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ABSTRACT

Steady constantly inclined flows in Magnetp_Fl d-

. : . V

; . ¥ . . . -
Dynamics are studied. .Also, some work is done for Electro-
. . % e

J : Ve
magneto-Fluid Dynamic Flows.' .
DAY '
o’ A .
We proceed to separately-outline the flow types

considered.

o

(1) Incompressible, viscous, perfectly electrically

conducting and consfantxy inclined plane flows -

-

Physical congitions are obtained for fiows.wifh,zero
current density‘aslwell as for irrotaﬁional‘flows. Complete
.éolutidns'and geometrigs are -determined for flows with‘an'rﬂ
isometric streamliﬂelpattern,. Flows for_which the magnepic.
lines and their orthogonal trajéctories form an isometric
net are completely solved. ‘"It is shown that the only permis-
sible straight line geometries are.parallei straight lines

and concurrent straight- lings. Finally, a uniqueness theorem

. is proved. . N /
(2) Compressible, nonviscous, perfectly elecfrically
conducting ;;d constantly inclined piane flows

A new syétem of flow équétidné’is obtaihed by elimin-

ey

éﬁing the maénetic field. Geomgtric impl?:ations, subject to
derived physical conaitions, are obtained for flows with
velocity magpitude constant on each.individu&l streamline

and also for sonic flows. & theoreg/;glating density,

i



: . .
pressure and the local speed of sound is obtained. It is

- shown that for sonic or subsonic flows, a flow geometry of

Y
-

concentric circ¢les or parallel straight lines always iﬁplies
constant:speed on each streamline. The sgecial case oﬁ" |
polytropié £luids is considered. Partial.sdlutions ;re
bbtained_fé: vortex flow and parallel straight line fiow.

>»
(3) Compressible, nonviscous and finitely conducting plane

‘flows

For floWS'with nonzers charge density, it is shown that
thé'current density is proportiomal to the vector product of
the velocity vector with the magnetic vector. Integrability’
conditiolis are derived for flows with nonzero current ?ensity.
Geomefrieé;are determined for irrotational flows, straight
line flows and flows whose streémlines are the involutes‘to_
a curvé. Partial solutions are obtained for incompressible
flows with an isometric streamline pattern. Isometric
aligned and isometric orthogonal flows are completely solved.

Some of the results for nonviscous flows are extended to .

- . o

viscous flows.

m) . iii
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CHAPTER 1

)

INTRODUCTION !
L ’ s,

]

A Historical Sketch

-

ﬁléctromégnetp Fluid Dynamics is the study of flows of
highly ionized fluids in the presence 9f an external électro-
-magneﬁic field. The interaction of the electromagnetic'field
and @he ionized fluid gives rise to mechanical forces which
-alter the fIﬁid flow. Many new phenomena occur due to the
interaction of the fluid dynamic and the electfomagnetic
forces. ' |

For many cosmic problems, the'energy id’thelelectric
field ié much. smaller than the energy.in the magnetic field.
These problems belong to the realm of. the well knewn -
Magneto Fluid bDynamics, which is_a subfield of the more
general Electromagneto Fluid Dynamigs. Astrophysici;ts and
Geophysicisté‘have long studied Magneto Fluid D;namic flows
in connection with problems such as sunspot theory and the
origin of the earth's magnetism. In recent years Magnetp\
Fluid Dynamics has been applied in engineering to the
construction of flow meters and electromagnetic pumps. At
present, it is being appiied in the design of direc£ energy
converters and fusion type Fhermonucleaf reactors.

The mathematical study of Electromagneto Fluid Dynamics

1 [
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is concerned primarily w%th the partial‘differential equations
which arise from the well known physical cqQnservation 1aw§.
Most of the research to date has been restricté& to Magneto
Fluid Dynamics in that the assumption of }hfinite electrical
conductivity is made. 8. Lunquist (1952) investigated un-
steady flows with infinite electricallconductivity. W. R.
Sears (1959) and E. L. Resler (1959) did some work in linear-
ized Magneto Fluid Dynamics. S. Chankrasekhar (1961) worked
on related stability probleéems. . . .

Due to the complexity of the subject and because it is
a reiatively new branch of dynamics, much'of the research

has consisted in isolating special flows which are accessible
via the éxisting methods éf-Fluid Dynamics., H. Grad (1960)
established the reducibility of a number of Mégneto Fluid
Dynamic flows to problems in Fluid Dynamics. Aligned flows,
Orthogonal flows and Transverse fioWs‘are examples of such
special flows. ‘ : . ’/

’ ; In éligned flow, the magnetic vector and the velocity

vector are assumed to be everywhere parallel to one another.

Steady aligned plane flows were one of the first flows

studied. Many of the results for rotational géSes are applic-

able to these flows. M. Vinokur (1961) and P. Smith (1963)
produced many resﬁlts for these flows. Chandna and Nath -
(1972) extended Prim's substitution principle to aligned

flows with an arbitrary equation of state.

!

FoF orthogonal flow, the magnetic vector and the velocity

vector are e#erywhere at right angles to one arother.

W TR Dty L Y A R T G L T e s L




.- Orthogonal flows of nonviscous fluids with infinite electrical
conductivity have recéived much study. Ladikov (1962)
obtained two Berndulli equations for such flows. Kingston
and Talbot (1969) completely classified the possible flow
configurations for the ‘incompressible case. Chandna and Nath
(L973) obtained a 'number of geometric results for the case
of compressible fluids. Orth&gonal flows of viscous fluids

" with infinite electrical conductivity were studied by G.
Power and his group (1965, 1967, 1969). They were able to
relate these flows to flows in ordinary .gas dynamics.' Nath
and Chandna (1973) used M. H. Martin's (1971) approach to
study such flows. M. R. Garg and O. P. Chandna have also
studied orthogonal flows. |

Plane flows are said to be transverse if‘the magnetic
field is normal to the plane of flow. H. Grad (1960)
derived two integrals for transverse flows. R. M. Gunderson
(1966) studied 51mple waves for transverse flows. O. P.
Chandna (1972) obtained a compatlblllty equation for such
flows. H. Toews and O. P. Chapdna (1974) derived a method
for solvin? the transverse flow'proﬁlem.

A variety of other problems in Magneto Fluid Dynamics
have been studied by K. B. Raﬁger (19695, J. A. Shercliff
(1953) and R. H. Wasserman (967), émong others.

- One of the few works in Electromagneto,Fluid Dynamics
to appear in the literature is by Kingston and Power'(1968).
They considered aligned flows and ;howe@ that the charge

density is zero or the magnetic field is irrotatiodgé-‘ Th
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both cases, they were able to obtain ?artial solutions,

5
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A -
B Outline of Current Work

L1

This work deals primarily with constantly inclined
flows in Magneto Fluid Dynamics. Constantly inclined flows

are defined as flows for which the angle between the velocity

constantly inéiined flows. Until 1973, there appears to be
no mention of flows corresponding to constantly inclinea
f;ows in the literature. J. S. Waterhouse and J, G. Kingston
in 1973 publlshed 2 paper on constantly 1nc11ned flows of.
incompressibile nonviscous fluids, In 1974, we published a
Paper on compressible nonviscous constantly inclined flows.
Slnce 1974, we have submltted three papers for publlcatlon
and M. R. Garg and O. P. Chandna have submitted one paper.
‘These papers d;al with constantly inclined flows of viscous
incompressible fluids and will soon appear in print. ’
| In addition to constantly inclined Magneto Fluid
quamic flow, the present work also gives some results for
Electromagneto Fluid Dynamic Flows. In this, the work of
Kinéston and Power (1968), is extended to honaligned flows.
We now proceed to give'ﬁfgg{;iled outline of the thesis.,
In section 1 of chapter II, we give the flow equations
for Electromagneto Fluid Dynamlcs. Also, in this section we -
list the Magneto Fluid Dynamic approximations and give the
resultlng system of equations. In section 2 of this chapter,

 we discuss some required results from differential geometry.
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Chaptér IIX deals with constantly inclined viscous
incompressible plaﬁe flows. In section 1, we indicate how
either the magnetic field or the velocity field may be elimin-
ated from the flow equations. Seétions 2 and 3 cqnsider
flows with zero current éensity and flows with zero vorticity
respectively. For both of these flows, we deri&e general
solutions and establish equivalent physical conditions. In
section 4 it is shown that the only possible straight stream-
line geometries are concurrent straight lihes or parallel
straight lines. Flows with an isohegric streamline pattern
aré considered in section 5. Using a complex variable tech-
nigue from Berker .(1963), general solutions are obtained for
the isometric flow problem. From the general solutions, the
possible geometries are found. - In section 6-a similar study
is done for flows in which the magnetic lines and their
orthogonal trajectories form an isometric net. Again ocomplete
solutions and geometries are obtained. Finally, in section _
7 it is shown that a flow is uniquely defined by the fluid
properties and the streamline pattern.

In chapter IV, we consider constantly inclined non-
viscous compressible flows. In section 1 the magnetic field
is eliminate? from the flow equations and the resulting
equations agé transformed to natural or streamline coordinates.
In section 2, we study flows with constant speed on each
individual streamline. Physical conditions are derived,

which relate these flows to flows whose streamlines are

concentric circles or parallel straight lines. In particular,



—
; \
it is shown/that:

(i) for polytropic gases, the geometry of these flows
is always concentric circles or parallel straight lines.

(ii) 'a sonic or subsonic flow, with a streamline pattern
of concen£rfc circles or parallel straight, lines, always has
constant speed on each individual streamline. |

In section 3,/@e establish physical conditions which
relate sonic flows to flow‘geometries of concentric circles
or parallel straight lines. Also, we derive relationships

. ae
between the fluid pressure, the fluid density, the local speed
of sound, the velocity and the vorticity. 1In section 4 of

this chapter, we obtain partial solutions for vortex flows

and parallel straight line flows.

Chapter V deals with finitely condgcging flows. 1In
section 1, we eliminate the'electrié field and the current
density from the flow egquations. Also: in this section, we
show that for flows with nonzero charge density the current
density is proportional to the vector product of the velocity
field with the magnetic field. Several integrability conditions
for flows with nonvanishing charge density are derived in
section 2, .In section'B the possible geometries, for flows
with straight streamlines and flows whose streamlines are the
involutes to a curve, are determined. In section 4, we
derive the possible geometries for incompressible irrotational
flows. Flows with an isometric streamline pattern are *

considered in section 5. These isometric flows are partially

solved in the general care and completely solved for the



8
particular cases of aligned and orthogonal flows. Finally,
in Section 6 we briefly consider the case of finitely

conducting viscous flows.



CHAPTER II

PRELIMINARIES

Section 1. General Equations of Electromagnetogas-

dynamics and Magnetogasdynamic Approximations.

Equations of Electromagnetogasdynamics

The fundamental equations governing the motion of' an

electrically conducting gas as given by Pai (1962) are:

%% + div pv = 0 (21.01)

(Conservation of mass)

-+ . .
av -+ -+ _
Pag + P (v » grad) v + grad p =

divt+ pJxH +qbB (21.02)
”tj o (Conservation of linear momentum)
| p %%— + p (Vv - grad) e = ~p div $l + ¢

+ div. (g grad f) + 12/0 ‘ (21.03)

»

{Conservation of energy)

oF o ®

e -+
-+ a+ |
curl E = -y 5% (21.05)
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(Maxwell's equations)

I = o(E + uvxi (21.06)
{(Generalized Ohm's law)

3 - .

se + divJ = 0 (21.07) -

i 4
{Conservation of Electrical Charge)
o = o (p, s) (21.08)

(Equation of state)

- where T denotes the stress tensor, v the velocity, H the
magnetic intensity,.ﬁ the electric intensity, J the total
electrical current density, I the electrical'conduction
current, p the éas density, p the pressure functioﬁ, s the
specific entropy, g the charge density, e the specific
internal energy, ¢ tﬁe viscous‘dissipation; T the abéolute
temperature, x the coefficient of heat conductivity, o the
electrical conductiéity, ¢ the constant magnetic éermeability
and ¢ the constant inductive capacity.

If v = (vl, Vo v3) and v is the kinematic coefficient
of viscosity, then the components Tij of-thestréss tensor

1 and the viscous dissipation ¢ are given by:

av. av. . v

T,. = pv i i T K
13 (Exj + axi) 3 ExK Gij
‘ (21.09)
oV, .
s = T, =
ij §xj _

where 6ij is the Xronecker delta.
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Taking the divergence of both sides of (21.05) gives
3 - - . . et -
e (div H) = 0. This implies.that div H'is constant
relative to time and consequently the magngtic field is

usually assumed to be solenoidal.

Magnetogasdynamic Approximations - -

The theory of magnetogaédynémics maKes the following
three assumptions: ‘
(1) The time scale of the phenomena is of the same order
of magnitude as L/U, where L is the éharacteristic length
and U is tge characteristic velocity.

{2) The épplied electric field is of the same order of

magnitude as the induced magnetic field.

