
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

Implementation of composite semijoins using a variation of Implementation of composite semijoins using a variation of

Bloom filters. Bloom filters.

Yongmei Zhu
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Zhu, Yongmei, "Implementation of composite semijoins using a variation of Bloom filters." (2004).
Electronic Theses and Dissertations. 2391.
https://scholar.uwindsor.ca/etd/2391

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2391&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2391?utm_source=scholar.uwindsor.ca%2Fetd%2F2391&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Implementation of Composite Semijoins

Using A Variation of Bloom Filters

By

Yongmei Zhu

A Thesis

Submitted to the Faculty of Graduate Studies and Research

Through the School of Computer Science

In Partial Fulfilment of the Requirements for the

The Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2004

Yongmei Zhu 2004

© All Right Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 ^ 1
National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationals
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-92534-X
Our file Notre reference
ISBN: 0-612-92534-X

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de ce manuscrit.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
dissertation.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Different from a centralized database system, distributed query processing involves data

transmission among different sites and this communication cost is a dominant factor

compared to local processing cost. So, the objective of distributed query optimization is

to find strategies to minimize the amount of data transmitted over the network.

Since optimal query processing in distributed database systems has been shown to be an

NP-hard problem, heuristics are applied to find a near-optimal processing strategy.

Previous research has mainly focused on the use of joins, semijoins, and hash semijoins

(Bloom filters). The semijoin is a commonly recognized operator, which provides

efficient query results. As a variation of semijoin, the composite semijoin is beneficial to

do semijoins as one composite rather than as multiple single column semijoins. The Hash

semijoin (which uses a Bloom filter) is used to minimize the cost of a semijoin operation.

This thesis report provides a summary of each category of query processing techniques

and optimization algorithms. Also in this thesis, we propose a new algorithm called

Composite Semijoin Filter by combining the idea of composite semijoins. Bloom filters

and PERF joins. One of the advantages of this algorithm is to avoid collisions. The

algorithm is evaluated and compared with initial feasible solution (IFS) and another

filter-based algorithm. It has been shown that the algorithm gives substantial reduction on

relations and the total cost.

Key words: distributed query processing, semijoin, hash semijoin, composite semijoin.

Bloom filter, PERF, query optimization, optimization algorithm

m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my father, Songlin Zhu
my mother, Xueying Cao
my husband, Guanglei Li
my son, Shen Li

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

I am very happy to take this opportunity to convey my thanlrfulness to all

people who helped me a lot during the whole process of my graduate study.

Firstly, I would like to thank my supervisor, Dr. Morrissey, who gave me

instructive help and valuable advice. Without her patience and valuable

guidance, it could be impossible to complete this thesis fluently. Besides, she

is a so nice person who can be regarded as a sincere friend in study and life.

Secondly, I would like to thank my external reader Dr. Fung, my internal

reader Dr. Lu and the committee Chair Dr. Ngom, for their time and

instructive suggestions and comments.

Thirdly, I would like to thank all my friends and colleagues, who discussed

with me on such topic and provided useful suggestions and experience

during the research.

Finally, I would like to give my special thanks to my parents, my husband

and my dear son, who gave me continuous support, encouragement and their

endless love...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract.. Hi

Dedication.............................. iv

Acknowledgement v

List o f Figures....................... viii

Chapter 1 Introduction........................... 1

Chapter 2 Literature Review................................ 3

2.1 Distributed Database System (DDES)................ 3

2.2 Distributed Query Processing (DQP) 4

2.2.1 What is DQP............................... 4

2.2.2 Cost Models for DQP............................ 6

2.2.3 Query Optimization Process.......................... 7

■ 2.3 Query Optimization Techniques9

2.3.1 Join9

2.3.2 Semijoin [BC81, BG81] 10

2.3.3 2-way Semijoin [KR87] 12

2.3.4 Pipeline N-way Join [RK91] 14

2.3.5 Interleaving Join with Semijoin [CY90] 15

2.3.6 Domain Specific Semijoin [CL90]............... 16

2.3.7 Composite Semijoin [PC90]........... 17

2.3.8 Hash Semijoin (Bloom Filter) [TC92] 18

2.3.9 PERF Join [LR95] 21

2.3.10 Virtual Join [SSL+02]23

2.4 Query Optimization Algorithms24

2.4.1 Join-Based Algorilhms.......25

2.4.2 Semijoin-Based Algorithm... 29

2.4.3 Combination-Based Algorithm 36

2.4.4 Filter-Based Algorithm 37

2.5 Conclusions 40

Chapter 3 Proposed Algorithm 43

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Problem and Motivation 43

3.2 The Algorithm 45

3.2.1 Description of The Algorithm..................... 45

3.2.2 Implementation.. .50

Chapter 4 Experiments and Evaluation 52

4.1 Experimental System.................... 52

4.2 Evaluation Method 53

4.2.1 Size and Selectivity 53

4.2.2 Cost and Benefit 54

4.3 Experimental Results.. 59

4.3.1 Experiment Steps................... 59

4.3.2 Results and Comparison........................... 61

Chapter 5 Conclusions and Future Work. 69

5.1 Conclusions 69

5.2 Future W ork 72

References ... 73

Vita Auctoris 86

Vll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures
Figure 2.1 Architecture o f Distributed Query Processing................... 5

Figure 2.2 Query Optimization Process.. -..8

Figure 2.3 An example o f join operation (R1 N R 2)......... 10

Figure 2.4 An example o f semijoin (Ri X R 2) 11

Figure 2.5 An example o f 2-way semijoin (Ri ^ R 2) 13

Figure 2.6 An example o f composite semijoin Rj and R2 17

Figure 2.7 An example o f hash semijoin (best HSJ) 19

Figure 2.8 An example o f hash semijoin (with false drop) 20

Figure 2.9 An example o f PERF jo in 22

Figure 2.10 Virtual result in joining R M S 24

Figure 2.11 An example o f execution graph 38

Figure 3.1 Original Tables o f Relations 47

Figure 3.2 Projection o f Composite Semijoin................................ 48

Figure 3.3 Filters o f Composite Semijoins 49

Figure 3.4 Reduced relations... 50

Figure 3.5 Final Result Relation 50

Figure 4.1 Database Statistical Information....................................... 54

Figure 4.2 An example o f algorithm W2 .. 57

Figure 4.3 Effects o f Selectivity and Attributes (Three Relations)... 61

Figure 4.4 Effects o f Selectivity and Attributes (Four Relations).............. 62

Figure 4.5 Effects o f Selectivity and Attributes (Five Relations) 62

Figure 4.6 Effects o f Selectivity and Attributes (Six Relations) 63

Figure 4.7Reduction Ratio 64

Figure 4.8 Tansmitting cost 65

Figure 4.9 Table o f Benefit Ratio 66

Figure 4.10 Table o f Cost-Reduction Ratio 67

Figure 4.11 Table o f benefit, cost and net-benefit ofAlgorithm CSF 68

V lll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 Introduction

Distributed database system technology is one of the major recent developments in the

database system area. It is the outcome of the combination of database and computer

network technology. So, in a distributed database system, the data is distributed and

stored at different sites, which are connected by a computer network.

In distributed database systems, query processing plays an important role. An effective

query (that means response time and total cost are ail lowest) is a key factor affecting the

system performance. Different from centralized query processing, distributed query

processing involves data transmission among different sites and the communication cost

is a dominant factor compared to local processing cost. As pointed out in [YC84], the

process of a distributed query is composed of three phases:

1) Local Processing phase: All local processing operations such as selections and

projections on the joining and target attributes are performed;

2) Reduction phase: Using optimization techniques and algorithms such as semijoins

to reduce the size of relations in a cost-effective way, and thus reduce the total

communication cost;

3) Final Query Processing phase: Send all resulting relations to the query site and

reassemble them to generate the final query answer.

The main objective in distributed query optimization is to reduce the amount of data

transmission. So, most research on optimization focuses on the reduction phase and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

primary concern of a query optimization algorithm is to generate a semijoin program that

will be used in this phase. The major difference from algorithm to algorithm lies in how

to generate such semijoin programs. Also, there are two cost models, which can be used

to evaluate the performance of different algorithms. The response time version [SB82]

considers that each operation is processed in parallel, so the response time is the

maximum of the time from sending the query to getting the result is die cost of the

processing. The total cost model [ESW78] considers the whole time consumed during

processing. Since optimal query processing in distributed database systems has been

shown to be NP-hard [BR88, PV88], heuristics are applied to find near-optimal strategies

for query processing. Different relational operators (such as semijoin, 2-way semijoin,

domain specific semijoin, composite semijoin, hash-semijoin and PERF join) and

algorithms have been proposed. These approaches in distributed query processing have

mainly been classified into the use of joins, semijoins, and hash-semijoins or combination

of them. This report will give a summary of the research in this area.

The rest of this thesis is organized as follows; In Chapter 2, the literature review of

distributed query processing and various strategies for distributed query optimization is

described. Chapter 3 includes the motivation of my thesis and the proposed algorithm.

Composite Semijoin Filter. The experiments and evaluation results will be given in

chapter 4. Finally, we will give conclusions and work that will be done in the future.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 Literature Review

The contents of this chapter include an overview of distributed database systems,

distributed query processing, query optimization techniques and algorithms.

2.1 Distributed Database System (DDES)

In the field of data management, the developments in distributed computing technologies

and network technologies lead up to distributed database management systems. A

Distributed database (DDB) is a collection of multiple, logically interrelated databases

distributed over a computer network [OZSU99, MTP99]. A distributed database

management system (DDBMS) is a software system that permits the management of a

distributed database and makes the distribution transparent to users. A distributed

database (DDB) together with a distributed database management system (DDBMS) is

called distributed database system (DDBS)[Vla97]. These systems should shield the users

from the complexities of distribution. The advantages of a distributed database system are

sharing data, stabihty and reliability because of replication. The main characteristics of a

DDBS are:

• Transparent management of distributed and rephcated data

• Reliability through distributed transactions

• Improved performance

• Easier system expansion

Users can gain many benefits firom these advantages of a DDBS. But this will increase

complexity and overhead and this additional complexity gives rise to new problems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

influenced mainly by three factors [OV91][BG93], replication, tolerance and the

synchronization of transactions. Query processing is one of the crucial problems in

distributed database systems.

2.2 Distributed Query Processing (DQP)

An effective query will improve the system performance, especially in distributed

database system environments.

2.2.1 What is DQP

Distributed query processing is a process to transform a high-level query language of

distributed databases to a low-level database language for retrieving the database using an

efficient and effective strategy. So, the problem is how to decide on a strategy for

executing each query over the network in the most cost-effective way.

In a distributed environment, since data is geographically distributed, information has to

be transmitted between sites in order to answer a query. So, in addition to the cost of

centralized query processing, distributed systems face the problem of shipping data and

results to and from sites. Usually, it is very expensive to move data from one site to

another. For example, intermediate data derived at one site may need to be transferred to

other sites for further processing, and the final result must be transferred to the query site.

Cost may be acceptable on high performance local area networks, but not on others. So,

the main factors to be considered are distribution of data and communication cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As mentioned above, a distributed database management system provides transparent

access to distributed resources. There must be a module in the system architecture that

gets a global query and manages a distributed evaluation. The whole distributed query

process usually goes through three steps [OZSU99]: Parsing the global query, Query

optimization and Query execution. Figure 2.1 shows the architecture of distributed query

processmg.

Global Output
Query Internal

I Repr
Internal
Repr. QEPQEP

Parser
Query
Rewrite

Query
Optimizer

Plan
Refinement

Query
execution
Engine

DB

Figure 2.1 Architecture o f Distributed Query Processing

When parsing the global query, each global query is replaced with a number of local

queries according to the global schema. Then the query is simplified by eliminating

redundant predicates. Finally, the query is transformed into relational algebra

expressions. During the query optimization step, a distributed query execution plan

(QEP) that obtains the answer is prepared. The execution plan says which local data are

required, how to access them, which operations must be done at which sites. Moreover,

the execution plan should be optimized, i.e., it minimizes the execution cost. Finally, a

query execution engine in the query execution step executes the execution plan.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 Cost Models for DQP

A cost model provides the basis for comparing different query execution plans (QEP) and

for choosing the best plan for execution. The cost of distributed query processing can be

expressed in terms of either the total cost model or the response time model. And costs

are generally specified in terms of time units.

1) Total Cost Model

The total cost model considers the whole time consumed during processing. The total

cost is the sum of all time incurred in the local processing and in intersite communication.

In a distributed database system, the local processing costs include CPU and FO cost,

while communication cost is described in terms of the amount of data transmitted. A

general formula [OZSU99] for total cost is:

Total cost = C c p u * #insts + C m * #I/Os + C m sg * #msgs + Cm * #bytes

• #insts is defmed as the number of program instructions.

• #FOs is defined as the number of transfers to or from disk.

• #msgs is defined as the number of messages transferred between one site and another.

• #bytes is defined as the total number of data sizes transmitted in all messages.

• C m s g is the fixed cost of initiating and receiving a message.

• Ctr (transmission cost) is the cost of transmitting data between sites participating in

the execution of the query.

• Ci/o (Secondary storage Access cost) is the cost of loading data pages from secondary

storage into main memory.

• Ccpu (Computation cost) is the cost of using the central processmg unit (CPU).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The commxmication cost component is probably the most important factor considered in

distributed database systems. However modem distributed processing environments have

much faster communication networks whose bandwidth is comparable to that of disks.

Therefore, more recent research efforts consider a weighted combination of all

components since they all contribute significantly to the total cost of evaluating a query.

2) Response Time Model

The response time is the time from the initiation of the query to the time when the answer

is produced. This model considers that each operation is processed in parallel as much as

possible, so the ima.ximiim of the time from sending the query to getting of the result is

the cost of the process. Since operations can be executed in parallel at different sites, the

response time of a query may be significantly less than its total cost.

Minimizing response time can be achieved by increasing the degree of parallel execution.

This does not imply that the total time is also minimized. On the contrary, it can increase

the total time, for example, by having more parallel local processing and transmissions.

So, in practice, a compromise between the two is sometimes desired.

