + 12D(28)}$

+ $32(n-2){(n-3)(n-4) + n(n-1)}D(29) + 12(n-2)$

 $(n-3) \{ (n-4) (n-5) + 3n(n-1) \} D(30) + 32(n-2) \}$

 $(n-3) \{ (n-4) (n-5) + n (n-1) \} \{ D(31) + 3D(33) \}$

+ $48(n-2){(n-3)(n-4)(n-5) + n(n-1)(n-2)}D(32)$

+ 24 (n-2) (n-3) { (n-4) (n-5) (n-6) + n (n-1) (n-2)

+ 2n(n-1)(n-4) D(34) + (n-2)(n-3) { (n-4)(n-5)

(n-6)(n-7) + 4n(n-1)(n-4)(n-5) + 3n(n-1)

(n-2)(n-3) (D(35).

Using the results of last section for D(13)-D(35), upon simplification we get

 $E(\delta_{1}^{4}) = \frac{(N+1)}{14175N^{3}(N-2)^{3}}(175N^{8}-525N^{7}+315N^{6}-1035N^{5})$

 $+4818N^{4}-6180N^{3}+1640N^{2}+8640N-4608)$ (3.36)

' We note the following from Mielke et al. (1981b, p. 722).

$$\mu(\delta_{1}) = \frac{N+1}{3}, \ \sigma_{\delta_{1}}^{2} = \frac{4(N+1)}{45(N-2)}$$

and $\gamma_{\delta_{1}} = -\frac{\sqrt{20}(4-11N^{-1}-6N^{-2})}{7(1-N^{-1}-2N^{-2})^{0.5}}$

· Using these, with the result (3.36), we obtain

$$\mu_4(\delta_1) = \frac{16(N+1)}{4725N^2(N-2)^3} (31N^4 - 175N^3 + 180N^2 + 260N - 96)$$
(3.37)

$$\beta_{1}(\delta_{1}) = \frac{20}{49} \frac{(4N^{2} - 11N - 6)^{2}}{N^{2}(N - 2)(N + 1)}$$
(3.38)

$${}^{\beta_{2}(\delta_{1})=\frac{3}{7}} \frac{(31N^{4}-175N^{3}+180N^{2}+260N-96)}{N^{2}(N-2)(N+1)}$$
(3.39)

$$2\beta_2 - 3\beta_1 - 6 = \frac{24}{49} \frac{(2N^4 - 74N^3 + 157N^2 + 125N - 258)}{N^2(N-2)(N+1)}$$
(3.40)

In the following we present a table of β_1 , β_2 , $2\beta_2-3\beta_1-6$ and the Pearson criterion κ , given by (1.6), for the test statistic δ_1 , for various values of N.

à

۳¥

<pre>< for Selected N</pre>				
N	β ₁	⁸ 2	2 ^β 2 ^{-3β} 1 ⁻⁶	к
4	0.5000	1.5000	-4.5000	-0.1250
6.	2.0991	4.3878	-3,5218	-0.7227
8	3.0995	6.3095	-2.6794	- 1.5724
10	3.7410	7.5732	-2.0765	-2.6403
20	5.0963 .	10.3093	-0.6704	-12.9733
30	5.5664	11.2764	-0.1462	-68.2866
:32	5.6257	11.3991	-0.0788	-128.7936
34	5.6782	11.5077	-0.0190	-541.0672
36	5.7249	11.6045	0.0344	303.7323
38	5.7668-	11.6913	0.0824	128.2103
40	5.8045	11.7696	. 0.1257	84.8653
50	5.9483	12.0685	0.2920	38.0022
60	6.0446	12.2690	0.4041	28.1763
70.	6.1136	12.4127	0.4848	23.9192
80	6.1654	12.5209	0.5457	21.5428
90	6,2058	12,6052	0.5932	20.0267
100	6.2381	12.6728	0.6313	18.9754
1000	6.5012	13.2240	0.9443	13.5664
∞	6,5306	13.2857	0.9796	13.1750

Table 3.1 Values of β_1 , β_2 , $2\beta_2 - 3\beta_1 - 6$ and

The above table indicates that for N≤20 and N≥80, the value of $|2\beta_2 - 3\beta_1 - 6|$ is more than 0.5 while the condition for Pearson Type III distribution is $"2\beta_2 - 3\beta_1 - 6 = 0"$. On the basis of the values of Pearson criterion and referring to (β_1, β_2) plot, we note that Pearson Type VI is recommended for N>34 and Pearson Type I for N≤34.

We obtain empirical powers of δ_1 using above approximations as well as Pearson Type III approximation and compare these with the power of δ_2 , in the following chapter.

CHAPTER IV

POWER OF SOME MRPP TESTS

4.1 Test Statistics

For the MRPP test statistic δ , defined by (1.3), we consider the univariate case with g=2, $n_1 = n_2 = N/2$, and the distance function given by the following:

(i) $\Delta_{\mathbf{X}\mathbf{Y}} = |\mathbf{R}(\mathbf{x}) - \mathbf{R}(\mathbf{y})|$

(ii)
$$\Delta_{xy} = \{R(x) - R(Y)\}^2$$
,

where R(x) is the rank of x in the combined sample. The above cases of distance functions give δ_1 and δ_2 respectively. As mentioned in section 1.5, δ_2 is an equivalent to the Wilcoxon test with which δ_1 competes.

The asymptotic distribution of δ_1 is not known. Therefore, we obtain powers of δ_1 using the Pearson Type III approximation as well as the approximation suggested by Table 3.1, that is, the Pearson Type VI for N>34 and Type I for N≤34. We compare these powers with the power of δ_2 - the Wilcoxon test, using the Pearson Type III distribution.

For the case of large samples, we consider two samples

of size 40 each, while for the smaller sample case, we take samples of size 10 each. We conduct a simulation study on the basis of 10,000 independent samples. We describe the details in section 4.3. In the following section, we indicate transformations that enable us to use IMSL routines in order to obtain p values under different Pearson type approximations.

4.2 Transformations

This section is divided into three subsections according to the Pearson Type approximation used in calculating empirical powers of the test.

4.2.1 Pearson Type I Approximation

The Pearson Type I distribution with origin at the mean is given by

$$f(x) = K(1+\frac{x}{A_1})^{m_1}(1-\frac{x}{A_2})^{m_2}, \qquad -A_1 < x < A_2,$$

where

$$\frac{m_1 + 1}{A_1} = \frac{m_2 + 1}{A_2}$$

and

$$K = \frac{1}{A_{1}+A_{2}} \frac{(m_{1}+1)^{m_{1}}(m_{2}+1)^{m_{2}}}{(m_{1}+m_{2}+2)^{m_{1}+m_{2}}} \frac{\Gamma(m_{1}+m_{2}+2)}{\prod_{r=1}^{r}(m_{1}+1) \Gamma(m_{2}+1)}$$

The transformation $u = \frac{1}{A_1 + A_2} (1 + \frac{X_2}{A_1})$ gives

$$f(u) = \frac{1}{\beta(m_1+1, m_2+1)} \int u^{m_1} (1-u)^{m_2}, \quad 0 \le u \le 1.$$

Therefore, under Type I approximation,

$$\operatorname{Prob} \{\delta_1 < \delta_1\} = \operatorname{Prob} \{u < u_0\},\$$

where

$$u_{0} = \frac{A_{1}}{A_{1} + A_{2}} (1 + \frac{x_{0}}{A_{1}}) \text{ and } x_{0} = \delta_{1} - \mu_{\delta_{1}}$$

$$Prob \{ u < u_{0} \} = \int_{0}^{u_{0}} \frac{1}{\beta(m_{1} + 1, m_{2} + 1)} u^{m_{1}} (1 - u)^{m_{2}} du, \ 0 \le u_{0} \le 1$$

The above probability is calculated using IMSL routine MDBETA. The constants, A1, A2, m1, m2 are obtained in a manner described in Elderton and Johnson (1969, pp. 51-52).

4.2.2 Pearson Type VI Approximation

The Pearson Type VI distribution, with origin at the mean and for $\mu_3 < 0$, is

f(x) = K(1+
$$\frac{x}{A_1}$$
)^{-q_1}(1+ $\frac{x}{A_2}$)^{q_2}, x<-A₂,
where
K = $\frac{1}{A_2-A_1} \frac{(q_2+1)^{q_2}(q_1-q_2-2)^{q_1-q_2} r(q_1)}{(q_1-1)^{q_1} r(q_1-q_2-1) r(q_2+1)}$, A₂>A₁
and $\frac{q_1-1}{A_2} = \frac{q_2+1}{A_3}$.

92

In this case, if we let $u = \frac{A_2 + x}{A_1 + x}$, we get

. .

$$f(u) = \frac{\Gamma(q_1)}{\Gamma(q_2+1) - \Gamma(q_1-q_2-1)} u^{q_2} (1-u)^{q_1-q_2-2}, 0 < u < 1$$

The probability Prob $\{\delta_1 < \delta_1^{\} \text{ under this approxima-}$ tion is Prob $\{u > u_0\}$, where $u_0 = \frac{A_2 + x_0}{A_1 + x_0}$ and $x_0 = \delta_1^{-\mu} - \mu_{\delta_1}^{-\mu}$. Thus, evaluating the constants, we can calculate the above probability, again using IMSL routine MDBETA.

4.2.3 Pearson Type III Approximation

The Pearson Type III distribution with origin at the mean and for $\mu_3 < 0$, is

$$f(x) = -\gamma \frac{(p+1)^{p}}{e^{p+1} \Gamma(p+1)} (1 + \frac{x}{A})^{p} e^{-\gamma x}, \qquad x < -A$$

where $\gamma = \frac{2\mu_2}{\mu_3} < 0$, $p = \gamma a^4 = \frac{4}{\beta_1} - 1$, $A = \frac{p+1}{\gamma}$ and $a = \frac{2\mu_2^2}{\mu_3} - \frac{\mu_3}{2\mu_2}$.

The transformation $u = (p+1)+\gamma x$ gives

$$f(u) = \frac{1}{r(p+1)} u^{p} e^{-u}, \qquad u>0.$$

. Prob
$$\{\delta_1 < \delta_1\}$$
 = Prob $\{u > \frac{4}{\gamma^2} + \gamma x_0\}$, where $x_0 = \delta_1 - \mu_{\delta_1}$

The RHS above is calculated using IMSL routing MDGAM,

after calculation of constants.

4.3 Methodology

We consider the following symmetric underlying distributions for our simulation.study:

L. Uniform	2. Normal
3. Logistic	4. $0.1N(0,9) + 0.9N(0,1)$
5`0.1N(0,100) + 0.9N(0,1	6. Laplace (Double Exponential)
7. U-Shaped	8. Cauchy

In addition to the above, in order to observe the power performance of the tests in the case of asymmetric situations, we consider an exponential distribution as the underlying distribution. The U-shaped distribution that we consider is $f(x) = \frac{9\sqrt{15}}{50}x^2$, $-\sqrt{\frac{5}{3}}< x<\sqrt{\frac{5}{3}}$. The other distributions are standard distributions.

We generate 10 sets of 1000 independent pairs of samples from each of the above populations. Samples from the uniform, normal, Cauchy and exponential distributions are obtained by invoking IMSL routines GGUBS, GGNML, GGCAY and GGEXN, respectively. Samples from logistic, Laplace and U-shaped distributions are obtained by transforming the uniform random numbers. For a mixture of normal distributions, we obtain a random number U from uniform (0,1) for every random number drawn from N(0,1). When U is less than 0.1, we multiply the corresponding random

number drawn from a normal population by σ ; otherwise, we do not multiply. This gives a random observation from $0.1N(0,\sigma^2) + 0.9N(0,1)$.

To calculate the power of the tests against a shift of K_{σ} , we shift first N_1 observations by K_{σ} and count the number of rejections. For Cauchy as underlying distribution, we take σ to be the solution of $F(\sigma) = 0.8413$; i.e., 1.83672. This approach is adopted by Randles and Hogg (1973).

We calculate standard deviations of the estimates of powers based on 1000 samples and obtain estimates of powers based on 10,000 samples. Results are indicated in Tables 4.1 to 4.9 for the large samples $(N_1=N_2=40)$ and in Tables 4.10 to 4.18 for small samples $(N_1=N_2=10)$. Following each table we provide a power plot which is obtained using the spline method of interpolation. The plot gives an overall view of the information contained in the table.

In the following section, we present our results and draw conclusions.

4.4 Results for Large Samples

We first present empirical powers of the tests for large samples.

In the case of large samples, powers of δ_1 are computed using the Pearson Type VI, as well as the Pearson Type III

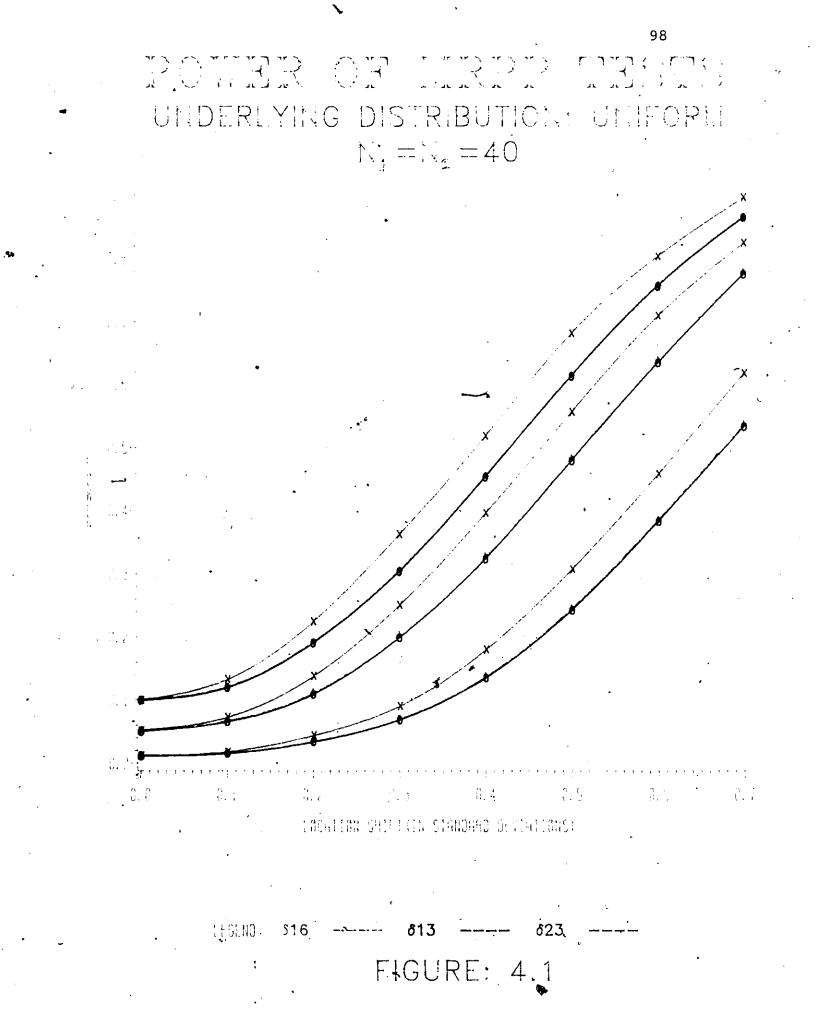
Shift: Ko	· F	c = 0.0		.1	(= 0.1	
Statistic	δ16	^δ 13	δ ₂₃	· 616	°13	^δ 23 ·
α				······································		
0.001	.0011 (.0010)	.0012 (.0010)	.0012 (.0010)	.0015 (.0018)	.0017 (.0017)	
0.01	.0117 (.0036)	.0115 (.0036)	.0116 (.0032)	.0154 (.0041)	.0150 (.0042)	.0172 (.0037)
0.05	.0512 (.0076)	.0505 (.0078)	.0515 (.0072)	.0663 (.0075)		°.0722 (.0062)
0.10	.100D (.0041)	.0998 (.0041)	.0998 (.0066)	.1198 (.0082)		.1325 (.0074)
	• ₹ -					
Shift: Ko		K [°] = 0,2			K = 0.3	. <u>.</u>

Empirical	Powers, When Underlying Distribution
***	is Uniform, N ₁ =N ₂ =40

Table 4.1

Shift: Ko	ŀ	(= 0.2	K = 0.3				
Statistic	⁸ 16	⁸ 13	⁸ 23	⁸ 16	۱3	^δ 23	
α					<u> </u>		
0.001	.0053	.0053	.0071	.0133	.0142	.0191	
	(.0022)	(.0022)	(.0030)	(.0041)	(.0044)	. <u>(</u> .0039)	
0.01	.0342	.0336	.0435	.0689	.0682	.0898	
	(.0039)	(.0041)	(.0056)	.0065)	(.0060)	(.0104)	
0.05	.1103	.1089	.1377	.2014	.1986	.2500	
	(.0112)	(.0112)	(.0082)	(.0100)	(.0098)	(.0134)	
0.10	.1908	.1902	.2244	.3040	.3033	.3621	
	(.0113)	(.0112)	(.0128)	(.0194)	(.0190)	(.0164)	

Table 4.1 (cont'd.)


Shift: Ko	Ŀ	x = 0.4			(= 0.5	
Statistic	⁸ 16	δ13	δ23	, ^δ 16	δ13	^δ 23
α						
0.001	.0331	0345	.0471	.0714	.0729	.0976
	(.0027)	(.0030)	(.0045)	(.0071)	(.0075)	(.0090)
0.01	.1365	.1348	.1791	.2442	.2418	.3064
	(.0097)	(.0097)	(.0082)	(∶0118)	(.0116)	(.0179)
0:05	.3260	.3232	.3957	.4816	.4784	.5557
	(.0171)	(.0162)	(.0201)	(.0194)	(.0202)	(.0233)
0.10	.4536	.4526	.5179	.6129	.6121	.6802
	(.0215)	(.0212)	(.0248)	(.0198)	(.0198)	(.0166)
,			•		-	

Shift: Ko	R	c = 0.6		K = 0.7				
Statistic	δ ₁₆	δ ₁₃	⁶ 23	δ16	δ ₁₃	^δ 23		
α.	•							
0.001	.1410 (.0087)	.1450 (.0090)	.1914 (.0100)	.2469 (.0142)	.2534 (.0141)	.3177 (.0170)		
0.01		, .3824 (.0178)		.5367 (.0182)	.5326 (.0186)	.6170 (.0210)		
0.05	.6373 (.0176)	.6341 (.0185)	.7082 (.0167)	.7767 (.0148)	.7742 (.0142)	.8238 (.0141)		
0.10	.7557 (.0172)	.7551 (.0171)	.8028 (.0124)		.8630 (.0105)	.8957 (.0099)		

ż

i

۲.

Table 4.2

Empirical Powers, When Underlying Distribution is Normal, N₁=N₂=40

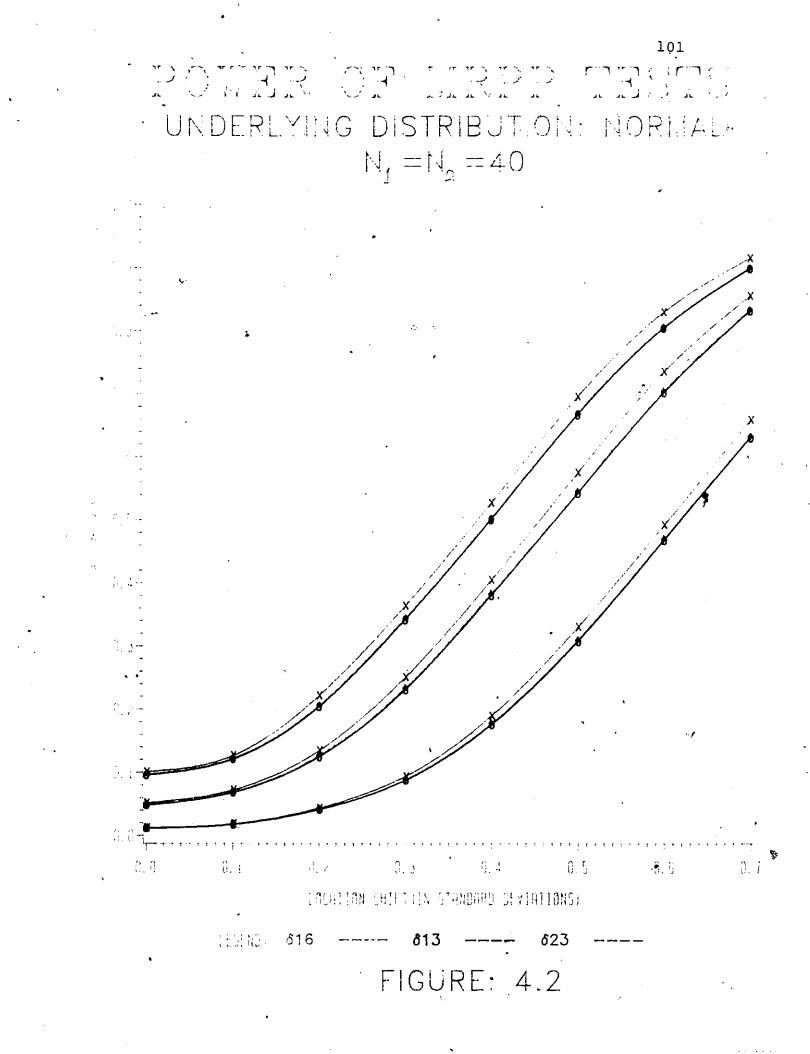
Shift: Ko		K = 0.0		K = 0.1			
Statistic	^δ 16	⁸ 13	δ ₂₃ ·	^δ 16	⁶ 13	^δ 23	
α					<u> </u>		
0.001	.0012 (.0011)	.0013 (.0011)	.0012 (.0010)	.0024 (.0013)	.0026 (.0013)	·.0027 (.0013)	
0.01	.0119 (.0028)	.0118 (.0030)	.0120 (.0025)	.0181 (.0041)	.0176 (.0038)	.0180 (.0034)	
0.05	.0488 (.0065)	.0482 (.0063)	.0515 (.0089)	.0686 (.0061)	.0682 (.0061)	.0719	
0.10	.0963 (.0101)	.0960 (.0101)	.1008 (.0103)	.1213 (.0096)	.1211 (.0096).	.1265 (.0089)	

.

ħ

Shift: Kơ		K = 0.2		*	V K = 0.2	3 -
Statistic	^δ 16	^δ 13	δ ₂₃	δ16	^{. گ} 13	^δ 23
α						
0.001	.0069 (.0026)	.0075 (.0027)	.0077 (.0024)	.0209 (.0053)	.0219 (.0057)	.0212 (.0047)
0.01	.0417 (.0060)	.0414 (.0058)	.0437 (.0051)	.0887 (.0071)	.0876 (.0068)	.0936 (.0066)
0.05	.1265 (.0092)	.1248 (.0086)	.1347 (.0094)	.2329 (.0128)	.2307 (.0126)	`.2506 (.0107)
0.10	.2049 (.0128)	.2040 (.0128)	.2220 (.0131)	.3428 ⁻ (.0177)	.3416 (.0169)	.3639 (.0162)

q


Table 4.2 (cont'd).

Shift: Ko		K = 0.4	/		K = 0.5	
Statistic	^δ 16	δ ₁₃	⁸ 23	⁸ 16	^δ 13	^δ 23
α.						
0.001	.0489	.0511	.0523	.1050	.1078	.1126
	(.0052)	(.0047)	(.0043)	(.0091)	(.0086)	(.0069)
0.01	.1778	.1753	.1895	.3094	.3072	.3302
	(.0108)	(.0110)	(.0101)	(.0111)	(.0110)	(.0115)
0.05	.3826	.3800	.4044	.5448	.5415	.5747
	(.0177)	(.0172)	(.0148)	(.0166)	(.0171)	(.0195)
0.10	.5003	.4999	.5268	.6666	.6660	.6948
	(.0163)	(.0162)	(.0150)	(.0192)	(.0192)	(.0181)

Shift: Ko		K = 0.6			K = 0.7	
Statistic	^δ 16	δ ₁₃	⁶ 23	δ.16	⁶ _13	^δ 23
. α		<u>, , , , , , , , , , , , , , , , , </u>		•		
0.001	.2053	.2102	.2190	.3432	.3500	.3646
	(.0103)	(.0101)	(.0086)	(.0112)	(.0100)	(.0081)
0.01	.4701	.4676	.4919	.6324	.6294	.6579
	(.0173)	(.0177)	(.0146)	(.0201)	(.0203)	(.0158) س
0.05	.7035	.7010	.7345	.8318	.8305	.8551
	(.0181)	(.0177)	(.0174)	(.0169)	(.0171)	(.0160)
0.10	.8037	.8034	.8291	.8981	.8977	.9148
	(.0176)	(.0176)	(.0177)	(.0086)	(.0088)	(.0085)

100

ζ

Shift: Ko		K = 0.0			K = 0.1	
Statistic	⁸ 16	↓ ₁₃	^δ 23	^δ 16·	⁸ 13	· δ ₂₃
α						
0.001	.0009 (.0011)	.0009 (.0011)		0027 (.0016)		.0029 (.0015)
0.01	.0106 (.0037)	.0106 (.0037)	.0118 (.0041)	.0192 (.0036)		.0196 (.0051)
0.05	.0527 (.0079)	.0517 (.0077)	.0552 (.0095)	.0781 (.0059)	.0772 (.0057)	
0.10	.1067 (.0115)	.1064 (.0115)	.1106 (.0121)	.1370 (.0120)	.1368 (.0125)	.1417 (.0095)

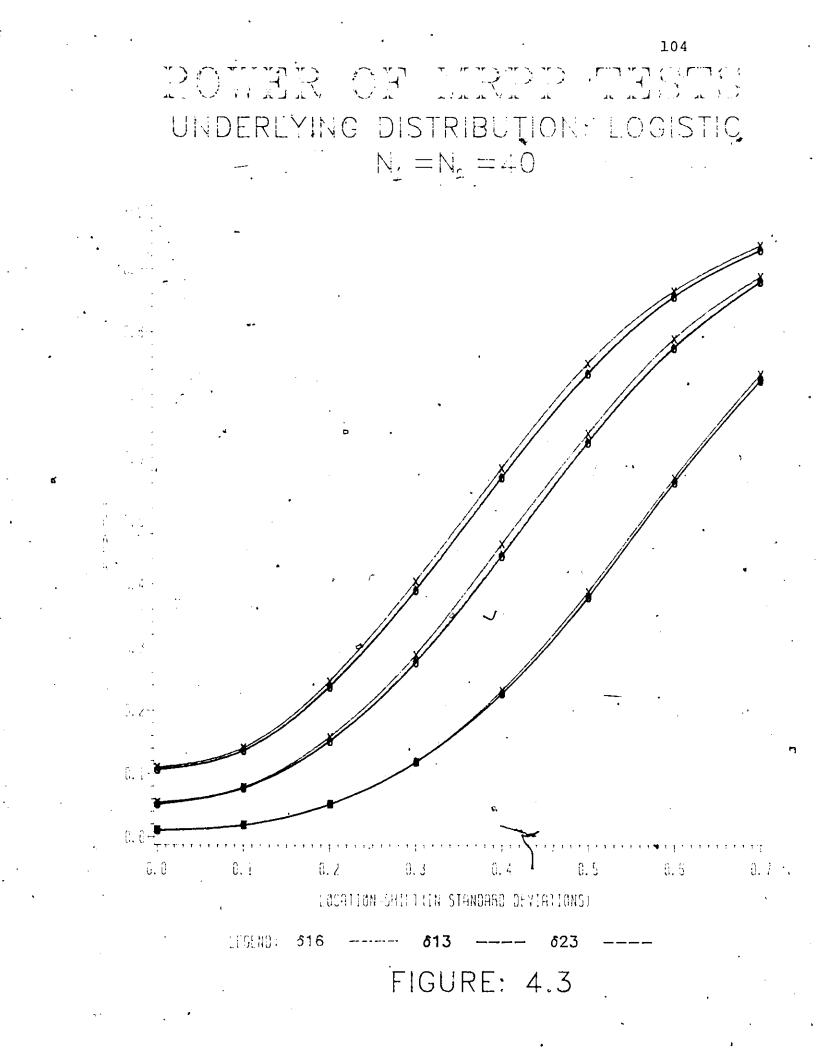
	Table 4.5	
Empirical	Powers, When Underlying Distribution	
	is Logistic, $N_1 = N_2 = 40$	

m

2

1 ~ 4

£,


Shift: Ko		K = 0.2			K = 0.3	
Statistic	⁸ 16	^δ 13	^δ 23	^δ 16	^δ 13	^δ 23
α					<u>_</u>	<u>~</u>
0.001	.0101 (.0032)	.0107 (.0034)	.0095 (.0031)	.0299 (.0047)	.0306 (.0046)	.0274 (.0046)
0.01	.0523 (.0064)	.0521 (.0064)	.0525 (.0067)	.1201 (.0077)	.1184 (.0075)	.1188 (.0063)
0.05	.1531	.1514 (.0103)	.1587 (.0115)	.2783 (.0161)	.2759 ([°] .0153)	.2888 (.0132)
0.10	.2384 (.0112)	.2376 (.0108)	.2470 (.0117)	.3909 (.0123)	.3901 (.0120)	.4051 (.0150)

1

Table 4.3 (cont'd.)

Shift: Ko	. H	x = 0.4	-	- K	= 0.5	
Statistic	^δ 16	δ ₁₃	^δ 23	^δ 16	^δ 13	⁶ 23
α	•	; =		₩	,,,	
0.001	.0722	.0743	.0714	.1536	.1568	.1532
	(.0045)	(.0045)	(.0054)	(.0077)∽	(.0079)	(.0086)
0.01	.2286	.2268	.2325	.3814	.3792	.3885
	(.0130)	(.0120)	(.0153)	(.0115)	(.0114)	(.0151)
0.05	.4479	.4445	.4641	.6263	.6237	.6389
	(.0166)	(.0166)	(.0142)	(.0172)	(.0167)	(.0153)
0.10	.5689	.5684	.5840	.7336	.7329	.7501
	(.0179)	(.0177)	(.0205)	(.0119)	(.0119)	(.0084)

Shift: Ko	K = 0.6			K = 0.7			
Statistic	^δ 16	⁸ 13	⁶ 23	^δ 16.	ο 13	^{- δ} 23	
α		···		· _			
0.001.	.2811	.2868	.2808	.4398	.4472	.4423	
	(.0134)	(.0130).	(.0125)	(.0172)	(.0125)	(.0140)	
0.01	.5641	.5608	.5687	.7241	.7220	.7328	
	(.0184)	(.0177)	(.0202)	(.0120)	(.0125)	(.0140)	
0.05	.7759	.7739	.7894	.8795	.8783	.8874	
	(.0089)	(.0094)	(.0088)	(.0081)	(.0076)	(.0083)	
0.10	.8554	.8551	.8651	.9287	.9285 2	.9369	
	(.0074)	(.0076)	(.0080)	(.0089)	(.0089)	(.0073)	

Table 4	•	4	
---------	---	---	--

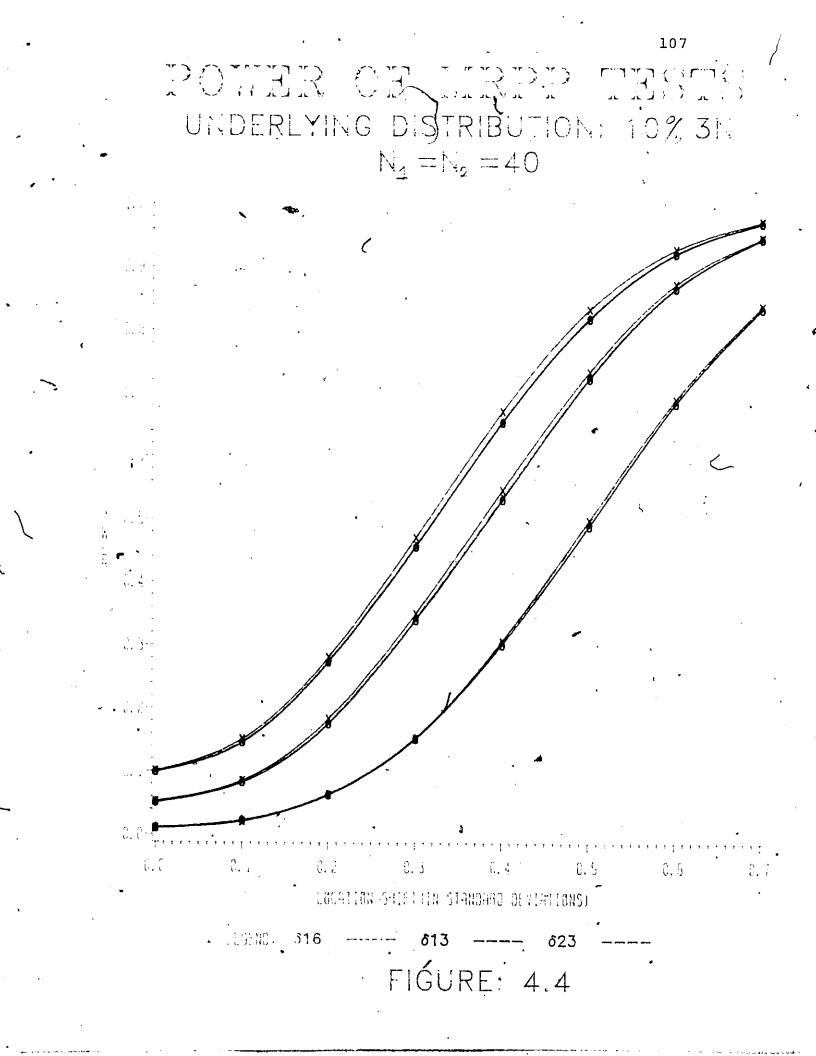
Shift: Ko	•	(= 0.0		ŀ	x = 0.1	
Statistic	. 16	⁸ 13	^δ 23	^δ 16	^δ 13	^δ 23
α						
0.001	.0009 (.0011)	.0010 (.0012)	.0009 (.0009)	.0038 (.0018)	.0039 (.0019)	
0.01	.0106 (.0045)	.0104 (.0043)	.0105 (.0041)		.0224 (.0059)	
0.05	.0515 (.0075)	.0507 (.0076)		.0838 (.0081)		.0861 (.0098)
0.10	.0998 (.0079)	.0993 (.0081)	.1009 (.0111)	.1466 . (.0107)	.1459 (.0102)	.1518 (.0131)

Empirical Powers, When Underlying Distribution is .1N(0,9) + .9N(0,1),N₁=N₂=40

Shift: Kơ	I	K = 0.2		: I	x = 0.3	•
Statistic	⁸ 16	δ ₁₃	δ ₂₃	٥16	⁸ 13	· ^δ 23
α		•		· · · · · · · · · · · · · · · · · · ·	······	
0.001	∕.0126	.0128	.0129	.0394	.0414	.0396
	(.0030)	(.0029)	.(.0034)	(.0074)	(.0064)	(.0054)
0.01	.0641	.0631	.0641 ·	.1527 `	.1518	.1527
	(.0072)	(.0073)	(.0074)	(.0099)	(.0102)	(.0131)
0.05	.1772	.1759	.1840	.3423	.3403	.3512
	(.0106)	.(.0104)	(.0099)	(.0116)	(.0112) \	(.0130)
0.10	.2745	.2737	.2819	.4575	.4564	.4717
	(.0120)	(.0116)	(.0134)	(.0124)	(.0128)	(.0119)

Shift: Kơ	H	x = 0.4		I	y = 0.5	
Statistic	^ô 16	δ ₁₃ .	⁸ 23 .	^δ 16	⁶ Is	^δ 23
α.				•		
0.001	.1067 (.0087)	.1086 (.0085)	.1051 (.0103)	.2255 (.0120)	.2318 (.0106)	.2256 ,(.0128)
0.01	.3042 (.0095)	.3016 (.0099)	.3072 (.0132)	`.4928 (.0159)	.4898 (.0154)	.4995) (.0139)
0.05	.5334 (.0130)	.5314 (.0132)	.5474 (.0147)	.7255	.7235 (.0112)	.7354 (.0126)
0.10	.6543 (.0127)	.6538 (.0128)	.6721 (.0138)	.8192 (.0150)	.8187 (.0149)	.8345 (.0141)

Table 4.4 (cont'd.)