(3) The speed of the flow is much smaller than the speed of

light.
Subject to these assumptions, equations (21.01) to

(21.08) are replaced by

. %% + div (p¥V) = 0 (21.01)
p = p (p, 8) - : (21.08)°
%%. = curl (5 xﬁ) - curl (cufi ﬁ/uo) (21.10)

%%- + (v - grad) v o+ % grad p

‘% (curl H) x H

+

% (@iv ) (21.11)

D
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»

P [FEE + (v - grad) ho] = %E + div (Vv - 1) +
div (k grad T) + (curl ") . [ (curl ﬁ)/c- -
p v x A (21.12).

where h, = e + p/p + % |¢|2 is the stagnation enthalpy
of the gas. L
If the fluid of the flow is incompressible the linear

momentum equation (21.11l) is replaced by the following

Navier Stokes equation: T~
-
av * -+ 1
et (v » grad) v + E-grad p =
Lotcuri B) x B+ v v 3 (21.13)
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Section 2. Results from Differential Geometry

Orthogonal Nets in the x - y Plane

Let

x = x(a,B8), vy = y (a,B) ~ (22.01)

define a system of orthogonal curvilinear coordinates in the

Ay . .
X - y plane, If hl (o, B) duz and h2 (a,B) de are the squared

components of the vector of arc length, we have

2 2

as® = h, (a,8) de* + h, (a,B) ap? (22.02)

1

where ds is the arc length in the x - y plane and h1 (ae,B),

h2 {(z,B) are given, by

L ax.\ 2 L9y, 2
hy (a,8) = (32° + (5D °,

Y

_ gOx
hy, (0,8) = (5 + (5D

58 (22.03)

The necessary and sufficient condition for h; (o,B) and
h, (a,B) to be the metric coefficients of an orthogonal
curvilinear net is that they satisfy the Gauss equation

3 1 9vhy

by (/Eé _EE—)

a/Hé

Ja

- - 0 (22.04)

3 ( 1
L) /Hi

The invertibility of the transformation (22.01) implies

ax _ .98 dx _ _da dy _ _-38 2y
5c - Y5y '-38 ~ Yoy ‘% Tox 1 38
da : ' (22.05
I5% ‘ -03)
N 3(X,V) | . . .
h J = ! the Jacobian of the transformation.
w.ere |s—(a—'%)—l 1S e
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Tﬁe Jacobian J is related to the metric coefficients by
J° o= hl h2 | (22.06)

Letting 2 = x + iy be the complex variable, 6 the

angle of inclination of the B = constant curves to tﬁe

positive x-axis and e1® the unit tangent vector to the

B = constant curves, we have

32 - /B, e*®, 3% = ivh,e® (22.07)

Imp031t10n of the integrability condltlon E_FF'-=

%%5& in '(22.07) yields

50 _ 1 My 55 3 9, : (22:08)

3¢ ~ "33 % '3 - T 5 |
From (22.07). and (22.08), we obtain the following form

for the transformation from the a - S plane to the x - y

plane '
3h 3h
1 2 1
°o =J 27 oa 98 - 3p 4
} i (22.09)

z = f i® (VE, do + i /H, dg)

Isometric Nets

An orthogonal curvilinear net is said to,.be isometric
if the metric coefficients h1 (a,B), h, (o,B)are everywhere

equal. Thus, we have

hl (a,B) = h2 (0,8 = h (a,B) . (22.10)

where h (a,B) is the common value.

L i
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Using (22.10) in (22.03), (22.04), and (22.07), we

obtain
h (a,8) = (%%)2 + (%{-)2-= (g-g)”w (5}%),2 (22.11)
L (% %%. + %E (% %%a = 0 (22.12)
\ %g = /ﬁ cos O, %%- = /H cos 6
| } (22.13)
%% = QH sin 0, %%f = -/h sin ©

Equa;ion (22.13) yields the Cauchy Riemann conditions

3x _ 3 y _  _9x .
= = g%'- 5%. = -5 : | (22.14)

: \ _
The Cauchy Riemann conditions expressed by (22.14), and

aa 3’ 9B 9B ) ) .
‘;the fact that 3% ' 3y [’ 3% and 3y are all continuous functions,

implies that f(z) defined as . - I

£(z) = a + iB (22.15)
N ) ' -

is an analytic function of z. ‘

By (22.05), (22.11) and (22.14), it follows that

: Y 2 :
2 _. 3¢ 38, _ 1
£ @ | = (50 + (5 = F (22.16)
. b

There , the inverse of (22.15) is also analytic and

consequently 2z is an analytic function of a + iB.
. Letting ¢ be the argument of f'(z) and using (22.16),

\

we obtain

In [£'(x)] = -5 Inh+ iy - . (22.17) _
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Differentiation of (22.17) with respect to z gives
' ] - .
'E—-—éz;—).=g—f[—11nh+mwlf'(z) *

4

or

[g;%é§%z = &0 -Fnh+iy) . (22.18)

. Ty (. : :
Since T%TTé%%z is an analytic function of f =o+ iB,'
_ it follows by applying the Cauchy Riemann conditions to the

right side of (22.18) that

Lrl - gy o+ i oo {22.19)

Summarizing these results, we have the following Lemma:
Lemma 2.1
If £(z}) = oflx,y) + iB(x,y) is a complex function so

that the curves o = const. and B = const. generate an

isometric net, then f£(z) = a(X,y):.t i B(x,y), z(E) =
x(x,B8) + i vy (a,B) are analytic functions of z = x + 1y,
E = a+ i B respectively and, furthermore,
(1) £''(2) 1 ah 1 dh

- = - + 1 o (22.20)

(£ (2)12 7R b w0 ‘
(ii) 9wy _ oW, 3N, o 3W,

e~ 3B oa 9B

where (22.21)

w = .l o w = 1 ‘3h

1 2h 3 * T2 Zh 3B

and h (a,B) is defined by (22.11).

]
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We next consider an arbitrary harmonic function V
and show that the orthogonal net, generated by the ¥ =
- *‘
constant curves and their orthogonal trajectories, is

v

isometric.

| fﬁince Y is harmonic,\;éxhave////ﬁv
e R
sz By2 . . .
or
3 9%, _ 98 _ , _ 3y

»
Equation (22.22) 1is the integrability condition for

iy

the harmonic conjugate ¢ of ¥, given by

_oav ay @Y
= 2, F -5 , (22.23)

S Y
b

From (22.23) and (22.05), we obtain

ap Y dy 3

% ox * 3y oy - ° ) (22.24)
2 Ches 1 2 2 2
X _ (9Y, 3y _ 40X

Equation (22.24) implies that the V¥ -¥ net is

orthogonal, and (22.25) that it is isometric.

"'7%._
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« Orthogonal curvilinear net generated by tangents and

involutes to a curve T

Letting T be a curve in the W

x;y plane, © the angle the tangents

\P(x,y)

N
rd

to I make with the positive x axis,

O a fixed point on I', we have

x. = x (8§) + (£E-6) cos ©
' ' } (22.26)

y = ¥ (8) + (£E-8) sin @

where (x (S), y (§)) are the generators of T in terms of the
arc length s from 0, § is the arc length from O to the contact
point of the tangent through (x,y) and E =4 4+ TP is the
string length used to generate the involute I through (x,y).

VR |

Applying Frenet's formulas ,

-+ - -+
Lo T, o1 (22.27)
i :51 . ds ds

4 (where £ is the unit tangent, 7 the unit principal normal

and R the radius of curvature), to (22.26), we obtain

’

g% = cos O, g% - sin 0, g% = % S (22.28)

It follows from (22.26) and (22.28) that the squared

element d§2, of arc length in the x-y plane, is given by

at? 4 (Eﬁi)z as?

or | f (22.29)

ds% = ar? + (£-6)2 ae?

as2
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Since £ is constant on involutes and 6§ is constant
on tangents, the metric coefficients, for the orthogonal net

generated by the tangents and their involutes, are given by

(22.30)

N



CHAPTER IIl1

CONSTANTLY INCLINED INCOMPRESSIBLE FLOWS

Section 1. Flow Equations

The steady motion of an incompressible, viscous and

electrically conducting fluid is governed by the equations:

divv = 0 : (31.01)
« - grad) v o+ % grad p = v V2 v o+

% (curl H) x B (31.02)

FJ = curl® =0 (E +u v x H) (31.,03)

curl E = § . (31.04Y
-

div i = 0 (31.05)

-

For fluids with infinite electrical conductivity, on

eliminating E between (31.03) and (31.04), we obtain
curl (v x H) =0 ' (31.06)

In this chapter, we study infinitely e;ectrically
conducting, nonaligned and steady plane flows for which the
magnetic field vector lies in the plane of flow, and the
angle between the velocity vector and the magnefic vector

is constant throughout the flow.

20
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Assuming ¢ # 0 to be the constant angle between v =
(Vl, VZ)' 0 = (Hl, Hz) in the (x, y)-plane and employing

~ (31.06), we get
V,Hy -V, H = VEsing¢ = A : (31.07)

where V and H are the magnitudes of the velocity and magnetic

intensity vectors, and A is an.arbitrary non-zero constant

due to the exclusion of aligned flows. S
Equation (31.07) implies the existence of a constant

B such that

H = VH cos ¢ = 'B . (31.08f

\' 2 .

1 B Y

where

B = A cot ¢ and v gt = A% 4 52 ' (31.09)

r

The constant B is zero if and -only if ¥ and H are

‘everywhere mutually orthogonal.

Solving (31.07) and {31.08) for v and ﬁ,we have

»

" ' (31.10)

v = 5-2 Hxk + 52
H H

Eo= 2 kx¥ o+ §2$ (31.11)
v ' v

where k is the unit vector normal to the plane of flow.
Equatiohs (31.10) and (51.11) may be used to eliminate
either v or H from the basic flow equations.
The flows under consideration are solutions to equations

(3r.01), (31.02), (31.05), (31.10) and (31.11). Having solved

A
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for 6, H and P, £ and 3 a}e given by

-
E

- >
- uv x H,

¥ = curl (31,12)

-

i i s tecn e i e i e e e
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Section 2. Flows with Zero Current Dénsity

In the first part of this section, we derive the
necessary and sufficient physical conditions for flows with
zero current density. In the second part, we obtain the

general solutions for such flows.

Part I: Physical Conditions

Employing (31.10) in (31.01) and using (31.05), we

have

giv @ x¥) =Z2gradailnum- AHExK+Bf)  (32.01)
or

% = Zgradlnu- AHxK+BH (32.02)

Using (31.01), (31.09) and (31.10) in (32.02), we
obtain

2, .2
J = LE—&%lLl- grad (lé) . v (32.03)
; |

where |J| is the magnitude of the current density at any
point in the flow region.
From equations (31.09) and (32.03), we can state.the

following result:

Theorem 3.1

For constantly inclined, steady, incompressible plane
flow of a perfectly conducting fluid, the current density is

everywhere zers in the flow region if and only if the velocity
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magnitude and, thérefore, the magnetic intensity magnitude
are constant on each individual streamline.

By (31.12), we have the following corollary to this

theorem.

"Corollary 3.1

Flows of Theorem 3.1 are force-free, have constant
electric intensity normal to the plane of flow and the total
energy per unit volume remains constant on each individual

streamline,

Part II: Solutions

Since we want to obtain general solutions for incom=
pressible flows with zero current density,‘equatidns {31.01)

and (32.03) give

sV

ax

1

. - 0 , - (32.04)

, Ay 'avz A , OV, .
Vite tViVa Gt ot o) vV gy =0 (3209

Eliminating A between (31.05) and (31.11), we £find

, 3V 3V, 3V
1 2 2 1 2
AL2V) Vy g+ V" - V) (gg= + ) -
av, , AV, av,
1
Wy v 2 2. 2V 3V,
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Using (32.04) and (32.05) in (3?.06), we obtain
v A Vv
1l 2 2 1l 2
2 vy Yy 5% ¢ (V2 -0 Gt T
BV2 .
Vl V2 v = 0 (32.07)
BV2 BVl )
Substitution of Y = —m from (32.04) into (32.05)
and (32.07) yields
' v v, v
2 2 1 2 1 _
(Vl - V2 ) % + Vl V2 (-;a—}?— + W’) = 0 (32.08)
Vv 3V Ay
: 1 2 2 2 1, _
4 Vl V2 5;—-+ (V2 - Vl ) (52—-+-$?4 = 0 (32.09)

Equations %32.04), (32.08) and (32.09) imply that V.,

v, satisfy
Vl = Vl {(y) )
v, = v, (x) -(32.10)

J

vl‘ (y) + v2' (x)

|
o

.

Integrating {(32.10) for v, we obtain
v, = Cy + Dy Vv, = -Cx + Dy | (32.11)

where C, Dl and D2 are arbitrary constants.
Taking the curl of (31.02) and using 3 = 3, we obtain
the following'integrabiiity condition for the pressure

function

carl [ 3 % (curl $)j+ v curl (92 91 =0 ¢ (32.12)
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The solutions given in (32.11) satisfy (32.12).
Therefore, (32.11) gives the general solution far v of
our flow problem.

Employing (32.11) in (31.02) and using 3 =0, we

obtain
3 P _ 2 -
= (5) = ¢x-CD ) &
' . ' } | (32.13)
LB = c? | oo
5y (p) = C°% + C Dy

Integrating (32.13) r we find that the pressure function
is given-by
(x, y) = C®0 (x2 + y%) +.Cp (Dyy - D,x) + Dy (32.14)
pi, y) = G2 2+ ¥R +,0o (y - D) + Dy -
where D, is an arbitrary constant.

B
Using (32.11) in (31.11), we cbtain

. C(A}C+By)+BDl—AD2
H, =
. .C2(x2 + yz) + 2C (Dyy - D,x) + (Dl2 + Dzz)
C (py - Bx) +AD) +BDy 1(32.15)
H2 ) 2 2

Cz(:;:2 + y2) + 2C (Dly - sz) + (D1 + D
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Section 3. Irrotational Flows

In this section, we obtain the physical implications
of flows whose vorticity vector field vanishes ingthe flow
region and obtain the general solutions for these flows.

| For the flows of this chapter i is given by (31.11)..

Substituting (31.11) in (31.05) and using (31.01), we get . -

aiv (v x %) =-2gradlnv-@kx3+3%  (33.01)

. BY vector calculus,

div (v x ¥) = ¥ x g (33.02)

b |

where » is the vorticity vector.
Using (31.05), (31.09), (31.11) and (33.02) in
(33.01), we find

: 2 2
W = - (_Bl_%p‘;l. grad (iz) . -I-’i (33.03)
H

where |w| = |o].