2.2.3 Query Optimization Process

Query optimization is the process of ensuring that either the total cost or the response

time of a query is minimized. Figure 2.2 shows the query optimization process [Fre89].

An input query is usually passed to the Query Modification Module, a stage that

rewrites the initial query in order to improve efficiency during the evaluation of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

query. The input query can be represented by either relational algebra or a graph called a

query graph. This query graph is then input to the Query Execution Plan (QEP)

Generator, which defines how to create all possible QEPs firom a query graph. Next,

generated QEPs are submitted to the Search Strategy Module for deciding the best plan

that gives the optimal cost firom among the deferent QEPs. The Cost Function assigns a

cost to each QEP selected by the search strategy module and provides the basis for

comparing different QEPs and for choosing the best plan for execution.The optimal QEP

is the plan that produces the cheapest cost. Query optimization is defined as the problem

of finding the most efficient query execution plan (QEP) for a query expression.

Input Query

Query Modification

i Query Graph

Selected QEPs

Cheapeat cost?No QEP with cost

Yes Best QEP

QEP Genarator

An optimal QEP

Cost Function

Search Strategy

Query Result

Figure 2.2 Query Optimization Process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finding the optimal execution strategy for a query is NP-hard [BR88, PV88]. For

complex queries with many relations, this can incur a prohibitive optimization cost.

Therefore, the actual objective of the optimizer is to find a strategy close to optimal and,

perhaps more important, to avoid bad strategies.

2.3 Query Optimization Techniques

One basic technique for reducing the amount of data transmission is the semijoin method.

This approach increases local processing, but only a small projected portion of the

relations is transferred during the reduction phase and only rows, which will participate in

the final join, axe transferred after the reduction phase. The Bloom filter method is similar

to the semijoin. However, during the reduction phase, a bit vector carrying information

about joining values is used. Also, some other techniques, such as 2-way semijoin

[KR87], domain specific semijoin [CL90], composite semijoin [PC90] and PERF join

[LR95] are introduced here.

2.3.1 Join

The join operator (?) is the most useful, the most commonly used and most simple way

. to reduce data. It can reduce the local processing cost and minimize the overhead of

messages. In distributed database systems, because entire operand relations must be

transferred between sites, the join operation becomes the main cost consuming process.

So, the join operator is a time consuming operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R i

A B A C

1 4 Shipping 3 7

2 5 4 8

3 6 5 9

Ri? R2
f

A B C

3 6 7
Shipping

Figure 2.3 An example o f join operation (Rj? Rj)

Figure 2.3 shows an example of join operation between relations Ri and Ra on the

condition Ri.A = Ra.A. Whatever join operation is at site of Ri or site of Ra, the whole

relation should be shipped to the other site. And then the result may be transmitted to the

query site. In this example the cost for transmitting relation Ri to the site of Ra is 6

(Suppose the cost of one data is one unit.).

2.3.2 Semijoin [BC81, BG81]

In distributed query processing, the semijoin is one of the most popular operators and has

been used as an effective one, especially in reducing relations referenced in the query to

reduce the total amount of data transmission between sites. It is obviously much less

expensive to transmit the projected file than the entire file. Thus, it is often beneficial to

reduce the size of relations through preliminary semijoins before transmitting the relation

to the result site. Semijoin was first proposed by Berstein in [BC81] and [BG81].

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A semijoin from Ri to Rj on attribute A can be denoted as (ROa ? R j. It is computed in

two steps;

1) Send projection of Ri on attribute A (Ri[A]) from site i to s ite j;

2) Reduce Rj to Rj ’ by eliminating tuples where attribute A is not matching any

value in Ri[A].

The cost of semijoin (R^a ? Rj is the size of projection of Ri on attribute A, while the

benefit is difference of size Rj and Rj’. If the benefit exceeds the cost, then the semijoin

is called a cost-effective.

Semijoin selectivity factor in Ri ? Rj is defined as the expected fraction of the tuples of

Ri which belong to the result. Card (Ri ? Rj) =?*Card (Rj). An estimation of semijoin

selectivity factor is: ? = Card (Ri[A])/ Card (domain [A]).

Figure 2.4 shows an example of semijoin Ri ? R2 on attribute A.

RiIA]

'hipping
A B

1 4

2 5

3 6

Projection A C

3 7
4 8

5 9

Reducing

Shipping

Figure 2.4 An example o f semijoin (Rj ? R2)

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First shipping the projection of Ri (Ri [A] ={1,2,3}) to site 2 then reducing R2 to R2 ’ by

eliminating tuples (crossed in the figure) where attribute A are not matching any value in

Ri[A], only one tuple (3,7) left. In reassembling phase, Ri and the reduced R2 (R2 ‘) may

be transmitted to the query site (qs) and joined there to get the final result. The cost of

this semijoin (C(s)) equals 3, benefit (B(s)) equals 4. Because the benefit exceeds the

cost, this semijoin is cost effective.

2.3.3 2-way Semijoin [KR87]

As we talked about before, the semijoin acts as a size reducer for a relation much as a

selection does and it is an effective operator to reduce the transmission of data. But it is a

unary or a binary operator. That means it produces only one result relation. In [KR87],

, the author proposed a new relational algebra operator, called 2-way semijoin, which is an

extended version of the semijoin. It has more reduction power than the semijoin and the

propagation of the reduction effects is further than by the semijoin. These two aspects

have been verified in [KR87].

A 2-way semijoin of Ri and Rj on attribute A can be denoted as Ri Rj = {Ri ? Rj, Rj

? Rj }. So, it can reduce Ri and Rj to Ri’ and Rj’ respectively. It is computed in the

following steps [KR87]:

1) Send Ri [A] from site i to site j ;

2) Reduce Rj to Rj’ by eliminating tuples whose attribute A is not matching any of R,

[A] and at the same time partition Ri [A] to Ri [A]m (match one of Rj [A]) and Ri

[A]nm = Ri [A]- Ri [A]m (tuples in Ri not matching Rj [A]);

3) Send min (Ri [A]m, Ri [A]nm) back to site i ;

4) Reduce Ri to Ri ’ using Ri [A]m (or Ri [A]nm)-

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.5 shows an example of 2-way semijoin (Ri R2). First ship the project of Ri

on attribute A (Ri[A]={ 1,2,3}) to site 2; reduce R2 to R2’ (tuples not matching Ri[A] are

eliminated), at same time Ri[A] is partitioned into Ri[A]m ={3} and Ri[A]nm- {1,2};

send Ri[A]m back to site 1; reduce Ri to Ri ‘ using Ri[A]m.

RifAl

Ri 2
Shipping

Rt

A B Projections^ 3 A C

1 4 Ri[A]m
3 7

2 5 / Shipping 3 p a rtitig p ^ 4 8

3 6 5 9

 ̂f ReducingReducmg K |[A p m

ShippinShipping

Figure 2.5 An example o f 2-way semijoin (Ri R2)

The benefit of 2-way semijoin equals [S (R i) - S(Ri ’)] + [S(Rj) - S(Rj’)] and the cost is

R i[A]) + min[S(Ri [A]m), S(Ri [A]nm)]. If the benefit exceeds the cost then it is called a

■ cost-effective 2-way semijoin. In the above example, the benefit of 2-way semijoin

equals 8; the cost of i?; i?2 equals 4. So, this 2-way semijoin is cost effective.

The 2-way semijoin is always done in a cost effective way. Because no matter what the

cost and benefit in the first two steps of computing a 2-way semijoin, the last two steps

are always cost-effective. So, for two relations to be joined, even when only one or more

can be reduced cost-effectively using semijoins, both may be reduced cost-effectively

using a 2-way semijoin.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.4 Pipeline N-way Join [RK91]

The semijoin is a mechanism that allows forward size reduction of relations and

intermediate results. The 2-way semijoin enhances the semijoin with backwards size

reduction capability for more cost-effective query processing. In [RK91], the author

introduced a pipeline N-way join algorithm based on 2-way semijoins for joining the

reduced relations residing on N sites. The main goal of this algorithm is to eliminate the

need for shipping, storing, and retrieving foreign relations and/or intermediate results in

the local disks of the query site during the processing of an N-way join. In the process, a

structure known as connector (a small table, which can be easily fit in the memory for the

next step semijoin) is in use, which records the former semijoin’s effect.

The N-way pipeline algorithm proceeds in three phases [from RK91]:

1) Forward reduction & local processing phase:

- Site of Ri receives from the site of Ri.i the projection of the joining attribute and

constructs tuple connector Cl

2) Backward reduction and coUecting phase:

- Backward reduction is applied to the tuple connectors not the relations.

- A site containing R, receives from the site of R+i the Ci+i tuple connector and

joins it with its own Ci.

3) Pipeline executing phase:

- The pipeline cache planner is sent to the query site and used for synchronizing

the tuple requests from the N sites in order to assemble the result.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The advantages of the pipeline N-way join can be summarized as follows;

• No intermediate results are generated.

• Reduced relations are replaced by tuple connectors which are smaller in size;

therefore, storing and transferring the tuple connectors is less expensive.

• The original relations are accessed once during the local processing phase.

2,3.5 Interleaving Join with Semijoin [CY90]

Although the join operator is a time consuming operation, judiciously applying join

operations as reducers can further reduce the amount of data transmission required.

Moreover, as pointed out in [CY90], the approach of combining join and semijoin

operations as reducers can result in more beneficial semijoins due to the inclusion of joins

as reducers (such semijoins are referred to as gainful semijoins).

In [CY92], the author developed an efficient heuristic approach to determine an efficient

sequence of semijoin and join reducers. First, obtain a sequence of join reducers and map

it into a join sequence tree. In light of the join sequence tree, we derive important

properties of beneficial semijoins. These properties are then applied to develop an

efficient algorithm (G) to determine the beneficial semijoins that can be inserted into the

join sequence. The experiments show that the approach of interleaving a join sequence

with beneficial semijoins are not only efficient but also effective in reducing the total

, amount of data transmission required to process distributed queries [CY93],

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.6 Domain Specific Semijoin [CL90]

Many query optimization algorithms proposed for fragmented databases apply semijoins

to reduce size of the fragments of joining relations before they are sent to a fmal

processing site. When semijoins are employed in such a system, they have to be

performed in a relation-to relation or a relation to fragment manner so that they will not

cause the elimination of contributive tuples. So, semijoins cannot be performed between

two fragments, because it may cause the elimination of some tuples before they are

compared with all tuples of the other joining relation. In order to improve the semijoin

operation associated with fragmented relations, the domain-specific semijoin is

introduced in [CL90]. A domain specific semijoin can be defined as:

Rft (A=B] Rjn, ={ r| r ? Rjk; r.A ? Rj„ [B] ? (Dom[Ri.B] - Dom|Rjm.B])}

A and B are join attributes, Rjk and Rjm are two fragments of joining relation Ri and Rj

respectively. A domain specific semijoin is computed in the following steps:

1) Calculate the estimated benefit and cost;

2) If it is found to be profitable, accept it in the current query-processing strategy;

otherwise, ignore it;

3) Update the related information in the database profile.

Domain specific semijoin is based on many assumptions. It assumes all values of each

attribute are randomly selected, all tuples are uniformly distributed over values of

attributes and all values of attributes are independent. Experimental results [CL90]

indicate that domain specific semijoins can reduce the size of fragments by eliminating

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

non-contributive tuples and can be performed in a fragment-to-fragment manner as in the

application of regular semijoins and provide more flexibility in distributed query

processing. It can also be shown that for a given query, there is always a strategy, using

both domain-specific semijoins and semijoins, which is at least as good as the best

strategy using only semijoin reductions.

2.3.7 Composite Semijoin [PC90]

In [PC90], Perrizo and Chen proposed a composite semijoin to minimize the response

time for the queries. A composite semijoin is a semijoin in which the projection and

transmission involve multiple columns. In most of the algorithms, multiple semijoins

may be performed with common source and common result sites. In this situation it may

be beneficial to do the semijoins as one composite rather than as multiple single column

semijoins. Through simulation results, it has been shown in [PC90] that algorithms

including the possibility of composite semijoin can generate strategies, which are far

better than those that ignore this method.

R r Ro

A1 A2 Nonjoin_ attrs

1 aa

1 bb ~

2 cc

3 cc ~

A1 A2 Nonjoin_attrs

1 cc

1 aa

2 bb

3 bb

Result Composite
semijoinof Ri and R2

A1 A2 Nonjoin_attrs

1 aa

Figure 2.6 An example o f composite semijoin Rj and R2

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.6 shows an example of a composite semijoin. Note that there is no reduction at

all when single attribute semijoins are used, since all attribute A1 values are matched.

However, there will be a significant reduction when a composite semijoin along attribute

A1 and A2 is applied.

Also in [PC90], the author applied composite semijoins on some distributed query

processing algorithms, such as algorithm GENERAL [AHY83] which is used to

minimize the response time for general queries and produces total time strategies which

are quite efficient and algorithm W [PC90] which guarantees a least bound response time

for queries. Experimental results indicate that including the possibility of composite

semijoins in a query-processing algorithm is likely to result in substantial response time

reduction. It can be verified that the strategy formed by the algorithms, which apply

composite semijoin, is always as good as the strategy of not allowing the algorithm to

optimize for composite semijoin.

. 2.3.8 Hash Semijoin (Bloom Filter) [TC92]

In [TC92], the author proposed a new relational operator, called Hash semijoin, to

minimize the cost of a semijoin operation (i.e., the cost of transmitting the semijoin

projection). Hash semijoin is designed based on the concept of a search filter (also called

a Bloom filter). Bloom filters are used to filter out the tuples that do not participate in the

join. A bloom filter is a vector of bits, which represents the semijoin projection.

The hash semijoin of R, and R j is denoted Rj? Rj. It is computed as follows;

Step 1; Initialize a bit array of F bits to all is 0. The size of F is computed by

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F=(d/ln2)*|Ri|;

Step 2: For each value of the join attribute in Ri, generate d bit addresses using the d hash

ftinctions and set the corresponding d bits in the bit array to 1 (i.e., set F[k]~ 1 if there

exists join attribute value v in relation Ri, such that d(v)=k) ;

Step 3: Transmit the bit array to the site ofRj;

Step 4: For each tuple of Rj, use the d hash functions to hash the join attribute value to d

bit addresses. Test if all the d bits in the bit array are Is. If Yes, output the tuple to the

result relation R/, else discard the tuple.

