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ABSTRACT 

In this thesis, we formulate novel solutions to two inverse problems using optical 

measurements as input data: i) local level damage identification of beams, and ii) material 

constitutive parameter identification using digital image correlation measurement of 

surface strain/displacements.  

A novel photogrammetric procedure based on edge-detection was devised to 

measure the quasi-continuous deflection of beams under given loading.  This method is 

based on the close-range photogrammetry technique made possible through recent 

developments of image processing algorithms and modern digital cameras.     

Two computational procedures to reconstruct the stiffness distribution and to 

detect damage in Euler-Bernoulli beams are developed in this thesis.  The first 

formulation is based on the principle of the equilibrium gap along with a finite element 

discretization.  The solution is obtained by minimizing a regularized functional using a 

Tikhonov Total Variation (TTV) scheme.  The second proposed formulation is a 

minimization of a data discrepancy functional between measured and model-based 

deflections.  The optimal solution is obtained using a gradient-based minimization 

algorithm and the adjoint method to calculate the Jacobian.  The proposed identification 

methodology is validated using experimental data.  The proposed methodology has the 

potential to be used for long term health monitoring and damage assessment of civil 

engineering structures.   

The identification of material plasticity parameters is carried out by minimizing a 

least-square functional measuring the gap between inhomogeneous displacement fields 

obtained from measurements and finite element simulations.  The material parameters are 
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identified simultaneously by means of direct, derivative-free optimization methods where 

the finite element simulation is treated as a black-box procedure.  Methods verifying and 

validating the identified results are given.  Particular interest is given to the identifiability 

issue in deterministic and statistical sense.  The validation procedure intends to detect 

false positive results (type-II errors).  The performance of the computational procedures 

is illustrated by numerical and experimental examples.  The proposed approach avoids 

using the gradient of the cost function in the identification process; it has the benefit of 

allowing the use of any finite element code as a black box to solve the direct problem.   
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CHAPTER ONE: INTRODUCTION 

 

“The mere formulation of a problem is far more essential than its solution, which may be 

merely a matter of mathematical or experimental skills.  To raise new questions, new 

possibilities, to regard old problems from a new angle require creative imagination and 

marks real advances in science.”                                                               Albert Einstein 

 

1.1 General 

Traditional techniques in experimental mechanics rely on displacement or strain 

transducers carefully placed in a small number of positions on the surface of the tested 

specimen.  The data usually consist of series of test data correlated with the applied load 

and the measured field (usually a displacement or strain component).  The recent 

development of new technologies combining low-cost CCD cameras and computer vision 

led to novel experimental methods to assess solids and structures.  Non-contact 

measurement techniques are now becoming affordable for research and development 

purposes in laboratories as well as for on-site monitoring of structures.   

Digital image correlation (DIC), moiré and speckle interferometry, and grid 

methods are among the many new technologies that can be utilized in the field of 

experimental mechanics.  The fundamental shift in the possibilities offered by these new 

technologies is related to the spatial properties of the collected data.  For example, a 

typical DIC test system commonly has the capability of collecting up to 10,000 

independent displacement measurements from the surface of the specimen.  The large 

amount of information available to the experimentalist opens new horizons that would 
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not be possible using traditional transducers.  For example, in the context of constitutive 

laws identification, the geometry and the boundary conditions must be very simple when 

traditional transducers are used, so that an analytical solution of the stress/strain field is 

possible; the stress and strain fields must be homogeneous in order to determine the 

material properties.  Consequently, the identification of constitutive laws requires more 

than one test, since only the mechanical properties associated with the mechanisms 

activated during the test can be identified.  When non-contact measurement techniques 

are used along with the finite element method (FEM), however, the need for simplified 

loading and boundary conditions is relaxed.  Non-contact measurement techniques with a 

single test set-up can replace the large number of test set-ups involving various 

combinations of experimental parameters that are necessary when local transducers are 

used.   

Full-field displacement measurements allow much greater flexibility as they 

provide very rich experimental data and allow the use of tests under non-homogeneous 

conditions.  However, the large amount of data produced by full-field measurement 

techniques requires suitable computational methods to extract the information 

encapsulated within the non-homogeneous displacement and strain fields.  The effort to 

integrate new measurement technologies in experimental mechanics has introduced a 

completely new research area, referred to as inverse problems in solid mechanics.   

Full-field displacement measurements can also be integrated with numerical 

simulation techniques such as FEM to build health monitoring systems for structures in 

service.  The methodology consists of incorporating the measured displacement or strain 

field parameters with the mathematical model of the structure in order to estimate the 
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location and severity of damage.  The formulation of a health monitoring problem as an 

inverse problem has become a very important subject that has attracted a great deal of 

interest and research activity over the last decade.   

This thesis concerns two aspects of research based on the use of full-field 

measurement techniques and finite element simulations for the health monitoring of 

structures and for constitutive law identification.  In the first part of this work, we 

formulate the problem of reconstruction of the stiffness of beams through the 

measurement of displacements along the beam.  In the second part of this thesis, we study 

the implementation of this material identification problem using DIC to measure the 

displacement and strain on the surface of a specimen.   

Each of these issues is of the utmost importance in practice.  Currently, there is an 

increasing demand for effective methods to identify complex nonlinear material models. 

The competitive industrial environment leads engineers to develop better, but also more 

complex models of complicated systems.  These models are generally difficult to define, 

and the work presented here is a step towards the development of a systematic approach 

for material characterisation.  Furthermore, the problem of reconstruction of a beam‘s 

stiffness can be considered as one of the fundamental problems in the health monitoring 

of these important structural elements.  

From a mathematical point of view, the problems mentioned above can be 

considered as two examples of inverse problems.  However, the stiffness reconstruction 

of beams is typically classified as an ill-posed functional identification problem, whereas 

the identification of material properties is considered a well-posed parameter 

identification problem.  Traditional problems in structural mechanics consist of 
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evaluating the response of the studied structure to a known force or displacement where 

the basic parameters, such as the geometry of the structure and the mechanical properties 

of the materials, are known.  Inverse problems, on the other hand, seek to determine 

unknown geometrical and/or mechanical parameters from the known measured responses 

of the system.   

A direct procedure can rarely compute material and geometric properties from 

measurable responses, such as displacements or strains.  Inverse methods usually 

formulate the problem as a minimization of error function between measured and 

computed responses; this is also called an estimation function.  These inverse procedures 

usually involve finite-element (FE) model-updating techniques.   

 

1.2 Optical full-field measurements using digital cameras 

The damage identification methods developed in this thesis require a technique to 

measure the displacements during static loading tests.  In optical measurements, objects 

are measured without being touched.  A novel procedure based on edge-detection was 

devised to measure the quasi-continuous deflection of beams under given loading, and is 

presented in Chapter 2.  This method is based on the close-range photogrammetry 

technique made possible through recent developments of image processing algorithms 

and modern digital cameras.  These studies demonstrate that modern consumer cameras 

can be used in optical measurement procedures, offering an additional advantage in terms 

of cost.   

The studies of material parameter identification presented in this thesis employ 

DIC to provide full-field displacement/strain measurements for the surface of complex 



 

 

5 

3D components as input for the inverse analysis.  DIC is an image analysis technique 

based on grey-value digital images that can determine the contour and the displacements 

of an object under load in three dimensions with sub-pixel precision.  This technique is 

already mature and commercialized; Chapter 2 provides a brief description of the DIC 

technique, and the commercial DIC system employed in the current work.   

   

1.3 Damage identification based on static tests 

The problem of stiffness reconstruction is presented in Chapter 3.  In this chapter, 

we are particularly interested in formulating the identification of damage from static 

measurement.  Static tests are the most direct way of evaluating the load-bearing capacity 

of structures.  All structures throughout their service undergo a continual and ongoing 

accumulation of damage and decreased loading capacity.  Consequently, damage 

identification is an important aspect of safety and functionality, and has attracted 

intensive research efforts over the past twenty years.   

Two computational procedures using static deflection measurements to 

reconstruct the stiffness distribution, and to detect regions containing damages in Euler-

Bernoulli beams, are presented and compared in Chapter 3.  The first proposed 

formulation is based on the principle of the equilibrium gap along with a FE 

discretization, and the mathematical problem leads to an over-determinate linear system.  

The solution is obtained by minimizing a regularized function with a Tikhonov Total 

Variation (TTV) regularization scheme.  The second proposed formulation is defined as a 

minimization of a data discrepancy functional between measured and model-based 

deflections.  The optimal solution is obtained using a gradient-based minimization 



 

 

6 

algorithm and the adjoint method to calculate the Jacobian.  The two proposed 

methodologies are validated using experimental data.   

 

1.4 Material parameter identification using full-field measurements 

Modern design and performance evaluation requires realistic simulations of 

structural and material behaviour, and nonlinear FE simulation has become a fundamental 

engineering tool.  FE approaches are increasingly popular among engineers from 

different industries.  Constitutive parameters associated with nonlinear models are not 

always available in standard material databases; therefore, engineers need to identify 

them experimentally.   

Although the identification of plasticity material parameters is the focus of the 

current work (presented in Chapter 4), this study aims to provide a unified identification 

methodology.  In light of recent developments in direct optimization and regression 

analysis, particularly the verification and validation of the material parameter 

identification using statistical tools, this thesis proposes novel procedures for the 

identification of material parameters in any given model.   

The problem of material parameter identification is formulated as a nonlinear 

regression problem using DIC measurement data as the input.  The study presented in 

Chapter 4 includes the following topics:  definition of the inverse problem; a brief 

description of the derivative-free optimization scheme; discussion of the identifiability 

issues related to the inverse approach; and the application of statistical inference with a 

non-dimensional measure of response fit.   
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Solution of the material parameter identification problem was performed by 

minimizing a least-squares (LS) function measuring the gap between inhomogeneous 

displacement fields obtained from DIC measurements and FE simulations.  Specifically, 

a LS formulation of a cost function consisting of a norm for the discrepancies between 

the experimental data and the simulated data was minimized; the simulated data was 

obtained by the FE method using commercial software.  Direct, derivative-free 

optimization methods, which treat the FE simulation as a black-box procedure, identified 

the material parameters simultaneously.  Particular attention was paid to the 

identifiability and numerical stability issues of this approach, and methods for verifying 

and validating the identified results are discussed.  In particular, consideration is given to 

the identifiability issue in the deterministic and the statistical sense.  Sampling-based 

statistical inference derived from nonlinear regression theory was adopted to quantify the 

quality of the identification procedure, the rationale being that DIC provides a large 

amount of data, and thus allows the use of statistical inference.  Sampling-based 

inference and sensitivity analysis were used to check the adequacy of the identification 

solution, thus avoiding Type-2 errors (i.e., the acceptance of incorrect results).  Several 

recommended numerical approaches for validating the identification results are presented.  

Linearized covariance analysis (LCA) was adopted to check the fit of the parameters.  An 

index derived from the response surface geometry was used to check the response fit, and 

relative curvature measures proposed to check the adequacy of LCA.  The proposed 

validation procedure is primarily intended to detect false positives (i.e., Type-II errors).   

The proposed approach avoids using the gradient of the cost function in the 

identification process, and has the benefit of allowing the use of any FE code as a black 
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box to solve the direct problem.  The quantification of the quality of the result is of 

paramount importance to the practical application of any identification methodology.   

 

1.5 Hyperelasticity model parameter identification for rubber and rubber-like solids 

The mechanical behaviour of rubber-like materials is usually characterized by a 

strain energy density function 𝑊; the parameters of the 𝑊 function may be considered as 

material parameters.  Traditional laboratory techniques require several tests — using 

different homogeneous deformation modes and standard cut-out samples — to determine 

the appropriate strain energy form and parameters.   

The general approach for material parameter identification (described in Chapter 

4) was used to determine the parameters of strain energy functions (𝑊) with DIC test 

data collected for the original structural components.  In this approach, whole field 

displacement/strain on the surface of components is measured by a DIC-based technique, 

which provides massive amounts of experimental data in a single test.  The DIC-based 

methodology for parameter identification in hyperelasticity models (presented in Chapter 

5) replaces the performance of multiple tests on simple-shape specimens with supposed 

uniform state variable distributions that are required by traditional techniques.   
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CHAPTER TWO: OPTICAL MEASUREMENT USING DIGITAL CAMERAS: 

DIGITAL IMAGE CORRELATION AND CLOSE-RANGE PHOTOGRAMMETRY 

 

“It is necessary to measure everything that can be measured and to try making 

measurable what isn’t as yet.”                                                                                   Galileo  

 

2.1 Introduction 

The technique of obtaining information from photographs is called photogrammetry.  The 

most important feature of photogrammetry is that objects are measured without being 

touched.  The development of photogrammetry has a long history, particularly the branch 

related to aerial photogrammetry.  Currently, with the development of computer and 

digital photography, photogrammetric technology has changed dramatically from purely 

optical equipment to fully digital workflow (i.e. without any type of film or plotter), and a 

new branch — close-range photogrammetry, also termed vision metrology or 

videogrammetry, is developing rapidly.  Furthermore, inexpensive digital consumer 

cameras have reached a high technical standard with good geometric resolution, and can 

replace expensive metric cameras for close-range photogrammetry as long as the 

accuracy/precision required for the measurement is not too high (Linder, 2009).   

While close-range photogrammetry is used primarily for field measurements, the 

application of optical measurements in an experimental setting has aroused interest.  For 

example, holographic interferometry, moiré and moiré interferometry, and speckle 

methods are among the optical techniques available for strain measurements.  An 
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innovation, digital image correlation (DIC), developed in the 1980s is now 

commercialized for use in industrial processes.   

Close-range photogrammetry and DIC developed independently from each other.  

Nevertheless, DIC can be regarded as a branch of close-range photogrammetry.  The 

research presented in this thesis uses digital cameras to optically measure beam deflection 

profiles and full-field displacements/strains on the surface of specimens and components 

for inverse identification processes.  This chapter briefly reviews some of the concepts 

and procedures involved in close-range photogrammetry and its application to civil 

engineering.  Two novel techniques proposed for the measurement of beam deflection 

profiles in a laboratory setting are presented: 1) an edge-based technique using edge-

detection suitable for beams with a clean surface and smooth edges; and 2) a surface-

based technique using image correlation.  Finally, DIC methods are briefly described.  

The novel methods are presented in the following sections: Section 2 describes 

the new approach: edge-based deflection measurement of beams is introduced with 

example.  The data of this example is served as the input to the new damage 

identification method to be introduced in Chapter 3.  In Section 3, the fundamental theory 

and characteristics of DIC measurement is described.  Beam deflection measurement 

using image correlation is presented in Section 5, with example of a concrete beam. 

   

2.2 Close-range photogrammetry and applications in civil engineering 

2.2.1 Overview 

The primary purpose of a photogrammetric measurement, both aerial and 

terrestrial, is the reconstruction of a three-dimensional object in digital form (coordinates 
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and derived geometric elements).  For every image point, values in the form of 

radiometric data (intensity, grey value, and color value) and geometric data (position in 

image) can be obtained.   

Close-range photogrammetry differs from traditional far-field photogrammetry 

and image-based measurement systems as the primary task in close-range 

photogrammetry is to measure the three-dimensional coordinates of targets placed on all 

areas of interest on a structure or system, whereas the primary tasks in traditional 

photogrammetry and image-based measurements are feature extraction, object 

identification, and metrological measurement at relatively lower accuracy (Heijden, 

1994).  Thus, the key to the technique of close-range photogrammetry is the precise 

calculation of the positions of each of the targets in the field of view; see (Luhmann, 

Robson et al., 2006) for an overview of traditional methods and models in close-range 

photogrammetry. 

Laser-scanning measurement is an alternative to photogrammetry.  The advantage 

of laser-scanning methods is that the object can be low-textured while photogrammetric 

techniques often require highly textured objects.  On the other hand, laser-scanning 

techniques are time-consuming and usually very expensive.   

Visible patterns are a very important feature of photogrammetry, particularly 

patterns that can be identified using pixel or color information.  Patterns targeted in close-

range photogrammetry are usually simply attached metallic stickers.  Popular types of 

surface patterns targeted in photogrammetry are illustrated in Figure 1 and may include: 

1) black and white sprays on the surface; 2) patterns etched onto the raw material; 3) 
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metallic targets attached to the surface; and 4) small, color printed circles attached to the 

surface.  

 

 

(a) 

 

 

(b) 

Figure 2.1:  Examples of patterns targeted in close-range photogrammetry.  a) Targets 

attached to the surface and used for measuring displacements of concrete beams 

(Niederöst and Maas, 1997); and b) a dense grid of circles printed on the surface of 

testing structures (Cardenas-Garcia, Wu et al., 1997) (Hegger, Sherif et al., 2004) 

(Franke, Franke et al., 2007). 

 

 Traditional close-range photogrammetry is applied to objects ranging from 1 m to 

200 m in size; the level of accuracy depends on the distance between the camera and the 

object, and the size of the area to be measured.  Typically, accuracy ranges from <0.1mm 

for smaller areas to 1 cm for larger areas (Luhmann, Robson et al., 2006; Linder, 2009).  

Digital image processing (DIP) techniques such as image correlation, image registration, 

and edge detection are used to extract the required information from digital images.  
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General information related to: a) basic procedures; b) digital images; c) image 

coordinate systems and orientation; and d) reference or control points are briefly 

summarized in the following pages.   

Close-range photogrammetric measurement procedures 

The fundamental procedures of a close-range photogrammetric measurement 

include the preparation and recording of images, pre-processing, orientation calculations, 

measurement, and image analysis.  The steps in the general protocol for close-range 

photogrammetry can be summarized as follows:  

1. Preparation and recording of  images 

a) Application of surface targets. 

b) Determination of control points or scaling lengths. 

c) Image recording. 

2. Pre-processing 

a) Computation: calculate reference point coordinates and/or distances 

from survey observations.  

3. Orientation and measurement calculation 

a) Measurement of image points: identification and measurement of 

reference and scale points, including tie points (points observed in 

multiple images). 

b) Bundle adjustment: simultaneously calculate both interior and exterior 

orientation parameters as well as the object point coordinates required 

for subsequent analysis. 

c) Removal of outliers. 
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4. Measurement and analysis 

a) Single point measurement: identify the pixel coordinates of each point 

to be measured in the image, and transform to physical coordinates. 

b) Calculate displacements. 

c) Field measurement: with interpolation and smoothing, measured points 

can be connected and interpolated to make a field measurement. 

Specific experimental procedures for the research presented in this thesis are 

described in later sections.  Some general concepts related to the composition of digital 

images, image coordinate systems and the use of reference points to establish their 

relationship to object coordinates (orientation), and digital imaging systems are 

introduced in the following pages.   

Digital images: 

The essential advantage in using digital images over traditional photos is the ease 

in image-processing, such as image enhancement, deblurring, edge-sharpening and de-

noising, thus attains the maximal utilization of information contained in images.  The 

digital image is actually a rectangular array composed of picture elements called pixels.  

Each pixel is assigned an intensity value meant to characterize the color of a small 

rectangular segment of the scene.  A high-resolution picture can contain 5 to 10 million 

pixels, while a low-resolution picture small picture may contain comparatively few pixels 

(e.g. 256 × 256 = 65536 pixels).  Digital image processing is thus notorious for its 

intensive computation.  

Grey-scale images are typically recorded by means of a charge-coupled device 

(CCD), an array of tiny detectors arranged in a rectangular grid, which is able to record 
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the amount, or intensity, of the light that hits each detector.  Thus, we can think of a grey-

scale image as a rectangular 𝑚 × 𝑛 array with entries that represent light intensities. 

A digital image may be considered as a matrix made up of elements that are 

positive integers representing surface brightness.  Each of these elements is called a pixel, 

which has a specific value in a range that depends on the digital camera and the image 

acquisition electronics (e.g. for an 8-bit system, there are 256 grey values ranging from 0-

255).  Measurements, such as the 2D in-plane incremental displacement field, can be 

assessed by comparing successive digital images.  Generally, grey-scale images of this 

type are used in image processing for edge detection, image registration, and image 

correlation.   

Metric cameras are monochrome; using a monochrome camera has several 

advantages over a digital camera with Red–Green–Blue (RGB) color sensor.  A 

monochrome sensor has no color filter in front of the sensor.  This increases the 

International Organization for Standardization (ISO) rating of the sensor to 200 as 

compared to ISO 80 for the color version of the same sensor.  All pixels are sensitive to 

the same spectrum of light.  The information at each pixel location is not interpolated on 

a monochrome sensor.  Pixels of a typical RGB color sensor are arranged in a one layer 

matrix of which 50%, 25%, and 25% are masked green, red, and blue, respectively.  

During post-processing this single layer of pixels is interpolated to a triplet of layers, 

meaning that 50%, 75%, and 75% of the pixels representing the green, red, and blue 

channels of the image, respectively, must be interpolated from pixels with a different 

color.  This interpolation can lead to artefacts in the images, reducing the geometric 

quality of the image.  Saving the three layers in separate color channels triples the size of 
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one image to 18 MB for a sensor with 6 million pixels and 8 Bit color depth, as compared 

to a monochrome image, while no information is added.  Image correlation software 

typically employs only one color channel of an image for analysis (ERDAS, 2002).  This 

implies that 100% of the original information of a monochrome sensor can be utilized by 

the software while a single layer of a colour image will carry at most only 50% of the 

original resolution of an RGB sensor.  At the same time, image file size is reduced and 

light sensitivity of the sensor is increased when using a monochrome camera.  An image 

size of 6MB allowed analysis to be performed on uncompressed Tagged Image File 

Format (TIFF) images.  The image compression in JPEG format may bring more blurring 

and loss of information (Li, Yuan et al., 2002).  

However, consumer cameras typically use color sensors.  Color images in the 

RGB format can be separated into three grey-scale images or matrices; one of these can 

then be used for image processing.  Alternatively, one can calculate a mixed 

monochrome image matrix using the following well-known formula (Linder, 2009):   

grey value = 0.3 × red(R) + 0.11 × green(G) + 0.59 × blue(B) 

Generally, this calculation can be easily performed with image-processing 

software by activating the option ―mixed image‖ when importing images (Linder, 2009; 

Umbaugh, 2011).  

World and camera coordinates 

In measuring the position and orientation of objects with computer vision 

methods, we have to couple the coordinates of the camera system (coordinates of the 

image plane) to some reference coordinates (world coordinates) in the physical space. 
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The coordinates of the camera system are denoted 𝒙 =  𝑥, 𝑦, 𝑧 𝑇 .  Usually the 𝑧 

axis is aligned with the optical axis orthogonal to the image plane.  The world coordinates 

are denoted as 𝑿 = [𝑋, 𝑌, 𝑍] .  The two coordinates are coupled by two linear 

transformations: a translation and a rotation.  The translation is a shift of origin and can 

be described with a vector 𝒕.  If the two origins coincide, the remaining differences can 

be neutralized by rotations.  Here, we have also three degrees of freedom: 𝜙,𝜓, and 𝜃.  

Mathematically, rotation corresponds to multiplication of the coordinate vector with a 

3 × 3 orthogonal matrix 𝑹.  Clearly, the matrix depends nonlinearly on the three rotation 

parameters.  As a whole, the coupling between world coordinates and camera coordinates 

is given by the following expression: 𝒙 = 𝑹(𝑿 − 𝒕), i.e. the ideal imaging process is a 

linear transformation between world coordinates/object points and sensor/image 

locations.  However, there are potential for distortions when using this ideal pinhole 

model to predict image locations.  

Pin-hole camera model 

Perspective projection is a simple model describing the image formation with a 

lens system; it is equivalent to a pinhole camera model (Heijden, 1994).  Such a model 

consists of a non-transparent plane with a small hole.  Parallel to this plane, at a distance 

𝑑, the image plane is located.  Light emitted from the surfaces of objects in the scene 

passes through the hole and illuminates the image plane.  If the pinhole is small enough, 

an infinitesimal small surface patch of an object is mapped onto a small spot of light at 

the image plane.  The collection of all surface patches will give rise to an irradiance 

called image.  In the pinhole model, each point in the image plane corresponds exactly to 

one surface patch in the scene.  
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The pinhole camera model is based on the principle of collinearity, where each 

point in the object space is projected by a straight line through the projection center into 

the image plane.  Usually, the pinhole model is a basis that is extended with some 

corrections for the systematically distorted image coordinates.  The most commonly used 

correction is for the radial lens distortion that causes the actual image point to be 

displaced radially in the image plane. 

Image coordinate system (pixel coordinate system) and orientation  

In principle, the one-to-one correspondence between the physical and image 

coordinates of the object has to be established via a camera/lens calibration procedure.  

The image coordinate system described above is defined by a two-dimensional image-

based reference system of rectangular Cartesian coordinates.  Its physical relationship to 

the camera is defined by reference points.   

Camera calibration in the context of three-dimensional machine vision is the 

process of determining the internal camera geometric and optical characteristics (intrinsic 

parameters) and/or the 3-D position and orientation of the camera frame relative to a 

certain world coordinate system.  In geometrical camera calibration the objective is to 

determine a set of camera parameters that describe the mapping between 3-D reference 

coordinates and 2-D image coordinates.  The whole calibration procedure may include 

control point extraction from images, model fitting, image correction, and an additional 

step to compensate for radial and tangential distortions of the lens.  Correction of other 

error sources in feature extraction, like changes in the illumination, may also be required, 

especially in field measurements.  Various methods for camera calibration can be found 

from the literature.   
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Physical camera parameters are commonly divided into extrinsic and intrinsic 

parameters.  Extrinsic parameters are needed to transform object coordinates to a camera 

centered coordinate frame. In multi-camera systems, the extrinsic parameters also 

describe the relationship between the cameras.  The intrinsic camera parameters usually 

include the effective focal length, scale factor, and the image center also called the 

principal point.  These coefficients can be typically obtained from the data sheets of the 

camera and frame-grabber.  

Methods where the camera model is based on physical parameters, like focal 

length and principal point, are called explicit methods.  In most cases, the values for these 

parameters are in themselves useless, because only the relationship between 3-D 

reference coordinates and 2-D image coordinates is required. In implicit camera 

calibration, the physical parameters are replaced by a set of non-physical implicit 

parameters that are used to interpolate between some known reference points. 

In traditional aerial and terrestrial analogue photogrammetry, orientation is 

performed with the use of fiducial marks superimposed on the images and their nominal 

coordinates in the camera calibration certificate.  Measuring (digitizing) the fiducial 

marks can set up the transformation between camera and pixel coordinates.  Exterior 

orientation must be carried out for each image independently. It can be manually 

performed by measuring control points (reference points) or automatically using a 

method called bundle triangulation.  The following section describes the use of reference 

points in establishing exterior orientation.   

In these experiments, interior orientation was ignored, thus no lens calibration for 

lens distortion or check of camera quality was conducted.  Measurements presented in 
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this thesis were taken in a laboratory setting, the camera used was new, and the distance 

between the object and the camera was short.  Our findings show that the accuracy of the 

measurements was sufficient without accounting for interior orientation.  Exterior 

orientation was determined using marks (reference points) with known (pre-measured) 

coordinates.   

Determining the exterior orientation of an image in an automated fashion is 

considerably more difficult to implement than line following or driveback.  The 

orientation of an image is typically determined by identifying four or more points of 

known approximate XYZ coordinates.  Once these have been identified, the camera 

exterior orientation can be computed using a closed-form space resection.  To automate 

the space resection procedure it is necessary to use exterior orientation devices and/or 

coded targets.  Examples of these are shown in Figures 2.1a and 2.1b.  If either an 

exterior orientation device or coded targets are seen in any image they are identified and 

decoded, and if enough object points with approximately known 3D coordinates are 

available the exterior orientation can be completed (and even automated with the so-

called intelligent camera devices).  

Reference points (control points)  

Ultimately, the objective of determining the orientation of known coordinates is to 

calculate the relationship between all image and object coordinates.  In order to determine 

the orientation, several control points printed on the surface of the object must be 

measured (coordinated).  A control point is a point on an object that is represented in the 

image and for which the three-dimensional object coordinates (x, y, z) are known.  After 

obtaining suitable grey-scale or mixed monochrome digital images of the object, we 
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identify these control points in the image, and determine the coordinates of the control 

point in the array of image coordinates.   

Plane affine transformation can be used to obtain a two-dimensional 

transformation of the image based on the relationship between the object and image 

coordinates of the control points (Heijden, 1994).  Over-determination of object reference 

points is required for plane affine transformation; at least three control points are 

necessary.  In general, in order to obtain a stable over-determination, the more control 

points used, the better the outcome.  The research presented in this thesis required at least 

five well-distributed control points (where three well-distributed control points would 

form a triangle, not a line).    

Optimal accuracy is achieved in areas contained within the control points.  

Consequently, if multiple cameras are needed to photograph a single object, it is 

beneficial to include as many identical reference points as possible in neighbouring 

images.  Two types of reference or control points can be used: 1) signalized (or targeted) 

points that have been applied to the surface of the object; and 2) the object‘s natural 

features.  Control points need to be highly visible in the images captured for 

photogrammetry by digital imaging systems.  The following section provides a brief 

overview of the camera features needed for photogrammetric measurement.   

Digital imaging systems 

Traditional photogrammetry uses metric cameras to acquire images for analysis.  

A metric camera is characterized by stability rather than flexibility, and has the following 

features: a known and stable interior orientation, a fixed focal length (i.e., no zoom 

capability), good lens correction, and a central shutter.  Recently, with the rapid 
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development of digital photography, consumer-grade digital cameras have become 

commonplace; there is significant potential for their use in photogrammetric applications 

when calibrated (Cronk, Fraser et al., 2006).  In general, the differences between metric 

and consumer cameras are due to the quality and stability of the camera body and the 

lens.  Consumer cameras often have a zoom lens with large distortions that are 

inconsistent (e.g. can vary with focal length); thus, it is difficult to correct these 

distortions using calibration procedures (Linder, 2009).   

Linder notes that a consumer-grade camera suitable for use in photogrammetric 

measurement should have the following properties (Linder, 2009): 

 It should be possible to set the parameters for focal length, focus, exposure 

time and f-number manually.   

 The resolution needs to be sufficient for photogrammetry.  Generally, the 

higher the number of pixels, the better the resolution; however, small chips 

with a large number of pixels have a very small pixel size, and are not very 

light sensitive.  The signal-to-noise ratio is poor, particularly for high ISO 

values (>200) and in dark parts of the image.  In general, lighting 

requirements are more demanding when using consumer-grade cameras.   

 It should be possible to deactivate the auto focus, and manually set the 

distance parameters.   

 The digital images should be saved in a standard format (e.g. JPEG or TIFF).  

The image compression rate must be selectable; the best option is to turn off 

compression to minimize possible loss of quality.   
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 Accessories to reduce unwanted movement and optimize lighting should 

include a tripod, a remote release control, and an adapter for an external flash.   

Note that the focal length or pixel size is required for digital image processing and 

analysis; pixel size can be obtained from the calibration process.  In order to obtain 

accurate measurements using consumer-grade cameras, usually both interior orientation 

and exterior orientation determinations are required.   

Captured image may be corrupted by noise due to low lighting conditions, which 

affect the sensors, or due to the noise generated by the electronic circuitry of the imaging 

hardware.  Impulse noise is also commonly referred to as salt and pepper noise.  Blurring 

is caused by a relative motion between camera and object or out of focusing or due to 

corruption by noise.  Blurring is typically modeled by linear operation on the image. 

Hence restoration is also known as inverse filtering or deconvolution.  Pre-processing 

including deblurring or restoration may be required in photogrammetry. 

Illumination 

The particular type of image formation we discuss is the formation based on 

radiant energy, reflection at the surface of the objects, and perspective projection.  The 

information of the scene is found in the contrasts (local differences in irradiance).  

Carefully choosing the illumination of the objects is important in enhancing the contrasts 

for accurate measurements.  The purpose of front illumination is to illuminate the objects 

such that the reflectance distribution of the surface becomes the defining features in the 

image.  Many applications require this type of illumination: detection of flaws, scratches 

and other damages on the surface of material, DIC, etc.  In outdoor applications, specular 

illumination or diffuse illumination may be considered. 
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2.2.2 Applications of close-range photogrammetry in civil engineering 

Measurements in civil and mechanical engineering, particularly structural 

engineering applications have been made without physical contact by using 

interferometry, moiré technology, holographic and laser speckle interferometry, and 

theodolite measurement systems (Durelli and Parks, 1970) (Vest, 1979) (Ransom, Sutton 

et al., 1987) (Post, Han et al., 1994).  Recent technological improvements in image 

acquisition and image analysis opened new possibilities in many fields of engineering 

and science; the use of close-range photogrammetry in civil engineering is the focus of 

recent research.  Early applications of this technique at large civil engineering sites 

included measurements of excavation sites and damage assessment after an earthquake 

(Teimouri, Delavar et al., 2008).  Optical methods and image analysis were applied to the 

observation of cracks in mortar and concrete; the analyses included RGB combination, 

image filtering, binarization, and shape and fractal analysis of crack patterns (Ringot and 

Bascoul, 2001).   

