
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2007

A study of three-edge connectivity algorithms - Refinement and A study of three-edge connectivity algorithms - Refinement and

implementation implementation

Nima Norouzi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Norouzi, Nima, "A study of three-edge connectivity algorithms - Refinement and implementation" (2007).
Electronic Theses and Dissertations. 823.
https://scholar.uwindsor.ca/etd/823

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/823?utm_source=scholar.uwindsor.ca%2Fetd%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A study of 3-edge connectivity algorithms - refinement
and implementation

by

Nima Norouzi

A Thesis
Submitted to the Faculty of Graduate Studies

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2007

©2007 Nima Norouzi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1 Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 W ellington S tree t
O ttaw a ON K1A 0N4
C a n a d a

395, rue W ellington
O ttaw a ON K1A 0N4
C a n a d a

Your file Votre reference
ISBN: 978-0 -494-34913-7
Our file N otre reference
ISBN: 978-0 -494-34913-7

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

There are quite a number of linear algorithms to compute 3-edge connected components

of a multi-graph. In this thesis, we study the three most efficient algorithms and exclude

other algorithms that are obviously inferior as they use different types of transformation in

multiple phases. We present a data structure model for cut-pair deletion in order to save

space and to be able to handle larger input sizes on a platform. Using complexity arguments

we also present a modification to one of the three algorithms that does not look for cut-pairs.

We then show through our experimental results that this algorithm and another one that

does not distinguish between cut-pairs have the fastest execution time, and each of them is

better than the other for some cases. To the best of our knowledge, till now, there is no such

an effort to show how the performance of the algorithms varies as the type and the size of

given graph changes. Correctness proofs of the proposed way for cut-pair deletion and the

modification are presented as well.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

I would like to dedicate this thesis to my lovely wife and my wonderful parents.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

My entire master thesis has come to completion through the steady and invaluable support

of the academic guidance for which I am eternally grateful to my supervising advisor, Dr. Y.

H. Tsin. Without him, this thesis could not have been fulfilled. I also wish to express my

gratitude to the other members of my master thesis committee, Dr. N. G. Zamani, Dr. J.

Lu, and Dr. X. Chen for their helpful advice and critical readings during this work.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract iii

Dedication iv

Acknowledgements v

List of Figures vii

1 Introduction 1

1.1 The graph abstract term inology... 1

1.2 Depth First S e a rc h .. 4

1 .2 . 1 DFS-tree and back-edges... 5

1.2.2 Some definitions... 6

1.2.3 Adjacency L is ts ... 8

1.3 Graph connectivity.. 9

1.3.1 Vertex connectivity.. 1 1

1.3.2 Edge connectivity.. 1 1

2 3-edge connectivity 13

2 .1 C u t-p a ir.. 14

2.1.1 Type-1 and Type-2 cut-pairs............................... 14

2.2 G en era to r... 15

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Related works, and choosing 3 algorithms for s tu d y 15

3 A model for cut-pair deletion from a multigraph 21

4 Computation 27

4.1 Taoka et al. a lg o rith m .. 28

4.2 Tsin’s without-reduction algorithm(W OR).. 35

4.3 Tsin’s with-reduction algorithm(W R).. 39

5 Comparison 49

5.1 Data S e t .. 49

5.1.1 Generating the experimental input g r a p h s ... 50

5.1.2 Generating connected graphs ... 51

5.1.3 Generating 2-edge connected graphs.. 51

5.1.4 Generating non-3-edge connected g ra p h s .. 52

5.2 R e s u l t .. 53

6 Conclusion and Future work 65

Vita Auctoris 69

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Examples for directed graph, undirected graph and multigraph....................... 2

1.2 A multigraph G = {V,E) that we wish to explore by the depth-first search

technique.. 5

1.3 The depth-first search defines a DFS-tree T and back-edges from G. The bold

edges denote to tree-edges and thin edges denote to back-edges....................... 6

1.4 The graph G and its adjacency lists... 8

1.5 A graph with 7 connected components... 9

1.6 A graph G and its 2-edge connected components. The dotted edges (1,2) and

(6,7) are the bridges in G whose removals lead to the determination of 2-edge

connected components in G ... 1 1

2.1 The graph G and its 3-edge connected components................................... 13

2.2 The graph G and its cut-pairs which are shown by dotted lines............... 14

2.3 The classified cut-pairs of G .. 15

2.4 A Feynman diagram D\ of order n = 1 and two Feynman diagrams D 2 and

Dz of order n = 2. The graphs Gh, G'2) and G' 3 are obtained from the diagrams. 16

3.1 A graph with its Edge List representation... 22

3.2 The improved Edge List model in order to represent input graphs for DFS. . 23

4.1 ei is an out-edge and e2 is an in-edge with respect to (v, w) and (x,y). . . . 27

4.2 A path-partition of T ... 30

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 (i)deg'G{u) = 2 and e is a cut-edge. (ii)e is a not a cut-edge............................ 41

4.4 When DFS backtracks from vertex u to vertex w. (Extracted from [15]) . . . 43

4.5 When an incoming back-edge is encountered. (Extracted from [1 5]) 44

5.1 Serach fo r 3 — edge connected components; 12.5 < j^j < 16.5...................... 55

5.2 Determining whether graphs are 3—edge connected or N O T; 12.5 < < 16.5 56

5.3 Determining 3 — edge connectivity, only Yes instances; 12.5 < y- < 16.5 57

5.4 Determining 3 — edge connectivity, only No instances; 12.5 < j^j < 16.5

5.5 Determining cut — pairs on No instances; 12.5 < j^j < 1 6 .5

5.6 Serach for 3 — edge connected components; \E\ ~

5.7 Determining whether graphs are 3 — edge connected or NOT; \E\ ~

5.8 Determining 3 — edge connectivity; only Yes instances; \E\ ~ . . .

5.9 Determining 3 — edge connectivity; only No instances; \E\ ~

5.10 Determining cut — pairs on No instances; \E\ ~

58

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 The graph abstract terminology

In mathematics and computer science a graph is an ordered pair G — (V, E), where V is a

set of vertices (or nodes) and E is a set of edges such that every edge in it is associated with

two vertices in V. If E is a set of unordered pairs, then G is an undirected graph. Otherwise,

G is a directed graph. Below we give some necessary graph related definitions:

End-point (or end-vertex)

The two vertices associated with an edge are called the end-points (or end-vertices) of the

edge. The two vertices are said to be connected by the edge.

Incident on

An edge is incident on a vertex if the vertex is an end-point of the edge.

Adjacent

Two vertices of a graph are adjacent if there is an edge connecting them. Two edges of a

graph are adjacent if they share a common end-point.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Degree

The degree of a vertex v € V in a graph G, denoted by degc(v), is the number of edges

incident on the vertex in G. The subscript G can be removed if no confusion could occur as

a result.

Self-loop

A self-loop is an edge that connects a vertex to itself.

Trivial graph and Null graph

A trivial graph has one vertex and no edges. A null graph is an edgeless graph.

Subgraph

A subgraph of G = (V, E) is a graph G' — (V7, E') such that V' C V and E' C E.

Undirected and Directed edges

An edge in an undirected graph is an undirected edge. An edge in a directed graph is a directed

edge. In a directed graph G, an ordered pair (v, w) denotes an edge from the vertex v to the

vertex w in G. In an undirected graph G', (v,w) is an unordered pair which represents an

edge in G having the vertices v and w as its end-points.

A
Directed Graph Undirected Graph Multigraph

Figure 1.1: Examples for directed graph, undirected graph and multigraph.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Multi-graph and Parallel edges

A multi-graph is a graph that can have multiple edges with the same endpoints. The edges

are called parallel edges. In Figure 1.1, a multigraph is shown.

Clique

A clique in an undirected graph G, is a set of vertices V' such that each pair of V' is connected

by an edge in G.

Path

A path P in a graph G is a sequence of vertices such that starting from the first vertex, there

is an edge from each vertex to the next vertex in the sequence. Let v and w be the first and

last, respectively, vertex in the sequence. Then the path connects or is between vertices v

and w. We denote the path by P g (v , w) throughout this thesis. If G is directed then the

path P is directed as well. The vertex v is called the start vertex and the vertex w is called

the end vertex. We denote the directed path by Pq < v,w >. A simple path is a path that

does not repeat any vertex except the first and the last which may be identical.

Cycle

A cycle is a simple path in a graph that starts and ends at the same vertex.

Acyclic graph

A graph with no cycle is an acyclic graph.

Connected graph

A graph that has a path between every pair of vertices.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tree

A connected graph with no cycle is called a tree and is denoted by T = (Vt , Et).

Spanning tree

A spanning tree T = (Vt , E t) of a graph G = (V, E) is a connected, acyclic subgraph of G

such that Vt = V.

1.2 Depth First Search

Depth First Search (DFS) is a widely used technique which Tarjan [14] analyzed its properties

in 1972. Let G — (V,, E) be the graph we wish to explore. Initially, all the vertices and edges

in G axe unvisited. We start at a vertex called “root”, which can be any vertex in V, and

explore as far as possible along each branch before backtracking, as we describe below:

• We select a vertex v.

• From vertex v, we follow an edge to reach another vertex w.

- If the vertex w is unvisited, we apply the DFS to w and do the same thing to reach

other vertices. However, any vertex with possibly unexplored edges is stored on a stack

each time we apply DFS.

- If the vertex w is visited, we select another unexplored edge to follow from the vertex.

• Whenever there is no unexplored edge from the vertex, we pop the top vertex on the

stack, backtrack to that vertex and continue DFS from that vertex.

The algorithm clearly terminates because each vertex can only be visited once. Furthermore,

each edge in the graph is examined exactly twice. Therefore, with a proper graph represen

tation the time and space required by the search is 0(|V | + \E\) which is linear in |V| and

\E\ [14].

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.2: A multigraph G = (V ,E) that we wish to explore by the depth-first search
technique.

1.2.1 DFS-tree and back-edges

Suppose we apply the DFS on the graph G. The DFS determines a spanning tree T of G

and divides E into two edge sets Et and B. The spanning tree T is also called “DFS-tree” .

B denotes a set of directed edges called “back-edge”. Suppose v,w E V and e = (v,w) E E.

When the DFS follows the edge e from the vertex v and visits the vertex w for the first time,

e is added to Et and labeled as “tree-edge”. On the other hand, when the DFS follows the

edge e from the vertex v and visits the vertex w but verex w has been visited, then edge e

is added to B and labelled as “back-edge”. The DFS-tree and back-edges of the graph in

Figure 1.2 are shown in Figure 1.3.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.3: The depth-first search defines a DFS-tree T and back-edges from G. The bold
edges denote to tree-edges and thin edges denote to back-edges.

