
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

A unified robotic kinematic simulation interface. A unified robotic kinematic simulation interface.

Zhongqing Ding
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Ding, Zhongqing, "A unified robotic kinematic simulation interface." (2005). Electronic Theses and
Dissertations. 857.
https://scholar.uwindsor.ca/etd/857

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/857?utm_source=scholar.uwindsor.ca%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A UNIFIED ROBOTIC KINEMATIC SIMULATION

INTERFACE

by

Zhongqing Ding

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through Industrial and Manufacturing Systems Engineering

in Partial Fulfillment of the Requirements for
The Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada
2005

® 2005 Zhongqing Ding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09760-4
Our file Notre reference
ISBN: 0-494-09760-4

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I o 3 l.1 ° [0 ?

ABSTRACT

Robotic controller and application programming have evolved along with the

application of computer technologies. A PC-based, open architecture controller, off-line

programming and simulation system integrated in “one-box” solution presents the latest

advancement in robotics.

Open architecture controllers have been proven essential for all aspects of

reconfiguration in future manufacturing systems. A Unified Reconfigurable Open Control

Architecture (UROCA) research project is under way within the Intelligent

Manufacturing Systems (IMS) Centre at the University of Windsor. Applications are for

industrial robotic, CNC, and automotive control systems. The UROCA proposed

architecture is a reconfigurable system that takes the advantages of different control

structure types, thereby integrating them in a way to enhance the controller architecture

design.

In order to implement the reconfigurable control strategies and ease application

programming in UROCA, a Graphical User Interface (GUI) that provides 3D robotic

kinematic modeling and simulation is necessary. The graphical robotic simulation

platform is PC-based, and both application and hardware independent. The Object-

oriented paradigm introduces a novel software architecture that has the following

features: ease of use, extensibility, portability, and reusability.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This research develops a graphical robotic simulation platform by creating an

optimized object-oriented design. This design approach implements all components in the

Visual C + + programming language and freely distributed graphical library OpenGL,

utilizing a single PC running the Windows operating system. The main component of the

system includes a GUI, which can generate a kinematic model of most industrial robots

by defining all the joint coordinate systems with their orientations and positions. Robot

arm lengths and offsets are modified according to their exact values. Thereby, the

Denavit-Hartenberg (D-H) parameters describing the arm geometry for direct and inverse

kinematic problem solving are automatically generated and saved. The GUI also has

general functions of commercial robotic simulation packages such as file saving and

opening, various views, simple 3D geometric modeling, and simulation.

The case studies demonstrate that this graphical user interface is very effective in

creating the kinematic models, and in verifying the direct and inverse kinematics

solutions visually. This software platform was also created for geometric modeling and

simulation of the whole work cell.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv

ACKNOWLEDGEMENTS

I would like to express my sincerest and deepest appreciation to my supervisor

Professor Waguih ElMaraghy for giving me the opportunity, his guidance, and for

helping me throughout the course of my M.A.Sc program. I would also like to extend my

thanks to my Supervisory Committee, Dr. Guoqing Zhang and Dr. Bruce Minaker for

their comments and time in reviewing my thesis.

I would like to acknowledge the great help and insight that I received from the IMS

Centre directors, Professor Hoda ElMaraghy and Professor Waguih ElMaraghy, for

giving me the chance to discuss the research topics with other members through the

regular meetings they arranged for us. I learned a lot from these meetings. I would like to

extend my thanks to all other members in IMS Centre for their suggestions and

encouragement.

Within our IMS Centre, I would acknowledge Ms. Ana M. Djuric for her assistance

with the Unified Kineamtic Modeler and Solver. I also appreciated the discussion with

Dr. ElSayed M. ElBeheiry about the UROCA project in relation to my thesis.

I would like to thank the Industrial and Manufacturing Systems Engineering

Department staff: Ms. Jacquie Mummery, Mr. Ram Barakat, Ms. Zaina Batal, and Ms.

Monique Gagnon for their support and kind assistance during my study.

Finally, I wish to express my great gratitude to my closest friends Ying Liu and Mike

Cogan for their love, understanding, and encouragement, including suggestions on

programming issues.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOW LEDGEMENTS..v

LIST OF FIGURES... ix

LIST OF TABLES... xi

CHAPTER 1 INTRODUCTION... 1

1.1 Introduction to Robotics..1

1.1.1 Introduction to Industrial Robots..2

1.1.2 Kinematics... 5

1.1.3 Dynamics and Control..12

1.1.4 Application Programming ... 13

1.2 Introduction to Unified Reconfigurable Open Control Architecture...................... 14

1.3 Motivation and Objectives...16

1.4 Thesis Overview..18

CHAPTER 2

OVERVIEW OF GRAPHICAL ROBOTIC SIMULATION SYSTEMS.................20

2.1 The Main Functionality.. 20

2.2 Literature Review... 22

2.2.1 The Simulation Systems Separated from the Control Systems.......................22

2.2.2 The Simulation Systems Integrated with the Control Systems........................31

2.3 The Theories and Technologies...40

2.3.1 Introduction to Computer Graphics..40

2.3.2 3D Object Model.. 42

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3 DESIGN REQUIREMENTS.. 46

3.1 Generic Puma-Fanuc Model... 46

3.2 A Unified Geometric-Based Solution..49

3.2.1 Solution for the First Three Joints..52

3.2.2 Solution for the Last Three Joints...55

3.3 Design Requirements.. 57

CHAPTER 4 DESIGN AND IM PLEM ENTATIO N..58

4.1 System Structure... 58

4.2 Menu Stmcture and Main Functions...60

4.2.1 The Graphical User Interface..61

4.2.2 File Functions... 63

4.2.3 View Functions.. 63

4.2.4 Geometry Model.. 63

4.2.5 Kinematic Model... 64

4.2.6 Simulation.. 65

4.3 Design Methodologies.. 66

4.3.1. Objected-oriented Design Approach.. 66

4.3.2. Library Modules and Dynamic-Link Libraries Design...................................71

4.3.3. Scene Graphs.. 74

4.3.4. Visual C ++implementation...79

CHAPTER 5 SIMULATION EXAMPLES AND RESULTS....................................82

5.1 Case Study one for PUMA-like Robots... 82

5.1.1 Problem Description...82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.2 Inverse Kinematics Solutions...84

5.1.3 Verification.. 87

5.2 Case Study two for Fanuc-like Robots..90

5.2.1 Problem Description.. 90

5.2.2 Inverse Kinematics Solutions...92

5.2.3 Verification.. 94

5.3 Operations of the Interface..96

5.3.1 Kinematic Model... 96

5.3.2 Geometric Model... 98

5.3.3 Definition of Target Points...98

5.3.4 Simulation.. 99

CHAPTER 6 CONCLUSIONS AND FUTURE W ORKS.......................................100

6.1 Conclusions..100

6.2 Contributions...102

6.3 Future Work...102

REFERENCES.. 105

APPENDIX 1: SAMPLE C++ PROGRAMS.. 110

APPENDIX 2: THE FILE DATA FOR CASE STUDY ONE.................................. 113

V ITA AUCTORIS...115

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1.1: Cincinnati Milacron T Robot arm [Fu et al, 1987]...2

Figure 1.2: PUMA 560 Joint Limits [Fu et al, 1987]... 3

Figure 1.3: Work Envelope..4

Figure 1.4: The Direct and Inverse Kinematic Problems... 6

Figure 1.5: A PUMA Robot Arm Illustrating Joints and Links [Fu et al, 1987].............. 7

Figure 1.6: Link Coordinate Frame and its Parameters.. 8

Figure 1.7: PUMA Link Coordinate Frame [Fu et al, 1987]...9

Figure 1.8: Determination of Link Frames from D-H Parameters.................................. 10

Figure 2.1: CODE Architecture Modified from [Cimetrix Inc., 2002]...........................32

Figure 2.2: Hardware Configuration of the PC-ORC [Hong et al, 2001].................. 33

Figure 2.3: Overall Structure of the PC ORC Modified from [Hong et al, 2001].......... 34

Figure 2.4: Class Hierarchy of the Robot Platform [Loffler et al, 2001]........................ 37

Figure 2.5: Run-time Architecture of The Robotic Platfom [Loffler et al, 2001]........... 38

Figure 2.6: Application Programmer’s Model of Graphical System...............................41

Figure 2.7: Geometric Primitive Types [Angel, 2003]... 44

Figure 3.1: Generic Puma kinematic Structure [Djuric et al, 2004]................................47

Figure 3.2: Generic Fanuc kinematic Stmcture [Djuric et al, 2004]...............................47

Figure 3.3: Generic Puma and Fanuc Kinematic Stmcture [Djuric et al, 2004].............48

Figure 3.4: Definition of Various Arm Configurations [Djuric et al, 2004]...................50

Figure3.5: Position Vector p [Djuric et al, 2004]..................... 52

Figure 3.6: LA Projection of p onto xOyO Plane [Djuric et al, 2004]..............................52

Figure 3.7: RA Projection of p onto xOyO Plane [Djuric et al, 2004]..............................52

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.8: Projection of Vector p onto x ly l Plane [Djuric et al, 2004]........................53

Figure 3.9: Four Combination for Joint 2 Solution [Djuric et al, 2004]..........................54

Figure 4.1: Overall System Stmcture...58

Figure 4.2: The Menu Stmcture of the GUI... 61

Figure 4.3: The Default Window of the GUI.. 62

Figure 4.4: The World Coordinate System... 62

Figure 4.5: An Example of Work Cell Objects.. 67

Figure 4.6: Class Hierarchy of the System... 70

Figure 4.7: Tree Stmcture for a robot Arm... 75

Figure 4.8: The Scene Graph of Kinematic Modeling for PUMA Robot........................ 77

Figure 4.9: The Corresponding OpenGL Pseudocode.. 78

Figure 5.1: Kinematic Model for ABB IRB 6400.. 83

Figure 5.2: Simulation Path of Case Study One... 84

Figure 5.3: Visualization for the point 1, solution 8 of Case Study One......................... 90

Figure 5.4: Kinematics Model for ARCMatel20iL.. 91

Figure 5.5: Simulation Path for Case Study two.. 92

Figure 5.6: Selection of Joint Coordinate System.. 96

Figure 5.7: Modification of the Robot Arm Lengths and Offsets...................................97

Figure 5.8: Translation and Rotation of the Robot... 97

Figure 5.9: The Edit Dialog of Geometric Modeling for the Cube.................................98

Figure 5.10: The Pendent View and Inverse Kinematic Solution Dialogs of the robot...99

Figure 6.1: Robot Arm Control System.. 104

Figure 6.2: The overall architecture of the system..104

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 1.1: PUMA D-H Parameters.. .10

Table 2.1: Geometric Primitive Types..43

Table 3.1: D-H parameters for Puma Kinematic Stmcture [Djuric et al, 2004]...........48

Table 3.2: D-H parameters for Fanuc Kinematic Stmctue [Djuric et al, 2004]............48

Table 3.3: D-H parameters for the GPF Model [Djuric et al, 2004].............................49

Table 3.4: Various Orientations for WRIST [Djuric et al, 2004]................................ 55

Table 4.1: Common and Specific Functionality for 3dObject Class.............................71

Table 4.2: The Main Functions of the Math Library.. 72

Table 5.1: D-H Parameters for ABB IRB 1400... 83

Table 5.2: The Definition of Target Points of Case Study One.....................................84

Table 5.3: The Joint Solutions for Point 1 of Case Study One..................................... 85

Table 5.4: The Joint Solutions for Point 2 of Case Study One..................................... 85

Table 5.5: The Joint Solutions for Point 3 of Case Study One..................................... 85

Table 5.6: The Joint Solutions for Point 4 of Case Study One..................................... 86

Table 5.7: The Joint Solutions for Point 5 of Case Study One..................................... 86

Table 5.8: The Joint Solutions for Point 6 of Case Study One..................................... 86

Table 5.9: The Joint Solutions for Home Position of Case Study One.......................... 87

Table 5.10: D-H Parameters for the Point 1, Solution 8.. 88

Table 5.11: D-H Parameters for ARCMatel20iL.. 91

Table 5.12: The Definition of Target Points for Case Study Two................................92

Table 5.13: The Joint Solutions for Home Position of Case Study Two......................93

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.14: The Joint Solutions for point 1 of Case Study Two........................ 93

Table 5.15: The Joint Solutions for point 2 of Case Study Two........................ 93

Table 5.16: The Joint Solutions for point 3 of Case Study Two........................ 94

Table 5.17: D-H Parameters for the Point 2, Solution 7.................................... 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x i i

CHAPTER 1

INTRODUCTION

This chapter presents an introduction to the principal concepts and technologies

involved throughout this research. The first section introduces robotics and especially the

Denavit-Hartenberg (D-H) matrix algebra approach for representing robot arm

kinematics is described in detail. In the second section, the Unified Reconfigurable Open

Control Architecture (UROCA) project and its latest progress is also briefly introduced.

The third section overviews existing graphical robotic simulation systems, with emphasis

on their characteristics. Through this, the motivation for developing a unified robotic

kinematic simulation interface is explained. The objectives of this research are also

described. Finally, the fourth section presents an overview of this thesis.

1.1 Introduction to Robotics

The Robot Institute of America defined that “a robot is a reprogrammable

multifunctional manipulator designed to move materials, parts, tools or specialized

devices through variable programmed motions for the performance of a variety of tasks”.

Robotics is concerned with the study of those machines that can replace human beings

in the execution of a task with regards to both physical activity and decision making.

Robotics is truly a multidisciplinary field that includes mechanical and electronic

engineering, computer science, and mathematics.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1.1 Introduction to Industrial Robots

An industrial robot consists of:

1) A manipulator

2) Actuators

3) Sensors

4) A control system.

Elbow
extension

Shoulder
swivel

Arm
sweep

Figure 1.1: Cincinnati Milacron T Robot Arm [Fu et al, 1987]

A manipulator or mechanical stmcture consists of a sequence of rigid links connected

by revolute or prismatic joints. Figure 1.1 illustrates an industrial robot manipulator. A

manipulator has a supporting base, an arm that ensures mobility, a wrist that confers

dexterity, and an end-effector that performs the desired task. The motion of the joints

results in the relative motion of links.

Mechanically, a robot is composed of an arm and a wrist subassembly plus a tool. The

arm generally can move with three degrees of freedom. The combination of the arm

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

movements positions the wrist at the workplace. The wrist consists of three rotary

motions called pitch, yaw, and roll. The combination of the wrist motions orients the

tools according to the configuration of objects for ease of pickup.

Each joint has its joint limit. For example, the joint limits of the PUMA 560 series

robot arm are shown in Figure 1.2. The manipulator stmcture as well as their joint limits

determine the work envelope that represents the portion of the environment which the

manipulator’s end-effector can access. A work envelope of ABC IRB 1400 is produced in

Figure 1.3 by Workspace software.

Waist rotation 320*

Shoulder rotation 300'

Elbow rotation 270°
17.0 in

17.0 in

Wrist bend 200°

Flange
rotation 270‘

30.0 in

Grtpper mounting

Wrist rotation 300*

Figure 1.2: PUMA 560 Joint Limits [Fu et al, 1987]

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.3: Work Envelope

Actuators actuate the joints to set the manipulator in motion; the motors employed are

typically electric and hydraulic, and occasionally pneumatic. Sensors measure the status

of the manipulator (internal sensors) and the status of the environment (external sensors).

A control system is a special kind of computer, which enables control and supervision of

manipulator motion.

The main difference between a robot and a numerically controlled machine tool is its

versatility. The manipulator’s end-effector can have different types of tool as well as the

large workspace.

The main applications of industrial robots in a manufacturing process are material

handling, arc or spot welding, and painting for vehicle bodies, machining, electronic

assembly, water jet, laser and plasma cutting, measurement, and so on.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1.2 Kinematics

Robot arm kinematics deals with the analytical study of the geometiy of motion of

robot arm with respect to the fixed reference coordinate system as a function of time

without regard to the forces/moments that cause the motion. Thus, it deals with the

analytical description of the spatial displacement of the robot as a function of time, in

particular the relations between the joint variable space and the position and orientation

of the end-effector of a robot arm.

The direct kinematics problem is defined by the following: Given the joint angle

variables 0i, 02, ..., 0n and the geometric link parameters, what is the position and

orientation of the end-effector of the manipulator with respect to a reference coordinate

system?

The inverse kinematics problem is defined by the following: Given a desired position

and orientation of the manipulator with respect to a reference coordinate system and

geometric link parameters, can the manipulator reach the desired position and

orientation? If so, how many different manipulator configurations will satisfy the same

condition? What are the resulting joint angle variables?

