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L ' ABngAC'T . L

- . Y
Thig ithegis investigates a Fermat ilwiber Transform
suitable Tor implementation withy a mini-coxmputer, 1iis

fagt transforn algoritnms and.arnniications to digital
simmal processing. ' . .

3 L)

The transform considered is the fNT with modulus
equals to the.4th Fermat nunber. from the investigation

of its properties and the characteristics of -the FF?-%5yDe
fast transfprm algorithms, an éf}icient_aLgorithm is de-

It

s algorithmn makes nossible a nore;efficient

. B >

veloped. Thi

.

evaluation

n

T the butterfly conmutations which are the
najor conputhtions in the fast transforn algorithms.
The realization of %this tfansform ig made.on a 16—
bit mini-computer. Anp efficient scheme is also developed
to incorvorate the dininished~l coding techpique to avold

ambisuity in number representation.

Application of this FNT to both one-dinensional and
: ¥

" twro-dimensional digital signal wprocessing is investigated.

The efficiency of the developed algorithm is tested with

examples on digitized speech signal low pass filtering and
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CHAPTER T : oLt

INTRODUCTION

Pinite digital convolution has many useful app;icéfion
in signal processing, such as digital signal filtering, the <
calculation of auwto- and cross correlation. The direct coﬁ—
putation of digital convﬁlution is a very time consuming ope-
ration due to large number of multiplications required.
Hovever, by means of the fast transform téchnigues it éan be
" implemented with mﬁCh higher efficieﬁCy. ' |

‘ The D*screte Fourier Transform (DFT) is a well knom
transform that can be used -to uerxorm dlgltal convoluilon
- efficiently via the Fast Fourier Transform’ (FF$) algorithms.
one of the other transforms that can be utilized for effin
cient computation of digital convolution is the Number Theo-
retic Transforns EFT%). The NTT is a class of %ransforms un-
veiled fairly recently. It is an malogy to the DFT,, but whose
structure 1s based on ihe“ring of integers modulo & certain
integer |

This work investigates the implementation of a particu-
lar NIT, called the Fermat Number Transform (FNT),. using a
general purpose mini-computer. An algorithm that improfes the
efficiency of, the transform in software implementation is de-
veloped. For epse of distinguish, this a%gorithﬁ is called
Fermaf lumber Transform Shift Diminished Algorithm (FNTSD).

The efficiency ofj this algorithm is tested with its applica-

+ions in both one- and two-dimensionmal signal filtering.

*



Tn.this chapter, 'some of the definitions and theories
with regard to fast implementation of finite digital convo-
lution will be reviewed. The outline of this work will then

be described.

]
r

1-1 Discrete-time Systen
. L4

A discrete-time system is essentially a transformation,
7(,), that maps & number sequence x{(n), representing the input
. discrete-time signal, into another number sequence y(n), repfe-

senting the output‘discreté-time signal, jPis'is usuall& de~

-

noted as y(n)=T( x(n) ) and depicted as in FIG. 1l-l. -
xm)— T(.) |——v(n)

1.2 ILinear, Time+invariant Systen
ﬁ linear,'time—invariaht system (LTI system) is charac-

terized by thé properties that

¢ T(x%(n) ) = ypn)

then- T(axl(h)+bx2(n) ) = a’ ( xl(n) )+bT(x2(n) )

= ayin )'J}byz (n)



W

() if  (=@))ay@

then T( x(n-m)} ) = v{n-m)

-

where a.and b are arbitrary constant, and m an integer.

The input and output of an ITT system has a convolu-
t?ﬁnal reiation., t |
1-3 Linear Convoiution

;Iet hin) and x(n) be two sequenées with some values
defined within the fiﬁite durations of Ny and Np respective-
1y, anégifro otherwise. The linear éonvolution of h(n) and

x(n) to¥give ancther sequence y(n) is defined as

Lored

=1

v(n) = n{n-mYx(n)

i

L
N-1 y N
N = > hin)x(n-m)

=0

N1+No

y 0,}.2|--0

. eons (a3, 1)
1~-4 Periodic Convolution (Cyclic Convolution) '

If h(n) represents one'period section 6} the periodic
sequence hﬁ(n), ana x(n) representé that of the-ﬁeriodic se—
quence xp(n) of both period N samples,éhen the periodic
convolution of h(n) and x(n) to give the sequence y(n) is

defined as (where ((.)) denotes (.)mod N .)

N-1
v(n) = >_ h{(m))x{({n-m))
- =0

N-1 ‘ ,
or v(n) = > hD(m)xD(n) for n = 0,1,2,...N=-1
m=0 - - , .

veee(1.4.1)

[ 3
+
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1-5 Iinear Convolution via. Periodic Convolution

Iet the sequences h(n) and xu(n) be of duration Il and

L respectively, If h(n) and x{n) are avpended with zero-va-

lued samples to the length of Nzii4L, Then the linear convo-

lution of h(m) and x(n) can be obtained from the periodic

convolution of hi{n) and =(n), iL.e.,

n(({n-m))=((n))

M+L-1
¥(n) = >
m=0
N-1 L
= > _h (n~m)x(m)
m=0
1-6 Discf

LS

ete Fourier Transforn (DFT)

veee(145.1)

The Discrete Fourier Transfornm of a sequence :{n) of
L] )

I samples 1s defined as

and the inverse transform (IDFT)

" v/here

=
=

nk
x(n)v

k) =

M

n

il
C

¥ = exn(-jom/N)

¥

ig defined as

Nn = 0.1,2,-."1\1""

- = O.l,a.-.co,.ﬂ“l

cese(1.6,1)

1

vore(1a642)
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1-7 Cyclic Convolufion Propeity of DFT .
iet the seqﬁenoes H(k) and X(k) be the DFT of the se-

quences h(n) and x{n) respectively, and both are'éf'length

N samples, The IDFT of the product H(k)X(;) is equal to the

cyelic convolution of h(n) and x(n), i.e.,

)

; N- nlk’
if X(k) = xtnhw
: n=0
N-1 nlk- o
and H(I\-.) — E h.(n)\v ’ I - O,l'2| lII’N-l
) n=0 ) .
N=1 - Im

.y ‘
then y(n)= > HE)XEW  no= 0,1,2,.0.,N-1

N-1
= = h((n-n))x((m))

m=0 crea(1a701)

where y(n) is the cyclic convolution of h(n) and :(n).

|
N -

R

1-8 The Fast Pourier Transform (FFT)

‘The Fast Fourier _-Tr_'ansform is a class _Q,'E’;"Aé.lgorithms
that make use of the symmétry and periodicity of the eXp O~
nential weight Wzexp(-j2y/N) to decompose a long DET compu- -
‘tation into smaller length DFT. computations. In this way a
significant reduce in the number of arithmetic operations
can be obtained. Basically there are two tynes of FFT al-go-'

rithms, call the decimation-in-time algorithm and the deci-

mation-in-frequency algori-thm.



1;8-1 Decimation-in-Time (Dif) Alﬂofithm . \ L N
| Algorithns in which the decomposmtlon is based- on dl—r
. viding the 1npu% seauence—(twme domaln sequence) into succes-
: /élvely smaller sequences for. procesolng is called the deci-
mation-in-time algorithms. The prqcedure is illustrated for
an N-point seguence x(n), where‘N_is;an intéger power of
tvo. -’

e

N-1

)= S ,\(n).h , K = OZ,Z,...,II-_IL

n=0
W = Bap (- j27/K)

Seperating the time sequénce x(nj into two sequences, x(n)
and ¥,(n), composed of the evén- and odd-sample points res-

ectively, e have,
?

I‘I 2—1 2I‘1x N 2—1
(k) = : x(Zr)vI + x(2r+1)d, (2rel)k

r=0 =0
N/2-1 H/2=1 - 1-
2.rk 2.1 1
= é :»:(Zr)(“’n) + é | 2 (2r+1) (W) WI:.;

r=0 . =0

By WS o= exm(2(-jam/n))

= exp{ -jav/(8/2) )

= WN/Z
[
N/2-1 . x N/2-1
¥ (k) = = xl(n)\{g]/z ¥ Wy = (1'1)WN/2



.-
X(k) = X1(k) + Vi Xp(k)

) A9
Xl(k) and Xo (k) are DFT's of \1(n) and : Z(n) reupec-.
. tively, and both are perlodlc of period N/2 sanples. They

have the relation, .

Xy (k) = X (k-N/2) s for N/24& k£ N-1
Xo (k) = Xy (k-11/2) LN e
Lk K-l/2 - \
also WN = - ‘lrI|r ’ . . .
,Therefore
X(k) = X (k) + 17] x2 (k) for 0 & & £ N/2-1
N , - (118 ;1)
= X (k.-n/z) + er} o (k-11/2) . dr N/2 £ % £ N-1

The procedure is repeatedly applied to each of the succes-
sive subsequences, until only two;point DFT's are left to

be evaluated. (1.8.1) forms the basic computation wnits -
and is usually called the ‘butterflies’., For this illustra-

tion they have the flow graph of FIG. 1-8-1yand 1a8=2,

FIG 1-G0-1
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- x(0) X(0)° .
(4) X(1) .
x(2) X(2)
x(6) X(3)
.o=Q X(4)
x(35) X(5) S
x(3) X(6)
2(7) xX(7)

Fig, 1=3=2 Flow Graph for DIT Alcorthm

1-8-2 Deci{na‘tion-in-Frequency (’DIF) Algorithn

DITF zlgorithms are bazsed on appronriate combination
DRITon

"“of input points such that the output sequence can be suc-
cessively divided into smaller subsequences for processing.

This is illustrated for a sequence x(n) of length N equals

to an integer power of o,
if x(n) is partitioned into two sequences ¥, (n) and

xz(n) such that
x7 (n) = x(n)

and  x,(n)

i

x(m + N/2) , n=0,1,2,...,11/2-1

then the DFT of z{n) is

/2-1 nk  H/2-1 .
- X (1{) = X3 (n )WN + S xz (n )w'ﬁk'ﬁn./z
. n=0 n=0.



-~

N/2-1

nzo

( xp e ™o m) N° , ko 0,1,2,.08-1
. .

Decorpose X(iz) into even~ and odd-sample sequences, then

we have

X(2h) =

Il

and X(2k4+1)

/2197

n=0

N/2w1 - | e ' |
Lzt :4\l/(n) b)) YWz ee.(1.8.3)

( x3(n) + xp(n) ) wans

n=0

n=0

N/2=1 i
zé T f(m) Wy . k= 0,1,2,...,N/2-1

N/2-1 o
Eég: (x1(n) =~ x5 (n)) WE(ZL+1)

L=l ) - n ) nl |

; x3(n) - xmo(n) )W ers(1.3.4)
n=0 - 2 n/2 U
N/2-1

nlk
2 g(n) Wyspy Xk = 0’1'2"ffN/2"l

(1.86.3) and (1.8.4) are equivalent to two N/2-point

DFT's. The procedﬁre is repeatedly apnlied to each of the

even- and odd-sample output subsequences until finally only

two-point DFT's are left to be evaluated., (1.8.3) and (1.8.4)

indicate the basic computational units (butterflies) for the

DIF algorithms. FIG. 1-8-3 and FIG. 1-8-4 show the flow

' graphs of a butterfly and the overall algorithm for N equals

to eight,
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A C = A$B
W
3 D= (A - B)wn,

FLG.1-8-3 But 'herf'ly\fb@DII‘ Al orrhnm

X(0)

“x(2)
X(6)
X(1)
%(5)
x(3)
X(7)

FIG.,1-3-4 PFlow Graph for DIF Aligorithn

X(4).
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;-9_Efficiency of Convolution via FET.
In both the Dit and DIF algorithms illustreted for
~ power of two, the number

A,

sequence 1ength equals to an integer

x nul lnllcatlons and _dult101“ requlred lor one
T, -

T L

/Z)logzr and N 1o:2N respective

of comple
ntation requires Mz complex tulti-

transform igereduced t

iy .3110 a direct DFT cond
cations and additions.
\ =
Huration N samples is to be/;inearly
S
ion and

Eal
Iz
=

convolved wil
assume its DFT alread:

“in section 1-5,

a sequence of
sequence of the same dura

1 another
/ - » -
Itirlications

lmovm, then by using the rethod men-

the number of comple
to 2N 1ob2h + AW and that of acditlions

is'approxinately equal

equal's to 4N logoN+4ll Tn contrast to the dirvect convolutlom,

e real multinlicatiords and additions are required.
mles number multinlieation takes as

Agsune that L c

mber multiplications and 7 real number
takes as

addition that

much tine -as 4 recl
additions, and that L complex number
much tine as 2 real-nunbcr gddifions, rain in efficiency can

DFT for sequence length ore-

be obtained for con olution vi
ater than apvroximately 64 points.

forn (ITT)

1 lO The Number Theoretic Trans
The meneral strueture of NTT md its 1nveroe transform

I

is given by “the trancsforn HalT,

2yae0ii=

k= 0,1,

pois
V moed 11,

w{) = ZE: (n)a
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xm) = (@ S X(k)a™™) mod M, . n = 0,1,2,.00,l-1

.(1.10.1)

wnere,

4 is a root of unity of order N in the ring of integer modulo

an integer, 1.

g T is the multiplicative inverse of'ank med M, and q is

the multiplicative inverse of N mod H, qQ is ofter denoted as N1,

| N\ <
1-11 Cyclie Convol utlon Property of NTT
Iet the sequences H(k) and X(k) be the NTT of the

N- point sequences. h(n) ad x(n) respectlvely,and that mag-

nitude of the cyelic convolution of h(n) and x(n) Goes not
exceed \l1/2}, where i 1s the modulus of the NT¥. The inverse
NtT of the produect H(k) X(k) mod I is equivalent to the

cyelic convolution of h(n) ad x(n). In notation, that is

N=1 , |
(k)= CE:;x(n)a ) mod M ‘

L

H(k) = (ih(m)ank) mod 1
=

I Y()= (H(k) X(k)) mod M,

1 R
vin)= (dgi;r(;)a )- mod M



™

el '
ym=>" H{n-n) x((n))
=0

Yhere 4V2éfm35Mﬁ,
(OF) nod M =1

and {({(°*)) indicate ‘(-) mod N

If there exists an NTT such that 'a' has a simple binary re-

presentation'sﬁch as 2, and N is a highly composite integer,

also that the modulo M operation can be casily done, then

. such an NTT can be implemented efficiently using the algori-

*

- thms sinilar to that of FFT.. The arithmetic onerations re-

quired for such an NTT cen be only aaditions and binary bit-

shifts. It can be used for fast computatiom of cyclic convo-

1-12 Qutline of This Work

This worlk investipates the efficient software imple-

mentation of a particular NIT called the Fermat Number Trans-

form dcfined in [1] and [2] by Rader, and Agarwal and Burrus.

4+ is Tound that the symnetric and periodic promerties of the

basis function, a“, can be utilized to reduce the number of

bit-shifts required when multiplying the data vpoints with
higher power of a. This reduces the power of ‘*a' in various
butterfly computations from the range of (O'té N/2-1) to the
range of (O %o i/4). This enables considerable decrease in
computation time required in softirare implementation. Effi;
cient algorithm is developed. It is applied to the imple-

16

mentation of an FNT with modulus =27+ 1 and d== 2 mod M,
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Thefcompujer ﬁsed is the NOVA 840.mini-computer. It is
a 16-bit machine with 32K main memory and 80K extended memo-
TV . ; . |

The FNT of modulus M==216¢ 1 requirés 17.bits to re-
present all the possible date quentities. The diminished-1
(D-1) code, proposed by_ieibowitz [4] is utilized for un- -
ambiguous arithmetic operations with the 156-bit word conputer.
An efficiént scheme is developed to accomplish this coding
technique in the software realization of the FNT for error
free processing.

Subroutine programs are vritten in assembly language
for the FNT of transform length of 64 points and for multi-
plication of data sequences‘in the transformed domain. The
efficiency of the improved fast FNT algorithm is compared
to that of the unmodified FNT and FFT algorithms. .

The applicability of the FHT in signal proecessing is
investigated. Particularly, its practieal application in
digital image filtering is examined. FORTRAN programs are

written for two dimentional FNT and two dimensional non-re-

cursive filter using overlap-save technigue.

"



A fiéld of integers nod N .-- -

' A set of integers, Sm,' cach of whose e'lemer}"t:s is
congruent mod I to some integer in the set {0.1.2, ceey r.i-l} .
Sm is closed uﬁder additlion, subtraction, multiplication as

‘ ( well as diviéion, i.e,, each elenent in Sm has a multipli- _

cative inverse in Sm. Thus a field is also a ring.

Rules and Theorens for operations in a Ring of Integer nod M

vith '"=' denotes congruent mod I, the following statement
statenents hold [6]

~- ., a4+ b=b ¢+ a; ab= ba «es commutative

—_— (z + D) + c=2 + (b + c); (2b)eza(be) ..o associative
- a(b + ¢)=ab + ac ' e s distributive
- a+ O=a; a(l)= a

- For every a there is an element, (~2), such thai
a+ (=a)=0 ’

- a=b s ca=ch .

