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Abstract

Different from a centralized database system, distributed query processing involves data
transmission among different sites and this communication cost is a dominant factor
compared to local processing cost. So, the objective of distributed query optimization is

to find strategies to minimize the amount of data transmitted over the network.

Since optimal query processing in distributed database systems has been shown to be an
NP-hard problem, heuristics are applied to find a near-optimal processing strategy.
Previous research has mainly focused on the use of joins, semijoins, and hash semijoins
(Bloom filters). The semijoin is a commonly recognized operator, which provides
efficient query results. As a variation of semijoin, the composite semijoin is beneficial to
~ do semijoins as one composite rather than as multiple single column semijoins. The Hash

semijoin (which uses a Bloom filter) is used to minimize the cost of a semijoin operation.

This thesis report provides a summary of each category of query processing techniques
and optimization algorithms. Also in this thesis, we propose a new algorithm called
Composite Semijoin Filter by combining the idea of composite semijoins, Bloom filters
and PERF joins. One of the advantages of this algorithm is to avoid collisions. The
algorithm is evaluated and compared with initial feasible solution (IFS) and another
filter-based algorithm. It has been shown that the algorithm gives substantial reduction on

relations and the total cost.

- Key words: distributed query processing, semijoin, hash semijoin, composite semijoin,

Bloom filter, PERF, query optimization, optimization algorithm
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Chapter 1 Introduction

Distributed database system technology is one of the major recent developments in the
database system area. It is the outcome of the combination of database and computer
network technology. So, in a distributed database system, the data is distributed and

stored at different sites, which are connected by a computer network.

In distributed database systems, query processing plays an important role. An effective
query (that means response time and total cost are all lowest) is a key factor affecting the
system performance. Different from centralized query processing, distributed query
~ processing involves data transmission among different sites and the communication cost
is a dominant factor compared to local processing cost. As pointed out in [YC84], the

process of a distributed query is composed of three phases:

1) Local Processing phase: All local processing operations such as selections and
projections on the joining and target attributes are performed;

2) Reduction phase: Using optimization techniques and algorithms such as semijoins
to reduce the size of relations in a cost-effective way, and thus reduce the total
conumunication cost;

3) Final Query Processing phase: Send all resulting relations to the query site and

reassemble them to generate the final query answer.

The main objective in distributed query optimization is to reduce the amount of data

transmission. So, most research on optimization focuses on the reduction phase and the
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primary concern of a query optimization algorithm is to generate a semijoin program that
will be used in this phase. The major difference from algorifhm to algorithm lies in how
to generate such semijoin programs. Also, there are two cost models, which can be used
to evaluate the performance of different algorithms. The response time version [SB82]
considers that each operation is processed in parallel, so the response time is the
maximum of the time from sending the query to getting the result is the cost of the
processing. The total cost model [ESW78] considers the whole time consumed during
processing. Since optimal query processing in distributed database systems has been
shown to be NP-hard [BR88, PV88], heuristics are applied to find near-optimal strategies
for query processing. Different relational operators (such as semijoin, 2-way semijoin,
 domain specific semijoin, composite semijoin, hash-semijoin and PERF join) and
algorithms have been proposed. These approaches in distributed query processing have
mainly been classified into the use of joins, semijoins, and hash-semijoins or combination

of them. This report will give a summary of the research in this area.

~ The rest of this thesis is organized as follows: In Chapter 2, the literature review of
distributed query processing and various strategies for distributed query optimization is
described. Chapter 3 includes the motivation of my thesis and the proposed algorithm,
Composite Semijoin Filter. The experiments and evaluation results will be given in

chapter 4. Finally, we will give conclusions and work that will be done in the future.
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Chapter 2 Literature Review

The contents of this chapter include an overview of distributed database systems,

distributed query processing, query optimization techniques and algorithms.
2.1Distributed Database System (DDBS)

In the field of data management, the developments in distributed computing technologies
and network technologies lead up to distributed database management systems. A
Distributed database (DDB) is a collection of multiple, logically interrelated databases
- distributed over a computer network [OZSU99, MTP99]. A distributed database
management system (DDBMS) is a sofiware system that permits the management of a
distributed database and makes the distribution transparent to users. A distributed
database (DDB) together with a distributed database management system (DDBMS) is
called distributed database system (DDBS)[V1a97]. These systems should shield the users
- from the complexities of distribution. The advantages of a distributed database system are
sharing data, stability and reliability because of replication. The main characteristics of a

DDBS are:

e Transparent management of distributed and replicated data
e Reliability through distributed transactions
¢ Improved performance

e Kasier system expansion

Users can gain many benefits from these advantages of a DDBS. But this will increase

complexity and overhead and this additional complexity gives rise to new problems
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influenced mainly by three factors [OV91][BG93], replication, tolerance and the
synchronization of transactions. Query processing is one of the crucial problems in

distributed database systems.

2.2  Distributed Query Processing (DQP)

An effective query will improve the system performance, especially in distributed

database system environments.
2.2.1 Whatis DQP

" Distributed query processing is a process to transform a high-level query language of
distributed databases to a low-level database language for retrieving the database using an
efficient and effective strategy. So, the problem is how to decide on a strategy for

executing each query over the network in the most cost-effective way.

In a distributed environment, since data is geographically distributed, information has to
be transmitted between sites in order to answer a query. So, in addition to the cost of
centralized query processing, distributed systems face the problem of shipping data and
results to and from sites. Usually, it is very expensive to move data from one site to
another. For example, intermediate data derived at one site may need to be transferred to
other sites for further processing, and the final result must be transferred to the query site.
Cost may be acceptable on high performance local area networks, but not on others. So,

the main factors to be considered are distribution of data and communication cost.
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As mentioned above, a distributed database management system provides transparent
access to distributed resources. There must be a module in the system architecture that
gets a global query and manages a distributed evaluation. The whole distributed query
process usually goes through three steps [OZSU99]: Parsing the global query, Query

optimization and Query execution. Figure 2.1 shows the architecture of distributed query

processing.
Global Output
Query Internal Internal
Repr Repr. QEP QEP T
Query Query Plan Query
Parser | ' Rewrite | Optimizer —| Refinement —| execution
Engine

w

Figure 2.1 Architecture of Distributed Query Processing

When parsing the global query, each global query is replaced with a number of local
queries according to the global schema. Then the query is simplified by eliminating
redundant predicates. Finally, the query is transformed into relational algebra
expressions. During the query optimization step, a distributed query execution plan
- (QEP) that obtains the answer is prepared. The execution plan says which local data are
required, how to access them, which operations must be done at which sites. Moreover,
the execution plan should be optimized, i.e., it minimizes the execution cost. Finally, a

query execution engine in the query execution step executes the execution plan.
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2.2.2 Cost Models for DQP

A cost model provides the basis for comparing different query execution plans (QEP) and
for choosing the best plan for execution. The cost of distributed query processing can be
expressed in terms of either the total cost model or the response time model. And costs

are generally specified in terms of time units.

1) Total Cost Model

The total cost model considers the whole time consumed during processing. The total
cost is the sum of all time incurred in the local processing and in intersite communication.
In a distributed database system, the local processing costs include CPU and /O cost,
while communication cost is described in terms of the amount of data transmitted. A

general formula [OZSU99] for total cost is:

Total cost = Ccpy * #insts + Cyo * #1/0s + Cumsc * #msgs + Crr * #bytes

e #insts is defined as the number of program instructions.

e #1/Os is defined as the number of transfers to or from disk.

e #msgs is defined as the number of messages transferred between one site and another.

o #bytes is defined as the total number of data sizes transmitted in all messages.

e  Cusc is the fixed cost of initiating and receiving a message.

"o Crgr (transmission cost) is the cost of transmitting data between sites participating in

the execution of the query.

e  Cyo (Secondary storage Access cost) is the cost of loading data pages from secondary
storage into main memory.

o  Ccpy (Computation cost) is the cost of using the central processing unit (CPU).
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The communication cost component is probably the most important factor considered in
distributed database systems. However modern distributed processing environments have
much faster communication networks whose bandwidth is comparable to that of disks.
Therefore, more recent research efforts consider a weighted combination of all

components since they all contribute significantly to the total cost of evaluating a query.

2) Response Time Model

The response time is the time from the initiation of the query to the time when the answer
is produced. This model considers that each operation is processed in parallel as much as
possible, so the maximum of the time from sending the query to getting of the result is
the cost of the process. Since operations can be executed in parallel at different sites, the

response time of a query may be significantly less than its total cost.

Minimizing response time can be achieved by increasing the degree of parallel execution.
This does not imply that the total time is also minimized. On the contrary, it can increase
the total time, for example, by having more parallel local processing and transmissions.

So, in practice, a compromise between the two is sometimes desired.

2.2.3 Query Optimization Process

Query optimization is the process of ensuring that either the total cost or the response

time of a query is minimized. Figure 2.2 shows the query optimization process [Fre89].

An input query is usually passed to the Query Modification Module, a stage that

rewrites the initial query in order to improve efficiency during the evaluation of the
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query. The input query can be represented by either relational algebra or a graph called a
query graph. This query graph is then input to the Query Execution Plan (QEP)
Generator, which defines how to create all possible QEPs from a query graph. Next,
generated QEPs are submitted to the Search Strategy Module for deciding the best plan
that gives the optimal cost from among the deferent QEPs. The Cest Function assigns a
cost to each QEP selected by the search strategy module and provides the basis for
comparing different QEPs and for choosing the best plan for execution. The optimal QEP
is the plan that produces the cheapest cost. Query optimization is defined as the problem

- of finding the most efficient query execution plan (QEP) for a query expression.

Input Query

Query Modification

i Query Graph
QEP Genarator

\_@1:; Search Strategy

Selected QEPs L .
Cost Function

4______ QEP with cost

Yes Best QEP
An optimal QEP

No

Query Result

Figure 2.2 Query Optimization Process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Finding the optimal execution strategy for a query is NP-hard [BR88, PV88]. For
complex queries with many relations, this can incur a prohibitive optimization cost.
Therefore, the actual objective of the optimizer is to find a strategy close to optimal and,

perhaps more important, to avoid bad strategies.
2.3 Query Optimization Techniques

One basic technique for reducing the amount of data transmission is the semijoin method.
This approach increases local processing, but only a small projected portion of the
relations is transferred during the reduction phase and only rows, which will participate in
the final join, are transferred after the reduction phase. The Bloom filter method is similar
to the semijoin. However, during the reduction phase, a bit vector carrying information
about joining values is used. Also, some other techniques, such as 2-way semijoin
. [KR87], domain specific semijoin [CL90], composite semijoin [PC90] and PERF join

[LR9Y5] are introduced here.

