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ABSTRACT

In the literature on queueing systems, most of the papers assume that the servers are 

available all the time. But in realistic situations, there are many cases in which servers 

may fail and need to be repaired. For example, a machining center in a job shop may 

break down; a channel in a CDMA system may become noisy or lose a connection. The 

performance of a queueing system may be heavily affected by the server breakdown and 

limited repair capacity. So the research on queueing systems with server feilures has to be 

done to meet the requirements of industries.

Where queueing systems with imreliable servers are concerned, most research that has 

been done focuses on one-server systems or systems with a Poisson arrival process and 

exponential service time. However, in some situations we need to consider non­

exponential service time or service rate changes with the number of available servers. 

These are the queueing systems that are discussed in this thesis, none o f which has ever 

been discussed in the literature.

First, the queueing system M/M/n with server failures leading to possible change of 

service rate is discussed. First, a mathematical model is built and the stability condition is 

analyzed. Then the matrix geometric method is used to obtain the stationary distribution 

C o m p u ter  p ro g ra m s are d e v e lo p e d  to  im p lem en t c a lc u la t io n  fo r  th e  s ta b ility  c o n d it io n  

analysis, stationary distribution and performance measurements. Numerical examples are 

given to test the validation of the mathematical model and analysis thereafter.

Ill
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Since the phase type distribution is more general than the exponential distribution and 

captures most features of a general distribution, the phase type distributed service time is 

considered in unreliable queueing systems such as M/PH/n and M/PH/n/c. For the 

M/PH/n queueing system with unreliable servers, the mathematical model, stability 

condition analysis, stationary distribution calculation, computer programs and examples 

are all presented. For the M/PH/n/c queueing system with server failures, a finite birtb- 

and-death mathematical model is built and the stationary distribution and perfoimance 

evaluation measurements are calculated. Computer programs are developed and an 

example is given to demonstrate the application of this queueing system.

IV
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CHAPTER 1 INTRODUCTION

1.1 BACKGROUND

Queueing systems that are subject to service interruptions are commonly encountered in 

the real world. For example, a machining center in a job shop may break down due to a 

variety of reasons: preventive maintenance, power failure, tool replacement, raw material 

quality, and so on. A teller in a bank may be temporarily absent from his or her location 

in order to perform some background transactions. A queueing system with server 

interruptions is called an unreliable queueing system, a queueing system with server 

vacations, or a queueing system with server failures'-^’̂ ’'^^ In this thesis, we call all these 

kinds of service interruptions server failures. We also name the corresponding queueing 

systems as queueing systems with server failures. Figure 1.1 illustrates the single-line 

queueing system with server failures'-^^^

S en erl

Customers
Isve

Seruer2

Customer
Under lepair

Figure 1.1 Single-line queueing system with server failures
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We can describe a queueing system with server failures with the following notation, 

which uses two more characteristics than the notation Kendall devised in 1951.

1/2(7, 8)73/4/5/6

The seventh characteristic specifies the nature of the server failure times. The eighth 

characteristic specifies the nature of the server repair times.

M = Server failure (repair) times are iid and exponentially distributed.

PH = Server failure (repair) times are iid and phase type distributed.

D = Server failure (repair) times are iid and deterministic.

G = Server failure (repair) times are iid and follow some general distribution.

For example, M/M(M,M)/n represents a queueing system with n servers, exponential 

interarrival times, exponentially distributed service times, exponentially distributed server 

failure times and exponentially distributed server repair times. M/PH(M,M)/n represents 

a queueing system with n servers, exponential interarrival times, phase type distributed 

service times, exponentially distributed server failure times and exponentially distributed 

server repair times. M/PH(M,M)/n/c represents a queueing system with n servers, 

exponential interarrival times, phase type distributed service times, exponentially 

distributed server failure times, exponentially distributed server repair times and a total 

capacity of c customers.

1.2 OBJECTIVES

A lth o u g h  r e se a r c h  o f  q u e u e in g  sy s te m s  w ith  serv er  fa ilu res h as b e e n  w o rk ed  o n  fo r  a b o u t  

half a century, some areas still need to be discussed to meet the requirements of industries. 

For instance, the service time of secretaries may be shorter if one of them is absent and
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the customers are in a long line waiting to be served. The service time of a flexible 

manufacturing cell would be longer if one of the workstations is broken. So, the change 

of the service rate is considered for M/M/n queueing systems with server failures in this 

thesis. As a more general distribution, phase type distributed service time for multi-server 

queueing systems with server failures is discussed too. The objectives o f the research are:

(1) To discuss the queueing ^stem  M/M/n with server failures when the service rate 

changes with the number of available servers.

(2) To discuss the queueing systems M/PH/n and M/PH/n/c with server failures.

(3) To build a mathematical model, to analyze the stability condition (for infinite capacity 

queueing systems only), to find a method to obtain the stationary distribution, and to 

calculate some performance measurements for every queueing system.

(4) To develop computer programs to implement the analysis and calculation in (3).

(5) To validate the stability condition analysis and calculation method by examples for 

every queueing system.

1.3 THESIS OVERVIEW

Chapter 1 provides the introduction of queueing systems with server failures. Different 

kinds o f queueing systems are introduced. The objectives o f this research are also 

presented.

In chapter 2, a thorough literature review of important research work related to queueing 

systems, especially to the unreliable server queueing systems, is provided.
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Chapter 3 analyzes the M/M/n queueing system with server failures and different service 

rates compared to the M/M/n queueing system with server failures and the same service 

rate. Mathematical models are set up, stability conditions are analyzed, a stationary 

distribution calculation method is discussed, computer programs are developed, and 

application examples are presented.

Chapter 4 presents an analysis of M/PH/n and M/PH/n/c queueing systems. The 

assumptions, notation, model, stability condition analysis (for the M/PH/n queueing 

system), and performance measurement calculations are discussed. Computer programs 

and examples are also provided to demonstrate the analysis and calculation.

The thesis is concluded with a discussion of conclusions, contributions, and suggestions 

for further research work in chapter 5.
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CHAPTER 2 LITERATURE REVIEW

The problem of queueing systems with server failures is of continuing interest to many 

researchers. Several models have been built and analyzed. For a survey of this work, 

emphasis has been given to the models themselves.

2.1 OVERVIEW OF QUEUEING SYSTEMS WITH SERVER FAILURES 

The work of White and his team'̂ *̂̂

The problem of queueing systems with server failures was introduced when researchers 

studied the priority queueing systems.

White et al. (1958) introduced queueing systems with server interruptions. They pointed 

out the similarity o f queueing with breakdown to queueing with preemptive priority and 

worked out two models of breakdown effects when they discussed the preemptive 

priority queueing system M/G/1 and found the steady state solutions to it. They assumed 

that the server breakdown distribution is the distribution of the time to failure, which is 

exponential (i.e., the breakdown process is a Poisson process), the distribution of repair 

times is exponential, and the interrupted item reenters the facility after repairs.

The work of Keilson and his

Keilson (1962) discussed the M/G (M, G)/l queue with interruptions by server 

breakdowns or the arrival of customers with higher priority. The time dependent behavior 

of the system is discussed in a complete state space and the joint density o f  all system 

variables of this space is constructed systematically from the densities associated with a
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set o f simpler first-passage problems. Equilibrium distributions are available as limiting 

forms and server busy period distributions are obtained.

The work of Thiruvengadamf^^^

Thiruvengadam (1963) considered a single-server M/G (M, G)/l queueing system with 

server breakdowns. Three models were discussed. Model 1 permits a queue of 

breakdowns, Model 2 assumes that no latent breakdown can build up when the system is 

cut o f order, but still the breakdowns can happen anytime (i.e., when the server is busy or 

idle). Model 3 assumes that breakdowns are restricted to the server busy time.

The work of Avi-Itzhak and his

Avi-Itzhak et al. (1963) also discussed M/G (M, G)/l queueing system with server 

breakdowns. Five models which deal with different assumptions about breakdown 

situations are considered.

Until this time, all research was focused on various single-server systems, while very 

little was known about the many-server systems with service interruptions.

The work of Mitrany and Avi-Itzhak^ *̂^

Mitrany and Avi-Itzhak (1968) studied and analyzed a steady-state M/M/N queueing 

sy s te m  w h e r e  e a c h  serv er  is  su b jec t to  ra n d o m  b rea k d o w n s o f  e x p o n e n tia lly  d is tr ib u ted  

duration. The moment generating function of the queue size is obtained in explicit form
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for N<=2. For larger values of H  a numerical method is suggested. They assumed that 

there is the same number of repairmen as the number of servers in the system.

The method used in their research is tedious. It is based on transforms and involves the 

determination o f N-1 distinct roots of a certain polynomial in the interval (0, 1). Besides, 

generalization for an arbitrary number of servers is not straightforward. This prompted 

the need for alternative techniques that would simplify the analysis and provide 

significant computational improvements over the classical methods.

The work of Neuts and his

Neuts et al. (1979) also discussed the model of M/M (M, M)/N queue with server failures. 

In this system, it is explicitly pointed out and studied that there are c (c<=N) repair 

persons available to repair the breakdown servers. The new matrix geometric 

methodological results are discussed and the utility of interactive computation in 

answering questions on the behavior, design and control of certain service systems is 

demonstrated.

The work of Vinod and his

Vinod (1985) considered the M/M (M, M)/N model with ample repair (K=N). For N =l, 

he discussed two models which have different assumptions about the server down- 

periods, either independent o f the queue length or only occurring when the server is 

active. The matrix geometric method is used here to demonstrate the computational 

tractability of an unreliable queueing system. More computational results are given in his 

research than in Neuts’ research. In addition, numerical examples are given.
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The work of Federgruen and his

Federgruen et al. (1986) discussed an M/G (G, G )/l queueing system with server 

interruptions. Bounds and approximations for the mean waiting time, probability o f  delay 

and steady-state distribution o f  the number in system are derived. These results are exact 

for the case o f an M /G (G, M )/l queueing system. In 1988, Federgruen and Green 

presented an exact solution method for an M/G (PH, G )/l queueing system w ith server 

breakdowns. In 1990, Federgruen and So studied the corrective maintenance policy that 

minimizes the long-run average operating costs o f  the M/G/1 queueing system with 

server breakdowns.

The work of Sengupta^ '̂^

Sengupta (1990) considered a single server queue that operates in a random environment 

defined by an alternating renewal process with states 1 and 2. The arrival and service 

rates o f the periods when the server is up can be different from those o f  the periods when 

the server is down. Thus, it is a generalization o f other single server queueing system 

with server breakdowns. For an M/G (M, M )/l queueing system, a closed form o f the 

mean waiting time is obtained. But for an M/G (G, M )/l system, only a calculable 

approximation is proposed and compared to the simulation results.

The work of Wartenhorst^^^^

W artenhorst (1995) studied the M / M (M, M) / N queueing system with K (K<N) 

parallel repairmen. There is a queue at each server. He was interested in the mutual 

influence o f different queueing systems via the limited repair capacity. The marginal
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queue length distribution and the conditional distributions of the queue length are given 

and an approximating model is also developed to save time and memory for calculation 

by giving some assumptions.

The work of

Tang (1995) studied an GI/G(M, G)/l queueing system and some reliability quantities of 

the service station are obtained. Tang (1997) considered a single server M/G/1 queueing 

system with server breakdowns subject to different distributions according to the state 

(working or idle) o f the server. Some reliability problems as well as queueing problems 

are studied and some transform results are obtained. In 1999, Tang considered an M/G/1 

queueing system with a repairable station and server vacations. Some reliability problems 

of the service station were discussed.

The work of Li and his

Li et al. (1997) studied the PH/PH(M,PH)/1 queueing system The steady state 

availability and steady state failure frequency of the server are obtained. Some reliability 

problems are also discussed. He also studied MAP/PH (M/PH)/2 queueing systems with 

one repair crew. The stable availability and the stable failed frequency of system, the 

distribution of time to failure and its mean are given.

The work of Yue and Caô '*̂ ^

Yue and Cao (1997) did some work on a priority queueing system M ;'', M^’ /Gi, G /̂1 

with a repairable service station In this system, the server has a constant failure rate and
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arbitrary repair time distribution. Some reliability measurements are obtained via Laplace 

transform and some queueing measurements are also obtained.

The work of Hsieh and his

Hsieh et al. (1995) studied the M/M (M, M)/l system with server breakdown. A simple 

partition balance approach (can only solve the queueing system with one server) is 

presented. The expressions for the availability, steady-state queue length distribution, 

mean queue length, and sen-'cr utilization of the system subject to multi-mode, bi-level 

are derived and numerical examples are given

The work of Zhang and his

Zhang et al. (1997) treated two-threshold policies for an M/G/1 queue with two types of 

generally distributed random vacations: type 1 (long) and type 2 (short) vacations, 

studied an M/G/1 queue with an exceptional first vacation in 1998, and considered a 

single server queueing system with Poisson arrivals and multiple vacation types, in which 

the server can choose one of several types of vacations to take when he finishes serving 

all customers in the system, in 2001. For every model, they tried to determine the optimal 

service policy to minimize the long-term average cost of this vacation system.

The work of Madan and his team ’̂’^̂ '̂ ^

M ad an  e t al. (2001) s tu d ied  a s in g le  serv er  v a c a t io n  q u eu e  w ith  P o is s o n  arriva ls, 

deterministic service of constant duration b(> 0) and general vacations and designated 

this model as M/D/G/1 and obtained the time-dependent as well as steady state

10
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probability generating functions for the number in the system in 2001. They obtained the 

steady state probability generating function of the queue length for various states of the 

server in an M/Gi,G2/D/l queue. They also studied a single server vacation queue with 

Poisson arrivals, deterministic service of constant duration b (> 0) and deterministic 

vacations of constant duration d (> 0) M/D/D/1, analyzed the steady state behavior of an 

M/D/1 queue with Bernoulli schedules and Coxian-2 server vacations, and investigated 

the steady state behavior of an M/G/1 queue with modified Bernoulli schedule server 

vacations in 2002.