ſ

Shift: Ko	· 1	< = 0.6	. •	H	c = 0.7	
Statistic	⁸ 16	^δ 13	· ⁶ 23	δ16	^δ 13	^δ 23
α						
0.001	.3951 (.0119)			.5961 (.0140)		.5916 (.0119)
0.01				.8364 (.0148)		
0.05				.9461 (.0099)		
0.10				.9711 (.0046)	.9711 (.0046),	.9746 (.0055)

.)

3

ч,

Table 4.5

٠	Empirical	Powers,	Whe	n Underlying	Distribution
	is .	LN(0,100)	+	.9N(0,1), N ₁ :	=N ₂ =40

١

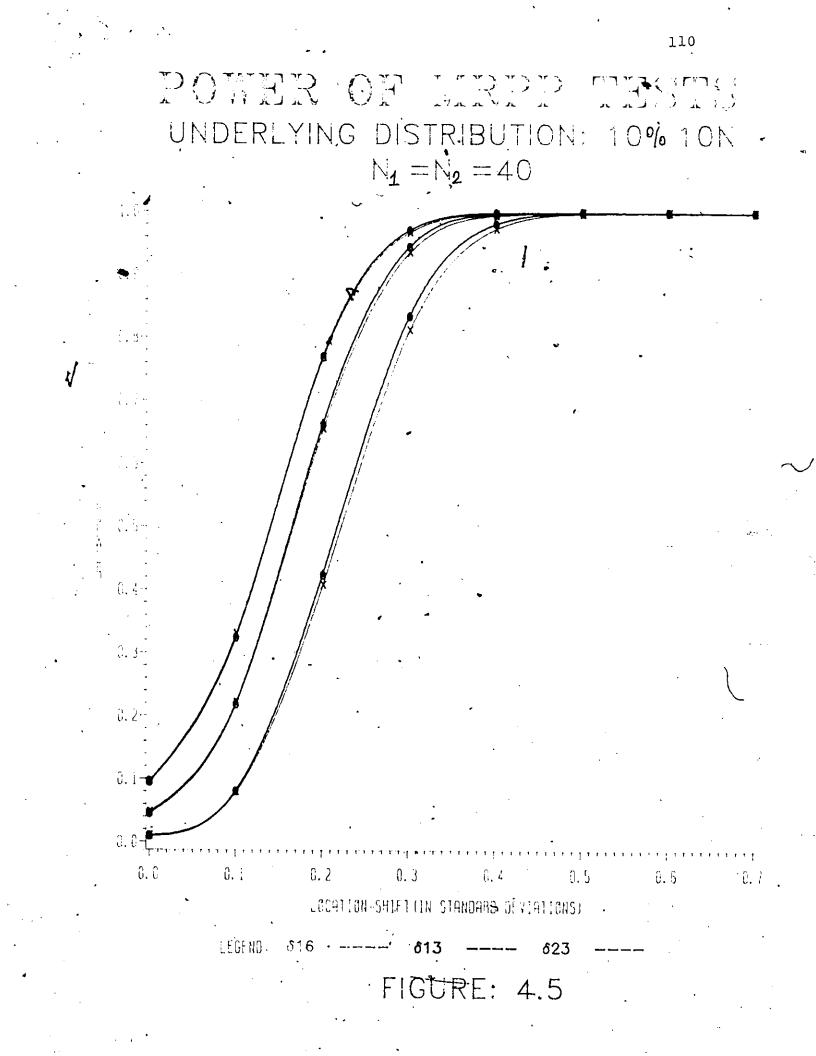
Shift: Kơ	К	= 0.0	•	ł	K = 0.1	
Statistic	⁸ 16 .	δ ₁₃	⁸ 23	δ16	^δ 13	. ^δ 23
α,						<u> </u>
0.001	.0014 (.0014)	.0016 (.0016)	.0014 (.0012)		· .0174 (.0041)	.0158 (.0037)
0.01	.0103 (.0034)	.0103 (.0034)	.0104 (.0029)	.0819 (.0075)	.0809 (.0074)	.0798 (.0100)
0.05	.0461 (.0068)	.0455	.0477 (.0070)	.2210 (.0140)	.2184 ^{.*} (.0147)	.2216 (.0177)
0.10	.0957 (.0096)	.0954 (.0096)	.0969 (.0081)	.3257 (.0161)	.3248 (.0158)	.3312 (.0177)

Shift; Ko	Ţ	ç = 0.2		I	x = 0.3	6.
Statistic	^ہ '16	CQ13	δ ₂₃	^δ 16	^δ 13	^δ 23
α	· · · · ·				· · · · · · · · · · · · · · · · · · ·	
0.001	.1739	.1792	.1608	.5861	. 5935	.5485
·	(.0126)	(.0144)	(.0093)	(.0200)	(.0194)	(.0197)
0.01	.4272	.4243	.4087	.8359	.8339	.8125
2	(.0169)	(.0176)	(.0198)	(.0115)	(.0122)	(.0135)
-					1	
0.05	.6652	.6621	.6558	.9451	.9447	.9359
	(.0178)	(.0178)	(.0164)	(.0059)	(.0057)	(.0047)
0.10	.7701	.7692	.7694	.9711	.9711	.9682
	(.0160)	(.0158)	(.0142)	(.0056)	(.0056)	(.0049)

ь,

ر

1.


No. 16

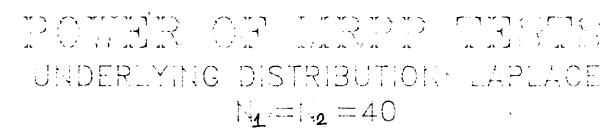
¥

108

Table 4.5 (cont'd.)

Shift: Ko	H	x = 0.4			K = 0.5.	-
Statistic	^δ 16	δ ₁₃ ΄	^δ 23	^δ 16	^δ 13	^δ 23
α .				• •	····	<u>`</u>
0.001	.9098 (.0074)	.9124 (.0067)	.8752 (.0104)	·.9907 (.0033)	.9911 (.0035)	.9807 (.0053)
0.01	.9818 (.0049)	.9814 (_0047)	.9736 (.0055)	.9992 (.0013)	.9992 (.0013)	.9978 (.0016)
0.05	.9964 (.0025)	.9963 (.0025)	.9948 (.0031)	.9998 (.0010)	.9998 (.0010)	.9997 (.0011)
0.10 A	.9990 . (.0015)	.9989 (.0014)	.9977 .(.0017)	1.000 (0)	1.000 (0)	1.000 (0)
 Shift: Ko		ς = 0.6	<u>_</u>	 I	x = 0.7	
Shift: Kơ Statistic	۴ ^گ 16	ζ = 0.6 ^δ 13	⁶ 23	۱ ⁸ 16	x = 0.7	
	δ ₁₆		⁶ 23			
Statistic		δ ₁₃	^δ 23 .9977 (.0016)			
Statistic	δ ₁₆	δ ₁₃	·····.9977	^δ 16	δ ₁₃	⁶ 23 0.999
Statistic	^δ 16 .9995 (.0011) 1.000	δ ₁₃ .9995 (.0011) 1.000	.9977 (.0016) .9999	^δ 16 1.000 (0) 1.000	⁶ 13 1.000 (0) 1.000	^δ 23 0,999 (:0003) 1.000

Table 4.6	
Empirical Powers, When Underlying Distribu	tion
is Laplace (Double Exponential); $N_1 = N_2$	=40


Shift: Kơ		K = 0.0			K = 0.1			
Statistic	δ16	^δ 13	⁶ 23	^δ 16	^δ 13	^δ 23		
α		<u>_</u>		· · · · ·		·····		
0.001	.0009	.0010	.0007	.0024	.0027	.0019		
	(.0009)	(.0011)	(.0008)	(.0011)	(.0013)	(.0010)		
0.01	.0108	.0106	.0112	.0216	.0209	.0205		
	(.0030)	(.0030)	(.0042)	(.0056)	(.0050)	(.0041		
0.05	.0477	.0471	.0502	.0856	.0851	.0871		
	(.0055)	(.0052)	'(.0047)	(.0087)	(.0090)	(.0094)		
0.10	.0967	.0960	.0986	.1480	.1477	.1508		
	(.0098)	(.0096)	(.0079)	(.0082)	(.0081)	(.0110		

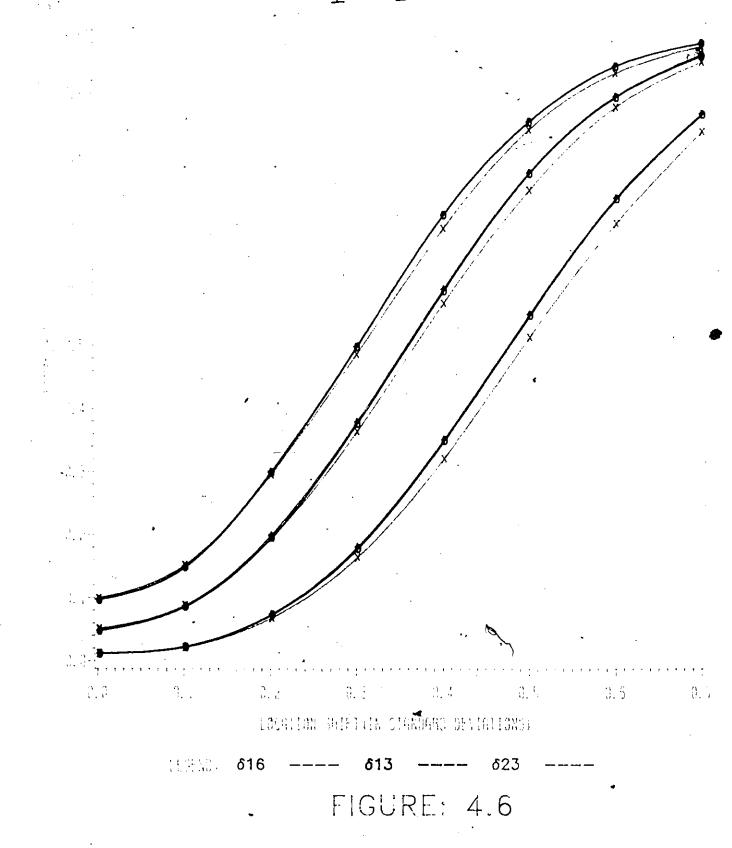

Shift: Kø	-	K = 0.2.			K = 0.3	
Statistic	^δ 16	^δ 13,	⁸ 23	^{. 8} 16	^δ 13	^δ 23
α	······································					ı
0.001	.0133	.0141	.0122	.0503	.0521	.0422
	(.0037)	(.0045)	(.0032)	(.0076)	(.0079)	(.0064)
0.01	.0728	,Ó722	.0672	.1794	.1774	.1632
	(.0095)	(.0091)	(.0089)	(.0109)	(.0106)	(.0120)
0.05	.1982	.1955	.1938	.378 ²	.3759	.3628
	(.0119)	(.0121)	(.0104)	(.0202)	(.0199)	(.0199)
0.10	.2987	.2982	2947	.4975	.4969	.4851
	(.0166)	(.0168)	(.0138)	(.0219)	(.0223)	(.0241)

Table 4.6 (cont'd).

Shift: Ko	ן ז	K = 0.4	-	•]	K = 0.5	
Statistic	^δ 16 .	• ⁸ 13	^δ 23	^δ 16	^δ 13	^δ 23
α				·······		
0.001 .	.1281 (.0121)	.1319 (.0121)	.1124 (.0125)	.2652 (.0158)	.2706 (.0155)	.2389 (.0155)
0.01	.3497` .(.0209)	.3481 (.0208)	.3195 (.0195)	.5482 (.0222)	.5461 (.0218)	.5119 (.0203)
0.05	.5882 (.0203)	.5854 (.0206)	.5657 (.0198)	.7721 (.0120)		.7442 (.0114)
0.10	.7058 (.0149)	.7053 (.0150)	.6836 (.0150)	.8530 (.0104)	.8525 (.0105)	.8400 (.0113)

Shift: Ko	1	K = 0.6			K = 0.7 .			
Statistic	^δ 16	^δ 13	^δ 23	^δ 16	δ ₁₃	^δ 23		
α	<u></u>							
0.001	.4506	.4568	.4050	.6359	.6420	.5861		
	(.0245)	(.0230)	(.0222)	(.0152)	(.0151)	(.0170)		
0.01	.7322	.7305	.6915	.8660	.8646	.8375		
	(.0120)	(.0123)	(.0138)	(.0088)	(.0095)	(.0109)		
0.05	.8931	.8917	.8762	.9590	.9584	.9481		
	(.0059)	(.0065)	(.0086)	(.0046)	(.0048)	(.0050)		
0.10	.9415	.9414	.9302	.9785	.9784	.9734		
	(.0061)	(.0062)	(.0062)	(.0043)	(.0043)	(.0043)		

Table 4.	7
----------	---

Shift 📐 Ko Statistic	ŀ	0,0 = 3		K = 0.1				
	. ^δ 16	^δ 13	⁶ 23	⁸ 16	⁸ 13	^δ 23		
α				<u> </u>				
0.001 [.]	.0004	.0005	.0002	.004 ⁸	.0050	.0075		
	(.0005)	(.0007)	(.0004)	(.0020)	(.0020)	(.0024)		
0.01	.0079	.0078	.0072	.0322	.0317	.0492		
	(.0032)	(.0033)	(.0030)	(.0056)	(.0054)	(.0044)		
0.05	.0462	.0458	.0469	.1247	.1228	.1566		
	[.] (.0078)	(.0076)	(.0085)	(.0100)	(.0101)	(.0115)		
0.10	0942	.0941	.0953	.2121	.2109	.2475		
	(.0102)	(.0102)	(.0086)	(.0141)	(.0143)	(.0121)		

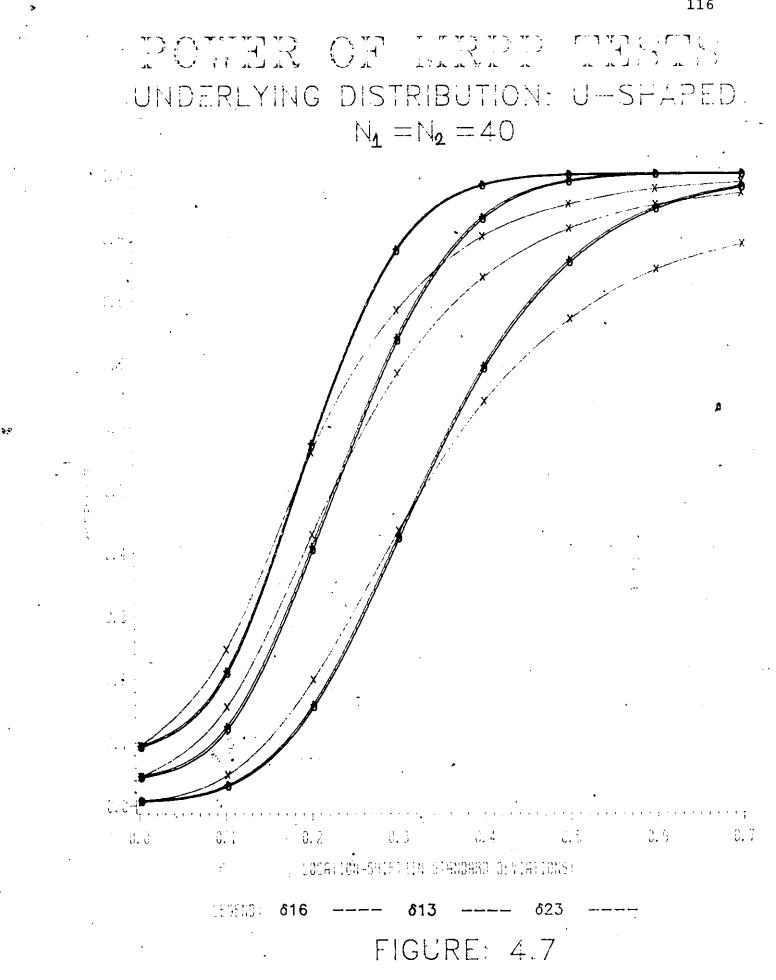
Empirical Powers, When Underlying Distribution is U-shaped, N₁= N₂=40

Shift: Ko	K = 0.2			K = 0.3			
Statistic	^δ 16	^δ 13	⁶ 23	^δ 16	^δ 13	δ ₂₃	
α.	``					•	
0.001	.0362 (.0051)	.0376 (.0056)	.0531 (.0064)	.1411 (.0123)	.1447 (.0127)		
0.01	.1595 (.0093)	.1581 (.0085)		.4275 (.0099)		.4359 (.0086)	
0.05	.4099 (.0125)	.4063 (.0121)		.7404 (.0113)	.7370 (.0118)	.6843 (.0153)	
0.10	.5726 (.0088)	.5711 (.0080)	.5592 (.0100)	.8807 (.0099)	.8796 (.0096)	.7840 (.0125)	

1

7

114


 \sim

. 115

Table 4.7 (cont'd.)

Shift: Ko	H	ζ = 0.4	K = 0.5				
Statistic	⁸ 16	^δ 13	⁶ 23	δ ¹⁶	⁸ 13	^δ 23	
α					• •		
0.001	.3285 (.0168)	.3361 (.0156)	.3419 (.0179)	.5307 (.0100)	.5393 (.0102)		
0.01	.6959 (.0123)	.6926 (.0126)	.6400 (.0104)	.8632 (.0106)	.8608 (.0105) -	.7703 r (.0132)	
0.05	.9319 (.0084)	.9301 * (.0082)	.8366 (.0090)	.9897 (.0027)	.9892 (.0027)	.9141 (.0065)	
0.10	.9833 (.0032)	.9830 (,0029)	.9016 (.0061)	.9997 (.0005)	.9995 (.0007)	.9525 (.0053)	
	<u> </u>		· ·				
Shift: Ko	\$	X = 0.6	· ·		x = 0.7		
Shift: Ko Statistic	\$	X = 0.6 ^δ 13	۰ ۰ ۰ 23	۰. ۱ ^گ 16	x = 0.7 δ_{13}	δ ₂₃	
	%		٥. 23			δ ₂₃	
Statistic	%		δ ₂₃ .6156 (.0094)	^δ 16 .7817	δ ₁₃	.6877	
Statistic	ι δ ₁₆ .6830	δ ₁₃	.6156 .	^δ 16 .7817	δ ₁₃ .7887 (.0124)	.6877	
Statistic a 0.001	δ ₁₆ .6830 (.0124) .9465	δ ₁₃ .6912 (.0113) .9450	.6156 (.0094) .8487	δ ₁₆ .7817 (.0121) .9810	δ ₁₃ .7887 (.0124) .9795	.6877 (.0108 .8885	

3

Shift: Ko Statistic	ŀ	κ = 0.0		F		
	⁸ 16	^δ 13	⁶ 23	⁸ 16	^δ 13	^δ 23
α			<u>, , , , , , , , , , , , , , , , , , , </u>		•	
0.001	.0009 (.0012)	.0009 (.0012)	.0007 (.0009)	.0027 (.0020)	.0028 (.0021)	.0024 (.0018)
0.01	.0091 (.0037)	.0090 (,0036)	.0096 (.0032)	.0179 (.0057)	.0178 (.0056)	.0170 (.0058)
0.05	.0460 (.0093)	.0454 (.0097)	.0478 (.0105)	`.0730 (.0076)	.0716 (.0074)	.0702 [.] (.0075)
0.10	.0928 (.0116)	.0923 (.0114)	.0955 (.0146)-	.1376	.1367 (.0121)	.1294 (.0129)

Empirical	Powers,	When	Underlyi	ng	Distrib	ution
	is (Cauch	y, N ₁ =N ₂ =	40	•	-

Table 4.8

Shift: Ko	J	K = 0.2			K = 0.3			
Statistic	⁸ 16	^δ 13	^δ 23	δ16	^δ 13	^δ 23		
a						<u>_</u>		
0.001	.0087	.0092	.0075	.0294	.0305	.0210		
	(.0035)	(.0040)	(.0040)	(.0070)	(.0071)	(.0066)		
0.01	.0524	.0516	.0432	.1292	.1275	.1004		
	(.0087)	(.0085)	(.0091)	(.0138)	(.0134)	(.0107)		
0.05	.1634	.1623	.1442	.3082	.3064	.2688		
	(.0111)	(.0112)	(.0125)	(.0165)	(.0170)	(.0142)		
0.10 🖌	.2533	.2527	.2363	.4211	.4204	.3849		
	(.0136)	(.0129)	(.0148)	(.0140)	(.0142)	(.0120)		

Table 4.8 (cont'd.)

Shift: Ko	ŀ	c = 0.4				
Statistic	⁸ 16	⁸ 13	⁸ 23	δ16	δ _{13.}	^δ 23
α					 ,	
0.001	.0775 (.0085)	.0798 (.0075)	.0555 (.0092)	.1702 (.0118)	.1743 (.0120)	.1163
0.01	.2602 (.0130)	.2575 (.0139)	.2070 (.0143)	.4164 (.0129)	.4137 (.0132)	.3347 (.0169)
0.05	.4829 (.0121)	.4797 (.0128)	.4252 (.0121)	.6563 (.0101)	.6545 (.0102)	.5770 (.0106)
0.10	.6029 (.0101)	.6017 . (.0105)	.5438 (.0136)	.7597 (.0097)	.7591 (.0094)	.6933 (.0114)

Shift: Ko	F	c = 0.6		ŀ	ς = 0.7	
Statistic	⁸ 16	δ ₁₃	δ ²³	^δ 16	δ ₁₃	^δ 23
α.						
0.001	.2989	.3043	.2165	.4447	.4502	.3343
	(.0154)	(.0153)	(.0114)	(.0097)	(.0102)	(.0135)
0.01	.5827	.5805	.4783	.7239	.7214	.6142
	(.0074)	(.0070)	(.0009)	(.0114)	(.0112)	(.0126)
0.05	.7943	.7919	.7124	.8915	.8908	.8154
	(.0066)	(.0071)	(.0115)	(.0066)	(.0065)	(.0104)
0.10	.8747	.8743	.8045	.9441	.9439	.8867
	(.0057)	(.0056)	(.0107)	(.0050)	(.0052)	(.0080)

Ð,

i

.

,

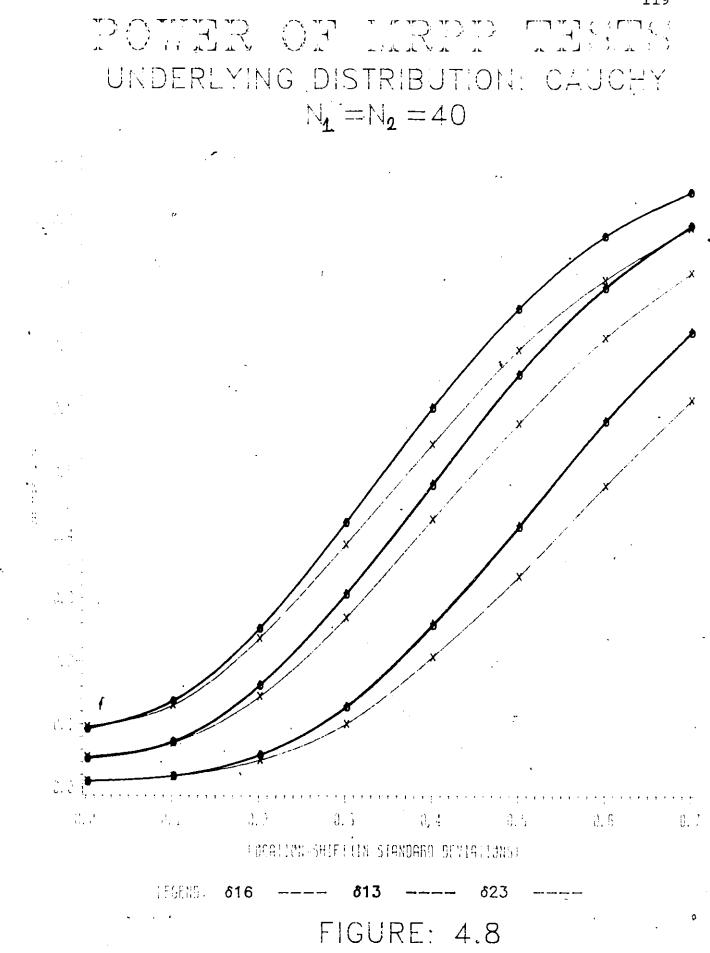
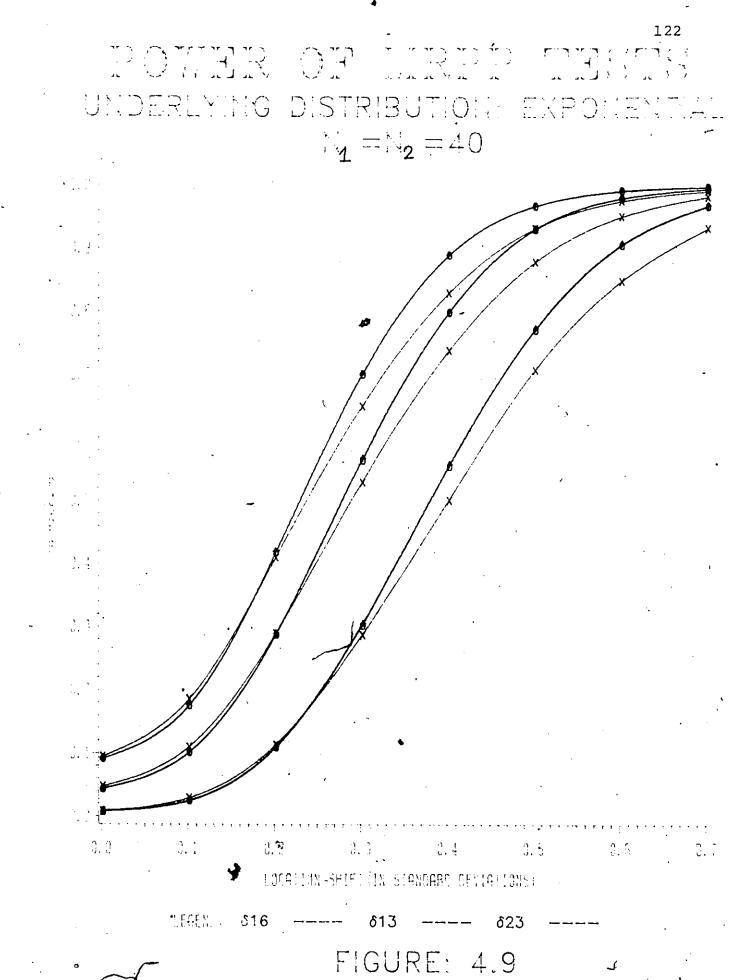


Table 4.9

Shift: Ko	· _ K	x = 0.0		ŀ	x = 0.1	
Statistic	^δ 16	δ ₁₃	δ23	^δ 16	^δ 13	^δ 23
α.						
0.001	.0006 (.0005)	.0006 (.0007)	.0006 (.0007)	.0039 (.0018)	.0040 (.0019)	.0047 (.0013)
0.01	.0088 (.0023)	.0085 (.0022)	.0087 (.0018)	.0255 (.0054)	.0252 (.0055)	.0301 (.0067)
0.05	.0448 (.0063)	.0444 (.0065)	.0481 <u>(</u> .0073)	.1032 (.0138)	.1022 (.0139)	.1106 .(.0147)
0.10	.0927 (.0096)	.0924 (.0094)	.0953 (.0112)	.1776 (.0124)		.1862 (.0143)


Empirical Powers, When Underlying Distribution is Exponential, N₁=N₂= 40

	ŀ	x = 0.2	· ·	- H	ζ = 0.3	
Statistic	^δ 16	δ ₁₃	· δ ₂₃	⁶ 16	^δ 13	^δ 23
· α	<u>.</u>				•	
0.001	.0221	.0229	.0246	.0933	.0948	.0892
	(.0054)	(.0050)	(.0058)	(.0133)	(.0133)	(.0134)
0.01	.1117	.1101	.1140	.3057	.3034	.2877
	(.0145)	(.0139)	(.0142)	(.0183)	(.0188)	(.0186)
. 0.05	2910	.2890	.2904	.5682	.5648	.5300
	(.0194)	(.0190)	(.0159)	(.0204)	(.0204)	(.0257)
0.10	.4207	.4197	.4111	.7013	.7009	.6500
	(.0226) [.]	(.0233)	(.0252)	(.0183)	(.0183)	(.0205)

Table 4.9 (cont'd.)

Shift: Kơ	. K	5 = 0.4	•	ĸ	5 = 0.5	
Statistic	⁸ 16	δ13	^δ 23	δ ₁₆	δ13	^δ 23 /
α						
0.001	.2563	.2618	.2294	.4741	.4819	.4191
	(.0196)	(.0199)	(.0164)	(.0239)	(.0239)	(.0253)
0.01	.5576	.5552	.5016	.7734	.7715	.7079
	(.0226)	(.0223)	(.0230)	(.0218)	(.0223)	(.0228)
0.05	.8004	.7988	.7382	.9319	.9308	.8792
	(.0184)	(.0184)	(.0203)	(.0077)	(.0077)	(.0133)
0.10	.8904	.8899	.8296	.9684	.9683	.9325
	(.0117)	(.0115)	(.0155)	(.0056)	(.0056)	(.0093)

к € 0.7 Shift: Ko K = 0.6^δ23 . ^δ23 ^δ16 ^δ13 Statistic ^δ16 ^δ13 α .8481 .7760 0.001 .6933 .6997 .6158 .8431 (.0212) (.0148) (.0149) (.0182) (.0175) (.0186) . .9332 .8498 .9690 .9682 0.01 ,9080 .9064 (.0108) (.0101) (.0150) (.0072) (.0073) (.0104) .9956 .9956 .9833 0.05 .9809 .9807 .9520 (.0017) (.0046) (.0056) (.0056) (.0086) (,0017) 0.10 .9930 .9768 .9990 .9990 .9927 .9930 (.0009) (.0023) (.0052) (.0009) (.0024) (.0024)

distribution. The tests in these cases are indicated by δ_{16} and δ_{13} , respectively. Powers of δ_2 are obtained using the Pearson Type III distribution and we label the test as δ_{23} .

A table gives empirical powers of the tests against the shifts of one sample by K_{σ} for K=0.0(0.1)0.7 and α =0.001, 0.01, 0.05, 0.10 for a specific underlying distribution. The plot gives power curves of δ_1 and δ_2 for a specified underlying distribution. In the case of δ_1 , it shows power curves under both approximations of the null distribution of δ_1 . Any difference in powers of 0.07 or more is significant, since max {2/(pq/10000)} = 0.01.

We conclude the following from Tables 4.1 to 4.9 and the corresponding plots.