A simple block diagram indicating the relationship between these two problems is

shown in Figure 1.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Link parameters

Joint variables
61,02,... 0„,

Direct
kinematics

Link parameters

1r i r i r
Joint variables Inverse
0 1,02,... 0n, kinematics

Position and
orientation of the
end-effector

Figure 1.4: The Direct and Inverse Kinematic Problems

A mechanical manipulator consists of a sequence of rigid bodies, called links,

connected by either revolute or prismatic joints. Each joint-link pair constitutes one

degree of freedom as long as there are no closed loops. Hence for an N degrees of

freedom manipulator, there are N joint-link pairs with Link 0 attached to a supporting

base, and the last link is attached to a tool. The joints and links are numbered outwardly

from the base. An example is illustrated in Figure 1.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

Joint 2

Joint 3Joint 1

Link 0
Link 3

Link 4

Joint 3

Link 5

. Link 6

+jt

Figure 1.5: A PUMA Robot Arm Illustrating Joints and Links [Fu et al, 1987]

Since the links of a robot arm rotate or translate with respect to a reference coordinate

frame, the total spatial displacement of the end-effector is due to the angular rotation and

linear translations of the links. In 1955 Denavit and Hartenberg proposed a systematic

and generalized approach of utilizing matrix algebra to describe and represent the spatial

geometry of links of a robot arm with respect to a reference coordinate frame [Denavit

and Hartenberg, 1955]. This method uses a 4x4 homogeneous transformation matrix to

describe the spatial relationship between two adjacent rigid mechanical links and reduces

the direct kinematic problem to finding an equivalent 4x4 homogeneous transformation

matrix that relates the spatial displacement of the end-effector coordinate frame to the

reference coordinate frame. The advantage of using the D-H representation is its

algorithmic universality in deriving the kinematic equations of a robot arm.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To describe the translational and rotational relationships between adjacent links,

Denavit and Hartenberg proposed a matrix method of systematically establishing a body-

attached coordinate frame to each link of robot arm chain. A joint coordinate frame is

established at the connection of two links and attached to the second link. The D-H

parameters consist of a set of 4 numbers d, 0, a, and a, that describe the position and

orientation of a link frame with respect to the preceding link frame along the chain. The

D-H parameters definitions are given and used in this thesis as well as the visualization

software.

Given two consecutive link frames on a robot manipulator shown in Figure 1.6, frames

Fu and Fj, Frame F; will be uniquely determined from frame Fu by use of the parameters

dj, 0j> a;, cti.

Figure 1.6: Link Coordinate Frame and its Parameters

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The parameters are explained here.

• The z vector of any link frame is always on a joint axis.

• di is the distance along zn axis to the point where the common

perpendicular to z\ axis is located, d; is constant if joint i is revolute and

variable when joint i is translational.

• a* is the offset length of the common perpendicular.

• 9j is the joint angle from Xj.i axis to Xj axis about zn axis. 0 is variable when

joint i is revolute, and constant when joint is translational.

• a; is the offset angle from zu axis to z\ axis about xj axis.

The link parameters a K a; determine the stmcture of the link and joint parameters d i, 0;

determine the relative position of neighboring links. Figure 1.7 shows the link coordinate

frame for a PUMA robot. Table 1.1 shows its D-H parameters for home position.

Figure 1.7: PUMA Link Coordinate Frame [Fu et al, 1987]

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Joint i 0i Oti ai di

1 90° -90° 0 0

2 0 0 431.8mm 149.09mm

3 90° SO O
o -20.32mm 0

4 0 -90° 0 433.07mm

5 0

©OO
s 0 0

6 0 0 56.25

Table 1.1: PUMA D-H Parameters

The mathematical description of robot manipulators is a table of D-H parameters. The

table contains one row of four parameters for each link frame. The D-H parameters allow

one reference frame to be located exactly with respect to the preceding link frame.

It is assumed that a link coordinate frame B is determined from a preceding coordinate

Frame A by the four D-H parameters d, 0, a, and a. As shown in Figure 1.8, Frame B can

be located by the process outlined here:

d / *

a

\

\

a yA

A l/
i 'S k %

Figure 1.8: Determination of Link Frames from D-H Parameters

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1) Find the direction of xb axis by rotating xaaxis by an angle 0 about zaaxis;

2) Move a distance d on za axis;

3) Move a distance a in the direction of xb axis. The position reached is the

origin of Frame B. At this point xb axis is determined as well;

4) Rotate za axis about xb axis by an angle a to determine zb axis.

The ys axis completes the right-handed coordinate system as required.

Each of these four operations can be expressed by a basic homogeneous rotation-

translation matrix. Therefore,1-1 Aj, known as the D-H transformation matrix for adjacent

coordinate frames i and i-1, is generated by the product of these four basic homogeneous

transformation matrices.

J_1 A i = T z . d iT z, 0iT x, a iT x, ai

1 0 0 o' cosGj -sinGi 0 0 i 0 0 ai 1 0 0 0

0 1 0 0 sinGj COSG; 0 0 0 1 0 0 0 COSd. - sin dj 0

0 0 1 di 0 0 1 0 0 0 1 0 0 sind i cosd; 0

0 0 0 1 0 0 0 1 0 0 0 1_ 0 0 0 1

cosGj -cos a; sinGj sino^ sinG; »i cos 0.'
sinG; cos a; cos 0 ; - sin dj cos e. a sin 01

0 sinot) cos di
0 0 0 1

The homogeneous transformation matrix °T , which specifies the position and

orientation of the z'th coordinate frame with respect to the base coordinate frame, is the

chain product of successive coordinate transformation matrices of matrices 1-1 A;

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

° ^ = 0 4 V - “I4 = r i 7"1̂ M i = 1,2, . ,n (1.2)
7=1

We define the tool coordinate frame as [n, s, a] and the position vector p. For i =6, the

direct kinematic equation, that is, the position and orientation of the end-effector of

manipulator with respect to the base coordinate system, is given by:

>t 6 =° a 11a 22a 33a 44a 55a 6

n x Sx a x P x

n y s y a y P y

n z sz az P z

0 0 0 1

(1.3)

In general, the inverse kinematic problem can be solved by several techniques. The

most commonly used methods are matrix algebraic, iterative, or geometric approaches. In

Chapter 3, a geometric approach will be presented in detail.

1.1.3 Dynamics and Control

The dynamic model of a manipulator provides a description of the relationship between

the joint actuator torques and the motion of the stmcture. Derivation of the dynamic

model of a manipulator plays an important role for simulation of motion, analysis of

manipulator stmcture, and design of control algorithms. Simulating manipulator motion

allows testing control strategies and motion planning techniques without the need to use a

physically available system. The analysis of a dynamic model can be useful for the

mechanical design of prototype arms. Computation of forces and torques is required for

designing joints, drives and actuators.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The problem of controlling a manipulator is to determine the time history of the

generalized forces (or torques) to be developed by the joint actuators so as to guarantee

execution of the commanded task while satisfying given transient and steady-state

requirements. There are two types of robot control:

1) Joint space control: inverse kinematics transform the operational space to joint

space, then control the joint variables.

2) Operational space control: directly control the operational space variables, inverse

kinematics is embedded into the feedback control loop.

1.1.4 Application Programming

Robot application programming for industrial robots usually includes on-line and off

line programming [Biggs, 2003]. On-line programming, also known as teach and

playback, uses either the walk-through or the lead-through method. The walk-through

method involves teaching the robot by leading it through the motions the user wishes the

robot to perform, while the information about position, velocity and other related

variables is recorded by robot’s control system. This recorded motion can be played back

whenever required. For the lead-through method, the robot is moved to desired positions

by actuating its drive mechanism. The position information is recorded by the teach

pendant. The advantages of on-line programming are that it requires only a relatively

small memory space and is simple to leam and suitable for simple tasks. The main

disadvantage is that it is difficult to integrate sensory feedback information into the

control system. In addition, if the task is changed, the whole manufacturing system is

interrupted during robot programming [Fu et al, 1987].

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Off-line programming can be prepared on a computer and downloaded to a robot

controller without interrupting the production. Now usually the off-line programming

systems offer graphical simulation platforms, in which the robots and other equipment as

well as parts in the work cell can be modeled and animated. The main benefits of off-line

programming include reducing downtime, better understanding the process through

simulation, and decreasing the risk of damage to expensive equipment and injury to the

operator. The off-line approach can deal with programs for complicated tasks, while it

requires operator expertise and experience in dealing with the robot language and

simulation programming environments.

1.2 Introduction to Unified Reconfigurable Open Control Architecture

A Unified Reconfigurable Open Control Architecture, UROCA, is under development

by the research team at University of Windsor at IMS Centre for application to industrial

robotic, CNC, and automobile systems [ElBeheiry and ElMaraghy, 2004]. The UROCA

proposed architecture is a reconfigurable system that takes the advantages of different

control stmcture types, thereby integrating them in a way to enhance the controller

architecture design. UROCA reconfigurability deals with both control and software

reconfigurations as well as searching for every possible approach for unifying both types

of reconfigurations.

In order to unify the reconfigurable control process, similar steps are followed in

UROCA approaches:

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1) Commonalities among robotic, CNC, and automobile systems are exploited. This

will avoid reinventing solutions to problems that have been tackled before.

2) It employs software modules that are highly reusable within groups or families of

similar patterns.

3) Moreover, UROCA will favor the design of highly modular modules which may

be combined with each other to produce new system, probably in environments

quite different from the one for which they were originally developed.

UROCA is intended for use with different industrial machines like robotic, CNC, and

automobile systems. The ultimate goal is to have a machine-independent, application-

independent architecture. The transition from the technology of open controllers to the

technology of universal controllers is emphasized.

As UROCA is intended for controlling a wide variety of industrial machines, it has the

feature of easy reconfiguration from one machine to another as well as from one

application to another with the lowest amount of change. The Unified Kinematic Modeler

and Solver (UKMS) [Djuric et al, 2004] represents one of the most important modules of

UROCA. They invented a Generic Puma and Fanuc (GPF) kinematic model for most

industrial robots. The GPF model can be reconfigured from one kinematic structure to

another by using configuration parameters. A Unified Geometric-Based Solution was

presented to solve the inverse kinematics problem based on the GPF model.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Motivation and Objectives

Simulation and off-line programming of industrial robots are relatively mature

technologies. Robotic simulation software plays an important role in robotics research in

many areas such as robot design, forward and inverse kinematics analysis, dynamics,

control, path planning, etc. for both commercial and educational purposes. There are

several types and strategies of graphical robotic simulation software available in

commercially available systems.

According to the relationship between control and simulation systems, the robotic

simulation packages can be divided into two categories. One is the simulation systems

separated from the control systems. The other is the simulation systems integrated with

the control systems. For the first type, usually the control systems are vendor-oriented,

closed structures which provide common programming languages such as Pascal, C,

BASIC, etc with robot control libraries or a robotic command set for application

programming.

Development of robotic simulation has been driven by speeding program generation;

improving program accuracy; verifying collision-free path; predicting cycle time; and

improving robot efficient applications. However, industrial robot control systems and

robot simulation systems are often developed by different vendors and are programmed

with different, incompatible programming languages [Bernhardt, 1995]. In this approach

many algorithms that solve common tasks for simulation and robot control are

programmed twice and independently. They appear in both systems. Therefore the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simulation still does not reflect a desired reality. The ideal simulation is that programs

developed off-line can be loaded onto and mn by real robot controllers without having to

correct them in the shop floor.

Along with the advancement of computer technology and manufacturing systems, open

stmcture PC-based control systems came about. The robotic control platforms can

achieve a “one-box” solution, which means that the platform is integrated on a single PC,

using a single operating system and a single programming language to implement the

servo control, 3D simulation, and robotic application development [Loffler, 2001,2002].

A strong correspondence between the robot simulation and the actual robot controller can

be achieved by sharing the same algorithms.

Both types of robot simulation systems have a common characteristic. Different robot

systems have different kinematic structures for simulation. Some simulation systems can

just be used for a few robot types. For example, RoboCell is designed for SCORBOT-ER

4u and SCORBOT-ER-2u [Intelitek Inc., 2003].

Therefore, in order to implement the reconfigurable control strategies and ease

application programming, the commercial robotic simulation packages cannot satisfy the

specific requirements of the UROCA project. Thus, the development of a Graphical User

Interface (GUI), that provides 3D robotic kinematic modeling and simulation is

necessary.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The main objective of the proposed research is not only to provide a GUI software

package to implement the reconfigurable kinematic modeling and simulation for most

industrial robots, but also to create a software platform that has the features of ease of

use, extensibility, portability, and reusability.

Several objectives have been defined for this research. They are:

1) Create a software platform for 3D kinematic robotic modeling and simulation.

2) Design a GUI for visualization of robot kinematics configuration based on

Generic Puma-Fanuc model.

3) Automatically generate the D-H parameters from the kinematic modeling.

4) Build a library module to implement vector, matrix, and kinematics calculation.

5) Design a Dynamic-Link Library (DLL) to unify the geometric modeling.

6) Create the robot simulation.

7) Verify the results.

1.4 Thesis Overview

This thesis is organized as follows:

Chapter 1 provides an introduction to robotics as well as the main technologies

involved. The UROCA project is also introduced. Then the motivation and objectives of

this research are presented.

Chapter 2 discusses the main functionality usually implemented in graphical robotic

simulation software packages, and presents a literature review of many packages,

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

classified according to their control systems. The theories and technologies for

implementing a graphical robotic simulation are briefly explained as well.

In Chapter 3, the details of the Generic Puma-Faunc (GPF) kinematic model for most

industrial robots and a generic solution module using a geometric approach for solving

the inverse kinematic problem based on the GPF model are reviewed. Also, the design

requirements of the Graphical User Interface (GUI) for implementing the UKMS are

described.

Chapter 4 illustrates the hardware and software stmcture of the GUI, its main functions,

and an explanation of software implementation based on the theories and requirements

described in Chapter 2 and Chapter 3 respectively.

Simulation examples and evaluation results are shown in Chapter 5. The conclusion

and future research are given in Chapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

CHAPTER 2

OVERVIEW OF GRAPHICAL ROBOTIC SIMULATION SYSTEMS

Graphical robotic simulation and off-line programming of industrial robots are today

relatively mature technologies. Robotic simulation software plays an important role in

robotics research in many areas such as robot design, forward and inverse kinematics

analysis, dynamics, control, path planning, etc. for both commercial and educational

purposes. There are many graphical robotic simulation software packages available in the

market. Within this chapter, first, the common functionality implemented in the graphical

robotic simulation software packages is described. Second, a literature review of these

packages classified according to their control systems is presented. Also, characteristic

analyses are provided for each category to summarize the discussed literature. Finally, the

theories and technologies for developing a graphical robotic simulation system are

explained.

2.1 The Main Functionality

Generally speaking, simulation is a process of modeling an existing or hypothetical

system to examine its properties and behavior. Simulation systems are commonly

implemented as software.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Simulation of industrial robots has become an important means for increasing

efficiency of robot applications. High precision simulation decreases development costs

and increases reliability of safety-critical industrial automation systems.

Robotic simulation software packages are generally 3D graphics-based interactive

tools for designing, programming and optimizing the robotics applications through

simulation and analysis [Orady et al, 1997]. These packages consist of a robot builder and

motion simulator of robot joints through graphic representation. Other components that

can be modeled are machine tools, coordinated measuring machines, conveyors, grippers,

parts, etc. and the motion of their movable elements can also be simulated. Robots or

devices can be constmcted using a graphics package as a set of elements of graphic solids

that can be assembled in one overall component. Kinematic relationships between the

links are then established to form a kinetically defined device. A set of robots and devices

can then be used to constmct a work cell. Robots, devices and parts are assembled in a

certain work cell layout. After constmcting the work cell, locations are created to

constmct motion paths, and to write control logic for the operation of the cell, and then an

off-line program (OLP) for the robots can be developed while the robot path motion is

simulated. The OLP could be translated to a teaching pendent file, or a robot specific

programming language such as "Karel" for FANUC robots [Orady et al, 1997]. These

programs can be directly downloaded to the real controller to mn the robots and devices.

The robotic simulation systems differ significantly from traditional CAD tools in that

they allow the study of geometries, kinematics, dynamics and motion planning.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When a production process is complex, these simulation application tools are

beneficial and necessary as in the case of spot welding, arc welding, and painting,

assembly, machine tool path verification, inspection and human factors.

The main functions of graphical robotic simulation packages are summarized:

1) 3D modeling of robots, machine tools, coordinated measuring machines,

conveyors, grippers in the work cell.

2) Assembling the robot or device elements in one component.

3) Creating forward and inverse kinematics for robots.

4) Creating mechanisms of other devices.

5) Automatically generating geometric paths.

6) Checking the robotic work envelope.

7) Collision detection.

8) Robot calibration.

9) Off-line programming.

10) Simulating and optimizing the work cell.

2.2 Literature Review

2.2.1 The Simulation Systems Separated from the Control Systems

Grasp2000

Grasp2000 [BYG Systems Ltd, 2002], by BYG systems Ltd, is a tme 3D simulation

tool, based on accurate 3D geometry, process parameters and a library of industrial

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

robots. Grasp2000 enables the creation of accurate 3D models, and real-time interactive

simulations for cell layout design, planning, optimisation, and cycle time calculation. As

a tool for off-line programming, the instructions can be automatically translated into the

required native robot language.

Grasp2000 can generate specific application menus for arc welding, palletising and

spraying. The software will find applications in PC-based cell layout and design,

analysis, offline programming and process planning throughout the full range of Toshiba

SCARA robot applications.

An important factor in off-line programming is the presence of inherent inaccuracies in

most robots. Grasp2000 uses in-depth mathematical calculations to calibrate both the

robot and 3D model to match the real world. It only requires the demonstration of a

number of robot poses, which are then read into Grasp2000 and analyzed by the

calibration software without external measuring equipment.

An optional module for discrete event simulation extends Grasp2000's application

areas to factory simulation, warehousing, logistics and materials handling.

CimStation Robotics (CSR)

CSR [Applied Computing & Engineering Ltd, 2005], is powerful 3D simulation

software that enables manufacturing engineers to quickly simulate and evaluate

automation concepts to determine the cost, feasibility and performance of a proposed

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

robotic system. Using existing in-house CAD data and AC&E's library of commercial

robots and accessories to create a detailed simulation of the proposed manufacturing

system, CSR accurately simulates interactions between work cell components to optimize

equipment selection, fine-tune equipment positioning, and maximize production

throughput.