1.2.2 Some definitions

Parent and Child and Leaf

A parent and a child axe the end-points of a tree-edge in a spanning tree (see the DFS-tree

in Figure 1.3) such that the direction of the tree-edge is from the parent to the child. A leaf

is a vertex of a spanning tree that has no children. Let T be a spanning tree. Then the leafs

in it cannot be parents and the root of it cannot be a child. Any other vertex in T is both a

parent and a child.

Subtree

Let T be a DFS-tree of G — (V, E) and v £ V. The subtree at v, denoted by Tv, is the largest

subgraph of T which is a tree and has v as its root.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ancestor and Descendant

Let u ,v e Vt - The vertex u is an ancestor of the vertex v iff v is a vertex in the subtree at

u. Furthermore, the vertex u is a proper ancestor of v if u / v. The vertex v is a (proper)

descendant of the vertex u iff u is a (proper) ancestor of v.

DFS number

A depth-first search assigns a distinct number to each vertex v in T, which is denoted by

dfs(v) and called the DFS number of v. The depth-first search assigns the first number,

namely 1 , to the root and based on the order it encounters unvisited vertices, it increments

the previously assigned number and then assigns the number to the new vertex.

Incoming back-edge and Outgoing back-edge

A back-edge (v, w) is called an incoming back-edge of v if dfs(v) < dfs(w) and is called an

outgoing back-edge of v, if dfs(v) > dfs(w).

Lowpt

lowpt(v) = min({dfs(v)} U {dfs(b)\there exists a P t < v,a > and a back — edge (a, 6)})

In other words, lowpt (v) is the smallest DFS number of a vertex which is reachable from

v by traversing zero or more tree-edges followed by exactly one back-edge [14].

The calculation of lowpt(v) for each vertex v is done as follows. When the DFS visits

v for the first time, lowpt(v) is initialized to dfs(v). Whenever the DFS backtracks from

a child w such that lowpt(w) is smaller than the current value of lowptiv) or encounters a

back-edge (v,u) with dfs(u) smaller than the current value of lowpt(v). lowpt(v) is changed

to lowpt(u) or dfs(u); respectively. When the DFS backtracks from v to its parent, the value

of lowpt(v) has been finalized.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2.3 Adjacency Lists

V14 Vu

15

14

11
Ul2

VU Vu
10

Figure 1.4: The graph G and its adjacency lists.

As we had mentioned, with a good graph representation, the DFS can be done in linear

time and space. In fact the representation is nothing but a data structure [14]. Let G — (V, E)

be a graph. For each vertex v we construct a list containing all vertices w such that (v, w) 6 G.

Such a list is called an adjacency list for vertex v. Each element of the list is called an edge

(■v , w) in the adjacency list of v. Clearly, the edge (v, w) is denoted twice; once in the

adjacency list of v, and once again in the adjacency list of w. A set of such lists, one for each

vertex in G, is an adjacency lists data structure for G.

The depth first search provides ways to explore each edge and vertex of a graph so that

it establishes the base of simple and effective graph connectivity algorithms.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Graph connectivity

The simplest connectivity problem is to determine whether the given graph is actually con

nected.

Connected component

A connected component of a graph is a maximal connected subgraph of that graph. Two

vertices are in the same connected component if and only if there exists a path between them.

©

Figure 1.5: A graph with 7 connected components.

We use the DFS to find all connected components of an undirected graph. The idea is to

have a list of vertices of G and select a vertex v of the list and call DFS(w). When the depth

first search backtracks to v , the connected component including v is found. If there is a

vertex u in the list that has not been visited, then call DFS(u). When the depth first search

backtracks to u, another connected component including u is found. We continue the same

process until no vertex is unvisited in the list. Then all the connected components of G are

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

found. The algorithm is as below:

Algorithm Connect; [17]

Input: An undirected graph represented by adjacency lists;

Output: The vertex sets of the connected components of G;

1 c = 0;

2 for (v=l;v<=Vnum;v++) visited[v] == 0;

3 for (v=l;v<=Vnum;v++)

4 if (visited[v] == 0) {

5 c = c + 1;

6 PrintC'A connected component: ");

7 DFS-connect(v);

8 }

1 Procedure DFS-connect(v); {

2 Sc = Sc U v ; Sc is the set of vertices of connected component number c.

3 Print(v);

4 visited[v] = 1;

5 for each w in the adjacency list of v {

6 if (visited[w] == 0)

7 DFS-connect(w);

8 }

9 }

Measuring the connectivity of graphs can be used to analyze a broad range of structures

and relationships. There are two different ways of measuring graph connectivity; vertex con

nectivity and edge connectivity. For example in the context of telephone network reliability,

the vertex connectivity of the network is the smallest number of switching stations that must

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fail in order to make the network disconnected so that some working stations will no longer be

able to communicate with some other stations; the edge connectivity is the smallest number

of wires that must be cut to give the same result [1 1] .

1.3.1 Vertex connectivity

The smallest number of vertices whose deletion results in a disconnected graph.

Cut-vertex

A vertex whose removal from the given graph results in a disconnected graph.

1.3.2 Edge connectivity

The smallest number of edges whose deletion results in a disconnected graph. The edge

connectivity of a trivial graph is defined to be oo [9]. The edge connectivity of G is denoted

Figure 1.6: A graph G and its 2-edge connected components. The dotted edges (1,2) and
(6,7) are the bridges in G whose removals lead to the determination of 2-edge connected
components in G.

by ec(G).

2-Edge Connected Components

{1 }
12,3,4,5,6}
{7,8}

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bridge

An edge whose removal from the given graph results in a disconnected graph.

2-edge connectivity

A graph G is 2-edge connected or bridgeless if and only if ec{G) > 2. A 2-edge connected

component in the graph is a maximal vertex set in which there exist two edge-disjoint paths

between any pair of vertices in the set. Removing all bridges from G leads to the determina

tion of 2 -edge connected components in G.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

3-edge connectivity

A graph G is called 3-edge connected if and only if ec(G) > 3. A 3-edge connected component

in the graph is a maximal vertex set in which there exist three edge-disjoint paths between

any pair of vertices in the set.

3-Edge Connected Components

Figure 2.1: The graph G and its 3-edge connected components.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Cut-pair

A pair of edges is a cut-pair in G if their removal results in a disconnected graph and

none of them is a bridge. A cut-edge is an edge in a cut-pair. It follows that if two vertices

belong to the same 3-edge connected component, there is no bridge or cut-pair whose removal

disconnects the graph.

Cut Pairs

{ (1,2) , (1,8)}
{ (6 ,7) , (1,8)}
{(9,12),(9,13)}

{ (1,2),(6,7)}
{(2,3),(5,6)}
{(4,5),(5,6)}
{(2,3),(4,5)}
{(5,9),(9,10)}

Figure 2.2: The graph G and its cut-pairs which are shown by dotted lines.

2.1.1 Type-1 and Type-2 cut-pairs

After the DFS is applied on G, the cut-pairs of G are classified into two types: type-1 and

type-2 . A type- 1 cut-pair is a cut-pair consisting of a tree-edge and back-edge. A type- 2

cut-pair is a cut-pair consisting of two tree-edges. In Figure 2.3, the classified cut-pairs of G

are shown.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pairs
{ (1,2) , (1 ,8)}
{ (6 ,7) , (1,8)}
{(9,12),(9,13)}

Pairs
{ (1,2), (6 ,7)}

{(2,3),(5,6)}
{(4,5),(5,6)}
{(2,3),(4,5)}

{(5,9),(9,10)}

-pairs of G.

Suppose e = (x, y) is a tree-edge and a cut-edge in T such that there is no edge in the subtree

at y that forms a cut-pair with e. Then e is called a generator. It follows that a generator is

a cut-edge in a type-2 cut-pair. In Figure 2.3, each of the tree-edges (5,6), (6 ,7), and (9,10)

is a generator.

2.3 Related works, and choosing 3 algorithms for study

In physics, a Feynman diagram consists of some undirected lines (Wiggly) denoting photons

and directed lines (solid) denoting electrons and positrons. Each wiggly line has two end

points (interaction points), and two solid lines are attached to each end-point of a wiggly line

in a Feynman diagram (see Figure 2.4). An one-particle-irreducible diagram is a connected

Feynman diagram that cannot be disconnected by removing a single solid internal line [2].

An internal line is a line that is either a self-loop or participates at two interaction points;

15

Figure 2.3: The classified cut

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

any other line is an external line. On the other hand, a G-irreducible diagram is a connected

Feynman diagram that cannot be disconnected by removing no more than two solid internal

lines [3]. The G-irreducibility is useful in a new application in order to estimate the self

energy of an interacting Fermion model [3]. In the G-irreducibility problem each solid line is

called G-line and each wiggly line is called V-line.

An undirected graph G is obtained by contracting the end-points of each V-line, removing

external lines, and disregarding the directions of all G-lines in a Feynman diagram. Note

that all self-loops after the contractions are deleted. The relationship between G and the

Feynman diagram is that the diagram is G-irreducible if and only if G is 3-edge connected.

The order of a Feynman diagram is the number of wiggly lines which is denoted by n. In

Figure 2.4 a few simple examples are shown.

Z)2: G-irreducibleDi: G-irreducible D3: only one-particle-irreducible

i I I
G\\ 3-edge connected G2: 3-edge connedted G3 : 2 -edge connedted

Figure 2.4: A Feynman diagram D\ of order n = 1 and two Feynman diagrams D2 and D:i
of order n = 2 . The graphs Gh, G2, and G3 are obtained from the diagrams.

There is another research going on in the field of Bioinformatics so that 3-edge connectiv-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ity is useful, and one of the researchers had asked for our implementations [10]. The idea is

to find relations between genes in a biological network obtained from microarray experiments

using the Cluster Editing problem [4]. The Cluster Editing problem is defined as follows.

Input: An undirected graph G — (V, E) and a non-negative integer k. Question: Can G be

transformed, by inserting and deleting at most k edges, into disjoint cliques? In the research

the set of these edges includes cut-pairs of G as well.

Hopcroft and Tarjan [6] proposed a linear-time algorithm using the Depth-First Search

Technique to divide a graph into 3-vertex connected components. Then Galil and Italiano [5]

showed an approach for reduction of edge connectivity to vertex connectivity, and obtained

a linear-time algorithm for computing all the 3-edge connected components of an undirected

graph using the linear-time algorithm of Hopcroft and Tarjan [6].

