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Abstract

There are quite a number of linear algorithms to compute 3-edge connected components 

of a multi-graph. In this thesis, we study the three most efficient algorithms and exclude 

other algorithms that are obviously inferior as they use different types of transformation in 

multiple phases. We present a data structure model for cut-pair deletion in order to save 

space and to be able to handle larger input sizes on a platform. Using complexity arguments 

we also present a modification to one of the three algorithms that does not look for cut-pairs. 

We then show through our experimental results that this algorithm and another one that 

does not distinguish between cut-pairs have the fastest execution time, and each of them is 

better than the other for some cases. To the best of our knowledge, till now, there is no such 

an effort to show how the performance of the algorithms varies as the type and the size of 

given graph changes. Correctness proofs of the proposed way for cut-pair deletion and the 

modification are presented as well.
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Chapter 1

Introduction

1.1 The graph abstract terminology

In mathematics and computer science a graph is an ordered pair G — (V, E), where V  is a 

set of vertices (or nodes) and E  is a set of edges such that every edge in it is associated with 

two vertices in V. If E  is a set of unordered pairs, then G is an undirected graph. Otherwise, 

G is a directed graph. Below we give some necessary graph related definitions:

End-point (or end-vertex)

The two vertices associated with an edge are called the end-points (or end-vertices) of the 

edge. The two vertices are said to be connected by the edge.

Incident on

An edge is incident on a vertex if the vertex is an end-point of the edge.

Adjacent

Two vertices of a graph are adjacent if there is an edge connecting them. Two edges of a 

graph are adjacent if they share a common end-point.

1
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Degree

The degree of a vertex v € V  in a graph G, denoted by degc(v), is the number of edges 

incident on the vertex in G. The subscript G can be removed if no confusion could occur as 

a result.

Self-loop

A self-loop is an edge that connects a vertex to itself.

Trivial graph and Null graph

A trivial graph has one vertex and no edges. A null graph is an edgeless graph.

Subgraph

A subgraph of G =  (V, E) is a graph G' — (V7, E') such that V' C V  and E' C E. 

Undirected and Directed edges

An edge in an undirected graph is an undirected edge. An edge in a directed graph is a directed 

edge. In a directed graph G, an ordered pair (v, w) denotes an edge from the vertex v to the 

vertex w in G. In an undirected graph G', (v,w) is an unordered pair which represents an 

edge in G having the vertices v and w as its end-points.

A
Directed Graph Undirected Graph Multigraph

Figure 1.1: Examples for directed graph, undirected graph and multigraph.

2
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Multi-graph and Parallel edges

A multi-graph is a graph that can have multiple edges with the same endpoints. The edges 

are called parallel edges. In Figure 1.1, a multigraph is shown.

Clique

A clique in an undirected graph G, is a set of vertices V' such that each pair of V' is connected 

by an edge in G.

Path

A path P  in a graph G is a sequence of vertices such that starting from the first vertex, there 

is an edge from each vertex to the next vertex in the sequence. Let v and w be the first and 

last, respectively, vertex in the sequence. Then the path connects or is between vertices v 

and w. We denote the path by P g ( v , w ) throughout this thesis. If G is directed then the 

path P  is directed as well. The vertex v is called the start vertex and the vertex w is called 

the end vertex. We denote the directed path by Pq < v,w  >. A simple path is a path that 

does not repeat any vertex except the first and the last which may be identical.

Cycle

A cycle is a simple path in a graph that starts and ends at the same vertex.

Acyclic graph

A graph with no cycle is an acyclic graph.

Connected graph

A graph that has a path between every pair of vertices.

3
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Tree

A connected graph with no cycle is called a tree and is denoted by T  = (Vt , Et ).

Spanning tree

A spanning tree T  =  (Vt , E t)  of a graph G =  (V, E) is a connected, acyclic subgraph of G 

such that Vt =  V.

1.2 Depth First Search

Depth First Search (DFS) is a widely used technique which Tarjan [14] analyzed its properties 

in 1972. Let G — (V,, E) be the graph we wish to explore. Initially, all the vertices and edges 

in G axe unvisited. We start at a vertex called “root”, which can be any vertex in V, and 

explore as far as possible along each branch before backtracking, as we describe below:

• We select a vertex v.

• From vertex v, we follow an edge to reach another vertex w.

-  If the vertex w is unvisited, we apply the DFS to w and do the same thing to reach 

other vertices. However, any vertex with possibly unexplored edges is stored on a stack 

each time we apply DFS.

-  If the vertex w is visited, we select another unexplored edge to follow from the vertex.

• Whenever there is no unexplored edge from the vertex, we pop the top vertex on the 

stack, backtrack to that vertex and continue DFS from that vertex.