The system is the most comprehensive and easy-to-use robotic simulation tool

available and works completely off-line, eliminating the risk of damage to equipment and

freeing robots for round-the-clock production. CSR can be purchased in a modular

fashion.

Specialized application solutions tailored to the requirements of a particular robotic task

provide advanced functionality and ease of use for painting, spot welding, arc welding,

polishing, assembly and press operations.

IGRIP

Interactive Graphics Robot Instmction Program (IGRIP) by DELMIA [Cheng, 2000],

is an interactive, 3D graphic simulation tool for designing, evaluating, and off-line

programming of robotic work cells. Actual robotic/device geometry, motion attributes,

kinematics, dynamics, and I/O logic are incorporated to produce extremely accurate

simulations. IGRIP optimizes critical factors such as robot motion planning, cycle time

prediction, collision detection, calibration, and multiple I/O communication.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The several specific task software modules consist of UltraArc, UltraSpot, UltraPaint,

and UltraFinishing, which are designed specially for arc welding, spot welding, painting,

and surface finishing work cell applications respectively. Other applications include

research and development, articulated design, flexible manufacturing system simulation,

nuclear/hazardous duty automation, and general-purpose simulation.

Work cell components can be created in the integral CAD package or imported from

other CAD packages via IGES, DXF, and direct translators. A built-in surface modeling

package provides modification and/or optimization of imported surface data.

EASYROB

EASY-ROB [Anton et al, 2001], 3D Robot Simulation Tool was written in Visual C-H-

under the Windows operating system. In order to create high quality and high speed

rendered images, the graphical capabilities of OpenGL are used. EASY-ROB is a

complex and comprehensive modeling and simulation tool. It is especially designed to

fulfill requirements for several industrial robotic applications as well as for educational

purposes.

The EASY-ROB Basic Model allows the planning and designing of robotic work cell

layouts consisting of a robot, tool and environment. A simple 3D CAD system is

provided to create basic geometric parameterized primitives like cubes, cones, cylinders,

pyramids, etc. In addition, a CAD interface is available to import other 3D formats such

as STL. Created and imported geometries are assigned to the robot group to active or

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

passive joints, to the tool group or to the environment group. Using a 3 button mouse,

each geometry can be translated and rotated about its axis, or the operator can enter

absolute or relative Cartesian values to set the Cartesian location. A modification of the

view point (pan, tilt, zoom in and zoom out) in full shaded mode allows various world

views.

The robot motion can be programmed using EASY-ROB standard program commands.

A special Teach Window supports the user in writing robot motion programs. The built-

in motion planner is implemented for the motion types: Point to point (PTP), Linear

(LIN) and Circular (CIRC). The orientation interpolation for the LIN and CIRC motion

type is realized for variable, fixed, tangential and quaternion modes. Several on-line

output windows allow the operator to monitor robot joint values, Cartesian TCP location,

as well as simulation states such as cycle time, step size, override, etc. All data is saved

into documented ASCII text files.

Workspace

Workspace, described in [Owens, 1994], [Flow software technologies, 2002] has

been developed by a team led by John Owens as the world’s first industrial robot

simulation software package. Commercially released in 1989, it has been continuously

updated over the last decade.

In addition to a library over 140 industrial robot 3D models available to the user, the

3D CAD modeler can create 3D solid objects using Constructive Solid Geometry and

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

surface objects such as Bspline, Parametric, and Bezier surfaces. The 3D objects also can

be imported from other CAD system via SXF or IGES file formats.

The movement of any mechanism may be modeled using a kinematics modeler. The

mechanism may have any number of joints in any serial or tree-stmcture combination.

Conveyors, automatic vehicle, and other independently moving objects may also be

modeled. Positions and paths for the robot tool to target may be defined in several ways,

such as by use of the teach pendant, by clicking the mouse on the screen, or by using

geometry points.

Workspace can be used to create and simulate robots in the native language of the

robot. For example, users of Fanuc robots may write robot programs in Karel, ABB robot

users may write programs in ARLA, or Visual Basic can be used just for simulation.

Therefore, there is no need for translating the simulation language to the robot language.

It is also possible to transfer existing robot programs from the robot control to Workspace

for optimization.

In addition, the simulation can be replayed in real time. Calibration and dynamics

modules are also available.

PIN

A graphical robot simulation and off-line programming system, called PIN [Dai and

Kampker, 1999], is a PC-based robot simulation and off-line programming system that

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

runs under the Windows operating system and applies OpenGL for rendering 3D

graphics. It has been designed for the welding industry to meet the demands of small and

medium sized enterprises allowing the user to completely generate robot programs

interactively. One of the key programming functions includes macro programming

techniques that are based on the idea of combining often repeated actions such as

sequences of torch motion, Tool Centre Point measurement, sensor-based calibration and

search operation, etc. An icon-oriented macro editor is another powerful tool. After

successful simulation, the robot controller code can be downloaded to the robot controller

via an RS232 standard serial interface on a PC.

CROBOTS

CROBOTS [O’Leary, 1998] is a CAD based robot simulation tool written in the

AutoLisp programming language. The software can be used in the design, application and

programming of educational and industrial robots. CROBOTS runs inside AutoCAD

R14. Therefore, the impressive graphics capability of AutoCAD and the custom

developed tools for revolute robot model creation, robot operation cycle planning and

robot controller simulation are combined together. This program can perform 3D solid

geometric modeling, defining a desired robot trajectory, and 3D simulation of the torque

and dynamic response of a robot displayed in 3D graphics output.

ROBOSIM

ROBOSIM [Koseeyapom, 2003], implemented cooperatively between Vanderbilt

University and NASA’s Marshall Space Flight Cent, is a robot simulation package for

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

educational purposes. ROBSIM runs under the Windows operating system. The graphical

model utilizes OpenGL for rendering the simulated objects. The LISP programming

language based on COMMON LISP is employed to program modeling and simulation of

robots and objects by either typing in the interactive command line interface or loading

into the simulator via a text-based LISP file. The useful educational simulation tool

covers many areas such as path planning programming, robot modeling, forward and

inverse kinematics, collision detection and avoidance, and 3D transformations.

RoboCell

RoboCell [Intelitek Inc., 2003] provides a full range of industrial functions in an

intuitive interface designed for training environments. RoboCell lets students create,

program, simulate and control the entire operation of robotic work cells and flexible

manufacturing systems.

This software package integrates four components:

1) SCORBASE, a full-featured robotics control software package, which provides a

user-friendly tool for robot programming and operation.

2) A Graphic Display module that provides 3D simulation of the robot and other

devices in a virtual work cell.

3) CellSetup, which allows a user to create a new virtual robotic work cell, or

modify an existing work cell.

4) 3D Simulation Software Demo to demonstrate RoboCell’s capabilities.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RoboCell integrates SCORBASE robotic control software with interactive 3D solid

modeling simulation software. RoboCell's virtual robots and devices accurately replicate

the actual dimensions and functions of the equipment in the robotic work cell. Students

can teach positions, write programs and debug robotic applications offline before

executing them in an actual work cell. RoboCell allows students to experiment with a

variety of simulated work cells, even if the actual work cells do not exist in the lab.

Advanced students can even design 3D objects and import them into RoboCell for use in

virtual work cells. But the SCORBASE control software is designed just for SCORBOT-

ER 4u, and SCORBOT-ER-2u.

The main disadvantages of this type of simulation systems are:

1) Industrial robot control systems and robot simulation systems are often developed

by different vendors and are programmed with different, incompatible

programming languages. In this approach many algorithms which solve common

tasks for simulation and robot control are programmed twice and independently.

They appear in both systems. Experience has shown that this results in large

deviations of simulated and actual behavior and inaccurate cycle times [Bernhardt

et al, 1994], [Anton et al, 2001]

2) Most simulation systems need a translator from simulation programming to robot

control programming. Even though there is no need for translating the simulation

language to the robot language in Workspace, different native robot languages are

used for different robots.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 The Simulation Systems Integrated with the Control Systems

The Cimetrix Open Development Environment (CODE)

CODE [Cimetrix Inc., 2002], developed by Cimetrix, inc., is a family of open

architecture machine modeling and motion control software products designed to control

the most challenging multi-axis machine control applications. CODE contains both a

powerful, easy-to-use offline simulation development environment (CIMulation) and a

robust, real-time motion and I/O control system (CIMControl). Since the same

application runs with CIMulation and CIMControl, software applications written and

tested using CIMulation are guaranteed to work with CIMControl. CODE architecture is

illustrated in Figure 2.1.

CODE has been successfully deployed on a wide range of demanding applications in

various industries from surface mount (SMT), semiconductor, and electronic assembly to

multi-axis robots, packaging and machine tools. Applications can be developed using

computer languages such as C++, Visual Basic, Delphi, or any IEC 1131 PLC languages

such as ladder logic or flow charts. Here two examples using CODE to develop control

and application are introduced.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CIMBuilder
(optional)

Windows IDE
Visual Studio,

Visual Basic, Borland Delphi
it itV

CIMTools

Machine Specific Application

CIMAppObjects

CODE API
C++, C, Visual Basic, Borland Delphi,

or any IEC 1131 PLC Languages

Tool Sensor
Calibration

(optional)

CODE API interface

Graphics
Subsystem

(CIMulation only)

Modeling
Subsystem

Motion Planning
Subsystem

Conveyor Tracking
(optional)

Intelligent Motion
card Interface
(optional)
(CIMCotrol only)

Core
Motion

(CIMCotrol only)

I/O and
Event

Subsystem

Custom I/O
Interface

(CIMCotrol only)

CIMulation

Intelligent Low Cost
Motion Card Interface I/O Card

Card

CIMControl or CIMControl 1131

Figure 2.1: CODE Architecture Modified from [Cimetrix Inc., 2002]

A PC- Based Open Robot Control (PC-ORC) [Hong et al, 2001], constructed based

on a modular and objected-oriented approach, can reconfigure the control system in

various production environments. The PC-ORC system was based on the OS AC A (Open

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System Architecture for Controls within Automation systems, proposed by European

countries) reference model and incorporated the commercial simulation environments

CODE into its architecture for easier programming and verification.

Figure 2.2 depicts the hardware structure of the PC-ORC application to a SCARA

robot. It includes a hardware platform PC, a motion controller PMAC, and a vision board.

SCARA rota*

OStWbriowsNT)

PMAC board

Handwww plattwmCPC)
OLPsoftuMtte

PC-ORC configuration

Figure 2.2: Hardware Configuration of the PC-ORC [Hong et al, 2001]

The application software modules are integrated with application objects, the CODE

system, and hardware and operating system module. Also the TCP/IP protocol socket

provided in C+4-is used to read and write the data among objects of the application

module. The overall stmcture of the PC-ORC is shown in Figure 2.3

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application software
module

(\
User input

v J
r

Task sptjcification

Simulator

Path generation

Translation mle
Sequencer

Computation unit interpreter Motion control interpreter

Computation unit

Motion
control I/O control

External sensor

Windows NT ^ yi

1 -

Motion controller 1 Sensor controller
^ m

1
1

Operating System module

Hardware platform (PC)

PC-ORC system

Figure 2.3: Overall Stmcture of the PC-ORC Modified from [Hong et al, 2001]

A virtual SCARA robot and its operation environment are modeled and simulated

according to the set of robot motions specified by the operator using the CODE system.

During the simulation, the robot path is updated and consequently sent to the PMAC for

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

motion control. It is found that virtual simulation can lead to enhanced efficiency of robot

task planning and adaptation to the new manufacturing environment.

[Stringham, 1999] explores the use of the CODE simulation package throughout the

life cycle of an assembly cell, including project definition, development and maintenance,

and discusses the benefits that simulation can provide. Cimetrix Inc. provides a very

unique simulation solution.

CODE provides a symmetric client/server architecture that runs on Windows NT. The

client is the assembly application software. Two versions of the server are available, a

simulation server (CIMulation) and a control server (CIMControl). Using standard

programming languages such as C/C++or Visual Basic, the client assembly application

sends motion and I/O commands to a server. If the server is a simulation server, then the

commands cause the graphical display to show the results. If the server is a control

server, then the machine performs the specified commands. The application can be

written such that at mn time it can connect to either a simulation server for demonstration

or testing, or it can connect to a control server to drive the actual assembly cell. The

simulation and control servers are said to be symmetric, because they both have the same

interface and behave in the same way; a single client process can talk to either. There is

no need for the assembly application to be translated into the language of the controller

before being able to mn online.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition, since the application is written in standard languages and runs on Windows

NT, it can utilize industry standard software like database and statistical process control

packages available from a wide selection of vendors, and also implement the HM I as a

user friendly GUI. The application is also free to take advantage of a wide range of third

party hardware cards, including numerous vision cards, which are supported on Windows

NT. Because the same application is used for both simulation and control, many more

aspects of the software can be tested off-line than in traditional simulation environments.

Correctness of the HM I, database queries and updates and other interfaces can all be

tested and verified off-line.

Robotic Platform of “one-box” Solution

[Loffler et al, 2001, 2002] described the design and implementation of the Robotic

Platform, which achieved a “one-box” solution by creating a very slim and optimized

object-oriented design. The robotic platform implements all components such as servo

control, trajectory generation, 3D simulation, a graphical user interface on a single

standard PC, with a single programming language C++, and on a single operating system

QNX Real-Time . This design leads to an open architecture that is less complex, easier to

use, and easier to extend.

The class hierarchy diagram is shown in Figure 2.4. The class categories have:

The Core Classes: The classes RoboticObject, FunctionalObject, and PhysicalObject

build the basis of all robotic objects. The classes RoboticPlatform and ObjectManager

contain functionality for overall management of robot control programs.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generic Robotic Classes which are derived from the core classes and cannot be

instantiated. Instead, these classes serve as base classes that implement common

functionality while also presenting a generic interface to the programmer.

Specific Robotic Classes: Derived from the generic robotic classes, these classes can

implement a specific hardware or a specific functional component.

The ControlProgram Class: This class is part of QMotor system. All classes that

require a real-time control loop are derived from the ControlProgram class.

Core Classes Generic Robotic Classes Specific Robotic Classes

Default
manipulator

Puma560

Q M o to r

WAMRoboticObject

AtiFTSensor

DefaultGripper

ServoControl

BarrettHand

PhysicalObject

FunctionalObject

ToolChanger

Trajectory
Generator

Queue
Trajectory
Generator

ForceTorqueSensor

RoboticPlatform

ControlProgram

Gripper

ObjectManager

Manipulator

DefaultToolChanger

DefaultTrajectoryGenerator

DefaultPositionControl

Figure 2.4: Class Hierarchy of the Robotic Platform [Loffler et al, 2001]

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In a robot control program, the user instantiates objects from classes. As soon as

objects are created, the user can employ their functions. The object manager maintains a

list of all currently existing objects. The Scene View is the default GUI of the Robotic

Platform. It contains windows to view the 3D scene of the robotic work cell and a list of

all objects. The overall runtime architecture is illustrated in Figure 2.5.

Object Objects
Relationships

TorchPumal
Logging
Tuning
Plotting

Qmotor

Trajectory
Generator

Servo
controlUser

Robot
control
program

Create
GripperPuma2

Scene
Viewer

Trajectory
Generator

3D
viewing

Servo
control

Object manager

Figure 2.5: Run-time Architecture of the Robotic Platform [Loffler et al, 2001]

From the simulation systems integrated in the control systems reviewed in this section,

it is obvious that this type of graphic robotic simulation system has some significant

advantages compared to the first type.

1) Because they are integrated on a single PC, using a single operating system and a

single programming language to implement the servo control, 3D simulation, and

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

robotic application development, a strong correspondence of robot simulation and

actual robot control can be achieved by sharing the same algorithms. Therefore,

simulation can get the exact cycle time and eliminate the path deviation between the

simulation control and the real robot control.

2) The translation between the simulation system and the robot control system is not

necessary.

3) A homogeneous non-distributed architecture is much smaller and simpler than a

distributed inhomogeneous architecture. It is easier to configure, easier to

understand, and easier to extend. Simplicity is critical with regard to reuse of the

platform for different applications.

4) All components of the system are open for extensions and modifications. Flexibility

is achieved through all levels.

5) A high integration achieved on the single platform allows for simpler and more

efficient cooperation between components. Communication between the

components has little overhead and is often implemented by just a function call.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 The Theories and Technologies

2.3.1 Introduction to Computer Graphics

Computer graphics is concerned with all aspects of producing pictures or images using

a computer. The field began more than 40 years ago with the display of a few lines on a

Cathode-ray tube (CRT). Now images that are nearly indistinguishable from photographs

can be generated.

The combination of computers, networks, and the complex human visual system,

through computer graphics, has led to new ways of displaying information, seeing virtual

worlds, and communicating with both other people and machines. The applications of

graphics include: display of information, visualization, CAD design, simulation and

animation, and user interfaces.

The interface between an application program and a graphic system can be specified

through a set of functions that resides in a graphics library. These specifications are

called the application programmer’s interface (API). The graphics library is a black box

whose properties are described by only its inputs and outputs. Nothing needs to be known

about its internal working. We can take the simplified view of inputs as function calls

from a user program and outputs as primitives displayed on our CRT screen. The

application programmer’s model of the graphics system is shown in Figure 2.6.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Keyboard

Mouse

Display

HardwareApplication
program

Graphics
library (API)

Figure2.6: Application Programmer’s Model of Graphics System

The standard 3D graphics libraries perform lighting, shading, texture mapping, hidden-

surface removal and animation on a Windows platform. Their main features include

texture mapping, z-buffering, double buffering, lighting effects, smooth shading, material

properties and transformation matrices. The video board built-in graphics library routines

can speed up a program twenty to fifty times.