- 1. Powers of δ_1 under the Pearson Type VI approximation are almost always more than those obtained under the Pearson Type III approximation for $\alpha=0.01$, 0.05 and 0.10. For $\alpha=0.001$, the situation is the other way around, i.e., powers of δ_1 under the Type III approximation are generally higher than those under the Type VI approximation.
- 2. With the exception of the logistic as an underlying distribution, empirical α 's are all within acceptable limits. In most cases these are lower than nominal α 's for both δ_1 and δ_2 ; however, a test using δ_1 is a conservative test relative to one using δ_2 .

- 3. When the underlying distribution is uniform or normal (Tables 4.1, 4.2), empirical powers of δ_2 are significantly higher than those of δ_1 under both approximations.
- When the logistic is the underlying distribution, Table 4.3 indicates higher powers of δ_2 compared to those of δ_1 . But we note also that empirical α 's are significantly higher than nominal α 's. Therefore, it cannot be concluded that δ_2 performs better than δ_1 .
- 5. When the underlying distribution is 10% 3N; i.e., 0.1N(0,9) + 0.9N(0,1), we note from Table 4.4 that the empirical power of δ_2 is slightly higher than that of δ_1 under both approximations.
- 6. In the case of 10% 10N (Table 4.5) as underlying distribution, empirical powers of δ_1 under both approximations are higher than those of δ_2 for shifts of $\geq 0.3\sigma$.
- 7. From Table 4.6, we note that powers of δ_1 under both approximations are significantly higher than those of δ_2 when the underlying distribution is a Laplace distribution.
- 8. When the underlying distribution is a U-shaped distribution, powers of δ_1 are significantly lower than those of δ_2 for shifts of $\leq 0.2\sigma$, while gain in power

12'4

is appreciable for shifts of $\geq 0.3\sigma$.

- 9. In the case of Cauchy as underlying distribution, powers of δ_1 are almost always significantly higher than those of δ_2 .
- 10 When underlying distribution is exponential, powers of δ_1 are more than those of δ_2 for shifts of $\ge 0.3\sigma$.

4.5 Results for Small Samples

Now, we present the results for small samples. Here we obtain powers of δ_1 and δ_2 against shifts of kg with K=0.0(0.2)1.4 for the underlying distributions already mentioned with the exception of the "contaminated normal" 0.1N(0,100) + 0.9N(0,1) distribution for which we take K=0.0(0.1)0.7. This exception is made because the power increases rapidly for the case of 10% 10N as an underlying distribution.

For δ_{1} , powers are obtained using both the Pearson Type I and the Pearson Type III distributions. However, we note from Tables 4.10-4.18 and Figures 4.10-4.18 that powers of δ_{1} remain the same under both approximations. Following each table, we give a plot to show power curves of δ_{1} and δ_{2} for ' α =0.001, 0.01, 0.05, 0.10 for the specific distribution.

Table 4	4.10
---------	------

Shift: Ko	ŀ	ζ = 0.0		k	x = 0, 2	
Statistic	^δ 16	^δ 13	δ ₂₃ .	⁸ 16	δ ₁₃ -	^δ 23
<u>α</u>		<u>.</u>			•	7
0.001	.0013	.0013	.0010	.0018	.001 8	.0012
	(.0009)	(.0009)	(.0009)	(.0020)	(.0020)	(.0016)
0.01	.0117	.0117	.0127	.0164	.0164	.0184
	(.0034)	(.0034)	(.0032)	(.0039)	(.0039)	(.0040)
0.05	.0487	.0487	.0525	.0625	.0625	.0695
	(.0054)	(.0054)	(.0049)	(.0051)	(.0051)	(.0042)
0.10	.0959	.0959	.1053	.1215	.1215	.1356
	(.0041)	(.0041)	(.0054)	(.0079)	(.0079)	(.0060)

Empirical	Powers,	When	Underlying	Distribution
	is Un	nifor	$n, N_1 = N_2 = 10$	

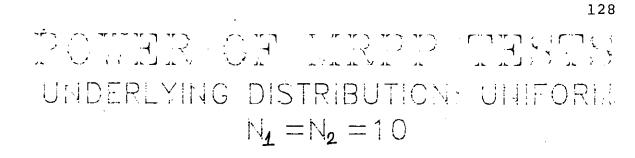
Shift: Ko	K	(= 0.4		ĸ	ζ = 0.6	
Statistic	δ ₁₆	⁸ 13	⁶ 23	^δ 16	^δ 13	^δ 23
α`						
0.001	.0046	.0046	.0036	.0097	.0097	.0086
	(.0027)	(.0027)	(.0023)	(.0032)	(.0032)	(.0033)
0.01	.0292	.0292	.0371	.0610	.0610	.0802
	(.0059)	(.0059)	(.0059)	(.0060)	(.0060)	(.0084)
0.05	.1081	.1081	.1297 [·]	.1917	.1917	.2323
	(.0084)	(.0084)	(.0110)	(.0128)	(.0128)	(.0159)
0.10	.1877	.1877	.2233	.2983	.2983	.3462
	(.0126)	(.0126)	(.0113)	(.0166)	(.0166)	(.0197)

.

Table 4.10 (cont'd.)

Shift: Kơ	K	c = 0.8		ĸ	1.0	
Statistic	δ. 16	⁶ 13	^δ 23	δ16	δ ₁₃	^δ 23
α	;					
0.001	.0210 (.0059)	.0210 (.0059)	.0191 (.0064)	.0448 (.0067)	.0448 (.0067)	.0410 (.0069
0.01	.1180 (.0074)	.1180 (.0074)	.1505 (.0099)	.2039 (.0126)	.2039 (.0126)	.2538 (.0180
0.05	.3064 (.0197)	.3064 (.0197)	.3615 (.0192)	.4417 (.0195)	.4417 (.0195)	
0.19	.4325	.4325 (.0160)	.4936 (.0175)	.5761 (.0145)	.5761 (.0145)	.6385 (.0157
					<u> </u>	•
						•
Shift: Ko		K = 1.2			K = 1.4	•
Shift: Ko Statistic			⁶ 23	δ ₁₆	K = 1.4 δ ₁₃	• ⁶ 23
	 	x = 1.2	^{\$} 23			۰ ⁶ 23
Statistic	 	x = 1.2	δ ₂₃ .0853 (.0070)			δ ₂₃ .155] (.0126
Statistic	δ ₁₆	$\zeta = 1.2$ δ_{13} .0908 (.0075) .3246	.0853	^δ 16	δ ₁₃ .1623	.155

.7695 (.0131)


0,10

.7136 (.0159) .7136 (.0159)

. ;

.8252 (.0101)

.8252 (.0101) .8696 (.0111)

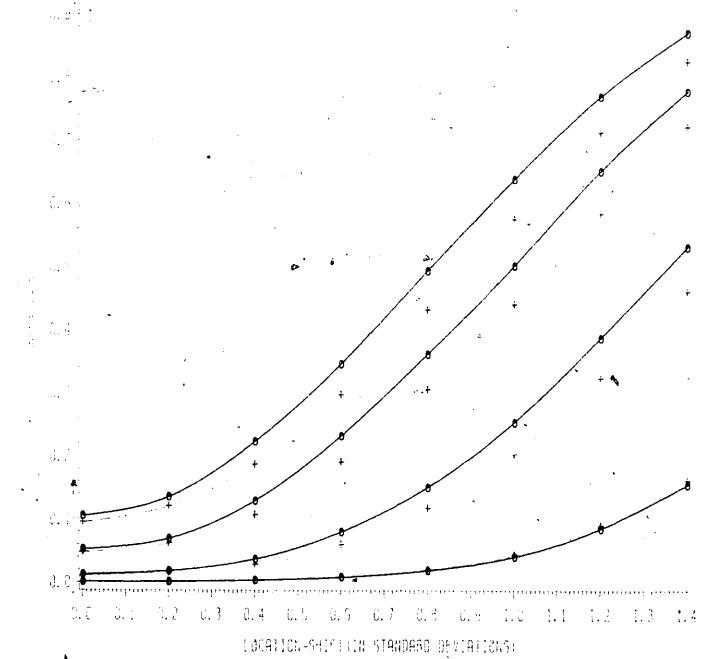


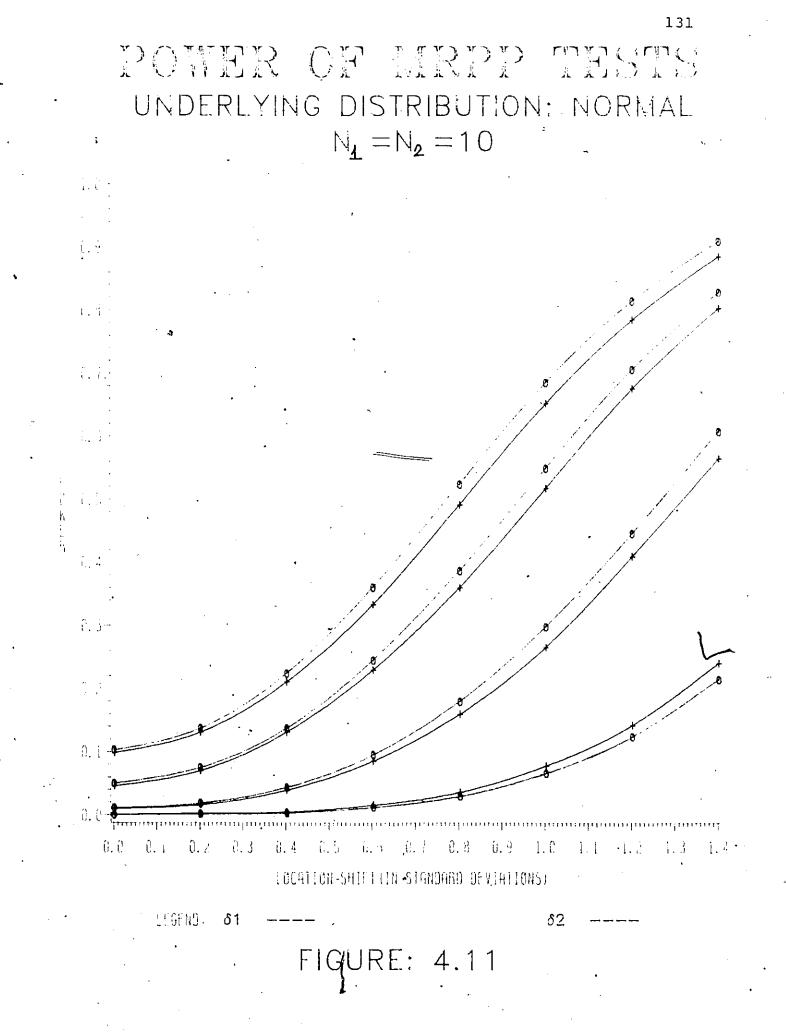
FIGURE: 4.10

31

ESEND:

20

δ2


Table 4	۰.	1	1
---------	----	---	---

Shift: Ko	к	C = 0.0			c = 0.2	
Statistic	δ16	δ ₁₃	^δ 23	^δ 16	δ ₁₃	^δ 23
α						
0.001	.0008	.0008	.0005	.0024	.0024	.0019
	(.0008)	(.0008)	(.0007)	(.0019)	(.0019)	(.0014)
0.01	.0102	.0102	.0116	.0162	.0162	.0188
	(.0029)	(.0029)	(.0044)	(.0047)	(.0047)	(.0042
0.05	.0463	.0463	.0505	.0705	.0705	.0755
	(.0044)	(.0044)	(.0069)	(.0080)	(.0080)	(.0087
0.10	.0992	.0992	.1033	.1313	.1313	.1374
	(.0090)	(.0090)	(.0080)	(.0082)	(.0082)	(.0097
	1. Se 1. Se		•	`	· •	
hift: Ko	ŀ	(= 0.4	*	. I	ζ = 0.6	<u> </u>
Statistic	⁸ 16	δ ₁₃	^δ 23	^δ 16	^δ 13	^δ 23
α			2			
0.001	.0051,	.0051	.0037	.0158	.0158	.0125
	(.0029)	(.0029)	(.0024)	(.0035)	(.0035)	(.0033
0.01	.0398	.0398	.0442	.0855	.0855	.0954
	(.0074)	(.0074)	(.0085)	(.0096)	(.0096)	(.0093
0.05	.1317	.1317	.1377	.2298	.2298	.2451
	(.0114)	(.0114)	(.0096)	(.0124)	• (.0124)	(.0170
0.10	.2114	.2114	.2248	.3338	.3338	.3606
	(.0109)	(.0109)	(.0123)	(.0156)	(.0156)	(.0192

Empirical Powers, When Underlying Distribution is Normal, N₁=N₂=10

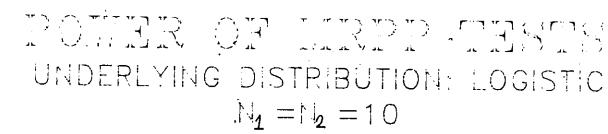
Table 4.11 (cont'd.)

Shift: Ko	K	= 0.8	,	K	= 1.0	
Statistic	⁸ 16	δ ₁₃	δ23	δ16	δ ₁₃	^δ 23
α						
0.001	.0359 (.0057)	.0359 (.0057)	.0296 (.0052)	.0777 (.0077)	.0777 (.0077)	.0660 (.0057)
0.01	.1593 (.0134)	.1593 (.0134)	.1797 (.0156)	.2656 (.0144)	.2656 (.0144)	.2980 (.0159)
0.05	.3603 (.0184)	.3603 (.0184)	.3868 (.0197)	.5178 (.0131)	.5178 (.0131)	.5493 (.0091)
0.10	.4918 (.0160)	.4918 (.0160)	´.5237 (.0135).	.6522 (.0087)	.6522 (.0087)	.6848 (.0086)
<u></u>	<u></u>	•				
						-
Shift: Kơ Statistic		$K = 1.2$ δ_{13}	⁶ 23		K = 1.4 δ_{13}	δ ₂₃
Statistic	^δ 16	K = 1.2 δ_{13}	⁶ 23	د ۱۵	K = 1.4 ^δ 13	⁸ 23
			δ ₂₃ .1240 (.0134)			δ ₂₃ .2149 (.0118)
Statistic	^δ 16	δ ₁₃	.1240	^δ 16	^δ 13 .2405	.2149 (.0118 .6077
Statistic a 0.001	δ ₁₆ .1421 (.0142) .4093	δ ₁₃ .1421 (.0142) .4093	.1240 (.0134) .4457	^δ 16 .2405 (.0123) .5646	δ ₁₃ .2405 (.0123) .5646	.2149

Ç

Table 4.12	2
------------	---

Shift: Ko	. K	c = 0.0		K = 0.2			
Statistic	⁸ 16	^δ 13	^δ 23	^δ 16	^δ 13	^δ 23	
α							
0.001	.0014	.0014	.0011	.0023	.0023	.0017	
	(.0012)	(.0012)	(.0011)	(.0014)	> (.0014)	(.0014)	
0.01	.0099	.0099	.0103	.0186	.0186	.0191	
	(.0033)	(.0033)	(.0031)	(.0063)	(.0063)	(.0059)	
0.05	.0496	.0496	.0528	.0720	.0720	.0763	
	(.0078)	(.0078)	(.0060)	(.0085)	(.0085)	(.0068)	
0.10	.1005	.1005	.1068	.1293	.1293	.1369	
	(.0125)	(.0125)	(.0125)	(.0100)	(.0100)	(.0102)	


Empirical Powers, When Underlying Distribution is Logistic, N₁=N₂=10

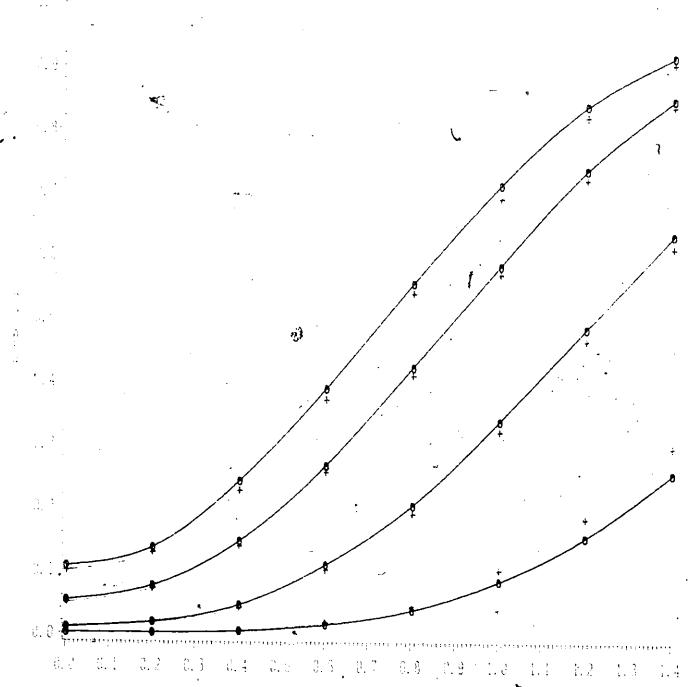

Shift: Ko	ŀ	ζ = 0.4		ŀ	ζ = 0.6	
Statistic	⁸ 16	δ ₁₃	^δ 23	^δ 16	δ ₁₃	^δ 23
α		<u></u>	·	· ·		
0.001 .	.0066 (.0031)	.0066 (.0031)	.0048 (.0030)	.0188 (.0044)	.0188 (.0044)	.0152 (.0038)
0.01	.0425 (.0072)	.0425 · (.0072)	.0461 (.0063)	.1023 (.0063)	.1023 (.0063)	.1093 (.0056)
0.05	.1398 (.0096)		.1469 (.0077)	.2573 (.0113)	.2573 (.0113)	.2667 (.0083)
0.10	.2279 (.0089)		.2425 (.0103)	•	.3723 (.0084)	.3887 (.0083)

Table 4.12 (cont'd.)

Shift: Ko	К	= 0.8		K	x = 1.0	
Statistic	^δ 16.	δ13	^δ 23	⁸ 16	⁶ 13	^δ 23
α						
0.001	.0456 (.0037)	.0456 (.0037)	.0384 (.0058)		.1029 (.0073)	.0841 (.0077
0.01	.1915 (.0130)	.1915 (.0130)	.2038 (.0099)	.3222 (.0138)	.3222 (.0138)	.3378 (.0139
0.05			.4231 (.0093)	.5721 (.0142)	.5721 (.0142)	.5842 (.0104
0.10 .	.5412 (.0109)	.5412 (.0109)	.5558 '(.0125)	.6920 (.0087)	.6920 (.0087)	.7120 (.0109
				`	-	
Shift: Ka	wa			· ····- ·	- K = 1.4	
Shift: Kơ Statistic	بر م اد	x = 1.2 δ_{13}	δ ₂₃	ر ⁵ 16	K = 1.4 δ_{13} ,	^δ 23
			^δ 23			⁶ 23
Statistic			δ ₂₃ .1539 (.0082)			δ ₂₃ .2550 (.0090
Statistic α 0.001	δ ₁₆	δ ₁₃ .1843	.1539	^δ 16	^δ 13 , ~.2977	.2550
Statistic α	δ ₁₆ .1843 (.0090) .4670 (.0098)	δ ₁₃ .1843 (.0090) .4670	.1539 (.0082) .4849	^δ 16 2977 (.0087) .6143	^δ 13 .2977 (.0087) .6143 (.0083) .8390	.255((.009(.633)

ł

. LOCATION-SHIFT (IN STANSARD DEVIATIONS)

:f@Eng+

51

FIGURE: 4.12 *

δ2

Shift: Ko	I	X = 0.0				
Statistic	^δ 16	^δ 13	⁸ 23	δ ₁₆	δ ₁₃	⁶ 23
α						• .
0.001	.0017	.0017	.0011	.0036	.0036	.0029
	(.0016)	(.0016)	(.0014)	(.0015)	(.0015)	(.0009)
0.01	.0114	.0114	.0120	.0227	.0227	.0253
	(.0044)	(.0044)	(.0045)	(ג005 ((.0057)	(.0060)
0.05	.0540	.0540	.0548	.0782	.0782	.0830
	(.0103)	(.0103)	(.0095)	(.0095)	(.0095)	(.0110)
0.10	.1014	.1014	.1085	.1371	.1371	.1461
	(.0114)	(.0114)	(.0149)	(.0112)	′(.0112)	(.0094)

				Distribution
is	.1N(0,9)	+.	9N(0,1), N ₁ =1	N ₂ =10

Table 4.13

3

Shift: Ko K = 0.4K = 0.6Statistic ⁸16 ^δ16 §₁₃ ^δ23 ^δ13 - α ₽. 0.001 .0105 .0105 .0081 .0302 .0302 .0231 (.0032) (.0032) (.0030) (.0065) (.0065) (.0053) -0.01 .0559 .0559 .0618 :1237 .1237 .1341 (.0070) (.0070) (.0093) (.0093) (.0093) (.0081) 0.05 ,1584 (.0120) .1584 .1650 .3082 .3082 .3209 (.0120) (.0110) (.0220) (.0220) (.0184) 0.10 .2530 .2530 .2672 .4279 ~.4279 .4462

(.0212)

(.0187)

(.0187)

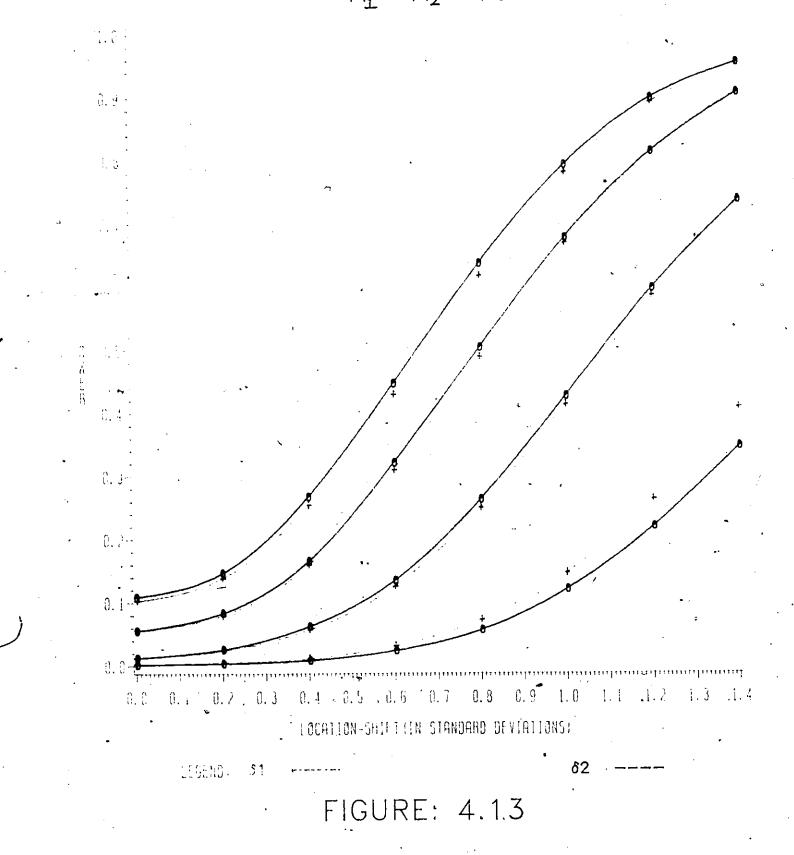
(.0162)

(.0162)

÷.

^δ23

(.0206)


Table 4.13 (cont'd.)

Shift: Ko	R	c = 0.8		ĸ	x = 1.0	
Statistic	^δ 16	δ13	δ ₂₃	⁸ 16	δ13	^δ 23
α.						
0.001	.0713	.0713	.0558	.1458	.1458	.1203
	(.0094)	(.0094)	(.0091)	(.0122)	(.0122)	(.0087)
0.01	.2484	.2484	.2628	.4121	.4121	.4265
	(.0167)	(.0167)	(.0172)	(.0183)	(.0183)	(.0198)
0.05	.4880	.4880	.5035	.6680	.6680	.6774
	(.0160)	(.0160)	(.0151)	(.0143)	(.0143)	(.0118)
0.10	.6164	.6164	.6365	.7799	.7799	.7923
	(.0163)	(.0163)	(.0143)	(.0189)	(.0189)	(.0112)

Shift: Ko	K = 1.2			K = 1.4			
Statistic	^δ 16	^δ 13	^δ 23	^گ 16	^۵ 13	δ23	
α. '							
0.001	.2619	.2619	.2193	.4071	.4071	.3457	
	(.0147)	(.0147)	(.0117)	(.0164)	(.0164)	(.0157)	
0.01	.5846	.5846	.5966	.7363	7363	.7358	
	(.0116)	(.0116)	(.0114)	(.0120)	(.0120)	(.0130)	
0.05	.8114	.8114	.8128	.9066	.9066	.9059	
	(.0156)	(.0156)	(.0153)	(.0112)	(.0112)	(.0131)	
0.10	.8900	.8900	.8979	.9528	.9528	.9543	
	(.0110)	(.0110)	(.0120)	(.0081)	(.0081)	(.0067)	

POWER OF MRPP TESTS UNDERLYING DISTRIBUTION: 10% 3N $N_1 = N_2 = 10$

Shift: Ko	, i	c = 0.0		F	x = 0. 1	
Statistic	τδ16	^δ 13	^δ 23	δ ₁₆	^δ 13	δ ²³
α	· \					
0.001	.0010 (.0007)	.0010 \ (.0007)	.0007 (.0007)	.0043 (.0017)	.0043 (.0017)	.0030 (.0013)
0.01	.0107 (.0020)	.0107 (.0020)	.0121 (.0018)	.0242 (.0039)	.0242 (.0039)	.0253 (.0033)
0.05	.0489 (.0065)	.0489 (.0065)	.0514 (.0042)	.0875 (.0067)	.0875 (.0067)	.0893 (.0068)
0.10	.0976 (.0072)	.0976 (.0072)	.1054 (.0075)	.1533 (.0074)	.1533 (.0074)	.1618 (.0084)

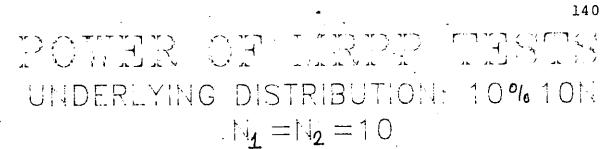

Shift: Ko	ł	K = Q.2		· 1	K = 0.3	
Statistic	⁸ 16	^۱ ⁸ 13	^δ 23	δ16	• ⁶ 13	^δ 23
α.	. ,	· <u>······</u> ·····························		•	··· _ ··	-
0.001	.0138.	.0138	.0100	.0460	.0460	.0339
	(.0035)	(.0035)	(.0020)	(.0064)	(.0064)	(.0060)
0.01	.0739	.0739	.0782	.1861	.1861	.1890
	(.0060)	(.0060)	(.0058)	(.0103)	(.0103)	(.0097)
0.05	.2090	.2090	.2125	.3959	.3959	.3929
	(.0118)	(.0118)	(.0108)	(.0125)	(.0125)	(:0149)
0.10	.3087	.3087	.3193	.5231	.5231	.5254
	(.0116)	(.0116)	(.0145)	(.0132)	(.0132)	(:0110)

Table 4.14

Table 4.14 (cont'd.)

.,

Shift: Kơ	K	= 0.4		к	c = 0.5	
Statistic	⁸ 16	⁸ 13	^δ 23	⁸ 16	⁸ 13	^δ 23
α.					· · · · · · · · ·	
0.001	.1203 (.0108)	.1203 (.0108)	.0903 (.0100)	.2339 (.0123)	.2339 (.0123)	.1783 (.0132)
0.01	.3471 (.0133)	.3471 (.0133)	.3404 (.0182)	.5349 (.0193)	.5349 (.0193)	.5076 (.0188
0.05	.6021 (.0171)	.6021 (.0171)	.5847 هر(0138)	.7728 (.0115)	.7728 (.0115)	.7477 (.0147
0.10	.7187 (.0136)	.7187 (.0136)	.7119 (.0144)	.8607 (.0114)	.8607 (.0114)	.8409 (.0136
	······································					
•						
•	<u></u>				•	- · ·
		ζ = 0.6	<u> </u>		K = 0.7	- · ·
Shift: Ko Statistic	δ 16	ς = 0.6 ^δ 13	δ ₂₃	۱ ^گ 16	K = 0.7 ^δ 13	^گ 23
			δ ₂₃			⁶ 23
Statistic			^δ 23 .2802 (.0140)			.3711
Statistic	δ ₁₆	^{\$} 13 .3762 (.0128) .6959	.2802	^δ 16	δ ₁₃ .5210 (.0124)	.3711 (.0155
Statistic a 0.001	δ ₁₆ .3762 (.0128) .6959	^{\$} 13 .3762 (.0128) .6959	.2802 (.0140) .6525	^δ 16 .5210 (.0124) .81 0 7	δ ₁₃ .5210 (.0124) .8107	.3711 (.0155

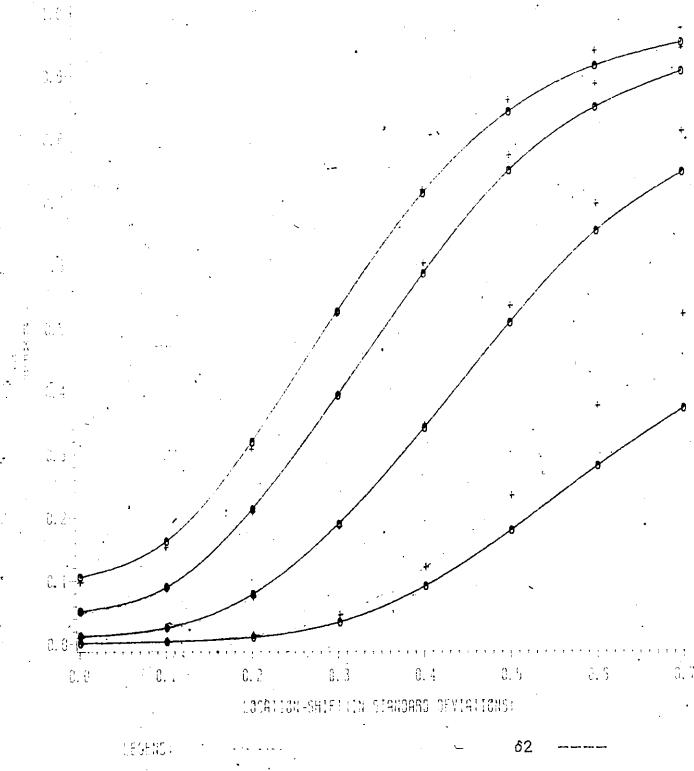


FIGURE: 4,14

Table	4.	15
-------	----	----

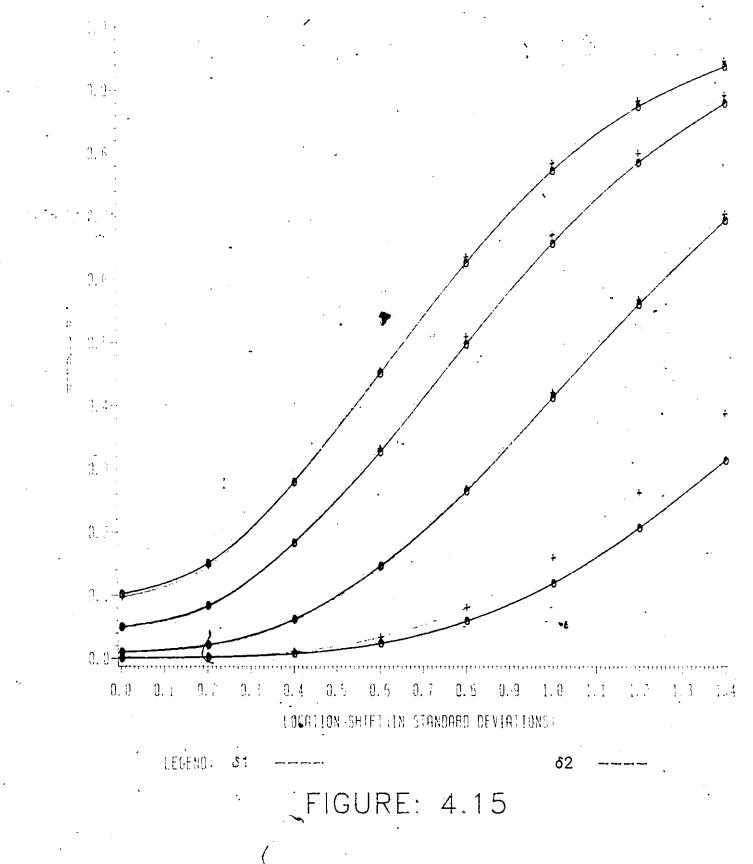
Shift: Ko	H	ζ = 0.0	·		K = 0.2	
Statistic	^δ 16	δ13.	⁸ 23	δ16	^δ 13	^δ 23
α	_			•		
0.001	.0009 (.0006)	.0009 (.0006)	.0005 (.0005)	.0024 (.0016)	.0024 (.0016)	.0015 (.0010)
0.01	.0096 (.0031)	.0096 (.0031)	.0101 (.0021)	.0186 (.0035)	.0186 -(.0035)	.0216 (.0029)
0.05	.0481 (.0054)	.0481 (.0054)	.0500 (.0049)	.0805 (.0095)	0805 (.0095)	.0838 (.0088)
0.10	.0960 (.0099)	.0960 (.0099)		.1448 ' (.0109)	.1448 (.0109)	.1508 (.0115)

Empirical Powers, When Underlying Distribution is Laplace (Double Exponential), $N_1 = N_2 = 10$

Shift: Ko	ŀ	K = 0.4			K = 0.6		
Statistic	^δ 16	⁸ 13	^δ 23	^δ 16	⁸ 13	^δ 23	
α	· · · · ·	ŕ		- <u> </u>			
0.001	.0103	.0103	.0074	.0330	.0330	.0236	
	(.0034)	(.0034)	(.0031)	(.0062)	(.0062)	(.0058)	
0.01	.0592	.0592	.0622	.1420	.1420	.1461	
	(.0055)	(.0055)	(.0069)	(.0071)	(.0071)	(.0086)	
0.05	∽ .ì825	.1825	.1831	.3319	.3319	.3269	
	(.0107)	(.0107)	(.0093)	(.0100)	(.0100)	(.0104)	
0.10	.2789	.2789	.2792	.4542	.4542	.4513	
	(.0112)	(.0112)	(.0130)	(.0158)	(.0158)	(.0177)	

P

Table 4.15 (cont'd.)