A less complicated algorithm based on DFS was then reported by Nagamochi and Ibaraki

[9] to solve the 3-edge connectivity problem directly without using reduction. The idea un

derlying the algorithm is to gradually remove vertices from the given graph so as to transform

the graph into a trivial graph. First, any vertex with degree 2 (if exists) in the given graph

is removed from the graph and transformed into a trivial graph; this transformation repeats

more later if the remaining main graph is nontrivial (most of the time this is the case). The

resulting nontrivial graph is then passed to a procedure called REDUCE. By calling the

procedure, a DFS is applied on the graph in order to find three types of edge set, and the

edge sets are used to find two other types of edge set of the graph; one of which contains

all type-1 cut-pairs. The two edge sets are then used to find again two other types of edge

set while there are consequently three kinds of major transformation involving some deletion

(including type- 1 cut-pairs) and addition of edges in order to break the input graph into a

collection of smaller graphs each contains one or more 3-edge connected components of the

given graph. Any of these smaller graphs, which is nontrivial, is recursively passed to the

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REDUCE procedure and the same method is applied on each of them. In this way all type-2

cut-pairs of the given graph got passed to the procedure REDUCE, are eventually found as

type-1 cut-pairs in the consequence calls of procedure REDUCE.

Nagamochi et al. proved that the total number of edges of the graphs which are passed

to procedure REDUCE during the entire execution of the algorithm is bounded above by

the number of edges of the original graph times 3. Besides being very complicated, this

algorithm cannot use simple adjacency lists for graph representation because of the trans

formations and edge sets creations it performs. Therefore in order to have a linear time

execution (to insert/access/delete any edge in 0(1) time), the algorithm needs to have a list

of edge containers and must thus use the improved edge list representation (see chapter 2).

This has resulted in the algorithm consuming substantially more time and space in com

parison with the following three algorithms that we choose to study. In contrast with this

algorithm, the three algorithms do not have to use improved edge lists. Instead, they can use

simple adjacency lists for graph representation. We will show that by using simple adjacency

lists, deleting cut-pairs can be done efficiently during the DFS.

Taoka et al. algorithm: The algorithm reported by Taoka et al. [13] uses only the

DFS technique. It has three major phases and performs three depth-first searches. The idea

is to find two types of cut-pair, type-1 and type-2, so that all 3-edge connected components

“appear as connected components” after all the cut-pairs are removed and some necessary

edges are added. In phase one, during a DFS on the given graph, all type-1 cut-pairs are

found by computing some parameters for every vertex. Moreover, an important parameter

called “path-partition number” is calculated for every vertex so that all end-points of each

cut-pair must be located in one disjoint tree path in the DFS tree. In phase two, two key

parameters, which will be used for determining type-2 cut-pairs in the next phase are com

puted for all the vertices. In phase three, type-2 cut-pairs for every path-partition are found;

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

during this phase a parameter for storing an end-point is updated for each vertex. After this

phase, the value of the parameter is checked for each vertex and if it is not empty then an

edge having the end-point value and the vertex as its end-points is added to the given graph.

It should be mentioned that the depth-first searches in phase two and three traverse the DFS

spanning tree which has been obtained in the first phase, and that back-edges are only used

during phase two. This algorithm is simpler than that of Nagamochi et al. mentioned above.

However, it performs multiple depth-first searches which induces a lot of overhead and lacks

elegancy of the following two algorithms which each performs only one DFS.

Tsin’s algorithm (The one without reduction):

This algorithm is first proposed by Tsin [16] as a distributed algorithm for finding 3-edge

connected components on an asynchronous distributed computer network. However it can

be easily converted into a simple linear algorithm which performs only one DFS on the input

graph G. The algorithm does not classify cut-pairs and deals with each of them whenever

it encounters the cut-pair during the DFS. This is accomplished through a transformation

which converts the given graph G into a new graph G' so that the cut-pairs of the former

are the type-2 cut-pairs of the latter. However, the transformation needs not be carried out

explicitly. Therefore, the DFS is performed over G rather than the graph G'. Each time a

cut-pair is found, it is deleted from G and a parameter for each vertex is updated so that after

the DFS some virtual edges can be added to the graph. At the end, the 3-edge connected

components of G “appear as connected components” of the modified G which is same as that

produced by the algorithm of Taoka et al. [13].

Tsin’s algorithm (The one with reduction):

This is an elegant linear algorithm proposed by Tsin [15]. The idea is to use one type of

reduction to transform each 3-edge connected component of the given graph into a trivial

graph in order to determine the vertex set of that 3-edge connected component. In contrast

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with previous algorithms, this algorithm is not interested in finding cut-pairs. The entire

computation on the given graph is done through only one DFS without any actual modifica

tion on the graph and the vertex set of each 3-edge connected component is determined by

having a vertex in the component absorbs all the other vertices gradually during the DFS.

To the best of our knowledge, no other linear time algorithm based on the depth-first

search technique has been reported for 3-edge connectivity.

Similar research had been carried out before. In his M.Sc. thesis [1], Chen implemented

the algorithm of Nagomachi et al. [9] to test for 3-edge connectivity and presented exper

imental results. Later, in his M.Sc. thesis [12], Sun implemented the algorithm of Taoka

et al. [13] to test for 3-edge connectivity and compared his experimental reults with those

of Chen. Comparing to ours, their works were done at a much smaller scale. Firstly, they

did not generate the 3-edge connected components. Secondly, they did not determine the

cut-pairs. Thirdly, the graphs they had tested were of sizes at most 185,000. By contrast,

we implemented and compared three, rather than just one, 3-edge connected component al

gorithms and not only test for 3-edge connectivity but also determine the cut-pairs as well

as the 3-edge connected components. Furthermore, the input sizes we use in producing our

experimental results are in the interval of 649,437 to 100,230,424, which is much larger than

those of Chen and Sun.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

A m odel for cut-pair deletion from a

multigraph

It is very important not to choose an imperfect data structure model to represent graphs for

implementation of 3-edge connectivity algorithms; especially those that will find and delete

cut-pairs. When it comes to delete a cut-pair, our graph representation model must allow us

to access the cut-edges in an efficient way which does not affect our algorithm performance.

For example, a naive way is to search for the cut-edges in adjacency lists, which results in an

undesirable non-linear time complexity.

There are three major approaches to represent graphs, namely Edge List, Adjacency Lists,

and Adjacency Matrix. One might ask how to choose between representations? The answer

is that it depends on the algorithm and trade-off between space and time efficiency. Any of

the first two structures keeps real edges existing in a given graph but the adjacency matrix

reserves a space for any pair of vertices regardless of whether an edge connecting them actu

ally exists. Each of the edge list and adjacency list structures uses 0(\V\ + \E\) space, while

the adjacency matrix uses 0(|1F|2) space.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The edge list structure is a sequence of all vertices in G. and a sequence of unordered

pairs of size \E\. Each pair consists of the end-points of a distinct edge in G (see Figure 3.1).

v\ v2
V:

E:
An Edge List representation of G.

Advantages: Finding end-points of an edge, access to/insertion/removal of
an edge, and inserting a vertex can be done in 0(1) time.
D isadvantages: Finding incident edges of a vertex, determining whether two
vertices are adjacent or not, and removing a vertex can be done in 0 (\ E \) time.
Also this is not an efficient representation for the DFS technique.

Figure 3.1: A graph with its Edge List representation.

Therefore we can easily search for anything interacts with edges. We can insert/ access/

delete any edge in 0(1) time. That is why this structure is called “edge list”. However, we

also have a sequence of vertices, but “in keeping with the tradition” [7,8], the structure is

still called edge list structure.

But the edge list structure is not suitable for DFS based algorithms because handling a

vertex is done in 0(\E\) time; so the entire time complexity would be 0(\V\.\E\). In fact

the problem with edge list is that each vertex does not know which edges are incident to it.

However, putting pointers from each vertex to the edges incident to the vertex, can improve

the edge list structure. Since each vertex can have a lot of edges incident to it, we need a

sequence of incident edges. As we mentioned in the previous chapter, this sequence is called

an Adjacency List.

For the general DFS algorithm, Goodrich et al. [8] use the improved version of edge list

(i.e. The edge list structure combined with adjacency lists; see Figure 3.2), in which each

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vertex has also a list of edges incident to it. This could be useful for linear 3-edge connectivity

algorithms which delete cut-pairs after they find them, because any edge can be deleted in

0(1) time, and access to incident edges of a vertex v can be done in 0 (deg(v)) time so that

DSF also runs linearly; see Figure 3.2. Clearly this model itself needs at least 6|E\ + 0(V)

space.

V: vstd vstd

E: vstd vstd vstd

vstd: indicates whether the object is visited or not.

Figure 3.2: The improved Edge List model in order to represent input graphs for DFS.

Since in the 3-edge connectivity algorithms, we search and find cut-pairs, therefore in

stead of using the improved version of edge list, one might use the simple adjacency lists we

explained in Chapter 1.2.3 and add back pointers from the list of vertex v (v G Vq) to other

lists that v exists in them in order to be able to efficiently delete both corresponding undi

rected edges. These edges are cut-pairs that must be deleted when they are found. Clearly

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this model itself needs at least 4|E| + 0(V) space.

Now we shall explain our data structure model which is especially useful for cut-pair

deletion from a multigraph by using simple adjacency lists (See Figure 1.4) and adding two

simple 1-dimensional arrays to the model each of size |V|; we will also explain these two

arrays in the following definitions. The space needed for this model would be 2|J57| + 0 (V)

which outperforms the others we discussed above. To the best of our knowledge there is no

better model than ours in order to be used for cut-pair deletions in 3-edge connectivity algo

rithms. When it comes to dealing with dense graphs (|E\ = 0 (|V |2)) the difference among

the described models would be significantly remarkable. In comparison with the other two

models, our model can handle much larger input sizes for experiments on a platform and has

shorter execution time.

Lemma 1: Let (v,w) be a cut-edge that is an outgoing back-edge of v. Then there is no

other cut-edge which is an outgoing back-edge of v.

P ro o f : Suppose to the contrary that two outgoing back-edges (v, w) and (v, u) of v are both

cut-edges. First, consider the case where d f s (w) < d f s (u) (i.e. DFS number of w and u are

not equal). Since these two edges are back-edges, they cannot form a cut-pair with each other

because the DFS spanning tree keeps all the vertices connected. So each of the two edges

must belong to a different cut-pair of which the other cut-edge (a, b) is a tree-edge. Clearly,

the tree-edge (a, b) that forms a cut-pair with (u , v) must lie on the path Pt < u , v > located

in T < u >. Consider removing this cut-pair from G\ Pt < u , v > must be broken into two

disjoint paths Pt < u , a > and Pt < b , v >. Furthermore, G must become disconnected and

the vertices a and b must be located in two different connected components. Since there is

still a path Pt < w, u >, by concatenating the path PT < u, a > to it we then have a path

Pt < w, a > in T and hence in G. On the other hand, we have a path Pt < b, v > in T,

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and clearly in G. By adding the back-edge (v, w) to this path; a path Po{b,w) is obtained.

Now, concatenating Pc{b,w) and Pc{w,a) gives rise to a path Po(b,a) which implies that

vertices a and b belong to some connected components, a contradiction. In the case where

dfs(w) = dfs(u), the two back-edges are parallel edges, and none of them can be a cut-edge.