2.3.1 Join

The join operator (? ) is the most useful, the most commonly used and most simple way
~to reduce data. It can reduce the local processing cost and minimize the overhead of
messages. In distributed database systems, because entire operand relations must be
transferred between sites, the join operation becomes the main cost consuming process.

So, the join operator is a time consuming operation.
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A | B A C
1 4 Shipping 3 7
2 5 4 8
3 6 5 9
R;? Rz#
A B |C
Shipping
3 6 7

Figure 2.3 An example of join operation (R? R3)
Figure 2.3 shows an example of join operation between relations R; and R, on the
condition Rj.A = R;.A. Whatever join operation is at site of R; or site of Ry, the whole
relation should be shipped to the other site. And then the result may be transmitted to the
query site. In this example the cost for transmitting relation R, to the site of Ry 1s 6

(Suppose the cost of one data is one unit.).
2.3.2 Semijein [BC81, BG81]

In distributed query processing, the semijoin is one of the most popular operators and has
been used as an effective one, especially in reducing relations referenced in the query to
reduce the total amount of data transmission between sites. It is obviously much less
expensive to transmit the projected file than the entire file. Thus, it is often beneficial to
reduce the size of relations through preliminary semijoins before transmitting the relation

to the result site. Semijoin was first proposed by Berstein in [BC81] and [BG81].

10
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A semijoin from R; to R;on atiribute A can be denoted as (Ri)a? R;. Itis computed in
two steps:
1) Send projection of R; on attribute A (Ri[A] ) from site i to site j ;
2) Reduce R; to R; * by eliminating tuples where attribute A is not matching any
value in Ri{A].

The cost of semijoin (Ri)a?  R; is the size of projection of R; on attribute A, while the

benefit is difference of size R;and Ry’. If the benefit exceeds the cost, then the semijoin

is called a cost-effective.

Semijoin selectivity factor in R; ? R; is defined as the expected fraction of the tuples of

R; which belong to the result. Card (R; ? R;) =?*Card (R;). An estimation of semijoin

selectivity factor is: 7 = Card (R;[A])/ Card (domain [A]).

Figure 2.4 shows an example of semijoin R; ? R;on attribute A.

Ri[A]

Projection 2 hipping :
T 1o
1 4 - "

2 5
5 9

3 6

LReducing

hipping

Shipping 3 7 IRy

Figure 2.4 An example of semijoin (R;? Ry)
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First shipping the projection of R; (R; [A] ={1,2,3}) to site 2 then reducing R; to Ry ’ by
eliminating tuples (crossed in the figure) where attribute A are not matching any value in
R;[A], only one tuple (3,7) left. In reassembling phase, R; and the reduced R; (R; ‘) may
be transmitted to the query site (qs) and joined there to get the final result. The cost of
this semijoin (C(s)) equals 3, benefit (B(s)) equals 4. Because the benefit exceeds the

cost, this semijoin is cost effective.
2.3.3 2-way Semijoin [KR87]

As we talked about before, the semijoin acts as a size reducer for a relation much as a
selection does and it is an effective operator to reduce the transmission of data. But it is a
unary or a binary operator. That means it produces only one result relation. In [KR87],
_ the author proposed a new relational algebra operator, called 2-way semijoin, which is an
extended version of the semijoin. It has more reduction power than the semijoin and the
propagation of the reduction effects is further than by the semijoin. These two aspects

have been verified in [KR87].

A 2-way semijoin of R;and R; on attribute A can be denoted as R; <> Rj={Ri? R;, R;
2 Ry }. So, it can reduce R; and R; to Ry and Ry’ respectively. It is computed in the

following steps [KR87}:

1) Send R; [A] from site i to site j ;

2) Reduce Rjto Ry’ by climinating tuples whose attribute A is not matching any of Ry
[A] and at the same time partition R; [A] to R; [A]n (match one of Rj [A]) and R;
[Alim =R [A]- Ri [A]x (tuples in Rinot matching R; [A]);

3) Send min (R; [A]m, Ri [A]m) back to site i ;

4) Reduce R; to R; ’ using R; [A]n (or Ri [Almm).
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Figure 2.5 shows an example of 2-way semijoin (R; <> R ). First ship the project of R;
“on attribute A (R1[A]={1,2,3}) to site 2; reduce Ry to Ry’ (tuples not matching R;[A] are
eliminated), at same time R;[A] is partitioned into Ri[Aln ={3} and Ri[Alw= {1.2};

send Ri[A]m back to site 1; reduce R, to R; ‘ using Ri[Ajm.
Ri[A]

R
R 2 Shipping :
A B 3 Al C
1|4 Rl 317
2 |5 < Shipping 3 partitio 4 |8
3 |6 519
Reducing Ry[Ajnm Reducing
R’ |3 6 1 3 |97 | R
Shipping Shippin

Figure 2.5 An example of 2-way semijoin (R; < R3)
The benefit of 2-way semijoin equals [S(R; ) - S(Ri *)] + [S(R;) - S(R;’)] and the cost is
Ri[A] ) + min[S(R; [Alm ), S(R; [Alun)]. If the benefit exceeds the cost then it is called a
- cost-effective 2-way semijoin. In the above example, the benefit of 2-way semijoin

Ri¢3R;equals 8; the cost of R; <> Ryequals 4. So, this 2-way semijoin is cost effective.

The 2-way semijoin is always done in a cost effective way. Because no matter what the
cost and benefit in the first two steps of computing a 2-way semijoin, the last two steps
are always cost-effective. So, for two relations to be joined, even when only one or more

Vcan be reduced cost-effectively using semijoins, both may be reduced cost-effectively

using a 2-way semijoin.
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2.34 Pipeline N-way Join [RK91]

The semijoin is a mechanism that allows forward size reduction of relations and
intermediate results. The 2-way semijoin enhances the semijoin with backwards size
reduction capability for more cost-effective query processing. In [RK91], the author
introduced a pipeline N-way join algorithm based on 2-way semijoins for joining the
reduced relations residing on N sites. The main goal of this algorithm is to eliminate the
need for shipping, storing, and retrieving foreign relations and/or intermediate results in
the local disks of the query site during the processing of an N-way join. In the process, a
structure known as connector (a small table, which can be easily fit in the memory for the

next step semijoin) is in use, which records the former semijoin’s effect.

The N-way pipeline algorithm proceeds in three phases [from RK91}:

1) Forward reduction & local processing phase:
- Site of R; receives from the site of R;.; the projection of the joining attribute and
constructs tuple connector C;

2) Backward reduction and collecting phase:
- Backward reduction is applied to the tuple connectors not the relations.
- A site containing R; receives from the site of Ri+; the Ci1; tuple connector and
joins it with its own C;.

3) Pipeline executing phase:
- The pipeline cache planner is sent to the query site and used for synchronizing

the tuple requests from the N sites in order to assemble the result.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



* The advantages of the pipeline N-way join can be summarized as follows:

e No intermediate results are generated.
o Reduced relations are replaced by tuple connectors which are smaller in size;
therefore, storing and transferring the tuple connectors is less expensive.

e The original relations are accessed once during the local processing phase.
2.3.5 Interleaving Join with Semijoin [CY90]

Although the join operator is a time consuming operation, judiciously applying join
operations as reducers can further reduce the amount of data transmission required.
Moreover, as pointed out in [CY90], the approach of combining join and semijoin
operations as reducers can result in more beneficial semijoins due to the inclusion of joins

as reducers (such semijoins are referred to as gainful semijoins.).

In [CY92], the author developed an efficient heuristic approach to determine an efficient
sequence of semijoin and join reducers. First, obtain a sequence of join reducers and map
it into a join sequence tree. In light of the join sequence tree, we derive important
properties of beneficial semijoins. These properties are then applied to develop an
efficient algorithm (G) to determine the beneficial semijoins that can be inserted into the
join sequence. The experiments show that the approach of interleaving a join sequence
with beneficial semijoins are not only efficient but also effective in reducing the total

. amount of data transmission required to process distributed queries [CY93].
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2.3.6 Domain Specific Semijoin [CL90]

Many query optimization algorithms proposed for fragmented databases apply semijoins
to reduce size of the fragments of joining relations before they are sent to a final
processing site. When semijoins are employed in such a system, they have to be
performed in a relation-to relation or a relation to fragment manner so that they will not
cause the elimination of contributive tuples. So, semijoins cannot be performed between
two fragments, because it may cause the elimination of some tuples before they are
compared with all tuples of the other joining relation. In order to improve the semijoin
operation associated with fragmented relations, the domain-specific semijoin is

mtroduced in [CL90]. A domain specific semijoin can be defined as:
Ri (A=B] Rjn={r|r? Rui;r.A? Riu[B]? (Dom[R:B]-Dom|R;».B])}

A and B are join attributes, Ry and Ry, are two fragments of joining relation R; and R;

respectively. A domain specific semijoin is computed in the following steps:

1) Calculate the estimated benefit and cost;
2) If it is found to be profitable, accept it in the current query-processing strategy;
otherwise, ignore it;

3) Update the related information in the database profile.

Domain specific semijoin is based on many assumptions. It assumes all values of each
attribute are randomly selected, all tuples are uniformly distributed over values of
attributes and all values of attributes are independent. Experimental results [CL90]

indicate that domain specific semijoins can reduce the size of fragments by eliminating
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non-contributive tuples and can be performed in a fragment-to-fragment manner as in the
application of regular semijoins and provide more flexibility in distributed query
processing. It can also be shown that for a given query, there is always a strategy, using
both domain-specific semijoins and semijoins, which is at least as good as the best

strategy using only semijoin reductions.

2.3.7 Composite Semijoin [PC90]

In [PC90], Perrizo and Chen proposed a composite semijoin to minimize the response
time for the queries. A composite semijoin is a semijoin in which the projection and
- transmission involve multiple columns. In most of the algorithms, multiple semijoins
may be performed with common source and common result sites. In this situation it may
be beneficial to do the semijoins as one composite rather than as multiple single column
semijoins. Through simulation results, it has been shown in [PC90] that algorithms
including the possibility of composite semijoin can generate strategies, which are far

_ better than those that ignore this method.

R 7 R 2
Al | A2 | Nonjoin_ attrs Al | A2 | Nonjoin_attrs Result Composite
1 | aa ~ 1 | ce ~ semijoinof R; and R;
1| bb ~ 1 | ea ~ Al | A2 | Nonjoin_attrs
2 | cc ~ 2 | bb ~ 1 | aa ~
3 | cc ~ 3 | bb ~

Figure 2.6 An example of composite semijoin R; and R;
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Figure 2.6 shows an example of a composite semijoin. Note that there is no reduction at
all when single attribute semijoins are used, since all attribute Al values are matched.
However, there will be a significant reduction when a composite semijoin along attribute

Al and A2 is applied.