Α.

Shift: Ko	:	K = 0.8			K = 1.0			
Statistic	^δ 16	⁸ 13	^δ 23	^δ 16	^δ 13	^δ 23		
α			<u>.</u>					
0.001	.0791 (.0078)		.0588 (.0078)			.1185 (.0059)		
0.01	.2676 (.0095)	.2676 (.0095)	.2645 (.0087)		.4199 (.0126)	.4125 (.0141)		
0.05	.5086 (.0187)	.5086 (.0187)			.6702 (.0136)			
0.10	.6347 (.0145)		.6259 (.0178)		7 824 (.0102)	.7715 (.0136)		

Shift: Ko		K = 1.2			K = 1.4		
Statistic	δ16	^δ 13	^δ 23	⁸ 16	^δ 13	^{\$} 23	
α	·····		<u> </u>			<u></u>	
0.001	.2617	.2617	.2067	.3867	.3867	.3127	
	(.0089)	(.0089)	(.0093)	(.0122)	(.0122)	(.0112)	
0.01	.5674	.5674	.5601	:7026	.7026	6928	
	.(.0178)	(.0178)	(.0154)	(.0144)	(.0144)	(.0159)	
0.05	.7988	.7988	.7847	.8902	.8902	.8779	
	(.0153)	(.0153)	(.0153)	(.0095)	(.0095)	(.0088)	
0.10	.8817	.8817	.8736	.9441	.9441	.9364	
	(.0104)	(.0104)	(.0107)	(.0064)	(.0064)	(.0083)	

N = N = 10

Table	4.	16
-------	----	----

Empirical Powers, When Underlying Distribution is a U-Shaped distribution, N₁=N₂=10

Shift: Ko	. K	K = 0.0			K = 0.2		
Statistic	^δ 16	δ ₁₃	^δ 23	δ16	^δ 13	^δ 23	
α.				•		•	
0.001	.0012	.0012	.0007	.0035	.0035	.0030	
	(.0008)	(.0008)	(.0007)	(.0030)	(.0030)	(.0027)	
0.01	.0109	.0109	.0121	.0286	.0286	.0375	
	(.0030)	(.0030)	(.0028) [,]	(.0024)	. (.0024)	(.0036)	
0.05.	.0480	.0480	.0505	.1119	.1119	.1350	
	(.0067)	(.0067)	(.0056)	(.0100)	(.0100)	(.0082)	
0.10	.0995	.0995	.1061	.1989	.1989	.2281	
	(.0106)	(.0106)	(.0099)	(.0070)	(.0070)	(.0090)	

Shift: Ko	ĸ	(= 0.4		K = 0.6		
Statistic	δ ₁₆	^δ 13	⁸ 23	^δ 16	^δ 13	^δ 23
α	<u>_</u>		· · · ·			
0.001	.0121 (.0023)	.0121 (.0023)	.0109 (.0028)	.0311 (.0039)	.0311 (.0039)	.0294 (.0042)
0.01	.0904 (.0087)	.0904 (.0087)		.1595 (.0115)	(.1595) (.0115)	2040 (109)
0.05	.2678 (.0122)	.2678 (.0122)	.3050 (.0141)	.4179 (.0157)	.4179 (.0157)	.4352 (.0124)
0.10	.4070- (.0122)	.4070 (.0122)	.4409 (.0138)	.5668	.5668 (.0140)	, .5741 (.0084)

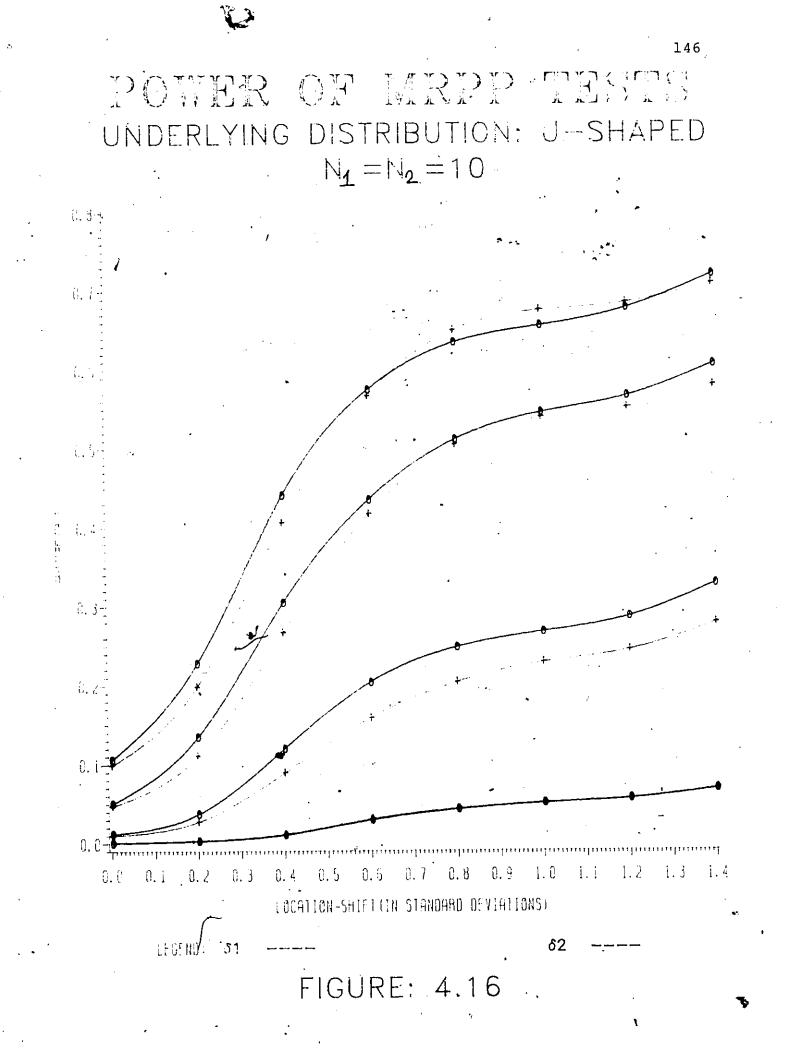

Ð,

Table 4.16 (cont'd.)

Shift: Ko	K = 0.8			ŀ		
Statistic	⁸ 16	^δ 13	^δ 23	^δ 16	δ13	^δ 23
α.					······································	
0.001	.0436 (.0050)	.0436 (.0050)	.0426 (.0047)	.0506 (.0048)	.0506 (.0048)	.0502 (.0048
0.01	.2045 (.0103)	.2045 (.0103)	.2482 (.0113)	.2294 (.0111)	.2294 (.0111)	.2676 (.0125
0.05	.5050 (.0140)	.5050 · (.0140)	.5108 (.0123)	.5396 (.0109)	.5396 (.0109)	.5452 (.0101
0.10	.6500 (.0091)	.6500 (.0091)	.6341 (.0078)	.6754 (.0088)	.6754 (.0088)	.6554 (.0075
Shift: Ko	·	K = 1.2	}		x = 1.4	
Statistic	δ ₁₆	δ ₁₃	δ ₂₃ .	δ ₁₆	δ ₁₃	^δ 23
α					<u> </u>	,
				•		
	.0560 (.0049)	.0560 (.0049)	.0559 (.0047)	.0684 (.0056)	.0684 '(.0056)	
0.001	(.0049) .2449 (.0082)				·(.0056) .2788	(.0056) .3278
0.001	(.0049) .2449	(.0049) .2449	(.0047) .2867	(.0056) .2788 (.0124) .5797	·(.0056) .2788 (.0124)	.0676 (.0056 .3278 (.0173 .6056 (.0094

~

C

|--|

ç

Shift: Ko	K	. = 0.0	K = 0.2			
Statistic	^δ 16	δ ₁₃	^δ 23	⁸ 16	^δ 13	^δ 23
α						
0.001	.0014 (.0014)	.0014 (.0014)	.0011 (.0012)		.0030 (.0017)	.0025 (.0018)
0.01	.0102 (.0042)	.0102 (.0042)	.0115 (.0048)	.0181. (.0047)		
0.05	.0485 (.0063)		.0499 (.0065)	.0743 (.0084)	.0743 (.0084)	.0744 (.0070
0.10		.0958 (.0086)	.1058 (.0108)	.1364 (.0099)	.1364 (.0099)	
		· ·			4	
	•				*	
Shift: Ko	ł	(= 0.4		a; I	ζ = 0.6	· .
Statistic	⁸ 16	δ13	^δ 23	^گ 16	⁸ 13	^δ 23
α						
0.001	.0086 (.0025)	.0086 (.0025)	.0053 ° (.0028)	.0219 (.0048)	.0219 (.0048)	.0139 (.0031
0.01	.0454 (.0041)	.0454 (.0041)	.0458 (.0054)	.1035 (.0055)、	.1035 (.0055)	.0930 (.0081
0.05	.1498 (.0061)	.1498 (.0061)	.1408 (.0067)	.256 2. (.0115)	.2562 (.0115)	.2346 (.0094
0.10	.2367.	.2367	.2251	.3766	.3766	.3472

Empirical Powers, When Underlying Distribution is Cauchy, N_l=N₂=10

1

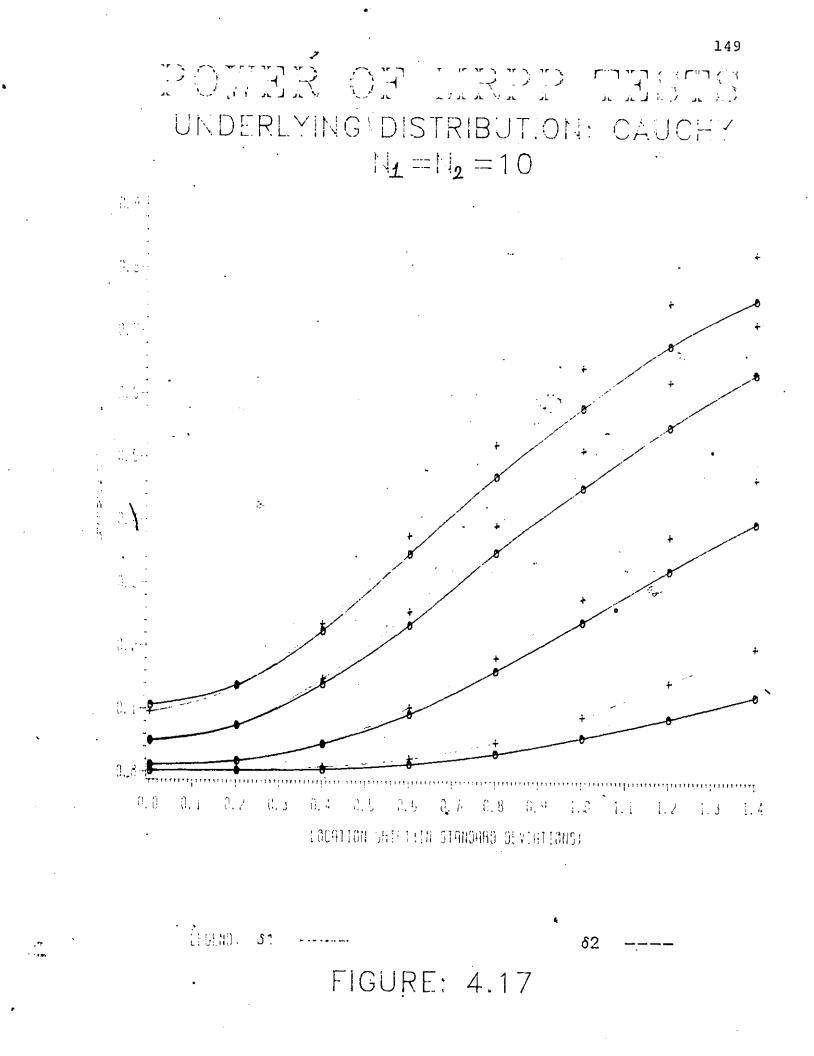
.,

•

٠.

e,

148


- 73

Shift: Kơ	F	ς = 0.8		ŀ	K = 1.0		
Statistic	δ16	^δ 13	^δ 23	⁸ 16	δ . 13	^δ 23	
α		· · · · ·				,	
0.001	.0476 (.0072)	.0476 (.0072)	.0305 (.0058)	.0889 (.0075)	.0889 (.0075)	.0569 _ (.0066)	
0.01				.2767 (.0134)			
0.05 -	.3923 (.0154)		·.3497 (.0174)	.5122 (.0151)	.5122 (.0151)		
0.10 .				.6435 (.01 <u>02)</u>			

Table 4.17 (cont'd.)

Shift: Kơ	K = 1.2			`¥		
Statistic	^δ 16	δ ₁₃	^δ 23	^δ 16	⁶ 13	^δ 23
`α		· ~ ·				
0.001	.1430	.1430	.0875	.1985	.1985	.1226
	(.0098)	(.0098)	(.0077)	(.0061)	(.0061)	(.0081)
0.01	.3755	.3755	.3220	.4667	.4667	.3971
	(.0128)	(.0128)	(.0122)	(.0178)	(.0178)	(.0194)
0.05	.6209	.6209	.5496	.7138	.7138	.6334
	(.0129)	(.0129)	(.0119)	(.0137)	(.0137)	(.0121)
0.10	.7471	.7471	.6783	.8242	.8242	.7507
	(.0135)	(.0135)	(.0145)	(.0155)	(.0155)	(.0144)

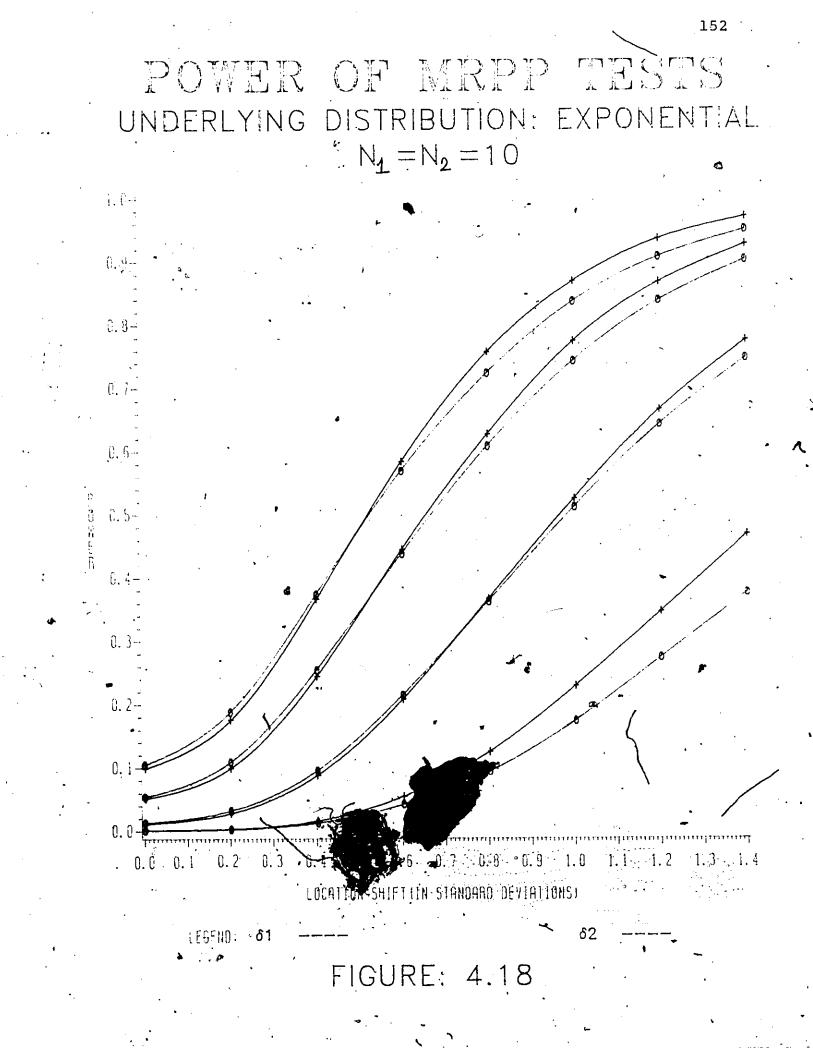
ζ

Ţable	4.	18
-------	----	----

Shift: Kơ	. ' F	< = 0.0		H	κ = 0.2	
Statistic	^δ 16	^δ 13	[§] 23	^δ 16	⁸ 13	^δ 23
α						
0.001	.0012 (.0006)	.0012 (.0006)	.0011 (.0007)	.0032 (.0018)	.0032 (.0018)	.0023 (.0015)
0.01	.0113 (.0035)		.0128 (.0046)	.0281 (.0066)	.0281 (.0066)	.0320 (.0071)
0.05	.0511 (.0077)	.0511 (.0077)	.0538 (.0075)	.0994 (.0060)	.0994 (.0060)	.1089 (.0072)
0.10	.0987 (.0076)	.0987 (.0076)	.1046 (.0089)	.1751 (.0176)	.1751 (.0176)	.1879 (.0162
		Á,				~ 1
0.10						

Shift: Ko	I	ζ = 0.4		K = 0.6			
Statistic	^δ 16	^δ 13	⁶ 23	^δ 16	⁸ 13	^δ 23	
α				• .			
0.001			.0125 (.0033)			.0415 (.0056)	
0.01	.0877 (.0099)		.0950 (.0076)				
0.05	.2438 (.0163)	.2438 (.0163)	.2539 (.0137)		.4448 (.0184)	.4375 (.0128)	
0.10	.3659 (.0214)		.3734 (.0168)	.5833 (.0150)		.5687 (.0143)	

t)


Empirical Powers, When Underlying Distribution is Exponential. N.=N.=10 Table 4.18 (cont'd.)

.

1

Shift: Ko	К	= 0.8		. K	= 1.0	۰.
Statistic	^δ 16	^δ 13	δ ₂₃	δ16.	δ ₁₃	^{• δ} 23
α.				- :		
0.001	.1243 (.0117)	.1243 (.0117)	.0932 (.0112)	.2282 (.0150)	.2282 (.0150)	.1732 (.0112)
0.01	.3664 (.0141)	.3664 (.0141)	.3617 (.0155)	.5247 (.0147)	.5247 (.0147)	.5109 (.0111)
0.05	.6269 (.0164)	.6269 (.0164)	.6076 (.0167)	.7735 (.0146)	7735 (.0146)	.7418 (.0 <u>1</u> 35)
0.10	.7563	.7563 (.0142)	.7227	.8682 (.0142)	.8682 (.0142)	.8359 (.0128)
•	(.0142)	(.0142)	G ,	<u>.</u>	• •	
Shift: Ko		K = 1:2	G ,			
Shift: Ko Statistic		•	ς, δ ₂₃	δ ₁₆	$K = 1.4$ δ_{13}	د. ^گ 23
		K = 1:2	·			δ ₂₃
Statistic		K = 1:2	·			δ ₂₃ .3752 (.0120)
Statistic α	δ ₁₆ .3460	K = 1.2 δ_{13} .3460	δ ₂₃ .2733	^δ 16	δ ₁₃ .4677	.3752
Statistic α 0.001	δ ₁₆ .3460 (.0169) .6653	K = 1:2 δ_{13} .3460 (.0169) .6653	δ ₂₃ .2733 (.0134) .6420	^δ 16 .4677 (.0112) .7747	δ ₁₃ .4677 (.0112) .7747	.3752 (.0120) .7464

151

The conclusions drawn from Tables 4.10-4.18 and Figures 4.10-4.18 are the following:

- For α=0.001, the power of δ₁ is higher than that of δ₂ for every shift and each underlying distribution
 considered.
- 2. For $\alpha=0.01$, 0.05_{0} and 0.10, results are less favourable for δ_{1} than they are in the case of large samples. However, like the large samples case, δ_{1} performs significantly better than δ_{2} when the underlying distribution is a Cauchy or an exponential distribution.

CHAPTER V

SCOPE FOR FURTHER STUDY

In Chapter II, we obtained the fourth moment of MRPP statistic δ in terms of an arbitrary choice of weights and sample sizes and the 23 symmetric functions for a distance measure Δ .

In Chapter III, we simplified the 23 symmetric functions in the case where the distance measure is the absolute difference between ranks of the observations. We then obtained a simplified form of the fourth moment of δ_1 for the case of two equal samples.

Following the results of Table 3.1, we carried out an empirical study for the powers of δ_1 and δ_2 , for two equal samples. In the case of δ_1 , we approximated the null distribution by the Pearson Type III as well as by the Pearson Type I for small samples and by the Pearson Type VI for large samples

Our study has been limited to the case of two equal samples, for large and small sample sizes. Based on the results of Chapter IV, the following recommendations for further study can be made.

Since results with the use of four moments are

encouraging in the case of large samples, empirical powers of δ_1 can be studied for the following cases:

i) two unequal samples,

ii) g equal samples (g>2), and

iii) g samples not all equal.

In case (i), it will be interesting to investigate whether the performance of δ_1 relative to the Wilcoxon test remains the same as in the case of equal samples. For the cases (ii) and (iii), powers of δ_1 can be compared with those of δ_2 or the Kruskal-Wallis test. The test statistic δ_2 for g>2 is only asymptotically equivalent to the Kruskal Wallis test, therefore it may be worth simplifying the expression for its fourth moment for the above cases. This can help reveal the asymptotic equivalence for finite N.

Berry and Mielke (1983) have proposed a moment approximation procedure as an alternative to the F test, using the three exact moments. The example they provide indicates that the p value based on this procedure is closer to the exact p value than are the p values corresponding to the usual F test or a Monte Carlo test. To illustrate an improvement in the approximation on using the four moments, we consider the example of Berry and Mielke and also an additional example from Siegel (1956, p. 187).

Example 1

Data from Berry and Mielke (1983, p. 205)

	s _l	^S 2	^S 3	
	43.75	46.00	50.50	
•	50.50	61.75	68.50	
	43.75	46.00	64.00	
		52.75	68.50	
		52175	50.50	
			66.25	

)The exact p value using Fisher-Pitman randomization test is 0.0411. The usual F statistic for the data is $F_{2,10} = 4.70$ and the corresponding p value is 0.0364.

A program named GENAPP (Appendix A.2) gives the four moments and related constants as follows:

$$\begin{split} \mu(\delta) &= 183.029, & \mu_2(\delta) = 1045.56, \\ \mu_3(\delta) &= -44096.629, & \mu_4(\delta) = 519549.1025, \\ \gamma_1(\delta) &= -1.3043, & \beta_2(\delta) = 4.68313, \\ &2\beta_2^{-3\beta_1^{-6}} = -1.7375, & \bullet \bullet \bullet \end{split}$$

Pearson criterion $\kappa = -1.06025$.

The criterion suggests a Pearson Type I approximation.

The MRPP test statistic δ is related to the F statistic by the following:

$$\delta = \frac{2Ns^2}{N-g+(g-1)F} ,$$

where

 $s^{2} = \frac{\underset{\Sigma=1}{\overset{\Sigma}{i=1}} \underset{j=1}{\overset{\Sigma}{j=1}} (x_{ij} - \overline{x})^{2}}{\overset{J}{x}}$

For the above data, δ is 113.231. The p values, with the aid of the transformations proposed in sections 4.2.1 and 4.2.3, are 0.0426 and 0.0377 under the Type I and the Type III approximations, respectively. We notice that the use of the four moments gives a closer approximation than the one obtained by using the three moments.

Example 2

Data from Siegel (1956, p. 187)

 S_1	^S 2	S
96	82	115
128	124	149
83	132	166
61	135	147
101	109	

Using an algorithm given by Berry (1982), we find the exact p value to be 0.0247. The F statistic for the data is $F_{2,11} = 5.4935$ and the p value under the F test is 0.0222.

For the moment approximation procedure, we have

δ = 1029.5903,μ(δ) = 1741.3626, $μ_2(δ) = 76184.5650,$ μ₃(δ) = -26604811.4041,

 $\mu_4(\delta) = 25764338418.0756$ $\gamma_1(\delta) = -1.2652, \beta_2(\delta) = 4.4390$ $2\beta_2 - 3\beta_1 - 6 = -1.924, \text{ and } \kappa = -0.888$

The Pearson criterion for the above data again suggests a Type I approximation.

The p values under the Type I and the Type III approximations are 0.02438 and 0.02197 respectively.

Here again, the p value 0.02438 based on the four moments is closer to the exact p value 0.0247 than the p value 0.02197 based on the three moments.

Both the examples above indicate that it is worth exploring the use of the fourth moment in the analysis of variance situations. The performance of the moment approximation procedure based on four moments should also be compared with the performance of δ_1 in the g-sample problem.

The Kruskal-Wallis test competes with the classical F test and performs better than it in the absence of normality and homogeneity of variances. Therefore, a test based on δ_1 , which competes with δ_2 and the Wilcoxon test, may provide another alternative to the F test. The main advantage in using δ_1 is that we do not have to calculate the moments from the data.

Finally, since the MRPP test covers a wide range

of tests as its special cases for various choices of weights and the distance measure, therefore, it is worth exploring the optimal choices of weights and the distance measure for the various situations.

 \mathcal{L}'

AFPENDIX A.1

APS: GENERATING_ALL POSSIBLE SAMPLES

		·
1.2.	C C	THIS PROGRAM CALCULATES FOUR MOMENTS AND OTHER CONSTANTS BY GENERATING ALL POSSIBLE SAMPLES FOR THE TWO-SAMPLE CASE WHERE
3.	С	N1,N2 ARE MORE THAN 2 AND N2 IS AT MOST 10,THE SIZES ARE TAKEN
4.	С	DEPENDING ON HOW LARGE THE DIMENSION OF D IS DECLARED.
5.		REAL X1(15),X2(10)
6.		REAL #8 D(50000),SEED,SD,DEL1,TEMP,S1,DM1,DM2,DM3,DM4,
7.		C GC, PK, Y1(15), Y2(10)
8.		DATA S1, DM2, DM3, DM4, N1, N2/4*0, 0, 10, 5/, SEED/67089, OD0/, L/0/
9.		PRINT 91, SEED, N1, N2
10.		91 FORMAT('1','INITIAL SEED VALUE=',F9,1,'(N1,N2)=(',I2,',',I2,'
11.		C),'// THE TWO SAMPLES FROM U-DISTRIBUTION ARE:/)
12.		CALL GGURS(SEED,N1,X1)
13.		CALL GOURS(SEED,N2,X2)
14.		CALL STAT(Y1,Y2,N1,N2,DEL1,L)
15.		D(L) = UEL1
16.		PRINT 93,(X1(I),I=1,N1)
17.		FRINT 93,(X2(I),I=1,N2)
18.		93 FORMAT('0',6F15,7/)
19.		DO 3 K=1,N2
20.		N2K1=N2+1K
21.		N1K1;=N1+1K ·
22+		N2K2=N2+2-K
23.		N1K2=N1+2-K
24+		N2K3=N2+3-K
25.		N1K3=N1+3-K
26.		N2K4=N2+4-K
27.		N1K4=N1+4-K
28.		N2K5=N2+5-K
29.		N1K5=N1+5-K
30.		N2K6=N2+6-K
31.		$\mathbf{K} = \mathbf{N} 1 \mathbf{K} 6 = \mathbf{N} 1 1 6 - \mathbf{K}$
32.		N2K7=N2+7-K
33.		N1K7 = N1 + 7 - K
34.		N2KB=N2+8-K
35.		N1K8=N1+8-K
36.		N2K9=N2+9-K
37.		N1K9=N1+9-K
38.		N2K10=N2+10-K
39+		N1K1O=N1+1O-K
40+		10071 II=1,N2K1
41.		$1071 J_{1=1}N1K1$
42+		Y1(J1) = X2(I1)
		reg

160

۵.

43.	$Y_2(I_1) = X_1(J_1)$.
44.	IF(K .NE. 1) GO TO 11
45.	CALL STAT(Y1,Y2,N1,N2,DEL1,L)
46.	D(L) = DEL1
47.	GO TO 131
48.	
49.	J11=J1+1 ···································
50.	DO 72 12=111,N2K2
51.	- DO 72 J2=J11,N1K2
·52,	Y1(J2)≔X2(I2)
53.	$Y_2(12) = X_1(J_2)$
54.	IF (K .NE. 2) GO TO 12
55.	CALL STAT(Y1,Y2,N1,N2,DEL1,L)
56.	D(L) = D[E]
57.	GO TO 132 😽
58.	12 I21=I2+1
59.	J21=J2+1
60.	DO 73 I3≑I21,N2K3
61.	DO 73 J3=J21,N1K3 💎
62.	- Y1(J3)=X2(J3)
63.	$Y_2(I_3) = X_1(J_3)$
· 64.	1F(K •NE• 3) GO TO 13
65.	. CALL STAT(Y1, %2, N1, N2, DEL1, L)
66.	$\cdot \qquad D(L) = DEL1$
67.	GO TO 133
68.	13 131=13+1
69.	J31 = J3 + 1
70.	DO 74 I4=I31,N2K4
71.	DO 74 J4=J31,N1K4
72.	Y1(J4)=X2(I4)
73.	Y2(I4) = X1(J4)
74.	IF(K .NE. 4) GO TO 14
75.	CALL STAT(Y1,Y2,N1,N2,DEL1,L)
76.	II(L) = DEL1
77.	GO TO 134 =
78.	14 $I41=I4+1$
79.	J41=J4+1
80.	DO 75 I5=I41,N2K5
81.	DO 75 J5=J41,N1K5
82.	Y1(J5)=X2(I5)
83,	Y2(I5)=X1(J5)
84.	IF(K .NE. 5) GO TO 15
85.	CALL STAT(Y1,Y2,N1,N2,DEL1,L)
86.	
87.	• BO ID 122
88.	
89,	
90.	DO 76 16=151,N2K6
91.	DO 76 J6=J51,N1K6

مر لهر

	92.		Y1(J6)=X2(I6)
	93.	`	Y2(I6)=X1(J6)
	94.	F	IF (K .NE. 6) GO TO 16
	95.	•	CALL STAT(Y1,Y2,N1,N2,DEL1,L)
	96.		D(E) = DEL1
	97.		GO TO 136
~	98.	1.5	I61 = I6 + 1
•	99.		J61 = J6+1
	100.		DO 77 I7=161,N2K7
	101.	•	· · · · · · · · · · · · · · · · · · ·
			DO 77 J7=J61,N1K7
	102.		Y1(J7) = X2(17)
	103.		$Y_{2}(I7) = X_{1}(J7)$
	104.		IF (K .NE. 7) GO TO 17
,	105.	•	CALL STAT(Y1,Y2,N1,N2,DEL1,L)
	106.		D(L) = DEL1
	107.		GO TO 137
	108,	17	171=17+1
	109.	·	- J71=J7+1
	110.		DO 78 I8=I71,N2K8
	111.		DO 78 J8=J71,N1K8
	112.		Y1(J8)=X2(18)
	113.		$Y_2(18) = X_1(J8)$
	114.	•	IF (K .NE. 8) GO TO 18
	115.	.•	CALL STAT(Y1,Y2,N1,N2,DEL1,L)
	116.		D(L) = DEL1
•	117.		GO TO 138
	118.	18	181=18+1
	119.		J81=J8+1
			DO 79 19=181,N2K9
	120.		
	121.		2 DO 79 J9=J81,N1K9
	122.	-	Y1(J9)=X2(I9)
	123.		Y2(I9)=X1(J9)
	124.		IE (K .NE. 9) GO TO 19
	125.		CALL STAT(Y1,Y2,N1,N2,DEL1,L)
	126.		D(L) = DEL1
	127.	•	GO TO 139
	128.	19	191=19+1
	129.	1	J91=J9+1 ´``
	130.		DO 80 I10=191,N2K10
	131.		DO 80 J10=J91,N1K10
	132.	3	Y1(J10)=X2(I10)
	133.		Y2(I10)=X1(J10)
	134.		IF (K .NE. 10) GO TO 20
	135.		CALL STAT(Y1,Y2,N1,N2,DEL1,L)
	136.		B(L) = DEL1
	137.		GO TO 140
	138.	20	I101≈I10+1
		άV	,
	139.	1 1 1	J101=J10+1
	140.	140	(01L)1X=(01L)1Y
			· · · · · · · · · · · · · · · · · · ·

*

.

