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ABSTRACT

Proper control o f airflow through a duct is critical in HVAC application. At present, 

the airflow rate is typically estimated by means o f Equal Area and Log-Tchebycheff 

methods. Both methods deduce the flow rate based on velocities measured at discrete 

locations in a cross section; the difference is associated with the rules that prescribe the 

specific locations. This research aims at making a step towards resolving the existing 

debate as to which method is preferable for a given situation.

To achieve this, two-dimensional numerical simulations o f air at a uniform velocity 

entering a straight circular duct o f 60D length were performed over a range o f Re from 200 

to 54000. It was revealed that in the absence o f imperfections that are encountered in a real 

environment, the Equal Area method estimates the volumetric flow rate better in the 

laminar flow regime, whereas the Log-Tchebycheff method provides greater accuracy in 

the turbulent regime. In addition, experiments were conducted for Re o f 24400, 54800 and 

99400 in a straight circular duct o f 32D (D = 0.266 m) length. A Pitot-static tube and/or a 

velocity meter were utilized to determine the point velocities. The Equal Area method over

predicted the flow rate by 2 to 4%, whereas the Log-Tchebycheff s values fell within ±1% 

of the reference flow rate measured by a venturi meter. The experimental results appeared 

to confirm with simulations that the Log-Tchebycheff method could give more accurate 

flow rate in the tested turbulent flow regime.
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NOMENCLATURE
Letter/Symbol

A Area [m2]

AABC Associated Air Balance Council
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■8 Gravitational acceleration [m/s2]
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h The rate o f heat loss per unit length o f wire [cal/ pm]
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HVAC Heating, Ventilation and Air Conditioning

i Iteration number

Iturb Relative turbulence intensity [%]

K  The thermal conductivity o f air [w/m-K]
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t ”3

Q Volumetric flow rate [m /s]

Qven Volumetric flow rate across venturi meter [m3/s]

r Distance in the radial direction (from the duct center) [m]

R Gas constant [R = 287.1 J/kgK]
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S  The specific heat at constant volume of air [kJ/kg-K]
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1

C h a p t e r  1

INTRODUCTION TO THE ESTIMATION OF 

VOLUMETRIC FLOW RATE

The Heating, Ventilation and Air Conditioning (HVAC) system is an essential part 

o f human’s everyday life and has a major impact on health and economy of our society. 

The HVAC systems are designed based on heating and cooling load with critical attention 

on the required airflow pattern in the air distribution system. Consequently, the estimation 

o f the volumetric airflow rates through ducts has been the focus o f HVAC engineers for a 

long time.

Today, most people spend 90 percent o f their time indoor [Kosonen and Tan, 2004; 

Health Canada, 2004; EPA and CPSC, 1995], often in shared spaces. So, indoor air quality 

is very important. To maintain good indoor air quality, extensive research has been 

conducted on the optimization o f the HVAC system, considering energy conservation [Lu 

et al., 2005; Chow et al., 2002; Austin, 1993].

Supply and return ducts are designed to be in balance, meaning that the amount of 

air supplied to a building is the same as the amount returned to the AHU (Air Handler 

Unit), keeping the pressure inside a building neutral. If  either o f the ducts (the supply or
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return duct) has higher or lower air flow, balance will be disrupted and the pressure through 

the entire conditioned space can be skewed. In the case o f less air supply, a negative 

pressure is created inside the building. Hence, the outside air, which is hotter in summer 

and colder in winter, is drawn into the building, so dropping comfort and wasting energy. 

For the case o f higher supply, a positive pressure is created inside the building. So 

conditioned air escapes the building, and this can cause an enormous waste o f energy 

[Srinivasan, 2005]. In case o f hospital, space-to-space pressure unbalance is a violation of 

health code, causing germs and viruses to spread. Poor indoor climate due to unbalance 

pressure can create a negative effect on the performance of the occupant [Wyon, 1993; 

Jaakkola et al., 1989], and even hampers the Gross National Product [Fisk and 

Rosenfeld, 1997].

It is anticipated that the better estimation o f the volumetric airflow rate through a 

duct, a critical factor in HVAC, can produce a better HVAC system design. An estimation 

o f the velocity profile in the duct system can be very exigent due to the complex duct 

geometry and non-uniform flow distributions, along with real life disturbances. To ensure 

proper air distribution, a periodic air balancing is required. So the flow profile followed by 

volumetric airflow rate estimation through a duct is the main concern o f the current study.

1.1 Motivation

In HVAC applications, initial setting and periodic monitoring o f the airflow in the 

duct are necessary to ensure proper amount of fresh air is being supplied to specific areas 

and to provide optimum conditioned space. The volumetric airflow rate is typically based 

on a series o f velocity readings taken at specific points across a centerline o f the cross
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section o f the air-distributing duct. Accuracy of the volumetric airflow rate estimation 

depends on the number o f measurement points, velocity distribution and shape and size of 

the duct. In practice, ASHRAE (American Society o f Heating, Refrigeration & Air 

Conditioning Engineers) recommends the use o f the Log-Tchebycheff method. However, 

for ducts o f diameter or width less than 46 cm (18 inch), ASHRAE has no preference o f the 

Log-Tchebycheff method over the Equal Area method, presumably due to the loss of 

physical differentiation (resolution) between consecutive measurement 

locations [Schwenk, 1997; ASHRAE, 1988]. On the other hand, AABC (Associated Air 

Balance Council) approves the use o f the Equal Area method for all applications 

irrespective o f the size o f the duct [AABC, 2002].

The question about which method is more appropriate for a particular application 

has existed since the introduction o f these (and other) methods. In recent years, there has 

been a re-emergence o f interest in resolving this decades-old question. Unfortunately, some 

o f the recent attempts [such as Klaassen and House, 2001; Richardson, 2001; 

MacFerran, 1999] have been casual, or to use Joseph’s term in describing one o f these 

studies [MacFerran, 1999], erroneous [Joseph, 2001]. It is clear that any attempt in 

resolving the dispute concerning the superiority o f one method over the other requires a 

series of well-thought-out systematic investigations. In this study, a circular duct was 

chosen to investigate the accuracies o f Equal Area and Log-Tchebycheff methods for 

volumetric flow rate estimation in a relative ideal environment.
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1.2 Objective

The objective o f this study is to numerically and experimentally evaluate the Equal- 

Area and Log-Tchebycheff methods for estimating the volumetric flow rate through a 

circular duct. This has been carried out for the following conditions

o Numerical simulations; Re = 200 to 54000 and L/D  = 60 (D = 0.2 m) 

o Experimental investigations; Re = 20000 to 100000 and L/D  = 35 (D = 0.266 m)

1.3 Thesis outline

A historical review on volumetric flow measurement is documented in Chapter 2. 

Chapter 3 focuses on the simulation techniques. Chapter 4 presents a description o f the 

experimental set-up and the measurement tools and procedure. In Chapter 5, the numerical 

results, experimental results and comparison o f experimental results with simulations are 

presented and discussed. The conclusions from this study are summarized in Chapter 6. 

Furthermore, possible future developments are also proposed.
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C h a p t e r  2

LITERATURE REVIEW

Flow profiles have been extensively studied in HVAC and other engineering 

applications [Browne and Dinkelacker, 1995; Eggels et al., 1994; Kim et al., 1987; 

Laufer, 1954]. The accurate measurement o f the flow profile in the duct system can be very 

challenging due to the complex, non-uniform flow distributions, along with unavoidable 

disturbances in the actual HVAC systems. An acceptable estimation o f the volumetric flow 

rate depends on the number o f measurement points [Ower and Pankhurst, 1977; 

Salami, 1971], which is in turn determined by the flow pattern [Wintemitz and 

Fischl, 1957; Aichelen, 1947].

Although a number o f ways have been designed for estimating the volumetric flow 

rate, the integration techniques are generally used. The volumetric flow rate (Q), can be 

calculated by integrating the velocity U  over the duct cross-sectional area A  [White, 1999], 

that is,

A

where the mean velocity (Umean) can be approximated from a finite number o f measurement 

points via

1 n

Q -  jU-dA&UmearrA  , (2 .1)

mean (2 .2)
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Obviously, the accuracy depends on the number o f measuring points being used in 

deducing the volumetric flow rate through a duct [Ower and Pankhurst, 1977; 

Salami, 1971]. For practical reason, one would like to minimize the number of 

measurement points with required resolutions and accuracies as per measurement locations. 

It is therefore necessary to optimize a small number o f measurement locations. 

Nevertheless, the velocity distribution, Reynolds number and roughness factor can be the 

decisive factor in the selection o f the number and location of the measurement points. The 

following sections deal with the different types o f flow measurement techniques evolved 

chronologically for estimating the volumetric flow rate in a duct.

2.1 Volumetric flow measurement techniques

There are numerous methods for estimating the volumetric flow measurement. 

However, the graphical integration is one o f the accurate techniques for flow measurement 

according to ASME, SEI [ASME, 1949; SEI, 1947]. In this method numerical data is 

presented graphically and the flow rate can be determined using planimeter or “counting 

squares”. The method is slow and each stage o f the process o f evaluation is a possible 

source of error.

Another approach is based on equal area elements, in which, to locate the velocity- 

measurement points the cross section o f the duct is divided into zones o f equal areas with 

the specific locations corresponding to the centers o f equal-area elements. Many authors 

have generalized this approach as the Equal Area method, which has different names 

depending on the shape o f the duct. For example, when this approach is applied to a 

circular duct flow, this Equal Area method has been referred to as the Tangential method.
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This is the most widely used method for the determination of the duct flow from velocity 

traverse measurement [Perry and Green, 1997; ASME, 1983; Ower and Pankhurst, 1977; 

Wintemitz and Fischl, 1957; BSI 1042, 1943]. However, the velocity gradient and 

boundary effects are not considered in this technique.

Aichelen [1947] devised a simple ‘two-measurement-point’ method for estimating 

the mean velocity for fully developed circular duct flow. It was estimated that the mean 

velocity in fully developed circular duct flow occurs at a radius o f 0.38ID 

[Nikuradse, 1932]. Accordingly, Aichelen specified the traversing locations at 0.119D and

0.88 ID from any side o f the circular duct at fully developed region. This technique takes 

minimal time for only two measurements are needed. However, experiments have shown 

that the mean velocity obtained by this method is overestimated and thus for good accuracy 

it is not recommended [Ower and Pankhurst, 1977; Wintemitz and Fischl, 1957].

Ten years later, Wintemitz’s invented an alternate method called the Log Linear 

method [Wintemitz and Fischl, 1957] in which, just like the Equal-Area method, the cross 

section o f the duct is divided into a number o f equal-area zone. The traversing location for 

each zone is, however, based on knowing the measurement locations (traversing points), 

each of which correspond to the local velocity that is supposed to represent the mean 

velocity o f that zone. In doing so, the Log Linear curve fit attempts to take the velocity 

gradient and boundary effects into account, the priori is that the velocity profile is known.

In 1966, Coffin devised a method called the “Method o f Cubics” [Coffin, 1966]. In 

this method, a series o f cubic curves replaced the actual velocity profile. The curves are
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fitted between adjacent pairs o f measured velocities, including the known zero velocity at 

the wall, so that the gradients o f successive curves are equal at the common boundaries. 

Integrating the area under the curve will then give the mean flow velocity for estimating the 

volumetric flow rate [Ower and Pankhurst, 1977; Kinghom et al., 1973]. This method 

involves a significant computational effort [Salami, 1971]; nevertheless, the accuracy is 

similar to the Log Linear method. The main advantage o f the Method o f Cubics is that the 

traversing points for this method do not need to be predetermined, whereas, those are 

predefined for the Log Linear method. Some o f the researchers concluded that the Method 

of Cubics could be an alternative to the well-established Log Linear method in special 

cases. For example, when the required points cannot be estimated beforehand and/or is 

expected to alter significantly within the duct system and when extra computational effort 

is not a concern [Kinghom et al., 1973].

A mathematician, Tchebycheff developed a method for duct flow measurement in 

1977 by considering the wall law of the internal flow distribution, which is referred as the 

Log-Tchebycheff method [ISO, 1988; ASHRAE, 1988]. In this method, the cross sectional 

area o f the duct is divided into a number o f zones o f equal area, with the traversing points 

at positions which subdivide the zones into two equal-volume flow elements. In such, Log- 

Tchebycheff method also requires the knowledge o f the velocity profile prior to 

measurements. Note that in this method the overall mean velocity is simply the average of 

the local (point wise) values, and multiplying this overall mean velocity by the cross 

sectional area gives the volume flow rate, whereas in the Log Linear method, curve fitting 

and integration are required to deduce the volume flow rate. Nevertheless, some previous
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studies claimed that the flow rates estimated via these two methods are almost the same 

[ASHRAE, 1988].

2.2 Estimating the volumetric flow rate through a duct

Salami [1971] estimated the errors associated with different types o f velocity-area 

methods o f flow measurement in a circular duct/pipe, where the Tangential, Log-Linear, 

Simpson’s Rule and Method of Cubics were used. The point velocity was measured using 

6 - 4 0  traversing points per diameter for each method. The investigated range of Reynolds 

number was not mentioned in this paper. His findings shows that the measured flow rate 

using the Log-Linear and the Method o f Cubics have less error than that o f other methods 

for the same number o f traversing points. The author recommended that the errors could 

also be reduced gradually by making the measuring grid fine along the circumference o f the 

circular duct across the measuring cross section.

Klassen and House [2001] also investigated the Equal Area and Log-Tchebycheff 

methods for the rectangular duct flow. A commercial-scale HVAC system was used in this 

study, in which air is supplied from the air-handling unit to the main supply duct, which 

later turns into a 90° elbow with turning vanes. They tested the duct flow at 3 different 

planes; two o f them were at 50% and 100% effective duct length from the outlet o f the fan 

respectively and another was at one equivalent duct diameter from the elbow; the effective 

duct length is defined as a duct length corresponding to a uniform velocity profile, which 

would be expected 2.5-equivalent duct diameter from the fan outlet. They used 25 

measurement points for the Log-Tchebycheff method and 20 measurement points for the 

Equal Area methods through a 28 by 20 inch airway. The flow rate obtained using both
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methods were compared with the flow rate obtained by means o f high resolution Equal 

Area method, where 140 measuring points were used. The calculated relative errors at 

aforementioned three planes were -0.04%, -2.48% and -1.46%  for the Log-Tchebycheff 

method, and -6.73% , 5.91% and 0.31% for the Equal Area method.

Richardson [2001] studied the accuracy o f the traversing methods for the volumetric 

flow measurement in rectangular duct sizes o f 1 2 2  x 30 cm and 61 x 61 cm respectively, 

where a flow nozzle measured the reference flow rate. In this investigation 18 and 32 points 

were used in Equal Area method, whereas 25, 36 and 49 points were used in Log- 

Tchebycheff method for the duct size of 122 x 30 cm. For the duct size o f 61 x 61 cm, 

18 and 25 points were used in Equal Area and Log-Tchebycheff methods respectively. The 

experiment was performed at velocity o f 5.08, 7.62, 10.16 and 12.7 m/s. The author gave 

no clear explanations about the measuring plane in the fully developed zone. For the duct 

size of 122 x 30 cm, the error increased from 0.25% to 3.95% for the Equal Area method 

and decreased from -1.25%  to 0.5% for the Log-Tchebycheff method as the inlet velocity 

increases from 5.08 m/s to 12.7 m/s. The author also noticed that the rectangular duct had 

less error than the square duct and the error decreases due to the increase in measurement 

points. He also mentioned that the Equal Area method was easier to use.

Lee et al. [2001] investigated the flow distributions in complex duct systems. They 

predicted the flow distribution at each duct section using different techniques such as the 

Log-Tchebycheff method, the computational fluid dynamics (CFD) technique and the so- 

called T-method simulation. The T-method simulation can be defined as a simulation 

program to estimate the flow rate of a duct by obtaining pressure balancing; see Ref.
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[Tsai and Behls, 1990] for details. Lee et al. [2001] observed that the converged solution 

took only 10s for T-method simulation, whereas it took 52h for CFD technique, but the 

result from CFD method agreed well with that o f Log-Tchebycheff method. They also 

concluded that the uniformity o f the upstream flow is a crucial factor for the better 

volumetric flow rate estimation.
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C h a p t e r  3

THE SIMULATION OF DUCT FLOW

A two-dimensional simulation was performed for airflow through a circular duct of 

diameter, D  and length, L (60D) at standard temperature (300 K) and pressure (101.3 kPa) 

using with the CFD software Fluent; see Figure 3.1. The flow fields were simulated over a 

range of Reynolds number, Re from 200 to 54000, where the Re is defined as

where p is the dynamic viscosity and p is the density o f the air.

