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ABSTRACT

Walpole Island is part of a large freshwater delta complex located at the St. Clair River
mouth in southwestern Ontario. Petrographic study of 3 continuously sampled sediment cores
taken along a 14 km north-south transect of the island show that the stratigraphy of Walpole
Island Quaternary sediments reflects a general retreat of the Laurentide Ice Sheet northwards
from the arez. From top to bottom, the stratigraphy is as follows: (a) Nipissing to Modern
Great Lakes stage sandy deltaic sediments; (b) an Early Holocene green accre’.on gley found
only in the middle core; (c) Two Creeks Interstade, Greatlakean Stade, and Early Holocene
non-rhythmically stratified lacustrine clayey silt; (d) Early Mackinaw Interstade to Early Two
Creeks Interstade varved glaciolacustrine clayey silt; (€) Port Bruce Stade Rannoch Till; a
waterlain, carbonate-rich clayey silt till containing numerous inclusions of Erie Interstade
glaciolacustrine sediments and bedrock clasts; and (f) a coarser, sandy lodgment facies of the
Rannoch Till. Bedrock consists of Upper Devonian Kettle Point black shale in the northern
and middle portions of the island, and sheared Middle Devonian Ipperwash Formation
bioclastic limestone in the southern portion of the island.

Porewater 50, 8D and 8" *Cpic value profiles for cores located in the north and middle
of Walpole Island indicate that older (>10 000 y.b.p.), deeper, glacigenic porewaters have
mixed with, and have been displaced by younger (<10 000 y.b.p.) surficial waters. Porewater
5'%0, 8D and 8“Cpyc value profiles for the core from the southern portion of Walpole Island
indicate that modern St. Clair River water has penetrated the length of the 20 m core via
fractures, effectively displacing all glacigenic porewater. Fracturing and faulting or slumping
are clearly visible throughout the southern core, which is located on the trend of the Electric
Fault. The fracturing ard faulting or slumping seen in the core may be related to renewed
Holocene movement along the fault, perhaps related to collapse due to dissolution of the
evaporite units of the Paleozoic bedrock.

Porewater Na', K, CI, Ca*, and Mg’ concentration gradients, in addition to
electroconductivity measurements, suggest the presence of an upwardly diffusing deep basin

brine, which is probably using the Electric Fault as a conduit to the surficial sediments.

iv
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CHAPTER 1
INTRODUCTION

Quaternary sediments, many tens of metres thick, blanket most of the bedrock of
southwestern Ontario. This overburden is composed of clays, silts, and fine sands
deposited in a sequence of glacial, glaciolacustrine, and lacustrine environments during the
last 18 000 years.

This thesis deals with just one of several physiographic units of southwestern
Ontario: the St. Clair Clay Plains. This region lies east of both the St. Clair River and
Lake St. Clair, spanning an area of 5 880 km? in Lambton, Kent and Essex counties on the
Canadian side of the international border with the United States. Topographically, this
region is flat, except for morainic ridges at Ridgetown and Blenheim (Chapman and
Putnam, 1984). Underlying these clay plains is bedrock consisting of Devonian black
shales and limestones.

The St. Clair River, which defines the western margin of the St. Clair Clay Plains,
cuts down into this overburden along the western boundary of Lambton County. The St.
Clair River serves as the outlet for Lake Huron, flowing south into Lake St. Clair. At the
mouth of the river, in northeastern Lake St. Clair, is the largest delta in the Great Lakes
Basin: the Saint Clair Delta. It is a relatively thin (2 - 5 m) surface veneer of coarse sands
and silts which lie directly above thick (15 - 40 m) sequences of Quaternary sediments.
The focus of this thesis will be the overburden and associated porewaters of Walpole

Island, one of the islands comprising the St. Clair Delta.

1.1 Ymportance of the Studyv

The Canadian portion of the Saint Clair Delta is the Walpole Istand First Nation
Reserve, populated by more than 1 800 people. Fresh water for drinking and irrigation

purposes is obtained both from the river and from shallow groundwater wells that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



penetrate a sandy till aquifer directly overlying bedrock. Chemical spills originating
upriver from the petrochemical manufacturers in both Lambton and St. Clair counties
often negatively impact the Walpole Island Reserve. For example, the Nin-da-waab-jig
News (December, 1994) reports on the effects of an accidental release upriver by Dow
Chemical of 68 kg of ethylbenzene, 1.5 kg of toluene and 8 kg of styrene. This spill
forced the reserve to close its Water Treatment Plant for 31 hours as a precaution, and to
import drinking water in water trucks. While reserve surface waters are clearly impacted
by these spills, there is concern whether local well water is also affected by these spills and
by other upriver industry practices, such as the disposal of liquid waste by deep-well
injection into Paleozoic strata (e.g. Raven et al., 1990). With respect to the protection of
Walpole Island potable water, there may also be potential pollutant sources located on the
reserve itself. These potential sources are landfills, dumps, septic systems, fertilizers and
pesticides off croplands, accidental spill sites and the de-icing salt along the reserve’s
roads.

The reserve’s shallow sandy till aquifer, located at the overburden-bedrock
interface, is overlain by clayey sediments 20 to 45 m thick. Hydrogeologically, this thick
clay acts as an aquitard, protecting the shallow aquifer from contaminants derived from
surface activities, and potentially protecting surface waters from upwelling subsurface
contaminants, as shown schematically in Figure 1. Yet, despite the extensive study of the
surface deltaic sediments, the surface waters, the shallow aquifer waters, and the
underlying Paleozoic strata, little direct study of the reserve’s clayey sediments has taken
place. Hence, an investigation into the sedimentology and chemical properties of the
reserve’s Quaternary deposits and their porewaters is warranted, in that it may contribute
to the understanding, control and prevention of potential ground and surface water
pollution both on the Walpole Island Reserve and in neighbouring communities. More
broadly, such an investigation may also assist in studies of similar glaciated terrains in

other regions of the world.
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Fig. 1: Potential migration pathways from a decp liquid waste disposal formation in Lambton
County to the overlying fresh water aquifer and the Saint Clair River (Raven et al., 1990).

1.2 Objectives of the Study

With the general aim of furthering our understanding of the St. Clair Delta area
surficial sediments and porewaters, three continuous sediment cores were sampled from

Walpole Island, so that 4 specific objectives could be met:

(1) To describe the sedimentology and stratigraphy of Walpole Island’s Quaternary
deposits.

(2) To quantify and interpret variations in porewater *0, *H, and “Cpic concentrations.

W)
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(3) To quantify and interpret variations in porewater major 1on concentrations.

(4) To synthesize the above results, providing hydrogeological information about the
clayey silt aquitard relevant to the management of the reserve’s water resources, namely
the protection of both shallow aquifer and surface waters from contaminants originating

from deep waste disposal formations, and from surface activities.

1.3 Thesis Structure

The thesis is divided into 7 chapters and 2 appendices. Chapter 1 introduces the
topic and justifies the study. Chapter 2 provides background material on the study area’s
geographic setting, bedrock geology and Quaternary history. Chapter 3 reviews the basic
concepts related to the application of *0, *H and “Cpic concentration determinations to
hydrogeological and paleoclimatic studies. Chapter 4 provides methods used in the
investigation, with results presented in Chapter 5. Chapter 6 is the discussion, and
Chapter 7 contains conclusions and recommendations. Complete core descriptions and

analytical results are found in the appendices.
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CHAPTER 2
STUDY AREA

2.1 Geosraphic Setting

The St. Clair Delta, centred on latitude 42°35°N, longitude 82°30°W, has formed
at the mouth of the St. Clair River, which begins as the outlet for Lake Huron and then
flows south 64 km into Lake St. Clair (Fig. 2). The St. Clair River is not a true river
system, in that the water contribution from tributary streams is minor. The upper 45 km
of river consists only of a main regular channel, while the lower 19 km is 2 delta region.
At the delta, the river divides into several unusually wide and deep distributary channels
and extends into the lake, giving it a classic “bird’s foot” morphology. Atypically, these
deep distributary channels rise in the downstream direction to the maximum depth of the
shallow lake bottom. Today the river serves as a major waterway for commercial shipping
as well as for recreational boating.

The delta straddles the international border between Canada and the United States.
Its Canadian portion is the Walpole Island First Nation Reserve, which consists of a group
of 6 islands, from west to east: Seaway, Bassett, Squirrel, Walpole, the artificial
Pottowatamie, and St. Anne (Fig. 3). The reserve is bounded to the east by the Chenal
Ecarté, to the south by Lake St. Clair and to the west by the St. Clair River. Most of the
flow from the St. Clair River, as well as its associated traffic, passes west of the Reserve,
through the North, Middle and South channels, though several smaller distributary
channels pass directly through the reserve: Bassett; Chematogen, Johnston; and Chenal
Ecarté (Fig. 3).

Walpole Island Reserve has a total area covering 233 km’® of uplands, marsh and
water, of which 159 km? are dry land (Ecologistics, 1979). The islands of the reserve are
flat, low-lying and composed mostly of fine sandy soils. The ground level of the islands is

about 177 m above sea-level, the highest ground occurring at Highbanks at the northern
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tip of Walpole Island, at 181 m above sea level. The low water datum for Lake St. Clair

is 174.4 m above sea level. A high water table, at an elevation slightly above lake level, is
prevalent throughout much of the islands and results in poor drainage conditions
(Wightman, 1961). Sandy deltaic sediments lie atop clayey overburden deposits of the St.
Clair Clay Plain. These overburden deposits reach thicknesses greater than 20 m
(Chapman and Putnam, 1984).

Walpole Island is a complex ecosystem of lacustrine, riverine and palustrine
wetlands, with a diverse array of emergent, scrub-shrub and aquatic-bed vegetation. Oak
and ash forests, dogwood grass, sedge, cattail and bulrush marshes, as well as aquatic
plants are all found on the delta (Raphael and Jaworski, 1982). Wildlife inhabiting the
region include: game fish, wetland fowl (e.g. mallards), and mammals such as muskrats,
foxes, raccoons, skunks, and deer (Herdendorf, 1986). The reserve’s wetlands are
renowned as excellent duck hunting areas.

The human population of Walpole Island is most concentrated in the drier lands
towards the north of the reserve. Commercial activity is dominated by agriculture, with
the production of corn, soybears and rice in fields which are often diked (Chapman and
Putnam, 1984). Buiiding structures on the reserve are mostly small-scale residential or
agricultural. Paved and dirt roads criss-cross the reserve, which can be accessed by road

from the east, or by car-ferry from the west.
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2.2 Bedrock Geologv

2.2.1 Regional Bedrock Geology

The regional bedrock geology beneath the surficial deposits of southwestern
Ontario is characterized by a southwesterly thickening wedge of Paleozoic sedimentary
rocks underlain by a Precambrian crystalline basement.

The Paleozoic formations range in age from Upper Cambrian through to Upper
Devonian (see Brigham, 1971), but the early part of each period is either missing (Lower
and Middle Cambrian, Lower Ordovician), or of minor importance (Lower Silurian,
Lower Devonian). A partial stratigraphic column for southwestern Ontario, presented in
Fig. 4, outlines the simplified lithologies of the groups and formations that outcrop or
subcrop in the regton.

The Paleozoic sedimentary cover is essentially an alternating sequence of
carbonates and shales with minor amounts of salt, gypsum, anhydrite and sandstone. In
southwestern Ontario this Paleozoic section is over 1 000 m thick, and is more or less flat-
lying, with a regional dip of less than 1° (Brigham, 1971). Outcrops are scarce, but many
data are available from numerous deep boreholes. The regional bedrock geology is
summarized in map form in Fig. 5, which also highlights the major structural features of
the area.

The Precambrian basement is composed of highly deformed and metamorphosed
gneisses of the Central Gneiss and the Central Metasedimentary belts of the Grenville
Structural Province. These basement rocks represent roots of a Grenville Orogeny
mountain chain that existed 1 000 - 1 100 million years ago (Stockwell, 1964). Erosional
forces flattened the Precambrian surface to a peneplain during the 400 million years
between the Grenville Orogeny and the deposition of the oldest Paleozoic sediments
(Carter et al., 1993).
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Period | Era Group / Formation Lithology
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T © unconsclidated sand,
S C clay and gravel
a
Port Lambton Gp. sandstone, shale
Upper
Kettle Point Fm. black shale
Ipperwash Fm. bioclastic limestone
Widder fm. grey shale
] Hungry Hollow Fm.| shale, limestone
=z Hamilton Gp. Arkona Fm. blue-grey shale
< Rockport Quar. Fm.| micritic limestone
pZd Bell Fm. biue-grey shale
© [Middle
>
L
o Dundee Fm. limestone
) Lucas Fm. limestone, dolostone
Detroit R. Gp. ["Amherstburg Fm. | limestcne, dolostone
~Sylvania Fm. quartziticsandstone |
Lower | Bois Blanc Fm. cherty limestone
Bass Islands Fm. dolostone, shale
G shaly dolostone
% F dolostone, anhydr., salt
o Upper E dolostqne, shale
—3 o D anhydrite, salt
= Salina Fm. C shale
B anhydrite, salt
A-2 dolostone, salt, anhydr.
A-1 limestone, dol., anhydr.

Fig. 4: Partial stratigraphic column for southwestemn Ontario
(after Vandenburg et al. (1977) and Johnson et al. (1 992)).
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2.2.2 Local Bedrock Geology

Bedrock underlying the northern portion of the St. Clair Delta is composed of
black shale from the Upper Devonian Kettle Point Formation (Fig. 5). The Kettle Point
Formation, preserved within the Chatham Sag in the Chatham to Sarnia arca, has a
thickness ranging from 30 to 75 m. The formation is Frasnian to Famennian in age, and
was deposited in a marine environment having a stratified water column (Uyeno ef al.,
1982). Johnson et al. (1992) summarized the Kettle Point Formation as being black,
siliciclastic organic-rich shale and siltstone with minor green-grey, organic-poor shale and
siltstone interbeds. Organic-rich intervals (3 - 15 % organic carbon) are laminated while
organic-poor (<2 % organic carbon) interbeds are bioturbated. Large (up to 1.2 m in
diameter) calcite concretions or 'kettles' are found in the lower third of the Kettle Point
Formation. Abundant remains of tasmanites, pyritized radiolaria, sponge spicules,
conodonts, and plants are found, in addition to more rare linguid brachiopods and fish
remains. The lower contact of the Kettle Point Formation is sharp and disconformable
with the Ipperwash Formation.