Also in [PC90], the author applied composite semijoins on some distributed query
processing algorithms, such as algorithm GENERAL [AHY83] which is used to
minimize the response time for general queries and produces total time strategies which
are quite efficient and algorithm W [PC90] which guarantees a least bound response time
for queries. Experimental results indicate that including the possibility of composite
semijoins in a query-processing algorithm is likely to result in substantial response time
reduction. It can be verified that the strategy formed by the algorithms, which apply
composite semijoin, is always as good as the strategy of not allowing the algorithm to

optimize for composite semijoin.

- 2.3.8 Hash Semijoin (Bloom Filter) [TC92]
In [TC92], the author proposed a new relational operator, called Hash semijoin, to
minimize the cost of a semijoin operation (i.e., the cost of transmitting the semijoin
projection). Hash semijoin is designed based on the concept of a search filter (also called
a Bloom filter). Bloom filters are used to filter out the tuples that do not participate in the

~ join. A bloom filter is a vector of bits, which represents the semijoin projection.

The hash semijoin of R; and R; is denoted R? R;. It is computed as follows:

Step 1: Initialize a bit array of F bits to all is 0. The size of F is computed by
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F=(d/In2)*[Ri};

Step 2: For each value of the join attribute in R;, generate d bit addresses using the d hash

functions and set the corresponding d bits in the bit array to 1 (i.e., set F/kJ= I if there

exists join attribute value v in relation R;, such that d(v)=k) ;

Step 3: Transmit the bit array to the site of R;;

Step 4: For each tuple of R;, use the 4 hash functions to hash the join attribute value to d

bit addresses. Test if all the 4 bits in the bit array are 1s. If Yes, output the tuple to the

result relation R/, else discard the tuple.

Figure 2.7 shows an example of hash-semi-join (R»? R;) operation with the perfect hash

function (H (x)=x).

Filter for S#
R Iss(R1) 0] R>
S# | Name 1 L S# | phone
1 Cmdy Projection Hi (x) =X _Q__ Shipping 1 111
3 | Jemal 3 bl M2 222
2 | Sunny . L 5 [555
8 | Maggie Y 6 | 666
- 0 8 | 888
—(l)' ¢ Reducing
o 1 [111 ,
388 | *

Figure 2.7 An example of hash semijoin (best HSJ)

It is obviously that hash semijoins have less cost of transmitting the filter than that of

transmitting the semijoin projection in traditional semijoin. But false drops may occur,
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which the search filters falsely accepts a value. False drop probability is used to refer to
the probability that a false drop occurs. It depends on the size of the bit array (F), and the
number of hash functions d. Figure 2.8 shows an example of hash semi-join with false

drop. In this example, the hash function is changed to H (x) = x mod 5.

R Filter for S# R,
Hs«(®R0)
S# | Name S# | phone
1 | Cindy ijectio He=xmods| 1| Shipping 1 | 111
3 | Jemal —p |2 | 222
4 [ Sumy 5555
8 | Maggic 18] 6 | 666
8 | 888
l Reducing
. 1 {111 gy
False drop happens 6 1666
8 | 888

Figure 2.8 An example of hash semijoin (with false drop)

"In this example, the hash function is changed to H(x) = x mod 5. After using the hash
function to hash the value of attribute S# in Ry, the filter will be F={0,1,0,1,1}. When the
filter is shipped to the site of R, and the same hash function is applied to the value of S#
in Ry: H(1) = H(6) = 1, H(8) = 3, the result relation has three tuples. But the tuple (6,666)
is falsely accepted by the search filter. One of the solutions is by increasing the number

-of hash function, but the cost may also increase. So, in practice, the number of hash

functions is a key factor in hash semijoin operation.

Compare to semijoin, the cost, benefit and potential cost are given as following table.
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Semijoin Hash-semijoin

Cost | CTy=ayRi CH;~(/In2)*R]]

Benefit | BTy=(1-spwRj- ay[Ri| | BHy=(1-sy-fyw;|Rj{-(d/In2)*|Ry
Pcost | PCTy= ay[Ri+ sywiRy | CHy=(d/In2)*[Ry}+ sywj[Ry|

Figure 9 Comparison between semijoin and hash-semijoin

® /RJ, | R/ - cardinality of R,, R,
e a,—width of the join atiribute

® w,-- The width of a tuple in R;

® s;— the selectivity of semijoin R;? R;;f - false drop probability

It can be proved in [TC92] that hash-semijoin is more cost-effective than semijoin; the
search filter in the hash-semijoin achieves considerable savings in the cost of a semijoin
operation and the replacement algorithm can produce a more cost-effective semijoin

program.
- 2.3.9 PERF Join [LR95]

In [LRO5], Li and Ross present “Positionally Encoded Record Filters” (PERFs) and
describe their use in a distributed query processing technique called PERF join. A PERF
is a novel two-way join reduction implementation operator. This method adds to
semijoins in the backward phase and is used to eliminate unnecessary redundant
semijoins by using bit vectors. It is based on the relation tuple scan order instead of
hashing. Hence, it does not suffer any loss of join information incurred by hash
collisions. The basic idea of the PERF join is as follows: as in 2-way semijoin R? S,

relation S is reduced by a semijoin with the projection of relation R (Pr ). But instead of
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transmitting Py’ back to R, send a bit vector (PERF) that contains one bit for every tuple
in Pr. That bit is set to 1 if it is in Pg* and O otherwise. The order of the bits in the bit
vector is the same tuple order of Py that R’s site sent initially. Consider two relations R
and S, the steps of PERF is as follows:

1. Project R on A joining attribute (Pr);

2. ShipPrtoS;

3. Reduce S by a semi-join with Py;

4. Send back to R a bit vector (PERF) that contains one bit for every tuple in

Pg and in the same order. If the tuple is matching then send 1 else send 0.

The main utility of PERF is that it minimizes this phase and hence makes the forward
phase (step2) cost greater than the backward phase. PERF joins can be better enhanced
by sending back to R not all the bit vector corresponding to Pr but only the Os part or 1s
| part according to which one is less in size and hence has lower transmission cost. As an

example, figure 2.9 shows two PERFs for relation R (A, B) and S (A, C).

R 8
PERFR) PERF(S)

AlB 0 1 111 AC
1 4T 0|2 210 >3 17 '
ENE i3 310 4 |8 2
313 6 19 3
Reduce l lReduce

Ry’ s

13 |6 3 |7 | Re

Figure 2.9 An example of PERF join
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In the example, first, ship P on attribute A to site of S and reduce S with P, then send
back to R a bit vector PERF(R) (one value (3) is matching, so the bit vector is {0,0,1}),

finally reduce R to R’, the same for S.

PERF join is a competitive alternative to 2-way semi-join and Bloom join. Analytical
studies show that the response time of distributed join query processing algorithms can be
improved by employing PERFs and PERF joins instead of or in addition to the traditional

Bloom join and semi-join variant. The features of PERF-based techniques are:

e Preservation of complete join information.

e Minimal network and storage overhead.

e Cheap local join processing cost, especially when buffer memory scarce.
e Inequalities join query handling.

e (Cyclic join query handing,

2.3.10 Virtual Join [SSL+02]

Virtual join [SSL+02] considers reducing both communication cost and local cost in
distributed query processing. The basic idea of virtual join is to execute a join query
through “discussion”. During the discussion, the participating sites use tiny pieces of data
- to exchange their information. So it is much smaller than the real result and it can reflect
the cardinality of the real result. It makes each site obtain the knowledge of the final
result, and it filters out useless tuples at each site. The physical format of the knowledge
is called virtual result in the sense that it can represent the final result. From the virtual

result, the materialized result can be built easily.
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For example, in figure 2.10 relation R and S are joined by attribute X. For join R? S on

attribute X, Vgg is formally defined as a table with three fields. The first field is the join
attribute, and the other two fields contain the number of useful tuples from R and S. For
each value y of the first field, the other two fields contain the number of tuples that has X
value = y from R and S respectively. Vgs describes the structure of the real result. It
remains the information for both further joins and final assembly. For virtual result, the

cardinality of tuples in the real result can be easily calculated. (4*2+1*3=11)

R S

X | Rother X | Sother Vs

B A | xxX X | R
A | 123 K A | 4
D | 456 3 | mmm D |1 |3
A A

Figure 2.10 Virtual result in joining R? S

It has two desirable features: 1) Being adaptive to different values of selectivity. 2)
Giving accurate cardinality of the join result before it is materialized. Experiment results

showed virtual join was both adaptive and efficient [SSL+02].
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2.4  Query Optimization Algorithms

The objective of distributed query optimization is to find a query optimization algorithm
to generate an optimal processing strategy in the solution space of all possible execution
strategies. There are three types of optimization [Kos98]: Exhaustive search approach,
Randomized strategies and Heuristics. The efficiency of processing strategies for queries
in a distributed database is critical for system performance. If a query is processed
inefficiently, it not only takes a long time before the end user gets his answer, but it might
- also decrease the performance of the whole system. Many methods have been studied to
minimize the response time or the total cost. They can be classified into join-based,
semijoin-based and filter-based or combination-based. It has been proven that finding the
optimal solution is NP-hard [BR88, PV88]. So, generally, we only try to develop
algorithms, which are efficient but perhaps only near optimal. In this section, some main

. algorithms are introduced.

2.4.1 Join-Based Algorithms

Join ordering is an important aspect of centralized query optimization. In a distributed
database system, it is even more important since joins between relations may increase the
~ communication cost over a network. Some algorithms optimize the ordering of joins
directly without using semijoins. Distributed INGRES [ES80] and System R* [SA80]
algorithms are representative of algorithms that are based on joins. INGRES employs a

dynamic optimization algorithm, while System R* uses a static optimization.
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1. Distributed INGRES [ES80]: This algorithm is based on a heuristic approach. The
objective of the algorithm is to minimize a combination of both the communication time
and the response time. However, these two objectives may be conflicting. For instance,
increasing communication time may well decrease response time. Thus, the function can

give a greater weight to one or to the other. The algorithm is called D-INGRES-QOA.

The input of this algorithm is a multi-relation query (MRQ) expressed in tuple relational
calculus, the output is result of the last multi-relation query (MRQ’). It is computed in

three steps:

Stepl: All mono-relation queries (e.g., selection and projection) that can be detached are

first processed locally;

_ Step2: Execute the reduction algorithm [ES80] to produce a sequence of irreducible

subqueries, with at most one relation in common between two consecutive subqueries;

Step3: Chooses next irreducible subquery involving the smallest fragments; selects the
best strategy to process the query; and transfers all fragments to their processing sites;

finally executes the query. Repeat this step until there are no remaining subqueries left.