The algorithm clearly terminates because each vertex can only be visited once. Furthermore, 

each edge in the graph is examined exactly twice. Therefore, with a proper graph represen

tation the time and space required by the search is 0(|V | +  \E\) which is linear in |V| and 

\E\ [14].

4
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Figure 1.2: A multigraph G =  (V ,E ) that we wish to explore by the depth-first search 
technique.

1.2.1 DFS-tree and back-edges

Suppose we apply the DFS on the graph G. The DFS determines a spanning tree T  of G 

and divides E  into two edge sets Et and B. The spanning tree T  is also called “DFS-tree” . 

B  denotes a set of directed edges called “back-edge”. Suppose v,w  E V  and e =  (v,w) E E. 

When the DFS follows the edge e from the vertex v and visits the vertex w for the first time, 

e is added to Et  and labeled as “tree-edge”. On the other hand, when the DFS follows the 

edge e from the vertex v and visits the vertex w but verex w has been visited, then edge e 

is added to B  and labelled as “back-edge”. The DFS-tree and back-edges of the graph in 

Figure 1.2 are shown in Figure 1.3.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.3: The depth-first search defines a DFS-tree T  and back-edges from G. The bold 
edges denote to tree-edges and thin edges denote to back-edges.

1.2.2 Some definitions 

Parent and Child and Leaf

A parent and a child axe the end-points of a tree-edge in a spanning tree (see the DFS-tree 

in Figure 1.3) such that the direction of the tree-edge is from the parent to the child. A leaf 

is a vertex of a spanning tree that has no children. Let T  be a spanning tree. Then the leafs 

in it cannot be parents and the root of it cannot be a child. Any other vertex in T  is both a 

parent and a child.

Subtree

Let T  be a DFS-tree of G — (V, E) and v £ V. The subtree at v, denoted by Tv, is the largest 

subgraph of T  which is a tree and has v as its root.

6
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Ancestor and Descendant

Let u ,v  e Vt - The vertex u is an ancestor of the vertex v iff v is a vertex in the subtree at

u. Furthermore, the vertex u is a proper ancestor of v if u /  v. The vertex v is a (proper) 

descendant of the vertex u iff u is a (proper) ancestor of v.

DFS number

A depth-first search assigns a distinct number to each vertex v in T, which is denoted by 

dfs(v) and called the DFS number of v. The depth-first search assigns the first number, 

namely 1 , to the root and based on the order it encounters unvisited vertices, it increments 

the previously assigned number and then assigns the number to the new vertex.

Incoming back-edge and Outgoing back-edge

A back-edge (v, w) is called an incoming back-edge of v if dfs(v) < dfs(w ) and is called an 

outgoing back-edge of v, if dfs(v) > dfs(w).

Lowpt

lowpt(v) = min({dfs(v)} U {dfs(b)\there exists a P t < v,a > and a back — edge (a, 6)})

In other words, lowpt (v) is the smallest DFS number of a vertex which is reachable from 

v by traversing zero or more tree-edges followed by exactly one back-edge [14].

The calculation of lowpt(v) for each vertex v is done as follows. When the DFS visits 

v for the first time, lowpt(v) is initialized to dfs(v). Whenever the DFS backtracks from 

a child w such that lowpt(w) is smaller than the current value of lowptiv) or encounters a 

back-edge (v,u) with dfs(u) smaller than the current value of lowpt(v). lowpt(v) is changed 

to lowpt(u) or dfs(u); respectively. When the DFS backtracks from v to its parent, the value 

of lowpt(v) has been finalized.

7
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1.2.3 Adjacency Lists

V14 Vu

15

14

11
Ul2

VU Vu
10

Figure 1.4: The graph G and its adjacency lists.

As we had mentioned, with a good graph representation, the DFS can be done in linear 

time and space. In fact the representation is nothing but a data structure [14]. Let G — (V, E) 

be a graph. For each vertex v we construct a list containing all vertices w such that (v, w) 6  G. 

Such a list is called an adjacency list for vertex v. Each element of the list is called an edge 

(■v , w) in the adjacency list of v. Clearly, the edge (v, w) is denoted twice; once in the 

adjacency list of v, and once again in the adjacency list of w. A set of such lists, one for each 

vertex in G, is an adjacency lists data structure for G.

The depth first search provides ways to explore each edge and vertex of a graph so that 

it establishes the base of simple and effective graph connectivity algorithms.

8
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1.3 Graph connectivity

The simplest connectivity problem is to determine whether the given graph is actually con

nected.

Connected component

A connected component of a graph is a maximal connected subgraph of that graph. Two 

vertices are in the same connected component if and only if there exists a path between them.

©

Figure 1.5: A graph with 7 connected components.