Bedrock underlying the southern portion of the delta is composed of bioclastic
limestone from the Middle Devonian Ipperwash Formation, which is a part of the
Hamilton Group (Fig. 5). This formation lies in areas between lakes Huron and Erie and
has a thickness ranging from 2 to 13 m. It is Frasnian in age, and was deposited in a
shallow marine environment (Uyeno ef al., 1982). Johnson et al. (1992) summarized the
Ipperwash Formation as being a grey-brown, medium to coarse grained bioclastic
limestone. It is richly fossiliferous with minor chert. Fossils remains include crinoids,
bryozoans, corals, bivalves, with large burrows (15 cm in diameter) being found in the
Ipperwash Beach area. Lower contact of the Ipperwash Formation is sharp with the

Widder Formation.
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2.2.3 Structural Setting

The St. Clair Delta occupies an unique setting near the termination of two
northeast trending crustal flexures: the Algonquin Arch to the northeast; and the Findlay
Arch to the southwest (Fig. 6). These two flexures or basement ridges define the
boundary between the Michigan and Appalachian basins. Regional bedding west of the
flexures dips northwest toward the Michigan Basin’s centre, while regional bedding east of
the flexures dips southeast into the Appalachian Basin. The delta also lies directly
northwest of the Chatham Sag, a structure initiated in the Middle Ordovician by the
mutual plunge of the two arches (Brigham, 1971). Twenty kilometres west of the delta is
the trace of the Grenville Tectonic Front (Fig. 5), signifying a major change in
Precambrian lithologies at depth.

Three smaller, yet significant basement structures are present in the St. Clair Delta
region: the Electric and Dawn faults, and the Kimball-Colinville monocline (Fig. 5). The
Electric Fault, a well-defined fault in the basement structure, trends west to east through
the southern part of the delta, and extends eastward into Lake Erie. The fault is near
vertical in orientation, with a displacement of 84 m, downthrown to the south (Brigham,
1971). The Electric Fault is Early Ordovician in age, with movement continuing through
the Silurian (MacGregor, 1980). North of the Electric Fault, and parallel to it, is the
shorter Dawn Fault, which passes 3 km north of the delta’s apex. Displacement on this
fault is 47 m, downthrown to the south (Brigham, 1971). Today, companies commercially
exploit the oil and gas pools that occur in the porous dolomite of the Salina A-1 and A-2
Carbonate Units located along the upthrown sides of the Electric and Dawn faults (Carter
et al., 1993). Farther north of the delta is the Kimball-Colinville structure, which has a
displacement of 43 m, downthrown to the southwest (Brigham, 1971). Sanford er al
(1985) suggest that some of these faults may be the focus of contemporary fault
movement, however Carter et al. (1993) found no supperting evidence for this hypothesis.

The structural attitudes of the formations of southwestern Ontario have been

changed by tectonic activity and by collapse as a result of salt dissolution, particularly of

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0
(=
©
S
c
3
o
=

ib map of fhe Great Lakes afea (after Sanford et al., 1985).

Regional tecton

Fig. 6



ppdiinditniginioseat o epsngr-Srabig

the Silurian salt beds. The Salina salt members have irregular distributions and thicknesses
throughout southwestern Ontario. Grieve (1955) demonstrated that these irregularities
were due to salt dissolution occurring during the Upper Silurian and Devonian periods.
He also established the timing of these dissolution events using local thickening of the
overlying Upper Silurian and Devonian strata. The removal of the B Salt member of the
Salina Formation, and to a lesser extent, the A-2 Salt member, is the principal cause of
thickening in the overlying sediments (Brigham, 1971).

Distribution of the B Salt member shows four east-west zones where the member
is absent (Fig. 7): a 72 km stretch along the Electric Fault; a region south of the Electric
Fault in the Dover Centre area; a zone north of the eastern end of the Electric Fault; and
another elongated zone along the Dawn Fault. This correlation between salt dissolution
and the Electric and Dawn fault systems indicates that fluids moved within and along
these faults. The dissolving fluids originated from above, since it was the upper salts that
were dissolved first (Brigham, 1971). It is unclear, however, whether the dissolving
fluids, which acted under submarine conditions, came from the ocean floor or from porous
formations above the salt (Brigham, 1971). Salt dissolution in southwestern Ontario also

centres around the fracture zones above pinnacle reefs (Brigham, 1971).
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Fig. 7: Stratigraphy and isopach map of the Salina Formation salt beds
in southwestern Ontario (Sanford, 1965).
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2.3 Regional Quaternarv Historv

2.3.1 The Quaternary Period in Ontario

The Quaternary Period is the youngest geological period, beginning 1.8 million
years ago and continuing to the present day. It is subdivided into the Pleistocene and the
Holocene (or Recent) epochs. The Pleistocene Epoch (1.8 My.b.p. - 10 000 y.b.p.), also
known as the “Great Ice Age”, was a time when several continental-scale ice sheets
periodically occupied much of North America and Europe. In contrast, the warmer,
postglacial Holocene Epoch saw the disappearance of these large ice sheets from most of
the northern hemisphere, with the notable exception of Greenland.

The Quaternary Period may be further subdivided into 63 oxygen isotope stages
through the use of the oxygen isotope variations (see sect. 3.1 - 3.3) of the calcareous
shells of marine foraminifera, whose oxygen isotope compositions reflect the isotopic
composition of the seawaters in which they lived (Porter, 1989; Barnett, 1992). Stage 1,
the youngest, represents the Holocene, while Stage 63, the oldest, represents a time 1.8
My.b.p. These oxygen isotope variations are believed to reflect changes in continental ice
sheet volume: lighter 'O is preferentially concentrated in evaporated sea water and stored
in glaciers, leading to increasing '*O concentrations in sea water during times of growing
ice sheets (Barnett, 1992). These '*0 variations in Quaternary foraminifera match the less
complete record of *H variations in recently studied Antarctic ice cores (Jouzel et al.,
1989).

In Ontario, Quaternary deposits have only been identified for the last 6 oxygen
isotope stages, representing the last 190 000 years (Barnett, 1992)(Fig. 8). This includes,
however, 2 main glacial stages, the Illinoian and the Wisconsinan, and their associated
interglacial stages, the Sangamonian Stage and the Holocene Epoch. Quaternary ice
sheets and their resulting meltwaters have left extensive surficial deposits of till, gravel,

sand, silt and clay throughout Ontaric. These deposits encompass such diverse landforms

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Oxygen

Vostock Approximate Classification following Dreimanis and Karrow (1972) Approximate
Isotope Ice Core Age (ka) Radiocarbon
Stage Stage * Age
1 A Holocene
-—--e- 2| meme e Io - e e e W W Emeew® W e ®m®a®®®® === -e-ememewEmeEmeEmeww ™ me -
Port Huron Stade e===13
Mackinaw Interstade === 134
2 B Late Wisconsinan Port Bruce Stade ===~ 148
Eric Interstade -w== 155
Nissouri Stade ce==
-—-mm wmemee= 30 ------ -ommmwaw - -m--me- P -mmme-n === - -
Plum Point Interstade ce=e D+
3 C Middie Wisconsinan Cherrytree Stade
Port Talbot Interstade —===>40
. cean- 60 S ememe- mmemmwemama=== cmemcam== e
4 D Guildwood Stade
Sab.c E s Early Wisconsinan St. Pierre Interstade R
—=== =eea- s . TE==es --
5d F Nicolet Stade
-—- - - -»--- - ‘lls ---- - m - --e-ewmw e = we-- -—---eem - P e et
Se G Sangamonian
- - - - -»m---- 135 > - -- e e emmw®EEEmw®®®®wa - —fe .- - -e oo -
6 H Tlinoian
_—— - e e ea- 190 ememe=me- P weamsaan eemcsem. R

» from Jouzel et al. 1989
*+ from Porter 1989

Fig. 8: Subdivision of Ontario’s Quaternary deposits (Bamett, 1992).
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as moraines, eskers, clay plains, raised shorelines, and deltaic deposits. The following
summary of southwestern Ontario’s Quaternary history, as well as the accompanying

maps, are mostly a condensed version of Barnett’s work in Geology of Ontario (1992).

2.3.2 The Laurentide Ice Sheet and Its Glacial Deposits

The Laurentide Ice Sheet was part of a continental glacier complex that, together
with the Cordilleran and Innuitian ice sheets, covered most of Canada during intervals of
the Wisconsinan Stage (Prest, 1984; Fulton and Prest, 1987). The Laurentide Ice Sheet
attained its maximum about 20 000 years ago, extending east to the continental shelf,
south to the northern United States, west to the Rocky Mountains, and north to the Arctic
Archipelago. The Laurentide Ice Sheet had 3 sectors: the Labrador, Keewatin and Baffin
sectors (Prest, 1984; Fulton 1989). It was the Labrador Sector, originating in the
Labrador and Quebec highlands, that spread southward and occupied southern Ontario.

Generally, the bedrock topography of Ontario predates glaciation (Ambrose, 1964;
Shilts et al., 1987), undergoing little significant alteration by the overriding ice sheets. As
the Laurentide Ice Sheet advanced over the preexistent Great Lakes basins, ice flow was
directed down the centres of these broad basinal depressions, consequently forming
distinct ice lobes. These lobes, at times, advanced and retreated independently from one
another (Barnett, 1992).

This lobation produced a range of distinct tills in the Great Lakes region that
reflects rock types both within, and upglacier from, each basin. Three main till end-
members were formed: sandy tills derived from Precambrian rocks; silty tills derived from
eroded Paleozoic carbonates; and clayey tills derived from reworked glaciolacustrine
sediments (Barnett, 1992). Interlobate zones, such as the Waterloo region of
southwestern Ontario, have particularly complex Quaternary stratigraphies due to the
overlapping oscillations of various lobe margins (Taylor, 1913).

Melting glaciers released great volumes of meltwater into the Great Lakes basins,

particularly during periods of rapid ice margin recession. The glacial debris carried by
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these waters generated distinctive sediments: glaciofluvial deposits underneath and
alongside the glaciers; glaciofluvial outwash deposits beyond the glacier; and
glaciolacustrine and lacustrine deposits in newly-formed, short-lived lakes at a distance
from the ice margin.

Together, the tills deposited by the Laurentide Ice Sheet and the stratified
sediments deposited by its meltwaters make up the bulk of Ontario’s Quaternary deposits.

These deposits are commonly 30 to 60 m thick in southwestern Ontario (Karrow, 1989).

2.3.3 The Late Wisconsinan Stage

The sediments of the Late Wisconsinan Stage, and to a lesser extent the Holocene
Epoch, are the most extensive Quaternary deposits in Ontario. Quaternary sediments
deposited in stages prior to the late Wisconsinan (the glacial llinoian, the interglacial
Sangamonian, and the glacial Early and Middle Wisconsinan) are relatively rare and poorly
understood. Dreimanis and Karrow (1972) define 3 periods of major Late Wisconsinan
ice advance in southern Ontario: the Nissouri, Port Bruce and Port Huron stades.
Separating these stades are the Erie and Mackinaw interstades. The Port Huron Stade
ends with the warming of the Two Creeks Interstade. The last Wisconsinan period of ice
advance, the Greatlakean Stade, did not reach southern Ontario. Figure 8 outlines the
order and approximate radiocarbon ages of these stades. The distribution of surficial
Quaternary deposits in southwestern Ontario is shown in map form in Fig. 9, while the

Late Wisconsinan tills of southwestern Ontario are correlated in Fig. 10.

2.3.3.1 The Nissouri Stade

The Nissouri Stade (maximum approximately 18 000 years b.p.) saw the

Laurentide Ice Sheet completely override Ontario (Fig. 11). Till deposition during this
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time is represented by the Catfish Creek Till (deVries and Dreimanis, 1960) and its Huron
lobe facies, the Dunwich Drift (Dreimanis and Barnett, 1985).

2.3.3.2 The Erie Interstade

During the Erie Interstade (maximum retreat approximately 15 500 y.b.p.), the ice
margin of the Laurentide Ice Sheet receded in the Lakes Michigan, Huron and Erie basins,
probably forming ice-contact proglacial lakes in the exposed portions of the basins
(Dreimanis, 1969; Morner and Dreimanis, 1973)(Fig. 12). Details regarding these lakes
are minimal, due to the subsequent readvance of the ice-sheet during the Port Bruce
Stade, which mostly destroyed the record (Barnett, 1992). Yet, the unusually fine grain
sizes of the earliest Port Bruce Stade tills, such as tae Port Stanley Till (Erie basin) and the
Tavistock Till (Huron basin), indirecily testifies to a reworking of large amounts of Erie
Interstade glaciolacustrine clays and silts (Chapman and Putnam, 1951; Dreimanis, 1960;
Barnett, 1987).

2.3.3.3 The Port Bruce Stade

The Laurentide Ice Sheet reoccupied all of Ontario during the Port Bruce Stade
(maximum approximately 14 800 y.b.p)(Fig. 13). Karrow (1974, 1989) identifies 5 Port '
Bruce Stade tills that were deposited during a coalescence of the Huron and Georgian Bay
lobes: the Stirton, Tavistock, Mornington, Stratford and Wartburg tills. Later in the Port
Bruce Stade, these lobes separated and independently deposited the Elma Till (Georgian
Bay lobe) and the Rannoch Till (Huron lobe).

Karrow (1977) and Barnett (1992) describe the Rannoch Till as having the
following characteristics: silt to silty clay composition; low plasticity; non-sorted; non-

stratified; fining westward; strongly calcareous (50 to 60 % matrix carbonate) with calcite
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Fig. 13: Readvance of the Laurentide Ice Sheet over south-
ern Ontario during the Port Bruce Stade glacier maximum
(about 14 800 y.b.p.)(after Bamett, 1992).