Air
r

)
T
D

Flow in Circular Duct

Figure 3.1 Schematic diagram of the flow geometry (L = 60 D).
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3.1 Governing equations

Since the flow investigated in the present study has relatively low Mach number 

(M <0.02), the compressibility effects were neglected and the flow was considered 

incompressible. Hence, in the case o f two-dimensional axisymmetric, steady flow in a 

cylindrical co-ordinate system, the continuity and momentum equations are 

Continuity:

d u  1 d i r v )  „—  +  ^ = 0  ,
d x  r  d r

x-momentum:

(3.2)

d u d u 1 d p 1 d r  d u ' £  1  a  u
u  — + v —  = ---- —  +  V —--- r  — +

d x d r P d x r d r \  d r ) d x
(3.3)

r-momentum:

d v  d v
U  l-v   :

d x  d r

1 d p
 + v
p d r

d 2 v 1 d f V

d x 2
+  — 

r d r
r  —

I  d r ) 2
r

(3.4)

where p  is the pressure, u is the velocity component in the x-direction, t is the time and v is 

the velocity component in the r-direction (where r is distance from the centerline/axis of 

the duct), which shown in Figure 3.1.

In this investigation, the flow for Re > 2300 are considered as turbulent flow. The 

continuity and momentum equations for turbulent flow in a cylindrical coordinate system 

become 

Continuity:

du 1 d(rv)—  +  i - ^  = 0  .
d x  r  d r

(3.5)
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Momentum:

du duu -----1-v—
dx dr

dv dv
u  l-v—

dx dr

dp j d , 2  I d / , ,—  ~p<— u +------1 ruv
dx \dx r d r v

jl + pV2!/,

dp I d  - 7-7 1 d
= — —~p{— u v  +-----

dr 1 cbc r dr

(3.6)

(3-7)

where u', v' are the instantaneous velocity components. The divergence o f the velocity field 

in cylindrical co-ordinate is given by

92  92  1 9
V2 = — 7r+— 9- + - —  . (3.8)

9x2  9r2  r dr

The continuity and momentum equations are adequate for solving the laminar flow 

fields. In case o f turbulent flow, however, the determination o f the Reynolds stress terms 

needs extra equations to be solved; see Appendix C. The correlation o f the Reynolds stress 

terms to the mean flow field was defined, such that the turbulent stresses are proportional to 

the mean velocity gradients [Boussinesq, 1877]. The standard k- s model was used to solve 

the correlation [Chen, 1995; Launder and Spalding, 1974]; see Appendix C.

3.2 Boundary conditions

The boundary conditions were applied for solving the flow fields from the 

continuity and Navier-stokes equations in the computational domain. These included the 

inlet, centerline, wall surface and outlet. With reference to Figure 3.2, the four boundaries 

of the computational domain were treated as follows
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(a) Inlet boundary

The uniform flow entering the duct was parallel to the longitudinal axis (x) o f the 

duct, that is,

u =1 and v = 0 a t x  = 0, 0 ^ r  < DU. (3.9)

(b) Wall boundary

No slip wall boundary conditions were adopted in the present numerical analysis. 

Since no fluid crosses the duct wall, we can write

u -  0 and v = 0 at r = D/2, 0 < x <L. (3.10)

(c) Centerline boundary

Symmetry o f reflection boundary condition was applied along the centerline o f the 

duct, that is, 

du n
—  = 0 and v = 0 at r = 0, 0 < x < L. (3-11)
or

(d) Outlet Boundary

The values o f the variables at the duct outlet can be extrapolated from the interior 

cells adjacent to the outlet, while unsteady disturbances were allowed to travel out o f the 

domain [Patankar, 1980]. Hence, the outflow boundary condition was applied at the outlet 

o f the duct. For fully developed flow the velocity gradients in the stream wise (x) direction 

at the downstream must tend to be zero, that is,

—  = 0 and —  = 0 a t x = Z ,  0 < r< D /2. (3.12)
ox ox
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Wall, r = * £ t ; u =  0; v= 0  
2

Inflow
Outflow 
x  — L

x = 0 Flow Direction

r u= l

v = o Centerline, r -  0; —  ~ 0; y = 0

Figure 3.2 A sketch of the boundary conditions for the computational domain.

In case o f turbulent flow, the standard K-e turbulence model was utilized; see 

Appendix C for K-e model. Accordingly, the additional inputs required are the relative 

turbulence intensity ( I lurb), turbulent length scale (A), turbulent kinetic energy ( k ) ,  and 

turbulent dissipation rate (e). The relative turbulence intensity ( I tUrb), is defined as the ratio 

of the root-mean-square o f the velocity fluctuations to the mean flow velocity. 

Cheremisinoff [1990] recommended that for circular duct flows the turbulence intensity 

should be between 1 and 10% depending on the Reynolds number (i.e., I lurb = 6 % for 

Re = 5300). The relative turbulence intensity values given by Cheremisinoff [1990] are in 

agreement with those provided by Fluent [2003], where the relative turbulence intensity is 

deduced as

The turbulent length scale (A), is a physical quantity related to the size o f eddies that 

contain the energy in turbulent flows, which can be defined as

hurb =0.16(Re) 1/8 . (3.13)

A = 0.07.0. (3.14)
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The turbulent kinetic energy ( k ) ,  is the kinetic energy per unit mass o f the turbulent 

fluctuations. Turbulent dissipation rate, e, is defined as the rate o f  conversion o f turbulence 

into heat by molecular viscosity. They were estimated according to the following 

relations [Fluent, 2003]

K =  m e a n h u r b  ) (3-15)

and

£ =  ^  A ~ ’ (3-16)

For the inlet and solid walls, kinetic energy and dissipation rate were given according to 

Equations (3.15) and (3.16). In symmetry axis, they are defined as

—  =  0 — =  0  (3 17}
dni ’ dni ’ (3>17)

where nt is the local co-ordinate normal to the wall and at free stream both k  and 8 were set 

zero.

3.3 Numerical methods

A total length o f 60D  was chosen to ensure a reasonable length for the flow to 

become fully developed [Fox and McDonald, 1998; Schlichting, I960]. With the increase o f 

Reynolds number (i.e., Laminar flow at Re = 2300), this L = 60D  may becomes 

considerably larger than 60D as discussed later.

The control volume method was carried out as formulated by Patankar [1980]. In 

this procedure, the domain is discretized by a series o f control volume each containing a
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grid point. The differential equations for solving the flow fields are expressed in an integral 

form over the control volume. It should be pointed out that the exact solution of the 

differential equations depends on the number o f grid points. Although, the higher order 

schemes (i.e., first-order, second-order, power law etc.) show a less stable solution, the 

simulation was performed based on second-order variation in each coordinate direction for 

better accuracy.

In the spatial discretization o f viscous terms the simple pressure-velocity coupling 

as described by Patankar was employed. The computation was started by guessing the 

pressure field and subsequently, solving the momentum equations to obtain the velocity 

field. A pressure correction was obtained from the revised continuity equation and the 

velocity component values were corrected subsequently. After calculation o f the coupled 

flow field variables, the corrected pressure was taken as the new pressure field and the 

operation was repeated until a converged solution was obtained. Note that the viscous terms 

were treated by a fully implicit scheme. The residuals o f the dependent variables and the 

invariance o f spot-checked values were examined to see if  the solution at the end o f the 

iteration had converged. The convergence criterion utilized was

(pl+l -(p1
(pi

<io-6

where cp is the dependent variables.

(3.18)

Due to no-slip boundary condition at the wall, different layers are observed from the 

wall to the outer flow velocity. They can be largely subdivided into three layers; which are
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viscous sub-layer, buffer layer and fully turbulent layer. The “viscous sub-layer” is the 

innermost layer in which viscosity plays a dominant role. The outermost layer called the 

“fully-turbulent layer” in which turbulent plays a major role. The intermediate region 

between the viscous sub-layer and fully turbulent layer is called the buffer layer, where 

Reynolds stresses and viscous stresses are equally important. Figure 3.3 illustrates the 

different layers, plotted in semi-log coordinates [Fluent, 2003].

inner layer

layerouter

Upper limit 
depends on 
Reynolds no

fully turbulent region 
or

log-law region

buffer layer 
or

blending
region

Figure 3.3 Subdivisions o f the near-wall region [Fluent, 2003].

The standard k - s  model (see Appendix C); however is only valid for flow regions 

where turbulent transport is dominating the flow. The flow near-wall region i.e., viscosity- 

affected region (viscous sub-layer and buffer layer) can be solved with the semi-empirical 

wall functions, so-called law o f the wall [Fluent, 2003; Tennekes and Lumley, 1972]. These
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are used to bridge the viscosity-affected region between wall and turbulent dominant 

region, which also obviated the necessity to modify the turbulence models to account for 

the presence o f the wall. In this investigation, for turbulent flow cases (2300 < Re < 20000), 

the enhanced wall treatment was applied to extend the validity o f near wall modeling 

beyond the viscous sub-layer; that is, the generated mesh should resolve the viscosity effect 

o f the near wall region as discussed above. The grid points were distributed in a non- 

uniform manner with denser mesh closer to the wall after computing the dimensionless sub

layer distance, y +, which is defined as

v+ _  p u * y
y  =  ^  . (3.i9)

where y  is the normal distance from the wall at the cell centers. In Fluent y  is interpreted as 

the distance from the nearest wall

y  = r — rw ? (3.20)

where f  is the position vector at the field point and f  w  is the position vector on the wall 

boundary. The recommended y+ value is no more than 4 or 5 [Fluent, 2003]. 

Experimentally observed the viscous sub layer up to the range o f y+ = 4 or 5, in which the 

Reynolds stresses remain small. The Reynolds stresses dominate the internal sub-layer 

[Versteeg and Malalasekera, 1995]. The relaxation factors for pressure, density, 

momentum, and turbulent quantities were readjusted during the iterative calculation process 

to avoid divergence in the simulations.
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In short, the laminar model was used for the laminar cases (200 < Re < 2300), while 

the turbulent model was invoked when the flow is turbulent (2300 < Re < 20000). Both 

laminar and turbulent models were utilized for the Re = 2300 case.

3.4 Numerical validation

Preliminary validation was accomplished by checking the density o f the mesh and 

then the simulated profiles were compared with analytical velocity profiles. A two- 

dimensional mesh was used to simulate the flow in the circular duct. To assess the potential 

dependency of the result on the mesh size, different structured meshes o f 600 x 40 (i.e. 600 

divisions in the axial direction and 40 divisions in the radial direction), 600x50, 600x30, 

600x20, and 600x10 were tested. Accordingly, a sample of 600 x 40 grid is shown in 

Figure 3.4. Finer mesh was utilized near the wall to account for the higher gradients of 

solution variables (velocity and pressure), while coarser mesh was used near the centerline 

to save computational costs. Further, in case o f turbulent flow, the mesh should be 

constructed to resolve the viscosity effected near-wall region. As discussed earlier, the 

enhanced wall treatment was used in this study; which requires fine grid along the wall 

boundary. All simulations relied upon the implicit flow symmetry about the centerline.
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Figure 3.4 A sample mesh o f 600 grid points along the duct axis and 40 grid points along

the duct radius.

The effects o f mesh on the axial velocity along the axis (duct centerline) for a 

laminar (Re = 500) case and a turbulent (Re = 5300) case are shown in Figure 3.5, which 

depicts the variation o f normalized centerline velocity (Uc/Umean) along the duct axis (x/L). 

For the laminar case (Re = 500), the fully developed axial velocities along the duct 

centerline (Umax) for the 600 x 40 and 600 x 50 meshes are almost identical, Umax = 0.0778 

m/s (Umax/Umean -  2); see Figure 3.5(a). It is noted that the centerline velocity (Uc) is 

assumed to be maximum velocity (Umax) at fully developed zone. Similarly, the fully 

developed axial, centerline velocities for the 600 x 40 and 600 x 50 meshes are the same

i.e., Um(lx = 0.51 m/s (Umax/U mean = 1.26) for the Re = 5300 (turbulent) case; see 

Figure 3.5(b). In other words, the prescribed meshes are sufficiently fine.
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Figure 3.5 Effect o f mesh on the axial (streamwise) velocity along the duct axis (a) Laminar 

flow at Re = 500; and (b) Turbulent flow at Re = 5300.
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The Re = 500 simulation as shown in the Figure 3.5(a) agreed well with the theory 

[Flow Kinetics, 2002] that the maximum axial velocity, which occurs at the duct center 

when the flow is fully developed, is twice the average velocity, i.e., Umax/Umean = 2. The 

corresponding parabolic laminar velocity profile in the radial direction is shown in 

Figure 3.6(a); so is the flattened velocity profile for the turbulent (Re = 5300) case. Note 

that the velocity profile in the radial direction (Figure 3.6) is less mesh dependent, as 

compared to the centerline velocity along the duct axis (Figure 3.5). To save computation 

time while obtaining adequately accurate results, the 600 x 40 mesh was chosen for all the 

cases considered in this study.
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Figure 3.6 Effect o f mesh on axial velocity across the duct radius at x/D = 60 (a) Laminar 

flow at Re = 500; and (b) Turbulent flow at Re = 5300.
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C h a p t e r  4  

EXPERIMENTAL SETUP AND PROCEDURE

Figure 4.1 shows an overall picture o f the experimental setup. In brief, an invariable 

speed blower was utilized to blow the air through a circular duct. A venturi meter was used 

to measure the volumetric flow rate, while a digital air velocity meter was used to get the 

point velocity for the traversing technique. A secondary check for the measured velocity 

was realized via the use o f a Pitot-static tube connected to a manometer. The temperature 

and barometric pressure were recorded during the experiment as well. The instantaneous 

velocity was measured using the constant temperature anemometer system. The details of 

the experimental setup and procedures are described in following sections.

Damper
Circular Duct

Hotwire
Air flow

Venturi meter

Velocity ' — '  

Measuring instrumentBlower
Traversing Mechanism

Pressure Gauge
Air Straightener

CPU

Thermometer

Figure 4.1 A schematic o f the experimental apparatus
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4.1 Duct-blower and venturi-meter assembly

The experiments were performed for the estimation o f the volumetric flow rate 

through a circular duct using both the Equal Area and Log-Tchebycheff velocity traversing 

techniques. In the current study, a blower o f 5 hp, 1750-rpm was utilized to blow the air 

through a circular duct. A continuous control gate damper, at the entrance o f the blower, 

was used to control the airflow rate. The uniform velocity was accomplished by filling the 

circular duct with a bundle o f flow straighteners made o f plastic tube; these were installed 

at 50 cm (approximately 2D) downstream from the blower exit as shown in Figures 4.1 and 

4.2. Each piece o f flow straightener is 130 mm long with an inner diameter o f 18 mm. The 

geometry of the flow straighteners was chosen to improve the flow uniformity out o f the 

flow straightener. Wire screens were placed at inlet and exit o f the flow straightenrer. The 

screen acted as a barrier to keep the tubes inside the flow straightener, and also aided in the 

process o f maintaining steady airflow. The combination o f small plastic tube and wire 

screens made the flow steady and uniform [ANSI/ASHRAE, 1999; Akashi, et al., 1978; 

ASME, 1971],

A venturi-meter o f Lambda Square model 2300 (range 0-25 m 3/s, accuracy ±0.75% 

of actual flow, beta ratio ((3), defined as the ratio o f throat diameter to inlet diameter of the 

venturi meter is 0.7) was installed at 315 cm (12D) after the blower as shown in Figures 4.1 

and 4.2; see Ref. [Lambda, 2005] for details o f the venturi meter. It is specified that the 

recommended upstream minimum distance of the venturi meter should be 4.5D  for 

minimizing the upstream disturbances [ISO 5167, 2003; ASME, 1971]. In this study, a 

length of approximately 12D  from the blower (10D after the flow straightener) was chosen
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to ensure a reasonable length to follow the ISO and ASME standard. The flow at the 

upstream o f the venturi meter was tested and the results will be discussed later. The venturi 

meter is a device in which the flow rate is determined by the pressure drop due to a 

restriction in a conduit. As fluid passes through the reduced area o f the venturi meter (i.e., 

throat area), its velocity increases, result in a pressure differential between the inlet and 

throat regions. Again at the downstream, the flow area gradually increases and the fluid 

velocity decreases, allowing the pressure to recover. This pressure difference between inlet 

and throat o f the venturi meter was measured using a digital manometer o f Meriam 

Instrument model E200I (accuracy o f ±0.25% of the reading, resolution 0.01 inch of H2O, 

range 0-200 inch o f H2O). The following sub-sections deal with the selection o f venturi 

meter and volumetric flow rate measured by venturi meter.