The lemma thus follows. □

Definition 1:

t w if (v, w) is an outgoing back edge of v that is a cut edge
backjcutedge[v\

NULL otherwise

Corollary 1: Vv e V , back-cutedge[v] is a singleton.

Definition 2:

parent..edge[v\ = <

(v, w) € G such that (w, v) is a tree-edge and

w is the parent of v if v ^ r

NULL \ iv = r

Lem m a 2: All cut-edges can be correctly marked as deleted during the DFS algorithm using

the proposed model.

Proof: Let (v , w) be a cut-edge. Suppose it is first discovered as an outgoing back-edge

when the DFS encounters the edge at vertex v. Clearly, the other cut-edge that forms a

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cut-pair with (w,v) is a tree-edge (a, b) such that dfs(v) >= dfs(b) > dfs(a) > = dfs(w).

The cut-pair is discovered when DFS backtracks to vertex a and before any other edge in

the adjacency list of a is traversed. Then at this step of DFS when the tree-edge (a, b) is

currently at hand, we mark it as deleted in the adjacency list of a. Using parent-edge[b], we

can easily mark the same tree-edge as deleted in the adjacency list of b. We then mark the

outgoing back-edge (v, w) in the adjacency list of v. This can be accessed using Ipa of a in

Taoka’s algorithm [13] or using top of stack of a in Tsin’s algorithm [16]. Now the only job

left to do is deleting the incoming back-edge (w, v) in the adjacency list of w. At this point

of time, back-cutedge[v\ is set to w. After DFS backtracks from a, it will finally traverse

the incoming back-edge (w,v) of w. At that time, the value of back-cutedge[v] is checked;

if it is w itself then the back-edge (w,v) is marked as deleted in the adjacency list of w.

Otherwise, since by Corollary 1 back_cutedge[v\ is unique, it is guaranteed that the incoming

back-edge (w , v) of w cannot be a cut-edge. On the other hand, suppose two tree-edges (x, y)

and (a, b) forms a cut-pair such that dfs(b) < dfs(x) and the cut-pair is discovered when

DFS backtracks to vertex a. Then (a, b) can be marked as deleted in the adjacency list of

a. Furthermore, as (x , y) must be a generator and can be accessed from the top of the stack

in both Taoka and Tsin algorithms, it can be marked as deleted in the adjacency list of x.

The edge (a, b) can be marked as deleted in the adjacency list of b using parent-.edge [6] while

the edge (x, y) can be marked as deleted in the adjacency list of y using parent.edge[y\. The

lemma thus follows. □

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Com putation

Recall that a type-2 cut-pair consists of two tree-edges. In the following we give definitions

for two kinds of back-edges such that the existence of any of them in a section of T would

prevent the generation of type-2 cut-pairs from the section.

r

Figure 4.1: e\ is an out-edge and e2 is an in-edge with respect to (v, w) and (x, y).

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In-edge and Out-edge

Suppose dfs(y) > dfs(x) > dfs(w) > dfs(v) and lowpt(y) < lowpt(v). A back-edge

(u,u') is called an out-edge (in-edge, respectively) of G (with respect to (v. w) and (x , y)) if

u' G VpT<r,v> and u G VTw - VTy (u' G VPt<w<x> and u G VTy, respectively).

It is easily seen that with the existence of either an out-edge or an in-edge, {(?;, w), (x, y)}

cannot be a type-2 cut-pair because deleting the two edges does not result in a disconnected

graph.

4.1 Taoka et al. algorithm

For clarity we shall call the algorithm as Taoka hereafter. The algorithm was reported by

Taoka et al. [13] in 1992 and is based on the DFS technique. However, the algorithm accepts

only 2-edge connected graphs as inputs. It also executes in three major phases and performs

three depth-first searches.

In phase one, during a depth-first search on the given graph, all type-1 cut-pairs are

found by computing the parameters, dfs(v), lowpt(v), medium(v), and lpa(v), for every ver

tex d g F The definitions for dfs(v) and lowpt(v) were given in Section 1.2. Here we give

other definitions for Algorithm Taoka:

lpa(v) = (a, 6), where dfs(b) = lowpt(v) and the back-edge (a, b) is the one by which b is

set to lowpt(v).

medium{v) = lowpt(v) in G', where G' = G — lpa(v).

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

let v, w € V, whenever the DFS backtracks from w to its parent v, if lowpt(w) < dfs(w)

and medium(w) = dfs(w) then (v,w) is a bridge in G — lpa(w) and {(v,w),lpa(w)} is a

type-1 cut-pair in G.

Moreover, the algorithm assigns a value to each v G V, which is denoted by path —

number (v) and is called the path-partition number of v, so that the end-points of every cut-

pair must be located in a tree path in which all the vertices have the same path-partition num

ber. Specifically, let v, w G V such that dfs(v) < dfs(w) and lpa(v) — lpa(w) and no proper

ancestor, x, of v with lpa(x) = lpa(v) or proper descendant, y, of w with lpa(y) — lpa(w).

By the definition of lpa(w), any vertex u lying on P t < v,w > , the tree-path connecting v

and w, must have lpa(u) = lpa(v). In other words, every u on P t < v, w > is assigned the

same path-partition number.

Therefore, V can be partitioned into n subsets V(n\ where = {v\path —

number(v) = i} and fl — 0, for i ^ j . A path PB{ is defined as follows: (let Si and

ti be the start vertex and end vertex (respectively) of P B t with dfs(si) < dfs{ti).)

{ the subgraph of T induced by V® if s* e V (P

the subgraph of T induced by U {s*} if s* is not in

Et is partitioned into n subsets EP B l) EPBn, where EPBi fl EPBj = 0, {i ^ j). Also the

vertex set of each PBi is denoted by VPBi. {PB}, ..., PBn} is a path-partition of T and is

shown in Figure 4.2.

In phase two, two key parameters, locaLmin and locaLhigh, which will be used for deter

mining type-2 cut-pairs in the next phase are computed for all the vertices. For any vertex

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PB,

PB-

Figure 4.2: A path_partition of T.

u G PBi, let T' = T — Vu , where

J Vrv i f ti,
Vu — \

0 i f u = ti.

A path Pq < u, u' > is called a back-path of u (with respect to PBi) if the following condi

tions (l)-(3) hold:

(1) u' E V(Pr < r,u >),

(2) any inner vertex of Pq < u, u' > is not in VpBt,

(3) the last edge < u", u' > of Pq < u, u' > is a back edge and any other edge is in Et>.

Note that there might be more than one back-path of u.

B fu) — {«} U {u11 there is a back-path Pq < u, u' > of u with respect to PBi},

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

local — mirii(u) = <
Si i f minBi(u) < Si,

minBi(u) otherwise,

iocaZ — highi(u) = max {{it} U {«' G V (PT < u , t i >)|there is a back-path

Pg < u ' , u > of u ’ with respect to P B i } } .

In Figure 4.2, local — m ini(4) = 3, local — min i(5) = 5, local — high\(2>) = 4 and

local — high\(7) = 8.

In phase three, the type-2 cut-pairs on every PBi path are determined. In this phase,

through another depth-first search, a stack is manipulated to find type-2 cut-pairs. Each

entry on the stack is a pair {(x, y), < p,q >} indicating that if there is any edge (v, w) such

that {(x,y), (v,w)} is a type-2 cut-pair then dfs(p) < dfs(v) < dfs(w) < dfs(q). (x,y) and

< p,q > are called a candidate generator and candidate path in T, respectively.

Traversing each tree-edge (v,w), where path — number(v) / path — number(w) means

the DFS starts to visit a PBi such that v is the starting vertex s* of BPi and w G Vpbv

Whenever, the DFS backtracks from w to its parent v, one of the following cases can occur:

• if the edge (locaLhighi(w),w) is determined (dfs(y) < df s{localJiighi{w))) as an in

edge of G with respect to an edge on Pt < p, q > and (x,y), then the entry is pop-up

from the top of the stack since it is guaranteed that the candidate generator (x,y)

forms a cut-pair with no edge on Pp < p, q >.

• if the edge (w , local jminfw)) is determined (dfs(p) > dfs (local jmini(w))) as an out-

edge of G with respect to an edge on Pp < p, q > and (x, y). then the entry is pop-up

from the top of stack since it is guaranteed that the candidate generator (x, y) forms a

cut-pair with no edge on PT < p,q >.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• if the edge (w, localjmin^w)) is determined (dfs(q) > df s(locaLmirii(w))) as an out-

edge of G with respect to an edge on PT < p,q > and (x,y), then the entry (Top

Of Stack) is updated to {(v,w),< p, local.mirii(w) >} since it is guaranteed that the

candidate generator (x, y) forms a cut-pair with no edge on Pt < q, locaLmirii(w) >.

• if dfs(w) = dfs(q) then the candidate generator (x, y) forms a type-2 cut-pair with the

edge {v, w) since it is guaranteed that there neither an in-edge nor an out-edge with

respect to (v,w) and (x, y). Furthermore, the entry on the top of stack is changed to

{{x,y),< p,v >} since still the generator (x, y) might form another cut-pair with an

edge on Pt < p,v >.

• if localjrnirii(v) > q and v ^ s,-L then an entry {(u, w), < q, locaLmin^v) >} is pushed

to the stack because it is guaranteed that no edge on the path Pt < local.mirii(v), v >

can form a cut-pair with the tree-edge (v, w). However, there might be some edges

on Pt < q, local.mirii(v) > with which, the candidate generator (v , w) forms a type-2

cut-pair.

• if dfs(v) = Si, then the search for type-2 cut-pairs in PBi has been over and any dummy

entry from the top of stack must be popped-up.

During this phase a parameter virtual.edge(v) for storing an end-point is updated for each

vertex v 6 V. Whenever a type-2 cut-pair {(u, w), (x, y)} is found, if the generator (x, y) does

not participate in any type-1 cut-pair, then virtual.edge(y) is updated to v. If the edge (x, y)

forms another type-2 cut-pair then virtual.edge{v) is updated again. This is to take care of

some cases in which removing cut-pairs from the given graphs cause some vertices belong to

the same 3-edge connected component appear in different connected components. After this

phase, the value of virtual.edge{v) is checked for each vertex v and if it is not empty then an

edge having the end-point value and the vertex v as its end-points is added to the given graph.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It should be mentioned that the depth-first searches in phase two and three traverse the

DFS spanning tree which has been obtained in the first phase, and that back-edges are only

used during phase two. As we mentioned before, the algorithm Taoka performs multiple

depth-first searches which induces a lot of overhead and lacks elegancy of the following two

algorithms which each performs only one DFS.