Numerous laboratory and field studies have been conducted.  These include a 

pilot study of beam deformation measurement using digital close-range terrestrial 

photogrammetry.  Jauregui et al reported the photogrammetric measurement of global 

deflected shape of structures, which is not practical using traditional instruments 

(Jauregui, White et al., 2002) (Jauregui, White et al., 2003); in this exercise, the initial 

camber and dead-load deflection of pre-stressed concrete bridge girders were measured 

photogrammetrically and compared with level rod and total station readings, and also 

with dead-load deflection diagrams.  Niederost et al. reported using a digital still video 

camera to measure deformations occurring during the dehydration process of concrete 
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parts over several months where displacement vectors were obtained through tracking 

targets (Niederöst and Maas, 1997).  Similarly, Maas made photogrammetric 

measurements of the 3-D coordinates of signalized targets on a large water reservoir wall 

in Switzerland (Maas, 1998).  Measurement of concrete cracks using digitized close-

range photographs was reported by several researchers (Barazzetti and Scaioni, 2010) 

(Chen, Jan et al., 2001); in these works, edge-detection was used to identify the cracks; 

researchers inspected localized changes in the width of cracks.  Franke et al. conducted 

strain analysis of solid wood and glued laminated timber constructions using close-range 

photogrammetry; measurements were made of the progression of deformations, cracks 

and deterioration when loading and relieving the specimens (Franke, Franke et al., 2007).  

Hegger et al. studied the crack-opening process in pre-stressed concrete beams using a 

photogrammetric technique called grid-method (Hegger, Sherif et al., 2004).  Whiteman 

et al. described the use of digital photogrammetry for measurement of deflections in 

concrete beams (Whiteman, Lichti et al., 2002); a precision of 0.25 mm was achieved for 

deflections and comparisons were made with linear variable differential transformer 

(LVDT) deflection measurements.  Other works of metrological digital photogrammetry 

include testing of concrete and column (Woodhouse, 1999), thermal deflection of steel 

beams (Fraser, 2000), pavement deformation under rolling load (Mills, 2001), and 

deformation of a coal dredger (Fraser, 1995).  In these tests, retro-reflective targets were 

usually attached to and around the beams.  Both stable targets on walls and deforming 

targets on beams were used.   

Consumer-grade digital camera was used for measuring soil erosion, generating 

digital elevation models from soil surfaces for a planimetric area of 16𝑚2  with high 
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spatial and temporal resolution (Rieke-Zapp and Nearing, 2005).  A consumer-grade 

digital camera was used for image acquisition.  The camera was calibrated using BLUH 

software (Jacobsen, 2000).  The program system BLUH is a commercial bundle block 

adjustment program that allows camera calibration of the interior orientation including 

parameters to account for radial symmetric lens distortion as well as other systematic 

deviations of the camera geometry from the frame camera model.  Homologous points in 

overlapping images were identified with least squares matching. 

Photogrammetric analysis of photographs taken from a fixed viewpoint at 

different times during the loading process has been applied to soil mechanics experiments 

to capture non-homogeneous deformation throughout a test (Desrues and Viggiani, 

2004).  The photographed surface was textured, the scale of the photograph was 

determined from six or more reference marks placed on the specimen side. ,  

 

2.3 Close-range photogrammetry for beam deflection measurement 

2.3.1 Overview 

Although various close-range photogrammetric techniques have been proposed 

and applied to structural engineering problems, human knowledge, experience and skill 

still play a significant role in current photogrammetric measurement applications.  In 

particular, these experiential factors determine the extent to which the reconstructed 

model corresponds to the physical object or fulfils the task‘s objectives.  On the other 

hand, digital image processing (DIP) has achieved a level of maturity, and MATLAB and 

public domain DIP programs are widely available (Thyagarajan, 2006) (Semmlow, 2004) 

(Umbaugh, 2011). 
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In this thesis, we examined two simple methods for measuring a quasi-continuous 

deflection profile of beams in the laboratory by processing camera photographs, and 

compared the results with dial-gauge readings and the predictions of elastic beam theory.  

The data obtained with these methods can be used as input for inverse damage 

identification.  In this research, we used consumer-grade cameras obtained in the 

marketplace, and the widely available MATLAB image-processing toolbox to process the 

images for photogrammetric analysis.    

The first method is an edge-based approach; the procedures can be summarized 

as: 

a) An ordinary consumer-grade camera (Nikon D300S single lens reflex (SLR) 

digital camera, with an array of 2848 × 4288 pixels in each RGB image) was 

used to take colored photos of the beam with and without loading.  The 

images were saved as a RGB matrix with the following characteristics: 

       Size                                  Bytes                  Data Class 

   2848×4288×3                    36636672            Unit8 array 

b) The contrast between structure and background was enhanced using contrast 

enhancement in Adobe Photoshop.  This step is not necessary, but was shown 

to be useful.   

c) Since the cameras were not fixed to the ground, there were always small 

movements of the camera during photo-capture.  The detrimental effects of 

camera motion were reduced using image-registration; the image-registration 

technique detected camera movement, which was deleted from the calculated 

displacements.   

d) Image-segmentation and edge-detection were used to identify the continuous 

boundary between structure and background.  This was the key step in this 

procedure.  Edge-detection can be done manually, at a very high cost of time 

and patience; however, advanced automatic edge-detection techniques have 
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been developed that can do this job quickly (Semmlow, 2004) (Louban, 2009).  

Our research found that the performance of automated edge-detection 

algorithms depends on the level of contrast between the structure and the 

background and automated edge-detection tools varied in their sensitivity to 

contrast.  For example, in preliminary tests we did not attend to the contrast 

between the background and the beam; the MATLAB toolbox methods failed 

to reliably detect edges in these images.  Another application, the GROWCUT 

freeware program (a cellular automata algorithm for edge-detection 

[www.shawnlankton.com]), worked well with these images, however.  

Consequently, attention should be paid to lighting and background screening 

to improve the appearance of the targets in the photographs and enhance the 

effectiveness of automatic edge-detection techniques.   

e) The detected edges were saved as a black-and-white binary image, which is a 

binary matrix in MATLAB.  An averaging process called mollification was 

used to calculate displacement in pixel coordinates.   

f) The displacement solutions in the form of pixel coordinates were transformed 

to physical coordinates via homogeneous transformation.   

 

Image-registration 

Image registration is the alignment of two or more images so that they are 

optimally superimposed.  In order to achieve the best alignment, it may be necessary to 

transform the images using affine transformations (displacement and rotation).  Image 

registration can be assisted or unassisted; we need to perform an unassisted image 

registration, which relies on an optimization technique that maximizes the correlation 

between the images.   

Unaided image registration usually involves the application of an optimization 

algorithm to maximize the correlation, or some measure of similarity, between the 
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images.  The structure in the image and in the loading device moved during the tests 

presented in this thesis, but the supporting frame and the wall in the background 

remained immobile; therefore, these parts of the fixed background were cut from the 

whole picture.  The appropriate transformation was applied to one of the images, the 

deformed image, and a comparison was made between this transformed image and the 

reference image (also termed the base image).  The optimization routine seeks to vary the 

transformation until the correlation is optimal.  In the research presented here, image 

registration was used to detect movement of the camera mounted on a tripod.   

Segmentation and edge-detection 

Image segmentation is the identification and isolation of components of an image 

into regions that correspond to structural units.  Segmentation is used to isolate the 

structure of interest in both the deformed and the reference images, and thus enable the 

identification of displacements of the structure.  The problems associated with 

segmentation have been well-studied and a large number of approaches have been 

developed, many specific to a particular type of image (Heijden, 1994).  General 

approaches to segmentation can be grouped into three classes: pixel-based methods, 

regional methods, and edge-based methods.  Pixel-based methods are the easiest to 

understand and to implement, but are also the least powerful and, since they operate on 

one element at a time, are particularly susceptible to noise.  Continuity-based and edge-

based methods approach the segmentation problem from different angles: edge-based 

methods search for differences while continuity-based methods search for similarities in 

the image.  The second method is a surface-based approach, in which image correlation is 

used to find the displacement of a subset of pixels.   
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2.4 Photogrammetric measurement of beam deflection using an edge-based 

approach 

The DIP methods described in Section 2.3 are useful tools in making a digital 

phtogrammetric measurement.  These methods have been extensively developed, but 

their wise use and commercialization to make industrial photogrammetric measurement is 

still a problem for the future.  In this section, we present a procedure for measuring 

pseudo-continuous deflection profile of a beam which is based on edge-detection and 

other DIP techniques described in Section 2.3.   

The experiments presented in this thesis used consumer-grade digital cameras 

(rather than expensive metric cameras) for edge-based measurement of beam deflections 

via close-range photogrammetry.  A photogrammetric technique based on edge-detection 

was used in this research.  The upper and lower edges of the beam were detected in 

digital images taken at different loading stages.  The displacements of the two edges were 

calculated by comparison to reference images (i.e. digital images recorded when the 

beam was unloaded).  The average displacement of the beam‘s top and lower edges is 

considered representative of the loaded beam‘s deflection.   

The consumer-grade camera (Nikon D300S single lens reflex (SLR) digital 

camera) used in the present work has the following features; the sensor size of the camera 

can be up to 12 megapixels, with an array of 4288 × 2848 pixels in each RGB image.  

More than one camera can be used to measure longer beams, with the field of view for 

each camera overlapping slightly to ensure image alignment.  This technique is becoming 

standard procedure in state-of-the-art digital image processing; multiple cameras must be 
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triggered simultaneously.  In the current experiments, RGB images (typically JPEGs) 

were taken for post-processing at each load step and after the deformation had stabilized.  

The schematic in Figure 2.2 outlines the procedural steps for measuring the beam 

deflection using close-range photogrammetry.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Procedural steps for beam deflection measurement using photogrammetry 

based on edge-detection.   

 

Edge-detection: The beam‘s edges in the images taken before and after loading 

were defined using edge-detection image analysis techniques (Semmlow, 2004) (Louban, 

2009).  The pixel coordinates of detected edges were then transformed to physical 

coordinates and the displacements between images taken at different load levels were 

computed.  The edge-detection was performed on a sub-image that included both the 

region of interest on the beam and the background; this increased the efficiency of the 

Test: Take reference image and deformed images  

Edge detection Define Coordinate 

transformation 
Image 

registration 

Calculate physical displacement 

Mollification of the displacement 
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algorithm.  The edge detection algorithm operated on the original RGB image; the 

portion of the image containing the detected edge was transferred to a grey-scale image, 

and a threshold in pixel values was set to separate the edge from the background.  The 

criteria would either be set manually by observing the grey-scale values of the image or 

through the histogram of pixel values.  To enhance the edge-detection operation, a black 

screen was placed behind the beam to enhance the contrast.  The image was then 

transformed to a binary grey-scale format.  The experimental set-up is shown in Figure 

2.3; and one set of detected edges is shown in Figure 2.4.  The edge-based 

photogrammetric measurement technique was shown to be feasible in laboratory settings.   

 

    

Figure 2.3. The laboratory set-up for tests of a step-cut beam. 
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a) 

 

b) 

 

c)   

Figure 2.4. The detected upper-edge of a cantilever beam: a) a cut-out RGB image; b) the 

detected edge in a grey-scale image; and c) a binary image of the edge generated using a 

pixel threshold.   

 

Perspective projection is a simple model describing the image formation with a 

lens system.  It is equivalent to a pinhole camera model.  Homogeneous coordinates are a 

powerful concept to describe the transformations.  Translation, rotation, scaling and 

perspective projection can be handled mathematically with a single matrix multiplication.  

The transformations can be expressed as 𝒙 = 𝑴𝑿 .  In principle, the one-to-one 

correspondence between the physical and image coordinates of the object has to be 

established via a camera/lens calibration procedure. 

Coordinate transformation 

Mechanical devices, such as dial gauges, require a stable base for mounting; 

photogrammetric measurements require the selection of stable reference points on a 

stable background to calibrate coordinate transformation from pixel coordinates to global 

physical coordinates.  In this study, several stable points in the background and geometric 
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feature points on the beam area were used as reference points.  In the initial state, these 

points were assigned physical coordinates and these control points were then used to 

define the homogeneous transformation between pixel and physical coordinates.  A 

homogeneous coordinate system was used to define this transformation which is defined 

by a 4 × 4 transformation matrix (𝑻) with a 4th row of [0 0 0 1].  The homogenous 

transformation equation is (Luhmann, Robson et al., 2006):     

1,1 1,2 1, 1,1 1,2 1,3 1,4 1,1 1,2 1,

2,1 2,2 2, 2,1 2,2 2,3 2,4 2,1 2,2 2,

3,1 3,2 3, 3,1 3,2 3,3 3,4 3,1 3,2 3,

. .

. .

. .
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         (2.1) 

or equivalently 

 𝑨 = 𝑻𝑩                                                (2.2) 

where 𝑨  is the physical coordinate of the reference point, 𝑩  is the corresponding 

coordinate of the reference point in the image coordinate system, and 𝑻  is the 

transformation matrix to be defined.  At least four pairs of non-collinear points are 

required for computing the matrix 𝑻, however, as stated before, this transformation is 

usually optimized (in terms of least squares) with more than four reference points.   

Image registration  

Though mounted on a tripod, temporary movements of the camera cannot be 

avoided, especially during shooting.  This motion may cause changes in image 

orientation, and induce inaccurate photogrammetric measurements.  In order to detect 

potential detrimental camera movements, image registration of stable background regions 
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in the image sequence was used to detect any changes in camera orientation; when 

detected, the change in image orientation was corrected (Semmlow, 2004).   

Mollification  

Model updating and damage identification are often performed with FE models; 

however, the number of points measured along the beam (>4000 in this research) is much 

higher than the number of nodes in a FE model.  A mollification-based procedure was 

used for noise-filtering and data reduction.  The mollification method is an inverse-

problem technique, and has multiple applications when implemented as a filtering 

algorithm, including the reduction of data through filtering and numerical differentiation 

(Murio, 1993) (Murio, Mejia et al., 1998).  Furthermore, although displacements can be 

obtained directly through close-range photogrammetry, the rotation angles are indirectly 

accessible, and the mollification technique allows their approximation (Murio, Mejia et 

al., 1998).   

To illustrate the mollification technique, let us consider the locally integrable two-

dimensional function 𝑓(𝑥) in a domain 𝛺 in 𝑅2.  The mollifier of 𝑓, denoted as 𝐽𝛿𝑓(𝑥), is 

defined as:    

𝐽𝛿𝑓 𝑥 =  𝑤𝛿 𝑥 − 𝑦 𝑓 𝑦 𝑑𝑦
𝑅2                                                     (2.3) 

The mollifier‘s radius is  𝛿 .   For any number 𝛿 > 0, we define the family of 

functions 𝑤𝛿 𝑥  as: 

𝑤𝛿 𝑥 =
1

𝛿2 𝑤(
𝑥

𝛿
)                                                                      (2.4) 

The weight function 𝑤(𝑥) is characterized as 𝐶∞ , is non-negative, has a total 

integral of 1, and vanishes outside the unit ball centered at 0: 𝐵 0,1 =  𝑥 ∈ 𝑅 :  𝑥 <
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1 .  Under such conditions, it is clear that 𝑤𝛿 ∈ 𝐶0
∞(𝐵(0, 𝛿)) , and moreover, that 

 𝑤𝛿(𝑥)
𝑅2 𝑑𝑥 = 1.   

In the present study, we selected the following weight function:  

𝑤 𝑥 =  
𝐶𝑒𝑥𝑝  −

1

1− 𝑥 2                   𝑓𝑜𝑟  𝑥 < 1                       

0                                 𝑓𝑜𝑟  𝑥 ≥ 1        
              (2.5) 

where 𝐶  represents a constant normalizing the kernel function.  It is evident that the 

corresponding discretized version of the mollification can be computed using a numerical 

convolution.  The numerical convolution and the optimal selection of the mollifier‘s 

radius using cross-validation (Woodbury, 2003) was used to filter the data and 

numerically compute the derivatives in the current research.    

Within the Euler-Bernoulli beam theory, the rotation angle is the derivative of the 

deflection, 𝜃 = 𝑑𝑣/𝑑𝑥.  It is well known that direct numerical differentiation of the raw 

data is an ill-posed problem.  The mollification approach to numerical differentiation can 

be used to substitute the original ill-posed problem of finding the derivative of the 

deflection , 𝑣′, by a new problem of finding the derivative of its mollifier (𝐽𝛿𝑣)′.  It is 

demonstrated that this numerical technique is consistent and stable (Murio, Mejia et al., 

1998).  This means that the reconstruction of the derivative of the mollified data function 

is stable with respect to the noise existing in the measurements.  The central difference 

scheme is applied to evaluate the first derivative. The rotation at a given node 𝑥𝑖  is 

obtained as follows: 

 𝜃 𝑥 = 𝜃𝑥𝑖 = 𝐷0 𝐽𝛿𝑣 =
𝑣 𝑥𝑖+∆𝑥 −𝑣 𝑥𝑖−∆𝑥 

2∆𝑥
                                           (2.6) 

where ∆𝑥 is the distance between two successive nodes.   
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The following example illustrates the implementation of the measurement 

technique described above; a cantilever beam subjected to a concentrated load was tested.  

The experimental set-up is shown in Figure 2.5. The camera-to-object distance was 

approximately 0.5 m, which is sufficient for one-camera measurement of a 1 m-long 

beam depending on the range of view.  The deflection profile and rotation angle that was 

obtained using the described edge-detection based method are reported in Figure 2.6 and 

2.7.  These results were compared with the predicted theoretical deflections, and the 

photogrammetric measurements were found to be accurate.   
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Figure 2.5: The experimental set-up for close-range photogrammetric measurement of the 

displacement of a loaded cantilever beam with a high-contrast stable background using 

consumer-grade optical equipment.   
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Figure 2.6:  Beam deflection:  Experimentally-obtained measurements using edge-

detection methods and close-range photogrammetry technique.   

 

 

Figure 2.7:  Beam Deflection:  Theoretical deflections with 𝑬 = 𝟔𝟔 GPa and 𝑬 = 𝟕𝟐 

GPa, and correspondence of the predicted values to the experimentally-measured 

deflection profile shown in the previous figure.  Predictions were based on elastic beam 

theory.  The elasticity modulus of the aluminum alloy material was calibrated at 

𝟕𝟎. 𝟏𝟒 𝑮𝑷𝒂.  Measurements were obtained using edge-detection methods and close-

range photogrammetry techniques.   
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Figure 2.8:  Rotation computation from the mollified displacement measurements. 

 

2.5 Photogrammetric measurement of beam deflection using a surface-based 

approach 

A surface-based approach to photogrammetry employs image correlation to 

obtain a measure of displacement.  Digital Image Correlation (DIC) effectively tracks the 

movement of natural surface features, or reference patterns applied to the surface (Fig. 

2.1), when a beam is displaced during the test or experiment. The displacement of these 

surface patterns within discretized subsets or facet elements of the whole image is 

analyzed.  The maximum correlation in each window corresponds to the displacement, 

and gives the vector length and direction for each window.   

 

2.6 Digital image correlation 

The commercially most successful image processing-based measurement 

technique is the digital image correlation (DIC) method.  In recent years, DIC has 

become a popular tool in the experimental mechanics community for full-field 
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displacement measurement and experimental strain analysis.  A wide range of 

applications demonstrate the versatility of this technique.   

Digital Image Correlation is a full-field image analysis method, based on grey 

value digital images that can determine the contour and the displacements of an object 

under load in three dimensions.  A recent review on 2-dimensional DIC for in-plane 

displacement measurement is given in (Pan, Qian et al., 2009); a more comprehensive 

review of DIC, including both 2D and 3D measurements, and also a comprehensive 

presentation is given in the book (Sutton, Orteu et al., 2009). 

Peters and Ranson (1982) proposed and implemented a DIC technique that is 

applicable to the computation of surface strains and displacements (Peters and Ranson, 

1982) (Chu, Ranson et al., 1985) (Sutton, Turner et al., 1991).  This technique relies on 

the analysis of intensity patterns in digital images of the object under consideration 

(reference/undeformed and deformed), with a random pattern of white speckles on its 

surface.  (Digitizers were used before the invention of digital CCD cameras).  The digital 

image is actually a rectangular array made up of picture elements called pixels. The 

determination of local disparities existing between pairs of images, or the problem of 

image registration, is a basic requirement of computer vision. In image registration, 

cross-correlation is frequently used to detect local similarities between two images.  A 

common correlation function is the least-squares correlation function (sum of squared 

differences):   

𝐶 =
  𝑓−𝑔 2
𝑆

 𝑓2
𝑆

                                                                     (2.7) 
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It is non-negative and approaches 0  when the values for 𝑓  and 𝑔  are similar. 

Different alternative versions of the sum of squares exist: normalized sum of squared 

differences and zero-normalized sum of squared differences; the latter was shown to be 

the most reliable and robust criterion in case of image blurring and variations in lighting 

and exposure conditions while taking reference and deformed photos (Tong, 2005).  The 

image correlation algorithm is actually the pattern matching techniques used to compute 

image motion from a sequence of two or more images (Giachetti, 2000),  

Another option is the normalized cross-correlation coefficient (Giachetti, 2000):  

𝐶 =
  𝑓∗𝑔 𝑆

   𝑓2∗𝑔2 𝑆  
1
2

                                                        (2.8) 

Unlike the least-squares correlation function (which should be minimized in the 

search for matched pairs of pixel subsets), the cross-correlation function should be 

maximized.   

The DIC technique for the research presented in this thesis consisted of the 

following: a) Consider two images of the same object before and after deformation. b) 

Define a subset Ω in the undeformed image, centered at point 𝐴(𝑖, 𝑗), as an (𝑛 × 𝑛) pixels 

reference area. c) Define a bigger subset Ω∗ in the deformed image, centered at the same 

position, as an (m × m) pixel area (m > 𝑛). 

The normalized cross-correlation coefficient as a function of position coordinate 

(x, y) is written as:    

𝐶 𝑥, 𝑦 =
  𝐼(𝑖,𝑗 )𝑛

𝑗=1
𝑛
𝑖=1 ∙𝐼∗(𝑖+𝑥,𝑗+𝑦)

   𝐼2(𝑖,𝑗 )𝑛
𝑗=1

𝑛
𝑖=1 ∙  𝐼∗2(𝑖+𝑥,𝑗+𝑦)𝑛

𝑗=1
𝑛
𝑖=1

                                      (2.9) 
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where 𝐼(𝑖, 𝑗) is the grey value of the subset Ω at the point (𝑖, 𝑗), and 𝐼∗(𝑖 + 𝑥, 𝑗 + 𝑦) is the 

grey value of the subset Ω∗ at the point (𝑖 + 𝑥, 𝑗 + 𝑦).  For the DIC analysis using the 

ARAMIS system presented in this thesis, the 𝑛 value was chosen to be 15.   

In order to achieve sub-pixel accuracy (so that the maximum correlation 

coefficient value can be located between two pixels, rather than at a discrete pixel 

position), a continuous correlation distribution is constructed by fitting the discrete 

correlation coefficients to a 2D curved surface.  From this theoretical continuous 

distribution, the maximum correlation coefficient value can be determined using an 

optimum search technique, thus achieving sub-pixel accuracy.   

Before evaluating the similarity between reference and deformed subsets using 

the correlation criterion, the intensity of these points with subpixel locations must be 

provided. Thus, a certain subpixel interpolation scheme should be utilized. In the 

literature, various sub-pixel interpolation schemes including bilinear interpolation, 

bicubic interpolation, bicubic B-spline interpolation, biquintic B-spline interpolation and 

bicubic spline interpolation have been used. A high-order interpolation scheme (e.g. 

bicubic spline interpolation or biquintic spline interpolation) is recommended by Schreier 

et al  (Schreier, Braasch et al., 2000) since they provide higher registration accuracy and 

better convergence character of the algorithm than the simple interpolation schemes do. 

Basic principles of DIC measurement 

DIC is an optical full-field measurement technique that measures the deformation 

of an object‘s surface. The image correlation system tracks random grey-value patterns in 

small areas (image subsets) of images taken during deformation.  Two cameras (placed 

according to triangulation principle) can be used along with stereo vision models to 
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obtain 3D deformation measurements. The corresponding surface strains are calculated 

from surface deformations or calculated simultaneously with displacement, depending on 

the method and representation used.   

Several commercial DIC systems have already been developed and 

commercialized, including: ARAMIS, Correlated Solutions, and LaVision‘s StrainMaster 

DIC system (LaVision). The work presented in this thesis was conducted using the 

ARAMIS DIC system (GOM and Trillion Quality Systems).   

 

Figure 2.9: the ARAMIS system of the GOM Company 

 

Figure 2.8 shows a typical experimental setup using the ARAMIS DIC system.  A 

random speckle pattern using black and white spray paints is applied to the surface of the 

specimen.  Note that two cameras are positioned on a special tripod with a stable 

mounting base and with support bars that allow flexibility in positioning the cameras.   
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External light was used to provide optimal exposure.  The lighting is especially important 

and the contrast between the object and the background affects the quality of the 

measurements.  The stability of the camera set-up is particularly important when 

capturing images; camera movement and vibration causes errors in calibration and 

deformation calculations. Trials were conducted to determine optimal conditions for a) 

camera placement and b) random speckle pattern.   

High zoom lengths can be used in the ARAMIS system along with a 1-inch
2
 (25.4 

mm) calibration block to measure a small region.  A calibration block is a target with a 

dedicated pattern with known pattern dimensions, and is used to calibrate the cameras. 

The calibration block must be produced with special care to ensure the accuracy of the 

pattern‘s dimensions.  The ARAMIS system comes with pre-manufactured calibration 

blocks. Random speckle patterns were created and optimized using trial and error.   

 

2.7 Summary 

In this chapter we developed one photogrammetric measurement for beam 

deflection and presented the optical method – DIC, for obtaining strain/displacements on 

the surface of a specimen.  The edge-detection-based photogrammetric measurement of 

beam deflection profiles provide input data to drive a damage identification procedure 

which is to be developed in the next chapter.  The results were comparable to the 

predictions of calculated dead-load deflection diagrams.  The DIC measurement provides 

input data to drive the material parameter identification procedures which will be 

presented in chapters 4 and 5.   

 



 

 

46 

CHAPTER THREE: DAMAGE IDENTIFICATION OF EULER-BERNOULLI 

BEAMS USING FULL-FIELD MEASUREMENTS 

 

“To perform an effective analysis is an art (K.J. Bathe)”, to perform an effective 

damage identification is even a finer art.   

  

3.1 Introduction and background 

3.1.1 An introduction to damage identification problem 

Structural systems undergo degradation processes and become aged through the 

course of time, or may deteriorate suddenly for a variety of reasons, such as unexpected 

loading or natural causes.  As a result, damage occurs, generally in the form of localized 

stiffness decrease in structural members.  In general, early detection of damage is vital in 

order to monitor the continuous degradation of the structure.  Without monitoring, 

continuous damage can ultimately lead to catastrophic failure of the system. 

Recent events show that structures are not immune from disastrous collapse.  

From some of these events we list: The Silver Bridge failure in West Virginia in 1967 

caused 46 deaths; the collapse of the Mianus Bridge in 1983; the de la Concorde overpass 

collapse in Quebec crushed five people to death; and, on August 1, 2007, the I-35W St. 

Anthony Falls Bridge over the Mississippi River in Minneapolis, Minnesota collapsed in 

the middle of rush hour.  The collapse of the Minneapolis Bridge in particular has raised 

a public safety issue concerning the 73,784 bridges in U.S.A that are rated ―structurally 

deficient‖ by the U.S.A Department of Transportation (Arnoldy, 2007).  In response to 

disasters, there is an ever-increasing demand for assessment of the integrity and 
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reliability of structures in service.  As such, the identification of structural damage has 

attracted intensive research efforts in the past thirty years.   

Structural damage identification technique involves the localization and detection 

of damages that occur in a structure from measurements of its dynamic and static 

responses.  The process of implementing a damage identification strategy for aerospace, 

civil and mechanical engineering infrastructure is referred to as Structural Health 

Monitoring (SHM) (Farrar and Worden, 2007) (Worden, Farrar et al., 2007).  This area 

involved a full research specialization in the last two decades.  For example, when 

replacing the I-35W St. Anthony Falls Bridge, vibrating-wire strain gauges were 

positioned inside piers and shafts to monitor the new bridge.  SHM has become a 

fundamental tool in maintaining safety and integrity of structures and avoiding loss of life 

and property, as can be testified by the dedicated academic journal.  Since 2002, the 

journal ―Structural Health Monitoring‖ is fully dedicated to this entire area of research 

(http://shm.sagepub.com/).  In the following, we give a brief presentation of the most 

used approaches for damage identification. 

3.1.2 Material-level methods 

Some visual and localized experimental techniques are widely used for 

monitoring structural behaviours, these techniques include acoustic emission tests, 

ultrasonic methods, magnetic field methods, radiographs, and eddy-current methods 

(Phares, Rolander et al., 2001) (Kundu, 2004).  These techniques have been called local 

methods (Doebling, Farrar et al., 1996), but they should more appropriately be referred to 

as material-based methods, as they detect defects on the material level.  The results of 

these techniques do not directly translate to stiffness changes on the structural level.   
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3.1.3 System identification 

Many investigators have used system identification techniques for the non-

destructive assessment of structural integrity.  System identification refers to the 

determination of a mathematical model through observation of the relationships between 

a system‘s inputs and the corresponding outputs (Juang, 1994) (Ljung, 1999).  System 

identification approaches are commonly used for the dynamic systems employed in 

electrical and mechanical engineering.  In civil engineering, the application of system 

identification focuses on the estimation of modal properties: modal frequencies, damping, 

modal shapes, etc.  Standard techniques exist for selecting the mathematical model 

structure from a set of model candidates (Ljung, 1999), including physical and non-

physical classes of models, such as ARMA models or state-space models.  Popular 

methods for model determination include least squares and recursive least square 

methods, maximum likelihood methods, and Bayesian methods.  System identification 

relates strongly to theory of optimal controls.   

Unfortunately, mathematical models such as state space models and ARMA 

models are generally not directly applicable to structural damage identification because 

damage needs to be associated to physical changes; in particular, through the use of 

parameters that define the structural properties, such as the reduction in stiffness or 

material modulus, or the size and location of cracks.  In contrast, system identification 

techniques usually provide a phenomenological mathematical model, which requires 

additional effort to translate changes in the model to damage states in the structure.  For 

example, ARMA models were used for SHM (Peeters, 2000), where modal frequencies 
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and modal damping could be obtained, the change in these two parameters was used to 

indicate possible damage.  

In structural damage assessment, damage is usually related to changes in the 

internal material structure for ductile behaviour such as steel materials and/or the 

appearance of cracks for geomaterials.  Damage accumulation is associated with a 

reduction of the structural members stiffness, and is generally expressed as a ―damage 

variable‖ comparing the remaining stiffness with a reference value (Bicanic and Chen, 

1997) (Kokot and Zambaty, 2009a).   

3.1.4 Model updating 

Damage identification can be formulated as a parameter-based model updating 

problem.  Model updating focuses on the improvement of a mathematical model using 

experimental data.  Usually a mathematical model is defined to translate parameters 

describing structural damage to measurable responses or data characteristic of the 

structure, such as modal characteristics, static deflections, strains, derived characteristics, 

and dynamic time response history.  An optimization problem is usually formulated to 

minimize a measure of the difference between the experimental and computed outputs.  

Model updating is solved as an estimation of predefined uncertain structural parameters 

involving least-square output matching.   

As defined, model updating is often solved as a parameter identification problem.  

Formally, parameter identification is the process used to inversely determine or update a 

set of unknown parameters from a mathematical model through the examination of 

measured responses and derived data to a given input.  This process is usually called 

parameter estimation, and statistical analyses are often associated with the estimation 
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process to determine a confidence region for the estimated parameters.  Within structural 

health monitoring literature, terms such as model identification, structural identification, 

or damage identification are often used inter-changeably.  Thus, these terms are used 

somewhat arbitrarily.   

The model-updating problem is also considered as an inverse problem; depending 

on the definition of the cost function, the type of data, and the amount of data available, 

the mathematical problems need to be solved can be well-conditioned or ill-conditioned.   

3.1.5 Finite element model updating 

Since the FE model has been proven to be the most appropriate tool for modeling 

structures, model updating for structures usually refers to FE model updating.  The 

purpose of damage identification is to update the parameters of the FE model to match 

the results with measured data.   

Research in the area of FE model-updating methods were initiated in the 1990‘s 

to identify the state of structures from given measurements.  Generally, in damage 

identification problems, a finite-element model of the studied structure, with a known 

geometry and topology, is constructed with parameterized constitutive models at the 

element level.  Identifying these parameters provides the location and severity of 

structural damage; understanding of the damage state and prediction of future 

performance can also be achieved with an updated FE model (Brownjohn, Xia et al., 

2001). 