We use the DFS to find all connected components of an undirected graph. The idea is to 

have a list of vertices of G and select a vertex v of the list and call DFS(w). When the depth 

first search backtracks to v , the connected component including v is found. If there is a 

vertex u in the list that has not been visited, then call DFS(u). When the depth first search 

backtracks to u, another connected component including u is found. We continue the same 

process until no vertex is unvisited in the list. Then all the connected components of G are

9
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found. The algorithm is as below:

Algorithm Connect; [17]

Input: An undirected graph represented by adjacency lists;

Output: The vertex sets of the connected components of G;

1 c = 0;

2 for (v=l;v<=Vnum;v++) visited[v] == 0;

3 for (v=l;v<=Vnum;v++)

4 if (visited[v] == 0) {

5 c = c + 1;

6 PrintC'A connected component: ");

7 DFS-connect(v);

8  }

1 Procedure DFS-connect(v); {

2 Sc = Sc U v ; Sc is the set of vertices of connected component number c.

3 Print(v);

4 visited[v] = 1;

5 for each w in the adjacency list of v {

6 if (visited[w] == 0)

7 DFS-connect(w);

8  }

9 }

Measuring the connectivity of graphs can be used to analyze a broad range of structures 

and relationships. There are two different ways of measuring graph connectivity; vertex con

nectivity and edge connectivity. For example in the context of telephone network reliability, 

the vertex connectivity of the network is the smallest number of switching stations that must

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fail in order to make the network disconnected so that some working stations will no longer be 

able to communicate with some other stations; the edge connectivity is the smallest number 

of wires that must be cut to give the same result [1 1 ] .

1.3.1 Vertex connectivity

The smallest number of vertices whose deletion results in a disconnected graph.

Cut-vertex

A vertex whose removal from the given graph results in a disconnected graph.

1.3.2 Edge connectivity

The smallest number of edges whose deletion results in a disconnected graph. The edge 

connectivity of a trivial graph is defined to be oo [9]. The edge connectivity of G is denoted

Figure 1.6: A graph G and its 2-edge connected components. The dotted edges (1,2) and
(6,7) are the bridges in G whose removals lead to the determination of 2-edge connected 
components in G.

by ec(G).

2-Edge Connected Components

{1 }
12,3,4,5,6}
{7,8}

11
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Bridge

An edge whose removal from the given graph results in a disconnected graph.

2-edge connectivity

A graph G is 2-edge connected or bridgeless if and only if ec{G) > 2. A 2-edge connected 

component in the graph is a maximal vertex set in which there exist two edge-disjoint paths 

between any pair of vertices in the set. Removing all bridges from G leads to the determina

tion of 2 -edge connected components in G.

12
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Chapter 2 

3-edge connectivity

A graph G is called 3-edge connected if and only if ec(G) > 3. A 3-edge connected component 

in the graph is a maximal vertex set in which there exist three edge-disjoint paths between 

any pair of vertices in the set.

3-Edge Connected Components

Figure 2.1: The graph G and its 3-edge connected components.

13
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2.1 Cut-pair

A pair of edges is a cut-pair in G if their removal results in a disconnected graph and 

none of them is a bridge. A cut-edge is an edge in a cut-pair. It follows that if two vertices 

belong to the same 3-edge connected component, there is no bridge or cut-pair whose removal 

disconnects the graph.

Cut Pairs

{ ( 1,2) , (1,8)}  
{ ( 6 ,7) , (1,8)}  
{(9,12),(9,13)}

{ ( 1,2),(6,7)} 
{(2,3),(5,6)} 
{(4,5),(5,6)} 
{(2,3),(4,5)} 
{(5,9),(9,10)}

Figure 2.2: The graph G and its cut-pairs which are shown by dotted lines.

2.1.1 Type-1 and Type-2 cut-pairs

After the DFS is applied on G, the cut-pairs of G are classified into two types: type-1 and 

type-2 . A type- 1  cut-pair is a cut-pair consisting of a tree-edge and back-edge. A type- 2  

cut-pair is a cut-pair consisting of two tree-edges. In Figure 2.3, the classified cut-pairs of G 

are shown.

14
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Pairs 
{ ( 1,2) , (1 ,8)}
{ (6 ,7) , (1,8)}
{(9,12),(9,13)}

Pairs
{ ( 1,2), (6 ,7)}

{(2,3),(5,6)}
{(4,5),(5,6)}
{(2,3),(4,5)}

{(5,9),(9,10)}

-pairs of G.

Suppose e =  (x, y) is a tree-edge and a cut-edge in T  such that there is no edge in the subtree 

at y that forms a cut-pair with e. Then e is called a generator. It follows that a generator is 

a cut-edge in a type-2 cut-pair. In Figure 2.3, each of the tree-edges (5,6 ), (6 ,7), and (9,10) 

is a generator.