In algorithm Taoka, the improved edge list structure (see Chapter 3) is used in order to

deal with cut-pair deletion. However, in order to represent graphs and perform comparisons

among the three algorithms, the model we proposed and explained in the previous chapter

will be used in our implementation. Hence our implementation for algorithm Taoka does

not follow exactly the same as what they have proposed. As was explained in Chapter 3,

the changes result in consuming less time and space. As we know, lpa(v) is a back-edge

(a, b) by which lowpt(v) is set as dfs[b]. Since we do not have any edge object in our data

structure, we do not use lpa(v) for each vertex v. Instead we shall define a simple array

called “start.of Jpa[v]n of size |Vj in order to store the starting vertex of lpa(v) (the starting

vertex of back-edge (a, b) is the vertex a). Besides for both Taoka algorithm and Tsin [16]

algorithms, we have another array called “toJow .pointer [v]” of size |Vj. It keeps a pointer

to the vertex b in the adjacency list of a which represents the Ipa edge (a, b) for each v G V.

We also use a pair, (start.of Jpa[v\, b), for examining and assignments of each lpa(v).

We can reuse the latter array in Procedure Type2 [13] without any initialization in order to

keep pointers pointing at generator edges (x, y). It can be used as either toJow.pointer [TOS]

(Where TOS indicates the top of stack) or toJow.pointer [x] because each vertex x G V can

associate with only one of its children in order to form a generator.

Furthermore, there are at most |Vj TOSs (The size of stack). Because for each path par

tition we have a dummy entry, and also for each potential generator we only need one space in

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the stack (i.e. the candidate is updated in order to compute other type-2 pairs with the same

generator). On the other hand each entry has a candidate generator and a candidate path.

The length of this path is at least one edge, and also it is not possible that two candidate

paths in two different entries have any edge in common. Because EpBt D Epbj = 0 , (i =£ j).

Thus, the number of candidate generators in a path partition are less than the number of

tree-edges in the same path partition. Suppose the number of candidate generators plus

a dummy entry in a path partition is at most the number of tree-edges in the same path

partition. Since sum of the number of tree-edges in all path partitions is at most | |, Hence

the number of candidates in our stack is at most |V|.

In order to find 3-edge connected components of G, after cut-pairs are deleted from G

and some necessary edges are added, Procedure DFS_connect (Chapter 1.3) is applied. In

the procedure, the DFS finds the vertex set for each connected component of the resulting

graph. This can be done in 0(\V\ + \E\) time.

To determine if a given graph is 3-edge connected or not, the algorithm may go through

all Procedures in order to find type-1 and type-2 cut-pairs, and compute path-partition,

local-min and local-high parameters. However, sometimes it turns out that the graph is

not 3-edge connected just by performing the first DFS. This is because the algorithm finds

a type-1 cut-pair during the execution of type-1 Procedure. So the algorithm terminates

without completely finishing even the first DFS. Another case in which the graph turns out

to be a non 3-edge connected, is when there is no type-1 cut-pair and there is at least one

type-2 cut-pair. In this case the algorithm has to perform all DFS’s and then terminates

when it finds a cut-pair in the last DFS (type-2 Procedure). Otherwise, when there is no cut

pair at all, the algorithm has to complete all DFS’s to be able to make a decision and report

the graph as a 3-edge connected one (Yes instance).

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Tsin’s without-reduction algorithm(W OR)

For ease of reference, we shall call the Tsin’s without-reduction algorithm [16] as WOR hence

forth. This algorithm was proposed in 2006 and takes care of all cut-pairs by performing

only one DFS. The algorithm removes cut-pairs and add some necessary edges in order to

find a graph Q in which the vertex sets of its connected components are 3-edge connected

components of G.

Tsin used a transformation in which any back-edge (x,y) is replaced by a new tree-edge

(.x ,y ') and a new back-edge {y'y), where y' is a new vertex. This results in a new graph

G' = (V7, E ') and its DFS tree T ' = (V E T i) such that there is a one-to-one correspondence

between the cut-pairs in G and the type-2 cut-pairs in G'. Therefore, instead of finding

cut-pairs in G, we can find just the type-2 cut-pairs in G'. However, it should be pointed

out that the algorithm does not carry out the transformation explicitly. The new edge and

vertex are thus fictitious. Therefore, the depth-first search is performed on G rather than G'

and the generators are considered with respect to T ' . In the following, we shall give some

necessary definitions for each v £ V (Note the values of the parameters below are considered

to be the same in both T' and T for each v unless otherwise stated):

lowpt(v) = min({dfs(t)\3 s e V such that s is a descendant o f v in T' and (s, t) is a

back — edge} U (d/s(n)})

For each fictitious vertex y', lowpt{y') = y, where (y, y') is the fictitious back-edge.

Let re be a child of v in T' such that lowpt(w) = lowpt(v). Then

2nd — lowpt(v) = min{{lowpt(w')\w' is a child o f v in T' and w ^ w'})

low(v) is the vertex whose DFS-number is lowpt(v).

2nd — low(v) is the vertex whose DFS-number is 2nd — lowpt(v).

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to — low(v) is the first vertex from whom v receives the final lowpt(v) value.

Note that the to — low(v) values are not the same in T and T' when v is a leaf in T.

The WOR algorithm manipulate a stack[v] on which there is an entry {(x, y),p q} for

each generator (x, y) in the subtree at v such that p q consists of all the cut-edges that could

form cut-pairs with (x,y), and is also denoted by Pt < p, q >■ A similar stack was used in the

last DFS of algorithm Taoka. The DFS is applied on G starting from the root, which could

be any arbitrary vertex in V. For each vertex v € V, when there is no more incident edge on

v to be encountered by the DFS, all of dfs(v), lowpt(v), 2nd — lowpt(v), low(v), 2nd — low(v),

and to — low(v) have been finalized. At this point of time, to — low(v) is the first child

from whom v receives the lowpt(v) value, where to — low(v) is a fictitious child if the edge

(v, to — low(v)) is a back-edge in T. By the definitions of generator and in-edge/out-edge,

any generator, lying in the subtree at v, which forms a cut-pair with a cut-edge on the r — v

tree-path, must be the edgre (v,to — low(v)) or lying in the subtree at to — low(v). The

stacks of other children are destroyed as will be explained later. Now depending on whether

stack(v) is empty, two cases are to be considered separately:

1. If stack(v) is empty and lowpt(v) < 2nd — lowpt(v), then the edge (v, to — low(v)) is

a potential generator. Moreover, if v is a leaf in T, the edge is a back-edge in T and

corresponds to the fictitious tree-edge (v,to — low(v)) in T'\ otherwise it is a tree-edge

in both T and T ' . By the definitions of generator and in-edge/out-edge, any edge that

could form a cut-pair with this edge must lie on the path low(v) 2 nd — lowpt(v).

Therefore, the entry {(v,to — low(v)), low(v) 2nd — low(v)} (with respect to T) is

pushed onto the stack of v.

2. If stack{v) is not empty (v cannot be a leaf), let {(x,y),p -w q} be the top entry

of the stack. If dfs(q) < 2nd — lowpt(v) and (v, to — low(v)) does not form a cut-

pair with (x,y), then the edge (v, to — low(v)) is a potential generator and an entry

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{(u, to—low(v)), q -w 2 nd—low(u)} is pushed onto the stack, where q 2nd—low(v) in

cludes all the cut-edges that could form cut-pairs with (v, to—low(v)). Otherwise, all the

entries {(x, y),p q} on the stack of v satisfying dfs(p) > 2 nd — lowpt(v) are popped

out of stack (v), because none of them could form cut-pairs due to the definition of gen

erator and in-edge/out-edge. If the top entry satisfies dfs (p) < 2 nd—lowpt(v) < dfs(q),

the path p q in the top entry is replaced by p ^ 2 nd — low(v) because (x, y) cannot

form a cut-pair with any edge lying on the path PT < 2nd — low(v),q > due to the

generator and in-edge/out-edge definitions.

The set of incoming back-edges of v is then examined and any entry {(x, y),p -w q} on

stack(v) such that there exists an incoming back-edge (v, u) of v and u is a descendant of y,

is popped out of stack(v). This is because none of them could generate cut-pairs due to the

generator and in-edge/out-edge definitions. The depth-first search then backtracks to the

parent of v.

Here, it should be mentioned that in traversing incident edges on each vertex v G V

whenever the DFS encounters an outgoing back-edge (v, w) of v and dfs(w) < lowpt(v) then

stack (v) becomes empty because by the definitions of generator and in-edge/out-edge no

generator in the subtree of v can form a cut-pair with any edge on P? < r ,v >. Furthermore;

whenever the DFS backtracks from a child w, (w is a fictitious vertex if the DFS backtracks

through a back-edge) all cut-pairs in the subtree at w have been found. If the top entry

{(x, y),p q} on stack(w) satisfies q = w, then the edges (v,w) and (x,y) form a cut-pair.

Furthermore (regardless of whether q = w), if lowpt(w) < lowpt(v), stack(v) is assigned

to stack(w) because there m ight be some generators in th e subtree a t w th a t could form

cut-pairs with edges on Pt < r,v >. Otherwise, stack(w) becomes empty since no generator

in the subtree of w can form a cut-pair with any edge on Pt < r, v >.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the DFS backtracks to r, all cut-pairs have been determined and deleted from

G. Moreover, for every cut-pair {(v,w), (x, y)} such that (x,y) is a generator that is not a

back-edge, and (v, w) is the tree-edge closest to r that forms a cut-pair with (x, y), a virtual

edge (v , y) is added to G. The resulting graph is the desired graph Q.

In order to handle stacks, only a stack of size |V| (since there are at most \V\ candidate

generators) in one time memory allocating is constructed. Also four variables vtop, vbot, wtop

and wbot are defined; each points to an entry in the constructed stack. They correspond to

the top of stack(v), bottom of stack(v), top of stack(w) and bottom of stack(w)', respec

tively. The two variables wtop and wbot are global while vtop and vbot are local variables

for each DFS call. When v is visited for the first time, vtop and vbot are initialized to wtop

and wbot; respectively. Each time the DFS backtracks from v to its parent, the assignments

of wtop <— vtop and wbot <— vbot are performed. Each time stack(w) is get empty, the

assignment of wtop <— wbot is performed. And also each time stack(v) <— stack(w), the

assignments of vtop <— wtop and vbot <— wbot are performed.

For determining whether the given graph is 3-edge connected, the algorithm stops once

it finds the first cut-pair since it is obvious that the graph is not 3-edge connected, and the

graph is reported as a no instance. If there is no cut-pair in the graph then the DFS would

run to its completion and the graph is reported as a yes instance.

In order to find the 3-edge connected components of G, after all the cut-pairs are deleted

from G and some necessary virtual edges are added, Procedure DFS_connect (Chapter 1.3) is

applied on Q. In the procedure, the D FS finds the vertex set for each connected component

of Q. This can be done in 0(\V\ + |2?|) time.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Tsin’s with-reduction algorithm(W R)

For simplicity we shall call the algorithm as WR. This algorithm was proposed in 2005 and

uses an operation called absorb-eject to gradually transform the given graph G into a null

graph by performing only one depth-first search over the given graph. Each vertex in the

resulting graph corresponds to a 3-edge connected component as it has absorbed all other

vertices in the same 3-edge connected component. Hence, by keeping track of all the vertices

of G absorbed by each vertex of the null graph, the set of all 3-edge connected components of

G is computed. In contrast with the other two algorithms, algorithm WR does not look for

cut-pairs and it directly computes all the 3-edge connected components without any further

step after the DFS terminates.