——  a=b o a-b=o; . b - a=0

- as=bh 3 al=p"

- ash, c5d=>a+c-:-b+d_

- a=hb, c=2d = ar 4 cs=br + ds

- a=b, c=d = ac=Dbd

-- A quantity, », has a nultiplicative inverse, g, mod I

if p and [I are nutually prine,



CHAPTER 2 i
QMR FERMAT NUMBER TRANSFORL

" 2-=1 Introduction

Fairly recently, the tr&nsforms having the structure

similar to that of the DFT have been defined on finite xings.

; -

or fields of integers with arithmetic. operations perforned
modulo ah integer [1] , [2]° « This class of transforms is
‘cenerally referred to as Number Theoretic Transfornm (NTT ).
The Fermat Number Transform (FNT) is a subelass of NTT de-
fined with tlte modulus.equals to a Fermat number.

In the followang, some definitions and theorems rele-

vant to the later descriptions are given.

Definitions '

Congruence - -.
Tvro integers;\a and b, are said to be congruent modulo
i1, denoted as a=Db(mod M), if a=b+ 1di, where k is sone

integer and 11 is the modulus. -

A ring of integers mod M - -

A set of integers, Sm, each of whose elements is con-

gruent to some integer in the set {O.l.Z......M—l} , Where
M is the modulus. Sm is closed under addition, subtraction
and multiplication, i.e., the sum,; difference or product of

Sim's elements is in Sm.
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5.2 The Fermat Number Transform

For a sequence x(n) of length K samples, a general

transfbrm pair of the form given by,

N-1 o _ ..
:{(I\-) = E X(n) a ' It = 0'1'2'..-,N_l‘
-nz0 , |
N-1 ) , | .
x(n) = N ST x@) a™ , n=0,1,20.0,0-2 -7
k= ' ‘
".(2-2.1)

is salid to have the DFT structure.

In [2].[3], it is shown that if N—%. ‘the multipii-
cative inverse of Ii, exists, and if a is a root -of unity of
order N, i.e., for the least positive integer, N, such that

all = I
thén the transform pair,(2.2.l) possess the cycfie convolu-
tion properties. _

If the sequence X(n) is.of'integer values and (2.2.1)
is defined on the ring of integers mod some integer, M, with
the imposed conditions hold, i.e., if N is the least posi-
tive integer, and r

-

N—l . nk v
(k)= (>_ z(n) a mod M, k= 0,1,2,4¢s,N-1
nz0

N-1 _ni
z(n) = ( Q% X{(k) 27 Jmod M, mn= 0,1,2,...,0-1

QV = 1 mod M ;- =& = 1 mod M eea(2.2.2) _
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it is the general form of the Number Theoretic Transform.

Rader has shovm that(l), (5], if the modulus is a Fer-
nat number, i.e.,
. % |
Mo Fom24+L, b=2 , t=1,23,000 -

then for a =2, N= 2b is the least positive integer

such that
a = 1 nod M ,

and Q, the nultiplicative inverse of I, eXisTSe

This transform with modulus equals to a Fernat numbgr
is called the TFermat Numbér Trensform (FNT). For this case
the %ransform sequence lenzth, H, is equal to 2b. Since
+his transform has the LFT structure with N eguals to an in-
teger power of two, 1t can be computed with the FIFT type
fast algoritihns. lultinlication by the basis funétion, The
porrer of two, can be performed by simple binary bit shiift-
ing.

In [2], Agarwal and Burrus defined an FNT using

= 2b/4(2b/2

a =-1).

It is showvmn that this value of a.ks of order 4b for 2.

The sequence length for this transform is N = 4b.

Since ac = 2 mod F., this value of a is denoted as

a= 2 mod Ft'

18
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2-3 Properties of FNT

Some important pr@er‘ai:es of FNT are listed below (2]._

where the 'sequence, X(k), is the FNT of the éequence. x(n).

{a). Periodicity
‘x(n) and X(k) can be periodically extfended,
x(n4N) = x(n)

~

‘VX(lci-n) = X(k)

(b). Synmetry
| I x(n) is symmetric, i.e.,
x(n) = x(-n) = x(N-n)

then, X(k) = X(-k) = X(N-k)

If x(n) is antisymmetric, i.e.,
" x(n) = -x(-n) = -x(N-n)

then, X(k) = -X(-k) = -X({I-k)

(c). Symmetry of +the transfoﬁrm pair
FNT [FNT (x(n)] ] = Nx{-n)

(d). Shift theorem
If FNT (z(n)] = X(k)

then, FNT (%X(n4m)) = X (I o™

(e). Fast computation algorithm

If N can be Pactored as

I‘I '_"_"' RlnRle'So--aRm

o
%

- then a fast computational algorithm similar to that of

FFT exists. (i
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(f) Cyclic convolution pronerty

If x(k) = FNT[ xin)]

H(i) = FNT[ h(n)]
and Y(k)= (H(k)x(k))
then y(n)= 1FuT [ ¥ (k)]

»{n) (*) h(n)

]

Where (¥) denotes cyclie convolution.

bk
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2-4 Choice of a suitable FNT /"'1

The following factors affect the choice of a suitable

. s
FNT for ¢onvolution application.
(2). The computer word length
IT the computer is of b-bit word length, where
b = 2t. t=1,2,..4y then the most suitable modulus-.would be
Fy =-2b+l. Thi;,enable the elfficient arithmetic operations

modulo Fy with the b-bit ArithmeticrLoéical Unis.
./l ) i
(b). The transform length -

This affects the appropriate selection of the weight,

a, The transform length, N, and the welght, a, are restrict-

- ed by the conditions imposed on the transform pair (2.2.2.).

S0, II can be chosen to be equal to or greater than the de-

sired transform length, such that N is highly composite and
- 4

a has a simple binary representation. Such N and a enable -

the use of the FFT-type fast algorithms.

(c). Dynamie range of the sequence Eagnftudg

This factor has less control ;ver thé choice of the
FNT, as the existence of the FNT is governéd by the exis-
tenee of the appropriate Fy, a, N and N1, Since the magni -
‘tude representable by the ring of integgrs mod F4 ranges
from -F./2 to Fi/2 , the transform'is valid if the magni-
tude of the convolved sequence is less than |Ft/2|;

i,

-
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For thr' nurvose of convolution application using a
.ok - 6
16-bit mini-computer, t#e fourth Fermat number, F4::2l +1,
- l - ) - el - - -
1s most suitable to be considered as the modulus. Taking

a=22. 24 /3 noa Fy= 4080

.t'—_ 2l6+ l
the sequence length for transform is N=64.
This should be the optimal FUT with regard to the word
length of; the mini~computer and the practical value of the
transform with the associated vossible transfornm length and

dynamic range. The available digital signal processing

 facility for this work is configured around a 16-bit mini-

computer. The investigation thus concentrates on the effi-
cient implementation of the FNT using this modulus and basis
function. '

In the following sections, the FFT-type fast algorithns
will be illustrated. An efficient algorithm, resulted fron
studying the symmetric and periodic properties of the basis

-

function, is then developed.
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2-5 Fast Transiorm Alggrithms

FNT is similar in structure to DFT, The way of decima-
ting a long DFT computation into shorter DFT computations
can be applied to TNT. Tﬁis is illustrated for the FNT of
basis Tunction, a, and transform length, I, equal the intef

ger powers of Hwo.

2=5=1 DIT-tyne Algorithn

By definition, the FNT of & sequence x(n) of length,

N, is given by,

N 1 nl’ ’
X(k) = ( >_ =(n)a™ ) mod Fy , k=0,1,2,00e,N-1
n=0C

H

where N is the least positive integer such that

N

2 1 nod F-t ?

E.’Ild F_t — Zb'*'l ] 1 b "_: Z-t ] t = 1,2"5.---

es of jJength, N/2,

Let ¥ (n) and xy(n) be two sedﬁ

Then,

. N/2-1 oy N/f2-1 T
( i: %o (n) (a2)1ly 2" t 2, (n) (a%)™) mod. Fy

n=0 n=0
ll‘.. (2'5-1)
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The right side of (2.5.1) is the sum of two i/2-point FNT® s

with the sccond one weighted with ah. 1,84,
=) — IR 1~
X(1) = Xo (k) 4a Xg (k)

Xo (k) and X, (k) are the FNT of % (n) and x,{n) respectively,

and arc periodic of périod N/2., They have the relation,
Xe (k) = Xg (k-N/2) for Ii/2&KEn~1
X, (k) = X, (1e=1/2) Tor Ii/2&ké&N-1
Also aF = _(ak—N/Z) nod Fy
/—"'\
Therefope’

*

X(£) = (X (k)4aX (1)) mod Fy  for  QLéN-2

l

= (X, (k-7/2)- a¥X (£-N/2)) mod Fy
for M/2&k£N-1

o

The procedure is repe t“&%y applied to each of the succes-—

sive subsequences, until)only two-point FNT's are left to be

evaluated. The FNT mputational unit, or the 'butterfly’,

has the flow graph shovm in FIG.2-5-1. The overall flow

4

graph for +the DIT-type FNT algorithm of F. = 2'+l, az=?2

andd N = & is shown in FIG. 2-5-2.
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25

= (A+DBa" ) mod Fy

D= (A -5a" ) mod Fy

FIG. 2-5-1 The Computational Unit, 'Butterliliy',

-

for DIT-type FIT Alcorithn.

. x(0) ' : x00)

=(4) ’:‘t'.c o X (1)
{2) ’\ 2 %(2)
<

$

(X
n
'S

z(6)

% (1) ' - |
x(3) .J X(6)
25

x(7)

(X)

O
*
(5]

FIG. 2-5-2 Flow graph of the DIT-type 8-noint

FHT Algorithm. (Computations are carried out

mod 17!.
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e-5-2 DIF-type Algzorithm

Let x(n) be nartitioned into two sequences, %, (n) and

x2{n), sueh that,

@) = x(n)

%o () = z(n ¢+ 1/2) for n = 0,1,2,...,N/2-1
The FI'Y of »(n) is reduccd to

1T/2-1

- b
X{k) = { 2 (n) 2™ ) med Fi

n-c

/o= a7
+ ( Z XA (1’_) a(m'Nf “ }1' ) med I,
n-o -~

e
N/2=1
- . nk
= - kl(n) a ) mod Fy
Te ]-\I 2""'1
+ (a /2 %5 (n) ank ) mod Fy
n=0

W’hex‘e k = O,ng,cou,H'—l

The two summations at the right of equal sign can be com-
bined before modulo Fi. Decomposing X{(k) into the even~ and
odd-sequences, we have for even X(k),

A

N/2-1 -
R = (2 ) 4 a5, (n)) (25)™ ) mod Fy.
n— ‘ -



Since aNk = ( 1 mod Fy )k = 1 nod Ft ,

Néz-l B gt
, s X(Zk) - ( 5 ' (xl(n)+K2(n) (32)1'11\. ) nod F.t 000(2-5-2)
nz . ' -

For odd-Xx(k), _ ‘ C

H/2-1 o
X{2k+1) = ( (xl(n)+aﬂk+N/_

xz(n))an(2k+l))_mod Fy

LY

+

Since aNk+N/2 = -1 mod Ft

) N/2-1
L xE) = (27 ()i ) )a%) (22)™F ) mod Fy
nz

“sa (2.5-3)

3

(2.5.2) and (2.5.3) incdicate that the even- and odd-samples
of the FNT of x(n) can be obtained from the FNT's of

(xl(n) + xz(n)) and (xl(n) -xz(n))an respectiveiy. This pro-
cedure is applied repeatedly until finally two-point FNT's
are left to be evaluated.

(2.5.2) and (2.5.3) form the basic computational unit,
or the 'butterfly', of the DIF-type algorithms. Its flow
zraph representafion is shown in FIG. 2-5-3. The overall
flow graph of the DIF-type glgorithm of Fy = 24fl, a=2

and ¥ = 8 is showm in FIG. 2-5-4.

a7
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E ' : A : C =(A - B) mod Fi
i
i
i

B D=( (A - B)a"™ ) mod Fi

FIG. 2-5-3 Butterfly for DIF-type

; - ‘FNT Algorithm

X(0)
X(4)
X(2)
X{6)
X(1)
X(5)
X(3)
X(7)

e

! . FIG, 2-5-4 Flow Graph for DIF-type 8-point

FHNT Algorithm. (Computation for each data

point is carried out mod 17).

28
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2=-6 Modified Fast Algorithm (the Shift-Diminished Algorithm)

In both the DIT- and DIF-type of FNT algorithms illus-
trated, each butterfly requires .wultiplication of data by
the basis function, alt

N/Z—l-

« The values of k varies from 0 to

In their software implementation of FNT using a = 2
and 2 =J2 mod Fy, (2]; Agarwal and Burrus suggested that
Multiplication by 2° can be performed by shifting the bi-
nary bit pattern of the data by k bit positions, instead of
multiplication of the data by the value of 2% . This results
in considerable saving in butterfly computation'time. |

Usually a general-purnose digital'co@puter does not
have the instruction for performing o single nulti-bit
shift; multiplication by 2k has to be done by k reperti-
tions of one-bit shift instruction. Alfhough bit-shifting is
a simple operation, it still needs considerable amount of
time when k is large. This situation can be improved if

we make use of the periodic and symmetric properties of the

basis function. .
ngg%Zer the faet that,

N/2

a = ~1 nod Fg ,

+then ak can be written as

g1 /2

a® o | aN/2 mod Fyi )( nod Fy)

= | o172 ak"N/Z) mod F.
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a]\.= _.a"(N/Z"]‘:) mod F't _ . + o » (2.6-1 )

Thus the DIT-type butterfly computation units can be mo%}fibd

to
X(k)= ( Xg (k) + af %y(k)) mod Fy- for 0 ke N/4
= (Xe()-a~ /2°5) x (1) mod Fy
for HN/4z ke H/2-1
and

K (k4ll/2) = (Ko ()-a" Xq(k) nod Fy

for -0g ke N/4

U

(Xe(k)+a_(N/2'k)Xo (k)) mod Fy

for N/4e kg N/2-1



{Mile in the DIF-tyoe algorithm, the compu%atiqns can be

modified to; : . . ;
N/2-1 " oy
X(2k) = (5 (n)+x, ) (@%)™F) mod Fy
n=

g | for 04*nd N/2-1

ana

NN/2-1 N
X (2K+1) = t (2 ()-x, ())a") (@%)™) mod By
n=

for 04 n £ /4
P

N/2-1 ~ o
= (- (:':l (n)-xz (n) ) a"-.(-N/E I’I) ) (az )1'11
n=

for N/4Z n,_z N/2-1

) mod Fy



For &t ;é N4, ( N/2-k) é;.H/4 .

a

® with & greater than N/4 can

_a-(N/Z-k)

Hence, multiplication by a
be replaced‘by nultinlication by . Thié modifica-
tion enables the number of bit-shifts in various butterfly
computations to be reduced to the range of ( 0 to N/4 )
instead of 0 to.(N/2-1) as required in the algorithm given
in [1] and (2].

| 'uTakeror example, the FHT of modulus Fy = 216+'l
Wwriith é = 2 and N = 32“, the-computation of A.214 mod Fy
can be done by, } .

4 - - - -
a2t = (-a).2T ) g Fy

-2
= (-4).2 mod Fy

two binary bit shifts are required rather than 14 bit shifts.

A general-purnose computer usually has the instruction
for performing half-word swap. Fuf%her reduction in computa-
tion time is possible with this instructiop to compute mul-
tiplication of data by ok when k % b/2, where b is the
computer wordlength. |

The details of implementation by these two techniques

will be deseribed in chapter 3.
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CHAPTER 3

'REPRESENTATION OF NULIBEZR AND INMPIELMENTATION

To implement an FNT of modulus T -2b+l with a b-bit

-~

computer, the following are ‘degirable, )

~=. Efficient operation of residue reduction modulo F..

~- Efficient operation of multiplication by the basls func-
tion.

-~ Error free operation.

-- Arithmetic operations on b4l-bit numbers in the ring of

- integers modulo ¥y shduld be avicded to enable efficient

computation.