2.3 Related works, and choosing 3 algorithms for study

In physics, a Feynman diagram consists of some undirected lines (Wiggly) denoting photons 

and directed lines (solid) denoting electrons and positrons. Each wiggly line has two end

points (interaction points), and two solid lines are attached to each end-point of a wiggly line 

in a Feynman diagram (see Figure 2.4). An one-particle-irreducible diagram is a connected 

Feynman diagram that cannot be disconnected by removing a single solid internal line [2]. 

An internal line is a line that is either a self-loop or participates at two interaction points;

15
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any other line is an external line. On the other hand, a G-irreducible diagram is a connected 

Feynman diagram that cannot be disconnected by removing no more than two solid internal 

lines [3]. The G-irreducibility is useful in a new application in order to estimate the self 

energy of an interacting Fermion model [3]. In the G-irreducibility problem each solid line is 

called G-line and each wiggly line is called V-line.

An undirected graph G is obtained by contracting the end-points of each V-line, removing 

external lines, and disregarding the directions of all G-lines in a Feynman diagram. Note 

that all self-loops after the contractions are deleted. The relationship between G and the 

Feynman diagram is that the diagram is G-irreducible if and only if G is 3-edge connected. 

The order of a Feynman diagram is the number of wiggly lines which is denoted by n. In 

Figure 2.4 a few simple examples are shown.

Z)2: G-irreducibleDi: G-irreducible D3: only one-particle-irreducible

i I I
G\\ 3-edge connected G2: 3-edge connedted G3 : 2 -edge connedted

Figure 2.4: A Feynman diagram D\ of order n = 1 and two Feynman diagrams D2  and D:i 
of order n = 2 . The graphs Gh, G2, and G3  are obtained from the diagrams.

There is another research going on in the field of Bioinformatics so that 3-edge connectiv-

16
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ity is useful, and one of the researchers had asked for our implementations [10]. The idea is 

to find relations between genes in a biological network obtained from microarray experiments 

using the Cluster Editing problem [4]. The Cluster Editing problem is defined as follows. 

Input: An undirected graph G — (V, E ) and a non-negative integer k. Question: Can G be 

transformed, by inserting and deleting at most k edges, into disjoint cliques? In the research 

the set of these edges includes cut-pairs of G as well.

Hopcroft and Tarjan [6 ] proposed a linear-time algorithm using the Depth-First Search 

Technique to divide a graph into 3-vertex connected components. Then Galil and Italiano [5] 

showed an approach for reduction of edge connectivity to vertex connectivity, and obtained 

a linear-time algorithm for computing all the 3-edge connected components of an undirected 

graph using the linear-time algorithm of Hopcroft and Tarjan [6 ].

A less complicated algorithm based on DFS was then reported by Nagamochi and Ibaraki 

[9] to solve the 3-edge connectivity problem directly without using reduction. The idea un

derlying the algorithm is to gradually remove vertices from the given graph so as to transform 

the graph into a trivial graph. First, any vertex with degree 2 (if exists) in the given graph 

is removed from the graph and transformed into a trivial graph; this transformation repeats 

more later if the remaining main graph is nontrivial (most of the time this is the case). The 

resulting nontrivial graph is then passed to a procedure called REDUCE. By calling the 

procedure, a DFS is applied on the graph in order to find three types of edge set, and the 

edge sets are used to find two other types of edge set of the graph; one of which contains 

all type-1 cut-pairs. The two edge sets are then used to find again two other types of edge 

set while there are consequently three kinds of major transformation involving some deletion 

(including type- 1  cut-pairs) and addition of edges in order to break the input graph into a 

collection of smaller graphs each contains one or more 3-edge connected components of the 

given graph. Any of these smaller graphs, which is nontrivial, is recursively passed to the
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REDUCE procedure and the same method is applied on each of them. In this way all type-2 

cut-pairs of the given graph got passed to the procedure REDUCE, are eventually found as 

type-1 cut-pairs in the consequence calls of procedure REDUCE.

Nagamochi et al. proved that the total number of edges of the graphs which are passed 

to procedure REDUCE during the entire execution of the algorithm is bounded above by 

the number of edges of the original graph times 3. Besides being very complicated, this 

algorithm cannot use simple adjacency lists for graph representation because of the trans

formations and edge sets creations it performs. Therefore in order to have a linear time 

execution (to insert/access/delete any edge in 0(1) time), the algorithm needs to have a list 

of edge containers and must thus use the improved edge list representation (see chapter 2). 

This has resulted in the algorithm consuming substantially more time and space in com

parison with the following three algorithms that we choose to study. In contrast with this 

algorithm, the three algorithms do not have to use improved edge lists. Instead, they can use 

simple adjacency lists for graph representation. We will show that by using simple adjacency 

lists, deleting cut-pairs can be done efficiently during the DFS.