From relations (31.09) and (33.03), we obtain the

following theorem

Theorem 3.2

For constantly inclined, stgady, incompressible plane
flow of a perfectly conducting fluid, the flow is irrotational
1f and only if the velocity magnitude and the magnetic
intensity magnitude are constant on each individual magpetic
line. |

In order to find the general solution for these
irrotational flows, we express (31.05) and (33.03) in the

following equivalent forms
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2
= * T = 0 (33.04)
9H 9H, 9H 9H
2 °71 1 2 2 Y2
H)® »=——+ Hy H, (-ay—-!- ) + Hy' i o (3_3.05)

!
Vd

Employing (31.10) in (31.01) and using (33.04),

(33.05), we get

3 9H,  9H
1 2 2 1 2
2 H) Hy so=+ (Hy" - H)7) (557 + 557) -
3,
2 Hy Hy g = 0  (33.06)

- Equations (33.04), (33.05) and (33.06) in H are
iden¥ically similar to (32.04), (32.05) and (32.07) in V.
Solving (33.04) to (33.06) in a manner similar to the method

of section 2, we obtain

H = Ky + Nj, H, = -Kx +N, | (33.07)

where K, Nl and N, are arbitrary constants.
Taking the curl of (31.02) and using w = 0, we find
the following integrability condition for the pressure

function
curl [(curl H) x H] = © (33.08)

Since the solﬁtion given by (33.07) satisfies (33.08),
it constitutes the general solution for H to our irrotational
flaow.

Employing (33.07), (31.09) and & = 0 in (31.02), we

_‘obtgin

AT T S T T
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. 2 2
3 py __d (A° + By, _ 2n I
5;-(p) = X ( ——;Ei—— ] 5 (Kx NZ) .
(33.09)
2 2
3 . _ 93 ¢ A"+ BT, _ 2u
3y (%) = - 37 [ “—;Ef—— ] 5 (Ry + N,)
Integration of (33.09) yields
- 2 .2 2
) p(x, ¥) = N3y -K'p (x* +y7} +2Kp (N)x - Nyy)
- o (a2 + 8%
' 2, 2 2 2 2
b : -
2 K"(x" + y7) + 4 K (le . Nox + 2 N, o+ 2 N,™)
(33.10)
where N, is an arbitrary constant.
Using (33.07) in (31.10), we obtain '
' K (By - Ax) + B N, + A N
1 2
Vi ¥ = ey —7 )
K°(x™ + y7) + 2 K (le - Nzx) + (Nl + N,)
B N - AN, - K (Ay + Bx)
2 1
V2 %iY) = oy ) .
K7 (x" + y7) + 2 K (Ngy - Nox) + (N} + N,7)
) (33.11)
v
g
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Section 4. Flows with Non-Parallel Straight Streamlines

In this section, we study the question whether the
only possible non-parallel flows with straight streamlines
are source flows. To answer this guestion, we assuﬁe that’
the flows are not parallel but envelope to a curve I'. We
take the streamlines and their orthogonal trajectories, 'the
involutes of T, as the system of orthogonal curvilinear
coordinates., Taking £,8 and © as in section (2.2), we have
e constaﬁt on the streamlines and £ constant on the involutes
of T.

Letting (£,0) be the natural net for our flow, we

have that the squaﬁed element of arc length is given by

2 2

das® = at 2

+ (£ - 6(0)12 ao (22.29)

and, therefore the metric coefficients are
. . a
h1 = 1, h2 = § - § {(0) - (22.30)

. If El, 32 are the unit tangents to the tangent lines

and the involutes of T respectively, it follows by (31.11)

that
+ e
v = v el
© (34.01)
> 1 - - R
H = T {B el + A ez)

Using (34.01) in the continuity equation and the

solencidal condition on ﬁ, we find

%E [(E-8) V] = 0 (34.02)



3 31

) (£ -8) 1 _

~ Equation (34.02) implies that
‘ _ _f®) - :
v = T—_gj— (34.04)

where £ {0) is an arbitrary integrable function of 9.

Substituting (34.04) into (34.03), we obtain

§' _(9) e 2B _ Af'(0) , _
A )] + (8 £) [f(@) " (e)}2 0 (34.05)
\,
Since g and O are independent, (34.05) implies
A 80 _ 2 A£(0) 0 (34.06)
£(ey ~ £ Z :
_ {£(0)}
‘ »

In view of the fact that A # 0, (34.06) implies that
§'(0) = 0. Therefore, by (22.24) the radius of curvature of

I' is everywhere zero and this proves that:

Theorem 3.3

2\ For a;ngﬁﬁantly inclined, steady, incompressible flow -
of a perfectly conducting fluid, the only possible straight
streamline patterns are parallel sﬁrgight lines or concurrent

straight lines.
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Section 5. Flows with Isometric Geometry

In the first part of this section, we derive general
solutions for flows with an isometric streamline pattern.
In the second part, we classify these solutions and identify

the corresponding gecmetries. -

Part I: Solutions

Let
x = x({a,B)

' {35.01)
y = yl(a,B)

define a system of isometric curvilinear coordinates in the

“plane of flow such that the B(x,y) = const. curves represent

the streamlines and the a(x,y) -~ const. curves represent
the orthogonal trajectories to the streamlines. Letting 31
be the.unit tangent vector to B = const. in the direction
of increasing a, 52 the unit tangent vector to a = const.,
h(a,B) da2 and h{o,B) d82 the squared components of the

vector element of arc length, we have

V4= V(a,B) & S (35.02)
B : ',
as2 = h(a,B) [da® + dg2) R (35.03)
where_h satisfies
5 1 3h. . 3 ,1 3h, _ :
5« F 5@ *58 k3@ - O . (22.12)

Substitution of (35.02) into (31.01) and (31.11) yields

3 ~ |
T (vhv). =0 : (35.04)
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iy
i

<
o+
+ A

<[
0+

2 (35.05)

Eliminating H between (31.05) and (35.05), we obtain

3 J/H 5 /A, _ ' '
Since J = curl H, equation (32.03) implies that
2 (82 + 2% 1 N
curl H = [__——K__—" grad (—2) + V]l k (35.07)
v

Using (31.01), (31.11) and (35.07) in (31.02), the

linear momentum equation takes the form

-+ > " Y Bz + Az :
(v = grad) v + grad (%) =vVvZva+l {__EK___ grad
@ ) +
Epy + v BEkxV -2V} (35.08)
Employing (35.02) in (35.08), we find
' 2 2
av 13 9 109 2u (A" + B v
Vgt s 55, = vyr 557 (VE V)1 + o S
(35.09)
v 0 AY 1l 3p _ 3
7E 55 (YEVv) -V 5E " 5 5%-— H _E (/H V) }
+2uB (a2 + B3 v
A p v3 0
{35.10)

Equations (35.04) and (35.06) are two ecquations in V
and can be employed to solve for the velocity'field.
However, the solution thus obtéined must satisfy the inte-
grability condition for the pressure function which is

derived by taking the curl of (35.08). Having obtained v,
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we solve for the pressure function and the magnetic field by
employing (35.09), (35.10) and (31.1l). .

It follows from (35.04) that

.

V(a,B) = %ﬂ (35.11)

where Y (B) is an arbitrary differentiable funCtion_of B.

, Substituting (35.11) into (35.06) yields

3 ,.h 3 .h _ |
.B e (W) + A 3 (W) 0 (35:12)
or |
- Ay'(8) :
AW, -BW = N TION (35.13)
= 1l 35h 1 9h
where Wl =~ 3% 54 ¢ Wz = %h 3§ °

By Lemma (2.1), W, + i W, is an analytic function of

@ + 1 B, and therefore

awl 3W2 , 3W2 _ oW

_ _ 1
T = 38 e = 56 ‘(35.14)

Differentiating (35.13) with respect to «, we obtain
oW oW '
2 1
Agg "~ Bggr =0 (35.15)
Combining (35.14) and (35.15), we find the following

uncoupled first order partial differential equations
oW, W,
A -a—g— + Ja = 0 (35.16)

o

(35.17)

w
a2
S-f]z
[
]
w
d
I
o

TR T L T D



Therefore, the characteristic curves for Wl'
given by

dg  _ de

y B }

dg _ _ da

A A -
respectively.

35

W2 are

(35.18).

Integrating (35.18), the general solutions for W, and

W, are given by
Wl (G'B) = gl (Aa - BB) }

W2'(a B)

Il

gz(AB + Bo)

1

{35.19)

where g, and g, are arbitrary differentiable functions of

their respective arguments.

Defining £ = Aa - BB and n = AR + Ba, it follows that

the transformqtion Jacobian from the (u,B) - plane to the

(€,n) - plane is given by

2, .2
J = [g(g el = A%+ m

(35.20)

Since A # 0 for our flows, it follows from (35.20)

that £ and n may be taken as independent variables.

Using (35.19) in (35.14), we get
Wt gy = W' ()
Therefore, we have

1r Wy = C(AR + Ba) + C

Wy = C(Ax - BB) + C 2

(35.21)

.(35.22)



where C, Cy and C, are arbitrary constants.

Substitution of (35.22) into (35.13) and use of the

definitions for W;, W, yields \ l
‘ 2 (nm = 2C (B8 - A -2C
%E kln hy = 2C (A8 + B;) r2¢, (35.23)
& nw = %C—(A2+BZ)B _3_;(:_1_+_2 c,

Integration of (35.23) gives

h(a,B) = exp {AC (g2 -a®) + 2 CBuB + 2Cy B

-2 Co # Cy} (35.24)
p(B) = exp {% a2 + 8% 8%+ (2 C, 2BCyp

+ Cyl (35.25)

where Cg and C, are arbitrary constants.

The solutions given by (35.24) and (35.25) satisfy
(34.04) and (35.06). However, these ;olutions must also
satisfy the intggrability equation for p (a,B)'ob;aiqed frqm

(35.09), (35.10) and given by

2

2
0 v 3 9 d 1 9
7 {— B (vh ) -v (;;2' + -a—?) {H 36 (/H v)}
2'1! 2 2 a 1 v B 9 1 3V _
- —p (A“ + B%) {-5'—8- (‘73 ﬁ) + T (‘73 -sa')} = 0 (35.26)

Eliminating V (ea,B) between (35.11) and (35.26), we

£ind that ¢(B) and h (a,8) must satisfy
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. (L 2h W't Ler (L 3
vy {h2 T S 2y {h2 381 *
2 2 : 2, 2
2 1 3¢ 1 p(a° + B°) n
p'o{—, (&) + — (5]} -
502 h 382 h 2 aop wz
2 2 ¥ -
22 3°h 2B 3“h _ 4A dh Y', _
We note that
22 4, .2 (L 3 _ 13 (13h 1 (3b 2
.2 W "% 23 T "R hic =3 5 ]
o h h
and | (35.28)
22 1, .3 (1 dmy _ 13 (1dh 1 (2h? J
g2 b 9B "2 3B R 38 'R3B ~ ;3 '3F

Adding the equations in (35.28) and using {(22.12), we

obtain
2 2 2 2
9 1 3 1 1 2h 2h ;
() + (2 = = [(=) + (57) ] (35.29)
202 B a2 B pd oo a8

Substituting (35.29) in (35.27) and multiplying the

resulting equation by h, we get

1 sh 1 3h

‘JJ‘JJ'{H E} + v [lplll - 2 wll {H FB—-} +
2 ' 2 2 ,
' 1 3h 1l 3h,2 (A" + BY)
p' o (H ﬁ) + (H FB') o- —Z2Ap . (35.30)
n’ 22 °h 283’ _4AQhy'y = O
;I h™ 303" h 7,2 h™ 3a ¢

Employing (35.24) in (35.30), we find

Yy ' (2 BB -2ACa=-2C)) + vyt -

2v y'' (2ACB + 2B Ca + 2 Cp) + Vv §' { (2CBR - 2ACa -

4u a2 + B
Ap wz

:l/,/”“

2 cl)2 + (2ACB + 2BCa + 2 02)2} -
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t? (BCB8-~ACaQ- ¢, a®cp+Bicp+a c, - B Cp)
1
- é%— W (BCB-ACa- c)t = o (35.31)
Differentiating (35.31) thrice with respect to a,
we obtain

23 2 2 2 |

x5 [h" (BCB-ACa - Cl) (A" C B+ B CBR+ A CZ -

o ' '
3 .

- Ay’ 9 2 - - =
B Cl)] 7 .;;F [h® (B C B ACa Cl)] = 0 (35.32)

Using (35.24), (35.25) in (35.32) and simplifying, we _

have
2 2. 4
{c(a® + B°) B + AC, - B cl} {16{(BCB -ACa - cl)
L2 2 .2, _
- 24 A (BCB<-ACoz=-Cy)" +32a%°C°} = 0 (35.33)

Eguation (35.33) is of fifth degree in a, B and is
satisfied throughout the flow region. This réquires that all
its coefficients must be zero. In parﬁicular, equating the

coefficient of a48 to zero, we have

A a?+s%) = o ' (35.34)

1
. . .

Since A # 0 and (35.34) must hold true, we find that
C = 0. Setting C = 0 in (35.33), it follows that for our

flows the constants Cy and C2 must satisfy-
Cl (A.F':2 - Bcl) =0 (35.35)

If C = 0 and (35.35) is true, (35.24) and (35.25)

L
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satisfy equation (35.31). Therefore, we have the following

theorem:

Theorem 3.4

If the natural net is isometric in a steady incompres-
sible viscous perfectly conducting constantly inclined non-
aligned plane flow, then the metric of this net, the flow

L]

speed, the magnetic intensity, the current density and the

electric intensity are given by

" h (a,Bf =.exp {2 C,B - 2 Cja + C3},

1 2BC1
Vv (a¢,B) = exp (C4 -5 C3) exp {(02 -—-K;——) B + Cla},

2BC

B (a,8) = [exp (3 Cy - C,) exp {(—gp—= - C,)B

-+ -+
c, a}] (B e, + Ae,),

2 C
J (a,B) = «_K_l (A2 +le) exp (fC4) exp {%

(BC -2 CZ)B} x

and

E =-uak | : (35.36)

where the constants Cl and C2 must satisfy (35.35).
The pressure function has no general form and will be

deriveﬁﬁnggg;aféiy in the next part of this section.
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Part II Classification and Gecmetries

For flows with an isometric streamline pattern, C = 0
and Cl; C, must satisfy (35.35).  Therefore, we have one of

the following three possibilities:

B

(i) ¢ =0, Cl # O_and C2 f Y C1

il

(1i) C 0, ¢, = 0 and C2 # 0

1
(iii)c = Cy =€ = 0

In order to determine the geometries for these three

flow types, we employ the following formula from Lemma (2.1)

, Ete)) W+ W, (22.20)
[£'(z)] :
where f(z) = a + i1 B.
Using € = 0 and (35.22) in (22.20), we obtain
£(=) c, +ic, (35.37)
[£E'(z)]

Integfating of (35.37) with respect to z yields

‘ET%ET = (¢, +ic,) (z - D) (35.38)

where D = D, + i D, is an arbitrary constant.