•		ĺ				÷
141.		Y2(I10)=\$2(I10)				
142.	80	CONTINUE				
143.	139	Y1(J9)=X1(J9)				-
144.	1. W. 7	Y2(I9)=X2(I9)				
145.	79	CONTINUE				
146+	138	Y1(J8)=X1(J8)				
	1.90		,			
147.		Y2(I8)=X2(I8)				
148.	79	CONTINUE			2	
149.	137	Y1(J7)=X1(J7)				
150.		Y2(I7)=X2(I7)			•	
151.	77	. CONTINUE				
152.	136	Y1(J6)=X1(J6)		0		
153.		Y2(I6)=X2(I6)		•		
154.	76	CONTINUE				
155.	435	Y1(J5)=X1(J5)			-	
156+		Y2(I5)=X2(I5)			,	_
157.	. 75	CONTINUE	× .			· / \
158.	134	Y1(J4)=X1(J4)	:		•	(
159.		Y2(I4)=X2(I4)		•		
160.	74	CONTINUE			•	
161.	133	Y1(J3) = X1(J3)		· г		
162.		Y2(13)=X2(13)				١
163.	73	CONTINUE				\mathbf{X}
164+	132	, Y1(J2)=X1(J2)				1
	.L .J &.	Y2(12)=X2(12)		•		Χ.
165.	70	•		•		
166+	72					
167.	131	Y1(J1)=X1(J1)				
168.		Y2(I1)=X2(I1)	•	-		
169.	71	CONTINUE				
170.	త	CONTINUE				
171		$\mathbf{D}(\mathbf{O} = 1^{\top} 1 1 = 1^{\top} \mathbf{L}$				
172.	1 1 1	S1=S1+D(I)	•			
	•	DM1=S1/(1.0*L)		-	4	
174+		DO 102 I=1,L				
175.		TEMP=D(I)-DM1				
176.		DM2=DM2+TEMP*TEMP	,			
177.		DM3=DM3+TEMF**3				
178.	102	DM4=DM4+TEMP**4	,			
179.		DM2=DM2/(1.O*L)				
180.		DM3=DM3/(1.0*L)				
181.		DM4=DM4/(1.0*L)		.t Ļ		
182.		DB1=(DM3/DM2)**2/	10M2			
183.		DB2=(DM4/DM2)/DM2		-		
184.		FK=DB1*(DB2+3.0)*		.O*DB2-3.O*DB1)	*(2.0*082-3.	0*081-6.0
))		in the second	n an	in an	inn san v sentharan an sent	orananan G≠V
185.		GC=2.0*DB2-3.0*D	181-6.0			
186.		_FRINT 96,DM1,DM2,		1.082.08.00		
187.	96	FORMAT('0'////	MV1	* MV2	MV3	MV4
188.		CB1 B2	нут К	282-381-6	/ • / 15F12 • 8	
	. •		IX I	202-001-0	, CD ♦ تتم 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1	,
189.		STOF				

ø

163

190.		END
191.	С	FOLLOWING SUBROUTINE GIVES DELTA FOR TWO SAMPLES.
192.		SUBROUTINE STAT(Y1,Y2,N1,N2,DEL1,L)
193.		REAL #8 Y1(N1),Y2(N2),DEL1,SD
194.		L=L+1
195.		CALL DIST(Y1,N1,SD)
196.		DEL1=SD .
197.		CALL DIST(Y2,N2,SD)
198.		DEL1=(UEL1+SD)/(N1+N2)
199.		RETURN
200.		END
201.	С	FOLLOWING SUBROUTINE CALCULATES N TIMES THE
202.	С	AVERAGE EUCLIDEAN DISTANCE WITHIN A GROUP
203.	, C	OF SIZE N.
204.		SUBROUTINE DIST(X,N,SD)
205.		REAL *8 SD,X(N)
206.		SD=0.0D0
207.		10 31 I = 1.N
208.		IF(I .EQ. N) GO TO 42
209.		1+I=L
210.		IO 41 K=J,N
211.		IF(X(K),GE,X(I)) DE=X(K)-X(I)
212.		IF(X(K),LT,X(I)) $DE=X(I)-X(K)$
213.		SD=SD+DE
214.		1 CONTINUE
215.		1 CONTINUE .
216.	4	2 SD=2.0*SD/(N-1.0)
217.	•	RETURN
218.		END /

 \bar{G}

APPENDIX A.2

GENAPP: COMPUTING FOUR MOMENTS

С THE FROGRAM CALCULATES-FOUR MOMENTS AND OTHER CONSTANTS 1. 2. С OF DELTA IN THE CASE OF FOUR SAMPLES FOR A SPECIFIC CHOICE 3. Ĉ OF WEIGHTS AND THE DISTANCE MEASURE.IT NEEDS SLIGHT CHANGES 4. Ĉ FOR ANY NUMBER OF SAMPLES, CHOICE OF WEIGHTS AND THE 5. DISTANCE MEASURE. C DSIJ-DISTANCE BETWEEN X(I) & X(J) ó. Ć DK-(N,4) MATRIX WITH SUMS OVER I 7. C 8. C OF DSIJ*DSIK 9. C DM-(N,N) MATRIX WITH SUMS OVER L С OF DSIJ#DM(J+L) 10. 11. C DP-ARRAY TO GET 35 PARAMETERS DD1-ARRAY OF SUM OF POWERS OF DK(I,1) С 12. С DD2-ARRAY OF SUM OF POWERS OF DK(I+2) 13. DD3 &DD4 ARE LIKE ABOVE 14. C C DP#-INTERMEDIATE VALUE OF A PARAMETER. 15. IMPLICIT REAL #16 (\mathbf{D}) 16. 17. REAL #16 NP(8), NK(8), NKP(8,8), C(8) DIMENSION DK(80,4), DM(80,80), DSQ(80,80), DF(35), 18. 19. CDD1(4),DD2(2),DD3(1),DD4(1) 20. REAL *8 X(100),Y(8,12) DATA IN, DM, DSQ, DF, DD1, DD2, DD3, DD4, DM2F, DM3F, DM4F/13166*0.0D0/ 21. ,DP7,DP9,DP16,DP20,DP23,DP10,DP14,DP15,DP19,D1211,D1311,D1221 22. С C , DF21, DF22, DF27, DF28/16*0, OD0/, IG, N, NU/4, 16, 2/ 23. READ (5,11) (NK(I),I=1,IG) 24, DO 10 (I=1,IG 25. 26. C(I) = (NK(I) - 1.0)/(1.0*N - IG)NKP(I,1)=NK(I)27. 10 CONTINUE 28. READ (5,11) (X(J),J=1,4) 29. 30. READ (5,11) (X(J);J=5,8) READ (5,11) (X(J),J=9,12) 31. 32; READ (5,11) (X(J),J=13,N) 33. WRITE(6,91) (X(J), J=1,N) NF(1) ≔N · · 34. 35. DO 20 1=2,8 NF(I) = 0.036. DO 25 J=1,IG 37. NKF(J,I)=0.038. CONTINUE 39. 2540. 20 CONTINUE DO 30 I=2,8 41. 42+ IF(I .LE. N) NP(I)=NP(I-1)*(N+1.0-I)

43. DO 35 J=1,IG IF(I .LE. NK(J)) NRP(J,I)=NKP(J,I-1)*(NK(J)+1.0-I) 44. 45. 35 CONTINUE 46, **30 CONTINUE** DO 40 I=1.N. 47. 48. 10 50 J=1,N-49. IF(X(I) .GE. X(J)) DSIJ=(X(I)-X(J))**NU 50. IF(X(I) .LT. X(J)) DSIJ=(X(J)-X(I))**NU 51, DK(I+1)=DK(I+1)+DSIJ 52. DK(I,2)=DK(I,2)+DSIJ**2.0 53. DK(I,3) = DK(I,3) + DSIJ + 3.054. DK(I,4)=DK(I,4)+DSIJ**4.0 55. DO 80 K=1 N 56. IF(X(I) .GE. X(K)) DSIK=(X(I)-X(K))**NU 57. _ IF(X(I) .LT. X(K)) DSIK=(X(K)-X(I))**NU 58. DM(J+K)=DM(J+K)+DSIJ#DSIK 59. 80 CONTINUE 60. 50 CONTINUE . 61. 40 CONTINUE 62. DO 90 I=1,N IMT=0.0 63. 64. DO 100 J=1+N IF(X(I) .GE. X(J)) DSIJ=(X(I)-X(J))**NU 65. 66, IF(X(I) .LT. X(J)) DSIJ=(X(J)-X(I))**NU 67. DP7=DP7+DSIJ*DM(I,J) 68. DF9=DF9+DSIJ*DK(I,1)*DK(J,1) 69. DP16=DP16+DSIJ**2.0*DM(I,J) 70. DF23=DF23+DSIJ*DM(I,J)*DK(I,1) 71. DP20=DP20+DSIJ**2.0*DK(1,1)*DK(1,1) 72, DP28=DP28+DK(I,1)**2.0*DK(J,1)*DSIJ 73. INT=IMT+DM(I,J) 74. DO 110 L=1,N 75. DSQ(I,L)=DSQ(I,L)+DSIJ#DM(J,L) 76. 110 CONTINUE 77. 100 CONTINUE 78. DP21=DP21+DK(I,2)*DMT 79. 90 CONTINUE 80. DO_120 I=1.N 81. ₿DO 130 J=1,N IF(X(I) .GE. X(J)) DSIJ=(X(I)-X(J))**NU 82. IF(X(I) .LT. X(J)) DSIJ=(X(J)-X(I))**NU -83. DP22=DP22+DSIJ*DSQ(I+J) 84. 85. DCH=0.0 DO 170 K=1,N 86. 87. DCH≐DCH+DSQ(J,K) 88. 170 CONTINUE 89. DP27=DP27+DCH*DSIJ. 90. 130 CONTINUE 120 91. CONTINUE

167

٢.