For example, assume that relations EMP (is fragmented into EMP; and EMP,), ASG and
PROJ of the query are stored as follows: EMP; and ASG are stored at site 1; EMP; and

PROJ are stored at site 2. There are several possible strategies, including the following:

1) Execute the entire query (EMP ? ASG ? PROJ) by moving EMP; and ASG to

site 2;
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2) Execute the entire query (EMP ? ASG) ? PROJ by moving (EMP; 7 ASG)

and ASG to site 2, and so on.

The choice between the possible strategies requires an estimate of the size of the
intermediate results. For example, if size (EMP; ? ASG) > size (EMP,), strategy 1 is

preferred to strategy 2. Therefore, an estimate of the size of joins is required.

The algorithm of distributed INGRES is characterized by a limited search of the solution
space, where an optimization decision is taken for each step without concerning itself
with the consequences of that decision on global optimization. However, the algorithm is
able to correct a local decision that proves to be incorrect. An alternative to the limited
search is the exhaustive search approach, where all possible strategies are elevated to find
* the best one. In [ES80], the two approaches are simulated and compared on the basis of
the size of the data transfers. The study shows that exhaustive search significantly
outperforms limited space as soon as the query accesses more than three relations and
dynamic optimization is beneficial because the exact sizes of the intermediate results are

known.

2, System R* [SA80] performs static query optimization based on an exhaustive search
of all alternative strategies of the solution space, in order to choose the one with the least
cost. The optimizer of the master site makes all intersite decisions, such as the selection
of the execution sites and the fragments as well as the method for transferring data, while

the apprentice site makes the remaining local decisions and generates local access plans
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for the query. The objective function of the System R*’s optimizer is the general total

~ time function, including local processing and communications cost.

The input to the algorithm is a localized query expressed as a relational algebra tree (QT),
the location of relations and their statistics. After executing the procedure R*- QOA, a

minimum cost strategy will be generated. R*- QOA is executed in three steps:

1) For each relation R; in the query tree QT, find its best access path which has
minimum cost;
2) For each order, build strategy (semijoin sequence) with minimum cost;

3) For each site k storing a relation involved in QT, generate its local strategy (LSx).

To join two relations, there are three candidate sites: the site of the first relation, the site
of second relation, or a third site. In R*, two methods are supported for intersite data

transfers.

1) Ship-whole. The entire relation is shipped to the join site and stored in a
temporary relation before being joined.

2) Fetch-as needed. The external relation is sequentially scanned, and for each tuple
the join value is sent to the site of the inter-loop relation, which selects the
internal tuples matching the value and sends the selected tuples to the site of the

outer-loop relation.

The trade-off between these two methods is obvious. Ship-whole generates a larger data
- transfer but fewer messages than fetch-as-needed. It is intuitively better to ship whole

relations when they are small. On the contrary, if the relation is large and the join has
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good selectivity (only a few matching tuples), the relevant tuples should be fetched as
needed. R* does not consider all possible combinations of join methods with transfer

methods since some of them are not worthwhile.
2.4.2 Semijoin-Based Algorithm

A semijoin program is a sequence of semijoins generated by the query optimizer. The
objective of query optimization is to find an optimal semijoin program, which requires
the least total transmission cost to process the query. To generate the efficient semijoin
program, numerous algorithms have been devised, especially for some special classes of
queries such as simple queries [AHY83], chain queries [CBH84], star queries [CL85] and
tree queries [PV88, Won90]. Most existing algorithms are heuristics. In this section, we

will introduce some representative algorithms based on semijoin.

1. SDD-1 algorithm [BGW+81] is the first method in distributed query processing using
semijoin as reducer to minimize the cost. It is based on hill-climbing strategy [Won77] by
replacing join with semijoin. The main step of the algorithm consists of determining and
ordering beneficial semijoins whose costs is less than their benefits. It proceeds in four
- phases: initialization, selection of beneficial semijoins, assembly site selection, and post

optimization.

Initialization phase generates a set of beneficial semijoins (BS) and execution strategy
(ES) that includes only local processing; the second phase selects the beneficial semijoins
from BS by iteratively choosing the most beneficial semijoin and modifying the database

statistics and BS accordingly. The iterative phase terminates when all semijoins in BS
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have been appended to the execution strategy. The order in which semijoins are appended
to ES will be the execution order of semijoin; The third phase selects the assembly site by
evaluating, for each candidate site, the cost of transferring to it all the required data and
taking the one with least cost; Finally a post-optimization phase permits the removal from
the execution strategy of those semijoins that affect only relations stored at the assembly

site. A general outline of the SDD-1 algorithm (OPT) is given as follows [BGW+81]:

1) Maps a query into an envelope. An envelop is a relational calculus expression that
maps a database into a sub-database;

2) Evaluates the envelop and translates it into reducer. A program contains relational
operations and performs the reduction of the relation size;

3) Execute the query at a site using the data assembled by 2) step.

OPT is a greedy optimization algorithm, it always seeks to maximize immediate gain. It
never looks ahead, and never backs up. In general, it is sub-optimal. SDD-1 optimization
algorithm is designed under the assumption that relations can be transmitted to another
site. This is not true for those relations that have been selected after beneficial semijoins
~are considered. The algorithm only selects semijoins that maximize immediate gain, not
considering the fact that execution of one semijoin might affect the performance of the
other semijoins. Therefore, the drawback is that some semijoins may incorrectly be

considered beneficial in SDD-1.

2. AHY: In [AHY83], Apers, Hever and Yao introduced and investigated a family of
optimization algorithms using semijoins to minimize either the response time (algorithm

PARALLEL) or the total time (algorithm SERIAL) and extended those algorithms to
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algorithm GENERAL that processes general distributed queries. The main idea of the
algorithms is to reduce the sizes of each relation by possible restrictions and projections
instead of computing the joins immediately. If one relation has the join attributes, we use
semijoin to delete the unnecessary tuples. For example: Attributed dy; (dj represents
attribute j of relation R;.) is sent to attributed d3;, a semijoin is performed on relation Rs.
The reduced d3; can be sent to relation R; in parallel. Finally the reduced relation R; is

sent to the result node. Here is a summarization of these algorithms [AHY83].
There are four steps in algorithms GENERAL [From AHY83}:

1) Finish all initial local processing;

2) Generate candidate relation schedules: Isolate each of the joining attributes and
consider each to define a simple query with an undefined result node. Algorithm
PARALLEL is called to minimize response time; Algorithm SERIAL is called to
minimize total time. This results in one schedule per simple query.

3) Integrate candidate schedules. For each relation, candidate schedules are
integrated to form a processing schedule. The integration is done by procedure
RESPONSE for response time minimization and by procedure TOTAL or
COLLECTIVE for total time minimization.

4) Remove schedule redundancies, whose relations have been transmitted.

Algorithm PARALLEL is used to minimize response time by searching for cost
beneficial data transmissions in the current system state s;, selectivity ?; and schedule
response time 7; of each relation R;. The selectivity ?; of an attribute is defined as the

number of different values occurring in the attribute, divided by the number of all
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possible values of the attribute. The algorithm can be described as follows [From

AHYS3):

1) OrderR,, (s;=...= s, ) in ascending order of size;
2) For each R, (j <i) construct a schedule to R; that consists of parallel transmission

of R; and all schedules of Ry (k<j). Select schedule with minimum response time.
Algorithm SERIAL is used to minimize the total time. It is executed in three steps.

1) Order relation R; such that s;=s, = ... = sp,;
2) If no relations are at the result node, then select strategy: Ri? R2? ... 7R, ? ...

? R:orelse if R, is a relation at the result node, then there are two strategies:
Ri? Rp? ...?2R?... 2Ry? ... 2 RrorRy? R;? ... ?7Rpt? ... 7R ? ... 7 Ry
3) Select the one with minimum total time.
Procedure RESPONSE

1) Candidate schedule ordering in ascending order of arrival time;
2) Schedule integration: for each candidate schedule, construct an integrated
schedule for the relation that consists of the parallel transmission. Then select the

integrated schedules with minimum response time.
. Procedure TOTAL

1) Adding candidate schedule;

2) Select the best candidate schedule;
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3) Candidate schedule ordering;

4) Schedule integration.
Procedure COLLECTIVE

1) Select candidate schedule with minimum cost and selectivity less than 1;
2) Build processing strategy for parallel transmission,;

3) Test variation of strategy.

3. Algorithm W [MB96] is a static strategy with two distinct phases: first, a schedule of
semijoins is established using a cost/benefit analysis which is based on estimates of the
selectivities of the attributes and the sizes of intermediate results; second, the schedule is

executed.
Phase one: Establish the schedule. [From MB96]
Stepl: Consider how a reducer might be built for each join attribute.

1) Sort the attributes so that |dy| = |dy| =. .. =|dm;
2) Evaluate the semijoins in order beginning with daj ? dy;. this semijoin is appended
to the schedule if it is gainful. If the semijoin is appended then dy* 7 d is

evaluated next, otherwise dy 7 dg is evaluated. This process is repeated until all

the semijoins in the sequence have been evaluated.
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Step2: Examine how each reducer might be used. In this step we examine how the
relation sizes would be changed by the construction and use of the reducers, in the order

from smallest to largest.

1) Sort the reducers, from smallest to largest;
2} For each reducer in turn, estimate the reduction effects of constructing and using

it. Profitable semijoins are appended to the schedule.
Step 3: Look for remaining profitable semijoins.

1) Sort the attributes by increasing size;

2) Evaluate each semijoin in the sequence, appending it if it is profitable.

Phase two: Construct the reducers and ship them to the designated sites for semijoining
and finally the reduced relations are transferred to the query site where the answer is

assembled.

Compared to AHY algorithm, Algorithm W works well as a method of reducing the total
amount of data transferred over the network during processing. Experimental results
show that in all cases Algorithm W is superior but on average Algorithm W outperforms
AHY by 17% [MB96]. And there are no synchronization problems or difficulties with

redundant transmissions in Algorithm W, while there are in the AHY Algorithm.
4. Improvement algorithms for semijoin

In [CL84], the authors identified four properties that optimal semijoin programs for

processing tree queries have to satisfy. A semijoin program is represented by an
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execution graph, which specifies the order and the identities of the semijoins to be
executed. Given a semijoin program, we can therefore apply these properties to check its
optimality. If it does not satisfy these optimality properties, the associated improvement

algorithms can be applied to improve this program.

Property 1: No redundant semijoin occurrences. If there exist redundant semijoin

occurrences then delete all redundant semijoin occurrences and resultant isolated nodes;

Property 2: The execution graph of an optimal semijoin program cannot be rearranged

by the rearrangement techniques.

Property 3: Each NSJ(necessary semijoin) is properly embedded in the optimal semijoin

program.