Fig. 14: Formation of glacial Lake Maumee IV during the late
Port Bruce Stade (about 13 900 y.b.p.)(after Bamnett, 1992).
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predominating in the south and dolomite predominating in the north; less than 2% clast
content, with most clasts being local limestone; some lenses and inclusions of
glaciolacustrine sediments. The Rannoch Till was deposited both as ground and end
moraines, and is often covered by glaciolacustrine siit and sand of glacial Lake Maumee
IV or local supraglacial till (Barnett, 1992). Thicknesses average 2 to 6 m, though
thicknesses up to 70 m are found (Barnett, 1992).

Ice-marginal recession in the late Port Bruce Stade created a series of proglacial
lakes at the margin of the Huron and Erie lobes: glacial Lakes Maumee I, II, III, and LV,
of which only glacial Lake Maumee IV existed over the present day St. Clair Delta region
(Barnett, 1992)(Fig. 14). Glacial Lakes Maumee I through IV deposited thick sequences
of clay, silt and sand rhythmites throughout southwestern Ontario, as well as the Komoka

Delta at London (Barnett, 1985).

2.3.3.4 The Mackinaw Interstade

The ice margin continued its retreat during the Mackinaw Interstade (maximum
retreat approximately 13 200 y.b.p.). Glacial Lake Arkona existed in the combined Huron
and Erie basins, until further ice margin retreat opened Lake Ontario basin outlets, causing
lake levels in the Michigan, Huron and Erie basins to drop substantially (Dreimanis and

Karrow, 1972; Kunkle 1963)(fig 15).

2.3.3.5 The Port Huron Stade

During the Port Huron Stade (maximum approximately 13 000 y.b.p), the
Laurentide Ice Sheet readvanced into the southern portion of the Lake Huron basin and
the eastern portion of the Lake Erie basin, depositing the Halton Till (Erie-Ontario lobe),
the Kettleby Till (Simcoe lobe), and the St. Joseph Till (Huron and Georgian
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Fig. 15: Continued northward retreat of the Laurentide Ice
Sheet during the Mackinaw Interstade (about 13 200 y.b.p.)
(after Bamett, 1992).

et o e s . it n e e s

Fig. 16: Readvance of the Laurentide Ice Sheet and
formation of glacial Lake Whittlesey during the Port Huron
Stade (about 13 000 y.b.p.}(after Barnett, 1992).
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lobe)(Barnett, 1992). The St. Joseph Till occurs as a 20 km wide band along the southemn
shoreline of present-day Lake Huron, and incorporates Port Bruce Stade and Mackinaw
Interstade glaciolacustrine sediments. It has similar characteristics to the Rannoch Till,
except for a slightly finer grain size and a lower carbonate content of 45% (Cooper and
Clue, 1974).

Glacial Lake Whittlesey formed during the Port Huron Stade in the ice-free
portions of the Huron and Erie basins. Lake levels were high, as advancing ice closed the
eastern outlets (Calkin and Feenstra, 1985)(Fig. 16). Later Port Huron Stade ice-margin
recession was accompanied by falling lake levels and the development of a series of glacial
lakes that replaced Lake Whittlesey in the Huron basin: glacial lakes Warren, Grassmere
and Lundy (Hough, 1958). These proglacial lakes left thick glaciolacustrine deposits
throughout southern Ontario, including the St. Clair Clay Plains (Chapman and Putnam,
1984). These sediments are typically clay and silt rhythmites overlain by silt and sand
(Barnett, 1985).

2.3.3.6 The Two Crecks Interstade

The Two Creeks Interstade (maximum retreat approximately 12 200 y.b.p.) was a
period of continued northward recession of the Laurentide Ice Sheet. Glacial Lake
Algonquin formed in the combined Michigan and Huron basins. Eschman and Karrow
(1985) divide the life of glacial Lake Algonquin into four phases: an early Lake Algonquin
phase with southward drainage; a Kirkfield low-water phase with eastward drainage
through the Fenelon Falls outlet; a Main Algonquin high-water phase with a return to
southward drainage through the Port Huron outlet; and a Lake Algonquin-Lake Stanley
falling-water phase with drainage across the newly exposed and isostatically depressed

Algonquin Park region and into the Ottawa River valley (Fig. 17).
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Fig. 17: Formation of glacial Lake Algonguin and an ancest-
ral Lake St. Clair during the Greatlakean Stade glacier maxi-
mum (about 11 800 y.b.p.)(after Barnett, 1992).

Fig. 18: Subaerial exposure of the St. Clair Clay Plains
during the low lake levels period at the beginning of the
Holocene (about 10 000 y.b.p.)(after Barnett, 1992).
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2.3.3.7 The Greatlakean Stade

The Greatlakean Stadial ice advance (beginning approximately 11 800 y.b.p.) is
recorded in the Two Rivers Till in Wisconsin. However there is no evidence that this

advance occurred in Ontario (Karrow, 1984, 1989).

2.3.4 The Holocene Epoch

Ten thousand years ago, at the beginning of the Holocene Epoch, the Laurentide
Ice Sheet still occupied over half of Ontario, and the last major ice advance in the
province, the Marquette Advance into Lake Superior, was just beginning (Barnett, 1985).
Due to the opening of the isostatically depressed North Bay outlet, lake levels were very
low in Georgian Bay (Lake Hough), and in lakes Michigan (Lake Chippewa), Huron
(Lake Stanley), Erie (Early Lake Erie) and Ontario (Early Lake Ontario) (Barnett,
1985)(Fig. 18). The St. Clair Clay Plains became subaerially exposed, resulting in a
prolonged lowering of the water table. This dry period caused the upper 12 m of the clay
plains to become highly overconsolidated (i.e. more compact than expected), with deeper
clays becoming slightly overconsolidated (Soderman and Kim, 1970).

By 5 000 years b.p., isostatic uplift had begun to close the North Bay outlet. Lake
levels rose again, forming the Nipissing Great Lakes. The Upper Great Lakes had three
outlets: the North Bay, Port Huron and Chicago outlets. It was during this time that the
St. Clair Delta deposits first began to accumulate unconformably overtop of a layer of
organic debris commonly composed of large wood fragments such as wood ash (Dorr and
Eschman, 1971; Flint, 1971). This ‘premodern delta’ (Raphael and Jaworski, 1982) was
deposited at Nipissing Great Lakes water levels that were about 2 m above present levels.
Continued regional isostatic uplift subsequently closed the North Bay and Chicago outlets,
which were both located on rock, while the Port Huron outlet, located on softer, thick

clays, eroded to a deeper level (Barnett, 1985).
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In the last few thousand years, Great Lakes water levels have fallen slightly, partly
as a result of climate related fluctuations, and partly due to erosion of the Port Huron
outlet and the breaching of the morainic dam at Fort Erie located at Lake Erie’s outlet
(Eschman and Karrow, 1985; Barnett, 1985). The fall in Lake Erie’s water level due to
the breaching of the Fort Erie morainic dam probably lowered Lake St. Clair about 3 500 -
years ago, resulting in the growth of the ‘modern” St. Clair Delta at an elevation 2 m
below the ‘premodern’ delta. During the last 3 500 years, the ‘premodern’ channels have
been entrenched, the sandy ‘premodern’ deltaic deposits have become subaerially exposed
and oxidized, and a mix of hardwoods has colonized the oxidized soils at the apex of the

delta.

2.4 The Delta Today

After 5 000 years of accretion and evolution, the St. Clair Delta is today a complex
depositional and biological environment. Delta morphology and vegetation zonation are
highly affected by the short-term, non-cyclic oscillations of the water budgets in the Great
Lakes Basin (Raphael and Jaworski, 1982), particularly the flow regime of the St. Clair
River. The discharge of the St. Clair River is relatively constant and averages about 5 000
m’/s (Korkigian, 1963). The discharge is slightly greater during the summer, when lake
levels in Lake Huron are highest (Raphael and Jaworski, 1982). With flow velocities of
about 3 km/h, the river is capable of transporting coarse sand (Kirshner and Blust, 1965).
However, the sediment load of the river is low, with most sediments originating from Lake
Huron’s southern beaches and offshore bars (Duane, 1967). The relative transparency of
the river suggests that most sediment is carried as bed load, rather than suspended load
(Raphael and Jaworski, 1982). Annually, over 16 000 m® of sediment are transported by
littoral currents from the southern shores of Lake Huron (Pezzetta, 1968). The grain size
distribution and mineral composition of Muscamoot Bay sediments have been found to be
similar to those of the glacial sediments from the southern Lake Huron coastal zone
(Sachdev and Furlong, 1973; Raphael and Jaworski, 1982).
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The St. Clair Delta is a collection of classic ‘bird’s foot delta’ landforms, including
active and inactive distributary channels, interdistributary bays, and crevasses leading into
interdistributary bays (Raphael and Jaworski, 1582). North, Middle and South channels
are the active distributaries, with average widths of 500 m, and average depths of 12 m
(Pezzetta, 1968). River mouth bars are present at the mouths of each of the active
distributary channels (Pezzetta, 1968), but are not present at the mouths of the inactive
distributary channels to the east (Christensen, 1993). Along the sides of the distributary
channels are shoulder-like features attributed to cut and fill processes related to water
level oscillations (Raphael and Jaworski, 1982). Levees, which are poorly developed due
to the relatively constant water level, are breached in low areas, resulting in crevasse
deposits positioned at right angles to the distributary channels (Raphael and Jaworski,
1982). Overbank flow is highest during the winter and early spring, when ice jams block
distributary mouths (Raphael and Jaworski, 1982). Beaches are poorly developed,
particularly on the U.S. side of the delta. Regressive beach ridges consisting of fine sand
are found within the interdistributary marshes, and represent ancient shorelines (Raphael
and Jaworski, 1982).

Delta migration is occurring from east to west (Raphael and Jaworski, 1982). On
the eastern side of the delta, there are few open interdistributary bays, and the distributary
channels have degenerated and have been almost completely abandoned. In contrast, on
the western side of the delta, there are numerous interdistributary bays and active
distributary channels.

At present, little if any subaerial delta growth is occurring due to the removal of
bed load by dredging, which is performed both by the U.S. Army Corps of Engineers in
the South Channel, and by private dredgers in the Nortlg Channel (Raphael et al., 1974).
Dredging has also altered the flow regime through the delta, with increased flow through
the South Channel resulting from maintenance dredging of the St. Clair Cutoff (Raphael
and Jaworski, 1982).
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2.5 Previous Related Studies of the Saint Clair Delta

The first scientific study of the St. Clair Delta was conducted by Cole (1903) who
concluded that the sandy deltaic deposits at surface were underlain by deepwater,
proglacial lake clays. The next significant study was by Wightman (1961), who proposed
an approximate age for the formation of the delta and discussed the land-use capabilities
of the islands. Duane (1967) examined the sediment load of the St. Clair River, as well as
the deltaic sediments. He concluded that their source was the southern shoreline of Lake
Huron rather than from scour of the river’s beds and banks. Pezzetta (1968) conducted an
extensive study of the American portion of the delta, distinguishing five deltaic
subenvironments based on factor analysis of textural and environmental data. Dominion
Soil Investigations Inc. (1977a, 1977b) found that the water table throughout the delta is
slightly higher than the lake level. Mudroch and Capobianco (1977) examined the
chemistry of Walpole Island surface waters. They also determined mercury concentrations
in reserve water, sediment and plant samples. The concentrations were low except in
Johnston Channel. Ecologistics (1979) conducted a biophysical survey on Walpole Island,
concluding that the agricultural production of the soils would be higher if drainage systems
were improved. MacGregor (1980), in an unpublished report, appraised Walpole Island
for potential petroleum production and exploitation of underlying salt beds. Raphael and
Jaworski (1982) examined the geomorphology of the delta and established the
interrelationship between landform and vegetation.

Students and faculty from the Department of Earth Sciences of the University of |
Windsor have studied aspects of the St. Clair Delta. Jiwani (1983) carried out 2
hydrogeological and chemical study of very shallow wells on the reserve (i.e. penetrating
only several metres from surface), noting that waters from these wells were of poor
drinking quality. Christensen (1993) mapped Chenal Ecarté, and Bassett and Johnston
channels using side-scan sonar, and formulated a ‘burrowing delta’ model to explain the
progradation of these distributary channels into Lake St. Clair. White (1993) and Al-
Aasm et al. (1995) examined the isotope chemistry of carbonates, and the mineralogy of
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fine fractions from the sediments of Goose Lake, Johnston Bay, and Lake St. Clair. Racz
(1994) characterized the grain size distribution and mineralogy of sediments from
Johnston Channel and Chenal Ecarté. MacFarlane (1995) worked on the same cores used
in this thesis. He identified sediment mineralogy by x-ray diffraction methods, and

conducted a grain size analysis of cores GD and DC.
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CHAPTER 3

STABLE ENVIRONMENTAL ISOTOPES
AND MAJOR ION CHEMISTRY

3.1 Isotepes

Isotopes of a particular element have the same number of protons in their nuclei,
but a different number of neutrons. In other words, their atomic numbers are identical but
their atomic masses differ. Isotopes that decay to form new elements are termed
radioactive isotopes; nonradioactive isotopes are termed stable isotopes.

In this study of porewaters, the stable isotope concentrations of three common
elements are examined: oxygen, hydrogen and carbon. Oxygen has three stable isotopes,
160, 170 and **0, with the following average terrestrial abundances: 99.76 %, 0.037 %,
and 0.1 %. Hydrogen has two stable isotopes, 'H and *H (or D) (99.984 % and 0.015 %
abundance, respectively). Carbon also has two stable isotopes, *C and **C (99.984 % and
0.015 % abundance, respectively). Isotope concentrations are expressed in delta ®)

notation, as the parts per thousand (%) difference between a standard and a sample:

5§ = Rample) - Ristandardd o 1 000 %o !
R(standard)
where: R=120/% or H/'H or BC/ZC et

For ®0 and 2H concentrations in water, the reference standard used is the Vienna
Standard Mean Ocean Water (V-SMOW, commonly expressed as simply SMOW), which
is almost identical to the original Standard Mean Ocean Water (SMOW) developed by -
Craig (1961).