l

92. D0 140 T=1+N 93. D0 150 K=1+4 94. D1(K)=DD1(K)+DK(T,K) 95. 150 CONTINUE 96. DD2(2)=DD2(2)+DK(T,1)*#2.0 97. DD2(2)=DD2(2)+DK(T,2)*#2.0 98. D03(1)=DD3(1)+DK(T,1)*#3.0 99. DD4(1)=DD4(1)+DK(T,1)*#3.0 100. D1211=D1211+DK(T,1)*K(T,2) 101. D1311=D1311+DK(T,1)*K(T,2) 102. D1221=D1221+DK(T,1)*#3.0 103. DF19=DF19+DK(T,1)*#3.0 104. DF19=DF19+DK(T,1)*#2.0 105. 140 CONTINUE 106. DP(1)=DD1(1)/NF(2) 107. DF(2)=DD1(2)/NF(2) 108. DF19=DF4/NF(4) 108. DF19=DF4/NF(4) 111. DF(3)=DF4/NF(3) 112. DF(5)=DD1(3)/NF(2) 113. DF4=D1211-DD1(3) 114. DF(6)=DF4/NF(3) 115. DF4=DF10+K(T,1) 116. DF(6)=DF6/NF(3) 117. DF(2)=DF9/NF(3) 118. DF4=DF10+T(3) 119. DF9=DF10-3,0*DF4=DD1(3) 114. DF(6)=DF6/NF(3) 115. DF4=DF10-3,0*DF4=DD1(3) 116. DF(6)=DF9/NF(4) 117. DF(2)=DF10-7,0*DF4=DD1(3) 118. DF4=D11(1)+DF4=0.0*DF10-4.0*DF4=2.0*DF7 119. DF9=DF10-7,0*DF4=DD1(3) 120. DF10=DF10-7,0*DF4=DD1(3) 121. DF10=DF10-7,0*DF4=DD1(3) 122. DF(1)=DF10/NF(4) 123. DF11=DF3XDD1(1)-4.0*DF19=2.0*DF10-4.0*DF6=2.0*DF7 124. DF(1)=DF10/NF(4) 125. DF(1)=DF10/NF(4) 126. DF(1)=DF10/NF(4) 127. DF(1)=DF10/NF(4) 128. DF(1)=DF10/NF(4) 129. DF(1)=DF10/NF(3) 129. DF(1)=DF10/NF(3) 130. DF(1)=DF10/NF(3) 131. DF17=DF10/NF(3) 132. DF(1)=DF10/NF(3) 133. DF15=DF12/NF(3) 134. DF15=DF12/NF(3) 135. DF14=DF13/NF1(4) 136. DF(1)=DF15/NF(3) 137. DF(1)=DF15/NF(3) 138. DF(1)=DF16/NF(4) 139. DF(1)=DF16/NF(4) 139. DF(1)=DF16/NF(4) 139. DF(1)=DF16/NF(4) 130. DF(1)=DF16/NF(3) 131. DF17=DF10/NF(4) 133. DF119=DF10/NF(4) 134. DF(1)=DF16/NF(3) 135. DF19=DF10/NF(4) 135. DF19=DF10/NF(4) 136. DF(1)=DF16/NF(3) 137. DF(1)=DF16/NF(3) 138. DF(1)=DF16/NF(3) 138. DF(1)=DF16/NF(3) 139. DF(1)=DF16/NF(3) 130. DF(1)=DF16/NF(4) 130. DF(1)=DF16/NF(4) 133. DF(1)=DF16/NF(3) 134. DF(1)=DF16/NF(4) 135. DF19=DF16/NF(4) 136. DF419=DF16/NF(4) 137. DF(1)=DF16/NF(4) 138. DF419=DF16/NF(4) 139. DF(1)=DF16/NF(4) 139. DF(1)=DF16/NF(4) 139. DF(2)=DF16/NF(4) 139. DF(2)=DF16/NF(4) 139. DF(2)=DF16/NF(4) 139. DF(2)=DF16/NF(4) 139. DF(2)=DF16/NF(4) 139. DF(2)=D					
94. $DI(K)=DD(K)+DK(I,K)$ 95. 150 CONTINUE 96. $DD(2(1)=DD(2(1)+DK(I,I)**3.0)$ 97. $DD(2(2)=DD(2(2)+DK(I,I)**3.0)$ 98. $DD(1)=DD(1)+DK(I,I)**3.0$ 99. $DD(1)=DD(1)+DK(I,I)**3.0$ 91. $DI(1)=DI(1)+DK(I,I)**3.0$ 91. $DI(1)=DI(1)+DK(I,I)**3.0$ 92. $DI(2)=DI(2)+DK(I,I)**3.0$ 93. $DP(1)=DI(1)+PK(2)$ 103. $DP(1)=DI(1)+PK(2)$ 104. $DP(1)=DI(1)+PK(2)$ 105. 140 CONTINUE 106. $DP(1)=DI(1)+PK(2)$ 107. $DP(2)=DDI(2)+PK(2)$ 108. $DP(3)=DP(3)+PK(4)$ 110. $DP(3)=DP(3)+PK(4)$ 112. $DP(6)=PP(4)+F(4)$ 112. $DP(6)=PP(4)+F(4)$ 113. $DP(6)=PP(4)+F(4)$ 114. $DP(6)=PP(4)+F(4)$ 115. $DP(8)=DP(4)+F(4)$ 116. $DP(9)=DP(1)-3,0*DP6-DDI(3)$ 117. $DP(9)=DP(1)-3,0*DP6-DDI(3)$ 118. $DP(9)=DP(1)-3,0*DP6-DDI(3)$ 120. $DP(1)=DD(1)+PF(3)$ 121. $DP(1)=DP(1)+PF(3)$ 122. $DP(1)=DD(1)+PF(3)$ 123. $DP(1)=DP(1)+PF(3)$ 124. $DP(1)=DP(1)+PF(3)$ 125. $DP(1)=DP(1)+PF(3)$ 126. $DP(1)=DD(1)+PF(3)$ 127. $DP(1)=DP(1)+PF(3)$ 128. $DP(1)=DP(1)+PF(3)$ 129. $DP(1)=DP(1)+PF(3)$ 129. $DP(1)=DP(1)+PF(4)$ 130. $DP(1)=DP(1)+PF(4)$ 131. $DP(1)=DP(1)+PF(4)$ 133. $DP(1)=DP(1)+PF(4)$ 135. $DP(1)=DP(1)+PF(4)$ 136. $DP(1)=DP(1)+PF(4)$ 137. $DP(1)=DP(1)+PF(4)$ 138. $DP(2)=DP(2)-PF(4)$ 139. $DP(1)=DP(1)+PF(4)$ 139. $DP(1)=DP(2)-PF(4)$ 139. $DP(1)=DP(2)-DP(4)$ 139. $DP(1)=DP(1)+PF(4)$ 130. $DP(1)=DP(1)+PF(4)$ 133. $DP(1)=DP(1)+PF(4)$ 134. $DP(1)=DP(1)+PF(4)$ 135. $DP(1)=DP(1)+PF(4)$ 136. $DP(1)=DP(1)+PF(4)$ 137. $DP(1)=DP(1)+PF(4)$ 138. $DP(2)=DP(2)-DP(4)=DD(4)$ 139. $DP(2)=DP(2)-DP(4)=DD(4)$ 139. $DP(2)=DP(2)-DP(4)=DD(4)$		92,		DO 140 I=1,N	
94. DD1(K)=DD1(K)+DK(I,K) 95. 150 CONTINUE 94. DD2(1)=DD2(1)+DK(I,1)**2.0 97. DD2(2)=DD2(2)+DK(I,2)**2.0 98. DD3(1)=DD3(1)+DK(I,1)**3.0 99. DD4(1)=DD4(1)+DK(I,1)**3.0 100. D1211=D1211+DK(I,1)*DK(I,2) 101. D1311=D311+DK(I,1)*X3.0 102. D1221=D1221+DK(I,1)**2.0*DTK(I,2) 103. DF10=DF10+DK(I,1)**2.0 104. DF19=DF19+DK(I,2)*DK(I,1)**2.0 105. 140 CONTINUE 106. DP(1)=DD1(1)/NF(2) 107. DF(2)=DD1(2)/NF(2) 108. DF3=DD2(1)=DD1(2) 109. DF4=DD1(1)**2.0-4.0*DD2(1)+2.0*DD1(2) 110. DF(3)=DF3/NF(3) 111. DF(4)=DF4/NF(4) 112. DF(5)=DD1(3)/NF(2) 113. DF6=D121=DD1(3)/NF(2) 114. DF(6)=DF6/NF(3) 115. DF8=DD1(1)*DF2/AF(4) 117. DF(7)=DF9/NF(4) 117. DF(7)=DF9/NF(3) 118. DF98=DF9/NF(3) 118. DF98=DF9/NF(3) 119. DF10=DF10-3.0*DF6=DD1(3) 120. DF(9)=DF9/NF(4) 121. DF10=DF10/NF(4) 122. DF(1)=DF10/NF(4) 123. DF10=DF10/NF(4) 124. DF(1)=DF1/NF(5) 125. DF(1)=DF1/NF(3) 126. DF(1)=DF10/NF(4) 127. DF(1)=DF1/NF(5) 125. DF(1)=DF1/NF(5) 125. DF(1)=DF1/NF(3) 126. DF(1)=DF1/NF(3) 127. DF(1)=DF1/NF(3) 128. DF(1)=DF1/NF(3) 129. DF(1)=DF1/NF(3) 129. DF(1)=DF1/NF(3) 129. DF(1)=DF1/NF(3) 129. DF(1)=DF1/NF(3) 129. DF(1)=DF1/NF(3) 129. DF(1)=DF1/NF(3) 129. DF(1)=DF1/NF(3) 129. DF(1)=DF1/NF(3) 129. DF(1)=DF1/NF(4) 130. DF(1)=DF1/NF(4) 131. DF(2)=DF19/NF(4) 133. DF(2)=DF19/NF(4) 134. DF(1)=DF1/NF(4) 135. DF19=DF19/NF(4) 135. DF19=DF19-DF(4) 136. DF(1)=DF19/NF(4) 137. DF(1)=DF19/NF(4) 138. DF(2)=DF19/NF(4) 138. DF(2)=DF19/NF(4) 139. DF(2)=DF20/NF(4) 139. DF(2)=DF20		93.		10150 K=1.4	
95. $DD2(1) = DD2(1) = DDK(1,1) * * 2.0$ 97. $DD2(2) = DD2(2) + DDK(1,2) * * 2.0$ 98. $DD3(1) = DD3(1) + DDK(1,1) * * * 2.0$ 99. $DD4(1) = DD4(1) + DDK(1,1) * * * 2.0$ 100. $D121 = D121 + DDK(1,1) * * * 2.0$ 101. $D1311 = D1311 + DK(1,1) * DDK(1,2)$ 102. $D1221 = D1211 + DK(1,1) * * * 2.0 * DDK(1,2)$ 103. $DP12 = DP1221 + DK(1,2) * * * 2.0 * DDK(1,2)$ 104. $D121 = D1211 + DK(1,1) * * * 2.0 * DDK(1,2)$ 105. 140 106. $DF(1) = DD1(1) / NF(2)$ 107. $DF(2) = DD1(2) / MF(2)$ 108. $DF3 = DD1(2) / MF(2)$ 109. $DF4 = DD1(1) * * * 2.0 - 4.0 * DD2(1) + 2.0 * DD1(2)$ 109. $DF4 = DD1(1) * * * 2.0 - 4.0 * DD2(1) + 2.0 * DD1(2)$ 101. $DF(3) = DF3 / NF(3)$ 111. $DF(4) = DP4 / NF(4)$ 112. $DF(4) = DP4 / NF(4)$ 113. $DF4 = DD1(1) * DD1(2) - 4.0 * DD12(1) + 2.0 * DD1(3)$ 114. $DF(6) = DF6 / NF(3)$ 115. $DF8 = DD1(3) / MF(2)$ 116. $DF(4) = DP4 / NF(4)$ 117. $DF(7) = DF7 / NF(3)$ 118. $DF9 = DP9 - DP7 - 2.0 * DP6 - DD1(3)$ 120. $DF(10) = DF1 / NF(4)$ 121. $DF(10) = DF1 / NF(4)$ 122. $DF(10) = DF1 / NF(4)$ 123. $DF(12) = (DD1(1) * DD4 - 0.0 * DP1 / - 4.0 * DP6 - 2.0 * DP7 / NF(6)$ 124. $DF(11) = DP1 / NF(4)$ 125. $DF(12) = DF1 / NF(3)$ 126. $DF(14) + DP1 / NF(3)$ 127. $DF(14) = DF1 / NF(3)$ 128. $DF(14) = DF1 / NF(4)$ <td></td> <td>.94.</td> <td></td> <td></td> <td></td>		.94.			
97. $DD2(2) = DD2(2) + DK(1,2) * * 2.0$ 98. $DD3(1) = DD3(1) + DK(1,1) * * 3.0$ 99. $DD3(1) = DD3(1) + DK(1,1) * * 3.0$ 100. $D121 = D1211 + DK(1,1) * * DK(1,2)$ 101. $D1311 = D1311 + DK(1,1) * * DK(1,2)$ 102. $D1221 = D1221 + DK(1,1) * * * 2.0 * DK(1,2)$ 103. $DP10 = DP10 + DK(1,1) * * * 3.0$ 104. $DP19 = DP10 + DK(1,2) * DK(1,1) * * * 2.0$ 105.140106. $DP(1) = DD1(2) / F(2)$ 107. $DP(2) = DD1(2) / F(2)$ 108. $DP3 = DP3 / F(3)$ 110. $DP(3) = DP3 / F(3)$ 111. $DP(4) = DP4 / FP (3)$ 112. $DP (6) = DP4 / FP (3)$ 113. $DP6 = D121 + DD1(2)$ 114. $DP(6) = DP6 / PF (3)$ 115. $DP8 = DP1 (1) * ND1(2) - 4.0 * D1211 + 2.0 * DD1(3)$ 116. $DP (6) = DP6 / PF (4)$ 117. $DP (7) = DP7 / PF (3)$ 118. $DP = DP9 / DP7 / PF (4)$ 121. $DP (10) = DP1 / NP (4)$ 122. $DP (10) = DP1 / NP (4)$ 123. $DP (11) = PD1 / NP (4)$ 124. $DP (10) = DP1 / NP (4)$ 125. $DF (12) = (DD1 (1) / NP (-2) 0 * DP10 - 4.0 * DP6 - 2.0 * DP7 / PF (-2) 0 * DP7 / NP (-2) 0 * DP (-2) 0 *$		95.	150	CONTINUE	
98. $DD3(1)=DD3(1)+DK(1,1)**3.0$ 97. $DD4(1)=DD4(1)+DK(1,1)*K*3.0$ 100. $D121=D121+DK(1,1)*K(1,2)$ 101. $D1311=D1311+DK(1,1)*K(1,3)$ 102. $D1221=D1221+DK(1,1)*K(1,2)$ 103. $D1221=D1221+DK(1,1)*K*2.0*DK(1,2)$ 104. $D19=DP19+DK(1,1)*K*3.0$ 105.140106. $DF(1)=DD1(1)/NF(2)$ 107. $DF(2)=DD1(2)/NF(2)$ 108. $DF3=DD2(1)-DD1(2)$ 109. $DF4=DD1(1)**2.0-4.0*DD2(1)+2.0*DD1(2)$ 109. $DF4=DD1(1)**2.0-4.0*DD2(1)+2.0*DD1(2)$ 110. $DF(4)=DP4/NF(3)$ 111. $DF(4)=DP4/NF(4)$ 112. $DF(5)=DD1(3)/NF(2)$ 113. $DF6=D12(1)*DD1(2)-4.0*D1211+2.0*DD1(3)$ 114. $DF(6)=DF6/NF(4)$ 115. $DF9=DP7/NF(3)$ 116. $DF9(5)=DP7/NF(4)$ 117. $DF(7)=DF7/NF(4)$ 118. $DF9=DP7DF7-2.0*DF6-DD1(3)$ 120. $DF(10)=DF10/NF(4)$ 121. $DF10=DF1/NF(4)$ 122. $DF(10)=DF10/NF(4)$ 123. $DF11=DF3*DD1(1)*DF4-6.0*DF10-4.0*DF6-2.0*DF7$ 124. $DF(13)=DD1(4)/NF(2)$ 125. $DF(13)=DD1(4)/NF(3)$ 126. $DF(13)=DD1(4)/NF(3)$ 127. $DF14=D133ND1(1)-4.0*DF14-2.0*DD1(4)$ 128. $DF(14)=DF1/NF(3)$ 129. $DF(14)=DF1/NF(3)$ 131. $DF12=DP17/NF(4)$ 133. $DF(18)=DF18/NF(3)$ 134. $DF(18)=DF12/NF(4)$ 135. $DF(19)=DF12/NF(4)$ 136. $DF(19)=DF12/NF(4)$ 137. $DF(16)=DF16/NF($		93.	-	DD2(1)=DD2(1)+DK(I,1)**2.0	
99. $DD4(1) = DD4(1) + DK(1, 1) * * * * * * * * * * * * * * * * * * $		·97.		DD2(2)=DD2(2)+DK(I+2)**2+0	
99.DD4(1)=DD4(1)+DDK(I,1)*#4.0100.D1211=D1211+DDK(I,1)*DDK(I,2)101.D1311=D1311+DDK(I,1)*DDK(I,3)102.D1221=D1221+DDK(I,1)*MDK(I,3)103.DP10=DP10+DDK(I,1)*#3.0104.DP19=DP19+DDK(I,2)*DDK(I,1)*#2.0105.140106.DP(1)=DD1(1)/NP(2)107.DP(2)=DD1(2)/NP(2)108.DP3=DD2(1)-DD1(2)109.DP4=DD1(1)*X2.0-4.0*DD2(1)+2.0*DD1(2)110.DP(3)=DP3/NP(3)111.DP(4)=DP4/NP(4)112.DP(5)=DD1(3)/NP(2)113.DP6=D11(1)*DD1(2)-4.0*D1211+2.0*DD1(3)114.DP(6)=DP6/NP(4)115.DP8=DD1(1)*DD1(2)-4.0*D1211+2.0*DD1(3)116.DP(9=DP9-DP7-2.0*DP6-DD1(3)117.DP(7)=DP7/NP(4)118.DP9S=DP9119.DP9(1)=DP10/NP(4)121.DP10=DP10/NP(4)122.DP(1)=DP11/NP(5)123.DP(1)=DP11/NP(5)124.DP(1)=DD1(1)*DP4-2.0*DP10-4.0*DP6-2.0*DP7124.DP(1)=DP11/NP(5)125.DP(10)=P10/NP(4)126.DP(13)=DD1(4)/NP(2)127.DP14=D1311-DD1(4)128.DP(14)=DP11/NP(5)129.DP15=DDF2/NP(3)131.DP17=DP17/NP(4)133.DP18=DP12/NP(4)134.DP(18)=DP13/NP(4)135.DP19=DP17/NP(4)136.DP19=DP19/NP(4)137.DP(16)=DP16/NP(4)138.DP(20)=DP20/NP(4)139.DP(16)=DP16/NP(4)137.DP(16)=DP16/NP(4) </td <td></td> <td>98,</td> <td></td> <td>DD3(1)=DD3(1)+DK(I,1)**3.0</td> <td></td>		98,		DD3(1)=DD3(1)+DK(I,1)**3.0	
100. D1211=D1211+DK(I,1)*DK(I,2) 101. D1311=D1311+DK(I,1)*DK(I,3) 102. D121=D1221+DK(I,1)*X=2.0*DK(I,2) 103. DP10=DP10+DK(I,1)*X=2.0*DK(I,2) 104. DP10=DP10+DK(I,2)*DK(I,1)*X=2.0 105. 140 CONTINUE 106. DP(1)=DD1(1)/NF(2) 107. DP(2)=DD1(2)/NF(2) 108. DP3=DD2(1)-DD1(2) 109. DF4=DD1(1)*X=2.0=4.0*DD2(1)+2.0*DD1(2) 109. DF4=DD1(1)*X=2.0=4.0*DD2(1)+2.0*DD1(2) 111. DF(4)=DP4/NF(4) 112. DF(5)=DD1(3)/NF(2) 113. DF6=D1211-DD1(3) 114. DF(6)=DF6/NF(3) 115. DF8=DD1(1)*DD1(2)=4.0*D1211+2.0*DD1(3) 116. DF(8)=DF9/NF(4) 117. DF(7)=DF7/NF(3) 118. DF95=DF9 119. DF95=DF9-DF7-2.0*DF6=DD1(3) 120. DF(9)=DF9/NF(4) 121. DF(10)=DF10/NF(4) 122. DF(10)=DF10/NF(4) 123. DF11=DF3KDD1(1)-4.0*DF9=2.0*DF10=4.0*DF6=2.0*DF7 124. DF(11)=DP11/NF(5) 125. DF(12)=(DD1(4)/NF(2) 127. DF(13)=DD1(4)/NF(2) 128. DF(14)=DF14/NF(3) 129. DF15=DD2(2)=DD1(4) 133. DF15=DD2(2)=DD1(4) 134. DF15=DD2(2)=DD1(4) 135. DF15=DD2(2)=DD1(4) 136. DF(15)=DP15/NF(3) 137. DF(16)=DP15/NF(3) 138. DF18=DF18/NF(4) 133. DF18=DF18/NF(4) 133. DF18=DF18/NF(4) 134. DF(18)=DF18/NF(4) 135. DF(18)=DF18/NF(4) 136. DF19=DF18/NF(4) 137. DF(16)=DF16/NF(3) 138. DF19=DF16/NF(3) 139. DF(16)=DF16/NF(3) 139. DF(16)=DF16/NF(3) 139. DF(16)=DF16/NF(3) 130. DF(16)=DF16/NF(4) 133. DF18=DF18/NF(4) 134. DF19=DF18/NF(4) 135. DF19=DF18/NF(4) 136. DF(18)=DF18/NF(4) 137. DF(16)=DF16/NF(3) 138. DF(16)=DF16/NF(3) 139. DF(16)=DF16/NF(3) 139. DF(16)=DF16/NF(3) 139. DF(16)=DF16/NF(3) 139. DF(16)=DF16/NF(3) 139. DF(16)=DF16/NF(3) 139. DF(16)=DF16/NF(3) 130. DF(16)=DF16/NF(3) 131. DF19=DF16/NF(3) 133. DF18=DF18/NF(4) 134. DF(16)=DF16/NF(3) 135. DF19=DF16/NF(3) 136. DF(16)=DF16/NF(3) 137. DF(16)=DF16/NF(3) 138. DF(16)=DF16/NF(3) 139. DF(20)=DF20/NF(4) 130. DF(16)=DF16/NF(3) 131. DF(16)=DF16/NF(3) 132. DF(16)=DF16/NF(3) 133. DF(16)=DF16/		99.		DD4(1)=DD4(1)+DK(1,1)**4.	
101. D1311=D1311+DK(I,1)*DK(I,3) 102. D1221=D1221+DK(I,1)*Z2.0*DK(I,2) 103. DF10=DF10+DK(I,1)*X3.0 104. DF19=DF19+DK(I,2)*DK(I,1)*X2.0 105. 140 CONTINUE 106. DF(1)=DD1(1)/NF(2) 107. DF(2)=DD1(2)/NF(2) 108. DF3=DD2(1)=DD1(2) 109. DF4=DD1(1)*X2.0=4.0*DD2(1)+2.0*DD1(2) 110. DF(3)=DF3/NF(3) 111. DF(4)=DP4/NF(4) 112. DF(5)=DD1(3)/NF(2) 113. DF6=D1211=DD1(3) 114. DF(6)=DF6/NF(3) 115. DF8=DD1(1)*DD1(2)=4.0*D1211+2.0*DD1(3) 116. DF(8)=DF6/NF(3) 117. DF(7)=DF7/NF(3) 118. DF95=DF9 119. DF95=DF9 119. DF95=DF9 119. DF95=DF90 110. DF(6)=DF6/NF(4) 122. DF(10)=DF10-3.0*DF6=DD1(3) 124. DF(10)=DF10/NF(4) 125. DF(10)=DF10/NF(4) 125. DF(11)=DF11/NF(5) 126. DF(12)=(DD1(1)*DF4=6.0*DF11=4.0*DF8=8.0*DF9)/NF(6) 126. DF(13)=DD1(4)/NF(2) 127. DF(14)=DF11/NF(5) 128. DF(14)=DF14/NF(3) 129. DF(14)=DF11/NF(5) 129. DF(14)=DF14/NF(3) 129. DF(15)=DF12/NF(4) 130. DF(15)=DF12/NF(4) 131. DF15=DD1(4)/NF(2) 132. DF(16)=DF12/NF(4) 133. DF15=DD12(2)=DD1(4) 134. DF15=DP12/NF(4) 135. DF(15)=DF15/NF(4) 136. DF(16)=DF15/NF(4) 137. DF(16)=DF15/NF(4) 138. DF9(16)=DF15/NF(4) 137. DF(16)=DF12/NF(4) 138. DF(16)=DF15/NF(4) 137. DF(16)=DF12/NF(4) 138. DF(16)=DF12/NF(4) 137. DF(16)=DF12/NF(4) 138. DF(16)=DF12/NF(4) 137. DF(16)=DF12/NF(4) 138. DF(16)=DF12/NF(4) 137. DF(16)=DF12/NF(4) 138. DF(16)=DF12/NF(4) 139. DF(16)=DF12/NF(4) 137. DF(16)=DF12/NF(4) 138. DF(16)=DF12/NF(4) 139. DF(16)=DF12/NF(4) 139. DF(16)=DF12/NF(4) 139. DF(16)=DF12/NF(4) 139. DF(16)=DF12/NF(4) 137. DF(16)=DF12/NF(4) 138. DF(16)=DF12/NF(4) 139. DF(16)=DF12/NF(4) 130. DF(16)=DF12/N		100.			
102. $D1221=D1221+DK(I,1)**2.0*DK(I,2)$ 103. $DP10=DP10+DK(I,1)**3.0$ 104. $DP10=DP10+DK(I,2)*DK(I,1)**2.0$ 105.140106. $DP(1)=DD1(2)/MF(2)$ 107. $DF(2)=DD1(2)/MF(2)$ 108. $DF3=DD2(1)-DD1(2)$ 109. $DF4=DD1(1)**2.0-4.0*DD2(1)+2.0*DD1(2)$ 109. $DF(4)=DP4/NF(3)$ 111. $DF(4)=DP4/NF(4)$ 112. $DF(5)=DD1(3)/AF(2)$ 113. $DF6=D1211-DD1(3)$ 114. $DF(6)=DF6/NF(3)$ 115. $DP8=DDP9/NF(4)$ 117. $DF(7)=DP7/NF(3)$ 118. $DP(9)=DP9/NF(4)$ 121. $DF(1)=DP1(0-X)*AF(2)O*DD1(3)$ 122. $DF(1)=DP1(0-X)*AF(2)O*DD1(3)$ 123. $DF(1)=DP1(0/NF(4))O*DF(2)O*DD1(4)O*DF6-2.0*DF7124.DF(1)=DP1(0/NF(4))O*DF(2)O*DD1(4)O*DF6-2.0*DF7)/NF(6)125.DF(12)=(DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)126.DF(14)=DP14/NF(3)127.DF(14)=DP14/NF(3)128.DF(14)=DP14/NF(3)129.DF(14)=DP14/NF(3)131.DP17=DD1(3)*DD1(1)-4.0*DF14-2.0*DD1(4)133.DF(18)=DP13/NF(4)134.DP(18)=DP13/NF(4)135.DP(18)=DP13/NF(4)136.DP(16)=DP14/NF(4)137.DP(16)=DP14/NF(4)138.DP(16)=DP14/NF(3)139.DP(16)=DP16/NF(3)139.DP(16)=DP16/NF(3)139.DP(16)=DP16/NF(3)$		101.			
103. DF10=DF10+DK(I,1)**3.0 104. DF19=DF19+DK(I,2)*DK(I,1)**2.0 105. 140 CONTINUE 106. DF(1)=DD1(1)/MF(2) 107. DF(2)=DD1(2)/MF(2) 108. DF3=DD2(1)-DD1(2) 109. DF4=DD1(1)**2.0-4.0*DD2(1)+2.0*DD1(2) 110. DF(3)=DF3/NF(3) 111. DF(4)=DF4/NF(4) 112. DF(5)=DD1(3)/MF(2) 113. DF6=D1211-DD1(3) 114. UF(6)=DF6/NF(3) 115. UF8=DD1(1)*DD1(2)-4.0*D1211+2.0*DD1(3) 116. DF(8)=DF8/NF(4) 117. DF(7)=DF7/NF(3) 118. DF9=DF9-DF7-2.0*DF6-DD1(3) 119. DF9=DF9-DF7-2.0*DF6-DD1(3) 120. DF(9)=DF9/NF(4) 121. DF10=DF10-3.0*DF6-DD1(3) 122. DF(10)=DF10/NF(4) 123. DF11=DF3KD1(1)-4.0*DF9-2;0*DF10-4.0*DF6-2.0*DF7 124. DF(1)=DF10/NF(4) 125. DF(12)=CDD1(1)*DF4-6.0*DF11-4.0*DF6-8.0*DF9/NF(6) 126. DF(13)=DD1(4)/MF(2) 127. DF14=D1311-DD1(4) 128. DF(14)=DF14/NF(3) 129. DF(15)=DF15/NF(3) 130. DF(15)=DF15/NF(3) 131. DF17=DD1(3)*DD1(1)-4.0*DF14-2.0*DD1(4) 132. DF(14)=DF17/NF(4) 133. DF(14)=DF17/NF(4) 134. DF(19)=DF17/NF(4) 135. DF(19)=DF15/NF(3) 135. DF(19)=DF15/NF(3) 136. DF(19)=DF15/NF(4) 137. DF(19)=DF15/NF(4) 135. DF(19)=DF15/NF(4) 136. DF(19)=DF15/NF(4) 137. DF(19)=DF15/NF(4) 138. DF(9)=DF16/NF(3) 138. DF(20)=DF16/NF(3) 139. DF(20)=DF20/NF(4)		102.		•	
104. DF19=DF19+DK(I,2)*DK(I,1)**2.0 105. 140 CONTINUE 106. DF(1)=DD1(1)/NF(2) 107. DF(2)=DD1(2)/NF(2) 108. DF3=DD2(1)=DD1(2) 109. DF4=DD1(1)**2.0=4.0*DD2(1)+2.0*DD1(2) 110. DF(3)=DF3/NF(3) 111. DF(4)=DF4/NF(4) 112. DF(5)=DD1(3)/NF(2) 113. DF6=D1211=DD1(3) 114. DF(6)=DF6/NF(3) 115. DF9=DD1(1)*DD1(2)=4.0*D1211+2.0*DD1(3) 116. DF(6)=DF9/NF(4) 117. DF(7)=DF7/NF(3) 118. DF95=DF9 119. DF95=DF9 119. DF95=DF9=DF7=2.0*DF6=DD1(3) 120. DF(9)=DF9-NF(4) 121. DF10=DF10=3.0*DF6=DD1(3) 122. DF(10)=DF10/NF(4) 123. DF11=DF3*DD1(1)=4.0*DF9=2.0*DF10=4.0*DF6=2.0*DF7 124. DF(11)=DF11/NF(5) 125. DF(12)=(DD1(1)*DF4=6.0*DF11=4.0*DF6=8.0*DF9)/NF(6) 126. DF(13)=DD1(4)/NF(2) 127. DF14=D1311=DD1(4) 128. DF(14)=DF15/NF(3) 129. DF15=DF2(2)=DD1(1)=4.0*DF14=2.0*DD1(4) 130. DF(15)=DF15/NF(3) 131. DF17=DD1(3)*DD1(1)=4.0*DF14=2.0*DD1(4) 132. DF(14)=DF17/NF(4) 133. DF18=DD1(2)**2.0=4.0*DF15=2.0*DD1(4) 134. DF(18)=DF16/NF(3) 135. DF18=DD1(2)**2.0=4.0*DF15=2.0*DD1(4) 136. DF(19)=DF19/NF(4) 137. DF(16)=DF16/NF(3) 138. DF(20)=DF16/NF(3) 139. DF(20)=DF16/NF(4) 139. DF(20)=DF16/NF(4) 139. DF(20)=DF16/NF(4) 139. DF(20)=DF16/NF(4) 139. DF(20)=DF16/NF(4) 139. DF(20)=DF16/NF(4) 139. DF(20)=DF16/NF(4) 139. DF(20)=DF16/NF(4) 139. DF(20)=DF16/NF(4) 139. DF(20)=D		103.			
105. 140 CONTINUE 106. DP(1)=DD1(1)/NF(2) 107. DF(2)=DD1(2)/NF(2) 108. IP3=DD2(1)=DD1(2) 109. IP4=DD1(1)**2.0*DD2(1)+2.0*DD1(2) 110. DF(3)=DF3/NF(3) 111. IP(4)=DP4/NF(4) 112. DF(5)=DD1(3)/NF(2) 113. DF(6)=DF6/NF(3) 114. DF(6)=DF6/NF(3) 115. IP8=DD1(1)*DD1(2)=4.0*D1211+2.0*DD1(3) 116. DF(8)=DF8/NF(4) 117. IF(7)=IP7/NF(3) 118. DF95=DF9 119. DF95=DF9/NF(4) 121. DF10=DF10-3.0*DF9-DD1(3) 122. DF(9)=DF9/NF(4) 123. DF11=DF3×DD1(1)=4.0*DF9-2.0*DF10-4.0*DF6-2.0*DF7 124. DF(1)=DF10/NF(4) 125. DF(12)=(DD1(4)×DF4-6.0*DF11-4.0*DF8-8.0*DF9)/NF(6) 126. DF(12)=(DD1(4)/NF(2) 127. DF14=D1311-DD1(4) 128. DF(14)=DF15/NF(3) 129. DF(15)=DP15/NF(3) 131. DF15=DD2(2)-DD1(4) 133. DF15=DD2(2)-DD1(4) 133. DF18=DD1(2)**2.0-4.0*DF15-2.0*DD1(4) 134. DF19=DF19/NF(4) 135. DF19=DF19/NF(4) 136. DF(18)=DF18/NF(4) 137. DF19=DF19/NF(4) 138. DF19=DF19/NF(3) 139. DF(16)=DF16/NF(3) 139. DF(16)=DF16/NF(3) 130. DF19=DF19/NF(4) 137. DF(16)=DF16/NF(3) 138. DF20=DF20/DF14-DD1(4) 139. DF(20)=DF16/NF(3) 139. DF(20)=DF16/NF(3)		104.			
106. $DP(1)=DD1(1)/NP(2)$ 107. $DP(2)=DD1(2)/NP(2)$ 108. $DP(3=DD2(1)-DD1(2)$ 109. $DP4=DD1(1)**2.0-4.0*DD2(1)+2.0*DD1(2)$ 110. $DP(4)=DP4/NP(3)$ 111. $DP(4)=DP4/NP(4)$ 112. $DP(5)=DD1(3)/NP(2)$ 113. $DP6=D1211-DD1(3)$ 114. $DP(6)=DP6/NP(3)$ 115. $DP6=D12(1)*DD1(2)-4.0*D1211+2.0*DD1(3)$ 116. $DP(6)=DP6/NP(3)$ 117. $DP(7)=DP7/NP(3)$ 118. $DP9S=DP9$ 119. $DP(7)=DP7/PP(4)$ 120. $DP(10)=DP10/NP(4)$ 121. $DP10=DP10/NP(4)$ 122. $DP(10)=DP10/NP(4)$ 123. $DP(11)=DP11/NP(5)$ 124. $DP(12)=(DD1(1)*DP4-6.0*DP11-4.0*DP8-8.0*DP9)/NP(6)$ 126. $DP(13)=DD1(4)/NP(2)$ 127. $DP14=D1311-DD1(4)$ 128. $DP(15)=DP15/NP(3)$ 129. $DP(15)=DP15/NP(3)$ 123. $DP(15)=DP15/NP(3)$ 124. $DP(15)=DP15/NP(3)$ 125. $DP(15)=DP15/NP(3)$ 126. $DP(15)=DP15/NP(3)$ 127. $DP14=D1311-DD1(4)$ 130. $DP(15)=DP15/NP(3)$ 125. $DP(15)=DP15/NP(3)$ 131. $DP17=DD1(3)*DD1(1)-4.0*DP14=2.0*DD1(4)$ 133. $DP18=D92(2)=DP14=2.0*DP15=2.0*DD1(4)$ 134. $DP(17)=DP17/NP(4)$ 135. $DP19=DP19/NP(4)$ 136. $DP(19)=DP19/NP(4)$ 137. $DP(16)=DP16/NP(4)$ 138. $DP20=DP20=DP16=2.0*DP14-DD1(4)$ 139. $DP(10)=DP16/NP(4)$			140		
107. $DF(2) = DD1(2)/NF(2)$ 108. $DF3 = DD2(1) - DD1(2)$ 107. $DF4 = DD1(1) + D21(2)$ 107. $DF(4) = DF4/NF(4)$ 110. $DF(4) = DF4/NF(4)$ 111. $DF(4) = DF4/NF(4)$ 112. $DF(5) = DD1(3)/NF(2)$ 113. $DF6 = D1211 - DD1(3)$ 114. $DF(6) = DF6/NF(3)$ 115. $DF8 = DD1(1) + DD1(2) - 4.0 \times D1211 + 2.0 \times DD1(3)$ 116. $DF(8) = DF8/NF(4)$ 117. $DF(7) = DF7/NF(3)$ 118. $DF9S = DF9$ 119. $DF(7) = DF7/NF(4)$ 120. $DF(9) = DF9/NF(4)$ 121. $DF(9) = DF9/NF(4)$ 122. $DF(10) = DF10/NF(4)$ 123. $DF11 = DF3 \times DD1(1) - 4.0 \times DF9 - 2.0 \times DF10 - 4.0 \times DF6 - 2.0 \times DF7$ 124. $DF(12) = (DD1(1) \times DF4 - 6.0 \times DF11 - 4.0 \times DF8 - 8.0 \times DF9)/NF(6)$ 125. $DF(12) = (DD1(1) \times DF4 - 6.0 \times DF11 - 4.0 \times DF8 - 8.0 \times DF9)/NF(6)$ 126. $DF(14) + DF14/NF(3)$ 127. $DF14 = D1311 - DD1(4)$ 128. $DF(14) + DF14/NF(3)$ 129. $DF(15) = DF15/NF(3)$ 131. $DF17 = DD1(3) \times DD1(1) - 4.0 \times DF14 - 2.0 \times DD1(4)$ 133. $DF18 = DD12/NF(4)$ 135. $DF19 = DF19 - DF15 - 2.0 \times DD11(4)$ 136. $DF(17) = DF115/NF(3)$ 137. $DF19 = DF19 - DF15 - 2.0 \times DD11(4)$ 136. $DF(19) = DF19 - DF15 - 2.0 \times DF14 - DD1(4)$ 137. $DF(16) = DF16/NF(4)$ 137. $DF(16) = DF16/NF(4)$ 137. $DF(16) = DF16/NF(4)$ 138. $DF20 = DF20 - DF16 - 2.0 \times DF14 - DD1(4)$ 139. $DF(20) = DF20 - DF16 - 2.0 \times DF14 - DD1(4)$ 139. $DF(20) = DF20 - DF16 - 2.0 \times DF14 - DD1(4)$ 137. $DF(16) = DP16/NF(4)$ 137. $DF(16) = DP16/NF(4)$ 137. $DF(16) = DP16/NF(4)$					
108. $DF3=DD2(1)-DD1(2)$ 107. $DF4=DU1(1)**2.0-4.0*DD2(1)+2.0*DD1(2)$ 110. $DF(4)=DF4/NF(3)$ 111. $DF(4)=DF4/NF(4)$ 112. $DF(5)=DD1(3)/NF(2)$ 113. $DF6=D1211-DD1(3)$ 114. $DF(6)=DF6/NF(3)$ 115. $DF8=DD1(1)*DD1(2)-4.0*D1211+2.0*DD1(3)$ 116. $DF(8)=DF6/NF(4)$ 117. $DF(7)=DF7/NF(3)$ 118. $DF95=DF9$ 119. $DF9=DF9-DF7-2.0*DF6-DD1(3)$ 120. $DF(1)=DF10/NF(4)$ 121. $DF(1)=DF10/NF(4)$ 122. $DF(10)=DF10/NF(4)$ 123. $DF11=DF3*DD1(1)-4.0*DF9-2.0*DF10-4.0*DF6-2.0*DF7$ 124. $DF(1)=DF11/NF(5)$ 125. $DF(12)=(DD1(1)*DP4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)$ 126. $DF(13)=DD1(A)/NF(2)$ 127. $DF15=DD2(2)-DD1(4)$ 128. $DF(14)=DF15/NF(3)$ 129. $DF(15)=DF15/NF(3)$ 129. $DF(15)=DF15/NF(3)$ 121. $DF17=DD1(3)*DD1(1)-4.0*DF14=2.0*DD1(4)$ 132. $DF(12)=DF17/NF(4)$ 133. $DF18=DD16(2)*x2.0-4.0*DF15=2.0*DD1(4)$ 134. $DF(18)=DF18/NF(4)$ 135. $DF19=DF19/DF15=2.0*DF14=DD1(4)$ 136. $DF(16)=DF16/NF(3)$ 138. $DF(20)=DF16/NF(3)$ 138. $DF(20)=DF16/NF(3)$ 137. $DF(16)=DF16/NF(3)$ 138. $DF(20)=DF16/NF(3)$					
109. $DF 4=DD1(1)**2.0-4.0*DD2(1)+2.0*DD1(2)$ 110. $DF (3)=DF3/NF(3)$ 111. $DF (3)=DF3/NF(3)$ 111. $DF (5)=DD1(3)/NF(2)$ 113. $DF 6=D1211-DD1(3)$ 114. $DF (6)=DF6/NF(3)$ 115. $DF8=DD1(1)*DD1(2)-4.0*D1211+2.0*DD1(3)$ 116. $DF (8)=DF8/NF(4)$ 117. $DF (7)=DF7/NF(3)$ 118. $DP95=DF9$ 119. $DF95=DF9/NF(4)$ 121. $DF (10)=DF9/NF(4)$ 122. $DF (10)=DF10-3.0*DF6-DD1(3)$ 123. $DF(10)=DF10/NF(4)$ 124. $DF (11)=DP11/NF(5)$ 125. $DF (12)=(DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)$ 126. $DF (12)=(DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)$ 127. $DF14=D131-DD1(4)$ 128. $DF (14)=DF15/NF(3)$ 131. $DF15=DD12(2)=DD1(4)$ 133. $DF19=DF15/NF(3)$ 134. $DF(16)=DF15/NF(3)$ 135. $DF(18)=DF18/NF(4)$ 136. $DF(19)=DF19/NF(4)$ 137. $DF19=DF19/NF(4)$ 138. $DF20=DF20-DF16-2.0*DF14-DD1(4)$ 137. $DF(16)=DF16/NF(3)$				•	
110. $DP(3)=DP3/NP(3)$ 111. $DP(4)=DP4/NP(4)$ 112. $DP(4)=DP4/NP(4)$ 113. $DP(6)=DD1(3)/NP(2)$ 113. $DP(6)=DP6/NP(3)$ 114. $DP(6)=DP6/NP(4)$ 115. $DP8=DD1(1) \times DD1(2) - 4.0 \times D1211 + 2.0 \times DD1(3)$ 116. $DP(8)=DP8/NP(4)$ 117. $DP(5)=DP7/NP(3)$ 118. $DP95=DP7$ 119. $DP9=DP9-DP7-2.0 \times DP6-DD1(3)$ 120. $DP(1)=DP7/NP(4)$ 121. $DP10=DP10/NP(4)$ 123. $DP(1)=DP10/NP(4)$ 124. $DP(11)=DP11/NP(5)$ 125. $DP(12)=(DD1(1) \times DP4-8.0 \times DP11-4.0 \times DP6-2.0 \times DP7)/NP(6)$ 126. $DP(12)=(DD1(4) \times DP4-8.0 \times DP11-4.0 \times DP8-8.0 \times DP7)/NP(6)$ 127. $DP14=D1311-DD1(4)$ 128. $DP(14)=DP14/NP(3)$ 129. $DP17=DD1(3) \times DD1(1)-4.0 \times DP15-2.0 \times DD1(4)$ 130. $DP(15)=DP15/NP(4)$ 133. $DP19=DP18/NP(4)$ 134. $DP(18)=DP18/NP(4)$ 135. $DP19=DP19/NP(4)$ 136. $DP(20)=DP16/NP(3)$ 138. $DP(20)=DP16/NP(4)$ 139. $DP(20)=DP16/NP(4)$					
111. $DP(4)=DP4/NP(4)$ 112. $DP(5)=DD1(3)/NF(2)$ 113. $DP(5)=DD1(3)/NF(2)$ 114. $DP(6)=D1211-DD1(3)$ 114. $DP(6)=DP6/NP(3)$ 115. $DP8=DD1(1)*DD1(2)-4.0*D1211+2.0*DD1(3)$ 116. $DF(8)=DP8/NP(4)$ 117. $DP(7)=DP7/NP(3)$ 118. $DP95=DP9$ 119. $DP9=DP9-DP7-2.0*DP6-DD1(3)$ 120. $DP(9)=DP9/NP(4)$ 121. $DP10=DP10-3.0*DP6-DD1(3)$ 122. $DP(1)=DP10/NP(4)$ 123. $DP(1)=DP10/NP(4)$ 124. $DP(1)=DP11/NP(5)$ 125. $DP(12)=(DD1(1)*DP4-8.0*DP11-4.0*DP8-8.0*DP9)/NP(6)$ 126. $DP(12)=(DD1(4)+PP(2))$ 127. $DP14=D1311-DD1(4)$ 128. $DP(14)+DP14/NF(3)$ 129. $DP15=DD2(2)-DD1(4)$ 130. $DP(15)=DP15/NP(3)$ 131. $DP17=DD1(3)*DD1(1)-4.0*DP15-2.0*DD1(4)$ 132. $DP(17)=DP15/NP(4)$ 133. $DP18=DP18/NP(4)$ 134. $DP(18)=DP18/NP(4)$ 135. $DP19=DP19-DP15-2.0*DP14-DD1(4)$ 136. $DP4(3)=DP16/NF(3)$ 138. $DP(20)=DP16/-2.0*DP14-DD1(4)$ 139. $DP(20)=DP16/NP(4)$					
112. $DF(5)=DD1(3)/NF(2)$ 113. $DF6=D1211-DD1(3)$ 114. $DF(6)=DF6/NF(3)$ 115. $DF8=DD1(1)*DD1(2)-4.0*D1211+2.0*DD1(3)$ 116. $DF(8)=DF8/NF(4)$ 117. $DF(7)=DF7/NF(3)$ 118. $DF9=DF9-DF7-2.0*DF6-DD1(3)$ 120. $DF(7)=DF7/NF(4)$ 121. $DF10=DF10-3.0*DF6-DD1(3)$ 122. $DF(10)=DF10/NF(4)$ 123. $DF11=DF3*DD1(1)-4.0*DF9-2.0*DF7-4.0*DF6-2.0*DF7$ 124. $DF(12)=(DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)$ 125. $DF(12)=(DD1(4)/NF(2)$ 127. $DF14=D1311-UD1(4)$ 128. $DF(14)=DF15/NF(3)$ 131. $DF17=DD1(3)*DD1(1)-4.0*DF14-2.0*DD1(4)$ 133. $DF(15)=DF15/NF(3)$ 134. $DF(17)=DF17/NF(4)$ 135. $DF(18)=DF18/NF(4)$ 136. $DF(19)=DF19/NF(4)$ 137. $DF(18)=DF18/NF(4)$ 138. $DF(20)=DF16-2.0*DF14-DD1(4)$ 139. $DF(20)=DF20/NF(4)$					
113. $DF6=D1211-DD1(3)$ 114. $DF(6)=DF6/NF(3)$ 115. $DF8=DD1(1)*DD1(2)-4.0*D1211+2.0*DD1(3)$ 116. $DF(8)=DF8/NF(4)$ 117. $DF(7)=DF7/NF(3)$ 118. $DF9S=DF9$ 119. $DF9=DP9-DF7-2.0*DF6-DD1(3)$ 120. $DF(9)=DF9/NF(4)$ 121. $DF10=DF10-3.0*DF6-DD1(3)$ 122. $DF(10)=DF10/NF(4)$ 123. $DF11=DF3*DD1(1)-4.0*DF9-2.0*DF10-4.0*DF6-2.0*DF7$ 124. $DF(11)=DP11/NF(5)$ 125. $DF(12)=(DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)$ 126. $DF(13)=DD1(4)/NF(2)$ 127. $DF14=D1311-DD1(4)$ 128. $DF(14)=DF15/NF(3)$ 129. $DF(15)=DP15/NF(3)$ 131. $DF17=DD1(3)*DD1(1)-4.0*DF14-2.0*DD1(4)$ 132. $DF(17)=DF17/NF(4)$ 133. $DF(18)=DF18/NF(4)$ 134. $DF(18)=DF18/NF(4)$ 135. $DF(19)=DF19-DF15-2.0*DF14-DD1(4)$ 136. $DF(19)=DF19/NF(4)$ 137. $DF(16)=DF16/NF(4)$ 138. $DF(20)=DF20/NF(4)$					
114.DP(6)=DF6/NF(3)115.DF8=DD1(1)*DD1(2)-4.0*D1211+2.0*DD1(3)116.DF(8)=DF8/NF(4)117.DF(7)=DF7/NF(3)118.DP9S=DF9119.DF9=DF9-DF7-2.0*DF6-DD1(3)120.DF(9)=DF9/NF(4)121.DF10=DF10-3.0*DF6-DD1(3)122.DF(10)=DF10/NF(4)123.DF11=DF3*DD1(1)-4.0*DF9-2:0*DF10-4.0*DF6-2.0*DF7124.DF(11)=DP11/NF(5)125.DF(12)=(DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)126.DF(13)=DD1(4)/NF(2)127.DF14=D1311-DD1(4)128.DF(14)*DF14/NF(3)129.DF15=DD2(2)-DD1(4)130.DF(15)=DF15/NF(3)131.DF17=DF1(3)*DD1(1)-4.0*DF14-2.0*DD1(4)133.DF(18=DF14-DD1(4)134.DF(18)=DF18/NF(4)135.DF19=DF19/NF(4)136.DF(19)=DF19/NF(4)137.DF(16)=DF16/NF(3)138.DF(16)=DF16/NF(3)139.DF(20)=DF20/NF(4)		113			
115. $DF8=DD1(1)*DD1(2)-4.0*D1211+2.0*DD1(3)$ 116. $DF(8)=DF8/NF(4)$ 117. $DF(7)=DF7/NF(3)$ 118. $DF9S=DF9$ 119. $DF9=DF9-DF7-2.0*DF6-DD1(3)$ 120. $DF(9)=DF9/NF(4)$ 121. $DF10=DF10-3.0*DF6-DD1(3)$ 122. $DF(10)=DF10/NF(4)$ 123. $DF11=DF3*DD1(1)-4.0*DF9-2.0*DF10-4.0*DF6-2.0*DF7$ 124. $DF(11)=DP11/NF(5)$ 125. $DF(12)=(DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)$ 126. $DF(13)=DD1(4)/NF(2)$ 127. $DF14=D1311-DD1(4)$ 128. $DF(14)=DF15/NF(3)$ 131. $DF17=DD1(2)(2)-DD1(4)$ 132. $DF(15)=DP15/NF(3)$ 133. $DF17=DP1(2)**2.0*DF14-2.0*DD1(4)$ 134. $DF(18)=DF16/NF(4)$ 135. $DF19=DF19/NF(4)$ 136. $DF(19)=DF19/NF(4)$ 137. $DF(16)=DP16/NF(3)$ 138. $DF20=DF20-DF16-2.0*DF14-DD1(4)$ 139. $DF(20)=UF20/NF(4)$					
116. $DF(8) = DF8/NF(4)$ 117. $DF(7) = DF7/NF(3)$ 118. $DF9S = DF9$ 119. $DF9 = DF9 - DF7 - 2 \cdot 0 \times DF6 - DD1(3)$ 120. $DF(9) = DF9/NF(4)$ 121. $DF10 = DF10 - 3 \cdot 0 \times DF6 - DD1(3)$ 122. $DF(10) = DF10/NF(4)$ 123. $DF11 = DF3 \times DD1(1) - 4 \cdot 0 \times DF9 - 2 \cdot 0 \times DF10 - 4 \cdot 0 \times DF6 - 2 \cdot 0 \times DF7$ 124. $DF(11) = DF11/NF(5)$ 125. $DF(12) = (DD1(1) \times DF4 - 8 \cdot 0 \times DF11 - 4 \cdot 0 \times DF8 - 8 \cdot 0 \times DF9)/NF(6)$ 126. $DF(13) = DD1(4)/NF(2)$ 127. $DF14 = D1311 - DD1(4)$ 128. $DF(14) = DF15/NF(3)$ 129. $DF15 = DD2(2) - DD1(4)$ 130. $DF17 = DD1(3) \times DD1(1) - 4 \cdot 0 \times DF14 - 2 \cdot 0 \times DD1(4)$ 133. $DF18 = DD1(2) \times 2 \cdot 0 - 4 \cdot 0 \times DF14 - 2 \cdot 0 \times DD1(4)$ 134. $DF(18) = DF18/NF(4)$ 135. $DF19 = DF19 - DF15 - 2 \cdot 0 \times DF14 - DD1(4)$ 136. $DF49 = DF19/NF(4)$ 137. $DF(16) = DF16/NF(3)$ 138. $DF20 = DF20 - DF16 - 2 \cdot 0 \times DF14 - DD1(4)$ 139. $DF(20) = UF20/NF(4)$				DP8=DD1(1)*DD1(2)-4.0*D1211+2.0*DD1(3)	
117. $DF(7) = DF7/NF(3)$ 118. $DF9S = DF9$ 119. $IF9 = DF9 - DF7 - 2.0 \times DF6 - DD1(3)$ 120. $DF(9) = DF9/NF(4)$ 121. $DF10 = DF10 - 3.0 \times DF6 - DD1(3)$ 122. $DF(10) = DF10/NF(4)$ 123. $DF11 = DF3 \times DD1(1) - 4.0 \times DF9 - 2.0 \times DF10 - 4.0 \times DF6 - 2.0 \times DF7$ 124. $DF(11) = DF11/NF(5)$ 125. $DF(12) = (DD1(1) \times DF4 - 8.0 \times DF11 - 4.0 \times DF8 - 8.0 \times DF9)/NF(6)$ 126. $DF(13) = DD1(4)/NF(2)$ 127. $DF14 = D1311 - DD1(4)$ 128. $DF(14) \pm DF14/NF(3)$ 129. $DF15 = DD2(2) - DD1(4)$ 130. $DF17 = DD1(3) \times DD1(1) - 4.0 \times DF14 - 2.0 \times DD1(4)$ 133. $DF17 = DD1(3) \times DD1(1) - 4.0 \times DF14 - 2.0 \times DD1(4)$ 134. $DF17 = DP17/NF(4)$ 135. $DF19 = DF19 - DF15 - 2.0 \times DF14 - DD1(4)$ 136. $DF49 = DF16/NF(3)$ 137. $DF(16) = DF16/NF(3)$ 138. $DF20 = DF20 - DF16 - 2.0 \times DF14 - DD1(4)$ 137. $DF(20) = DF20/NF(4)$			_		
118.DF9S=DF9119.HF9=DF9-DF7-2.0*DF6-DD1(3)120.DF(9)=DF9/NF(4)121.DF10=DF10-3.0*DF6-DD1(3)122.HF(f0)=DF10/NF(4)123.DF11=DF3*DD1(1)-4.0*DF9-2.0*DF10-4.0*DF6-2.0*DF7124.DF(11)=DF11/NF(5)125.DF(12)=(DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)126.DF(13)=DD1(4)/NF(2)127.DF14=D1311-DD1(4)128.DF(14)=DF15/NF(3)129.DF15=DD2(2)-DD1(4)130.DF(15)=DF15/NF(3)131.DF17=DD1(3)*DD1(1)-4.0*DF14-2.0*DD1(4)133.DF18=DD1(2)**2.0-4.0*DF15-2.0*DD1(4)134.DF(18)=DF18/NF(4)135.DF19=DF19-DF15-2.0*DF14-DD1(4)136.DF(16)=DF16/NF(3)138.DF20=DF20/NF(4)139.DF(20)=DF20/NF(4)			• •		·
119. $DF9=DF9-DF7-2.0*DF6-DD1(3)$ 120. $DF(9)=DF9/NF(4)$ 121. $DF10=DF10-3.0*DF6-DD1(3)$ 122. $DF(10)=DF10/NF(4)$ 123. $DF11=DF3*DD1(1)-4.0*DF9-2.0*DF10-4.0*DF6-2.0*DF7$ 124. $DF(11)=DF11/NF(5)$ 125. $DF(12)=(DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)$ 126. $DF(13)=DD1(4)/NF(2)$ 127. $DF14=D1311-DD1(4)$ 128. $DF(14)+DF14/NF(3)$ 129. $DF15=DD12(2)-DD1(4)$ 130. $DF(15)=DF15/NF(3)$ 131. $DF17=DP1(3)*DD1(1)-4.0*DF14=2.0*DD1(4)$ 133. $DF(17)=DF17/NF(4)$ 134. $DF(18)=DF1e(2)*2.0*DF14-DD1(4)$ 135. $DF19=DF19-DF15-2.0*DF14-DD1(4)$ 136. $DF(49)=DF19/NF(4)$ 137. $DF(16)=DF16/NF(3)$ 138. $DF20=DF20-DF16-2.0*DF14-DD1(4)$ 139. $DF(20)=DF20/NF(4)$					
120. $DF(9)=DF9/NF(4)$ 121. $DF10=DF10-3.0*DF6-DD1(3)$ 122. $DF(f0)=DF10/NF(4)$ 123. $DF11=DF3*DD1(1)-4.0*DF9-2.0*DF10-4.0*DF6-2.0*DF7$ 124. $DF(11)=DF11/NF(5)$ 125. $DF(12)=(DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)$ 126. $DF(13)=DD1(4)/NF(2)$ 127. $DF14=D1311-DD1(4)$ 128. $DF(14)+DF14/NF(3)$ 129. $DF(15)=DF15/NF(3)$ 131. $DF17=DD1(3)*DD1(1)-4.0*DF14-2.0*DD1(4)$ 132. $DF(17)=DF17/NF(4)$ 133. $DF18=DP1(2)**2.0-4.0*DF15-2.0*DD1(4)$ 134. $DF(18)=DF18/NF(4)$ 135. $DF(19)=DF19/NF(4)$ 136. $DF(19)=DF19/NF(4)$ 137. $DF(16)=DP16/NF(3)$ 138. $DF20=DF20-DF16-2.0*DF14-DD1(4)$ 139. $DF(20)=UF20/NF(4)$					
121.DF10=DF10-3.0*DF6-DD1(3)122.DF(f0)=DF10/NF(4)123.DF11=DF3*DD1(1)-4.0*DF9-2:0*DF10-4.0*DF6-2.0*DF7124.DF(11)=DF11/NF(5)125.DF(12)=(DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)126.DF(13)=DD1(4)/NF(2)127.DF14=D1311-DD1(4)128.DF(14)=DF14/NF(3)129.DF15=DD2(2)-DD1(4)130.DF(15)=DF15/NF(3)131.DF17=DD1(3)*DD1(1)-4.0*DF14-2.0*DD1(4)132.DF(17)=DF17/NF(4)133.DF18=DF1(2)*2.0*DF14-DD1(4)134.DF(18)=DF18/NF(4)135.DF19=DF19-DF15-2.0*DF14-DD1(4)136.DF4(19)=DF19/NF(4)137.DF(16)=DP16/NF(3)138.DF20=DP20-DF16-2.0*DF14-DD1(4)139.DF(20)=DF20/NF(4)			•		
122. $DF(IO) = DP1O/NP(4)$ 123. $DP11 = DP3*DD1(1) - 4.0*DP9 - 2.0*DP10 - 4.0*DP6 - 2.0*DP7$ 124. $DF(11) = DP11/NP(5)$ 125. $DF(12) = (DD1(1)*DP4 - 8.0*DP11 - 4.0*DP8 - 8.0*DP9)/NP(6)$ 126. $DF(13) = DD1(4)/NP(2)$ 127. $DP14 = D1311 - DD1(4)$ 128. $DF(14) + DP14/NP(3)$ 129. $DP15 = DD2(2) - DD1(4)$ 130. $DP(15) = DP15/NP(3)$ 131. $DP17 = DD1(3)*DD1(1) - 4.0*DP14 - 2.0*DD1(4)$ 132. $DP(17) = DP17/NP(4)$ 133. $DP18 = DP12/2)**2.0 - 4.0*DP15 - 2.0*DD1(4)$ 134. $DP(18) = DP18/NP(4)$ 135. $DP19 = DP19/DP15 - 2.0*DP14 - DD1(4)$ 136. $DP(19) = DP19/NP(4)$ 137. $DP(16) = DP16/NP(3)$ 138. $DP20 = DP20 - DP16 - 2.0*DP14 - DD1(4)$ 139. $DP(20) = DP20/NP(4)$					
123. $DF11=DF3*DD1(1)-4.0*DF9-2:0*DF10-4.0*DF6-2.0*DF7$ 124. $DF(11)=DP11/NF(5)$ 125. $DF(12)=(DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)$ 126. $DF(13)=DD1(4)/NF(2)$ 127. $DF14=D1311-DD1(4)$ 128. $DF(14)+DF14/NF(3)$ 129. $DF15=DD2(2)-DD1(4)$ 130. $DF(15)=DF15/NF(3)$ 131. $DF17=DD1(3)*DD1(1)-4.0*DF14-2.0*DD1(4)$ 132. $DF(17)=DF17/NF(4)$ 133. $DF18=D\Phi1(2)**2.0-4.0*DF15-2.0*DD1(4)$ 134. $DF(18)=DF18/NF(4)$ 135. $DF19=DF19-DF15-2.0*DF14-DD1(4)$ 136. $DF(19)=DF19/NF(4)$ 137. $DF(16)=DP16/NF(3)$ 138. $DF20=DF20-DF16-2.0*DF14-DD1(4)$ 139. $DF(20)=UF20/NF(4)$			2		
124. $DF(11) = DF11/NF(5)$ 125. $DF(12) = (DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)$ 126. $DF(13) = DD1(4)/NF(2)$ 127. $DF14 = D1311 - DD1(4)$ 128. $DF(14) = DF14/NF(3)$ 129. $DF15 = DD2(2) - DD1(4)$ 130. $DF(15) = DF15/NF(3)$ 131. $DF17 = DD1(3)*DD1(1) - 4.0*DF14 - 2.0*DD1(4)$ 132. $DF(17) = DF17/NF(4)$ 133. $DF18 = D\Phi1(2)**2.0 - 4.0*DF15 - 2.0*DD1(4)$ 134. $DF(18) = DF18/NF(4)$ 135. $DF19 = DF19 - DF15 - 2.0*DF14 - DD1(4)$ 136. $DF419 = DF19/NF(4)$ 137. $DF(16) = DP16/NF(3)$ 138. $DP20 = DF20 - DF16 - 2.0*DF14 - DD1(4)$ 139. $DF(20) = DF20/NF(4)$			-		
125. $DF(12) = (DD1(1)*DF4-8.0*DF11-4.0*DF8-8.0*DF9)/NF(6)$ 126. $DF(13) = DD1(4)/NF(2)$ 127. $DF14 = D1311 - DD1(4)$ 128. $DF(14) = DF14/NF(3)$ 129. $DF15 = DP2(2) - DD1(4)$ 130. $DF(15) = DF15/NF(3)$ 131. $DF17 = DD1(3)*DD1(1) - 4.0*DF14 - 2.0*DD1(4)$ 132. $DF(17) = DF17/NF(4)$ 133. $DF18 = DD1(2)**2.0-4.0*DF15 - 2.0*DD1(4)$ 134. $DF(18) = DF18/NF(4)$ 135. $DF19 = DF19 - DF15 - 2.0*DF14 - DD1(4)$ 136. $DF(19) = DF19/NF(4)$ 137. $DF(16) = DP16/NF(3)$ 138. $DF20 = DF20 - DF16 - 2.0*DF14 - DD1(4)$ 139. $DF(20) = DF20/NF(4)$			•		
126. $IF(13) = DD1(4) / NF(2)$ 127. $DF14 = D1311 - DD1(4)$ 128. $DF(14) + DF14 / NF(3)$ 129. $DF15 = DD2(2) - DD1(4)$ 130. $DF(15) = DF15 / NF(3)$ 131. $DF17 = DD1(3) * DD1(1) - 4 \cdot 0 * DF14 - 2 \cdot 0 * DD1(4)$ 132. $DF(17) = DF17 / NF(4)$ 133. $DF18 = DP1(2) * 2 \cdot 0 - 4 \cdot 0 * DF15 - 2 \cdot 0 * DD1(4)$ 134. $DF(18) = DF18 / NF(4)$ 135. $DF19 = DF19 - DF15 - 2 \cdot 0 * DF14 - DD1(4)$ 136. $DF(19) = DF19 / NF(4)$ 137. $DF(16) = DP16 / NF(3)$ 138. $DF20 = DF20 - DF16 - 2 \cdot 0 * DF14 - DD1(4)$ 139. $DF(20) = DF20 / NF(4)$			• •	. •	5)
127. $DF14=D1311-DD1(4)$ 128. $DF(14)+DF14/NF(3)$ 129. $DF15=DD2(2)-DD1(4)$ 130. $DF(15)=DF15/NF(3)$ 131. $DF17=DD1(3)*DD1(1)-4.0*DF14=2.0*DD1(4)$ 132. $DF(17)=DF17/NF(4)$ 133. $DF18=DD1(2)**2.0-4.0*DF15=2.0*DD1(4)$ 134. $DF(18)=DF18/NF(4)$ 135. $DF19=DF19-DF15=2.0*DF14=DD1(4)$ 136. $DF419)=DF19/NF(4)$ 137. $DF(16)=DP16/NF(3)$ 138. $DF20=DF20-DF16=2.0*DF14=DD1(4)$ 139. $DF(20)=DF20/NF(4)$					
128. $DF(14) + DF14/NF(3)$ 129. $DF15=DI2(2) - DD1(4)$ 130. $DF(15) = DF15/NF(3)$ 131. $DF17=DB1(3) * DD1(1) - 4.0*DF14-2.0*DD1(4)$ 132. $DF(17) = DF17/NF(4)$ 133. $DF18=DD1(2) * 2.0-4.0*DF15-2.0*DD1(4)$ 134. $DF(18) = DF18/NF(4)$ 135. $DF19=DF19-DF15-2.0*DF14-DD1(4)$ 136. $DF419) = DF19/NF(4)$ 137. $DF(16) = DF16/NF(3)$ 138. $DF20=DF20-DF16-2.0*DF14-DD1(4)$ 139. $DF(20) = DF20/NF(4)$					
129.DF15=DP2(2)-DD1(4)130.DF(15)=DF15/NF(3)131.DF17=DD1(3)*DD1(1)-4.0*DF14=2.0*DD1(4)132.DF(17)=DF17/NF(4)133.DF18=DD1(2)**2.0-4.0*DF15=2.0*DD1(4)134.DF(18)=DF18/NF(4)135.DF19=DF19=DF15=2.0*DF14=DD1(4)136.DF419)=DF19/NF(4)137.DF(16)=DF16/NF(3)138.DF20=DF20=DF16=2.0*DF14=DD1(4)139.DF(20)=DF20/NF(4)					
130. $DF(15) = DF15/NF(3)$ 131. $DF17 = DD1(3) * DD1(1) - 4.0*DF14 - 2.0*DD1(4)$ 132. $DF(17) = DF17/NF(4)$ 133. $DF18 = DDD1(2) * 2.0 - 4.0*DF15 - 2.0*DD1(4)$ 134. $DF(18) = DF18/NF(4)$ 135. $DF19 = DF19 - DF15 - 2.0*DF14 - DD1(4)$ 136. $DF(19) = DF19/NF(4)$ 137. $DF(16) = DP16/NF(3)$ 138. $DF20 = DF20 - DF16 - 2.0*DF14 - DD1(4)$ 139. $DF(20) = DF20/NF(4)$					
131. $DF17=DD1(3)*DD1(1)-4.0*DF14=2.0*DD1(4)$ 132. $DF(17)=DF17/NF(4)$ 133. $DF18=DDDF(2)**2.0-4.0*DF15=2.0*DD1(4)$ 134. $DF(18)=DF18/NF(4)$ 135. $DF19=DF19=DF15=2.0*DF14=DP1(4)$ 136. $DF(19)=DF19/NF(4)$ 137. $DF(16)=DF16/NF(3)$ 138. $DF20=DF20=DF16=2.0*DF14=DD1(4)$ 139. $DF(20)=DF20/NF(4)$			•		
132.DF(17)=DF17/NF(4)133. $DF18=D\Phi F(2)**2.0-4.0*DF15-2.0*DD1(4)$ 134. $DF(18)=DF18/NF(4)$ 135. $DF19=DF19-DF15-2.0*DF14-DD1(4)$ 136. $DF419)=DF19/NF(4)$ 137. $DF(16)=DF16/NF(3)$ 138. $DF20=DF20-DF16-2.0*DF14-DD1(4)$ 139. $DF(20)=DF20/NF(4)$					
133. $DF18=D\Phi^{1}(2)**2.0-4.0*DP15-2.0*DD1(4)$ 134. $DF(18)=DF18/NP(4)$ 135. $DF19=DF19-DF15-2.0*DF14-DD1(4)$ 136. $DF419)=DF19/NP(4)$ 137. $DF(16)=DP16/NP(3)$ 138. $DF20=DF20-DF16-2.0*DF14-DD1(4)$ 139. $DF(20)=DF20/NP(4)$					
134. DF(18)=DF18/NF(4) 135. DF19=DF19-DF15-2.0*DF14-DD1(4) 136. DF419)=DF19/NF(4) 137. DF(16)=DF16/NF(3) 138. DF20=DF20-DF16-2.0*DF14-DD1(4) 139. DF(20)=DF20/NF(4)			•		
135. DF19=DF19=DF15=2.0*DF14=DD1(4) 136. DF419)=DF19/NF(4) 137. DF(16)=DF16/NF(3) 138. DF20=DF20=DF16=2.0*DF14=DD1(4) 139. DF(20)=DF20/NF(4)			• .		
136. DF419>=DF19/NF(4) 137. DF(16)=DF16/NF(3) 138. DF20=DF20-DF16-2.0*DF14-DD1(4) 139. DF(20)=DF20/NF(4)					
137. DF(16)=DF16/NF(3) 138. DF20=DF20-DF16-2.0*DF14-DD1(4) 139. DF(20)=DF20/NF(4)					
138. DF20=DF20-DF16-2.0*DF14-DD1(4) 139. DF(20)=DF20/NF(4)		-			
139. DF(20)=IF20/NF(4)	,				
	•				