It should be mentioned that algorithm WR constructs link lists of all back-edges (other

than adjacency lists) and searches through them for back-edges that have become self-loops,

in order to determine whether deg(u) = 2, u E V, at the time the DFS backtracks from vertex

u to its parent. This part of the algorithm takes 0(\E\) time and space. We shall show that

the determination of deg(u) can be done in 0(|V j) time and space, and the construction of

such lists can be avoided. However, since the DFS traverses adjacency lists, the complexity

of the entire algorithm remains asO(|V|-(-|J5|).

Each time an absorb-eject operation is applied on an edge e = (w, u) at vertex w in a

graph G', both the vertex u and the edge e are absorbed by the vertex w. At this time, if

deg(u) in G' is 2, vertex w throws away vertex u in order to make it an isolated vertex in

the final null graph. Regardless of whether deg(u) = 2, all the remaining edges incident on

vertex u become incident edges on vertex w where any resulting self-loop is deleted.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Absorb-eject operation

Let G' = (V',E') and e = (w,u) G E' such that either (i) dego'{u) — 2, or (ii) e is not a

cut-edge. The graph obtained from G' by applying an absorb-eject operation on e at w is the

graph G'/e = (V", E") such that E" = E' — Eu U Ew+, where Eu is the set of edges incident

on u in G' and Ew+ = { / ' = (w, z) \3f G Eu, such that f — (u, z) for some z G V' - {u>}},

and

v „ _ i V' if de9G'{u) = 2,

V' — {u} if e is not a cut-edge.

All possible cases of the absorb-eject operation is shown in Figure 4.3. In case (i) vertex u

becomes an isolated vertex in G'/e. In case (ii) vertex w absorbs vertex u. In both cases the

edge e is absorbed by vertex w. In case (ii), since e is not a cut-edge therefore degc(u) ^ 2;

this clearly shows that each of these two cases is distinct.

An embodiment of an edge / is the edge / itself, or the edge f = (w , z) G Ew+ such that

/ = (u, z) G Eu, or an embodiment of an embodiment of / . For each w G V', let a(w) = {w}

initially, and let a(w) = a(w) U a(u) when vertex w absorbs vertex u. Clearly, a(w) denotes

the set consisting of vertex w and all the vertices that have been absorbed either by vertex

w or by vertices that have been absorbed by vertex w.

It should be mentioned that when the absorb-eject operation is applied on a tree-edge

e = (w, u) at vertex w, the types of the edges incident on u are kept so that if f is a tree-edge

(back-edge, respectively) in G', then its embodiment f is a tree-edge (back-edge, respec

tively) in G'/e as well.

A depth-first search is applied by the algorithm on G starting at a vertex r, which can

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.3: (i)deg'G(u) = 2 and e is a cut-edge. (ii)e is a not a cut-edge

be any vertex in V. For each tree-edge in T, during the DFS the absorb-eject operation is

applied to either the tree-edge or an embodiment of the tree-edge. Each time the absorb-eject

operation is applied, either condition (i) or condition (ii) is satisfied. The purpose of condi

tion (ii) is to collect vertices belonging to the same 3-edge connected component under one

vertex because the two end-points of edge e which is not a cut-edge, are in the same 3-edge

connected component. When all the vertices in a 3-edge connected component have been

gathered under a vertex u, degG'(u) becomes 2, where G' is the graph to which G has been

transformed. When the DFS backtracks to the parent of vertex u, Condition (i) is satisfied.

Therefore, the absorb-eject operation is applied at the parent, to absorb the tree-edge e and

isolate u from the graph. This is because the two edges incident on u form a cut-pair such

that a(u) is a 3-edge connected component of G.

When the DFS backtracks from vertex w to its parent, the subtree at w in T, has been

transformed into a graph consisting of a set of isolated vertices and a tree-path Pw associ

ating with some back-edges, called the w — path. Each back-edge associated with Pw has

one of its end-point on the u>-path and the other on the r — w tree-path. The w-path is

denoted by Pw : (w =)wq — w\ — — ■ ■ ■ — Wk, where wq, w\.. .Wk are the vertices on the

path and wo, Wk are the end vertices of the path. Furthermore, there exists a back-edge

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ = (wk,x) where pre(x) — lowpt(w), and there is no back-edge connecting any two vertices

on the w-path. Each isolated vertex corresponds to a 3-edge connected component of G. The

tree-edge (w,wi) on the rc-path is a candidate in order to form a cut-pair with an edge lying

on the r — w tree-path.

The determination of the w-path is as the following. When the DFS visits vertex w for

the first time, the w — path is initialized to a null path. Whenever the DFS backtracks from

a child u such that lowpt{u) is smaller than the current value of lowpt(w) or encounters a

back-edge (w,u) with dfs(u) smaller than the current value of lowpt(w), then the tc-path is

updated. In the former case, the w-path becomes the path consisting of the tree-edge (w, u)

and the u-path. In the latter case, it becomes the null path. The absorb-eject operation is

then applied at vertex w to absorb all the edges on the previous w-path because none of the

edges on the path can form a cut-pair with any edge on r — w path. In other words, all the

vertices on it including w belong to the same 3-edge connected component.

In Figure 4.4(a) a graph G is shown with solid lines denoting tree-edges and dotted ar

rows denoting back-edges. In Figure 4.4(b) the graph to which G has been transformed when

the DFS backtracks from vertex u to vertex w is shown. Note that the current w-path is

w — w\ — W2 — wz and the w-path is u — a — b. In Figure 4.4(c) the current ic-path is updated

to u-path w — a — b while the previous w-path w — Wi — ic2 — ^ 3 is absorbed by vertex w\ this

is because lowpt(u) < lowpt(w). Moreover, since deg(u) = 2, an absorb-eject operation was

applied on the edge e at w (Figure 4.4(b)). When the DFS encounters an incoming back-edge

/ ' = (w, u) that is not a self-loop at vertex w, the back-edge / ' must be an embodiment of

an incoming back-edge / = (iu, u') of w in T. Since v! is a descendant of w in T, u' must

be located in a subtree of at a child of w in T. The DFS has traversed the subtree and

consequently the subtree must have been transformed into a tree-path and a set of isolated

vertices such that vertex u has absorbed vertex u'. Vertex u cannot be any of the isolated

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

subtrees traversed
before subtree Tu

I lowpt(u)
lowpt(w)

/ / / 1 jo w
fr '

' ' *

\ . ^ 2 • / l > { /

• / m / s
• / / 1 , •

current w-path
u-path

.. hwpt(w)

W
current w-path

Figure 4.4: When DFS backtracks from vertex u to vertex w. (Extracted from [15])

vertices because of the existence of the edge / '. Hence, It must be located on the tree-path.

The tree-path either is the current ic-path or must have been absorbed by vertex w earlier.

In the latter case u = w which means / ' is a self-loop. In the former case, vertex u must

be a vertex located on the current (non-null) ic-path. The absorb-eject operation is then

applied at w to absorb the section of the current w-path from w to u (see Figure 4.5). This

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w.’H il
^ * ■ * edge to be absorbed

Figure 4.5: When an incoming back-edge is encountered. (Extracted from [15])

is because no edge lying on this section could generate new cut-pairs. Note that at this step

the operation is applied to absorb each tree-edge (w, x) on Pw if it lies on P[w..u\ (Lemma 9

of [15]). The edge lies on P[w..u] if x is an ancestor of u' in T. The final w-path is determined

when the search backtracks to the parent of vertex w.

The DFS eventually backtracks to the root r from a vertex u, which is the last child of

r. At this time, the graph G has been transformed to a graph consisting of a set of isolated

vertices and the path r + Pu, where + is the concatenation operator. If deg(u) = 2, an

absorb-eject operation is performed on the tree-edge (r, u) at r. Then r absorbs the path

r + Pu because lowpt(r) = 1. This results a set of isolated vertices each represents a 3-edge

connected component of G.

To determine whether a given graph is 3-edge connected, the DFS stops once it finds the

first vertex with degree 2, and the graph is reported as non-3-edge connected (i.e. a ‘no’

instance). On the other hand, if the algorithm does not find any vertex with degree 2, then

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the DFS would run to its completion, and the graph is reported as 3-edge connected (i.e. a

‘yes’ instance).

Lemma 3: [Lemma 6(ii) of [15]] Let u E V — {r}. At the time the DFS backtracks from u

to its parent w, Pu : (u —)uo — u\ — U2 — .. . — Uk such that for each back-edge f = (Ui, x),

0 < i < k, x lies on the r — w tree-path.

During the execution, when the DFS backtracks from w the absorb-eject operation has

been applied on nw tree-edges, where 0 < nw < \Etw\. Note that each of the tree-edges is

either a tree-edge in Tw or an embodiment of a tree-edge in Tw. Each time the operation is

applied we have a set a*, 1 < i < nw, consisting of all the parallel back-edges between w and

one of its proper descendants, Vi, 1 < i < nw. We define Aw = IJSu

Lem m a 4: The number of incomming back-edges ofw is \AW\.

Proof: The case where nw = 0 is obvious.

Let nw > 1. Suppose when the DFS backtracks from w, each incoming back-edge

(vi, w) of vertex w has the end-point vt lying on the same Px path, where Px is w(=

x q) — Xi — X2 — ■■■ — xriw. Regardless of whether Px is Pw or w + Pu, the absorb-eject operation

absorbs the vertices Xi along the path. Let bi be the set of parallel back-edges between w

and Vi. By Lemma 3, any back-edge with one end-point Xi has the other end-point on the

r — w path. Therefore no back-edge can have Vi and Vj as its end-points, 1 < i, j < nw and

1 j . Consequently, no incoming back-edge of w can be added by applying the absorb-eject

operation. As a result, bi fl bj = 0. It follows that | bf\ = \ IJ]1̂ af\ — |AW|. Hence, \AW\

is the number of incoming back-edges of w (whose other end-points lies on Px).