3.1.6 The four levels of damage assessment 

A system of classification for damage-identification methods, as presented by 

(Doebling, Farrar et al., 1996), who defined four levels of damage identification: 
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 Level 1 (Existence):  Determination that damage is present in the structure. 

 Level 2 (Location):  Determination of the geometric location of the 

damage. 

 Level 3 (Severity):  Quantification of the severity of the damage. 

 Level 4 (Diagnosis & prognosis):  Prediction of the remaining service life 

of the structure. 

Levels 1 to 3 pertain to the problem of damage identification.  Different methods 

are used to solve the various levels of a damage identification problem with various 

degrees of precision.  Level 4 refers specially to structural health monitoring after 

damage is located and quantified or when an updated model is developed to precisely 

describe the structure‘s behaviour.  The identified structural parameters or member 

properties (e.g. 𝐸𝐴 for trusses or 𝐸𝐼 for beams) can be used for damage assessment, and 

for load rating in the management of structural systems (e.g. bridge management 

systems).  Model-based updating and detection techniques are necessary for the 

assessment of damage severity and the prognosis of the future behaviour of the structure.  

3.1.7 Classification of damage identification methods 

Nowadays, an extensive literature for damage identification in structures is 

available.  The majority of existing approaches can often be classified into two major 

categories: i) dynamic damage identification methods using dynamic testing and dynamic 

test data (modal properties, time histories, etc.); and ii) static damage identification 

methods using static test data (displacements, strains, etc.).   

We can also adopt another classification for damage identification methods to 

distinguish between model-based and non-model-based methods.  As stated before, the 
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model-based methods are usually FE model updating techniques for damage 

identification; these methods can be further divided into two classes: i) matrix updating 

that are non-parametric methods based on property matrix updating; and ii) parametric 

updating that use a parameterized representation of the model.  Most FE model updating 

methods for damage identification are parametric-based techniques.  Non-model-based 

methods include matching response contours, checking irregularity (often called damage 

index in the response data and/or derived data from responses), and detection of 

nonlinearity and pattern recognition paradigms using neural networks and time series 

analysis models such as AR models, ARMA models (Sohn, Worden et al., 2002) 

(Omenzetter and Brownjohn, 2006). 

The classification of damage identification methods can be based on the targeted 

application to define two classes: 1) local level damage identification; and 2) global level 

damage identification.  The local level methods focus on the details related to the damage 

in a given structural member.  Usually for a beam member or a plate/shell member, the 

problem is to locate and quantify localized damage in the form of discrete cracks, or to 

reconstruct a spatially distributed damage field.  A great deal of work has been done to 

address the problem of crack localization in a beam, using dynamic or static test data.  

Recently, the problem of identification of stiffness variation in a beam has also attracted 

interests among researchers.  Local level methods reveal details about damage to a 

structural member.  By exhaustive application to an entire structure, these local level 

methods could provide a complete picture of the current damage state, or health state, of 

the structure.  For large and complex structures, these methods are best used to 

periodically monitor specific parts of the structure.  
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A structural model consisting of an assembly of many members is considered 

when applying global level methods.  Parameters are defined as the stiffness of a cross 

section area/inertia of each member, i.e. damages are defined as the ―average‖ reduction 

of stiffness for a member, which is usually modeled as one element or a substructure in 

the FE model.  After the localization of a possible damage in a structural member, usually 

a truss or beam, a direct examination of that member is thereafter performed to determine 

its condition in detail.   

Table 3.1: A synopsis for the classification of damage identification methods   

Model-based methods 

Matrix updating 

Parametric updating 

Non-model-based methods, i.e. response-based methods 

 

3.1.8 Overview of this chapter 

In Section 3.2, the state-of-the-art of damage identification methodologies is 

reviewed with an emphasis on the static response-based methods.  We will also discuss 

some related issues including measurement of responses, quantification of damage, 

identifiability, and regularization of ill-posed inverse problems in Sections 3.2 to 3.5.  

Next, we propose a new methodology for damage identification in Euler-Bernoulli beams 

using measurements of static deflections.  Two formulation techniques are discussed: (i) 

The first method uses the equilibrium gap concept; and (ii) the second technique employs 

the adjoint optimization technique to minimize a data discrepancy functionally expressed 

as a misfit between the measured and model-based deflections.  To overcome the ill-

posedness inherent in these types of formulations, a regularization technique based on the 
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Tikhonov-Total Variation (TTV) is used.  The proposed methodology is validated using 

synthetic data for beams with known damage locations and levels (i.e., the distribution of 

stiffness is known).  In the second phase of validation, a series of experiments are 

presented; four beams with different types of predefined damage were tested and used for 

validation.   

3.2 Literature review  

3.2.1 Dynamic damage identifications  

The dynamic identification techniques are by large account more extensively 

studied than the static-based methods, and the corresponding literature is quite extensive.  

The main assumption is that damages alter the dynamic response of the structure; 

difference between the predicted and measured dynamic characteristics can be used to 

retrieve damage information.   

Engineers and researchers in the aerospace and offshore oil industries began to 

study vibration-based damage detection during the late 1970s and early 1980s.  Early 

works used correlation changes in the modal properties to the changes in structural 

properties (Silva and Maia, 1999).  Afterwards different types of dynamic characteristics 

have been employed, including natural frequencies (Bicanic and Chen, 1997) (Salawu, 

1997), modal shapes (Doebling, Farrar et al., 1996) (Kim, Ryu et al., 2003), modal shape 

derivatives (Maeck and Roeck, 1999) (Ndambi, Vantomme et al., 2002), frequency 

response function shapes (Liu, Lieven et al., 2009),  response time histories, wavelet 

analysis of dynamic signals (Kim and Melhelm, 2004), and harmonic responses (Kokot 

and Zambaty, 2009a) (Liu and Chen, 2002) (Kokot and Zambaty, 2009b), impulse 

responses (Sophia and Karolos, 1997) (Mangal, Idichandy et al., 2001). 
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The literature on vibration-based damage identification methods is extensive, as 

testified by the number of reviews published.  We cite few review papers in this area:  

Natke reviewed the FE model updating techniques in frequency domain (Natke, 1988).  

Friswell and Mottershead gave an extensive review of FE model updating using dynamic 

data (Friswell and Mottershead, 1995), a special issue of Mechanical Systems and Signal 

Processing is devoted to this topic (Mottershead and Friswell, 1998), and a  recent 

overview of dynamic based methods is available in (Friswell, 2007).  

Literature review with a focus on the statistical pattern recognition viewpoint, and 

emphasized data fusion, cleansing, outlier analysis was given in (Doebling, Farrar et al., 

1996), later extended in (Sohn, Farrar et al., 2003), the authors referred to these 

techniques as statistical models.  Other important reviews include (Lynch and Loh, 2006) 

(Carden and Fanning, 2004) (Doebling, Farrar et al., 1998) (Doebling and Farrar, 1997). 

A recent literature review that includes the basic approaches of dynamic 

monitoring, and guidelines for sensor selection, data collection is available in (Hsieh, 

Halling et al., 2006).  In this review, the experimental approaches were separated into 

ambient vibration, forced vibration (usually harmonic), and free vibration monitoring.  

Ambient vibration tests are easiest to conduct; however, in ambient vibration methods, 

stationarity, whiteness, and unidirectional excitation are often assumed.    

Because of the extensive literature for vibration-based damage identification and 

health monitoring research, an adequate classification is necessary to simplify the review.  

In the classical review by Doebling et al, dynamic identification methods were 

categorized as (Doebling, Farrar et al., 1996): 

 Modal frequency Based Methods 
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 Modal Shape Based Methods 

 Modal Shape Derivatives such as Curvature/Strain Modal Shape Based 

Methods 

 Dynamically Measured Flexibility Based Methods 

 Matrix Update Based Methods (direct, non-parametric updating method) 

 Non-linear Methods (detection of nonlinearity) 

 Neural Network Based Methods 

 Other Methods 

This categorization is mainly based on the types of dynamic characteristics 

employed; this classification paradigm was later followed in many other reviews, with 

sometimes minor modification (Carden and Fanning, 2004).  

We had given a different synopsis in section 3.1.7: model-based methods, and 

non-model-based methods.  Most damage identification methods are model-based 

approach, in which a model (usually a FE model) is updated to minimize the difference 

between measured and calculated properties; therefore model-based methods are 

normally FE model updating methods, and can be further divided into two classes: matrix 

updating and parametric updating.   

 

Model-based methods - I: Matrix updating for dynamic FE model updating 

The non-parametric, matrix updating methods adjusts the stiffness, mostly along 

with the mass, and in some cases, the damping matrices, from measured data (mostly 

modal testing data or dynamic FRFs).  These methods tend to fit the available 

experimental data exactly, update the mathematical model, but generally do not provide 
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any direct physical meanings, and thus they are usually not suitable for damage 

assessment purposes, but they are useful for control design and predictive modeling.  

This type of methods have been called ―direct updating‖ methods in the literature since 

no iterative solution process is required (Caesar and Pete, 1987), but we prefer to call 

them ―non-parametric updating‖ methods, or ―matrix-updating‖ over ―direct methods‖ or 

―direct updating methods‖, since the name ―direct methods‖ is widely associated to 

optimization algorithms without utilizing gradient information. 

Non-parametric updating methods are global level methods; although they can be 

performed to deal with any level of complexity, for damage identification purposes, the 

mathematical models need to be very simple, such as discrete spring-mass systems. 

 

Model-based methods - II: parametric updating methods for dynamic FE model 

updating 

In parametric-updating methods, the problem of damage identification is 

formulated as a parameter estimation problem where an error function is defined as the 

discrepancy between a mathematical model response and measured data.  The formulated 

problem is in the form of an optimization problem where the unknowns are the 

parameters defining the mathematical model that fit the best the measured data.  

Parametric model updating methods can be subdivided according to the nature of the 

measured data they use which can be: mode frequency, mode shapes, mode shape 

curvatures, etc, as in the classification we have mentioned by Doebling et al. (Doebling, 

Farrar et al., 1996).  



 

 

58 

Based on the optimization scheme employed to solve the problem, a model-

updating problem can be divided as iterative or non-iterative methods, in the latter direct 

analytical solutions are possible and the former require iterative updating.  Furthermore, 

iterative methods include sensitivity-based and non-sensitivity-based; the former employ 

gradient-based optimization schemes, and the latter, direct search methods such as 

response surface methods, genetic algorithms, Nelder-Mead simplex method, particle 

swarm, cluster-based stochastic search, etc.   

In the early 1990‘s most of parametric model updating formulation employ 

gradient-based search methods.  For this reason, the parameter estimation methods for 

damage identification have been referred to as sensitivity-based methods (Doebling, 

Farrar et al., 1996) (Farhat and Hemez, 1993), because they usually make use of 

sensitivity of the stiffness matrix to the unknown structural parameters in the gradient-

based iterative updating process.  However, sensitivity evaluations are not always 

necessary in solving optimization problems, direct derivative-free methods and 

evolutionary methods can be considered as an alternative to solve the parameter 

identification problems for damage identification as they have specific advantages such 

as stability and exhaustiveness of search space.  Recent reviews of the alternative shows 

that methods based on derivative-free algorithms are becoming a competitive choice.  

 

Response-based Dynamic Identification Methods without reference to models  

Dynamic identification methods that do not use a specific mathematical model are 

called response-based.  Techniques used in these methods include direct matching 

contours, irregularity checking in responses and derived properties, damage index from 
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response data or derived data.  In response-based approaches, no baseline model is 

required, and the irregularities are detected from the measured or derived responses, such 

as curvature mode shapes. 

Possibly the first work in this category is made in (Lifshitz and Rotem, 1969), 

who proposed a method for damage detection from measure frequencies.  The authors 

related the changes in the dynamic moduli to the frequency changes in particle-filled 

elastomers.  Most of early work of vibration-based damage identification focused on 

rotating blades and machinery.  An early literature survey of damage detection using 

modal properties was due to (Richardson, 1980), which cites large amount of research 

work dealing with rotating machinery.   

Masoud and Al-Said (2009) developed a crack localization algorithm exploring 

the variation in a single frequency of a beam as a function of rotor speeds (which is 

equivalent to varying axial loading of the beam) to detect and localize a crack.  The 

frequencies are obtained analytically using Lagrange equations and an assumed mode 

method (Masoud and Al-Said, 2009); the contour lines of the cracked beam frequencies 

are plotted with crack location and crack depth as its axis; the identification procedure is 

developed utilizing the contour plots.  Similar crack identification procedures in 

cantilever beams based on contour plots of modal frequencies in terms of crack depth and 

crack location were developed by (Nahvi and Jabbari, 2005) (Batabyal, Sankar et al., 

2008), in which FEA are used to evaluate modal parameters.  It is worth mentioning that 

these methods are non-model-based methods, because the analytical or FEA solutions are 

used to obtain the contour plots only, and the identification is performed with the contour 

plots without reference to any model. 
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Pandey, Biswas et al (1991) suggested another damage identification method 

based on curvature mode shape of beam, instead of natural frequencies changes, to 

identify the location of a crack (Pandey, Biswas et al., 1991).  It is assumed that large 

change in curvature indicates the location of damage.  This method is further improved 

by Ratcliffe (Ratcliffe, 1997) (Ratcliffe and Bagaria, 1998); he suggested using the third 

order polynomial interpolation of the second-order finite difference of modal shapes; this 

indicator is more sensitive than the curvature.  One limitation of these methods is that 

only a single crack can be considered in the beam to be detected.  Beams with more than 

one single crack cannot be analysed with this methodology. 

 

3.2.2 Static response data-based damage identification 

In comparison to dynamic-based identification methods, the literature of damage 

identification methods based on quasi-static responses is rather limited.  The synopsis 

table in section 3.1.7 can also be used to group static identification methods, in which 

most static identification methods belong to the group of parametric updating, and the 

non-model based methods include only a few works using signal processing to detect 

irregularities in static deflection.   

Early work on static-based methods started in the 1980s.  Sheena et al presented a 

method for improving the analytical stiffness matrix from noise-free static measurements, 

in which they optimize the difference between the theoretical and correct stiffness 

subjected to measured displacements constraints (Sheena, Zalmanovitch et al., 1982b) 

(Sheena, Zalmanovitch et al., 1982a).  The method requires the measurement of the 

displacements at all the active DOFs associated to a FE model.  If only a limited number 
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of DOFs are measured, spline interpolation can be used to create the complete set of 

displacement data.  Within this formulation, the stiffness is computed as a whole matrix, 

not directly related to the internal parameters controlling the properties of each element.  

To the author‘s best knowledge, this is the only published work on matrix updating using 

static responses. 

Most static response-based identification methods can be considered as part of 

parametric FE model updating group.   Early research in this area was due to a group of 

researchers including Sanayei, Hajela, Banan, Hjelmstad.  For example, Sanayei and 

Scampoli presented an identification procedure of plate-bending stiffness parameters for 

a one-third scale, reinforced-concrete pier-deck model; the formulation is based on FE 

model updating using static test results through minimization of the equilibrium gap 

functional (Sanayei and Scampoli, 1991).  Sanayei and Onipede presented an analytical 

method for the identification of properties of structural elements using static test data 

(Sanayei and Onipede, 1991).   In this approach, the forces are applied to a set of DOFs 

and the associated displacements are measured at another set of DOFs.  An iterative 

procedure is used to minimize the difference between the measured and the model 

response.  The sensitivity analysis proposed by Adelman and Haftka (1986) is used at the 

heart of this iterative method to identify directly the structural element parameters 

(Adelman and Haftka, 1986).  The stiffness matrix properties such as element 

connectivity, positive definiteness, symmetry and bandedness are automatically 

preserved. 

Hajela and Soeiro (1990) presented a review on damage detection techniques; the 

authors classified both static and dynamic identification techniques into three categories: 



 

 

62 

the equation error approach, the output error approach, and the minimum deviation 

approach (Hajela and Soeiro, 1990a).  Given an equilibrium equation in the form 

𝑲(𝜽)𝒙 = 𝒇, where 𝒙 is the state variable, and 𝒇 is the excitation, 𝜽 is a set of internal 

variables, then the equation error, also called force error estimator is defined as: 

min𝜽𝑲 𝜽 𝒖 − 𝒇 , and the output error (displacement error) estimator is defined as 

min𝜽𝑸𝑲
−𝟏 𝜽 𝒇 − 𝒖𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 , where 𝑸  is a Boolean matrix extracting the measured 

responses from the whole set of DOFs.  The advantage of the equation error approach is 

that the error is a linear function of the entries in 𝑲(𝜽).  Its disadvantage lies in the 

necessity to measure all the DOFs in the model.  The advantage of the output error 

approach is that the minimization can be operated on the measured DOFs and therefore 

no need to measure all the DOFs.  The disadvantage of the output error estimator is that 

the error is now a highly nonlinear function of the entries in 𝑲(𝜽). 

The equation error and output error approaches applied for static identification are 

studied in details by Banan et al (Banan, Banan et al., 1994a) (Banan, Banan et al., 

1994b).  In 1994, the authors studied the two formulations for estimating the constitutive 

parameters needed to calibrate finite-element model results with measured displacements 

from known static loading.  The authors solved the problem by minimizing the error 

between the simulated displacements and the on-site measurements using sensitivity-

based optimization which is similar to the method developed by Sanayei and Onipede in 

1991 (Sanayei and Onipede, 1991).  The problem was formulated as a constrained 

nonlinear optimization using either a force-error (output error) estimator or a 

displacement (equation error) estimator.  The methodology was tested on a simulated 25 

member bowstring truss; Monte Carlo simulations are used to study the performance.   
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Later, Sanayei and Saletnik conducted a similar work as that of Banan et al, but 

used static strain measurements instead of the displacements (Sanayei and Saletnik, 

1996a) (Sanayei and Saletnik, 1996b).  The internal parameters were estimated by 

minimizing the error between the theoretical and measured strains in the structure 

resulting from a series of loading cases of concentrated forces.  A similar approach was 

used by Hjelmstad and Shin, where they proposed to group the parameter reduce the 

number of unknowns, especially in case of inadequate measurements (Hjelmstad and 

Shin, 1997).   

In 1997, Liu and Chian developed a procedure for identifying the cross-sectional 

areas of a truss using static strain measurements resulting from a series of concentrated 

force loading cases (Liu and Chian, 1997).  A closed-form solution was obtained for the 

truss.  A numerical example is presented along with model test results. 

Chou and Ghaboussi (Chou and Ghaboussi, 2001) used a genetic algorithm to 

identify damage in a truss based on measured deflections and verified with numerical 

examples. An optimization problem is formulated for the detection and identification of 

structural damage.  Both the ―‗output error‘‘ defined as a measure of the difference 

between the measured and computed responses under static loading condition and the 

‗‗equation error‘‘ indicating the residual force in the system of equilibrium equations are 

used to formulate the objective function to be optimized.  Recently, Shenton and Hu used 

a misfit cost function using strain measurements and a genetic based minimization 

algorithm to identify damage in beams subjected to static loading (Shenton and Hu, 2006) 

(Hu and Shenton, 2007).  Shenton and Hu proposed a damage distribution formulation 

based on the re-distribution of the dead load strain taking place in a structure when 
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damage occurs; since the structure‘s own weight is always present, this method 

eliminates the need for an external loading apparatus and is also suited for designing a 

permanent SHM system.  In this technique, the damage is identified by minimizing the 

error between the measured strain changes and the model strains prediction in the 

damaged structure.  The problem is formulated as a constrained optimization problem 

and solved by a real-coded genetic algorithm; the basic procedure is introduced for an 

example of a single-span fixed-fixed beam using a closed-form solution (Shenton and 

Hu, 2006) (Hu and Shenton, 2006).  In a later paper, this procedure was extended to use 

finite elements (Hu and Shenton, 2007).   

In 2005, Nejad et al. presented a method to describe the change in the static 

displacement of certain degrees of freedom by minimizing the difference between the 

load vectors of damaged and undamaged structures (Nejad, Rahai et al., 2005).  

From the review of the literature, it appears that all of the static-based methods 

developed to date require one or more external loading cases to be applied to the structure 

and that the corresponding static responses being measured.  The loading configuration to 

excite the structure needs to be designed to make sensitive results.  One may note that in 

practice, this requirement might be feasible in bridges, but may pose a difficulty in many 

other types of structures.  

Choi et al. presented a solution based on the conjugate beam method; it was 

shown that for determinate beams, the shape of the displacement variation due to damage 

is related to the influence line of the moment in the conjugate beam (Choi, Lee et al., 

2004).  Other research work proposed a formulation of locating cracks through wavelet 
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analysis of the static deflection profile using signal processing techniques (Rucka and 

Wilde, 2006).   

Some authors proposed that static response data to be combined with dynamic 

data in the damage identification.  It is believed that more information can be available by 

combining different type of measurements.  Hajela and Soeiro proposed that static 

displacement information be incorporated to supplement the modal data for damage 

detection (Hajela and Soeiro, 1990b).  Simulated static deflections and vibration mode 

data are used successfully for parameter estimations (Hajela and Soeiro, 1990b).  Another 

method making use of composite data was proposed by Wang et al.; the proposed method 

can be considered a two-stage identification algorithm for identifying the structural 

damages by employing the changes in natural frequencies and measured static 

displacements (Wang, Hu et al., 2001). 

Oh and Jung proposed a method combining both static displacements 

measurement and identified dynamic modes (Oh and Jung, 1998); the proposed approach 

allows the use of composite data consisting of a combination of static displacements and 

eigen-modes.  In dynamic tests the curvature and slope of mode shapes are included in 

the formulation of the error responses.  To examine the capability of the proposed 

damage assessment algorithm a series of tests for a predetermined damaged two-span 

continuous beam and a planar bowstring truss structure were performed.  This work 

showed that the combination of the curvature or slope of mode shape and the static 

displacement data results a superior capabilities for the damage detection and assessment.  
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However, conducting dynamic and static tests complicates the application in real world 

structures.  

The methods reviewed before are global level methods, which the damage is 

identified as average stiffness reduction of a structural member.  Local level methods can 

be divided into two groups based on the way of parameterization.   

Most existing damage detection methods aim at identifying localized damage 

zones and quantifying their intensity (Yang, 2002) (Buda, 2006) (Nikolakopoulos, 1997) 

(Chen, 2005). Within this approach, cracks are usually parameterized beforehand 

assuming accurate knowledge of the structure stiffness distribution. 

For methods developed to localize and quantify concentrated cracks, it is usually 

assumed that an accurate knowledge of the stiffness distribution of the undamaged 

structure is available, and the unknown parameters define the crack location and depth.  

Buda and Caddemi presented a crack identification scheme for Euler-Bernoulli beams 

based on static displacements  (Buda and Caddemi, 2007). 

For methods developed to localize and quantify concentrated cracks, it is usually 

assumed that an accurate knowledge of the stiffness distribution of the undamaged 

structure is available. Earlier research showed that numerical algorithms that perform 

well for the discrete damage identification may be inefficient for the stiffness 

reconstruction problem. 

Lesnic et al. presented a mathematical analysis of the identification of a 

heterogeneous flexural stiffness distribution of an Euler-Bernoulli beam.  The authors 

established the conditions for the well-posedness of the associated inverse problem 

(Lesnic, Elliott et al., 1999).   
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All of the static-based methods developed to date require one or more cases of 

external loadings to be applied to the structure and corresponding static responses to be 

measured.  The loading configuration to excite the structure need to be designed to make 

sensitive results; one may note that in practice, this requirement is simple for bridges, but 

may pose a difficulty in many types of structures.  

For methods dealing with the identification of distributed stiffness, the problem 

consists of recovering a continuous distribution of the beam‘s stiffness using 

experimental data. Mathematically, the problem involves a minimization of a functional, 

and it is generally more difficult inverse problem to solve than the identification of 

discrete cracks. Usually, the identification of distributed stiffness requires extensive 

amount of information than for the case of discrete cracks. Focusing on the theoretical 

aspect of the problem, it is worth to mention the work Lesnic et al. who presented a 

mathematical analysis of the identification of a heterogeneous flexural stiffness 

distribution of an Euler-Bernoulli beam.  The authors established the conditions for the 

well-posedness of the associated inverse problem (Lesnic, 1999).  Earlier research 

showed that numerical algorithms that perform well for the discrete damage identification 

may be inefficient for the stiffness reconstruction problem.  

Chou and Ghaboussi (Chou and Ghaboussi, 2001) used a genetic algorithm to 

solve an optimization problem formulated for detection and identification of structural 

damage. The ‗‗output error‘‘ indicating the difference between the measured and 

computed responses under static loading and the ‗‗equation error‘‘ indicating the residual 

force in the system of equilibrium equations are used to formulate the objective function 

to be optimized.  
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The response surface methodology, which is a combination of statistical and 

mathematical techniques, was employed by Ren et al to update a FE model based on 

static responses of structures (Ren, Fang et al., 2011); uniform DOE was used in building 

the response surface models.  This method was verified in a numerical beam and an 

experimental box-girder bridge. 

 

3.2.3 Advantages and disadvantaged of static and dynamic identifications 

Advantages and disadvantaged of dynamic identification 

Vibration testing is easier to conduct; it is generally easier to excite a large 

structure dynamically, particularly with harmonic loading or environmental loading, 

although one often cited challenging problem when applied to real structures is that it is 

often impractical to excite full scale structures in controlled way.  It is also easier to 

measure and continuously monitor acceleration response.   

One significant disadvantage of dynamic identification is the requirement of mass 

matrix and damping in dynamic model, while the required results are usually of stiffness 

only.  Estimating damping is difficult, and although model masses can be estimated from 

structural drawings, it adds uncertainty in modeling errors.   

Soil-structure interaction poses another difficulty in dynamic identification, but 

not for static identification; non-structural elements is another source of uncertainty need 

to be considered in dynamic identification.  Dynamic-based identifications are mostly 

based on modal identification results.  In modal identification, only lowest frequencies 

and modal properties can be estimated with certainty.  For ordinary structures, no more 

than 3~5 frequencies can be accurately identified; for very large bridges, this number can 
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be 10.  However, Damage is typically a local phenomenon.  Localized damages often 

require higher modes to be accurately measured which are impossible.  

Some modal shape-based algorithms require complete mode shapes to be 

measured. When only a small number of sensors are installed, one can use either system 

condensation techniques or modal expansion techniques. Some methods require a very 

dense measurement of displacement or strain mode shape (Goldfeld, 2007);  

System condensation techniques reduce the DOFs defined in the analytical model 

to the measured DOFs. Reduction techniques often produce a condensed matrix that does 

not resemble the member connectivity of the original model. On the other hand, modal 

expansion methods generally do not produce the results that are accurate enough to 

provide reliable information about damaged DOFs or damaged structural members. 

Up to date the most successful dynamic-based damage identification practice is 

the local-level frequency-based detections of rotating blades which is already a tool in 

routine practice for rotating machinery.  Rotating blades can be regarded as cantilever 

beams under various axial loads induced by centrifugal forces; however this type of 

cantilever beams is scarce in real civil infrastructures.  Furthermore in civil structures, it 

can be difficult to isolate local modes, generally a global mean, some local identification 

using modal properties, this is the major difficulty; another problem is that cracks in truss 

behaviour members are not revealed by frequency-change, but are dangerous.  One needs 

to use local bending models to identify cracks, i.e. local level test need local bending 

modes.  

In beam damage identification using dynamic responses, most of the 

investigations reported in the literature focused on testing single free–free beams, for 
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example, references: (Maeck, Wahab et al., 2000) (Ren and De Roeck, 2002) (Cerri and 

Vestroni, 2003) (Wahab, De Roeck et al., 1999), i.e. the global and local modes are 

identical and are for the beam only; this type of condition rarely occur in real practice.  

Another difficulty using dynamic properties is the variability of dynamic 

parameters identified using system identification techniques as a result of environmental 

and operational conditions, such as temperature, moisture, wind and others (Cornwell, 

Farrar et al., 1999). It has been demonstrated that changes in modal parameters due to 

environmental and operational factors may well exceed those caused by even severe 

damage, and thus if this variability is neglected, it is very difficult to draw reliable 

conclusions about structural condition (Sohn, Dzwonczyk et al., 1999) (Farrar, Cornwell 

et al., 2000).  

If measured over a fair frequency range, frequency response functions (FRF) is 

high density data and generally contain much more data and information than frequencies 

and modal shapes, however the difficulty is that FRFs are heavily influenced by damping, 

and it is generally difficult to model damping exactly in a FE model.  One may try to 

assume Rayleigh damping and identify the damping ratios or Rayleigh coefficients 

multiplying the mass and stiffness matrices.  Some modal identification methods give 

complex modal shapes in most types of damping; in this case a complex transformation is 

often required to transform a complex modal shape to a real one (Niedbal, 1984). This 

may introduce further uncertainties in following damage identification. 

Frequency response functions (FRFs) contain a large amount of redundant 

information since there are many more points in a FRF than parameters in the model. It is 
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therefore necessary to choose which points of the FRF should be used in updating the 

model. On the other hand, if the sensitivity is too high, it will suffer from noise since it 

will be highly sensitive to noise.  Another advantage of FRF is that they are not restricted 

to linear systems, and modal parameters in structures with high modal density are 

difficult to identify.  

Advantage and disadvantages of static identification: 

There is no need to assume mass, damping in static identification, and in some 

cases, the test is easier, especially when optical measurements are used.  The 

measurement devices are being developed, including inclinometers, strain gauges, and 

especially the close-range photogrammetry, which considered by the author as one very 

promising development for civil engineering in future.   

In global level identification, the effect of the damage may be concealed due to 

the limitation of load paths. For a real structure, the damaged components which have 

fairly little contribution to structural deformations under a certain load case will be 

difficult to identify. These kinds of limitations can be practically overcome by optimizing 

the loading scheme according to the proper pre-analysis or loading several groups of load 

synthetically.  A static test is easy to excite the whole structure in local level.  Multiple 

loading cases are usually required in global level identification.  

Some of the most successful results of damage identification have been achieved 

on laboratory scale truss structures, both dynamic and static identifications, in dynamic 

tests, the lack of rotational degrees of freedom and ease of accessibility allow entire mode 

shapes to be measured  (Kosmatka and Ricles, 1999); while in static tests, displacements 
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can be measured at joints only or strains to be measured in each single bar member 

(Hjelmstad and Shin, 1997) (Liu and Chian, 1997).  

Successful damage identification and stiffness recovery require efficient 

measurement techniques of the structural response. Traditional measurement techniques 

using LVDTs and strain gauges allow only localized measurements along the beam and 

therefore provide reduced amount of information. Recent progresses in image processing 

techniques and digital cameras permit a quasi-continuous deflection profile 

measurements of beams (Jiang, 2008). This progress offers new possibilities in structural 

parameter identification, damage localization. Unlike localized testing sensors, digital 

images (Digital Image Correlation and close range digital photogrammetry) are able to 

provide a large number of spatially distributed measurements. The large quantity of 

experimental data in the form of quasi-continuous measurements of the deflection profile 

becomes a valuable input for the damage identification problem.  

 

3.3 Equilibrium gap method 

Claire et al. (Claire, 2004) developed the general concept of the equilibrium gap 

to identify damages in 2D structures.  When restricted to the elasticity domain and in the 

absence of volumetric loading, the continuous format of the equilibrium equation is given 

by: 𝑑𝑖𝑣 𝝈 𝒖  = 𝟎, or equivalently 0)))(,(( xuσ Ediv , where the Cauchy stress σ  is a 

function of the displacement field, )(xu  , and the material parameters 𝐸 and 𝜈.  Using 

finite element discretization, the continuous equilibrium equations can be written as a set 

of discrete equations in the form of  𝝈 ∙ 𝒏 = 𝟎, where  ∗  denotes the jump of the 
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quantity * in the continuum.   The stress jump equations can also be given as 𝝈𝑖𝒏 = 𝝈𝑗𝒏, 

where 𝒏 denotes the normal of an interface between the two sides of a section.  Given a 

measured displacement field, a piecewise-constant material parameter distribution is 

assumed and the distribution is evaluated through a finite element formulation.  

The principle of equilibrium gap formulation can be applied specifically for 

beams where the equilibrium equations can be written as functions of the generalized 

forces at any given section: 

l r lrF F P 
                                                                           (3.1-a)      

l r lrM M M 
                                                                        (3.1-b) 

where the indices 𝑙 and 𝑟 denote the internal force to the left and right of the section, 

respectively.  The variables 𝑃𝑙𝑟  and 𝑀𝑙𝑟  denote the external force and moment at the 

cross section. Equations (3.1-a) and (3.1-b) are the equilibrium conditions associating the 

external and internal forces;  in each material point, the sum of all internal forces arising 

from various adjacent elements equals the applied load (Figure 3.1). 
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Figure 3.1: Internal force equillibrium in Euler-Bernoulli beams subjected to flexure. 

 

In contrast with the equilibrium of 2D solids, the external loading is directly 

included in the beam‘s equilibrium expression since the boundary conditions are explicit. 