2.2 SUMMARY OF QUEUEING SYSTEMS WITH SERVER FAILURES

The Summary of the literature review of the queueing systems with server failures is 

illustrated in table 2.1 on page 12.

2.3 DISCUSSION

This chapter began with the literature overview of queueing systems with server failures. 

A detailed literature review was presented first. Then a table o f the summary of the 

literature overview was provided at the end of this chapter. Many queueing systems have 

been covered in the literature. However, for some realistic problems, queueing systems 

with different service rates or non-exponential service times may need to be considered. 

These are queueing systems that will be discussed in the next two chapters.

11

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Table 2.1 Summary o f queueing systems with server failures

Researchers Queueing systems Objectives
White et al. 
(1958)

M/G/1 Pointed out the similarity o f queueing with breakdowns to 
queueing with preemptive priority

Keilson et al. 
(1962)

M/G (M, G )/l Discussed the method to obtain the joint density, 
equilibrium distributions, and server busy period 
distributions.

Thiruvengadam
(1963)

M/G (M, G )/l Discussed three queueing systems models with different 
assumptions about server failure styles.

Avi-Itzhak et al. 
(1963)

M/G (M, G )/l Considered five models which deal with different 
assumptions about the server breakdown situations.

Mitrany and Avi- 
Itzhak (1968)

M/M/N Obtained the moment generating function o f  the queue size 
in explicit form for N<=2; Suggested a numerical method 
for larger values o f  N.

Neuts et al. 
(1979)

M/M (M, M)/N Pointed out the number o f repair persons c (c<=N ) in the 
queueing systems; Discussed the new matrix geometric 
methodological results; Demonstrated the utility o f  
interactive computation in analysis o f  the behavior, design 
and control o f  certain service systems.

Vinod (1985) M/M (M, M)/N Discussed two models with different assumptions about the 
server down-periods for N =l; Gave m ore computational 
results and numerical examples.

Federgruen et al. 
(1986-1990)

M/G (G, G )/l 
M/G (PH, G )/l

Derived the mean waiting time, probability o f  delay and 
steady-state distribution; Studied the corrective 
maintenance policy to minimize the long-run average 
operating costs.

Sengupta (1990) M/G (M, M )/l 
M/G (G, M )/l

Obtained the closed form o f  mean waiting time for M/G 
(M, M )/l; Proposed a calculable approximation for M/G 
(G, M )/l.

Wartenhorst
(1995)

M/M (M, M)/N Gave the marginal queue length distribution and the 
conditional distributions; Developed an approximating 
model to save time and nemory for calculation by giving  
some assumptions.

Tang
(1995,1997,1999)

M/G/1 Studied some reliability problems as well as queueing 
problems; Obtained some transform results.

Li et al. (1997) PH/PH(M,PH)/1 Obtained the steady availability and steady failure 
frequency o f  the server.

MAP/PH (M/PH)/2 Gave the stable availability and the stable failed frequency 
o f the system.

Yue and Cao 
(1997)

G 2/ I Obtained some reliability measurements in Laplace 
transform and some queueing measurements.

Hsieh et al. 
(1995)

M/M (M, M )/l Derived the expressions for the availability, steady-state 
queue length distribution, mean queue length, and server 
utilization o f  the system.

Zhang (1997- 
2001)

M/G/1 Considered different server vacations type, determined the 
optimal service policy to minimize the long-term average 
cost o f  this vacation system.

Madan (2001- 
2002

M/D/G/1, 
M/G|,G2/D/1, 
M /D /D /1, 
M/G/1

Obtained the time-dependent as w ell as the steady state 
behavior o f  the server for every queueing system.

12
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CHAPTER 3 M/M/n QUEUEING SYSTEM WITH SERVER 

FAILURES

The simplest and most extensively studied queueing models are those having a Poisson 

arrival process and exponentially distributed service times. In these cases the queue size 

forms a birth and death process, and the corresponding stationary distribution is readily 

found. In this chapter, the reliability of the servers is considered. The M/M(M, M )/l, 

M/M(M, M)/2 and M/M(M, M)/n queueing systems (We use M/M/1, M/M/2 and M/M/n 

respectively later for abbreviation) are discussed.

Notation in this chapter;

T Intensity or rate of the Poisson arrival process 

Hi Parameter of the exponential distribution of the service time 

6 Parameter of the exponential distribution of the server failure time 

Y Parameter of the exponential distribution of the server repair time 

L Mean queue length

W Mean o f the exponential waiting time distribution 

n Number of the servers 

k  Number of the repair persons (1< =k< =n)

K Limiting or equilibrium distribution of queue length 

Assumptions:

• The servers cannot help each other, even if  some of them are idle.

13
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• A server can fail when it is idle (since failure here refers to non-working 

condition of any reason) unless other assumptions are mentioned 

explicitly.

•  Infinite capacity of the system.

• k(l<  =k< =n) repair persons

3.1 MODELING OF M/M(M, M)/n QUEUEING SYSTEM

3.1.1 M/M/n Queueing System with the Same Service Rates

The M/M/1, M/M/2 and M/M/n queueing systems are discussed respectively. When we 

consider the server failures, the infinitesimal matrices will have the following structures. 

In the matrices, an element is omitted if it is 0.

3.1.1.1 M/M/1 queueing system with server failures

For the M/M/1 queueing system with server failures, the state space of the system is 

E={(i, j); i> -0, j= 0 ,l} . the infinitesimal matrix is the following matrix (the server can 

fail when the system is empty):

•̂ 0 ^0 
■̂2 ^0

^2 ■̂l ■̂0

where

=
(X + /l) Y

9 - { 9  + X)

14
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^0 “

■(r+A) r
0 — (/i 0 + X)

All the matrices are 2 x 2 matrices.

If we consider the case where the server cannot fail when the system is empty, the state 

space of the system is E={(i, j);  i>=0, j-0 ,1 } . The infinitesimal matrix becomes the 

following:

B C

A
A2 Â  Aq

E  Aj A q

where

B = - X ,  

c = [o X],

E =

A

X
X

(r+X)  Y
0 — (/i + ^ + /I)

15
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-

3.1.1.2 M/M/2 system with server failures

If there is only one repair person, the state space of the M/M/2 queueing system is £={(i, 

j); i>-0, j= 0,l,2}. The infinitesimal matrix for the system with server failures is as 

follows:

^00 
•̂ [0 -̂ 11 

A.

where

•̂ 00 “

-(y  + /l) r  

0 - ( 9  + y + A) y
29 - ( 2 9  + 2)

B,n -

M

B n -

(r + X) y
9 - ( f i  + 9 + y  + X) y

29 — (jLi + 29 + X)

X
X

16

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



A =
( r + ^ )  7

6  - ( / /  + 6> + /  + A) y
26 - { l /u  + i e  + X)

Ai — M

l/u

All the matrices are 3x3 matrices.

If there are two repair persons, the state space o f the M/M/2 queueing system is E={(i,j); 

i>=0,j=0,l,2}. The infinitesimal matrix for the system with server failures is as follows:

•®oo -̂ 0 
Al

/4| Aq

where

-̂ 00 “

-{y + 2X) 2y
6 - { 6  + y  + X) y

26 -{ 2 6  + 2)

-̂ 10

B

■{2y + 2)  
6

2y
-{jj. + 6 + y  + X) 

26
7

— {/j. + 26 + X)

17
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A =
-(2/  + A) 2 /

6 - { / j  + 6 + y  + A) y
26 - { 2 ^  + 26 +A)

A  ~
2 / i

All the matrices are 3x3  matrices.

3.1.1.3 M/M/n system with server failures^^^^

If there is only one repair person in the system, the state space o f the system is E={(i, j); 

i>=0, j=0,l,2, ..., n}. The infinitesimal matrix for the M/M/n queueing system with 

server failures is as follows, for each block matrix z = 0,1,2, •••, 7 = 0,1,2, • • •.

B A,
A,

where the block matrices are as follows

18
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I n

0 - 1) / /

i n

'A

B . =

-(y+A) r
6 -{n+B+Y+X) Y

iO - { in + iO + Y + A )

- { in +{ n- \ ) 6+ Y + A )  Y
nd - ( in +nd +X )

A

A

A  = B „ „ ,

All the block matrices are (n + l )x(«  + l) matrices, corresponding to the number of 

working servers 0, 1, 2, ..., n.

If there are k (l<k<=n) repair persons in the system, the infinitesimal matrix for the 

M/M/n queueing system with server failures is as follows, for each block matrix 5,̂  ,

/ = 0,1,2, - ,  y = 0,l,2, - - .

19
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•®00 ■̂0
B,r. B,

where the block matrices are as follows

2m

0-l)M
‘M

iM

-(A7+/1) ky
6 -(jj-\-0+mmi!-\,k)y+X) m i r i^ - 1 , / : ) /

-{i^-¥{n-\)9-¥y+X) y
n0 -(fM+n0+X)

A
A

A

20
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All the block matrices are (« + l)x («  + l) matrices, corresponding to the number of

working servers 0, 1,2, . . n.

3.1.2 M/M/n Queueing System with Different Service Rates

So far we have assumed that service rates are independent of the state of the system. 

Sometimes as fewer servers become available, the remaining servers start to work faster 

or slower. Hence service rates may change with the state of the system. We have to 

consider the change o f the service rate of servers. The following part is the discussion 

about the M/M/n system with different service rates when the number o f available servers 

changes. The service rate is //, when the number o f available servers is i .

If there is only one repair person in the system, the state space o f the system is E={(i,j); 

i>=0, j=0,},2, n}. The infinitesimal matrix for the M/M/n queueing system with

different service rates and server failures is as follows, for each block matrix 5,..,

/■=::0,1,2,---, y = 0,1,2,---.

-So,
Bn B„

A
A A
A A

A A

where the block matrices are as follows
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5,,-, =

in^

('■ -
'A,

'A/

5. =

-(/ + A) y
6> -(/^+^ + y + /l) r

i9 ~{i;^^+i9+y + X)

- { iM i + {n-X)9 + Y  + X) y

s 9  ~(i fJi+n9 + X)

Ao =

i
A

A

A_

•̂ 1 ~ /̂m ’

A= B„.n-r

All the block matrices are (« + l)x (/i + l) matrices, corresponding to the number of 

working servers 0, 1, 2,

If we consider the case that there are k (l<k<=n) repair persons in the system, the state 

space of the system is E={(i, j); i>=0, j-0 ,1,2 , n}. The infinitesimal matrix for the

M/M/n queueing system with different service rates and server failures is as follows, for 

each block matrix 5,.., z = 0,1,2, •••, y = 0,1,2, •••.

22
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■̂00 •'̂ 0 
B,,

Bn,n-\ 1

where the block matrices are as follows

2>«2

'A,

5,=

-(Ar+i) V
6  ~ C q + 0 + m ir v ^ - l ,A ) ; '+ / l )  m in ;^ - l ,A ) /

A  = A

/I

A  =B„„,

23
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All the block matrices are (n + l)x (n  + l) matrices, corresponding to the number of

working servers 0, 1,2,

3.2 STABILITY CONDITION

To evaluate the stationary distributions for the M/M/n queueing system with server 

failures and different service rates, the stability condition has to be established first. If 

there is only one repair person in the system, the stability condition is as follows. We 

define ;r, = P( i servers are available). Let A -  Aq+ Â  + Aj and m4 = 0, 7ve = l ,  where

7t — [tT q  7T] Ttj * ' * „ ]  .

Then

A — A q +  ylj +  A^ —

- y  r  
e  - { e  + y)  r

i 9  - { i G  + y )

The balance equations are

^ 0  ir) + (-^ -  r) + ̂ 2  (2^) = 0, 

^1 ir) + ̂ 2  (-2<9 -  r) + ̂ 3  (3<9) = 0 ,

- ( ( n - l ) 9  + y )  y  

n O  -  n O

( 1)

(2)

(3)

7t„_^{y) + K„{-ne) = Q). 

From (1), we can get:

(4)
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= ^ o ( r ) ( ^ r ‘ = ^ o ? = ? ^ o - (5)

Substituting (5) into (2), we can get:

r7t. =  -TV. .
'  29^  “

(6)

Substituting (5), (6) into (3),

-

From equations (5), (6 )and (7), we can know that

(7)

(8)

We know that

;To + ;r, + ;r, H 1- ;r„ = 1.

Substituting (5), (6),(7) and (8) into (9), give us

t j ( § ) X = l  and

(9)

( 10)

i=0 I- “

Now TzAf̂ e = 7t{M)e -  k m  -  k , ( 11)

r  o ^

^ 2̂  -  ^
A

= (^0 •••

t - S & M ,
_  1=0 ______

n 1 ’

1=0

( 12)
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where e is the column vector with all entries 1.

So, according to the conclusion of page 83 o f the reference [30], the stability condition 

for the M/M/n with server failures and one repair person is

 . (13)
Ej(l)'?=0

If //, = / / ,  and K = 1, this is one-server queueing system. Then the right hand side of (13) 

is

' /

yThen the stability condition is /I < —-—  n . That is, the arrival rate is less than the average
9 + y

service rate.