— 265 cm~ 1

Airflow

O O O
I*— 140 cm — — 50 cm

Figure 4.2 Schematic o f the duct with measuring grid (drawing not in scale)
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4.1.1 Selection of venturi meter

There are numerous types o f flow meter available to obtain the flow rate based on 

pressure differential. The venturi meter, flow nozzles, and orifice meters are the best for 

this kind o f application. The detailed design and performance data o f flow meters are 

summarized in Ref. [Miller, 1983; Chermissionoff, 1979; ASME, 1971]. In this study, the 

venturi meter was used. In case of venturi meter, there is an appreciable distance between 

the pressure taps, and a persistent decrease in diameter exerts a significant impact on the 

differential developed along the venturi meter [Miner, 1956; Hooper, 1950]. The venturi 

meter is more accurate (accuracy is ±0.75% of actual flow for the installed model 2300), 

and self-cleaning device. It allows the smooth flow and efficient pressure recovery. Finally, 

the pressure loss is very low compared with that o f other flow meters; the investigated 

pressure loss for different flow meters is shown in Figure 4.3 [Fox and McDonald, 1998]. 

The empirical equations for pressure loss calculation are summarized in Ref. [Miller, 1983] 

for different flow meters.

100
Orifice

b ' u 
13 60 Nozzle

Venturi,
15° enit cone

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Diameter Ratio (beta ratio)

Figure 4.3 Comparison o f the pressure loss in a venturi meter with respect to other head

devices [after Fox and McDonald, 1998].
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The schematic o f the venturi meter o f model 2300 shown in Figure 4.4, where Lven is the 

total length, Lveni is the upstream length to high pressure tap, Lveno is the downstream length 

after the pressure tap, Tc is the width of the pressure tap, F  is the thickness o f the venturi 

meter, d is the throat diameter and D a  is the inlet diameter.

Figure 4.4 Schematic o f a venturi meter o f model 2300 [Lambda, 2004].

4.1.2 Volumetric airflow rate measurement using the Venturi meter

The volumetric airflow rate through a duct was determined using venturi meter. The 

underlying principle o f the venturi meter is Bernoulli’s streamline energy equation. 

Accordingly, when a flow is contracted, kinetic energy increases at the expense o f available 

potential energy (static pressure). Assume an incompressible fluid, no friction, and a 

uniform velocity distribution at the inlet and at the throat. By neglecting the small elevation 

difference, the pressure difference between the taps located at the full circular section and 

in vicinity o f the contraction (Figures 4.4) is related as [White, 1999]
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The velocity profiles are assumed to be uniform along the upstream and throat o f 

the venturi meter. Hence, the continuity equation can be deduced as

A h roafJthroat — AipstUupst, (4-2)

where Athroat is the venturi meter throat area, Aupst is the area o f the full circular section at 

the upstream of the venturi meter.

In practical situation, small amount o f energy converted into heat within viscous

factor, discharge coefficient (C o) was introduced to account for the viscosity o f fluids. The 

flow rate can be calculated from Equations (4.1) and (4.2) as

where Ap  is the pressure difference between the inlet and throat sections and P (beta ratio) 

is defined as a ratio o f throat diameter to inlet diameter, which is 0.7 for the installed 

model 2300. It is specified that the discharge coefficient (Cd) is 0.995 for the model 2300 

[Lambda, 2005]. The dependent parameters, pressure difference (Ap) can be converted in 

Pa by applying the following

boundary layers tends to lower the actual velocity o f real fluids to some extent. Hence, a

(4.3)

Ap = Ah x PUquid x g , (4.4)

Md Ramiz Ahemad. M.A.Sc. Thesis 2005. Dept, o f Mechanical, Automotive, and Materials Engineering, University o f Windsor, Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

where Ah is the pressure defferential across the venturi meter in inch of water, puquid is the 

density o f the liquid (i.e., water) and g is the gravitational acceleration, which was 

calculated as

g = 9.78 (l + 0.0053sin2(p - 0.0000069sin2 2<p)
-0.00308677 (4.5)

where 9  is the latitude in degrees and H  is the altitude above sea level in km [Harris, 2005], 

For Windsor cp = 42.3 and 77= 0.19 km was estimated [Weather underground, 2005]. Since 

the atmospheric conditions o f the test room could be changed every day, the effects of 

temperature and moisture need to be considered in flow measurement. To account the 

variations of atmospheric conditions, the density o f the atmospheric air (p) was calculated 

as (ANSI/ASHRAE, 1999)

_ _ U - 0'378xPpor)
P ~  1̂ + 273. 15) • (4 '6 )

where R is the gas constant taken as 287.1 J/kgK [ANSI/ASHRAE, 1999], is the dry 

bulb temperature and the partial vapor pressure, ppar, was deduced as

Ppar ~ Psat Pb

f  rJ~' rp
dry wet 

1500
(4.7)

where Twet is the wet bulb temperature and p mt is the saturated vapor pressure at wet bulb 

temperature was deduced as [ANSI/ASHRAE, 1999]

Psat — 3 .25T w ef +lS.6Twet +692.  (4-8)
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4.2 The measuring instrument for point velocity

The point velocities were measured using a velocity meter o f TSI Model 8345 

(range = 0 to 30 m/s, accuracy = 3% of reading or ±0.015 m/s whichever is greater, 

response time = 200 ms, operable temperature range = -17.8°C to 93.9°C); see Ref. 

[TSI, 2002] for details. The estimated uncertainty o f the velocity meter is ±3.3% to 3.5% of 

the reading; see Appendix A. The velocity meter consists o f a heated-element sensor, which 

operates on the hot-wire anemometry principle [King, 1914]. A heated element, placed in a 

flowing air stream, will be cooled. The rate o f cooling is proportional to the velocity of air 

movement. King [1914] showed that the heat loss in a moving fluid from electrically heated 

sensor/element could be expressed as

h = K T  + (2nK S  pd wire U )0'5 T  , (4.9)

where, h is the rate o f heat loss per unit length o f wire, dwire is the diameter o f wire, T  is the 

temperature o f air above ambient temperature, K  is the thermal conductivity o f fluid (air), S  

is the specific heat at constant volume o f fluid (air), p is the density o f fluid (air), U is the 

velocity o f fluid (air). Bradshaw [1971] provided a simplified relation between h and U  for 

a given wire operating at a constant temperature in a same fluid (air, for example) as

h = A i+ B t U 0AS, (4.10)

where A\ and B\ are constant for a given instrument; see Ower and Pankhurst [1977] for 

details. The heated element is maintained at a constant temperature. The reason to choose 

the constant temperature mode is the constant operational temperature and thereby constant 

heated wire resistance to maintain the overheat ratio; so the thermal inertia o f the sensor
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element is automatically adjusted during the variation of the flow conditions 

[Ossofsky, 1948; Weske, 1943], As air flows over the heated sensor, heat is lost from the 

element. To compensate the heat loss from the sensor/element, additional current is 

required. The current is monitored as a measure o f air velocity. This kind o f sensor has a 

notable performance at low velocities [Burgess et al., 2004]. The schematic o f the velocity 

meter is shown in Figure 4.5.

A secondary check for the measured mean velocity was realized via the use o f a 

2.38 mm Pitot-static tube, where the flow dynamic pressure was recorded using the Meriam 

Instrument supplied digital manometer. The estimated uncertainty o f the digital manometer 

meter is ±7.5% to 12.4% of the reading; see Appendix A. The pitot static tube connected 

with digital manometer is shown in Figure 4.6. The schematic o f the Pitot-static tube is also 

shown in Figure 4.7. The velocity head was measured using manometer as 

[SMACNA, 1983]

Pv ~ Ptotal “ Pstatics (4.11)

where p totai is the total pressure, p static is the static pressure and p v is the dynamic pressure 

which was recorded using the manometer.
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Figure 4.5 Schematic o f velocity meter connected in duct during measurement.

Figure 4.6 Schematic o f the manometer connected with Pitot-static tube.
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Figure 4.7 Pitot static tube with stem diameter Dp -  2.38 mm (drawing not in scale).

The instantaneous velocities at different locations were quantified using a TSI IFA 

300 constant temperature, hot-wire anemometer system; see TSI instructions manual 

[TSI, 2000] for details. The locations were selected randomly at 1.34D upstream o f the 

venturi meter and at 4D  upstream of the exit of the circular duct. In this investigation, a 

single sensor hot-wire probe consists of a short length o f a fine diameter (3.8 pm diameter) 

wire (made by tungsten) attached to two prongs made o f stainless still, was used for 

velocity measurement. The good frequency response is obtained using the hot wire probe 

due to its small size and well-defined characteristics [Brunn, 1995]. An automatic calibrator 

controlled by a computer and a nozzle facility were employed for the calibration of hot

wire probe; see Appendix B for calibration details. The traversing for extracting velocities 

at specified position has been performed by the positioning table/traversing mechanism 

(60 x 60 cm traversing in each axis, resolution 10 pm, accuracy ±1.64 pm/cm, traversing 

speed 1 0  mm/s).
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4.3 Specifying the velocity measurement points

The volumetric flow rate was estimated via mean velocity, which was deduced from 

the point velocity measured using the Equal Area and Log-Tchebycheff techniques. The 

locations o f the measurement points specified for the Equal Area method differ somewhat 

from those for the Log-Tchebycheff method. A measuring instrument for the Equal Area 

method, i.e., Pitot-static tube or hot wire probe was placed at the center points o f equal 

areas over the cross section o f the duct [Alnor, 2004; ISO 1988; SMACNA, 1983], whereas 

those for the Log-Tchebycheff method are intended to divide each equal-area element into 

two sub-elements o f equal volume flow rate [Alnor, 2004; Gladstone, 1996; ISO 1988; 

ASHRAE, 1988]. For the conditions (size o f the circular duct, D, Re, etc) considered here, 

six and eight measurement points per diameter was used [Alnor, 2004; Flow Kinetics, 

2002; ASHRAE, 1988; ISO, 1988]; see Table 4.1. The traversing section for the straight 

duct was at 490 cm (19D) from the venturi meter and 105 cm (4.0D) from the exit. 

According to the specification, the traversing for measurements are to be taken a minimum 

of 8.5 duct diameters downstream from the last fitting, which could be 5 diameters with a 

straightener and 2.5 duct diameters upstream from any disturbances in case o f HVAC 

system field measurement [AABC, 2002; Howell and Sauer, 1990; ASHRAE, 1988]. The 

duct was traversed along four equally spaced diameters (every 45° across the specified 

traversing plane). Hence, 24 measurement points for six-point traversing and 32 

measurement points for eight-point traversing were taken for both Equal Area and Log- 

Tchebycheff techniques; see Figure 4.2.
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Table 4.1 Locations o f measurement points for the Equal Area and Log-Tchebycheff

methods for circular duct flow

Traversing-method Number of Dimensionless radii o f measuring positions {r/D)

points Position 1 Position 2 Position 3 Position 4

6 -point 0.204 0.353 0.457
Equal Area

8 -pomt 0.177 0.306 0.395 0.468

6 -point 0.188 0.362 0.468
Log-T chebycheff

8 -pomt 0.166 0.306 0.4 0.476

Figure 4.8 depicts the different locations for the Equal Area and Log-Tchebycheff 

traversing techniques, in which six-point traversing per diameter is shown, where the small 

circles signify the locations for the Equal Area method and the pluses correspond to those 

for the Log-Tchebycheff method. Note that while the two points around the duct center are 

farther away from the duct wall, the other four points corresponding to the Log- 

Tchebycheff method are closer to the duct wall, as compared to those points associated 

with the Equal Area method; see Table 4.1. This indicates the fact that the Log- 

Tchebycheff method aims at accounting for the near wall velocity gradient.
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Figure 4.8 Sample measurement points (six points per diameter) for circular duct flow.

Circles (O) for the Equal Area method and pluses (+) for the Log-Tchebycheff method.

4.4 Experimental methods and procedures

In the experiments, air was blown through a circular duct. The gate damper was 

fixed for the experiment to get a specified amount o f air supply. Prior to the experiment, the 

hot wire sensor was calibrated and installed precisely on hot wire probe support. The 

manometer for the pressure differential across the venturi meter was set and initialized to 

zero. A traversing table was prepared according to the Table 4.1 for each o f the traversing 

hole as shown in Figure 4.2.

The data was collected after a certain period of time (approximately 30 minutes) 

subsequent to the blower startup to allow the flow to be steady and uniform. The 

barometric pressure and the dry and wet bulb temperatures were recorded every 15-20 

minutes during the experiment to observe the effect o f atmospheric condition. The velocity

Md Ramiz Ahemad. M.A.Sc. Thesis 2005. Dept, of Mechanical, Automotive, and Materials Engineering, University o f Windsor, Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in a single point using hot wire sensor was measured approximately at 1.34D  upstream and 

19D  downstream o f the venturi meter. Further, the instantaneous velocity was measured at 

1.34D  upstream of the venturi meter for checking the uniformity and steadiness o f the 

airflow approaching venturi meter. The data was collected by means o f a TSI supplied 

velocity meter o f model 8345 according to the Equal Area traversing technique along the 

horizontal and vertical planes; see Figure 4.9. The pressure difference along the venturi 

meter was recorded using a digital manometer. At the same time, the point velocity was 

measured using a manometer via Pitot-static tube and/or velocity meter at 4D  upstream 

from the exit; see Figure 4.2. The origin i.e., the coordinate of the position o f the measuring 

instrument for traversing was fixed. Then the point velocities were measured using the pre

defined traversing table. All the data were collected for a same flow rate that controlled by 

a continuous control damper.

Air flow

COOOOCO OOOOOOO!

Figure 4.9 Schematic o f the duct with 1 4 x 1 4  measuring grid at upstream o f venturi meter

(drawing not in scale).
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4.5 Measurement and data collection

In experiment, every effort was given to ensure that the system was stabilized 

before starting the data collection, even though during the experiment and data collection 

process some fluctuations were observed. To take these variations into account, during each 

experiment, three to four data samples for each o f the parameters were collected. Then, the 

mean of the samples was taken as follows

where F  is considered any measured parameters, i is the counter o f any repeated 

measurements and n is the total number o f data readings.

4.5.1 Measurement of approach air velocity upstream of the venturi meter

The approach air velocity was measured at 1.34D upstream of the venturi meter

±3.4% of the reading; see Appendix A. The velocity was measured at 28 locations 

(horizontally and vertically evenly spaced 14 x 14 grid points) over the cross sections and 

the mean velocity was recorded following Equation (4.12). To have an airflow 

measurement at standard environment, the dry-bulb temperature and barometric pressure 

were recorded and the velocity was corrected as [TSI, 2002]

(4.12)

using velocity meter as shown in Figure 4.9. The velocity meter has an uncertainty of

Ucorr =Uvm
273.15 + Tdfy 101.4

(4.13)273.15 + 21.1 p b ’
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where pb is the barometric pressure, Uvm is the point velocity measured by velocity meter. 

Further, a correction factor o f 5-percent, suggested by Laufer [1954] due to non-linear 

behavior o f the velocity meter sensor, was introduced with Equation (4.13). Nevertheless, 

the observed intensity was (4.5-6.5) % using hot-wire system at different locations.

4.5.2 Reference flow rate deduced using the venturi meter

The volumetric flow rate was determined using Equations (4.3). In this respect, the 

independent parameters, pressure head (Ah) was measured using manometer across the 

venturi meter, wet bulb (Twet) and dry bulb (T(iry) temperatures were measured using 

thermometer and barometric pressure (pb) was measured using barometer. The required 

thermo-physical properties i.e, water density (pwater) was estimated from the average 

temperature o f the room during the experiment. The measurements o f independent 

parameters are discussed in the following subsections.

Measurement of pressure head (A/*)

The pressure difference (Ah) across the venturi meter was recorded using a digital 

manometer. The manometer has an uncertainty o f ±2.96% to 8.95% of the reading. The 

manometer reads the pressure difference between the upstream and throat regions o f the 

venturi meter, which is shown in Figure 4.4. At beginning o f each experiment, the 

manometer was set to zero and the data was recorded after a nominal amount o f time. 

Following Equation (4.12), the mean pressure head (Ah) for each experiment was deduced.
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Measurements of wet bulb (Twel) and dry bulb (T,iry) temperatures

The dry bulb and wet bulb temperatures were recorded using a standard mercury-in-

has an uncertainty o f ± 3.05% of the reading. The dry-bulb temperature o f air was 

measured by a thermometer, which was freely exposed to the air but shielded from 

radiation and moisture. As suggested by Bureau of Metrology [2005], wet-bulb temperature 

was measured with same kind o f thermometer whose bulb was wrapped by a muslin sleeve 

that was moistened by pure water. The temperatures were recorded during the experiment 

every 15-20 minutes and mean temperature was calculated.