5-1 Number Representation ‘

"Arithmetic operations in the éomputation‘of FET are
cafried out modulo Ft..This restricts the numbers involved
in the computation to be within the set of integers, {0,1,2,
...,Eb}. Zero and positive values are represented by 0,1,2,
..;ga/Z, and negative values by (Zb/2)+l,(2b/2)+2,...,2b
each of which is equivalent to adding 2b+1 to each‘réspec—
tive negative number, The mdgnitude of the transfopm sequen-
ce should be-iess than or equal to |2b/21, to avoid aliasing
in magnitude vhen 1t is carried‘out modulo Ft' ‘

To represent all the possible number in binary, b4l
bits are required. But the computer used is.of b-bit (b = 16

in this work) wordlength. Agarval and'Burrué; in their

\

A
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software realization of FNT with a b;bit_(b = 32) computer,
simplified the computation.to'b—bit arithmefics which enables
efficient residue reductlon. This involves using b bits to
renresent numbers from 0 to zb—l in the wa& described in

the prev;ous paragraph. All number whose values do not ex-
ceed |2 /2| can ve represented exactly except the value

(-1); Since =1 = Zb mod F., the number Eb required b+l bits.
It can not ﬁe‘represented with a b-bit computer word. So, if
i+ is encountered in the input date, it can be rounded to

0 or -2. This is equivalent to introducing some quantization
error. But if 2b appears as a result of some arithmetic -
operations, it cannot be represented. Lrroneous outout may
result for that block. '

Tn order to have error free computation, consideration
has to be nade on appropriatejrepresentation of numbers.
Some special coding schemes have been introduced by several
awthors for special hardware FNT implementations,(4],fQT,Ild
Among these coding schenes. the "Deminished-l number repre-
sentation’ proposed by Ieibowitz (4) is most simple and app-
licable +to thig work. Arithmetics with this diminished-1
number representation will be deseribed. Feagible technique
is developed to accomplish this coding scheme in the soft-
vare 1mp?ementatlon of the FINT, .

More spec1flcally. the advantage of using the Dlmlnlshed—l‘
number representatlon are: {a) the problem of ambigulty 1n num-
ber renresentatlon can be overcome and (v), operatlon on 17 ‘bits
. numbers can be aV01d ed, enabling e£f1c1en$ computatlon with 16

bits CPU.,
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5-2 The Diminished-1 Number Representation

In the set of integers, Sm % fl.2.3....,2b+1}. the num-

bers required b+l bits binary representation are Zb and
b

2741, Eb fs congruenf to -1 mod Fy and 2b+l congruent

to O mod Fi. If every €lement in Sm is subtracted by 1, a

new set, Sd = {0,1,2,...,2°} is obtained. The elements in

: : . . b.
Sm and Sd are one to one correspondence, with 2 °in Sd cor-

b

responds to 2 41 = O mod Py in S 0 In 83 corresponds to 1

ble integers allowed in FNT computation, d is called the

in Sm, and so on, Sd can be used to reprizgnt all the possi-
"Diminished-l number representation [4];

‘ The only number in Sd with a 1 in the balyy, bit { or
the most signifiecant bit, msb) is 2b, wﬁich represents

2b+l = O mod Fy in Sm. Zero can be exampted from calcula-
tion. Thus using'thislnumber representation, arithnetic
operations on b4l-bit numbers can be avolided. Table 3-4-1
illustrates the correspondence between the normal and dimi-
nished-1 number representations for b = 4,

b Y

3-3 Binary Arithmetic Operations

The foliowiﬁg illustrates the arithmetic operations

 necessary in computing FNT using the diminished-1 number

representation as given in (4].

3-5-1 Hegation

| A ﬁegative integer, -A, is represented by (-A)-1
It is obtained by complementing the b-1lsb (b-leagt-signifi-

cant-bits) of its diminished-l positive counter-part, A-1
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LT
Denoting the b-lsb complement by an overbar, this is showm

.

. as,

b

A -TI=2 «1a (A1)

Eb + 1l -A-1

-1

= (-A) - 1 mod Fy

A 1 .at the msb indicates the number is the represemnta-
- tion of zero, and negation is inhibited.

Example , §

3=3-2 Addition

The sum of two dimished-1 integers, A-1 and B-1, is
(A-1) 4+ (B-1) o A + B -2

The required sum in diminished-1 representation is  (A+B)-1,

thus ?
(A43) - 1= (A-1) + (B-1) + 1

The above indicates a 1 should be adddto the addition %o get
the correct diminished-l representation of the sun, |
A carry generated fron the b-1lsb addition indicates

the result is greater than or equal to the modulus, thus a

residue reduction mod Fy requi%es the subtraction of 1 from

i
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the result, because 2 = ~1 mod Fi. Therefore no corrective

addition is necessary.

If the msb of either addend is 1, the addition is inhi-
bited, and the remaining addend is the sua.
Example 1 |

.

8

3 0 0111
+1 +0 1101
22 = 5 mod 17 1 0100
0

0 0100 -9 5 med 17

‘Example ‘

0 ' 1 0000
+5 ‘ - =0 0100

5 mod 17 0 0100 =+ 5 mod 17

5-3=3 Subtraction

Subtraction is performed by negating the subtrahend
and adding it to the minuend according to the previous des-

cription.

3-35-4 Multiplication by power of two

The result of multiplying a diminished-1 number, A-1, .

b

8

by 2

( A-1 )2 = ( 2A-1 ) - 1

-

The desired diminished-l representation of the product 1is

( 2A-1 )}, thus,

2o - 1= (A1 ).2 41
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This is equivalent to left-shifting (A-1) by one bit position -
and a corrective addition of’l.s If the bit shifted out of the
b pit is 2 zero, a corrective 1 should be added to theé res -
sult. If the bit shifted out is a 1, 2 residue reduction
mod Fi requires the gubtraction of 1 from the result, which
cancgls out the corrective a@dition, and the Shifted b=1lsh is
the desired »roduct. |
Multiplication by a higher power of 2 is equivalent to
a rgpetition ogﬁleft-Shifts and corrective additions.
If the multipiicant represents zero as in%??ggéd by a
1 at the msb, the multiplication is inhibited. Zhé product

is s?ill neT0.

Example
11 0 1010
11 %2 =22 =5 mod 17 0 0100 -» 5
11 x 2° = 44 = 10 mod 17 01001 -3 10
ll:c23:88=3modi7‘ 0 0011 -9 3

-

3-3-5 General Multiplication

The product of two diminished-l1 number, (A-1l) and

§

(£-1)(B~1) = AB « A - B + 1

= (AB=1) - (4$4B-1) -1

The desired product in diminished-1 representation ig (AB-1),

therefore,



AB-l = (A-1) (B-1) + (A+B-1) -1

-

This is obtained by adding the diminished-1 sun of (A-1) and

(3-1) %o the product of (A-1) and (3-1), then perform”the
residuc reduction by diminished-l subtraction of the b-msb

of tﬁe result from the bL-1lsb..

If the msb of either (4~1) or (B-1) is a 1, which indi-

cates gzero representation, multiplication is inhibited and

the result is set %o diminished~-l representation of zero.

Exanple
14 0 1101 0 1lio1
» 9 . x O 0111 + 0 0111
- 112 = 10 mod 17 0101 1011 0 0100
. £ 0100 )
0101 1111
+ 1010

0 1001 -2 10 mod 17

~

5.4 Implementation with IOVA mini-computer

The underlying motivation in the implenentation of FNT
is its efficiency for computing discrete convolution; and
this should be competible with the more versatile FFT. The
ﬁost important consideration is whether fast operation is
possible for the butterfly computational units. This requir-
es an understanding of tﬁe capability of the computer used,
particularly that of the arithmetic~and-logical uhit (ALU).
The Following gives a brief description of the NOVA-G40's
arithmetic unit and instruétions, on which the FHT software

program is develoned.



3-4-1 The Arithmetic Unit -

The logical organization of the arithmetic unit is
. .
illustrated in FIG. 3-4-1.

17 bits
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16 bits ~_ 17 bits |
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The Accunulators

There are four 16-bit accwiulators, ACO to AC3, act as
worzing and scratch-pad registers.: Any one or two of then
can be specified by an instruction fo supply opcrandé to the
fﬁnction generator. Data can be moved in either direciion
between any accunulator and memory location. AC2 or AC3 can
also be used as an index register for ad&reséing mémqry.
These features are very useful for efficient butterily com-

! ¥
putation. The pair of index registers malke convenient the

addressing of the data blocks. The other two accumulators do

the computations and temporary,.store the intermediate result.



The Cary

It is a flag indica%@s‘ﬁhe:occurance of a carry bit out
_of the 16th bit in an arithmetid~operation. It can be used to
indicate an overflow that requires residue reduction modulo

£ 21%41 ).,

L}

The Shifter

The 17-bit result after the operation of the function
generator can be shifted one bit position left or right. The
left and right halves of the 16 1sb cap also be swapped in
the shifter. These are illustrated in FIG. 3=4-2. The combi-
nation of these two instructions enables fast operaégon

-of multiplications LY various powers of 2.

1;
| )
[ SR

16
- Left-shift

—it
o s 1J

Right-shift-

The Skip Sensor

The content of the 17th bit and/or the other 16 bits
can be tested for a skip over the next sequencial instruc-
tion. This function is required'or in associated with the

Load/No load swith, for test for overflow that regquires
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a residue reduction, test for zero or sign of numbers in code
translation and branching of execution to different computa-

tional modules,

The Function Generator

The function generator performs the functions sepecifi-

ed by the instruction. The arithmetic and logical instruc-

—rp— e = -

et s P £t T

- Py Ay nes

T AT ———

tions available are,

COM (complenent)
NEG (negate)

MOV  (move)

INC (increment)

ADC (add complenment)
SUB (subiract) )

ADD  (add)

AND (and)

In each of the above instructions, the left or right shift;

swap, skip conditions, base value of Cary and load/noe load

can be specified.

Other instrudlions available and required in program-

ming the FHT are the memory reference instructions,

IDA (load accumulator from memory)

STA (store accumulator to memory)

ISZ (increment content of memory & sikip if zZero)
DSZ (decrement content of memory & skip if zero)
JMP  (jump)

JSR  (jump to subroutine)



3=-4-2 Code Translation and Mavped Memory Block for MSB
In NOVA system, integer number are represented using
16 bits binary. The integer values which can be.represented

157,

vithout ambiguity are =272 ,uee,=21-1,0,1,2,000,2
ﬁegative values are represented using two's complement rep-
resentation, i.e., if A is a 16-digit binary number within
(1,215). its two's complement is equivalent to Zlé-A which .
represents -A. The 16th bit stands for sign, O for-poéitive ~
and 1 for hegative.

As can be seen from TABLE 5-4-1, the diminished-1 re-
presentgfion of negative valueg is exactly the samé ag the
tro's complement representation. Thus to translate the num-
bers in two's complement to diminished-l representation, the
negative nuﬁbérs are left unchanged; only the positive numn-
bers are to be subtracted by 1.

One problem arises in the representation of fhe dimi- 4
nished-1 numbers, zero and one, with 16-bit-word memory. \\~
The 16~-1sb of th;se'two numbers are both all o's; a means has
to be gset up %o distinguish’between them, In tﬁis worl, é
block of memory that mans to the block that stores the 16-l1gb -

_of the data is sét up to stand for the msb (the 17th bit), |
such that the word in the ﬁapped nsb block corresponds to

, a
zwero is get to 1 zand all others are set to O,as illustrated

in FIG. 5-4-3, The increase in addressing complexity is tri-
vial with the use of the accumulators, AC2 and AC3, as a pair
of index registers for addressing the two blocks at the same

L]

tinme.,
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Value Diminished-1 Two's Complement -7

{mod 17) ° Representation Representation (4-bit)
1 0 0000 0001
2 0 0001 0010
5 0 0010 0011
4 0 0011 0100
5 0 0100 0101
6 0 0101 0110
7 0 0110 0111
8 0 0111

-8 9; 0 1000 000

-7 (10 0 1001 1001

-6 (11; 0 1010 1010

-5 (12 0 lo1l 1011

-4 (15) 0 1100 1100

-5 (14) 0 1101 1101

-2 {(15) 0 1110 1110

-1 (16) 0 1111 1111
0 (17) 1 0000 Q000

TABIE 3-4-1 Correspondence between Diminished-1l

and Two's Complement Representations

L}
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/
msb (17th bit) | | 16 1sb
M+64 - Ns6 4
0 ... 000 . 0 4., 010
0 ... 000 |e—[AC2 | [ AC3|—>» 0 ... 001
0 +.a 000 0 +.. 000
P|'1+l O XX OOl - N+l 0 -'-' OOO

FIGe5=4=3 Two mapping blocks of memory
for storage of 17-bit data sequence in diminished-l ¢
representation. AC2 and AC3 are used as index regis-

ter pair for addressing the +two corresponding words. °



3-4-3 Consideration on Possible Error due to Code Translation

In the Fermat liumber Transfori, there are 2b+1 rossible

. ; . . s ¥
~integers, which representd values within the range -2 /2 %o

zb/z. With the diminished-1 éoding scheme they can all be
represented, using an additional bit for the reprcsentation
of zero. gut with ftwo's complenent representation ﬁsing b
bits word, the range of integers rewprescntable is —Zb/Z to

(2°/2-1); the positive integer, 2°/2, can not be represented.

To avoid ambiguity without inereasing the complexity in Loth

computation and memory addressing, the mapped block of memory

- that stands for the msd's has to be maintained through out’

the procedure of compuitation for convolution, i.e.,starting
from the two's complement-to-diminished-1l code translation,
forward FIT, multiplication in the transformed demain, to

the end of inverse trunsform. The possible error due to am-
biguity in number representation may then happen during the
code translation fron diminished-i back to two's complement
representation. The representahle dynamic range in various
stage of the convolution proceduce is devicted in figf5-4—4.
It tﬁe diminished-1 number, (Zb/2~l). hanpens to occgr'after
the inverse FNT, the normal code translation will add 1 to
the number, and the result in the b-bit register will be then
2b /2, But in two's complement 2b/2 represents the value -2b/2
instéad of +2b/2; a éhang of sign occurs. The error is —2°
in magnitude. If this nu@;lr is not tgmtranslated, the error

Wou}d be -1,



~
Y

This error can be avoided. Consider the diminished-1
number, (2b/2-1), which represents 2b/2 in normal value‘fér
the result of the cohvoiution. If tﬁe input sequences are
properly scaled such that the magnitude of their convolution
- is less that 2P /2, then the diminished-1 number, (2b/2-1).
w%ll;nevé?'occur=at tné end of the inverse FNT. Hence, am-
biguity in code translation from diminished-l céde‘to 2's

complenent :representation is avoided. -

-

,47
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5-4-4 Computatidnai Modules for Multivlication by Powersof 2

In the FFT-type algorithms with Fy = 21641, 1 = 64

and a = /2 mod ¥y, there are six stages. Each stage requires

- N/2 = 32 butterfly computations. Each butterfly requires a

b}

multiplication by a nower of /2. The nower of J2 for each

stage in‘the DIT-tyve algorithm are listed below,

Stage 1 ( stage 6 for DIF-tyme)
52 X {O }, ,

Stage 2 ( stage 5 for DIF-type)
16 x {0.16} ,

-

‘Stage 5 (stage 4 for DIF-tyie)
8 = {0.8,16,24)

Stage 4 (stage 5 for LIF-iype)

-4 x {0,4,8,12,16,20,24,25} C

Stage 5 (stage 2 for DIF-type) \\\
.2 {032 14‘ ;6 :8 10,12 114 316 118 '20’22'24’26 '28 ’30}

Stage 6 (stége 1 for DIF-type)

Qo
) 4

1% {0,1,2,574,.........28,29,50,51}

Iultiplication by ?h even nower of /§ is equivalent to

multiplication by half that power of 2, for example (A.(/2)16)

mod Ft==A.28mod Fyo Multiplication by an odd tower of /2 ig equiva-

»



lent ‘o multiplicaiion by half of the next lower power of 2
and then by J? nod Ft.'for eiample. A.Q/5)17 = 3.28.J§'mod
Fio ‘

By -the modified algorithm, multiplications in various

butterfly are reduced to multiplications by
/2 mod Fy

(/2)2

(/2)3 = 2/2 mod Fy

|

2 mod Fy

(Jé)l7 = 28/5 nod Py
(/2110 2 29 = 27109 = 2T moa 7y
(2)™ = /2 = 271/ moa ¥y

20 _ ,10 _ _,6
(/2)" = 2% = -27° noa F,

(2L = 2155 = 271/ mod

In order to increase the efficiency, these operations
ére implemented in seperate modules within the program. Only
two sets of test@and indexing instructioﬁs are needed, one for -
updaﬁiﬁg the index of the stageé, and the other for updating
the address of,the modules associated with the current butfer:_
fly. 16 modules are necessary, 15 of which for perfofming mu;;,
tiplications by 21, 22, 23, coes 215 mod F{, and one of which

for performing multiplication by (/2 mod Fy) = 4080.
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For inverse FNT, the sane set of computational modules
can be used in the reversed order for multiplication %y nega- .
tive powersof /2.

The basic instructlon set used to perform multiplication
by 2 mod Ft, (having accumulator: loaded with data to be oper-

. ated), are

OvZL  1,1,SNC

INC il

If the probablity of a 1 shifting into the carry-bit |
af{er the shift operation is 1/2, then the average execution
 time for this pair of instructions is (1.0+ 0.8/2}= 1.4 psec.