If f j . . -  Id, and « ^  CO, this is a self-service queueing system. Then the right hand side of 

(13) is

y/=o  ̂- -  e ^  ^  y, ̂
® 1 I

/=0

yThen the stability condition is A < ^  / i .

If there are n repair persons in the system, the stability condition is as follows.

26
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Let A = Aq + + A2 and td4 = 0 , ^  = 1, where ^  = [^g /r, ••• and e is the

column vector with all entries 1.

Then

-  ny ny
9 - { 9  + { n - \ )y )  { n - \ ) y

id -{iG + {n - i)y )

-  ((« - 1)(9 1 J') y 
nO - n 9

The balance equations are

^ o (-« /)  + ^i (<9) = 0 ,

Ttg {ny) + ;r, { -9  - { n - \ ) y )  + (2(9) = 0 ,

{n -  l)y + Tt̂  {-29 - { n -  2)y) + (3^) = 0 ,

(21)

(22)

(23).

^„_i(/) + ^ „ (-« ^ )  = 0 .

From (21), we can get:

= ^ o (« r)(^ )‘ ' = ^ ^ 0- 

Substituting (25) into (22), we can get:

n{n -  l)y" 
29-

Substituting (25), (26) to (23),

v2 y

(24)

(25)

(26)

(27)

27
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From equations (25), (26) and (27), we find that

(28)

We know that

7i:q+ n^+ t:2 + ' ' '  + = 1 •

Substituting (25), (26),(27) and (28) into (29), gives us

( ^ ) x = i .

/=o V‘ y
A ' ] - '  .e

Now, = 7t{M)e = Xttb = X , and

( 0 ^

TiÂ e - n A

^ ( n \

= (^0 •••
A

i=0

1=0 v 'y e

(29)

(30)

(31)

(32)

So, the stability condition for the M/M/n queueing system with server failures and n 

repair persons is

X< (33)

I"
1=0 V ̂  y e

28
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3.3 STATIONARY DISTRIBUTION

From part 3.1, we know that the infinitesimal matrix of the M/M/n queueing system with 

server failures leading to possible change of service rate is as follows:

^ 0(
Bu

B„
A,

From the structure o f the infinitesimal matrix, we know that this queueing system is a 

Quasi-Birth-and-death (QBD) process. We can use the matrix geometric methods (page 

83 of reference [30] ) to obtain the stationary distribution. The method is as shown in 

table 3.1.

Table 3.1 Matrix geometric method for QBD processes

Step 1. Generate the infinitesimal matrix Q.

Step 2. Stability condition analysis.

Step 3. Calculate matrix R from 0 = + RA, + ■

Step 4. Calculate stationary distribution vector X from Ab=7, boundary matrix BfRJ, and 

the relationships of A, (i>=n).

Step 5. Calculate the performance measurements such as server utilization, mean queue 

length and mean waiting time.

Step 6. Analysis and discussion.

29
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We have discussed the infinitesimal matrix Q and stability condition already. Here we 

start to discuss the method to obtain matrix R and stationary distribution vector X. From 

reference [30], we know that R is the minimal normegative solution o f the matrix- 

quadratic equation0 -  RA^ + R^ A2. Here we evaluate the matrix R numerically. To 

facilitate the computation, first we let i?, be a zero matrix of order n + i. Then we 

compute = -{A^+ R^^A2) A ^ \  where k  is the notation of iteration. After every

iteration, we compare and , until each element of the difference matrix is less than 

a very small number s . Then we let R = .

We can get the boundary matrix B[R] by calculating the block matrices in the

infinitesimal matrix o f the M/M/n queueing system in part 3.1 for / = 0, 1,2, ..., n, and j  

= 0, 1, 2 , . . . ,  n. Be careful that = A^+ R A j , not A^.

Since = X^R for / > n ,

Y ^X ,e  = ( X , + X , + X 2 + -  + X„)e + (

^ { X , + X , + X 2 + -  + X„)e + {X„R + X„R^ + - ) e  

= { X o + X , + X 2 + -  + X„)e + X „ i I - R y ' e  = l,

where e is the column vector with all entries 1.

We can combine 0=XB[R] and (Xq +X^ + X 2 h—  + X^)e + X „ (l -R )~ 'e  = l to  obtain 

the first (n+l)(n+l) dimensions o f the stationary distribution vector X. Then obtain the 

other dimensions o f 2/ by the relationship of = X^R.

Then we can get the mean queue length
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w-1
= iX^e +nX„e + (« + \)X„ Re+ (n + 2)X„R^e + ■■■

1

n—\

= Y,i2Cie+nX„(l + R + R^ +---)e + X„(R + 2R^ +---)e
I

= X  iX,e +nX„ ( / - / ? ) - '  e + X „ R m  -  R ^  f  e.

the mean waiting time W - L l l  and the server utilization I - X ^ e .

3.4 NUMERICAL EXAMPLES

Computer programs (MATLAB) have been written to implement the calculation to check 

the stability condition, to obtain the stationary distribution, the mean queue length and the 

mean waiting time. Here are some results obtained from the computer programs.

The initial parameters:

Customer arrival rate A = 0.01;

Service rates jUt= 0.05;

Number o f servers n;

Number o f repair persons k (l<=k<=n)\

Server failure rate &,

Server repair rate y.

Here are the sample results from MATLAB programs for « = 3 and k = 2. Table 3.2 

illustrates some results obtained for the M/M/n queueing system with unreliable servers.

31
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This system is a stable system, continue!

A'= (0 .0009  0.0184 0.1843 0.6146 0.0002 0.0037 0.0369 0.1231

0.0000 0.0004 0.0037 0.0124 0.0000 0.0000 0.0003 0 .0009 ...)

m eanlength= 0.2012  

meanwaitingtime= 20.1194

We can find that when the server number is the same, the mean queue length and the 

mean waiting time decrease when the number of repair persons increases.

Tables.2 MATLAB program results of M/M/n queueing system with unreliable servers

Number o f 
servers

n

Number o f  
repairpersons

k

Failure rate

e

Repair rate

r

Mean queue length 

L

Mean waiting time 

IV

0.10 0.2032 20.3176

0.15 0.2013 20.1308

0.01 0.20 0.2008 20.0754

0.25 0.2005 20.0518

0.10 0.2799 27.9891

1 0.05 0.15 0.2337 23.3682

0.20 0.2178 21.7801

0.25 0.2108 21.0796

0.10 0.4423 44.2316

0.10 0.15 0.3158 31.5825
3 0.20 0.2666 26.6618

0.25 0.2426 24.2560

0.10 0.2013 20.1301

0.15 0.2007 20.0675

0.01 0.20 0.2005 20.0454

0.25 0,2003 20.0347

0.10 0.2237 22.3705

3Z
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Table 3.2 (Cont’d)

3

2 0.05 0.15 0.2105 21.0492

0.20 0.2059 20.5920

0.25 0.2038 20.3839

0.10

0.10 0.2774 27.7384

0.15 0.2367 23.6705

0.20 0.2212 22.1241

0.25 0.2138 21.3807

0.10 0.2012 20.1185

0.15 0.2006 20.0642

0 .01 0.20 0.2004 20.0440

0.25 0.2003 20.0340

0.10 0.2175 21.7465

3 0.05 0.15 0.2082 20.8245

0.20 0.2049 20.4865

0.25 0.2033 20.3261

0.10 0.2537 25.3670

0.10 0.15 0.2267 22.6724

0.20 0.2161 21.6054

0.25 0.2108 21.0755

0.10 0.2011 20.1113

0.15 0.2003 20.0319

0.01 0.20 0.2001 20.0141

0.25 0.2001 20.0078

0.10 0.2714 27.1429

1 0.05 0.15 0.2263 22.6299

0.20 0.2120 21.2031

0.25 0.2064 20.6355

0.10 0.4361 43.6099

0.10 0.15 0.3085 30.8475

0.20 0.2590 25.9005

0.25 0.2353 23.5295

0.10 0.2002 20.0237

0.15 0.2001 20.0089

0.01 0.20 0.2000 20.0048
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Table 3.2 (Cont’d)

0.25 0.2000 20.0032

0.10 0.2144 21.4357

2 0.05 0.15 0.2049 20.4905

0.20 0.2022 20.2242

0.25 0.2012 20.1221

0.10 0.2626 26.2560

4 0.10 0.15 0.2254 22.5433

0.20 0.2127 21.2704

0.25 0.2072 20.7222

0.10 0.2002 20.0168

0.15 0.2001 20.0071

0.01 0.20 0.2000 20.0041

0.25 0.2000 20.0028

0.10 0.2072 20.7222

3 0.05 0.15 0.2026 20.2649

0.20 0.2013 20.1292

0.25 0.2007 20.0745

0.10 0.2314 23.1411

0.10 0.15 0.2129 21.2929

0.20 0.2066 20.6630

0.25 0.2039 20.3885

0.10 0.2002 20.0162

0.15 0.2001 20.0070

0.01 0.20 0.2000 20.0041

0.25 0.2000 20.0028

0.10 0.2060 20.6032

0.15 0.2023 20.2316

4 0.05 0.20 0.2012 20.1164

0.25 0.2007 20.0685

0.10 0.2249 22.4879

0.10 0.15 0.2106 21.0630

0.20 0.2056 20.5606

0.25 0.2034 20.3358

0.10 0.2005 20.0485
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0.15 0.2001 20.0098

0.01 0.20 0.2000 20.0033

0.25 0.2000 20.0015

0.10 0.2687 26.8657

1 0.05 0.15 0.2233 22.3316

0.20 0.2096 20.9590

0.25 0.2045 20.4520

0.10 0.4350 43.5028

0.10 0.15 0.3066 30.6595

0.20 0.2566 25.6553

0.25 0.2326 23.2616

0.10 0.2001 20.0054

0.15 0.2000 20.0014

0.01 0.20 0.2000 20.0006

0.25 0.2000 20.0003

0.10 0.2107 21.0672

2 0.05 0.15 0.2029 20.2894

0.20 0.2011 20.1081

0.25 0.2005 20.0496

0.10 0.2577 25.7749
5

0.10 0.15 0.2211 22.1147

0.20 0.2094 20.9384

0.25 0.2047 20.4742

0.10 0.2000 20.0027

0.15 0.2000 20.0008

0.01 0.20 0.2000 20.0004

0.25 0.2000 20.0002

0.10 0.2039 20.3853

3 0.05 0.15 0.2011 20.1075

0.20 0.2004 20.0424

0.25 0.2002 20.0205

0.10 0.2236 22.3637

0.10 0.15 0.2081 20.8091

0.20 0.2035 20.3520
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Table 3.2 (Cont’d)

0.25 0.2018 20.1786

0.10 0.2000 20.0023

0.15 0.2000 20.0008

0.01 0.20 0.2000 20.0004

0.25 0.2000 20.0002

0.10 0.2025 20.2452

0.15 0.2007 20.0732

4 0.05 0.20 0.2003 20.0304

0.25 0.2002 20.0154

0.10 0.2145 21.4480

0.10 0.15 0.2051 20.5091

0.20 0.2023 20.2287

0.25 0.2012 20.1197

0.10 0.2000 20.0022

0.15 0.2000 20.0008

0.01 0.20 0.2000 20.0004

0.25 0.2000 20.0002

0.10 0.2022 20.2180

0.15 0.2007 20.0673

5 0.05 0.20 0.2003 20.0286

0.25 0.2001 20.0147

0.10 0.2123 21.2289

0.10 0.15 0.2045 20.4454

0.20 0.2020 20.2046

0.25 0.2011 20.1090

From the results, we also have the following figures. In each figure, the other parameters 

do not change.
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Figure 3.1 Mean queue length increases with the failure rate
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Figure 3.2 Mean queue length decreases with the repair rate
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Figure 3.3 Mean queue length decreases with the number of servers

These figures tell us that the number of servers, failure rate, and repair rate affect the 

performance o f a queueing system. Thus, we should take all these besides the arrival rate 

and service rate into account when we design or evaluate a queueing system. When n>4, 

the mean length and the mean waiting time do not change much. This is consistent with 

the common knowledge that we do not need to provide many servers when we have a 

small number o f customers.

3.5 APPLICATION -  FLEXIBLE MANUFACTURING CELL

There are 3 processing workstations, CNC (Computer Numerical Control) machining 

centers, at a flexible manufacturing cell (FMC) in a plant. The parts are loaded to this cell 

according to a Poisson arrival process of which the rate is 54 parts per hour. The
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processing times of the workstations are exponentially distributed with different rates; 

that is, the rate changes with the number of the available workstations. When only 1 

workstation is available, the processing rate is 16 parts per hour; 2 workstations are 

available, the rate is 18 parts per hour per workstation; while all the 3 workstations are 

available, the rate is 20 parts per hour per workstation, since the number of fixture 

changes is much less. Parts are unloaded from this cell right after they are processed. 

When one workstation is working, the probability that it breaks down in the next minute 

is exponentially distributed with the rate o f 0.0001. Repair on the workstation begins 

immediately after it breaks down. There is only one repair group in this FMC. While one 

workstation is under repair, the probability that the repair is finished and the workstation 

returns to a working state in the next minute is exponentially distributed with a rate of 

0.05.

This problem can be modeled as an M/M (M, M) /n queueing system with server failures 

(n=3). While the rate of the Poisson arrival process X is 0.9, the service rate is //, =

0.26667, ^2 ~ and jû  = 0.33333 per minute per workstation when 1, 2 or 3 

workstations are working, respectively. The server failure time is exponentially 

distributed with the rate of 0=  0.0001. The server repair time is exponentially distributed 

with the rate o f 0.05. The number of repair persons k  is 1.