The synthetic-camera model is the basis for a number of popular APIs, including

OpenGL, PHIGS, Direct3D, VRML, and JAVA-3D. We need functions in the API to

specify objects, viewer, light sources, and material properties. A good API may contain

hundreds of functions, which can be divided into seven groups by their functionality

1) Primitive functions: define the low-level objects or atomic entities that our system

can display. Depending on the API, the primitives can include points, line

segments, polygons, pixels, text, and various types of curves and surfaces.

2) Attribute functions: govern the way that a primitive appears on the display such as

color for a line, the pattern for a polygon, a type for the titles on a graph

3) Viewing functions: allow us to specify various views by describing the position

and orientation of a synthetic camera and so on.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4) Transformation functions: carry out transformations of objects such as rotation,

translation, and scaling.

5) Input functions: interact with keyboards, mice, and data tablets.

6) Control functions: communicate with the window system, initialize our programs,

deal with any errors.

7) Inquiry functions: take care of differences between devices.

2.3.2 3D Object Model

Under a low cost PC platform, 3D objects can be easily modeled by using popular

freely distributed 3D graphics libraries such as OpenGL or Direct3D. These 3D graphics

libraries allow users to implement their own application that is capable of displaying 3D

scenes with high visual quality without too much effort, and simultaneously reducing

implementation time and cost.

OpneGL, developed by SGI (Silicon Graphics, Inc.), is a platform and hardware

independent graphics library designed to be easily portable yet rapidly executable. It can

be operated on PCs, workstations, and supercomputers under X Windows, OS/2,

Microsoft Windows 9X and NT. OpenGL can be used from different computer languages

such as C, C++, Fortran, Ada, or Java for scientific visualization research and

commercial simulation packages.

In contrast, Direct3D from Microsoft running only on Windows operating systems, has

more capability to cooperatively work with 3D graphics hardware accelerators. Therefore

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it increases rendering speed and is widely used in Windows game programming with the

3D graphics hardware accelerator. On the other hand, Direct3D is built on the

Component Object Model (COM) architecture and so, it is more complicated to use than

OpenGL.

In general, 3D objects based on both graphics libraries are usually constmcted from

primitive objects. Thus, 3D objects can be represented by either wire-frame or surface

models. The primitive types that are supported by both 3D graphics libraries can be

categorized in Table 2 .1.

Primitive Types OpenGL Direct3D

Point X X

Lines X X

Line Strip X X

Line Loop X -

Triangle X X

Triangle Strip X X

Triangle Fan X X

Quads X -

Quads Strip X -

Polygon X -

Table 2.1: Geometric Primitive Types

Most of the primitive types in OpenGL are also available in Direct3D. Although the

quad and polygon primitive types are not provided in Direct3D, they can be substituted

by triangles, triangles strip, or triangle fan. This is intentionally done in order to optimize

the speed of rendering on graphics hardware. To model each primitive object, it is

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

required to provide a collection of vertices to a graphics library where each vertex is used

to specify the coordinate of a point in 2D or 3D space. Figure 2.7 describe the primitive

objects from vertices.

V3 v4

LINE STRIP

V I * #V 3

POINTS LINE LOOP POLYGON

vO

v3

. vl
V4

V I 3 V5

v? •

QUADS ' V6

vS v2 V4 v g VO V $4IB SI»V 4 v l

QUAD STRIP TRIWJGLES TRIANGLE STRIP 'TRIANGLE FAN

Figure 2.7: Geometric Primitive Types [Angel, 2003]

Therefore, based on the graphics library, solid-like 3D objects in simulation space are

usually enclosed surface models composed of collections of polygonal surfaces. But the

3D models are complex. It is very difficult to build a complicated model just using

primitives in a graphics library. Usually, we build 3D models in powerful CAD packages,

then import them to the OpenGL or Direct3D application development environment for

simulation or animation. For example, a 3D object model such as the *.SAT file building

in CATIA are interpreted by the ACIS toolkit. OpenGL can create 3D geometry from the

interpreted data.

To display these objects on the monitor screen, it is necessary to choose and set the

projection matrix, which is used to map the 3D coordinate system into 2D coordinates on

the screen. For both Direct3D and OpenGL, there are two projection methods available:

perspective and orthographic projection. Usually, the perspective transformation is

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

preferred for a realistic point of view; the farther object is smaller than the closer object.

On the other hand, orthographic projection is normally employed for CAD modeling

which focuses on specifying the dimension of 3D objects rather than realistic appearance.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

DESIGN REQUIREMENTS

The Unified Reconfigurable Open Control Architecture (UROCA) is intended for

controlling a wide variety of industrial machines. Therefore, as a first step it needs to

investigate the commonality in different industrial machines. Considering the large

amount of similarities that exist among the industrial 6R robotic systems, [Djuric et al,

2004] classified them into two main types (Puma-type and Fanuc-type) and created a

unified kinematic stmcture called Generic Puma-Fanuc (GPF) model for them. A generic

solution provides the geometric approach for solving the inverse kinematics problem

based on the GPF model. The Unified Kinematic Modeler and Solver (UKMS) is the

technological foundation of the unified robotic kinematic simulation interface design.

This chapter reviews the UKMS in detail.

3.1 Generic Puma-Fanuc Model

The kinematic stmctures of 197 different industrial robots from 11 different

manufacturers have been classified into a Puma-type group, a Fanuc-type group, and the

other group. According to this classification 174 robots have 6 rotational joints and either

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Puma or Fanuc kinematic stmctures depicted in Figure 3.1 and Figure 3.2 respectively.

Figure 3.1: Generic Puma Kinematic Stmcture [Djuric et al, 2004]

Figure 3.2: Generic Fanuc Kinematics Stmcture [Djuric et al, 2004]

The only different between the two kinematic stmctures is the direction of joint 3

which reflects the twist angle 012. 0.2 =0° is for the Puma group and 180° for the Fanuc

group as indicated in Table 3.1 and Table 3.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Joint 0i di » i ai

1 e, di at -90°

2 e2 d2 a2 0

3 03 d.3 »3 o o

4 04 d4 0 -90°

5 05 0 0 90°

6 06 d6 a6 iJ80°;0

Table 3.1: D-H parameters for Puma Kinematic Stmcture [Djuric et al, 2004]

Joint 0i di 3i cd

1 0i di ai -90°

2 02 d2 a2 00 o o

3 03 d3 a3 90°

4 04 d4 0 -90°

5 05 0 0 90°

6 06 d« a« J480°;0

Table 3.2: D-H parameters for Fanuc Kinematic Stmcture [Djuric et al, 2004]

Hence, the two kinematic models can be merged together into a unified, reconfigurable

kinematic model called a GPF model as illustrated in Figure 3.3 and Table 3.3.

Figure 3.3: Generic Puma and Fanuc Kinematic Stmcture [Djuric et al, 2004]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Joint 0i di a; ori

1 6i di 3| -90°

2 02 6-2 a2 4f80°;0

3 03 d3 a3 90°

4 04 d4 0 1 VO

O O

5 05 0 0 \© O 0
;

6 06 d6 36 4f80°;0

Table 3.3: D-H parameters for the GPF Model [Djuric et al, 2004]

The GPF model can be reconfigured from one kinematic stmcture to another by using

configuration parameters Ki K2, K3 K4, K5, K6 defined in equation (3.1).

K\ = s in a i,^ = cos«2 ,^3 = sincn
(3.1)

K 4 = sina4,JT5 = sina5,iC6 = cos«6

3.2 A Unified Geometric-Based Solution

The inverse kinematics problem stated as follows. Given geometric link parameters

and a desired position and orientation of the end-effector with respect to a reference

coordinate system, how does one determine the joint variables to satisfy the same

condition? From the position p of end-effector, we calculate the values for the first three

joint variables. The last three joint variables are calculated from the orientation vector [n,

s, a] and joint values of the first three joints.

A geometric approach to solving the inverse kinematics problem was developed

by [Djuric et al, 2004]. Below excerpts the main concepts and equations.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

According to the various joint coordinate frames and human arm geometry, the

different arm configurations of the Puma type and Fanuc type robots can be described

with three configuration indicators: Arm (A), Elbow (E), Wrist (W), and extra Flip

(F) as shown in Figure 3.4. The first two configuration indicators determine one

solution from the possible four solutions for the first three joints. The third indicator

doubles the number of possible solutions.

Left and Below (L&B) Right and Below (R&B)

Figure 3.4: Definition of Various Arm Configurations [Djuric et al, 2004]

[Lee and Ziegler, 1984] introduced the definition of various configurations

according to the human arm geometry:

1) Right Arm (RA): when positive 02 moves the wrist in a positive direction z0,

when 03 is not active.

2) Left Arm (LA): when positive 02 moves the wrist in a negative direction z0,

when 03 is not active.

Left and Above (L&A) Right and Above (R&A)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3) Above Arm (AA): when the position of the wrist of the Right/Left Arm with

respect to the shoulder coordinate system has a negative/positive coordinate

value along the y2 axis

4) Below Arm (BA): when the position of the wrist of the Right/Left Arm with

respect to the shoulder coordinate system has a positive /negative coordinate

value along the y2 axis.

5) Wrist Down (WD): when the s vector of the hand coordinate system and the

y5 vector of the coordinate system have a positive dot product, s. ys >0 .

6) Wrist Up (WU): when the s vector of the hand coordinate system and the ys

vector of the coordinate system have a negative dot product, s. ys <0 .

7) The forth indicator is introduced as a Flip (F) or Dot not Flip (DF) indicator.

According to the previous definitions of the robot configurations we have the

following basic definitions:

(3.2)

The equations for calculating these indicators are:

A = sign[-d4K 3 sin(^'262 + 63) - /3 cos(K263 + 62) — l l —l2 cos 62]
E = Asign{l4 sin 03 cos#4 ~ K 3d4 cos#3 + / 3 sin#3)

_ fsign(s^4) i f s z4 * 0
\sign{nz4) i f s.z4 = 0

(3.3)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1 Solution for the First Three Joints

For the calculation of the first three joints, we need to define a vector projection, which

points from the origin of the shoulder coordinate system to the point where the last three

joints intersect. From Figure 3.5, we calculate the position vector, p =p6 - d6- a =(px, py, pz) •

Figure 3.5: Position Vector P [Djuric et al, 2004]

Solution for jo inl:

To calculate 0i, we need to project vector p onto the xoyo plane as depicted in Figure

3.6 and 3.7

A

Figure 3.6: LA Projection of p Figure 3.7: RA Projection of p

onto x0yo Plane [Djuric et al, 2004] onto x0yo Plane [Djuric et al, 2004]

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r — tJp x + p y (d2 + K 2 d 3)

G] = tan'
-A.pyr - p x(d2 + K 2J 3)
-A.pxr - p y(d2 + K 2J 3)

(3.4)

Solution for joint2:

The projections of the position vector p onto the plane xi, yi are shown in Figures 3.8.

The diagram for the two combinations LA and RA and the two combinations EA and EB

are shown in Figure 3.9.

1 t

1 f

Figure 3.8: Projection of Vector p onto x l, y l Plane [Djuric et al, 2004]

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a] Sight & Below
a - f i

Left & Above
a —p

c E
----------------- ►

X j

/

Right & Above

a + ff

* * * . £

A

Figure 3.9: Four Combinations for Joint 2 Solutions [Djuric et al, 2004]

r = ^j(px -/jc o s # ,) 2 + (p y - / , sin^) 2 ~ (d 2 + K 2d 3) 2

R = ^ r 2 + { p z - \ d f i 2

(|di|-P z) r Asm = J — 1-------- ,cos = A
R R

cos/?
R 2 + l 22 - / 33 - d \ .

2 R L
,sin p = ^Jl-con2fi

sin62 = sin<p.cos/3 + A E cos (p sin ft
cos 0 2 = cos (p cos f3 - A £ sin (p sin /?

6 2 = tan-i f sin 02 ̂
vcos6»2 j

(3.5)

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solution for joint3:

The calculation of the angle 83 requires projecting p onto the X2 y2 plane.

sin/?
d a

f>.2 1 ^2
3 4

,confi =
2 , j 23 + « 4

COŜ l l + l l + d } - R 1

sin(j> -K2.A.E-\J 1-cos2 </>

sin63 = s in (^ - / i) = sin^.cos/i -con<j).sin / 5

cos #3 = cos(^ - /?) = cos ̂ .cos p - sin ̂ .sin /?

6>3 = tan-1
f • a ^srn^
vcos6>3y

(3.6)

3.2.2 Solution for the Last Three Joints

Solution for joint4:

Wrist Orientation 0 =s«y5orn»y5 Wrist M =Wrist • sign(Q)

Down > -11 -R

Down < -R -1

Up > -1 -1

UP < -1 +1

Table 3.4: Various Orientations for the WRIST [Djuric et al, 2004]

04 = arctg
/ M JC 2[(cos(01 + K 2.03)ax +sin0, cos(02 + K 2.03)ay +K , sin(02 + K 2.03)aJ^

M K 1K 2K 3(ax sin0! -a cos©^
(3.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solution for joint5:

s i n # 5 = ^ 6 { [c o s 6 , c o s (6 2 + K 2B3)cos64 + K K 2K 3 s in #] s i n 64]ax

+ [s in 0X c o s (# 2 + K 2 B3) c o s 84 - K K 2K 3 s in #, s in #4]ay + K x (s i n (# 2 + K 2B3) c o s # 4)az}

c o s #5 = - K 6 { [K3K 4 c o s 0y s in (# 3 + K 2 B2)}ax + K 3K 4 [s in 8X s in (# 3 + K 2 B2)]ay

- K K 2K 3K 4 c o s (# 3 + K 2 B)\az}

5 = ta n "
f s in 05 A

c o s # .
(3.8)

Solution for joint6 :

sin#6 = [^ ^ {c o s # , cos(# 2 + K 2B3)sin64 - K K 2K 3K 4K 5 sin#] sin64)]wJC

-[AT4̂ 5(sin#, cos(# 2 + K 2B3) sin# 4 + K K 2K 3K 4K 5 cos#, cos04]ny

+ (sin(# 2 + K 2 B3) sin 04 }nz
cos#6 = - K 6{ [K 4K 5 c o s # , c o s (# 2 + ̂ r2.#3)sin#4 - K K 2K 3K 4K 5 sin#! cos#4]sx

+ [K4K 5 [sin #, cos(# 2 + K 2 B3) sin 04 + K K 2K 3K 4K 5 cos #j cos #4]sy

+ K XK 4K 5 sin(# 2 + K 2B3) sin#4]sz}

6 = t a n
-1 r s in # 6 A

c o s # .
(3.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

3.3 Design Requirements

From the Generic Puma and Fanuc (GPF) model and the Unified Kinematic Modeler

and Solver (UKMS), the solution for the joint angle variables contain proposed

reconfiguration parameters K ijK2, K3 K4 , K5 , K6 and all the non-zero D-H parameters.

This provides us with a systematic approach for constructing the GPF model and

developing the UKMS by using a hybrid graphical and computational means.

The main objective of the proposed research is not only to provide a GUI software

package to implement the functionality described in section 3.1 and section 3.2, but also

to create a software platform, which has the features of easy of use, extensibility,

portability, and reusability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

CHAPTER 4

DESIGN AND IMPLEMENTATION

This chapter presents a Graphical User Interface (GUI) for implementing the Unified

Kinematic Modeler and Solver (UKMS), described in Chapter 3. The hardware and

software stmcture of the GUI and their main functions are discussed. The design

methodologies involved in the software platform are explained as well.

4.1 System Structure

The 3D GUI is being developed on a PC platform and runs in the Windows

environment, which makes it easy to port this system to PC-based robot control systems.

The overall system stmcture is illustrated in Figure 4.1.

Visual C-H- OpenGL Graphics Library

PC Computer

Graphical User Interface for Robotic simulation

Windows Operating System

Figure 4.1: Overall System Stmcture

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To reduce development effort and complexity, the robotic simulation platform is based

on general purpose tools and technologies.

PC Technology. While in the past graphic workstations provided the powerful

processing required for 3D simulation, the PC has caught up or even exceeded the

performance of workstations. Compared to the UNIX workstation, a PC based system

allows for a greater variety of hardware and software components. Additionally, these

components and the PC itself are usually less expensive than their UNIX counterparts.

Window Operating System. A graphical user interface is one of the main successes of

the Windows operating system. It is based on a user-friendly concept that reduces the

requirement of computer skills for operation.

Object-oriented Programming in Visual C++. Visual C + +employs the Microsoft

Foundation Class (MFC) to generate the graphical user interface such as windows,

menus, and dialog boxes under the Windows system and to automatically create an

application shell through the object-oriented programming paradigm. One advantage of

Visual C + + is to simplify the graphical user interface design. The other advantage is

object-oriented programming. Object-oriented programming is widely accepted and

effectively used because it makes programs well-structured, modular, and reusable. With

regard to developing a complex computer application, object-oriented programming has

several benefits over procedural programming. First, it provides a much easier

programming interface. For example, it is very easy and convenient to add new classes

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and modify existing classes by the use of the class wizard. Second, object-oriented

programming allows for a system architecture that is very flexible, but yet simple. That

is, the components (classes) of the system can have built-in default functions and default

settings. The programmer can use these default functions to reduce the code size or

override it for a specific application. Finally, object-oriented programming supports

generic programming which facilitates the development of components that are

independent from a specific implementation. All of the above benefits are based on the

general concepts of object-oriented programming: 1). Abstraction, 2) Encapsulation, 3).