1 2
For possibilities (i) and (ii), c, +ic, #0, and

(35.38) .may be inverted to give

; - 1
£'(2) = - e F Ty T (35.39)

Integrating (35.39), we get
1

f(z) = (CI ) Cz) In (z - D) + E . (35.40)

is an arbitrary constant.

where E = E1 + i E2

e B et
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Letting z - D = r exp (i 0), where (r, @) are polar
coordinates, and using £(z) = o + i B, separation of real

and imaginary parts of (35.40) yields

. l ’
alr, 8) = i {Cy (In £ + By) +Cy (8 + Ep)}
€2 + ¢, 1 1 2 2 'l
1 (35.41)
= - “
B(xr, 0) (clé";Tcz S{c, (nx +E) -C (0 + E,)} J

For possibility (iii), C, = c, = 0 and therefore by

(35.37)
£11(z) =0 (35.42)

[note — £'(z) # 0 since |£'(2)]

1/h by section (2.2)1
Integration of (35.42) and separation into real and

imaginary parts yields

alx, y) L, x =L, ¥ + My
(35.43)

Il

B(x, ¥) L2 p'4 +'L1 y + M,

where Lys Ly, My and M, are real arbitrary constants.
We now take each of the three types individually. and

indicate their solutions and geometries.

w

Type (i) : Taking C, # 0 and C, = 3 & in (35.4L), we‘obtain
B(x, ) = ————3" {B(lnr + E;) - A(G + E,)} (35.44)
By (35.44), the streamlines B = constant are given by

Blnxr-A ® = constant (35.45)

s TR Y . 3 N (G an e e -
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Therefore, the streamlines are concurrent straight

lines for orthogonal flowsland logarithmic spirals fof non-

orthogonal flows. (We recall that B = 0 for orthogonal

£lows.)

The flow speed, the magnetic intensity, the current

density, the electrical intensity and the metfic.of,the

natural isometric net for this flow are given by (35.36)

. _ B
with C, = A C

2 1--
To obtain the pressure function, we substitute V, h
from (35.36), with C, = 2 C,, into (35.09) and (35.10).

This yields

2 2
123 _ 24 (A" + BY) C . _
> 55 = 1 exp (03 2 C4) exp
2C

p
1 { .

{_E__ (BB - Aa)} - C, exp (2 Cy - C3) exp

2 C1 .
{_E__ (Ag - BB)} (35.46)
1 3p _2uBCcC, (a2 + B9
5 35 = - ;p exp (C3 - 2. C,) exp
{3—EL (BB - Aq)} + 2% exp (2 C, - C;) exp

A A 4 3

2 ¢, : . _
= (Aa - BR)} _ (35.47)

Integrations of (35.46) and (35.47) yields

0 2 C1
- 5 exp {——= (Ac - BB) + ? Cy - C3t -

p

2C
A

u (a2 + Bz) exp { 1

(B8 - Aa) + Cy - 2 c4} + C (35.48)

5

where Cg is an arbitrary constant.
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Type (ii) ¢+ Letting Cl =0 and-C2 # 0 in (35.41), we find

B(r, 0) = é; (In £ + E;) | (35.49)

.

By (35.49), the B = constant curves have the form

1n r = constant ' (35.50)

Therefore, the streamlines, for this type, are a family
of concentric circles. The flow speed, the magnetic inten-
sity, the current denéity, the electrical intensity and the
metric of the natural isometric net for this flow are given
by‘(35.36) with C; = 0.

To obtain the pressure function, we substitute'V, h
from (35.36), with C, = 0, into (35.09), (35.10). This

gives

~

1 3

L P 0 (35.51)
1 3p - +' _ c.

= & =cyexp (2C, 8 2.¢c, -Cyq) (35.52)

Integration of (35.51) and (35.52) yields
p = % exp (2 C, 8 +2Cy = Cy) +Cq - {35.53)
where Cg is an arbitrary constant.

Type (iii): For this type of flow, equations (35.43)

implies the following form for the streamlines

L, x + Ly ¥ = constant (35.54) ,
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Thus, the streaﬁlines are parallel st;aight 1in§f for
the case where C1 = C2 = 0. The solutioné_for this psrallel
flow are obtained from (35.36) and {(35.53) with Ck’ C2 both
equal to zero. ’
- Summarizing the results of this section into a theorem

yields:

Theorem 3.5

.

If the natural net is isometric in a steady, incom-
pressible, viscous, perfectly conducting and constantly
inclined plane flow, then the flow is characterized by one

of the following three alternatives:

Geometry ‘ _ Solutions
(i) Logarithmic Spirals Equations (35.36) and

(35.48) with C; £ 0,

B
C2 = K'Cl'
(ii) Concentric Circles Equations~ (35.36) and

(35.53) with C1 = 0,

c, # 0.
(iii) Parallel Straight Lines Equations (35.36) and
- _ (35.53) with C¢; = C, = 0.

In the case of orthogonal flows, the Logarithmic
Spirals of alternative (i)} degenerate into a family of

concurrent straight lines.
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Section 6. - Flows for Which the Magnetic Lines and

Their Orthogonal Trajectories Form an Isometric Net.

The solencidal condition on ﬁ, given by (31.05),

. implies the existence 'of a magnetic streamfunction such

that

rJ

3 _ _y (36.01)

1 ' 3x

. ..
w?%re H = (Hl, Hz)

If the current density vanishes for a flow, we have

2

.
Q

H dH
JOHg  eHy
' w "y -0 © (36.02)

Equations (36.01) and (36.02) imply that the magnetic
streamfunction ¥ is harmonic. Therefore, by section (2.2)

. the magnetié lines, given by the ¥ = constant curves, and
their orthogonal'trajeétpries form an isometric net.

In this section; we completely solve our constantly
inclihed flow problems for the case when the magnetic lines
and their orthogonal trajectories form an isometric net.

In particular, it is shown that all such flows have constant

current density.

Pafalleling the development of section (3.5}, we let

_.-'—-\’
x = x (a,8)
. | - (36.03)
Yy = y (o,B) s
. - e
define an isometric net such that the B(x,y) = constant

curves are the magnetic lines and the a(x,y) = constant
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curves are the orthogonal trajectories to the magnetic lines.
Letting 31 be' the unit tangent vector to the magnetic
lines in the direction of increasing « and h{o,f) the metric

. 1
coefficient of the isometric net, we have

13 4
|

= H(c,B8) El | ~ (36.04)

2 2

ds® = h(a,B) [da® + ap?) . (36.05)

-

where ds is the element of arc length in the physical plane.

Substituting (36.04) in (31.05) and (31.10), we obtain

»

»

(/R H = 0 : . (36.06)

IQJ

Q|

o

<+

EW
e -

1

|
oW
e

2, . | (36.07)

‘Use of (31.10) and (31.09) in (31.02) yields the

follgwing form for the linear momentum equation

(al + B2)]

. : A = =+ B -
grad [E + = (= HxXk + =, H x
P 2H g® g2
[curl (52 Hx k + E} ﬁ)] + v Vz'(ﬁz Hxk + EQ ﬁ)
HS H H H
+ % (curl H) x H (36.08)
Employing (36.04) in (36.08), we get
3 _ [ B4 a2 + Bz)]= A [ & /b A, : o_/h B,
o D 2H2 JE B dc  H. 38 H
] 1.3 ,ha 9 vh B
v by { 5 [ 53(——3—) - 38 ( q )1} ) (36.09)
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2 lz ) ‘
3 p . (A" +B%). _ _ _B 9 ha ‘3 hB
13 [p + "——'—'——2 Hz, ] = *—/H‘H [ T (-———H ) 36 (—'——H )] +
vYh

2 - £ 3 CRH)

( (36.10)
on H 9B 7} ovE aB

Elimination of Vv between (31.01) and (36.07) yields

3 h 3 v/h, _ '
Bas () -Bggp (R =0 (36.11)

Eguations (36.06), (36.11). can be solved for H and h.
The resulting solutions must alsc satisfy the integrability

condition for p, which is derived from (36.09), (36.10)

and has the form f
3 1 h A ) /H
(A +B——-){——-[ ~( - =5 )1} -
98 vh H 9B
2 2 , ]
/H A 3 Yh B
v (-—~ + ———) { [ ( y - = (—=—=)11} +
\ 502 aB2 h » 9B H '
TR TS S S G (36.12)
p da 3 - .
Equation ({36.06) implies that
H (a,8) = ¥LBL (36.13)

/R

\

4

where V(B8) is an arbitrary differentiable function of B.

Substitution of (36.13) into (36.11) yields

AT (B) |
A w2.+ BW, = i'%TET“ (36.14)

‘ — 1 3h _ 1 3h
where W, = - 5p 5+ Wy = 35 38

We note that (36.13) and (36.14) have the same form,

N
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with A replaced by -A, as equations (35.11), (35.13).
Therefore, the solutions of (36.13), (36.14) are obtained

by replacing A by -A in (35.24) and (35.25). This yields

h (a,B) =gexp [AK (¢ - 8%) +2KBa g+

2 K, B-2K; o+ Kyl ‘ (36.15)
p(e). = exp (- S @+ 8% 8%+
2BK,
(2 K, + ) B + K4} (36.16)

5

vhere K, Kl’ Ky, K3 and K4 are arbitrary constants.

4 (a,B) and h (a,B) as defined by (36.13), (36.15) and
(36.16) satisfy equations (36.06) and (36.11). It remains
to establish the conditions for which these solutions satisfy
the integrability éondition, (36.12), for p («,B).

Employing (36.13), (36.15) and (36.16) in (36.12), we

find
P, (a,8) exp [P, (a,8)] - v P3 (a,B) exp
‘[P4(a,8)] + %‘?5 {a¢,B) exp [—Pz(a,B)] = 0 . (36.17)
where
'P («,8) = [-2 K (A2 + B2) B+ 2 A K, + 2B K,]
- Fy VG = 2 1
; .

(=2 K (a2 + B%) a - 2 K (AB + %-) B+ 2K, A+

2
2 B
u T
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'P2 (a,B) = % (A2 + 2B2) 62 + A Ka2 + 2 KBa B

4B

(2K, + 32) B - 2K; a + Ky - 2K, ,
2 2 3
(-2 K (a° + B) o - 2 K (BB + 3) B

Py (a,8)

2
2B 2K 2 2
+ 2K, A+ "K"'Kl] {_K FA + BY) +

2K ,,2 2 . 2B 2.
g (A +B)$-(2K2+A—K1)]}—

3
. B 2K 2 2
4K(AB+}T—-)[A—(A + BY) B -

2B

(2 Kz +A_Kl)] r

K 2 2 2 - 2B
K(A +B)B-—(2K1+A—-I‘(1)B-K4,

I

P, (a,8)

~

and

P (0,8 = - 2?4 8h) 8 2Ky 4 P Ep]

[—2AKU-—2KBB+2KI]

In order to manipulate equation (36.17), we require
several simple results which are summarized in the following

lemma.

»

Lemma 3.1
If M{(c,B), ﬁ(a,B) are two arbitrary polynomials of

degree m and n respectively, then for all positive integers

i and j
(i + 3) . :
9 "M (a,8) exp [N(a,8)] =@ (a,8) exp [N(a,B)].
aal 383
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where Q(a B) is a polynomial of degree equal or less than

[m + (i + jY (n - 1)]. Moreover, the high order terms of

Q(a,B) are contained in

J
Mie,8) (g1 13

Returning to equation (36.17), we eliminate the first
term by first d1v1d1ng out the exponential factor and then

taking the second order derivative with respect to a. This

operation yields

a2 . '
- 3;7 Py (e,8) exp [P, (a,p) - P, (a,B)]
u 22 y
+ 5 ;;2{P5 (o,8) exp [-2 P2 (¢,B)] = o

Using Lemma 3.1, this equation can be -put in the

following form

P.(a,B) exp [P4(a.8) = Py{a,B)]

(36.18)
u o a?

+ 5 ;;2 {PS(G,B) exp [—2.P2(a.8)1 = 0

where PG(a,B) is a polynomial of a most degree five in a«,8.

Performing a similiar operation to (36.18), we find

a 6 ".‘. .l a 2

— {exp [P (a,B) - P (x,B)] —

3u6 2_ 4 o

Pe (a,B) exp [-2 P, (a,B)1}} =0 (36.19)

Employing Lemma 3.1, this equation becomes

P, (a,B) exp [-P2 (a,B)- P, (¢,B)] = ¢ (36.20)
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where P, (a,B)‘is a polynomial of degree ten.

Since the exponential function is always nonzero
ana (36.20) holds everywhere iﬁ the flow region, the
polynomial P7 {«,B) and cdnsequently all its coefficients
are identically zero. The second part of Lemma 3.1 implies

that. the tenth order -terms of P7 (a,B) are contained in

a P, ( ){apz‘( 8)12 (&= [-P, (a,8) - P, (a,8)]}°
5 (a.B8) 155~ (o, 3a 7Py (o, g (@B8Y137
or .
4 [- i (a? + B2 ) B+ (2 Ky + 35 k)] [2AKa -
2KBE+2K) [2AKa+2KBE -2 Klls (36.21)

SeRecting the coefficient of aQB and eduating it to

zero, we obtain

o B

4096 (a2 + Ykt = 0 ' (36.22)

Therefore, K = 0 by virtue of the fact that A # 0
fSt the flows under investigation.
' Settiné K =0 in (36.21), it follows that for our

flows the arbitrary constants K, and K, must'satisfy

K, (AK, + BK;) = 0 | (36.23)

If K 0 and K Kz_satisfy (36.23), then Py (a,B)

lf
= Py (ae,B) = Py {a¢,B) =0 and consequently (36.17) -is ‘:
identically satisfied.