Figure 2.7 shows an example of hash-semi-join (R2? Ri) operation with the perfect hash

function (H (x)=x).

Filter for S#
Ri

s# Name
1 Cindy
3 Jemal
4 Sunny
8 Maggie

Projection

ris#(Ri)

I H(x)=X

0

Shipping

R7

S# phone
1 III

■2 2 2 2

5 555
6 6 6 6

8 8 8 8

I
I 1 1 1

8 8 8 8

Reducing

R2 ’

Figure 2.7 An example o f hash semijoin (best HSJ)

It is obviously that hash semijoins have less cost of transmitting the filter than that of

transmitting the semijoin projection in traditional semijoin. But false drops may occur,

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which the search filters falsely accepts a value. False drop probability is used to refer to

the probabihty that a false drop occurs. It depends on the size of the bit array {F), and the

number of hash functions d. Figure 2.8 shows an example of hash semi-join with false

drop. In this example, the hash function is changed to H (x) = x mod 5.

Ri Filter for S# R2

s# Name
1 Cindy
3 Jemal
4 Sunny
8 Maggie

Ils#(Ri)
1 H(x)=Xmod 5

 ^

Filter for S#

Shipping

0
1
0
1
1

S# phone
1 1 1 1

2 2 2 2

5 555
6 6 6 6

8 8 8 8

False drop happens

Reducing

R2’1 111
6 666
8 888

Figure 2.8 An example o f hash semijoin (with false drop)

In this example, the hash function is changed to H(x) = x mod 5. After using the hash

function to hash the value of attribute S# in Ri, the filter will be F={0,1,0,1,1}. When the

filter is shipped to the site of R2 and the same hash function is applied to the value of S#

in Ri: H(l) = H(6) = 1, H(8) = 3, the result relation has three tuples. But the tuple (6 ,6 6 6)

is falsely accepted by the search filter. One of the solutions is by increasing the number

■ of hash function, but the cost may also increase. So, in practice, the number of hash

functions is a key factor in hash semijoin operation.

Compare to semijoin, the cost, benefit and potential cost are given as following table.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Semijoin Hash-semijoin

Cost CTij=aij|Ri| CHij=(d/ln2)*|Ri|

Benefit BTij=(l-Sij)wjiRj|- aij|Ri| BHij=(l-srf)wj|RjKd/hi2)*|Rii

Pcost PCTij= aij|Ri|+ Si,W||Rj| CHijKd/ln2)*|Ri|+SijWj|Rj|

Figure 9 Comparison between semijoin and hash-semijoin

• I RJ, I RJ -- cardinality o f R^, Rj

• Uy - width o f the join attribute

• Wj — The width o f a tuple in Rj

• Sij - the selectivity o f semijoin Rj ? i?,; / - false drop probability

It can be proved in [TC92] that hash-semijoin is more cost-effective than semijoin; the

search filter in the hash-semijoin achieves considerable savings in the cost of a semijoin

operation and the replacement algorithm can produce a more cost-effective semijoin

program.

2.3.9 PERF Join [LR95]

In [LR95], Li and Ross present “Positionally Encoded Record Filters” (PERFs) and

describe their use in a distributed query processing technique called PERF join. A PERF

is a novel two-way join reduction implementation operator. This method adds to

semijoins in the backward phase and is used to eliminate unnecessary redundant

semijoins by using bit vectors. It is based on the relation tuple scan order instead of

hashing. Hence, it does not suffer any loss of join information incurred by hash

collisions. The basic idea of the PERF join is as follows: as in 2-way semijoin R? S ,

relation S is reduced by a semijoin with the projection of relation R (Pr). But instead of

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transmitting Ps’ back to R, send a bit vector (PERF) that contains one bit for every tuple

in Pr. That bit is set to 1 if it is in Ps’ and 0 otherwise. The order of the bits in the bit

vector is the same tuple order of P r that R’s site sent initially. Consider two relations R

and S, the steps of PERF is as follows:

1. Project Ron A joining attribute (P r);

2. Ship PRto S;

3 . Reduce Sby a semi-join with Pr;

4. Send back to R a bit vector (PERF) that contains one bit for every tuple in

Pr and in the same order. If the tuple is matching then send 1 else send 0.

The main utiUty of PERF is that it minimizes this phase and hence makes the forward

phase (step2) cost greater than the backward phase. PERF joins can be better enhanced

by sending back to R not all the bit vector corresponding to Pr but only the Os part or Is

part according to which one is less in size and hence has lower transmission cost. As an

example, figure 2.9 shows two PERFs for relation R (A, B) and S (A, C).

A B
1 4
2 5

3 6

Reduce

Ri’

PEMFtRt PERFtSi

0 1

2

3

A C
3 7
4 8

5 9

1

2

3

Reduce

Ri’

Figure 2.9 An example o f PERFjoin

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the example, first, ship Pr on attribute A to site of S and reduce S with Pr, then send

back to R a bit vector PERF(R) (one value (3) is matching, so the bit vector is {0,0,1}),

finally reduce R to R’, the same for S.

PERF join is a competitive alternative to 2-way semi-join and Bloom join. Analytical

studies show that the response time of distributed join query processing algorithms can be

improved by employing PERFs and PERF joins instead of or in addition to the traditional

Bloom join and semi-join variant. The features of PERF-based techniques are:

• Preservation of complete join information.

• Minimal network and storage overhead.

• Cheap local join processing cost, especially when buffer memory scarce.

• Inequalities join query handling.

• Cyclic join query handing.

2.3.10 Virtual Join [SSL+02]

Virtual join [SSL+02] considers reducing both communication cost and local cost in

distributed query processing. The basic idea of virtual join is to execute a join query

through “discussion”. During the discussion, the participating sites use tiny pieces of data

■ to exchange their information. So it is much smaller than the real result and it can reflect

the cardinality of the real result. It makes each site obtain the knowledge of the final

result, and it filters out useless tuples at each site. The physical format of the knowledge

is called virtual result in the sense that it can represent the final result. From the virtual

result, the materialized result can be built easily.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, in figure 2.10 relation R and S are joined by attribute X. For join R? S on

attribute X, Vrs is formally defined as a table with three fields. The first field is the join

attribute, and the other two fields contain the number of useful tuples from R and S. For

each value y of die first field, the other two fields contain the number of tuples that has X

value = y from R and S respectively. Vrs describes the structure of the real result. It

remains the information for both further joins and final assembly. For virtual result, the

cardinality of tuples in the real result can be easily calculated. (4*2+1 *3=11)

R

X R other

B « a n

A 123

D 456

A e A D

X S other

A XXX

K AAA

3 m in im

A AAA

V rs

X R S
A 4 2
D 1 3

Figure 2.10 Virtual result in joining R l S

It has two desirable features; 1) Being adaptive to different values of selectivity. 2)

Giving accurate cardinality of the join result before it is materialized. Experiment results

showed virtual join was both adaptive and efficient [SSL+02].

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Query Optimization Algorithms

The objective of distributed query optimization is to fmd a query optimization algorithm

to generate an optimal processing strategy in the solution space of all possible execution

strategies. There are three types of optimization [Kos98]: Exhaustive search approach.

Randomized strategies and Heuristics. The efficiency of processing strategies for queries

in a distributed database is critical for system performance. If a query is processed

inefficiently, it not only takes a long time before the end user gets his answer, but it might

also decrease the performance of the whole system. Many methods have been studied to

minimize the response time or the total cost. They can be classified into join-based,

semijoin-based and filter-based or combination-based. It has been proven that finding the

optimal solution is NP-hard [BR8 8 , PV8 8]. So, generally, we only try to develop

algorithms, which are efficient but perhaps only near optimal. In this section, some main

. algorithms are introduced.

2.4.1 Join-Based Algorithms

Join ordering is an important aspect of centralized query optimization. In a distributed

database system, it is even more important since joins between relations may increase the

communication cost over a network. Some algorithms optimize the ordering of joins

directly without using semijoins. Distributed INGRES [ES80] and System R* [SA80]

algorithms are representative of algorithms that are based on joins. INGRES employs a

dynamic optimizatioh algorithm, while System R* uses a static optimization.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Distributed INGRES [ES80]: This algorithm is based on a heuristic approach. The

objective of the algorithm is to minimize a combination of both the communication time

and the response time. However, these two objectives may be conflicting. For instance,

increasing communication time may well decrease response time. Thus, the ftmction can

give a greater weight to one or to the other. The algorithm is called D-INGRES-QOA.

The input of this algorithm is a multi-relation query (MRQ) expressed in tuple relational

calculus, the output is result of the last multi-relation query (MRQ’). It is computed in

three steps:

Stepl: All mono-relation queries (e.g., selection and projection) that can be detached are

first processed locally;

Step2: Execute the reduction algorithm [ESSO] to produce a sequence of irreducible

subqueries, with at most one relation in common between two consecutive subqueries;

Steps: Chooses next irreducible subquery involving the smallest fragments; selects the

best strategy to process the query; and transfers all fragments to their processing sites;

finally executes the query. Repeat this step until there are no remaining subqueries left.

For example, assume that relations EMP (is fragmented into EMPi and EMP2), ASG and

PROJ of the query are stored as follows: EMPi and ASG are stored at site 1; EMP2 and

PROJ are stored at site 2. There are several possible strategies, including the following:

1) Execute the entire query (EMP ? ASG ? PROJ) by moving EMPi and ASG to

site 2 ;

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2) Execute the entire query (EMP ? ASG) ? PROJ by moving (EMPi ? ASG)

and ASG to site 2, and so on.

The choice between the possible strategies requires an estimate of the size of the

intermediate results. For example, if size (EMPi ? ASG) > size (EMPi), strategy 1 is

preferred to strategy 2. Therefore, an estimate of the size of joins is required.

The algorithm of distributed INGRES is characterized by a limited search of the solution

space, where an optimization decision is taken for each step without concerning itself

with the consequences of that decision on global optimization. However, the algorithm is

able to correct a local decision that proves to be incorrect. An altemative to the limited

search is the exhaustive search approach, where all possible strategies are elevated to fmd

the best one. In [ESSO], the two approaches are simulated and compared on the basis of

the size of the data transfers. The study shows that exhaustive search significantly

outperforms limited space as soon as the query accesses more than three relations and

dynamic optimization is beneficial because die exact sizes of the intermediate results are

known.

2. System R* [SA80] performs static query optimization based on an exhaustive search

of all altemative strategies of the solution space, in order to choose the one with the least

cost. The optimizer of the master site makes ail intersite decisions, such as the selection

of the execution sites and the fragments as well as the method for transferring data, while

the apprentice site makes the remaining local decisions and generates local access plans

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for the query. The objective function of the System R*’s optimizer is the general total

time function, including local processing and communications cost.

The input to the algorithm is a localized query expressed as a relational algebra tree (QT),

the location of relations and their statistics. After executing the procedure R*- QOA, a

minimum cost strategy will be generated. R*- QOA is executed in three steps:

1) For each relation Ri in the query tree QT, find its best access path which has

minimum cost;

2) For each order, build strategy (semijoin sequence) with minimum cost;

3) For each site k storing a relation involved in QT, generate its local strategy (LSQ.

To join two relations, there are three candidate sites: the site of the first relation, the site

of second relation, or a third site. In R*, two methods are supported for intersite data

transfers.

1) Ship-whole. The entire relation is shipped to the join site and stored in a

temporary relation before being joined.

2) Fetch-as needed. The external relation is sequentially scanned, and for each tuple

the join value is sent to the site of the inter-loop relation, which selects the

internal tuples matching the value and sends the selected tuples to the site of the

outer-loop relation.

The trade-off between these two methods is obvious. Ship-whole generates a larger data

. transfer but fewer messages than fetch-as-needed. It is intuitively better to ship whole

relations when they are small. On the contrary, if the relation is large and the join has

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

good selectivity (only a few matching tuples), the relevant tuples should be fetched as

needed. R* does not consider all possible combinations of join methods with transfer

methods since some of them are not worthwhile.

2.4.2 Semijoin-Based Algorithm

A semijoin program is a sequence of semijoins generated by the query optimizer. The

objective of query optimization is to fmd an optimal semijoin program, which requires

the least total transmission cost to process the query. To generate the efficient semijoin

program, numerous algorithms have been devised, especially for some special classes of

queries such as simple queries [AHY83], chain queries [CBH84], star queries [CL85] and

tree queries [PV8 8 , Won90]. Most existing algorithms are heuristics. In this section, we

will introduce some representative algorithms based on semijoin.

1. SDD-1 algorithm [BGW+81] is the first method in distributed query processing using

semijoin as reducer to minimize the cost. It is based on hill-climbing strategy [Won77] by

replacing join with semijom. The main step of the algorithm consists of determining and

ordering beneficial semijoins whose costs is less than their benefits. It proceeds in four

phases: initialization, selection of beneficial semijoins, assembly site selection, and post

optimization.

Initialization phase generates a set of beneficial semijoins (BS) and execution strategy

(ES) that includes only local processing; the second phase selects the beneficial semijoins

from BS by iteratively choosing the most beneficial semijoin and modifying the database

statistics and BS accordingly. The iterative phase terminates when all semijoins in BS

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have been appended to the execution strategy. The order in which semijoins are appended

to ES will be the execution order of semijoin; The third phase selects the assembly site by

evaluating, for each candidate site, the cost of transferring to it all the required data and

taking the one with least cost; Finally a post-optimization phase permits the removal from

the execution strategy of those semijoins that affect only relations stored at the assembly

site. A general outline of the SDD-1 algorithm (OPT) is given as follows [BGW+81]:

1) Maps a query into an envelope. An envelop is a relational calculus expression that

maps a database into a sub-database;

2) Evaluates the envelop and translates it into reducer. A program contains relational

operations and performs the reduction of the relation size;

3) Execute the query at a site using the data assembled by 2) step.