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since each incoming back-edge of w is an edge (vi,w) such that Vi lies on a PWj, 1 <

j < k, where k < nw (note that PW] is either Pw or w + Pu), it follows that the set

of all incoming back-edges of w can be partitioned into a collection of disjoint subsets

Ct = {Sj\ 1 < j < k} such that there is a one-to-one correspondence between C\ and the

collection {{(uj, u;)|uj lies on Pw.} | 1 < j < k}. From the preceding paragraph, for each

PWj, 1 < j < k , | AWj | is the number of incoming back-edges of w whose other end-points lies

on PWj. It follows that \AW\ = X^Li IAuJ = XljLi \Sj\- As Yl^=i is f^e total number of

incoming back-edges of w, the lemma thus follows. □

Lemma 5: Let u,w 6 V such w is the parent of u and G' be the graph to which G has

been transformed before the absorb-eject operation is applied on the tree edge e = (w, u) at

w. Then after the operation, deg[w] — deg'[w] + deg[u] — 2 — 2k, where deg'[w] is the degree

of w before the operation is performed and k is the number of parallel back-edges between w

and u in G'.

Proof: Let k be the number of parallel edges between w and u. It is easily verified that

0 < k < \B\. Let k' be the number of outgoing back-edges whose other end-point is not

w. Clearly k! = deg[u\ — k — 1. As the absorb-eject operation is performed, these k' edges

become incident outing back-edges of w. So k' must be considered in updating deg[w\ in

G'/e. However deg[w\ must also be reduced by both 1 and k because w has lost the tree-edge

e and those k edges had become self-loops which should be disregarded. Therefore, deg[w\

becomes deg[w] + k' — 1 — k. Hence deg[w] becomes deg[w] + deg[u\ — 2k — 2. The lemma

thus follows. □

Corollary 3: When the DFS backtracks from vertex w to its parent, deg[w] — deg'[w] +

degcg(vi) — 2 h ~ 2nw, where deg'[w) is the degree of w before the first adsorb-

eject operation is applied to it, Gi is the graph to which G has been transformed when the

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adsorb-eject operation is performed on (iu , V {) and ki is the number of parallel back-edges

between w and Vi in Gi.

Proof: Immediate from Lemma 5. □

Now, instead of spending 0(\E\) time and space by using the way mentioned in Lemma

11 of [15] for determining if deg[u] = 2 in Section 1.1 of the algorithm, we can spend 0(|Vj)

time and space on the degree determination if we first initialize the degree of all vertices to

zero and then add 3 statements (Each takes 0(1) time) to the algorithm as explained below:

• Firstly, in Section 1 of the algorithm, we insert the statement deg[w] <— deg[w) + 1. So

that when the DFS visits vertex w for the first time the statement is also executed.

This is to take every edge incident on w into account. Note that deg[w] is initialized

to zero.

Secondly, we add the statement deg[w] <— deg[w] + deg[u] — 2 in Procedure Absorb-

path within the for loop. So that any time the absorb-eject operation is applied by

calling the Procedure, the statement is also executed. Since the absorb-eject operation

is applied nw times in total for vertex w, a total of XT=i ^e9Giivi) is added and a total

of 2nw is subtracted in computing the final value of deg[w\. This takes care of two of

the terms in the formula of Corollary 3.

Lastly, we add the statement deg[w] deg[w]—2 in the then part of Statement 1.6.0. of

the algorithm. So that each time the DFS encounters an incoming back-edge the state

ment is also executed. From the preceding paragraph, it remains to deduct 2 Yli=i ki

from deg[w] in order to calculate the final value of deg[w}. By Lemma 4, the size of Aw

is the num ber of incoming back-edges of w. Since ki = l la *l = \AW\. we thus

have X^=i ki ^he number of incoming back-edges of w. As the newly added state

ment is executed whenever an incoming back-edge is encountered, a total of 2 Y^= i ki

is thus deducted in computing the final value of deg(w). Hence, by Corollary 3, deg[w]

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is correctly computed.

• It is unnecessarily to add the second statement mentioned above to the th en part of

Statement 1.1 of the algorithm; although the absorb-eject operation is applied. This is

if the statement was added, then if deg[u] = 2 when the DFS backtracks from u to w,

deg[w] would be updated to deg[w] + deg[u] — 2 — deg[w\ + 2 — 2 which is deg[w] itself!

To be more specific, if Pu is not null, then deg[w] needs no update because by applying

the operation, vertex w looses the tree edge (w, u) but on the other hand gains the first

tree-edge on Pu. If Pu is Null, then vertex w looses the tree-edge (w, u) but gains the

only back-edge on u.

• We shall verify the spending time and space on the degree determination in Section 1.1

using this method. We note that we need only |Vj memory space for this purpose since

we only need a simple array deg[w] of size |Vj. Furthermore, the logical if expression

in Section 1.1 takes a total of 0(|Vj) time to determine the degree for all the vertices

in V — {r}; since only the value of deg[w] must be checked for each w.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Comparison

We performed three types of experiment to compare the execution times of the three al

gorithms. They are: testing for 3-edge connectivity, determining cut-pairs, and computing

3-edge connected components. The platform we used for the experiments is as below:

• Hardware:

- Model: Dell 650 Precision Workstation

- Processor: Pentium 4, 3.2GHz Intel/Xeon, 512KB L2 cache

- Memory: 4GB

• Software:

- Operating System: Linux, Fedora core 2.6.12

- Programming Language: C

5.1 Data Set

In order to perform experiments and show execution times of each algorithm, we generated

two different sets of graphs using a random graph generator. Since the algorithm of Taoka

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

et al. accepts only 2-edge connected graphs, all the graphs in the two sets are thus 2-edge

connected. The first set Si consists of 305 sparse graphs such that \/G — (V, E) e Si, 12.5 <

< 16.5. The input sizes (|E\ + |Vj) of the graphs in Si are distinct and are randomly

chosen from the interval of [600,000..60,000,000].

On the other hand, the second set S2 consists of 301 dense graphs where VG £ S2, |^| ~

The input sizes of the graphs in S2 are distinct and are randomly chosen from the

interval of [6,000,000.. 110,000,000].

Moreover, after performing an experiment for finding 3-edge connected components on

the sets, it turned out that 180 and 201 graphs are 3-edge connected in the first set and

second set, respectively. Note that since the graphs are randomly generated, we might not

have enough number of 3-edge-connected graphs or non-3-edge connected graphs in our sets.

In the following we will explain how to obtain the desired number of 3-edge-connected graphs.

So we can run the experiment for determining 3-edge-connected graphs, while we have a fair

number of Yes and No instances.

5.1.1 Generating the experim ental input graphs

Starting with an edgeless graph G = (V., E) and a number t (a threshold), we visit all ver

tices in V. Each time we visit a vertex v, we generate a random number Enum, where

1 < Enum < t. The t parameter indicates that at most how many edges are added to the

adjacency list of v while Enum is the actual number of edges added by the time we visit

v. Having a larger value for t results in generating a graph with higher density. To gener

ate each of the Enum edges for v, we generate a random vertex number, w, in the interval

[l..|Vj]. If w = v, we generate w again since we are not interested in self-loops. We then

add an edge (v, w) to G by adding v to the adjacency list of w, and w to the adjacency list of v.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.2 Generating connected graphs

After we create a random graph G — (V, E), if the graph is not connected, we will turn it

into a connected graph. This can be easily done by finding the connected components and

then adding edges to make the graph connected. We find the connected components of G

using the algorithm explained in [17]. The details are given below:

1 c = 0;

2 S = 0 ;

3 for (i=l;i<=Vnum;i++)

4 visited[i] == 0

5 for (i=l;i<=Vnum;i++)

6 if (visited[i] == 0) {

7 c = c + 1;

8 sc = 0 ;

9 DFS_connect(i); //Procedure DFS_connect (Chapter 1.3) is called to compute sc.

10 j = a random vertex in sc;

11 S = S U sc

12 k = a random vertex in S;

13 if (i != 1) { //there is more than one connected component.

14 add j to the list of k in a random position;

15 add k to the list of j in a random position;

16 }

17 }

5.1.3 Generating 2-edge connected graphs

After we generated a connected graph we have to turn it into a 2-edge connected one. We

do this through a DFS procedure. Let w,v €E V. Each time the DFS backtracks from a child

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w to its parent v, if lowpt(w) = pre(w) then the edge (v, w) is a bridge. Therefore we add

an edge (low(v),node) where node is either a child of w or w itself (in case w has no child).

Note that low(v) is its value at the time the DFS backtracks from w.

5.1.4 Generating non-3-edge connected graphs

We had observed that when the density is high, the graph we generated was always 3-edge

connected. Obviously, it is desirable to generate non-3-edge connected graphs for the algo

rithms. In this case, we have the random graph generator to choose a number c and generate

c different graphs, where the total number of vertices of the graphs is |V|. The set of vertices

for each graph, which is 3-edge connected, is denoted by Sj, 1 < i < c. Then we connect the

graphs to each other as below:

1 S = 0 ;

2 for (i=l;i<=c;i++) {

3 S = S U Si;

4 for (j=l;j<=2;j++) {

5 vl = a random vertex in ŝ;

6 v2 = a random vertex in S;

7 add v2 to the list of vl in a random position;

8 add vl to the list of v2 in a random position;

9 {

10 {

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Result

We performed experiments to show the execution time of each algorithm for roughly 600

random 2-edge connected graphs. The results are depicted in Figures 5.1 to 5.10. The plots

in Figures 5.1 to 5.5 are results of the experiments on the first set Si) the one whose graphs

are of lower densities. The plots in the remaining figures are results for the second set S2 ;

the one whose graphs are of higher densities. Moreover, the plots in Figures 5.1 and 5.6 are

results of the experiment that computes 3-edge connected components, and the plots in the

remaining figures are results for finding cut-pairs and also determining whether the input

graph is 3-edge connected.

Looking at the plots, we observe that Taoka has almost the longest execution time in

the experiments. As we described the algorithm before, this was expected since the algo

rithm performs different depth-first searches in multiple phases. In some cases the algorithm

determines No instances faster than the others (See Figure 5.4 and 5.9). This is because

the algorithm is able to find type-1 cut-pairs in the first DFS, so it stops whenever it finds

the first type-1 cut-pair. On the other hand in Figure 5.4 we observe that the algorithm

is remarkably slow in some cases because in these cases there is no type-1 cut-pair so the

algorithm eventually finds a type-2 cut-pair in the last phase. Overall, it is hard to say which

algorithm is good in determining No instances, because it depends on when an algorithm

can find the first cut-pair or 3-edge connected component.

Looking at Figure 5.6, after the input size goes beyond 6.6 x 107, the WR algorithm starts

to collapse as it runs out of memory on the platform; while the other algorithms including

the modified version of WR, which spends 0(|V |) time and space on degree determination

of vertices, still run.

WR terminates successfully on the first four graphs after the input size goes beyond

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6 x 107 (Figure 5.6). This is because these four graphs are not 3-edge connected and their

sizes are close to 6.6 x 107. When a vertex is determined to be of degree 2, all the outgoing

back-edges of all the vertices in the same 3-edge connected component with the vertex have

become self-loops, with the exception of at most one of them. So the freed up memory space

of the self-loops result in enough space to allow the algorithm to completely find the next

3-edge connected component. This is the case until all the 3-edge connected components are

found and the algorithm terminates execution. However, the freed up memory space of the

self-loops could not help the algorithm to run to its completion for the other graphs (69 out

of 301) which have input sizes beyond 6.6 x 107. Hence, the modified version of WR increases

the largest input graph size it could handle by 34% while being the fastest among all the

algorithms.