Polymorphism, and 4). Inheritance.

OpenGL Graphics Library. With the release of Windows NT 3.5, OpenGL became a

part of the Windows operating system. Now with support for OpenGL in Windows and

low priced graphics accelerators becoming readily available even on PC machines,

OpenGL is becoming more attractive every day. OpenGL allows you to create high

quality 3D images without dealing with the heavy math usually associated with computer

graphics.

4.2 Menu Structure and Main Functions

One objective of this research is to develop an interactive menu for the constmction of

kinematic modeling and simulation for most industrial robots. The software allows the

user to create kinematic models of robots by using just two steps with a joint coordinate

system and arm lengths and offsets.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The default supervising GUI, which is opened automatically at the startup of the

system, is a Multiple Document Interface (MDI) application. The menu structure of GUI

is shown in Figure 4.2.

Delete Open
Save as
Cube
Cylinder

Model
Pendent View
Simulation

New
Open
Close
Save
Save as
Exit

ISO view
XZ view
YZ view
XY view
Zoom in
Zoom out
Toolbar
Status bar

File Edit View Geometry Robot Window help

Figure 4.2: The Menu Structure of the GUI.

4.2.1 The Graphical User Interface

The default window is shown in Figure 4.3. The window comprises:

1) A Menu Bar that contains all command menus and options.

2) A Toolbar that contains icons for the most commonly used options.

3) A working area which is a 3D scene viewer showing images of the work cell

objects.

4) A Status Bar that includes five columns for displaying the status message, the

selected object name, the origin coordinate X, Y, Z values of the selected object

respectively.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Status Bar

Toolbar

Menu Bar

Working
Area

Figure 4.3: The Default Window of GUI

For the scene viewer, the world coordinate system is known as the global coordinate

system and adopts a right-hand rectangular Cartesian coordinate system where the x, y,

and z axes are in the same relative orientation as forefinger, second finger, and thumb

respectively of a right hand shown in Figure 4.4.

Z

X Y

Figure 4.4: The World Coordinate System

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.2 File Functions

The work cell data which includes the robot kinematic model and the geometric data

related to other objects are stored in a *.wld file. The File menu contains the usual

Windows functions that allow you to open, close, and save files, and to exit the software.

In addition, you can open the most-recently opened work cell files from this menu.

4.2.3 View Functions

The view position and direction affect how the model appears to the user when it is

displayed. This system supports various standard views such as ISO view, XZ(front)

view, YZ(side) view, XY(top) view, and Zoom in, Zoom out. Through this menu you can

toggle the display of the Toolbar and Status Bar.

4.2.4 Geometry Model

An important task is the planning and designing of robotic work cell layouts which

consist of robots, tools and environment. A simple 3D CAD system is provided to create

basic geometric parameterized primitives like cubes, cones, cylinders. Using a 3 button

mouse, we can modify the dimensions and color of the selected object and move the

object in the scene. The selected object can be translated about the world coordinate

system, and rotated about its own coordinate axis. All objects such as robots, box,

cylinders, target points can be selected and saved as a *.obj file. Any other applications

can load these files for use. A *.obj file format is same as the *.wld file.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.5 Kinematic Model

Through the Robot- ̂ Model menu, the kinematic stmctures of robots can be modeled

inside the program. The robot data can be saved for future use by the Geometry- 5Save as

menu like other objects. To represent a robot’s kinematic model in this software, we need

to define all the joint coordinate frames with their positions and orientations. The

procedures that create a kinematic model are:

1) Select the joint coordinate frame with its orientations with arbitrary link length

and offset.

2) Modify the robot arm lengths and offsets with exact values.

The robot is like the other objects. It can be translated about the world coordinate

system, and rotated about its own coordinate axis.

After the kinematic model has been created, the direct kinematics can be visualized by

the pendent view. The pendent view allows the user to manipulate a robot by changes the

joint variable values. Meanwhile the robot moves to the new location. The pendent view

is an accurate way for the user to create a Target Point (TP).

The pendent view is divided into three sections. The top section is labeled “Joint

values” and show the numbers of the six joint variables 0*. The second section is labeled

“End-effector” and displays the absolute position and orientation of the tool frame of the

robot with regard to the base coordinate frame. The third section has no label. A Home

button moves the robot to the home position. After the position and orientation of the

end-effector have been input, the Inverse button calculates and displays the eight

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

solutions of six joint variables 0;. If any one is selected, the robot will move to that

location. The Learn TP button saves the current data as a Target Point (TP).

If the user changes the six joint variables 0i in the first section, the robot will

immediately move according to the 0; values. Meanwhile, the direct kinematic problem

will be calculated, and the absolute position and orientation of the tool frame of the robot

will show in second section. If the user inputs the values in second section and presses

the inverse button, the inverse kinematic problem will be solved. If one of the eight

solutions is selected, the values of the six joint variables will be shown in the top section.

4.2.6 Simulation

The required robot path is given by a set of points. Those points are target locations

of the robot’s end-effector and are called Target Points (TPs). Each point is defined with

its position and orientation. We need to calculate robot joint values for each point

depending on the position and orientation of the point.

A path is a list of all the TPs that a robot follows during a sequence of motions. We

can generate a TP using the Learn TP button on the pendent view. After the user has

created the path, the simulation function can be used to simulate the activity of the robot

following the path.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Design Methodologies

4.3.1. Objected-oriented Design Approach

In the classic approach to programming, a programmer designs the data stmcture

followed by functions and procedures to process the data according to the data stmcture.

This approach is called procedural programming because it starts with the procedures.

However, the world is object-oriented. To build a machine, first we think about the

component objects and their purposes and behaviors. Then we select tools and

procedures.

The object relationship can be classified into a group and attachment relationship.

Objects may be grouped together to form a new object. This method is useful in building

a complex object from many other objects. A group of objects can be treated as a single

object in which all components can move together. Attachment is useful when a single

object needs to be associated with other objects. An attachment is a one-way link in

which one object (the child) is attached to another object (the parent). I f a command is

applied to the parent object, then the command is also applied to all the children. If a

command is applied to a child, then it is not applied to the parent. For example, the robot

arm is built by attaching the next link with the previous link. If Link 1 moves, then all the

other links move in conjunction, maintaining their relative position. However, if link 2

moves, then Link 1 will not move.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A robotic work cell is a production cell which consists of a set of computer controlled

manufacturing machinery, such as robots, numerical control (NC) machines, presses,

conveyors, automated guided vehicles (AGV), etc. An automated factory can have one or

more work cells. The components in a work cell are called objects. An example of work

cell objects is shown in Figure 4.5.

Controllers

Tools

Fixtures

Robots

Parts

Feeders

Sensors

Shopfloor

PUMA

Tray

Visionsystem

Conveyor

Fanuc

Gluegun

Clamping

Force/Torque

Gripper

Work cell

Part A

Part B

Figure 4.5: An Example of Work Cell Objects

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Object-Oriented Programming paradigm expresses computer programs in a similar

way that people perceive the world.

The general concepts of object-oriented programming include Abstraction,

Encapsulation, Inheritance, and Polymorphism. All Objects and object relationships can

be modeled in C ++classes. A class is an abstract data type. Abstraction is the definition

of an abstract data type. Its definition combines the data and the functions related to that

object. Hence, the design of a robotic simulation platform results from grouping data and

functions in a number of classes in meaningful way.

Encapsulation describes the design of a class in an object oriented language such as

C++. Class definition gives its implementation and interface. The implementation, which

is consists of data members and private member functions, is hidden from the user

program. The interface, which consists of public member functions, is visible to the user.

The object-oriented software design resembles the way that everything else in the world

is designed. Anything can be seen as a collection of objects. Each object has a function

that it performs. Each object knows how to perform its own functions with little

knowledge of how the other objects perform their function. But it knows how to interact

with the other objects.

Object-oriented programming uses the properties of class design to model the

relationship between objects of different classes. There are fundamental interclass

relationships: specialization, composition, and collaboration. The specialization

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relationship is also called the IS-A relationship. The derived class is a specialized version

of a base class using inheritance. For example, an engineer is a kind of employee, which

is a kind of person. The composition relationship, also called the HAS-A relationship,

represents the relationship that describes the other class objects that compose an object of

a class. The HAS-A relationship can be detailed into a group and attachment relationship.

For example, a table has four legs and a cover. A six DOF robot has six links.

Collaboration is also called the USE-A relationship. When objects of one class use

services of objects of other classes, collaboration exists.

A class can use part of the functionality and the data of another class, called the base

class, by being derived from the base class. This process is called Inheritance. It relies

heavily on code reuse and eliminates redundancy in the system. To extend the system, the

user creates new classes. Usually new classes will be derived from one of already

existing classes to minimize coding effort.

In Polymorphism, a derived class customizes the behavior of functions derived from

the base class to meet the behavioural requirements of the derived class.

All objects can be described by their shape, position and orientation, object

relationships in 3D geometric modeling. The shape includes geometry and material and

color. If we think about what goes into describing a scene, in addition to our graphical

objects and attributes, we have other objects, such as the lights and cameras which are

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

concepts in a 3D design. The class hierarchy of 3D geometric modeling is illustrated in

Figure 4.6

3dWorld 3dColor3dObject 3dMaterial 3dLight....3dCamera

6RRobot 3dObjectCube 3dTargetPoint3dObjecCylinder

3dT argetPointArray3dObjectArray

CObArray

CObject

Figure 4.6: Class Hierarchy of the System

As mentioned earlier, the object-oriented design is to distinguish between common

functionality/data and specific functionality/data. This concept is demonstrated in the

design of the 3dObject class in Table 4.1.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Common Functions/data—3dObject Specific Functions/data~6RRobot

1. Color 1. Joint selections, joint lengths and offsets

2. Material 2. RenderObject()

3. Light 3. SerializeO

4. Origin Specific Functions/data— 3dObjectCube

5. Transformation 1. Height, Depth, Width

6. Rotation 2. RenderObjectO

7. (virtual) RenderObject() 3. SerializeO

Specific Functions/data— 3dObjectCylinder

1. Radius, Height

2. RenderObjectO

3. SerializeO

Specific Functions/data— 3dTargetPoint

1. RenderObjectO

2. SerializeO

Table 4.1: Common and Specific Functionality/Data for 3dObject Class

4.3.2. Library Modules and Dynamic-Link Libraries Design

Often, a family of applications will have some functionality in common. Sometimes a

set of application functionality that will be used in an application is needed to be shared

with another programmer. Perhaps the functionality will be used in a number of

applications. Or some functionality is needed to be separated from the rest of the

application for organization purposes. Therefore, a set of functionality can be placed into

a library module (LIB), a self-contained compiled file. LIB is one of the first means

available to share a compiled code with other programmers. The math class will be

packaged into a library file for multiple applications.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Visual C-H-math library just has some simple functions. Therefore the math

library for vector, matrix algebra for solving the direct and inverse kinematics problems

is needed to be developed. The main functions of the math library are shown in Table 4.2.

Function Type Function Name Description

Math 1. Radiansf() 1. Chang degree to radian

2. Degreesf() 2. Change radian to degree

3. Cosf() 3. Calculate cosine

4. Sinf() 4. Calculate sine

5. Sqrf() 5. x2

6. Sqrtf() 6. V
7. Atan2f() 7. Calculate arctangent, 2 parameters

8. Fabs() 8. |x | (All data type: float)

Vector 1. VecClearf() 1. Zero a vector

2. Vec3f() 2. Create a vector

3. VecCopy3f() 3. Copy two vectors

4. VecSubfO 4. Subtract two vectors

5. VecAddf() 5. Add two vectors

6. VecScalefO 6. Multiply a vector with scale

7. VecDotf() 7. Dot product

8. VecCrossf 8. Cross product

9. VecLenf() 9. Calculate the length

Matrix 1. ZeroMatrix() 1. Zero a matrix

2. IdentityMatrix() 2. Identify a matrix

3. Translate3D 3. Translate a matrix

4. Scale3D 4. Multiply a scale to a matrix

5. Rotate3D 5. Rotate a matrix

6. MultiplyMatricies 6. Multiply two matricies

7. MatrixCopy 7. Copy two matricies

8. TransposeMatrix 8. Transpose a matrix

Robot Related 1. AdjaTransMatrix() 1. Generate adjacent transformation

2. DirectKinematics() matrix

3. InverseKinematics() 2. Calculate the direct Kinematics

3. Calculate the inverse kinematics

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2: The main Functions of the Math Library

Dynamic-Link Libraries (DLLs) [Chapman, 1998] are similar to library modules. The

shared functionality can be placed into DLLs instead of library modules. The difference

is in the way that the applications link to the library. With a library module, the

application is linked to functionality in the library during the compiling and building

process. With a DLL, the application links to the functionality in the library file when the

application is run. The library file remains a separate file that is referenced and called by

each application.

There are several reasons for creating DLLs instead of library module files. First, the

size of the application executable files can be reduced because all the applications can

share a single copy of the functionality distributed in one DLL, instead of duplicating the

same functionality in each application. This method saves disk space on any systems

where the applications are installed. Second, if the exported interface for the DLL does

not change, the functionality in the DLLs can be updated and modified without having to

update the application executable. Finally, DLLs can be used in any other Windows

programming language such as C, Matlab, and so on. The shared functionality is

available to a wider number of programmers, not just Visual C -H-programmers.

The classes of 3D geometric modeling are packaged in to one DLL file called

glOOP.dll. The glOOP is a MFC extension DLL, which is the easiest to code and create

because they can be treated just like any other collection of classes. For any class that is

exported from the DLL, the only thing is to add is the AFX EXT CALSS macro in the

class declaration. This macro exports the class, making it accessible to Visual C++

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applications. The one drawback to creating a MFC extension DLL is that they can be

used with only other C -H-compilers which support MFC such as Borlands’s and

Symantec’s C-H-compilers.

4.3.3. Scene Graphs

3D programming is associated with a scene graph. It is the totality of the objects that

describe a scene, and there may be hierarchical relationships among these objects. We

can represent the relationships among parts of the models both abstractly and visually

with graphs. Mathematically, a graph consists of a set of nodes and a set of edges. Edges

connect pairs of nodes and have a direction associated with them. Directed graphs have

their edges leaving one node and entering another.

A tree is the most important of the types of graph. A tree is a directed graph without

closed loops. Except for the root node, each node in a tree has a parent node and one or

more child nodes. A node without children is called a terminal node. A tree is a

hierarchical method of expressing the relationships in the physical model.

Robotics provides many opportunities for developing hierarchical models. For the six

degrees of freedom PUMA robot shown in Figure 1.5, a tree stmcture in Figure 4.7

shows the relationships among the parts of the robot arm.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Link2

Link5

Link 1

Link6

LinkO

Link3

Link4

Figure 4.7: Tree Stmcture for a Robot Arm

After these hierarchies and information about objects have been expressed in a tree, a

traversal algorithm has to be used to draw the objects. The traversal must visit every

node. At each node we must position and display the objects. There are two tree-traversal

algorithms: a depth-first or breadth-first search. In this paper a depth-first search is

exploited. The trees shall be traversed left to right, depth first. That is, The traversal starts

with the left branch, follow it to the left as deep as it can go, then go back up to the first

right branch, and proceed recursively. This order of traversal is called a pre-order

traversal.

There are two ways to write a tree-traversal function. One approach is that the traversal

is done explicitly in the code. This approach relies on the application programmer to push

and pop the required matrices and attributes. The code was hard-wired for one particular

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

example and thus would be difficult to extend or use dynamically. The second approach

is that the traversal is done recursively. The code is simpler as the storage of matrices and

attributes is done implicitly. One of the nice aspects of this traversal method is that it is

completely independent of the particular tree. The other good aspect is that it is flexible.

We can add or remove dynamic nodes rather than static nodes.

Scene Graphs are a convenient way to represent complex objects that have to obey

certain constraints. The nodes of a scene graph contain pieces of an object to be drawn.

The piece can possibly be empty (no node). Each edge has a transformation associated

with it. There is one special node called the root, which will be the one the drawing is

started. To draw a scene graph, the traversal is started from the root node. First, the piece

stored at the root will be drawn. Then, for each edge out of the root node, the following

steps will be done:

1) Save the current modelview matrix by pushing it onto the matrix stack.

2) Multiply the modelview matrix on the right by the transformation associated with

the edge.

3) Call the drawing procedure recursively, pretending that the endpoint of the edge is

the root.

4) Restore the original modelview matrix, by popping it from the matrix stack.