Taoka et al. algorithm: The algorithm reported by Taoka et al. [13] uses only the 

DFS technique. It has three major phases and performs three depth-first searches. The idea 

is to find two types of cut-pair, type-1 and type-2, so that all 3-edge connected components 

“appear as connected components” after all the cut-pairs are removed and some necessary 

edges are added. In phase one, during a DFS on the given graph, all type-1 cut-pairs are 

found by computing some parameters for every vertex. Moreover, an important parameter 

called “path-partition number” is calculated for every vertex so that all end-points of each 

cut-pair must be located in one disjoint tree path in the DFS tree. In phase two, two key 

parameters, which will be used for determining type-2 cut-pairs in the next phase are com

puted for all the vertices. In phase three, type-2 cut-pairs for every path-partition are found;
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during this phase a parameter for storing an end-point is updated for each vertex. After this 

phase, the value of the parameter is checked for each vertex and if it is not empty then an 

edge having the end-point value and the vertex as its end-points is added to the given graph. 

It should be mentioned that the depth-first searches in phase two and three traverse the DFS 

spanning tree which has been obtained in the first phase, and that back-edges are only used 

during phase two. This algorithm is simpler than that of Nagamochi et al. mentioned above. 

However, it performs multiple depth-first searches which induces a lot of overhead and lacks 

elegancy of the following two algorithms which each performs only one DFS.

Tsin’s algorithm (The one without reduction):

This algorithm is first proposed by Tsin [16] as a distributed algorithm for finding 3-edge 

connected components on an asynchronous distributed computer network. However it can 

be easily converted into a simple linear algorithm which performs only one DFS on the input 

graph G. The algorithm does not classify cut-pairs and deals with each of them whenever 

it encounters the cut-pair during the DFS. This is accomplished through a transformation 

which converts the given graph G into a new graph G' so that the cut-pairs of the former 

are the type-2 cut-pairs of the latter. However, the transformation needs not be carried out 

explicitly. Therefore, the DFS is performed over G rather than the graph G'. Each time a 

cut-pair is found, it is deleted from G and a parameter for each vertex is updated so that after 

the DFS some virtual edges can be added to the graph. At the end, the 3-edge connected 

components of G “appear as connected components” of the modified G which is same as that 

produced by the algorithm of Taoka et al. [13].

Tsin’s algorithm (The one with reduction):

This is an elegant linear algorithm proposed by Tsin [15]. The idea is to use one type of 

reduction to transform each 3-edge connected component of the given graph into a trivial 

graph in order to determine the vertex set of that 3-edge connected component. In contrast
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with previous algorithms, this algorithm is not interested in finding cut-pairs. The entire 

computation on the given graph is done through only one DFS without any actual modifica

tion on the graph and the vertex set of each 3-edge connected component is determined by 

having a vertex in the component absorbs all the other vertices gradually during the DFS.

To the best of our knowledge, no other linear time algorithm based on the depth-first 

search technique has been reported for 3-edge connectivity.

Similar research had been carried out before. In his M.Sc. thesis [1], Chen implemented 

the algorithm of Nagomachi et al. [9] to test for 3-edge connectivity and presented exper

imental results. Later, in his M.Sc. thesis [12], Sun implemented the algorithm of Taoka 

et al. [13] to test for 3-edge connectivity and compared his experimental reults with those 

of Chen. Comparing to ours, their works were done at a much smaller scale. Firstly, they 

did not generate the 3-edge connected components. Secondly, they did not determine the 

cut-pairs. Thirdly, the graphs they had tested were of sizes at most 185,000. By contrast, 

we implemented and compared three, rather than just one, 3-edge connected component al

gorithms and not only test for 3-edge connectivity but also determine the cut-pairs as well 

as the 3-edge connected components. Furthermore, the input sizes we use in producing our 

experimental results are in the interval of 649,437 to 100,230,424, which is much larger than 

those of Chen and Sun.
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Chapter 3 

A m odel for cut-pair deletion from a 

multigraph

It is very important not to choose an imperfect data structure model to represent graphs for 

implementation of 3-edge connectivity algorithms; especially those that will find and delete 

cut-pairs. When it comes to delete a cut-pair, our graph representation model must allow us 

to access the cut-edges in an efficient way which does not affect our algorithm performance. 

For example, a naive way is to search for the cut-edges in adjacency lists, which results in an 

undesirable non-linear time complexity.

There are three major approaches to represent graphs, namely Edge List, Adjacency Lists, 

and Adjacency Matrix. One might ask how to choose between representations? The answer 

is that it depends on the algorithm and trade-off between space and time efficiency. Any of 

the first two structures keeps real edges existing in a given graph but the adjacency matrix 

reserves a space for any pair of vertices regardless of whether an edge connecting them actu

ally exists. Each of the edge list and adjacency list structures uses 0(\V\  +  \E\) space, while 

the adjacency matrix uses 0(|1F|2) space.
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The edge list structure is a sequence of all vertices in G. and a sequence of unordered 

pairs of size \E\. Each pair consists of the end-points of a distinct edge in G (see Figure 3.1).

v\ v2
V:

E:
An Edge List representation of G.