If multiplication by 28 is performed by 8 recpetitions
of this instruction pair, &x l.4¥=il.2 psec is required.
The operation can be verformed, instead, by complementing the -
higher significant byte of the data followed by a swap-of the

two bytes, "ag illustrated in FIG. 3-4-5.

Data in &c1:(15453) Co@&l. and move to ACo
K L H L
‘OOllllOO‘ 01011100 - 111000011 10100011}
T ) . . ‘ i .
Get low byte of ACl: Get high byte of ACO
L _H '
100000000 01011100 131000011 0000000Q.

Add ACO to ACl and swap:

[OIOLII00 TT0000T] -» 15455x 2°= 25748 moa (2'°+ 1)

FIG. 3-435'Qheration for Multivlication by 28 mod Ft.
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The set of instructions to accomplish multiplication
by 28 mod Ft is: (included in the program routine through
MACRO command )

; data having loaded in Aecl, and‘content of AC3 is
(11111111 00000000), - .

coM 1,0 smove compl. of C(ACL) to ACO
AlD 3,0 ;jecet high sig. byte of ACO
COll 542

AlD 2,1 ;eet low sig., byte of Acl
ADDS 0,1 ;add and swap .

Instead of 11.2 usec required by 8 repeated shifts, this
module requires 5x 0.8=4.0 psec which is aprroximately
equivalént to the time required for 5 repeated shifts.

The total number of bit-shifts for multiplication by
powers of 2 in one foward FNT using the unmodified algori-
thm is 904. While the time required for the same omeration
with the modifications déscribed is equivalent to the time
réquired for approximately 359 single-bit shifts,

The execution time of a single-bit shift instruction °
is the same as that for one adcition. The total number of
additions (includes subtrazetions) for transform is NlogpN
=64x 6=192, Thus the average.e:{ecution time for one
"multiplication by a'pqwer of 2" is reduced to approximately

A

twice that for addition.

5-4-5 Algorithms for Forward and Inverse Transforns
| As can be seen'from FIG., 2-5-2 and FIG. 2-5-4, the
input sequence of DIF~type transform algorithm is in natural

order, but the transformed sequence is in index's bit-rever-
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sed order; while it is the contrary for that of the DIT-fype
algorithm. Since the index order of the transformed sequencd
is not important, the roﬁtine for index sorting and reordering
can be avoided by using DIF-fype algorithm for forward FNI and
DIT-type algorithm for inverse FNT computatibn. The number of
progran ingtructions increase is little compare to the progranm

using the same algorithm for both forward and inverse trans-

\

form with an index sorting and reordering routine.




CHAPTER 4

»

APPLICATION TO .DIGITAL SIG?AL PROCESSING

The Fermat Number Transform cofficients do not have
any pmysicallmeaning. The purposé of implementing the FNT is
To utilize it as a tool to conpute. the finite convelution
sum of two sequences. Convolution has nany important aprii-
cations in signal processing. The ability of an algorithm to
compute convolution is also able 1o compute auto- and
cross-correlations: This chawter disquéées the practical
application of the particular FNT investigated in this work,
Emphasis 1s nade on two-dimensional digital signal pfpcessing
‘which could be nmost rewarding area of its anplications.

Some e:amples of image processing application are thus done
to test the efficiencyr of the improved al orlthm,(the
sh;zt-dlmlnlshed algorithm,) aevelopeu in chapters two and
tiree, |

4-1 Convolution Using The FNT - /

The cyelic convolution of two requenc&g can e computed
by multiplying thelr FNT's and folloﬁed“bj an inverse trans-

form (IFNT). This is shown in the.following.
Tf X(k) and H(k) are the FNT's of the two N-point se-

quences x{n) and h(n) respectively, then by definition,

_ _—
(k) = (Z x(n)a™ ) moa Ft,
n=
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-1 ; -
(> h(n)am‘ ) nod Ft , k™ 0,L, 04,01

]}

H(:)

where Ft = 216 4 1m 65557, a = /% nod Ft = 4080
and  N-z 64 . , - ~

et Y(I-:.) be the product in the transform domain, defined as

Y{&) = ( X()H(k) ) mod Ft, K= 0,1,...,N-1

-

and y(n) be the IFNT of Y (k), then

N-1 . :
) y{n) = (@ >_ ¥{k)a™ ) moa Ft, n=0,1,...,N=1
k=0 :
and QN ='1 mod Ft
or  y(n) = ( Q Z % x (m )ame Z h(r)ark -nlE ) pmod Fit
k=0 =0 \
3 Nol N-1 -k (n~m-r) |
= (> Z %(m)h(r) Qz =4 } mod Ft
=0 r=0 k=0

N-1 I
since ( Q@ =>_ a...lg(n u-r) )mod Ft =1 if r =n-m
=0 =

= 0  ptherwise

I\— '
therefore y(n) = (z %(m)h{n-m) ) mod F+t eeee(4.1,1)

If x(n) and h(n) are properly bounded such that

-1 ‘
( >_ x(m)r(n-m), n=0,1,...,N-1 ) lies within ~-Ft/2 and
n=0 . i

Ft/2 , then (4.1.1) has the equivalent relation, i.e.,
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yhﬂ=§jrmwhmmﬂ. n= leumbl
m

Advahtages of Convolution via the FNT

. The main advantage of convolution via the FNT is its
efficiency. Thg reason for the speedup ié thﬁt-the FNT comnu~
tation requires N log,N addition (includes subtractions)
and (N/é)logZN *multiplications by powers of /2 mod Fy"
which, by the shift-diminishec algorithm developed in chazter
5, require a total execution time approximately eguivalent
to twice—%hat for the additions. ‘

FNT of one of the two convoluing sequences

LI

is knowm, the implementg%ibn of convolution by the FNT re®
quires N mulfiplications mod Fy énd'a.total of operations
which requires an execution time approximately equivalent
to the executioﬁ time requiréd by 4N logoN additions lod Fy.
While the direct computation of the convolution requires Ne

multiplications and N°additions.

Disadvantages of Convalution via the FNT

The short coﬁing of the FN? results from resirictions
due to the contraints of the Modulus, Fy, the basis function,
a, and the transform length, N, For the particular FNT in-
vestigated, the application is thus subjected to the rest-
rictions: |

1). The transform sequence length should be less than or



equal tq/64 points and

2). The magnitude of the.convolved sequence should be within
/ . .

32767;and -32768 for signed number.

56
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4.2 Some Techniques for Weakening the Restrictions

There are several techniques proposed by different au- °
thers possible for relaxing the limitations of FN&; This sec-
tion'diécribes three of the techniques proposed specifically
to éope with. the constraints. Their practicai values to the

present case of study are investigated.

4-2-1 One-dimensional Convolution by lulti-dimensional Nethod
’ In [9] R.-C. Agarwal and C. S. Burrus presented the for-
mulation of multi-dimensional array from one-dimensional digi-
Ital sequence, so that one-dimensioqal convolution could be
obtained from the multi-dimensional convolution. The scheme
to convolve long one;?iﬁensional (1-D} sequences by-two—dimen—
sional (2-D) convolution is described. \

Assume that x(n) and h(n) are the two, sequences. both
of duration Ny points, to be convolv_éd to give the séq_uence 7
y(n}, and that Ni can be factorized as N == L.M . %(n) and
h({n) are then arranged as shown in (4.2.1) and (4.2.2) to form
the 2-D arrays of xp"and h, regpectively. The size of Xo and
ho are both N x N, wﬁere Nf# 2L, and N X N is the size of the
two~dimensional FHNT. ’ | |

Two-dimensional cyclic convolution is then carried out

by multiplying xp and h, in the transform domain and taking

- the two-dimensional inverse FNT. The result is
y2(l,m) = x5(1,m) * hp(1,m), .  L,m=0,1,.ss.,N-1

where ' # ' denotes 2-D cyclic convolution.



X>(1,m) = iYi—l)

h2(l ,m) = 0

‘h(L-1)

Yo = xp ¥ hp

X(Il) LI N} X(Nl—L)

0 0
x(I+1l) ... x(N;-I41) 0 ©
x(T+2) . .o. x(Np-I#2) 0 O

X(2L-1) .av. x(Wp-1)

0 0
0 cas 0 0 0
0 ‘o 0 ¢ O
0 0 0 0

. 'C4‘-2-I)—

~h(0) h(L) _....h(Ny-L)
h(1) h(I41) oeu h(N3-Is+1)
h(2) h(L+2) ... h(Nj-Is2)

R(L-1) h(2L-1) ... h(Ny-1)

h(L) R ... O

h(L&;) “h(2L+1) .. O

1

h(2L-1) h{3L-1) .. 0

“« &0

0
0

o ..

0

0

-

(4
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The columns of the lower L x N of yo is the desiraed

—

8]
2.2)
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linear convolution of x and h, i.e.,

V) = vall,w) Cn=lhmb
l :00l1lé"|.|.,nnl )

: ' " ' : m= O,l..g.-.....N-l

For FNT with larger modulus, such as Fy = Fg5 = 292 + 1,

this techniqué could be uséful,forflengthening the-transform
length. But for the FNT implemented with the 16-bit mini-
computer, thig technique for extending .the transform length
is greatly limited. This is because w;th 16-bit WOrd,‘and mo-

16

dulus equal to 2 + 1, %he-dynamic range of.?he convolved

'

result is limited to within t215. The convolution of tro 52~
point sequences of magnitudes larger than 27 by:ﬁsing the"
original 6} pqinfs transform length could cause o#erf;ow. The
extension of the transform length would make tﬁe ﬁroblem of
overflow even worse. For example, if the tra?sform Tenﬂ%h is
tobe lengthen’to 512 points, the- magnltude o; the input se-
'quences, assume{they have the same dynamic range, should be

.

scaled down to about 2). ThlS is too severe for most eﬁ—%he—-

one-dimensional digital signal processn.nb applicationg -

4-2-2 Wordlength Séctioning

’ The wordlength limitation.could be relaxed by sectlonlng
the-input data word into shorter blocks and convolve them se-
perately. The results are then added to the proper soale-to

give the desired convolution. This is shown as follows [2] .

x(n) = 7y m).25 + xp(n), ey ()] 2 25
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-

and  h(n) = by )25 ¢ ). [ng)| £ 28
A Then y(n) = x(n) * h(n) | .
’ -f! . yo2k . e X
= 31 M)%hy ()27 + (& (n)*hp () + x5 ()% (n) )2
+ X5(n)*h,(n), . n.= 0,1,.4.,N-1

coee (402.3)

This method can increase the dynamic range considerabiy.
and bring some light to the applicability of the FNT to 1-D
digital signal processing. '
4-2-3 Impulse Respbnse Secfioning
¥. S. Reddy and V. U, Reddy [10] proposed the partitioning.
of the impulse fésponse sequence into shorter lehgths..The |
';segments of the impulse respoﬁse sequence aré then convplved
seperately‘wi?h the signél sequénce. The seperate results are
then added together with apvropriate delays. This is shown ih
the following. '
The impulse response, h(n), n=0,1,¢..,N-1, could be par-

titi%ned into M sections, each of length L points, such that

- =0 otherwise; . //

1‘1-. : O,l]sn.,lﬂ""l

I

The seperate convolutions yield yi(n) = x(n)¥*hy(n). The desir-

ed result is

y(n) = yo(n) + vy (0-L) + ¥, (n-2L) + «o. + Yy 5 (0-MI4L) »

1

n: 0’1,2.-0'
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This. technique can be used to extend the 1éﬁgth of the-

inpulse response sequence as well as the dynami%'range. But

.the extension is rather limited. In practical situations, con-

siderations may inciude-thQ comparison of ‘the resultant effi-
ciency with that of the FFT techniqué. As will Be seen in, the

latéi‘sections, Fonvolutiqn using the FHT without ﬁpplying‘any
of these extension ﬁechniﬁues is 4 to 5 times faster than using -
FFT. Unless the -exact conputation is required, the impulse resg-

. . . L - .
ponse sectioning of srore than five sections is not attractive.

4-5 One-dinensional Signal Filtering
The realization of the a fipite impulse resvonse (FIR)

£ilter ihvolves the convolution'of‘a digital signal sequénce
with a finite length imﬁulse response sequence, The implemens
tation could utilize the FNT for fast convolution.

" The signal sequence, xfn}s n= 0,1,2,..., can be consi-
dered to be infinitely long. Using the overlap-save or overlap-

TN

add technique {7}, it can be partitioned into the appropriate
length seduehces,\xk(n), n=0,1,...,I-1, and convolve via the
FNT with the finite length impulse response sequehce.'h(n),
n=0rlreceNL  ag depictedlin Fig.4-3-1, where FFNT denotes
the forward FNT, IFNT denotes the inverse FNT and ® means

traﬁsform domain rultiplication rodulo 65537.

%(n) —| FFNT —-@-——- IFHT ——-‘y(n)

H(k)

' | FIG.4-3-1
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It should be noted that the sequences involved %n the
transforn are iﬁteger valued. If the input sequences are ori-
ginally not 1ntegers. nodlflcatlon is needea é% ensure that .

" they have 1nte«er values Lying Wlthln the ap1ronr1ate d&nanlc
ranges, so that overflow would not occur at the output. The
dynamic ranges could be set by the bound 21,

: N-1
|x(n)|na_

»-u |nm)| 2 7y/2

The wordlength'li;itation is rather severe with the modu-
lus of 65537. One or the combination of the techniques describ-
ed in the last section nay be needdto release the restrictions
on wordlength and transform length. The following situations
could be considered. |
1) Without wordlength or eequence length segmentation

For each lap of convolution, the maximﬁm length of
the sum of the two convolving sequences is 65‘points. While
" the accﬁraey of the data, assqmbgit is the same for both se-
quences, could'only be about 5 bits.

2) Viith wordlength sezmentation

If the wordlengih of both the transform sequences is

segmented, the accuracy of the data could Dbe ralsed to about

10 bitsf That is, if the segmentation is such that
x(n) = il(n)zs + xz(n), le(n)|4:25, Ixz(n)Lzzs

amd  h(n) = by ()25 4 ), |ny ) <25, |ny(n)<2®

-
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then,

i

y(n) = x(n)*h(n)
= xl*hl.zlo ; (x3%ho + xz*hl).25 + xp%ho

(RO (4.5.1)

In (4.3.1), the.summation within the parentheses could
be done in the transform domain, and the last term which is‘
very small compared with the first term, can be negleted.
In_this case, each'lép of the convolutions requires 2 FFNT's,
3N pultiplications and additions mod 65537, 2 IFFf's, 2N
multiplications by 210 and 2° and N additions. The-exeéutién
time would be more than twice that for case one.

3) With both wordlength and sequence length segmentation

This xould further increase both the accuracy of the
input data and filter length to some extend. But the efficien-
cy may not be competitive with fhe FFT technique. The follow-
ing example illustrates this;

. Assume that the magnitude of both the input data, x(n),
and impulée responsé; h{n), are of 10 bits; and that the |
impulse response is of 64 points long. The wordlength can be

‘partitioned into two blocks such that
x(n) = x; (0).2% + x,(n), e )] o |xp () & 27
h(n) = hy (0).2% ¢ hp(n), -  |npn)] ,|hpin)]g 2°

The»impulse response can be partitioned into two subsequences

';Such that



h' (n) = h(0), h(l),l cees 1{(31) ,
h'*(n) = h(52), W(53), euu, B(63)

The seperately convelved results would be

v'(n) = h' (n)*x(n)

= xl*hl'.2lo

+ ( xl*hz'-+ x2“hl' ).25 + xzﬂhz'

-

.Y' ' (n) = ht! (n)™x(n)

lo |" 1 5 - e
= hl"*xl.2 + (xl*hz L+ xe*hl' )27 4 Xp#hs

" The desired result is
-y(@) = v (n) +7r" (n)

Eight convolutions are required. Each convolution is

performed via the 64-point FNT.
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4-3-1 Hhaane of 1-D Slgna1 Filtering .

This examplc shows the application of FNT technigue to
one-dinensional digital sismal filtergng. fhe input data se-
quence is digitized specch siénal. The sampling interval of

the cpeech ﬂwgnal igs. 100 usee. The dyna

recorded Signal is from -46 %o 4G.

-
ct

tinlying the data by the factor, 0.6, and truncated to ged
the in‘teger part. The filter used is a low pass filter. The
normaliszed cutoff frequency (-3db) is 0.08 and the stop
frequency is 0,16.

The original inpulse reshonse nas a masxiaun valﬁe of
0.253546 and :inimun value of ~0,030112. The mu}tiplying
factor for scaling u» is 100, and the intcger'pa:t is talen.

Overlap-save technigque is used. Each lawn of convolu-
tion processes 41 points of data.

Fig.4—3—2 and Fig.4-3-3 show the original signal wave-

Torm and the filtered wavc form respectively.