For example, the scene graph of kinematics modeling for the PUMA robot in Figure

1.5 is shown in Figure 4.8. The corresponding OpenGL pseudocode is illustrated in

Figure 4.9. The code of the robot arm is traversed explicitly.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Joint 1: Drawcoordinate

Drawlink 1 length
Translate di along z
Rotate 0i about z
Drawlink 1 offset
Translate ai along x

r Rotate ai about x

Joint 2: Draw coordinate

Draw_link21ength
Translate dz along z
Rotate 02 about z
Draw_link2offset
Translate a2 along x
Rotate a.2 about x

r
Joint 3: Draw coordinate

Draw_link31ength
Translate d3 along z
Rotate 03 about z
Draw_link3offset
Translate a3 along x
Rotate ot3 about x

r
Joint 4: Draw coordinate

Draw_link61ength
Translate d6 alo -tag z
Rotate 06 about z
Draw_link6offset
Translate a6 along x
Rotate oe about x

r
Approach: Drawcoordinate

Figure 4.8: The Scene Graph of Kinematic Modeling for PUMA Robot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

glPushMatrix(); // Start jointl
Drawcoordinate;
glPushMatrixO; // Start joint2

Draw linkl length
glTranslated(0.0,0.0 ,d 1);
glRotated(Theta 1,0.0,0.0,1.0);
Drawlinkloffset
glTranslated(a 1,0.0,0.0);
glRotated(Alphal ,1.0,0.0,0.0);
Drawcoordinate;
glPushMatrixO; // Start joint3

Draw_link21ength;
glT ranslated(0.0,0.0 ,d2);
glRotated(Theta2,0.0,0.0,1.0);
Draw_link2offset;
glT ranslated(a2,0.0,0.0);
glRotated(Alpha2,1.0,0.0,0.0);
Drawcoordinate;
glPushMatrixO; // S tart joint4

Draw_link31ength;
glTrans lated(0 .0 ,0.0 ,d3);
glRotated(Theta3,0.0,0.0,1.0);
Draw_link3offset;
glTranslated(a3,0.0,0.0);
glRotated(Alpha3,1.0,0.0,0.0);
Drawcoordinate;
glPushMatrixO; // Start joint5

glPushMatrixO; //Start joint6

glPushMatrixO; / / Start Approach

glPopMatrix(); //End Approch
glPopMatrix(); //End Joint6

glPopMatrix(); //End Joint5
glPopMatrix(); //End Joint4

glPopMatrix(); // End j oint3
glPopMatrix(); 11 End j oint2

glPopMatrixQ; _____ // End jointl

Figure 4.9: The Corresponding OpenGL Pseudocode

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In a more general setting, the dynamic approach is needed to create stmctures that

change interactively. For example, we can use this form to write an application that will

let us edit figures, add and remove parts as desired. This is implemented by using

dynamic object array concept in Visual C ++.

4.3.4. Visual C++ implementation

The software for implementing the 3D GUI includes three Visual C++ projects:

MathLib, glOOP, WorkCell. The MathLib is a static library to implement the math

functionality. The glOOP is a Dynamic-Link Library for designing the classes of 3D

geometric modeling. As mentioned before, the default supervising GUI implemented in

the WorkCell project is a Multiple Document Interface (M DI) application. An M DI

application is a document-centric application that allows users to work on not only

multiple documents at one time, but also multiple types of documents.

Visual C + + allows for object-oriented GUI programming, and automatically creates

the application shell. When an M DI application is created, five main classes are

automatically created. They are:

1) CWorkCellApp—The CWinApp derived class

2) CMainFrame—The CMDIFrameWnd derived class

3) CChildFrame— The CMDIChildWnd derived class

4) CWorkCellDoc— The CDocument derived class

5) C WorkCell View—The CView derived class

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The main classes in WorkCell project are described in Table 4.3

No. Class Name Class description

1 CWorkCellApp Pass messages to the frame window and view objects.

2 CMainFrame Hold the menu, toolbar, scrollbars, and any other visible objects

attached to the frame

3 CChildFrame Hold the CView class, pass messages and events to the view class.

4 CWorkCellDoc House the document,, pass and receive information with CView

5 CWorkCellView Display the document, pass and receive information with

CDocument

6 C3dObjectPropSheet Implement object property sheet

7 C3dPageCube Implement cube definition property page

8 C3dPageCylinder Implement cylinder definition property page

9 C3dPage6RRobotF Implement the robot joint selection property page

10 C3dPage6RRobotL Implement the robot joint length and offset modification property

page

11 C3dPageColor Implement the color modification property page

12 C3dCoordinatePage Implement the object origin coordinate modification property page

13 C6RPendentDlg Implement the pendent view dialog

14 C6RInverseSolution Implement the inverse kinematics solution dialog

Table 4.3: the Main Classes in WorkCell Project

In Figure 4.6, all object classes defined in this system are derived from the CObject

class. The CObject is the root base class for most of the Microsoft Foundation Class

Library (MFC). The CObject class contains many useful features that can be incorporated

into your own program objects, including serialization support, run-time class

information, and object diagnostic output. A class derived from CObject can exploit these

CObject features.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In any object-oriented program, objects must be grouped and stored into collections of

different types and sizes. The MFC provides several easy-to-use classes and templates to

help with this common requirement. The CObArray is one of those classes. The

CObArray class holds any objects that derived from CObject class. It is limited in size

only by the amount of memory in the system. These object arrays are similar to C arrays,

but they can dynamically shrink and grow as necessary. Each object in an array has a

zero-based position which is used to located and reference the object. Therefore, this

feature of CObArray is used to interactively insert, edit, and delete an object in the 3D

geometric modeling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

CHAPTER 5

SIMULATION EXAMPLES AND RESULTS

In this chapter two case studies are given by using the GUI to create kinematic model

and simulation. There are two ways to verify the inverse kinematics solutions. One is to

use the solutions to calculate the direct kinematics and compare with the input. The other

is to use the solutions to redraw the robot model. The results can be visualized. People

can see if the end-effector will reach the target points. The target points are drawn

according to the input data. The operation of the GUI for case study one is also included.

5.1 Case Study one for PUMA-like Robots

5.1.1 Problem Description

The first case study considers the PUMA-like robot, Fanuc ABB IRB6400. Its

kinematics model and D-H parameters are shown in Figure 5.1 and in Table 5.1

respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

1300

200

188

900

Figure 5.1: Kinematical Model for ABB IRB6400

Joint i 9i aj ai di

1 0 -90° 188mm 900mm

2 I o o 0 -950mm 0

3 0 O o o -225mm 0

4 0 -90° 0 1,300mm

5 0 90° 0 0

6 0 0 0 200mm

Table 5.1: D-H Parameters for ABB IRB6400

The given path illustrated in Figure 5.2 is on the edge of a cube and includes six points

and home position. The target points shown in Table 5.2 are defined with their positions

p =(px, py, pz)T and the rotated angles: yaw, pitch, roll about the principal axes of the

robot’s base coordinate frame.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y ^z 'x
x

Figure 5.2: Simulation Path of Case Study One

Points Px Py Pz Yaw Pitch Roll

1 1,399.5 -650.25 875.5 -135 0 90

2 1,399.5 -450.25 875.5 -135 0 90

3 1,399.5 -250.25 875.5 -135 0 90

4 1,399.5 -50.25 875.5 -135 0 90

5 1,399.5 150.25 875.5 -135 0 90

6 1,399.5 350.25 875.5 -135 0 90

7 1,688 0 2,075 0 90 0

Table 5.2: Definition of Target Points of Case Study One

5.1.2 Inverse Kinematics Solutions

The eight inverse kinematics solutions for each point are calculated. The eight

solutions are shown in Table 5.3-5.9.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solutions 1 2 3 4 5 6 7 8

A, E, W +1,+1,+1 +1 ,-1 ,+1 - 1, + i, +t -1,-1,+1 +1,+1,-1 +1,-1,-1 -1,+1,-1, -1,-1,-1

Jointl

Joint2

Joint3

Joint4

Joint5

Joint6

150.504

-41.679

-3.931

-113.039

138.025

-68.431

150.504

49.129

-156.431

38.323

-97.013

56.853

-29.496

-120.826

175.657

58.477

133.78

-80.217

-29.496

111.411

23.982

-140.417

-74.994

39.257

150.504

-41.679

-3.931

66.961

-138.025

111.569

150.504

49.129

-156.431

-141.677

97.0133

-123.147

-29.496

-120.826

175.657

-121.523

-133.78

99.784

-29.496

111.411

23.982

39.583

74.994

-140.743

Table 5.3: The Joint Solutions for Point 1 of Case Study One

Solutions 1 2 3 4 5 6 7 8

A, E, W +1,4-1, +1 +1,-1,-Hi -1,+1,-H -1,-1,+1 +1,+1,-1 +1,-1,-1 -1,+1,-1, -1,-1,-1

Jointl 157.083 157.083 -22.917 -22.917 157.083 157.083 -22.917 -22.917

Joint2 -46.066 53.901 -116.945 106.907 -46.066 53.901 -116.945 106.907

Joint3 3.271 -163.632 169.834 29.805 3.271 -163.632 169.834 29.805

Joint4 -113.141 40.650 58.586 -136.456 66.859 -139.351 -121.414 43.544

Joint5 134.905 -91.172 130.257 -70.979 -134.905 91.172 -130.257 70.979

Joint6 -62.066 60.131 -74.258 41.914 117.934 119.869 105.742 138.086

Table 5.4: The Joint Solutions for Point 2 of Case Study One

Solutions 1 2 3 4 5 6 7 8

A, E, W +1, +1, +1 +1,—1, +1 -1,+1,+1 -1,-1,+1 +1,+1,-1 -H,-l,-l -1,+1,-1, -1,-1,-1

Jointl

Joint2

Joint3

Joint4

Joint5

Joint6

164.365

-49.203

8.349

-115.06

131.262

56.930

164.365

57.353

-168.71

43.089

-85.410

64.126

-15.635

-114.04

165.595

57.410

126.08

-68.942

-15.635

103.481

30.044

-132.228

-66.868

45.003

164.365

-49.203

8.349

64.940

-131.262

123.07

164.365

57.353

-168.71

-136.911

85.410

115.875

-15.635

-114.04

165.595

-122.59

-126.08

111.058

-15.635

103.481

34.044

47.772

66.868

-134.997

Table 5.5: The Joint Solutions for Point 3 of Case Study One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solutions 1 2 3 4 5 6 7 8

A, E, W +1, +1, +1 +1,-1,41 - 1 , 4 4 , 4 4 -1,-1,+1 +1,+1,-1 -f-1,-1,-1 -1,41,-1, -1,-1,-1

Jointl 172.201 172.201 -7.799 -7.799 172.201 172.201 -7.799 -7.799

Joint2 -51.087 59.443 -112.243 101.335 -51.087 59.443 -112.243 101.335

Joint3 11.366 -171.727 163.028 36.611 11.366 -171.727 163.028 36.0611

Joint4 -118.355 45.407 55.184 -127.875 61.645 -134.593 -124.816 52.125

Joint5 127.243 -79.668 121.426 -62.564 -127.243 79.668 -121.426 62.564

Joint6 52.687 68.728 -64.1008 48.395 127.313 -111.272 115.899 131.605

Table 5.6: The Joint Solutions for Point 4 of Case Study One

Solutions 1 2 3 4 5 6 7 8

A, E, W +1, +1, +1 +1,-1, +1 -1,41,41 -1,-1,+1 41,41,-1 -f-1,-1,-1 -1,41,-1, -1,-1,-1

Jointl

Joint2

Joint3

Joint4

Joint5

Joint6

-179.639

-51.684

12.316

-122.586

122.945

-49.098

-179.639

60.109

-172.678

47.354

-74.008

73.858

0.361

-111.665

162.212

52.183

116.48

-59.613

0.361

100.64

37.427

-123.568

-58.061

51.949

-179.639

-51.684

12.316

57.414

-122.945

130.903

-179.639

60.109

-172.678

-132.646

74.008

-106.142

0.361

-111.665

162.212

-127.817

-116.48

120.387

0.361

100.64

37.427

56.433

58.061

-128.051

Table 5.7: The Joint Solutions for Point 5 of Case Study One

Solutions 1 2 3 4 5 6 7 8

A, E, W +1, +1, +1 4-1 ,-1,4-1 -1,41,44 -1,-1,+1 44,44,-1 44 ,-1,-1 -1,44,-1, -1,-1,-1

Jointl

Joint2

Joint3

Joint4

Joint5

Joint6

-171.513

-50.976

11.188

-127.296

118.462

-46.051

-171.513

59.319

-171.549

48.669

-68.647

79.426

8.487

-112.35

163.18

48.714

111.452

-55.473

8.487

101.464

36.458

-119.545

-53.504

55.537

-171.513

-50.976

11.188

52.704

-118.462

133.949

-171.513

59.319

-171.549

-131.331

68.647

-100.575

8.487

-112.35

163.18

-131.287

-111.452

124.527

8.487

101.464

36.458

60.455

53.504

-124.463

Table 5.8: The Joint Solutions for Point 6 of Case Study One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solutions 1 2 3 4 5 6 7 8

A, E, W +1, +1, +1 -Ft ,-1,4-1 -1,41,4-1 -1,-1,41 4-1,41,-1 4-1 ,-1,-1 -1,41,-1, -1,-1,-1

Jointl 180 180 0 0 180 180 0 0

Joint2 4.55028 65.516 -174.217 90 4.550 65.516 -174.217 90

Joint3 -28.2731 -132.088 -160.361 0 -28.273 -132.088 -160.361 0

Joint4 180 180 0 0 0 0 180 0

Joint5 66.277 23.428 64.579 0 -66.277 -23.428 -64.579 0

Joint6 0 0 0 0 180 180 180 0

Table 5.9: The Joint Solutions for Home Position of Case Study One

5.1.3 Verification

There are two ways to verify the inverse kinematics solutions. One is to use the

solutions to calculate the direct kinematics and compare with the input. The other is to

use the solutions to redraw the robot model. The results can be visualized. People can see

if the end-effector will reach the target points. The target points are drawn according to

the input data.

The first example is to calculate the direct kinematics for home position.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

°a 6=°a 1., a 1., a ,.3a 4.4a 5.5a 6.

1 0 0 188' 0 - 1 0 0 "1 0 0 -225'
0 0 1 0 1 0 0 -950 0 0 - 1 0

0 - 1 0 900 0 0 1 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 1

T 0 0 0 1 0 0 0 "1 0 0 0 '

0 0 1 0 0 0 - 1 0 0 1 0 0

0 - 1 0 1,300 0 1 0 0 0 0 1 200

0 0 0 1 0 0 0 1 0 0 0 1 _

0 0 1 1,688 '
0 1 0 0 ..(5.1)

- 1 0 0 2,075
0 0 0 1

The second example of calculating the direct kinematics for point 1 by using solution

eight is given. Accordingly, the D-H parameters table is changed to Table 5.10 which is

used to calculate the direct kinematics equation (5.2)

Joint i 0i (Xi ai di

1 -29.496° 'O o o 188mm 900mm

2 111.411° 0 -950mm 0

3 23.982° 90° -225mm 0

4 39.583° \o o o 0 1,300mm

5 74.994° 90° 0 0

6 -140.743° 0 0 200mm

Table 5.10: D-H Parameters for the Point 1, Solution 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 A —0 A 1 A 2 A 3 A 4 A 5 A
r t 6 — 2 * a 3* 4 * 6 ‘

' 0.8704 0 0.4924 163.633 ' -0.3651 -0.9310 0 346.8
-0.4924 0 0.8704 -92.5643 0.9310 -0.3651 0 -884.437

0 - 1 0 900 0 0 1 0

0 0 0 1 0 0 0 1

'0.9137 0 0.4065 -205.576" "0.7707 0 -0.6372 0

0.4065 0 -0.9137 -91.4513 0.6372 0 0.7707 0

0 1 0 0 0 - 1 0 1,300
0 0 0 1 0 0 0 1

"0.2589 0 0.9659 0" "-0.7743 0.6328 0 0 1

0.9659 0 -0.2589 0 -0.6328 -0.7743 0 0

0 1 0 0 0 0 1 200

0 0 0 1 0 0 0 1 _

0 -1 0 1,399.5
-0.7071 0 0.7071 -650.25
-0.7071 0 -0.7071 875.5

0 0 0 1

After one of the inverse kinematics solutions is selected, it will be shown in the first

section of the pendent view. The robot kinematic stmcture will be redrawn

simultaneously. Figure 5.3 is the screen shot for the point 1, solution 8 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Deg i m » yz xz <X «, t f H H f i,
HUE

: 1 18 42686

2 [lOt.464

: 3 (36.4584

J . 4 ,60 4553

5 S53.5CI35

: 6 s i 24.463

. EiwiEffector...

: X {[399.5

: ! V j35C 25

i z |875.5

. y»w jl'i'35........

.. iRtcUo

LeamTP j ..

X

I
iSeisctetfObfcct ASf IftB64M ' -

Figure 5.3: Visualization for the point 1, solution 8 of Case Study One

The results of direct and inverse calculation are saved in the file DirectKinematics and

InverseKinematics respectively.