OPT is a greedy optimization algorithm, it always seeks to maximize immediate gain. It

never looks ahead, and never backs up. In general, it is sub-optimal. SDD-1 optimization

algorithm is designed under the assumption that relations can be transmitted to another

site. This is not true for those relations that have been selected after beneficial semijoins

are considered. The algorithm only selects semijoins that maximize immediate gain, not

considering the fact that execution of one semijoin might affect the performance of the

other semijoins. Therefore, the drawback is that some semijoins may incorrectly be

considered beneficial in SDD-1.

2. AHY: In [AHYS3], Apers, Hever and Yao introduced and investigated a family of

optimization algorithms using semijoins to minimize either the response time (algorithm

PARALLEL) or the total time (algorithm SERIAL) and extended those algorithms to

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm GENERAL that processes general distributed queries. The main idea of the

algorithms is to reduce the sizes of each relation by possible restrictions and projections

instead of computing the joins immediately. If one relation has the join attributes, we use

semijoin to delete the unnecessary tuples. For example; Attributed dai (dy represents

attribute j of relation R j.) is sent to attributed dai, a semijoin is performed on relation R3.

The reduced dsi can be sent to relation Ri in parallel. Finally the reduced relation Ri is

sent to the result node. Here is a summarization of these algorithms [AHY83].

There are four steps in algorithms GENERAL [From AHY83]:

1) Finish all initial local processing;

2) Generate candidate relation schedules: Isolate each of the joining attributes and

consider each to define a simple query with an undefined result node. Algorithm

PARALLEL is called to minimize response time; Algorithm SERIAL is called to

rninimize total time. This results in one schedule per simple query.

3) Integrate candidate schedules. For each relation, candidate schedules are

integrated to form a processing schedule. The integration is done by procedure

RESPONSE for response time minimization and by procedure TOTAL or

COLLECTIVE for total time minimization.

4) Remove schedule redundancies, whose relations have been transmitted.

Algorithm PARALLEL is used to minimize response time by searching for cost

beneficial data transmissions in the current system state s,, selectivity ?i and schedule

response time r, of each relation Rj. The selectivity ?i of an attribute is defined as the

number of different values occurring in the attribute, divided by the number of all

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

possible values of the attribute. The algorithm can be described as follows [From

AHY83]:

1) Order Rj, (si=. ..= s^) in ascending order of size;

2) For each Rj (j <i) construct a schedule to R; that consists of parallel transmission

of Rj and all schedules of R ̂(k<j). Select schedule with minimum response time.

Algorithm SERIAL is used to minimize the total time. It is executed in three steps.

1) Order relation R such that si=S2 = ... = Sm;

2) If no relations are at the result node, then select strategy: Ri? R2 ? ... ? Rn ? • • •

? Rr or else if Rr is a relation at the result node, then there are two strategies:

Rl? R 2? ... ? Rr? ... ? R „ ? ... ? Rr or Ri? R2 ? . .. ? R„.i? ... ? R „ ? ... ? Rr.

3) Select the one with minimum total time.

Procedure RESPONSE

1) Candidate schedule ordering in ascending order of arrival time;

2) Schedule integration: for each candidate schedule, construct an integrated

schedule for the relation that consists of the parallel transmission. Then select the

integrated schedules with nhnimum response time.

. Procedure TOTAL

1) Adding candidate schedule;

2) Select the best candidate schedule;

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3) Candidate schedule ordering;

4) Schedule integration.

Procedure COLLECTIVE

1) Select candidate schedule with minimum cost and selectivity less than 1;

2) Build processing strategy for parallel transmission;

3) Test variation of strategy.

3. Algorithm W [MB96] is a static strategy with two distinct phases: first, a schedule of

semijoins is established using a cost/benefit analysis which is based on estimates of the

selectivities of the attributes and the sizes of intermediate results; second, the schedule is

executed.

Phase one: Establish the schedule. [From MB96]

Stepl: Consider how a reducer might be built for each join attribute.

1) Sort the attributes so that |daj| = |dbj| =.. .=|dmj|;

2) Evaluate the semijoins in order beginning with daj ? dbj. this semijoin is appended

to the schedule if it is gainful. If the semijoin is appended then dtj* ? dq is

evaluated next, otherwise daj ? dcj is evaluated. This process is repeated until all

the semijoins in the sequence have been evaluated.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step2: Examine how each reducer might be used. In this step we examine how the

relation sizes would be changed by the construction and use of the reducers, in the order

from smallest to largest.

1) Sort the reducers, from smallest to largest;

2) For each reducer in turn, estimate the reduction effects of constructing and using

it. Profitable semijoins are appended to the schedule.

Step 3: Look for remaining profitable semijoins.

1) Sort the attributes by increasing size;

2) Evaluate each semijoin in the sequence, appending it if it is profitable.

Phase two: Construct the reducers and ship them to the designated sites for semijoining

and finally the reduced relations are transferred to the query site where the answer is

assembled.

Compared to AHY algorithm. Algorithm W works well as a method of reducing the total

amount of data transferred over the network during processing. Experimental results

show that in all cases Algorithm W is superior but on average Algorithm W outperforms

AHY by 17% [MB96]. And there are no synchronization problems or difficulties with

redundant transmissions in Algorithm W, while there are in the AHY Algorithm.

4. Improvement algorithms for semijom

In [CL84], the authors identified four properties that optimal semijoin programs for

processing tree queries have to satisfy. A semijoin program is represented by an

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

execution graph, which specifies the order and the identities of the semijoins to be

executed. Given a semijoin program, we can therefore apply these properties to check its

optimality. If it does not satisfy these optimality properties, the associated improvement

algorithms can be applied to improve this program.

Property 1; No redundant semijoin occurrences. If there exist redundant semijoin

occurrences then delete all redundant semijom occurrences and resultant isolated nodes;

Property 2: The execution graph of an optimal semijoin program cannot be rearranged

by the rearrangement techniques.

Property 3: Each NSJ(necessary semijoin) is properly embedded in the optimal semijoin

program.

Property 4: Each end node of the execution graph of an optimal semijoin program must

be a final relation.

Four algorithms which apply the optimality properties are presented to check the

optimality of a give semijoin p and improve it when possible.

Algorithm PI is based on optimality property 1 and is used to delete redundant semijoin

occurrences and resultant isolated nodes; Algorithm P2 is based on property 2 and applies

■ rearrangement techniques if p can be rearranged; Algorithm P3 is based on property 3;

Algorithm P4 is based on property 4 and is used to delete non-fmal relations, if each NSJ

with Y (the tree rooted at a fmal relation) is properly embedded in p then repeat to delete

the semijom occurrence whose successor node is an end node in the execution graph of

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the semijoin program and is a non-fmal relation until every end node in the execution

graph of the semijoin program is a final relation.

2.4.3 Combination-Based algorithm

In distributed query processing, the conventional approach to reduce the amount of data

transmission is to apply a sequence of semijoins as reducers and then ship the reduced

relations to the fmal site to execute the join operation. As pointed out in [CY90],

judiciously applying join operations as reducers can lead to further reduction in data

transmission. The combination-based algorithm is executed in two phases.

In the first phase, an algorithm G [CY90] is used to determine beneficial semijoins for a

join sequence. If we use SMt to represent the set of possible semijoins and SMj to

represent the beneficial semijoin, the algoritihm G can be summarized simply as follows:

[From CY90]

• Determine SMt from the query graph;

• Sort the semijoins in SMt in a descending order of their cumulative benefits;

• Set initial of SMj is empty;

• If a semijoin in SM t is beneficial, then insert the semijoin to SMj.

In phase two, the identified beneficial semijoins can be inserted into the join sequence

■ according to the procedure P. The following are the general steps for procedure P:

Step 1: In the join sequence tree, perform join operations associated with leaf nodes that

are neither reducers nor reducers of the semijoins in SMj. Update the join sequence tree

by merging the leaf node to its parent node after each join operation is performed.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Repeat Step 1 until there is no such join available.

Step 2: If there is a semijoin SJi in SMj, the reducer is a leaf node of the join sequence

tree, then perform SJj, remove SJi from SMj, and go to Step 1, otherwise, go to Step 3.

Step 3: Choose a semijom SJk with the smallest cost from SMj. Perform SJk and remove

it from SMj. Go to Step 1.

In [LCOl], semijoins and joins are termed contributive replicated semijoins and

contributive replicated joins, respectively, when they are interleaved into a join sequence

to reduce the amount of data transmission cost required in a network with replicated

relations. The solution procedure consists of three consecutive steps, namely relation

selection, join sequence scheduling and merge processing. A simulator is developed to

evaluate the performance of algorithms devised. The results show that the approach of

interleavmg a join sequence with contributive replicated semijoins/joins is not only

efficient in its execution but also effective in reducing the total amount of data

transmission cost required to process distributed queries.

2.4.4 Filter-Based Algorithm

A filter-based algorithm named the Replacement Algorithm is proposed in [TC92]. The

input of the algorithm includes the number of hash functions d and the double linked list

T representing the execution tree. The algorithm will output an improved semijoin

program. The general steps for a backward replacement with hash-semijoin can be

described as foUows; [From TC92]

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1) Establish a queue that is used to record the nodes having no successors with their

levels and then sort the queue by levels of nodes from high to low;

2) Remove the first element (denoted Rj) from the queue, and its predecessor is Ri;

3) Calculate the potential cost of traditional semijoin (Rj ? Rj) and hash semijoin

(Ri? Rj);

4) If hash-semijoin is more cost effective dian semijoin, then replace the semijoin Ri

? Rj by hash semijoin Ri? Rj

5) Update the potential cost of Ri;

6) Insert the element (Ri, level) into the queue according to the level of R;

7) Repeat the process until the queue is empty.

Here is an example to show how this algorithm works. The semijoin program

i?2 ? R l , R3 I R2 , R4 7 R2 , R5 I R4 is represented by the execution graph shown in

figure 2 .1 1 .

Rl — R2 ^

R4 R5

Figure 2.11 An example o f execution graph

Suppose: /Rj = 1000, ŵ .= 100, Sy = 0.5, ay = 30 bits, d =5 ,then

• false drop probability (f) = (1 /2)^ = (1/2)5 = o.03125

• potential cost of semijoin (CXp= «,y/Rj+ 5 -̂vvjRj| = 80000

• potential cost of hash-semijoin (CH,y)=(<i/ln2)*|Rj-|+ (s',y+QwjRj|= 60338

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initialization: establish and short the queue (SQ) = {(R5 , 4), (Rj, 3)}; the potential cost

C; of the subtree rooted at Rj is 0 (i=l to 5);

Execution: •Remove (R5 ,4) from SQ, Rj=R5, R^Rt

•Calculate CT4 5-CH45- / •Cj

= 80000 -60338-0.03125 •O

= 19662 >0, so replace R5 ? R4 by R5 ? R4 and

Upda te C4=C4 + CH45 +(S4S+Q •Cs = 60338

•Insert (R4 , 3) to SQ, SQ = {(R3,3),(R4,3)}

Repeating the execution until SQ is empty. In this example, all semijoins are replaced by

hash-semijoin.

The potential cost of the original semijoin program:

C q - C T 2 2 + S12 •C T22+S12 •C T24+S22 *S24 “CT45

=80000+0.5 •80000+0.5 ^80000+0.5 ^0.5 •0.5 •SOOOO

= 180000

The potential cost of the improved semijoin program is: C\ = 141476

So, in this example, the cost is saved C q-C \ = 38524.

In general, hash semijoin is more cost-effective than semijoin. The search filter in the

hash-semijoin achieves considerable saving in the cost of a semijoin operation. However,

it only works on execution tree, and the performance is tightly related with the hash

functions.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Conclusions

Distributed query processing is the process of retrieving data from different sites. It

involves transmission via a network so it will create delays. The basic challenge is to

design and develop efficient query processing techniques and strategies to minimize the

communication cost.

• The semijoin [BC81, BG81] is a very popular technique for reducing transmission

cost. Most distributed query processing algorithms proposed so far rely on semijoin;

• The 2-way semijoin is an extension of the semijoin operation [KR87]. It aims to

reduce both relations, while requiring less total network cost than executing regular

semijoin;

• The pipeline N-way join is for joining the reduced relations residing on N sites. The

main goal is to eliminate the need of shipping, storing, and retrieving foreign relations

and/or intermediate results in the local disks of the query site [RK91];

• Interleavmg joins with semijoins can result in more beneficial semijoins due to the

inclusion of joins as reducers. Judiciously applying the join operator as reducer can

further reduce the amount of data transmission required [CY92];

• The Domain-specific semijoin can reduce the size of fragments by eliminating non-

contributive tuples and can be performed in a fragment-to-fragment manner and

provide more flexibility in distributed query processing [CL90];

• A composite semijoin is a semijoin in which the projection and transmission involve

multiple columns. It may be beneficial to do the semijoins as one composite rather

than as multiple single column semijoins [PC90];

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Hash semijoin transmits a Bloom filter that is a hashing based bit vector used to

encode the same joining information as the join attribute projections do. Compared to

semijoin, hash semijoin can have lower cost because a bloom filter is generally

smaller than the join attribute projection, but false drops may occur [TC92];

• A PERF method adds to semijoins in the backward phase and is used to eliminate

unnecessary redundant semijoins by using bit vectors. It is based on the relation tuple

scan order instead of hashing. Hence it does not suffer any loss of join information

incurred by hash collisions [LR95].

• Virtual join [SSL+02] considers reducing both communication cost and local cost in

distributed query processing. It is both adaptive and efficient.

It has been shown that finding an optimal query strategy for a given query is NP-hard, so

most research concentrates on developing heuristic algorithms which find near-optimal

solutions. [Kos98] presents that all query optimization algorithms fall into one of three

different classes (Exhaustive search, Heuristics, randomized algorithms) or combinations

of such basic algorithms.

• Distributed INGRES [ESSO] and System R* [SA80] algorithms are two

representative of algorithms that are based on joins. INGRES employs a dynamic

optimization algorithm, while System R* uses a static optimization;

• SDD-1 [BGW+81] was the first query optimization algorithms based on semijoin. It

aims to rninimize the amount of intersite data transfers through a cost/benefit analysis

which sequentially selects the most profitable semijom to execute; AHY algorithms

are a collection of algorithms for minimizing either the response time or the total cost

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for a query; W algorithm is a static strategy. Also there are many other algorithms

based on semijoin or variant of semijoin;

• Filter-based algorithms are more efficient and popular now. In the next chapter of this

report, we will introduce a new filter-based algorithm called Composite Semijoin

Filter and compare it to other filter-based algorithm through experimental results.