44 Correlation via TNT .
Consider the FHT and inverse FIIT of the sequences, x(n)

and y(n); n ; Opl,2go|¢|I‘I"‘l' respectiVClyl

T
Py bt

X(k) = (Z t(n)a™ ) nod Fy eeea (4.4,1)
. n-O
MN=1

¥ (k) = ( J(n)a‘nL ) mod Py vese (Ha4e2)

1‘: — O,l,ol l,H"’l

If "y(k) = ( X(k)Y' (k) ) mod Fy
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Fig. 4-3-2 A plot of a section of speech signal.
Iumber of points plotted: 1024 \

Sampling intervals 100 psec.
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Fig.4-3-5 Speech signal after low pass filtering
using FNT technique.
The'original speech signal is showm in Fig.4-3-2.

-3 db frequency = 800 Hz.



the inverse FNT of ny(k) is
N-1 ;mk
r;y(m) =(q E;% Ry (€)a™™ ) nmod Fy,
Nel Hu N-
= (Q = = x(p)af Z y(n)a”
k=0 p=
N-l N-
=( S x(p)y (n) QZ
n=0 p=0
N=1
But ( @ ~k(min-p) ) mod F.. = 1 if
k=0 :
= 0 "othe
Nel A
Therefore (m) = > x(n+m)y(m)
n=o :
N-1
or = x(m)y (n+m)
n=0

68

m: O.l'.ut'N"‘l

-nk -mk } mod Fi

k(m+n-p),) mod Fy

P = nm

rvise
gﬁ.

. ooa(4‘.4’.3)

(4.4.3) is the cyclic correlation of the’ sequences,

x(n) and y(n), n=0,1,2,...,N=1.

If x(n) has been constructed in such a way that only the

first

(/2 +1) points are the actual sample values, and the

rest rest of the points are zeros, then the sequence rxy(m)’

m=0,1,2,..,.,0/2, is the non-cyclic cross-correlation of x(n)

and y(n).

In (4.4.2), if ¥' (k) and y(n) are replaced by X'(kx) and

x(n) respectively, then by the same evaluation as for (4.4.3),

the auto-correlation ®f x{n) can be obtained, which is”~

=

n=0

S rm)x(nm),

0=

m =< N/2



4.5 Two-dimensional (2-D) Sigéal'Prgceésing

The Fermat Numbég Transfornm can be extended to two-dime
ensional case, It could be pafticularly useful for the reaiiz-
ation of two-dimensional finite impulse response filﬁer, where
the filter size and signal dynamic range are small. The two-
dimensional Fermqt Number Transform can be used as a tool to‘
comput the tﬁo-dimensionél convolutiog of the 2-D input sig-

nal and the 2-D filter sequence, as depicted in Fig.4-5-1.

x(nl.nz')—— 2«~D FNT | 'x t 2=D IFNT -—-—-ry(n'l.n2)
2=D FNT
h(nl,nz)
FIG. 4-5-1

4-5-1 Two-dimensional Fermat Number Transform(2-D FNT)

The 2-D FNT can be defined as an extension of the 1-D
FNT. If x(nl.nz) is assumed to be one period of a periodic
2-D signal with pericd Ny points along both dimensions,
The 2-D FNT of x(nl,n2) is

N-L n.k k
Kk, k) = ( E . = x(ny,mn,)a L lan2 2 ') mod F.
n =0 np=0 .

’ kikz - Onl.o;GQ,N—l
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- .16
where~“- Fi, =2 +1 2 65537
I\:LA; a = mod Fy = 4080

: N = 64

The two-dimensional inverse Fermat Number Transform (2-D

IFNT) of x(kj,lkp) is

* n.k. -n.k

x(nl,nn) = ( Q@ Ng 2 x(ky,kp) a ! a @ 2) mod F_t
=0 : .

nl.nz - O.llll;jl\I_l

cesa(4.5.2)
where Q is the multiplicational inverse( mod Fi ) of K,i.e.
QN = 1 mod Fg¢

s In (4.5.1), an interchange of the swmmation gives

N1 N2l nfln nglp

n2- ni=0 ’

.....I (4'l5.3)

if x(nl,nz) ig represented as z row-column array as does
a natrix, then from (4.5.35f it can be seen that the 2-D FNT
can be obtained by performing a series of 1-D FNT'S, first
over the column and then. over the rows. With the 64-point 1-D
FNT algorithm developed, a 64x64 points 2-D FNT can be performed

efficiently. 'kl
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4-5-2 Two-dimensional Convolution via 2-D FNT

If x(ni.ng) represents a 2-D sequence of duratioﬁ L
points on both dimensions and h(nj,ng) represents another
2-D sequence of duration M points on both dimensions,
(x(nq,ns) = h(ni,nz) =0 for-nl,n210,l,...,N-l), the linear

2-D convolution of x and h 1s

| N-1 N-=l :
Y(nlpnz) T = = x(my,mplh(ng-ny no-mp),
: n-;_:O 1‘12:0 .

N T Leld
ny,ny = 0,1,2,...N-1

Iet both x and h be- appended with zeros to the dimension
of MxN, and X(ky,k,), H(lkyky) represent the 2-D ENT'S of the
appended sequences respectively, Then, the 2-D IFNT of the

product,

L3

Y(lky,ko) = X(kl,kg)H(kl,kz) ) mod Fy kp,ko=0,1,44N-1,

-

which is
o N-1 N-1 -niky ~nokp
y(nypmp) = (A > 2> T(kp,ky) a2 a ) mod Fy
I lEO“ k2:0

nl,n2 : b,l:,...gN-l
.I.l(4l5.4)

is equivalent to the 2~D convolution of x and h. j

\
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The problem of wordlength constraint also exists in this

application. The dynamic ranges could be set by the bound,

\ x(}ll.nz)‘maxi %l.h(nl.nz)l L Fy/2,  ...(4.5.5)
n1=0 np=o
Tf this dymamic range restriction is too severe, the
wordiength segmentation described in section 4-2-2 couid be
applied‘to the filter array, h{nj,np), so that each word of
h(nl,nz) is partitioned intg\two b;ocks of apwropriate numbers

of bits, such as

!

k K
hz g2+ hp, \hz| &

The convolution is then computed as .

y= x:;hlzki- x&hy
The execution time required would be roughly 50% more
of that required by (4.5.4). '

The sectioned 2-D convolution technique [7]can also be

applied to the processing of large picturesby the 2-D FNT.

:



4-6 Picture Proceséing

‘In [21 , Rader ﬁroposed that the FNT could be employed
to implemeﬁt'iicture filtering which involves.-in most of the"
practical cases, two-dimensional;EIﬁ fiiters of size less than -
20X 20 samples. . | )

-Thisg application of the FNT could e particularly re-"
-warding for implementation with small computers, such as the
NOVA-840 mini-comruter. The short sequence leng{h along each
dimension of the filter array is one reason that makes the
FNT becnnlqgé for picture processing superior to %he convens-
tional nethod, such as the FFT's. The other reasons are:

1) Thé dynamic range of the diéital.image signal is not large.
Foﬁr bits of inténsity value for each pixél is usually |
aceeptable. In fact, a 4-bit array and a 6-bit array of the
;game image, when normalized to 2%6 gray levels and display-
ed én the cathod ray tube, are difficult to‘be-distinguished
by telllng from nale eyes. The FNT nethod is efficient for

. such type of pr008951ng.

- 2) The nain memory size of the mini-computer limits the use
of laféé two-dimensional apray for transform. The efficiency
of short sequenceAZ-D fil@eriné using the conventlonal FFT
‘method is ﬁot att;active. This is noé.true for the FNT method. -
5) FNT computation employs integer arithmetics, which is
téimpie and faster on.the mini-computer than floating point

arithmetics.

P ]
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4-7 Examples of Picture Processing Appliéation
To test the efficiency of the FNT Shift-Diminished
Algorithm developed in this work, a main program.in FORTRAN
is written. This program makes use of the two-diménsibnél
overlap-save teéhnique t0 process the image array of size up

to 256 .x 256 samples. 24 k-words of the e:xtended memory is

Tt

‘assigned for temporary storage of the intermediate results

during the computation. This is to reduce the frequency of
the time consuming I/0 operaﬁions between the disk files and
CPU. The size of the filter array can be less than or equal
to 35 X 335 points. |

Fig. 4-7-1 depictq the 2-D sectioned convolution by
overlap-save tephniQuep The 256x256 pointé pleture array is
partition into 64 Dlocks of size 32x3%2 points each as shown
in Fig.4-7-1 (a). Each lap of convolution processes one new
block. At the beginning of each lap of processing, the new
block of data is placed into the lower right quadrant of the
64x64 array to be transformedy and the other three quadrants
are appendéd with tge last three adjoining blocks. The array
is forward transformed to give itg 2-D FNT array which is
then multiplied by H(ky,ks) méd 65537y where H(kl,ka) is the
2~-D FNT of the impulse responseappended with zeros to the
size of 64x64 points. The transform domain product is final-

1y inverse transformed to give the convolved result. The

32x%52 partition at the lower right quadrant of the resultant

array is the desired result for that-lap of convolution. The

process ig repeated for all the 64 blocks. 3

i
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Fig.4=7-1 (d}. Partition of 256x256 points

- piecture into 64 blocks of éize 532x32 points each

for overlap-save convolutions.
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Fig, 4=7=1 (b). 2-D sectioned convolution_(overlap- 

y~ save method) via 2-D FNT. '*O' denotes zeros a@peﬁded;

">(' denotes useless result.
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‘Pig, 4-7-X (c). 256x256 points processed

phcture formed of 64 blocks of partial results

from sectioned convolution by 2-D FNT technique.
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4~7-1 Edge Enhancement

This example shows how the FNT is used .for edge enhance

enhancement of an image nattern. _ ‘
The original image is showm in Fig.4-7-2. The image is

of size 128x128 points with 8 bits representation for inten-

sity at each point. It is scaled-to 4 bits by truncation be-

fore processing.

The' filter is the ILa aplaci Euﬂ, ﬁé]whose nagnitude

and w., W, are frequehcy variables along the two dimensions.

This specification is computer generated for thé size of

52x32 poinis. Two-dimensional inverse DFT is performed over

this array to obtain the impulse response. The impulse reg-
ponse is scaled up to S'biﬁs'by multiplying each sample

by 2. It is ﬁﬁen appendeéd with zeros to the size of 64x64
points, and its 2-D FNT,. h(Ll,Lz), is +taken.

The 111ter1nb is performcd via FNT as described pre-
viously. The ekecutlon time for each lap of convolution:
(processing one- block of 32:32 points image partition) is
recorded. The filtereé image is shown in Fig.4.7-3,

The-same image,filterinﬁ using the FNT algorithm of

Agarwal and Burrus[Z] , as well as using the FFT techniques

have also been performed; and their execution times are re-.

corded for reference..

<

o,

L. o
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Average execution time for each lainof convolution

using 64:64-point transform:

By FFT approximately 29 sec.
By FNT (algorithm of Agarwal and Burrusf2])" 7.4 sec

By FNTSD . L L 4.6 sec

overall processing time for' 1282128 points image -
(includes approxinately 20 sec. of I/0 operation between
Sadatl . 3

the CPU ané disk):

By FFT ' approxinately 484 sec.

By FNT (algorithm of Agarwal and Burrusi2])® 138 sec.

" Dy FNTSD : . v o4 sec. -

## Note: The FFT used corresponds to the fastesﬁ algorithn
of its fanily, which transforms two blocks of real daté at
the same time. |

_FﬁTSD is the FHT Shift-Diminished algorithm deve-

loped in this work.

¢
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Fig.4=-7-2 Original inage

Fig.4=7-3 Edge .enhanced Image )
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. /CHAPTER 5
SUMMARY AND CONCLUSION o0

The DFT has long been known to possess the proverty

for compﬁting convolution. Nevertheless the study and sys-

tematic description of the cyclic convolution vroperty tRat
the transform possesscs is the matter of recent years. The
FIIT inveéTigated in this worlt is one of the results of
generalizing\the cyelic convolution p?%perfy tg other cf&ss

of transform in different number system. FNT has turned out

81

to be a useful transform which can be utilized for computing

convolutlon u31n~ conputer of wordlengsth equalv to a nower

/Wz A Iew research works have been done on the hardware
realization of FNT to gain the full advantage of this trans-
form without multiﬁlication. il , 13 . In tﬁis work, the ob-
jective was to develop an efficient, error free algorithm
which could be impleménted with a general purpose computer
to meet the requirement in general situation where the:
special purpose mach.ne is not readily available. '
Am’algorlthn, the Shift-Diminighed algorithm, is deve-
loped, and the efficiency is verified. This algorithm is par-
ticularly advanfageous in speed for implementation with the
computer which does not have high speed hardwafe for multi-
plication. The efficiency.gf this FNT‘algorithm is tested
with éxamp1esof actual application. It is more than 30%

fhster for convolution than the impiementation using the

o

R T
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algorithm of Agarwal and Burrus.

- Table 5-1 lists the number of arithmetic and logical

- operationg as well as the memory requirement for computing

A
convolution via 64-point FNT Shift-Diminished algorithm and

the ‘algorithm of Agarwal and Burrus, 2, .

- Table 5-2 ligts the number of arithmnetic and logical.
opera%ions ag well as the_memory requirement for computing ==+
convolution viagﬁﬁ:é#-point 2-D FNT using Shift-ﬁiminiéhed
algorithm and the algorithm of Agarwal and Burrus.

~Also entercd in these two tables ére the number of
oPeratian and menory requirement (floating point number)

for convolution by the conventional FFT technique. This

" serves to provide the idea on the sﬁperiority,of the FITT

technique in terms of speed. It should be noted that @he
programs written for the FFP's are all in FORTRAN and that

the variablé and -arrays are for floating point number
overations. Vhile the subprograms for‘the FNé evaluations

are written in assembly language with arithmetics operated

on integer numbers;.An appronriate comﬁarison between thege
tvro clagses of transform should‘not be made by merelﬁ look-~
ing at the figures on the $ables but should include the diffe-
rence between FORTRAN and assembly 1angﬁages as well as the
difference between onerations on floating and intéger nii-

bers.



| FET FNTAB FNTSD
Tultiplications| 448 94 Q4 -
© Additions ™| 768 768 768
Shifts 0 \\V 904 589
Memory 512 | 228 256
(vrordE} , X 5

N
Table 5-1 Number of arithmetic and logical |

operations and memoxry requirement for computing
convolution using 64-point transforms.

Hote 1 ¥FNTAB represents FNT with the algorithm of

Agarwal and Bﬁrrué\fagig ,
#FNTSD is the FNT Shift-Diminished algorithm

#The arithmetic operations under FFT are on

developed in this work.

complex number.
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FFT FNTAB FITSD

.

Multiplications| 573544 ~ 12052 12032

Additions 93504 | 98504l 983504

Shifts 0 115712 49792

Memory 52768 8192 163564

(words?)

Table 5-2 Nﬁmber of afithmetic; logical operatioﬁs

and memory requirements for ?ompufing 2-dimensional

convolution using 64:84-point 2-D transforms.
»

Notes:

1. FNTAB is the FNT algorithm of Agarwal. and Burrus.

2. FNTSD is the the FNT algorithm developed in this

worls,

- complex number.

Se The arithmetic operations under FFT are on

84
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The features incorporéted in FNT impleméntation_with
the Shift-Diminished algorithm developed in this worﬁ are
summarived.in The following.

1.  lodification of the fast tiamsform algorithm to re-
duée the- powrers of the basis function, JE mod F4, in the

ale

butterfly computafions fron the range of 0 to N/2-1 %o
~the range of "0 to N/4, where N ig the transform length.
The "buttgrflies", whiech are the najor computations in the
fast transform algorithm, can thus be computed more effi-
ciently as the multiplications bfjdata by the basig func-
tion are performediby less Dbit shiﬁting.

2. Incorporation of the Diminishéd-l number‘coding]:4]

with an efficient scheme to avoid the error due to ambi-

guity in number representation.

Phe advantages of this FNT algorithm are

1. High speed, and
24 - eror JIree computat on.
5.  Using integer arwthmetlcs wnleh is 51mole 1n nrogran-

ming and requir-ing less memory space.

The disadvantages 6fe due to the nature of INT, they
are: - o ) . * ] -
1. Limited éynamic,range. The resultlof eonvgluﬁibn via
this‘annroach shoqu lie wiﬁhin'%he valués, ~-F+/2 and ’
E./2-1, where Fy is the modulus of the FNT .
2. The . transforn length is fixed and restrlctod by the

conotralnts of Ft' a . and H.