5.2 Case Study two for Fanuc-like Robots

5.2.1 Problem Description

The second case considers the Fanuc-like robot, ARCMatel20iL. Its kinematics model

and D-H parameters are shown in Figure 5.4 and in Table 5.11 respectively.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-813

- 7 5

800

200

700

*

Figure 5.4: Kinematics Model for ARCMatel20iL

Joint I 0i a,j a; di

1 0 1 o o 200mm 700mm

2 I o o oO00i-H 800mm 0

3

oO00 vO

© © -75mm 0

4 0 -90° 0 -813mm

5 0 VO o o 0 0

6 0 0 0 -100mm

Table 5.11: D-H Parameters for ARCMatel20iL

The given path illustrated in Figure 5.5 is four target points in the work cell. The points

shown in Table 5.12 are defined with their positions p =(px, py, pz)T and the rotated

angles: yaw, pitch, roll about the principal axes of the robot’s base coordinate frame.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55,

Figure 5.5: The Simulation Path for Case Study two

Points Px Py P2 Yaw Pitch Roll

1 1,113 0 1,575 180 -90 0

2 1,113 200 1,575 180 -90 45

3 1,000.5 0 1,300.25 180 -90 0

4 800.25 0 1,000.75 45 -90 0

Table 5.12: The Definition of Target Points for Case Study two

5.2.2 Inverse Kinematics Solutions

. The eight inverse kinematics solutions for each point are calculated. The

solutions are in Table 5.13-5.16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solutions 1 2 3 4 5 6 7 8

A, E, W +1, +1, +1 +1,-1,+1 -l,4 i,+ l -1,-1,+1 +1 ,+1,-1 +1,-1,-1 -1,+1,-1, - l .- l . - l

Jointl 180 180 0 0 180 180 0 0

Joint2 -121.664 -166.726 -90 -4.207 -121.664 -166.726 -90 -4.207

Joint3 -50.687 -139.854 180 -10.541 -50.687 -139.854 180 -10.541

Joint4 180 180 0 0 0 0 0 180

Joint5 -19.023 -63.128 0 -83.666 19.023 63.128 0 83.666

Joint6 0 0 0 0 180 180 0 180

Table 5.13: The Joint Solutions for Home Position of Case Study Two

Solutions 1 2 3 4 5 6 7 8

A, E, W +1,+1,+1 +1,-1,+1 -1,+1,+1 -1,-1,+1 +1,+1,-1 -HI ,-1,-1 -l.+ l.- l , - l .- l .- l

Jointl -168.832 -138.832 11.169 11.169 -168.832 -168.832 11.169 11.169

Joint2 -123.653 -165.605 -88.598 -4.250 -123.653 -165.605 -88.598 -4.250

Joint3 -53.760 -136.781 -178.581 -11.960 -53.760 -136.781 -178.581 -11.960

Joint4 150.132 167.3 -89.914 -11.268 -29.868 12.700 90.086 168.732

Joint5 -12.012 -59.278 11.168 -81.819 12.012 59.278 -11.168 81.819

Joint6 74.769 51.574 134.919 46.624 -105.231 -128.426 -45.081 -133.376

Table 5.14: The Joint Solutions for Point 2 of Case Study Two

Solutions 1 2 3 4 5 6 7 8

A, E, W +1, +1, +1 +1,-1, +1 -1,+1,+1 -1,-1,+1 +1, +1 ,-1 -n ,-i,-i -1,+1,-1, -1,-1,-1

Jointl

Joint2

Joint3

Joint4

Joint5

Joint6

180

-111.763

-16.966

0

-4.797

-45

180

168.983

-173.575

0

72.558

-45

0

-96.638

154.318

180

-19.044

-45

0

15.452

15.141

180

89.689

-45

180

-11.763

-16.966

180

4.797

135

180

168.983

-173.575

180

-72.558

135

0

-96.638

154.318

0

19.044

135

0

15.452

15.141

0

-89.689

135

Table 5.15: The Joint Solutions for Point 3 of Case Study Two

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solutions 1 2 3 4 5 6 7 8

A, E, W +1, +1, +1 4-1,-1,44 -1,4-1,4-1 -1,-1,4-1 4-1,4-1,-1 44 ,-1,-1 -1,41,-1, -1,-1,-1

Jointl 180 180 0 0 180 180 0 0

Joint2 -106.676 143.623 -101.361 -106.676 -106.676 143.623 -101.361 39.332

Joint3 12.822 156.636 127.049 12.822 12.822 156.636 127.049 42.410

Joint4 180 180 0 0 0 0 180 180

Joint5 29.499 -76.986 41.590 -93.078 -29.499 76.986 -41.590 93.078

Joint6 0 0 0 0 180 180 180 180

Table 5.16: The Joint Solutions for Point 4 of Case Study Two

5.2.3 Verification

The first example is to calculate the direct kinematics for home position.

=°A, >a2•2A 3
3

^ 4 4A5•5A 6

T 0 0 200 ' 0 - 1 0 0 ' - 1 0 0 75'
0 0 1 0 1 0 0 -800 0 0 1 0

0 - 1 0 700 0 0 - 1 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 1

' l 0 0 0
1

'1 0 0 o" '1 0 0 0

0 0 1 0 0 0 - 1 0 0 1 0 0

0 - 1 0 -813 0 1 0 0 0 0 0 100

0 0 0 1 0 0 0 1 0 0 0 1

0 0 - 1 1413
0 - 1 0 0

-1 0 0 1,575
0 0 0 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The second example of calculating the direct kinematics for point 2 by using solution 7

is given. Accordingly, the D-H parameters table is changed to Table 5.17 which is used to

calculate the direct kinematics equation (5.4).

Joint I 0i (Xi 3i di

1 11.169° -90° 200mm 700mm

2 -88.598°

©ooo 800mm 0

3 -178.581° vo o o -75mm 0

4 90.086° -90° 0 -813mm

5 -11.168° 90° 0 0

6 i -P
k o 00 H-1 o 0 0 -100mm

Table 5.17: D-H Parameters for the Point 2, Solution 7

©5
II o > V 2a 3.3a 4.4a 5-5A 6.

0.9811 0 -0 .1 9 3 7 196.212 0.0245 -0 .9 9 9 7 0 19.577 '

0.1937 0 0.9811 38.739 -0 .9 9 9 7 -0 .0 2 4 5 0 - 799.76

0 - 1 0 700 0 0 - 1 0

0 0 0 1 0 0 0 1
-

'-0 .9 9 9 7 0 -0 .0 2 4 8 74.977' '-0 .0 0 1 5 0 - 1 0

-0 .0 2 4 8 0 0.9997 1.8574 1 0 -0 .0 0 1 5 0

0 1 0 0 0 - 1 0 -8 1 3

0 0 0 1 0 0 0 1

' 0.981 0 -0 .1 9 4 O' ' 0.706 0.708

ioo

-0 .1 9 4 0 -0 .9 8 1 0 -0 .7 0 8 0.706 0 0

0 1 0 0 0 0 1 -1 0 0

0 0 0 1 0 0 0 1

0 0 - 1 1,113

-0 .7 0 7 1 -0 .7071 0 200
(5.4)

-0 .7 0 7 1 0.7071 0 1,575.06

0 0 0 1

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Operations of the Interface

After the file WrokCell.exe is run, the GUI will display on the screen. There are a few

steps for simulation of robots by using the GUI. An example how to use this GUI to

finish the case study one is given below.

5.3.1 Kinematic Model

The user can create the kinematic model by selecting the Robot-> Model in the menu

or clicking the T icon in the toolbar. The procedures that create a kinematic model are:

1) Select the joint coordinate frame with arbitrary link length and offset as shown in

Figure 5.6. The sequence of the selections is 12, 22, 34, 42, 51, 62, 72. That is:

for joint 1, select the second type; for joint 2 , select the second type; and so on.

Edit object Robot tr

6R fofaot Jbirifs

A a

H
" 4 ' ' 3 4

^ 4;i
/M
>
Y 1
A

;Lioks-Definition I Cooidinate| :

• Joirft3 JointS...

> ,Y i
^ 3 1 UjII- ::
/ til .Tl:-

Y \ p «
/T\ 5 ;!
A 6' '

y A
)i 0 i

0
A 3
> 1 «■

- ij -i6int4 •• i j

0

m *1

A 1
0

\ J / 3 i:

\ |

Approach

A v f
0

A 3
:

Figure 5.6: Selection of Joint Coordinate System

2) Modify the robot arm lengths and offsets with exact values as shown in Figure5.7.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I .ill o l.ji (t A im IIM i'i \C*iY

6R robot doihis ©efihitfert I Gbofdihate I

Marne:

; Linkl Length:

; Ltrikl Offset:

’ Link2 Length

■| Lttik2 Offset:;

. j LinkS Length::

I UnkS.Offset:

{Link4 Length:

j ;LfriM: Offset: "

j LinkS Length:.

! LinkS Offset:

; LrnkS Length:

I LinkB Offset:

3 1RB64QG

{fgf-
, f _

j _ _ ,

{725

{Tsr
■F*
r°
w:i~
1200--
|T“

'"M. „,,J?
feV-yfez

Figure 5.7: Modification of the Robot Arm Lengths and Offsets

3) Translate and rotate the robot in the scene, Shown in Figure 5.8

Q a? H • & $ ■
I <lll •>!>I--. I 'Alii! II.'IK, Hill'

6R robot Joints | Links Definition Coordinate j

r Object Origin Coordinate-

| ;y. |S3T—
Z {200

| Yaw s ; 15

j Fitch : |[P~

1 Roli fcT“ “ “ j

Figure 5.8: Translation and Rotation of the Robot

HI4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.2 Geometric Model

By selecting the Geometry-> Cube in the menu or clicking the B icon in the toolbar, a

default cube will be generated. When left double clicking on the cube, the edit dialog

shown in Figure 5.9 will open. The cube dimensions, color, the origin coordinate of the

cube can be modified through the edit dialog. The width, depth, height are 1,100.5,300.5,

350 respectively. The x, y, z, yaw, pitch, roll of cube’s origin coordinate are 100,1,550,

700,0,0,0.

is s s h w e |
Cube Definition | Color i Coordinate]

•Nettie;. : '. v ..

r Definition

: I WMhlSWWH |lT305"*"~
Depth (V '-A k is) j 300 5 " ~ "

Hag* (Z Am) |350 —“:

OK | Cancel [Apply

Figure 5.9: The Edit Dialog of Geometric Modeling for the Cube

5.3.3 Definition of Target Points

1) Select the robot by left clicking on the robot.

2) Select the Robot->Pendent View in the menu or left click the i icon in the

toolbar; the pendent view dialog will open.

3) Input the x, y, z, yaw, pitch, roll values of the end-effect in Table 5.2. Left

clicking the Inverse button to open the inverse kinematics solution dialog . Select

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

one of the eight solutions to show the joint variables on the first section of the

pendent view. The robot will move to the target in the same time. The two dialogs

are illustrated in Figure 5.10. The inverse kinematics solution dialog will be

closed by Left clicking the Cancel button.

4) Left clicking the Learn TP button to generate one target point.

5) Repeat the step 3 and step 4 to create the all target points.

i!e JEdit View Geometry: Robot W indow H elp .

D i & 80 XZ. TZ. XT i Q.f i 11 M m s

Joint Variables

t JJSST
2 ilOl-464

3 : ;|36.4584

i;
.5/ .Sloli”

•Efid Effector'-

A
A
A

A

slnverse Kmemalle f Cfbtions

f Solutionl
| C Solution?

’ C Solution?
C Solution4

| C Solution5

C Solutions

■i--' C Solution? ■ ■ ■ \'~

't-' ̂ SolurionŜ'’ .?•-

'I 1399.5
.. ^

!■' Z j8 7 5 .5

■1 Yaw. .^135

j Pitch jo

Roll fpo" ""

Inverse | Home | -

. Learn TP j .p

OK Cancel

;LX.„.-y

% *

Figure 5.10: The Pendent View and Inverse Kinematics Solution Dialogs of the robot

5.3.4 Simulation

By selecting the Robot->Simulation in the menu or left click the s? icon in the

toolbar, the simulation will start automatically.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this research, a generalized approach for systematic 3D kinematic modeling and for

solving the inverse kinematics problem was presented. A Unified Kinematic Modeler and

Solver (UKMS) was developed on a PC-based computer under the Windows operating

system using Visual C++. The kinematic stmcture falling within the scope of our Generic

Puma and Fanuc (GPF) model of any 6R industrial robots can be easily generated from

the graphical user interface by selecting the specific joint coordinate frame and by

inputting arm lengths and offsets. The inverse kinematics problem was solved using a

geometric approach, and the direct kinematics problem were also implemented for robot

simulation.

The object-oriented approach has been applied to the realization of 3D kinematic

modeling and simulation. Object-oriented design represents a relatively new method of

software system design that provides a means for the development of robust software

systems. It makes software programs well-structured, modular, and reusable. A class

definition can embody the functional specification of operational knowledge about each

object while hiding the implementation details. Generic programming facilitates the

development of components that are independent from a specific implementation. The

code can be reused from derived classes. Object-oriented programming allows for a

100

permission of the copyright owner. Further reproduction prohibited without permission.

system architecture that is very flexible, yet simple. How objected-oriented principles can

be utilized to extend the system for new objects shown in the geometry class was also

demonstrated. The coding effort required for extension is significantly smaller.

Additionally, there is no need to modify source code when extensions are needed.

The library module for the vector, matrix algebra, and for solving the kinematics

problem is another way to share a set of functionality with other programmers for

multiple applications. They reuse the programming code and save disk space. The

Dynamic-Link Library for the implementation of geometric modeling made the software

stmcture more organizable.

Scene Graphs are a convenient way to represent complex objects as well as the

hierarchical relationships among these objects in both abstract and visual ways. The

CObject and CObArray classes are powerful root base class for most of the Microsoft

Foundation Class Library (MFC). The customized classes derived from those classes.

Thus, this design makes it very easy to dynamically insert, edit, and delete an object in

the 3D geometric modeling.

The user-friendly man machine interface makes a system that can be used easily.

Standardized menu styles such as pull-down menus are used. For most menu functions,

their related toolbars are designed.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The extensive case studies demonstrated that this graphical user interface is very

effective in creating the kinematic model and verifying the direct and inverse kinematics

solutions visually. The inverse kinematics solutions can be verified by calculating their

direct kinematics equation or redrawing the robot kinematic model according to the

solutions.

6.2 Contributions

1) A unified kinematic modeler, based on object-oriented design and programming,

was developed.

2) The direct and inverse kinematics problem for the GPF model was solved and

packaged into a library module, which can be used for different programmer in

Visual C-H-computer language.

3) A software platform, which has the features of easy of use, extensibility,

portability, and reusability, was created for 3D geometric modeling and

simulation.

6.3 Future Work

There are a number of research and development issues related to the 3D graphical

user interface that need further investigation.

1. An improvement for the inverse kinematic algorithm should be done by adding

the joint limits, unreachable conditions, and the singularity.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. An algorithm should be developed to optimize the eight inverse kinematics

problem solutions. Just one solution of joint variables will be provided to the

simulation system.

3. The manufacturing model of industrial robots should be introduced for better

visualization and dynamic analysis and control design.

4. The 3D graphical software platform as well as the object-oriented design and

scene graph methodologies should be extended to the graphical robotic simulation

system which will include the servo control, 3D simulation, and robotic

application development to fit the requirements of a reconfigurable control

process in UROCA.

5. A joint space control method can be developed. Because the inverse kinematics

solutions transform the operational space to joint space. The joint variables

became the input of the robot arm control design. One approach to robot arm

control system design is to treat each joint of the robot arm as a simple joint

servomechanism. That is, single manipulator joint is controlled independently

from the others. The example of joint space control is the PUMA 560 series robot

arm. A robot-arm control system is shown in Figure 6.1. The objective of this

system is to control the angular motion about z axis. A controller can be designed

for the servo system. The controller should make the system stable, has a good

damping of the oscillations, and good tracking performance.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G ear 1
(A/,)'

Gear 2
(A/2)

Command
input

Controller
Gc(s)

DC
servomotor

Reference line
(0O= 0)

Figure 6.1: Robot Arm Control System

6 . RT-LAB Simulation and experiment of the controller design can be conducted.

The RT-LAB can be used to implement the controller design. There are few steps.

1) Automatically receive the input 0, from this GUI.

2) Build the dynamic model of the robot arm.

3) Run simulation off-line for isolating and debugging various problems.

4) Execute the simulation in real-time.

5) After the control design is verified by the RT-LAB, the real robot can be

connected to the system. The overall architecture of the system is

illustrated in Figure 6.2.

Real Robot
RT-LAB

Dynamic Model
Run Simulation

Hardware-in-the-loop

GUI
Kinematic Modeling,

Path Generation

Figure 6.2: The overall architecture of the system

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

1) Angel, E., 2003, “Interactive Computer Graphics: A Top-Down Approach with

OpenGL”, 3rd ed, Boston: Addison Wesley, c2003, ISBN: 0-201-77343-0.

2) Anton, S., Fries, T., Horsch, T., Schroer, F. W., Willnow, C., Wolf, C., 2001, “A

framework for Realistic Robot Simulation and Visualisation”, urhhttp:// www.easy-

rob. com/data/Easy-Rob-Tech-Articles .pdf.

3) Applied Computing & Engineering Ltd, 2005, “AC&E CimStation Robotics”, url:

http://www .acel .co .uk/robotics .html.

4) Bernhardt, R., Schreck, G., Willnow, C., 1995, “Realistic robot simulation”,

Computing & Control Engineering Journal, Vol.6 , pp.174 -176.

5) Biggs, G., MacDonald, B., 2003, “a survey of robot programming systems”, In

Proceedings of the Australian Conference on Robotics and Automation, CSIRO,

B risbane, Australia, December 1 -3.

6) BYG Systems Ltd, 2002, “Grasp2000 User Manual”,url:http://www.staffs.ac.uk/

personal/engineering_and_technology/sow 1 /Robotics/grasp/.

7) Chapman, D., 1998, “Sams teach yourself Visual C -H-6 in 21 days”, a division of

macmillan computer publishing, ISBN: 0-673-31240-9.

8) Cheng, F. S., 2000, “A Methodology for Developing Robotic Workcell Simulation

Models”, Simulation Conference, Proceedings, Winter, Vol. 2. pp. 1265-1271.

9) Cimetrix Inc., 2002, “CODE 6™ Machine control software for high-performance

applications ”, url :http ://www .cimetrix .com/pdfs/code6 .pdf

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www
http://www.staffs.ac.uk/

10) Dai, W., Kampker, M., 1999, “PIN- A PC-based robot simulation and offline

programming system using macro programming techniques”, The 25th Annual

Conference of the IEEE Industrial Electronics Society, Vol. 1, pp.442-446.