Property 4: Each end node of the execution graph of an optimal semijoin program must

be a final relation.

Four algorithms which apply the optimality properties are presented to check the

optimality of a give semijoin p and improve it when possible.

Algorithm P1 is based on optimality property 1 and is used to delete redundant semijoin
occurrences and resultant isolated nodes; Algorithm P2 is based on property 2 and applies
. rearrangement techniques if p can be rearranged; Algorithm P3 is based on property 3;

Algorithm P4 is based on property 4 and is used to delete non-final relations, if each NSJ
with Y (the tree rooted at a final relation) is properly embedded in p then repeat to delete

the semijoin occurrence whose successor node is an end node in the execution graph of
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the semijoin program and is a non-final relation until every end node in the execution

graph of the semijoin program is a final relation.
2.4.3 Combination-Based algorithm

In distributed query processing, the conventional approach to reduce the amount of data
transmission is to apply a sequence of semijoins as reducers and then ship the reduced
relations to the final site to execute the join operation. As pointed out in [CY90],
judiciously applying join operations as reducers can lead to further reduction in data

transmission. The combination-based algorithm is executed in two phases.

In the first phase, an algorithm G [CY90] is used to determine beneficial semijoins for a
join sequence. If we use SMr to represent the set of possible semijoins and SM; to

represent the beneficial semijoin, the algorithm G can be summarized simply as follows:

[From CY90]

e Determine SMy from the query graph;

e Sort the semijoins in SMr in a descending order of their cumulative benefits;
e Set initial of SM;j is empty;

e If a semijoin in SMr is beneficial, then insert the semijoin to SMj.

In phase two, the identified beneficial semijoins can be inserted into the join sequence

- according to the procedure P. The following are the general steps for procedure P:

Step 1: In the join sequence tree, perform join operations associated with leaf nodes that
are neither reducers nor reducers of the semijoins in SM;. Update the join sequence tree

by merging the leaf node to its parent node after each join operation is performed.
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Repeat Step 1 until there is no such join available.

Step 2: If there is a semijoin SJ; in SMj, the reducer is a leaf node of the join sequence

tree, then perform SJ;, remove SJ; from SMj, and go to Step 1, otherwise, go to Step 3.

Step 3: Choose a semijoin SJi with the smallest cost from SM;j. Perform SJi and remove

it from SM. Go to Step 1.

In [LCO1], semijoins and joins are termed contributive replicated semijoins and
contributive replicated joins, respectively, when they are interleaved into a join sequence
to reduce the amount of data transmission cost required in a network with replicated
relations. The solution procedure consists of three consecutive steps, namely relation
selection, join sequence scheduling and merge processing. A simulator is developed to
evaluate the performance of algorithms devised. The results show that the approach of
interleaving a join sequence with contributive replicated semijoins/joins is not only
efficient in its execution but also effective in reducing the total amount of data

transmission cost required to process distributed queries.
2.4.4 Filter-Based Algorithm

A filter-based algorithm named the Replacement Algorithm is proposed in [TC92]. The
" input of the algorithm includes the number of hash functions d and the double linked list
T representing the execution tree. The algorithm will output an improved semijoin
program. The general steps for a backward replacement with hash-semijoin can be

described as follows: [From TC92]
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1) Establish a queue that is used to record the nodes having no successors with their
levels and then sort the queue by levels of nodes from high to low;

2) Remove the first element (denoted R;) from the queue, and its predecessor is R;;

3) Calculate the potential cost of traditional semijoin (R; ? Rj) and hash semijoin
Ri? Ry);

4) If hash-semijoin is more cost effective than semijoin, then replace the semijoin R;
? R, by hash semijoin Ri? R

5) Update the potential cost of R;;

6) Insert the element (R;, level) into the queue according to the level of R,

7) Repeat the process until the queue is empty.

Here is an example to show how this algorithm works. The semijoin program

R;? Ry, R37 Ry, Ry?7 Ry, Rs?7 R, is represented by the execution graph shown in

figure 2.11.
Rs

R19R2/
\R4__._>Rs

Figure 2.11 An example of execution graph

Suppese: [R,| = 1000, w,= 100, 8;= 0.5, a;= 30 bits, d =5 ,then
o false drop probability (f) = (1/2)4 = (1/2)3 = 0.03125

* potential cost of semijoin (CT )= a,R [+ s,w|R,| = 80000

e potential cost of hash-semijoin (CH;; )=(@/In2)*[R |+ (s;+)wR;|= 60338

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Initialization: establish and short the queue (SQ) = {(Rs, 4), (R;, 3)}; the potential cost

C, of the subtree rooted at R, is 0 (=1 to 5);

Execution: *Remove (Rs,4) from SQ, Rj=Rs, Ri=R4
*Calculate CT5-CHys-f <Cs
= 80000 — 60338 — 0.03125 <0
= 19662 >0, so replace Rs? RybyRs? Ryand
Upda te C4=C,+ CHys +(545+f) *Cs= 60338

oInsert (R4, 3) to SQ, SQ = {(R;:,3),(Rs,3)}

Repeating the execution until SQ is empty. In this example, all semijoins are replaced by

hash-semijoin.

. The potential cost of the original semijoin program:
Co= CT 2% 812 °CT 154813 *CToy+s13 0824 °CTys
=80000-+0.5 *80000+0.5 =80000+0.5 0.5 =0.5 *80000

= 180000

The potential cost of the improved semijoin program is: C, = 141476

So, in this example, the cost is saved Cy — C; = 38524.

In general, hash semijoin is more cost-effective than semijoin. The search filter in the
hash-semijoin achieves considerable saving in the cost of a semijoin operation. However,
it only works on execution tree, and the performance is tightly related with the hash

functions.
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2.5 Conclusions

Distributed query processing is the process of retrieving data from different sites. It
involves transmission via a network so it will create delays. The basic challenge is to
design and develop efficient query processing techniques and strategies to minimize the

communication cost.

e The semijoin [BC81, BG81] is a very popular technique for reducing transmission
cost. Most distributed query processing algorithms proposed so far rely on semijoin;

e The 2-way semijoin is an extension of the semijoin operation [KR87]. It aims to
reduce both relations, while requiring less total network cost than executing regular
semijoin;

- e The pipeline N-way join is for joining the reduced relations residing on N sites. The
main goal is to eliminate the need of shipping, storing, and retrieving foreign relations
and/or intermediate results in the local disks of the query site [RK91];

e Interleaving joins with semijoins can result in more beneficial semijoins due to the
inclusion of joins as reducers. Judiciously applying the join operator as reducer can
further reduce the amount of data transmission required [CY92];

e The Domain-specific semijoin can reduce the size of fragments by eliminating non-
contributive tuples and can be performed in a fragment-to-fragment manner and
provide more flexibility in distributed query processing [CL90};

® A composite semijoin is a semijoin in which the projection and transmission involve
multiple columns. It may be beneficial to do the semijoins as one composite rather

than as multiple single column semijoins [PC90];
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e Hash semijoin transmits a Bloom filter that is a hashing based bit vector used to
encode the same joining information as the join attribute projections do. Compared to
semijoin, hash semijoin can have lower cost because a bloom filter is generally
smaller than the join attribute projection, but false drops may occur [TC92];

e A PERF method adds to semijoins in the backward phase and is used to eliminate
unnecessary redundant semijoins by using bit vectors. It is based on the relation tuple
scan order instead of hashing. Hence it does not suffer any loss of join information
incurred by hash collisions [LR95].

e Virtual join [SSL+02] considers reducing both communication cost and local cost in

distributed query processing. It is both adaptive and efficient.

_ It has been shown that finding an optimal query strategy for a given query is NP-hard, so
most research concentrates on developing heuristic algorithms which find near-optimal
solutions. [Kos98] presents that all query optimization algorithms fall into one of three
different classes (Exhaustive search, Heuristics, randomized algorithms) or combinations

of such basic algorithms.

e Distributed INGRES [ES80] and System R* [SA80] algorithms are two
representative of algorithms that are based on joins. INGRES employs a dynamic
optimization algorithm, while System R* uses a static optimization;

e SDD-1 [BGW+81] was the first query optimization algorithms based on semijoin. It
aims to minimize the amount of intersite data transfers through a cost/benefit analysis
which sequentially selects the most profitable semijoin to execute; AHY algorithms

are a collection of algorithms for minimizing either the response time or the total cost
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for a query; W algorithm is a static strategy. Also there are many other algorithms
based on semijoin or variant of semijoin;

e Filter-based algorithms are more efficient and popular now. In the next chapter of this
report, we will introduce a new filter-based algorithm called Composite Semijoin

Filter and compare it to other filter-based algorithm through experimental results.

Query optimization is the important part in distributed database systems. A large number
of query optimization algorithms have been proposed by now. But the study in this area is

and will be continued.
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Chapter 3 Proposed Algorithm

3.1  Problem and Motivation

In distributed database systems, the data is distributed and stored at different sites, which
are connected by a computer network. In order to complete a final query, data needs to be
transmitted between sites and this communication cost is a dominant factor compared to
local processing cost. Because some data are not participating in the final joining query
result, it is feasible to discharge them all before transmitting. It is obviously that the cost
of transmitting the reduced relations will be lower than that of transmitting the original

relations.

~ The objective of distributed query optimization is to find strategies to minimize the
amount of data transmitted over the network. During previous research efforts, semijoin
tactics are widely applied for query processing to reduce transmission cost by
transmitting only the projections instead of the whole relations. If relations are reduced
fully using a semijoin-based algorithm before they are shipped to the join site, less

communication cost may be incurred when reduced relations are sent to the result site.

However, due to the type of queries and the independence of attributes assumed in
semijoins, the relations appearing in the query may not be reduced fully. As a result, the
communication cost in assembling the relation can still be high [YC84]. Sometimes two
or more attributes, each with poor selectivity, can be combined to form a composite
- semijoin with a better selectivity. In this situation it may be beneficial to do the semijoins

as one composite rather than as multiple single column semijoins (An example is shown
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in figure 2.6). A composite semijoin is a semijoin in which the projection and
transmission involve multiple columns. Through simulation results, it has been shown in
[PCO0] that algorithms including the possibility of composite semijoin can generate
strategies which are far better than those that ignore this method. But the cost to transmit

composite semijoin projections may be high.