Advantages: Finding end-points of an edge, access to/insertion/removal of 
an edge, and inserting a vertex can be done in 0(1) time.
D isadvantages: Finding incident edges of a vertex, determining whether two 
vertices are adjacent or not, and removing a vertex can be done in 0 ( \ E \ )  time.
Also this is not an efficient representation for the DFS technique.

Figure 3.1: A graph with its Edge List representation.

Therefore we can easily search for anything interacts with edges. We can insert/ access/ 

delete any edge in 0(1) time. That is why this structure is called “edge list”. However, we 

also have a sequence of vertices, but “in keeping with the tradition” [7,8], the structure is 

still called edge list structure.

But the edge list structure is not suitable for DFS based algorithms because handling a 

vertex is done in 0(\E\) time; so the entire time complexity would be 0(\V\.\E\). In fact 

the problem with edge list is that each vertex does not know which edges are incident to it. 

However, putting pointers from each vertex to the edges incident to the vertex, can improve 

the edge list structure. Since each vertex can have a lot of edges incident to it, we need a 

sequence of incident edges. As we mentioned in the previous chapter, this sequence is called 

an Adjacency List.

For the general DFS algorithm, Goodrich et al. [8] use the improved version of edge list 

(i.e. The edge list structure combined with adjacency lists; see Figure 3.2), in which each
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vertex has also a list of edges incident to it. This could be useful for linear 3-edge connectivity 

algorithms which delete cut-pairs after they find them, because any edge can be deleted in 

0(1) time, and access to incident edges of a vertex v can be done in 0 (deg(v)) time so that 

DSF also runs linearly; see Figure 3.2. Clearly this model itself needs at least 6|E\ + 0(V)  

space.

V: vstd vstd

E: vstd vstd vstd

vstd: indicates whether the object is visited or not.

Figure 3.2: The improved Edge List model in order to represent input graphs for DFS.

Since in the 3-edge connectivity algorithms, we search and find cut-pairs, therefore in

stead of using the improved version of edge list, one might use the simple adjacency lists we 

explained in Chapter 1.2.3 and add back pointers from the list of vertex v (v G Vq) to other 

lists that v exists in them in order to be able to efficiently delete both corresponding undi

rected edges. These edges are cut-pairs that must be deleted when they are found. Clearly

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



this model itself needs at least 4|E| +  0(V) space.

Now we shall explain our data structure model which is especially useful for cut-pair 

deletion from a multigraph by using simple adjacency lists (See Figure 1.4) and adding two 

simple 1-dimensional arrays to the model each of size |V|; we will also explain these two 

arrays in the following definitions. The space needed for this model would be 2|J57| +  0 ( V ) 

which outperforms the others we discussed above. To the best of our knowledge there is no 

better model than ours in order to be used for cut-pair deletions in 3-edge connectivity algo

rithms. When it comes to dealing with dense graphs (|E\ = 0 (|V |2)) the difference among 

the described models would be significantly remarkable. In comparison with the other two 

models, our model can handle much larger input sizes for experiments on a platform and has 

shorter execution time.

Lemma 1: Let (v,w) be a cut-edge that is an outgoing back-edge of v. Then there is no 

other cut-edge which is an outgoing back-edge of v.

P ro o f : Suppose to the contrary that two outgoing back-edges (v, w)  and (v, u ) of v  are both 

cut-edges. First, consider the case where d f s (w )  <  d f s ( u ) (i.e. DFS number of w  and u  are 

not equal). Since these two edges are back-edges, they cannot form a cut-pair with each other 

because the DFS spanning tree keeps all the vertices connected. So each of the two edges 

must belong to a different cut-pair of which the other cut-edge (a, b) is a tree-edge. Clearly, 

the tree-edge (a, b) that forms a cut-pair with (u , v)  must lie on the path Pt < u , v  > located 

in T  < u  >. Consider removing this cut-pair from G\ Pt  < u , v  > must be broken into two 

disjoint paths Pt  <  u , a > and Pt  < b , v  >. Furthermore, G must become disconnected and 

the vertices a and b must be located in two different connected components. Since there is 

still a path Pt  < w, u >, by concatenating the path PT < u, a > to it we then have a path 

Pt  <  w, a >  in T  and hence in G. On the other hand, we have a path Pt  <  b, v  > in T,
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and clearly in G. By adding the back-edge (v, w) to this path; a path Po{b,w) is obtained. 

Now, concatenating Pc{b,w) and Pc{w,a) gives rise to a path Po(b,a) which implies that 

vertices a and b belong to some connected components, a contradiction. In the case where 

dfs(w) =  dfs(u), the two back-edges are parallel edges, and none of them can be a cut-edge. 