85
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A conclusion can be drawn with regard to the applica-

tion of the FNT ‘to digital signal processing. Knowing the
advantages”and disédvantages‘qf.fhé FNT technique.-it can
be concluded that the problems ﬁith theifollowing cha&ac-
teristics could be beﬁefit from the-FNT approach.,
1. ReQuiring‘convolution whére the sequence lengths are. -

short and the dynamic range is small.
2.;Multipligatioq_is costly. _ ; o SE——

3. Exact computation during tonvolution is needed.

H

Posgible Area of Further Study

Futher expaﬁsibn—of the transform length and dyna-
mic range cowld be possible by slicing a large mudulus into
smaller modﬁli for seperate operations and combine the
partial results. ¥

Searchiﬁg into other number fields may unveil other
transforms with the advantages_of-FNT and less or none

| 4

the disadvantages.
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APPENDIX

Included in thé following pages are the compiled or

assenbled listing of the programg:

ll

2.

 OSFNT: The mainline program vwritten in FORTRAN-5 of

. the NOVA-840, This progran performs image filtering

., via FNT technique (Shift-diminished algorithm deve-

loped in this thesis work). Overlap-save method is used

. for 2-D sectioned‘convoluﬁibh.
Subroutine TDFNT: This subprogram is writien in FOR-

- -PRAN-5. It performs two-dimensional Fermat Number Trans-

form by a*sequence of 1-D FUT over %he rows and columns’
of the data array. '

MUTLIODs This is the Assembly language éubprogram.which

performs multiplication mod 65537 of two sequences of

data in diminished-~l coding, |

FNTSDt Thi.s suliprogram is ﬁritten in the assembly
langﬁégé of the NOVA-840, Tt pefforms Fermat Mumber
Tfansform on-a 64—point_se¢uence.using the Shift-dimi- *

nished algorithm developed in thig thesis:
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VERSION 5. 36 -— FRIDAY.

-

" OSFNT:. -

FILENAME: OS5FNT

JULY 13,

t
‘.

TH1S PROGRAM PERFORMS IMAGE FILTERING YIA 2D—FNT

TECHNIGQUE. THE MAXIMUM SIZE OF FILTERCI NPULSE RESPDNSE"

1S X3 X Z2 POINTS.

THE MAXKIMUM SIZE OF IMAGE IS
TWO DIMENSIONAL CYERLAF-SAWE METHOD IS5 ENFL.OH’ED FOR

SECTIONED CONWMOLUTI CIN

FILENFINE: OF qUEnF‘CILITINE RE@UIRED - TDFNTJ FNTSD.- MULMOD

258 W 256 POINTS.

88

19?9 18: .15 33 PM

INTEGER THNINDCSLE2Y . RICEE, 2560, KC{S84 642, XT\'64.- 542

INTEGER H{S54, 63>, HC 63, 843, KT1(64)>, H1{64D, RCL{E42, HOL(G4 -

DIMENSION R{G4), NAMECSY, ITIMECSD

COMMONALINDOWA”TWIND

EQUIVALENCEL IWIND 4887, KT(L2D
EQUIVALENCECIWIND, K1, KC:R)

LOMMONATEMPA KT, KCL
DATA NAMEAS+
FORMATC S
FORMAT(SAZD
WRITE{LE. 166>
READ {11, 268> NAME

ACCEPTV"SIZE OF T. F. =% COLUMHSHRUN

* S NTAGSEA HEAR
<, 4%, “FILE HAME EIF T. F. {IMPUL

ACCEFT"INFUT TYPE={INTEGER:@,

I=2
IFCITY. EQ 4> I=4

ACCEPT "MULTIFLY FACTOR=", AH

OFEN @ NAME. LEM=1:#NH.

Do 48 I=1, NT
Do 18 J=1,NT
HLI, I0=6

DO 41 I=1, MH

REC=NH

T2 NBLKA q(’

5=", NH
REAL:1> ",

1FCITY. EQ &> READL@> (H{I, Jb, J=1, NHD

IF{ITY. EQL &8> GO TO-11

IFCTlY. EGL 13 READI@Y (RIS, J=1, HH>

DO 11 J=1, HNH

H{I, Id=IF IR(RCIwAHA8. 50

CONTINUE

CALL TDFHTCH. NT, 8, HED
FORMAT S~
WRITECLG, 1182
REFADCAL, 266> HAME
TYPE"SIZE OF IMAGE:"

ACCERT"# OF COLUMNS=",NJ

ACCERPT"# OF ROWS= ", NI "
ACCEPTY"WISH TO SCRLE IMAGE MAG. 7 YESC1). ROCE):
IFCIYES. EQ. 1) ACCERT"SCALE FACTOR= ", AH

OPEN 1, HAME, LEN=Z%NJI, ‘

REC=NI

2,43, “FILE NAME OF IMAGE:

»

e

TYFE"WISH TO STORE FROCESSED IMAGE INY

ACCEPT"ORIGINALCIO=6> OR NEW(IO=1) FILE.

IFCI0. EG. &> GO 'To 19
10=2

FORMATC” 7. 14, “OUTFUT FILE I’vlFil"‘lE

WRITEL4S, 1260 _
RERADL11, 2883 NAME

OFEM 2, HNAME. LEN=24NJ,

IFCI0. EQ. 83 10=1
CARLL YMEM{K, IERD

REC=NI

1, ZD

RESP. % 7, 2>
ITY
i
v, IYES
10=", 10
.’ .
P

2
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'IF\IER GE. 52 GO TG l@@@

TYFPEVYEXT. MEMORY AVAILABLE (1@24—WORD BLOCKS) :

CRLL NHPDF\RJIHIND,BJIEF)
IFCIER. GE. 5 GO TO 161
NEBI=NI1/NY

NREJ=NI HE

NOMAP=ZHKE] :

Lo 28 I=1. NREl ) ) .
1E=0

IF¢v 1. GT. 12, AND. <MODC T, 2. EG &0
CHLL REMAP{E. IE. NXEJ, IERD
1ERL=1% | .
IFCIER. GE. S GO TQ 1oz
IFCIC EQ = GO TO 2t
IREC={ I—1)>whiH+1

CALL FSEEK(L, IRECD

DO 28 L=1i, NX b

READ LY OXICLs KD K=1,NID
IFCIVES: NE. 1> GO TO =6
DO 26 K=1,HJ -
RICLs KY=RI{L, K)®AH
CONTINUE

1IERL=26 _

CALL REMAF (6, NOMAF, NELK. IERD
IFCIER. GE. S5» GO TO 1662
DO 3@ L=t NT

GO 30 K=, NS

KT L, Ka=6

DO SB J=1, NXBJ

IFCI. GT. 1> GO TO 35
IFQJ.GT.i) GO TO =2
TER1=%1

CARLL REMARFPC@, 1B, 1. IERD
1ECIER. GE. S5 GO TO 186
DO 31 L=1. N

DO 31 K=1, MR

ST L N+ =6

ST ML, ME+E D =HT L, Ko

GO TO =3

IER1=3Z

JE=J-2

CALL REMAF{E, JE. 2, 1IERD
IFCIER. GE, 52 GO TO 1602
Do 33 L-l,Nc

DO =X K=1, NT

WTCL, Ko=6

BT ML, K=RI4l, KD

GO TO =9

iF¢J. GT. 43 GO TO 27
IERL=Z5

JE=HNAEJ-1E

CFALL REMAF{G, JE, 1, IERD
1FCIER. GE. 53 GO TO 1602
DO =66 =1, H¥

DO Z68 K=, N

UT L, M+ =RI L, KD

JE=1E



X

N ~
. ‘ . - 90
116 CALL REMAFPCE, JB, 1, IERD .
117 . DO 361 L=i, NX-
11&: ' DO 361 K=1, NW
14%: 3TEL WTONR+FL, HHKI =K I, K2*
128 GO To 3%
121 37 JE=MNBI-1E+J-2 - .
122 " CALL FENHP(G,JBJZJIER‘ .
123 1IERL=37 T -
124 IFL1ER. GE. 52 GO TO 1m0 : . )
125 DO ETA L=1. NY . ' \\\\;*_\
135 DO 376 K=1.NT ‘ - ;
127 V@ KTl KO=RIL,KY )
128 JB=1B+J-2 . '
129 " CALL REMAF{E. JE. 2. IERD
136 IERL=37VE ) .
R IFCIER. GE. S GO TO ie6z
132 CODO ETL L=, N
133 DO 371 K=1FNT
134 TOITL OWTONS+HL, KO=KICL, KD
135 3% CONTINUE
135 IERL=35
137 CALL REMAF <&, NOMAF. NELK. IERD
13=: . - iIFL1ER. GE. S» GO TO 106z
139 TYFE" | " .
146 126 FORMATLS <, 13, “PROCESSING BLOCK: ',sf,'<f,13,' , 2. 10
141 WRITELLI@, 4360 I, J
142 CHLL TIMELITIME, IERD
143 ' PRE"CONY BEGIN. TIRE m}",ITIHERL);ITINE\2),ITINE-
144 CHLL TOFNT KT, NT. L, BED
145 - DO 41 L=1.HT
145 DO 48, K=1. NT
147 - HCAEY=HOIL, KD
145 WOLCK =KoL, KD
145 Hi<KI=HIL, KD
156 45 WTLLEI=HT L KD
151 ) CRLL MOLMODCHTL, HL, NT, B4, HCL
152 DO 44 K=, NT
153 WO, K=Kl (Mo
154 A1 HATYL,EI=¥TiED ,
155, CRLL TDFMTOKT, NT, 1. #CO -
155 CALL TIMEX 1TIME, 1ERD
.L\_'I IT)FEH li
155 TYFE"COMNY END, TIME =5, ITIMECL?, ITIMELZ), ITIMELD
155 : ‘ JB=J-1+HxBJw2 "
156 IERL=56 -
151 : CALL FEMAFZG. JB, 1, IERD .
162 IFCIER. GE. 52 GO TO 1082
1&6%: DO SO L=4, N
154 : . DG S8 K=1.HA -
165: SE MICL, KO=NT (4L, NEHED
165 €0 COMTIWUE
167 JE=2:#MNKB]
155 CALL REMAFCE. JB, NKEJ, IERD
165 1ERL=56
A76: IFCIER. GE. 5> GO TO i@&2
171 IFLI0, EGL 42 CALL FSEEK(L, IREC)

172: DO 7e L=1, HX

aknta




va
26

uitstals)
10Et
1682

1663

16904

pab T

MRITELIGS HIKL, K2, K=, NI
CONTINUE -
IFCIQL ERL 20 CLOSE =
CLOSE. 1

CLOG5E ©

AHCCEPTYMISH TG CONTIMUE?Y NO: &,

IFCE, EGL 4 GO TO L
Go TO laed

TYFE"ERROR IN ?HEM' —-2>ERROR & =", IER

GO TO 1686Z

TYPE'ERROR IN MAFDF —-ERROR # =", 1ER

GO TO 1oax=

TYFEYERROR IN REMAF ——2ERROR # =", JER

TYFEYERROR NERR STATEMENT #
IF{I0. EQ. &> CLOSE 2
IFCI0. EQ 2> DELETE NAME
CLOSE 1

CLOSE @

STOP

END =

", IEFL

YES:1

91



: 92
NOYWA FORTRAN 5, WERSIOMN 3. @8 —-— FRIDH?& JULy 13, 15973 16:4° |
TRFNT

SUBROUTINE TDFMTORT. NDu IFNT. XC
THIS ROUTINE FERFORMS THO-DIMENSICOHAL
FERMAT NUMBER TRANSFORM {2-D FNTD.

Lae- *
T CONTAINS Z~DRIMENSIONAL DATH RRRAY
TG BE TRANSFUORMED. THE TRANSFORMED DATH
WILL BE RETURNED YIH THIS SAME ARRAY.
ND=5<1
IFNT=0U FOR FORMWARD z-D FNT.

DY R L LR

monaamnonnn’

1w IFNT=1 FOR IMNVERSE Z-D FNT;

11: #¥C HOLDS THE 1¥TH BIT UF CORRESFONDING

1z: DIMINISHED-1 CODED DATH. .
1= INTEGER ﬁT\b4;n4\,nb\u4,u4JJnTl\b4)akC1(64)
14: COMMOMNATEMP. KTA, XC1

15: . LCOmeFL N

15: KCOD=4 -

v . IFCIFNT. LT, @) LCODE=0

13 IFCIFNT. LT. @2 }CUD =1

19: DO 2 L=1,HND

p={n M L 1 K=i,ND

b . RCLCKD=XC{L, KD

22 1 KTLCKD=HTAL, K2 . .

2= CHLL FHTEI(WTL, HD. 1FHT;LCGD&;AC1}

Y |

up
v U1 de L

DO 2 K=1, HD
SO, KO=REh (kD

2€: = HT AL, KO=HTL KD
27 DO 4 K=1, ND

) [.__

L VR PR PR PR PUR P I (0 I
(oA T QY o P B (R e R

DO = L=1. ND

HOLIL o=iRe il Ko -
= HTLOL 2=T L, WD

CALL FHTSS{KTL, D, IFNT, KCODK, MO0

DO 4 L=1, ND

ACLL, KO=KEA Lo
4 CHT{L Eo=ETaLD

RETURN

EML

o
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@l
a2
@3
Qg
abe
s
o7
oo

alc)

1@
11
12
1%
14
15
1€

L

+

L

R

i1&
19
ze
=1
~
LA
,"—-
=
24
e
et
26
Iy

=7
o]
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Ik
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$a
RORREN

U

bbb
~ M

€

-

O i}
W

Y

i

oot oon
() RPN Y

COOaG—-GOREEE

EEEEZ @2ITTR

Genaz "’ 049440
BEBoY 126500
OROES - GZLT VS
R0 122460
OERET  B4DI53
GEel6 - G2177
AEGLL A2 2SEE0
OEElz " 048345
gEElz AZiTRZ
auoLd 122400
GRS G48448
GEGL6 " 62177
GEELT 122406
Boo26” 038440

aaa2l gl1e442
OBB22 016448

EEEZZT AL1B435

GOBZG BLEAZS
GEEIS B22456
oppze 101674
GBEZT 7 BOR4ZS
ERHZE 7 @22436
@oEz1 161605
EEEEZ - OOGIES
MBI 126406
GEOZ4 - OBO4LS

Guel NULNU NHEED REY OS5 b

.'

;
3
3

HMULMOD

. MLE:

MLA -

/ 93
r 13 IES 2V 071579
FILENAME : MULMOD *
THI5 ROUTIMNE PERFORMS DIMINISHED-1 -
MULTIFLICATION MOD &35EV OF TWO
&3—FOINT DATH SEGQUENCES.
EHLLING STATEMENT FROM FORTRAM ROUTINE
CALL NULNOD\I*:IHJN;IAC,IHC) :
WHERE .
1w AND IH ARE BOTH S64-ELEMENT 4-D ARFR
CONTAINING = DIMINISHED-1 CPDED DARTA =t
RESFECTIVELY
r"l—'t\"“.l
1XC AMD IHC RRE BUTH 64— ELEMENT 1-D HFm
CONTRINING THE 1VTH BIT OF THE CORRES
DATA FOINTS IN 1% AND 1K RESPECTIVELT.

-

CTITLS  MULMODY

. ENT MULMOD
CEXTU
. ZREL
. MLD
. MREL
:Fi ) 5]
STH X, . HDL }
R @ SAVE
o - ; STACK EXTENSION
- - ; OFFSET TO MODEL STRCH
LD @, B~5, 2 ’ '
., STH o, K
"SUBZL 1,4
LDA @, -3, %
SUE 1.0 .
STH @, %
LA B, -3, %
SUR 1.6 .
STH @, H
LA @ -6 3
SUE A, @
STH @, %0
L.[)F‘{ E’J "'?J :-S
SUE: (/ 1, ©
5TH €, HC
=z we
157 W
152 HC
152 H
LDA. @, @XC
MO &, 6, 52K
JMF ML
LDH @, EHC .
MO o, 6, SHE ; N
JIMP L+ -
SUE 1,1
JHE MLZ



.
S5 BREZS/ 176468
57 BUEI67B2E424
S8 . 0BEIT 32420

SS9 GoB46°141000 .

66 OB 123622

@nE2 MULMO .
€l oagdz2 oaB4as
@z eeed4x 101465
83 00644161406
g4 oe45-avI3al
o5 Eeeds 105623
Ga G847 125464
87 eEsSo - 00o4a3
- B3 8985171025260

43 geasS2 42911 ML

18 OauSI- ads4ay

11 @B654°@14305 ML

A,

12 oSS 800744
1=

14 00@sy - oaeose H:
15 @468 aunaos HC :
15 G006 080605 K.
17V 0052 aaaane i
12 06053 0Ba0aH MO

19

SUE 33

LDA 1, @R

LDbA Z, @H

Moy o, a

ADDZ . 1.@, 5ZC

JIMF .+ .

INCG @, &, SNR

INC o, ©

MUL

ADCZ @, 1. SN £ -
INC 1,1, 52R

JMP L+

SUBZL @.0

STH - ,f—eréﬂga\“

STH 1. @5

D32 K

JMF 0 ML

RTH

5]

5] 3

= .- .
¢ : ¥
E‘ . K .
. EMND

#EO@GGE TOTRL ERRORS, GOOGK PASS 1 ERRORS

~



0Gol FNTb4 NRCPD REY @5, 68 243 14 arzizx?s 95 ('
61 ; FILENAME: FNTSD . \

@2 - ; ~ THIS ROUTINE PERFORMS 54—PGIHT

6z ' ; FERMAT NUMBER TRANSFORM {FNTD USING .