13C concentrations are reported relative to the PDB scale, with the reference
standard being the calcitic rostrum of Belemnitella americana found in the Pee Dee

Formation of South Carolina. Isotope ratios are determined using a mass spectrometer.
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3.2 Ysotopic Fractionation

An element’s chemical properties are determined largely by its atomic number,
hence different isotopes of a single element have almost identical chemical behaviour. Yet
very slight but still measurable differences in behaviour do arise from differences in mass
(e.g. Back and Hanshaw, 1965). These differences are most significant among isotopes of
the lightest elements, where mass difference is a significant proportion of that element’s
total mass.

A change in isotopic ratio is termed an isofopic fractionation. Fractionation may
result from physical processes such as evaporation, condensation, freezing, melting and
diffusion, or from chemical processes such water-rock interaction and biclogical activity
(Fritz and Fontes, 1980). Hence, knowing the degree of isotopic fractionation in a
substance is useful in determining that substance’s origin, and in understanding the

processes that have affected the substance over time.

3.3 Stable Oxygen and Hydrogen Isotopes

3.3.1 Stable Isotopic Fractionation in Precipitation

Isotopically lighter forms of water have higher vapour pressures and lower
freezing points compared to heavier forms. Hence throughout any series of evaporation
or condensation stages, the lighter isotopes of water, 150 and 'H, will tend toward the
vapour phase while the heavier isotopes, '*0 and *H (from hereon referred to as D), will
tend toward the liquid phase. Similarly, during melting or freezing stages, '°O and 'H will
tend toward the vapour or liquid phases, while ¥0 and D will tend toward the solid phase.
In the hydrological cycle, these tendencies result in differing 0 and D concentrations in

the various components of the cycle.
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The isotopic composition of precipitation has a wide range. Water evaporating
from standard ocean water produces a water vapour depleted by about 12 - 15 % in 0
and 80 - 120 %o in D (Freeze and Cherry, 1979). When a part of this isotopically depleted
vapour condenses, the resultant rain or snow will be isotopically enriched relative to the
remaining vapour, though still depleted compared to the original ocean water. Craig
(1961), in his classic study, found that generally, the §'°0 and 8D values for precipitation

from sites around the world fall along the line:
SD=8.0x5"0 +10 21

which is termed the “global meteoric water line’ (Fig. 19). Water bodies characterized by
high rates of evaporation such as closed basins or inland seas will also have 50 and 3D
values that plot along a straight line, but with slopes ranging from 5 to 6 and intercepts
generally greater than +10 %. (Craig, 1961).

Dansgaard (1964) found that factors such as altitude and latitude, which are both
temperature related, and the amount of precipitation will affect the isotopic composition of
precipitation. Dansgaard summarized his findings in two empirical functions that relate

isotopic composition to air temperature:
80 = 0.7xT, - 13%, or 0.7%/°C 3]
8D = 56xT, - 1000%., or 56%/°C 4]

where T, is the local mean annual air temperature.

One last factor determining the isotopic composition of precipitation is the distance
from the ocean. Because the process of condensation and precipitation is repeated many
times as water vapour moves across a continental land mass, precipitation becomes
increasingly isotopically lighter as the vapour moves farther inland (Sheppard ef al.,
1969)(Fig. 20). This is termed the continental effect.
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Fig. 19: Plot of 8D versus §'%0 for about 400 water samples from rivers, lakes, rain and snow
from various locales worldwide (Craig, 1961). The best fit line is termed the ‘global meteoric
water line’. The ‘closed basins’ are East African lakes with high evaporative losscs.

Fig. 20: Distribution of D and 5'%0 (in parenthescs) in precipitation over
North America (Drever, 1982 after Sheppard er al., 1969).
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3.3.2 Applications of '*0 and D Concentrations to Hydrogeological and

Paleoclimatic Studies

Below 50°C, 0 and D concentrations in water are not significantly altered by
chemical interactions with its host rock (Freeze and Cherry, 1979). In other words, in
groundwater having normal temperatures, O and D will behave in a chemically
conservative manner. This means that their concentrations will not change unless two
groundwater bodies with different isotopic concentrations meet and mix (Thatcher, 1967).
This conservative property of O and D, along with the fact that these isotopes are
abundant and naturally occurring, makes them useful in tracing the movement of
groundwater through the subsurface, in estimating mean residence times, and in
distinguishing between groundwater zones of different origin.

Due to the linear relationship between mean annual temperature and the 50 and
8D values of precipitation (Dansgaard, 1964), and the studies that find that in temperate
areas the stable isotopic content of groundwater reflects the weighted average annual
isotopic composition of precipitation in the recharge area (e.g. Fritz er al, 1976), it
becomes possible to examine the isotopic composition of groundwater recharge waters
and estimate the climate from which the meteoric waters originated. In southern Ontario,
Fritz et al. (1975) compared the '*0 composition of glacial ice to that of deeply buried
fossil shells located in basal tills beneath Lake Erde. They concluded that very cold glacial
conditions prevailed until about 10 000 years ago, after which temperatures rapidly rose to
current conditions. A temperature climax occurred approximately 4 500 years b.p. with a
mean annual temperature 3 to 4 °C above present temperatures (Edwards and Fritz, 1986,
1988). Desaulniers et al. (1981), in his study of the clay tills of southwestern Ontario
concluded that groundwaters recharged during the past 10 000 years in this region have
§'®0 values similar to present precipitation §'%0 values of -9 to -11 %0 (LA.E.A., 1979),
while groundwaters recharged more than 10 000 years ago have depleted 50 values of
-16 to -20 %o. Crnokrak (1991) used distributions of *Q in shallow aquifers to determine

groundwater flow directions during the last 10 000 years in southwestern Ontario and
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southeastern Michigan. She demonstrates that isotopically enriched younger recharge
water (<10 000 years old) is progressively displacing, or mixing with, isotopically depleted

older groundwater (>10 000 years old) in the downgradient direction.

3.4 Stable Carbon Isotopes

3.4.1 Groundwater Carbonate Chemistry

As this thesis involves the study of the porewaters of carbonate-rich lacustrine silts
and silty tills, it is useful to summarize the low-temperature dissolution reactions of the
two main sources of dissolved inorganic carbon in water: CO; and carbonate minerals,

The amount of CO, that can dissolve in water will depend on the geochemistry of
the recharge environment, in particular the pH of the water, and the partial pressure of
carbon dioxide (Pcoz) produced in the soil through root respiration and bacterial decay of
organic matter. CO; dissolution in water proceeds according to the following equilibrium

reaction (Drever, 1982):

COz(s) + H,0 & H2C03 4 I-Y + HCO;;- (5]
Keoz Ky

which leads to the dissociation of carbonic acid:

HCO;y & H + COy 16]
K

a reaction which is minor in solutions below pH 9. One of the key ideas expressed in
equation [3] is that the dissolution of CO; in water will cause a decrease in pH. The

equilibrium constants for the previous reactions are:
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[HCO4T
Kcoz = Pcoz « [H20] n

[H[HCO:T]
K, = [H2CO:s] (8]

[H'][CO:*]
[HCOs] 9]

1l

K

CO; uptake by water will thus allow calcite dissolution to proceed according to

these equilibrium reactions:

CaCO; & Ca*" + COs* with Keq = [Ca¥][COs]  li0,11]
Ko
Cos*+ H © HCOs [12]
Ky

A similar dissolution reaction exists for dolomite:
CaMg(COs)2 > Ca®" + Mg?" +2C0* (13,14]
Kaa
with Kgq=[Ca*'][Mg*][COs)?

Combining equations for CO; and calcite dissolution in water produces the following

overall reaction (Munnich, 1957):

CaCO; +CO»+H:0 « Ca® +2HCO;” (15}

with K=10"% at 25°C and 1 atm pressure. See Table 1 for a range of equilibrium
constants in the carbonate system at varying low temperatures.
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Temp. pKeoz pKy pK2 pKeat Ko
°C)

0 1.12 6.58 10.62 8.340 16.56
) 1.20 6.52 10.56 8.345 16.63
10 1.27 6.47 10.49 8.355 16.71
15 1.34 6.42 10.43 8.370 16.79
20 1.41 6.38 10.38 8.385 16.89
25 1.47 6.33 10.33 8.400 17.00
30 1.67 6.33 10.29 8.510 17.90

Table 1: Equilibrium constants for the carbonate system in pure water for temperatures ranging
from 0 to 30 °C, and 1 bar total pressure (Freeze and Cherry, 1979; Garrels and Christ, 1565,
Langmuir; 1971). Note: pK=-log K.

3.4.2 ®C Fractionation in Groundwater

Isotopic fractionation of *C occurs during all of the above reactions, with different

fractionation factors, &, between gaseous COz, each aqueous species, and calcite
(Salomons and Mook, 1986):

COzp < COxgy +« HCOy « CO*  CaCOs [16]

Egaq €aq-HCO3 EHCO3.CO3 £C03.CaC03

The fractionation factors for the above open system in isotopic equilibrium over a range of
temperatures are listed on the following page in Table 2.
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Temp. €C02g-HCO3 €C02g-CO2aq £C02a¢-HCO3 EHCO3-C0O3 E€HCO3-CaCO3

(CQ)

5 -10.20 +1.15 -11.35 +0.6 +0.11
15 -9.02 +1.10 -10.12 +0.49 -0.41
25 -7.92 +1.06 -8.97 +0.39 -0.91
35 -6.88 +1.02 -7.90 +0.29 -1.37

Table 2: “C fractionation factors for the carbonate system (compiled by Salomons and Mook,
1986). Note: gap = ((1 000 + 8,)/(1 000 + &) — 1) x 1 000

The dissolved inorganic carbon (DIC) in groundwater can have many sources:
carbonate minerals; atmospheric COg; soil CO; derived from the oxidation of organic
matter (i.e. root respiration and plant decay); soil CO; derived from the methanogenesis of
organic matter; and volcanogenic or metamorphic CQO;. The first four carbon sources
listed are schematically portrayed in Fig. 21. It must be stressed that the CO; partial
pressure, Pcoz, in the soil due to plant respiration and decay is several orders of magnitude
larger than the Pcoz due to the infiltration of atmospheric CO;. This is confirmed in
studies that show a minimal response of groundwater C'* concentrations to the rapid rise
in atmospheric C'* contents around 1963 (e.g. Miinnich ef al., 1967). However, in areas
with little vegetation, the contribution of atmospheric CO, to groundwater may be
significant (Fritz et al., 1980).

These DIC sources have very characteristic §°C values for two reasons: the strong
fractionation between COgz.q and HCOjq; and the highly fractionating effects of
photosynthesis. Carbonate minerals formed in a marine environment have §2C values
close to 0 %o, as do the dissolved carbonate species of ocean water. Atmospheric CO; has
a 8BC value of -6.4 %o, a value which is fairly uniform worldwide except in regions of
very active plant respiration or fossil fuel combustion (Fritz and Fontes, 1980). The DIC

in meteoric waters has negative 3°C values, though the specific values are variable
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(Drever, 1982). The §°C value of a terrestrial plant depends on its photosynthetic cycle
(Smith and Epstein, 1971): Calvin (C3) Cycle plants range from -22 to -34 %o with a peak
at 27 %o; Hatch-Slack (C4) Cycle plants range from -9 to -19 %o with a peak at -12 %o;
and Crassulacean Acid Metabolism (CAM) Cycle plants are intermediate between C3 and
C4 plants, with 8°C values around -17 %o. Generally, C3 plants dominate temperate
regions, C4 plants dominatc tropical regions, while CAM plants dominate very arid
regions. Soil COzg 8"C values tend to be slightly more positive than the 5"C value of
the plant material producing the soil (Fritz ef al., 1980). Volcanic and metamorphic COa
has 8'*C values ranging from 10 to 16 %o.

Determining the §“Cpic value of a groundwater will thus yield information about
the source of the dissolved inorganic carbon, most notably whether the carbon source is
organic (isotopically light) or mineralized (isotopically heavy). 85Cpic values can indicate
carbon loss from solution by precipitation of a carbonate mineral, or by loss of CO: gas,
and can indicate mixing of different waters. These processes, if they occur, must be

quantified and corrected for in C'* dating studies.
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Fig 21: Schematic diagram showing §"°C values in the atmosphere, biosphere and hydrosphere
(Salomons and Mook, 1986). The three types of photosynthetic cycles, Hatch-Slack, Crassulacean
Acid Metabolism, and Calvin, are designated on the diagram as C4, CAM, and C3, respectively.
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3.5 Major Ion Chemistry

The chemistry of groundwater and its constituents is a vast and complex topic.
Yet, much valuable information about a groundwater can be obtained from the
examination of its major constituents, namely the ions: Ca¥, Mg, Na', HCOs, SO,
and CI'. These 6 major ions usually comprise more than 90 % of the total dissolved solids
(TDS) in natural waters, irrespective of whether the water is fresh, brackish or saline
(Freeze and Cherry, 1979). Minor constituents include boron, carbonate, fluoride, iron,
nitrate, potassium and strontium (Davis and DeWiest, 1966). The TDS concentration of a
groundwater, which consists of mostly inorganic constituents, is determined by weighing
the solid residue obtained from a fully evaporated water sample. Groundwater can be
broadly categorized according to its TDS concentration (Freeze and Cherry, 1979): Fresh
water has a TDS concentration from 0 to 1000 mg/L; brackish water has a value from 1
000 to 10 000 mg/L; saline water has a value from 10 000 to 100 000 mg /L; and brines
have TDS concentrations above 100 000 mg/L.