141. DF(21)=DF(21/NP(4) 142. DF(24)=DF(21/NP(4) 143. C (DF(21)+DF(1)+DF(18) 144. DF(24)=DF(24)+DF(15) 145. OF(25)=DF(25/NP(5) 145. OF(25)=DF(25/NP(5) 146. DF(25)=DF(25/NP(5) 147. DF(25)=DF(25/NP(5) 148. DF(25)=DF(25/NP(5) 147. DF(25)=DF(25/NP(5) 148. DF(2)=DF(25/NP(5) 147. DF(25)=DF(25/NP(5) 148. DF(2)=DF(22/NP(4) 157. DF(2)=DF(22/NP(4) 157. DF(2)=DF(22/NP(4) 157. DF(2)=DF(22/NP(4) 157. DF(2)=DF(22/NP(4) 157. DF(2)=DF(22/NP(4) 156. DF(23)=DF(23/NP(4) 157. DF(2)=DF(22/NP(4) 157. DF(2)=DF(22/NP(4) 157. DF(2)=DF(22/NP(5) 157. DF(2)=DF(22/NP(5) 156. DF(23)=DF(23/NP(4) 157. DF(2)=DF(22/NP(5)) 160. DF(23)=DF(23/NP(4) 161. C DF(2)=DF(22/NP(5)) 162. DF(2)=DF(22/NP(5)) 163. DF(20)=DF(23/NP(5)) 164. DF(20)=DF(23/NP(5)) 165. DF(20)=DF(23/NP(5)) 165. DF(20)=DF(23/NP(5)) 166. DF(20)=DF(23/NP(5)) 166. DF(20)=DF(23/NP(5)) 167. DF(20)=DF(23/NP(5)) 168. DF(20)=DF(23/NP(5)) 166. DF(20)=DF(23/NP(5)) 166. C 2.0*(DF(23)=DF(23/NP(5)) 166. DF(20)=DF(23/NP(5)) 167. DF(21)=DF(21)(1)=6.0*(DF(23)=DF(21)=DF(16)+DF(15))=1 168. DF(20)=DF(23/NP(5)) 169. DF(20)=DF(23/NP(5)) 160. DF(20)=DF(23/NP(5)) 160. DF(20)=DF(23/NP(5)) 161. DF(20)=DF(23/NP(5)) 162. DF(21)=DF(23/NP(5)) 163. DF(21)=DF(21)(1)=6.0*(DF(23)=DF(23)=DF(21)+DF(16)+DF(15))=1 164. DF(20)=DF(23/NP(5)) 165. DF(3)=DF(21)NP(5)) 166. C 2.0*(DF(24)=DF(24)-DF(24)=DF(24)=DF(14))=0.0*(DF(24)=DF(24	1	168
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1 4 1	DE (D1) DE D1 (NE (A)
143. C $(DP21+DP15+DP14) = DP18$ 144. DP (24) = DP24/NP(5) 145. CP25=DD1(1)*D1211=2.0*(DP20+DP21+DP19+DP16+DD1(4)+DP15) 145. CP25=DD1(2)*DD1(1)**2.0=4.0*(DP24+DP17+DD1(4))=8.0*(DP25+ 147. DP (35)=DP25/NP(5) 148. DP30=DD1(2)*DD1(1)**2.0=4.0*(DP24+DP17+DD1(4))=8.0*(DP25+ 149. CP19+DP20+DP16+DP15)=16.0*(DP21+DP14)=2.0*DP18 156. DP (30)=DP30/NP(6) 153. DP (23)=DP22/NP(6) 154. UP (23)=DP22/NP(6) 155. DP (22)=DP22-2.0*DP15=DD1(4) 156. DP (20)=DP22/NP(6) 157. UP (23)=DP22/NP(5) 157. UP (23)=DP22/NP(5) 158. CP19=3.0*DP16=DD1(4) 159. UP (27)=DP27/NP(5) 160. DP (28)=DP22/NP(5) 161. CP19=DP15=DD1(4) 162. DP (28)=DP22/NP(5) 163. DP (28)=DP22/NP(5) 164. DP (29)=DP22/NP(5) 165. DP (29)=DP22/NP(5) 166. C 2.0*(DP24+DD1(1)=6.0*(DP23+DP23+DP21+DP16+DP14)=UP21= 164. DP (29)=DP22/NP(5) 165. DP (31)=DP3(1/NP(5)) 166. C 2.0*(DP24+DD1(4))=3.0*DP19=DP17=10.0*DP14 167. DP (31)=DP3(1/NP(5)) 168. DP33=DD2(1)*NP(6) 170. DP (33)=DP33/NP(6) 171. DP (33)=DP33/NP(6) 172. C +DD1(4))=0.0*(DP27+DP28+DP29+DP18)=0.0*(DP23+DP21+ 173. DP (33)=DP33/NP(6) 174. DP (33)=DP33/NP(6) 175. C 8.0*(DP33+DP22)=2.0*(DP27+DP28+DP19)=DP17=0.0*DP17=0.0*DP18= 176. DP (33)=DP33/NP(6) 177. DP (33)=DP33/NP(6) 177. DP (33)=DP33/NP(6) 177. DP (33)=DP33/NP(6) 177. JP (3)=DP33/NP(6) 177. JP (3)=DP33/NP(6) 178. DP (3)=DP33/NP(6) 179. C +DP20+DP1(3)=2,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=3,0*(DP20+DP10)=		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
155. $ pr26=bu4(1)-6.0*DP19=3.0*DP15=4.0*DP14=DD1(4) $ 156. $ pr(26)=DP26/NP(5) $ 157. $ pr27=DP27=DP22=2.0*(DP23+DP21+DP15+DP14)= $ 158. $ C DP19=3.0*DP16=DD1(4) $ 159. $ pr(27)=DP27-NP(25) $ 160. $ pr29=DP29=2.0*(DP23+DP20)=3.0*(DP16+DP14)=DP21= $ 161. $ C DP19=DP15=DD1(4) $ 162. $ DP(28)=DP28/NP(5) $ 163. $ DP(28)=DP29/NP(5) $ 164. $ DP(29)=DP29/NP(5) $ 165. $ DP13=DD3(1)*DD1(1)=6.0*(DP23+DP20+DP21+DP16+DP15)= $ 166. $ C 2.0*(DP26+DD1(4))=3.0*DP25=12.0*DP19=DP17=10.0*DP14 $ 167. $ DP(31)=DP31/NP(6) $ 168. $ DP32=DD2(1)*82.0=DP26=2.0*(DP22+DP24+DD1(4))=8.0*(DP23+DP21+ $ 169. $ C DP13=DP32/NP(6) $ 171. $ DP(31)=DP31/NP(6) $ 172. $ C +DD1(4)=4.0*(DP27+DP28+DP19+DP15)=DP29=2.0*(DP22+DP25 $ 172. $ C +DD1(4)=0.0*(DP23+DP16)=8.0*DP21=6.0*DP17=8.0*DP14 $ 173. $ DP(33)=DP33/NP(6) $ 174. $ DP(33)=DP33/NP(6) $ 175. $ C 8.0*(DP33+DP22)=24.0*(DP23+DP14)=13-32.0*DP23=40.0*(DP23+1) $ 175. $ C 8.0*(DP33+DP24=28.0*(DP32+DP26+DP14)=32.0*(DP23+DP15)=29+DP16)=129+129 $ 176. $ C DP21=6.0*DP24=28.0*(DP23+DP16)=16.0*(DP23+DP15)=2.0*NP18 $ 177. $ IF (N, GE, 7) DP(34)=DP33/NP(7) $ 178. $ DP33=DD1(1)***+24.0*(DP32+DP22+DP15)=16.0*(DP33+DP23+DP18) $ 179. $ C *(DP27+DP28+DP14=12.0*(DP33+DP14)=2.0*(DP33+DP23+DP18) $ 179. $ DP33=DD1(1)***+24.0*(DP32+DP23+DP13)=-26.0*(DP33+DP23+DP18) $ 179. $ DP33=DD1(1)***+24.0*(DP32+DP23+DP15)=2.0*(DP13+DP29+DP19)=192.0 $ 180. $ C *(DP27+DP28+DP21+DP23)=16.0*(DP22+DP13)=-20.0*(DP13+DP29+DP19)=192.0 $ 183. $ DO 23.0 I=1,IG $ 184. $ DP(28-DP2+2.0*C(I)**27/NP(8) $ 185. $ C NCP(I_3)*DP(4)+DP(2)=DP(4)) $ 186. $ DP(3)=PM3P+C(1)+NKP(I_2)=XR*(NKP(I_0)*DP(12)+12.0*NKP(I_75) $ 187. $ C *DP(1)+DN(2)+DP(2)=DP(4)) $ 186. $ C NCP(I_3)*CP(4)+DP(2)=DP(4)) $ 187. $ C *DP(1)+NKP(I_1,2)*XR*(NKP(I_2)*DP(3)+8.0* $ 188. $ C NKP(I_3)*(DP(7)+3.0*DP(4))+4.0*NKP(I_2)*DP(5) $		·
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	155.	
158. C DF19-3.0*DF16-DD1(4) 159. UF (27)=DF27/NF(5) 160. DF28=DF28-2.0*(DP23+DF20)-3.0*(DF16+DF14)=DF21= 161. C DF19=DF15=DD1(4) 162. DF(28)=DF28/NF(5) 163. DF(29)=DF28/NF(5) 164. DF(29)=DF28/NF(5) 165. DF31=DD3(1)*DD1(1)-6.0*(DF28+DF23+DF20+DF21+DF16+DF15)= 166. C 2.0*(DF26+DD1(4))-3.0*DF12=1.0*DF19=DF17=10.0*DF14 167. DF(31)=DF31/NF(6) 168. DF32=DD2(1)**2.0=DF26=2.0*(DF22+DF24+DD1(4))=8.0*(DF23+DF21+ 169. C DF16+DF19+DF14)=-4.0*(DF27+DF28+DF20)=DF18=6.0*DF15* 170. DF132=DF20*D1(1)=-4.0*(DF27+DF28+DF10)=DF12=-2.0*(DF22+DF25) 172. C +DD1(4)=10.0*(DF27+DF28+DF10)=DF12=-2.0*(DF22+DF25) 173. DF(32)=DF33/NF(6) 174. DF33=DF93*DD1(1)=-4.0*(DF27+DF28+DF31+DF29+DF26+DF17+DD1(4))= 175. C 8.0*(DF33+DF22)=-24.0*(DF27+DF20+DF18)=0*DF28=40.0*(DF23+1)= 176. DF33=DF23/NF(6) 177. DF33=DD2(1)*DD1(1)**2.0=4.0*(DF32+DF31+DF29+DF26+DF17+DD1(4))= 178. DF33=DD2(1)*DD1(1)**2.0=4.0*(DF32+DF31+DF29+DF26+DF17+DD1(4))= 178. DF33=DD1(1)**4=24.0*(DF27+DF20+DF18)=6.0*(DF33+DF25+DF19)= 177. IF (N .6E, 7) DF(34)=DF34/NF(7) 178. DF33=DD1(1)**4=24.0*(DF32+DF20+DF18)=6.0*(DF33+DF25+DF19)= 179. C +DF20+DF16)=48.0*(DF32+DF22+DF15)=2.0*(DF14)= 177. IF (N .6E, 8) DF(35)=DF35/NF(8) 183. D0 210 I=1:IG 184. DM2F=DM3F+(C(I))*K2(ANKF(I,2))*(3*(NKF(I)=2.0)) 185. C *(DF(3)=DF(4))+DF(2)=DF(4)) 186. DM3F=DM3F+(C(I))*K2(4.0*DF(9)+6.0*DF(12)+12.0*NKF(I,5)) 187. C *DF(11)+NKF(I,4)*(24.0*DF(9)+6.0*DF(12)+12.0*NKF(I,5)) 187. C *DF(11)+NKF(I,4)*C24.0*DF(9)+6.0*DF(12)+12.0*NKF(I,5)) 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))	156+	
159. $UF(27) = UP27/NF(5)$ 160. $UF(27) = UP27/NF(5)$ 161. $C DF19 = DP15 = DD1(4)$ 162. $DF(28) = UP28/NF(5)$ 163. $UF29 = DF28DD1(1) - 6.0*(DP23 + DP16)$ 164. $DF(29) = DP29/NF(5)$ 165. $DF31 = DD3(1) \times DD1(1) - 6.0*(DP29 + DP23 + DP20 + DP21 + DP16 + DP15) - 166$ 166. $C 2.0*(DP26 + DD1(4)) = 3.0*DP25 - 12.0*DP19 - DP17 - 10.0*DP14$ 167. $DF(31) = IP31/NF(6)$ 168. $DF32 = DD2(1) \times 2.0*DP26 - 2.0*(DP22 + DP24 + DD1(4)) = 8.0*(DP23 + DP21 + 169)$ 170. $DF(32) = DP32/NF(6)$ 171. $DF33 = DP93 \times DP1(1) - 4.0*(DP27 + DP28 + DP19) - DP17 - 10.0*DP14$ 172. $DF33 = DP93 \times DP1(1) - 4.0*(DP27 + DP28 + DP19) - DP17 - 8.0*DP15^{-1}$ 173. $DF33 = DP93 \times DP1(1) - 4.0*(DP27 + DP28 + DP19) - DP29 - 2.0*(DP22 + DP28 + DP17) - DP29 - 2.0*(DP22 + DP28 + DP17) - DP17 - 8.0*DP14$ 173. $DF33 = DP33 \times NF(6)$ 174. $DF33 = DP33 \times NF(6)$ 175. $C 8.0*(DF33 + DP22) - 24.0*(DP27 + DP20 + DP14) - 32.0*DP28 - 40.0*(DP23 + 101(4)) - 175$ 175. $C 8.0*(DF33 + DP22) - 24.0*(DP27 + DP20 + DP14) - 32.0*DP28 - 40.0*(DP23 + 101(4)) - 175$ 176. $DF21) - 6.0*DP24 - 28.0*(DP17 + DP16) - DP30 - 16.0*(DP23 + DP17) - 20.0*DP18$ 177. $IF(N, GE, 7) DF(34) = DP34 - NP(7)$ 178. $DF33 = DD1(1) \times 24 - 24.0*DP34 - 12.0*(DF30 + DP18) - 96.0*(DP33 + DP29) - 192.0$ 180. $C *(DP27 + DP28 + DP21 + DP23) - 16.0*(DP26 + DP17) - 64.0*DD1(4)$ 182. $DP27 + DP28 + DP21 + DP23) - 16.0*(DP26 + DP17) - 64.0*DD1(4)$ 182. $DM2P = DP(4)$ 183. $DO 210 I = 1, IG$ 184. $DM2P = DM2P + 2.0*C(1) \times 27.NPF(1, 2) \times (2.0*(NK(1) - 2.0))$ 185. $C *(DP(3) - DP(4)) + DF(2) - DF(4))$ 184. $DM2P = DM3P + (C(1) / NKF(I, 2) - MF3(I) + DF(12) + 12.0*NKF(I, 5))$ 185. $C *(DP(3) - DF(4)) + DF(2) - DF(4))$ 186. $DM3P = DM3P + (C(1) / NKF(I, 2) + W33(NKF(I, 6) + DF(12) + 12.0*NKF(I, 5))$ 187. $C = NKF(I, 1, 3) \times (DP(7) + 3.0*DF(6)) + 4.0*NKF(I, 2) \times DP(5))$	157.	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	158.	C DP19-3.0*DP16-DD1(4)
	159.	UP(27)=DP27/NP(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	160.	DP28=DP28-2.0*(DP23+DP20)-3.0*(DP16+DP14)-DP21-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	161.	C DP19-DP15-DD1(4)
143. $DF29=DF7*DD1(1)-6.0*(DF23+DF16)$ 164. $DF(29)=DF29/NF(5)$ 165. $DF31=DD3(1)*DD1(1)-6.0*(DF23+DF20+DF21+DF16+DF15)-$ 166. $C: 2.0*(DF26+DD1(4))-3.0*DF25-12.0*DF19-DF17-10.0*DF14$ 167. $DF(31)=DF31/NF(6)$ 168. $DF32=DD2(1)**2:0-DF26-2:0*(DF22+DF24+DD1(4))-8.0*(DF23+DF21+$ 169. $C: DF16+DF19+DF14)-4.0*(DF27+DF28+DF120)-DF18-6.0*DF15^-$ 170. $DF(32)=DF25ND1(1)-4.0*(DF27+DF28+DF19+DF15)-DF29-2:0*(DF22+DF25)$ 172. $C: +DD1(4))-10.0*(DF23+DF16)-8.0*DF21-6.0*DF120-DF17-8.0*DF14$ 173. $DF(33)=DF33/NF(6)$ 174. $DF33=DF2(1)*DD1(1)**2:0-4.0*(DF22+DF31+DF29+DF26+DF17+DD1(4))-$ 175. $C: 8.0*(DF33+DF22)-24.0*(DF27+DF20+DF14)-32.0*DF28-40.0*(DF23+T75)-2.0*DF18)$ 177. $IF(N:GE, 7):DF(34)=DF34/NF(7)$ 178. $IF35=DD1(1)***4-24.0*(DF32+DF24+DF15)-2.0*(DF33+DF25+DF19)$ 179. $C: +DP20+DF16)-48.0*(DF32+DF24+DF22+DF15)-32.0*(DF33+DF25+DF19)$ 181. $IF(N:GE, 8):DF(35)=DF35/NF(8)$ 182. $DM2F=DF(4)$ 183. $DO: 21:1+IG$ 184. $DM2F=DM2F+2.0*C(1)**2/NKF(1,2)*(2.0*(NK(1)-2.0))$ 185. $C: *(DF(3)-DF(4))+DF(2)-DF(4))$ 186. $C: NKF(I,3)*(DF(7)+3.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0*XF(I,5))$		DF(28)=DF28/NF(5).
164. $DF(29)=DF29/NF(5)$ 165. $DF31=DD3(1)*DD1(1)-6.0*(DF28+DF23+DF20+DF21+DF16+DF15)-$ 166. $C:0*(DF26+DD1(4))-3.0*DF25-12.0*DF19-DF17-10.0*DF14$ 167. $DF(31)=DF31/NF(6)$ 168. $DF32=DD2(1)**2.0-DF26-2.0*(DF22+DF24+DD1(4))-8.0*(DF23+DF21+169.DF(32)=DF2(1)**2.0-DF26-2.0*(DF22+DF24+DD1(4))-8.0*(DF23+DF21+170.DF32=DP32/NF(6)171.DF33=DF93*DD1(1)-4.0*(DF27+DF28+DF19+DF15)-DF29-2.0*(DF22+DF25)172.C: +DD1(4))-10.0*(DF23+DF16)-8.0*DF21-6.0*DF20-DF17-8.0*DF14173.DF(33)=DF33/NF(6)174.DF34=DD2(1)*DD1(1)**2.0-4.0*(DF22+DF20+DF14)-32.0*DF28-40.0*(DF23+.176.C: MC(F33+DF22)-24.0*(DF27+DF20+DF14)-32.0*DF28-40.0*(DF23+.177.IF: (N: GE: 7): DF(34)=DF34/NF(7)178.DF35=DD1(1)**4-24.0*DF34-12.0*(DF30+DF18)-96.0*(DF33+DF25+DF19)179.C: M(DF27+DF28+DF24+DF22+DF15)-32.0*(DF31+DF29)-192.0180.C: *(DF27+DF28+DF21+DF23)-16.0*(DF26+DF17)-64.0*DF14-8.0*DD1(4).181.IF: (N: GE: 8): DF(35)=DF35/NF(8)183.DO: 21: 0=1:1:GDM2F=DM2F+2.0*C(1)**2/NKF(1,2)*(2.0*(NK(1)-2.0))185.C: *(DF(3)-DF(4))+DF(2)-DF(4))184.DM2F=DM3F+(C(1)/NKF(1,2))*(2.0*(NK(1)-2.0))185.C: *(DF(3)-DF(4))+DF(2)-DF(4))184.DM3F=DM3F+(C(1)/NKF(1,2))*(2.0*(NKF(1,6)*DF(12)+12.0*NKF(1,5))187.C: MDF(1)+NKF(1,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0*XF(1,5))188.C: NKF(1,3)*(DF(7)+3.0*DF(6))+4.0*NKF(1,2)*DF(5))$		DP29=DP7*DD1(1)-6.0*(DP23+DP16)
$\begin{array}{llllllllllllllllllllllllllllllllllll$		DP(29)=DP29/NP(5)
166.C $2.0*(DP26+DD1(4))-3.0*DP25-12.0*DP19-DP17-10.0*DP14$ 167. $DP(31)=DP31/NP(6)$ 168. $DP32=DD2(1)**2.0-DP26-2.0*(DP22+DP24+DD1(4))-8.0*(DP23+DP21+$ 169. $DP32=DD2(1)**2.0-DP26-2.0*(DP22+DP20)-DP18-6.0*DP15^-$ 170. $DP(32)=DP32/NP(6)$ 171. $DP33=DP95*DD1(1)-4.0*(DP27+DP28+DP19+DP15)-DP29-2.0*(DP22+DP25)$ 172. $C + DD1(4))-10.0*(DP23+DP16)-8.0*DP21-6.0*DP20-DP17-8.0*DP14173.DP(33)=DP33/NP(6)174.DP(33)=DP33/NP(6)175.C * 0*DP24-28.0*(DP27+DP20+DP14)-32.0*DP28-40.0*(DP23+.)176.DP21)-6.0*DP24-28.0*(DP17+DP16)-DP30-16.0*(DP25+DP15)-2.0*DP18177.IF (N - GE, 7) DP(34)=DP34/NP(7)178.DP35=DD1(1)**4-24.0*DP34-12.0*(DP30+DP18)-96.0*(DP33+DP25+DP19)179.DP35=DD1(1)**4-24.0*DP34-12.0*(DP30+DP18)-96.0*(DP33+DP25+DP19)179.DP35=DD1(1)**4-24.0*DP34-DP24+DP22+DP15)-32.0*(DP31+DP29)-192.0180.C *(DP27+DP28+DP21+DP23)-16.0*(DP26+DP17)-64.0*DP14-8.0*DD1(4)181.IF (N - GE, 8) DP(35)=DP35/NP(8)183.DO 210 I=1,IG184.DM2P=DM2P+2.0*C(I)**2/NKP(I,2)*(2.0*(NK(I)-2.0))185.C *(DP(3)-DP(4))+DP(2)-DP(4))186.DM2P=DM3P+(CI)/NKP(I,2))*(2.0*(NKF(I,6)*DP(12)+12.0*NKP(I,5))187.DP(13)+DN2P(1)/NKP(I,2))*(2.0*NKP(I,5))188.C NKP(I,3)*(DP(7)+3.0*DP(6))+4.0*NKP(I,2)*DP(5))$		DP31=DD3(1)*DD1(1)-6.0*(DP28+DP23+DP20+DP21+DP16+DP15)-
$\begin{array}{llllllllllllllllllllllllllllllllllll$		C 2.0*(DP26+DD1(4))-3.0*DP25-12.0*DP19-DP17-10.0*DP14
168. $DF32=DD2(1)**2.0-DF26-2.0*(DF22+DF24+DD1(4))-8.0*(DF23+DF21+169)$ 169. $C DF16+DF19+DF14)-4.0*(DF27+DF28+DF20)-DF18-6.0*DF15^{-1}$ 170. $DF(32)=DF32/NF(6)$ 171. $DF33=DF9S*DD1(1)-4.0*(DF27+DF28+DF19+DF15)-DF29-2.0*(DF22+DF25)$ 172. $C +DD1(4))-10.0*(DF23+DF16)-8.0*DF21-6.0*DF20-DF17-8.0*DF14$ 173. $DF33=DF93*NF(6)$ 174. $DF34=DD2(1)*DD1(1)**2.0-4.0*(DF32+DF31+DF29+DF26+DF17+DD1(4))-10+34=DD2(1)*DD1(1)**2.0-4.0*(DF32+DF31+DF29+DF26+DF17+DD1(4))-10+34=DD2(1)*DD1(1)**2.0-4.0*(DF32+DF31+DF29+DF26+DF15)-2.0*NFP18175.C 8.0*(DF33+DF22)-24.0*(DF27+DF20+DF14)-32.0*DF28-40.0*(DF23+1)-2.0*NFP18176.DF21)-6.0*DF24-28.0*(DF19+DF16)-DF30-16.0*(DF25+DF15)-2.0*NFP18177.IF (N . GE. 7) DF(34)=DF34/NF(7)178.DF35=DD1(1)**4-24.0*DF34+DF22+DF15)-32.0*(DF31+DF29)-192.0180.C *(DF27+DF28+DF21+DF23)-16.0*(DF26+DF17)-64.0*DF14-8.0*DD1(4)181.IF (N . GE. 8) DF(35)=DF35/NF(8)182.DM2F=DM2F2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)-2.0))183.DO 210 I=1,IGDM2F=DM2F2+2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)-2.0))184.DM2F=DM2F2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)-2.0))185.C *(DF(3)-DF(4))+DF(2)-DF(4))186.DM2F=DM3F+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5))187.C *DP(11)+NKF(I,4)*(24.0*DF(9)+8.0*NKF(I,2)*DF(5))$		
169. C DF16+DF19+DF14)-4.0*(DF27+DF28+DF20)-DF18-6.0*DF15 170. DF(32)=DF32/NF(6) 171. DF33=DF9S*DD1(1)-4.0*(DF27+DF28+DF19+DF15)-DF29-2.0*(DF22+DF25 172. C +DD1(4))-10.0*(DF23+DF16)-8.0*DF21-6.0*DF20-DF17-8.0*DF14 173. DF(33)=DF33/NF(6) 174. DF(33)=DF33+DF(2))-24.0*(DF27+DF20+DF14)-32.0*DF28-40.0*(DF23+ 176. C 8.0*(DF33+DF22)-24.0*(DF27+DF20+DF14)-32.0*DF28-40.0*(DF23+ 176. C DF21)-6.0*DF24-28.0*(DF19+DF16)-DF30-16.0*(DF25+DF15)-2.0*DF18 177. IF (N.GE. 7) DF(34)=DF34/NF(7) 178. JF35=DD1(1)***4-24.0*DF34-12.0*(DF30+DF18)-96.0*(DF33+DF25+DF19) 179. C +DF20+DF16)-48.0*(DF32+DF24+DF22+DF15)-32.0*(DF31+DF29)-192.0 180. C *(DF27+DF28+DF21+DF23)-16.0*(DF26+DF17)-64.0*DF14-8.0*DD1(4) 181. IF (N.GE. 8) DF(35)=DF35/NF(8) 182. DM2F=DF(4) 183. DO 210 I=1,IG 184. DM2F=DF(4) 185. C *(DF(3)-DF(4))+DF(2)-DF(4)) 185. C *(DF(3)-DF(4))+DF(2)-DF(4)) 186. DM3F=DM3F+(C(I)/NKF(I,2))*(2.0*(NK(I)-2.0) 187. C *DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0* 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))		DP32=DD2(1)**2.0~DP26-2.0*(DP22+DP24+DD1(4))-8.0*(DP23+DP21+
170.DF(32)=DF32/NF(6)171.DF33=DF9S*DD1(1)-4.0*(DF27+DF28+DF19+DF15)-DF29-2.0*(DF22+DF25172. $+DD1(4)$)-10.0*(DF23+DF16)-8.0*DF21-6.0*DF20-DF17-8.0*DF14173.DF(33)=DF33/NF(6)174.DF(33)=DF33/NF(6)175.C 8.0*(DF33+DF22)-24.0*(DF27+DF20+DF14)-32.0*DF28-40.0*(DF23+.)176.C DF21)-6.0*DF24-28.0*(DF19+DF16)-DF30-16.0*(DF25+DF15)-2.0*DF18177.IF (N .GE. 7) DF(34)=DF34/NF(7)178.DF35=DD1(1)**4-24.0*DF34-12.0*(DF30+DF18)-96.0*(DF33+DF25+DF19)179.C +DF20+DF16)-48.0*(DF32+DF24+DF22+DF15)-32.0*(DF31+DF29)-192.0180.C *(DF27+DF28+DF21+DF23)-16.0*(DF26+DF17)-64.0*DF14-8.0*DD1(4)181.IF (N .GE. 8) DF(35)=DF35/NF(8)182.DM2F=DF(4)183.D0 210 I=1,IG184.DM2F=DF(4)+DF(2)-DF(4))185.C *(DF(3)-DF(4))+DF(2)-DF(4))186.DM3F=DM3F+(C(I)/NKF(I,2))*(2.0*(NK(I)-2.0))187.C *DP(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0*188.C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))		C DP16+DP19+DP14)-4.0*(DP27+DP28+DP20)-DP18-6.0*DP15-
171.DP33=DP9S*DD1(1)-4.0*(DP27+DP28+DP19+DP15)-DP29-2.0*(DP22+DP25172.C+DD1(4))-10.0*(DP23+DP16)-8.0*DP17-8.0*DP17-8.0*DP14173.DP33/NF(6)174.DP34=DD2(1)*DD1(1)**2.0-4.0*(DP32+DP31+DP29+DP26+DP17+DD1(4))-175.C0.0*(DP27+DP20+DP11)-32.0*DP28-40.0*(DP23+.176.C0.0*(DP24-28.0*(DP27+DP20+DP14)-32.0*DP28-40.0*(DP23+.176.DP21)-6.0*DP24-28.0*(DP19+DP16)-DP30-16.0*(DP25+DP15)-2.0*DP18177.IF (N. GE. 7) DP(34)=DP34/NF(7)178.DP35=DD1(1)***4-24.0*DP34-NF(7)179.C +DP20+DP16)-48.0*(DP32+DP24+DP22+DP18)-32.0*(DP31+DP29)-192.0180.C *(DP27+DP28+DP21+DP23)-16.0*(DP26+DP17)-64.0*DP14-8.0*DD1(4)181.IF (N. GE. 8) DF(35)=DP35/NF(8)182.DM2P=DP(4)183.D0 210 I=1,IG184.DM2P=DM3P+2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)-2.0)185.C186.DM3P+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5)187.C *DP(11)+NKF(I,4)*(24.0*DF(9)+8.0*DP(10)+6.0*DF(8))+8.0*188.C		DP(32)=DP32/NP(6)
<pre>172. C +DD1(4))-10.0*(DP23+DF16)-8.0*DP21-6.0*DP20-DP17-8.0*DP14 173. DF(33)=DF33/NP(6) 174. DF34=DD2(1)*DD1(1)**2.0-4.0*(DF32+DF31+DF29+DF26+DF17+DD1(4))- 175. C 8.0*(DF33+DF22)-24.0*(DF27+DF20+DF14)-32.0*DF28-40.0*(DF23+ 176. C DF21)-6.0*DF24-28.0*(DF19+DF16)-DF30-16.0*(DF25+DF15)-2.0*DF18 177. IF (N .GE. 7) DF(34)=DF34/NF(7) DF35=DD1(1)**4-24.0*DF34-12.0*(DF30+DF18)-96.0*(DF33+DF25+DF19) 179. C +DF20+DF16)-48.0*(DF32+DF24+DF22+DF15)-32.0*(DF31+DF29)-192.0 180. C *(DF27+DF28+DF21+DF23)-16.0*(DP26+DF17)-64.0*DF14-8.0*DD1(4) 181. IF (N .GE. 8) DF(35)=DF35/NF(8) 182. DM2F=DF(4) 183. DO 210 I=1,IG 184. DM2F=DM2F+2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)-2.0) (*(DF(3)-DF(4))+DF(2)-DF(4)) 186. DM3F=DM3F+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5)) 187. C *DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0* 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))</pre>		DP33=DP95*DD1(1)-4.0*(DP27+DP28+DP19+DP15)-DP29-2.0*(DP22+DP25)
173. DF(33)=DF33/NF(6) 174. DF34=DD2(1)*DD1(1)**2.0-4.0*(DF32+DF31+DF29+DF26+DF17+DD1(4))- 175. C 8.0*(DF33+DF22)-24.0*(DF27+DF20+DF14)-32.0*DF28-40.0*(DF23+. 176. DF21)-6.0*DF24-28.0*(DF19+DF16)-DF30-16.0*(DF25+DF15)-2.0*DF18 177. IF (N .GE. 7) DF(34)=DF34/NF(7) 178. DF35=DD1(1)**4-24.0*DF34-12.0*(DF30+DF18)-96.0*(DF33+DF25+DF19) 177. IF (N .GE. 7) DF(34)=DF34/NF(7) 178. DF35=DD1(1)**4-24.0*DF34-12.0*(DF30+DF18)-96.0*(DF33+DF25+DF19) 177. IF (N .GE. 7) DF(34)=DF34/NF(7) 178. DF35=DD1(1)**4-24.0*DF34-12.0*(DF30+DF18)-96.0*(DF33+DF25+DF19) 177. IF (N .GE. 8) DF(32+DF24+DF22+DF15)-32.0*(DF31+DF29)-192.0 180. C *(DF27+DF28+DF21+DF23)-16.0*(DF26+DF17)-64.0*DF14-8.0*DD1(4) 181. IF (N .GE. 8) DF(35)=DF35/NF(8) 182. DM2F=DF(4) 183. DO 210 I=1,IG 184. DM2F=DM2F+2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)-2.0)) 185. C *(DF(3)-DF(4))+DF(2)-DF(4)) 186. DM3F=DM3F+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5)) 187. C *DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0* 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))		
174. $DF34=DD2(1)*DD1(1)**2.0-4.0*(DF32+DF31+DF29+DF26+DF17+DD1(4)) =$ 175. $C = 8.0*(DF33+DF22) = 24.0*(DF27+DF20+DF14) = 32.0*DF28=40.0*(DF23+.)$ 176. $DF21 = -6.0*DF24 = 28.0*(DF19+DF16) = DF30=16.0*(DF25+DF15) = 2.0*DF18$ 177. $IF = (N - GE, 7) = DF(34) = DF34 = DF34/NF(7)$ 178. $DF35=DD1(1)**4=24.0*DF34=12.0*(DF30+DF18) = 96.0*(DF33+DF25+DF19)$ 179. $C + DF20+DF16 = 48.0*(DF32+DF24+DF22+DF15) = 32.0*(DF31+DF29) = 192.0$ 180. $C *(DF27+DF28+DF21+DF23) = 16.0*(DF26+DF17) = 64.0*DF14=8.0*DD1(4)$ 181. $IF = (N - GE, 8) = DF(35) = DF35/NF(8)$ 182. $DM2F=DF(4)$ 183. $DO = 210 = I=1, IG$ 184. $DM2F=DM2F+2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)=2.0))$ 185. $C = *(DF(3)-DF(4))+DF(2)-DF(4)$ 186. $DM3F=DM3F+(C(I)/NKF(I,2))*3*(NKF(I,6)*DF(12)+12.0*NKF(I,5))$ 187. $C = *DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0*$ 188. $C = NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))$	-	· · ·
175.C $8.0*(DF33+DF22)-24.0*(DF27+DF20+DF14)-32.0*DF28-40.0*(DF23+)$ 176.CDF21)-6.0*DF24-28.0*(DF19+DF16)-DF30-16.0*(DF25+DF15)-2.0*DF18177.IF(N.GE.7)DF(34)=DF34/NF(7)178.DF35=DD1(1)**4-24.0*DF34-12.0*(DF30+DF18)-96.0*(DF33+DF25+DF19)179.C+DF20+DF16)-48.0*(DF32+DF24+DF22+DF15)-32.0*(DF31+DF29)-192.0180.C*(DF27+DF28+DF21+DF23)-16.0*(DF26+DF17)-64.0*DF14-8.0*DD1(4)181.IF(N.GE.8)DP(35)=DF(4)DF(35)=DF35/NF(8)183.DO210184.DM2F=DM2F+2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)-2.0))185.C*(DF(3)-DF(4))+DF(2)-DF(4))186.DM3F=DM3F+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5))187.C*DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0*188.CNKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))		
<pre>176. C DF21)-6.0*DF24-28.0*(DF19+DF16)-DF30-16.0*(DF25+DF15)-2.0*DF18 177. IF (N .GE. 7) DF(34)=DF34/NF(7) 178. DF35=DD1(1)**4-24.0*DF34-12.0*(DF30+DF18)-96.0*(DF33+DF25+DF19 C +DF20+DF16)-48.0*(DF32+DF24+DF22+DF15)-32.0*(DF31+DF29)-192.0 180. C *(DF27+DF28+DF21+DF23)-16.0*(DF26+DF17)-64.0*DF14-8.0*DD1(4) 181. IF (N .GE. 8) DF(35)=DF35/NF(8) 182. DM2F=DF(4) 183. DO 210 I=1.IG 184. DM2F=DM2F+2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)-2.0) C *(DF(3)-DF(4))+DF(2)-DF(4)) 185. C *(DF(3)-DF(4))+DF(2)-DF(4)) 186. DM3F=DM3F+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5)) 187. C *DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0* 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))</pre>		
177.IF (N .GE. 7) $DP(34) = DP34/NP(7)$ 178. $DP35 = DD1(1)***4 - 24.0*DP34 - 12.0*(DP30 + DP18) - 96.0*(DP33 + DP25 + DP19)$ 179. $C + DP20 + DP16) - 48.0*(DP32 + DP24 + DP22 + DP15) - 32.0*(DP31 + DP29) - 192.0$ 180. $C *(DP27 + DP28 + DP21 + DP23) - 16.0*(DP26 + DP17) - 64.0*DP14 - 8.0*DD1(4)$ 181.IF (N .GE. 8) $DP(35) = DP35/NP(8)$ 182. $DM2P = DP(4)$ 183.DO 210 I=1,IG184. $DM2P = DM2P + 2.0*C(I)**2/NKP(I,2)*(2.0*(NK(I) - 2.0))$ 185.C *(DP(3) - DP(4)) + DF(2) - DP(4))186. $DM3P = DM3P + (C(I)/NKP(I,2))**3*(NKP(I,6)*DP(12) + 12.0*NKP(I,5))$ 187.C *DP(11) + NKP(I,4)*(24.0*DP(9) + 8.0*DP(10) + 6.0*DP(8)) + 8.0*188.C NKP(I,3)*(DP(7) + 3.0*DP(6)) + 4.0*NKP(I,2)*DP(5))		
<pre>178. 178. 178. 179. C +DF20+DF16)-48.0*(DF34-12.0*(DF30+DF18)-96.0*(DF33+DF25+DF19) 180. C +DF20+DF16)-48.0*(DF32+DF22+DF15)-32.0*(DF31+DF29)-192.0 180. C *(DF27+DF28+DF21+DF23)-16.0*(DF26+DF17)-64.0*DF14-8.0*DD1(4) 181. 1F (N .GE. 8) DF(35)=DF35/NF(8) 182. DM2F=DF(4) 183. DO 210 I=1,IG 184. DM2F=DM2F+2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)-2.0)) 185. C *(DF(3)-DF(4))+DF(2)-DF(4)) 186. DM3F=DM3F+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5)) 187. C *DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0* 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))</pre>		•
<pre>179. C +DP20+DP16)-48.0*(DP32+DP24+DP22+DP15)-32.0*(DP31+DP29)-192.0 180. C *(DP27+DP28+DP21+DP23)-16.0*(DP26+DP17)-64.0*DP14-8.0*DD1(4) 181. IF (N .GE. 8) DP(35)=DF35/NP(8) 182. DM2P=DF(4) 183. DO 210 I=1,IG 184. DM2P=DM2P+2.0*C(I)**2/NKP(I,2)*(2.0*(NK(I)-2.0) 185. C *(DP(3)-DP(4))+DP(2)-DP(4)) 186. DM3P=DM3P+(C(I)/NKP(I,2))**3*(NKP(I,6)*DP(12)+12.0*NKP(I,5)) 187. C *DP(11)+NKP(I,4)*(24.0*DP(9)+8.0*DP(10)+6.0*DP(8))+8.0* 188. C NKP(I,3)*(DP(7)+3.0*DP(6))+4.0*NKP(I,2)*DP(5))</pre>		
<pre>180. C *(DF27+DF28+DF21+DF23)-16.0*(DF26+DF17)-64.0*DF14-8.0*DD1(4) 181. IF (N .GE. 8) DF(35)=DF35/NF(8) 182. DM2F=DF(4) 183. DO 210 I=1.IG 184. DM2F=DM2F+2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)-2.0) 185. C *(DF(3)-DF(4))+DF(2)-DF(4)) 186. DM3F=DM3F+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5)) 187. C *DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0* 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))</pre>		
181. IF (N .GE. 8) DP(35)=DF35/NP(8) 182. DM2F=DF(4) 183. DO 210 I=1,IG 184. DM2F=DM2F+2.0*C(I)**2/NKP(I,2)*(2.0*(NK(I)-2.0)) 185. C *(DF(3)-DF(4))+DF(2)-DF(4)) 186. DM3F=DM3F+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5)) 187. C *DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0* 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))		$c = \psi(neo \pi neo $
182. DM2F=DF(4) 183. DO 210 I=1,IG 184. DM2F=DM2F+2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)-2.0)) 185. C *(DF(3)-DF(4))+DF(2)-DF(4)) 186. DM3F=DM3F+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5)) 187. C *DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0* 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))		
183. DO 210 I=1,IG 184. DM2F=DM2F+2.0*C(I)**2/NKF(I,2)*(2.0*(NK(I)-2.0)) 185. C *(DF(3)-DF(4))+DF(2)-DF(4)) 186. DM3F=DM3F+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5)) 187. C *DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0* 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))		•
184. DM2P=DM2P+2.0*C(I)**2/NKP(I,2)*(2.0*(NK(I)-2.0)) 185. C 185. C 186. DM3P=DM3P+(C(I)/NKP(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKP(I,5)) 187. C 188. C 0KF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))		
185. C *(DF(3)-DF(4))+DF(2)-DF(4)) 186. DM3F=DM3F+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5)) 187. C *DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0* 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))		
186. DM3F=DM3F+(C(I)/NKF(I,2))**3*(NKF(I,6)*DF(12)+12.0*NKF(I,5)) 187. C 187. C 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))		
187. C #DF(11)+NKF(I,4)*(24.0*DF(9)+8.0*DF(10)+6.0*DF(8))+8.0* 188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))		
188. C NKF(I,3)*(DF(7)+3.0*DF(6))+4.0*NKF(I,2)*DF(5))		
しんダン・ニート・コート 日内有世童月内有世堂しにしてナノバハビしてすぎナナ本本な本で当って本以ハビしてすざナホロビ いしのチャ		
and a second	T Q A +	, μηνη - μηνη τις σι τις και τις αντικής την αντάλια + Ολακικη και του του του τ