Measurements of barometric pressure

The barometric pressure was measured using mercury meter (accuracy 0.5% of the 

reading, resolution 0.1 mm of Hg). The barometer has an uncertainty o f 1.88% of the 

reading. The pressure also recorded every 15-20 minutes during the experiment and was 

averaged using Equation (4.12).

4.5.3 Flow rate estimation using Equal Area and Log-Tchebycheff methods

The mean velocity o f approach air at the traversing section was used to estimate the 

volumetric flow rate through a circular duct. At each location, three to four measurements 

o f air velocity were obtained consecutively and then averaged to establish a mean velocity

for that location. The mean air velocity was estimated for the Pitot-static tube as 

[SMACNA, 1983]

glass thermometer (accuracy of ±0.5 °C) from experimental room in °C. The thermometer

(4.14)
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where C  is the design correction depends on the spacing o f the static pressure holes, which 

was taken as 1.003 suggested by Flow kinetics [2002] for this kind o f configuration; see 

Figure 4.7. Assuming the air as an ideal gas i.e., compressibility factor is unity and by 

implying the ideal gas constant, the density was calculated using Equation (4.6).

It is observed that the boundary has an effect on point velocity measured using 

Pitot-static tube. An extensive amount of research [Knudsen et al., 1958; Das et al., 1969; 

MacMillan, 1956; Livsey, 1956; Laufer, 1954; Khan, 2004] already observed regarding the 

correction for the wall bounded flow. Laufer [1954] suggested that the velocity is corrected 

for the flow through circular duct/pipe as

which was the order o f 5% or less. In Equation (4.15), u is the velocity fluctuations close 

to the wall and in this study the point velocity was corrected using Equation (4.15). For the 

case of the velocity meter, the mean velocity was calculated using Equation (4.13). Finally, 

the volumetric flow rate was calculated according to Equation (2.1) as multiplying the 

corrected mean velocity with cross section area o f the duct.

(4.15)
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C h a p t e r  5  

RESULTS AND DISCUSSIONS

The focus o f the current study was on the estimation o f volumetric flow rate via 

discrete velocity measurements at finite points across a duct section. The accuracy o f the 

two volumetric flow estimation techniques, Equal Area and Log-Tchebycheff, was studied 

both numerically and experimentally for airflow in a circular duct. This chapter focuses on 

the numerical results, experimental results and comparison between them.

5.1 Numerical results

The laminar and turbulent flow fields for circular duct flow over a range of 

Reynolds numbers from 200 to 54000 were investigated using commercial CFD code 

FLUENT. The laminar model was employed for the laminar cases (Re = 200 to 2300), 

while the k - e  model was invoked for the turbulent cases (Re = 2300 to 54000). Both 

laminar and turbulent models were utilized for the Re = 2300 case. On the accuracies of 

Equal Area and Log-Tchebycheff methods, the six-point and eight-point traversing was 

utilized at different planes (L/D = 20, 40 and 60) from the uniform velocity at entrance.

5.1.1 Flow development

The development o f the flow was visualized from the duct centerline, streamwise 

(axial) velocity, Uc variation along the duct. For Re ranging from 200 to 20000, Uc/Umax, 

where Umax is the centerline velocity at the outlet o f the duct (x = 60D), is plotted as a
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function o f the normalized axial distance, x/D, as shown in Figure 5.1. The entrance length 

(Le) for fully developed flow can be estimated as [White, 1999]

«  0.06 Re, for laminar flow  (5 .1 )

and

»  4.4 R e1/6, for turbulent flow. (5 .2 )

In other words, the dependence of the entrance length, Le, on the Reynolds number is 

different depending on whether the flow is laminar or turbulent. The simulated Uc/Umax 

versus x/D  results give values o f LJD  as 12.0, 31.2, 43, 18.5, 20.6, 22 and 23.5 for 

Re = 200, 500, 700, 5300, 10000, 15000 and 20000 respectively. These simulated entrance 

lengths for fully developed flow agree well with those predicted by Equations (5.1) and 

(5.2), which are 12, 30, 42, 18.37, 20.42, 21.85 and 22.92; see White [1999], Miller [1983] 

and/or Benedict [1980] for details. Note that the model duct length, L/D  -  60, considered in 

the simulations is less than the entrance length (LJD  -  138) for Re = 2300 case if  the flow 

is laminar. Thus, the axial, centerline velocity for the Re = 2300 case simulated using the 

Laminar model as illustrated in Figure 5.1(a) is still developing, i.e., Uc has not leveled off. 

On the other hand, the same flow at Re = 2300, calculated based on the Turbulent model is 

fully developed; as shown in Figure 5.1(b). We also see from Figure 5.1(a) and Equation 

(5.1) that in the laminar flow regime the axial velocity along the duct centerline approaches

and levels off at Umax progressively later with increasing Re. There is a sudden and

significant decrease in entrance length when 'the flow changes from laminar to turbulent 

(the Re = 2300 cases). In the turbulent flow regime, the increase in entrance length with 

increasing Re is smaller; compare Equation (5.2) with Equation (5.1).
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Figure 5.1 The effect o f Re on the axial, centerline velocity development along the duct

(a) Laminar flow (b) Turbulent flow.
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5.1.2 Umax/Umean at fully developed zone

The empirical relations between U mean and U max were verified from the present 

numerical simulation at the fully developed zone for different Reynolds number. In case o f 

laminar flow, the theory based on the conservation o f mass for an incompressible and 

isentropic flow with no slip boundary condition at the wall states that the maximum axial 

velocity, which occurs at the duct centerline, is twofold the average velocity [Fox and 

McDonald, 1998]. The simulated relations (Umax/Umean) show a good agreement with the 

theory in the laminar flow (Re = 200 to 700) case; see Table 5.1.

Table 5.1 The fully developed axial velocity along the duct centerline with respect to the

mean velocity.

Re U max (m/s) Umean (ttl/S) *77 /TJ'-'max' '-'mean

2 0 0 0.032 0.016 2 .0 0

500 0.078 0.039 1.99

700 0.108 0.054 1.99

*The theoretical value is 2.

In case o f turbulent flow (Re = 2300 to 20000), the relation between mean velocity 

(Umean) and maximum velocity (Umax) at fully developed zone was determined as 

[White, 1999]

mean max
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where f  is the friction factor for the turbulent region, which can be computed explicitly as 

[Colebrook, 1939]

\ - 2

f t  = 1 .8  log
Re
6.9 (5.4)

The simulated Umean/Umax were compared with those calculated using Equations (5.3) and 

(5.4) over a range o f Re = 2300 to 20000. Figures 5.2 shows that the curves obtained in the 

current investigation are in good agreements with that o f theoretical estimations. It is also 

observed that Umean/UmaX increases with Re.

0.9

0.85

x
CD

0.8
CDCD

0.75

0.7
0 4000 8000 12000 16000 20000

Re

Figure 5.2. The comparison o f simulated U mean/ U max with theoretical prediction for

turbulent flow (Re = 2300 to 20000).
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o
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5.1.3 Axial velocity distribution at outlet

One of the most important parameters for the flow field is the streamwise (axial)

velocity distribution along the radial direction. The velocity profiles at fully developed zone 

for the laminar and turbulent flows can be shown as [Fox and McDonald, 1998]

U = U max 1 -
4r2
D 2

, for laminar flow, (5.5)

and

( 2r 
U -  Umax 1 ------

I D
, for turbulent flow, (5.6)

where index, m is defined as: 

m = 1.66 log Re. (5.7)

The fully developed axial velocity (the streamwise velocity at the duct outlet) along 

the radial direction, U0, normalized by Umax (the duct centerline velocity at x  = 60D) is 

plotted against the normalized radial distance, r/D, in Figure 5.3. Figure 5.3(a) portrays a 

parabolic behavior at fully developed zone, which indicates a good agreement with 

Equation (5.5). Note that the ‘laminar’ Re = 2300 case is slightly different as the duct 

length considered is not long enough for this flow to become fully developed, when the 

calculations invoke the Laminar model; on the other hand, the ‘turbulent’ Re = 2300 case is 

fully developed. As expected from Equation (5.6), unlike the fully developed laminar flow 

profile, which is independent o f Re, the turbulent flow profile becomes progressively flatter 

with increasing Re; see Figure 5.3(b).
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Figure 5.3 The effect of Re on the axial velocity profile at x  = 60D  

(a) Laminar flow (b) Turbulent flow.
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The mean velocity profile across the duct ( U ) normalized by maximum mean 

velocity (the centerline velocity at the developed zone), Umax, is compared with available 

data as depicted in Figure 5.4. It is seen that the agreement between numerical result and 

available experimental published data [Browne and Dinkelacker, 1995; Benedict, 1980] is 

within satisfactory range.

1 i

L0 .8 -

SS 0.6 -  +
CO
S  f

|b  °-4 [ _  _  _  Re = 20000
(Present Simulation)

+ Re = 26100
Q 2 _  (Brown et al., 1995) |

A Re = 4000 ,
(Benedict, 1980) I

0 - - - - - - - - - - - - - - - - - L - - - - - - - - - - - - - - - - L- - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - -

0 0.1 0.2 0.3 0.4 0.5
r / D

Figure 5.4 Comparison of mean velocity profiles with available published data

The mean flow properties obtained from available previous findings [Eggels et 

al., 1994; Westerweel, 1993; Weiss, 1993; Unger and Friedrich, 1991 and Kim et al., 1987] 

were compared with the present simulated flow properties as summarized in Table 5.2. 

Note that Rec is the Reynolds number based on centerline velocity (Uc) at fully developed

I k

+

A

t

Re = 20000
(Present Simulation)

Re = 26100
(Brown et al., 1995)

Re = 4000
(Benedict, 1980)
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zone, Re is the Reynolds number based on mean velocity (U mecm ), ReT is the Reynolds 

number based on wall shear velocity, U T, which is defined as

U  =

where xw is the wall shear stress.

(5.8)

Table 5.2 Comparison o f the mean flow properties obtained from present numerical

simulation with some past findings.

DNS (E) DNS (U) PIV LDA HWA KMM Presentstudy

Rec 6950 6950 7100 7200 7350 6600 6716

Re 5300 5300 5450 5450 5600 5600 5300

Rex 360 360 366 371 379 360 358

U c/U mean 1.31 1.31 1.30 1.32 1.31 1.16 1.26

U c/U x 19.31 19.29 19.38 19.39 19.4 18.2 18.61

Umean/Ux 14.73 14.74 14.88 14.68 14.76 15.63 14.96

DNS (E) is direct numerical simulation by Eggels et al. [1994], DNS (U) is direct 

numerical simulation by Unger and Friedrich [1991], LDA is laser doppler anemometry 

and PIV is particle image velocimetry by Westerweel [1993], HWA is hot-wire 

anemometry by Weiss [1993] and KMM is DNS data by Kim et al. [1987].

It is shown that the ratio of U c/U mean from the present investigation is 3.8% less 

than that o f the direct numerical simulation o f DNS (E). Hence, the U c/U mem with 

uncertainty o f the present study could be estimated as 1.26±3.8% [Zhu et al., 2002].
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5.1.4 Friction Coefficient

The wall friction contributes directly to the head loss in a duct flow and hence, the 

required power to move the fluid. Consequently, a reliable numerical model should produce 

the correct friction coefficient (C/), which is defined as [Fox and McDonald, 1998; Ward- 

Smith, 1980]

C f  °  2TW 2  . (5.9)
p Umean

where the wall shear stress (xw) for laminar flow in a smooth duct can be calculated as [Fox 

and McDonald, 1998]

DAp

and the pressure gradient (Ap) is 

32 L U  uAp = ---------------------------------------------------------------------------------------------------- (5.11)

Equations (5.9), (5.10) and (5.11) illustrate that the coefficient o f friction is inversely 

proportional to the Reynolds number for laminar flows i.e., C/Re = 16; see Table 5.3.

For turbulent flow in a smooth duct, the wall shear stress can be calculated as [Fox 

and McDonald, 1998]

n0.25
2p.

pDU mean

Substituting Equation (5.12) into Equation (5.9) gives

xw = 0.0332p Umean^ (5.12)

Cf = 0.0791 Re-°-25, (5.13)
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which is the Blausius [1913] correlation for turbulent flow in a smooth duct as mentioned 

by Rohsenow et al. [1998]. Hence, the friction coefficient for turbulent flow also decreases 

with increasing Reynolds number; but in a slower rate compared to laminar flow. Table 5.3 

shows the sample simulated friction coefficient which corresponds to the turbulent flow 

with Re = 5300 compares well with those in the literature [Moyekens and 

Muralikrisnan, 2003; Eggels et al., 1994],

Table 5.3 Comparison o f simulated friction factors with those in the open literature.

Re C f  /  num C f  theoretical r  *, numerical C f , experimental

2 0 0 0.08 0.08 0.08 -

500 0.03 0.03 0.03 -

700 0 .0 2 0 .0 2 0 .0 2 -

5300 0 .0 1 0 .0 1 0 .0 1 0 .0 1

* Moyekens, S., and Muralikrishnan, R., Developing flow in a pipe, 
lowlab.fluent.com/exercise/pdfs/developing_flow_in_pipeO 1 .pdf, 2003.

** Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Frienrich, R. and Nieuwstadt, F.
T. M., Fully developed turbulent pipe flow: a comparison between direct numerical simulation and 
experiment, J. Fluid Mech., v268, pl75-209, 1994.

5.1.5 Effect of location on accuracies of Equal Area and Log-Tchebycheff methods

The numerically simulated axial velocity across the duct radius at x/D = 20, 40 and 

60 are portrayed in Figure 5.5. The measurement locations utilized in the Equal Area and 

Log-Tchebycheff methods are shown as circles and pluses, respectively, on the velocity
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lines. Figure 5.5(a) corresponds to the Re = 500 laminar case and Figure 5.5(b) represents 

the Re = 10000 turbulent case.

As expected, the velocity profile o f the turbulent case varies negligibly with axial 

distance (x) for the fully developed flow is reached at x/D  o f 20. On the other hand, Figure 

5.5(a) shows that the laminar velocity profile becomes progressively more pointed at the 

duct centerline as the flow develops from a uniform velocity inlet. Due to the specific 

locations of the measurement points, the average velocity based on the Equal Area method 

is reduced slightly while that deduced via the Log-Tchebycheff method is increased 

slightly, with increasing axial distance (x) along the centerline in the laminar flow 

development regime; see Table 5.4, the laminar Re = 2300 case, in particular.
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Figure 5.5 The effect o f location (x/D = 20,40 and 60) on the velocity profile and 

accuracies o f mean velocities via the Equal Area and Log-Tchebycheff methods for

(a) Re = 500 (b) Re = 10000.
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Table 5.4 The accuracies o f the Equal Area and Log-Tchebycheff methods in deducing the 

mean velocity at x/D -  20, 40 and 60 (six points per diameter).

Re
Umean Uea [m/s] ULT [m/s]

[m/s] 2 0 D 40D 60D 2 0 D 40D 60D

2 0 0 0.0156 0.0156 0.0156 0.0156 0.0151 0.0151 0.0151

500 0.0390 0.0390 0.0390 0.0390 0.0379 0.0379 0.0379

700 0.0540 0.0541 0.0540 0.0540 0.0525 0.0525 0.0525

2300

(Laminar model)
0.1774 0.1792 0.1790 0.1786 0.1713 0.1720 0.1725

2300

(Turbulent model)
0.1774 0.1792 0.1791 0.1791 0.1726 0.1726 0.1726

5300 0.4100 0.4236 0.4236 0.4236 0.4083 0.4083 0.4083

1 0 0 0 0 0.7710 0.7955 0.7955 0.7955 0.7750 0.7750 0.7750

15000 1.1560 1.1894 1.1900 1.190 1.1649 1.1649 1.1649

2 0 0 0 0 1.5420 1.5841 1.5843 1.5843 1.5540 1.5540 1.5540

54000 4.1540 4.2392 4.2400 4.2400 4.1798 4.1799 4.1799
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The special case at Re = 2300 is plotted in Figure 5.6, where the velocity profile can 

be seen to vary significantly with axial distance (x) along the centerline o f the circular duct 

when the flow is laminar, i.e., when the laminar model is invoked. In practice, however, 

there are many inherent disturbances such as vibrations and surface roughness and hence, 

the flow is most likely turbulent when Re approaches 2300. This turns out to be good thing 

as the entrance length and consequently, the average velocity variation with duct length are 

reduced significantly; see Figure 5.6(b) and Table 5.4.
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Figure 5.6 The influence o f flow regime on the velocity profile and the mean velocities 

estimated via the Equal Area and Log-Tchebycheff methods for Re = 2300 

(a) Laminar flow (b) Turbulent flow.
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5.1.6 Effect of number of measurement points

With a fully developed flow, one still has the question o f whether increasing the 

number o f measurement points would really make a difference. Figure 5.7 shows the 

effects o f the number o f measurement points on the accuracies o f  the two methods in 

deducing the average velocity followed by the volumetric flow rate. The six and eight 

points per diameter traverses are depicted in Figures 5.7 (a) and (b), respectively.