Hash semijoin is proposed to minimize the cost of a semijoin operation (i.e., the cost of
transmitting the semijoin projection). It is based on the concept of search filters (also
. called Bloom filters). A bloom filter is a vector of bits, which is used to filter out the
tuples that do not participate in the join. Compared to semijoin, hash semijoin can have
lower cost because a Bloom filter is generally smaller than the join attribute projection.
Although most research based on filters varies in how the filters are used, the majority
encode them using hashing. Hashing is a procedure of applying a special function, called
~ hash function, to a key value to produce an address in a data structure (e.g. a hashed
index or a bit array). Unless we have a perfect hash function, filters can never avoid false
drops or so called collisions, which occur when two or more attribute values hash to the
same address. (The example is shown in figure 2.8.). In [YL99], two Bloom filters are
used and the experimental results show that the performance of the algorithm is much
 better than using a single set of filters under the assumption of collisions. It is impossible
to implement composite semijoin using Bloom filters because we cannot keep the relation
information between attributes within one tuple when using hash function to hash multi

column attributes to one address.
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Can we still use filters but avoid collision to get the high performance? The answer is
yes. PERF join provides the possibility. It can produce a variation of Bloom filters by
scanning the relation tuple order instead of hashing. Hence it does not suffer any loss of

join information incurred by hash collisions.

What motivates my interest and future study in this field is how to make improvement
based on the current available techniques or algorithms. In this thesis, we take advantage
of composite semijoin, Bloom filters and PERF join to propose a new algorithm called

Composite Semijoin Filter to implement composite semijoins.

3.2 The Algorithm

In this section, we will introduce our proposed algorithm - Composite Semijoin Filter in

detail and give an example to illustrate how this filter works.

Composite Semijoin Filter is a filter-based algorithm, which allows the combination of
- composite semijoins, Bloom filters and PERF joins. Its primary goal is to reduce the size
of relations participating in the final joining, especially to reduce the data that cannot be
reduced by using a pure semijoin. As a result, it can minimize the transmitting cost

signiﬁcantly over the network. We use a composite semijoin filter as a reducer.
3.2.1 Description of The Algorithm

The Algorithm can be computed with the following steps. We assume that before using
this algorithm, all initial local processing should be done to make sure there are no

duplicate records. Each query is processed in two phases.
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First reduction phase: (Reduce relations using composite semijoins.)

1. Do all local processing: Do all composite semijoin projections for each relation
(Figure 3.1); — costl

2. Creating CSFs for each relation: (Figure 3.2)

v" Send all composite semijoin projections in parallel to the assembling site
or other site; — cost2
v' Create composite semijoin filters for each relation by scanning the tuple

order of common join attributes. — cost3

3. Updating filters: If there are more than one CSF for each relation, do “and”
operation and generate the final filter for this relation, then update other filters
related if there is change (Figure3.3); — cost4

4. Reducing: (figure3.4)

v Send CSF back to the site of its relation; — cost5

v" Reduce this relation using its own CSF. — cost6

Second reduction phase: (Reduce relations using hash semijoin.)

Finally, transmitting all reduced relations to the assembling site in parallel to produce the

~ final query result (Figure3.5). — cost7

Cost will be incurred during each step. They are represented as cost] to cost7. The

meanings are:

e Costi— the local process cost for projecting the composite semijoin;
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e Cost2— the communication cost for transmitting composite semijoin projections
(the size of projections);

o Cost3, Cost4 — the local process cost for creating CSF of its relation;

e Cost5 — the communication cost for transmitting composite semijoin filters (the
size of all filters);

e Cost6 — the local process cost for reducing each relation using CSF;

e Cost7- the communication cost for transmitting reduced relation (the size of all

reduced relations).

Let us see a simple example to explain how this filter works. Suppose we have three
relations, which must be joined to get the query resuit. There are five join attributes. R,
has two common join attributes A and B with R,, one common join attribute B with Rs;
R, has two commeon join attributes A and B with R;, two common join attributes B and D
with Rj3; R; has two common join attributes B and D with R;. In this example, if we use
| pure semijoin for R; and R; on attribute A and B separately, there will be nothing to be
reduced. But if we use composite semijoin, the relations will be reduced greatly. So in

this situation, it will be more beneficial using our algorithm.

R;
R;
Rl B F
A B C A B D E q p 5
d g b € c i e c a
b e h c d e h f d
C f 1 a f d o g d C

Figure 3.1 Original Tables of Relations
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First, we do all the composite semijoin projection for R;, R, and R3. There are two

composite semijoin projections for relation Ry: Pro(A,B) and Pxx(B,D). The results are

shown in Figure 3.2.
Pps(BD
Pri(4,B) Pr:(4,B) Pr:(B,D) = ® )D
A B A B B D
d e
a d b € e c
e c
b e c d d e
f C
c f a f f
g e

Figure 3.2 Projection of Composite Semijoin

Secondly, send all the projections to a same site (the assemble site or another site) and
create CSFs for relation Ry, R, and R3. A CSF is a bit vector that contains one bit for
every tuple in Pr and in the same order. So the size of CSF for a relation equals to the
number of the relation. Create CSF by scanning tuple order and set the corresponding bit

of the filter to 1 if the tuple is matching otherwise to 0.

R: has one CSF, R, has two CSFs, R; has one CSF. So we do “and” operation
CSFro(A,B) and CSFro(B,D) for R2 and get CSFz.. Because there is a change when

- doing “ and” operation. So we update related filters (CSFr3(B,D))

Figure 3.3 shows the details.
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CSFri(4,B)

0
0]

W P =

CSFp3(B,D)

1

0
0
0

HoWwW N

Figure 3.3 Filters of Composite Semijoins
Note: The number left denotes the position of tuples.

_ Thirdly, transmitting CSFr;(4,B) to site of Ry, CSFx; to site of Ry, CSFr3(B.D) to site
of R; and reduce R; to Ry’using CSFri(4,B), Rz to Ry’using CSFz;, R; to Rs’using

CSFrs(B,D). (Figure 3.4)

Finally, send Ry’, R;’ and R3’ to the assembling site and compose final result (Figure3.5).

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reducing Relations using their own filter...

R E
R]’ RZ’ 3
B|D|F
AIB|C ‘ A/ B|D|E
e |cC
bieih blelcii
Figure 3.4 Reduced relations
A/B|C|/D|E|F
ble|hjc|i
Figure 3.5 Final Result Relation
- 3.2.2 Implementation -
Development environment:
e Microsoft visual C++ 6.0
e  Windows XP professional
Main Data Structures:
o A_matrix[pum_rel][num_attr] ~ adjacency matrix, used to show which

relations have joining attributes in common.

e Adjacency list: used to represent a query graph. Each relation has one list which
head-node contains the number of common attributes, while list-nodes showing

connecting relations and common attributes. Each node is defined as:
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struct rec{

int attr; // attribute id

int rel; /! relation id

struct rec *next; // pointer to point next element of the list
3

struct rec * vertex{num_rel]

o csf_final[nul_rel}[max_tuple] — Composite Semojin Filter, use to construct CSF

for each relation

Main Functions:

init_data() — to initialize data

e read_data() — to read data from statistic table

e build_amatrix() — to build adjacency matrix

e build_csf{) - to build Composite Semijoin Filter (CSF) for each relation
e reduce_rel() — to reduce each relation using its own CSF

e cal_cost() — to calculate the cost (filter cost and final transmission cost)

e output_file() — to output the result data
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Chapter 4 Experiments and Evaluation

In the previous chapter, we introduced our proposed algorithm. Is this algorithm good or
not? The experiment is the best way to evaluate it. In this chapter, we will present our

experimental scenarios and analyze the experimental results.
4.1 Experimental System

We assume a distributed relational database management system with a number of
independent nodes distributed geographically and connected via a point-to-point network.
The relations are distributed among the nodes and all nodes can access all data; Each
- node has local processing and storage capabilities, that means that selections and
projections should be carried out during the local processing phase before the applying
the algorithm; We will only consider select-project-join (SPJ) queries since most queries

can be stated in this format.

The test-bed we used is the one developed by the author in [BWT95]. Based on the test
database, we construct a set of different queries. Each query consists of an arbitrary
number of relations and an arbitrary number of joining attributes. We investigate the

following characteristics in this thesis:
e The number of relations involved in the query.
e The number of possible joining attributes involved in a given query.
o The selectivity of the attributes in the query.
e The number of tuples in a relation.

e The domain size of attributes.
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| 4.2 Evaluation Method

The main objectives of evaluating this algorithm (CSF) are to determine how well the
algorithm performs. We will measure the performance of the algorithm over Initial
Feasible Solution (IFS) in terms of the total cost. IFS ships all relations directly to the
query site, where centralized query processing performs joins and builds the query result.
The cost of the algorithm includes the cost each projection shipped, the size of filters and
the size of reduced relations. We will also compare the algorithm to another filter-based

algorithm (W2) in terms of the reduction ratio and the total cost.
4.2.1 Size and Selectivity

For each relation R; , we use | R; | to denote the cardinality of R;, S(R;) to represent the

size of relation R; in bytes; W(R;) is the width of a tuple in R; in bytes. Then:
SRy) =[Ri [ * WRy (D
The size and selectivity of each individual attribute are represented by S(d;) and ?(dy)
- respectively, the width of the join attribute in bits is W(d;). Then:

S(dy) =/ dy | * W(dy. @

2(dy) is the selectivity on each joining attribute j of relation R;. It is the number of

different values occurring in the attributes divided by the number of all possible values of

the attribute. Suppose the cardinality of the joining attribute is | d; |, the domain of dj is
| D(dy), the selectivity is commonly defined as

Py =] dy] /D (d) 3)
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The selectivity is regarded as high when ?(dy) is small. In our experiment, there are three

level of selectivity.

Figure 4.1 shows the statistical information of a database including four relations and 2
joining attributes. In this example, the domain of dj; equals D (d;;) = 990, the domain of
d; equals D (d;;)= 610. The relation R; only has one joining attribute 2. The size of R; is
4800. The size of the projection of relation R; on joining attribute 2 is 867. So we
calculate the selectivity of R, projected over joining attribute 2 as follow:

?(d1z) =/ d12]/D (d13)

= 435/610

= (0. 713115
SRy S(di) 2(dn) S(di) ?2(dp)
4300 0 0.000000 435 0. 713115
1900 945 0. 954545 0 0.000000
1700 0 0.000000 525 0.860656
3300 825 0.833333 565 0.926230

Figure 4.1 Database Statistical Information

4.2.2 Cost and Benefit

The total cost of CSF is the sum of the reduced relations and the size of the projection

and the size of filters.

C(CSF)=7? S®’) + S (Projections) + S (Filters) (i=1...n) 4)

The benefit of algorithm CSF is the difference of the size of original relations and

reduced relations.
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B(CSF)=? (S(R) - S(R)) (i=1.nm) (5

The benefit ratio (or reduction ratio) is the benefit over the size of original relations.

BR(CSF) = B (CSF)/ ? S (R;) *100 (i=1...n) (6)

The cost-reduction ratio is the reduced cost over the original cost.

CR(CSF) = (C(IFS) - C(CSF))/ C(IFS) *100 G=l.n) (7

If the benefit exceeds the cost, then the algorithm is called a cost-effective.