168

Č

							-	
						1		
							·	
			•			·	169	•
	.*							•
L90.		16.0*NKF(1,3						
L91.	∠ c	NKP(I+4)*(4.	0*DF(17)	+3.0*DF((18)+24.	0*(DF(19)+DF(20)+	-2.0*
1924	C. C	DF(21))+12.0	*(DP(22)	+4.0*DF((23)))+1	6.0*NKP(1,5)*(3.0)*DF(24
L93.		+6.0*DF(25)+	DP(26)+1	2.0*(DF)	(27)+DF (28))+2+0	米印刷(29))十	4.0*
[94.		NKP(I,6)*(3,					(32)+6.0%	KDF(33)
195.	1 1	+24.0*NKR(I,		$\rightarrow + NKF(I)$	78)*DF(3	5))		
196+	\backslash	DO 220 J=1,I				,		
197.	\mathbf{X}	HF(I .EQ.			1	407 IN 47 XI		1011 / H /11 \ L
198.		1003P=003P					ハーマエチタノ米ム	ሆ (ተፈንተ
192.	C C	0*NKF(1-3)					منتقب مستواهد و مرور و او ا	سر د د سر سر از .
200.		DM4P=DM4P+4						
201.	C	8.0*NKF(1,						
202.	C	DF(31)+24.						
203.	ç	+3,0*(C(I)						4
204.	С	NKP(J,2)*E		-				(F(J+3)
205.	C ·	DP(24)±2.0						A 1 11 11 11 11 11 11
206+	C C	*DP(30)+18						•
207.	U	3)+NKP(1+3)	•		5474NKE((コッキノ米ガド)	(92)).
208• · ·		IF (IG →E 10 230 K=		U LU LLU				
209. 210.	•		1910 EQ+ K +C		<u>а. къ со</u>	TO 230		
211.			□ <u>□ 0</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
212.	•						*C(K)*(2	.0*DF(3
213.	С						*DP(35))	
214	5- 5-							
215.	•	•) L=1,IG	. –				
216+	· · ·			. •0R• J	.EQ. L	.OR. K .	EQ.L) G	<u>р. то: 24</u>
217.	4		}₽=DM4P+C	1				
218.	240	CONTIN	10E		e			
219.	230	CONTINUE	•					· •
220.	220	CONTINUE						
221.	210 001			•	•			
222.		=DM2F-DF(1)*>						
223.		3=DM3F-3.0*DF		1F(1)**3	·			•
224.		<ew=dm3 (dv*)<="" td=""><td></td><td>•</td><td>· · · ·</td><td></td><td>•</td><td></td></ew=dm3>		•	· · · ·		•	
225.		DRMAT (10F6.3)				~~~~		
226.		4=₽M4P-(4.0*)	IN340,0%I	J∕¥[IF(1])	+ <i>U</i> F(1)**	(3)米田片(1)	I	
227.		JR=DM4/DV/DV	,					•
228.		1≠DSKEW*DSKEU		<i>.</i> .			- ·.	
229.		01=2.0*DKUR-					· /	r.
230.		1=DB1*(DKUR+) 0*DB1-4:000	5+07米米2/0	(4.30#(4.)•0¥UBI))	CZ+OWDKD	r
		0*DB1-6,0))			mus 4		1	
231,		RITE(6,91) N			•			
232.	e 1 m. 1	LTE(6,91) DV: DTTE(4,91) ()			m4 .			
232 233		RITE(6,91) ()		1,201				
232 233 234 -	. ω		75 401					
232 233. * 234. 235. *	. WI 91 FC	DRMAT(/'//3F;	35.12)					•
232 233 234 235 235 235	. WI 91 FC STC	DF .	35.12)				•	
232 233 234 235 235 236 237	04 91 FC STC EN	DF .	35.12)				•	·
232 233 234 235 235 235	. WI 91 FC STC	DF .	35.12)	••			•	
232 233 234 235 235 236 237	04 91 FC STC EN	DF .	35.12)					
232 233 234 235 235 236 237	04 91 FC STC EN	DF .	35.12) •				•	
232 233 234 235 235 236 237	04 91 FC STC EN	DF .	35.12)			·		
232 233 234 235 235 236 237	04 91 FC STC EN	DF .	35.12)					
232 233 234 235 235 236 237	04 91 FC STC EN	DF .	35.12)				•	
232 233 234 235 235 236 237	04 91 FC STC EN	DF .	35.12)	•••	•		•	
232 233 234 235 235 236 237	04 91 FC STC EN	DF .	35.12)		•			•

 239.
 4
 4

 240.
 12
 17

 241.
 14
 13

 242.
 10
 11

 243.
 .13
 9

 244.
 .//.

•

•

C •

•

REFERENCES

- Andrews, D. F., Bickel, P. J. Hampel, F. R., Rogers, W. H. and Tukey, J. W. (1972). Robust Estimates of Location: Survey and Advances. Princeton: Princeton University Press.
- Berry, K. J. (1982). Algorithm AS 179: Enumeration of all permutations of multi-sets with fixed repetition numbers. Appl. Statist., 31, 169-173.
- Berry, K. J. and Mielke, P. W. (1983). Moment approximations as an alternative to the F test in analysis of variance. Brit. J. Math. Statist. Psych., 34, 243-252.
- Bickel, P. J. (1976). Another look at robustness. Scand. J. Statist., 3, 145-168.

Boneau, C. A. (1960). The effects of violations of assumptions underlying the t-test. <u>Psychol. Bull.</u>, 57, 49-64.

Box, G.E.P. and Anderson, S. L. (1955). Permutation theory in derivation of robust criteria and the study of departure from assumptions. <u>J. R. Statist. Soc.</u>, B, -17, 1-26.

Brockwell, P. J., Mielke, P. W. and Robinson, J. (1982). On the non-normal invariance principle for multiresponse permutation procedures. <u>Austral. J. Statist.</u>, 24, 33-41.

Dwyer, P. S. and Tracy, D. S. (1964). A combinatorial method for product of two polykays with some general, formulae. Ann. Math. Statist., 35, 1174-1185.

Elderton, W. P. and Johnson, N. L. (1969). Systems of Frequency Curves. Cambridge: Cambridge University Press.

Fisher, R. A. (1935). The Design of Experiments. Edinburgh: Oliver and Boyd.

Gauss, C. F. (1821). Göttingische gelehrte Anzeigen, pp. 321-327 (reprinted in Werke Bd. 4, p. 98).

Hawkes, R. K., (1971). The multivariate analysis of ordinal measures. Amer. J. Social., 76, 908-926.

Hoeffding, W. (1948). A class of statistics with asymptotic normality. <u>Ann. Math. Statist</u>., 19, 293-325.

Huber, P. J. (1972), Robust statistics: A review. Ann. Math. Statist., 43, 1041-1067.

Kendall, M. G. and Stuart, A. (1979). <u>The Advanced Theory</u> of Statistics. Vol. II. 4th ed. London: Charles Griffin.

Keppel, G. (1973). Design and Analysis: A Researcher's Handbook. Englewood Cliffs: Prentice Hall.

Labovitz, S. (1967). Some observations on measurement/ and statistics. Social Forces, 46, 151-160.

Mantel, N. and Valand, R. S. (1970). A technique of nonparametric multivariate analysis. <u>Biometrics</u>, 26, 547-558.

Mielke, P. W. (1978). Clarification and appropriate inferences for Mantel and Valand's nonparametric mult/ivariate analysis technique. <u>Biometrics</u>, 34, 277-282.

6

Mielke, P. W. (1979a). Some parametric, non-parametric and permutation inference procedures resulting from A weather modification experiments. <u>Commun. Statist</u>. -Theor. Meth., A. 8, -1083-1096.

Mielke, P.W (1979b). On asymptotic non-normality of null distributions of MRPP statistics. <u>Commun. Statist.</u> -Theor. Meth., A.8, 1541-1550

Mielke, P. W. and Berry, K. J. (1982). An extended class of permutation techniques for matched pairs. <u>Commun.</u> Statist.-Theor. Meth., A.11, 1197-1207.

Mielke, P. W., Berry, K. J. and Brier, G. W. (1981a). Application of multi-response permutation procedures for examining seasonal changes in monthly mean sealevel pressure, patterns. <u>Mon. Weather Rev.</u>, 109, 120-126.

Mielke, P. W., Berry, K. J., Brockwell, P. J. and Williams, J. S. (1981b). A class of non-parametric tests based on multi-response permutation procedures. Biometrika, 68, 720-724.

- Mielke, P. W., Berry, K. J. and Johnson, E. S. (1976). Multiresponse permutation procedures for a priori classifications. <u>Commun. Statist.-Theor. Meth.</u>, A. 5, 1409-1424.
- Mielke, P. W., Berry, K. J. and Medina, J. G. (1982). Climax I and II: Distortion resistant residual analyses. J. Appl. Meteor., 21, 788-792.
- Mielke, P. W. and Iyer, H. K. (1982). Permutation techniques for analyzing multiresponse data from randomized block experiments. <u>Commun. Statist.-Theor. Meth.</u>, A. 11, 1427-1437.
- O'Reilly, F. J. and Mielke, P. W. (1980). Asymptotic normality of MRPP statistics from invariance principles of U-statistics. <u>Commun. Statist.-Theor.</u> Meth., A. 9, 629-637.
- Puri, M. L. and Sen, P. K. (1970). Nonparametric Methods in Multivariate Analysis. New York: John Wiley.
- Randles, R. H. and Hogg, R. V. (1973). Adaptive distribution free tests. <u>Commun. Statist.-Theor. Meth.</u>, A. 2, 337-356.
- Shapiro, S. S. and Gross, A. J. (1981). <u>Statistical</u> Modelling Techniques. New York: Marcel Dekker.
- Siegel, S. (1956). <u>Nonparametric Statistics</u>. New York: McGraw Hill.

Somers, R. H. (1968). An approach to multivariate analysis of ordinal measures. <u>Amer⁰. J. Sociol</u>., 71, 908-926.

Still, A. W. and White, A. P. (1981). The approximate randomization test as an alternative to the F-test in analysis of variance. <u>Brit. J. Math. Statist.</u> Psych., 34, 234-252.

VITA AUCTORIS

1

1950	Born 4th September in Karachi, Pakistan
1968	Matriculated H.R.H. Aga Khan III Secondary School, Karachi, Pakistan
1973	B.Sc. (Hons.), Statistics, University of Karachi, Pakistan
1974	M.Sc., Statistics, University of Karachi, Pakistan
1975 .	Appointed Lecturer, Department of Statistics, University of Karachi, Pakistan
1979	Joined Graduate Program at the University of Windsor, Windsor, Ontario, Canada
1981	M.Sc., Mathematics, University of Windsor

1-1

174

s

S

v.

ć