As we can see in the figures in the chapter, the challenge is between WOR and WR. This

is because Taoka performs different depth-first searches in multiple phases while the others

each performs only one depth-first search. In computing 3-edge connected components WOR

searches the adjacency lists 3 times while WR searches adjacency lists and back-edge lists

each once. In Figure 5.1 we also see that WR is faster than WOR in computing 3-edge

connected components.

In determining Yes instances (3-edge connected graphs) WOR does not have to search

adjacency lists in order to find connected components. Therefore, its performance becomes

better. This is clearly shown In Figure 5.3.

The modified version of WR has the best performance since it does not need to construct

and search back-edge lists for degree determination of vertices. As explained in chapter 4.3

instead of spending 0(\E\) time and space on this part, the modified version of WR use a

different method to do the same which takes a total of 0(|V |) time and space.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100-

80“

80-

40-

20 -

r4 T aokaetal.
algorithm
Tsin's without-reduction
algorithm
Tsin's wth-reduction
algorithm
Tsin's with-redudion
algorithm (modified)

*t i : : i t : i : I r
0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000

X axis: In p u t size(|E |-t-|V |), Y axis: Execution tim e(Second)

Figure 5.1: Serach fo r 3 — edge connected components; 12.5 < 1} < 16.5

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 DO
, Taoka et al.

■ algorithm
. Tsin's without-reduction

algorithm
B Tsin's with-redudion

algorithm
Tsin’s with-redudion
algorithm (modified)

i ----------- 1----------- 3----------- 1----------- i----------- r
10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000

X axis: In p u t size(|E |-f-|V |), Y axis: Execution tim e(Second)

Figure 5.2: Determining whether graphs are 3—edge connected or N O T ; 12.5 < <

56

16.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 '

m

&

, Taoka et al.
• algorithm

Tsin's without-redudion
algorithm

a Tsin's with-redudion
algorithm
Tsin's with-redudion
algorithm (modified)

-r_----- --— ------ _ i_ ----------- j--------- -— r
10000000 20000000 30000000 40000000 50000000 60000000

X axis: In p u t size(|E | + |V[), Y axis: Execution tim e(Second)

Figure 5.3: Determining 3 — edge connectivity; only Yes instances; 12.5 < j^j < 16.5

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1DD

a v : a
J* ♦

Taoka et al.
algorithm
Tsin's without-reduetion
algorithm
Tsin's with-reduction
algorithm
Tsin's with-reduction
algorithm (modified)

X" ■ ." 1 1 .----- —T----------- I--------:— r
10000000 20000000 30000000 4QQ0QQQ0 5Q000000 60000000

X axis: Inpu t size(|E | + |V j), Y axis: Execution tim e(Second)

Figure 5.4: Determining 3 — edge connectivity, only No instances; 12.5 < < 16.5

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 -

80“

6 0 -

4 0 -

20 -

4:

at? .{>&

«S? ■«*"mQQT # °oq9

Taoka et al.
algorithm

n Tsin's without-reduetion
' algorithm

Tsin's with-reduction
algorithm

~ t - f — — — — — j ■ ' j i j | 1 i
0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000

X axis: Inpu t size(]E |-f jV]), Y axis: Execution tim e(Second)

n
Figure 5.5: Determining cut — pairs on No instances; 12.5 < ^ < 16.5

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40-

20 -

Taoka et al.
algorithm
Tsin's without-reduetion
algorithm
Tsin's with-reduction
algorithm
Tsin's with-reduction
algorithm (modified)

0.0E0 2.0E7 4.0E7 6.0E7 8.0E7 1.0E8 1.2E8

X axis: Input size(~ |E|), Y axis: Execution time(Second)

Figure 5.6: Serach fo r 3 — edge connected components; |i2| ~

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80-

40-

20 -

0.0E0
_ T . r -

2.0E7 4.0E7
T

6.0E7 8.0E7 1 .0E8

X axis: In p u t s ize (^ |E[), Y axis: Execution tim e(Second)

f Taoka el al.
algorithm
Tsin's without-reduetion
algorithm

B Tsin's with-reduction
algorithm
Tsin's with-redudion
algorithm (modified)

1 .2E8

Figure 5.7: Determining whether graphs are 3 — edge connected or N O T ; \E\ ~ ^

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O.GEQ
T

4.0E7 6 OE/ 8.0E7

X axis: In p u t s ize(~ |E j), Y axis: Execution tim e(Second)

Taoka et al.
algorithm
Tsin's without-reduetion
algorithm
Tsin's with-reduction
algorithm
Tsin’s with-reduction
algorithm (modified)

1 r
1.0E8 1 .2E8

Figure 5.8: Determining 3 — edge connectivity; only Yes instances; \E\

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50-

40-

30-

20 -

10 -

0 0E0

■ *

& taa 4& stt&m wtttM. non

— i—
*>0Ef

X I
1 .QE8

*, Taoka et al.
algorithm

, , Tsin's without-reduetion
" algorithm
B Tsin's with-redudion

algorithm
* Tsin's with-redudion

algorithm (modified)'

4.0E7 6.0E7 8.0E7

X axis: In p u t s ize(~ |E |) , Y axis: Execution tim e(Second)

Figure 5.9: Determining 3 — edge connectivity; only No instances; \E\ m i
4

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60-

40-

20-

0-

0.QE0

$
,

-t

» o o m aie H * obo mi

2.0E7 4.QE7
1 —
S.0E7

—(—
8.0E7

Taoka et al.
algorithm
Tsin's without-reduetion
algorithm

B Tsin's with-reduction
algorithm

T.0E8

X axis: In p u t s ize(~ |E |) , Y axis: Execution tim e(Second)

Figure 5.10: Determining cut — pairs on No instances', \E\ ~

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion and Future work

One of the important reasons that we were able to perform experiments on such large input

sizes is because of the data structure model we proposed in Chapter 3 to deal with cut-pair

deletions. Without this model, the largest input size we were able to handle would have been

about half of the largest input size we are able to handle.

The modified version of WR has the best performance in computing 3-edge connected

components and determining Yes instances. This is because the algorithm does not need to

construct and search back-edge lists for degree determination of vertices. As a result, it is

now able to determine if the degree of each vertex is 2, which is a key step in the algorithm,

in 0(|Vj) (rather than 0{\E\)) time and space as explained in Chapter 4.3. This algorithm

could be useful in resolving the irreducibility problem for the Feynman diagrams.

The WOR algorithm has the best performance in finding cut-pairs. This is because it

does not have to search the adjacency lists again as it does not have to find the connected

components while the WR algorithm has to construct and search in the back-edge lists. The

WOR algorithm can be used in Bioinformatics where finding the cut-pairs of a graph is an

important process. One disadvantage of the modified version of WR is that it cannot find

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cut-pairs because it does not construct back-edge lists.

Our future work is to apply the algorithms to even much larger input sizes. One direction

is to adapt them to the external memory model [18]. On such a model, the size of the input

graph is larger than the size of the main memory of the computer so that a substantial

portion of the input graph must be stored on the external memory.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Chen Z., “Testing a Graph for 3-edge Connectivity”, Master Thesis, The University of

Georgia, Athens, Georgia, 2001.

[2] S. Coleman, “Aspects of Symmetry: Selected Erice Lectures”, Cambridge University

Press, ISBN 0521318270, 1988.

[3] Corcoran J.N., Schneider U. and Schttler H.-B., “Perfect Stochastic Summation in High

Order Feynman Graph Expansions”, Int. J. Mod. Phys. C, 2006, Vol. 17 (11), 1527-1549.

[4] Dehne F., Langston M. A., Luo X., Pitre S., Shaw P. and Zhang Y., “The Cluster Editing

Problem: Implementations and Experiments”, IWPEC 2006, Zuerich, September 2006.

[5] Galil Z. and Italiano G.F., “Reducing Edge Connectivity to Vertex Connectivity”,

SIGACT News 22, 57-61, 1991.

[6] Hopcroft J. and Tarjan R.E., “Dividing a Graph into Triconnected Components”, SIAM

J. Comput. 2, 135-158, 1973.

[7] Michael T. Goodrich, Roberto Tamassia, “Algorithm Design: Foundations, Analysis,

and Internet Examples”, ISBN 0471383651, Wiley, Paperback, c2002.

[8] Michael T. Goodrich, Roberto Tamassia, “Data Structures and Algorithms in Java” (3rd

edition), ISBN: 0471469831, Hoboken, NJ : Wiley, c2004.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[9] Nagamochi H. and Ibaraki T., “A Linear-time Algorithm for Computing 3-edge-

connected Components in a Multigraph”, Japan J. Indust. Appl. Math. 9, 163-180,

1992.

[10] Shaw P., Department of Computer Science, University of Newcastle, Australia, Elec

tronic Communication, 2006.

[11] Steven S. Skiena, “The Algorithm Design Manual”, Springer, ISBN 0387948600, (July

31, 1998)

[12] Sun F., “Checking a Graph for 3-edge-connectivity”, Master Thesis, The University of

Georgia, Athens, Georgia, 2003.

[13] Taoka S., Watanabe T. and Onaga K., “A Linear-time Algorithm for Computing All

3-edge-connected Components of a Multi Graph”, IEICE Trans. Fundamentals E75(3),

410-424, 1992.

[14] Trajan R., “Depth-first Search and Linear Graph Algorithms”, SIAM J. COMPUT.,

Vol. 1, No. 2, June 1972.

[15] Tsin, Y.H., “A Simple 3-edge-connected Component Algorithm”, Theory of Computing

Systems, Vol 40 Number 2, pp 125-142, 2005.

[16] Tsin, Y.H., “An Efficient Distributed Algorithm for 3-edge-connectivity”, International

Journal of Foundations of Computer Science, Vol 17 Number 3, pp 677-701, 2006.

[17] Tsin, Y.H., “Lecture Notes for Graph Algorithms(60-592)” , School of Computer Science,

University of Windsor, 2004.

[18] Vitter, J., “External memory algorithms and data structures: dealing with massive

data”, ACM Computing Surveys, Vol 33 Number 2, pp 209-271, 2001.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V ita Auctoris

Nima Norouzi was born in 1977 in Tehran, Iran. He obtained his Bachelor of Arts degree

in the field of software engineering in 2001 from Azad University, sought Tehran branch. In

2004, he went to the university of Windsor, Ontario, Canada, and graduated with a Master

of Science degree in computer science in 2007.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A study of three-edge connectivity algorithms - Refinement and implementation
	Recommended Citation

	tmp.1614201503.pdf.DvJV9