Tonic concentrations in groundwater provide insight into: the availability of
elements in the soil and rock through which the water has passed; geochemical constraints
such as solubility and adsorption; the kinetic rates of geochemical processes; and the
sequence in which a groundwater has come into contact with minerals occurring along the
g water’s flow path (Freeze and Cherry, 1979).

i One fundamental property of water is that, overail, a condition of electroneutrality
¥ must exist (Drever, 1982). In other words, the sum of the positive ionic charges must
:' equal the sum of the negative ionic charges. This property allows us to estimate the
accuracy of a given water analysis by using a charge-balance equation. Regrettably, there
was not enough water derived from the cores to perform analysis for 2 major anions,

HCO; and SO.%, so that a charge balance error could not be calculated.
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CHAPTER 4
METHODS OF INVESTIGATION

4.1 Core Sampling

Three continuous, vertical sediment cores were taken along a 14 km north-south
transect of Walpole Island (Fig. 3). The coring locations were evenly spaced to include all
stages of delta growth. The most northern location, Site HP (Heritage Sand Pits), isin a
grassy area beside an old-growth oak forest at the apex .f the delta. It represents the
oldest stage of delta accretion. The second site, Site GD (Garbage Dump), is located at an
active reserve garbage dump approximately in the centre of Walpole Island at the leading
edge of the Nipissing Great Lakes Stage delta. The locating of Core GD at the dump was
not made solely to maximize the spacing between cores, but also to allow the
characterization of the sediments underlying the dump and the recognition in the core of
any obvious contaminants originating from the dump. The third site, Site DC (Dynamite
Cut Road), is located in an area of present-day delta accretion, at the terminus of
Dynamite Cut Road on the northern shore of Johnston Bay.

Coring was performed using two drill-rigs: one trailer-mounted rig from the
Waterloo Centre for Groundwater Research for Core HP; and another larger truck-
mounted rig from All-Terrain Drilling of Waterloo, Ontario for cores GD and DC. Core
HP was taken using the Shelby tube method, which provided core segments 5 feet (1.52
m) in length and 1.875 inches (4.8 cm) in diameter. Cores GD and DC were taken using
the split-spoon method, which provided core segments 5 feet (1.52 m) in length and 3.313
inches (8.4 cm) in diameter. Core HP reached a depth of 28 m from the surface, and cores
GD and DC both reached bedrock, at depths of 41 and 20 m, respectively.

In addition to coring, 2 piezometers were installed at Site HP, and 7 piezometers
were installed at Site GD, along the dump’s perimeter. The continuing presence of these

piezometers permits the collection of water samples for a future study.
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4.2 Porewater Sampling

Porewater samples for stable isotopic determinations and chemical analyses were
taken from the cores by squeezing clay samples inside a steel cylindrical container using a
4 ton capacity hydraulic jack. In the squeezing process, two filters were used to minimize
turbidity: a teflon screen and a sheet of Whatman no. 2 medium speed filter paper.
Porewater was collected in a 30 ml plastic syringe and then stored in 9 and 12 ml glass
bottles. Between 50 and 75 ml of water were collected for each squeezed sample. The
water samples were stored in a dark refrigerator to limit degassing, secondary reactions
and biological activity. Porewaters destined for chemical analyses were later transferred
to 60 ml Nalgene bottles.

Grain size analyses were performed on samples from Core HP, using a CILAS
715-E428 Granulométre at the University of Uppsala, Sweden. Analytical precision is
about 0.1 %.

4.3 Stable Isotope Analvses

Porewater 8'°0 value determinations were made on CO- equilibrated with water at
25°C using a method outlined in Epstein and Mayeda (1953). CO: extraction was
performed in the Stable Isotope Laboratory in the Department of Earth Sciences at the
University of Windsor, while the actual 5'%0 values were determined using the mass
spectrometer at the Isotope Laboratory of the Ottawa-Carleton Geoscience Centre at the
University of Ottawa. The analytical precision for the §'°0 analyses is better than 0.1 %.

Porewater 5D value determinations were made using the procedure recommended
by Bigeleison er al. (1952). Water samples were analyzed in the Stable Isotope
Laboratory of the University of Michigan. The analytical precision for the 8D analyses is

better than 0.20 %e..
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Porewater " Cpc value determinations were made using a method similar to that
developed by Graber and Aharon (1991), and using the unpublished laboratory procedures
of the Stable Isotope Laboratory at the Ottawa-Carleton Geoscience Centre at the
University of Ottawa, where bicarbonate in solution is converted to CO: by adding water-
free orthophosphoric acid. About 25 ml of porewater was required for each analysis.
Once again, CO. extraction was performed in the Stable Isotope Laboratory at the
University of Windsor, while the actual §"“Cpic values were determined at the Isotope
Laboratory of the Ottawa-Carleton Geoscience Centre. The analytical precision for the

8" Cpic analyses is better than 0.15 %o.

4.4 Chemical Analyses of Porewaters

Porewater pH was measured in the laboratory at 25°C using a Model-5985-40
Cole-Parmer Digi-Sense portable pH meter. Ideally, pH values are measured in the field
to avoid the rises in value caused by CO- escaping from the groundwater, but that was not

possible in this study. The precision of the pH meter is + 0.05 units.

Porewater electroconductivity (EC) was measured in the laboratory at 25°C using
a YSI Model 32 conductance meter, with the temperature coefficient set at 2%/°C.
Electroconductivity is a measure of the capability of a solution to conduct an applied
electrical current. The unit for electroconductivity is microsiemens per cm (uS/cm). EC
values correlate positively with temperature, and usually correlate linearly and positively
with the total dissolved ions (TDI) concentration of a solution up to 500 meq/L. of TDI
(Mazor, 1991). However, since groundwaters contain a variety of both charged and
uncharged species, EC measurements cannot be used to determine accurately the total
dissolved solids (TDS) concentration of a solution. Yet EC measurements can still
indicate TDS concentrations generally, and are thus useful in a practical sense. The
analytical precision of the EC meter is + 0.5 %.

The major dissolved cations in the porewaters, (namely Na™, K, Ca”, and Mg™),

were analyzed on a Varian AA-175 atomic absorption spectrometer in the Department of
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Earth Sciences at the University of Windsor using the procedures given in the Varian
AA-175 manual. Analytical precision for the measurements is better than 1.0 %.

Chloride concentrations were measured with a Fisher 13-620-518 chloride ion
selective electrode using the procedures given in the instruction manual. However, the
electrode did not pass the calibration test, so the absolute CI" concentration values are not

wholly reliable. Yet the general trends seen in the values are still of interest.
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CHAPTER S
RESULTS

5.1 Core Description

The cores have been subdivided into 7 units based on grain size distributions,
textural qualities, and other sedimentological characteristics. From top to bottom the

units, with their generalized descriptions, are:

1) sand deposits: 0 - 3.5 m depth; medium to coarse grained; well sorted;
granular; loose; stratified with mostly a fining-downward trend;
golden brown to grey; quartz and carbonate-rich; moist; Cores HP
and GD show oxidation and preservation of thin humus layer at
surface.

2) clayey silt: 3.5 - 5.5 m depth; well-sorted; low plasticity, non-rhythmically
stratified to massive; brown to grey; carbonate-rich; moist; shell
fragments found throughout.

3) green clay: 3 - 4 m depth in Core GD only; low plasticity; massive with some
remnant overprinted laminations; green with ferrous iron staining;
lacking carbonate minerals. Irregularly-shaped calcitic concretions
up to 1 cm diameter at base of green clay.

4) rhythmically-stratified clayey silt: 5.5 - 14 m depth; well-sorted; low
plasticity; rhythmically stratified with a thinning and darkening of
the bands with depth; brown to grey; carbonate-rich; moist; 1 %
rounded clasts up to 1 cm diameter increasing in frequency with
depth; possible in-situ fracturing, faulting, or slumping visible in
Core DC.

5) clayey-silt diamicton: 14 m depth down to 1 m above bedrock; non-sorted,;
low plasticity; massive texture, brown to grey; carbonate-rich;
moist to wet; 1 % angular clasts 1 - 2 cm diameter; 1 - 15 % clay
inclusions 1 - 35 mm diameter.

6) silty-sandy diamicton: 1 m above bedrock in cores GD and DC; coarse to very
fine grained; granular; non-sorted; compact; massive texture; brown

to grey; carbonate and shale-rich; wet; abundant angular clasts >1
cm diameter.
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7) bedrock: Core GD: beginning at 40.75 m depth; fissile, organic-rich, black shale.
Core DC: beginning at 20.45 m depth; bioclastic grey limestone.

Figures 22 through 37 are representative photographs from each of the 7 units, including
the possible in-situ fracturing or faulting in Core DC. Figure 38, a north-south vertical
cross section of the study area, correlates the 7 units between the three cores.
Classification of these units into sedimentological facies and an analysis of their genesis
takes place later in the discussion. Full, detailed descriptions of cores HP, GD and DC are
given in Appendix I, in Tables Al, A2 and A3, respectively.

Results from grain size analyses of Core HP sediments (Fig. 39) show that
23 - 27 % of the sediment is clay-sized, 73 - 77 % is silt-sized, and less than 1 % is of
coarser size. The clay/silt ratio is less variable in the clayey-silt diamicton. The clay/silt

boundary is considered to be 2 microns diameter (Dreimanis, 1982).

5.2 Porewater '*0. D and PCp;c Concentrations

Analysis of the porewater ®Q concentration at varying depths in the three cores
showed a different trend for each core (fig 40). The profile for Core HP shows a gradual
depletion with depth, with a 5'%0 value of about -10.1 %o at 4.48 m depth, decreasing
linearly to a value of -14.8 %o at 27.99 m depth. The profile for Core GD also shows a
gradual linear depletion with depth, but is consistently enriched in porewater 30 by about
1.3 %o compared to Core HP. In Core GD, the porewater §'°0 value is -8.7 %o at 8.84 m
depth, decreasing to a value of -14.3 %o at 39.34 m depth. Core DC, in contrast, has a
consistent 5*0 value of about -7.5 to -7.7 %o from 10.62 m depth down to bedrock.

Analysis of the porewater D conceniration at varying depths in the three cores
showed trends similar to those seen in the *0 concentration profiles (see Appendix II for
all isotope concentration values, as well as for the analytical values of section 5.3). The

8D values for Core HP show a gradual depletion with depth, with a value of about -70 %.
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at 6.32 m depth, decreasing to a value of -106 %o at 27.99 m depth. Core GD also
becomes depleted in D with depth, having a 6D value of -56 % at 8.84 m depth,
decreasing to -109 %o at 39.34 m depth. Core DC, again in contrast, has a consistent 8D
value between -49 and -59 %. throughout its 20 m length. A plot of 8D values versus
§'0 values for porewaters from all three cores (Fig. 41) shows values falling on
Crnokrak’s (1991) regional meteoric water line of 8D = (7.5 x §"°0) + 2.89 , and along
Desaulniers ef al.’s (1981) better known but less comprehensive local meteoric water line
of 8D = (7.5 % 8§"0) + 12.6 for Simcoe, Ontario.

Analysis of the porewater *Cpc concentrations at varying depths again produced a
different profile for each of the three cores (Fig. 42). Yet, compared to the generally
smooth 8'%0 profiles, the 8Cpyc profiles are rather jagged in appearance. The profile for
Core HP shows an enrichment with depth, with a 3" Cpic value of about -15.1 %o at
4.48 m depth, with a roughly linear increase to a value of -6.5 %o at 27.99 m depth. The
profile for Core GD shows more of an exponential enrichment with denth, and is
consistently depleted in porewater *Cpic by 1 to 5 %o compared to Core HP. Core GD’s
5" Cpic value is -17.1 %o at 8.84 m depth, and increases to a value of -6.0 %o at 39.34 m
depth. Core DC displays the reverse trend, with 5"Coic values decreasing linearly with
depth. The 3"*Cpic value is -3.7 %o at 10.62 m depth, and -16.1 %o at 19.33 m depth. A

sample of surface water taken from Johnston Bay produced a 5"Cpic value of -3.3 %e.

5.3 Major Ton Concentrations

Porewater Na* concentration determinations reveal increasing Na' concentrations
with depth for all three cores (Fig. 43). The concentration gradients differ for each of the
cores, with the lowest gradient being in Core HP and the highest gradient being in Core
DC. The Na* concentration in Core HP varies from 48 ppm at 4.48 m depth, to 202 ppm
at 26.45 m depth. In Core GD the Na' concentrations display a roughly exponential .
growth, with a value of 129 ppm at 10.57 m depth, and a value of 590 ppm at 39.34 m
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depth. The Na concentration in Core DC varies from 122 ppm at 9.47 m depth, to 254
ppm at 19.33 m depth.

Very little K™ is found in the porewaters of the three cores (Fig. 44). X
concentrations for Core HP remain at the detection limit in the upper portion of the core,
until at depths of 23.39 and 26.45 m, relatively higher values of 8 and 7 ppm are recorded.
Core GD shows a similar lack of K" until a depth of 30.18 m, when a value of 7 ppm is
recorded. The porewater K” concentration in Core GD reaches a high of 28 ppm at a
depth of 39.34 m. The porewaters of Core DC do not contain K" concentrations above
the detection limit.

Porewater CI concentrations for cores HP and DC to some extent follow the
pattern seen in the porewater Na’ concentration profiles (Fig. 45). CI' concentrations
increase with depth, with Core HP displaying a lower concentration gradient than that
seen in Core DC. However, as seen in the erratic profile for Core GD, the values are not
wholly reliable due to equipment problems. Core HP porewater has a CI concentration of
480 ppm at 4.48 m depth, and a concentration of 630 ppm at 26.45 m depth. Core GD
porewater CI concentration increases erratically, from 510 ppm at 10.57 m depth, to 710
ppm at 39.34 m depth. The porewater CI” concentration of Core DC has a value of 580
ppm at 9.47 m depth, and a concentration of 760 ppm at 19.33 m depth.

The porewater electroconductivity values follow the same trend for all 3 cores.
Values increase linearly from 585 uS/cm at 3.54 m depth in Core HP to about
1800 uS/cm at 28 m depth in all 3 cores (Fig. 46). Below 30 in Core GD,
electroconductivity values rise dramatically to almost 5000 uS/cm at 39 m depth.

The porewater Ca** concentrations are very similar in the upper portion of all three
cores (Fig. 47). Most of the values are between 150 and 250 ppm down to a depth of
27 m. Below this depth, the porewater Ca®* concentration rises dramatically in Core GD,
with values of 1445 and 1527 ppm at depths of 36.27 and 39.34 m, respectively.