11) Denavit, J., Hartenberg, R. S., 1955, “A kinematic notion for lower-pair

mechanisms based on matrices”, J App Mech 77, pp.215-221.

12) Djuric, A. M ., 1999, “Economical industrial work cell modeling simulation and

layout design”, Master’s Thesis, University of Windsor.

13) Djuric, A. M ., ElMaraghy, W. H, ElBeheiry, E. M., 2004, “Unified integrated

modeling of robotic systems”, NRC International Workshop on Advanced

Manufacturing, June 2004, London, Canada.

14) ElBeheiry, E., ElMaraghy, W., ElMaraghy, H., 2004, “The stmctured design of a

reconfigurable control process”, Proceeding of CIRP Design Seminar, Cairo, Egypt.

15) Flow software technologies, 2002, “WORKSPACE 5.03 User Manual”, url:

http ://ww w .workspace .com.

16) Fu, K. S., Gonzalez, R.C., Lee, C. S. G., 1987, “Robotics: Control, Sensing, Vision,

and Intelligence”, McGraw-Hill, Inc., ISBN: 0-07-022625-3.

17) Gourdeau, R , 1997, “Object-oriented programming for robotic manipulator

simulation”, Robotics & Automation Magazine, IEEE, Vol. 4, Issue: 3 pp.21 - 29.

18) Hong, K. S., Kim, J. G., Huk, C. D., Choi, K. H., Lee, S., 2001, “A PC-based open

robot control system: PC-ORC ”, Industrial Electronics, 2001. Proceedings. ISIE

2001. IEEE International Symposium on, Vol.3, pp.1901-1906.

19) Intelitek Inc., 2003, “RoboCell User Manual”, url: http://great-lakes-

training .com/documents/100346-D-RoboCell-usb-v49(0311) .pdf.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://great-lakes-

20) Kim, G. T., Cha, S. D., Bae, D. H., 1997, “Task.o object modeling approach for

robot workcell programming”, Computer Software and Applications Conference,

1997. COMPSAC 97. Proceedings, pp. 109 - 114.

21) Koseeyapom, P., 2003, “Component-based robotic simulation”, Ph.D. Thesis,

University of Vanderbilt.

22) Lapham, J., 1999, “RobotScript: the introduction of a universal robot programming

language”, Industrial Robot: An International Journal, Vol.26, pp. 17-25.

23) Lee, C. S. G., Ziegler, ML, 1984, “A geometric approach in solving the inverse

kinematics of PUMA robots”, IEEE Aero Electronic Sys 20(6), pp.695-706.

24) Loffler, M.S., Chitrakaran, V.K., Dawson, D.M, 2001, “Design and implementation

of the Robotic Platform”, Control Applications, Proceedings of the 2001 IEEE

International Conference on, 5-7 Sept. PP.357 - 362.

25) Loffler, M.S., Dawson, D.M., Zergeroglu, E., Costescu, N.P., 2001, “Object-

oriented techniques in robot manipulator control software development”, American

Control Conference, 2001. Proceedings of the 2001, Vol.6 , pp.4520 - 4525.

26) Loffler, M ., 2001, “New object-oriented and PC-based approaches to robot control

software”, Ph.D. Thesis, Clemson University.

27) Loffler, M.S., Costescu, N.P., Dawson, D.M., 2002, “QMotor 3.0 and the QMotor

robotic toolkit: a PC-based control platform”, Control Systems Magazine, IEEE,

Vol.22, PP. 12 - 26.

28) Mak, K.L., Lau, H.Y.K, Wong, S.T.W., 1999, “Object-oriented specification of

automated manufacturing systems”. Robotics and Computer-Integrated

Manufacturing, Elsevier, Vol.l5,pp.297-312.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29) Miller, D.J., Lennox, R.C., 1991, “An object-oriented environment for robot system

architecture”, IEEE Control Systems, pp. 14-23.

30) Meynard, Jean-Paul, 2000, “Control of industrial robots through high-level task

programming”, Master’s Thesis, Linkopings universitet, Sweden.

31) Montagnier, P., Steiner, S. J., 2000, “Design of a graphical user interface (GUI)

between a PC-based CAD system and a flexible assembly robotic cell”, Factory

2000 - The Technology Exploitation Process, Fifth International Conference on

Vol.435, pp.162-169.

32) Nnaji, B. O., 1993, “Theory of automatic robot assembly and programming”.

Chapman & Hall. ISBN: 0-412-39310-7.

33) O’Leary, J. J., 1998, “CROBOTS: CAD Based Robot Simulation Tool”, Master’s

Thesis, Memorial University of Newfoundland.

34) Orady, E. A., Osman, T. A., Bailo, C. P., 1997, “Virtual reality software for

robotics and manufacturing cell simulation”, Computers & Industrial Engineering,

Vol.33, pp.87-90.

35) Orady, E.A., Osman, T. A., Bailo, C. P., 1997, “Capability study of robotics and

manufacturing cell simulation software”, Computers & Industrial Engineering,

Vol.33, pp.83-86.

36) Owens, J., 1994, “WORKSPACE-a microcomputer-based industrial robot simulator

and off-line programming system”, Next Steps for Industrial Robotics, IEE

Colloquium on , 17 May 1994, pp. 1-4.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37) Prinz, M ., Liu, H. C., Nnaji, 0 ., Lueth, T., 1996, “from CAD-based kinematic

modeling to automated robot programming”, robotics & computer-integrated

manufacturing, Vol.12, No.1, pp .99-109.

38) Robinette, M. F., Manseur, R., 2001, “ROBOT-DRAW, an internet-based

visualization tool for robotics education”, IEEE transactions on education, Vol.44,

No. 1, pp.29-34.

39) Rooks, B. W., 1997, “Off-line programming: a success for the automotive

industry”, Industrial Robot, Vol.24, No. 1, pp.30-34.

40) Sciavicco, L., Siciliano, B., 1996, “Modeling and control of robot manipulators”,

The McGraw-Hill Companies, Inc. ISBN: 0-07-057217-8.

41) Stringham, R., 1999, “Simulation tools ease and speed assembly cell development”,

Assembly Automation, Vol.19, No.2, ppl21-125.

42) Wittenberg, G., 1995, “Developments in offline programming: an overview”,

Industrial Robot, An International Journal, Vol.22, pp.21-23.

43) Yasuda, G., 1999, “An object-oriented multitasking control environment for

multirobot system programming and execution with 3D graphic simulation”,

International Journal of production Economics, Vol.60-61, pp.241-250.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

APPENDIX 1: SAMPLE C++ PROGRAMS

Below is the implementation of the kinematic model for six rotational joints robot using

OpenGL and C-H-languages.

// Create robot kinematic model

glNewList(listJointl 1, GL_COMPILE);
CCoordinate *pCoordinatel 1 =new CCoordinate(100.0,100.0,100.0,!');
pCoordinatel 1- ̂ Render();

glEndList ();

glPushMatrix(); // Start jointl
glRotated(m_iLinkThetaO, 0.0,0.0,1.0);
glRotated(m_iLinkAlpha0,0.0,0.0,0.0);
glCallList(listJointl 1);

glPushMatrix(); // Start j oint2
glColor4f(0.0f,l .Of,0 .Of,1 .Of);
glBegin(GL_LINES);

glVertex3 f(0.0,0.0,0.0);
glVertex3f(0.0,0.0,m_iLinkdl);

glEnd();
glTranslated(0.0,0.0 ,m_iLinkd 1);
glRotated(m_iLinkThetal, 0.0,0.0,1.0);
glColor4f(0.0f,l .0 f,0 .0 f,l .Of);

glBegin(GLLINES);
glVertex3d(0.0,0.0,0.0);
glVertex3d(m iLinkl 1,0.0,0.0);

glEnd();
glT ranslated(m_iLinkl 1,0.0,0.0);
glRotated(m_iLinkAlpha 1,1.0,0.0,0.0);
glCallList(list Jointl 1);

glPushMatrix(); // Start joint3
glColor4f(0.0f,l .Of,0 .Of,1 .Of);
glBegin(GL_LINES);

glVertex3f(0.0,0.0,0.0);
glVertex3 f(0.0,0.0 ,m_iLinkd2);

glEnd();
glTranslated(0.0,0.0 ,m_iLinkd2);
glRotated(m_iLinkTheta2,0.0,0.0,1.0);
glColor4f(0.0f,l .0f,0.0f,l .Of);
glBegin(GLLINES);

glVertex3d(0.0,0.0,0.0);

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

glVertex3d(m_iLinkl2,0.0,0.0);
glEnd();
glT ranslated(m_iLinkl2,0.0,0.0);
glRotated(m_iLinkAlpha2,1.0,0.0,0.0);
glCallList(listJointl 1);

glPushMatrix(); // Start joint4
glColor4f(0.0f,l .Of,O.Of,l .Of);
glB egin(GL_LINES);

glVertex3f(0.0,0.0,0.0);
glVertex3f(0.0,0.0,m_iLinkd3);

glEnd();
glT ranslated(0.0,0.0 ,m_iLinkd3);
glRotated(m_iLinkTheta3,0.0,0.0,1.0);
glColor4f(0.0f,l .Of,O.Of,l .Of);
glBegin(GL_LINES);

glVertex3d(0.0,0.0,0.0);
glVertex3d(m_iLinkl3,0.0,0.0);

glEnd();
glT ranslated(m_iLinkl3,0.0,0.0);
glRotated(m_iLinkAlpha3,1.0,0.0,0.0);
glCallList(listJointl 1);

glPushMatrix(); // Start joint5
glColor4f(0 .Of, 1 .Of,0 .Of, 1 .Of);
glBegin(GLLINES);

glVertex3 f(0.0,0.0,0.0);
glVertex3f(0.0,0.0,m_iLinkd4);

glEnd();
glT ranslated(0.0,0.0 ,m_iLinkd4);
glRotated(m_iLinkTheta4,0.0,0.0,1.0);
glColor4f(0.0f,l .Of,O.Of,l .Of);
glBegin(GLLINES);

glVertex3d(0.0,0.0,0.0);
glVertex3d(m_iLinkl4,0.0,0.0);

glEnd();
glT ranslated(m_iLinkl4,0.0,0.0);
glRotated(m_iLinkAlpha4,1.0,0.0,0.0);
glCallListflistJ oint 11);

glPushMatrix(); // Start j oint6
glColor4f(0 .Of, 1 .Of ,0 .Of, 1 .Of);
glBegin(GLLINES);

glVertex3f(0.0,0.0,0.0);
glVertex3f(0.0,0.0,m_iLinkd5);

glEnd();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

glT ranslated(0.0,0.0 ,m_iLinkd5);
glRotated(m_iLinkTheta5,0.0,0.0,1.0);
glColor4f(0.0f,l .0f,0.0f,l .Of);
glBegin(GLLINES);

glVertex3d(0.0,0.0,0.0);
glVertex3d(m_iLinkl5,0.0,0.0);

glEnd();
glT ranslated(m_iLinkl5,0.0,0.0);
glRotated(m_iLinkAlpha5,1.0,0.0,0.0);
glCallList(lisfJointl 1);

glPushMatrix(); // Start Approach
glColor4f(0.0f,l ,0f,0.0f,l .Of);
glBegin(GLLINES);

glVertex3f(0.0,0.0,0.0);
glVertex3f(0.0,0.0,m_iLinkd6);

glEnd();
glTranslated(0.0,0.0 ,m_iLinkd6) ;
glRotated(m_iLinkTheta6 , 0.0,0.0,1.0);
glColor4f(0.0f,l .0f,0.0f,l .Of);
glB egin(GLLINES);

glVertex3d(0.0,0.0,0.0);
glVertex3d(m_iLinkl6 ,0.0,0.0);

glEnd();
glT ranslated(m_iLinkl6 ,0.0,0.0);
glRotated(m_iLinkAlpha6 ,1.0,0.0,0.0);
glCallList(listJointl 1);

glPopMatrix(); //End Approch
glPopMatrix(); //End Joint6

glPopMatrixO; //End Joint5
glPopMatrix(); //End Joint4

glPopMatrixO; // End j oint3
glPopMatrixO; // End j oint2

glPopMatrixO; // End jointl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX 2: THE FILE DATA FOR CASE STUDY ONE

// Version: 100
C6RRobot {

Jointl <0.000000 -90.000000 900.000000 188.000000 >
Joint2 <90.000000 0.000000 0.000000 -950.000000 >
Joint3 <0.000000 90.000000 0.000000 -225.000000 >
Joint4 <0.000000 -90.000000 1300.000000 0.000000 >
Joint5 <0.000000 90.000000 0.000000 0.000000 >
Joint6 <0.000000 0.000000 200.000000 0.000000 >
JointO <90.000000 0.000000 >
Selection <12 22 34 42 51 62 72 >
Name <ABB IRB6400 >
Color <0.000000 1.000000 0.000000 1.000000 > // RGB A
Origin <0.000000 0.000000 0.000000 0.000000 >
Rotation <0.000000 0.000000 0.000000 >
Translate <0.000000 0.000000 0.000000 >

}
C3dObjectCube {

Depth <300.500000 >
Height <350.000000 >
Width <1100.500000 >
Name <Cube 0 >
Color <0.000000 1.000000 0.000000 1.000000 > // RGBA
Origin <100.000000 1550.000000 700.000000 0.000000 >
Rotation <0.000000 0.000000 0.000000 >
Translate <0.000000 0.000000 0.000000 >

}
C3dTargetPoint {

Thetas <-29.496044 111.410835 23.982050
39.582520 74.993484 -140.742645 >

Target <1399.500000 -650.250000 875.500000
-135.000000 0.000000 90.000000 >

Base <90.000000 0.000000 >
Name <TargetPoint 0 >
Color <0.000000 1.000000 0.000000 1.000000 >11 RGBA
Origin <0.000000 0.000000 0.0000000.000000 >
Rotation <0.000000 0.000000 0.000000 >
Translate <0.000000 0.000000 0.000000 >

}
C3dTargetPoint {

Thetas <-22.917351 106.907448 29.804518
43.543766 70.978897-138.085571 >

Target <1399.500000 -450.250000 875.500000
-135.000000 0.000000 90.000000 >

Base <90.000000 0.000000 >
Name <TargetPoint 1 >
Color <0.000000 1.000000 0.000000 1.000000 >// RGBA
Origin <0.000000 0.000000 0.000000 0.000000 >
Rotation <0.000000 0.000000 0.000000 >
Translate <0.000000 0.000000 0.000000 >

}
C3dTargetPoint {

Thetas <-15.635084 103.481071 34.043659
47.771908 66.867920 -134.997482 >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Target <1399.500000 -250.250000 875.500000
-135.000000 0.000000 90.000000 >

Base <90.000000 0.000000 >
Name <TargetPoint 2 >
Color <0.000000 1.000000 0.000000 1.000000 >11RGBA
Origin <0.000000 0.000000 0.000000 0.000000 >
Rotation <0.000000 0.000000 0.000000 >
Translate <0.000000 0.000000 0.000000 >

}
C3dTargetPoint {

Thetas <-7.798542 101.334740 36.610901
52.124931 62.563545 -131.604599 >

Target <1399.500000 -50.250000 875.500000
-135.000000 0.000000 90.000000 >

Base <90.000000 0.000000 >
Name <TargetPoint 3 >
Color <0.000000 1.000000 0.000000 1.000000 >// RGBA
Origin <0.000000 0.000000 0.000000 0.000000 >
Rotation <0.000000 0.000000 0.000000 >
Translate <0.000000 0.000000 0.000000 >

}
C3dTargetPoint {

Thetas <0.361441 100.639908 37.427048
56.432465 58.060997-128.051163 >

Target <1399.500000 150.250000 875.500000
-135.000000 0.000000 90.000000 >

Base <90.000000 0.000000 >
Name <TargetPoint 5 >
Color <0.000000 1.000000 0.000000 1.000000 >// RGBA
Origin <0.000000 0.000000 0.000000 0.000000 >
Rotation <0.000000 0.000000 0.000000 >
Translate <0.000000 0.000000 0.000000 >

}
C3dTargetPoint {

Thetas <8.486863 101.463837 36.458447
60.455292 53.503487 -124.463440 >

Target <1399.500000 350.250000 875.500000
-135.000000 0.000000 90.000000 >

Base <90.000000 0.000000 >
Name <TargetPoint 6 >
Color <0.000000 1.000000 0.000000 1.000000 >11 RGBA
Origin <0.000000 0.000000 0.000000 0.000000 >
Rotation <0.000000 0.000000 0.000000 >
Translate <0.000000 0.000000 0.000000 >

}
C3dTargetPoint {

Thetas <0.000000 90.000000 0.000000
0.000000 0.000000 0.000000 >

Target <1688.000000 0.000000 2075.000000
0.000000 90.000000 0.000000 >

Base <90.000000 0.000000 >
Name <TargetPoint 7 >
Color <0.000000 1.000000 0.000000 1.000000 >// RGBA
Origin <0.000000 0.000000 0.000000 0.000000 >
Rotation <0.000000 0.000000 0.000000 >
Translate <0.000000 0.000000 0.000000 >t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

NAME:

PLACE OF BIRTH:

EDUCATION:

Zhongqing Ding

Sichuan, P. R. China

University of Windsor, Windsor, Ontario

2003-2005 M. A. Sc.

Chongqing University, Chongqing, P. R. China

1988-1991 M. A. Sc.

1984-1988 B. A. Sc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A unified robotic kinematic simulation interface.
	Recommended Citation

	tmp.1614266720.pdf.cJrO3