Our computer programs (group mmsu) can be used to solve this model. The parameters 

are as follows:
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M = 3;

A  =  0.9;

/J = [0 .2 6 6 6 6 7 ,0 .3 ,0 .3 3 3 3 3 3 ]; / / / i ,  , and / ij  

/= 0 .0 5 ;

^ = 0 .0001;

k = U

After running the program, we get the first 16 components of the steady state distribution:

,y = (  0.0000 0.0000 O.OOOO O.Ol?? O.OOOO O.OOOO 0.0001 0.0598 

0.0000 0.0000 0.0002 0.0898 0.0000 0.0000 0.0002 0 .0 8 0 8 ...)

and

meanlength= 10.5638 

meanwaitingtime =  11.7376

This means that there are about 10 parts in this FMC on the average, and the average time 

of one part staying in this cell is about 12 minutes. The probability that there is a 

workstation waiting for a part is 16.76%.

We consider the case 2 in which the loading rate is increased to 58 parts per hour. Then 

the arrival rate becomes 0.9667. If the service rates keep the same as the first scenario, 

the parameters will be:

a = 3;

A  =  0.9667;
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fJ. =  [0.266667, 0.3, 0.333333]; // , fX̂  and /Ll̂

/= 0 .0 5 ;

^ = 0 .0001;

A: =  1;

with the program, we can get the first 16 components of the steady state distribution.

(0.0000 0.0000 0.0000 0.0051 0.0000 0.0000 0.0000 0.0187 

0.0000 0.0000 0.0001 0.0301 0.0000 0.0000 0.0001 0 .0291 ...)

and

meanlength = 33.0959  

meanwaitingtime =  34.2360

Compared with the first scenario, the loading rate is only increased by 7.4%, but the 

mean queueing length and mean waiting time are increased by about 200 percent. If the 

space in the cell is enough, it is nice to have the load speed increased a little bit since we 

can get a higher utilization of the workstations.

Tables.3 MATLAB program results of a flexible manufacturing cell

Case Arrival rate Failure rate

9

Repair rate

r

Mean queue length 

L

Mean waiting time 

W

1 0.9 0.0001 0.05 10.5638 11.7376

2 0 .9 6 6 7 0.0001 0.05 33.0959 34.2360

3 0.9 0.0001 0.025 11.2837 12.5375

4 0.9 0.0002 0.05 10.9664 12.1849
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We also consider the case 3 that the repair rate is 0.025, which means the average repair 

time is 40 minutes. Other conditions keep the same as the first scenario. Then the 

parameters, mean queueing length and mean waiting time are as case 3 in table 3.3.

We consider case 4 in which the failure rate is 0.0002. Other conditions keep the same as 

the first scenario. Then the parameters, mean queueing length and mean waiting time are 

as case 4 in table 3.3.

From these cases, we know that we can improve the performance of a FMC through 

increasing the repair speed, prolonging the working period between the failure states, 

setting a good load rate, and so on. We also know that the analysis o f a queueing system 

with server failures may give decision-makers some important information when they 

make decisions.

3.6 DISCUSSION

The queueing system M/M/n with different service rates and server failures was 

discussed in this chapter. The infinitesimal matrix was built, the stability condition was 

analyzed, the method to obtain the stationary distribution was presented, and some 

performance evaluation was discussed. Also, the computer programs were developed. An 

example was also provided to show the different results of the performance 

measurements with the change of the different number of servers and repair persons. This 

could give managers useful information to take into consideration when a system is 

evaluated.
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CHAPTER 4 M/PH (M,M) /n QUEUEING SYSTEM WITH SERVER 

FAILURES

In many realistic cases the service time is generally distributed. We know that phase type 

distributions capture most features of general distributions. So we next talk about the 

M/PH(M,M)/n and M/PH(M,M)/n/c (later abbreviated as M/PH/n and M/PH/n/c) 

queueing systems with server failures in this chapter.

Notation in this chapter:

A. Intensity or rate of the Poisson arrival process

6  Parameter o f the exponential distribution of the server failure time

y  Parameter o f the exponential distribution of the server repair time

L Mean queue length

W Mean of the waiting time

n Number of the servers

k  Number of the repair persons (1< =k< =n)

(P,S) The representation of the phase type distribution 

// Expected service rate

rc Limiting or equilibrium distribution of queue length

Assumptions:

A server keeps its service phase after breakdown and repair. 

Servers cannot help one another; even some of them are idle.
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•  A server can fail when it is idle.

• There are k(l< =k< =n) repair persons.

4.1 M/PH/n QUEUEING SYSTEM WITH SERVER FAILURES

The M/PH/1 and M/PH/2 queueing systems are discussed first. Then the M/PH/n 

queueing system is discussed which actually includes the former two queueing systems. 

In the matrices, an element is omitted if it is 0.

4.1.1 M/FH/I Queueing System with Server Failures

We consider the M/PH/1 queueing system with server failures first. Only one repair 

person is needed in this system. We assume that the failure rate of the server is ^and the 

repair rate is y. The representation of the phase type distributed service time is (P, S) of 

order v, which means the number of phases o f a server is v andS'° = 0 - Se, where 0 is a 

column vector o f all entries 0 and e is a column vector of all entries 1. So, the state space 

of the system is E={(i, j, m); i>=0, j=0,I, l<=m<=v}, where / denotes the number of 

customers in the system, j  denotes the number of available servers, and m denotes the 

phase of the server. ForJC either a row or a column vector, we define

d ia g {X )  =

The infinitesimal matrix has the following format:
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Bu Aq

where

B00

■®oi ~

^10 “

■̂0 “

- A I - ^  yl
61 -9 I-A d ia g {P )

A1
M iag{P)

M

diag{S'^)

XI

- X l - y l  yl 
91 S - 9 I - A I

Aj Aq

4.1.2 M/PH/2 Queueing System with Server Failures

We consider the M/PH/2 queueing system with server failures, one repair person. The 

failure rate is 9 and the repair rate is y. The representation of the phase type distributed 

service time is f"P, S) o f order v. So, the state space of the server is E={(i, j, m); i>=0, 

j=0,l,2, l<=m<=v}. There are two servers in this queueing system.

The generator matrix has the following format:

45

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



■̂00
■̂10 Bn Bn

Bji A
A

where

-̂ 00 “

- y l - A I  yl

61 -61 - y l  -  Adiag{/3) )d

261 -2 6 1 -M ia g iP )

B,01

AI
M iagiP)

M iagiP)

■®io “ diag{S°)
diag(S°)

B,
p - A I  yl

61 S - 6 1 - y l - A l  p
261 S - 2 6 1 -M ia g iP )

Al
AI

M iagiP)

2diagiS"')

A =
- y l - A I  yl

61 S - 6 1 - P - A 1  yl
261 2 S - 2 6 1 - A I
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A
/ J

XI

A  = S°/3
2S°J3

I  is an identity matrix o f order v.

If  there are two repair persons in the system, only the matrices corresponding to the Boo, 

B n  and /!/ change. They will become the following matrices:

^00 ~

B„

■2-jd-Xl 2-jd
91 - 6 1 - y l -  Xdiag{P) ■jd

291 -291 -  XdiagiP)

■ 2y l-M  2yl
91 S - 9 1 - y I - M

291 S -291 - XdiagiP)

■ 2yI-M  2yi
91 S - 9 1 - y l - X l  yl

291 2 S -2 9 1 -X 1

Other block matrices will be the same as those with only one repair person.

4.1.3 M/PH/n Queueing System with Server Failures

4.1.3.1 The modeling o f the M/PH/n queue with server failures

We consider the M/PH/n queue with server failures, k(l<=k<=n) repair persons. For one 

server, the failure rate is 9 and the repair rate is y. The representation of the phase type
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distributed service time is (P, S) o f order v. So, the state space of the system is =/"(7, j ,  m); 

i>=0, 0<=j<=n, l<=m<=v}. The infinitesimal matrix has the following format.

B,00

Bu
B01

B, B12

B.n -l,n -2

^nn~l A A
A A A

A A A

where

=

2S"P

(1-D5V
i*diag(S°)

i*diag(S")

-(kr+ X )I k ji
61

iS  M ia ^ p )  p
n f f  iS -  n 3  -  Xd'ta^JT)
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A  “

XI
XI

M

XI

M

XI

2S°P

XI
Xdia^JI)

iS^P
(i + \)S^P

X d i a ^

rt^P

where I is of order v. The matrices Bi,i+i^A2 and Ao are square matrices o f order 

(n+I)v and all their entries are non-negative. All Bn and Aj are square matrices of order 

(n+I)v too. The diagonal elements are strictly negative, all other elements are non­

negative. The row sums of the generator matrix are equal to 0.

We explain the matrix of 5„ with an example. There are i customers in the system and no 

service finishes or starts at this moment. If  the number of the available servers / is equal
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to or less than i, then the servers may fail and the failure matrix is W I. The servers may 

also be repaired and the repair matrix is m in{n -l,k )y l  if  there are k  (l<=k<=n) repair 

persons in the system. The diagonal matrix would be IS - W I  -ra in{n -l ,k )yd  - X I  since 

there are I servers available to serve customers. If  the number of the available servers / is 

greater than i, then the failure matrix is W I, and the repair matrix h rc im {n - l ,k )y i . The 

diagonal matrices would be i S - W I - m m { n - l , k ) ' ) d - XJiag{P) since there are only i 

customers in the system. All other elements o f matrices Ba are 0.

4.1.3.2 The stability conditions of M/PH/n queue with server failures

From reference [30], we know that the stability condition for QDB processes is

nA^e < TzA-̂ e. We discover a property that the stability condition for the M/PH/n queueing

system is A < ^ > where Naverage is the average number of servers working. We

will prove this property in subsequent sections.

4.1.3.2.1 M/PH/1 system with server failures

The stability condition of the M/PH/1 queueing system according to reference [30] is

TtÂ e < TtA^e.

The block structure o f A (= A^ + Â  + A2)  is

- y l  yl
91 s  + s ' ^ p - e i

The balance equations are

;To(-;/) + ;r,(^/) = 0 ( 1)
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K,{)d) + 7r,{S + S ^ P - e i )  = 0. (2)

From (1), we can get:

= ^0 = ^0 • (3)

Substituting (3) into (2), we get:

; r „ i (5  + 5 V )  = 0 . (4)

We know that

(;To+ ;r,)e = l . (5)

Substituting (3) into (5), gives us 

0 + y
—^ 7 t ^ e  = \ ,  (6)

TtÂ e = 7z{M)e = Xtvb = X. (7)

Because // = -ySS“‘e , from equation (4), we know that 

;r„(5 + 5 V )  = 0 ,

and so

n , = - K X P S - ' -

Substituting into equation (6),

9 ^ y
e

-[ tTqS pS ]e
e

U

^  co 1
-  /3 0e  p
=  1.

Then,
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6 -^ y
u = -------
^  6  “

Hence,

'  0 ' { '  o '
7iA2e = n oO ;To5"

■M
Y

(8)
H .

0 9  + y  6 -^ y  

So, the stability condition for the M/PH/1 queueing system is

(9)

Here we try to find the average number of servers working, Naverage, and get the stability 

condition from our property. We can find the probabilities of 0 server and 1 server 

working by the following method. Suppose the probabilities are W= (wq w, ). Then we 

can calculate them from the following matrix:

From WV = 0, we have

-W(,y +W|^ = 0 

with the equation

Wfl + w, = 1.

We can get

r
9 + y

e
6 + y

V= - r  r  
e  - e
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So, the average number of server working Naverage is

y
6 + y

We can see that the stability condition o f the M/PH/1 queueing system has the form of

^  average

This is exactly the same as the conclusion (9), which can be obtained from the method of 

reference [30].

4.1.3.2.2 M/PH/2 queueing system with server failures (1 repairperson) 

The stability condition according to reference [30] is TtÂ e < nA^e.

The block structure o f  A (= Aq + + A2)  is

- y l  jd
61 S  + S ° j 3 - 6 I - y I  yl

261 2S + 2S'‘p - 2 6 I

The balance equations are

^ 0  W  + n:^{S + S ' 'p - 6 1 - ' id )  + 7r2 {261) =  0 

{yl) + 7I2 (25 + 25 V  -  '2.61) = 0 .

From (11), we can get:

Substituting (14) into (12), we can get:

^2 = ^ o [ - i r ( 5  + 5 V )  + : ^ / ] .

( 11)

( 12)

(13)

(14)

26^
(15)
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Substituting (14), (15) to (13),

;To [ - ^ ( 5  + S ^ p f  + ( f  + J ) ( 5  + 5  V )]  = 0 . (16)

We know that

(/Tg +  ̂■ (17)

Substituting (14), (15) into (17), gives us

(l + ^  + -^ ) ;T o e  = l .  (18)
d 16^

Substituting 7Tq(S + S°P) = 0 into equation (18) gives

0 le ^

l-TZgS'  ̂PS-^\e2^  j. _  ^0 /3o~i
le ^

l e -  +2y9 + y \ _  00-1  {KgS ){-pS  e)

20^+ 2Ye + Y \  oo^l
20^ M

= l

so.

20'-
T T g S  = ------ ; ---------------------- - U .

” 2 0 ^ + 2 0 y  + y

Then,
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n^A^e = Tc
( 1 f  "  1

5 “ -  ( tTq ;t , ; r j  5 “

^25% [2S^)

V W  )

^ o ^ 
S° 

,2 5 %

dy + y^
9^

9y + y^

-;r„5"

29^
9^ 29^+ 29y  + y^

29y + 2y^

M

2 9 ^ +29y + y^

Because

7cAq6 -  7r{Al)e = X m  = A., (19)

so, the stability condition of the M/PH/2 queueing system is

29y + 2y-
A < -------    :rM-

29^+ 29y  + y^
(20)

Next we try to find Naverage and get the conclusion from our property. We find the 

probabilities of 0 servers, 1 server and 2 servers working by the following method. 