Query optimization is the important part in distributed database systems. A large number

of query optimization algorithms have been proposed by now. But the study in this area is

and will be continued.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 Proposed Algorithm

3.1 Problem and Motivation

In distributed database systems, the data is distributed and stored at different sites, which

are connected by a computer network. In order to complete a final query, data needs to be

transmitted between sites and this communication cost is a dominant factor compared to

local processing cost. Because some data are not participating in the fmal joining query

result, it is feasible to discharge them all before transmitting. It is obviously that the cost

of transmitting the reduced relations will be lower than that of transmitting the original

relations.

The objective of distributed query optimization is to fmd strategies to minimize the

amount of data transmitted over the network. During previous research efforts, semijoin

tactics are widely applied for query processing to reduce transmission cost by

transmitting only the projections instead of the whole relations. If relations are reduced

fully using a semijoin-based algorithm before they are shipped to the join site, less

communication cost may be incurred when reduced relations are sent to the result site.

However, due to the type of queries and the independence of attributes assumed in

semijoins, the relations appearing in the query may not be reduced fiilly. As a result, the

communication cost in assembling the relation can still be high [YC84]. Sometimes two

or more attributes, each with poor selectivity, can be combined to form a composite

semijoin with a better selectivity. In this situation it may be beneficial to do the semijoins

as one composite rather than as multiple single column semijoins (An example is shown

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in figure 2.6). A composite semijoin is a semijoin in which the projection and

transmission involve multiple columns. Through simulation results, it has been shown in

[PC90] that algorithms including the possibility of composite semijoin can generate

strategies which are far better than those that ignore this method. But the cost to transmit

composite semijoin projections may be high.

Hash semijoin is proposed to minimize the cost of a semijoin operation (i.e., the cost of

transmitting the semijom projection). It is based on the concept of search filters (also

called Bloom filters). A bloom filter is a vector of bits, which is used to filter out the

tuples that do not participate in the join. Compared to semijoin, hash semijoin can have

lower cost because a Bloom filter is generally smaller than the join attribute projection.

Although most research based on filters varies in how the filters are used, the majority

encode them using hashing. Hashing is a procedure of applying a special function, called

hash function, to a key value to produce an address in a data structure (e.g. a hashed

index or a bit array). Unless we have a perfect hash function, filters can never avoid false

drops or so called collisions, which occur when two or more attribute values hash to the

same address. (The example is shown in figure 2.8.). In [YL99], two Bloom filters are

used and the experimental results show that the performance of the algorithm is much

better than using a single set of filters under the assumption of collisions. It is impossible

to implement composite semijoin using Bloom filters because we cannot keep the relation

information between attributes within one tuple when using hash function to hash multi

column attributes to one address.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Can we still use filters but avoid collision to get the high performance? The answer is

yes. PERF join provides the possibility. It can produce a variation of Bloom filters by

scanning the relation tuple order instead of hashing. Hence it does not suffer any loss of

join information incurred by hash coUisions.

What motivates my interest and future study in this field is how to make improvement

based on the current available techniques or algorithms. In this thesis, we take advantage

of composite semijoin, Bloom filters and PERF join to propose a new algorithm called

Composite Semijoin Filter to implement composite semijoins.

3.2 The Algorithm

In this section, we will introduce our proposed algorithm - Composite Semijoin Filter in

detail and give an example to illustrate how this filter works.

Composite Semijoin Filter is a filter-based algorithm, which allows the combination of

composite semijoins. Bloom filters and PERF joins. Its primary goal is to reduce the size

of relations participating in the final joining, especially to reduce the data that cannot be

reduced by using a pure semijoin. As a result, it can minimize the transmitting cost

significantly over the network. We use a composite semijoin filter as a reducer.

3.2.1 Description of The Algorithm

The Algorithm can be computed with the following steps. We assume that before using

this algorithm, all initial local processing should be done to make sure there are no

duplicate records. Each query is processed in two phases.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First reduction phase: (Reduce relations using composite semijoins.)

1. Do all local processing: Do all composite semijoin projections for each relation

(Figure 3.1); - costl

2. Creating CSFs for each relation: (Figure 3.2)

^ Send all composite semijoin projections in parallel to the assembling site

or other site; - cost2

^ Create composite semijoin filters for each relation by scanning the tuple

order of common join attributes. - costS

3. Updating filters: If there are more than one CSF for each relation, do “and”

operation and generate the final filter for this relation, then update other filters

related if there is change (Figure3.3); - cost4

4. Reducing: (figure3.4)

Send CSF back to the site of its relation; - costS

Reduce this relation using its own CSF. - cost6

Second reduction phase: (Reduce relations using hash semijoin.)

Finally, transmitting all reduced relations to the assembling site in parallel to produce the

final query result (Figure3.5). - cost?

Cost will be incurred during each step. They are represented as costl to cost?. The

meanings are:

• Costl- the local process cost for projecting the composite semijoin;

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Cost2- the communication cost for transmitting composite semijoin projections

(the size of projections);

• Cost3, Cost4 - the local process cost for creating CSF of its relation;

• Costs - the communication cost for transmitting composite semijoin filters (the

size of all filters);

• Cost6 - the local process cost for reducing each relation using CSF;

• Cost?- the communication cost for transmitting reduced relation (the size of all

reduced relations).

Let us see a simple example to explain how this filter works. Suppose we have three

relations, which must be joined to get the query result. There are five join attributes. Ri

has two common join attributes A and B with R2 , one common join attribute B with R3 ;

Ra has two common join attributes A and B with Ri, two common join attributes B and D

with R 3; R3 has two common join attributes B and D with Ri. In this example, if we use

pure semijoin for Ri and Ra on attribute A and B separately, there will be nothing to be

reduced. But if we use composite semijoin, the relations will be reduced greatly. So in

this situation, it will be more beneficial using our algorithm.

Ri
Ri

A B C
a d g
b e h
c f i

A B D E

b e c i

c d e h '

__ f __d_ __

R3
B D F
d d b
e c a
f c d

g d c

Figure 3.1 Original Tables o f Relations

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First, we do all the composite semijoin projection for Ri, R2 and R3 . There are two

composite semijoin projections for relation Ra: Pr2(A,B) and Pr2(B,D). The results are

shown in Figure 3.2 .

Pri(A,B)
A B

a d

b e
c f

P r2 (A ,B) P r 2 (B ,D)

A B

b e
c d

a f

B D

e c
d e
f d

P r s(B .D)

B D

d e
e c
f c

g e

Figure 3.2 Projection o f Composite Semijoin

Secondly, send all the projections to a same site (the assemble site or another site) and

create CSFs for relation Ri, R2 and R3 . A CSF is a bit vector that contains one bit for

every tuple in Pr and in the same order. So the size of CSF for a relation equals to the

number of the relation. Create CSF by scanning tuple order and set the corresponding bit

of the filter to 1 if the tuple is matching otherwise to 0.

Ri has one CSF, R2 has two CSFs, R3 has one CSF. So we do ''and” operation

CSFr2(A,B) and CSFr2(B,D) for R2 and get CSFr2. Because there is a change when

doing “ and” operation. So we update related filters (CSFr3(B,D))

Figure 3.3 shows the details.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CSFri(A,B) CSFr2(A,B) CSFr2(B,D)

1 T 1 T 1 T
2 T 2 T 2 T
3 0 3 T 3 0

CSFrs(B,D)
1
2
3
4

1
1
0

CSFre(B,D)
1 0

1
0

Figure 3.3 Filters o f Composite Semijoins

Note: The number left denotes the position o f tuples.

Thirdly, transmittiEg CSFri(A,B) to site of Ri, CSFsi to site of R2, CSFs?f®,Dj to site

of R3 and reduce Ri to R i’using CSFri(A,B), R2 to R2’using CSFr2, R3 to R3’using

CSFr3(B,D). (Figure 3.4)

Finally, send Ri’, R2’ and R3’ to the assembling site and compose final result (Figure3.5).

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reducing Relations using their own filter...

R j’ R2’

A B C
b e h

A B D E
b e c i

Figure 3.4 Reduced relations

Assembling...

A B C D E F
b e h c i a

Figure 3.5 Final Result Relation

3.2.2 Implementation

Rs’

B D F
e c a

Development environment:

® Microsoft visual C++ 6.0

® Windows XP professional

Main Data Structures:

• A_matrixfinim_rel][iium_attr] — adjacency matrix, used to show which

relations have joining attributes in common.

• Adjacency list: used to represent a query graph. Each relation has one list which

head-node contains the number of common attributes, while list-nodes showing

connecting relations and common attributes. Each node is defmed as:

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

struct rec{

int attr; // attribute id

int rel; // relation id

struct rec *next; // pointer to point next element of the list

};
struct rec * vertex[num_rel]

• csf_final[nul_rel] [max_tuple] - Composite Semojin Filter, use to construct CSF

for each relation

Main Functions:

• init_dataO - to initialize data

• read_data() - to read data from statistic table

• build_amatrixO - to build adjacency matrix

• buUd_csfO - to build Composite Semijom Filter (CSF) for each relation

• reduce_relO - to reduce each relation using its own CSF

• cal_cost() - to calculate the cost (filter cost and final transmission cost)

• output_fileO - to output the result data

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 Experiments and Evaluation

In the previous chapter, we introduced our proposed algorithm. Is this algorithm good or

not? The experiment is the best way to evaluate it. In this chapter, we will present our

experimental scenarios and analyze the experimental results.

4.1 Experimental System

We assume a distributed relational database management system with a number of

independent nodes distributed geographically and connected via a point-to-point network.

The relations are distributed among the nodes and all nodes can access all data; Each

node has local processing and storage capabilities, that means that selections and

projections should be carried out during the local processing phase before the applying

the algorithm; We will only consider select-project-join (SPJ) queries since most queries

can be stated in this format.

The test-bed we used is the one developed by the author in [BWT95]. Based on the test

database, we construct a set of different queries. Each query consists of an arbitrary

number of relations and an arbitraiy number of joining attributes. We investigate the

following characteristics in this thesis;

• The number of relations involved in the query.

• The number of possible joining attributes involved in a given query.

• The selectivity of the attributes in the query.

• The number of tuples in a relation.

• The domain size of attributes.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Evaluation Method

The main objectives of evaluating this algorithm (CSF) are to determine how well the

algorithm performs. We will measure the performance of the algorithm over Initial

Feasible Solution (IFS) in terms of the total cost. IFS ships all relations directly to the

query site, where centralized query processing performs joins and builds the query result.

The cost of the algorithm includes the cost each projection shipped, the size of filters and

the size of reduced relations. We will also compare the algorithm to another filter-based

algorithm (W2) in terms of the reduction ratio and the total cost.

4.2.1 Size and Selectivity

For each relation R i, we use | Rj | to denote the cardinality of Ri, S(Ri) to represent the

size of relation Ri in bytes; W(Ri) is the width of a tuple in Ri in bytes. Then:

S(Rt)=/Ril*W(Ri) (1)

The size and selectivity of each individual attribute are represented by S(dij) and ?(dij)

respectively, the width of the join attribute in bits is W(dij). Then:

S(dij) =/dij I * W(dij). (2)

?(dij) is the selectivity on each joining attribute j of relation Rj. It is the number of

different values occurring in the attributes divided by the number of all possible values of

the attribute. Suppose the cardinality of the joining attribute is | dy |, the domain of dij is

D(dij), the selectivity is commonly defmed as

?(dy)=jdyl/D(dij) (3)

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The selectivity is regarded as high when ?(dij) is small. In our experiment, there are three

level of selectivity.

Figure 4.1 shows the statistical information of a database including four relations and 2

joining attributes. In this example, the domain of du equals D (d a) = 990, the domain of

di2 equals D (di2)= 610. The relation Ri only has one joining attribute 2. The size of Ri is

4800. The size of the projection of relation Ri on joining attribute 2 is 867. So we

calculate the selectivity of Ri projected over joining attribute 2 as follow:

? (d u) — ! d u j / D (d u)

= 435/610

= 0.713115

S(Ri) S(du) ?(du) S(di2) W n)
4800 0 0 . 0 0 0 0 0 0 435 0.713115
1900 945 0. 954545 0 0 . 0 0 0 0 0 0

1700 0 0 . 0 0 0 0 0 0 525 0.860656

3300 825 0.833333 565 0.926230

Figure 4.1 Database Statistical Information

4.2.2 Cost and Benefit

The total cost of CSF is the sum of the reduced relations and the size of the projection

and the size of filters.

C (CSF) = ? S (Ri’) + S (Projections) + S (Filters) (i= l...n) (4)

The benefit of algorithm CSF is the difference of the size of original relations and

reduced relations.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B (CSF) = ? {S(Ri) - S(Ri ’)) (i =1.. .n) (5)

The benefit ratio (or reduction ratio) is the benefit over the size of original relations.

BR(CSF) = B (CSF)/ ? S (Ri) * 100 (i= l...n) (6)

The cost-reduction ratio is the reduced cost over the original cost.

CR(CSF) = (C(IFS) - C(CSF))/ C(IFS) *100 (i =1.. .n) (7)

If the benefit exceeds the cost, then the algorithm is called a cost-effective.

Several assumptions are made in our experiment:

• The shipment of one word is a “unit” of cost

• Each attribute value can be represented by one word

• 64-bit word when calculating filter size, so the filter size equals to max_tuples/64.

1) Compare to IFS

IFS algorithm is a simple way to process a query. It ships all relations directly to the

query site, where centralized query processing performs joins and builds the query result.

It is simple but rarely efficient because of the high transmission cost We compare our

algorithm to IFS in order to evaluate the algorithm in terms of total cost.

The total cost of IFS is the sum of the costs of transferring all relations to the joining site.

According to our evaluation method, the total cost of IFS should be the sum of the size of

all relations participating in the query.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C (IFS) = ? 5 (Ri) (i= l...n)

For example, in the example of Figure 4.1, the cost of IFS equals to:

4800+1900+1700+3300 = 117000

2) Compare to W2 [M09S]

W2 is another algorithm that uses filters. Each filter is an array of bits that functions as a

very compact representation of the values of a join attribute in a relation. A perfect hash

function is used to set bits in the filter.