Porewater Mg®* concentrations follow a pattern similar to the porewater Ca**
concentrations (Fig. 48). Most of the values are less than 100 ppm down to a depth of 27
m. Below this depth, the porewater Mg®* concentration rises in Core GD, with values of

375 and 275 ppm at depths of 36.27 and 39.34 m respectively.
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Fig. 34 (1): Massive clayey-silt diamicton with numerous clay inclusions, at base of unit (DC14, 19.2 m).
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Fig. 39: Silt/clay relationship in Core HP. Inset: Grain size analysis of Core HP.
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Fig. 40: Plot of porewater §!180 values for Walpole Island cores HP, GD and DC.
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CHAPTER 6
DISCUSSION

|
b 6.1 Sedimentology of Quaternary Deposits

In this section, the different sedimentological units observed in the three studied
cores (section 5.1) are described and interpreted as to their probable depositional facies, as
well as their approximate time of deposition. The facies that have been noted reflect a
general retreat of the Laurentide Ice Sheet northwards from the study area. The general
chronological sequence of depositional events is that bedrock was blanketed by a glacial
till, which was overlain by glaciolacustrine sediment, which in tum was overlain by
lacustrine, and finally, deltaic surficial deposits.

A new cross-section of the study area, reflecting these interpretations, is presented

in Fig. 49. The following discussion proceeds from top to bottom through the cores.

6.1.1 Surface Deltaic Deposits

| This study has little to add to the more extensive work conducted by Pezzetta
(1968) and Raphael and Jaworski (1982) on the deltaic sediments. The present study has
3 incomplete cores through the deltaic sediments. In contrast, studies by Pezzetta, and
Raphael and Jaworski incorporate data from over 300 shallow borings throughout the
delta.

Cores HP and GD have similar deltaic sediments. In cores HP and GD, the coarse,
sandy deltaic sediments of the ‘premodern’, Nipissing Great Lakes St. Clair Delta are
represented. These sediments, deposited from 5 000 years b.p. to 3 500 y.b.p., have been
oxidized during the lower lake levels of the modern Great Lakes, and the finest grains
have been winnowed out.

Core DC, on the other hand, has deltaic sediments from the modern Great Lakes
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Stage from 3 500 y.b.p. to the present. These low lying deposits have not been aenlly
exposed and are thus not oxidized. The deltaic sediments from Core DC retain their finest
grains. At 2.14 m depth there is a sudden change from upper silty sand to lower sandy
sediments. This break probably represents the evolution of Johnston Bay from a pro-
delta, open interdistributary bay to an intra-delta, closed bay. Delta progradation, in the
form of the overbank deposits of Johnston Channel, progressed into Lake St. Clair,
cutting off Johnston Bay from Lake St. Clair (Fig. 3}.

Humus has developed at ground level in the ‘premodern’, Nipissing Great Lakes
delta HP and GD cores, but not in the ‘modern’ Great Lakes delta DC core. This fact, as
will be discussed in section 6.2.3, affects the BC concentration of the porewater’s
dissolved inorganic carbon.

In all 3 cores an overall fining downward trend is found, indicating more distal
deltaic facies with depth. The deltaic sediments display horizontal planar bedding, with no
foreset beds observed. Foreset beds are unlikely to form in this kind of delta, with its lack
of subsidence, and its unusual characteristic of developing deep distributary channels that
rise to a relatively shallow receiving basin (Pezzetta, 1968). The lower contact of the
deltaic sediments with the lower clayey silt sediments is difficult to determine, as the grain

sizes are similar.

6.1.2 Non-Rhythmically Stratified Clayey Silt

The non-rhythmically stratified clayey silts in cores HP, GD and DC were
deposited during two depositional episodes separated by a hiatus. The youngest silts were
deposited during the early Holocene in an ancestral Lake St. Clair that existed from about
9 000 to 5 000 y.b.p. (Dyke and Prest, 1987). The depositional hiatus occurred during a
dry, low lake level period that lasted from about the beginning of the Holocene
(10 000 y.b.p.) until about 9 000 y.b.p. (Soderman and Kim, 1970). During this time, the
St. Clair Clay Plains became subaerially exposed, creating an unconformity representing a

thousand years of non-deposition, subaerial exposure, and perhaps erosion. Decayed
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wood found at this unconformity in Core GD suggests that trees colonized at least part of
the study area during this low lake level period. Below this unconformity are older non-
rhythmically stratified clayey silts of Late Wisconsinan age. These lower silt deposits are
best classified as lacustrine, rather than glaciolacustrine, as the St. Clair basin at that time
was not in direct contact with the Laurentide Ice Sheet, which had retreated to the
northern margin of the Huron basin. The lower non-rhythmically stratified clayey silts
were deposited in a series of small St. Clair basin lakes that coincided with a series of
larger, ice-marginal glacial lakes that formed in the Huron basin. These Huron basin
glacial lakes were, from oldest to youngest, Early Lake Algonquin (12 200 y.b.p.), Lake
Kirkfield (11 900 y.b.p.), and Main Lake Algonquin (11 300 y.b.p.)(Chapman and
Putnam, 1984). These lakes were formed during the Two Creeks Interstade (maximum at
12 200 yb.p) and the Greatlakean Stade (maximum at 11 800 y.b.p.) of the Late
Wisconsinan. '
Evidence of planar fracturing is seen in Core DC lacustrine sediments (Fig. 3). A
possible cause of this fracturing is discussed in section 6.2. Fracturing in a zone trending
east-west through the DC sampling site has apparently affected the progradation of the
distributary channels as they passed through this zone. As seen in Fig. 3, Chematogen
Channel suddenly veers eastward as it flows directly west of Site DC, while Johnston
Channel suddenly veers westward as it passes east of Site DC. The channels, which
prograde by burrowing forward through the lacustrine clayey silts, are probably veering to
take advantage of the weakened fabric of the clayey silts in this fracture zone. It might be
expected that the burrowing rate of the two prograding channels accelerated as they

advanced through this weaker fracture zone.

6.1.3 Green Clay
The green clay layer at 3.5 m depth in Core GD is anomalous for five reasons: its

colour; its lack of silt-sized grains; its lack of carbonate minerals; its associaicd calcitic

concretions at its base; and its unique occurrence in Core GD. The chemical reactions
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which produced this 1 m thick layer probably occurred during the subaerial exposure of
the St. Clair Clay Plains at the beginning of the Holocene, when the water table was
lowered. Iron, derived from iron-rich carbonates in the zone above the water table,
probably underwent reduction, forming green ferrous iron in an anaerobic, near-surface
environment. The porewater pH would have dropped significantly, allowing all the siiy
carbonate grains to dissolve. This process would have left the greenish-hued, carbonate-
depleted, clay-sized sediment that is now found only in Core GD. The concretions, which
have nuclei of shell fragments, occur at 4.1 m depth, at the base of the green clay layer.
This depth probably represents the lowest level to which the water table dropped at the
beginning of the Holocene, with the concretions forming as the downwardly percolating,
acidic porewaters of the unsaturated zone reached the water table. At this chemical
interface between the unsaturated and saturated zone, the pH of descending acidic
porewaters would have risen rapidly due to dilution with the more basic saturated zone
porewaters, causing calcite to precipitate in the form of concretions.

MacFarlane (1995), who cited a similar occurrence of green clay in the Port Talbot
Interstadial sediments on the north shore of Lake Erie {(Quigley and Dreimanis, 1972),
interpreted the green clay as an ‘accretion gley’. An accretion gley is a clayey
accumulation of locally derived material deposited in a small, undrained, reducing
environment such as a pond (Frye et al., 1960). The thin nature and very localized extent
of the green clay layer support MacFarlane’s ponding interpretation. The origin of the

calcitic concretions is being investigated at present (Al-Aasm, per. com.).

6.1.4 Rhythmically Stratified Clayey Silt

The rhythmically stratified clayey silt deposits of cores HP, GD and DC are
interpreted as varved glaciolacustrine sediments. Varves are glacial lake deposits
characterized by couplets of dark clay deposited during winter, and an often calcitic,
lighter coloured, coarser-grained, sandy to silty sediment deposited during summer. The

efficient separation of silt from clay results from the difference in settling times between
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fine silt (4 - 15 days) and coarse clay (2 - 7.7 months), although weak thermally-driven
lake water circulation may extend the settling process for months (Ashley, 1986).
Although rhythmites are not necessarily of glacial origin, the presence of dropstones and
clayey inclusions, dropped by passing icebergs, within the rhythmite layers of all 3 cores
confirms that these sediments are indeed glacial varves.

The varved sediments in cores HP, GD and DC were probably deposited in a series
of ice-proximal to ice-distal glacial lakes that formed over the study area during the Late
Wisconsinan. The oldest glaciolacustrine sediments were deposited in glacial Lake
Maumee IV during the Early Mackinaw Interstade (13 900 y.b.p.), and in glacial Lake
Whittlesey during the Port Huron Stade (maximum at 13 000 y.b.p.) The youngest varved
sediments were deposited in glacial lakes *Warren (12 800 y.b.p), Grassmere (12 500
y.b.p.), and Lundy (12 400 y.b.p.) during the Two Creeks Interstade (maximum at 12 200
y.b.p.).

It is not possible to define contacts between the glaciolacustrine sediments of the
various glacial lakes, nor are there any visible remnants of the intermittent low lake levels
of glacial Lake Ypsilanti (13 400 y.b.p.). However, it is possible to observe a facies
change upsection within the glaciolacustrine sediments from ice-proximal to ice-distal
facies by noting variations in varving, and in dropstone and inclusion concentrations.
Generally the varves tend to thicken and lighten in colour upsection in all 3 cores. This
irdicates that the average number of warm summer days gradually increased from the
Early Mackinaw Interstade through to the Two Creeks Interstade. Clast and inclusion
concentrations decrease upsection, as the ice margin withdrew farther and farther north
from the study area. The sub-spherical, rounded clasts and clayey inclusions that are
present intermittently throughout the varved unit have deformed the bedding and resulted
in overlying draped laminations.

Evidence of fracturing and normal faulting is again visible in concentrated zones of

Core DC glaciolacustrine sediments.
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6.1.5 Clayey-Silt Diamicton

The clayey-silt diamicton, which has thicknesses of at least 14 m in Core HP, and
25 and 5 m in cores GD and DC, respectively, has the characteristics of a glacial till.
Although the grain size is dominantly silt, the matrix is relatively poorly sorted, with a
wide range of grain sizes, from clay to pebble size. The grain size distribution is consistent
throughout the diamicton portions of the cores (Fig. 39), as one would expect with a till.
The texture of the material is also consistent with a till: mostly massive and, in places,
crudely stratified. The diamicton, however, does not have the high degree of compactness
of a typical till. Karrow (1989) suggested that this type of till, with its weak fabric, is
deposited subaqueously beneath an ice sheet. As sediment sorting and reworking
processes are minimal in this kind of depositional process, the deposit can still be
considered a subglacial (englacial) “till’, though Dreimanis (1982) would classify it as an
allo-till (i.e. not a ‘true’ till).

Another irdication that this diamicton is a till, is the presence throughout the
diamicton portions of all 3 cores of small, non-spherical, angular carbonate and shale
clasts, as well as many clayey to sandy inclusions. The clasts most likely have their source
in nearby Devonian carbonates and shales. The clayey and sandy inclusions are probably
reworked glaciolacustrine sediments deposited in the Huron basin during the Erie
Interstade (maximum at 15 500 y.b.p.).

The till’s silty matrix, with its high carbonate and shale content, is most likely
derived from the Devonian carbonate and shale bedrock that subcrops to the north of the
study area, in the former flow-path of the Laurentide Ice Sheet.

Characteristics of this till closely match the description of the Port Bruce Stade
Rannoch Till (see section 2.3.3.3). This suggests that the Rannoch Till, which is found at
the surface in a 30 km band 20 km inshore from Lake Huron (Fig. 9), also continues
hidden below the surface at least another 40 km to the southwest, from its

southwesternmost surface exposure in Lambton County.
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The fracturing and faulting visible in the lacustrine and glaciolacustrine sediments

of Core DC are also seen in its waterlain till facies (e.g. Fig.’s 32 and 33).

6.1.6 Silty-Sandy Diamicton

The silty-sandy diamicton found 1 m above bedrock in cores GD and DC is
probably a coarser facies of the Rannoch Till. The slightly coarser grain size is due the
overriding glacier deriving most of its basal load directly from the local bedrock, rather
than more distant bedrock and pre-existing lake sediments, as is the case for the rest of the
Rannoch Till.

The compactness, strong fabric and broad distribution of grain sizes of the silty-
sandy diamicton suggest that it was deposited subglacially (englacially) in a
glacioterrestrial environment. Genetically, the deposit represents debris released at the -
glacier base by pressure-melting, and can be classified as a lodgment till. Using the
terminology of Dreimanis (1982), this is an ortho-till, or ‘true’ till.

Hydrogeologically, this lower facies of the Rannoch Till behaves as an aquifer due
to its dominantly silty sandy matrix and its relative lack of clayey material. This thin silty
sandy till facies, along with the underlying fractured bedrock surface, is the potable water
source for many of the residents of Walpole Island Reserve, and also of Lambton, Kent

and Essex counties.

6.1.7 Bedrock

The highly contrasting bedrock samples taken in cores GD and DC conform to the
distribution shown on the latest regional bedrock map (i.e. Map 2544, Ontario Geological |
Survey, 1991). The bedrock in Core GD is the highly fissile Upper Devonian Kettle Point
black shale. The bedrock in Core DC is the Middle Devonian Ipperwash Formation grey,

bioclastic limestone. The limestone sample shows evidence of great shearing forces (Fig.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37), suggesting that sampling location DC is very near the east to west trending Electric
Fault. The fact that the bedrock surface of the Core GD shale is 20 m lower than that of
the Core DC limestone is, in part, a function of the fissility of the shale, which makes it

relatively more susceptible to erosion and glacial scour.

6.1.8 Comparison With Previous Studies

With the additional information made available by these 3 sampled cores, the
stratigraphy of the Quaternary sediments of Walpole Island presented in this study is an
improvement over previously published stratigraphies. In the most recent previous
interpretation of St. Clair Delta stratigraphy, Raphael and Jaworski (1982) generally
categorized all clayey silt deposits as ‘blue lake clays’. These deposits have now been
more correctly interpreted as lacustrine clayey silt, glaciolacustrine clayey silt, and
waterlain clayey silt till. They also concluded that the only till present in the region was

the sandy gravel sediment directly overlying bedrock (Fig. 50). The present analysis,
| aided by more recent advances in the understanding of regional Quaternary stratigraphy
(e.g. Barnett, 1992), shows that this coarse till is only a thin, lower, lodgment till facies of
the much thicker Rannoch Till, which is predominantly a waterlain till.