Suppose the probabilities are W = (wg w, Wj). Then we can calculate them from the

following matrix.

V =
- 7  7
9 - y - 9  y

29 - 2 9

From WV=0, we have
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-W qY + w^O = 0

Wfl/ -  ( /  + ^)w, + 29w2 = 0
yŵ  -  lOw^ = 0.

(21)

From (21), we get

2^ '
W n  = ■

W ,  =

20^ + 2 0 / + r
20y 

20^ + 2 0 / + r^

/^
20 ^ + 20/  + / ^ '

So, the average number of server working is

20/+  2/^

(22)

0 X W n + 1 X W , + 2 X W ,u 1 z (23)
20 ^ + 20/  + / ^  '

According to the conjecture, the stability condition of the M/PH/2 with one repair person

IS

2 0 /+  2 /^
A < — ^

20^ + 20/  +  / ^

This conclusion is exactly the same as (20).

4.1.3.2.3 M/PH/2 queueing system with server failures (2 repair persons) 

The stability condition according to reference [30] is .

The block structure o f  A f= Ag +A, +A2J is

-  2/1  2/1  

01 S + S ^ p - 0 I - } d  yi
201 25 + 25V -25> /

The equations are
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noi-2'jd) + n^iei) = 0, (25)

7t  ̂{lyl^ + ;r, (5 + 5 V  - Q l -  yl) + ̂ 2 (2^>/) = 0 , (26)

K, {yl) + {IS  + 25 V  -  291) = 0 . (27)

From (25), we can get:

;r, = 7t,{2^){eiy^ = ^ o f l - . (28)

Substituting (28) into (26), we can get:

^ 2 = ^o [-ir(-S  + 5 V )  + ̂ / ] -  (29)

Substituting (28), (29) into (27),

^0 + 2 ( t + ^ ) ( 5  + 5 V )]  = 0. (30)

We know that

(;To + ;T| + ;t2 )e = 1. (31)

Substituting (28), (29) into (31), gives us

0 + y  + ̂ ) V  = l- (32)

Substituting Kf^{S + P) = 0 into equation (32),

9 9^
9 -+ 2 y 9  + r 2

02 -[ - z X /3 S - '] e

_ + 2/ ^ + / \ _  C ,0 ^ /
— ^ 2  ( ^ 0 *̂  )(

9 ^+ 2 y 9  + r^ 1
~ 232 (^0*̂  )9 n
= 1,

so.
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oo
“ 9 ^ + 2 d r + r

"̂ 2 ̂  ^

(  0 ^
— {kq 7t̂ A  5 “

^ 2 5 \ [2 S ^ j

f

n. 2y r0 . ^ 0  ^o[-jT (S  + S'^j3) + ^ l ]
V ^ y,2 5  ,

= ^ o [ - f ( S  + 5  V )  + ( f  + = ^ o [ - f ( S  + ^  V )  + ( f  +
2 e /+ 2 r ^  o f l . . , 0 ..2  z,2c 2 0 r + 2 r ^=•

^  6 ^ 2 6 y  + y

20V+ 2y  ̂ 2y(0 + y)
------------------- = -----7Ti^0 ^+ 2 0 y  + y ^ '  (0 + y)
2y

because

;tAfje = 7r{XI)e = Xm  = X .

Then, the stability condition of the M/PH/2 queueing system with two repair persons is

(33)1 2y X < // .
0 + y ‘

Next we try to find Naverage and get the conclusion from our property. We can find the 

average number of servers working for the M/PH/2 with 2 repair persons.

V =
- 2 y  2y 

0 - y - 0  y
20 - 2 0

We can get the following expressions from Wx. V=0:
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W,

W, =

w.

+ 2^  + 7^ 

l & Y

' ~ G^+2Gr+r^

'  G^+2Gr + r ^ '

So, the average number of servers working is

2Gy + 2y^ 2y(G + y) 2y
OxWq+Ixw, + 2 xm;2 = ■

G^+2Gy + y^ {G + y Y  G + y

Then, the stability condition of M/PH/2 with two repair persons is

2 2/A <  u .
G + y

This conclusion is exactly the same as (33).

4.1.3.2.4 M/PH/ n queueing system with server failures (1 repair person) 

The stability condition according to Neuts [30] is rtA^e < rtA^e.

•̂ 0 “

XI
XI

A  =

XI

y l - X I  y l

91 S - 6 I - y I - X I  yl

261 2 S - 2 9 I - y I - X I

n d l  n S - n d l - X I
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A ,=
S°J3

2S°J3

The block structure o f  A (= + A, + A2)  is

- y l  yl
91 S  + S ^ f i - e i - i d  yl

291 2S + 2 S '^ p - 2 9 I - j d  yl

n91 nS + nS°P - n 9 I

The equations are

71̂  (yl) + ;r, (5  + S V  -  -  P )  + ^2 (26'/) = 0 ,

7T, (yl) + 7̂ 2 (2S + 2S V  -  291 - } l )  + 7r2 (391) = 0 ,

(34)

(35)

(36)

^„-[(yf) + ^„(nS + nS°P - n91) = 0. 

From (34), we can get;

= ^o (r/)(^ /)”‘ = ^0 ? /  = ?^o • 

Substituting (38) into (35), we can get:

^2 = ^ o [ - ^ ( s + s ^ P ) + ^ n .
29^

Substituting (38), (39) into (36),

- ( ^  + ̂ X S  + S V ) + ̂ / l -

From equations (38), (39) and (40), we know that
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K, =7t,[a{S + S"py-' + i(5 + 5 V ) '“' + ... + c(5 + 5'V ) + - ( - ) '/]■  (41)
/! 0

We know that

(;To+;z-i+;t2 + -” + ; r J e  = l .  (42)

Substituting (38), (39) into (41), gives us

Z ^ ( | ) V  = l- (43)
, - 0  V.

Substituting n  = -p S '^e  and n^{S  + 5 “/?) = 0 into equation (43)

U:'- e '  “

/ -o  I '  ^

)-0 “

9  //
=  1 .

So,

7tf.S^ = ----- -̂----- / / .
^  1 y
E - ( - yt a r e ’

Then

61

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



o  '  ̂ 0 ''

7cA f = K
5"

-  (;Tq ;T|

= K^{a'{S+^IJ)"-' +b'{S+^P)''-^ +---+c'(5+5°/?) + J ;- ( |) 7 ]S ' (44)

i=o

=  M-
l ' ( s y
/=o

and /lA^e =  7 i { M ) e  =  X m  = X .

That is, the stability condition of the M/PH/n queueing system with one repair person is

A<-i
Z ' x  —
^  iW

f i L
(45)

Next we try to find Naverage and get the conclusion from our property. We find the 

probabilities o f 0 servers, 1 server, 2 servers, , n servers working by the following

method. Suppose the probabilities are W= (w  ̂ w, ••• w„). Then we can calculate

them from the following matrix.

- y  y
6  - y - 0  y

V-- iO - y - i O

- y - { n - \ ) 6  y  

nG -n O
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From WV=0, we have

-WQy + w^0 = O

WqY ~ (y  + ^)w, + 29w2 = 0

^ 1/  - ( /  + 2$)w2 + SAvj = 0

yw„_̂  -n0w„  = 0.

From the equations, we get

r
W, =  —  Wn

' e  “

- z ! _
20^

r
i\0‘

rw„  ------- w„.
n\0" “

We know that

/=.o /=o

That means.

,=0

The average number o f servers working is

V  • y'> IX.-—:
y'  r '  i\0‘

=  ---------
,=0 i\9' ' 'U  i\0' ^  f

E —

Then, the stability condition of the M/PH/n queueing system with one repair person is
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y  r '

This conclusion is exactly the same as (45).

4.1.3.2.5 M/PH/n queueing system with server failures (« repair persons) 

The stability condition according to reference [30] is nA^e < 7A..je.

M
XI

A, =

AI

yl -  nAI nyl
ei S -  91- { n -  \)yl - A I  { n -  \)yl

291 IS  -  291 -  (n -  2)yl -  AI

n9I n S - n 9 I - A I

A ,=
S°J3

nS°j3

The block structure o f A (= Ag + A, +A2J is 

-nyl nyl
91 S + S '^ p-91  - { n - \ ) y l  { n - \ ) y i

291 2S + 2 S ° j3 -2 9 I - (n -2 )y I  {n-2)]d

nOI nS + nS°j3 -n9I

The equations are
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n^{-njd) + 7t^{ei) = Q (46)

Kq {nyi) + 7t,{S + S'  ̂p - 6 1 ~ ( n - \ ) y l )  + {261) = 0 (47>

z ,  ((« -  \)yl) + z^ {IS + 28° J3 -  291 - { n -  2)yl) + z ,  {391) = 0 (48)

z„_^{yl) + z^{nS + nS° P  -  n9I) = 0. 

From (46), we get:

Substituting (50) into (47), we get:

^2 = ^ o [ - ^ ( 5  + 5 V )  +

Substituting (50), (51) into (48),

n { n - \ ) y ‘

29^
. / ] ■

(49)

(50)

(51)

i  V)= -  ( ^  + ^ e i z i k l x j  ; i . (52)3 OL 3̂ 1 V HJ  ^^3 HJ

From equations (50), (51) and (52), we know

z ,  = z^[d{S + 5 V )  + e{S + S V )  + -  + f { S  + 5 “/?) +

We know that

{Zq + z  ̂ + z  ̂ +■■■ + z„)e = \ . 

Substituting (50), (51) into (53), gives us

(-) ' / ]•9
(53)

(54)

/-o  V ' y
(55)

substituting /j. = -yfiS" e and ;To(5 + 5  P ) - 0  into equation (55) gives
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(l + ̂ y ^ o e

= il + ̂ n -^ o S ^ /3 S -^ ]e  

^ ( l  + ^ y ( 7 T , S ° ) -
e  n

=  1.

so,

n , S ^ 1

(1 +  “ ) ” e

n  ■

Then

f  o ) r 0 ^

TjA^e-n
S°

— (/Tq ;r, ••
s°

.

=  (;t , + 2 ;t 2 h v n n „ )S '^

= ;To[c/'(5 + 5 “/9)''-‘ + e’(5' + 5 V r ^  + "• + f \ S  + fi) + Yu^
1=0 \ h

= ;ro[cf(5 + 5°/0)'’-' +e '(‘̂  + 5 V ) ”’'  +••• + / ' (‘̂  + ‘5 V ) + —  (l + -)""'/]-5“
d e

- - 0 + - )  11,5 = _  »
(1+ - ) ”

e
ny

M-9 + y

And ttAqB = 7t{M)e = A m  = A .

So the stability condition for the M/PH/n queueing system with n repair persons is

(56)
, ny  A < fu .

9 + y
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Next we try to find Naverage and get the conclusion from our property. We find the 

probabilities of 0 servers, 1 server, 2 servers, , n servers working by the following

method. Suppose the probabilities are W= (w;, w, ••• w j .  Then we can calculate 

them from the following matrix:

-ny ny

6 - { n - \ ) y  - 6  { n - \ ) y

V = iO - { n - i ) y - i O

- y - ( n - l ) 0  y  

nO -n O

From WV=0, we have

-  w^ny + w^O = 0

Wgny -  [(« -  l)y + ^]w, + 2^ ^  - 0

w, {n -  l)y -  [(« -  2)y + 2^]Wt + 7>0ŵ  = 0

yw„_̂  -nOv„  = 0.

From the equations, we get

w,
ny
~e
n (n - \ )y ^

w ,  =

We know that
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I w , . = w „ 2 ;
i= 0  /= 0

That means,

^ o = [ Z

e

;=0 v 'y
( ^ ) ' ] ■ '= [ ( ! + f ) ' T ' = ( l  + f ) ' ” -

The average number of servers working is

,=0 ^ /=0

= ( U  A).-i (1 + A )-. = ^21(, + A)-. ^  _!!2L,
9 6 9 9 9 9 + y

Then, the stability condition of the M/PH/n queueing system with n repair persons is

, ny  
X < . fi .

9 + y '

This conclusion is exactly the same as (56).

4.1.3.3 Method to solve the stationary distribution

From the structure of the generator matrix in part 4.1.3.1, we know that the queueing 

system M/PH/n is a QBD process. We can use matrix R method to obtain the stationary 

distributions. The method is also as in table 3.1. Only the substructure o f the infinitesimal 

generator matrix changes to fit the service time of phase type distribution.

4.1.3.4 Results of programs for M/PH/n systems

In order to test the generator matrices in part 4.1, some MATLAB programs are written. 

Some of the results are as follows.
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The initial parameters are;

Customer arrival rate A = 0.1;

Server failure rate Q -  0.2;

Server repair rate / =  0.4;

Number o f servers «;

Number o f the repair persons k  (l<=k<=n)\

The representation of the phase distribution of the service rate (P,S)\

- 0.8  0.1 0.1 0.2
0.3 -0 .7  0.1 0.2

0.1 0.1 -0 .5  0.3
0.1 0.2 0.3 -0 .9

[0.3, 0.2, 0.2, 0.3].