The corresponding volumetric flow rates estimated are tabulated in Table 5.5. 

Increasing the number of measurement points from six to eight points per diameter do not 

affect the accuracy of the Equal Area method over the range o f Re from 200 to 700; see 

Table 5.5 and Figure 5.8. For the range o f Re 200 to 700, the volume flow rates estimated 

by the Equal Area method coincide with the true value (0% error). Beyond Re of 700, the 

Equal Area method starts to progressively over-predict the volume flow rate (average 

velocity), and increasing the number of measurement points decreases the over-prediction 

to some extent. On the other hand, the Log-Tchebycheff method under-estimates the 

average velocity for Re up to about 5300; see Figure 5.8 and Table 5.5. Increasing the 

number o f measurement points decreases the under-estimations, rather significantly in the 

low Re range (200 to 700) and only marginally for Re from 2300 to 5300. Note that the 

average velocity under-estimation is less than 1% at Re of 5300. The Log-Tchebycheff 

estimation changes from negligible under-estimation (-0.4%) to very slight over-estimation 

(0.78% in case o f six points per diameter traversing and 0.59% in case o f eight points per 

diameter traversing) when Re increases from 5300 to 54000.
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Figure 5.7 The effects o f number o f measurement points and Re on the accuracies o f Equal 

Area and Log-Tchebycheff methods in deducing the mean velocity at x/D = 60 

(a) Six points per diameter (b) Eight points per diameter.
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Table 5.5 The accuracies o f the Equal Area and Log-Tchebycheff methods in estimating the

volumetric airflow rate at x/D = 60.

Actual
Equal Area Log-T chebycheff

Re flow Six points Eight points Six points Eight points

rate

[m3/hr]

Flow

Rate

[m3/hr]

Error

(%)

Flow

Rate

[m3/hr]

Error

(%)

Flow

Rate

[m3/hr]

Error

(%)

Flow

Rate

[m3/hr]

Error

(%)

2 0 0 1 .6 8 1 .6 8 0 1 .6 8 0 1.63 -2.98 1 .6 6 -1.19

500 4.21 4.21 0 4.21 0 4.09 -2.85 4.15 -1.43

700 5.83 5.83 0 5.83 0 5.67 -2.74 5.72 -1.89

2300

(Laminar)
19.16 19.29 0.67 19.28 0.63 18.63 -2.76 18.64 -2.71

2300

(Turbulent)
19.16 19.33 0 .8 8 19.32 0.84 18.64 -2.71 18.65 -2 .6 6

5300 44.28 45.75 3.32 45.21 2 .1 0 44.10 -0.40 44.10 -0.40

1 0 0 0 0 83.26 85.91 3.18 85.19 2.32 83.70 0.53 83.32 0.07

15000 124.85 128.81 3.17 127.68 2.27 125.81 0.77 125.36 0.41

2 0 0 0 0 166.53 171.10 2.74 169.97 2 .1 0 167.83 0.78 167.42 0.53

54000 448.63 457.92 2 .1 0 456.84 1.83 451.45 0.63 451.29 0.59

Relative error =  (estimated flow  rate - actual flow  rate) x 100% / actual flow  rate.

Md Ramiz Ahemad. M.A.Sc. Thesis 2005. Dept, of Mechanical, Automotive, and Materials Engineering, University o f Windsor, Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

is
CD

I
c
a>

=>ssK
s1

1.04

1.02

0.98

0.96

0  Equal Area (6-point)
+  Log-Tchebycheff (6-point)
X  Equal Area (8-point)
A  Log-Tchebycheff (8-point)

O

X

i  i 4

8

A

+ +
+

_L
500 1000 1500 2000

Re
2500 5000

I I I I J  I I L
20000 35000 50000

(a) (b)

Figure 5.8 The effects o f flow model, number o f measurement points and Re on the 

deviations o f Uea and Ult from Umean at x/D = 60. (a) Laminar flow; (b) Turbulent flow.

5.2 Experim ental results

The experiments were performed for different setups depending on the available 

facilities and the existing limitations. It was assumed that the airflow was steady, no air 

leaked through the duct wall and there was negligible temperature difference between the 

inside and outside o f the duct. The Equal Area and Log-Tchebycheff methods were utilized 

for different number o f measurement locations (six and eight points per diameter). In the 

experiment, the air was blown through a straight circular duct at a constant speed and the 

volumetric airflow rate was estimated using Equal Area and Log-Tchebycheff methods at 

4D  upstream from the exit (approximately 3 ID downstream from the blower). The 

accuracy o f the traversing methods was confirmed by comparing the calculated flow rate
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with the reference flow rate determined by the venturi meter. The following sections deal 

with experimental results.

5.2.1 Flow profile

The flow profile entering the venturi meter was quantified using hotwire, velocity 

meter and Pitot-static tube. The instantaneous velocity was measured using hotwire 

anemometer at a single point at 1.34D  upstream of the venturi meter. The point was 

selected randomly at 0.45D distance from the inner side of the duct. The velocity was 

collected at a sample rate o f 10 kHz with a sampling time of 25.6 sec. The instantaneous 

velocity variation with time is depicted in Figure 5.9 in which the steadiness o f the velocity 

profiles can be inferred. The steady flow was also verified by time averaging the velocity 

data of the above-mentioned sampling using three different time durations, tj = 0  to 1 0  sec, 

t2 = 0 to 20 sec and = 0 to 25.6 sec respectively. The obtained time-averaged velocity o f 

the aforementioned time duration is 2.854 m/s, 2.851 m/s and 2.855 m/s, which is nearly 

identical; see Figure 5.9.
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Figure 5.9 Instantaneous velocity at 1.34D upstream o f the venturi meter.

The point velocities were measured for Re o f 54800 and 99400 at 1.34D  upstream 

of the venturi meter using velocity meter and Pitot-static tube with manometer. The 

estimated uncertainties for the averaged point velocity were +5.15% to +6.15% in case o f 

velocity meter and ±8.5% to ±13.5% in case o f the Pitot-static tube with digital manometer; 

see Appendix A. The velocity profiles obtained via the velocity meter are depicted in 

Figure 5.10. For proper plotting of the velocity profiles along the cross section, the 

measurements were extended beyond the defined (14 x 14) measurement grid points in 

Section 4.3 to cover the distance up to the duct wall. Figure 5.10 depicts the mean velocity 

profiles normalized by the centerline velocity (U /U max) as a function o f the normalized 

radial distance, y_tr/D with typical error bar, where y j r  is the distance from one side of the 

duct to the other. In both cases, the velocity profiles were observed to be reasonably flat for
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the entire cross section outside the boundary layer. The boundary layer edge was roughly 

identified as the point where nominal velocity starts decreasing significantly. It was found 

that a single point measurement at the upstream of the venturi meter could fairly represent 

the steady flow.
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X
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X  Re = 99400

0 0.2 0.4 0.6 0.8
y J r / D

1

Figure 5.10 Axial mean velocity normalized by the centerline velocity as a function o f the

distance from one side of the circular duct.

The flow profile also checked at AD upstream from the exit. The instantaneous 

velocity measured using hot wire anemometer system at a single point, which was selected 

randomly at 0.75D distance from the inner side of the duct. The sample was collected at a 

rate of 10 kHz with a period o f 6.5 sec. The velocity variation with time is shown in 

Figure 5.11. A time averaging of the instantaneous velocity is also quantified by dividing 

the velocity data into three different time durations, ti = 0 to 2 sec, t2 -  0 to 4 sec and 

t2 -  0 to 6.5 sec. The obtained time average velocity is 1.501 m/s, 1.502 m/s and 1.501 m/s
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respectively. It is observed that the point velocity measured using velocity meter at this 

point was 1.51 m/s, which is approximately 5.3% higher than that o f the hot-wire.

A  A j    i _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ i _ _ _ _ _  t  S

■ o’ 1 ”  ' 2  3 4 5  6 7

•—  ------- —  t m
Figure 5.11 Instantaneous velocity at AD upstream from the exit.

5.2.2 Accuracy of Equal Area and Log-Tchebycheff on mean velocity deduction

The experimental data for Re = 54800 obtained using six-point Equal Area and 

Log-Tchebycheff methods are depicted in Figure 5.12. Figure 5.12(a) presents the velocity 

distribution using the Equal Area method, whereas Figure 5.12(b) corresponds to the Log- 

Tchebycheff method. The velocity contours obtained through these two methods are 

similar, but the extent o f deviation is more for the Equal Area method. The estimated 

uncertainty for point velocity varied from 5.15% to 6.15% in all cases; see Appendix A.
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Figure 5.12 Air velocity contour for Re = 54800 using six-point traversing at AD upstream 

from the exit (a) Equal Area (b) Log-Tchebycehff.
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Figure 5.13 depicts the effect of number o f measurement points on the Equal area 

and Log-Tchebycheff techniques at Re = 54800. To get the profiles for the entire cross 

section, the measurements were extended beyond the measuring grids defined by both the 

Equal Area and Log-Tchebycheff methods to cover the distance up to the duct wall. As the 

circular duct is small (D = 26.6 cm), the difference between the measurement points 

specified in Equal Area method and those specified in the Log-Tchebycheff method is 

small. In case o f six points traversing, the distance of the first three points from the duct

11.5 mm, 39.1 mm and 78.7 mm for the Equal Area method, whereas those are 

36.7 mm and 83.0 mm for the Log-Tchebycheff method.
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| 0.8 

s

0.4 

0
0 0.2 0.4 0.6 0.8

yJtr /D
Figure 5.13 The effect of measurement points on the accuracies o f Equal Area and 

Log-Tchebycheff methods (Re = 54800).

Figure 5.14 depicts the velocity profiles (3-dimensional plot) for the case o f 

Re = 99400. Figure 5.14(a) presents the velocity profile for the six-point Equal Area 

traversing, whereas Figure 5.14(b) depicts the six-point Log-Tchebycheff traversing.
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Figure 5.14 Air velocity contour for Re = 99400 case using six-point traversing at AD 

upstream from the exit (a) Equal Area (b) Log-Tchebycheff.
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The velocity profiles shown in Figure 5.15 by the error bars considering 95% 

reliability intervals for Re = 24400 and 54800. Figure 5.15(a) presents the profiles for 

Re = 24400 case, the mean velocity deduced using Equal Area methods differs than that of 

Log-Tchebycheff method by 2.0% for six-point traversing, whereas 1.5% for eight-point 

traversing. It is also observed that the mean velocity over predict slightly with reference 

velocity o f 1.397 m/s in both cases; 3.06% in case o f Equal Area method, whereas 1.02% in 

case o f Log-Tchebycheff method. Figure 5.15(b) depicts the profiles for Re -  54800 case. 

The mean velocity calculated using Equal Area technique differs about 2.20% to 2.67% 

from the reference velocity o f 3.08 m/s, whereas -0.41%  to -0.69%  in case o f Log- 

Tchebycheff technique. The profiles obtained using six points traversing for Equal Area 

and Log-Tchebycheff methods, are similar in both cases; see Figure 5.15.
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Figure 5.15 Velocity profile using Equal Area and Log-Tchebycheff six-point traversing

(a) Re = 24400 (b) Re = 54800.
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The effect o f the number o f measurement points on the accuracies o f Equal Area 

and Log-Tchebycheff methods were also observed experimentally. The six and eight points 

per diameter traversing for different Re depicted in Figures 5.16 and 5.17 respectively. In 

all cases (Re = 24000 to 100000), the mean velocities using Equal Area method are about 2 

to 4% higher than the reference velocities, whereas the mean velocities obtained by the 

Log-Tchebycheff method are varied from -0.7%  to +1.02% with the reference values. It is 

observed that the increase the number o f measurement points per diameter does not affect 

the accuracy o f the Log-Tchebycheff methods over the Re o f 24000 to 100000; see 

Figure 5.17. On the other hand, increasing the number o f measurement points in Equal 

Area method, decreases the over prediction slightly.
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Figure 5.16 Effects o f number o f measurement points and Re on the accuracies o f Equal 

Area and Log-Tchebycheff methods (a) Six-point (b) Eight-point.
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Figure 5.17 Effects of measurement points and Re on the accuracies o f Log-Tchebycheff

methods.

5.2.3 Accuracy of Equal Area and Log-Tchebycheff on airflow rate calculation

The volumetric airflow rate using the mean velocity deduced from the Equal Area 

and Log-Tchebycheff methods are shown in Table 5.6. Table 5.6 depicts the airflow rates 

calculated using the Equal Area method is overestimated by 2 to 4%, whereas the flow 

rates obtained using the Log-Tchebycheff method are varied from a negative value of 

-0.69% to a positive value o f 1.02% with the reference flow rates. The above all 

uncertainty was estimated as 5.5 to 12%; see Appendix A. Further, in the case o f 

Re = 54800, the air flow rate obtained using the Equal Area method over predicts 2.67% 

for six-point traversing and 2.20% for eight-point traversing, whereas the Log-Tchebycheff 

method under predicts the flow rate with 0.41% and 0.69% for six and eight points

t*i4 . -E-

>  Log-Tchebycheff (Six-point)
A Log-Tchebycheff (Eight-point)
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traversing respectively. Again, in case of Re = 24400 and 99400, the flow rates are higher 

than reference values corresponds to the respective Re by both methods. Nevertheless, the 

flow rates obtained with the Log-Tchebycheff method are more consistent and within ±1% 

error with reference flow rates; see Table 5.6. The error was calculated as 

Q -  Qref
Error = ------- ^ - x l 0 0 % ,  (6.1)

Qref

where, Q ~ Qeq or Qlt; Qeq is the flow rate deduced using Equal Area, Qlt is the 

flow rate deduced using Log-Tchebycheff method and Qref  is the reference flow rate 

calculated using venturi meter.

Table 5.6 Accuracies o f the Equal Area and Log-Tchebycheff methods in estimating the

volumetric airflow rate.