Summing up the above results, we have

ARWY- 2.7 T
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Theorem 3.6

¢ If the naturél neé\for the magnetic‘lines is isometric
in a ' incompressible,.viscous, perfectly electrically
conducting (and constantly_inclined non-aligned plane flow,.
then the megtric of the net, the magnetic intensity, the

velocity, the current density and electrical intensity are

given by
h (a,8) = exp [2 K, B - 2 K o+ K,]
X3 2B
H ( = exp [K4 - i—] exp [(K2 + 5= Kl)B +
) ‘ + Ky al
-+ K3 2B
¥ (a,8) = fexp [z> - K] exp [(- = K; - K,)B

_ (36.24)
. - Kyol} (B El -2 Ez)

J = 2 K. + 2B g [2—K—1-(B + Aa) +
= - (2 K, + 3= K;) exp A B @
K 1k
4 ~ K3
-+
E = -pAKk

where K., Ky, Kyr K, are arbitrary constants with K; and K,
satisfying (36.23).
For flows with isometric magnetic lines, K = 0 and

equation (36.23) imply the following three types:
(i) K = 0, K, #~ 0 and k., = -Bk
i) = ’ 1 # an 2 - A

(ii) K = 0, K, = O and K, # 0
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{(iii) 3 = Kl = K2 = 0

B!
Since equations (36.15) and (36.23) have the same form
as (35.24) and (35.35), the geometric implications follow
as in section (3.5). The:efore,'it remains to calculate the

pressure function for the three types.

We now treat each of the three types separately.

Type (i)

For this type the magnetic lines are concurrent
straight lines for orthogonal flows and logarithmic spirals
for npnorthogonal flows. All the flow variables, with the
exception of pressure, are obtained by letting K, = - g Kl
~in (36.24).

To obtain the pressure function, we substitute H and
. o

h from (36.24), with K, = - %Kl , into (36.09) and (36.10).
This gives
2 2
9 P (A" + BY) - 2. 2 .
-ﬁ[p+—-—-—r_2H ] = 2 Xy (A" + BY) exp
2K,
[__A_ {BB + Aa) +K3-2K4]
. (36.25)
2 2 2BK :
_S_B'[E +Q.%B_)] = .._ﬁ_l(Az.g.Bz) exp
P 2H
2K,
[= = (BB + Ra) + Ky - 2 K,]

Integration of (36.25) yields



(AZ 2) 2Kl
P =op — 73— exp [ - - (BB + Ra) + Ky -2 K4] + K
(36.26)
where Kg is an arbitrary constant. .- £

Type (ii)

For type (ii) flows the magnetic lines are concentric
circles. The Pressure function, for this case, is obtained
by substitu;ing H and h from (36.24), with Kl = 0, into
(36.09) ang (36.10). fThis yields

2 2
3 (A" + BY)
~ [ B 4 — =] = 0
e " 2 H (36.27)
3 [ B . (A% + Bz) ] = 2u ) exp {2 X,8 + 2 K, - x ]
3B oo 2 g% 1 = b P

Integrating (36.27), we obtain

P = - exp [2 K,8 + 2 Ky - K31 -

(Az 5 ' (36.28)

+ BY)
P ——s— exp [ -2 K, - 2 Ky + K3l + K
where K6 is an arbitrary constant.

The other flows variables are obtained by letting Kl

= 0 in (36.24),

. Type (iii)

For this type of flow, the magnetic lines are a family
of parallel straight lines. The solution to this flow are

given by (36.24) and (36.28) with Kl = K2 =0,
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Section 7. Uniqueness Theorem

.In this section, we show that the flows of this chapter

are uniquely determined by the fluid's properties, the

. streamline geometry and the value of the pressure at one

point

of the flow region.

* .
Letting 3, v be the velocity fields for two distinct

f///;iows, there exists by the continuity equation, (31.01), two

. . :
streamfunctions ¥ and ¥ such that

where

Y _ Y _
3y - VY1 o S V2
(37.01)
* *
a‘iJ = v* ‘ .a_.qi = —V*
oy 1 9x 2
&+ * * *
v = (V;, V,) and Vo= (v o, vy, '
Employing (37.01) in (31.11), we find
H = 1 (BY +A¥ , -B Y¥_ + A Y] /
- ) 2 y x' x y
(¥ '1?wy ) | ‘1 (37.02)
ok

* *
2, jmyz (B w + A w , <B ¥, + A V]

where H, i are the respective magnetic intensities for the

two flows.

Substitution of (37.02) into. (31.05) yields

and

. , , |
-4a + - ¥y .+ [AY
[ vy ¥x 2B(¥ ¥y )] yx [ y

2 2 ;.
- AY + 2B ¥Y_ V¥ ¥
A Y X Y] YY

2 2
b4

2B ¥, Wy] wxx + [A?x 0 (37.03)
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4 w*ﬂ * 4 oop (¢r2 *2y7 ¢t
48 ¥y ¥y + 28 (937 - 43 +

YX
e *2 *2 * * *
- e N N M I
Av 2 - av'24 2y ¥ ¥ - o (37.04)
b4 Yy X Y Yy

Agsuminé the two flows have the same stream line

pattern, we have
*
¥'o= £(¥) « (37.05)

where f (Y¥) is a suitably differentiable function.

*
Eliminating ¥ between (37.04) and (37.05), we obtain

3 2 2
£'(¥) {[-4A wy ¥, + 2B (wx - wy Y1 wyx +

2

2 2 .
-2 Y v )Y+ (A S -

[A‘i’y —A‘i‘x

2 Viwy 2 e
AY "+ 2B Y ?Y] Yoo o+ ENN T £ ()

Y Yy
v 2 2
{{-4n ¥y wx.+ 2B (¥," - ¥ TN ¥, ¥+
v 2 2 v 2 L 2
(A Yy - AT -2BY, Wy] ¥, + [AaY "
av?+28y. vl v?3 = 0  (37.06)

Equations (37.03) and (37.06) imply

'y 2 | w2y 2
£1(Y) f'f(?) {[-4a wy ¥, + 2B (¥, wy )1
2 2 2
Tx TY + [A WY - A Yx - 2B ?x Ty] Wx +
Bv2-2av24+2BY v]¥ 2= o0 (37.07)
b4 Y X Y Y . * -

or
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,
- 1 2 co 2 2 -
A £V (Y)" £''(Y¥) (?x + Wy } 0
'Since A # 0 for our flows and £'(¥), (¥ ° + ¥,
nonzero for nontrivial flows, equation (37.07) impldes

2) are

£''(y) = 0 _ (37.08)
Equation (37.05) and (37.08) yield
Y* =R Y + T : (37.09)

where R and T are arbitrary constants.

Using (37.09) in (37.01) and (37.02), we obtain
¥+ = RV, B* =f# . (37.10)

Therefore, for flows with the same streamline pattern,

we have the theorem:

Theorem 3.6

If two steady, incompressible, viscous, perfectly
conducting and constantly inclined plane flows have the same
streamlines, then their respective velocity fields v ’ v*

and magneti¢ fields H, H* are related by

-+ - -+ 1
v¥ = Rv , H* = g

Y

where R is an arbitrary constant.
If both flows take place in identical fluids, we
. consider the integrability condition for p obtained from

(31.02), and having the form
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curl [; x (curl ¢)] + v curl [V2 ¢] +

% curl [(curl H) x H] = 0 (37.11)

Taking (g?.ll) as the integrability condition for the
flow with velocity field v and magnétic field ﬁ, and b& using
(37.10) in (37.11), we obtain the following equation for the

integrability condition of the other flow

R? curl [V x (curl ¥)1 + v* R [V? 91 +

, ,
%T curl [(curl H) x B} = 0 : (37.12)

where v*, y* and p* are the kinématic viscosity,'the magnetic
permeability and the fluid density for the flo& whose
velocity and magnetic field are v* and H*.

If the fluids of gpe two flows are the same then
v' = y*, y= u*, p = p* and eguation (37.11) and (37.12)
imply that R = 1. | |

For a given veiocity field and magnetic field, equation
(31.02) defines the- pressure function to within an additive

conétanf. Therefore, we have the following Corollary:

Corollary 3.2

A steady, incompressible, viscous, perfectly‘conducting_

and constantly inclined nonaligned plane flow is uniquely
‘defined by its streamline pattern, fluid properties and the
value of the pressure function at one point of the flow

region.

A I LT T T Y T e ST T P e T i N S

e ——————
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Rakird CHAPTER IV

CONSTANTLY INCLINED COMPRESSIBLE FLOWS

Section-1.  Flow Equations

L4
. The flow of an adiabatic, steady, compressible,

nonviscous, thermally nonconducting fluid, with infinite
electrical cpn%gctivity in the presence of a magasff::

field, is governed by:

div (p¥) = 0, (41.01)
p (§-grad)'¢ + grad p = i (curl ﬁ) x H (41.02)
. .
vegrad s = 0 (41.03)
curl (v x H) = 0 (41.04)
L-] ! -
. > e
div (H). =0 o (41.05)
p = p (p,s) ’ ' (41.06)

»
We restrict .our attention to constantly inclined non-

aligned flows. Therefore, by the logic used in section
L

(3.1), equation {41.04) can be replaced by ’

T o= 2 i - . (31.10)
o o

i
N

d (31.11)
g

Ty

€\

N
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where H, V are the respective magnitudes of the magnetic
. ' . _ RN
intensity and velocity vectors, A = V H sin (v, H) and
N i '
B=VHcos (v, H.
Since we exclude aligned flows, A # 0. The constant

- B will be zero if and only if the. flow is orthogonal. By

the definition of A and B, we have

- V7 H = A" + B - (41.07)

-~

Letting (a,B8) be the natural or streamline coordinates,
Mhlla,BS da and #hZZa,Bi dff the components of a vector element

of arc length and El' Eé the unit tangent vectors to the

B(x,y) = const. and a(x,y) = const. curves respectively,

we have : #
v.=veé - (41.08)
d§2‘ = hy(e,B) do? + h, (a,B) dB? . (41.09)

where d§2 is the squared element of arc length in the x - y |

plane. B

Substitution of (41.08) into (31.1l) yields

it
Il

<|w

<

-+ -+ .
e, + e, 7 . (41'10)-~q-

Employing (41.08), (41,09) and (41.10) in equations

(fT.01), (42.02), (41.03) and (41.05), we obtain

1

(p v /E) = 0 | (41.11)

nJIQJ

a

- ) ) ’ v



vh
eV . 9p Ap 9 d 1
p VvV =+ + (A =— ((72) = B ¢ (7)) =
Ja pa 90 = aB v
' ./sz v
avh. YR /R
2 1 3 Bu ? 2 ] 1
p vV = - 2B+ [A (<) - Bz ()]
3B B da V 38 YV
/Hlv
s _ 0
a
VR, B /B, A
@ 2 3 1 _
o ( 7 )+ 55 ( v ) = O

'Also, the metric coefficients hl (a,B), h2 (a,B)

satisfiy the Gauss equation

T~
) /51

3 /H
2 =
_) = 0

a 1.
= (— —) + (
3a /Hl Ja EX)

J

(41.14)

(41.15)

(22.04)
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'Section 2. Flows with velocity Magnitude Constant

Each Streamline.

" In th;; section, we assume

v (a,B) =V (B (42.01)

Using (41.15) and (42.01) in\f41.12), we find

. ' 2 2 v
3p ¢ (A° + BY) 3 = '
To + -/-E———‘-]—z——' T a /Hz 0 (42.0.2)
> ,
The adiabatic condition, (41.14), and the state
L3 E
equation, (41.06) , imply -
L
p - dp 32 .2 2 ‘
30k 3p oa C 3 (42.03)
where C is the local speed of sound.
Employing (42.01} in (41.11), we obtain
. P 2 ym (42.04)
o : da 2
/Hz
Equations (42.02), (42.03) and (42.04) yield
2 2
" -‘i"—v-}—';) e R (42.05)
Therefore, if
uoa? o+ 82) # p 2V . (42.06)
then
? 7By 42.07
5 - . (42.07)

o Tt N kT s raw i de € T T
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. 2 . .2 2 .2 ... . L
Since (A + B°) = V° K", the inequality (42.06) is
.equivalent to the phyéical condition u H2 7 p C2. Assuming

i

this condition to be £rue, we use (42.01), (42.07) in (41.15)
and obtain

5B (= = 0 | (42.08)

Integratingh(42.07) and i42,08), we find

./H‘z = 'fl(s), ./Hl‘ = f,{a) V (B) | (42.09)

" where fl(B) and fz(a) are arbitrary differentiable functions
of their respective arguments. Substitution of (42.09)

into the Gauss equation, 22.04, yields

3 1 '3 V(B), . | |
- 35 e 9 ] 0 , (42.10)

Equation (42.10) implies that V(B) = CjTl (8) 4B,
where K is an arbitrary constant. 'Substitution of this

result into (42.09) gives

My = £y (B) . /Ry = K £, (o) [£; (B) &8 (42.11)

From section (2.2), we have

30 1 3 vh 20 i 3 /h

= — — 1 ’ = ———— 2 (42.12)
de K, —3  °® /B T
2 = fe® (B aa+i/m, a8 M (42.13)

where 0(a,B)} is the angie of inclination the streamlines

make with respect to the positive x - axis and z = x + i ¥y
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[ Sty
is the complex variable.
Substituting (42.11) into (42.12) and integrating the

resulting equations, we obtain

-

0@ =0() , @' (a) = - K f2 (a) : (42.14)

If K = 0, eguation (42.14) implies € = constant, and,
consequently, the streamlines are parallel straight lines.
For K # 0, we substitute (42.11), (42@&@7 into (42.13) and

" obtain

. z = _f 0t ik £, (a) f £,(8) dB] da +

~§ - i £,(8) dg) | Q§§¥<; (42.15)

Integrating (42.15) and separating the result into

real and imaginary parts, we get

x = €y - sin [0 (o)) f fl(B) dp
‘ (42.16)

y = C,+ cos [@ (a)] f £,(B) 4B

Where Cl' C2 are arbitrary real constants. The streamlines
generated by (42.16) are concentric circles about (-Cl, -C2).