The equilibrium between the internal forces and external loads is therefore used as a 

condition that must be imposed as a constraint.  Within the context of FE formulation of 

Euler-Bernoulli beams and considering isotropic damage within a given cross-section, the 

force-displacement relations of an Euler-Bernoulli beam are given by:   
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                                (3.2)        

where  1 2 1 2, , ,
T

v v    are the nodal degrees of freedom (vertical deflection, rotation 

angle), and  1 1 2 2, , ,V M V M  are the dual variables (shear, moment). The stiffness matrix 

of the element at the damaged state is denoted 𝐤𝐝 and is proportional to a reference value 

for stiffness 𝐤𝟎.  The variable 𝐷 (0 ≤ D ≤ 1) is a scalar indicating the damage level 

(stiffness decrease).  When 𝐷 = 0, the beam element is considered undamaged and its 

stiffness is equal to the reference value.  At the other limit, the ultimate condition 𝐷 = 1 

represents a complete loss of the beam‘s stiffness.  This definition for damage is in 

accordance to the continuum damage mechanics (Lemaitre, 1996).  When the axial 

deformation is neglected, the stiffness matrix depends only on the flexural stiffness 𝐸𝐼, 

and the beam‘s element length.  For each element, we define a reference value for 

stiffness 
0EI , and note that its value can vary along the beam. We will assume that a 

reference distribution is 𝐸𝐼0 𝑥 , and take this as the initial estimate for the identification 

process.  For example, this reference stiffness can, but not necessarily, correspond to the 

stiffness of the undamaged beam.  From Eq. (3.2), a possible definition for the damage 

variable would be  𝐷(𝑥) = 1 −
𝐸𝐼(𝑥)

𝐸𝐼0(𝑥)
, where 𝐸𝐼(𝑥) is the actual stiffness of the cross-

section at a position 𝑥.  It is clear that when EI decreases, damage increases linearly, so 
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that the theoretical limit of 1 is reached when the cross-section loses its flexural 

resistance.  Using this definition, the beam‘s stiffness matrix is expressed as a function of 

the damage variable 𝐷 (with 
0)1( kk D ).  The parameter )1( D  corresponds to the 

stiffness reduction factor.  When FE discretization is used, a constant damage parameter 

𝐷 is assumed for each element, which corresponds to a piecewise-constant definition of 

the damage field along the beam.  ( this is origital application of the equilibrium gap) 

At present, we will assume that the deflection profile is available from non-

contact measurements made using close-range photogrammetry.  For each pair of  

adjacent elements, e and 𝑒 + 1, the following equilibrium equations can be written: 

     (1 − 𝐷𝑒)(𝑘0
3)𝑒𝑑𝑒,𝑟 + (1 − 𝐷𝑒+1)(𝑘0

1)𝑒+1𝑑𝑒+1,𝑙 = (𝑉2)𝑙 + (𝑉1)𝑟 = 𝑃𝑙𝑟    (3.3-a) 

(1 − 𝐷𝑒)(𝑘0
4)𝑒𝑑𝑒,𝑟 + (1 − 𝐷𝑒+1)(𝑘0

2)𝑒+1𝑑𝑒+1,𝑙 = (𝑀2)𝑙 + (𝑀1)𝑟 = 𝑀𝑙𝑟   (3.3-b) 

where 
3

0( )ek  is the third row in the reference stiffness matrix of element 𝑒; and 
eD  is the 

associated damage variable.  Similarly, 
1

0 1( )ek   is the first row of the reference stiffness 

matrix of element 𝑒 + 1; 𝑑𝑒,𝑟  and 𝑑𝑒+1,𝑙  are the displacement vectors of the node on the 

right and left sides of elements 𝑒 and 𝑒 + 1, respectively.  The generalized forces 𝑃𝑙𝑟  and 

𝑀𝑙𝑟  are the concentrated load and moment applied at the node connecting elements 𝑒 and 

𝑒 + 1.  In writing these equilibrium equations for each pair of adjacent elements, one can 

arrange the linear system in terms of the damage variables to obtain the following 

algebraic equations:  
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Finally, the problem for identification of the damage variable is written as: 

     𝐹𝑖𝑛𝑑                𝜽 =  1 − 𝐷1 1 − 𝐷2  …  1 − 𝐷𝑛𝑒𝑙  
𝑇  

𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡       𝑮𝜽 = 𝑹
                                    (3.5)                                                                            

where 𝜽 is the set associated with the damage variables corresponding to each element 

𝜽 = (1 − 𝐷1 , 1 − 𝐷2 , … .1 − 𝐷𝑛𝑒𝑙 ), and 𝐑 =  𝑃1, 𝑀1 , … , 𝑃𝑖 , 𝑀𝑖 , …  
T  is the external force 

at the nodes associated with the generalised degrees of freedom (i.e. displacements) 

(𝑑1 , 𝑑2, … , 𝑑𝑛). 

This formulation leads to a typical inverse problem, where the coefficient matrix 

𝑮 defines the mathematical model.  Generally, the forward problem associated with Eq. 

(3.5) would be to solve the system 𝑲𝒅𝒅 = 𝑹  given a set 𝜽.  In the inverse problem 

associated with Eq. (3.5), the matrix 𝑮 encapsulates both the model and the data.  The 

discretization process leads inevitably to modeling errors in forming the system, whereas 

measurement errors in the data affect the solution of the inverse problem.  These two 

phenomena lead to the ill-posedness of the inverse problem for Eq. (3.5), therefore 

indicating the need for a regularization procedure.  Eq. (3.5) is typical to problems in 

many engineering areas, including biomedical and seismic imaging, digital tomography 

and digital image reconstruction.  A detailed analysis of regularization techniques and 
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solution methods for such inverse problems can be found in (Aster, Borchers et al., 

2005).   

In this study, a Tikhonov-Total Variation (TTV) regularization scheme is used to 

solve Eq. (3.5) (Aster, Borchers et al., 2005).  The problem is treated in the least-square 

sense augmented with the TTV regularization, leading to: 

𝑚𝑖𝑛     
1

2
 𝐺𝜽 − 𝑹 2 + 𝛼𝛷(𝜽)                                           (3.6) 

where α  is the Tikhonov parameter controlling the relative weight between the least 

squares and the regularization term Φ 𝛉 .  In this thesis, the value of this parameter 

chosen is 10−4, which is found to be a sub-optimal choice in most practical applications. 

A better value can be chosen for this parameter is possible using selecting methods such 

as the L-curve method (Hansen, 1992) (Hansen, 1998).  The function Φ(𝜽) represents the 

total variation (TV) functional of the vector 𝜽.  Minimization of the regularized TTV 

functional yields an efficient scheme to solve the discrete inverse problem.  This type of 

regularization penalizes highly oscillatory solutions while allowing jumps-like 

discontinuities.  Vogel (Vogel, 2002) showed that in the case of two-dimensional image 

deblurring, TTV regularization tends to produce qualitatively correct reconstructions of 

blocky images (Dobson, 1996). 

The accuracy of the regularized solution depends very much on the smoothness of 

the true model. If 𝐦true  is not smooth, then Tikhonov regularization solution simply will 

not give an accurate solution.  

 

𝜽 
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To obtain the numerical scheme for calculating  Φ(𝜽), consider the following 

general definition of the total variation (TV) of a function 𝑓(𝑥) on the interval [0, 1]:  

𝑇𝑉 𝑓 ≝ sup |𝑓(𝑥𝑖) − 𝑓 𝑥𝑖−1 |𝑖                                         (3.7) 

where the index, 𝑖 , is taken over all partitions (0 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 1 ) of the 

interval.  In the one-dimensional case, the smooth form of TV functional defines the total 

variance function Φ as:  

Φ 𝑓 =    
𝑑𝑓

𝑑𝑥
 

2
d𝑥

L
0                                                      (3.8) 

This equation is a continuous form of the discrete total variation that includes the 

sum of the magnitude of the jumps for  𝒇.  However, due to the non-differentiability of 

the Euclidean norm at the origin, special attention is required for numerical 

implementation.  One can select a smooth approximation to the Euclidean norm, |x|, such 

as   x 2 + β2, where β is a small positive parameter giving rise to the following smooth 

total variance functional: 

Φ θ(x) =    
dθ

dx
 

2
+ β2dx

L

0
                                                       (3.9) 

To derive the discrete form of the TTV term, let ∆𝑥 be the interval distance used 

to discretize 𝜽(𝑥) (i.e. the length of a beam element in our case), and assume that the 

number of elements is 𝑛𝑒𝑙 (i.e. the index of 𝜽 ranging from 1 to nel); then, the discretized 

version of Eq. (3.9) can be written as: 

Φ 𝛉 =  ψ  Δi𝛉 
2 Δxn

i=2  ,    and      ψ  Δi𝛉 
2 =   

θi−θi−1  

Δx
 

2
+ β2         (3.10) 
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With this discretization of Φ 𝛉 , the regularized least-square problem shown in 

Eq. (3.5) can be solved using a primal-dual Newton method (Chan, Golub et al., 1996) 

(Vogel, 2002). 

Within the present framework, both statically determinate and indeterminate 

beams can be analyzed with this formulation as long as the applied load and displacement 

measurements are available.  It is also worth mentioning that the damage identification 

can be restricted to a given segment of the beam, and that the search area does not need to 

enclose the entire beam.    

 

3.4 Data discrepancy-based FE model updating  

Using a measured deflection of a beam, u
m
, the problem of reconstructing the 

stiffness of a beam can be formulated as an optimization problem using a misfit function 

between the measurements and the model-based 𝒖(𝜽) displacements: 

                                  

2

1

1
min ( , ) ( ) ( )

2

. ( )

N
m

i i

i

J u u

suchthat K





   


 


θ

u θ θ θ

θ u f

                    (3.11) 

where J  is the data-discrepancy functional augmented with a TTV functional similar to 

that in Equation (3.10).  N  is the total number of measured points along the beam, θ is 

the vector collection of the unknown damage parameters, the vector 
m

u  is the measured 

displacement data and )(θu  is the set of simulated results corresponding to a set of 

distributed parameters θ .  The constraint equations appearing in the minimization 

problem expressed in Eq. (3.11) is the static finite element direct problem corresponding 
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to a set of parameters θ  and a given load vector f .  Solution of Eq.(16) leads to the 

expression of a FE model updating problem.  

To solve a minimization problem efficiently, one needs to evaluate the gradient of 

the cost functional, J , which is constrained by the static equilibrium FE problem (Eq. 

3.11).  An adjoint formulation is used to compute the gradient vector of the cost 

functional to the unknown stiffness distribution parameters, θ .  The adjoint method 

allows computation of the gradient of a cost functional with a large number of input 

parameters. The constraint equations are the equilibrium-governing equations of the 

discretized beam using FE, and are written in the following residual form: 

( , ( )) ( )  R θ u θ K θ u f 0                                          (3.12) 

where u  is the state variable (representing displacements in the present case), and the 

residual is an implicit function of the unknown internal variables θ .  Introduction of the 

Lagrangian multipliers, 𝝀 , converts the constrained problem into an unconstrained 

optimization.  The augmented functional that enforces the governing equations is 

expressed as: 

 ( , ) ( , ) ( , )TL J θ u θ u λ R θ u                                              (3.13) 

Differentiating the Lagrangian with respect to i , gives: 

                             
( , ) T T

i i i i

dL J J d

d d   

    
    
    

θ u R u R
λ λ

u u
            (3.14) 

Usually, the derivative of the displacement with respect to the internal parameters, 

id du , is difficult to evaluate, and is not directly accessible.  However, with a suitable 
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choice of λ , it is possible to make the term in the bracket, 

















u

R
λ

u

TJ
, equal zero, 

thus avoiding the need to evaluate the gradient id du .  Therefore, an additional equation 

can be written as: 

                         0

















u

R
λ

u

TJ
                                                         (3.15) 

Equation (3.15) is the adjoint equation, which is solved for T
λ ; this equation 

reduces to the following linear system:  

( ) ( )m T u u λ K θ                                                        (3.16) 

where u  is the displacement vector computed from the FE model in Eq.(16), and 
m

u  is 

the corresponding measured displacement vector.  Therefore, Eq. (3.14) is simplified to: 

               
( , ) T

i i i

dL J

d  

 
 
 

θ u R
λ                                        (3.17) 

in which the two derivative terms can be easily computed as:   

            
J


 


 θ θ

  and  
( )

i i i  

  
 

  

R K θ f
u                         (3.18) 

The regularized TV-functional ( ) θ  is defined in the previous section (see Eq. 

3.9 and Eq. 3.10).  In order to calculate the gradient of the TV term J ,  
J


 


 θ θ

, it is 

easy to deduce from Eq.(3.10) that 

  '( )Tx diag


  


Δ θ Δ θ
θ

                                                    (3.19) 



 

 

83 

x  is the size of the beam element, and the term in the brackets, 

 '( )T diag Δ θ Δ , is a positive, semi-definite, symmetric matrix. The Δ  matrix has 

( 1)n  rows and ( )n  columns, with the i
th

 row being i  (see Eq.11). The  '( )diag  θ  

matrix is a ( 1) ( 1)n n    diagonal matrix with the i
th

 diagonal entry equal to  ' 2( )i  θ .  

The global stiffness matrix K  is the classical assembly of the elements‘ stiffness 

matrices ik : 

1 (1 )Nel

i i iD K k                                                                          (3.20) 

where   is the FE assembly operator, and Nel  is the number of elements in the FE 

model. As stated earlier, we assume that for each element, the damage is represented by a 

scalar parameter, iD , in the interval [0,1]. Therefore, the derivative of the stiffness matrix 

with respect to θ can be computed analytically given a specific beam element 

formulation.  For the Euler-Bernoulli bending element the following expression holds: 

1 1

( )( )
j jNel Nel

j j i

i
i




 









 

k
k

K θ
                                             (3.21) 

In conclusion, the adjoint method leads to an efficient computational method to 

calculate the gradient of the cost functional and consists of two consecutive steps: 1) 

solve the adjoint equation (3.17) for T
λ , then insert T

λ into Eq. (3.18) to calculate the 

gradient of the Lagrangian.  With the gradient calculated, any efficient gradient-based 

optimization technique can be used to find the optimal solution. A procedure based on the 

BFGS pseudo-Newton optimization technique is summarized in Table-2. The algorithm 
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shown in Table-1 is general, and can be applied to other discretization schemes, 

providing that the governing relation, ( , ( )) ( )  R θ u θ K θ u f 0 , holds.  Numerical 

experiments show that TTV regularization produces better results than the classical 

Tikhonov regularization method for this particular type of inverse problem. 

 

Table 3.2: Damage identification algorithm using the adjoint-optimization method. 

 

 

 

1. Perform test (image acquisition and data collection); 

2. Choose an initial distribution of 
0 ( )x , usually starting with 0iD  ; 

3. Set 0k  , 0 H I ;  

3.1 Finite element simulation of ( )u x  with given 
k ; 

3.2 Solve the adjoint equation (3.17) for T
λ ;  

3.3 Calculate the Lagrangian L  and its gradient L ;  

3.4 Determine a scalar value   through line-search along the 

direction LkH  so that 
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3.7 Check convergence; 

4. Solution = best point found. 
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3.5 Examples 

3.5.1 Numerical examples  

3.5.1.1 Validation of the Equilibrium Gap Method 

To validate the proposed algorithms, we start with an ideal case where the 

―experimental‖ data are synthetic and obtained from a direct problem using a FE solution. 

The objective is to validate the proposed algorithms for locating discrete cracks and 

reconstructing the stiffness distribution along a beam. In this first validation attempt, we 

seek to validate the equilibrium gap-based method for a beam with two localized, 

damaged sections. A simply supported 10 𝑚  long beam with a constant stiffness is 

subjected to a concentrated load of 5 kN at the mid-span. The stiffness of the two 

elements at locations 1 2.5x m  and 2 5x m  are reduced by 50% and 30% (𝐷 = 0.5 and 

𝐷 = 0.3 ), respectively.  The deflection of the FE model is used as input for the 

equilibrium gap method to identify the damage. The beam is discretized with 100 

elements, and therefore the stiffness distribution function is represented by 100 discrete 

unknown parameters.  A Gaussian noise is added to the simulated response to emulate 

real measured signals as expressed by: 

( ) ( )noise x NRND a RMS u                                 (3.22) 

where NRND is a Gaussian random distribution with zero-mean and a unit standard 

deviation; a  is the applied noise level; and )(uRMS  is the root-mean-square of the 

measured displacement )(xu .  The problem is solved using a Primal-Dual method 

(Vogel, 2002).  
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Figure 3.2-(a) shows the damage pattern when no noise is added to the deflection 

measurements; in this case the two damaged zones (cracks) and damage levels are 

identified with very good accuracy.  In Figures 3.2-(b) and 3.2-(c), noise levels of 2.5% 

and 5% are added to the measured deflection data, respectively. The numerical simulation 

is capable of identifying the positions and levels of the damage under these noise 

conditions.  However, it is observed that the noise added to the synthetic measurements 

can mask the damage at the fine-scale level.  If the noise level is known, the minimum 

scale of detectable damage corresponding to this level of noise can be approximately 

estimated by inspecting the variations of the identified damage indices.  For example, at a 

5% noise level, the finest detectable level of damage seems to be 10%, as it can be seen 

from inspection of Figure 3.2-(c).  

To demonstrate the effect of noise in masking fine-scale damage, the beam is re-

simulated using a different damage scenario, the beam‘s stiffness is reduced by 30% and 

10% at two locations, 2.5 𝑚  and 6 𝑚  from the left support, (i.e. 𝐷(2.5𝑚) = 0.3  and 

𝐷(6𝑚) = 0.1).  A 5 % level of noise is added, and the identified damage indices are 

shown in Figure 3.2-(d), in which only the damage at location 2.5 m (𝐷(2.5𝑚) = 0.3 ) is 

identifiable; damage at the 6 m location is indistinguishable from the noise. 
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Figure 3.2: Identified damage indices of a simply-supported beam using the equilibrium 

gap method. (a): no noise, (b): 2.5% noise, (c): 5% noise, (d): 5% noise. 

 

3.5.1.2 Validation of the Data Discrepancy Functional Method 

The previously described problem is solved again using the data discrepancy 

functional method and the results are shown in Figure-3.3.  Both the equilibrium gap and 

data discrepancy functional methods are in good agreement with the baseline solution.  
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Figure 3.3: Comparison of the identified damage indices of a simply-supported beam 

using equilibrium gap and data discrepancy formulation. 

 

In a second example, a 10 m long, simply-supported beam is simulated to validate 

the data discrepancy functional method.  The beam is assumed to have a constant 

stiffness; a concentrated load of 5kN  is applied at the mid-span.  The beam is discretized 

using 100 beam elements; hence, the continuous stiffness distribution function is 

represented by 100 discrete unknown stiffness parameters.  A FE simulation is used to 

calculate the deflection profile.  A Gaussian noise level of 5% is added to the synthetic 

displacement field that is to be used as input for the identification.  

For the first validation test, we try to recover the stiffness of a beam with constant 

stiffness. The initial estimate is based on a uniform stiffness factor of 0.5 (i.e. half of the 

true stiffness value).  The results from the application of the adjoint optimization method 

are illustrated in Figure 3.4.  In the second test case, the beam is assumed to have a 

continuous parabolic stiffness distribution.  Again, a constant stiffness factor of 0.5 is 



 

 

89 

used to initiate the iteration process.  The results of the data discrepancy-based method in 

comparison to the reference stiffness distribution are shown in Figure 3.5.  

The results shown in Figures 3.4 and 3.5 illustrate the performance of the data 

discrepancy formulation, and show that, at a distance from the supports, the identification 

is in good agreement with the expected stiffness values. The displacements of a simply 

supported beam close to the support are very small (zero at the support), and the lack of 

information in this region is not capable to improve the initial guess locally. This explains 

the drift between the expected results and the results from the simulation near the ends of 

the beam.  

 

 

  

Figure 3.4: Identified stiffness factor distribution for a simply-supported beam with 

constant stiffness using the data discrepancy functional method 
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Figure 3.5: Identified stiffness factor distribution for a simply-supported beam with 

parabolic stiffness variation. 

 

3.5.2 Experimental examples  

To demonstrate the performance of the two proposed methods, we propose a 

series of experimental tests on a cantilever beam. An aluminum cantilever beam with four 

pre-defined damage locations is tested and the associated inverse problems are solved for 

validation.  The beam‘s cross-section is a HSS of  1 × 1 inch, and the thickness of the 

wall section plate is 1.58 mm.  The material modulus of elasticity is measured from the 

static deflection of undamaged beam and it is found to be close to 72GPa.  

In all four cases, the deflection profile is obtained using a close range 

photogrammetric method presented earlier in the present paper.  The reference frame 

used to measure the deformation was the image of the beam under its self-weight. 

Although in the deformation under the self weight is negligible in the present case, this 

choice allows us to exclude the deformation of the beam under its own dead load.  The 

stiffness distribution of the beam from the fixed base to the loading point is to be 
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identified, while the stiffness distribution in the region of the free tip beyond the loading 

is not taken into consideration, since no information is available in that region.  

3.5.2.1 Test # 1: Step-wise damage detection 

The first test setup is shown in Figure 3.6.  The total length of the beam is 

L = 130 cm.  A concentrated load of 21 𝑁 is applied at a location 90 cm away from the 

fixed end.  To induce a predefined damage, the bottom face of the HSS section is cut out 

between 50 cm and 70 cm from the fixed end as illustrated. The stiffness in the damaged 

region is reduced to 0.83% of the original cross-section (𝐷 = 0.17).  

 

                                                                                       

 

Figure 3.6. The cantilever beam with a distributed damage. 

 

The identified damage variable profile using the equilibrium gap method is shown 

in Figure 3.7, it is clear that the results reproduce the expected damage location and level 

with very good accuracy. The recovered stiffness factor of each element using the data 

discrepancy method and reference values are plotted in Figure 3.8. The step damage is 

clearly visible despite the oscillatory nature of the identified stiffness distribution; the 

amplitudes of oscillations are generally less than 5%, with exception of regions near the 

beam‘s ends. The larger errors in the two ends can be attributed to the measurement 
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errors of the displacement close to the loading point and the lack of information close to 

the fixed end (theoretical displacements close to zero).  

 

 

Figure 3.7. Damage detection of the cantilever beam with distributed damage using the 

equilibrium gap method. 

 

 

 

Figure 3.8. Identified stiffness factor distribution of the cantilever beam with distributed 

damage using the data discrepancy formulation. 
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Figure 3.9 illustrates the performance of the adjoint based optimization algorithm 

for solving the inverse problem formulated using the data discrepancy functional. Figure 

3.9(a) shows the convergence of the cost function minimization, whereas Figure 3.9(b) 

illustrates that at convergence, the solution is independent of the initial guess of the 

beam‘s stiffness.  The intermediate results during the iteration processes are shown in 

Figure 3.9(c) and 3.9(d) as they illustrate the convergence process. 

 

 

 

 

(a) 

(b) 
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Figure 3.9. Performance of the adjoint based method for solving the data discrepancy 

problem, (a) convergence rate, (b) influence of the initial guess, (c) iteration process for 

initial guess EI0 and (d) iteration process for intial guess 1.2 EI0. 

 

3.5.2.2 Test # 2: Single saw-cut damaged beam 

In this example, a single saw-cut was created on the tested beam to simulate 

damage in the form of a crack, as shown in Figure 3.10. The length of the beam is 

𝐿 = 95.5𝑐𝑚, and a concentrated load of 17 𝑁 is applied at a distance of 89 𝑐𝑚 away 

from the support. The location of the saw-cut is 50 𝑐𝑚 from the base; the cut is 1.5 𝑚𝑚 

wide and 15 𝑚𝑚 in depth, corresponding to a 86% reduction in stiffness (D= 0.86).  

(c) 

(d) 
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Figure 3.10: Uniform cantilever beam with a saw-cut damage 

 

Using the equilibrium gap method, the damage distribution along the beam is 

shown in Figure 3.11.  The sharp peak is captured by the solution, indicating a clearly 

concentrated damage. The recovered stiffness factor profile using the data discrepancy 

method is plotted in Figure 3.12. The identification of the single concentrated damage is 

also clear, however small amplitudes oscillations similar to test 1 are observed. The 

larger errors close to the free-end can be attributed to the errors in the displacement 

measurement close to the loading point. 
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Figure 3.11: Damage detection of saw-cut beam using the equilibrium gap method 

 

 
 

Figure 3.12: Identified stiffness factor distribution of the saw-cut beam using the data 

discrepancy formulation. 

 

3.5.2.3 Test # 3: Discrete three saw-cuts damaged beam 

The objective of this test is to check the capability of the two algorithms to detect 

multiple cracks. Three discrete saw-cuts were created; the beam dimension is shown in 

Figure 3.13. The experimental data are as follows: the length of the beam is 𝐿 = 95.5 𝑐𝑚, 

and the concentrated load of 17 𝑁 is applied at 89 𝑐𝑚 from the fixed end. The first cut is 
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30.6 𝑐𝑚 away from the base, with a depth of 1.5 𝑚𝑚, corresponding to 17% stiffness 

reduction; the second cut is located at 50 𝑐𝑚 away from the base, having a depth of 15 

𝑚𝑚, corresponding to a 86% reduction in stiffness; the third cut is at 70 𝑐𝑚 from the 

base, and is of 2 𝑚𝑚 in depth, corresponding to 20% stiffness reduction. All introduced 

cuts have a width of 1.5 𝑚𝑚. 

 

 

 

 

Figure 3.13. The cantilever beam with three saw-cuts damage. 

 

The results of the equilibrium gap and the data discrepancy methods are 

illustrated in Figures 3.14 and 3.15, respectively. The sharp peaks are clear in the 

identified damage variables obtained by the equilibrium gap method (Figure 3.14), the 

identification of the location and magnitude of the damage is in good agreement with the 

expected results. From the stiffness factors obtained using the data discrepancy method, 

shown in Figure 3.15, it can be seen that although the location and magnitude of the 

damage have been captured, oscillations of the solution are still visible.    
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Figure 3.14. Damage detection of the beam with three saw-cuts using the equilibrium gap 

method. 

 

 

 
 

Figure 3.15. Identified stiffness factor distribution of the beam with three saw-cuts using 

the data discrepancy formulation. 

 

3.5.2.4 Test #4: Combination of discrete and step cuts damaged beam 

In this example, a step-cut damage was added to the previously discussed beam; a 

step-cut is added between the second and the third saw-cuts (Figure 3.16).  The depth of 
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the step cut is 2 𝑚𝑚, equal to the depth of the original third saw-cut at the location of 70 

𝑐𝑚 from the base; thus, the third saw-cut becomes part of the step-cut, but the second cut 

still displays as a discrete cut attached to the continuous step material removal.  

 

 

 
 

Figure 3.16. Cantilever beam with double saw-cuts and a distributed damage. 

 

The identified damage indices and stiffness factors, using the two proposed 

methods, are shown in Figure 3.17 and Figure 3.18.  The results of the equilibrium gap 

method show two sharp peaks and the flat stiffness region of the step damage are clearly 

identified.  The overall predictions are consistent with expected damage location and 

levels.  We observe an error close to the location of the loading larger than in the rest of 

the beam, this error can be attributed to the measurement variability in this region and the 

influence of the concentrated load.  On the other hand, the results of the data discrepancy 

method display a similar trend of oscillations as was observed in the previous example; 

however, the damage locations and magnitude are easily identifiable. 
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Figure 3.17. Damage detection of the beam with saw-cuts and step damage using the 

equilibrium gap method. 

 

 

 

Figure 3.18. Identified stiffness factor distribution of the beam with saw-cuts and step 

damage using the data discrepancy formulation. 

 

The identified damage indices and stiffness factors of several critical sections in 

the four test cases are transformed to stiffness (𝐸𝐼) and are displayed in Tables 3.3 to 3.6. 

Note that the identified values of saw-cuts are taken as the peak value around the 
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location, but the identified step-cut or original beam section stiffness values are taken as 

average of five values around the approximate location since there can be some 

oscillations in the identified stiffness of a constant section, especially for the data-

discrepancy formulation.  

 

Table 3.3: Identified stiffness of test #1 

 

Stiffness (unit: 108 𝑀𝑃𝑎 ∙ 𝑚𝑚4) 𝐸𝐼1 𝐸𝐼2 𝐸𝐼3 

Expected values 5.5259 4.5865 5.5259 

Equilibrium gap 

Identified values 5.5143 4.4533 5.4651 

Errors -0.2% -2.9% -1.1% 

Data discrepancy 

Identified values 5.4485 4.3655 5.4430 

Errors -1.4% -4.8% -1.5% 
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Table 3.4: Identified stiffness of test #2 

 

 

Stiffness (unit: 108 𝑀𝑃𝑎 ∙ 𝑚𝑚4) 𝐸𝐼1 𝐸𝐼2 𝐸𝐼3 

Expected values 5.5259 0.7737 5.5259 

Equilibrium 

gap 

Identified 

values 

5.5093 0.7644 5.4430 

Errors -0.003 -1.2% -1.5% 

Data 

discrepancy 

Identified 

values 

5.6088 2.4739 5.3049 

Errors 1.5% 219% -4.0% 
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Table 3.5: Identified stiffness of test #3 

 

Stiffness (unit: 108 𝑀𝑃𝑎 ∙ 𝑚𝑚4) 𝐸𝐼1 𝐸𝐼2 𝐸𝐼3 𝐸𝐼4 

Expected values 4.5865 0.7737 5.5259 4.4207 

Equilibrium gap 

Identified values 4.3577 0.7710 5.4706 4.4356 

Errors -5.0% -0.35% -1.0% 0.4% 

Data 

discrepancy 

Identified values 4.4041 1.6528 5.1943 4.1173 

Errors -4.0% 113.6% -6% -6.9% 

 

Table 3.6: Identified stiffness of test #4 

 

Stiffness (unit: 108 𝑀𝑃𝑎 ∙ 𝑚𝑚4) 𝐸𝐼1 𝐸𝐼2 𝐸𝐼3 𝐸𝐼4 

Expected values 4.5865 0.7737 4.4207 5.5259 

Equilibrium gap 

Identified values 4.3649 0.7869 4.6141 5.4154 

Errors -4.8% 1.7% 4.4% -2.0% 

Data 

discrepancy 

Identified values 4.3384 1.3964 4.5865 5.2496 

Errors -5.4% 80.5% 3.8% -5.0% 

 

4 2 3 1 

4 2 3 1 
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3.6 Conclusions 

Two inverse problem based formulations are proposed to identify damage in 

Euler-Bernouilli beams using the equilibrium gap concept and a data discrepancy 

functional. The static deflection profile of the beam is obtained from close range 

photogrammetric technique. A quasi-continuous measurement of the deflection became 

possible with the use of digital image processing based technology. We describe a 

technique to measure the displacement of beams based on an edge detection algorithm.  

The first inverse problem formulation uses the equilibrium gap principle along with a 

finite element forward problem solver.  An over-determinate algebraic system is obtained 

and solved in the least squares sense with a TTV regularization scheme. The second 

formulation is based on a data discrepancy expression of the measured and model based 

deflection.  The minimization of the functional is obtained through an adjoint method and 

a TTV regularization. 

The proposed methodology is validated by a series of synthetic data generated 

from simulations of a damaged beam. The identification of the location and level of 

damage is verified and the effect of noise is reported. The reconstruction of a 

continuously varying stiffness beam is also validated. Four tests were conducted on 

beams with different damage scenarios. The two methodologies were validated and 

showed overall good performance within a laboratory conditions. In each test, the 

location and level of damage were identified with a good level of accuracy. However, the 

formulation based on the equilibrium gap functional performed better and showed closer 

solutions to the real damage state. The data discrepancy based formulation depicts a 

slight oscillatory phenomenon in the solution, but the results are acceptable from a 
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practical point of view. A validation on more complex systems, such as rehabilitated 

reinforced concrete beams is underway. 

As for any inverse problem formulation, the quality of the data measurements is 

essential to the performance of the algorithm.  Two aspects need to be addressed in future 

work: (i) develop a reliable methodology for deflection measurements using digital image 

correlation, and (ii) include error uncertainty in the formulation of the inverse problems. 

These two enhancements will allow practical use of the proposed methodologies for the 

health monitoring of structures. 

The proposed methodology deals with two broad activities: (i) periodic non-

destructive damage localization and severity estimation; and (ii) the assessment of 

structural safety based on the results of the non-destructive damage detection. 

Once the identification of the structure has been accomplished, subsequent 

analyses, e.g. the determination of load capacity, rating, reliability and useful life 

determination of the structure can then be conducted 

 

3.7 Extension and envision:  

Field testing and identification is different from lab setting. In the published 

results, some are validated using pure simulated data to small-scale structures (Banan, 

Banan et al., 1994b) (Sanayei, Imbaro et al., 1997) , some using test data in lab 

experiments on small scale structures; nonetheless, in-situ testing is challenging.  