The lemma thus follows. □

Definition 1:

t w if (v, w) is an outgoing back edge of v that is a cut edge
backjcutedge[v\

NULL  otherwise

Corollary 1: Vv e V ,  back-cutedge[v] is a singleton.

Definition 2:

parent..edge[v\ = <

(v, w) € G such that (w, v) is a tree-edge and

w is the parent of v if v ^  r

NULL \ iv  = r

Lem m a 2: All cut-edges can be correctly marked as deleted during the DFS algorithm using 

the proposed model.

Proof: Let (v , w) be a cut-edge. Suppose it is first discovered as an outgoing back-edge 

when the DFS encounters the edge at vertex v. Clearly, the other cut-edge that forms a
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cut-pair with (w,v) is a tree-edge (a, b) such that dfs(v) >=  dfs(b) > dfs(a) > =  dfs(w). 

The cut-pair is discovered when DFS backtracks to vertex a and before any other edge in 

the adjacency list of a is traversed. Then at this step of DFS when the tree-edge (a, b) is 

currently at hand, we mark it as deleted in the adjacency list of a. Using parent-edge[b], we 

can easily mark the same tree-edge as deleted in the adjacency list of b. We then mark the 

outgoing back-edge (v, w) in the adjacency list of v. This can be accessed using Ipa of a in 

Taoka’s algorithm [13] or using top of stack of a in Tsin’s algorithm [16]. Now the only job 

left to do is deleting the incoming back-edge (w, v ) in the adjacency list of w. At this point 

of time, back-cutedge[v\ is set to w. After DFS backtracks from a, it will finally traverse 

the incoming back-edge (w,v) of w. At that time, the value of back-cutedge[v] is checked; 

if it is w itself then the back-edge (w,v) is marked as deleted in the adjacency list of w. 

Otherwise, since by Corollary 1 back_cutedge[v\ is unique, it is guaranteed that the incoming 

back-edge (w , v) of w cannot be a cut-edge. On the other hand, suppose two tree-edges (x, y) 

and (a, b) forms a cut-pair such that dfs(b) < dfs(x) and the cut-pair is discovered when 

DFS backtracks to vertex a. Then (a, b) can be marked as deleted in the adjacency list of 

a. Furthermore, as (x , y) must be a generator and can be accessed from the top of the stack 

in both Taoka and Tsin algorithms, it can be marked as deleted in the adjacency list of x. 

The edge (a, b) can be marked as deleted in the adjacency list of b using parent-.edge [6] while 

the edge (x, y) can be marked as deleted in the adjacency list of y using parent.edge[y\. The 

lemma thus follows. □
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Chapter 4 

Com putation

Recall that a type-2 cut-pair consists of two tree-edges. In the following we give definitions 

for two kinds of back-edges such that the existence of any of them in a section of T  would 

prevent the generation of type-2 cut-pairs from the section.

r

Figure 4.1: e\ is an out-edge and e2 is an in-edge with respect to (v, w) and (x, y).
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In-edge and Out-edge

Suppose dfs(y) > dfs(x) > dfs(w) > dfs(v) and lowpt(y) < lowpt(v). A back-edge 

(u,u') is called an out-edge (in-edge, respectively) of G (with respect to (v. w) and (x , y )) if 

u' G VpT<r,v> and u G VTw -  VTy (u' G VPt<w<x> and u G VTy, respectively).

It is easily seen that with the existence of either an out-edge or an in-edge, {(?;, w), (x, y)} 

cannot be a type-2 cut-pair because deleting the two edges does not result in a disconnected 

graph.

4.1 Taoka et al. algorithm

For clarity we shall call the algorithm as Taoka hereafter. The algorithm was reported by 

Taoka et al. [13] in 1992 and is based on the DFS technique. However, the algorithm accepts 

only 2-edge connected graphs as inputs. It also executes in three major phases and performs 

three depth-first searches.

In phase one, during a depth-first search on the given graph, all type-1 cut-pairs are 

found by computing the parameters, dfs(v), lowpt(v), medium(v), and lpa(v), for every ver

tex d g F  The definitions for dfs(v) and lowpt(v) were given in Section 1.2. Here we give 

other definitions for Algorithm Taoka:

lpa(v) = (a, 6), where dfs(b) =  lowpt(v) and the back-edge (a, b) is the one by which b is 

set to lowpt(v).

medium{v) =  lowpt(v) in G', where G' =  G — lpa(v).
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let v, w € V, whenever the DFS backtracks from w to its parent v, if lowpt(w) < dfs(w) 

and medium(w) =  dfs(w) then (v,w) is a bridge in G — lpa(w) and {(v,w),lpa(w)} is a 

type-1 cut-pair in G.