~ Several assumptions are made in our experiment:

e The shipment of one word is a “unit” of cost
e FEach attribute value can be represented by one word

o 64-bit word when calculating filter size, so the filter size equals to max_tuples/64.

1) Compare to IFS

IFS algorithm is a simple way to process a query. It ships all relations directly to the
query site, where centralized query processing performs joins and builds the query result.
It is simple but rarely efficient because of the high transmission cost. We compare our

algorithm to IFS in order to evaluate the algorithm in terms of total cost.

The total cost of IFS is the sum of the costs of transferring all relations to the joining site.
According to our evaluation method, the total cost of IFS should be the sum of the size of

all relations participating in the query.
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C(IFS)=7? SRy @i=1...m)
For example, in the example of Figure 4.1, the cost of IFS equals to:
4800-+1900+1700+3300 = 117000
2) Compare to W2 [MO98]

W2 is another algorithm that uses filters. Each filter is an array of bits that functions as a
very compact representation of the values of a join attribute in a relation. A perfect hash

function is used to set bits in the filter.

The algorithm can process general queries consisting of an arbitrary number of relations
and join attributes. Each query is represented by a graph and an adjacency list. Each
relation is usually only processed once. However, if a filter changes then certain relations

must be processed again. The algorithm involves two phases.

Phase one: The adjacency list is used to determine the order in which the filters are

constructed and used. Repeat all the substeps until each relation has been processed once.

e Select the relation with lowest in_degree for processing

e Scan adjacency list to see which filters must be constructed. If a filter is
already available then concurrently use it to reduce the relation and
produce all required filters.

e If a filter has changed then use the following “filter rule”: if a filter for a

relation changes then add that relation to the queue only if it has already
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been processed; it is not already on the queue; and it is not the most
recently processed the relation.

o Use adjacency list to “remove edges” from query graph — that is , reduce
the in_degree of each relation in the list by 1.

e Mark relation as processed.

Phase two: The queue is processed in this phase, repeat until the queue is empty.

e Remove relation from the queue.
e Reduce relation using all appropriate filters.

e If a filter changes the use the “filter rule”.

Suppose we have three relations which must be joined and shipped to some query site.

Ry R R

A |B |C AJC |D B | E
I 12 13 2 14 |5 3 14
2 |3 |4 3 15 |6 5 (5
3 14 |5 4 |5 |7 6 |6

The query graph and adjacency list are represented as follow:

R3: [ AR L] B[R | p| (/R

B c
A\ R(2): [ AR Ly K

Rg(l): B R1

(a) Query Graph (b) Adjacency list

Figure 4.2 An example of algorithm W2
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In phase one: First, we select the relation R; (with the lowest in_degree) for processing,

scan R3’s adjacency list, produce filter for B (3, 5, 6), reduce in_degree of Ry;

Second, select the relation R, for processing, scan R;’s adjacency list, filter B is already
exist, so reduce R; using B, then R;’={2,3,4}, produce filter A(2), C(4) and new B(3),

reduce in_degree R, and place R; on queue, then mark R, as processed;

Third, select R, and scan its adjacency list, reduce R, using A and C, reduced
Ry’={2,4,5}, produce new filter A(2), C(4) and D(5). Because there is no change for

filters and all relations have been processed, phase one stops, go phase two.

In phase two, remove R; from the queue, reduce R using filter B, then R3’={3,4}. The

queue is empty so the algorithm stops.

All relations are fully reduced:

Ry

The total cost of W2 is the sum of the reduced relations and the size of filters.

C(W2)=? SR)+ S (Filters) (i=1...n)
The benefit of algorithm W2 is the difference of the size of original relations and reduced

relations.

B(W2)=? (SR) - SR)) (i=1...n)
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4.3  Experimental Results

4.3.1 Experiment Steps
The experimental process includes four steps.
First step:

Create a query by executing the program create_query.exe. It should be followed by

three parameters:
e num_rel - number of relations (3...6)
e aum_attr - number of atiributes (2...4)

e Jevel sel—level of selectivity (0, 1, 2)

Because in practice, the numbers of relations involved in join operations are usually no
more than 6, and joining attributes involved are not many. So i this experimental
environment, the range for the number of relations is from 3 to 6, while the range for

number of joining attributes is from 2 to 4.

Given the desired number of relations and the maximum number of join attributes, the
- program will produce a query statistics table (Figure 4.1) as well as the input parameters

that are required for constructing the actual relations.

The selectivity is classified into 3 categories: 0 represents High selectivity (0.1 — 0.4), 1

represents Medium selectivity (0.4 — 0.7) and 2 represents Low selectivity (0.7 - 0.9).
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Second step: Build relations by executing relbuilder.exe. relation_id" according to the

statistical information produced in first step. One parameter is needed.
relation_id : 0...num_rel

Third step: Reduce relations and output the result data by executing csf_test.exe.

Forth step: analyze the experimental results produced in third step.

The query creator (create_query.exe) and relations generator (rebuilder.exe) were created
by previous colleagues in Database Group of Windsor University, and revised by me.

The CSF reducer (csf_test.exe) is implemented by me.

In our experiment, each relation in the query consists of 500 to 6000 tuples, while the
- attribute domain contains 500 to 1500 distinct values. Because the number of relations in
each query in our experiments is between 3 to 6, the number of attributes varies between
2 to 4, each combination of a relation number and a attribute number can make up a
query type. For example query type 4_3 represents four relations and three attributes. In
total, twelve query types ranging from 3_2 to 6_4 will be represented in the experiment.
. Also, the experiments carried out are classified into three parts based on the selectivity of
all joining attributes in the test queries. Thirty-six queries were constructed and executed
using the algorithm CSF. In order to evaluate this algorithm exactly and effectively, each
type of query will be run 60 times (runs). Because in experiments, we found after 50
runs, the results seems no much changes. So over 2160 queries vary in many ways

~ including the number of relations, the number of attributes and the level of selectivity.
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4.3.2 Results and Comparison

The objective of our experiment is try to answer the following questions:

1. How does the selectivity of the attributes, the number of relations and the number
of joining attributes in the query affect the performance?

2. Does the algorithm perform well compared to other algorithms?

Effects of selectivity and attribute: Figure 4.3 to Figure 4.6 show the effect of selectivity

and effect of number of attributes at different number of relations.

Effects of Selectivity and Attribute

100+
X 801
2
s 60
.
% 40
8 .
20 High

Medium Selevtivity
0 5 Low
3 4
Attribute

Figure 4.3 Effects of Selectivity and Attributes (Three Relations)

As Figure 4.3 shows, high selectivity always produces a higher benefit ratio than medium
or low selectivity in the case of three relations in a query. Under the same selectivity, as

the number of attributes increases, the benefit ratio also increases.
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Effects of Selectivity and Attribute

Benefit Ratio %

Figure 4.4 Effects of Selectivity and Attributes (Four Relations)

In the Figure 4.4, we can get the same conclusions as the case of three relations.

Effects of Selectivity and Attribute

N

o

S

é Bl Medium
% [0 High
$

22

Hi
Mecéhum
Low Selectivity

Attribute

Figure 4.5 Effects of Selectivity and Attributes (Five Relations)
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Figure 4.5 shows that when the number of relations increases from 4 to 5, the

performance is better under each same case except four attributes with low selectivity.

Effects of Selectivity and Attribute

2 e % 7

100 .
X 801
,‘% ’ i Low
s 90 B Medium
e.‘;; 40 [ High
o
Sg 20 / High

0 Medmum
) Low Selectivity

Attribute

Figure 4.6 Effects of Selectivity and Attributes (Six Relations)

As Figure 4.6 shows, general conclusions got from three relations are also suitable for the

case of six relations. Compared to five relations, the performance is better.

General speaking, the higher level of selectivity, the higher beneficial rate produced by
the algorithm CSF; With the increasing number of attributes, the benefit ratio also
increases; With the same selectivity, when we increase the number of relations from 3 to

6, the beneficial rate also increases a little bit. The exception occurs in the case of three

relations with four join attributes.
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The Comparison of Reduction Ratio (W2 vs. CSF):

Figure 4.7 shows the comparison results of reduction ratio between algorithm W2 and

CSF.
Reduction Ratio
100
- ,
Tg 80 \ | o~ W2 Algorithm
E 70 . i CSF Algorithm

60 fg
50 +=
¥ ol WY w2 Wl oY o2 o) oF oF o
Query Type

Figure 4.7 Reduction Ratio

As Figure 4.7 shows, the algorithm CSF can always gain more benefit than algorithm
W2. With the increasing number of attributes, the algorithm CSF produces higher
reduction ratio than that of algorithm W2. That means the algorithm CSF works more
efficiently under more common joining attributes. So, algorithm CSF is more beneficial

’thanWZ.
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The comparison of transmitting cost (IFS, W2 and CSF):

The comparison results of transmitting cost among algorithm IFS, W2 and CSF is shown

in Figure 4.8.

Transmitting Cost

B

W 6r 62 60 0F 67 o

Query Type

Figure 4.8 Tansmitting cost
As we can see, both algorithm W2 and CSF can reduce transmitting cost significantly.
But compared to algorithm W2, CSF produces a little bit more cost. The extra cost is
caused during transmitting composite semijoin projections when applying the algorithm
CSF. And when the number of relations and the number of attributes are all the biggest,

- the transmitting cost will be reduced most by using the algorithm CSF or W2.
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Summary:

Figure 4.9 gives the tables of comparison between W2 and CSF in Benefit Ratio.

Number of Join Relations
Beneficial 3 4
Ratio(%) |High Med Low High Med Low
W2 |CSF| W2 |CSF| W2 |CSF| W2 |CSF| W2 |CSF| W2 | CSF
Number of | 2|86.77| 87.89)59.25) 61.90] 30.31| 44.71| 90.47| 92.46 76.21/76.93| 36.49| 45.76
Attributes | 3|93.59 93.90/79.98| 89.31| 45.28| 78.05| 93.26| 94.58) 75.56|77.01 47.69) 62.69
4 98.59| 98.92/90.34| 96.45| 57.16| 90.07] 96.04| 97.27| 88.50/89.93| 56.30 79.55
Average 92.98|93.57|76.52|82.55|44.25|70.94/93.26194.77/80.09|81.29/46.83| 62.67
Beneficial S 6
Ratio(%) |High Med Low High Med Low
W2 |CSF| W2 |CSF| W2 |CSF | W2 |CSF| W2 |CSF| W2 | CSF
Number of | 2| 96.02| 97.23/81.27| 83.46| 51.42| 52.99| 96.39| 97.37| 83.31/84.94| 57.30| 61.34
Attributes | 3| 94.75 96.83/84.13| 88.18| 59.82| 69.31| 91.13| 96.03| 87.0090.27| 71.98) 75.63
4| 96.88 97.94/89.21| 91.07| 62.81 76.69] 96.39) 97.05 90.87/92.45| 75.77) 81.95
Average 95.88) 97.33/84.87| 87.57| 58.02| 66.33] 94.64| 96.82| 87.06/89.22, 68.35 72.97|

Figure 4.9 Table of Benefit Ratio

From the data in the table, we can say that the algorithm CSF is always beneficial. The

lowest benefit ratio is 44.71% (three relation two join attributes at low selectivity), and

highest one is 98.92% (three relation four attributes at high selectivity). The average is

. 94.72% at high selectivity, 85.16% at medium selectivity and 68.23% at low selectivity.