The algorithm can process general queries consisting of an arbitrary number of relations

and join attributes. Each query is represented by a graph and an adjacency list. Each

relation is usually only processed once. However, if a filter changes then certain relations

must be processed again. The algorithm involves two phases.

Phase one: The adjacency list is used to determine the order in which the filters are

constructed and used. Repeat all the substeps until each relation has been processed once.

• Select the relation with lowest in_degree for processing

• Scan adjacency list to see which filters must be constructed. If a filter is

already available then concurrently use it to reduce the relation and

produce all required filters.

• If a filter has changed then use the following “filter rule”: if a filter for a

relation changes then add that relation to the queue only if it has already

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

been processed; it is not already on the queue; and it is not the most

recently processed the relation.

• Use adjacency list to “remove edges” from query graph - that is , reduce

the in_degree of each relation in the list by 1 .

• Mark relation as processed.

Phase two: The queue is processed in this phase, repeat until the queue is empty.

• Remove relation from the queue.

• Reduce relation using all appropriate filters.

• If a filter changes the use the “filter rule”.

Suppose we have three relations which must be joined and shipped to some query site.

Ri A B C R2 A C D R; B E
1 2 3 2 4 5 3 4
2 3 4 3 5 6 5 5
3 4 5 4 5 7 6 6

The query graph and adjacency list are represented as follow:

Ri(3):

R2(2):

R3(1):

A R2 B R3

A Ri -► C Ri

B Ri

(a) Query Graph (b) Adjacency list

Figure 4.2 An example o f algorithm W2

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In phase one: First, we select the relation R3 (with the lowest in_degree) for processing,

scan Ra’s adjacency list, produce filter for B (3, 5, 6), reduce m_degree of Ri;

Second, select the relation Ri for processing, scan Ri’s adjacency list, filter B is already

exist, so reduce Ri using B, then Ri’={2,3,4}, produce filter A(2), C(4) and new B(3),

reduce in_degree R2 and place R3 on queue, then mark Ri as processed;

Third, select R2 and scan its adjacency list, reduce R2 using A and C, reduced

R2 ’={2 ,4 ,5 }, produce new filter A(2), C(4) and D(5). Because there is no change for

filters and all relations have been processed, phase one stops, go phase two.

In phase two, remove R3 from the queue, reduce R3 using filter B, then R3 ’={3 ,4 }. The

queue is empty so the algorithm stops.

All relations are fully reduced:

Ri’ n r r ^ T T T i rs’i . i i i rA B C
2 3 4

A C D
2 4 5

B E
3 4

The total cost of W2 is the sum of the reduced relations and the size of filters.

C(W2) = ? 5 (R i’) + 5(Filters) (i=l...n)

The benefit of algorithm W2 is the difference of the size of original relations and reduced

relations.

B (W2) = ? {S(Ri) - S(Ri)) (i= l...n)

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Experimental Results

4.3.1 Experiment Steps

The experimental process includes four steps.

First step:

Create a query by executing the program create_query.exe. It should be followed by

three parameters:

• num_rel - number of relations (3...6)

• num_attr - number of attributes (2.. .4)

• level_sel - level of selectivity (0 , 1 , 2)

Because in practice, the numbers of relations involved in join operations are usually no

more than 6 , and joining attributes involved are not many. So in this experimental

environment, the range for the number of relations is from 3 to 6 , while the range for

number of joining attributes is from 2 to 4.

Given the desired number of relations and the maximum number of join attributes, the

program will produce a query statistics table (Figure 4.1) as well as the input parameters

that are required for constructing the actual relations.

The selectivity is classified into 3 categories: 0 represents High selectivity (0.1 - 0.4), 1

represents Medium selectivity (0.4 - 0.7) and 2 represents Low selectivity (0.7 - 0.9).

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Second step: Build relations by executing relbuilder.exe. relationjd" according to the

statistical information produced in first step. One parameter is needed.

relationjd : 0 ...num_rel

Third step: Reduce relations and ou^ut the result data by executing csf_test.exe.

Forth step: analyze the experimental results produced in third step.

The query creator (create_query.exe) and relations generator (rebuilder.exe) were created

by previous colleagues in Database Group of Windsor University, and revised by me.

The CSF reducer (csf_test.exe) is implemented by me.

In our experiment, each relation in die query consists of 500 to 6000 tuples, while the

attribute domain contains 500 to 1500 distinct values. Because the number of relations in

each query in our experiments is between 3 to 6 , the number of attributes varies between

2 to 4, each combination of a relation number and a attribute number can make up a

query type. For example query type 4_3 represents four relations and three attributes. In

total, twelve query types ranging from 3_2 to 6_4 wdl be represented in the experiment.

Also, the experiments carried out are classified into three parts based on the selectivity of

all joining attributes in the test queries. Thirty-six queries were constructed and executed

using the algorithm CSF. In order to evaluate this algorithm exactly and effectively, each

type of query will be run 60 times (runs). Because in experiments, we found after 50

runs, the results seems no much changes. So over 2160 queries vary in many ways

including the number of relations, the number of attributes and the level of selectivity.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Results and Comparison

The objective of our experiment is try to answer the following questions:

1. How does the selectivity of the attributes, the number of relations and the number

of joining attributes in the query affect the performance?

2. Does the algorithm perform well compared to other algorithms?

Effects o f selectivity and attribute: Figure 4.3 to Figure 4.6 show the effect of selectivity

and effect of number of attributes at different number of relations.

Effects of Selectivity and Attribute

1 0 0 -j ■

80- ■

”1 60-"'

40-

s
eq 2 0 -'

ol

SLow
■ Medium

High
Medium Selev tm ty

Low

Attribute

Figure 4.3 Effects o f Selectivity and Attributes (Three Relations)

As Figure 4.3 shows, high selectivity always produces a higher benefit ratio than medium

or low selectivity in the case of three relations in a query. Under the same selectivity, as

the number of attributes increases, the benefit ratio also increases.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Effects of Selectivity and Attribute

I.
■ Low
■ Medium
□ High

Mgh

Low Selectivity

Attribute

Figure 4.4 Effects o f Selectivity and Attributes (Four Relations)

In the Figure 4.4, we can get the same conclusions as the case of three relations.

Effects of Selectivity and Attribute

f l l f l f

Hr S L ow

■ Medium

!' " □ H ig h

1 i l l [M Hi#
* d * 11' * I ̂ Mecfium
. Low Selectivity
2 3 A

Attribute

Figure 4.5 Effects o f Selectivity and Attributes (Five Relations)

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.5 shows that when the number of relations increases from 4 to 5, the

performance is better under each same case except four attributes with low selectivity.

Effects of Selectivity and Attribute

SLow
■ Medium
□ Kgh

High
Medium

Low Selectivity

Attribute

Figure 4.6 Effects o f Selectivity and Attributes (Six Relations)

As Figure 4.6 shows, general conclusions got from three relations are also suitable for the

case of six relations. Compared to five relations, the performance is better.

General speaking, the higher level of selectivity, the higher beneficial rate produced by

the algorithm CSF; With the increasing number of attributes, the benefit ratio also

increases; With the same selectivity, when we increase the number of relations from 3 to

6, the beneficial rate also increases a little bit. The exception occurs in the case of three

relations with four join attributes.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Comparison of Reduction Ratio (W2 vs. CSF):

Figure 4.7 shows the comparison results of reduction ratio between algorithm W2 and

CSF.

Reduction Ratio

o

100 -

90 -
^ M M

80 - , , ^ ^ ^̂ ^ T H ^ ▼ , - 1F2 Algorithm

70 - '•* - CSF Algorithm

60 -

50 J

m ■ ■

N 'V 'b 'V 'b N
0 5 / 0 5 / 0 5 / b) / b - ' b ' ' < 0 / < 0 /

Query Type

Figure 4.7 Reduction Ratio

As Figure 4.7 shows, the algorithm CSF can always gain more benefit than algorithm

W2. With the increasing number of attributes, the algorithm CSF produces higher

reduction ratio than that of algorithm W2. That means the algorithm CSF works more

efficiently under more common joining attributes. So, algorithm CSF is more beneficial

than W2.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The comparison o f transmitting cost (IFS, W2 and CSF):

The comparison results of transmitting cost among algorithm IFS, W2 and CSF is shown

in Figure 4.8.

Transmitting Cost

20000

15000

© 10000
u

5000

0
♦ Vi

 r * 'T'

Query Type

w2
-*-■ csf

ife

Figure 4.8 Tansmitting cost

As we can see, both algorithm W2 and CSF can reduce transmitting cost significantly.

But compared to algorithm W2, CSF produces a little bit more cost. The extra cost is

caused during transmitting composite semijoin projections when applying the algorithm

CSF. And when the number of relations and the number of attributes are all the biggest,

the transmitting cost will be reduced most by using the algorithm CSF or W2.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Summary.’

Figure 4.9 gives the tables of comparison between W2 and CSF in Benefit Ratio.

Beneficial
Ratio(Vo)

Number of Join Relations
3 4

High Med Low High Med Low
W2 CSF W2 CSF W2 CSF W2 CSF W2 CSF W2 CSF

Number of
Attributes

2 86.77 87.89 59.25 61.90 30.31 44.71 90.47 92.46 76.21 76.93 36.49 45.76
3 93.59 93.90 79.98 89.31 45.28 78.05 93.26 94.58 75.56 77.01 47.69 62.69

4 98.59 98.92 90.34 96.45 57.16 90.07 96.04 97.27 88.50 89.93 56.30 79.55

Average 92.98 93.57 76.52 82.55 44.25 70.94 93.26 94.77 80.09 81.29 46.83 62.67

Beneficial
Ratio(%)

5 6

High Med Low High Med Low
W2 CSF W2 CSF W2 CSF W2 CSF W2 CSF W2 CSF

Number of
Attributes

2 96.02 97.23 81.27 83.46 51.42 52.99 96.39 97.37 83.31 84.94 57.30 61.34
3 94.75 96.83 84.13 88.18 59.82 69.31 91.13 96.03 87.00 90.27 71.98 75.63

4 96.88 97.94 89.21 91.07 62.81 76.69 96.39 97.05 90.87 92.45 75.77 81.95

Average 95.88 97.33 84.87 87.57 58.02 66.33 94.64 96.82 87.06 89.22 68.35 72.97

Figure 4.9 Table o f Benefit Ratio

From the data in the table, we can say that the algorithm CSF is always beneficial. The

lowest benefit ratio is 44.71% (three relation two join attributes at low selectivity), and

highest one is 98.92% (three relation four attributes at high selectivity). The average is

94.72% at high selectivity, 85.16% at medium selectivity and 68.23% at low selectivity.

In general, the average of benefit ratio is 82.70% compared to the algorithm IFS. CSF can

get higher benefit ratio (5.80%) than algorithm W2.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The table of the comparison between W2 and CSF in terms of Cost-Reduction Ratio is

shown in Figure 4.10.

Cost-reduction
Ratio(%)

Number of Join Relations

3 4

High Med Low High Med Low
W2 CSF W2 CSF W2 CSF W2 CSF W2 CSF W2 CSF

Number of
Attributes

2 86.95 77.91 58.77 47.54 30.01 24.90 92.12 83.14 76.01 63.35 36.13 31.52

3 93.32 84.25 79.19 74.11 54.18 43.52 93.88 85.63 77.12 64.95 46.66 45.69

4 98.51 85.90 89.98 80.49 65.53 55.78 96.95 87.97 88.14 78.33 62.65 54.53

Average 92.92 82.69 75.98 67.38 49.91 41.40 94.31 85.58 80.43 68.88 48.48 43.91

Cost-reduction
Ratio(%)

5 6

High Med Low High Med Low
W2 CSF W2 CSF W2 CSF W2 CSF W2 CSF W2 CSF

Number of
Attributes

2 97.10 90.41 83.34 72.82 51.29 40.21 95.66 92.51 84.26 74.10 55.73 48.91

3 96.69 88.95 88.32 74.57 58.83 57.09 90.53 91.02 90.80 78.51 71.58 64.38

4 97.71 90.82 90.68 79.86 65.84 63.04 96.53 92.18 91.05 82.57 75.71 70.61

Average 97.17 90.06 87.44 75.75 58.65 53.45 94.24 91.90 88.70 78.39 67.67 61.30

Figure 4.10 Table o f Cost-Reduction Ratio

From the table, we can get that the data transmission cost of both W2 and CSF is reduced

significantly compared to the IFS. The cost-reduction ratio of CSF is between 24.90%

(three relations two join attributes at low selectivity) and is 92.51% (six relations two

attributes at high selectivity). The average is 87.56% at high selectivity, 72.6% at

medium selectivity and 50.02% at low selectivity. In general, the cost can be reduced

70.06% for average. Compare to algorithm W2, CSF causes a little bit more transmission

cost (13.04%).

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.11 is the table of benefit, cost and net benefit of Algorithm CSF. In most cases,

CSF has been shown a cost effective algorithm (Net-benefit is positive.). Exceptions

occur when selectivity is low. With the low selectivity, the relations will be reduced less

so the cost will be higher than medium or high selevtivity.