We have proved the Theorem:

Theorem'4a1

I1f for a constantly inclined, nonviscous and compres-
"sible plane flow, the velocity magnitude V is cong&gﬁ? on

2 £ p Cz, then the stream-

each individual streamline and u H
lines are either concentric circles or parallel straight

lines.
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By (41.07), V is constant on each streamline if and
only if H is constant on each streamline. Therefore,
Theorem (4.1) holds true if V is replaced by H.

A , ' :
If p is constant on each streamline, then by using-

p = p(B) and (42.01) in (41.11), we obtain .

hy = g; (B | (42.17)

:

where 9, (B) is an arbitrary function of its argument.

Employing (42.01) and (42.17) in(41,15),we obtain
/Hl =g, (a) V (B) . (42.18)

where 9, (¢) is an arbitrary function of a.

The form of the metric coefficients defined by (42.17)

an@ (42.18) have the same form as in (42.09). Therefore,

as in the case of (42.09), these metric coefficients imply
a geometry consisting of concentric’ circles or parallel

straight lines. This yields the corollary:

Corollary 4.1

If for a constantly inclined, nonviscous and compres-
sible plane flow, the velocity magniéude V and the density
p are constant on each individual streamline, then the
streamlines are either concentric circles or parallel straight

lines.

We next take another lock at the physical condition

2 2

"u H2 # p C°" of Theorem (4.1). Using C” = %% , it follows

that this condition is equivalent to
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3p 5 (42.19)
'+ or to .
2 30 , wH.(B) 30 (a2.20)
p da C P a ' . *

Intégrating both sides of (42.20) with respect to «a

and using (41.14), we obtain
p # u'Hz(B)'ln p + K(B) (42.21)

where K(B) is an arbitrary function of B.

Therefore, we have the following Corollary to Theorem

(4.1).

Corollary 4.2

If for a constanﬁly inclined, nonviscous and compres-
sible plane flow, the velocity is constant on each
individual streémline ané the pressure p # M Hz(B) ln d +
R(B) for an arbitrary function K (8), then the flow geometry '
is e&tﬁer concentric circles or parallel straight lines,

In particular, for a éolytropic gas,
p = A(s) p" (42.22)

where A(s) is a function of the specific entropy s and v is
the gas constant. )
Since (42.22) is not of the form p = y H°(8) ln p +
& ..

K(B), the following Corollary follows from Corollary (4.2).

* £y
: D

“

&
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Corollary 4.3
. If the velocity is constant on each individual
- streamline for a constantly inclined plane flow of a
polytropic gas, then the flow geometry is either concentric
circles or parallel straight lines. ‘

| Finally, we derive physical conditions for which the ’
* assumption h2 = hz(B) implies V = V().

Using h, = hy(8) in (41.11), we find

%% - -8 %%, (42.23)
Employing (41.14}, (41.06) and (42.23}), we obtain

2

-

=

Using h, = hz(B), (41.15) and (42.24) in (41.12), we

get
Czp U 2 2 aV |
M [pV—-—v— "—E(A +B)] ‘EE'{-_- 0 (42.25)
v

therefore, if p (V2 - C?) # u B>, the flow velocity
Vv is constant on each individual streamline. -Since h, =
h, (8) if .and only if the streamline pattern is concentric

circles or parallel straight lines, we have the theorem:

Theorem 4.2

If for a constantly inclined, nonviscous and éompres—-"
sible plane flow, the flow geometry is concentric circles or

parallel straight lines and p (V2 - C2) #F U H2, then the

&
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velocity magnitude V is constant on each individual stream-~

line. -

b

’

The condition p (V2 - C2) # U H2 is always true for
subsonic or sonic flows. Therefore, we state the following

corollary.

Corollary 4.4

1f for a constantly'inclined, nonviscous, sonic or
subsonic plane flow, the flow geometry is parallel straight
lines or concentric circles,'then the velocity magnitude V

- -
is constant on each individual streamline.

~~
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Section 3. Sonic Flows

A flow is said to be sonic if

v (a,8) =C («,B) (43.01)
at all points of the flow region.
Since C = C (p, s), it follows from (41.06) and

(41.14) that

3p - % 2 - ‘ .
So c® & ¢43.02)
and
3C _ 3C dp '
R T B (43.03)
2 ac &

where C” and 3 afe positiﬁe definite.

Equations (43.02) and (43.03) imply that ff one of C,
P, p 1s constant on each ;treamliné, then so also are the
other two.

Eliminating /Hl between (41.12) and (41.15) we obtain

2 2 vh
P p /Ez v

In order to eliminate /52 between {(41.11) and (43.04),

we note that

3_ (_‘/H_Z’.) = 1 Ry "Ry av (43.05;)
LI v v aa V2 e
Eﬁﬁansion of (41.1l) yields
3v/h.
oV 3p 2 _
/Hz P ag * /Hz Vs tpV g v} (43.06)
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If p and p are constant on each streamline, then by

using (43.04), (43.05) and (43.06), we £ind

[V - 2 u (a2 + B2} /p V7] %%- = 0 ©(43.07)

2 u(a? + Bz)]
p

Equation (43.07) implies %% =0orvVvs=/|

In either case, V is constant on each streamline, since p is
assumed constant on each streamline.

It now follows frdm Theoreml(4.1), that if .one of C,
P, p is constant on each streamline and u H2 # C2 p, then
the flow geometry is parallél straight lines or concentric
circles.

For a flow pattern consisting of parallel straight

lines or concentric circles, the natural choice of co-

pbrdinates gives
/Hz = 1 and /Hl = 1or B8 {43.08) .

In natural coordinates, the nonzero component of the

vorticity vector is given by

1 3

ws= - (VE, V) | (43.09)
e R 3B 1
- l 2 ' . 4
Differentiaﬁion of (43.09) with respect to a yields
avh
dw 1 2 9 v
5 T B,3w [V oap (0 R+ gl
1 . 3v 3 32 . a2y 10

1/4
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We conclude froml(43.08) and (43.10), that if v = V(B)
‘and‘thé flqw is in parallel straight l%néé or concentric ‘
-circles, then the vdrticity field is constant on each

individual streamline.

Summarizing, we have the theorem

Thebrem 4.3

+

If oné of the flow variables C, p or p is constant
on each streamline, for a constantly inclined nonviscous .
compressible plane flow, then the other two “flow variables

and the speed are also constant along each streamline.

Moreoﬁer, if u H2 # C2 p in the flow region, then the

L

vorticity is also constant along each streamline and the

flow'geometry is either concentric circles or parallel

»

.straight lines.

-

. We now assume our fl%y is sonic as defined by (43.01).

St
Using (43.01) in (43.06), we obtain

2 /K /R
2 2 aC d .
5w =" 5 Pt O (43.12)

Employing (43.01), (43.02), (43.03) and (43.11) in .
(43.04), we find

4§ ,3c . Cc ., ,.2 2
[p C° | 3o + > ) (A + B7)
3C . Cy, 3 -_
W2 5] 52 = 0 | (43.12)

-

Fil

!
Equations (41.07), (43.12) and Theorem (4.3) yield

the following theorem:
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Theorem 4.4

If for a constantly inclined, nonviscous and sonic

plane flow ,

2 2 3C c aC , C
H”® — _— 2 — 4+ =
“-?“’C(ap"'p)/(ap 5 )

then p, p, V and C are constant on each streamline. Moreover,

2

if u H2 # p C”, the flow is either in concentric circles or

in parallel straight lines.
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Section 4. Solutions

Straight Parallel Flow

For this problem, we choose the natural coordinate
system to be the rectangular coordinates in whic¢h y =
constant are the streamlines, and xl= constant'ére the
orthogonal trajectories'to.the streamlines. For this net
hl = h2 = 1. We solve this flow for regions in which

2

p (V2 - Cz)-¥ u H°. If this coﬁdition holds, then by

‘Theorem {4.2)

4
A

vV =v(y . : (44.01)
Using (44.01) and h; = h, = 1 in (41.15) we have

v, _

&= (44.02)

Equation (44.01) and (44.02) imply

Y

V =K o, ‘  (44.03)

where K is an arbitrary constant.

s ' By substituting (44.03) and h; = h, = 1 in (41.12)
and‘(4l.13),_we obtain X, |
3p- . 3P . . ‘ } (44.04)

' Therefore, the pressure is constant.

Since the pressﬁré is constant, it folkows by (41.06)
’ o : = ,
and (41.14) that - ‘ »
‘ -

p = ply) o . 7 '.: - (44.03)c

L]

&
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Employing (44.03) in (41.10), we find

_\-

B oo B 1o+ A3
K K

1

where 1, 3 are unit base vectors for the (x, y) plane.

Vortex Flow

To study vortex flow, we use polar coordinates as

the natural coordinate system. ngrefore, /El'ﬁ r, vh, = 1.

2
Assuming p (V2 - Cz) # u H2 and uéing Theorem (4.2), we
have
vV = v(r) al ' | (44.06)

By using (44.06) in (41.15), we obtain

rA, 4dv A
- (;7) ar t g

= 0 ' (44.07)
Integration of (44.07) yields

V = Kr ) (44.08)

where K is an arbitrary constant. ' , : -
By using /Hz = 1 and (44.08) in (41.11) and (43.04),

we have

p = plr) , p‘ p(r) , }44.09)

Finally, the magnetic field is given by

-h_l'-+ . '
B = = [LB&y+Acel] (44.10)

where EG ' Er are the unit base vectors of the polar plane.

-
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CHAPTER V

FLOWS OF FINITELY CONDUCTING FLUIDS

Y
pr——r

Section 1. Flow Equations '

v .
- The equations governing steady, finitely electrically

conducting and inviscid gas flow, .in the presence of.an

electric field and a magnétic field, are:

div.ﬁ = o | | (51.01)
aiv® = gq/e \ : | (51.02)
curl 8 = § (51.03)
curl §i = I +q% (51.04)
T =od@suvxi) . (51.05)
p{(V + grady v = ~grad p+ypu (T +q¥v) x % h\h

+qf o : ~ (51.06)
div (p¥) = 0 ~ | (51.07)

In this chapter, we consider plane flows in which the
magnetic field lies in the flow plane. .

From equations (51.04) and (51.05), we obtain

i

curl ﬁ - q 3
' (51.08)

=4

il

% (curl & - Lo V) - u (v x H)

k] 75
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Employing equations (51.08) to eliminate B and,f from

(51.02), {51.03) and (51.06), we find

div (g ¥v) = -~ A, " (51.09)
t ' . +
curl (g v) - curl [curl H - Uo v x ﬁ] = 0 ; (51.10)
and
p(V . grad) 3. = -grad p+ y {curl H) x #
+3d (curi1 B - g V) -uq @ x #H)(51.11)
réspectively.

Decomposition of vector equations (51.10), (51.11), 1
into their vector components in the flow plané and their

vector components perpendicqlar to the flow plane, yields

curl (g v) = ¢ (51.12)
curl [curl & - p o(¥ x f})] = o (51.13)
p(v - grad) v = -grad p + ¥ (curl H) x H
2+ .
-9y . (51.14)
qleurl B -y o T xH)] = o (51.15)

where equations (51,12), (51.13) are equivalent to (51.10)
and (51.14), (51.15) are equivalent to (51.11).
Equation (51.15) implies the flow classification of.

the following theorem.
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Theorem 5.1

For a steady, finitely conducting and inviséid plane

flow, at least one of the foliowing"alternatives holds

(i) q = 0 - (51.16)

(ii) curl # =y o (Vv x H) | | (51.17)
This classification will be used, throughout the

cﬁapter, fo study different types of flows. 1In particular,

since curl H is the total current density, we immediately

have the following result.

Corollary 5.1

' If the current defdsity is everywhere zero, for a
steady, finitely conducting and inviscid fléwigith nonzero
charge.density, the flow is necessarily aiigned.

If the charge density iﬁ nonzero, the flow is described

by equations (51.01), (51.07), (51.09), (51.12), (51.14)

and (51.17). For flows with zero charge density, the
governing equations are (51.01), “(51.07), (51.13), (51.14}
and’ (51.16). Having solved these basic systems for 3, %, [
pand q, T and E follow from equations (51.08).

Let (a,B) be the natural system of coordinéées such
that the B(x,y) = constant-curves represent the streamlines.
Letting hl(a,B),hz(a,B) be the ﬁetric coefficient of this
net and.gl, 32 the unit tan%ent vectors to B(x,y) = constant

and a(x,y) = constant respectively, we have the following

systems of equatiops for the two flow classifications.

-
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2
where 3 =V 3 and H==H

& (R, H) + %-g (VE, Hy) = 0 (51.18)
%E (p VA, V) = 0 - (51.19)
1l 2 (g, = -4 (51.20)
mE |
%E (@ /B, V) = 0 (51.21)
v oav, 1 dp . M VR -
o fﬁ o R 2
/Hl 1 172
3— (VE, H))] - 932 (51.22)
3B R Ve
avh H
21 op T 02 _
-pV + 5.% = E_ 'é_— /_ H ) f-)—' (vh Hl)] (51.23)
1
! (i (/REH) -2 VREH)] = woVH (51.24)
v a 22 9B 171 2 .

Flows with Zero Charge Density

) 3 _ o

T (/HzHl 35 (f‘ H ) = 0 .(~51.18)
3 ~

s= (vR, V) = 0 (51.@19)

1
L [%E (/Hz H,) "%F (/Hl Hj)] -uo VHy=R~a
/By, (51.24)
9 ) '
pV —- + a 'i;\\Ig_ 2_ - 38 (/Hl Hy)] (51.25)

| R _
- e
///\ | , .
, |
, .