XY ; SHIFT~DIMINISHE ALGORITHRM. -

65 5 CALLING STRTEMEMNT FROM FORTRAN ROUTINE: ‘
s ; CARLL FHNTS4{IX, M, IFT, IC, 1XCD .

[5)d 3 HHERE .

6 i I¥ IS A 84-FOINT 1-D ARRAY WHICH CONTAINS

@’ i « DATA POINTS TO BE TRANSFORM:

16 3 MN=54 -

14 i IFT 15 H_CE%TRUL WARIABLE,

12 ; IFT=6 FOR FORUARD FNT,

1= ' 3 IFT=1 FOR INWERSE FNT

T 14 . . 5 IC I35 ANOTHER CONTROL YARRIAELE,
c A5 - ; IC=1 'IF CODE TRANSUATION REQUIRED,
15 ; IC=6 "IF NO CODE TRANSLATICN REQUIRED;
17 5 IXC I3 A 64-FOINT i-D ‘ARRAY WHICH
13 -* ; CONTARINS THE 17TH BIT UF THE DIMINISHED-1 COi
12 - ; DATA.
20 H
L TITL__ FHTS4
22 - . ENT. FHTG4
23 . BETU
24 ‘ { ZREL
25 aaaea-aeaaaaignrs4: LT ?
26 ; ‘
27 - 5 \MACFC DEFINITION FOR SHIFT AMD e A ¢ \
@5 | 3 QDULO REDUCTION -~
29 . MACRO SHFT .
=0 ok . IFE ~i-@&
=1 ik .o Tz
z2 MOWZL 1, 1. SNC
=X . INC 1,1
=3 : . ENGC r
=5 ks . IFE -1
x7. . SUEZR &, o
x5 dk . DG -2
x5 T MO ZER: 1, 1, SHC
46 © ADD @, 1
41 Hrk . ENDC
42 ek . ENDC :
4= JMP @RTZ
449 A
45 ko
45 .(, MACRO DEFINITION FOR
147 - ; FERFORMING MULTIFLICATION OF
43 - 3 DATA FOINTS BY Z:#S MOD 65537
49 . MARCRG SLIAF
sa@ com 1,6
S FINDS 0
sz CoM , 0z Cf//
=52 - ANDS 2:1 ‘ ,
54 : RLD @, 1
55 w o
85 9eeul-@easeS  THDL. @ ., THDL
57 BOROZ-E607AS DAT. @ . DLTM
' 58 epeez-60046  FFHT . DIF
59 0E9064-a804457 IFNT : .DIT
'€0 BEOBS-BEE517  DYN. . DN



CeoZ FNTGS

el -
a2
faz

as
Hs
av
@3
as

Toan

11

o
-

1=
o1
15
15
17
ig
14
25
=4
22
23
=4
End—

=t

-y

[ U 8

U AN
QDWW g

IRREARR)
a kel {0

T AENERAREARA R

. ".:';' W =)ol

a4 |

T NREL - 90
.DFDT:  SAYE & '
. STA 3, . ND1L
£ “JSR @ SAVZ
" ¥ : ; STACK. EXTENSION
- T ; OFFSET TO MODEL STACK :
GOROZ G2EIT TS LDA @, @ARGL, = _ .
080063 046017 - STH @, N
GRE6S - HZO045~ LDA 2, MNS&
ORe0S -’ aSe620- STA 2. HL
OOAES T AZSTTS LDA 1, ARGE, X ‘ :
GEaaT 129460 HEG 1.1
QOo1e; 124006 com 1,1
GEoLl  G4403S- STH 1. WE
BOELZ 167600 FLD
BOELS - O44036 - STH
GoRLd - OZ3ITTS LDFA
@oeLS ~04a035~ STH
OeeL6” GZLTT: LDF ;
GoeLT " GSOaTT - STH
s IFT=-1 :FOR 1FNT WITHOUT X ¢L/N>
; IFT=1 :FOR FFNT " "
;IFT=8 ' FOR FFNT FOLLOMED BEY X <1/RD
GBEZG-azTYYI LDA 1. GARGZ. I
OEEZL G409t — - STH 1. IFT
GOaZZ T 1ZS2s MOWZRE 1.1, 2R
BBO23 7 000416 JMF YESTR
080247161684 MO @, 6 S2R.
GBEZS - GesaaL— J5F @THDL. - .
QEOZE 0B85~ JER @FFNT . “
Gan27 7 024031 LD 1, IFT . .
OEaZ6 7 125665 Mo 1,1, SHR . . ‘ .
Qa9 0asa6ES - JSR E@DVH. .
TN v
Bﬁ633’8ﬁ6884 ~IWSTR: JSF @IFNT
BBGEY  GZaD4E~ LDH . @, CODs
OOE3S - 1elama P @, 0. S2R
GEEZE " OOEHHZ~ ISk ELLTI,
KTH ;
- ; SUBRCOUTINE . DIFE ,
& ; TG FERFORM FORWARD FNT
69046 854915~ DIF ; STH =, ACE
BOB4L GITIe3T— LD %, HEYT
60427 1024606 SUE 0,0 '
E0E4E BEOEG— STA g, RT1 e
aB844 /0246010 LDF 1, RTZ ;
00457 044007~ - - 5TA  ° 1,RTZ
060457 624012~ LDA 1, 5LO s
GEB47 844E16— STA 1, ABZ '
0058 BIaE1L7~ LDFA 2. N : «
BE6O51 0506032 STH 2, LE1
EOOSZ 126526 SUBZL 1.1 R
ABOSI” G44630— 5TH 1, K
6PES47 @IeE32—~ DOLL:  LDA 2, LEL
BEOSS” 6S002 — 5TH 2, LE
BEES6” 151220 MEZ 2,2
QEES7 - 65603 2- STH 2, LE1
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et
21

-
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23
~
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e
e
-
ey
o
=20

s
29

—.n-',

Geas) 1e2460
- @aoaFi-
L pzenls-
Wsg 125235

P alsicitTag chedninh Ru iy
OEg6es " 840a34— -

OEOST B240TS -
BEOTE 125460
QEETL’ O34026-
HOOTE BTOAST -

2 WeETIOSanaY -

GEG?S’BEGGE?—
OOOTE A34aZ3—,
HOET T aseas s~
aglas o2eazz -
QELoL " LOTEOE
GolLa2 044025~
GR1aZ7142600
QE1ad - E4a023—
GaLas BIZIa00
BO1as " L20805
83107 000414
o6116° g2eaE%—
00111 125065
@11 2 MO as
BHLLZ 1024668
951;4fa4aaaa—
a5kl Baagnlsich
BELLS” @45 aae
@Vi,l__l,_-“ TAZEHZ5—

3 @E126- G602 -

=4
25

. 38

= -
D

Lo
55

&8

Ee121° 124606
GRLzZ OO2ETY—

SValchResdgclelciensy

oaLzg  lateos
[B1% ba Rl G 6 I B 1)
HRlZs Qe =—
GELST Q26023 -~
GELZ8 " aRzZasd—

Q&1L @228294—.

ook Rtedd v meeln st

- B913E 1446800

BO1T4Y 113022
BO135/ GEO4GS
@E1367 151464

epAS7 60404

Brld4p 152520

Goldl OSgz—

gE14271524066

aal4z 652624 -,

BO144/ 16THI
E9145 7 GH2B3 -
BOL46 125464
BEL47 - GOZHTI—

G156 044886

661517152526
681527852823~

BO15%’ 045625

S

L2

RIEN B

poIL:

a

HL:

il
(%

I
o}

STA

Ve

2, NJ

SUE 0,6

"~ ETH 6. Pl

. LDH &, SLe
MOWZR# 1,1, 5HR
LDA B, RTS
STAH & AP
LDFA 1, ®G-
INC 1,1
aTR 1.3
LD = M0
5TA- 2, JC
LbDa 1.3
LDA 2, JC
STA 1,1
5TA >, 1C
LDA &, LEL
HDD G, 1
aTA - 1, IF

. ADD 2,
STA o, 1rc

. LbA 1. 0.2
MO 1.1, SHE
JIMF . AB
LD+ 1, @IFC
MO 1. 1, SHE
JMF .+
SUB - &, @
STH @, RTL
JMe .LFI1
STH 1. 0, 2
LDA 1, BIF
=TH 1, @1
com 1,1
JHF GAF1
LD G, BIFC
Moy . 8, 5HR
JHE . AL
STH 1, BIFC
LD:F i, @1
Nyt @HF
LA @, ®1
LDA 2, @IP.
_com 2,1
ADDE 6, 2, 52C
IMP. & . A2
1HCH 2, 2, 5ZR
JHF . Az
SUBZL 2,2
STH 2, BIC
SUE 2,2
STH 2, ®1,
ADDZ 6, 1, SZC
JHP @FAPH

- I”C .L.! l; ..ﬂR
JMF GAPL
=TA 1, RT1
SUBZL 2,2
STA 2, @IPC.
5TH 1, ®IP

. =

o 97
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8a64 .-FNTS4
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86
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ze

a9
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X1
2z
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%9
ag
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42
43
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45
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47
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45

Se
ol
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o=
54
55
56
S7
o8&
29

&8

261547024824—-. LFP11:

BE155” 020631~
eE1S5 020622
@ELS 7 - 1LO7060
BELE67 113666

BaLsl B28635—

G562 122513
GeLE? - aeavLs
GErLE4 - OREEZ0-
BELES 7 BZEEES—
HELES 14220
GELET B48033—
BOLTE 161002
aai?ifaaa42§l

Gelyz - 6x8ol;
06172 113660
golv4 - az5800
08175 a4d834-

QELYe e1eb2e— 1KJI1:

BELTT E1O627 -
BO2EE 7 BL40TL-
aeze1e0esTS

BOZEZ DSEaL -
BEZO3 640067 -
EEZe4 7 B2483a-
GETES 125120

BEZE5 - G44830—
BECE7  QLED2E—
GEZLE” GOBESS

CEeZil’ EOZELS—

BEz1z 126528 | RT18:

8021= 044005
In[noeh RS 010] % P <¥e)

3

i

;
8o S EAB0c—, RTE

QOBZLE " BOZEL G-
OBZ17 124153
BO220 7 1614661
GozZl 161123
GazZ22/ 1614606
EOZ2E 101122
BEZ24” 161466
BRZo5 /161123
BO2257 461460
BEZZT7 152620
BOZIA- 124203
ORIz < 1470006
OEZIZ 1E522%
BOZIX 147600
QEoE4 125227
BEZES5 7 1470666
BEZI5 125223
BOZIT/ L47005
ooz 105627
oaz41” 125406
OBZ42 0E2HLE—

JrF

LDA 1,1
LDFA @, LE
LDA =, 1C
ADD €, 1
=1818) G, 2
LDA £, 1N
SUBL# 1.0, SNC
amE . DhOI1L
LD - oK
LDF €, P
ADDZ =, a
STA. .. @ FH
MOVZR @, &, S2C
JriF L RT1G
LDA 2,850 o«
ADD @, 2
LDA 4.6, 2
5TA 1. AP
152 3
157 Jc
D5=Z M
Jne . DoJA
LD G, SLE
STH 6, RTZ
- LDA 1, K
MOWZL 1.1
ETH 1K
152 HL -
JMF .bory
S JIMP GRCX
SUBZL 1,1
STH 1, RT1
L IKIL

28

TGO FERFORM DIMINISHED- MULTIPLICATION

OF DATA FOINT BY 48

JIMpP

E

ST RTL
JMP GAREZ
MOWZL 4, 6, 5SRO
CIHC G, B
MOYZLL @, 8, SHNC
1NC @, @ .
MOYZL £ ©,8, 5NC
INC a, &
MO ZL 8. ¢, SHC .
IHC &, o
SUBZR 2,2
COMZRE 4,1, 5HC
ADD 2,4
MOWZR 4,1, 5NC
ADD 2,1
MEOWZR 4,1, SHC
ADD 2,4
MOWZR 1,4, SHC
ADD 2.1
RDCZ @, 1, SHC
INC 1,1
BABX

&

56 (=2l Az MOD- 653537

N



a1
a2
a6z
a4
a5
65
av
as
Qs
1@
11
12
1z
14
15
1s
e
13

R

=d
21

=2
o=

23

24
25
25
7
25
29
w35

[}

)
NCRNE U ANA S

A

Tl Lad Lad LS L) LD L)

4£

a7

59

(=2

OB05 FNTS4

.

BOZ4T 124006
OO244 * BEZHET—
BOZ45 124600

HEZ4E 125103
EEZYT 15406

EOZSE’ EAZEET -
BEZSL’ L4600

gEzsE 125123

az2cE 125466

3
3
H
’

. SR16:

. SR1S:
.Sl

BE2T4 7125123

EESSS 125460

BEZTG T BRZEET -

G825V 7124068

BEZSE 7123123
gazel 125406
Hazoz 7125125
Bazex 1 1Lz5d1a0
aeze4 " 12012
aazgS 125460

GEZes T BLIaE T —
BaZSsy Tlz46680

pE2yE 125122
qEZVL 125480
272 A251EE
89272 125400
Be2y4 125123
88275 125406
BEZ7Ye 125122
QGzvyY 123480

BOZO8 - HRZEET—
BEZEL 124606

Y W

. Sid

gazoz2 12512=

BEZEZ 125400
‘BEZE4 7125423
BEZE5 7125460
GEZE5 125123
BEZE7 125460

GEEle 125422
PP=141 71254646

ROUTINE MODULES FOR

PERFORMING “MULTIPLICATION” OF

99

" DATA POLNTS BY DIFFERENT POWERS OF 2

COM

JMF
“Con

SHFT

MOWIL
- INC
"SURZR

MOWZR

ADD
. JIMF

. SRLg

SHFT

MNEL

INC
MOVEL
INC
SUBZR
MOWVZR,
ADD
JMF

C . SRLE:

SHFT
MO 2L
INC
MAwz
INC
MOW =L
INC
SUEZR
MOV ZR
AED
JMF

1

. SRAZ:

SHET
MO ZL
INC
PIONZL
INC
MOWZL
NG
MOWZL
INC
SUEZR:
MOYZR
ADD
JIMP

L SRAA

1]
-
CH,

SHFT
MOYZL
IHC
MOWZL
INC
MOVZEL
INC
MOVZL
INC

&

» ,A
. ERTZ

1.1
@
1., SHC
1,4

€1,

1.+ 1. SNC
@ 1
ERTZ
com

@2
1, 1, SHC
1,1 "
1,1, SNC
1.1

g, €
1,1, SHC

= Vi §

GRTZ
cam

e, X .
1, 1, 5RC
1} i

1, 17SHC -
S W &

1,1, SHC
1,1

8. 6

1.4, 5HC
@, 1
GBRTZ
coM

A, 4

'_L.- '.1.) SNE
1.1

1, 1, SHC
1,4
1,4, 5HC
1.1

1,4, SHC
i-4

@, e
1,4, SHC
2P 8
ERTZ
comM

8,5

1.1
1,1, 5HC
1.1

1,1, SHC
1,4
1,4, SNC
.4

1.1

1,1

1.1

[



GG FNTo4

G

az
Gz
&4
a3
&8s
L5ra
as
‘ U:!
1@
11
iz
1=
14
15
16
ir
18
19
268
o
2")
23
24

25

S I LV IR
(92 RV I 1 1

iy

W)
=

=0

I

(R R U

BN B PO A RV I Y I PO PN

@ WM

Ja
%

215 1% ISR DT RS

GOZAR 125466

60314062067 -

6315 120660
EO316~1637a0
GEZ17 170006
BESZE 1477 e
QEZ21  1ETEEC

BOTE LEZ6IE
Ga3ZT 125223
cEaz24- 1arvana
EEZZ5- 125223
OEEZ6 - 1E7VRE0

AEZZY " O82007 -

GEG:EQ 126000

33217163708

€1€1’“"'"" iveaoa
GORER 1477V EH
goxz4716v0aa0

h)
_BAZIS 102626

AERE5 125222
BAZXIY 167066

BEZT46  OEZEET —

BEE4L” LZE00E
BOE4Z 1EITOEN
EOT4T L TEEE0
BEO244 - 147 TEC
AEZAS L7 GO

82487002807~

Oax47 7 128086
OEZSA 152700
GEES1 170890
B8zE527 147700
OERSZ 167060

OEE54 125123

Gez357 12546808

ao

l-'\.'
U\

57 7120660
a8 162700
517178800
527147706

ggx
gz
15§
215 )4
ag=zsz " 187a60

“aBzaET—

Lﬂ

e

uy

-

mov;ﬁf
INC
SUBZR
MOWZR
ADD
JHP

S 3
com
ANDS .
coM
ANDS
ADD

MOVZEL
INC
SUBZR
MOVER
ADD

MOWER

ADD
JMF ,
.5LT:
ComM.
RRDS
com
ANDS
RDD

Mov2L
1NC

SUBZR |

MOWER
AHDD
JME
.5Le
coM
ANDS
o’
ANDS
ADD

SHAF
COM
AMDS
COM

"ANDS

ADD  »

MOWZL
INC
5UBZR
MOVER
ADD
JMP

= I 1%
" COM

AHDE
cor
ANDS
FDLx

1, 4. 5KRC

T

a,a

1, 1, SHC
@, 1
ERTZ -
SHAP
1L.a °
0

.
LA

A
Bl : e

-

SHFET 1,2

1, 1. SHC
1.1

6.