Number of Join Relations
3

High Medium Low
Benefit Cost Net-Bef Benefit Cost Net-Bei Benefit Cost Net-Bef

Num_attr
2 5825 1652.13 4172.87 3892 4295.05 403.05 1991 6004.99 -4013.99

3 6372 1191.04 5180.96 5839 2040.01 3798.99 3449 4476.34 -1027.34

4 5267 864.74 4402.26 6373 1545.00 4828.00 4306 3413.84 892.16

Average 5821.33 4585.36 5368.00 2626.68 3010.01 3248.67 4631.72 -1383.06

4
High Medium Low

Benefit Cost Net-Bef Benefit Cost Net-Bef Benefit Cost Net-Bef

Num_attr
2 8109 1644.69 6464.31 6892 3987.58 2904.42 3517 7644.06 -4127.06

3 9052 1519.12 7532.88 7558 4079.43 3478.57 5213 6198.41 -985.41

4 8435 1154.05 7280.95 9039 2500.89 6538.11 6389 5328.26 1060.74

Average 8532.00 1439.29 7092.71 7829.67 3522.63 4307.03 5039.67 6390.25 -1350.58

5
High Medium Low

Benefit Cost Net-Bef Benefit Cost Net-Bei Benefit Cost Net-Bef

Num_attr
2 11906 1263.27 10642.73 10427 3892.47 6534.53 5361 7972.57 -2611.57

3 11515 1430.97 10084.03 10214 3483.32 6730.68 8762 6585.72 2176.28

4 12087 1222.42 10864.58 11586 2921.68 8664.32 10194 5975.78 4218.22

Average 11836.00 1305.56 10530.44 10742.33 3432.49 7309.85 8105.67 6844.69 1260.98

6
High Medium Low

Benefit Cost Net-Bef Benefit Cost Net-BetBenefit Cost Net-Bef

Num_attr
2 14111 1141.83 12969.17 11199 3913.58 7285.42 8022 8380.38 -358.38

3 13891 1371.24 12519.76 12625 3455.94 9169.06 10693 5915.90 4777.10

4 15445 1310.62 14134.38 14097 2976.06 11120.94 12505 5206.01 7298.99
Average 14482.33 1274.56 13207.77 12640.33 3448.53 9191.81 10406.67 6500.76 3905.91

Figure 4.11 Table o f benefit, cost and net-benefit ofAlgorithm CSF

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 Conclusions and Future Work

5.1 Conclusions

Query optimization is an important part in distributed database systems. The main

concern in this area is the selection of the best sequence of various operations to process

queries to minimize the communication cost. Because finding the optimal solution is NP-

hard, heuristics are applied to find near-optimal processing strategies.

During the past two decades, various possible algorithms have been presented and tested,

which can be classified into following categories: Join-based algorithms, Semijoin-based

algorithms. Filter-based algorithms, and join/semijoin combined algorithms.

Semijoin is often a common starting point for join algorithm in distributed database. It is

widely used to reduce the amount of data transferred between sites. Semijoin-based

algorithms perform better than join-based algorithms. However, we still have to spend a

lot for transmitting the semijoin projection when using semijoin-based algorithms. Also

in most of the algorithms, multiple semijoins may be performed with common source and

common result sites. In this situation it may be beneficial to do the semijoins as one

composite rather than as multiple single column semijoins. But composite semijoin may

produce more cost than semijoin when transferring composite semijoin projection.

Filters are proposed as a cheap way to minimize this cost by transmitting filters instead of

projections. However, since Bloom filters are constructed by hash functions, collisions

can never be avoided. This is the problem or bottleneck for Bloom filter-based

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithms. PERF join provides a new idea of creating filters to overcome the problem

by scanning the tuples and reserving the poison information instead of hashing the values.

In this thesis, we take the idea of the PERF join and create a variation of Bloom filter

called Composite Semijoin Filter (CSF) to implement composite semijoin and avoid

collisions. The algorithm can process general queries consisting of an arbitrary number of

relations and joining attributes.

The primary goal of our algorithm is to minimize transmitting cost, which is spent during

transmitting relations to the assembling site for final query processing. It is implemented

by reducing relation size. We use composite semijoins to reduce relations, especially the

tuples that may not be reduced by pure semijoins. The second goal is to minimize

intermediate transmission cost (caused by transmitting composite semijoin projections)

by using a variation of Bloom filter that can avoid collisions.

Although a composite semijoin itself may not be beneficial because of its more total time

cost, it always gainfiil to the execution of subsequent join operations. Our proposed

algorithm is evaluated and compared with initial feasible solution (IFS) and another

filter-based algorithm in terms of the total cost. From the experimental results, we get the

conclusions as follows:

1. The algorithm is always beneficial compared to the IFS. The lowest benefit ratio

is 44.71% (three relation two join attributes at low selectivity), and highest one is

98.92% (three relation four attributes at high selectivity). The average of benefit

ratio is 82.70% compared to the algorithm IFS.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. The data transmission cost is reduced significantly compared to the IFS. The cost

can be reduced 70.06% for average.

3. Generally speaking, this algorithm is cost-effective (Net-benefit is positive.).

4. The number of relations and the level of selectivity are two main factors which

affect the benefit ratio and the cost-reduction ratio.

• With the same number of relations, no matter how many attributes the

relations have, the higher the selectivity, the higher benefit ratio and cost-

reduction ratio.

• With the same selectivity and a fixed number of relations, the more

attributes the relations have, the more benefit will gain, and so does the

cost reduction ratio.

• With the same selectivity and the number of attributes, as the number of

relations involved in the query increases, applying the algorithm CSF will

get more benefit. (Exceptions occur when the query has three relations

with three or four joining attributes.)

5. Compare to another filter-based algorithm (W2), CSF can also get higher benefit

ratio (5.80%) but will cause a little bit more transmission cost (13.04%).

Consequently, the algorithm proposed in this thesis performs well. The data transmitting

cost is reduced significantly in comparison to the algorithm IFS. Compared to the

algorithm W2, our proposed algorithm can also produce higher benefit ratio, but will

spend more by transmitting the projections. This is the main disadvantage of the

algorithm.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Future Work

Here are several things which should be done but have not been considered in this thesis.

The response time: As we introduced in Chapter two, there are two cost models, one is

the response time, and the other is the total cost. In my current work, I just evaluate the

algorithm in terms of the total cost. So what we will do later is to evaluate if this

algorithm can also get lower response time compared to other algorithms.

The local processing time: In this thesis, we do not take the local processing time into

account, but it should not be ignored, for example, the cost for processing the projections,

the cost for removing dupUcates and the cost for generating the filters. With the

augmentation of the relation size, the cost wiE be larger. So, the total cost wiU be higher

in practice.

The duplicates: If we can find out an efficient method to deal with the duplicates on

projections, the transmission cost will be reduced more.

Special cases fo r composite semijoins: Obviously, the algorithm will perform best if it

can be used under special cases which are suitable for composite semijoins.

More runs: Some exceptions occur in the experiments. If we can run more times such as

hundreds or thousands times for each query type, the results may be smoothly.

The real system: If possible, it should be put into the real distributed database systems

for performance testing and improvement in the future.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[AHY83] P. Apers, A. Hevner and S. Yao, “Optimization algorithms for distributed

queries”, IEEE Transactions on Software Engineering, 9(1), pp.51-60, 1983.

[AM91] J. Ahn, S. Moon, “Optimizing joins between two fragmented relations on a

broadcast local network”. Info. Syst, Vol. 16(2), pp. 185-198, 1991

[BC81] P. A. Bernstein, D. M. Chiu, “Using semijoins to solve relational

queries”, JACM, Vol. 28, No. 4, pp.25-40, Nov. 1881.

[BFSOD] S. Bandyopadhyay, Q. Fu and A. Sengupta, “A Cyclic multi-relation

semijoin operation for query optimization in distributed databases”, IEEE,

2000.

[BG81] P. A. Bemstein, N. Goodman, “The power of natural semijoins”, SIAMJ.

Computer, Vol. 10.4, pp.751-771, Nov. 1881.

[BG93] D. Bell, J. Grimson, “Distributed Database Systems”, Addition-Wesley.

[BGW+81] P.Bemstein, N. Goodman, E. Wong, C. Reeve, and J.Rothie, “Query

processing in a system for distributed databases(SDD-l)”, ACM Transactions

on database Systems,Vol.6(4), pp.602-625,1981.

[BKK+01] R. Braumandl, M. Keidl, A. Kemper, D.Kossmann, S.Seltzsam,K. Stocker,

“Object Globe: Open Distributed Query Processing Services on the intemet”,

IEEE Computer Society Technical Committee on data Engineering, pp. 1-7,

2001.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[BL82] P. A. Black,W. S. Luk, “A new heuristic for generating semi-join programs

for distributed query proceeding”, In Proc. lEEEE COMPSAC, pp.581-558,

Dec. 1982

[BPR90] P. Bodorik, J. Pyra and J. S. Riordon, “Correcting execution of distributed

queries”, In Proc. Of 2nd int. Symp. on Databases in Parallel and distributed

Systems, pp.192-201, 1990.

[BR88] P. Bodorik, J.S. Riordon, “Distributed query processing optimization

objectives”, Fourth International Conference on Data Engineering, pp. 320 -

329,1988.

[BR88] P. Bodorik, J. S. Riordon, “Heuristic Algorithms for Distributed Query

Processing”, IEEE, pp.144-155,1988.

[BRB+01] C. Badue, B. Ribeiro-Neto, R. Baeza-Yates, N. Ziviani, “Distributed query

processing using partitioned inverted files”, String Processing and

Information Retrieval, 2001. Proceedings. Eighth International Symposium

o n , 2001, pp. 10 - 20.

[BRJ89] Peter Bodorik, J. Spruce Riordon and C. Jacob, “Dynamic Distributed Query

Processing Techniques”, ACM, pp.349-357,1989.

[BRP92] Peter Bodorik,!. Spruce Riordon and James S. Pyra, “Deciding to Correct

Distributed Query Processing”, IEEE Transactions on Knowledge and data

Engineer in Vol.4 No.3, pp.253-265, Jun. 1992.

[CBH84] D. M. Chiu, P. A. Berstain and Y. C. Ho, “Optimizing chain queries in a

distributed database system”, SIAMJ. Computer, Vol. 13. No.l, pp.l 16-

134,1984.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[CCY92] Tung-Shou Chen, Arbee L.P. Chen and Wei Pang Yang, “Hash-semijoin: A

new technique to minimizing Distributed Query time”, IEEE, 1992.

[CH82] W.W. Chu, P. Hurley, “Optimal Query Processing for Distributed Database

System”, IEEE. Trans. On Comput., Vol. c-31,no.9, pp.135-150, Sep. 1982.

[CH84] D. M. Chiu, Y. C. Ho, “Optimizing star queries in a distributed database

system: A method for interpreting tree queries into optimal semijoin

expressions”, VLDB, pp.959-967,1984.

[Cha82] Jo-Mei Chang, “A Heuristic Approach to Distributed Query Processing”,

Proceeding of the 8th VLDB Conference, pp.54-61, 1982.

[Che90] Arbee L. P. Chen, “Outeijoin optimization in multi-database systems”.

Proceedings of the second intemational symposium on Databases in parallel

and distributed systems, pp.211-218, July 1990.

[CLOD] H. Chen and C. Liu, “An efficient algorithm for processing distributed

queries using partition dependency”. Parallel and Distributed Systems, pp.

339 -346, 2000.

[CL84] L.Chen and V.Li, “Improvement algorithms for semi-jion query processing

programs in distributed database system”, IEEE Transaction on computers.

Vol. 33(ll),pp.959-967, 1984.

[CL84] L.Chen and V.Li, “Optimizing star queries in a distributed database system”,

Proc. 10th int. Conf. Very Large Data Base, pp.136-145,1984.

[CL85] A. L. P. Chen, V. O. K. Li, “An optimal algorithm for distributed star

queries”, IEEE Trans. On Software Engineering, Vol. 11 No. 10, pp. 1097-

1107,1985.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[CL90] L. chen and V.Li, “Domain-specific semi-join: A new operation for

distributed query processing”, Information science,Vol. 52, pp.165-183,

1990.

[CY90] M.-S. Chen, P.S. Yu, “Using combination of join and semijoin operations for

distributed query processing”. Distributed Computing Systems, Proceedings.,

10th Intemational Conference on, pp. 328 -335,1990.

[CY90] Ming-Syan Chen and Philip S. Yu, “Using join operation as reducers in

distributed query processing”, IBM Research report RC15107, pp. 116-

123,1990.

[CY91] Ming-Syan Chen and PhiUp S. Yu, “Determing Beneficial Semijoins for a

join Sequence in Distributed Query Processing”, IEEE, pp.50-58,1991.

[CY92] M.S. Chen, P.S. Yu, “Interleaving a Join Sequence with Semijoins in

Distributed Query”, Parallel and Distributed Systems, IEEE Transactions on,

Volume: 3 Issue: 5, pp.611 -621, Sept. 1992.

[CY93] Ming-Syan Chen and Philip S. Yu, “Combining Jion and Semi-Jion

Operations for Distributed Query processing”, IEEE Transactions and Data

Engineering Vol.5, No.3, pp.534-542,1993.

[CY94] Ming-Syan Chen, P.S. Yu, “A graph theoretical approach to determine a join

reducer sequence in distributed query processing”, Knowledge and Data

Engineering, IEEE Transactions on. Volume: 6 Issue: 1, 152 -165, Feb.

1994.

[CY96] Ming-Syan Chen, Philip S. Yu, “Optimization of parallel execution for multi­

join queries”, IEEE, pp.416-428,1996.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[ESW78] R. Epstein, M. StoneBraker, and E. Wong, “Query Processing in a

Distributed Relational Database System”, In Proc. ACM SIGMOD Int. Conf.

On Management of Data, pp. 169-180, May 1978.

[ES80] R. Epstein and M. StoneBraker, “Analysis of distributed database processing

strategies”. In Proc. 6* Int. Conf. On Very Large Data Bases, 1980

[Fre89] J. C. Freytag, “The Basic Principles of Query Optimization in Relational

Database Management Systems”, Information Processing 89, G. X. Ritter,

Elsevier Science Publishers B. V. (North-Holland), pp.801-807,1989.

[GM95] Bojan Groselj and Wutaibah M. Malluhi, “Combinatorial optimization of

Distributed Queries”, IEEE Transactions on Knowledge and data Engineering

Vol.7 N0.6, pp. 915 -927,1995.

[Gra96] Jim Gray, “Data Management: Past, Present, and Future”, Microsoft

Research, Technical Report MSR-TR-96-18, Jun. 1996.

[Gre98] Michael Gregory, “Genetic Algorithm Optimization of Distributed Database

Queries”, IEEE, pp.271-267,1998.

[GS86] Bezalel Gavish and Arie Segev, “Set query optimization in distributed

database systems. ACM Trandactions on Database systems Vol. 11 No. 3, pp.

265-293,1986.