In general, the average of benefit ratio is 82.70% compared to the algorithm IFS. CSF can

get higher benefit ratio (5.80%) than algorithm W2.
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The table of the comparison between W2 and CSF in terms of Cost-Reduction Ratio is

shown in Figure 4.10.

Number of Join Relations
Cost-reduction 3 4
Ratio(%) High Med Low High Med Low
W2 |CSF| W2 |CSF| W2 |CSF| W2 |CSF| W2 |CSF| W2 |CSF
Number of | 2{86.95/77.9158.77|47.54/30.01/24.90/92.12|83.14|76.01|63.35/36.13|31.52
Attributes | 3|93.32/84.25/79.19|74.11|54.18/43.52|93.88|85.63|77.12|64.95|46.66 | 45.69
4198.51|85.90/89.98|80.49|65.53|55.78|96.95|87.97|88.14|78.33|62.65|54.53
Average 92.92(82.69|75.98|67.38|49.91/41.40/94.31|85.58|80.43|68.88|48.48|43.91
Cost-reduction 5 6
Ratio(%) b High Med Low High Med Low
W2 |CSF| W2 |CSF| W2 |CSF| W2 |CSF| W2 |CSF| W2 |CSF
Number of | 2/97.10/90.41/83.34|72.82/51.29|40.21|95.66|92.51/84.26|74.10|55.7348.91
Attributes | 3|96.6988.95/88.32|74.57|58.83|57.09|90.53|91.02/90.80|78.51|71.58|64.38
4197.71/90.82/90.68|79.86|65.84|63.04/96.53/92.18/91.05|82.57|75.71|70.61
Average 97.17|90.06|87.44 75.75|58.65|53.45/94.24|91.90|88.70| 78.39/67.6761.30

Figure 4.10 Table of Cost-Reduction Ratio

From the table, we can get that the data transmission cost of both W2 and CSF is reduced

significantly compared to the IFS. The cost-reduction ratio of CSF is between 24.90%

(three relations two join attributes at low selectivity) and is 92.51% (six relations two

attributes at high selectivity). The average is 87.56% at high selectivity, 72.6% at

medium selectivity and 50.02% at low selectivity. In general, the cost can be reduced

70.06% for average. Compare to algorithm W2, CSF causes a little bit more transmission

cost (13.04%).
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Figure 4.11 is the table of benefit, cost and net benefit of AIgorithm CSF. In most cases,
CSF has been shown a cost effective algorithm (Net-benefit is positive.). Exceptions

occur when selectivity is low. With the low selectivity, the relations will be reduced less

so the cost will be higher than medium or high selevtivity.

Number of Join Relations
3
High Medium Low
Benefit| Cost |Net-Bef|Benefit| Cost |[Net-Bef|Benefit| Cost |Net-Bef
2 582511652.13| 4172.87 3892] 4295.05 403.05 1991} 6004.99] -4013.99
Num_attr] 3 6372/11191.04f 5180.96 5839 2040.011 3798.99 3449 4476.34| -1027.34
4 5267| 864.74| 4402.26 6373| 1545.00] 4828.00 4306 3413.84] 892.16
Average 5821.33 4585.36 |5368.00 | 2626.68 | 3010.01 | 3248.67 |4631.72| -1383.06
4
High Medium Low
Benefit| Cost |Net-Bef|Benefit| Cost |Net-Bef|Benefit| Cost [Net-Bef
2 8109{1644.69] 6464.31 6892 3987.58 2904.42) 3517 7644.06; -4127.06
Num_attr, 3 9052{1519.12] 7532.88 7558 4079.43; 3478.57 5213 6198.41] -985.41
4 8435|1154.05{ 7280.95 9039 2500.89] 6538.11 6389 5328.26| 1060.74
Average 8532.00[1439.29| 7092.71] 7829.67\ 3522.63| 4307.03| 5039.67| 6390.25] -1350.5§
5
High Medium Low
Benefit| Cost |Net-Bef|Benefit| Cost [Net-BefiBenefit| Cost [Net-Bef
2| 11906/1263.27| 10642.73] 10427| 3892.47] 6534.53 5361} 7972.57] -2611.57
Num_attr] 3] 11515/1430.97) 10084.03] 10214] 3483.32] 6730.68 8762| 6585.72] 2176.28
4 12087/1222.42| 10864.58] 11586 2921.68 8664.32] 10194] 5975.78| 4218.22
Average |11836.0011305.56| 10530.44{10742.33| 3432.49, 7309.85| 8105.67 6844.69] 1260.98
6
High Medium Low
Benefit| Cost |Net-Bef|Benefit| Cost |Net-BeflBenefit| Cost [Net-Bef
2] 14111)1141.83] 12969.17] 11199 3913.58 7285.42 8022} 8380.38] -358.38
Num_attr] 3| 13891]1371.24] 12519.76]  12625| 3455.94) 9169.06] 10693 5915.90, 4777.10
4 15445(1310.62| 14134.38] 14097 2976.06/11120.94 12505| 5206.01| 7298.99
Average 14482.3311274.56| 13207.77]12640.33| 3448.53| 9191.81110406.67 6500.76] 3905.91

Figure 4.11 Table of benefit, cost and net-benefit of Algorithm CSF
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Chapter 5 Conclusions and Future Work

5.1 Conclusions

Query optimization is an important part in distributed database systems. The main
concern in this area is the selection of the best sequence of various operations to process
queries to minimize the communication cost. Because finding the optimal solution is NP-

hard, heuristics are applied to find near-optimal processing strategies.

During the past two decades, various possible algorithms have been presented and tested,
which can be classified into following categories: Join-based algorithms, Semijoin-based

algorithms, Filter-based algorithms, and join/semijoin combined algorithms.

Semijoin is often a common starting point for join algorithm in distributed database. It is
widely used to reduce the amount of data transferred between sites. Semijoin-based
algorithms perform better than join-based algorithms. However, we still have to spend a
- lot for transmitting the semijoin projection when using semijoin-based algorithms. Also
in most of the algorithms, multiple semijoins may be performed with common source and
common result sites. In this situation it may be beneficial to do the semijoins as one
composite rather than as multiple single column semijoins. But composite semijoin may

produce more cost than semijoin when transferring composite semijoin projection.

Filters are proposed as a cheap way to minimize this cost by transmitting filters instead of
projections. However, since Bloom filters are constructed by hash functions, collisions

can never be avoided. This is the problem or bottleneck for Bloom filter-based
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algorithms. PERF join provides a new idea of creating filters to overcome the problem

by scanning the tuples and reserving the poison information instead of hashing the values.

In this thesis, we take the idea of the PERF join and create a variation of Bloom filter
called Composite Semijoin Filter (CSF) to implement composite semijoin and avoid
collisions. The algorithm can process general queries consisting of an arbitrary number of

relations and joining attributes.

The primary goal of our algorithm is to minimize transmitting cost, which is spent during
* transmitting relations to the assembling site for final query processing. It is implemented
by reducing relation size. We use composite semijoins to reduce relations, especially the
tuples that may not be reduced by pure semijoins. The second goal is to minimize
intermediate transmission cost (caused by transmitting composite semijoin projections)

by using a variation of Bloom filter that can avoid collisions.

Although a composite semijoin itself may not be beneficial because of its more total time
cost, it always gainful to the execution of subsequent join operations. Our proposed
algorithm is evaluated and compared with initial feasible solution (IFS) and another
filter-based algorithm in terms of the total cost. From the experimental results, we get the

conclusions as follows:

1. The algorithm is always beneficial compared to the IFS. The lowest benefit ratio
is 44.71% (three relation two join attributes at low selectivity), and highest one is
98.92% (three relation four attributes at high selectivity). The average of benefit

ratio is 82.70% compared to the algorithm IFS.
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2. The data transmission cost is reduced significantly compared to the IFS. The cost
can be reduced 70.06% for average.

3. Generally speaking, this algorithm is cost-effective (Net-benefit is positive.).

4. The number of relations and the level of selectivity are two main factors which
affect the benefit ratio and the cost-reduction ratio.

¢ With the same number of relations, no matter how many attributes the
relations have, the higher the selectivity, the higher benefit ratio and cost-
reduction ratio.

e With the same selectivity and a fixed number of relations, the more
attributes the relations have, the more benefit will gain, and so does the
cost reduction ratio.

e With the same selectivity and the number of attributes, as the number of
relations involved in the query increases, applying the algorithm CSF will
get more benefit. (Exceptions occur when the query has three relations
with three or four joining attributes.)

5. Compare to another filter-based algorithm (W2), CSF can also get higher benefit

ratio (5.80%) but will cause a little bit more transmission cost (13.04%).

. Consequently, the algorithm proposed in this thesis performs well. The data transmitting
cost is reduced significantly in comparison to the algorithm IFS. Compared to the
algorithm W2, our proposed algorithm can also produce higher benefit ratio, but will
spend more by transmitting the projections. This is the main disadvantage of the

algorithm.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2  Future Work

Here are several things which should be done but have not been considered in this thesis.

The response time: As we introduced in Chapter two, there are two cost models, one is
the response time, and the other is the total cost. In my current work, I just evaluate the
algorithm in terms of the total cost. So what we will do later is to evaluate if this

algorithm can also get lower response time compared to other algorithms.

The local processing time: In this thesis, we do not take the local processing time into
account, but it should not be ignored, for example, the cost for processing the projections,
the cost for removing duplicates and the cost for generating the filters. With the
augmentation of the relation size, the cost will be larger. So, the total cost will be higher

in practice.

The duplicates: If we can find out an efficient method to deal with the duplicates on

projections, the transmission cost will be reduced more.

Special cases for composite semijoins: Obviously, the algorithm will perform best if it

can be used under special cases which are suitable for composite semijoins.

More runs: Some exceptions occur in the experiments. If we can run more times such as

hundreds or thousands times for each query type, the results may be smoothly.

The real system: If possible, it should be put into the real distributed database systems

for performance testing and improvement in the future.
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