1, 4. SNC

@, 1 .
1, 1. SNC *
a1

. ERTZ

SHRF |

1. @

3 @

5 2

21

E‘) 1

SHFT 1,1
1, 1, SHE

1,4

@. @

1.1, SHC

&, 1

ERTZ

SHAF

1. @

%0

24

G 1

JtIF @RTZ

1. @

=06

=2

2,1

8,1

SHFT @, 1
1J 1; 5HC
1,1

@, a
1,4, SHC
@, 4 o,
erRYTZ -
SkAP

1.8

za

-

U PN

3
B

,

N G, :

-y



eBG7 FNTGY
(%% I
G2 PERE47125123
B OBIE57125400
64 @EIE6 125123
05 093ET7 125466
s
a7
o
69 OGE7EEeZoaT-
16 GE8I7TL 124Q00
11 :
12 . -
1% .
14 @@ITZCABZEZA "
15 GEITI 12522
15 BAEET4 L7006
17 BE37S74125223
18 0OIFS 167000
19 @E37TV 125223
o0 69368 187000
21 @ER4e1 12588
22 EE402 7167696 .
23 @463 L5203
o4 @ae46a4 167008
25 004057 aEIZaaET ~
o6 Badas” 124068 ¢

P
=26

-
"1 e
[ -

29

1@ 6EL07 102526
31 GE416° 125223
32 004117167060
3T @O T 1 TSRER
24 GO41371LOTEOE
5 0G414°12520%
5 G045 1678
%7 4167 125203
I8 AE41T1ETEB0

s

46 Ge4217 124600
49

4z

4z

44 @E4l22/16026520
45 084237125223
45 GEAZ47107688
47 @O425°12522%
45 06425 1687000
45 277125223
50 68643687 1607000
51 @BB43L” 862067 —
52 AR4327 124000
5 :

54

55

56 GBd4EI 1e2520
572 apaz4 125223
55 6B4357 1670080

' A59 @E4257125223

&8 OB4E7 167068

.

K4

2 God4zeseazesv—

1]

=

R

4

2.

MOWZL
1NC
MOWZL
INC

"SUBZR

MONZR
ADD

. IMF
. SLid;

SHFT
MOYZEL
IRC .
SUBZR
MOWZR
ADD
MOVZER
ADD

* MOVER

FIDD>
MCWZR
ADD
MOWZR
ADD
JHP

.5LAZ:

SHFT
MOVEL

. INC

SUR:Zr
MOWIER
ADD
MOVZIR
ADLD
MOMZER
ADD
MO ER
ADD
JMFE

. SLiX:

SHFT
MOWZL
INC
SUEZF
MOVER
ADD
MOWZR
ADD
MONMZR
ADD
JMP

=S I I 3

SHFT

MOWZL

IHC

 SUEZR

MW ER
ADD
HMOVZE
ADD

SHFT |
1,1, 5HC
11
1.1, 5RC

1,1

G, B

1,1, 5NKC
g, 1
ERTZ
cam

1.5

1,1, SHC
1,1

. &

1, 4. SHC
@, 1

@, 1

1., 1. 5HC
a, 1

1,1, 5HC
8.1

1,4, SHC

, 0.1

ERT2
COM
1.4
1,1, SNC
1.1
6, 6

J1, 4, 5NMC

a, 1

1. 4., SHC
@, 1
44, 5HC
g, 1

1. 1. SHE
G, L
ERTZ
CoM

N P

1,1, 5KHC
1,14
@ B

4.1, SHC

a, 4

o
4.1, 5HC
o, 1
ERT2
comM

1,2
1,4, SHC
L1

a, &

1,4, 5NC -

@, 1
1,1, SHC

N % R

6, 2

1.1,

1,1

1,4

1,1

101



8088 FNTE4

a1
@z
63
X
es
€5
&7
e
s
16
11
1z
A%
14
15
S
17
18
139
26
21
2z

5] B e Rgne laisis
AB4331.21246606
. 5R1:

04427162620
GE443712522%
aad4d 716706060
804457082607~ e

B

BE44E - @S4815~. DIT:
0447 624899 -
pedse1ez4a0 |
BHO451 7 848005~
B0452 024614
G453 843067 .
QE454 7 @4d4615—-
B455 7128520

GEd S5 a446831 -
Qo457 2ot~

. BE4c6a406830 -
0481 " @zaaz1~, DOLZ:

E452 05032
GE45Z/ 85601 -
Ge4e4 151100
BO465 " BSER3RL—
BE468 "1 B2466

QE4E7 - B40633-
OO47E 7 O26014-
@o4vL 46634~
B6472 7024035~
BE47I 1254060

Ga474 B44026~
e 75 @ROGIT -
E47TE - B5E027 -

BA477 - BZ4626- DOJS

BESOR a7 -

GEaoSEl 044@24—- DOIZ:

LRSGZ - eSBa22—
GEsSaz azeazz—
aESa4 716700
aes65 644825-
BaSs 113000
1G1G % PR G 12 e N
065167621069

} 8BSl 828025~

BE31271616635
Qeciz e02ez4-
BES14 1624680
BE515 7 046605~

. BOS1G G2EHDo—
BE5177 125604

865267 aaa43s
Ba524. - 8456664
GaS22 022824
BES2Z g004z1
OEE24 822022~ BG -
LBE5Z57168160685

ERTZ

TIMF

LSS o 1,1,

SHFT 1.1

MOWZL 1,1, SNC

INC 1,1 .

SUBZR €. 0 SRS

MOYZER 1,1, SNC .,

AL @, 1 : ”
ERTE

JME
SUBROUTINE . DIT .
TO FERFURM INWERSE FNT

STH = ACT

LD =, LEYT

SUEB e,

5TR « @, RT1

LDFA 1, SRE

‘5TR* 1, RTZ

STH . 1, RED

SUBZL 4.1 7 e s

STH 1, LE

LDA &, NE

5TH

LDA

5TH

STH

MO 2L

5TH

SUB

STA

LDH &, SR

5TA o, FFY

LDFC 1, K@
ulg‘ﬂ 1,3

L[:'F‘ . 2; HC.' -

5TA 2, JC

LA 1. J _

LI z.Jc T

STH 1,1

S5TH . 2,10

LA - BSLEL

ADD @, 1

STH 1, IF

ADD B, 2

STH 2, IFC

LDA G, B, 2

LDH 4, BIF

l"1C1‘-." E‘l; "31 S”R

JMF GRPMH

5UEB @, o

5TA 6, BT

LDA 1, ®IC

HU"." :1..) i) SZR

JMF .LFIZ

5TH 1, 6, 2

LDA 2, @3

JIMP .EX

LDF G, @1C

MO @, 6, SHR

102



-._,\"

. 9@03 FNTSS | . v -+ 103
@1 EES25” 0808485 - JMP CL.BL
B2 @B527 102486 SUE 8, &
@2 G530 ad2022- STH o, B1C
Bf BES3IL e46624- STH 1, @I
@S GE53271360660 COM 1.2
a@g BETRT oa@I21 /. JMF . B3
W7 ee534 e32024- Bl LDA . el
GBS GE535 7120060 L~ ¥ & N W =
G QES3IE 147822 ADDZ 201, 52C
16 GASIT eEEHEs . . JHF . BE *
11 GeS4a " LaS4ad INC 1.4, 5ER
12 QOS54 000484 JnF Bz
13 EES542 126526 © BUBZL 1.1 '
14 @ASYZO45822- STH A, BIC
15 OeS44” 126406 SUE 1.1
16 BE%S45° 048054 B2 STA 1. @1
17 @ES46-113622 ADDZ @, 2. S2C
A8 BOS4T0e0385 JMP B3
19 BESS07 151404 SINC 2, 2, 52R
28 @ESS51- 000463 JMF . BX
Z1 gESS2 162526 SUBZL |, @.9
22 6ESS3E42623- 5TH o, BIPC
23 OESSYG52625-. BX: STA . @IF
24 GBSSSSEZde24- LFIZ:  LDA 1.1
25 BESSS°0S6@31- LA & LE
26 OBSSVozZBazZI- LDA 2, 1
I7 BRSEH’A6TECE © ADD SHEY
2& eESei iiz@es . ADD ez, . »
29 GESSZ2 GZE036- " LDA @ BN :
3@ GESE31Z251T ‘BUBLE 1, @, SHC
I1 GOS647E0ETLS JHE ... DQIz
32, @ESE5OIEe3a- LDA 2K h\L_
33 OBSS5S5°GIEE33- LDA . P
4 GGSﬁ? 1 42E06 ALD =@
IS GBSVeO40633- =TH &, FH
136 GGSTl g M=k Bl MOWZR & @, @ SEC
37 BOSVE @063 JHP . RTz@
I8 OASPEEXOH1Z- LDA . SR ¥
X% EAST4 113600 AL a. 2
4@ BESTE’OZSE06 ©LDA 4, & 2
41 GESTSE’ 044034 5TH 1. AFH
42 BOSTT ELEE25~ 1HJ2: 152 J
4% 08500 E10927 - 152 Jc
44 @O561°a14621~ . D5Z HJ
45 GPSBZ- GBOGSTS JHF .boJz
45 GECHZ OZOBZ6- LDF K
47 Qo564 101229 MOWZR @, @
48 GRSES’B46030~ S5TH 8K
45 BESHET BZ4626— LDA 1, ML
S@ GESHT 125485 INC _4s s SHR
51 085187 082615 JHMF GEACE
52 @051l @44626- STH 4, ML ,
5% @E612/ 125404 1NC 1,1, 52R
54 GO61Z7BBG545 JMF . Dol
S5 00814’ 024@10- LDA 1, RT3
56 BPSLT  a44067 - STH 1 RTZ
S7 GRGLS/aEESYE JHF . poLz
AL
58 ;

59 ~ ; TO PERFORM DIVWIZION BY Ziewes MOD 655X



el FNTE4
gas1y eo4815— LY

g1
az
6z
@
as
(6]
ar
as
(S
16
i1
1z
ix
14
15

18

iy
ic
19
28
21

(e
e

2=
14

r-,p;
[

e
pad

(R ]
J

=

e
[ =)

}
X

3

=0
1
=z

—_

=5
4
=5
=&

-
2

Qes20 " BZoaLT -
ala]ted R c BT o o IR
fESZD AZEE3S -~
GHE23 - AZ4037—
HEEZY 174400
AESZS - L7 4660
aas¢s*1&:5:a
GEEET 151406
aab?a 175406
QOSZL - O2Sa00
[EE3Z2 12560
GRSITEaGILT
BOGRY - A2SO00
BODOGS
BEHEIS 125223
BESES1aT7 a0
BESIT 125223
GES4E - 1070600
GESIL 125223
OBE42 - 1aTEEE
GEE43 125253
GRGEIS - LETROE
OEE4S 125223
BASYS T LBTHAG
8964“ 125853
BSSE " LETOEE
GGGEL B45a6a6

BOS52 7 Q1L4azd -~ LV2

BESSE eeE754
gess4 " onzal 5

HESSD 128528 . RT2E .

BRETS 44605 —

BESSV EGREA1LE-

GES5Ee " 11Z2600
Gessl 151406
HEE5Z T EZ5SH60
EHRISY I e S b Tl 2 I B
AESS4 7 @oEyLR

.Y

GResT " B54E1 5~

BRESS 7126526
BASET  BE4EZT~
EB57E’ 136400
BESTL  BZO6ZS—
BES7Z B626617 -
ARETE BIDGZI—
BEGT74 7 A 7S465
BE57S 151406
slalrgctdslulslala
GRETT 101615
BIGTAE HBH410
GaveL 1ei112
clupguleddslstz Bl
GEVEZ 122460
Q0794 - a41000

LD

A

THDL ;

. TDhi:

. STH

LDA

- 5TA

LDA
LDA
NEG.
conm
SUBZR
INC
INC
Lba
Mo
JMF
LDA
DO
MOVER
ADD T
MOYER
RDD

MOWER

ROD
MOW R
RLD
MOWER
ADD
MOWZIR
RDD
STH
b=2
JhF
JMF
SUBZL
5TH
LDA
RDL
INC
LDA
5TAH
JMP

%, ACX
@, N

&, 1

3, HC

_<¢ :‘:

3%

¢, O

1, 6. %

1.1, 52R
. D
1,62

b‘

1. 1, SNC
G, 1
1.1, SNC
G, 1
1.1, SHG
a. 1
1.1, SNC
@. 1

1. 4. 5KC
NS P

1. 4. 5NC
£, 1
1.0, 8

1 .

. DwL
BRCZX
1.1

1, KTl
2, 5K

@,

~
LJ J

1.6, 2
1, AR
L IR3IZ

SUEROUTINE THDL

T0 FERFORM THO- S

4y

104

COMFLEMENT TO

DIMINISHED-1 CODE TRANSLATION

57H
SUEZL
LDA |
SUE
L.DH
LA
5TAH
INC
INC
LA
MOV
JhiF
MOY L $#
JMF
SOE
STA

=, ACZ
= B N
=, H\C
1. =
2, KE
&8, N
EJ

)

P Ll

[

12 Pl 7 PRy

E'J; EI) SIIF-‘:

. Tez

a. e, 520

L HE

1.
8,6,z




8011 -FNTS4

£,
G2
o=

- ad

a@s
as
av
aa
Sl
16

FEl
Az

13
1.4
15
16

AT

iz
19

¥
26

s
=
g
AN

T

[ S
e
=

s
foapen}

=5,

s
[

-y
o
~

pic]

28

1)

1]
T,

O O O N O S S P Y
o LT A ISR U (N I o B I BN T SO N Y 3 R

42
49
S6
sS4

-
o2

S4q
So
SE
=ty
55
55

(1=

AETAS 182406 | TDE :
Qaves’ 641360
ae“or'ana4a3
GEvie T 1B2520 | TD2
(STl R B 641496
BOTIZ HI4EZd—~, TDT:
GEVLZ BRaVEL
QETLIY  OEoOLS—

[

QETLs " C1‘=-4E1.1.\_-— DATW:

Gl a P SR« bl Tak ol
BATLV a46024 -
BET2ET 034637 -
Sl Pl g W u o
GRTEZ AV4e0a
QEVZE 0035~

BOT24 151460 [N T R

QEvISATEARG
GET258 821460
BET2V 181605
GETIOGOALOR
BaTEL 126400
OEvEZ - aasaT
HEFIZ AzSoon
BATZE4 125535
GBT“"GUH4G4
Lavzae Sa4z
a@"'“'a@ﬁ4a”
HEY46 125406
Ga7v4l 045060 Dlﬁ
LE74Z27 814028
515 P e s e barog)
BEVAL @O0 15—
CETYS @EE1IST. SLG -
66?46'986246’
Uavr4v - agazsz -
aarSh” aauzen
BEYSL G6azTa
BETSE BEEzas
BEYSZ aoaz1s -
BE7SY ERI3G -
BA7SS BERT41 7
OE7SES BEOZTLT
Qarsy Gﬁﬁ:S?’
@E?G@ BaazTA

15 o o R ] 5 RN T

= @evezranmdzl -

BRA7eZ B66432
60754 npa441, -
BO7C5 @085247. RO

T BB7SE” anE442

Eavey Bag43z "
ln g hgn o G bede by
o771 aa0407

SUE 6.0
STA @63
JHP LT
SUBTL o, 8
5TA 9, a3
LEE 1

JpiEe LT
JrE CRCT

SUBROUTINE DT
TO FERFORM DIMINISHED-1 TO

275 COMFLEMENT CODE TRANS LHTION'

STA . ACT . 4
LEF . M

STH o1

LDA X, ®O
"HEG P

COM 33

LDF SRR
1N N,

INCG | ILX

LD G, 6 X
Mo . &L SHE
JMF 4T

SUE 1.4

JME Do

LEDAH i, 6.2 ]
INCZL# 1, 1. SHR
IME ¢ D@
MOWLE 4., 520
JHF 4+

INC T

STH .6, e
o= 1

IMP D11

IMF EHCT
ADDRESS FOINTERS
i

.S

. 5LZ

.5LZ

S

. 5LS

. 5L&

. SLY

. SLE

. 5L5

. 5L10
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