[GW89] G. Graefe and K. ward, “Dynamic Query evaluation plans”, ACM SIGMOD,

pp.73-170,1989.

[HCY94] Hui-I Hsiao, Ming-Syan Chen and Phillip S.Yu, “On parallel execution of

multiple pipelined hash joins”, ACM SIGMOD, pp. 185-196,1994.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[HCY97] Hui-I Hsiao, Ming-Syan Chen and Phillip S.Yu, “Parallel Execution of Hash

joins in Parallel Database”, IEEE, pp.872-883,1997.

[HFOO] Ramzi Haraty and Roula Fany, “Distributed query optimization using perf

Jions”, ACM, pp.284-287,2000.

[HKL94] Jomg-Tzong Homg, Cheng-Yan Kao and Baw-Jhiune Liu, “A genetic

Algorithm for database query optimization”, IEEE, 1994.

[HMOO] Abdelkader Hameurlain and Franck Morvan, “An Overview of Parallel

Query Optimization in Relational Systems”, IEEE,2000.

[HWY85] Alan R. Hevner, O. Qi Wu and S. Bing Yao, “Query Optimization on Local

Area Networks”, ACM transaction on office Information Vol.3, No. 1, pp.35-

62,1985.

[HY79] A.R. Hevner and S. B. Yao, “Query Processing in Distributed Databases”,

IEEE Trans, on Software Eng., SE-5(3), pp. 1770-187, 1979.

[JK84] Matthias Jarke and JurGen Koch, “Query Optimization in database system”,

ACM Computing Surveys Vol. 16, No.2, pp. 112-152,1984.

[JPS93] Anant Jhingran, Sriram Padmanabhan and Ambuj Shatdal, “Join Query

Optimization in Parallel Database Systems”, IEEE, 1993.

[KHY82] Y. Kambayashi, M. Yoshikawa and S. Yajima, “QUERY Processing for

Distributed Databases Using Generalized Semijoins”, ACM Proceedings of

SIGMOD, pp.151-160,1982.

[KosOO] Donald Kossmannn, “Cache Investment: Integrating Query Optimization and

distributed Data placement”, ACM Transaction on Database Systems Vol.

25,No.4, pp.517-558, Dec. 2000.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[KosOO] Donald Kossmannn, “The State of the Art in Distributed Query Processing”,

ACM Computing Surveys (CSUR), v.32 n.4, pp.422-469, Dec. 2000.

[Kos98] Donald Kossmann, “Iterative Dynamic Programming: A New Class of Query

Optimization Algorithms”, ACM Transactions on Database Systems, 1998.

[KR87] H. Kang and N. Roussopoulos, “Combining joins and Semijoins in

Distributed Query processing”. Tech. Rep. CS-TR-1794,Univ. Maryland,

College Park, 1987.

[KR87] H. Kang and N. Roussopoulos, “Using 2-way Semijoins in Distributed Query

Processing”, IEEE. Proc. of 3rd Int'l Conf on Data Engineering, pp.644-

650,1987.

[KSOO] Donald Kossman and Konrad Stoker, “Iterative Dynamic Programming A

new Class of Query Optimization Algorithm,” ACM Transaction on

Database Systems, Vol.25, No.l, pp.43-82,1986.

[LCOl] Chang-Hung Le and Ming-Syan Chen, “Distributed query processing in the

Intemet: exploring relation replication and network characteristics”.

Distributed Computing Systems, 21st Intemational Conference on. , Apr

2001, pp. 439 - 446.

[LCK96] Chenwen Liu, Hao Chen and Warren Kmeger, “A distributed Query

Processing Strategt using Placement Dependency”, IEEE, pp.477484,1996.

[Lia98] Yan Liang, “Reduction of coUisions in bloom filters during distributed query

optimization”, M.sc Theses, Computer Science, University of Windsor,1998.

[LOZ95] Xuemin Lin, Maria E. O. and Xiaofang Zhou, “Using Parallel Semi-jion

Reduction to minimize Distributed Query response time”, IEEE, 1995.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[LPP91] P.Legato,G. Paletta and L. Palopoli, “Optimization of join strategies in

distributed databases”. Information systems Vol. 16(4), pp.363-374,1991.

[LR95] Zhe Li and Kenneth A. Ross, “PERF Join: An Alternative To Two-way

Semijoin And Bloomjoin”, 1995.

[LY93] Chenwen Liu and Clement Yu, “Performance issues in distributed Query

Processing. IEEE, pp.889-905,1993.

[Ma99] Xiaobo Ma, “The use of bloom filters to minimize response time in

distributed query processing”, M.sc Theses, Computer Science, University of

Windsor, 1999.

[MB95] J. Morrissey and S. Bandyophdhyay, “Computer Communication

Technology and its effects on Distributed Query Optimization Strategies”,

IEEE, pp.598-601,1995.

[MB96] JM. Morrissey and WT. Bealor, “Minimizing data transfers in distributed

query processing: a comparative study and evaluation”. The computer

journal, Vol.39, No. 8, pp. 675 - 687,1996.

[Mit02] Michael Mitzenmacher, “Compressed Bloom Filter”, IEEE, pp.604-612,

2000.

[M097] J. Morrissey and W.K. Osborn, “Experiences with the use of reduction filters

in distributed query optimization”, In proceedings of the 9th international

Conference On Parallel and Distributed Computing and Systems (PDCS'97),

pp.327-330,1997.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[M098] J. Morrissey and W.K. Osborn, “Distributed Query Optimization using

reduction filter”, Electrical and Computer Engineering, 1998. IEEE Canadian

Conference on. Volume: 2, pp.707-710,1998.

[M099] J.Morrissey and O.Ogunnbadejo, “Combming semijoins and hash-semijoins

in a distributed query processing strategy”. Electrical and Computer

Engineering, 1999 IEEE Canadian Conference on. Volume: 1, pp. 122 -

126,1999.

[M099] J.M. Morrissey, W. K. Osbom, “The effect of collisions on the performance

of reduction filter”. Proceedings of the 1999 IEEE Canadian Conference n

electrical and computer Engineering, pp.215-219, 1999.

[MOLOO] J.Morrissey,Wendy Osbom and Y Liang, “CoUisions & reduction fUters in

distributed query processing”, Conadian Conf. Electr. Computing Eng. IEEE,

pp.240-244, 2000 Vol.l.

[Mor96] J.M. Morrissey, “Reduction filters for minimizing data transfers in distributed

query optimization”, IEEE, pp.198-201,1996.

[Mul90] James K. Mullin, “Optimal Semijoins for Distributed Database System”,

IEEE Transactions on Software Engineering Vol. 16 No.5, pp.558-560,

5/1/1990.

[Mul93] James K. Mulhn, “Estimating the size o f a relational join”. Information

Systems Vol. 18(3), pp. 189-196,1993.

[Mul94] J.K. Mullin, “Optimal Semijoins for Distributed Database Systems”,

Software Engineering, IEEE Transactions on. Volume: 16 Issue: 5, pp. 558 -

560,1994.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Mul96] Craig S. Mullins, “Distributed Query Optimization”, Technical Enterprise,

1996.

[NS98] F. Najjar and Y. Slimani, “Distributed optimization of cyclic queries with

parallel semijoins”, IEEE, pp. 717 -722,1998.

[Osb98] W. Osbom, “The use of reduction filters in distributed query optimization”.

Master's Thesis, the university of Windsor, 1998.

[0V91] M. Tamer Ozsu and Patrick Valduriez, “Distributed Database Systems:

Where are we now?”, ACM Computing Survey, pp.68-78, Aug. 1991.

[OZSU99] M. Tamer Ozsu, “Principles of Distributed Database Systems”, Printice Hall,

Upper saddle River, New Jersey 07458, Second Edition (1999).

[PC90] William Perrizo, Chun-Shwu Chen, “ Composite Semijoins in Distributed

Query Processing”, Information Sciences Vol. 50,No.3, pp.197-218,1990.

[Per85] W. K. Perrizo, “Upper bound response time semijoin strategies”, 1st

intemational conference on super computer systems, pp.273-279,1985.

[PL091] Hwee Hwa Pang, HongJun Lu and BengChin Ooi. An Efficient Semantic

Query Optimization Algorithm. IEEE, pp.326-335,1991.

[PRW94] William Perrizo, Prabhu Ram and David Wenberg, “Distributed Jion

Processing Performance Evaluation”, Proceeding of the Twenty-Seventh

Annual Hawaii Intemational Conference on System Sciences, 1994.

[PV88] Sakti Pramanik and David Vineyard, “Optimizing join queries in

distributed database”, IEEE Transaction on software engineering Vol. 14, No.

9, ppl319-1326, Sept. 1988.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[RK51] N. Roussopoulos and H.Kang, “A pipeline n-way join algorithm based on the

2-way semi-jion program”, IEEE Transactions on Knowledge and data

Engineering Vol.3(4), pp.486-495,1991.

[SB82] M.S. Sacco and S.B. Yao, “Query Optimization in Distributed Database

System”, In M. C. Yovits (ed.). Advances in Computers,Volum2 l,New York:

Academic press, pp225-273,1982.

[Seg86] A. Segev, “Global Heuristic for Distributed Query Optimization”,

Proceedings of IEEE INFOCOM, pp.388-394,1986.

[SE97] Peter Scheuermann and Eugene Inseok Chong, “Adaptive algorithms for join

processing in distributed database systems”. Distributed and Parallel

Databases Vol. 5,no.3, pp. 233-269, Jul. 1997.

[SKB+00] Konrad Stocker, Donald Kossmann, Reinhard Braumandl, Alfons Kemper,

“Integrating Semi-Join-Reducers into State-of-die-Art Query Processors”,

ICDE, 2000.

[SMK97] Michael Steinbrunn, Guido Moerkotte and Alfons Kemper, “Heuristic and

Randomized Optimization for the Join Ordering Problem”, VLDB Journal:

Very Large Data Bases, 1997.

[SW91] Dennis Shasha and Tsong-Li Wang, “Optimizing Equijion Queries in

Distributed Databases Where Relations are Hash Partitioned”, ACM

Transactions on Database Systems, Vol. 16 No.2, pp.279-308,1991.

[SSL+02] S.Y. Sung, Peng Sun, Zhao Li and C.L. Tan, “Virtual-join: a query execution

technique performance”. Computing and Communications Conference, 21st

IEEE Intemational, 2002, pp.353 - 357.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[TC02] P.S.M. Tsai, A.L.P. Chen, “Optimizing queries with foreign functions in a

distributed environment”. Knowledge and Data Engineering, IEEE

Transactions on. Volume; 14 Issue: 4, pp. 809- 824, 2002.

[TC92] Judy C.R.Tseng and Arbee L.P. Chen, “Improving Distributed Query

Processing by Hash-Semijion”, Journal of information Science and

engineering, pp.525-540,1992.

[VIa97] Richard Vlach, “Query Processing in Distributed Database System”, 1997

[Wan90] Chihping Wang, “The complexity of processing tree queries in distributed

databases”, IEEE, pp.604-601,1990.

[WC96] Chihping Wang and Ming-Syan Chen, “On the Complexity of Distributed

Query Optimization”, Knowledge and Data Engineering, IEEE Transactions

on. Volume: 8 Issue: 4, pp.650-662,1996.

[WCS92] Chihping Wang, Arbee L. P. Chen and Shiow- Chen Shyu, “A parallel

execution method for minimizing distributed Query response time”, IEEE

transactions on Parallel and distributed Systems, 3(3), pp.325-333,1992.

[WLC91] Chihping Wang, Victor OK Li and Arbee LP Chen, “Distributed Query

Optimization by One-Shot Fixed-Precision Semi-Join Execution”, Processing

7th Intemational Conference on Data Engineering, pp.756-763,1991.

[Won77] E. Wong, “Rtrieving dispersed Data from SDD-1”, Proc. 2nd Berkely

Workshop on Distributed Data Management and Computer Networks,

pp.217-235,1977.

[WWHOO] Yijie Wang, Yongjun Wang and Shouren Hu, “Parallel execution of multi-

join query”, Jisuanji Xuebao Vol.23,No.2, pp.177-183,2000.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[YC84] C. T. Yu and C. C. Chang, “Distributed query processing”, ACM Computing

Surveys,16(4), pp.399-433,1984.

[YGC87] C. T. Yu, K. Guh and A. L.P. Chen, “An integrated algorithm for distributed

query processing”, Proc. IFIP Conference on distributed Processing, 1987.

[YKB99] Haiwei Ye, Brigitte Kerherve and Gregor V. Bochmann, “Qos-Aware

Distributed Query Processing”, Database and Expert Systems AppHcations,

1999. Proceedings. Tenth Intemational Workshop on, pp.923 -927,1999.

[YL90] Clement Yu and Chengwen Liu, “Experiences with distributed query

processing”, IEEE, pp. 192-199,1990.

[YLG+86] Clement T. Yu, Leszek Lilien, Keh-Chang Guh, Maqorie Templeton, David

Brill, and Arbee L. P. Chen, “Adaptive Techniques for Distributed Query

Optimization”, ICDE, pp.86-93,1986.

[Zha03] Yue (Amber) Zhang, “Variation of Bloom Filters Applied in Distributed

Query Optimization”, Master’s Thesis, University of Windsor, 2003

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris

Name;
Place of Birth:
Date of Birth:

Yongmei Zhii
Benxi, Liaoning Province, P.R.China
October 13, 1965

Education: M.Sc. Computer Science
University of Windsor
Windsor, Ontario, Canada
Sep. 2001 — Jan. 2004

M. Eng., Computer Science
Northern Jiaotong University
Beijing, P.R. China
Sep. 1987 — Mar. 1990

B.Sc., Computer Science
Northern Jiaotong University
Beijing, P.R. China
Sep. 1983— July 1987

Working Experience: Graduate/T eaching Assistant
University of Windsor
2001— 2003

Instructor/Lecturer
Northern Jiaotong University
1990 — 2000

Software Engineer
Bowne Global Solutions, Beijing, PRC
1998 — 2000

Technical Support, Engineer
Beijing Xioatong Electronic Co.
1996 — 1998

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Implementation of composite semijoins using a variation of Bloom filters.
	Recommended Citation

	ProQuest Dissertations