Experimental design, testing, acquisition of data, data processing and data quality 

assessment, all involve some difficulties. Acquiring a topologically correct a priori FE 
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model can also be a problem, boundary conditions are needed to be identified first before 

damage identification. 

There is a long history of research in full-scale testing for assessment of highway 

bridge (Phares, Rolander et al., 2001) (Bakht and Jaeger, 1990). While for large and 

exotic bridges the SHM systems are more an academic performance, for smaller bridges 

the global response is more sensitive to defects, visual inspection is less frequent and 

SHM systems can make a real contribution (Heywood, Roberts et al., 2000). 
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CHAPTER FOUR: MATERIAL PARAMETER IDENTIFICATION USING FULL-

FIELD MEASUREMENTS 

 

Give me matter, and I will construct a world out of it.                               (Immanuel Kant) 

 

4.1 Introduction and literature review of related research 

4.1.1 General review 

Modern design and performance evaluation requires realistic simulation of structural and 

material behaviours; the corresponding theories are classified as models of elasticity, 

plasticity, hyperelasticity, rate-dependent viscoelasticity/viscoplasticity, as well as 

additional models of continuum damage and fracture mechanics at material and structural 

levels.  For background material about the different classes of inelastic constitutive 

models for isotropic materials and numerical solution schemes, we cite, for example: 

(Kojic and Bathe, 2005; Neto, Peric et al., 2008).  

In today‘s practice of inelastic FE analysis using commercial programs, extensive 

libraries of material models are available.  Constitutive parameters associated with 

inelastic models are not necessarily available in standard material databases, but are 

essential input data for any finite element simulation. Therefore, unknown material 

parameters must be identified experimentally.  Traditionally, the identification of material 

parameters is performed using standard testing procedures on regularly shaped cut-outs 

or machined specimens.  In these tests, it is generally assumed that the mechanical fields 

are homogeneous, and that the experimental specimen gauge response can be associated 
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to the simulated material response through simple fitting of the analytical relationships 

(Bell, 1984).  

However, even in the case of simple tests, obtaining a perfectly homogeneous 

deformation field is not certain.  For example, the accurate estimation of plastic material 

properties from a simple tensile test can be difficult due to the non-uniform stress/strain 

distribution in the necking zone.  Generally, it is not possible to determine the hardening 

parameters from direct measurement of specimen elongations. In order to calculate the 

stress accurately, the Bridgman correction needs to be applied, and this requires 

additional measurements of the contractions and curvature of the necking zone 

(Bridgman, 1952).  To overcome these limitations, Rodic et al. used an inverse approach, 

referred to as the ―error minimization concept‖, to estimate the hardening parameters in a 

Nadai-type constitutive law (Rodic, Gresovnik et al., 1995). In this approach, the 

parameters are estimated by minimizing an error function between the experimental and 

predicted load-displacement responses.  Consequently, the necking distortion present in 

the specimens is implicitly included in the analysis; this approach does not require 

additional measurements to be obtained from the necking zone as is required for 

application of the Bridgman correction.  Rodic and Gresovnik developed an identification 

system based on the finite element code, ―Elfen‖, and an inverse program, ―Inverse‖, to 

solve a minimization problem (Rodic and Gresovnik, 1998).  A similar method was 

adopted by Mahken and Stein, but they included the observed contours of the necking 

zone during the loading process as additional experimental information to calculate the 

elasto-plastic material parameters of a mild steel (Mahnken and Stein, 1997).   
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A technique called the ―mixed numerical experimental‖ method parallels the error 

minimization concept, but the deformation mode does not need to be pre-determined, so 

general specimen geometries and loading conditions can be chosen (Hendricks, 1991; 

Meuwissen, 1998; Meuwissen, Oomens et al., 1998).  For example, Meuwissen (1998) 

applied the mixed technique to identify the mechanical parameters of aluminum and steel 

alloy materials, where the specimens were plate with holes so the geometries were not 

standard and deformation was inhomogeneous. Measurements included displacement 

fields on the surface of specimens determined by the grid or grating method; the 

combination of Von Mises yield criterion with nonlinear hardening laws was validated. 

This family of identification procedures derives from formulation as an optimization 

problem to minimize the difference between the computed and the measured responses. 

Typically, these procedures employ a pseudo-Newton method to search for the minimum, 

and dedicated gradient computation schemes, such as direct differentiation or finite 

difference, are required (Meuwissen, 1998; Meuwissen, Oomens et al., 1998; Mahnken, 

2004) (Springmann and Kuna, 2003; Springmann and Kuna, 2005) (Zentar, Hicher et al., 

2001) (Mahnken, 2000) (Mahnken, 2002).  

Subsequently, due to the rapid development of finite element analysis of nonlinear 

materials and optimization techniques that accompanied the extraordinary development 

of computer hardware and software in the last twenty years, this method has been studied 

and applied extensively to determine different material parameters in a variety of tests. 

The mixed numerical experimental technique has been examined under names such as the 

―inverse identification approach‖, or the ―simultaneous determination of material 
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parameters‖ (Springmann and Kuna, 2003; Springmann and Kuna, 2005) (Zentar, Hicher 

et al., 2001) (Mahnken, 2000) (Mahnken, 2002).  

In addition to gradient-based local deterministic methods, the application of 

evolutionary algorithms to solve optimization problems, and identify inelastic material 

parameters with finite element model updating based on uni-axial load-displacement data 

has been investigated (Hwang, Wu et al., 2010) (Müller and Hartmann, 1989; Furukawa 

and Yagawa, 1997) (Munoz-Rojas, Cardoso et al., 2010). For example, Dusunceli et al. 

proposed a formulation based on error minimization of the stress-strain curve from 

homogeneous uni-axial tension tests along with a genetic algorithm-based solver 

(Dusunceli, Colak et al., 2010).  

Alternatively, artificial neural networks (ANN) have been used to determine 

material properties from load-displacement data (Aguir, BelHadjSalah et al., 2011) 

(Mahnken, 2004) (Lefik and Schrefler, 2002). The ANNs can be trained using FEA 

simulations to build a mapping from measurement data to material parameters.  ANNs 

are tolerant of measurement errors.  The ANN model is used as an alternative to the finite 

element calculations to evaluate the objective functions. 

One may classify the different methods of correlating test data and model 

parameters as:   

1) methods based on theoretical/analytical relationships (analytical fitting); 

2) methods based on numerical simulations of the test (mixed-numerical 

experimental methods); and 

3) methods based on empirical relationships, including empirical 

relationships using artificial neural networks.   
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The mixed-numerical experimental method provides not only more flexibility in 

test design, but also more accurate and complete assessment of constitutive models. For 

example, this method allows the design of experiments in which conditions are much 

closer to those of practical situations; this is especially important in mechanical 

component analysis since it minimizes the extrapolation of results obtained under testing 

conditions to practical conditions. Thus, the mixed numerical-experimental method is a 

perfect candidate for designing experiments that approximate real-world conditions.  This 

is especially important if in-situ testing is required, in which the specimen is tested within 

the assembly.   

Generally, forward simulation is performed with finite element analysis, so this 

inverse identification is actually a problem of finite element model updating (see Chapter 

3 for discussion of FE model updating in damage identification).  Since the 1980s, finite 

element model updating has emerged as an important aspect of the design of mechanical 

systems and civil structures, especially in the development of automotive and aerospace 

systems; it quickly became the most popular branch of model-updating (Keane and Nair, 

2005; Arora, 2007).   

 

4.1.2 Outline of the proposed methodology 

The research presented in this chapter considers the problem of identification of 

material plasticity parameters.  We developed an identification method based on the 

minimization of a least-squares error function between the inhomogeneous displacement 

fields measured by digital image correlation (DIC) and a finite element simulation under 

a given load.  The material parameters are identified simultaneously by means of a direct 
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derivative-free optimization method that uses the finite element code as a black-box 

procedure.  

The three components of this inverse identification procedure are: (i) nonlinear 

finite element analysis, (ii) direct optimization algorithm, and (iii) digital image 

correlation (DIC) test results.  One of the fundamental aims of this work is to reformulate 

the algorithm to minimize the cost function, and thus remove the need to evaluate the 

gradient of the cost function.  Derivative-free optimization methods allow us to avoid the 

tedious coding of numerical gradient computation associated with a material constitutive 

model.  The second objective of this work is to exploit the use of a full-field 

measurement technique based on DIC as input.  DIC is capable of capturing 

heterogeneous deformation fields and provides an excellent source of data for both 

deterministic and statistical analysis.  Furthermore, both finite element analysis and DIC 

are now standard tools widely available in industry.  Therefore, the proposed 

methodology can be easily adopted for practical use.  Finally, this work employs 

statistical studies of nonlinear regression analysis in this inverse identification procedure 

to verify and validate the identified material parameters.  DIC provides a large amount of 

data and thus allows the use of statistical inference; whereas homogeneous tests seldom 

provide enough data for statistical inference unless they are associated with random 

simulations (Seibert, Lehn et al., 2000a) (Harth, 2003) (Harth, Schwan et al., 2004) 

(Harth and Lehn, 2007).  

Taken together, finite element analysis, optical full-field measurement techniques 

(such as DIC or advanced grid methods), and direct optimization techniques comprise a 

standard tool for the determination of material properties.  Moreover, since these 
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components of the proposed inverse identification procedure (not only finite element 

analysis, but also the DIC technique and finite element model updating through direct 

optimization), have become commercialized, they are currently available for general 

industrial use.   

4.1.3 The advantages of using DIC 

Different optical measurement techniques have been used in material 

characterization studies.  For example, an optical method called ―silhouette analysis‖ was 

used to obtain the section profile of a cylindrical specimen during necking; these data, 

along with load-displacement curves, were used to identify parameters in a damage 

model (Broggiato, Campana et al., 2007).  Likewise, the moiré method was used to 

obtain planar displacements (Kreißig, Benedix et al., 2007), while a grid method was 

used by Meuwissen and Mahken (Meuwissen, 1998) (Mahken, 1998).  However, the 

commercially most successful image processing-based measurement technique is the 

digital image correlation (DIC) method (Louban, 2009) (see Chapter 2 for a list of current 

commercial DIC systems and software).  Sutton et al. presented details of the DIC 

technique and a review of its applications in a recent book (Sutton, Orteu et al., 2009). 

Many researchers have noted the advantages of using inhomogeneous 

displacement fields in material parameter identification (Kleuter, Menzel et al., 2007) 

(Cooreman, Lecompte et al., 2008).  Recently, investigators in France developed a 

methodology based on the principle of virtual work, the ―virtual fields method (VFM)‖, 

that allows the development of simple or more complex analytical models for the 

constitutive equations of the material under investigation.  The VFM assumes that the 

input will consist of full-field measurement data obtained using DIC or the grid method 
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(Grediac, Toussaint et al., 2002) (Grediac, 2004) (Grédiac and Pierron, 2006) (Toussaint, 

Grediac et al., 2006) (Promma, Raka et al., 2009) (Grédiac, 2011).  In addition, 

inhomogeneous displacement fields must be provided for the VFM; otherwise, the 

resulting linear system of equations becomes ill-conditioned as the data may not contain 

sufficient information for more than two parameters.  Intuitively, although homogeneous 

displacement fields are adequate for identification of the elastic modulus, the deformation 

must be heterogeneous for the determination of elasto-plastic parameters.  Section 4.8 

presents further discussion of the issue of identifiability.   

There is an additional advantage arises from the large amount of data generated 

by DIC: the valid use of statistical inference.  For example, the estimate of the covariance 

is valid when the amount of data is large.  On the other hand, unless used in conjunction 

with random simulation, homogeneous tests seldom provide enough data to support 

statistical inference (Seibert, Lehn et al., 2000a) (Harth, 2003) (Harth, Schwan et al., 

2004) (Harth and Lehn, 2007).  

Another significant advantage to using DIC is that the identification of parameters 

in material models can be performed with non-standard specimens and even with original 

components, so in-situ testing becomes possible.  The use of non-standard specimens 

under non-standard loading conditions is not only an intellectual curiosity, but is 

particularly useful in some practical applications.  For example, Partheepan et al used 

miniature specimens, thus avoiding the removal of large material samples, for the 

evaluation of current material properties of an in-service component (Partheepan, Sehgal 

et al., 2008). 
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4.1.4 Organization of this chapter 

Chapter 4 is organized as follows: Section 4.2 outlines the formulation of 

continuous functions in solid mechanics and gives an overview of popular material 

constitutive models that are widely used in engineering finite element analysis.  Section 

4.3 outlines the approaches used in the current work, and describes the identification 

method in detail; including the least squares solution and the validation procedures based 

on theories in nonlinear regression analysis.  Section 4.4 summarizes the relevant theories 

in nonlinear regression related to this work.  Section 4.5 presents the inverse 

identification problem using nonlinear least squares estimation.  Section 4.6 is an 

overview of state-of-the-art numerical optimization methods, with emphasis on direct 

derivative-free techniques developed in recent years.  Section 4.7 describes the statistical 

inference procedures for the DIC test data; these procedures employ linearized 

covariance analysis (LCA) of uncertainty for the identified parameters and sampling-

based statistical inferences of the response fit.   

Identifiability issues are discussed in Section 4.8.  Numerical and experimental 

examples are presented in Section 4.9; the first validation is based on synthetic data, and 

the experimental example deals with a cast iron bearing cap component, where the 

displacement field was obtained using the ARAMIS DIC system (ARAMIS).  Four direct 

optimization methods are compared using these examples, including (i) the derivative-

free CONDOR algorithm which is based upon the trust-region algorithm and response 

surface exploration techniques, (ii) the Nelder-Mead simplex method, (iii) a response 

surface method in FE software, and (iv) a pseudo-Newton method using finite difference 

approximation to gradients.  The fourth method is usually considered as first-order, 
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gradient-based method with an approximate gradient evaluation; this type of methods 

have been used in material parameter identification.  However, since in this type of 

methods, the FE simulation process can actually be treated as black-box, we consider it 

also as a derivative-free method; i.e. in this thesis the term ―derivative-free‖ is associated 

with methods in which the objective-function evaluation process can be treated as an 

external black box.  Section 4.10 summarizes the findings of this work.   

4.2 Overview of elasto-plasticity 

In this section, we summarize the general theory of elasto-plasticity.  By 

definition, the theory of elasto-plasticity is concerned with solids that, after being 

subjected to a loading program, may sustain permanent (or plastic) deformations after 

complete unloading.  Elasto-plasticity theory has been successfully applied to metals, and 

it is nowadays theoretically consolidated and well-studied phenomenological constitutive 

model.  

The basic components of the general elasto-plastic constitutive model include: 

 The strain decomposition principle where the total strain 𝜖 is assumed to 

be the sum of an elastic, 𝜖𝑒  , and a plastic components, 𝜖𝑝 : 𝜖 = 𝜖𝑒 + 𝜖𝑝 ,  

 A yield criterion usually expressed in the stress space, 𝛷(𝜎), that defines 

the onset of plasticity.  Classical yield criteria widely used in engineering 

practice include Tresca, von Mises, Mohr-Coulomb and Drucker-Prager 

criteria. 

 A plastic flow rule defining the evolution of the plastic strain, the flow 

rule is usually defined as a flow potential.  In the case of associative flow 

rule, the flow rule is described from the gradient of the yield function  
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which leads to the fact that the plastic strain rate is a tensor normal to the 

yield surface in the stress space.  

 A hardening law, characterizing the evolution of the yield surface (i.e. 

deformation after yielding occurred).  The hardening rule describes the 

evolution of the yield function over time, usually identified from a 

uniaxial specimen.   

 To express the irreversibility of the plastic deformation, the Kuhn-Tucker 

conditions must be applied. 

The identification of an associative elasto-plastic constitutive model consists of 

finding the parameters that define the yield function and the hardening surface.  In FE 

analysis, the hardening law is generally expressed as a one-dimensional function 

describing the full stress-strain curve during uniaxial loading (Ramberg and Osgood, 

1943) (ASTM, 2011).  

For example, in the case of the linear hardening law: 𝜎 = 𝜎0 + 𝐻𝜖𝑝 , where 𝜎 is 

the current yield stress, 𝜎0 is the initial yield stress, 𝜖𝑝 = 𝜖 − 𝜖𝑒  is the equivalent plastic 

strain, 𝜖 is the total strain and 𝜖𝑒  is the elastic strain, 𝐻 is the hardening modulus.  In this 

simple model, the parameters that need determined are 𝜎0 and 𝐻.  In most FEA programs, 

the data required for an elasto-plastic behaviour is a multi-linear function that is the best 

fitting of the stress-strain curve.  There exist a variety of nonlinear hardening laws for 

metals including the Nadai hardening law: 𝜎 = 𝜎0 + 𝑐𝜖𝑝
𝑛 , defined by the three parameters 

𝜎0, 𝑐 and 𝑛.; the rigid-plastic power hardening law: 𝜎 = 𝑐𝜖𝑝
𝑛 ; and the Ramberg-Osgood 
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hardening law: 𝜖 =
𝜎

𝐸
+ 𝐾  

𝜎

𝐸
 
𝑛

, where 𝐸 is the Young‘s modulus, and 𝐾 and 𝑛 are the 

two material parameters.  

 

4.3 General methodology  

Material parameter identification is a particular type of parameter identification 

problem.  Parameter identification problems arise in all fields of engineering science.   

Consequently, parameter identification has attracted considerable research interest since 

the mid-seventies; a number of books describe standard treatment of parameter 

identification using deterministic and statistical methods (Bard, 1974) (Beck and Arnold, 

1977) (Bates and Watts, 1988) (Tarantola, 2004) (Seber and Wild, 2005).  In the current 

research, we focus on a formulation for the identification of constitutive parameters based 

on the least-squares cost function measuring the gap between a FE model prediction and 

the results of experimental measurements.  The least-squares estimation is a fundamental 

approach to system identification problems, and has already become a classic method 

frequently practiced by scientists and engineers in a wide variety of applications.   

The principle components of the inverse identification technique are presented 

schematically in Figure 4.1: 
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Figure 4.1: Flowchart of material parameter identification using optimization-based FE-

model updating 

 

In this procedure, the post-processing phase performs a coordinate transformation 

and interpolation to correlate the coordinates used in the DIC experiment with those of 

the FE simulation results.  When commercial FEA software is involved in the 

optimization process, the data flow between the optimization algorithm and the FEA code 

is maintained through file exchanges.  This process requires the optimization algorithm to 

modify the input file iteratively and submit the modified data to the FEA software.   

Modern commercial design software packages developed for coupling with FE analysis 

(e.g. iSIGHT or HYPERSTUDY) have interfaces that simplify the data flow process.   
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 The research presented in this chapter uses ANSYS software for the FE analyses.  

MATLAB programs implementing CONDOR and Nelder-Mead simplex algorithms are 

used as well, and the interaction with the ANSYS FE software is performed through 

modification of the ANSYS APDL modeling file.  For purposes of comparison, a 

response surface methodology included in the ANSYS DesignSpace software package is 

also used; in this case, the interaction between the optimization algorithm and the FE 

code is internal to the software.     

 

4.4 Nonlinear regression theory: parameter estimation using statistical inference 

Due to unavoidable systematic inaccuracies inherent in loading, boundary conditions, and 

measurement devices, the recorded experimental data includes errors. Therefore, the 

sensitivity and inferences on the calculated parameters represents important information 

to the user regarding the precision of the combined testing/modeling procedures.   

The parametric nonlinear regression model is written as: 𝒀 = 𝑓 𝒙, 𝜽 + 𝝐; where 

the response vector 𝒀 is observed for each value of the independent variable 𝒙, it is 

assumed that the true regression relationship between 𝑌 and 𝑥 is a sum of a systematic 

(physical) part and a random part; generally, the true system function is approximated by 

a parametric function 𝑓 , called the regression function, that depends on unknown 

parameters 𝜃.  The function 𝑓 does not need to be knowm explicitly, in many cases it is a 

function of the solution of differential equations. 𝜖  is a random error equal, by 

construction, to the discrepancy between observation 𝑌 and 𝑓.  
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The problem is to estimate the unknown parameter vector 𝜃 .  A natural and 

popular choice is the least squares estimator, and the LS estimator is also the maximum 

likelihood estimator (MLE) in the case of Gaussian observations. 

The inverse identification process described in Section 4.3 can be interpreted as a 

statistical parameter estimator using nonlinear regression.  Statistical inference can be 

employed to study the reliability of the parameter identification, and to provide an 

assessment of the quality of the results (Huet, Bouvier et al., 2004).  In using statistical 

inference, a set of parameters (𝜽) are considered as random variables; thus, their accuracy 

is related to the shape of the probability distribution function.  Accuracy is often 

expressed in terms of a confidence region for the parameter vector, or as the confidence 

interval of its components.  A 100(1-α)% confidence region is a region of parameter 

space that contains the true parameters with a probability of 1 − α; therefore, 1 − α is the 

confidence level for this region (Huet, Bouvier et al., 2004).   

There are three methods for statistical inference: 

I. Likelihood approach, 

II. Sampling theory approach, 

III. Bayesian approach. 

All three methods produce the same point estimates for 𝜽.  They also produce 

similar confidence regions of reasonable parameter values. 

In nonlinear regression inference, the success of parameter identification can be 

checked by: 1) expectation function fit and 2) parameter fit.  If a model gives a smaller 

residual response and/or smaller confidence regions in the expectation function and 
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response function, the model is said to be phenomenologically better, or the model 

parameter set yields a better description of the model‘s behaviour.   

The most accurate way to perform a sensitivity analysis is through Monte Carlo 

methods in which properties of the distributions of random variables are investigated by 

use of simulated random numbers (Gentle, 2003).  In the random simulation, scattered 

data from simulated identification experiments is collected, and analyzed statistically 

(Mosegaard and Sambridge, 2002).  For example, researchers used stochastic search and 

Monte Carlo analyses to study viscoplasticity models; their test data were homogeneous 

responses and their models were ordinary differential equations (ODE) solved 

numerically using the Runge-Kutta method.  This type of forward analysis is easy to 

solve, and computationally inexpensive, therefore stochastic techniques can be applied 

without difficulty (Seibert, Lehn et al., 2000a) (Harth, Schwan et al., 2004) (Harth and 

Lehn, 2007).  

Nevertheless, due to the complex geometry and nonlinear FEA, we cannot 

recommend this approach for industrial applications.  With current computing power, if 

optimization and validation require between 20 to 50 FE analyses, then this approach is 

affordable; however, if these processes require 5000 FE analyses, the computational cost 

is too high.  For the same reason, global stochastic optimization methods are not 

applicable to this problem.   

 

4.5 Least-squares formulation and solution of the identification problem 

In the mixed numerical-experimental method using a least squares estimator, the 

set of parameters 𝜽 of the material model are determined by minimizing the difference 
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between a test data set 𝒅 and numerically simulated results denoted 𝑴(𝒙; 𝜽) in the sense 

of an error norm. Usually, a classical least squares objective function is used:  

min 𝑓 𝜽 =
1

2
 𝑴 𝒙; 𝜽 − 𝒅 2

2          𝑴 𝒙; 𝜽 ∈ 𝑅𝑁         𝜽 ∈ 𝝑 ∈ 𝑅𝐾       𝒅 ∈ 𝑅𝑁      (4.1) 

Obviously, the objective function 𝑓(𝜽)  is a scalar function of the unknown 

material parameters 𝜽; the numerically simulated response, referred to as model, 𝑴(𝒙; 𝜽) 

is a function of the material parameters 𝜽.  Here, N is the number of measured response 

data and 𝐾  is the number of parameters. For most practical purposes; and to keep 

generality, the response 𝑴(𝒙; 𝜽)  is assumed to be generated by finite element 

simulations. The variables defined in Equation (4.1) include: 𝒙 ,  the discrete space 

locations where the measurements are carried out and, 𝝑 which denotes the space of 

material parameters 𝜽 associated with a specific constitutive model; this space defines the 

practical constraints for each parameter in the set 𝜽. In formulation (4.1) the 𝐿2 norm is 

used; however, different norms can also be considered as it was shown previously that 

the identification results are barely affected by the choice of the norm (Seibert, Lehn et 

al., 2000b).   

The cost function 𝑓 𝜽  in (4.1) can be rewritten as: 

        𝑓 𝜽 =
1

2
𝑹𝑇 𝜽 𝑹 𝜽 =

1

2
 𝑅𝑖

2 𝜽 𝑁
𝑖=1                                              (4.2) 

where 𝑹 𝜽 =  𝑅𝑖 𝜽  
𝑇 , 𝑖 = 1,… ,𝑁, denotes a column vector of residual components 

between the calculated and measured values; and 𝑅𝑖 𝜽 = 𝑀𝑖 𝜽 − 𝑑𝑖 , where index 𝑖 

refers to a particular space location 𝒙𝑖 . 

The necessary optimality condition,𝛻𝑓 𝜽∗ = 0, leads to the normal equation: 

𝑱𝑇𝑱𝜽∗ = 𝑱𝑇𝑹                                                      (4.3) 
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where 𝑱 denotes the Jacobian matrix of the residuals with respect to the parameters; that 

is: 

𝐽𝑖𝑗 =
𝜕𝑅𝑖

𝜕𝜃𝑗
                                                             (4.4) 

If the model mapping 𝑴(𝒙; 𝜽) is linear, this normal equation leads to a direct 

solution of the unknown parameters 𝜽.  In general, the mapping is implicit and nonlinear; 

therefore, an iterative procedure needs to be used. 

Without loss of generality, the problem expressed by Equation (4.1) can be 

considered as finite element model updating through minimization of the cost function 

defined in (4.2). This general formulation is flexible as different types of experimental 

data can be combined. For example, DIC data and load-displacement data can be 

combined and input together, or DIC data at different loading stages and/or under 

different loading configurations can be defined as an input ensemble.  In the present 

work, we used DIC measurements as input, but the solution methodology can be 

generalized to data acquired with different measurement techniques.   

In practice, the data 𝒅  is unavoidably affected by measurement errors, and a 

weight can be applied to be cost function.  Theoretically, the ideal weight used should be 

the inverse of the covariance matrix of the observed data.  In the current study, we 

assumed that the noise from different sources of error is independent and identically 

distributed; the cost function with these ideal weights can be expressed as:  

𝑓 𝜽 =
1

2
 

𝑅𝑖
2 𝜽 

𝜎𝑖
2

𝑁
𝑖=1                                                            (4.5) 

where 𝜎𝑖
2 is the expected error variance of measurement data 𝑑𝑖 .  Thus, the least squares 

estimate is identical to the maximum likelihood one.  
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From examination of currently available optimization algorithms, one may 

distinguish between schemes that make use of the gradient of the objective function, and 

those that do not rely on gradient estimations.  Most of the existing mixed numerical-

experimental approaches use gradient-based optimization methods, and the gradient is 

generally derived analytically using either direct differentiation or adjoint formulation 

techniques, or calculated numerically using finite difference.  An iterative method is 

adopted along with the gradient information to solve the nonlinear least-squares problem 

(Kreißig, Benedix et al., 2007) (Mahnken, 2004) (Springmann and Kühhorn, 2009).   

In this study, direct optimization methods were preferred to solve the least squares 

identification problem expressed by Equation (4.2). Note that the terms direct search, 

derivative-free search, and zero-th order search are sometimes used interchangeably in 

the literature. According to Conn et al, for state-of-the-art research and development, 

derivative-free optimization methods are best for dealing with noisy data; the 

performance of these methods is notably better than gradient-based methods using finite 

difference approximations, especially in cases of noisy data (Conn, Scheinberg et al., 

2009).   

Powell (1964) originally proposed a derivative-free version of the nonlinear 

conjugate gradient method consisting of the construction of a sequence of at most 𝐾 +

1 one-dimensional searches (𝐾  being the number of unknown parameters); each one-

dimensional search is conducted by finding the exact minimum of a quadratic interpolant 

(Powell, 1964).  The interpolant used in Powell‘s method is similar to the response 

surface methodology (RSM) in stochastic optimization.  
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In Monte Carlo analyses, model parameters simulate real world conditions by 

varying randomly, whereas response surface methodology combines global and local 

analyses to create a simple mathematical equation of the complex and implicit 

relationship between different factors.   

In the last twenty years, with the exception of a few heuristic-based searches and 

cluster-based random searches, direct optimization algorithms developed extensively 

primarily due to the efficient use of response surface exploration in combination with 

different efficient optimization, line-search and trust-region algorithms. Recently, 

considerable research progress in code development of derivative-free Newton-based 

methods has taken place, including DFO (Conn, Scheinberg et al., 1997), Powell‘s 

UOBYQA (Powell, 2002), CONDOR (Berghen, 2004) (Berghen and Bersini, 2005), and 

NEWUOA (Powell, 2006).  

Berghen developed CONDOR (COnstrained, Non-linear, Direct, parallel 

Optimization using trust Region method for high-computing load function) for expensive 

optimizations, such as objective functions evaluated from the output of nonlinear FEA or 

Computational Fluid Dynamics (CFD) simulations.  CONDOR was designed mainly for 

unconstrained optimization problems and for easy (box) constraints.  The algorithms in 

CONDOR are based on a derivative-free trust region method using a surrogate model that 

approximates the objective function by a quadratic polynomial, which is then minimized 

by sequential quadratic programming (SQP).  Descent conditions from trust region 

methods enforce convergence properties.  CONDOR has been compared to DFO (Ugur, 

Karasozen et al., 2008) and genetic algorithms (Harth, Sun et al., 2007) in designs 

involving flow problems, and its performance was found to be better.   
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In the present study, the CONDOR method was used to minimize the least 

squares cost function and to obtain the list of unknown parameters.  For comparison, we 

also used the original Nelder-Mead simplex method, a pseudo-Newton method based on 

finite difference derivatives, and a response surface method to illustrate the superiority of 

a derivative-free algorithm in the context of parameter identification.   

The use of derivative-free optimization methods provides the level of generality 

and modularity necessary for the optimization tool if the objective is to use the finite 

element code as a black box.  Some of the modern derivative-free methods are considered 

globally convergent, since they include techniques such as line-search, reinforcing good 

geometry and trust region, thus ensuring a global optimum.  Note, however, that because 

of the lack of rigorous convergence properties of derivative-free methods, the solutions 

must be considered local.  One simple way to address this issue is to vary the starting 

point and the trust region radius to validate the final optimal solution.   

In summary, for the solution of the optimization problem, the following 

recommendations are made: 

 Use justification to give box-constraints to define the acceptable search 

region. 

 If possible, have more than one method to solve the problem. 

 Start from several different starting points. 

 

4.6 Overview and selection of optimization techniques 

The material parameter identification requires the solution of a nonlinear 

optimization problem: 



 

 

128 

minimize  𝑓 𝜽 ;     𝜽 ∈ 𝑅𝐾  

𝑠. 𝑡.     𝜃𝑖 ∈  𝜃𝑖
𝑙 , 𝜃𝑖

𝑢 , 𝑖 = 1, …𝐾 

where 𝜽 ∈ 𝑅𝐾  is the vector of unknown parameters, and 𝜽𝑙  and 𝜽𝑢  are vectors of lower 

and upper bounds, respectively. Comparing to the general nonlinear optimization 

problem, there is no present of equality and inequality constraints. 

The major concern is that the evaluation of 𝑓 𝜽  is computationally expensive. 

This fact rules out the application of stochastic optimization methods, such as 

evolutionary algorithms and other heuristic-based global optimization methods. 

Intuitively, the most straightforward way to tackle the computational cost issue is to use a 

strategy that employs computationally cheap surrogate models for the objective to solve 

an approximation to 𝑓 𝜽 .  Surrogate-assisted search algorithms are the choice. 

 

They can be classified into zero-order methods, first order-methods, and second-

order methods. The zero-order methods use only the objective function values to 

determine the optimum values. The first-order methods use the objective function and the 

gradient of the objective function to construct search directions during iterations. The 

second-order methods use second-derivatives (Hessian) to construct the search directions.  

Nonlinear least squares problems can be solved in two ways: 1) as nonlinear least 

squares optimization problems or 2) as PDE-constrained optimization problems.  In this 

study, only the first category of these solutions is considered.  Various numerical solution 

methods for optimization problems are available. For example, one may distinguish 

schemes by whether or not the solution uses gradients of the objective function. In 

general, published accounts describing mixed-numerical-experimental approaches used 
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gradient-based optimization methods.  Usually formulas to evaluate a gradient were 

derived analytically, and an iterative method was adopted along with the gradient 

information to solve the nonlinear least-squares problem (Kreißig, Benedix et al., 2007) 

(Mahnken, 2004) (Springmann and Kühhorn, 2009).  The most frequently used iterative 

approaches for solving nonlinear least-square problems include the pseudo-Newton 

methods, such as the Gauss-Newton method or the BFGS method, and trust region 

methods, such as the Levenberg-Marquardt method. In these approaches, the Hessian 

𝛻2𝑓(𝜽) is not required, which is a great advantage over complete Newton methods since 

derivation of analytical Hessian is more complicated than analytical gradients. A 

summary of the fundamental aspects of gradient-based methods for solving the 

optimization problem follows.     