With the computer programs (group mphn), we can get the performance measurements 

with different server numbers and repair persons. The following data are the sample 

results from MATLAB programs for « = 4 and A: = 1. Here are presented only the first 

(« +1) X (« +1) X V dimensions. We can get other dimensions after this by the relationship 

ofX ,„=X,7? .

difference 1 =  0.2370

Conjecture: this system is a stable system, continue! 

difference2 =  0.2370

Real conclusion: this system is a stable system, continue! 

X =(0.0435 0.0090 0 0.0328 0.1088 0.0225

0.1149 0.0239 0 0.0869 0.0784 0.0164

0 0.0820  

0 0.0594
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0.0396 0 .0083 0 0.0300 0.0138 0 .0050 0 .0042 0 .0116

0 .0129 0 .0079 0.0104 0 .0127 0.0120 0 .0077 0 .0106 0.0122

0.0078 0.0051 0.0071 0.0080 0.0038 0.0025 0 .0035 0 .0039

0 .0044 0 .0023 0 .0027 0.0041 0.0042 0 .0032 0 .0048 0.0045

0 .0022 0 .0019 0.0030 0.0026 0.0012 0 .0010 0 .0016 0 .0014

0 .0005 0 .0005 0.0007 0 .0006 0.0015 0 .0010 0 .0014 0 .0016

0 .0016 0 .0014 0.0021 0.0018 0.0009 0 .0009 0 .0014 0.0011

0 .0004 0.0003 0.0006 0.0004 0.0002 0.0001 0 .0002 0.0002

0 .0006 0 .0004 0.0006 0.0006 0.0006 0 .0006 0 .0009 0 .0008

0 .0004 0 .0004 0.0006 0.0005 0 .0002 0 .0002 0.0003 0.0002

0.0001 0.0001 0.0001 0.0001 .

m eanlength =  0 .3822  

mean w aitingtim e =  3.8223

V -  y
iWWhere the difference 1 = —  and difference! = rzA-^e- TxA^e. We can see that

E —

we get the same results for differencel and difference!. We also get the same results for 

queueing system with other parameters (the number o f repair persons is 1 or n) in Table 

4.1. This proves our property in 4.1.3.2 numerically. Table 4.1 illustrates some results 

obtained for M /PH/n queueing system with unreliable servers.
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Table 4.1 MATLAB program results of M/PH/n queueing system with unreliable servers

Number o f Number o f  repair Failure rate Repair rate Mean queue Mean waiting
servers persons e 7

length time

n k L W

0 .2 0.1372 1.3717

0.3 0.1353 1.3528

0.01 0 .4 0.1347 1.3471

0 .5 0.1345 1.3446

0 .2 0.5323 5.3233

I 0.10 0.3 0.2779 2 .7786

0.4 0.2037 2 .0367

0 .5 0.1739 1.7389

0.2 1.8144 18.1436

0 .20 0.3 0 .7140 7 .1395

0.4 0.4229 4 .2293

0 .5 0.3034 3 .0343

0 .2 0.1355 1.3552

0.3 0.1347 1.3475

0.01 0 .4 0.1345 1.3446

0.5 0.1343 1.3432

0.2 0.2308 2.3083

2 0.10 0.3 0.1730 1.7298

0.4 0.1549 1.5489
3

0.5 0.1471 1.4709

0.2 0.4894 4 .8943

0 .20 0.3 0.2794 2.7943

0.4 0.2121 2 .1208

0.5 0.1825 1.8251

0.2 0.1355 1.3545

0.3 0.1347 1.3473
3 0.01 0.4 0.1345 1.3446

0.5 0.1343 1.3431

0 .2 0.2040 2.0401

0 .10 0.3 0.1646 1.6457
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Table 4.1 (Cont’d)

0.4 0.1513 1.5126

0 .5 0.1452 1.4522

0 .20

0 .2 0.3698 3.6978

0.3 0.2382 2 .3824

0.4 0.1929 1.9292

0.5 0.1720 1.7203

0 .2 0.1343 1.3429

0.3 0.1338 1.3384

0.01 0.4 0.1337 1.3374

0.5 0.1337 1.3370

0 .2 0.4836 4 .8 3 5 9

1 0.10 0.3 0.2440 2 .4403

0 .4 0.1799 1.7989

0.5 0.1567 1.5671

0 .2 1.7126 17.1264

0 .20 0.3 0.6608 6 .6078

0.4 0.3822 3.8223

0.5 0.2701 2 .7008

0 .2 0.1338 1.3382

0.3 0.1337 1.3372

0.01 0.4 0.1337 1.3369

0.5 0.1337 1.3368

0.2 0.1893 1.8932

2 0.10 0.3 0.1509 1.5093

0 .4 0.1412 1.4116

0 .5 0.1376 1.3762

0 .2 0.4006 4 .0064
4

0.20 0.3 0.2276 2 .2759

0 .4 0.1772 1.7721

0 .5 0.1573 1.5733

0 .2 0.1338 1.3379

0.3 0.1337 .1.3371

0.01 0 .4 0.1337 1.3369
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Table 4.1 (Cont’d)

0.5 0 .1337 1.3367

0 .2 0 .1599 1.5986

3 0.10 0 .3 0 .1426 1.4265

0 .4 0.1379 1.3790

0 .5 0 .1360 1.3605

0 .2 0.2541 2.5408

0 .20 0.3 0.1784 1.7844

0 .4 0.1555 1.5550

0 .5 0.1461 1.4609

0 .2 0.1338 1.3379

0 .3 0.1337 1.3371

0.01 0 .4 0.1337 1.3369

0 .5 0.1337 1.3367

0 .2 0.1555 1.5549

0.10 0 .3 0.1416 1.4156

4 0.4 0.1375 1.3751

0 .5 0.1359 1.3587

0 .2 0.2279 2.2787

0.20 0 .3 0.1705 1.7050

0 .4 0.1523 1.5225

0 .5 0.1445 1.4452

0 .2 0.1338 1.3379

0.3 0.1337 1.3367

0.01 0 .4 0.1336 1.3365

0 .5 0.1336 1.3364

0 .2 0.4692 4 .6922

0.10 0.3 0.2313 2 .3127

1 0.4 0.1704 1.7039

0.5 0 .1500 1.4998

0 .2 1.6968 16.9683

0.20 0.3 0.6491 6.4905

0.4 0.3707 3.7067

0.5 0 .2590 2.5903

0 .2 0.1337 1.3366
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Table 4.1 (Cont’d)

0.3 0 .1336 1.3364

0.01 0 .4 0.1336 1.3364

0.5 0.1336 1.3364

0 .2 0.1746 1.7459

2 0.10 0.3 0.1437 1.4370

0.4 0.1372 1.3721

0.5 0.1352 1.3522

0 .2 0.3763 3.7625
5 0.20 0.3 0.2105 2 .1047

0.4 0.1653 1.6525

0.5 0.1489 1.4890

0 .2 0.1337 1.3365

0.3 0.1336 1.3364

0.01 0.4 0.1336 1.3364

0 .5 0 .1336 1.3364

0 .2 0.1471 1.4714

3 0.10 0.3 0.1372 1.3716

0.4 0 .1350 1.3498

0 .5 0.1343 1.3427

0 .2 0.2203 2 .2034

0 .20 0.3 0.1605 1.6048

0 .4 0.1448 1.4475

0 .5 0.1391 1.3912

0 .2 0.1337 1.3365

0.3 0 .1336 1.3364

0.01 0.4 0 .1336 1.3364

0.5 0 .1336 1.3364

0.2 0.1420 1.4198

0.10 0.3 0.1360 1.3600

4 0.4 0.1346 1.3460

0.5 0.1341 1.3412

0.2 0.1842 1.8423

0.20 0.3 0.1501 1.5011

0.4 0.1408 1.4077
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Table 4.1 (Cont’d)

0.5 0.1373 1.3730

0.2 0.1337 1.3365

0.3 0.1336 1.3364
0.01 0.4 0.1336 1.3364

0.5 0.1336 1.3364

0.2 0.1411 1.4107

0.10 0.3 0.1358 1.3583
5 0.4 0.1345 1.3454

0.5 0.1341 1.3410

0.2 0.1764 1.7644

0.20 0.3 0.1481 1.4811

0.4 0.1401 1.4007

0.5 0.1370 1.3700

2
1.8

^  1.6
|> 1.4
^  1.2 
«3 0>
3 O’

1
0.8

= 0.6 
® 0.4 

0.2 
0

.

\ ..
H L \.\ . ■ -V..U

\
St Si, \

V
------- ‘

....  ..."T— —r 1  ̂  ̂ V >• ....... 1------1------1------1------
0.1 0.2 0.3 0.4 0.5 0.6 0.7

R e p a i r  rate

Figure 4.1 Mean queue length (M/PH/n) decreases with the repair rate
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0 .0 5  0.1 0 .1 5  0 .2

Failure rate

0 .2 5 0 .3

Figure 4.2 M ean queue length (M/PH/n) increases with the failure rate

From figures 4.1 and 4.2, we know that i f  we lower the failure rate o f  the queueing 

system, then the mean queue length and the mean waiting time will be less. Also, if  we 

improve the repair rate, then the mean queue length and the mean waiting time will be 

less too.

4 .5

4

£  3 .5
>3c  3 «

«  2 .5

I 2
=■ 1.5 cm -1 o> 1
®  0 .5

0

\ " V-
\

\  ' •\
V 1 I ^ S l 6

\
' ' ' '

3 2 4 6 8 1

N u m b e r  o f  s e r v e r s

Figure 4.3 M ean queue length (M/PH/n) decreases with the number o f  servers
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We find that when the server number is the same, the mean queue length and the mean 

waiting time decrease w hen the number o f  repair persons increases. W e also find that the 

mean queue length and the mean waiting time do not change much when ri>6. This is 

consistent with the common knowledge that we do not need to provide more servers 

when we already have enough servers to serve our customers. W hen the failure rate is 

very low, for example, 0.01 in the above example, the mean queue length and the mean 

waiting time do not change much with the increase o f  the repair rate.

4.2 M/PH/n/c QUEUEING SYSTEM WITH SERVER FAILURES

For this part, c is a new notation which means the capacity o f the queueing systems.

4.2.1 The Modeling of M/PH/n/c Queueing System

The representation o f  the phase type distribution o f  the service time is (fi, S) o f  order v. 

The state space E={(i,m); 0<=i=<c, l<m<=v}. The infinitesimal matrix for M/PH/n/c 

queue without server failures is

-  M a g(fi)  Miag(P) 

diagiS") S - M a g ( P )  M a g (P )
IdiagiS") 2 S - M a g { p )  M a g if i )

(n -  l)diag(S") (n -1)5  -  M a g ( f l )  Adiag(P)
nS"B" n S -A I  XI

nS"B" n S -X I

nS '̂B" nS

where /  is o f order v.
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4.2.2 M/PH/n/c Queueing System with Server Failures: Generator Matrix

We consider the M/PH/n/c queue with server failures, with k(l<=k<=n) repair persons. 

The state space of this system is E={(i,j, m); 0<=i=<c, 0<=j<=n, l<=m<=v},

For the servers, the failure rate is ^and the repair rate is y.

The generator matrix has the following format.

B,00 BqI
Bu B,.

B„-{,n-2 n̂-Un
B.

A A

A
A

Aj+A

where

=

s,,=

~{ky+A)I k}i

i S  i S - i B - M

i*dia^S\

iS  “  (rt ~ l)ff - yi 
n 3  iS -n B
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X I
X I

X I

X I
Xdiag ( f i)

Xdiag ( f i)

n
M

A  =

A  =

25V

zSV
0 + l)5V

«5V

4.2.3 M/PH/n/c Queueing system with Server Failures: Method to Get Stationary 

Distribution

Since this kind o f queue is a finite state-space birth-and-death process in a Markovian 

environment, we can use the method in Gaver [11] to calculate the stationary distribution. 

Let Wj denote the matrices on the diagonal o f the generator matrix, that is 

Wj = , for 0<=i<n,

fV/ = A,, for n<=i<=c.

Let t/,. denote the matrices under the diagonal of the generator matrix, that is
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[/,. = 5,.,._,, for l<=i<=n,

Uj = A j, fo rn<i<=c.

Let denote the matrices above the diagonal of the generator matrix, that is 

V. =5 ,.^ ,, for 0<=i<n,

=Ag, for n<=i<=c.

Then, according to the Lemma 2 in Gaver [11],

Co=Wg,

C, = ^.+C/,.(-Cr;)P^._,,thatis 

C; = 5 ,  +5,. for 0<i<=n,

C; = A, +A2 (~C~_\ )Ag, for «</■< =c.

According to the Theorem 1 in Gaver [11], the stationary distribution ,0<=i<=c, are 

determined by the equations:

A ',C ,= 0

/=0

X ,= X , .A ( - C r > ) ,  for 0<=i<n 

^,=2r,„^2(-C:'),for«<=/<=c.

Then, the algorithm to get Xj is shown in the table 4.2.
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Table 4.2 M ethod to get the stationary distribution for finite birth-and-death processes

Step 1. Determine recursively the matrices C ,, 0<=i<=c.

Step 2. Solve the system = 0 , P^e = 1.

Step 3. Compute recursively the vectors X . , i= c-l, 0, using P̂  instead o f  X .

Step 4. Re-normalize the vector X  so obtained.

Computer programs are written to implement this algorithm. The queue performance 

evaluation is accomplished in this computer group too. Please see next part for the 

example.