In a related study of clays, D’Astous et al. (1988) examined the effects on

hydraulic conductivities of shallow, 4-6 m deep fractures. One of the sampling locations

was located less than 10 km north of the apex of the St. Clair Delta. (labeled ‘Lzmbton’ in
Fig. 51). In their study, they characterized the upper portion of the till as the St. Joseph
Till. It is now known from more recent regional mapping that the St. Josegh Till only
extends about 10 km south of Sarnia, about halfivay to the ‘Lambton’ site (Barnett ef al,
1991).
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Fig. 50: Stratigraphy of St. Clair Delta Quaternary deposits, according to Raphael and Jaworski
(1982) using some data from the U.S. Army Corps of Engincers (1971) and Wightman (1961).
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Fig. 51: Stratigraphy of the Lambton and Tricil (located in the centre of Lambton
County) sites (D’ Astous er al., 1988).
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6.2 Isotopic Analvses

6.2.1 Porewater *0 and D Concentrations
6.2.1.1 Porewater Advective Mixing and Displacement

The porewater 8'%0 value profiles for the 3 cores indicate that advective mixing
and displacement of porewaters have occurred (Fig. 40). Older (>10 000 y.b.p.), deeper
waters with a glacially recharged, lighter 5'%0 value signature of -16 to -20 %, have
mixed with, and been displaced by, younger (<10 000 y.b.p.), surficial waters with a
relatively warmer climate, isotopically heavier 8O value signature of -9 to -11 %o
(Desaulniers et al., 1981). The linearity of the trends is another strong indicator that
advective mixing and displacement processes have occurred.  Seasonal isotopic
concentration fluctuations have been averaged out in the profiles due to very slow
groundwater flow rates.

The porewater 3'°0 value profiles indicate that these mixing and displacement
processes have occurred at different rates in the different cores. Core HP porewater
displays the slowest rate, with a near-glacial §'°0 value of -14.8 %o at 27.99 m depth, and
a more modern 8'°0 value of about -10.1 %o at 4.48 m depth. Core GD porewater shows
a relatively faster rate, with its consistent §'°O value enrichment of about +1.3 %o
compared to Core HP porewater for any common depth. The 5'*0 value profile for Core
DC porewater indicates that modern surface water has penetrated the core down to
bedrock, effectively displacing all glacially recharged porewater. Porewater §'*0 values
throughout Core DC fall in the narrow range of -7.5 to -7.7 %, which matches the
summer St. Clair River §'*0 value of -7.25 %o (Sklash, 1986).

Porewater 5D value trends in all 3 cores are similar to the linear 5'°O value trends,
again suggesting that porewater mixing and displacement have occurred. Core HP

porewater 8D values display a predominantly older, glacially-recharged isotopic signature
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at depth, with an isotopically light value of -106 %o at 27.99 m depth. Nearer the surface,
Core HP porewater 8D values display a predominantly younger and warmer isotopic
signature, with an isotopically heavier value of -70 %o at 6.32 m depth. Core GD
porewaters also display an older, glacial 8D value signature at depth, with a value of
-109 %o at 39.34 m depth, and a younger, warmer isotopic signature nearer the surface,
with a value of -56 % at 8.84 m depth. Again, Core GD porewaters are isotopically
heavier at any given depth compared to Core HP porewaters, indicating that mixing and
displacement processes occurred at a faster rate in Core GD. The 8D values of Core DC
porewaters show, as do its 5'°0 values, that surface water has penetrated the length of the
core, with isotopically heavy 6D values between -49 and -59 %o throughout its 20 m
length.

The plotting of all porewater 8D and §'°0 values along Crnokrak’s regional
meteoric water line (Fig. 41) indicates that porewaters from all 3 cores are unaffected by
secondary processes such as evaporation prior to, or during, infiltration, and D or 0
isotope exchanges with the host sediment. In other words, the porewater’s isotope
concentrations are identical to the originating meteoric water’s isotope concentrations. In
effect, the regional meteoric water line is the simple mixing line for the porewaters in the 3

COres.

6.2.1.2 Differences iit Secondary Hydraulic Conductivities Between Cores

Stevenson et al. (1988) compiled, from many literature sources, the hydraulic
conductivity value ranges of glacial deposits, expressed in m/day (Table 3). They show
that a clay content between 15 and 20 % marks a threshold above which primary hydraulic
conductivities are uniformly low. Grain size analysis of Core HP sediments shows that
clay content remains above 20 % from S to 25 m depth (Fig. 39). The fact that Core HP
has retained so much of its glacigenic porewater indicates that Core HP has very low
primary hydraulic conductivity, as predicted by Stevenson et al, and is not greatly -

affected by secondary hydraulic conductivity.
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Stevenson et al. also demonstrate the effect of compaction and overconsolidation
on glacial till conductivities, with differences of as much as two orders of magnitude
between compact basal till deposited under great confining pressure beneath overlying ice,
and relatively loose supraglacial diamicton deposited under lower pressures at the upper
ice margin.

In Table 3, it is seen that the magnitude of secondary hydraulic conductivity is
commonly two to three orders greater than the laboratory-determined primary hydraulic
conductivity of a given glacial sediment. Secondary hydraulic conductivity in glacial
deposits can be caused by jointing, chemical weathering, or winnowing by groundwater
(Connell, 1984). Weathering in the clay tills of north-central U.S. and southern Ontario
can extend 10 m or more from the surface (Stevenson ef al., 1988), although it may be

difficult to recognize due to the unlithified nature of the parent material.

(primary K} (secondary K)

unweathered weathered fractured
basal till 10% to 10° 107 to 10 1.0 to 10
supraglacial ﬁn‘ 1010 10° 1.0 to 10° 1.0 to 10™
lacustrine siltand clay  1.0%to 10°® Wa 107 to0 10

Table 3: Primary and secondary hydraulic conductivity (K) values for glacial deposits in the
north-central United States and Canada (Stevenson et al., 1988). The category ‘lacustrine
silt and clay’ includes some poorly stratified sediments and debris flow.

In this study, the 0O and D concentration profiles in all 3 cores are roughly
straight lines. This shows that within a single core, in terms of hydraulic conductivity, the
lacustrine and glaciolacustrine clayey silts behave in a similar fashion compared to the
clayey silt till, despite their different depositional histories. This can be explained by this
late-stage till’s relative non-compactness, which gives it similar hydraulic characteristics to

the overlying glaciolacustrine and lacustrine clayey silts.
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The differences in porewater mixing and displacement rates between cores can be
explained by differences in secondary hydraulic conductivities between cores.
Sedimentological differences cannot explain the differing rates, as the sedimentology
undergoes little change laterally between cores, except for a gradual southward thinning of
the till unit. Indeed, it could be assumed that primary hydraulic conductivity values are
roughly equal laterally between cores.

What causes this secondary hydraulic conductivity that so greatly influences flow

2 Lo T agiacc =& ::IS3F 3 Cal.led -

regimes in Core DC, and to a lesser extent, Core GD? Generally, weathering profiles in
the clayey tills of southwestern Ontario are only seen in the first few metres from surface
(Desaulniers er al., 1981; D’Astous et al, 1988), while in this study, secondary
conductivity is significant to depths of 40 and 20 m in cores GD and DC respectively. In
most studies, fracture networks in non-weathered clay have been observed in fine-grained
basal till and other deposits that have been overridden by ice {e.g. Connell, 1984; Grizak
and Cherry, 1975). That cannot be the case in this study, since even the glaciolacustrine
and lacustrine clayey silts of Core DC, which were never overridden by ice, are also visibly
fractured. More likely, the increased secondary hydraulic conductivities in the southern
cores are due to localized fracturing related to Holocene Epoch movement along the

Electric Fault, which passes underneath Core DC. A possible driving force causing

renewed vertical movement along the Electric Fault is collapse due to the dissolution of

; Salina salt beds within the southern, downthrown block located in the southern portion of

! the St. Clair Delta. These salt beds, which have been completely removed by leaching in
the northern, upthrown, fault block in the delta area attain thicknesses of over 60 m
beneath in the downthrown block in southern portions of the delta (Sanford, 1965). It
must be noted, however, that the Electric Fault is considered by many to be inactive (e.g.
Carter et al.,, 1993), with no major earthquakes recorded along it during the past few
decades. However, in Core DC several zones of normal faulting or slumping are clearly
visible, suggesting that localized earthquakes have occurred at some time during the
Holocene Epoch. Although no faulting or fracturing is visible in Core GD, its porewater
0O concentration profile suggests that micro-scale faulting has occurred, increasing

secondary hydraulic conductivity uniformly throughout the core. Additional laboratory
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permeameter tests of samples from all 3 cores could provide independent confirmation of

differences in secondary hydraulic conductivity between cores.

6.2.2 Porewater *>Cp;c Concentrations
6.2.2.1 Porewater Advective Mixing and Displacement

The porewater 8°Cpyc profiles for cores HP and GD also show that advective
mixing and displacement processes have occurred (Fig. 42). Specifically, deeper waters
with a mineralized dissolved inorganic carbon source have mixed with, and were displaced
by, shaliower waters with dissolved inorganic carbon derived originally from Holocene,
Calvin Cycle plant material.

Using the isotopic fractionation factors from Table 2, it can be calculated that a
temperate Calvin (C3) Cycle plant having a §°C value between -30 and -25 %o will
produce, via either root respiration or plant decay, a soil CO; gas having a 8"°C value
between -29 and -24 %.. The aqueous form of this CO, will have a heavier 8°°C value
between -28 and -23 %o. The next step of the dissolution process, the formation of
bicarbonate, produces a §*Cpc value between -19 and -14 %o at 25°C. At the other end
of the carbonate cycle, it can be calculated that a carbonate mineral, having a typical §°C

value of 0 %o, will dissolve to produce bicarbonate having a 8" Cpyc value of about -1 %o at °

- 25°C.

The preceding calculations indicate that the dissolved inorganic carbon a¢ shallow
depths in core HP and GD porewaters has a predominantly C3 Cycle organic source.
8"Cpic values at about 5 m depth in Core HP are in the range of -15 to -13 %o. In Core
GD, §"Cpc values from 5 to 10 m depth are in the range of -18 to -15 %o. An organic
source for the shallowest porewater DIC in cores HP and GD is consistent with the
abundant vegetation encountered at surface and the 10 cm humus layer seen at the top of

both cores.
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The deepest porewater samples from cores HP and GD, at depths of 28 and 39 m
respectively, have an isotopic signature indicating a mineralized dissolved inorganic carbon
source mixed with a significant organic source component. This mixture of dissolved
inorganic carbon from both mineralized and organic sources is indicated by the
intermediate 8" *Cpyc value of about -6 %e in the porewaters from the deepest portions of
both cores.

Although 8"Cpyc value profiles for cores HP and GD both display regular value
increases with depth, there is a significant difference between the two profiles. The trend
for Core HP porewater §"°C values is roughly linear, indicating that advective mixing
processes dominate. The trend for Core GD, in contrast, displays an exponential increase
with depth. This exponential trend can be explained by an increase in carbonate
dissolution from 30 to 40 m depth in Core GD (see section 6.3.2), which shifts the §"*Cp;c
values towards increasingly heavier values with depth.

The porewater 8" °Cpyc profile for Core DC porewaters has a completely opposite
trend compared to the profiles for porewaters from cores HP and GD. Core DC
porewaters have relatively heavy 8”Cpic values near surface, and increasingly lighter
8" Cpic values with depth. The porewater 8B Cpic value of -3.7 %o at 10 m depth matches
the Johnston Bay 8“Cpc value of -3.3 %o, indicating that surface waters have penetrated
at least 10 m into the core, without first being filtered through a soil or humus layer.
Indeed, no humus layer was retrieved during coring. The rapid “Cpc depletion with
depth, with 8"Cpic values reaching -18 %o at 17 m depth, is probably the result of
biological activity not seen in the other cores. The most likely such activity in this
environment is bacterial respiration. Bacterial methanogenesis, which tends to increass
the D concentration of porewaters (Fritz and Fontes, 1980), can be excluded, as Core DC
porewaters plot along the regional meteoric water line (Fig. 41).

The jaggedness of the *C concentration profiles for porewaters from all 3 cores is
probably due, in part, to the presence of suspended carbonate particles in some of the
porewater samples. Although the samples were filtered, some were still slightly cloudy in

appearance. If suspended carbonate particles having 3"°C values of about 0 %o were

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



present in 2 porewater sample, they would tend to increase that sample’s true SBCmc
value.

A more intriguing reason for the jaggedness of the profiles could be a variation in
plant 5°C values in the St. Clair region during the last 10 000 years due both to floral
succession during the transition from glacial to temperate climates, and to changes in
atmospheric 6°°C values over time. Unfortunately, the crude resolution of the profiles
does not allow for any definitive conclusions to be made about paleoclimatic variations in

plant or atmospheric §°C values.

6.2.2.2 Differences in Secondary Hydraulic Conductivities Between Cores

The porewater Cpic concentration profiles indicate, as do the porewater *O
concentration profiles, that hydraulic conductivity differences exist between the 3 cores,.
The porewater 8" Cpic values of Core HP are consistently 2 to 6 %o heavier than those of
Core GD for any common depth. This enrichment, consistent with the pattern seen in the
'¥0 concentration trend (section 6.2.1.1), indicates that mixing has progressed at a slower
rate in Core HP porewaters compared to Core GD porewaters. In other words, at any
common depth, the mean residence time for Core HP porewaters is higher, and the
hydraulic conductivity for Core HP sediments is lower, in comparison to Core GD
porewaters and sediments. The porewater *Cpc concentration profile for Core DC again
shows that Core DC has the highest hydraulic conductivity of the 3 cores, with modern
surface waters having penectrated the length of the 20 m core.