The iterative schemes can be expressed as:   

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝑗𝑯𝑗∇𝑓 𝜽𝑗                                          (4.6) 

where 𝛼𝑗  is the step size at the 𝑘𝑡𝑕  iteration and 𝑯𝑘  is the pseudo-Newton iteration 

matrix at the 𝑘𝑡𝑕  iteration.  

 The pseudo-Newtonian iteration matrices defined for each method are:   

Method 𝑯 

Gauss-Newton  𝑱𝑇𝑱 −1 

Levenberg-Marquardt  𝑱𝑻𝑱 + 𝛾𝑰 −1 

BFGS 𝑯(𝑯𝑗−1 , ∇𝑓, 𝜽)  
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Gradient methods are efficient and often require fewer forward simulations.  In 

the case of practical applications where the data are associated with noise, the 

convergence rate of gradient-based methods depends closely on the initial estimate of the 

parameters. Apart from the problem of local minimum, the major difficulty in using 

gradient-based methods lies in the implementation of gradient-evaluation procedures.  

These are tedious and require a great deal of additional effort in addition to the FE 

analysis.  Furthermore, users generally do not have access to commercial codes; this 

prevents users of complex commercial numerical analysis programs from obtaining 

reliable derivative information for the requested numerical analysis.  Another hindrance 

is that the evaluation of gradients can vary for different material models, element types, 

deformation levels, integration schemes, or even the type of response data.   

In the FE model updating and material identification literature, gradient 

evaluations are often referred to as sensitivity analyses. A sensitivity analysis using DIC-

measured surface strains was reported by (Cooreman, Lecompte et al., 2007).  This 

particular analysis applies only to simple tensile tests, however, and since the return-

mapping scheme was considered in the derivation, it cannot be directly applied to FE 

programs using other schemes, such as the effective stress integration scheme in ADINA 

(ADINA).  Some researchers have used finite difference approximation of the gradients 

as an alternative (Meuwissen, 1998) (Meuwissen, Oomens et al., 1998) (Haber, Tortorelli 

et al., 1993) (Springmann and Kuna, 2003) (Ghouati and Gelin, 2001), but this approach 

is considered unreliable, especially when the noise in the experimental data is not 

negligible (Springmann and Kuna, 2003) (Ghouati and Gelin, 2001) (Fra̧ś, Nowak et al., 
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2011).  Of course, the poor reputation of this method may stem from the fact that its 

simplicity is not persuasive for application to scholarly research.  

Gradient methods are more efficient, and require fewer forward simulations.  On 

the other hand, they are local methods; if the objective function is multi-modal (the multi-

modality can be essential or caused by noise in the data), convergence is highly 

dependent on the initial estimates of the parameters.  A local minimum solution is easily 

found; a global minimum may be found using multiple initial guesses.   

There are also a variety of direct search methods based on heuristics, which are 

often without theoretical justification; these include random search, evolutionary 

algorithms, and taboo search. The most significant advantage of these methods is that 

they are generally global; however, they are also often slow. In other words, these 

methods are ‗slow, but sure‘. Simulated annealing and genetic algorithms are among the 

leading candidates for global optimization applications.  Nevertheless, these methods are 

also problem-specific, and require user-intervention and learning. Consequently, standard 

implementation of these methods has yet to coalesce.  The cluster-oriented controlled 

random search method proposed by Price (Price, 1983) was used by (Harth and Lehn, 

2007) to identify material parameters in Chaboche‘s viscoplastic model for solution of an 

error minimization problem with data from homogeneous tension/compression tests and 

creep tests.  Since the strain was homogeneous, the model was an ODE model solved 

using Runge-Kutta methods. The random search direct method requires extensive 

forward simulations, but is affordable for ODE models. However, if an FE model is used, 

and the model is geometrically complicated and nonlinear, the random search will 

become unaffordable with current computational resources.    
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In this paper, direct optimization methods are used to solve the least square 

identification problem.  The phrase ―direct search‖ was coined by Hooke and Jeeves in  

(Hooke and Jeeves, 1961); they proposed a pattern search method based on heuristics.   

The terms direct search, derivative-free search, and zero-th order search are sometimes 

used interchangeably, especially in finite element design software.  There is no unanimity 

among researchers in their use of these terms. This is of no great consequence in practice, 

and to some extent simply reflects historical developments.   

Conn et al. defined derivative-free methods as ―methods without explicit 

approximation to derivatives of objective or constraints‖ (Conn, Scheinberg et al., 2009).  

However, optimization with finite difference derivatives is excluded from Conn et al.‘s 

definition, and in our study, ―derivative-free‖ means any method that treats the FEA 

forward solution as a black box. In this way, finite difference gradient-based pseudo-

Newtonian methods can also be considered as derivative-free. Under this condition, the 

requirements from a user are minimal, since the simulation code is used in the manner of 

a black-box.  According to (Conn, Scheinberg et al., 2009), with current state-of-the-art 

derivative-free optimization methods one can expect to successfully address problems:  

1) which do not possess more than 100 variables, 2) problems which are reasonably 

smooth, and 3) problems in which the evaluation of the function is expensive and 

computed with noise.   

There are four main classes of methods for designing a derivative-free method: 

I. Coordinate search: these methods are slow, robust and capable of handling 

noise. The HYPERSTUDY/HYPERWORK program implemented a 
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simple version of this type of method, which is called ―alternative-

direction method‖ in the menu.   

II. Nelder-Mean simplex method: the most popular method, but is not robust 

or reliable in some cases. The MATLAB program implemented an 

original version of this method in the Optimization toolbox (Nelder and 

Mead, 1965).   

III. Implicit filtering algorithm: a line-search algorithm that imposes sufficient 

decrease along a quasi-Newton direction. The main difference from 

derivative-based methods is that the true gradient is replaced by the 

simplex gradient; so, this method resembles to some extent a pseudo-

Newton method using finite difference approximation to gradients. This 

implementation of pseudo-Newton methods is deemed by Kelley to be 

particularly well-equipped to handle noisy functions since there is implicit 

filtering of noise due to the use of the simplex gradient corresponding to 

the gradient of a regression model and to an inaccurate line-search (Kelley, 

1999).  To our knowledge, this class of methods has not been implemented 

in any FE/design software.   

IV. Interpolation-based trust region approach: trust region-based algorithms in 

which interpolation models are built from polynomial interpolation or 

regression. The interpolation is often called response surface and the term 

―response surface method‖ is frequently used in FEA and engineering 

design software (e.g. ANSYS includes several response surface methods). 

However, in the derivative-free optimization literature, the term ―response 
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surface‖ is rarely used, and is generally reserved for experimental design 

and stochastic optimization.       

Most recent progress in derivative-free optimization has focused on the fourth of 

these method categories.  Powell‘s celebrated method (1964) is a derivative-free version 

of the nonlinear conjugate gradient method. It consists in each stage of a sequence of 

𝐾 + 1 one-dimensional searches, and each one-dimensional search is conducted by 

finding the exact minimization of a quadratic interpolant.  This method is thus a first-

order method with a Q-property.  The interpolant used in Powell‘s method is actually the 

response surface methodology from stochastic optimization.  Response surface is the idea 

that if the function evaluation is exact, one can use finite difference to approximate the 

derivative.  If the function evaluation is uncertain, however, one can design an 

appropriate experiment and perform a regression analysis to obtain a surrogate of the 

original function, and thus estimate the derivative and update the search directions. 

Powell‘s work has spawned considerable research and code development of 

derivative-free Newtonian-based methods, including DFO (Conn, Scheinberg et al., 

1997), Powell‘s UOBYQA (Powell, 2002), and CONDOR (Berghen, 2004) (Berghen and 

Bersini, 2005), and recently, NEWUOA (Powell, 2006).   Conn et al. (1997) constructed 

a multivariate DFO algorithm that uses a surrogate model for the objective function 

within a trust region method. In that work, points were sampled to obtain a well-defined 

quadratic interpolation model, and descent conditions from trust region methods enforced 

convergence properties. The trust region method can be used to globalize Newton-based 

methods and to avoid most of the local instability within Newton-based methods. The 

CONDOR method for high-computing load function developed by Berghen, is based on 
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the UOBYQA of Powell, and was developed mainly for unconstrained optimization 

problems and for easy (box) constraints. The algorithms are based on a derivative-free 

trust region method approximating the objective function by a quadratic polynomial, 

which is then minimized by a sequential quadratic programming (SQP) method.  This 

method was developed for expensive optimizations, such as objective functions evaluated 

from the output of nonlinear FE or CFD simulations, and is based on the assumption that 

the function evaluation is time-consuming. Details of this method can be found in  

(Berghen, 2004) (Berghen and Bersini, 2005). DFO was applied as a black-box 

optimization routine in optimizing energy systems (Lee, Terlaky et al., 2001) and for 

helicopter rotor blade design (Scheinberg, 2000).  Numerical tests in both of these reports 

show that DFO is faster and more accurate than derivative-based methods such as the 

quasi-Newton methods. However, CONDOR was also compared to DFO (Ugur, 

Karasozen et al., 2008) and genetic algorithms (Harth, Sun et al., 2007) in designs 

involving flow problems, and its performance was found to be better.  Several derivative-

free methods are available in software or freeware; (Conn, Scheinberg et al., 2009) list a 

collection of freely-available derivative-free programs.   

The present study used the CONDOR method to minimize the least squares cost 

function and to obtain the requested list of parameters. As mentioned above, this method 

is a trust region method combined with response surface technique that finds the 

minimum 𝒙∗ ∈ 𝑅𝑛  of an objective function 𝐹(𝒙) ∈ 𝑅.  For the purpose of comparison, 

the original Nelder-Mead simplex method, a pseudo-Newtonian method based on the 

finite difference derivative, and a response surface method in ANSYS were also used in 

this study. The use of derivative-free optimization methods provides generality and 
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modularity to the approach considered here. One advantageous by-product of this 

approach is that direct methods are usually more robust and more global than their 

derivative-counterparts.  

 

4.7 Statistical inference with DIC data 

Estimating the level of uncertainty associated with the identification of the 

parameters is a new trend in material testing.  It is good practice in any measurement to 

evaluate and report the uncertainty associated with the test results.  A customer who 

wishes to know the limits within which the reported result may be assumed to lie may 

require a statement of uncertainty, or the test laboratory itself may wish to develop a 

better understanding of which particular aspects of the test procedure have the greatest 

effect on results so that this may be monitored more closely.  A Code of Practice (CoP) 

was developed by UNCERT (a project funded by the European Commission‘s Standards, 

Measurement and Testing programme under reference SMT4-CT97-2165) to simplify the 

way in which uncertainties are evaluated.  This CoP is one of seventeen produced by the 

UNCERT consortium for the estimation of uncertainties associated with mechanical tests 

on metallic materials.   

The inverse identification process outlined in Section 4.4 can be interpreted as a 

statistical parameter estimator using nonlinear regression.  Statistical inference can then 

be employed to study the reliability of the identification and to provide a measure of 

quality.  In using statistical inference, the material parameters set 𝜽  are considered 

random variables, so their accuracy is related to the shape of the probability distribution 

function.  Generally, accuracy is defined in terms of a confidence region for the 
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parameter vector, or as the confidence interval of its components.  A 100(1-α )% 

confidence region is a region of parameter space that contains the real parameters with a 

probability of 1-α, where 1-α is the confidence level of this particular region.   

In deterministic inverse problem formulation, 𝑴(𝜽)  is called the model; in 

statistical inverse problem formulation of nonlinear regression, it is called the expectation 

function.  In nonlinear regression inference, the success of the identification can be 

checked by two measures: (i) expectation function fit and (ii) parameter fit.  If a model 

gives a smaller residual in the response function, and/or a smaller confidence region in 

the expectation function and response function, the model is said to be 

phenomenologically better (i.e., the model parameter set yields a better description of the 

model‘s behaviour).   

The most accurate way to perform the statistical analysis is through Monte Carlo 

(MC) methods.  The Monte Carlo method has been used to validate the linearized 

covariance analysis (LCA) for nonlinear parameter estimation problems (Grimstad, 

Kolltveit et al., 2001).  However, this method requires the solution of a large number of 

related parameter identification problems.  Considering the complex geometry and 

nonlinearity involved in the identification of plasticity models, the Monte Carlo approach 

is not feasible for the present study.   

 

4.7.1 Nonlinear regression inference using linear approximation 

From a statistical perspective, the identification of constitutive laws using full-

field measurements can be considered as a problem where the sample is essentially the 

complete population.  The LCA method is the most computationally efficient method and 
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the most used one.  It was shown previously that, for normally distributed errors, LCA is 

equivalent to the likelihood method (Uusipaikka, 2009) (Seber and Wild, 2005).   

The covariance matrix 𝑷 of the model parameters can be approximated from the 

linearization of the cost function 𝑓(𝜽)  around the solution 𝜽 : 

𝑓 𝜽 ≅ 𝑓 𝜽  + 𝑱 𝜽  (𝜽 − 𝜽 )                                               (4.6) 

where 𝑱 𝜽   is the Jacobian of the cost function 𝑓(𝜽) evaluated at the solution 𝜽 . The 

matrix 𝑷 is then given by: 

𝑷 = cov 𝜽  ≅ s2  𝑱T 𝜽  𝑱 𝜽   
−1

                                (4.7) 

Recalling expansion (2), the residual mean square estimate, 𝑠2 , is given as 

follows: 

𝜎2 ≅ 𝑠2 =
𝑹𝑇 𝜽  𝑹 𝜽  

𝑁−𝐾
                                                    (4.8) 

where 𝑁 is the sample size and 𝐾 is the number of parameters.  

The associated correlation matrix is defined as: 

𝐶𝑖𝑗 =
𝑃𝑖𝑗

 𝑃𝑖𝑖𝑃𝑗𝑗
                                                                (4.9) 

The off-diagonal elements of the 𝐶𝑖𝑗  matrix represent the correlation between two 

parameters 𝜃𝑖  and 𝜃𝑗 . A strong correlation often indicates over-parameterization due to 

either a fault or true redundancy within the model. The diagonal elements of the 

covariance matrix 𝑷 represent the estimated values of the variances of the parameters 𝜃𝑗 . 

𝜎𝜃𝑗
2 ≅ 𝑃𝑗𝑗                                                                 (4.10) 

which is a measure of confidence for the identified parameters 𝜃𝑗 .  

The 100 1 − 𝛼 % joint confidence region is an ellipsoid and can be defined as: 
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 𝜽 − 𝜽  
𝑇
𝑷 𝜽 − 𝜽  ≤ 𝐾𝐹(𝐾,𝑁 − 𝐾; 𝛼)                      (4.11) 

where 𝐹(𝐾,𝑁 − 𝐾; 𝛼)  is the upper 𝛼  quantile for Fisher‘s F-distribution with 𝐾  and 

𝑁 − 𝐾 degrees of freedom. 

An approximate 100 1 − 𝛼 %  marginal confidence interval for a given 

parameter 𝜃𝑖  is expressed by: 

𝜃 𝑖 ± 𝑠 𝜃 𝑖 𝑡  𝑁 − 𝐾;
𝛼

2
                                                (4.12) 

where 𝑡  𝑁 − 𝐾;
𝛼

2
  is the upper 𝛼/2  quantile for Student‘s t-distribution with 𝑁 − 𝐾 

degrees of freedom and 𝑠 𝜃 𝑖  is the approximate standard deviation associated with 𝜃 𝑖 : 

𝑠 𝜃 𝑖 =  𝑃𝑖𝑖                                                               (4.13) 

Expression (4.12) indicates that the marginal posterior density for a single 

parameter 𝜃𝑖  is a univariate Student‘s t-distribution with location parameter  𝜃 𝑖 , scale 

parameter 𝑃𝑖𝑖 , and degrees of freedom 𝑁 − 𝐾. Similarly, the marginal posterior density of 

the model response is also a Student‘s t-distribution.  

The 100 1 − 𝛼 % confidence interval is approximated as: 

 𝜃 − 𝜃  
𝑇
𝑃−1 𝜃 − 𝜃  ≤ 𝜒𝐾,𝛼

2                                         (4.14) 

where 𝜒𝐾,𝛼
2  is the upper 𝛼 quantile for the 𝜒2-distribution with 𝐾 degrees of freedom.  

A popular formulation of the confidence interval is given as: 

 𝜃𝑖 − 𝜃 𝑖 ≤ 𝑧𝛼/2 𝑃𝑖𝑖                                                       (4.15) 

where 𝑧𝛼/2 is the upper 𝛼/2 quantile for the Gaussian distribution.  
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If the model-data combination is not highly nonlinear, the minimum of the 

paraboloid approximation is close to the minimum of the true cost function, and the 

inference can be considered reliable. 

The LCA-based inference can also be used in other ways, including model 

selection and design of experiments (DOE); this is best achieved through Bayesian 

inference.  The Bayesian marginal posterior density for material parameters 𝜽 (Seber and 

Wild, 2005) is formulated as:   

𝑝 𝜽 𝒅 ∝  1 +
 𝜽−𝜽  

𝑇
𝑷−1 𝜽−𝜽  

𝑁−𝐾
 
−𝑁/2

                              (4.16) 

This probability distribution is in the form of a 𝐾-variate Student‘s t-density with 

location parameter 𝜽 , scaling matrix 𝑷 , and 𝑁 − 𝐾  degrees of freedom. If a non-

informative prior density for 𝜽  is assumed, the Bayesian identification and Bayesian 

inference will be identical to the results based on sampling theory given above.  

Bayesian inference possesses a great advantage because prior information can be 

naturally incorporated into the identification process, and model selection is also 

convenient (Koch, 2007).  However, this aspect is for the focus of future work, and will 

not be addressed in this thesis.   

  

4.7.2 Calculation of Sensitivity 

The sensitivity of the response function is required in the LCA inference, the 

expectation fit check, and the calculation of curvature measures; the gradient is obtained 

by finite differentiation.  While the cost function involves non-negligible errors 

associated with the measurement data, the response function is evaluated using the 
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numerical model representing the true physics, the modeling error induced by the finite 

element approximation can be ignored and the numerical results can thus be assumed to 

be noise-free.  

The gradient is approximated by means of finite differences and requires an extra 

FE simulation for each of the unknown parameters of the constitutive law with a 

perturbed value for the parameter under consideration. The sensitivity can be determined 

as follows: 

𝑑𝐽

𝑑𝜃𝑖
≅

∆𝐽

∆𝜃𝑖
=

𝐽 𝜃𝑖+∆𝜃𝑖 

∆𝜃𝑖
                                                     (4.17) 

A perturbation size of ∆𝜃𝑖 = 0.001𝜃𝑖  is used for each parameter with the 

exception of the Poisson‘s ratio, where a step size of ∆𝜈𝑖 = 0.1𝜈𝑖  is used.  

 

4.7.3 Checking response fit 

The residual 𝑅 𝜽   has been used directly as the criterion for checking the 

convergence, and for comparing the model‘s fit.  However, the residual values depend on 

the units of the model and response functions, loading level and magnitude of response, 

and also the number of data points, 𝑁; thus, it is not a convenient measure of model fit 

and convergence.    

A relative offset measure for checking convergence and model adequacy in 

nonlinear regression is given by (Bates and Watts, 1988):  

𝐼𝑀 =
  𝑸1

𝑇 𝒅−𝑴  𝜽     / 𝐾

  𝑸2
𝑇 𝒅−𝑴  𝜽     / 𝑁−𝐾

                                                    (4.18) 

where 𝑸1 and 𝑸2 are respectively, the first 𝐾 and the last 𝑁 − 𝐾 columns of the 𝑸 matrix 

in the QR-decomposition of Jacobian 𝑱, denoted 𝑸. This index is related to the cotangent 
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of the angle that the residual vector makes with the tangent plane, so that a small relative 

offset corresponds to an angle near 90𝑜 , and validates the model‘s accuracy. Bates and 

Watts suggested the use of the criterion 𝐼𝑀<=0.001, reasoning that any inference will not 

be affected because the current parameter vector is less that 0.1% of the radius of the 

confidence region disk from the least squares point (Bates and Watts, 1988).  Considering 

that the Jacobian is evaluated using finite difference in the present work, the criterion 

𝐼𝑀 < 0.01 is used to check response fit.    

 

4.8 Identifiability issues  

4.8.1 General 

One of the fundamental problems in any inverse analysis is the justification and 

assessment of the credibility of inversely identified results.  The difficulty inherent in the 

substantiation of a specific material identification problem is that without reference 

values for comparison, how can we trust the identified material model parameters, 

especially for in-situ determination of material properties where no ―reference‖ for 

parameter values exists?  

The principle that the parameters in a model can be consistently estimated is often 

referred to as the identifiability of a model (Hsia, 1977).  Identifiability is necessary to 

draw consistent statistical inferences.  The problem of identifiability and the stability of 

numerical results are examined in this section; scepticism is the attitude we take in 

addressing this issue.   
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4.8.2 Ill-posed or well-posed 

The definition of well-posed problems given by Hadamard refers to the existence, 

uniqueness and stability of solutions to differential equations (Tikhonov and Arsenin, 

1977).  Thus, in the case of inverse problems, the concept of well-posedness is related to 

the existence and uniqueness of the solution to an inverse problem; the data must be 

sufficient (i.e. contain enough information for simultaneous determination of all the 

unknown parameters), and the global optimal must be unique and stable when there is 

noise in the data.   

The problem of material parameter identification has been described as ill-posed 

(Mahnken, 2004); in practice, however, the material parameter identification problem 

must be well-posed, with a few specific exceptions, such as the non-uniqueness of 

parameters in the creep test for viscoplasticity (Seibert, Lehn et al., 2000a) (This 

particular model is phenomenological, and is a summation of an arbitrary number of 

Dirichrit-Prony exponentials chosen by the user).  One indicator of ill-posedness is the 

need for regularization.  There should not be any regularization terms in the least square 

objective function (4.1) for an unbiased solution of material parameters.  In general, the 

number 𝑁 of samples of experimental data has to be much larger than the number 𝐾 of 

parameters; when these conditions are met, the resulting material parameter identification 

problem is usually a well-posed problem.   

 Essentially, whether the problem is ill-posed or well-posed lies in whether the 

problem is a function parameter identification problem or a functional identification 

problem (i.e. problem of identification of a parameterized continuous field). The problem 

outlined in Chapter 3 is indeed ill-posed, since it is a parameterized functional 
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identification problem.  Functional identification problems are affluent in geophysical 

and medical tomography (Snieder and Trampert, 1999). In functional identification 

problems, whether the forward problem is represented as a linear system  𝑨𝒎 = 𝒅 or a 

nonlinear system  𝑨 𝒎 = 𝒅 , where 𝑨 defines a nonlinear operator, it is ill-posed if the 

information contained in data 𝒅 alone cannot guarantee a unique and stable solution of 

model parameters 𝒎.   

 

4.8.3 Model and parameter identifiability 

Katafygiotis and Beck (1998) made a distinction between ―model identifiability‖ 

and ―parameter identifiability‖ (Katafygiotis and Beck, 1998).  The former has also been 

called ―structural identifiability‖ (Cobelli and DiStefano, 1980; Hof, 1998).  The model 

identification problem is to find all of the structural models within a specified model class 

that are able to produce the same output within a set of observed degrees of freedom 

when the models are all subjected to the same input.  However, in our material parameter 

identification problem, the model is selected via the judgement of the engineer, not 

through the identification process; thus, we need only focus on the parameter 

identifiability issue.   

 

4.8.4 Verification and validation (V&V) 

The assessment of the credibility of a numerical procedure is typically called 

verification and validation (V&V), and is closely connected to the problem of 

identifiability.  The verification process can be defined as verification of the model 

response obtained from data, and the validation process as the comparison of the model 
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response with data that was not used in the identification.  In the professional literature, 

verification is usually defined as the process of assessing software correctness and the 

numerical accuracy of the solution to a given model; validation is the process of assessing 

the physical accuracy of a model (ASME, 2006).   

A more straightforward definition of V&V is that verification is ―solving the 

equations right‖, and validation is ―solving the right equations‖ (Oberkampf and Roy, 

2010).  In material identification, verification can be defined as the correct solution of the 

inverse problem (i.e. the global optimal of the multi-modal LS objective function is 

determined), and validation is that the problem is defined correctly (i.e. the data contain 

enough information, the global optimum is unique, and the FE model (mesh, element 

type, boundary conditions, etc.) represents the reality well, so that the nonlinear 

regression model (data-model set) is correctly defined).   

Thus, V&V can be described as the process of providing evidence of the 

correctness and accuracy of the parameter identification results; V&V procedures are 

founded on the concept of quantitative accuracy assessment.  While V&V do not entirely 

answer the question of identification credibility, they are the keys to establishing 

credibility.  Traditionally, one needs to have accurate benchmarks or reference values for 

comparison.  Reference values are not generally available for complex material model 

parameters, however, especially for individual components.  For this reason, numerical 

studies and statistical tools are used to assess uncertainty during V&V of the inverse 

identification process.   

In material parameter identification, V&V is concerned with two issues: (i) to 

verify that the solution is a global optimum; and (ii) to validate the global optimum by 
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ensuring that it corresponds to a set of parameters that are similar enough to the correct 

values.  When using local optimization methods, techniques based on the re-identification 

of the parameters using different initial solutions is widely used to verify that the 

optimum is a global solution.  Although derivative-free methods, such as CONDOR, are 

considered to be robust and globally convergent, the use of multiple-initial estimates is 

still recommended for V&V.  Alternatively, re-identification of the parameters using 

synthetic data can also serve as a verification tool for assessing the identifiability of a 

given experimental/estimation solution.   

 

4.8.5 Quality and nature of information from data 

Besides the problem of local minimum, the quality and nature of the available 

data also needs to be considered carefully.  There are two causes for unsuccessful 

identifications: (i) the minimization process leads to a local minimum; and/or (ii) the data 

are insufficient. For example, the parameters of the Rousselier damage mechanics model 

were identified by updating a FE model to match a simulated 2D displacement field on a 

tensile specimen using synthetic data at every FE node (Springmann and Kuna, 2003). If 

only one material parameter was under consideration, the identification was successful; 

however, simultaneous updating of two or more parameters was less successful because, 

in some cases, only a local optimum could be found.  One possible reason for 

unsuccessful identification may be due to the fact that the information contained in the 

collected data is insufficient for simultaneous updating of all of the parameters.   

The nature of the data can lead to over-parameterization; i.e. when one or more of 

the mechanical properties associated with the parameters are not activated during the 
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experiment.  For example, if, when attempting the identification of a hardening law in an 

elasto-plastic constitutive model, the material remains largely in the elastic range under a 

given load.  In the case of DIC, the large amount of data with an elastic nature may 

overwhelm the small fraction of data in the plastic range.  This situation is called fault 

redundancy induced within the experiment.   

A quantitative approach to determining identifiability is based on Fisher 

information; a parameter vector is identifiable from a particular set of observed responses 

if the associated Fisher information matrix is nonsingular (Bos, 2007).  The Fisher 

information is related to the sensitivity of the Jacobian with respect to parameters. 

𝐹𝜃 = 𝐸 𝑺𝜽𝑺𝜽
𝑻 = 𝐸  

𝜕𝑞(𝒘; 𝜽)

𝜕𝜽

𝜕𝑞(𝒘; 𝜽)

𝜕𝜽𝑇
  

is the Fisher information matrix of the observed data d , where q(𝐰; 𝛉)  is the log-

probability density function of the response, and 𝐒θ  is the Fisher score vector.  The Fisher 

score and Fisher information are connected to the sensitivities of the response to the 

unknown parameters. 

However, local sensitivity at a single point may not be sufficient; the singularity 

of Fisher information not only depends on the local sensitivity at a point in parameter 

space, but also depends on the global sensitivity in a finite region.  Global sensitivity 

analysis techniques deal with the entire range of variation of the input parameters.  

Sensitivity analysis allows one to study the relationships of response variances and 

parameter variances, and to identify adequacies in the numerical-experimental setting.  In 

particular, global sensitivity analysis allows analysts to perform model calibration, model 

validation, and decision making; i.e. global sensitivity analysis enables any process where 
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it is useful to know which of the variables contribute most to the variability of the output.  

One should note that while sensitivity analysis quantifies the influence of the input 

parameters on the model‘s response, uncertainty analysis is used to evaluate statistical 

parameters, confidence intervals and probability laws for the model‘s responses.   

Thus, inadequacy and faulty parameter redundancy due to the quality and nature 

of the data can be detected through global sensitivity analysis and/or statistical inference 

(Patelli, Pradlwarter et al., to appear) (Saltelli, Ratto et al., 2008).   

 

4.8.6 Curvature measure of nonlinearity: checking the adequacy of linearized covariance 

analysis (LCA) 

Uncertainty quantification is an important aspect of V&V.  Linearized covariance 

analysis (LCA) is used to check the fit of parameters, and provides a quantitative measure 

of uncertainty.  LCA is an approximation of a nonlinear problem.  Whether this 

approximation is valid, and produces results that are adequate is addressed in this section 

by adopting an attitude of scepticism.    

The most reliable check of the adequacy of LCA is through the use of Monte 

Carlo analyses.  However, as noted previously, the research presented here is based on 

the assumption that Monte Carlo analyses are not affordable, so curvature measures of 

nonlinearity are substituted as an alternative to Monte Carlo techniques in this study.  

Curvature measures are able to detect only incorrect results that are false positives (type-

II errors).  In other words, it is possible for nonlinearity measures to give a false alarm 

indicating a problem with the LCA when the LCA is actually adequate; however, 

nonlinearity measures will correctly detect all instances when the LCA is inadequate.  In 
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fact, type-I error rarely happens in material testing and parameter identification if sound 

judgement is employed; so, focusing on avoidance of type-II error is sufficient for our 

purposes.   

When deciding whether to reject the null hypothesis that H0: 𝛉 = 𝛉 , there are two 

fundamental errors to be identified by inference: 

 Type-I error: the hypothesis is actually true, but we think it is wrong, i.e. 

the LCA is adequate, but we think that there is a problem with the solution. 

 Type-II error: the hypothesis is actually wrong, but we think it is true, i.e. 

the LCA is inadequate, but we think that the solution is correct. 

In the context of statistical regression analysis, the cost function 𝑓(𝜽) , is 

considered as an expectation function.  The noise associated with measurement and 

modeling errors is assumed to have spherical normal distribution.  The expectation 

function can be considered as an N-dimensional response surface.  The vector 𝑴(𝒙; 𝜽) 

defines a 𝐾-dimensional surface, and is called the expectation surface in the response 

space.  The Least Square estimates thus correspond to a point on the expectation surface 

𝑴 = 𝑴 (𝜽 ) , which is the closest point to data vector 𝒅 .  For nonlinear models, the 

expectation surface is curved and bounded (Green, 1988) (Seber and Wild, 2005).  

The LCA involves two distinct approximations (Bates and Watts, 1988): 

I. The planar assumption, where the expectation surface 𝑴(𝜽) near 𝑴 (𝜽 ) is 

approximated by its tangent plane at 𝑴 (𝜽 ). 

II. The uniform coordinate assumption, in which a linear coordinate system 

𝐽(𝜽 − 𝜽 ), is imposed to the approximation of tangent plane defined in 1). 
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To validate these two assumptions, one can use the curvature of the expectation 

surface at the solution 𝜽 .  The curvature of the expectation surface depends on the testing 

and simulation procedures, and will also depend on the type and amount of data used in 

the identification procedure.  For example, an identification based on a load-displacement 

curve is expected to produce a higher curvature than a technique using full-field data 

from DIC measurements.   

In summary, the LCA uses local information to generate a tangent plane with a 

linear coordinate system defined by the derivative vectors, projects the residual vector 

onto that tangent plane, and then maps the tangent plane coordinates onto the parameter 

plane using linear mapping.  If we assume that the tangent plane forms a good 

approximation to the expectation surface near 𝜽 , then the likelihood region for 𝜽  

corresponds to a disk on the tangent plane with a radius proportional to  𝑆(𝜽 ) with 

𝑆 𝜽  =  𝑴 𝜽  − 𝒅 
2
.   

While LCA is used to characterize the quality of the estimates using inference 

intervals, the adequacy of the LCA can also be checked. The relative curvature measure 

enables us to assess the intrinsic and parameter-effects (PE) nonlinearity, and the validity 

of LCA inference.  The LCA method is based on the linearization of the model function 

at a given point; it is of fundamental importance therefore, to verify the validity of the 

LCA.  An accurate method of assessing the validity of LCA, and the global sensitivity 

analysis is with Monte Carlo analysis, but as noted previously, this method is 

computationally expensive due to the complex geometry and nonlinearity of the model.  