4.3 APPLICATION - MOBILE WIRELESS COMMUNICATION

We considered a cell, the coverage area o f a base station, in a homogeneous personal 

communications services (PCS) network, definition from reference [2]. The following are 

some data from experience. This cell consists o f 64 channels. The calls, new calls or 

handoff calls, enter this cell with a Poisson arrival process with the rate o f  600 per hour, 

and each call has a general phase type cell residence time with representation (0 .2, 0.6, 

0 .2) and

-0 .5 0.2 0.1

0.02 -0 .5 0.3

0.01 0.2 -0 .2 3

The channels may be noisy or not clear and hence lose connection, also called channel 

failure. The failure o f the channels is exponentially distributed with an average o f twice a 

year for all channels. I f  one channel does not work, the time that it returns to working
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condition is also exponentially distributed with an average time o f 3 minutes. Only one 

repair group is provided for this system. Phone calls can not be made through this system 

whenever all channels are busy.

This problem can be modeled as an M/PH (M, M) /n/c queueing system with server 

failures («=64) with the following parameters.

Customer coming rate /I = 10; //600/60

Server failure rate 0 = 0.00000006; I12/64/(60x24x365)

Server repair rate y -  0.3333;

Capacity o f the system c = 64;

Number o f servers n = 64;

Number o f the repair groups ^ = 1;

The representation o f the phase distribution of the service rate (P, S):

-0 .5  0.2 0.1
0.02 -0 .5  0.3
0.01 0.2 -0 .23

y9=[0.2, 0.6, 0.2].

With the computer programs (group mphnc) we can get the steady state distribution, (the 

distribution shown here is only the distribution with the number o f calls in this cell. The 

dimension of the original distribution, separate distribution for every server phase with 

the same number o f calls in the system, is 12675):
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lengthx =  (0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0001 0.0002 0.0004 0.0006 0.0011 0.0018 0.0028 0.0043 0.0063

0.0090 0.0124 0.0166 0.0215 0.0270 0.0330 0.0391 0.0450 0.0505

0.0552 0.0588 0.0610 0.0618 0.0611 0.0590 0.0558 0.0515 0.0465

0.0411 0.0356 0.0302 0.0251 0.0205 0.0163 0.0128 0.0099 0.0075

0.0055 0.0040  

0.0002 0.0001) 

meanlength =  39.5212

0.0029 0.0020 0.0014 0.0010 0.0006 0.0004 0.0003

meanwaitingtime =  3.9521

From the above result, we know that the load of this cell is light and there is 0.01% of 

calls lost.

Assume that the rate o f the calls entering this cell would increase to 1000 calls per hour. 

Then we can get the steady state distribution.

lengthx =(0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0001 0.0001 0.0002 0.0003 0.0005 0.0008 0.0013 0.0019 0.0027

0.0039 0.0054 0.0075 0.0100 0.0132 0.0171 0.0217 0.0271 0.0332

0.0400

0.1039

0.0474

0.1146)

0.0552 0.0633 0.0713 0.0791 0.0864 0.0930 0.0987

meanlength = 58.4953 

meanwaitingtime = 3.5097
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We know that there would be 11.46% of calls lost in this system.

Assume that the rate of the calls entering this cell would increase by 100%, that is, the 

rate would be 1200 calls per hour. Then we can get the steady state distribution.

lengthx =(0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002

0.0003 0.0005 0.0009 0.0014 0.0021 0.0032 0.0048 0.0071 0.0103

0.0147 0.0205 0.0283 0.0384 0.0513 0.0674 0.0872 0.1113 0.1403

0.1760 0.2337)

meanlength = 60.9911 

meanwaitingtime = 3.0496

There will be 23.37% of calls lost in this system. So if we do have calls coming at this 

rate into this cell, we should try to increase the capacity of this cell to improve the service 

quality.

We consider the case that people hang up when there is noise while they make phone 

calls. If this situation happens once an hour for all channels and the noisy channel can 

return to good work state itself in 3 minutes. This situation can also be modeled as an
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M/PH (M, M) /n/c queueing system with server failures (« = 64) with the following 

parameters.

Customer coming rate A = 10; //600/60

Server failure rate 6  = 0.00026048; 112/64/(60 x24x365)+l/64/60 

Server repair rate y=  0.3333;

Capacity o f the system c = 64;

Number o f servers n = 64;

Number o f the repair groups k  = 64;

The representation of the phase distribution of the service rate (P, S):

5 =
-0 .5  0.2 0.1
0.02 -0 .5  0.3
0.01 0.2 -0 .23

P = [0.2 , 0.6, 0.2].

With the computer programs (group mphnc) we can get the steady state distribution:

lengthx = (0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0001 0.0002 0.0004 0.0006 0.0011 0.0018

0.0028 0.0043 0.0063 0.0090 0.0124 0.0166 0.0215 0.0270

0.0330 0.0391 0.0450 0.0505 0.0552 0.0588 0.0610 0.0618

0.0611 0.0590 0.0558 0.0515 0.0465 0.0411 0.0356 0.0302

0.0251 0.0205 0.0163 0.0128 0.0099 0.0075 0.0055 0.0040

0.0029 0.0020 0.0014 0.0010 0.0006 0.0004 0.0003 0.0002

85

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



0 .0001) 

meanlength= 39.5214  

meanwaitingtime =  3.9526

We can also get the mean queue length and mean waiting time when the noise occurs 

more frequently or the arrival rate increases. The results are in table 4.3.

Table 4.3 MATLAB program results for a communication cell

Arrival rate 
per hour

Average times o f  
noise per hour

Mean queue 
length

Mean waiting 
time

Loss rate

600

0 39.5212 3.9526 0.01%

1 39.5214 3.9526 0.01%

5 39.5224 3.9529 0.02%

10 39.5242 3.9533 0.02%

15 39.5269 3.9539 0.03%

20 39.5307 3.9547 0.04%

1000

0 58.4953 3.9639 11.46%

1 58.5266 3.9921 12.04%

5 58.6662 4.1134 14.43%

10 58.8693 4.2840 17.55%

15 59.0984 4.4760 20.78%

20 59.3474 4.6896 24.07%

1200

0 60.9911 3.9794 23.37%

1 61.0226 4.0298 24.29%

5 61.1548 4.2415 27.91%

10 61.3297 4.5280 32.28%

15 61.5096 4.8374 36.42%

20 61.6894 5.1680 40.32%

For a finite state-space birth-and-death process, the loss rate is a very important 

performance measurement. From table 4.3, we know that the loss rate increases with the 

increase of the occurring times of the noise. So we should pay attention to the frequency 

of the noise in the telecommunication system.
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4.4 DISCUSSION

This chapter discussed the modeling, stability condition analysis, stationary distribution 

calculation, and computer program results analysis of M/PH/n and M/PH/n/c queueing 

systems. An example was also provided to show the application of the results.
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

This research presented the modeling and analysis o f three queueing systems with server 

failures, which are the M/M/n queueing system with different service rates, the M/PH/n 

and M/PH/n/c queueing systems. For all infinite queueing systems in this thesis, the R 

Matrix method was used to calculate the stationary distributions since the queueing 

systems are QBD processes.

The research o f the M/M/n queueing system presented queueing systems with different 

service rates that were modeled and analyzed. The analysis of the M/PH/n and M/PH/n/c 

queueing systems with server failures is a good approximation for the M/G/n and 

M/G/n/c queueing systems.

5.2 CONTRIBUTIONS

This research has made the following contributions to the field of queueing systems with 

server failures:

(1) The M/M/n queueing system with server failures and different service rates was 

modeled and analyzed. Computer programs and application examples were also provided 

to demonstrate the analysis and calculation for this queueing system.

(2) The M/PH/n and M/PH/n/c queueing systems were modeled and analyzed too. 

Mathematical models were built, the stability condition for the M/PH/n queueing system 

was analyzed, and a method to gain stationary distribution and some performance
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measurements for every queueing system \\ere selected and implemented by computer 

programs.

5.3 FUTURE WORK

There are a number of issues which provide future research opportunities related to the 

research of this thesis.

5.3.1 The Proof of 71^(8+ S° 13) = 0 for the M/PH(M,M)/« Queueing System

In chapter 4, the conclusion of Tt^iS +S°I3) = 0 was proved mathematically for the 

M/PH(M,M)/1 queueing system For the M/PH(M,M)/n queueing system, we only 

proved our conjectures numerically. Almost 300 groups of data were given and every 

data group verified our property numerically with computer programs (group mphn). We 

know that a similar conclusion has been proven for discrete queueing systems.

5.3.2 M/ PH (PH, PH)/n Que ueing System

This queueing system is more general than the M/PH(M,M)/n queueing system which we 

discussed in Chapter 4. Sometimes we can not model a realistic system as the 

M/PH(M,M)/n queueing system because the server up and down time is not 

exponentially distributed. Then we might resort to phase type distribution up and down 

time since the phase type distribution could be a good approximation of general 

distribution.
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5.3.3 Introduction to MAP (Markov Arrival Process)

The Markov Arrival Process is more general than the Poisson arrival process which we 

discussed a lot in this thesis. If  we can model and analyze the MAP/M(M,M)/n queueing 

system, it would allow us to analyze more realistic systems than the M/M(M,M)/n. 

Similarly we can also analyze more realistic systems if  we extend M/PH/n and M/PH/n/c 

to MAP/PH/n and MAP/PH/n/c respectively.

5.3.4 Introduction to MSP (Markov Service Process)

After the Markov Arrival Process, we will introduce the Markov Service Process to our 

research of queueing systems. A queueing system we intend to consider is the 

MAP/MSP(SMP, SMP)/n where SMP means Semi-Markov Process. This will extend the 

application of our research to a wider area.
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APPENDIX A; PHASE TYPE DISTRIBUTION*^®' 

Definition:

We consider a Markov process on the states {1 ,..., v+1} with infinitesimal generator

Q =
s s° 
0 0

(1)

where the v x v  matrix S  satisfies Su < 0, for 7<=/<=v, and Sy > -0 , for i ^ j .  Also 

Se+ ^=0, and the initial probability vector of Q is given by {fi, Pm+i), with Pe + = 1.

We assume that the states 1, v are all transient, so that absorption into the state v+7, 

from any initial state, is certain.

A probability distribution F( • ) on [0, oo) is a distribution of phase type (P//-distribution) 

if and only if it is the distribution o f the time until absorption in a finite Markov process 

of the type defined in equation (1). The pair (fi, S) is called a representation of F( • ) .
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APPENDIX B: PROGRAMS FOR M/M/n QUEUEING SYSTEM WITH SERVER
FAILURES LEADING TO DIFFERENT SERVICE RATES

% M/M/n QUEUE WITH SERVER FAILURES LEADING TO DIFFERENT SERVICE RATES

% The initial values for the parameters 
s=5; %n, number o f  servers 
m=0.5;
%u=0.1;

u=[0.166667,0.2,0.25,0.333333,0.4];

y=0.2;
b=0.02;
repair=min(5,s);

% calculate R
[r,fmishflag]=calculater(s,m,u,y,b,repair) 
i f  fin ish flag= 0  

return; 
end
%r=calculater(s,m,u,y,b,repair)

%soIve vector x; 
x=calculatex(s,m,u,y,b,r,repair)

% compute the mean queue length 
meanlength=calmeanqlen(s,x,r)

% mean customer waiting time 
meanwaitingtime=meanlength/m

% function calbii(s,i,m,u,y,b)
% this function is to calculate bii o f  the m/m/s queue with server failure

function [bii]=calbii(s,i,m,u,y,b,p) 
mat=zeros(s+l, s+1); 
fork = l:s+ l 

for j= l:s+ l
if (k = = l)& G = = l)

mat(kj)=-m-p*y; 
else if ( k = j )  & ( k = s + I ) 

i f ( i= 0 )
mat(kj)=-s*b-m;

else
mat(kj)=-i*u(i)-s*b-m;

end
else if (k==j)&(k<=s) 

switch (k<=i) 
case 1
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m at(kj)= -(k-1 )*u(k- l)-(k -1 )*b-min(p,s+1 -k)*y-m; 
case 0 

i f ( i = 0 )
mat(k j)= -(k -1 )*b-min(p,s+l -k)*y-m; 

else
mat(k J)=-i*u(i)-(k-1 )*b-min(p,s+l -k)*y-m; 

end 
end 

else
switch k-j 
case 1

m at(kj)=(k-l)*b; 
case -1 

m at(kj)=m in(p,s+1-k)*y; 
end 

end 
end 

end
bii=mat;

% function calbii_l(s,u ,i)
% This function is to calculate bi,i-l o f  the m/m/s queue with server failure

function [b ii_ l]=calb ii_ l(s,u ,i) 
mat=zeros(s+l, s+1); 
fork = l:s+ l 

for j= l:s+ l
if (k = j)& 0 ‘= i )

mat(kj)=0; 
else if (k = j)& (k < = i)  

mat(k j )= (k -1 )*u(k-1); 
else if (k = j)& (k > i)  

mat(kj)=i*u(i); 
end 

end 
end
bii_I=mat;

% Function calculator 
% this function is to calculate r

function [r,finishflag]=calculater(s,m,u,y,b,repair) 
% the establishment o f  the basic matrics 
aO=m*eye(s+1 ,s+ 1); 
al=calbii(s,s,m,u,y,b,repair); 
a2=calbii_l(s,u,s);

%test if  this is a stable system
a=a0+al+a2;
testvector=a(:,l);
modifieda=a;
m odifieda(:,l)=l;
rightvector=zeros(l, s+1);
rightvector(l)=l;
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pai=rightvector*inv(modifieda);

%test the result o f  pai with the cut equation 
paitest=pai*testveetor;