Equal Area Log-Tchebycheff

Qref Six-point Eight-point Six-point Eight-point

Re [m3/s] Qeq Error Qeq Error Qlt Error Qlt Error

[m3/s] [%] [m3/s] [%] [m3/s] [%] [m3/s] [%]

24400 0.0782 0.0806 3.06 0.0802 2.56 0.0790 1 .0 2 0.0790 1 .0 2

54800 0.1724 0.1771 2.67 0.1762 2 .2 0 0.1717 -0.41 0.1712 -0.69

99400 0.3141 0.3240 3.15 0.3192 1.62 0.3173 1 .0 2 0.3144 0 .1 0
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5.3 Comparison of numerical results with experimental results

The experimental velocity profiles were compared with the simulated profiles over 

a range o f Re from 20000 to 55000. The profile obtained from the experiment (Re = 24400) 

is verified with the numerical result (Re = 20000) and some available literature 

[Benedict, 1980]; see Figure 5.18. The results show a good agreement.
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Figure 5.18 Comparison o f normalized axial mean velocity as a function o f the distance

from the center o f the duct
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Figures 5.19 and 5.20 represent the point velocities normalized by the 

reference/mean velocity from experimental investigations and numerical simulations. The 

experimental data was collected at 29D from the air straightener, which was the distance 

from entrance o f the duct in simulation. Figures 5.19(a) and 5.20(a) represent the profiles 

for the Equal Area method, whereas Figures 5.19(b) and 5.20(b) represent the profiles for 

the Log-Tchebycheff method. The difference between the numerical and experimental 

results seems to come within the range of experimental uncertainty for all yJr/D ,  where 

y j r  is the distance from one side o f the duct to another side. Eventually, it is referred that 

the velocity profiles obtained using both the Equal Area and Log-Tchebycheff methods, 

whether experiment or numerical simulation, are similar.
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Figure 5.19 Comparison of numerical simulation at Re = 20000 and experimental 

investigation at Re = 24400 (a) Equal Area (b) Log-Tchebycheff.
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Figure 5.20 Comparison of numerical simulation at Re = 54000 and experimental 

investigation at Re = 54800 (a) Equal Area method (b) Log-Tchebycheff method.
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Figure 5.21 represents the accuracies o f the Equal Area and Log-Tchebycheff 

methods on the estimation o f the volumetric flow rate through a circular duct. The 

volumetric flow rate normalized with the reference flow rate {QEo/Qref or Qir/Qref) from the 

experimental investigations and numerical simulations for the range o f Re = 20000 to 

55000 depicts in Figure 5.21. It is observed that all the cases except experimental Log- 

Tchebycheff technique (six points or eight points per diameter) for Re = 54400, over 

estimate the flow rate; see Table 5.5 and Table 5.6. The uncertainty bars shown in 

Figure 5.21 only for experimental results, which indicate the variations o f experimental 

result, are within range o f simulated results. Above all, the excellent agreement between the 

numerical predictions and the experimental results over the entire range o f Re indicates that 

the Log-Tchebycheff method provides a better accuracy in volumetric flow rate estimation 

through a circular duct.
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Figure 5.21 Effect o f measurement points on the accuracies o f Equal Area and Log-

Tchebycheff methods for different Re.
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C h a p t e r  6  

CONCLUSIONS AND RECOMMENDATIONS

The volumetric airflow rate estimations using Equal Area and Log-Tchebycheff 

methods through a circular duct were studied numerically and experimentally over a range 

o f Reynolds numbers. The numerical simulations were performed for Re of 200 to 54000 

using FLUENT 6.1, whereas the experimental investigations were conducted for Re from 

approximately 20000 to 100000. The numerical simulations were conducted 2- 

dimensionally with a uniform entrance velocity into a straight circular duct o f 60D  length 

by invoking the laminar model for Re = 200 to 2300, and the “standard k - e”  model for the 

range of Re from 2300 to 54000. The accuracies o f the Equal Area and Log-Tchebycheff 

methods in estimating the volumetric flow rate were evaluated at 20D, 40D  and 60D 

downstream o f the duct entrance with the simulated velocity profiles. On the other hand, 

the experimental investigations were conducted by blowing air through a straight circular 

duct of 35D  (D = 0.266 m) length for Re o f 24400, 54800 and 99400. The flow rate 

deduced using Lambda Square (model 2300) venturi meter was utilized as the reference for 

assessing the accuracies o f the Equal Area and Log-Tchebycheff techniques. The estimated 

flow rates from the experiments were also compared with those o f simulations. The 

following conclusions and recommendations are summarized from the numerical 

simulations and experimental observations.
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6.1 Conclusions

The following conclusions can be drawn from the 2-dimensional numerical 

simulations.

• The fully developed entrance length, the ratio U mean/ U max and the mean velocity 

profile at fully developed zone agreed well with analytical results and available 

published data. The mean flow properties (i.e., U c /U mean, U mean/ U T, U c / U T etc) 

were also verified with some previous findings.

• The simulated friction coefficients for different Re agreed well with some 

theoretical and available results.

• In the laminar regime (Re = 200 to 2300), the Equal Area method was found to 

estimate the volumetric flow rate more accurately, in which the percentage error 

varied from 0 to 0.67%. On the other hand, the Log-Tchebycheff method tends 

to under-predict flow rate slightly, -  1.19 to -2.98%.

• In the turbulent regime (Re = 5300 to 54000), the Equal Area method over

predicts the flow rate by 1.83% to 3.32%, while the Log-Tchebycheff method 

predicts the actual flow rate relatively well; the error varies from -0.40 to 

0.78%.

• Increasing the number o f measurement points helps in reducing the volumetric 

flow rate under- or over-estimations, especially when these errors are 

significant. In other words, increasing the number o f traverse points from six to 

eight reduces the under-estimation of the Log-Tchebycheff method in the low
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Re regime i.e., -2.98%  to -1.19% for Re = 200 case and the over-estimation o f 

the Equal Area method in the high Re range i.e., 3.32% to 2.10% for Re = 5300 

case respectively.

The followings are the main conclusions drawn from the experiments.

• The volumetric airflow rates deduced using Equal Area method over-predicts 

with respect to the reference value obtained from the venturi meter. The over

predictions are 3.06%, 2.67% and 3.15% using six points traversing and 2.56%, 

2.20% and 1.62% using eight points traversing for Re of 24400, 54800 and 

99400 respectively.

• In case o f the Log-Tchebycheff method, the estimated airflow rates are within 

+1% with respect to the reference flow rates. The deviations are 1.02%, -0.41% 

and 1.02% using six points traversing and 1.02%, -0.69% and 0.10% using eight 

points traversing for Re o f 24400, 54800 and 99400 respectively.

• The overall uncertainty was estimated to be 5 to 12%. Thus, while Log- 

Tchebycheff method shows a better accuracy than the Equal Area method, the 

differences between those two methods and the corresponding difference from 

the reference (venturi meter) flow rate are smaller than this overall uncertainty. 

This is probably one reason behind the continuous Log-Tchebycheff versus 

Equal Area disputes.
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6.2 Recommendations

The followings are possible undertakings for future work on volumetric airflow rate 

estimation.

• Expand the study over a wider range o f Reynolds number.

• Extend this study to include the square or rectangular ducts.

•  Study the effect o f bend on the accuracies o f Equal Area and Log-Tchebycheff 

methods.

• Investigate the effect o f damper for different duct geometry, i.e., circular, square 

and rectangular ducts.
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A p p e n d i x  A  

UNCERTAINTY ANALYSIS AND ERROR ESTIMATION

It is well-known fact in engineering that all measurements have errors, which 

originate from various sources. These errors are the differences between the measured 

value and the true value. Furthermore, the errors in experiment have two components: a 

fixed (bias) error and a random (precision) error [Wheeler and Ganji, 1996; Abemethy et 

al., 1985]. Depending on the experimental situations, the above-mentioned error limits 

have been identified based on some assumptions and considerations. The question is how 

to combine bias and precision errors raged over many committees in several societies i.e., 

ASME, SAE, ISA, ISO etc. The committee approval for combining is either addition or 

root-sum-square methods, which will be decided by the analyst and thereafter, a handful 

o f studies [Khan, 2004; Coleman and Steele, 1989; Abemethy et ah, 1985; Kline, 1985; 

Moffat, 1985; Yavuzkurt, 1984; Kline and McClintock, 1953] have been conducted on 

these issues. The guidelines have also been prescribed in some editorial [Kirkup, 2002; 

Taylor and Kuyatt, 1994; ASME journal of Heat Transfer Editorial, 1993; the ASME 

Journal of Fluids Engineering Editorial, 1991; ISO, 1978].

A.1 Evaluating Uncertainty

An experimental analysis may involve various sources in which errors may arise. 

One of the useful classifications of errors is accidental error, fixed error and mistake 

[Kline and McClintock, 1953], which are arbitrarily calibration errors, data acquisition
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errors, data reduction errors and conceptual errors. Each of these sources exhibits the bias 

and precision components. The bias (B) and precision (P) errors were calculated by using 

root-sum-square (RSS) method as follows:

B = ±^B12  +B 2 2  +B 3 2  +.... + Bz 2  (A .l)

and

P = ±tJp 2  +P2 2  +P3 2  +.... + Pz2  , (A.2)

where z is the total number of error sources. The RSS method, for combining, was used 

as [Coleman and Steele, 1989]

E = ± J b 2  + p 2  . (A.3)

In current study the errors incurred due to independent parameters that were 

measured directly using instruments for the experimental purpose and dependent 

parameters that were obtained from the independent parameters or thermo physical 

properties. The independent parameters are generally the basic dimensions o f the duct 

(D) and the basic experimental variables U, T  and P. The dependent parameters that are 

functions o f the independent parameters are dimension of the duct (A) and the 

experimental parameters ( Q ven or Q ref ,  U e a , U/,t etc.).

In error determination for the independent parameters, the precision error is 

random in individual measurements and its estimation depends on the sample size, 

whereas the bias error is independent o f sample size. The bias errors (B) were taken same 

as single measurement and the precision errors (P) were calculated from the statistical 

method using the standard deviation o f the measurement. It is noted that the instruments’
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resolution and accuracy were considered as the bias error [Coleman and Steele, 1989; 

Moffat, 1985].

In case o f dependent variables, some measurand, F, depends on N  quantities 

written as Fj through to FN, such that,

F  = f(F j, F2, F3  Fn), (A.4)

where the quantities Fi.F2...FN, are measurands and may depend on other quantities. Note 

that sometimes the symbols Fj, F2...FN are used to represent quantities. At other times the 

same symbols are used to represent the true value of the quantities. The confidence level 

of the uncertainty for F  should be same as confidence level o f the uncertainty in the F? s. 

The absolute uncertainty can be estimated as 

ml/2
Ep  =

N
I
i=l

dFEp. -----
' dF;

(A. 5 a)

dFwhere the partial derivatives £ — are derived from the functional relationship as
i=i dF‘

deduced in Equation (A.4) and the uncertainties, EFi, are the uncertainties in the measured 

variables f7,-, if  independent calculated from Equation (A.3). The relative uncertainty is 

generally defined as:

Ef
p2

' F\ 8f \
2

( E f j >
2

( f 2 dF ^
2

( Ep2 '
2

( FN  8F )
2

[ f  8Fj I F* > { F  8F2 { J I F s f n J (A. 5b)

where Ep/F is the relative uncertainty o f the result and the factors, EpJF n are the relative 

uncertainties for each variables.

In current study, the measurement parameters were related to dimension o f the 

duct and locations of the measuring point-velocity. For each test, the uncertainty was
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carried out explicitly and independently. The sample calculations for the uncertainty are 

presented separately in the subsection.

A.2 Instrumental and Measurements’ Uncertainty of Independent Parameters

The instruments used in the study have errors associated with them. The value of 

the interest variable measured repeatedly for accidental errors study and the data was 

recorded as:

where n = number o f repeated measurements and j  = I . . .N  (N=  sample size). The sample

The standard deviation o f the mean ( S j )  for the sample was deduced using the following 

relation,

(A.6 )

mean [f ) and the sample standard deviation S f  of the interest parameters have been 

calculated as,

(A. 7)

and

(A. 8 )

(A.9)

The precision limit, Ppi for a single measurement Ft was estimated as

P p  ~ Pdimension ~ ■ P p  ’ (A. 10)
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where 6 / is a function o f the 95% confidence level [Wheeler and Ganji, 1996]. In 

determining the tj function, the degrees o f freedom for individual parameters can be 

estimated as (N-1). Besides, the degrees o f freedom (w) can be estimated for combined 

precision index using Welch-Satterthwaite formula as [ANSI/ASME, 1990; 

ASME, 1983]

where, 5>/.. .Sfn are the precision index for individual parameters and wf/ ...wfn are the 

degrees of freedom for individual parameters. The following sections describe the error 

calculation of the independent parameters.

A.2.1 Uncertainties of diameter of the duct (F  = D)

The diameter o f the duct was measured for 31 populations using an

ELECTRONIC digital caliper. The caliper has an instrumental error (i.e. the accuracy) of

Baccuracy= 0.00004 m and an instrumental bias limit (i.e. the resolution) of

Bresolution = 0.00001 m. According to Equation (A .l), the total bias error, which is fixed for 

any dimensional measurements related to this experiment, was estimated as:

The duct dimension has been measured for 31 sides at the end; three to four repeated 

measurements were taken for each data. Hence, the sample mean from Equation (A.7) 

can be calculated as:
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The standard deviation o f the sample from Equation (A. 8 )

SD = — ) j - D ) 2 =± 0.00406 m.
/=/j=i

(A. 14)

The standard deviation o f the sample mean from Equation (A.9)

= ± 7 .3 x l0 ' 4 m. (A. 15)

For (iV-1) = (31-1) = 30 degrees o f freedom, the t-distribution value at 95% confidence 

level is 2.086 [Coleman and Steele, 1998]. Thus the mean precision limit from 

Equation (A. 10) is

Thus the overall uncertainties in diameter measurements o f the circular duct were 

calculated using Equation (A.5).

The absolute uncertainty as

i.e., in percentile form = 0.56%.

A.2.2 Uncertainty of barometric pressure (F = pi,)

The Barometric pressure was measured using mercury barometer. It has an 

instrumental error (i.e. the accuracy) o f Baccuracy= 0.5% of the reading and an instrumental 

bias limit (i.e. the resolution) o f Bresoiiainn = 0.1 mm of Hg. The zeroth order uncertainty

P F = P D = t d-S D = ± l - 5 x l 0 - 3 m. (A. 16)

(A. 17)

and relative uncertainty as

(A. 18)
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for manometer can be estimated by assuming a probability o f 95% as [Figliola and 

Beasley, 2000]

Bo = 0.5 of the resolution. According to Equation (A .l), the total bias error was estimated 

as

B~p = Bbarom eter  = -^0.01 +  2.5x10 p b mm of Hg. (A. 19)

Based on the configuration of the barometer, to adjust the manometer accurately an error 

P a d ju s t- ±0.1 mm o f Hg was introduced as a precision error. In addition to this, a 

readability error o f P rea(i = +0.1 mm of Hg was considered as a precision error. Thus the 

total precision errors were estimated as

P f  — Pbarometer — —’sjPadgust + Pread = +0.14 mm Of Hg (A.20)

The overall uncertainty was estimated as

E f  =  E barom eter =  =  ± V 0’03 +  2 ‘5  X 10~ W  mm ° fH § (A-21)

For the barometric pressure o f 750 mm of Hg, the absolute uncertainty was estimated as

E j  = Ebarometer = ±^(0.03)+2.5 x 1()-5 (750)2 =±14.09 mm o f Hg (A.22)

and relative uncertainty as

_  E b a r o m e t e r  +  If 
F  Pb ~ \ {  F

i.e., in percentile form = 1 .8 8 %.

Pf
= ±1.88 (A.23)

A.2.3 Uncertainties of atmospheric temperature (F  = T)

The dry bulb and wet bulb temperatures were measured. The total bias error 

estimated for temperature is fixed for both cases. It has an instrumental error (i.e. the
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accuracy) o f B accuracy = +0.5 °C and in absence o f resolution, the total bias error was 

estimated following Equation (A .l) as 

B p = B T = ± . 5 °C. (A.24)

Based on the responses to the last digit o f the thermometer, a digital error of 

Pdigu -  +0.25 °C was introduced as a precision error. In addition to this, a readability error 

o f Pread = ±0.25 °C was considered as a precision error. Thus the total precision errors 

were estimated as

Pp =Pr = ±^Pdigit2 + Pread2 = +0.35 °C . (A.25)

The overall uncertainty was estimated as

E j  =  E T =  ± ^ B p 2 + P p 2 = ±0.61 °C. (A.26)

For the temperature reading of T =  20 °C, the relative uncertainty was estimated as

E~p Ep 0.61
-=£- = —E  = —— = 0.0305 » 3.05% . (A.27)

F T 20

A.2.4 Uncertainty of pressure difference along the venturi meter (F  = Ah)

The pressure difference along the venturi meter was recorded using a digital 

manometer in terms o f inch o f H2O. The accuracy of the manometer is ±0.25% of the 

reading and the resolution is 0.01 inch o f H2O. For better estimation, the zeroth order 

uncertainty for manometer can be estimated by assuming a probability o f 95% as 

[Figliola and Beasley, 2000]

B o  = 0.5 o f the resolution. Hence the instrument bias error could be considered as 

B j =  ±</(0.0025Ah f  +(0.005)2 inch o f H 20 . (A.28)
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The ventui meter has to be concentric with the circular duct. Practically, there 

could be some misalignment. The error associated with this misalignment can be 

accounted as bias error o f ±1% of the measured Ah was introduced as [Coleman and 

Steele, 1989]

B\ = ±0.01 Ah  inch of H20  . (A.29)

Hence the bias error associated with manometer can be estimated as

Bmano = +B 2 = ±^(2.5 x 10 ~ 5 +1.06 x 10~ 4 A/ ;2 inch of H20 . (A.30)

Accuracy o f the venturi meter, i.e., ±0.75% of actual flow was considered as bias error. 