The curvature measures of nonlinearity approach are a potential alternative to the Monte 
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Carlo approach.  Curvature measures of nonlinearity are approximations, but are 

considerably less expensive to compute.  In this study, the curvature measures are used to 

check the validity of LCA inference; as noted previously, this approach can prevent type-

II errors, but not type-I errors.  If the LCA is deemed to be adequate, then the validity is 

assured; on the other hand, if the curvature measures of nonlinearity indicate that the 

LCA is inadequate, it does not necessarily follow that the LCA inference is wrong.   

Bates and Watts (1980) employed differential geometry to construct a relative 

intrinsic and a parameter-effects curvature measure, which provide global measures of 

nonlinearity of the model (Bates and Watts, 1980).  Threshold values for curvature 

measures of nonlinearity have been published for which application of the LCA may be 

justified as inadequate, but not necessarily wrong, based on the shape of linearized 

confidence regions (Bates and Watts, 1988) (Seber and Wild, 2005) (Grimstad, Kolltveit 

et al., 2001) (Haines, O'Brien et al., 2004).  Donaldson and Schnabel (Donaldson and 

Schnabel, 1987) performed extensive evaluation of LCA predictions for a series of 

different nonlinear models using Monte Carlo analyses; the recommended thresholds for 

the curvature measures of nonlinearity constructed by Bates and Watts were found to 

give good indications as to when the LCA may be insufficient (Donaldson and Schnabel, 

1987).   

The use of nonlinearity measures to validate LCA, and thus avoid type-II errors, 

is proposed in this chapter, but is not implemented in the examples.  It is left for future 

investigation in which a Monte Carlo analysis can be performed to determine an accurate 

threshold for this specific problem, for comparison of the results of LCA, curvature 

measures of nonlinearity and Monte Carlo approaches.   
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4.8.7 Summary of procedures addressing the identifiability issue 

In summary, the fundamental elements that build credibility into computational 

results are:  (a) the quality of the physics modeling; (b) V&V activities; (c) uncertainty 

quantification; and (d) sensitivity analyses.  All four of these elements are necessary to 

establish credibility, and none is sufficient in itself.  The first element is a pre-

requirement for the estimator. Approaches addressing the latter three can be summarized 

as follows: 

1) One may try different optimization algorithms (if required) with different 

initial values to ensure that the minimization achieves a global minimum.  

2) Re-identify the model: perform a numerical study before testing to re-

identify parameters of a given material model.  This is the verification 

procedure in V&V.  This numerical test needs to be based on both 

synthetic noise-free data and noise-polluted data to ensure the well-

posedness of the inverse problem defined by the data-optimizer 

combination.   In other words, not only the existence and uniqueness of 

the solution, but also the stability of the solution need to be assured.  From 

the results of numerical tests, one can determine whether or not all of the 

unknown model parameters could be identified from the response of the 

selected system.  Unlike functional identification problems, the material 

parameter identification problem must be a well-posed problem.   

3) Validation using different data sets: depending on the type of test, the test 

data can be divided as 𝑫 = 𝑫𝟏 + 𝑫𝟐 .  The material parameters are 
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determined based on data set 𝑫1  (parameter identification), and 

investigation of the model quality can be performed using another set of 

data 𝑫𝟐  (validation) for extrapolation.  Extrapolation (validation) is an 

assessment performed by using the identified parameters to predict the 

response of the material in experiments that were not used to supply data 

for the identification.  If the difference is significant in all or part of the 

responses, then this is an indication of potential problems in the choice of 

model, the experimental setup, or the design of the identification process.  

Furthermore, if the errors between predicted and measured responses show 

a deterministic pattern that cannot be explained by stochastic distribution 

of errors, this also indicates potential problems.   

4) Inference using LCA: to consider the parameters as random variables. The 

transfer process of uncertainty from data to the identified parameters is 

studied, and a quantitative evaluation of uncertainty is determined.   

5) In the optimization process, checking expectation (response) fit using the 

offset index 𝐼𝑀  in addition to the convergence check inherent in the 

adopted optimization algorithm. This gives a non-dimensional indication 

of the level of response fit.  If the final residual 𝑹(𝜽 )  is too high as 

demonstrated by a high value of non-dimensional index 𝐼𝑀 , it is an 

indication to increase the complexity of the model (i.e., increase the 

number of parameters 𝐾 ), to reconsider the underlying physics for 

selection of a different model, or to re-examine the modeling process and 

test setup. For example, the Bauschinger effect can be included, or 
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exponential hardening changed to piecewise linear hardening laws, 

bilinear hardening changed to multi-linear hardening, or a power type 

Norton law could be used.  More complicated models may be involved, 

such as anisotropic models (Hill models).   

6) Curvature measure of nonlinearity:  for checking whether the LCA 

inference is adequate or not.  This procedure completely removes type-II 

errors from material parameter identification, which is of greater concern 

than type-I errors.   

7) If necessary, perform a global sensitivity analysis.  

The above procedures can be implemented with software for general purpose 

material parameter identification in industrial applications.   

 

4.9 Examples and results 

4.9.1 Numerical example 

The first example uses artificial data generated from numerical simulation; the intent is to 

test the optimization algorithm and demonstrate the proposed methodology.  We consider 

a plate with a hole subjected to a tension load above the elasticity limit where the 

deformation is heterogeneous (Figure 4.2).  The boundary value problem is solved using 

a standard finite element method with reference parameters.  The goal is to re-identify the 

parameters using synthetic displacement data collected at 25 scattered points on the 

surface of the specimen from evenly distributed grids that simulate DIC measurements, 

since DIC measurement is based on a regular grid pattern defined by a fixed number of 

pixels.   
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The material is assumed to be isotropic; the elastic behavior is characterized by 

Young‘s modulus, and the hardening curve is assumed to be linear isotropic characterized 

by two parameters. Young‘s modulus, Poisson‘s ratio, the initial flow stress and the 

tangent modulus after yielding were assumed to be 𝐸 = 70000 MPa, 𝜈 = 0.2 , yield 

stress 𝜎𝑓 = 243  MPa, and tangent modulus 𝐸𝑡 = 2127  MPa.  The objective of this 

identification process is to identify the four material parameters, 𝜽 =  𝐸, 𝜈, 𝜎𝑓 , 𝐸𝑡  , that 

collectively characterize the isotropic hardening behavior. Equation (2) is used as the cost 

function, and in this case, we have 𝐾 = 4, and 𝑁 = 25.  The optimization was performed 

as one single process to simultaneously identify all four of the parameters.   

 

 

Figure 4.2: Plate with a hole under tension 

 

A plane stress condition is assumed; the right edge was subjected to stress 

increasing from zero to a maximum value of 133.65 MPa, and then the plate was 

unloaded.  The peak value was selected so that the mean stress over the section with the 

hole is 10% above the yield stress.  The plasticity range during the final loading step is 
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shown in Figure 4.3.  Second-order triangular elements with four Gauss points were used 

in the simulation. 

 

 

Figure 4.3: Plasticity range in the final loading stage 

 

Several inverse analyses were performed with different initial estimates, and the 

results show that the solution produces a global minimum; this is the first indication that 

the problem is not ill-posed and that the solution is stable.  To evaluate the sensitivity of 

these methods to uncertainty in the measurement, a 5% white noise measure was added to 

the synthetic data.  The noise was defined as:   

𝑛𝑜𝑖𝑠𝑒 𝒙 = 𝑁𝑅𝐴𝑁𝐷 ∙ 𝛼 ∙ 𝑢 𝒙                                             (4.18) 

where 𝑁𝑅𝐴𝑁𝐷 is a Gaussian random distribution with zero-mean and a unit standard 

deviation; α = 5% is the applied noise level; and 𝑢(𝑥) is the displacement response at 

location 𝑥 .  The corresponding identification solution is given in the fifth column of 

Plasticity range 
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Table 4.1; while the initial estimates used to start the optimization process is given in the 

fourth column.  

 

Table 4.1: identified solution with and without synthetic noise (load factor = 1.1) 

noise parameter Target 

values 

Initial 

guesses 

Obtained 

values 

(CONDOR) 

Variance 

(LCA) 𝜎𝜃𝑗
2  

relative 

offset 

measure 𝐼𝑀  

 

 

0% 

 

𝐸1 

𝜈 

𝜎𝑦  

𝐸2 

70000  

0.2 

243 

2127 

50000 

0.3 

500 

10000 

70001 

0.215 

243 

2126.8 

2.86 

0.114 

2.5 

11.9 

singular 

 

5% 

 

 

𝐸1 

𝜈 

𝜎𝑦  

𝐸2 

70000  

0.2 

243 

2127 

50000 

0.3 

500 

10000 

70006.1 

0.216 

240.4 

2141.2 

2.86 

0.116 

12.7 

31.4 

0.0004 

 

For comparison, two additional direct search methods were also used; namely, (i) 

the Nelder-Mead simplex method and (ii) the genetic algorithm in the MATLAB 

toolboxes.  Table 4.1 summarizes the results.  Both methods produced similar solutions to 

the method proposed here, but with different levels of efficiency.  The proposed solution 

required nine iterative steps of optimization when using CONDOR, 29 iterative steps of 

optimization using the Nelder-Mead simplex method, and 3500 function evaluations 

using the MATLAB genetic algorithm.   
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Table 4.2: Comparison of identification solution with and without synthetic noise to 

Nelder-Mead and Genetic Algorithm (GA) methods (load factor = 1.1) 

Noise Parameter Target 

values 

Initial 

estimates 

Obtained 

values 

(Nelder-

Mead) 

Obtained 

values 

(GA) 

 

 

0% 

 

E1 

ν 

σy  

E2 

70000  

0.2 

243 

2127 

50000 

0.3 

500 

10000 

70001.5 

0.217 

243 

2126.5 

70002 

0.216 

242 

2129 

 

5% 

 

 

E1 

ν 

σy  

E2 

70000  

0.2 

243 

2127 

50000 

0.3 

500 

10000 

70008 

0.217 

238 

2143 

70005 

0.214 

240 

2141 

 

It is clear that the identification results depend highly on the quality of the input 

data.  The plasticity mechanism must be fully activated in order to identify the model 

parameters.  To study this aspect of the proposed method, the identification was repeated 

with simulated inhomogeneous displacement field data at the loading stage where the 

mean stress is 5% above the yield stress.  The identified model parameters calculated 

without synthetic noise are shown in Table 4.3.  The deterioration of the identified 

plasticity parameters is evident.  It is interesting that the evaluations for the initial tangent 
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modulus 𝐸1 and Poisson‘s ratio 𝜈 did not degrade, however plasticity-related parameters 

were affected; both the standard error of the mean and the variance increased for these 

parameters.   

 

Table 4.3: Identification solution without synthetic noise (load factor = 1.05) 𝑰𝑴=0.0001 

parameter Target values Initial guesses Optimized 

values 

(method 1) 

Variance 

𝐸1 

𝜈 

𝜎𝑦  

𝐸2 

70000  

0.2 

243 

2127 

50000 

0.3 

500 

10000 

70001 

0.212 

254 

3028 

2.3 

0.115 

46 

342 

 

In the original identification we assumed the associated von Mises flow rule. To 

further study influences on the proposed plasticity model, the identification was repeated 

when the underlying model was changed to use a Tresca yield criterion.  The parameters 

identified using noiseless data are shown in Table 4.4.  Since the model selected differs 

from the ―true‖ mechanism, there was deterioration in the identification of the plasticity 

parameters. This is the problem with ―model selection‖.   
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Table 4.4: identification solution without synthetic noise (load factor = 1.1)(Tresca yield 

criterion) 𝑰𝑴= 0.0002 

Parameters Target values Initial 

estimates 

Optimized 

values 

Variance 

𝐸1 

𝜈 

𝜎𝑦  

𝐸2 

70000  

0.2 

243 

2127 

50000 

0.3 

500 

10000 

70001 

0.25 

244 

2124 

2.78 

0.13 

11.5 

14.7 

 

 

4.9.2 Example 2: identification of model parameters of a cast iron component 

In this example, a grey cast iron engine bearing cap subjected to vertical 

compressive loading is analyzed (Figure 4.4).  The load was applied on a Tinius–Olsen 

hydraulic universal testing machine with a load capacity of 300 kN.  A maximum load of 

150 KN was applied to the top of the bearing cap. The ARAMIS-DIC system was used to 

measure the deformation and the strain on the surface of the specimen.  An automatic 

data acquisition system coupled with the testing machine was also used to collect the data 

for the load—displacement curve.   

A random pattern was applied to the specimen‘s surface; a flat white paint was 

applied to the surface in order to reduce the glare in the camera image.  A black speckle 

pattern was then applied using spray paint in order to provide contrast with the white 

surface coating, and to provide surface target points from which strain and displacement 

measurements were evaluated using digital image correlation photogrammetry.  Speckle 
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points were approximately 3 to 5 pixels in diameter, and the correlated subset size chosen 

was 15 pixels. According to (Tong, 2005) and (Robert, Nazaret et al., 2007), 5% of RMS 

error is a conservative estimate of the error in measurement for a speckle pattern with 

speckle sizes smaller than the subset size.   

The test data was comprised of the force-load curves and the three-dimensional 

displacement/strain fields on the surface of the component, measured by using the 

ARAMIS commercial DIC system.   Two CCD cameras with a 510 mm object-camera 

distance were used to acquire synchronized stereo images of the component under 

compression at different load levels during the test (Figure 4.5).   

 By means of photogrammetrical procedures and image processing, the data 

acquisition system evaluated the three dimensional displacement field associated with 

each respective loading step.  Although the ARAMIS system provides three-dimensional 

displacements and two-dimensional strains on the surface, only the horizontal strains (𝜇𝑥) 

and vertical strains (𝜇𝑦 ) were used in the identification of model parameters.  In DIC 

measurement, the primary results consist of displacements, and the deformation data are 

obtained by post-acquisition processing techniques.  Equation 4.2 was used as the cost 

function, where the data vector 𝒅 consists of 120 measurement points inside the rectangle 

(shown in Figure 4.10), and the corresponding numerical responses 𝑀𝑖 𝜽  are the 

simulated results from the same points.  It was found that strains in this region are 

sensitive to the material parameters, and that the DIC-measured data are reliable in this 

region (located in the center of the images).  In total, 53 images were taken during the 

loading process at one second time intervals. The load was measured with a Tinius-Olsen 
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load cell and recorded by the ARAMIS data acquisition system using a BNC connector 

cable. Each strain stage represents a complete data set for load and deformation.   

The bearing surface under the test specimen was greased to reduce friction; 

therefore, in the FE model, the bottom faces of the two feet of the bearing cap were 

constrained to prevent vertical movement, while horizontal movement was kept free; 

symmetry along the direction of thickness was adopted to reduce the computational cost.  

ANSYS (Version-9) software was used to generate the FE model for a nonlinear cast iron 

material (Figure 4.6).  A solution of horizontal strain of this model is presented in Figure 

4.7, which is comparable to the measured quantities in Figure 4.10. 

 

 

 

Figure 4.4: the bearing cap  

 



 

 

163 

 

Figure 4.5: photo of the bearing cap on the testing machine and two cameras taking 

images 

 

 

Figure 4.6: FE model of the bearing cap 
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Figure 4.7: Horizontal strain 𝝁𝒙 simulated by the FE model 

 

Cast iron materials are known to exhibit different behaviours under tension than 

they do under compression; the yielding point under tension is significantly lower than 

the yielding point under compression.  The tension and compression behaviour past 

yielding also differ.  Usually, the past yielding tangent modulus for tension is larger than 

it is for compression.  The curve shown in Figure 4.8 is a typical stress-strain curve for 

cast iron materials.  In practice, piecewise-linear models are used to approximate the 

continuous stress-strain curves after yielding.  The most commonly used is two different 

bilinear curves for tension and compression, respectively, as shown in Figure 4.9.  In this 

case, the material parameters to be identified can be assembled in the set 𝜽 =

 𝐸, 𝐸𝑡 , 𝐸𝑐 , 𝜖𝑡 , 𝜖𝑐 
𝑇 , where 𝐸  is the initial Young‘s modulus before yielding, 𝐸𝑡  is the 

tangent modulus after tensile yielding, 𝐸𝑐  is the tension modulus after yielding under 

compression, 𝜖𝑡  is the yielding strain under tension, and 𝜖𝑐  is the yielding strain under 

compression.   
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Figure 4.8: typical stress-strain curves for cast iron materials under tension and 

compression 

 

 

 

 

 

 

 

Figure 4.9: a bilinear approximation model for cast iron material 

E: Young‘s modulus 
  

Compression 

  c  

cE

 

  

Compression 

  

Tension 

  

t  

tE  

  

Tension 

  

  



 

 

166 

 

 

A            C                             D            B 

Figure 4.10: typical images from a DIC test result in ARAMIS; data measured inside the 

red rectangle are used in the identification pocess 

 

Figure 4.10 presents typical DIC test results using the ARAMIS system; the upper 

image is the strain in the horizontal direction, the lower left image is the picture of the 

specimen at the corresponding loading stage, and the lower-right image presents the 

(c) 

(b) 

(a) 
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strain history of three points at different locations.  This figure illustrates clearly the 

heterogeneous nature of the strain field. 

After the compression test, a permanent displacement between two end points (A 

and B in Figure 4.10 was measured as 3.37 mm using vernier calipers; this indicates the 

presence of plastic deformation.  The load and strain data at Stage 50 were used to update 

the FE model; the compressive load recorded at this stage was 143 kN, and the measured 

strains were well beyond the elastic limit of 0.2%.  Four parameters (i.e., the tension yield 

strain, the compression yield strain, the tangent modulus after yielding under tension, and 

the tangent modulus after yielding under compression) were selected as the material 

parameters represented in two different bilinear models (for tension and compression, 

respectively).  To simplify the identification process, the initial tangent modulus  𝐸 , 

identical for both tension and compression, was identified first, using the data measured 

in Stage 10.  The load at Stage 10 was 46 kN; the behavior of the whole specimen 

remained elastic, which is evident in the full-field strain data.  

 As a first attempt at validating the outlined approach, we re-identified the model 

parameters using synthetic data generated by FE analysis.  The numerical data were 

collected at the same locations as the test data.  Table 4.5 summarizes the results; the 

target values are the inputs for the constitutive law used by the ANSYS program to 

generate the displacement and strain fields.  It is clear that the results obtained with 

noiseless data, as well as those contaminated by 5% synthetic noise, were conclusive with 

respect to identifiability and also demonstrated the usefulness of LCA inference.  

Although outcomes were similar, the variance of the parameter values obtained with 

noisy data increased slightly.   
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Table 4.5: Re-identified parameters with and without synthetic noise 

 

Parameters 
Target 

values 

Initial 

estimates 

without synthetic noise 

𝐼𝑀 = 0.0019 

with 5% synthetic noise 

𝐼𝑀 = 0.0044 

Estimated 

values 

Variance Estimated 

values 

Variance 

E1 70000 50000 70002 5.6 70006 9.3 

ϵt  0.3 0.2 0.305 0.09 0.312 0.11 

𝜖𝑐  0.4 0.2 0.396 0.08 0.405 0.09 

𝐸t  56000 50000 56050 83 56110 102 

𝐸𝑐  55000 50000 55046 74 54434 76 

 

Correlating DIC to FEA 

The calibration process in ARAMIS system provide physical coordinates for each 

pixel point in the image; this data must be mapped to the FE model coordinates and the 

corresponding FE solutions are extracted at that coordinates.  In this work, the selected 

reference points to build the mapping were the four physical points shown in Figure 4.10:  

two corner points (A and B), the top of the semi-circle (C), and the top of the cap (D).  

These points can be identified in the image taken before loading; furthermore, their pixel 

coordinates within the image can be easily identified, and the mapping between the image 

and the finite element coordinates can be established for transformation.  In some cases, 

when no physical target points were clearly visible in the image taken by camera (such as 

points A and B in Figure 4.10), pre-printed target points applied to the specimen surface 

were used to define the transformation. 
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Results and analysis 

The elastic modulus was identified using data from an elastic stage (Stage 10), 

and the results are shown in Table 4.6.  The other parameters were identified using data 

from Stage 50; the identified yielding stress points for tension and compression, and 

tangent moduli after yielding are tabulated in Table 4.7 (The variance is given in brackets 

under each identified value).  Three different optimization methods were used to obtain 

the parameters: 1) CONDOR; 2) the response surface method using quadratic 

interpolation, denoted as response surface in ANSYS DesignSpace; and 3) the BFGS 

pseudo-Newtonian method with finite difference approximated numerical gradient, 

denoted as numerical gradient.   

The best parameter identification obtained for Stage 50 (in comparison to the 

reference values from Stage 10 shown in Table 4.6) was for the elasticity modulus 𝐸 

apart from the ―1-parameter‖ case shown in the first row of Table 4.7.  In the ―1-

parameter‖ case, the response surface procedure assumes that the only design variable to 

be updated is Young‘s modulus  𝐸, meaning that the whole material is elastic in this 

loading stage.  Obviously, the identification of 𝐸 differs greatly from the reference values 

(Table 4.6; 70037 [Stage 10] compared to 51251 [Stage 50]), and the inadequacy of the 

response surface model can also be seen by comparing the 𝐼𝑀  values [0.0041 [Stage 10] 

versus 0.1125 [Stage 50]).  The outcomes for the response surface model (second row), 

the numerical gradient model (third row), and CONDOR model (fourth row) are 

compared in Table 4.7 using the ―2-parameter‖ procedure, in which two parameters, 

strain threshold and hardening modulus, are considered simultaneously.   In other words, 

the models are assumed to be formulations of a bilinear hardening law that does not 
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distinguish the difference between compression and tension.  Although the two-parameter 

procedure is still an inadequate approach to modelling the cast iron material considered 

here, the differences between the ―2-parameter‖ and the ―4-parameter‖ cases are less 

evident than those observed with the elasticity model in the ―1-parameter‖ case, 

suggesting that ―2-parameter‖ models are closer to the ―true‖ one.  In the ―4-parameter‖ 

cases (compared in the bottom three rows of Table 4.7), all four parameters 

 𝐸𝑡 , 𝐸𝑐 , 𝜖𝑡 , 𝜖𝑐 
𝑇 were included in the identification of material parameters using the three 

derivative-free methods; the table shows the minimum variances and the minimum 

objective function values, along with minimum 𝐼𝑀  measures.   

 The differences between the outcomes of the three derivative-free methods were 

found to be small, but consistent (Table 4.7).  The ―numerical gradient‖ method, had the 

worst performance indicators, as can be seen from comparison of the objective function 

values and 𝐼𝑀  measures for the three methods (numerical gradient>response 

surface>CONDOR).  Although the algorithmic details of the ―response surface‖ method 

are not clear, its performance was found to be better than that of the ―numerical gradient‖ 

method.  Nevertheless, the CONDOR method was shown to be the best method for 

identifying model parameters in a cast iron component.  The identification of model 

parameters was consistent with reference values for an elastic stage, and CONDOR 

produced better performance indicators (objective function values and 𝐼𝑀  measures) than 

the other methods.   
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Table-4.6: Parameter identification with Stage 10 measurement data (elastic response) 

Method E (MPa) Objective Variance 𝐼𝑀  

1-parameter 

(response surface) 

70037 1.6428 25.6 0.0041 

1-parameter
**

 

 (CONDOR) 

70037 1.6427 25.5 0.0040 

1-parameter 

(numerical gradient) 

70101 1.6744 54.2 0.0058 

**
: the best model  
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Table-4.7: Identification with Stage 50 data  

Method E (MPa) t (%) c (%) 
tE  

(MPa) 

cE  

(MPa) 

Objective 𝐼𝑀  

1-parameter
* 

(response surface) 

51251 

(12101) 

/ / / / 95.393 0.1125 

2-parameter 

(response surface) 

70037 

(25.5) 

0.2997 

(0.22) 

0.2997 

(0.22) 

55945 

(2377) 

55945 

(2377) 

85.928 0.0314 

2-parameter 

(numerical gradient) 

70037 

(25.5) 

0.301 

(0.24) 

0.301 

(0.24) 

55361 

(2408) 

55361 

(2408) 

85.921 0.0317 

2-parameter 

(CONDOR) 

70037 

(25.5) 

0.299 

(0.21) 

0.299 

(0.21) 

56006 

(2369) 

56006 

(2369) 

85.724 0.0235 

4-parameter  

(response surface) 

70037 

(25.5) 

0.273 

(0.15) 

0.399 

(0.14) 

56325 

(384) 

51614 

(267) 

61.710 0.0094 

4-parameter 

(numerical gradient) 

70037 

(25.5) 

0.282 

(0.19) 

0.390 

(0.18) 

56325 

(412) 

51523 

(336) 

61.998 0.0101 

4-parameter
**

  

(CONDOR) 

70037 

(25.5) 

0.273 

(0.14) 

0.397 

(0.12) 

56325 

(343) 

51585 

(258) 

60.883 0.0082 

(Variance in brackets) 
* 
: inappropriate model for the material under this loading  

**
: the best model found 

 

A sensitivity analysis was conducted to study the effects of possible measurement 

error on parameter identification.  The sensitivity of results containing error from the 

mapping transformation between the FE and the DIC coordinates were considered. The 
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errors in the x- and y- coordinate transformation (expressed as a percentage) are denoted 

as 𝑑𝑥 and 𝑑𝑦, respectively.  The variation of the identified initial tangent modulus 𝐸 and 

the objective function value are plotted in Figure 4.11.  Figure 4.12 shows the variation of 

the initial tangent modulus, the tangent modulus for tension and compression as well as 

the initial yield strain for tension and compression.   

 

 

Figure 4.11: the sensitivity of the identification of one parameter 𝑬. (Left: the sensitivity 

surface of identified 𝑬 with respect to the errors in the x- and y-translation; Right: 

sensitivity of the surface of the objective function with respect to the errors in the x- and 

y- translation) 
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Figure 4.12: the sensitivity of the identification of four parameters  𝑬𝒕, 𝑬𝒄, 𝝐𝒕, 𝝐𝒄 and 

the objective function. 

 

It can be seen in these figures that transformation errors introduce uncertainty into 

the identification results.  Nonetheless, the sensitivity surfaces are relatively flat, 



 

 

175 

especially for transformation errors near the center (zero coordinate). This indicates that 

the identification function is well-posed with respect to coordinate transformation errors.   

 

4.10 Summary of this study 

The problem of parameter identification in plasticity constitutive models is 

formulated as an inverse problem (i.e., mixed-numerical experimental inverse 

identification of material model parameters) in this study. The data were obtained from 

full-field measurement of the displacement/strain on the surface of structures using the 

digital image correlation (DIC) technique.  Our objective was to develop a procedure that 

uses derivative-free optimization algorithms available in commercial FE software (e.g. 

ABAQUS, ANSYS, COMSOL, MARK, etc.); the derivative-free optimization 

algorithms were used to determine the parameters by minimizing the gap between 

measured data and simulated responses.   

The proposed methodology is general and appropriate for any material model 

implemented in commercial software or codes. The method consists of three building 

blocks: (i) commercial finite element analysis, (ii) direct optimization algorithms, and 

(iii) digital image correlation test results.  The latter two are currently highly 

commercialized and available for general industrial use. 

The focus of this study was on checking the quality and reliability of the 

solutions.  Methodology for validating experiments was presented and demonstrated.  A 

systematic verification and validation process, using statistical and sensitivity analyses, 

was proposed for use in cases where no reference values of the true parameters are 

available a priori.  If we state that the null hypothesis 𝐻0 is that the identified parameters 
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are similar to the ―true‖ parameters, then the proposed validation process can prevent 

Type-2 error (i.e., acceptance of incorrectly identified parameters), which is the most 

important requirement for industrial applications.   

In conclusion, the direct optimization technique, finite element simulation, and 

digital image correlation can be combined into a useful, efficient and industrially-

applicable technique for the accurate selection and validation of material models and 

model parameters.  Furthermore, all of the techniques involved in the proposed 

methodology are readily available on the commercial market.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

177 

CHAPTER FIVE: HYPERELASTICITY MODEL IDENTIFICATION FOR 

RUBBER AND RUBBER-LIKE SOLIDS 

 

“The life of rubber is like the life of human.”                                            (Anonymous) 

 

5.1 Introduction and literature review of related research 

Components comprised of rubbery materials play very important roles in 

engineering processes and products.  The use of sophisticated mathematical constitutive 

models capable of accurate representation of stress/deformation responses (e.g. finite 

element analysis) is a key ingredient in the design of engineering components and 

structures under general loading conditions.  Usually, the mechanical behavior of rubber-

like materials is characterized by hyperelastic constitutive models in which the existence 

of a strain energy function is postulated; elastic materials that possess a strain energy 

function are called ‗Green-elastic‘ or ‗hyperelastic‘ (Ciarlet, 1988; Doghri, 2000). 

Strain energy functions are usually defined in terms of the strain invariants (e.g. 

the polynomial forms), or in terms of the principal stretches (e.g. the Ogden forms).  

Various types of strain energy functions have been proposed; the most popular of these 

include the Mooney-Rivlin model and the Yeoh model, based on the phenomenological 

framework of finite elasticity, and the Arruda-Boyce model, which is founded on the 

statistical mechanics-based kinetic theory of polymer chain deformations (Boyce and 

Arruda, 2000; Saccomandi and Ogden, 2004).  

There is not a single constitutive model currently available, which can reproduce 

all aspects of the behavior of real rubber.  The selection of the type of strain energy 
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function and the essential parameters of the model must be determined through 

appropriate laboratory and/or field tests.  In contrast to most material constitutive models, 

the parameters in rubber constitutive models often have no physical 

counterparts/meanings, and therefore cannot be measured directly; in general, they must 

be estimated through an inverse approach (i.e., by fitting the model to experimental data, 

or by empirical correlations, such as the correlation between rubber stiffness and 

hardness) (Gent, 2001).   

Traditional laboratory techniques for determining the appropriate form of strain 

energy function and corresponding parameters require homogeneous deformation tests 

performed on cutout standard samples; these include tests of uniaxial tension and 

compression, planar shear, and equibiaxial tension and compression.  The task is to find 

the strain energy model that fits the observational data exactly, and will behave 

reasonably and predictably in other deformation modes.   

Initially, elementary methods were utilized to determine the material constants of 

an isotropic material from simple observational data (Ogden, 1972), such as Treloar‘s 

(Treloar, 1944) data for samples cut from a single sheet of vulcanized natural rubber.   

Several researchers have used Treloar‘s experimental data in simple tension, pure shear, 

and equibiaxial tension to develop their models for rubber-like materials.   For example, 

Ogden (Ogden, 1972) used a simplified stress-deformation function to model Treloar‘s 

(1944) data; 𝑃 =  𝜇𝑖(𝜆
−1+𝛼𝑖 − 𝜆−1+𝑐𝛼 𝑖𝑁

𝑖=1 ) , where 𝑃  represents the force per unit 

undeformed area, 𝜆 is the principal stretch, 𝜇𝑖  and 𝛼𝑖  are the material parameters, and 𝑐 is 

related to deformation type which is equal to -0.5, -2, -1 for simple tension, equibiaxial 

tension, and pure shear, respectively.  Thus, Ogden (1972) developed an ad hoc method 
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to obtain parameters based on elementary test data, employing the fact that at small strain 

values, only one term is dominant.  The obvious limitation to this approach is that the 

model provides good fit for only a limited range of strain with such sets of material 

parameters.    

Recently, researchers improved the estimation by using optimization algorithms, 

such as the Levenberg-Marquardt least-square optimization algorithm, to determine the 

material constants for each set of the homogeneous deformation data.  Many studies that 

focus on the identification of Rivlin- or Ogden-type polynomial functions use the load-

displacement curves or stress-strain relations of a specially shaped sample to formulate a 

least-square problem.  Analytical sensitivity relations can be derived for Rivlin- and 

Ogden-type strain energy functions; Rivlin models are polynomial functions based on the 

invariants of the Right Cauchy-Green tensor, and Ogden models are power functions of 

the eigenvalues of the right stretch tensor with real exponents (Benjeddou, Jankovich et 

al., 1993) (Gendy and Saleeb, 2000).  The major drawback is that the optimization 

procedure is based on the analytical solution for the deformation observed in simple 

experiments with a specific form of hyperelastic strain energy; it does not generalize to 

deformations that differ from those used by the researcher to develop the model or to a 

different stress-deformation function (Gendy and Saleeb, 2000).   

Physical parameters for an in vivo hyperelastic model in living soft tissue were 

identified in a similar fashion by using the analogy between experimental and predicted 

numerical results (Tsuta, Yamazaki et al., 1996).  The tests were performed on a regular 

circular area of soft tissue on the human forehead; force-displacement data were collected, 

and the analytical gradient of displacement for a specific model-type was determined and 



 

 

180 

parameters were computed for the two-dimensional axi-symmetric model using a steepest 

descent method.  Currently, the most typical approach used is the general FE-based 

procedure for determination of the constitutive law of rubber-like hyperelasticity (Wang 

and Lu, 2003).  First, uniaxial tension and compression tests of rubber specimens are 

conducted; then, tension and compression test simulations with a one-element model and 

with FE models of the experimental specimen are performed, and suitable rubber-like 

hyperelastic constitutive laws are obtained.  Finally, candidate constitutive laws for 

hyperelastic and rubber-like materials are selected through comprehensive comparison of 

the simulation results (from the FE analysis for real working conditions) with the 

experimental observations.     