%test pai with sum 
paisum=sum(pai);

e=ones(s+ l,l);
difference2=pai*a2*e-pai*a0*e; 
if  difference2>0 

disp('This system is a stable system, continue!'); 
else

disp('This system is not stable, stop running!'); 
finishflag=0; 
r=zeros(s+l,s+l); 
return 

end

%try to get r using matrix r method;
iteration=0;
e=le-050;
% the start R is rl 
rl= zeros(s+ l,s+ l); 
r2—(aO+rl *rl *a2)*inv(al); 
difference=r2; 
while difference(:)>e 

rl=r2;
r2=-(a0+rl *rl ’‘a2)* inv(a l); 
iteration=iteration+1; 
difference=r2-rl; 

end 
i=r2;

% Test the result o f  matrix r method 
matrixRtest=aO+r*r’"a2+r*a 1; 
finishflag=l;

% Function calculatex
% this function is to calculate the limiting distribution

function [x]=calculatex(s,m,u,y,b,r,repair)

l=eye(s+l);
e=ones(s+ l,l);
smatrix=calsmatrix(s,m,u,y,b,repair,r); 
testvector=smatrix(:, 1); 
modifiedsmatrix=smatrix; 
for i= l:s* (s+ l)  

modifiedsmatrix(i, 1 )=  1; 
end
modifiedsmatrix(s*(s+1)+1 :(s+1 )''2 ,1 )=inv(l-r)*e; 
rightvector=zeros( 1 ,(s+ 1 )''2); 
rightvector(l)=l;
x=rightvector*inv(modifiedsmatrix);
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% test the result o f  x with the cut equation 
solutionXtest=x*testvector;

% test the result o f  x with the sum 
xs=x(s*(s+ l)+ l :(s+l)^2); 
sum(x)-sum(xs)+sum(xs*inv(I-r));

% Function calmeanqlen(s,x,r)
% this function is to calculate the mean queue length for m/m/s queue with server failures

function [meanlength]=calmeanqlen(s,x,r)
meanlength=0;
for i=0:s-l

meanlength=meanlength+i*sum(x((s+1 )* i+ 1 :(s+1 )* ( i+ l))); 
end
I=eye(s+1); 
e=ones(s+ l,l); 
xs=x(s*(s+1)+1 :(s+1 )''2);
meanlength=meanlength+s*xs*inv(I-r)*e+xs*r*(inv(l-r))''2*e;

% Function calsmatrix
% This function is to calculate the first (s+ l)^2 rows and columns o f  the q matrix

function [tempmatrix]=calsmatrix(s,m,u,y,b,repair,r) 
mat=zeros((s+1 )''2,(s+1 )''2); 
for i= l;s+ l 

for j= l:s+ l 
switch i-j 
case 1

mat((i-1 )* (s+ 1)+1: i * (s+1 ),(j-1 )* (s+ 1)+1 :j * (s+1 ))=calbii_ 1 (s,u,i-1); 
case -1

mat((i-1 )’"(s+1)+1 :i*(s+1 ),(j-1 )* (s+ 1)+1 ;j*(s+1 ))=m *eye(s+1 ,s+ 1); 
case 0 

if  i< (s+ l)
m at((i-1 )* (s+ 1)+1 :i*(s+l ),(j-1 )* (s+ 1)+1 ;j * (s+1 ))=calbii(s,i-1 ,m,u,y,b,repair); 

else
mat((i-1 )* (s+ l)+1: i*(s+ l ),(j-1 )* (s+ 1)+1 :j ’"(s+1 ))=calbii(s,s,m,u,y,b,repair)+r*calbii_l (s,u,s); 

end 
end 

end 
end
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APPENDIX C: PROGRAMS FOR M/PH/n/c QUEUEING SYSTEM WITH
SREVER FAILURES

% M/PH/n/c QUEUEING SYSTEM WITH SERVER FAILURES

% The initial values for the parameters 
s=64; % 2; %number o f  servers 
m=10;%10; %lamda 
y=0.3333;%0.4;% gama
b=(2/64/(60*24*365))+(I/64/60);% 0.00000006; %0.002; %sita 
T=[-0.5 0.2 0.1; 0.02 -0.5 0.3; 0.01 0.2 -0.23];%[-0.85 0.01; 0.03 -0.92 ]; 
ph=size(T,l);
alpha=[0.2 0.6 0.2];% [0.3, 0.7];
testt=sum(T');
i= l;
%e=ones(ph,l);
% u=l/(-alpha*inv(T)*e) 
while i<=ph 

if  testt(i)>0 
disp('The sum o f  row') 
i
dispCof phase distribution is greater than O'); 
return 

end 
i= i+ l; 

end
if  sum(alpha)~=l

dispCsum o f  alpha is not 1!'); 
return; 

end
if  size(alpha)~=ph

dispCdimension o f  alpha is not consistent with that o f  T!'); 
return; 

end
repair=min(64,s);
c=64;
if  c<s

dispCthe given capacity is less than the number o f  the servers.'); 
return; 

end

% calculate Cj
matrixc=calculatec(s,m,T,y,b,repair,alpha,c);

%solve vector x (include xO to xc); 
x=calculatex(s,m,T,y,b,matrixc,repair,alpha,c);
%simplify x by add the probabilities with the same number o f  customers 
lengthx=zeros( 1 ,c+ 1); 
for i= l:c+ l

lengthx(i)=sum(x((s-i-1 ) ’*'ph*(i-1)+1 :(s+l )*ph*i)); 
end
lengthx

% compute the mean queue length 
meanlength=calmeanqlen(s,x,c,ph)
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% customer mean waiting time 
meanwaitingtime=meanlength/m

% Function calculatec 
% this function is to calculate matrix C,

function [matrixc]=calculatec(s,m,T,y,b,repair,alpha,c)
% the establishment o f  the basic matrices 
ph=size(T,l);
aO=m* eye((s+1 )*ph,(s+1 )*ph); 
a 1 =calbii(s,s,m,T,y,b,repair,alpha); 
a2=calbii_l (s ,T ,s+1 ,alpha);

%calculate matrixC 
mat=zeros((s+1 )*ph, (s+1 )*ph*(c+1)); 
tem pc=zeros((s+l)*ph, (s+l)*ph); 
for i= l:c+ l 

if  i==l
mat( 1 ;(s+1 )*ph, (s+ 1 )*ph*(i-1 )+ l :(s+l )*ph*i)=calbii(s,i-1 ,m,T,y,b,repair,alpha); 

elseif (i< = s+ l)  
i f  i = c + l

mat( 1 :(s+1 )*ph, (s + 1 )*ph*(i-1)+1 :(s+1 )*ph*i)=a l+aO+calbii_l (s,T,s,alpha)*(- 
inv(tempc))*calbii_2(s,s-1 ,m,T,alpha); 

else
mat( 1 :(s+1 )*ph, (s + 1 )*ph*(i-1)+1 :(s+1 )*ph*i)=calbii(s,i-1 ,m,T,y,b,repair,alpha)+calbii_ 1 (s,T,i- 

l,alpha)*(-inv(tempc))*calbii_2(s,i-2,m,T,alpha); 
end 

elseif (i< c+ l)
mat( 1 :(s+1 )*ph, (s+ 1 )*ph*(i-1)+1 :(s+1 )*ph*i)=a 1 +a2*(-in v(tempc))*aO; 

elseif i = c + l
mat( 1 ;(s+1 )*ph, (s+ 1 )*ph*(i-1 )+ l :(s+l)*ph*i)=al+a0+a2*(-inv(tempc))*a0; 

end
tem pc=m at(l:(s+l)*ph, (s+l)*ph*(i-l)+l:(s+l)*ph"'i); 

end
matrixc=mat;

% function calbii(s,i,m,u,y,b)
% this function is to calculate b,i o f  the M/PH/n/c queueing system with server failures

function [bii]=calbii(s,i,m,T,y,b,p,alpha) 
ph=size(T,l);
m at=zeros((s+l)*ph, (s+l)*ph); 
fork = l:s+ l 

for j= l;s+ l 
switch k-j 

case 1
mat((k-1 )*ph+1 :k*ph, (j-1 )*ph+1 :j *ph)=(k-1 )*b*eye(ph,ph); 

case -1
m at((k-l)*ph+l :k*ph, (j-l)*ph+l:j*ph)=min(p,s+l-k)*y*eye(ph,ph); 

case 0
mat((k-1 )*ph+1 :k*ph, (j-1 )*ph+1 :j *ph)=calnewT(s,i,m,T,y,b,p,k,alpha);

end
end
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end
bii=mat;

% function calbii_l(s,T ,i, alpha)
% This function is to calculate bi.i-i o f  the M/PH/n/c queueing system with server failures

function [bii_l ]=calbii_l (s,T,i,alpha) 
ph=size(T,l);
mat=zeros((s+l)*ph, (s+l)*ph); 
e=ones(ph,l);
TO=-T*e; 
fork = l:s+ l 

for j= l:s+ l  
if  k = j

m at((k-l)*ph+l :k*ph,(j-l)*ph+l :j*ph)=calnewTO(i,k,TO,alpha); 
end 

end 
end
bii_l=mat;

% function calbii_2(s,T,i, alpha)
% This function is to calculate bj,i+i o f  the M/PH/n/c queueing system with server failures

function [bii_2]=calbii_2(s,i,m,T,alpha)

ph=size(T,l); 
mat=m*eye((s+l )*ph); 
fork = l:s+ l 

for j= l:s+ l  
if(k > = (i+ 2 ))& (k = j) 

mat((k-1 )’"ph+l :k*ph,(j-1 )*ph+1 :j ♦ph)=calTOB(m,ph,alpha); 
end 

end 
end
bii_2=mat;

% function calnewTO(i,k,TO,alpha)
% this function is to calculate TO for bil l

function [newTO]=calnewTO(i,k,TO,alpha) 
ph=size(TO,l); 
newTO=eye(ph); 
i f  k<i+l 

newTO=(k-1 )’"TO*alpha; 
else

for row=l;ph  
for column=l:ph  

if  row -colu m n=0  
newTO(row,column)=i*TO(row); 

end 
end 

end 
end
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% function calnewT(s,i,m,T,y,b,p,k,alpha)
% this function is to calculate T to calculate the T matrics in bii

function [newT]=calnewT(s,i,m,T,y,b,p,k,alpha) 
ph=size(T,l); 
newT=T; 
forrow =l;ph  

for column=I:ph 
if  row-column— 0 

i f  k<=i+l 
i f k = ( s + l )

newT(row,column)=min(i,k-l)*T(row,column)-(k-l)*b-m;
else

newT(row,column)=min(i,k-1 )*T(row,column)-(k-1 )*b-min(p,s+1 -k)*y-m; 
end 

else 
i f k = ( s + l )

newT(row,column)=min(i,k-l)*T(row,column)-(k-l)*b-m*alpha(row);
else

newT(row,column)=min(i,k-l)*T(row,column)-(k-l)*b-min(p,s+l-k)*y-m*alpha(row);
end

end
else

newT (row,column )=m in(i,k-1 )*T(row,column); 
end 

end 
end

% function calTOB(m,ph, alpha)
% This function is to calculate TOB in Bii_2

function [TOB]=calTOB(m,ph,alpha)

TOB=eye(ph); 
forrow=l:ph  

for column=I :ph 
if  (row==column) 

TOB(row,column)=m’"alpha(row); 
end 

end 
end

% Function calculatex
% this function is to calculate the limiting distribution 

function [x]=calculatex(s,m,T,y,b,matrixc,repair,alpha,c) 

ph=size(T,l);
x=zeros( 1 ,(s+ 1 )*ph *(c+1));

%calculate the vector Xc(tempx, sum is 1)
temprightvector=zeros( 1, (s+l)*ph);
tempc=matrixc( 1 :(s+1 )*ph, (s+1 )*ph*c+1 ;(s+1 )*ph*(c+1));
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%sum(tempc')
%testvector=tempc(:, 1); 
modifiedtempc=tempc; 
for i= l:(s+ l)*p h

modifiedtempc(i, 1 )=  1; 
end
temprightvector( 1 )= 1;
tempx=temprightvector*inv(modifiedtempc);

%test the result o f  Xc 
%testxc=tempx’'‘testvector

%modify vector x
x( 1 ,(s+ 1 )*ph*c+1 :(s+1 )*ph*(c+1 ))=tempx;

%calculate vectors X (c -l)  to X(s) 
for i= c-I:-l:s

tempc=matrixc( I :(s+1 )*ph, (s+1 )*ph*i+l :(s+1 )*ph*(i+1)); 
a2=calbii_ 1 (s,T ,s+1 .alpha);
x( 1 ,(s+ 1 )*ph*i+1 :(s+I )*ph*(i+1 ))=tempx*a2*(-inv(tempc)); 
tempx=x( 1 ,(s+ 1 )*ph*i+1 :(s+1 )*ph*(i+1)); 

end
for i=s-I:-l:0

tempc=matrixc( I :(s+1 )*ph, (s+1 )*ph*i+l :(s+1 )*ph*(i+1)); 
x( 1 ,(s+ 1 )*ph*i+1 :(s+1 )*ph*(i+1 ))=tempx*calbii_l (s,T ,i+1 ,alpha)*(-inv(tempc)); 
tempx=x( 1 ,(s+ 1 )*ph* i+ 1 :(s+1 )*ph*(i+1)); 

end

%normalization
sumx=sum(x);
x=x/sumx;

% Function calmeanqlen(s,x,c,ph)
% this function is to calculate the mean queue length for the M/PH/n/c queueing system with server % 
failures

function [meanlength]=calmeanqlen(s,x,c,ph)
meanlength=0;
for i=0:c

m eanlength=m eanlength+i*sum (x((s+l)*ph*i+l:(s+l)*ph*(i+l)));
end
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