Hence the total bias error was estimated as

Bp = Bven = ±V(2 .5 x 10- 5 + 1.06xl0~4A/*2 + 5.625xlO~5Ah2 inch of H 20 . (A.31)

Based on the manometer, on the responses of the last digit, a digital error o f Pdigit = 0.005 

inch of H20  was introduced as a precision error. Thus the total precision errors were 

estimated as

Pp — Pmano ~ —aJPdigit 2 = ±0.005 inch of H20  . (A.32)

The overall uncertainty was estimated as

E j = Emano = ±‘J b f 2 +Pf2 = ±V(1-6225x10-4 A/*2 +5x10- 5 inch of H20  . (A.33)

Sample calculation -fo r venturi meter pressure differential

For the pressure differential o f Ah = 0.265 inch of H20 , the absolute uncertainty was 

estimated as

Ef = EAh = ±4Bf 2 + Pf2 = ±V(l-6225 x 10"4 x (o.07)+ 5 x 10~5 = 0.0078 inch of H20  . (A.34)

And the relative uncertainty is deduced as
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EjL  = E£h_ = Q-0 0 7 8  = 0.0296 » 2.96%. (A.35)
F Ah 0.265 v }

The uncertainty is varied from 2.96% to 8.95% for different Ah.

A.2.5 Uncertainty of point velocity using velocity meter

The point velocity was recorded using velocity meter of TSI Model 8345, which 

measures the velocity in terms of m/s. The accuracy o f the velocity meter is ±3% of the 

reading or 0.015 m/s whichever is greater. In absence of the resolution, the instrumental 

error could be considered as bias error

B v e lm e te r  =  i •ŷ (9x 1 0 -4 Uvm" + 0 m/s = 0.03Uvm m/s. (A.36)

The velocity meter has to be right aligned for accurate measurements. Practically, this

will not be the case always. Hence a misalignment error should be considered as a bias

error, which is ±1% of the reading [Coleman and Steele, 1989], i.e.,

BvelJnstaU = TO.01  Uvm m/s . (A.37)

Hence, the total bias errors for this measurement were estimated as 

B p  =  Bvei = ±7(1 x 10 -3 U vm  = 0 .0 3 16 U vm  m/s . (A.38)

Based on the responses o f the last digit of the velocity meter, a digital error of 

Pdigit = ± 0.05 m/s was introduced as a precision error. In addition to this, a readability 

error of Prea(i= ± 0.05 m/s was considered as a precision error. Thus the total precision 

errors were estimated as

Pp =  Pvel = Pdigit2 +Pread2 = ±0.071 m/s . (A.39)

The overall uncertainty was estimated as
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Ej  = Evd = ±^Bw2 +Pf 2 = ±V(lxlO-3 x[/vm2 +5xlO- 3 m/s . (A.40)

Sample Calculation

For the velocity reading o f Uvm = 5 m/s; the absolute uncertainty was estimated as 

E j  = E Vei =±^Bp2 +Pp2 = + a / (1x 10-3 x (5)2 + 5 x 10-3 =±0.17 m /s. (A.41)

And the relative uncertainty is deduced as 

E F  _  E v e l _  0-17
F  U.

• = 0 .034®  3.40% . (A.42)
vm

A.3 Uncertainties of the thermo-physical property of fluid (F  = Pwatet)

The thermo-physical properties, if  taken from any table, can be accounted as bias 

error limit, though they may have some precision error. According to the Editorial of 

ASME Journal o f Heat Transfer [1993] and Coleman and Steele [1989], the uncertainty 

for respective thermo-physical property may be 0.25 to 0.5 times the absolute value or 

even higher. Generally, the evaluations o f the thermo-physical properties were based on 

average temperature calculated from the individual measurement. As mentioned by 

Equation (4.3) in Section 4.4, for a given operating condition, the temperatures were 

measured to give different population. From these populations, the mean, maximum, and 

minimum value could be obtained as required. The uncertainties in thermo physical 

properties o f can be estimated as

E p roperty  ~  | |  (ProP erty@ T room max -P ro p e r ty @ T wom> m in )» (A.43)
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For evaluating the fluid properties, room temperatures and pressures were 

calculated using Equations (4.15), (4.16) and (4.17) described in section 4. The 

uncertainties o f these variables also estimated; see section A.2.2 and A.2.3. Over the 

experimental duration, the atmospheric conditions inside the duct could be varied. 

Considering the experimental conditions, the variation was observed very little e.g., 

±0.5 kPa, which was within uncertainty limit. Nevertheless, the duct was open to 

atmosphere. So, the effect o f variation of the atmospheric conditions was neglected.

Density of water (F  =  pwater)

As prescribed earlier, the temperature was recorded for every test. One of the 

mean temperature, Tmean = 18 °C and pressure, Pmean = 750 mm of Hg was recorded. 

Hence the temperatures are in range o f 18 ± 0.61 °C and pressure are in range of 

750 ± 4.09 mm of Hg (mercury). The obtained density was 998.6 kg/m3 from the mean 

atmospheric conditions.

Absolute. Ep wa êi. = ^\(pwater®^room, max ~ Pwater@^room, min\ ~ 1 ^  ’ (A.44)

_____
Relative: Pwater = -H L *  o.l 1% . (A.45)

Pwater 998 6

A.4 Propagation of uncertainty from independent to dependent parameters

The uncertainties of the dependent parameter are calculated according to the 

relationship with the independent parameters. The uncertainties associated with theses 

dependent parameters are discussed and estimated in the following subsections.
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A.4.1 Uncertainty in the area of the duct (F = A)

The area o f the duct is calculated as

A = - D 2 (A .46)

The area o f the duct was calculated from the mean diameter o f the duct. So the calculated 

mean area o f the duct was

A = —D 2 = —x(o .264m  )2 = 0.056m2 .
4 4 v '

The associated uncertainty was estimated as,

(A.47)

Ep -  Ea -
y d D

1/2

dA_

d D
(A.48)

k “where, from Equation (A.46),^=- = —x2 £> = 0.418and from Equation (A.17)

Erj = ± 1 .4 9 x l0 -3 m .

Now the absolute uncertainty is,

E p  =  E a =
f  ~T7 \ 2

E d  
y d D  %

1/2

dA^£^= 0 .418  x (1.49x1 O’") = 6.23x1 O' 4 m2
d D

(A.49)

and the relative uncertainty is

F  A  0 .0 5 6  

which giving, (0 .0 1  l)x 1 0 0  = 1 .1 1 %.

(A.50)
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A.4.2 Uncertainty associated with gravitational acceleration ( F  = g)

The uncertainty o f a constant parameter is zero. As mentioned earlier, the 

gravitational acceleration (g) is a function of latitude (§) and altitude (//); see 

Equation (4.10). So the uncertainty can be assumed as

E f  =  E a
dg
Sep

+ E h
Sg

d H

1/2

(A.51)

where and E n are the uncertainty components for latitude (<|)) and altitude ( H ) . The 

partial derivatives were calculated from Equation (4.10). Since § and H  are constant a

specific area, so and Eh can be estimated as zero. So uncertainty o f g also zeros.

A.4.3 Uncertainty of Ap

The absolute uncertainty o f Ap was estimated based on Equation (4.9) as

E f = E/ip = ( F dAp 
V dAh j

\2
"'P water

dA p

5p watei
+ dA p

dg

\2 1/2

(A.52)

where E s i ,  E pwater and E g are the uncertainty components for differential pressure (A h ) ,  

water density (pwater) and gravitational acceleration (g). The partial derivatives were 

calculated from Equation (4.9). For 0.265 inch of H2O (0.0067 m o f H2O), the 

uncertainty o f the pressure difference along the venturi meter can be calculated from 

Equation (A.52) as

-il/2
E a p  = (0.0296x 0.0067x 998 .6x 9 .8 0 3 f  + (0.01 lx 998.6x 0.0067x 9 .8 0 3 f  +  0

= 2.07 Pa,

Relative: -^E- 1.94

A p  0 .0067x998.6x9.803
i 3.16% .

(A.53)

(A. 54)
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The uncertainty is varied from 3.16% to 9% for different reading.

A.4.4 Uncertainty of p sat

The absolute uncertainty o f the saturated vapor pressure at wet bulb temperature 

was estimated as according to Equation (4.13)

p Psat

/  A \ 2
E t Psat

r )T\  U l-wet J

1/2

(A.55)

where Upwet is the uncertainty component for wet bulb temperature, which already 

described in section A.2.3 (i.e., E Twet = 0.61 °C). The partial derivative was calculated 

from Equation 4.13 as

dp.sat

DTy
= 6.5 Twet +18.6

wet
(A.56)

Now from Equation (A.55), the uncertainty for Twet = 15 °C could be estimated

Absolute: p p
sat

/*

(0 .61xll6 .l)"
1/2

= 70.82 pa5

Relative: .sal 70.82
< 4.77% .

Psat 3.25 x l5 z +18.6x15 + 692

(A.57)

(A. 5 8 )

A.4.5 Uncertainty of the p par

The absolute uncertainty o f the partial vapor pressure (P par) can be estimated as

nl/2

E f  =  EPpar = ■'Psat
d p  par

dp .sat
+ EPb

d p  par

dpb

\ 2
+ E t&dry

dp par

S S T

\ 2
E r m

d p  par 

dTy

\ 2

wet
> (A. 5 9)

where E Twet, E Tdry ,Epi, ,Epsat is the uncertainty component for wet bulb temperature, dry 

bulb temperature, vapor pressure and saturated vapor pressure respectively. The partial
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derivative was calculated from Equation 4.12. For the data reading, Tdry = 18 °C, Twet =15 

°C, and pb = 750 mm of Hg, the uncertainty estimated from Equation (A.59) is 

Absolute:

FPpar (70.82xl)2 + f.0188xl00658.4x— —)  + fo .6 1 x — — --- 1 H-fo^lx-100658,4' 
v ’ \  1500J V 1500 )  \  1500 ,

1/2

= 91.3Pa

(A.60)

E t? P r>ar 913 
Relative: —  = —  = ° ' 0 6 0 7  * 6’07% •

E Ppar 1502

A.4.6 Uncertainty of the air density (F = p)

Assuming zero uncertainty of the gas constant, the absolute uncertainty o f the air 

density (p) can be estimated from Equation (4.11) as:

E f = E 0 = Eppc
dp

dpp a r
E n

dp

m

\2
+ E t,dry

dp
dTdi

\2

ry

1/2

(A.61)

where Epdry ,Epb ,Eppar is the uncertainty component for dry bulb temperature, vapor 

pressure and partial vapor pressure respectively. The partial derivative was calculated 

using Equation 4.11. For the data reading, Tdry = 18 °C, and pb = 100658.4 Pa, 

Ppar= 1502 Pa (calculated from Equations (4.12) and (4.13)) the uncertainty estimated 

from Equation (A.61) is 

Absolute:

Eo = V3, -°-378
287.1x291.15

1892.4x-
1

287.1x291.15

n<c1 100658.4
0.61x-------------x

287.1

f  1 N2
1/2

291.15 (A.62)

= 0.0228
mJ

Relative: = 0-0228 * l .91 %.
1.19

(A.63)
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A.4.7 Uncertainty in the volumetric flow rate using the venturi meter (F = Qven) 

The volumetric flow rate using venturi meter is calculated as

where the Ap was calculated from the differential pressure across the venturi meter using 

digital manometer as

for Ah = 0.08 inch o f H2O, water density ( p water) = 998.6 kg/m3 and g = 9.803 m/s2; the 

pressure difference can be calculated as 19.87 Pa with 2.96% uncertainty. The density o f 

the air calculated from Equation 4.10 as 1.19 with 1.91% uncertainty.

The throat area (Athroat) and beta ratio (P) is constant, though coefficient of 

discharge (Cu= 0.995) has a bias error mentioned as [ANSI/ASME, 1990]

-^ £ -  = 0 .0 0 1 2 2 , (A.6 6 )
C d

There is no precision error considered; hence the total error calculated for the Cd can be 

estimated as:

Hence, the absolute uncertainty o f the flow rate (Qven) can be estimated from 

Equation (A. 64) as

(A. 64)

Ap — d /zp water g  , (A.65)

=  0.00122  »  0 . 122% . (A.67)
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E f  -  E qvc„ -
'  dQven'2

Cd a t  \  o C d
+ E ap

dQv i
dAp

+ Et dQv i
\2

d p

1/2
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(A.68)

where EcD ,Eap ,Ep is the uncertainty component for discharge coefficient (Cd), pressure 

differential (Ap) across the venturi meter and air density (p) respectively. The partial 

derivative was calculated using Equation 4.8 o f section 4. Now the absolute uncertainty

is,

EQvcn (,0012x0.1734)2 + (l.7 8 8 4 x 4 .3 4 x !0 -3)2 + (0 .0 1 9 1 x l.l9 x 0 .0 7 )2
1/2

:0.0079 m 3 (A.69)

and the relative uncertainty is

v— E,Qyen  0.0079
= 0.0458 ,

F QVen ° -17 

which giving, E q vi,„ (%) = (0.0458)x 100 = 4.58% .

The uncertainty for flow rate is found 1.84% to 5.5%. 

A.4.8 Uncertainty of Reynolds num ber (F = Re) 

The Reynolds number is calculated as

(A. 70)

Re =
P UmeanD 

P
(A.71)

where Umean and p in Equation (A.71) can be calculated as [ANSI/ASME, 1990]

U n

and

Q v
(A.72)

p = (l7.23+0.048T d r y 10^ (A.73)
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Hence, the uncertainty o f the o f Re is depends on uncertainty o f mean velocity {Umean), 

defined in Equation (A.72), and uncertainty o f the p., defined in Equation (A.73). The 

uncertainty o f the mean velocity and p is discussed in following subsections:

A.4.9 Uncertainty of mean velocity (F = Umean)

The absolute uncertainty o f the mean velocity can be estimated as

Up = Uunem - Uqvc
dUn \ 2

dQv
UA

dU„ \ 2

dA

1/2

(A. 74)

where EQVen, Ea are the uncertainty component for flow rate along venturi meter and 

cross sectional area o f the duct respectively. The partial derivative was calculated using 

Equation (A.72). For the volumetric flow rate (Qven = 0.17 m /s), the uncertainty can be 

estimated as 

Absolute:

E f  -  E u mam ~ 0.0079X ■
1 \ 2

0.056
+ 6.19x 10'4 x-

0.17 \ 2

0.056x0.056

1/2

= 0.145
m

Relative: = Umean = = 4 .7 1 %
E ^mean -̂08

A.4.10 Uncertainty of (F  = p)

The absolute uncertainty o f p can be estimated using Equation (A.73) as

(A.75)

(A. 76)

E p  -  £p - E p ,
5p

x2‘ 1/2

/
0.61x0.048x10’ = 2.93x10’

dryd T dry

So the uncertainty o f the Reynolds number can be estimated as

- s N -s
m^ (A. 77)
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Erc =
d Re 
dp

\ 2

+ Euimeqn
a Re

at/,

\ 2

+ Ed
mean J

aRe
dD

\ 2 aRe 
a n , (A.78)

= 2810,

where Ed, Eumean and E^ are the uncertainty component for air density, duct diameter, 

mean flow and dynamic viscosity respectively. The partial derivative was calculated 

using Equation (A.71). For the flow rate (Qven = 0.17 m3/s), the uncertainty can be 

estimated as 

Absolute:

Eks = (0.0228x 4551556)2 + (01458x17733.3^ +(l.49xl0-3 x20533333)2 + 
(2.93x10-8 x  3x109)2 

= 2810

1/2

D , .• E F £ d 6 2810 -Relative: -J- = =  = 5.12 % .
F  Re 54820

(A.79)

(A. 80)

A.4.11 Uncertainty of measurement locations

The uncertainty o f the locations is related with the length-measuring instrument. 

Mainly, a measuring tape/digital caliper was used for measuring the distance o f each 

location. Assuming the measuring tape has highest uncertainty, so uncertainty for 

measuring tape was deduced. The resolution and accuracy o f the instrument is taking as 

precision error. Assuming the accuracy is 1% of the reading and the resolution is 1 mm, 

hence the bias error is calculated as

Bp = Byj r  = ±^/lx 10-4 x y t, 2 + 0.25 mm . (A.81)

Due to clearance o f the hole and measuring instrument, assuming the error 1% of the 

traversing for misalignment as 

Palign = 0.01 »  mm.
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The instrument may not be inserted in proper location. Assume the traversing error could 

be 0.5 mm, hence the total error can be estimated as

E f  = E yjr  = ±-\/l x 10"4 x y tr2 +0.25 + 1x10~4 x y t r2 +0.25 mm . (A.82)

Sample calculation

For the traversing of last point o f the duct (258 mm), the error is estimated as:

E f  = Ey_,r = ± V 2x l0 -4 x(258)2 + 2x0.25 = 3.72mm .