Once again, the continuity of sedimentological facies between cores precludes
differences in primary hydraulic conductivity from occurring at any common depth in the 3
cores. Thus the differing porewater advective mixing and displacement rates between
cores are best explained by differences in secondary hydraulic conductivity, 1.e. fractures
and faults. Again, the most probable mechanism for creating these deep fractures and
faults in Core DC, and to a lesser extent Core GD, is Holocene movement along the -

Electric Fault which passes beneath Core DC.
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6.2.3 Comparison With Related Study

Desaulniers ef al.(1981) studied the hydraulic gradients, isotopic concentrations,
and chemical compositions of the porewaters of clavey tills at « locations in southwestern
Ontario. The closest sampling sites to the St. Clair Delta were the Woodslee site in Essex
County, and the Sarnia and Wyoming sites in Lambton County. They found that hydraulic
gradierts were mostly downward in all the tills, with hydraulic conductivities on the order
of 10" to 10" m/s. Measured Darcy velocities ranged from 0.01 to 0.26 cm/y. Tritiated
porewaters only occurred in the upper 6 m of the sediments. Porewater *O
concentrations were in the range -9 to -10 %o near the water table, decreasing linearly to
values of -14 to -17 %o at depths of 20 to 40 m. A plot of D concentration versus '*0
concentration for porewaters from all 4 sites showed values plotting along the local
meteoric water line for Simcoe, Ontario. Porewater *Cpic concentrations from the Sarnia
site had values of about -12 %o at 4 m depth, which decreased to values of less than -20 %o
at 10 m depth, and then increased to values above -10 %o from 25 to 36 m depths. At all 4
sites the porewater chemistry was characterized by increasing CI' concentrations with
depth, interpreted as evidence of upward diffusion of dissolved salt. Desaulniers ez al.
concluded that the porewaters at all 4 sites are mixtures of late Pleistocene and modern
waters, and that the distribution of '*0, D and CI" are influenced by molecular diffusion
and hydraulic flow.

The results of the Desaulniers et al. study are entirely consistent with the results of
this study for Core HP porewater. However Desaulniers et al. found that fracturing of the
clays and silts at their study sites only consisted of 5 to 6 m deep desiccation and
weathering fractures, never the 20 m deep fracturing and faulting seen in Core DC. Not
surprisingly, none of their 4 study sites were located along the trends of any major
bedrock faults.
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6.3 Porewater Maijor Ions Concentrations

6.3.1 Porewater Na*, K" and CI' Concentrations

The Na’ concentrations of the porewaters from cores HP, GD and DC are low
(<100 ppm) near the surface, with values reflecting surface water concentrations, which
are roughly 10 ppm in the St. Clair River (Mason, 1987). Below surface, Na"
concentrations show exponential increases with depth, with values as high as 590 ppm at
39 m depth in Core GD (Fig. 43). The concentration gradient is lowest in Core HP,
intermediate in Core GD, and highest in Core DC. The trends and concentrations seen in
the porewater Na” profiles are also seen in the porewater Cl” profile (Fig. 45), indicating
that the source of the dissolved Na" is dissolved NaCl.

Because weathering effects are minimal in these sediments, dissolved Na" and CI'
are not significantly affected by geochemical reactions with sediments. Thus, the
exponential trend of the porewater Na” concentration profiles, seen most clearly in Core
GD porewaters, is indicative that an upward diffusive mixing process coexists along with
the downward advective mixing process seen in the isotope concentration profiles. The
source of NaCl is most likely the halite-bearing Unit B of the Upper Silurian Salina
Formation. Units D and F may also contribute as well. Brines from these units have
probably risen from deep within the bedrock using the Electric Fault as a conduit. The *0
and D concentrations of most Michigan Basin biines plot along the regional meteoric
water line from modern day values to slightly heavier values (McNutt et al., 1987).
However, if these deep brines are present in the porewaters of cores HP, GD and DC,
they have been diluted to such a great extent by glacigenic and modern waters, that
porewater 8'°0 and 8D values for the 3 cores remain essentially unaffected.

The differing concentration gradients of the Na’ profiles imply that hydraulic
conductivity is lowest in Core HP, intermediate in Core GD, and highest in Core DC.
This 1s yet another line of evidence that fracturing has occurred to a high degree in Core
DC, and to a lesser degree, in Core GD.
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The K" concentration profiles (Fig. 44) indicate that K* concentrations are
insignificant until a depth of about 25 m in cores HP and GD, when concentrations rise,
reaching a maximum of 28 ppm at 39 m depth in Core GD. The source of K is most
likeiy KCl derived from deep Salina Formation brines, as is the case with the NaCl source.

The porewater electroconductivity profile for Core GD shows exponentisi increase
with depth in the lower portion of the core (Fig. 46), a trend consistent with the existence
of upwelling diluted brine. However, unlike the Na” concentration profiles, in the upper
20 to 30 m of the 3 cores, porewater electroconductivity values are similar between cores,
with a gradual linear increase in value with depth. This similarity is indicative that Ca®",
Mg®, and HCOs’, which have similar values in all 3 cores at any given depth, are the

dominant ions in the porewaters in the upper portiors of all 3 cores.

6.3.2 Porewater Ca®* and Mg** Concentrations

Porewater Ca”* and Mg®* concentrations down to 25 m depth in all 3 cores have a
fairly constant value of about 200 and 60 ppm respectively (Fig.’s 47 and 48). This
indicates that despite the various porewater mixing and displacement processes that have
occurred in these portions of the cores, the calcite and dolomite dissolution reactions
maintain equilibrium at a constant satura‘ion point. In effect, the porewater Ca®* and Mg**
concentrations in the upper 25 m of the cores is solely a function of the carbonate-rich
sediments, which are equivalent laterally between cores.

Below 25 m in Core GD, porewater Ca’* and Mg® concentrations rise
dramatically in an exponential fashion with depth. This is probably mostly due to
dissolved gypsum present in the upwardly diffusing brines, as there is no gypsum present
in the sediments (MacFarlahe, 1995). Unfortunately there was not enough porewater
sampled to perform sulphate analysis. Another reason for the higher porewater Ca** and
Mg®" concentrations below 25 m in Core GD is an ionic strength effect (Freeze and
Cherry, 1979), whereby the relatively high salinity of the deeper porewaters has increased

the solubilities of calcite and, to a lesser extent, dolomite, consequently raising porewater
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Ca*" and Mgz’ concentrations. However, the salinities found near 40 m depth in Core GD
would at most double Ca®* and Mg** concentrations (Shternina and Frolova, 1945), while
results show porewater Ca®* concentrations increasing by a factor of 7. A plot of
[Ca®)/[Mg”] molar ratios with depth for the 3 cores (Fig. 52) shows an increase with
depth below 30 m in core GD. This increase is probably due primarily to the upward
diffusion of deep Erine dissolved gypsum, and secondarily to the greater solubility of
calcite compared to dolomite at higher salinities.

20 A —u— Core HP
e | e— Core GD

depth belowsurface (m)

oZ u —A— Core DC
- \.\
/ |
30 o\
e \.\
40 ¥ I L] 1 ’ 1 R l T L 1 14
1.0 1.5 20 25 3.0 35 40

poreveter [Ca?'}/[Mg?*] molar ratio

Fig. 52: Plot of porewater {Ca?*)/[Mg**] molar ratios for Walpole Island cores H?, GD and DC.
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6.3.3 Comparison With Related Study

Vandenberg et al. (1977) conducted a geochemical survey of waters from the
shallow aquifer that overlies the bedrock of Lambton County, which is located directly
northeast of the St. Clair Delta. They found that most of the aquifer waters overlying
Kettle Point Formation and Hamilton Group shales had lower sulphate and total dissolved
solids (TDS) concentrations compared to aquifer waters overlying Hamilton Group
limestones. They also found that a few aquifer water samples had anomalously high
chloride and TDS concentrations. These anomalous waters were associated with low
trends on the piezometric map of the disposal zone, and/or deep-seated geological
structures such as the Dawn Fault and the Kimball-Colinville monocline. These structures
presumably developed zones of higher than average vertical permeabilities crossing a
number of bedrock formations. Vandenberg et al. concluded that the anomalous waters
indicated contamination of the freshwater aquifer by deep formation waters.

The chemical results of this thesis conform to Vandenberg e al.’s results. In both
studies, high salinities correlate with the major structural faults of the region. Their study,
however does not show evidence of fracturing in the overlying Quaternary sediments,
This is not surprising, as the Dawn Fault and The Kimball-Colinville monocline are much

smaller features compared to the regional extent of the Electric Fault.
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CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

(1) The stratigraphy of Walpole Island Quaternary sediments reflects a general
retreat of the Laurentide Ice Sheet northwards from the area. From top to bottom, the
stratigraphy is as follows: (a) Nipissing to Modern Great Lakes stage sandy deltaic
sediments (3 m thick); (b) An Early Holocene green accretion gley found only in Core
GD, probably formed when the region was subaerially exposed at the beginning of the
Holocene (1 m thick); (c) Two Creeks Interstade, Greatlakean Stade, and Early Holocene
non-rhythmically stratified lacustrine clayey silt (2 m thick); (d) Early Mackinaw
Interstade to Early Two Creeks Interstade varved glaciolacustrine clayey silt, which
proceeds from ice-proximal to ice-distal facies upsection (9 m thick); (¢) Port Bruce
Stade Rannoch Till; a waterlain, carbonate-rich clayey silt till containing numerous .
inclusions of Erie Interstade, Huron basin, glaciolacustrine sediments and bedrock clasts
(5-25 m thick); (f) A coarser, sandy lodgment facies of the Rannoch Till (1 m thick,
overlying bedrock); (g) Bedrock consisting of Upper Devonian Kettle Point black shale in
the northern and middle portions of the island, and sheared Middle Devonian Ipperwash

Formation bioclastic limestone in the southern portion of the island.

(2) Planar fracturing seen in Core DC lacustrine sediments may represent part of
an east-west trending fracture zone that affected the progradation direction of the
Chematogen and Johnston distributary channels as they advanced through this zone.
Chematogen and Johnston channels, which prograde by burrowing forward through the
lacustrine clayey silts, probably veered eastward and westward, respectively, to take
advantage of the weakened fabric of the clayey silts in this fracture zone.

(3) Porewater *0 and D concentration profiles for cores HP and GD indicate that
older (>10 000 y.b.p.), deeper waters with glacially recharged, lighter §'°0 and 8D values
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have mixed with, and have been displaced by, younger (<10 000 y.b.p.), surfictal waters

with relatively warmer climate, isotopically heavier §'*0 and 3D values.

(4) Core GD porewater 0O ccncentrations are consistently enriched by 1.5 %o
relative to Core HP porewater, indicating that hydraulic conductivity is slightly higher in
Core GD. This may be due to micro-fracturing throughout Core GD related to Holocene
movement along the Electric Fault, which trends 7 km south of the Core GD sampling

location.

(5) Core DC porewater *0 and D concentration profiles indicate that modern St.
Clair River water has penetrated the length of the core via fractures, effectively displacing
all glacially recharged porewater. Fracturing and faulting or siumping are clearly visible
throughout Core DC, which is located on the trend of the Electric Fault. The fracturing
and faulting or slumping seen in the core may be related to renewed Holocene movement

along the fault, perhaps related to collapse due to dissolution of the evaporite units of the

Paleozoic bedrock.

(6) Porewater '*0 and D concentrations for all 3 cores plot along the regional
meteoric water line indicating that porewaters are unaffected by secondary processes such

as evaporation prior to or during infiltration, and mineral exchanges with the host

sediment.

(7) Porewater “Cpyc concentration profiles for cores HP and GD also show that
advective mixing and displacement processes have occurred. Specifically, deeper waters
with a mineralized dissolved inorganic carbon source have mixed with, and were displaced

by, shallower waters with an organic, Calvin (C3) Cycle dissolved inorganic carbon

source.

(8) Core GD porewater *Cpjc concentrations are consistently enriched by 2 to

6 %o relative to Core HP porewater, indicating that hydraulic conductivity is slightly
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higher in Core GD. Again, this may be due to micro-fractuning throughout Core GD

related to Holocene movement along the Electric Fault.

(9) The Core DC porewater *Cpyc concentration profile shows a predominantly
mineralized, St. Clair River 8 Cpyc value signature near surface, with rapid depletion to
Calvin (C3) Cycle values with depth. This depletion may result from increased biclogical

activity such as bacterial respiration downsection within the fractures.

(10) Porewater Na“, K" and CI” ion concentrations, as well as porewater electro-
conductivity values, show exponential increase with depth. The concentration gradients
are lowest in Core HP, intermediate in Core GD, and highest in Core DC. This gradation
in concentration gradients is consistent with the low, intermediate and high degrees of
fracturing found in cores HP, GD and DC, respectively. The source of the chlorides is
probably Upper Silurian, Salina Formation brines upwelling through the Electric Fault.

(11) Porewater Ca** and Mg*, derived from calcite and dolomite dissolution,
have relatively constant saturation point concentrations down to a depth of 25 m. Below
25 m, concentrations rise exponentially with depth, probably due to the presence of -
dissolved gypsum in the upwelling brines, and also to the increased solubilities of calcite

and dolomite at the higher salinities found in the lower porewaters.

7.2 Recommendations

(1) The high concentrations of chlorides and possibly sulphate found in the
shallow aquifer waters above the Electric Fault in the southern portion of the Walpole
Island Reserve should be confirmed by water sampling. Such additional sampling would
be useful both within the reserve, and in Kent County along the trend of the Electric Fault.
If the Electric Fault is a conduit for deep brines from Silurian strata rising to the bedrock

surface, it may also serve as a conduit allowing liquid wastes that are currently being
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disposed of in dolomites such as the Middle Devonian Lucas Formation, to rise to the

bedrock surface, contaminating the shallow aquifer waters.

(2) Additional study should be undertaken to determine whether the fracturing
found in the tills and lacustrine sediments of the southern portion of Walpole Island above
the Electric Fault continues along the trend of the fault into other parts of the reserve and
into neighbouring Kent County. If this fracturing was found to be widespread, it may be
advisable to locate any future surface waste disposal sites well away from the surface trace

of the Electric Fault, so that any contaminated seepage would not readily descend into the

shallow aquifer.
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