Although parameters can be estimated from the results of a single test, tests 

conducted at different deformation modes are usually required to obtain a strain energy 

function that is adequate for predicting material behaviour under a variety of deformation 

modes.  As an alternative to homogeneous experiments, Hartmann, Mars and Fatemi 

proposed specially-designed experiments that would be conducted using a novel 

specimen, a short, thin-walled cylindrical specimen subjected to combined axial and twist 

displacements, in order to study the mechanical response of rubber-like materials under 

multiaxial loading (Hartmann, 2001) (Mars and Fatemi, 2003) (Mars and Fatemi, 2004).   

Hartmann identified parameters in Rivlin‘s hyperelasticity model using tension, torsion, 

and combined tension-torsion tests with cylindrical rubber specimens where the 

analytical solutions to the extension and torsion of a cylindrical body subjected to 

incompressibility are known (Hartmann, 2001).  The solution to the resulting boundary 

value problem is known, and is used to formulate the least-square optimization algorithm.   
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Sometimes it is difficult to machine an appropriate homogeneous specimen, 

however, due to the availability of backup components or the size of the component.   

Furthermore, it is always more desirable to test the behaviour of rubber materials in their 

installed size and shape within the component, rather than using cut-out standard samples.   

Nevertheless, determination of the elastic properties of rubber-like materials can be 

considered as an inverse problem of identification in each of these cases.  Moreover, 

since the essential requirement for laboratory testing is to simulate field conditions as 

closely as possible, the principal advantage of in-situ tests is that they assess rubber 

behaviour under natural conditions, thus avoiding sample disturbance.  In-situ tests also 

tend to be more economical than laboratory tests, and in some cases, can provide results 

that are more representative due to the higher density of collected data.   

The research presented in this chapter explores a method that combines Finite 

Element (FE) model updating with full-field measurement using digital image correlation 

(DIC) to determine the in-service material properties of mechanical and structural 

components.  From a mathematical point of view, FE model updating involves the 

minimization of the response gap between the analytical and experimental response data.   

From a statistical point of view, FE model updating is essentially a nonlinear regression 

problem fitting the data using a nonlinear function.  For example, FE model updating 

using least-square optimization algorithms was used to estimate Mooney-Rivlin 

parameters for soft tissue from force-displacement data at the indenter obtained during an 

in vivo animal experiment; a 3D FE model simulated the force at the indenter and an 

optimization program updated the parameters and ran the simulation iteratively 

(Seshaiyer and Humphrey, 2003). 
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Full-field optical techniques for displacement or strain measurements are now 

widely used in experimental mechanics.  The main techniques reported are 

photoelasticity, geometric moiré, moiré interferometry, holographic interferometry, 

speckle interferometry (ESPI), grid method and DIC (Rastogi, 2000).  Due to its 

simplicity and versatility, the DIC method is one of the most commonly used techniques.   

Many applications for DIC can be found in the professional literature, including research 

related to the heterogeneous deformation of foams (Wang and Cuitino, 2002), large 

deformation of polymers (Chevalier, Calloch et al., 2001) (Parsons, Boyce et al., 2004), 

and measurement of small strains in fiber-reinforced refractory castables (Robert, Nazaret 

et al., 2007).  The DIC method can be used with a single camera (standard DIC) to 

measure in-plane displacement/strain fields on planar objects, or with two cameras (3D 

DIC) to measure 3D displacement/strain fields on any 3-D object (Rastogi, 2000).    

The DIC technique provides a number of benefits; DIC measures whole field 

displacement/strain on the surface of a component, generates massive amounts of 

experimental data in a single test (replacing traditional techniques involving multiple 

tests with multidimensional loading paths), and thus provides enough information to 

formulate an inverse problem.  The full-field measurement in DIC allows better 

characterization of the behavior of materials and the response of structural components to 

external loadings.  The problem of ill-conditioning, which is often encountered in FE-

model updating, can be avoided to a large extent.  Furthermore, although the deformation 

includes multiple modes, the FE-model formulated using DIC includes coefficients that 

reproduce the complex deformation modes exactly; thus, the estimate function will be 

better at predicting the behavior of the material.  The large amount of full-field data from 



 

 

183 

DIC is conducive to statistical inference; for example, the estimate of covariance is valid 

when the amount of data is large.  On the other hand, unless used in conjunction with 

random simulation, homogeneous tests seldom provide enough data for statistical 

inference (Seibert, Lehn et al., 2000a) (Harth, 2003) (Harth, Schwan et al., 2004) (Harth 

and Lehn, 2007).  The scientific literature dealing with different aspects of the 

identification of material parameters for constitutive equations and structural parameters 

for analysis models is quite extensive, and was recently reviewed (Mahnken, 2004).  

Mahnken and Stein suggested that full-field optical tests such as grid methods or DIC can 

overcome the problem of ill-posedness, which is often a major difficulty in inverse 

identification problems, and to account for non-uniform stress and strain distribution 

during experiments (Mahnken and Stein, 1996); they presented a unified strategy for 

material parameter identification in the context of the FE-method that accounts for non-

uniform stress and strain distribution in the test specimen.  Their work was limited to 

plane stress samples, however, and required complete measurements in a continuous 

region.   

In this chapter, a commercial FE program (ARAMIS) and a derivative-free 

optimization tool (CONDOR) are integrated to solve the inverse identification problem.   

The use of the derivative-free optimization program is not due solely to intellectual 

curiosity, but is particularly useful in industrial applications.  One of the major 

difficulties in using optimization-based inverse identification besides the problem of local 

minimum lies in the implementation of gradient-evaluation procedures.  It is usually 

difficult or impossible to get reliable derivative information for the requested numerical 

analysis when using complex commercial numerical analysis programs because users 



 

 

184 

generally do not have access to the codes.  Thus, the gradient-evaluation procedures are 

tedious and require a great deal of additional effort beyond the numerical analysis 

provided by commercial software.  Furthermore, the evaluation of the gradients involved 

in the analysis can differ for various material models, element types, integration schemes, 

and degree of deformation or type of response data.  For example, a sensitivity analysis 

was performed using DIC-measured surface strains (Cooreman, Lecompte et al., 2007); 

this analysis is limited to simple tensile tests, and as the return-mapping scheme is 

considered in the derivation, cannot be applied directly to FE programs using other 

integration schemes (e.g. ADINA, which uses an effective stress integration scheme).   

The CONDOR method, a trust-region based derivative-free optimization method 

using multivariate polynomial interpolation, is examined in the analysis presented in this 

chapter.  This algorithm is designed to minimize simple constrained (box constraints) 

functions whose evaluations are considered to be expensive and whose derivatives are not 

available for computation.  The strain/displacement data measured on part of the surface 

of a three-dimensional component was used to update the FE model in order to obtain the 

strain energy function parameters.  This approach does not require a complete set of 

response measurements, but there is no strict mathematical theory that guarantees the 

validity of the solution.  The problem of identifiability is discussed, and nonlinear 

regression inferences are used to support the validity of the identifications.  To 

demonstrate this inverse approach, several hyperelastic models were identified for the 

rubber blocks in an engine mount.  Specifically, the research presented in this chapter 

studies the identification of constitutive models for rubberlike materials using an inverse 
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approach with data from DIC measurements.  The analysis is illustrated with a simulated 

rubber block and experimental observations of an engine block.   

This chapter is structured in the following way: Section 5.1: The introduction and 

review.  Section 5.2: Basic description of hyperelastic constitutive models for rubberlike 

materials.  Section 5.3: The approaches used in this work.  Section 5.4: Examples and 

results: including a simulated rubber block and experimental results of an engine block. 

Section 5.5: Summary and conclusions.     

 

5.2 Hyperelastic models for rubber-like materials 

This section presents a short review of current hyperelasticity models for the 

representation of elasticity behaviour in rubber and rubber-like materials.  The underlying 

hypothesis of hyperelasticity is that there is a scalar-valued potential function, the strain 

energy density function 𝑊, which is a function of the strain state, and whose derivative 

with respect to a particular strain component gives the corresponding stress component 

by setting:   
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= deformation gradient  (5.1) 
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= first Piola-Kirchhoff stress tensor (5.2) 

 

where x ∈ Ω  (Ω  is the computation domain of the problem) is generic point of the 

reference configuration, with coordinates xi; and xφ = φ(x) is the generic point of the 

deformed configuration, with coordinates xi
φ

. The strain energy is a function of the 
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deformation gradient F (relative to some fixed reference configuration), and is written 

W(F) per unit volume (Ciarlet, 1988).  

 

The tensor FFC T  (in EEM 3 ) is called the right Cauchy-Green tensor; it 

measures the length of an elementary vector after deformation in terms of its definition in 

the reference configuration. The tensor is symmetric and positive-definite by construction.   

Corresponding to the right Cauchy-Green strain tensor C, there is also the left 

Cauchy-Green tensor 

TFFB   (5.3) 

 

By construction, 𝐶  is a symmetric positive definite tensor in EE , which 

implies that 𝐶  has three strictly positive eigenvalues 3
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A deformation is isochoric if and only if, it preserves volumes ( dxdx 
). This 

deformation is characterized by the deformation gradient 𝐹  which satisfies the 

incompressibility constraint 

 xxF 1)(det  (5.7) 
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Thus, the hyperelastic theory states that the first Piola-Kirchhoff stress tensor T is 

given as: 

2
W W

T F
F C

 
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 

 
(5.8) 

The Cauchy stress tensor T is automatically symmetric, and is now given by: 
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As for compressible materials, the axiom of indifference implies that 𝑊  is a 

function of the right Cauchy-Green strain tensor only (Tallec, 1994). The constitutive law 

therefore becomes 
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Similarly, for isotropic materials, 𝑊  is again a function of the invariants of C 

only. Thus, in this case we have simply 
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In all of these constitutive laws, the hydrostatic pressure 𝑝  is an additional 

unknown element, determined by the Lagrange multiplier associated with the additional 

nonlinear kinematic constraint 

 1det  FJ  (5.14) 
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Various forms of the strain energy function 𝑊 have been proposed for rubber-like 

materials. The choice of 𝑊  usually reflects the experience and preferences of the 

individual researchers rather than objective criteria.   In general, the proposed models can 

be categorized into two classes:  (1) phenomenological descriptions; and (2) descriptions 

based on statistical mechanics (Horgan and Saccomandi, 2006).   

Phenomenological descriptions (based on continuum mechanics analysis) assume 

that rubber-like materials in the undeformed state are isotropic; i.e., the long molecular 

chains are distributed randomly, which allows formulation of a strain energy density 

description in volume element units. The strain energy function is either: 1) a function of 

the principal invariants of the right Cauchy-Green strain tensor; or 2) a symmetric 

function of the principal stretches.  The former includes the popular Mooney-Rivlin 

model and the Yeoh model, which are appropriate for strains of medium magnitude; 

while the latter includes the Ogden model, which is considered to be an effective model 

for very large strains (Horgan and Saccomandi, 2006).   

The strain energy functions for rubber-like materials based on statistical 

mechanics assume that the elastic restoring force is related to the decrease of entropy, and 

that elongation of the material‘s fibers reduces disorder within the material.  Essentially, 

these models make assumptions about the length and direction of molecular chains; the 

constitutive models are obtained via statistical analysis (Treloar, 1975). The Arruda-

Boyce and Van der Waals are important forms of the models in this class (Boyce and 

Arruda, 2000) (Horgan and Saccomandi, 2004).  
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The Arruda-Boyce model of strain energy is the most popular of the 𝑊 functions 

based on statistical molecular theory. The strain energy function is expressed in terms of 

𝐼1 and needs only two parameters, namely 𝜇 and 𝜆𝑚  , for incompressible rubber material, 

and one additional parameter, 𝐷 , for a compressible case (Arruda and Boyce, 1993).  The 

strain energy function is:    
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where: 
1 2 3 4 5

1 1 11 19 519
, , , ,

2 20 1050 7050 673750
C C C C C     . The Arruda-Boyce strain 

energy model is also called the eight-chain model.  The values for 𝐶𝑖  (𝑖 = 1,… ,5) are 

obtained from statistical thermodynamics, and therefore they are physically meaningful.  

The parameter 𝜇 represents the initial shear modulus of the material. The parameter 𝜆𝑚  is 

the locking stretch, which location is around the sharpest point on the stress-strain curve.  

This type of strain energy function has been shown to be accurate for engineering most 

elastic materials.   

The polynomial form of the strain energy function is written as: 

2
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This function denote 𝐼1  and 𝐼2  as the first and second invariants of the deviatoric 

part of right-Cauchy-Green deformation tensor, respectively; 𝐽 = 𝑑𝑒𝑡⁡(𝑭) is the ratio of 

deformed volume over the undeformed volume of the material, and 𝑭 is the deformation 

gradient.  The parameter 𝑁 is the order of the polynomial chosen for a specific material. 

The parameters 𝐷𝑖  determines the compressibility of the material; the material is 
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incompressible if all values of 𝐷𝑖  are equal to zero.  For polynomial models, the initial 

shear modulus 𝜇0  and volume modulus 𝑘0 are determined by the first-order polynomial 

(𝑁 = 1) no matter how many orders are selected for the polynomial model. 

)(2 01100 CC  ,   and   
1

0

2

D
k   (5.17) 

The famous Mooney-Rivlin strain energy form can be obtained by retaining only 

the linear part of strain energy, that is, 𝑁 = 1.  

2
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The Mooney-Rivlin form is a very popular one; although it cannot model the 

sharp upturn of the stress-strain curve under large strains, it is effective for small and 

medium strain ranges. The first term of this form dictates a linear shear modulus model - 

the neo-Hookean model: 

10 1( 3)U C I 
 (5. 19) 

Treloar constructed the so-called neo-Hookean form of the strain energy on the 

basis of Gaussian statistics and molecular network theory (Treloar, 1975) as:  

𝑊 =
1

2
𝜇 𝐼1 − 3      (5. 20) 

where 𝜇 is the shear modulus in the ground state. It is easy to see that the Neo-Hookean 

model can be obtained by retaining only the first term in Equation (5.18). Actually the 

neo-Hookean form is the first W function proposed by Treloar in 1943.  

The reduced polynomial forms are obtained from the polynomial models by 

setting all of the 0ijC  for 0j :  
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A special form of the reduced polynomial is the Yeoh model which is the reduced 

polynomial function at N=3: 
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(5.22) 

The Yeoh model, is another popular model, and is effective for modeling the large 

deformation of rubber-like materials.   

To obtain accurate estimates of material parameters, the data space of  𝜆1 − 𝜆2 

must be sampled thoroughly.  While this is not easily done using traditional tests on 

homogeneous stress-strain fields, it is easy to do with tests of the original components, so 

that the test configuration generates a complicated strain/displacement pattern.  The 

mechanical response of a rubber-like material is then defined by choosing a constitutive 

model with a strain energy function that fits the experimental behavior of the tested 

components.  Several of the most widely applied hyperelastic constitutive models are 

summarized in Table-5.1.   

Table 5.1: Popular constitutive models for compressible rubberlike materials in FE 

analysis 

 Constitutive models based on statistical mechanics 
Number of material parameters 

1.  Arruda-Boyce model 

  2.  Van der Waals model 

3 

4 

 Phenomenological models 
Number of material parameters 

1.  Polynomial models (N-th order) 

2. Reduced polynomial models (Yeoh) 

2N 

N 
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The number of items included in the polynomial and reduced-polynomial models 

can be infinitely high, making it possible to represent stress-strain behaviors of any 

shape. High order strain energy functions are of little practical value, however, because 

rubber materials are not sufficiently reproducible to allow one to evaluate a large number 

of coefficients with any accuracy.  Generally, the extra terms usually only do a good job 

in fitting experimental errors.  Therefore, the Mooney-Rivlin model remains the most 

widely used strain energy function in FEA, and should be the first choice due to its 

simplicity and robustness (Saccomandi and Ogden, 2004).  The Mooney-Rivlin model is 

used in the example presented in Section 5.4.1.   

 

5.3 Methodological and analytical approaches used for this project 

The research presented in this chapter is based on the same methodology as the research 

presented in Chapter 4.  Briefly, the ARAMIS commercial DIC system was used to 

measure displacements and strains on the surface of the test component.  A finite element 

model of the component was developed and correlated with the experimental 

measurements.  Direct optimization algorithms and regression analysis techniques were 

employed to evaluate and validate this nonlinear optimization problem.  Procedural 

details are provided in Chapter 4, sections 4.2 to 4.7. The results of applying this 

approach to hyperelasticity in rubberlike materials (a rubber block and an engine mount 

with a rubber component) are described in Section 5.4.   
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5.4 Results and illustrative examples 

5.4.1 Rubber block 

Firstly, a simulated rubber block was used to assess the robustness of the 

optimization procedure.  This example was solved as a plane strain problem using 

COMSOL software (COMSOL); Figure 5.1 shows the simulated strain contours.  The 

block was compressed between a stationary plane surface and a rigid indenting cylinder; 

the rigid cylinder started with a gap of 1 mm between the cylinder and the object, and 

was lowered 8 mm.  The lower straight part of the block was glued to the underlying 

body, so all displacements were constrained there.  

 

 

 

Figure 5.1: The simulated strain contours of a rubber block using COMSOL 
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The rubber material used in this experiment is hyperelastic and was approximated 

as a Mooney-Rivlin material with  𝐶10 = 0.37𝑀𝑃𝑎 and 𝐶01 = 0.11𝑀𝑃𝑎. The material is 

almost incompressible, so the bulk modulus was set to 104  MPa , and the mixed 

formulation option was used. The simulated surface normal strains along a vertical 

direction were used for updating the model to define the parameters (Table 5.2).     

Table 5.2: numerical test of the inverse problem (𝑰𝑴 = 𝟎. 𝟎𝟎𝟎𝟏) 

Parameter Reference value Re-identified 

value  

Relative error Variances  

𝐂𝟏𝟎  0.37 0.3704 0.11% 0.02 

𝐶01  0.11 0.1106 0.55% 0.02 

1/𝐷1  104 103.6 -0.38% 4.8 

 

Studies examining the performance of DIC suggest that a 5% RMS error in strain 

measurement is a safe estimation (Tong, 2005) (Robert, Nazaret et al., 2007).  Therefore, 

5% synthetic noise was added to the simulated strains.  The results show that this 

procedure produces good solutions even with potential noise in the DIC measurements 

(Table 5.3).    
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Table 5.3: numerical test of the inverse problem with 5% synthetic noise (𝑰𝑴 = 𝟎. 𝟎𝟎𝟎𝟒) 

Parameter Reference value Re-identified 

value  

Relative error Variances  

𝐂𝟏𝟎  0.37 0.3647 -1.43% 0.09 

𝐶01  0.11 0.1189 8.09% 0.05 

1/𝐷1  104 106.3 2.21% 17.4 

 

5.4.2 Engine mount 

An engine mount with a rubber component was tested in the second numerical 

example. The FE simulation is performed using commercial FE software ANSYS 

(ANSYS).  In the FE model, totally 9454 solid185 hyperelastic elements are used to mesh 

one rubber block in the engine mount; symmetry condition is used to reduce the 

computation cost in the FE simulation.   

Figure-5.2 shows a typical experimental setup using ARAMIS DIC system. A 

random speckle pattern using black and white spray paints was coated on the surface of 

the specimen. The two cameras are shown mounted on a stable base with a special 

support tripod and support bars that allowed flexibility in positioning the cameras. 

External light was used to provide optimal exposure.  The lighting is especially important 

as the contrast between white and black speckles can determine the success of a 

measurement. Likewise, stabilizing the camera, in order to minimize movement and 

vibration while capturing images, is particularly important. camera movement causes 

errors in the camera calibration and deformation calculations. Preliminary trials were 

conducted to optimize the camera placement and the random speckle pattern. 
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A small region on the randomly speckled surface of the object was measured 

using high zoom ratios along with the 1-inch
2
 (25.4 mm) pre-manufactured calibration 

block that comes with the ARAMIS DIC system.  Random speckle patterns were created 

using 15-pixel subsets that were three times larger than the mean speckle size (5-6 pixels).   

(DIC measurement depends on the surface speckle pattern of the component to be 

measured.  Um and Kim (2007) studied the effects of subset size, subset shape, and step 

size on correlation error.  Robert et al. (2007) examined the effects of factors such as 

speckle size and geometry and image noise in speckle patterns.  In general, the findings 

indicate that if the size of a large speckle is larger than the subset, poor correlation scores 

will result.  Thus, a practical rule of thumb is that the subset should be three times larger 

than the mean speckle size).  

The DIC measurement depends on the surface speckle pattern of the component 

to be measured. Um and Kim conducted experimental research of a paper tensile 

specimen to study the effect of subset size, subset shape, and step size, on the correlation 

error (Um and Kim, 2007).  Robert et al studied the effect of speckle patterns, i.e., factors 

such as speckle size and geometry, image noise, etc. (Robert, Nazaret et al., 2007). It was 

found that if the size of a large speckle is larger than the subset, bad correlation scores 

will results.  A practical rule of thumb is that the subset 3 times larger than the mean 

speckle size.  A subset size of 15 pixels was used in our DIC test; an optimal speckle size 

should be 5 to 6 pixels. 

The frontal surface of the mount was first painted white, and then a black speckle 

pattern was randomly sprayed onto the white painted surface.  Efforts were made to 

obtain an evenly distributed homogeneous pattern of black paint drops on the undeformed 
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surface.  Inhomogeneous strain/displacement fields on the rubber surface under loading 

were obtained using the ARAMIS DIC system (ARAMIS).  The inhomogeneous strain 

histories under incremental loading at multiple points were used as input to select the best 

model and to identify the corresponding material parameters.  In this test, the loads were 

applied to the top of the engine mount, incrementally from 0.0 kN to 13.8 kN; the DIC 

measurements were conducted at six discrete load-cases, (i.e. 3.6, 6.0, 7.8, 10.8, 12.2, and 

13.8 kN load steps).  As a good model must be able to predict the behaviour of rubber 

under a large range of strains, DIC measurements from all six of these load cases were 

used in the least-squares objective function to update the FE model.  

 

 

 

Figure 5.2: The engine mount and the DIC test using the ARAMIS DIC system 
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Therefore, the least-squares objective problem is written as: 

Find 𝜽 ∈ 𝚯 : 𝑚𝑖𝑛 𝑓 𝜃 =   
1

2
 𝑀 𝜃 − 𝑑𝑒𝑥𝑝  

2𝑁
𝑖=1𝑝∈𝑃  (29) 

where P  is the set of load cases used in the identification; and 𝑁  is the number of 

effective measurement points of the DIC tests.  In these DIC measurements, each image 

contains 1024-by-1280 pixels; grids with subsets of 15-by-15 pixels were used in the 

analysis. As noted previously, the optimal speckle size is 5 to 6 pixels for the subset size 

of 15 pixels used in our DIC tests.  For speckles larger than this size, the RMS error of 

strain/displacement measurements increases with the increase in speckle size.  

Since the test is performed on a real component rather than a symmetrical cutout, 

patterns are not well-controlled.  The paint was applied to the engine mount manually, 

and there were also unique scratches, and marks or labels on the surface of the mount. 

Therefore, regions on the surface with speckles larger than the subset size were deleted 

from the measured results. Thus, a typical DIC measurement (Figure 5.3) may contain 

blank areas (regions where the speckle pattern is not adequate for accurate DIC 

measurement). Therefore, the effective measurement points used in Equation (29), must 

be chosen from DIC test results that exclude these blank regions.  

 

Figure 5.3: The geometry model and finite element model of the engine mount 
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The material parameters for several hyperelastic models were identified using the 

FE model updating procedure described in Section 5.3. Before conducting the 

identification analysis, a numerical study was performed to validate this test: a three-

parameter Mooney-Rivlin hyperelastic model was incorporated into the finite element 

model, and the parameters were re-identified using the simulated surface displacements 

as the input measurements.  The re-identified parameters are tabulated in Table 5.4. 

Table 5.4: numerical test of the inverse problem using simulated surface displacements 

(𝐈𝐌 = 𝟎. 𝟎𝟎𝟎𝟔) 

Parameter Reference value Re-identified 

value  

Relative error Variances  

𝐂𝟏𝟎  0.66666 0.672623 0.89% 0.072 

𝑪𝟎𝟏  0.33333 0.310546 -6.84% 0.079 

𝑫𝟏  0.111111E-4 0.122127E-4 9.91% 0.042E-4 

 

To study the effect of possible errors in DIC measurement, an error with 5% 

standard deviation was given to the simulated displacements; parameters are then re-

identified using the simulated noisy surface displacements as the measurements. 

According to (Tong, 2005) (Robert, Nazaret et al., 2007), 5% of RMS error is a safe 

estimate of the error in measurement for a speckle pattern with speckle sizes less than the 

subset size.  
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Table 5.5: numerical test of the inverse problem using simulated surface displacements 

with synthetic noise (𝑰𝑴 = 𝟎. 𝟎𝟎𝟏𝟑) 

Parameter Reference value Re-identified 

value  

Relative error Variances  

𝐂𝟏𝟎  0.66666 0.67812 1.72% 0.091 

𝑪𝟎𝟏  0.33333 0.31735 -4.79% 0.099 

𝑫𝟏  0.111111E-4 0.12472E-4 12.25% 0.048E-4 

Tables 5.4 and 5.5 show that, for the identification of parameters in a Mooney-

Rivlin hyperelastic model, the accuracy of the identified 𝐶10  parameter is very good, 

while the potential errors in identification of the 𝐶01  parameter and the 𝐷1 parameter are 

relatively high.  The identified strain energy function is sufficient to describe the behavior 

of this rubber, however, because the contribution of the 𝐶10  parameter is dominant in the 

Mooney-Rivlin strain energy function. Furthermore, the effects of parameter 𝐶01  and the 

compressibility parameter  𝐷1 are relatively insignificant for a strain range up to 150%, 

so this level of error can be regarded as acceptable in FE analysis.   
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a) Photo of the left rubber block surface used in DIC 

 

 

b) Horizontal displacement obtained via DIC                                      
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c)      Vertical displacement obtained via DIC 

Figure 5.4: The DIC measurements of displacement in the 7.8 kN load case 

 

 

 

a) Horizontal displacement                                               b)      Vertical displacement  

Figure 5.5: The FE simulation of displacement at the 7.8 kN load case using identified 

Mooney-Rivlin model 

 

The parameters identified for four different strain energy functions using the 

experimental data are tabulated in Table 5.6. The estimated variance for each parameter 

is given in brackets.  Note that, as the measure derives from different models in this case, 
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the variance is not a meaningful measure for model selection. The measure 𝐼𝑀  can be 

used to select a model that best fits the data in a statistical sense. 

 

Table 5.6: The identified model parameters using experimental data  

Neo-Hookean Mooney-Rivlin Arruda-Boyce Yeoh 

𝐼𝑀 = 0.0205 𝐼𝑀 = 0.0072 𝐼𝑀 = 0.0070 𝐼𝑀 = 0.0094 

1.892152 (0.412) 

0.165373 (0.107) 

0.578129 (0.124) 

0.452273 (0.147) 

0.123581E-03 (0.076E-3) 

1.422176 (0.215) 

4.244912 (0.771) 

0.144236E-02 (0.068E-2) 

0.62174 (0.102) 

-0.06631 (0.023) 

0.14527 (0.062) 

0.17412E-03 (0.026E-3) 

 

 

 

 

Figure 5.6: The experimental and simulated load-displacement curves  

 

The load-displacement curve was chosen to verify the identification. The 

simulated load-displacement curves using FE-identified model parameters are compared 

with the load-displacement curve derived from experimentally measured parameters in 
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Figure 5.6. The Neo-Hookean model does not perform well for high load ranges because 

it is a linear shear modulus model.  The simulated load-displacement curves generated by 

the three other FE-identified models compare well with the experimental load-

displacement curve. In particular, the Mooney-Rivlin and Arruda-Boyce models 

produced the best outcomes in terms of accurately simulating the experimental load-

displacement curve.  Thus, designers can use FE-identified models, such as the Mooney-

Rivlin and Arruda-Boyce models in this case, to assess a static stiffness measure for the 

design of a component under different load configurations and strain ranges.  Moreover, 

the examination of relative error when artificial noise was added to the test data indicates 

that the level of error in FE-models is comparable to that seen in experimental tests.   

The Mooney-Rivlin strain energy function parameters, which were identified after 

introducing noise (5% error to the DIC experimental data), are given in Table 5.7.  The 

relative error shown in this table was calculated with respect to the model parameters 

identified without artificial noise in the test data.  Therefore, according to this numerical 

analysis, the identification of model parameters is not overly sensitive to measurement 

error; since error of ±5% is well within the range of potential error in a well-controlled 

DIC test, this level of error is acceptable for numerical analysis.  Likewise, the speckle 

points applied to the surface were approximately 3 to 5 pixels (less than 0.05mm) in 

diameter; the corresponding subset size chosen was 15 pixels.  According to Tong and 

Robert, RMS error of 5% is a safe estimate of the measurement error for a speckle pattern 

with speckle sizes smaller than the subset size (Tong, 2005) (Robert, 2007)).   
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Table 5.7: Sensitivity of the identified model parameters with introduced noise in the test 

data  

Identified Mooney-Rivlin 

model without artificial noise in 

test data  

Identified Mooney-Rivlin 

model with artificial noise in 

test data 

Relative error 

0.578129 

0.452273 

0.123581E-03 

0.581362          

0.474483          

0.136529E-03   

0.56% 

4.91% 

10.48% 

 

5.5 Summary 

This chapter provides a methodology for rapid model selection and identification 

of model parameters for rubber-like materials in structural components.  This method is 

based on an inverse problem approach which uses displacement/strain data measured by 

digital image correlation (DIC) as input.  A least-squares objective function is minimized 

by use of a trust region-based derivative-free optimization method.  An engine mount 

with rubber components was tested to demonstrate and validate this approach. 

The concept proposed in this chapter is a flexible methodology for the 

identification of effective material models of rubber-like materials. The identifiability of 

model parameters and numerical stability issues arising from this approach are discussed; 

several numerical analyses are recommended to validate model identification.  

In particular, this chapter considers the identification of constitutive parameters of 

rubberlike materials under monotonic loading.  Future research would include the 

identification of constitutive parameters of rubber-like materials under cyclic loading, 

enabling study of parameters defining hysteresis and the Mullins effect.  The Mullins 

effect is closely related to the fatigue of elastomeric parts used in engineering 
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applications.  Quantitative study of the Mullins effect is thus a necessary step towards the 

scientific evaluation of the fatigue life of rubber and rubber-like materials.   
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CHAPTER SIX: CONCLUSION AND FUTURE WORK 

Contribution is sometimes a reward in itself.  Recognition of the value of an idea is a 

further reward.                                                                                            Edward de Bono 

 

This thesis solves two inverse problems: (i) reconstruction of stiffness distribution of 

beams which can serve as damage identification and structural monitoring technique, and 

(ii) the identification of nonlinear material model parameters of components/specimens 

which is a topic in more and more demanding as engineers today have the ambition to 

describe comprehensively the nonlinear deformation processes of materials and structures.  

The two inverse problems are different, one is ill-posed functional identification and one 

is well-posed parameter identification, although the former must also be solved in 

parametric ways. 

In this work, optically measured beam deflection profiles and full-field 

displacements/strains on the specimen surface using digital cameras are used as inputs to 

inverse identification processes.  The author believes that optical measuring techniques 

are very promising, and whence combined with modern parameter identification 

techniques, offers great potentials to engineering problems including damage and 

material identification. 

A novel methodology of damage identification is developed using static 

deflection measurements.  Two FE model updating methods for beams were proposed in 

this work; they can be used as damage identification methods.  The methods presented in 

this work depart from traditional damage identification techniques by trying to 
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reconstruct the complete stiffness distribution of a beam.  Although a baseline model is 

required, only boundary conditions need to be accurately modeled.  

Throughout this work, a number of ―future work‖ have appeared in text.  This is 

not an indication of a lack of effort; rather, it reflects the fact of the research, 

1) Measurements: photogrammetry, camera calibration, metric cameras, other 

measurement techs, fibre optic, inclinometers, etc.    

2) Additional field testing: the primary focus of future efforts should be on continued 

testing with field testing on real structures, to see how well the methods will 

perform in practice. Loading is a problem, especially bridges, issues like lighting, 

requirement of stable mounting base, calibration of cameras may arise and need to 

be studied in practice. Another interesting issue can be the permanent mounting of 

inspecting cameras and data transition through cables, in a time that cameras are 

installed everywhere for security of humans, it would a more though to use 

cameras for safety of structures.  

3) Combination of different damage identification techniques: local+global, dynamic 

+ static, irregularity detection from static deflection measurements. 
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