A.4.12 Uncertainty of the point velocity (F  = U)

A.4.12.1 Uncertainty associated with velocity meter

The point velocity was calculated using velocity meter and Pitot-static tube 

(diameter = 2.38 mm, blockage ratio = 0.009). The pipe diameter is large compared to the 

probe diameter; hence the probe blockage effects can be neglected [ANSI/ASME, 1990; 

Coleman and Steele, 1989; Dally et al., 1984]; however, the boundary effects due to wall 

were considered. Due to the location o f the probe, the velocity profile effects in radial 

direction can be accounted for within some acceptable uncertainty which is a function of 

the of traverse points [ANSI/ASME, 1990]. The averaging errors along the diameter were 

neglected, the average point velocity was measured from 3 to 4 traverses, and in each 

traverse 3-4 repeated measurements were recorded as discussed in section 4.

The sample mean for each position calculated by Equation (A.7) and the standard 

deviation o f the sample calculated using Equation (A. 8), then the precision index deduced 

by Equation (A.9) and the precision limit calculated by Equation (A. 10). It is noted that 

the degrees o f freedom was calculated using Equation (A.l 1). The results are summarized 

in Table A .I.
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Table A.l Mean point velocity and precision limit o f Equal Area six-point traverse in

uncertainty determination (Re = 54800).

Radial

Position

[mm]

Mean velocity [m/s] Precision limit (m/s)

EJ veil EJvel2 Uvel3 U vel4 Pf i PF2 PF3 PF4

-122 2.78 2.78 2.82 2.82 0.0094 0.0120 0.0074 0.0054

-94 3.14 3.14 3.14 3.14 0.0068 0.0084 0.0087 0.0142

-54 3.53 3.53 3.59 3.53 0.0089 0.0087 0.0145 0.0089

54 3.53 3.59 3.53 3.59 0.0084 0.0172 0.0089 0.0115

94 3.07 3.07 3.07 3.07 0.0085 0.0098 0.0097 0.0126

122 2.78 2.70 2.78 2.78 0.0086 0.0089 0.0068 0.0095

The total bias error can be estimated for the velocity meter from Equation (A.35). The 

overall uncertainty for each point velocity can be estimated as

E p = E y =  ± 4 B p2 +Pp2 . (A.83)

Sample calculation

For the point velocity (Uveu = 2.78m/s), the uncertainty can be estimated as 

Absolute: Euvel = ±V (0.0316 x 2.78)2 + (0.0094 f  =  0.09 m /s , (A.84)

Relative: = 0.0325 »  3.25%  . (A.85)

The uncertainty for the mean value calculated using Equal Area (Ueq) or Log- 

Tchebycheff (U lt) was calculated from the uncertainty o f the individual mean velocity.
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The obtained uncertainty was estimated 3.3% for the Equal Area method and 3.5% for 

the Log-Tchebycheff method using velocity meter.

The uncertainty associated with location was accounted with point velocity, the 

sample calculation is shown as

F = +location —m q

dy  ̂  dy
-  —  . Assuming the last point have maximum error (i.e., y j r  = 258

dx

mm from the duct wall), which can be measured as 258±3.72 mm and the point velocity 

can be estimated on that location as 2.78 ± 0.0094 m/s. Hence, the uncertainty for this 

location can be estimated as

= ± ^  = 0 .0 4 -4 %

The total uncertainty for the point velocity can be estimated as

Ev = ^ E nJ  + E locatj )  = ±V (°.09)2 + (° .°4 x 2.78)2 = 0 .14  m /s, which is 5.15%.

Hence, the uncertainty is varied from 5.15% to 6.15%.

A.4.12.2 Uncertainty associated with manometer

The absolute uncertainty was estimated using Equation (4.22) o f Section 4.3 as

Eu = EP
dU
dp

+ EPv
d u
dpv (A. 86)

Similar to the Section (A.4.12.1), Epv was calculated. The uncertainty was obtained about 

(7.5% to 12.4%).

Similarly, the uncertainty for the locations in case o f manometer can be estimated as
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Ev = + E location2) = ±-y/(0 .08x 2.78)2 + (0.04x 2.78)2 = 0.25 m/s , which is 9%.

So the uncertainty was varied from 8.5% to 13.5% 

A.4.13 Uncertainties of Qeq and Q i t

The volumetric flow rate can be estimated as 

Q = U  xA , (A.87)

whereQ , volumetric flow rate deduced from mean velocity ( U ), which deduced from 

the point velocity obtained using the traversing techniques times averaged area o f the 

duct (A).  Hence, the absolute uncertainty can be deduced as

nl/2

(A.88)e F ~ e q ~

- \ 2 r dQ'
dU

+ E i

- \ 28Q
8A

where E j j  and E j  is the uncertainty components for the average velocity deduced by 

Equal Area or Log-Tchebycheff methods and area o f the duct. The partial derivatives can 

be estimated from Equation (A.87). For ( U e q  =3.15 m/s), the uncertainty can be estimated

as

E
Q

Absolute: EQ

dQ
Eu

v EQ d u  J
E-

d Q ' 2 
d l

1/2

(A. 89)

(0.0325x 5.15x 0.056)2 +  (3.4lx 10 4 X 3 . 15^ = 9.43x10
-3  m

E n  9 43 x  1 f r 3
Relative: -=^~ = — ---------—  = 0.0535 «  5.35% .

Qeq 3 .15x0.056
(A. 90)

And similarly, the uncertainty for the Log-Tchebycheff method can be estimated as:

_ q n r
Absolute: E— = 9.55x10 —

LT
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Relative: = 0.0557 »  5.57% .
Qlt 3 .06x0.056

It is noted that for the case Re = 24400 and 54800, the velocity meter were used; 

which possessed the uncertainty for volumetric flow rate as 5.5% to 7%. The case 

Re = 9400, the manometer was used which possessed an uncertainty o f 12%. All the 

results regarding the uncertainty analysis have been summarized in Table A.2.

Table A.2 Data for volumetric flow rate measurement with uncertainties

Parameters Mean

value

Uncertainties Parameters Mean

value

Uncertainties

D  (mm) 266 ±1.5 ~ftat (Pa) 1702.25 ±70.82

Pb (mm of Hg) 750 +14.09 Ppar (Pa) 1502.27 ±91.3

T  (°C) 18 ±0.61 p  (kg/m3) 1.19 ±0.023

Ah (inofH iO ) 0.265 ±0.0078 Qven (m / s ) 0.172 ±0.0079

Uvei (m/s) 5 ±0.1 Umean (m/s) 3.08 ±0.146

P  water (kg/m ) 998.6 ±0.11 R e 54820 ±2810

^ ( m 2) 0.056 ±6.23xl0'4 U eq  (m/s) 3.15 ±0.16

Ap  (Pa) 65.59 ±2.07 U l t  (m/s) 3.06 ±0.17

Q eq  (m3/s) 0.176 ±0.0094 Q l t  (m3/s) 0.172 ±0.0096
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A p p e n d i x  B  

CALIBRATION OF A HOT WIRE PROBE

Most calibrations are carried out in either a special calibration facility or in a flow 

field in which the magnitude and direction of the flow vector is known. In this 

investigation, a nozzle and automated air velocity calibrator supplied by TSI model 1129 

with IFA 300 Constant Temperature Anemometer was used. The schematic of the 

calibration set-up is shown in Figure B .l.

probe

Pressure
TransducerAir supply

Filter

RS232

CPU connection

dp output dp input

CPU
IFA 300A/D

Board ch i out

Figure B .l Schematic o f hot-wire calibration set-up.
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B.l Calibration principle

The calibration was performed for a specified velocity o f 25 m/s. So the hot-wire 

was able to get the velocity from 0 to 25 m/s. Generally, calibration generates a 

relationship between the bridge voltage and a reference velocity. The acquisition program 

to convert raw data to velocity data uses calibration.

The response equation for the output voltage from an anemometer connected to a 

given hot-wire sensor can be expressed in the form of a simple power law [TSI, 2000]

V 2 = C , + C 2U e / ,  (B.l)

where Ue/f is an effective velocity, V is an output voltage from the anemometer. Ci,

C2 is calibration constant and c is a calibration exponent. The effective velocity is defined 

by Jorgensen’s equation as [Bruun, 1995]

Ue2 = Un2 + k 2UT2 + h2UB2 , (B.2)

where Un, Uj  and UB are the normal, tangential and binormal velocity components, k  

and h are the sensor’s yaw and pitch coefficients. However, for a single wire probe the 

relationship becomes:

V=f(U) (B.3)

where U is the velocity component in the mean flow direction. The output o f the 

anemometer is bridge voltage/raw voltage ( ) ,  which will convert to effective velocity 

by probe. The voltage is usually signal conditioned by A/D converter and deduced as 

[Bruun, 1995]

VCon = (TV-offset) x Gain (B.4)
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where Vcon is the conditioned voltage, the offset and gain can be re-arranged from the 

default settings for different performance. A/D converter creates a 12-bit binary count, 

B count, which can be deduced as follows [Bruun , 1995]

Broun, = 4095 (Vam +5) . (B.5)10 v J

From Equation (B.4) and (B.5), the raw voltage is calculated as:

T,  [(Bcount x 10/4095)-5] , w ^
Vbr =  ---------— ------ -— 1 + offset (B.6)

Gam v '

The voltage is corrected by temperature as [Bruun, 1995]:

v ^ xJ ¥ ¥ ’ ( a 7 )

where Ts is the hot-wire temperature, Tc is the temperature during calibration and Te is the 

temperature during experiment. The calibration for effective velocity is a curve fit with a 

fourth order polynomial, which is a function o f bridge voltage, V, deduced as 

[Bruun, 1995]:

U e =  B count + C ] X V  +  C 2 x V 2 +  C 3 x V 3 +  C 4 x  V 4 (B.8)

Finally, the velocity is corrected by density [Bruun, 1995], i.e.,

Ue(con) = - ^ - x U e, (B.9)
Pb

where pbc is barometric pressure during calibration, pi} is barometric pressure during test.

B.2 Components of auto calibration

The TSI supplied calibrator model 1129 has the following equipment to perform 

the calibration:
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A settling chamber with a free jet diameter of 10 mm to settle the air from the 

supply, a in-line nozzles for increased sensitivity and accuracy at low velocity, a 

Filter/Regulator assembly which includes a pressure regulator, valve, filter, hose and 

fittings were connected. A probe support can be mounted and manipulated for velocity as 

well as yaw and pitch calibrations. A differential pressure transducer (0-10 mm of Hg) 

for measuring the pressure upstream of the free jet, an A/D converter (used with the 

Model IFA 300 Constant Temperature Anemometer) has an input o f -5  volts to +5 volts 

was installed in a system; so a signal conditioner has been built into the IFA 300 that 

provides a 5 volt offset and a gain o f 1 -  10 volt (for better resolution at low pressures). A 

copper constantan, T-type thermocouple is mounted in the settling chamber upstream of 

flow straightening screens located inside the settling chamber. The thermocouple cable 

that is furnished with the IFA 300 system can be used to connect the thermocouple to the 

IFA 300 back panel. Figure B .l shows an automated air calibrator with all connected 

components.

B.3 Auto calibration procedure

For the calibration o f the hot wire, the calibrator was attached to the air supply; 

the probe support was connected to one of the channel (channel 1) o f the IFA 300 with a 

5-meter probe cable, the output voltage from channel one o f the IFA 300 was connected 

to channel 1 on the A/D board. The nozzle was set according to the desired velocity 

(Nozzle 1, Nozzle 2 or Nozzle 3). The pressure transducer output is connected to the 

dP input on the back panel o f the IFA 300 and the signal from the differential output 

(dP OUT) on the IFA 300 was connected to channel 2 on the A/D board. The pressure
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tube from the pressure transducer was attached to the appropriate location on the 

calibrator. A barometer is set up to measure the atmospheric pressure in the room. The 

thermocouple was installed in the calibrator and connected to the thermocouple connector 

of the IFA 300; see Figure B .l. It is noted that for this kind calibration setup (nozzle- 

calibration facility), where the nozzle is set inside the calibrator as shown in Figure B .l, 

the reference velocity can be determined from the pressure drop across the nozzle. The 

probe was placed about one diameter downstream from the nozzle exit. The mean flow 

velocity can be evaluated as

Ps t -P b= ^ pU 2, (B.10)

where p st is stagnation pressure in the nozzle settling chamber and pi, is the barometric 

pressure. A set o f calibration points was defined by software spaced evenly over the 

selected velocity range (Ucmm to Ucmax)- Since, the CT anemometer is very high frequency 

response; the output voltage will usually correspond to the existing velocity. However, 

the velocity is normally varied stepwise, a significance difference can occur between the 

true value and the value obtained using Equation (B.10). The calibration was checked 

before and after the experiment.

Prior to the calibration, the IFA 300 Constant Temperature Anemometer system 

was started. After a certain period, the differential pressure switch was set to zero using 

the THERMALPRO software. It is specified that the software provided complete 

experiment documentation, automated calibration, traverse control, and data acquisition 

and analysis. The cable resistance using shorting probe and hot wire probe resistance was 

measured. In the screen of the THERMALPRO software, the parameters were set as
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guidelines o f the TSI supplied manual [TSI, 2003]. The TSI supplied auto cal file and 

auto calibration table was opened. Finally, the calibration was performed for 25 m/s 

velocity using the room conditions and the calibration file was saved as a different name, 

which was used in experimental measurement. The performance curve after calibration is 

shown in Figure B.2.
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Figure B.2 Performance curve for calibration before experiment

The calibrated file was used in velocity measurement with the calibrated hot wire 

probe. It is noted that the hot-wire probe was recalibrated after the experiment and 

checked any significance difference with the previous calibration results. The
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performance curve by calibration is shown in Figure B.3. It shows the calibration profile 

including the error percentage is almost identical. Hence, the data collection using the hot 

wire was sufficiently good.

Cal Curves 120124AFTER.CL
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Figure B.3 Performance curve for calibration after experiment.
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A p p e n d i x  C  

STANDARD k-e MODEL

The simplest “complete model” of turbulence is two-equation model in which the 

solution of two separate transport equations allows the turbulent velocity and length scale 

to be independently determined. The turbulent velocity scale (vt) and length scale (A) is 

deduced as:

1/
V t =  k / 2  

and

(C.l)

(C.2)

In order to compute all mean flow properties o f the turbulent flow, it need to

compute the u'v ' ; see momentum equation in section 3.1 for turbulent flow, which can be 

defined as [Wilcox, 1994]:

Tij =  —pw V (C.3)

where Tij is the stress Reynolds-stress tensor, which can be deduced:

du,, du j 
— L + — -  

ydXj dxi

2 dulr

3 dx.
(C.4)
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where 8jj is the Kronecker delta, which is a function o f two variables i and j  that equals 1 

when i -  j  and equals 0 otherwise.

In the stress tensor equation (Equation C.4), the second term o f the right hand side 

is considered as dynamic pressure, will be ignored because it is small [Chen 1988]. The 

turbulent viscosity (pO is calculated from

m = C jp
K

(C.5)

Hence, the flow parameters (i.e., vt, A, pt etc) in case of turbulent flow can be determined 

via k  and e ; see Equations (C.1-C.5). The variables ( k  and s) can be determined using 

following relations

| t(pk)+ -^ : (pkm;) = ^ -
u t  UXi UX j

f  P; 5kp + —
V °K ) dxi

+ Gk + Gb — ps — Ym + Sk (C.6)

| - ( ep) + ^ ( peM,)

(  \  
p + —

Sxj y dXj

de
+ C,t - ( G ,  + C3SGS) - C 2sp ^  + 5E

K K

(C.7)

where GK is the generation o f turbulence kinetic energy due to velocity gradients, which 

can be defined as

- y - y d U j
G k  =  - p U i V  j

dx. (C.8)
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Gb is turbulence kinetic energy due to buoyancy, Ym is the components o f dissipate rate 

due to compressible flow, SK and SE are user defined source terms [Fluent, 2003]. In this 

study, the effect o f buoyancy (due to temperature gradient) and compressible flow 

( M » l )  was negligible, so Gb and Ym were not considered. The default values were set for 

the constants (CiE, Ciz and Q )  and for the turbulent Prandtl numbers (aK, a e) in Equations 

(C.6) and (C.7) based on experimental results [Fluent, 2003]. The implemented values 

are: CiE = 1.44, C2E = 1.92, = 0.09, oK=1.0  and a E = 1.3 respectively.

Nieuwstadt [1992] and Wilcox [1993] derived the above-mentioned equations (Equations

C.6 and C.7) in details. In the derivation of the k  - s  model, it was assumed that the flow is 

fully turbulent, and the effects of molecular viscosity are negligible. The standard k  - e 

model is therefore valid only for fully turbulent flows.
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A p p e n d i x  D  

COPYRIGHT RELEASES
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