—

PURREEE UL B X ST

L



N

79

H
1 8 -3 ‘
-p V¥ g 51;. = — I3 (V/h, H,) 5B (/Hl Hl)]"" (51.23)
. . .

where A is an.arbitrary constant.

Using (51.08}, T and E are given by

T=oqvd + 42— (& (A H) - 3. (/B.H,)] K
1 fh—lh—z a0 2 72 EY - i N
F al
fe-3ve v (e VR, By - 5 (A HD (51.26)
g O'le (o]
-+
-uv HZ} k

where ¥ is the unit normal vector to the flow plane.

s *_’Er
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Section 2. Integrability Conditions

In this section, we deriﬁe several integrability
conditions which are used to determine geometries and
solutions in subsequent sections.

For flows with nonvanishing charge density, equations

¢

(51.09), (51.12) yield

grad {ln q) - v + div v =J -‘% (52.01)
and
grad (In q) x Vv + curl v S % (52.02)
Taking the cross product of (52%x02) witﬁ 6, we hgve
v ox [grad (1n q),ﬁ‘ij + v X curi 3' = 0
or

(V-¥) grad (ln q) ~ (v - grad (1hq)] ¥

+V xcurl#w = 0 _ , - (52.03)
b -

s

" Using (52.01) in (52.03), we obtain

(; . V) grad (In q) = - Vv x curl v -

b (div v + -g-) v , (52.04)

Equation (52.04) implies

WX v - (div ¥V + a/g)
+ -+ ’
oV * Vv

=" |

- . -
where w is the vorticity vector.

(52.05)

<+

grad (ln q) =

Taking the curl of (52.05), it follows that
<

e
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-+ -+ . -+ -+

WXv - (divv + g/e) v

curl { - = ]
v . v

0 (52.06)

‘Equation (52.06) is an equation in v and represents
an integrability condition for the charge density.
If the flow is irrotational and incompressible, then

{52.06) reduigs to

»

- -
grad ( xv =0 (52.07)
2P

Equation (52.07) yields the corollary:

Corollary 5.2 - _ i

For a steady, finitely conducting, incompressible and
irrota;ional plane flow with nonzero charge density, the
A4 ~ F '

veléEity magnitude is constant on each orthogonal trajectory

to the streamlines.

In the case of aligned flows, we have

E = A% ' <j (52.08)

where A is an arbitrary function such that A/p is constant
on each individual streamline.

Substitution of (52.08) into (51.01), (51.17) yields

& !

grad (In }\) *+ vV + divy = 0 (52.09)
and ' _
-+ -+ &
grad (ln A} x v + cug; v = § /"\_H,/ISZ.lO)
respectivel&. . | .

Equations (52.09), (52.10) havé the same form as

{
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i
Y o
(52.01) and (52.02). Therefore, Qmploying the method used

t6 derive (52.06), we obtain the followihg integrability,. -

condition for A. ~

.-v-x+ (di +. o+
cury [ B2V - (@iV V) Vg o F (52.11)
v * Vv

If a flow is both aligned and has nonzero charge

density, equation (52.06), (52.11) imply

-+
curl ( Y ]

.

= 0 (52.12)
v v .

In case an @gkigned flow with nonzero charge ﬁensity

is also irrotational, equation {(52.12) reduces to

y

grad (1) x ¥ = © (52.13)
v ‘ .

Therefore, we have the corollary:

Corollary 5.3

For a steady, finitely conducting, aligned and
irrqgational plane flow with nonzero charge density, the
) .
velocity magnitude is constant on each orthogonal trajectory

to the streamlines.

-~

¢ Summarizing, we have the following lemma.
)

Lemmpa 5.1
¢ For a steady, finitely conducting ag@ inviscid plane.
flow g&th nonzerc charge density, we have the integrability

1

condition

F S S T i e P T FRIN. Y
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-+ -+ . -+ +
curl | wx v - (divv + o/e) v

e ] = 0
v * Vv .
L&

If the flow is also aligned, then we also.have
. "

e
——=1=1
v.* Vv

curl |

In terms of the natural streamline coordinates, {(a,B),

" equations (52.06), and (52.12) take the following forms

[+ 2

2 ‘3 “ d :
57 L3p In VR, )1 - 55 [ 55 In ({Hlv)l
/i - : \
g 3 1, _ '
. h ‘“ [
and &
JH .
3 -1 — '
53.( ) =0 (52.15)
respectively. : )
j'
A
ﬂ";?f‘_,_; \
bt
I T =
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Section 3. Flows with Straight Streamlines and Flows

. ‘J
whose Streamlines are the Involutes of a Curve.

In this section, we consider incompreséible flows
with nonzero charge density. Therefore, by eguations (51.19)
and (52.14)+, the velocity field must satisfy the following

two equations

9

= (/Eé vy = 0 . (53.01)
2 vh
3 o 3 1
* -53—3—6- 1n (/Hl-V)& - 3 'TB' (—v—-) = 0 {53.02)

whére {(a,B) is a natural net such that the B = constant
curves represent the streamlines.’
To study the flow geometrics, of this section, we let

F be a curve in the flow plane. Relative to ', we have the

coordinate system (£,0) from section (2.2), where the ©
constant curves represent the’tangents of I' and the £ =
constant curves represent the involutes of T. The first

fundamental form for this net is

-

as? = ag? + (£ - §(0)12 ae? (22.29)

. where §(0) is the radius of curvature along T.

We now separately consider the two geometry types.

Flows with Straight Streamlines

If the streamlines are nonparallel straight lines,

il

]
they must form the envelope of a curve TI'. Taking (£,0) as

. thq'natural'coordinates and using‘(22.29) and (53.01%, we

]

A
'_\.



obtain : '

%g (€ -8 vl = o : (53.03)
Equation (53,03) implies

£ (0)

where £(0) is an arbitrary differentiable function of 0.
Substituting (53.04). into (53.02), we get" .

52
3E00

1n [%égé;grr

or
g- f!' (O)

.. E'T]r—ajr]z(ﬂ - 83 g -—7%3; (€ - 8)2 - ¢'(@) =0
T ‘ - , (53.05)
Since £ and 0 are independent, equation’ (35.03p implies

§' (@) = o | | fy

Therefore, the only possible nonparallel straight line
flow is flow in concurrent straight lines. fThis yields the

following theorem.

Theorem 5,2

For a steady, incompressible, finitely conducting and
nonviscous plane flow with nonzero charge déﬁ&lty, the only
90551b1e ‘'straight streamline patterns are parallel straight

trllnes Oor concurrent stralght lines,

-~
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Flows whose Streamlines are the involutes of a curve T,

*

The coordinates (0,£), in which the £ = constant
curves are the involutes of T and the © = constant curves
are the tangents of T, are a natural sy%ﬁem of coordinates

_for this flow.

-

. By (53.01) and (22.29), it follows that

) ' 2 \ _
. 3 V) = 0 - | - ) (53.06)
- ‘ 28
Integration of (53.06) yields
, . . ‘ B

V g g (&) - «  (53.07)"
where g (& is an arbitrarf differéntiable function of £,
SubStitution of §53.060_into (53.02) yields

.. 32 | ' o 9 | (E - &) ’
5O3E In [(£ - 68) g (E)] - = ,5§'['_§”TETJ =0 -

or

o
5()1% 6@ - Za@E - 0%+ Lo~ 53 =0

(53.08)
Equation {(53,08) implies th%i §' (0) = 0 and therefore,
. . LY
we have
=4 Theorem 5.3 "
° ‘ For a steady, incompressible, finitely conducting and

-~ nonviscous plane flow with nonzero charge density, the only
flow Qhose Streamlines are the involutes of a curve®is flow

in concentric circles. - ’

c i ) &
. . .

- ' . ..
‘ i
m‘&' - _ =
T Y TS T v e
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Section 4. Irrotational Incompressible Flows with

Nonvanishing Charge Density.

In orden to derlve the p0551ble geometrles for the
flows of this" sectlon we requlre the formulas whlch are

i,-

summarlzed 1n the followxng lemma.
A}

Lemma 5.2

Lg)

If we make the natural correspondence beﬁween ﬁlane
vectors and complex numbers, [i.e. the vector w = (wl, wz)
co;rgspoﬁds to the complex number w = (wl ﬁ i wz)],then_
for every stélar function £ (x, y) and every plane vector -

W, we have the following formulas:

grad £ x w = [(w 2 - 5234, (54.01)
0z )
grad £ + w = w %5- + W QE ’ ' (54'0?)
. az ' .
CLA S [8iv % + i (curl w « )] (54.03)
andl
2 2 2 2
" f 1 3°f ¢ f " f
=z &£ 3£ 5 ] (54.04)
. 3g2 4 22 ayz 3xay
: _ . 'a__a_.g__ 3 _1 .3 .3
where z = x + i vy, 55 = [§§ i Tk ;E = 5 [ 3% +i §§]

and ¥ is the unit normal to the x - vy plane.

Using the assumed incompressibility and irrotationality

in equations (51.09) and (51i12),_we obtain

f
i



<+

grad ¢ -

grad ¢ x v

where ¢ = lnka.

Application

(54.06) yields

-

ad —
v 'a—z- + v
ad -—
Viz = ¥

It
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(54.05)

(54.05)

of (54.02) to (54.05) and (54.01) to

39
3z
)
3

L]

N

(54.07)

(54.08)

Equatiéns-(54.07) and (54.08) are equivalent to the

single eqguation

follows from (54.03) that

N

3 & B
v

3z 2

(54.09)

Since the flow is incompfessible and irrotational, it

v _
5z =~ O

Operating on (54.09) with

320 _ 2%
X Yy
220

(54.10)

Bz and using (54.10), we gét

(54.11)

'\J

" (54.12)
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Integrating (54.12) for ¢, we obtain

¢ = C(x? + y%) + Cyx + Cyy +C4 (54.13)

~-

where C, C C2 and C3‘aré arbitrary constants. By (54;05),

l.l'

¢ cannot be constant throughout the flow and, therefore, at

least .one of C, Cl, C2 must be nonzero.

Substitution of (54.13) into (54.09) yields
B (2cx +Cy) + 1B (2Cy +Cy) .

v = > 5 (54.14)
(2 cx+CP” + (2Cy + Cy)°

From (54.14), we see that for C = 0 the flow is in
parallel straight lines in the direction (Cl,.Cz), while,.,
for C # 0 the flow is in concurrent straight lines through

C C ’
1 2 .

the point (- 56 56): . o .

Employing ¢ = ln g and (54.13), we find
2 ,..2
g = exp [C(x" +y") + Cyx + Cyy + C3] (54.15)

Sﬁmmarizing, we have.the following theorem i

Theorem 5.4 i : ‘ ‘\

For -incompressible, irrotational plane flows with non-
vanishing chérge density, the flow geometqy‘is either
parallel straight lines or concurrent straight lines. Mor;-
over, for these flows, the-vélocity field and the charge

density are given by



B (2cx +C)) T+ B (2cy+c,) 3

2 2
(2Cx + Cl) + (2Cy + C2)

o 2 2
q exp [C(x" + v7) + Clx + Czy + C3J

3

where C, Cl’ C2 and C3 are arbitrary constants and I, 3

are the usunal ghit base vectors of the (x, y) plane.

90
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Section 5, , Incompressible Flows with Isometric

Geometry and Nonvanishing Charge Density.

Let (o,B8) be a natural isometric net .such éhat the
B = constant curves represent the streamlines. Letting h
be the.metric coefficient of this net, El and 32 the unit
tangent vectors to the B = constant, 'a = constant curves
respectively and ds the element of arc length in the (x, y)

plane, we have .

d52 = h [de? + ap?] o . (55.01)
v o= v3 ' | . (55.02)
-+ -+ : -

H.= Hl ey + H2 e, , ‘ (55.03)

Using the assumed incompressibility and (55.01) in

(51.19) and (52.14), we obtain

% WEVvV) = o ' ~ (55.04)
52 g3 /A ' '
m In (rfl_l- V) + : 'B—B ("'v) = 0 (55.05)

Equation (55,04) implies that

v = Y (8)- , | \ (55.06) .
/H. ¥

v

where ¥ (B8) is an arbitrary differentiable function of B.

Substituting (55.06) into (55.05), we get

1 3h - | |
E 58 = ‘v(or | (55.07)



yields

where

-

Application of Lemma (2.1l) to our isometric net

Ll - ‘\
My Ay . AW, B
3a 58 ' 3&7&\\5—‘ 36
1 3n.. _ 1 3n
1" %" % + "2 7 m 3B

Employing (55.07) and (55.08), we obtain '

Qr

= - 1 =
== = T 0

W2 ow
oo

Equation (55.09) implies that

qgsgsgfhf?= ), Wy = £,(B)

their
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{55.08)

(55.09)

(55.10)

respective arguments. Substitution of (55.10) into

the first equation of (55.08) gives

£,'(a) = £,7(B) =K

(55.11)

|
where K is an arbitrary constant. Therefore, the general

solutions for Wl' W2 are

where

W2 = .K B + X

K,, X, are arbitrary constarnts.

Using (55.07), (55.08) and (55.12), we find the

following system of equations for ¥(B) and h (a,B).

L ¢ W] = Ka+K . cﬁ{és.lz)

where fl(a), fz(B) are arbitrary differentiable functions of



1 " 3h _ _ _
55 3a = Ka-K, (55.13)
1 ah _
3K W = KB + Kl
Integrating (55.13), we obtain
‘ | ¥(B) = expil K B¥% 2 Ky B + K,] ~ (55.14)
. L |
h = exp [K4(8® - o®) + 2 (x; B ~ Kya) + K,] (55.15)
St R : :
where K3 and K, afé arbitrary constants.
To solve for the charge density, we use (55.01),
(55.06), (55.14), (55.15) in equations (51.20) and (51.21).
This yields ' '
. 2
%E (%n q)= - % exp [~Ka™ - 2 Kya + K4—'K3} ‘ ]
 (55.16)
-g—B-(lnq)=-2KB—2K1' | J
” Integration of (55.16)=gives
' o] 2
g = exp [ - =) exp [-Ka® - 2 K,a + XK, - K,] da
-x 82 - 2K B+K,] (55.17)
. 1 4 |
Although we are not able to solve for the magnetic
5 field, we derive an equation which can be solved in certain
.
_E Cases. Egq®ations (51.18), (55.01) imply the existence of
. _
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2 magnetic streamfunction M such that

.

i
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= = -~ /EH, , 2= /A " (s5.18)
* |
. Employing . (55.01), (55.06), (55.14), (55.15) and
(55.18) in (51.24), we get ’
2% ;20 booexp (k82 + 2 k.8 + k.1 M (55 19)
a2+ 3p2 1 37 da

Summarizing), we have: j

Theorem 5.5_

For incompressible, finitely conducting plane flow with
nonvanishing charge density‘and isometric flow pattern, the ‘
flow speed, the chargé density, and the metric of the -
natural net have the forms

» " K ey

V = exp [% (62 + a2) + (KlB + Kza) + K3 - iiq
g = exp [~ %‘f exp [—Ka2 - 2K2a ; Kq - K3] da
~ K82 - 2 K, B8 + K,]
1 4
b= exp k(8% - o®) 4 2 (xB - K, a) + K,] ]
(55.20)

Mcreover, the magnetic streamfunction M satisfies’

o,

(55.19).

In case the flow is aligned or, orthogonal, we are able

to extend the results of Theorem (5.5). We consider these

-

‘flow types separately.
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Aligned Flows

For aligned flows H = ﬁl 31. Therefore, by (55.18),

the magnetic streamfunction satisfies

aM M _ | | '
3¢ = 0 4 55 = /AH (55.21)
Equations (55.21) imply M = M(B). Using this result

in (55.19), we obtain

) ' | o
78 = Kg (55722)

where Ko 15 an arbitrary function,

From (55.18), (55.22) it follows that

B = K¢ exp [% (a2 - 82) + (Kpa = K,B) - ;i] 31
(55.23)
In order for (55.20) and (55.22) to be solutions, we
_Jmust be able to integrate for.the pressuré function. By
Corollary (5.1). and equation (51.14), the integraﬁiiity

condition for p is

2+ .
curl [$ X $] + curl [Héz] = 0
or ' -‘
¥(B) ¥'(B) 3h _ 1 2 L
) 3o o5 - 4 Y(B)] 0 (55.24)

Using (55.14) and (55.20) in (55.24), we get

-4 (KB + K;) (Ka + K,) + %5 (KB + K;) exp{

20 2 . 2
-E—-I exp [-Ka®™ -2 Koo + K, - K3] da - 2 KB
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. 2 . ) .
- Ka" - 4K, B-2K, - Ky + 3K} = 0 (55.25)

Differentiating (55.25) twice with respect to g and

dividing out the exponential term, we obtain

3 2

32383+ 96 x K, 82 + (9 6 K’Klz -24 %%

*B2K-24KK) = 0 (55.26)

2

Since (55.26) holds everywhere in the flow region,
all the coefficients of the cubic polynomial must be zerxo.
Therefore, we have

K = K o=-0 _ f_' | (55.27)

To obtain the pressure function, we use (55.20) and
(55.23), with X = K, = 0, in equations (51.22) and
(51.23). This gives

d _

F% = 0

%E-‘= -p K, exp [K. o + K, = =] '
a 2 ¥P 1Ry - f3 T o .

1 - 2.0 ° '
- .5 exp [K3 + 2 K4] exp [ - exs;(

-2 Kza‘f K4 —,KB)ﬂda]

Integration of these equations gives -

. Ky
P = -p exp [Kzu + Ky - 5=

. l R
3 I -5exe [

-

T 20 N
K3 + 2 K4]‘f exp [- = {exp (-2 Kza +

=
|

g ~ K3) dal} Qa (55.28).




where £f(z} = o+ i B.
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In order to determine the possible streamline patterns,

we employ the following formula from Lemma (2.1).

f"kz)

| W. +iW " (22.20)
[£'(2)]° 1 2

_ \ '
Using (55.12), (55.27) and (22.20), we iét

£ (Z)

—_— = iK
(£ (2)]

o _ (55.29')“

It was shown in section (3.5} that (55.29) implies
concentric circles or parallel straight lines, in accordance
with K2 # 0, K2 = 0 respectively.

Therefore, we have the theorem:

AJ

Theorem 5.6 o

For incompreséible, finitely chbpducting aligned plane
flow with nonvanishing éharge density and isometric flow

pattern, the flows are

Geometgz‘ Solutions ' -
Coﬁcentric Cireles Equation (55.20), (55.23),

. .' (55.28) with K = Ky = 0
Parallel Straight Lines Equations (55.20), {(55.23),

(55.28) Vith K=K = K2 = Q.

Orfhogonal Flows

. > <>
- For orthogonal flows H = H2 €s. Therefore, by

(55.18), we have
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~ .
M M ‘
3 T " VhRE, , g = 0 18830

where M is the magnetic streamfunction.

Substitution of (55.30) into (55.19) yields'
o .. .
M''(@) = wo efp (KB # 2 K B+ Ky M'(a). (55.31)

Integrating (55.31),we find

, 2
M'(a) = exp [y o exp (KB2 + 2 K1 B + K3) a + KG]
* (55.32)
,yhéf? K¢ 1s an arbitrary constant. Since M'(a) is a’
function of «, it follows'from (55.32) that
. K = K = 0 . ' . (55.33)

At
Using (55.20);'(55.30);(55.32) and (55.33), we have

‘ | K,
i = ~exp [po.exp (K,la + K,a —.—£-+ KG] e

; 20 <. (55..34)

2

Employing (55.20), (55.33), (55.34), (51.31) and

(51.32), we obtain the following.équations for the pressure

function

op
5%- = 0

L4

p .- _ -
p K2 exp [2 K2 a + 2 K3 K

.9 4]

-U O exp (K3) exp.[z uo exp (K3)a + 2 K, - K,

exp (K3)

+ 2 KGI - 5

2 -i-K4

‘exp - {- Zgg-f exp [-2. K
\ .

- K3] da + 2 K4} (55.35)

; I
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Integrating (55.35), we get

p = - % exp [2 K2 o + 2 K, - K

3 7 Kl
I l ) ’
- 5 exp [2 M o exp (K3) a + 2_K2 a + 2 Kg - K4]
exp (Kj) 2 0 '
- — -f {exp [ - = J exp (-2 Kya + K,
- K3} d a+ 2K} da . (55.36) -

\ . : .
Since the restraint on the constants as given by

(55.33), is identical with (55.26), the geometry of .

orthogonal flows is the same as the geometry for aligned

. flows. Therefore, we have the theorem:
. -

Theorem 5.7

For 'incompressible, finitely conducting orthogonal

pPlane flow with nonvanishing charge density and isometric

flow pattern, the possible flows are “
Geometry Sclutions
Concentric Circles Equations (55.20), (55.34),

(55.36) with K = K, = 0.
Parallel Straight Lines Equations (55.20), (55.34),

(55.36) with K = K1.= K, =0
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Section 6., Viscous Flows

,

Most of the results established for finitely conducting
inbiscid flows glso apply tg/;iﬁitely conducting incompr?sh
sible viscous flows.

For viscous incompressible flows, the linear momentum

equation, (51,06}, and the continuity equation, (51.07}, are

N ~

replaced by

v - grad) v=-9radp ¥ (T + q ¥ x H

P P
+ Lpﬁ rv 92y, (56.01)
BN : '
fdiv v = 0 - (56.02)
-respectively. -

Using (51.08} to eliminate f, E from {56.01) and
decomposing the resulting’équation into its vecpﬁf/gomponent
in the flow plane and its vector component perpendicular to

the flow plane, we obtain

‘(% + grad) v = - QEE%—R + % (curl ﬁ) x H
2 =+ 2 , )
—9345‘1+uv v : | _ (56.03)
-
q lcurl # - p o (v x H}] =0 - (56.04)

Equation (56.04) gives the following theorem.

&

Theorem 5.8
For a steady, finitely ¢epnducting, incompressible and
yiscous plane flow, at least one of the followihg' alternatives

holds

(56.05)

. (1) g9=0 . '?{) . :

(56.06)
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We consider flows for which the charge density is non-

Zero. These flows are governed by equations (51. 01), (56.02),
(51.09), (51.12), (56 03) and (56 06) . Having solved these

equations for v, H, p and q, f and E follow from (51. 08). 1In
terms of the nate?al curvilinear coordinates (a,B), the basgic

flow eguations assume the form:

3 3 - _
3z (/B Hp) + a5 ( VB Hy) =0 (51.18)
3 : _
35 /R, V) =0 . S (56.07)
"1 9 v _ @ '
—— 53 (q /B, v)i = —~Eﬂ , (51.20)
vhi b, 1
EE (g /H‘ V) =0 : (51.21)
H
el
vhy pvhy pvh h,
2 _ _
] v v 3 1 9
Yy (/Hiﬁl)] - %—E + yﬁg 38 [ hl - 3% (/HiV)] (56.08)
. Y
2 avh H
ot R T S I
"h, o'k, pvh,yh,
) ’ v 3 1
- S (VEE)) - Y3 (VR V)] (56.0
p L R, °%  VAgR, % - ,f//f
1 3 s~
[ 55 (/RpHy)) - 5 (VEUH)] = u ov H (51.24)
3a 252 B 1 2 et
vhih, :

-+ - -+ -+
where v = vy 1 r BH= Hl e, + H2e2 and thelelement of arc

length d5 = h; da® + h
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Calculatlng the 1ntegrab111ty condltlon 5_%F §E§—

from (51.20}, (51 21) and using (56. 07), we obtain

2 . /B

r a - _g _3__ . l = ' ’ .

Since the component of the linear momentum equation’ in
the flow.plane is not used in sections (5.3) and (5.4), the
results of these sections also apply to v1scous 1ncompre551ble

flows, Therefore, we have the theorems:

Theorem 5.9

For a steady, incompressible, finitely conducting aﬁd
viscous plane flow with nonzero charge density, the only
possible‘stréight sfreamline patterns are parallel straight
lines or concurrent straight lines.. Moreover, the only flow

whose streamllnes are the involutes of a curve is flow in

concentric circles.

Theorem 5.10

For incompressible, viscous and irrotational plane flows
with nonvahishing charge density, the flow geometry is either
paraliel stfaight lines or concurrent straight lines.’

For the case of isometric flows with meﬁric coefficient

YR, equations (56.07), (56.10), take the form

S |
| ga WVEV) = o, (56.11)
2% In (/Ev) - 9 3 Ay (56.12)
30ag M € 3B ‘v = _ i

respectively.

A Y b——
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% Since (56.11), (56.12) have the same form as (55.04),
{55.05), we‘obtain exactly as in section (5.5) the fo;lowing
i counterpart to theorem (5.5). ' ‘ - '

Theorem 5.11°

For incompressible,'finitély conducting and viscous
plane flow with nonvanishing charge density and isometric
flow pattern, the flow speed, the charge density and the

metric of the natural net have the forms

K ——
. K 2 2 _ 4 .
V = exp [5 (B + a”) + (Klﬁ + Kza) + K3 ¥ ]
y ‘ . .
é = exp [—%_fexp [—Ka2 -2 kza ¥“K4 - K3] do
- g% - 2 K8 + K,]
. 1 4
- 2 2, ,
h = exp [K(B” - o) + 2(K;B - Kya) + K,] (56.13)

J

where K, Kl, K3 and K4 are arbitrary constants. .

»

In the case of isometric flows, equation (51.18) implies

the existence of a streamfunction M such that

¥ _vEm,, =V RH | 7 (56.14)

-+ -+ -+
where H = Hlﬁel + H2 e,

Employing (56.13) and (56.14) in (51,24), we obtain

2 2 . '
e ™™ "M 2 oM
pyn Ao B (k8" + 2 Ky B + K3] 55 (56.15)

We next determine the possible flow geometries for
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constantly inclined isometric flows.

Letting © be the constant angle of inclination between

» + .
v and H, we define A and B as

A=sin¢ , B=cos 0 ' _ {56.16)

In terms of A and B, the magnetic vector has the form

> - -+
H=HDBe, +HA@e

1 2 ‘ (56.17)
In the case of aligned or orthogonal isometric flows,

the possible geometries follow as in section (5.5). We extend

these results to nonorthogonal constantly inclined flows.

Therefore, we assume both A and B to be nonzero constants.

Using (56.14) and (56.17) in (56.15), we get
3 ' 3 '_ . 2
Azs (In/HH -Bgz (In VRH =21 o exp (KB

+ 2 KyB + K4l " '(56'18).

-

Integration of (56.18) yields

In vYh H = Fl (AB+Ba) +Auco J exp [KB2 + : ¢

2 Ky B+ K;] dB + Fy(a) J (56.19)

¥

where Fl(A g + Bo), Fz(a) are arbitrary functions of their
respective arguments. ‘
Substituting (56.19) into (51.18) and using (56.17),

we obtain
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[}

1
F, (AB + Ba) + B F, (o) + a2 U ¢ exp [K 82 +

2 KlB + K3] = 0 : - _ : (56i20)

.Differentiqting (56.20) with respect to B, we find

>
1 PN

A Fl { AB- + Ba) + A2 U o (2KB + 2 Kl) exp [

ke + 2 K, 8.+ Ky =0 (56.21)

Since A B8 + Bo ana B are independent, equation (56.21)
impliesl

K = Kl =0 ' | ' (56.22)

Equatlon (56.22) in congjunction w1th (22.20) 1mp11es

that the streamllne geometry is concentric cmrcles or

parallel stralght llnes Therefore, we have the theorem:

Theorem 5.12

For incompressible, finitely conducting, viscous,
constantly inclined or alighed plane flows, the only possible
isometric flow patterns are concentric circles _or parallel

s

straight lines. v
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