Moreover, the algorithm assigns a value to each v G V, which is denoted by path — 

number (v) and is called the path-partition number of v, so that the end-points of every cut- 

pair must be located in a tree path in which all the vertices have the same path-partition num

ber. Specifically, let v, w G V  such that dfs(v) < dfs(w) and lpa(v) — lpa(w) and no proper 

ancestor, x, of v with lpa(x) = lpa(v) or proper descendant, y, of w with lpa(y) — lpa(w). 

By the definition of lpa(w), any vertex u lying on P t < v,w  > ,  the tree-path connecting v 

and w, must have lpa(u) =  lpa(v). In other words, every u on P t < v, w >  is assigned the 

same path-partition number.

Therefore, V  can be partitioned into n subsets .... V(n\  where =  {v\path — 

number(v) =  i} and fl — 0, for i ^  j .  A path PB{ is defined as follows: (let Si and 

ti be the start vertex and end vertex (respectively) of P B t with dfs(si) < dfs{ti).)

{ the subgraph of T  induced by V® if s* e  V (P

the subgraph of T  induced by U {s*} if s* is not in

Et is partitioned into n subsets EP B l ) EPBn, where EPBi fl EPBj =  0, {i ^  j). Also the 

vertex set of each PBi  is denoted by VPBi. {PB}, ..., PBn} is a path-partition of T  and is 

shown in Figure 4.2.

In phase two, two key parameters, locaLmin and locaLhigh, which will be used for deter

mining type-2 cut-pairs in the next phase are computed for all the vertices. For any vertex
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PB,

PB-

Figure 4.2: A path_partition of T. 

u G PBi, let T' =  T  — Vu , where

J Vrv i f  ti,
Vu —  \

0 i f  u = ti.

A path Pq < u, u' > is called a back-path of u (with respect to PBi  ) if the following condi

tions (l)-(3) hold:

(1) u' E V(Pr < r,u >),

(2) any inner vertex of Pq < u, u' > is not in VpBt,

(3) the last edge < u", u' > of Pq < u, u' > is a back edge and any other edge is in Et>.

Note that there might be more than one back-path of u.

B fu )  — {«} U {u11 there is a back-path Pq < u, u' > of u with respect to PBi},
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local — mirii(u) =  <
Si i f  minBi(u) < Si,

minBi(u) otherwise,

iocaZ — highi(u) =  max {{it} U {«' G V  (PT <  u , t i  >)|there is a back-path 

Pg < u ' , u >  of u ’ with respect to P B i } } .

In Figure 4.2, local — m ini(4) =  3, local — min i(5) =  5, local — high\(2>) =  4 and 

local — high\(7) = 8.

In phase three, the type-2 cut-pairs on every PBi  path are determined. In this phase, 

through another depth-first search, a stack is manipulated to find type-2 cut-pairs. Each 

entry on the stack is a pair {(x, y), < p,q >} indicating that if there is any edge (v, w) such 

that {(x,y), (v,w)} is a type-2 cut-pair then dfs(p) < dfs(v) < dfs(w) < dfs(q). (x,y) and 

< p,q > are called a candidate generator and candidate path in T, respectively.

Traversing each tree-edge (v,w), where path — number(v) /  path — number(w) means 

the DFS starts to visit a PBi  such that v is the starting vertex s* of BPi and w G Vpbv 

Whenever, the DFS backtracks from w to its parent v, one of the following cases can occur:

• if the edge (locaLhighi(w),w) is determined (dfs(y) < df s{localJiighi{w))) as an in

edge of G with respect to an edge on Pt  < p, q > and (x,y), then the entry is pop-up 

from the top of the stack since it is guaranteed that the candidate generator (x,y) 

forms a cut-pair with no edge on Pp < p, q >.

• if the edge (w , local jminfw))  is determined (dfs(p) > dfs (local jmini(w))) as an out- 

edge of G with respect to an edge on Pp < p, q > and (x, y). then the entry is pop-up 

from the top of stack since it is guaranteed that the candidate generator (x, y) forms a 

cut-pair with no edge on PT < p,q >.
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• if the edge (w, localjmin^w)) is determined (dfs(q) > df s(locaLmirii(w))) as an out- 

edge of G with respect to an edge on PT < p,q > and (x,y), then the entry (Top 

Of Stack) is updated to {(v,w),< p, local.mirii(w) >} since it is guaranteed that the 

candidate generator (x, y) forms a cut-pair with no edge on Pt < q, locaLmirii(w) >.

•  if dfs(w) =  dfs(q) then the candidate generator (x, y) forms a type-2 cut-pair with the 

edge {v, w) since it is guaranteed that there neither an in-edge nor an out-edge with 

respect to (v,w) and (x, y). Furthermore, the entry on the top of stack is changed to 

{{x,y),< p,v  >} since still the generator (x, y) might form another cut-pair with an 

edge on Pt < p,v >.

• if localjrnirii(v) > q and v ^  s,-L then an entry {(u, w), < q, locaLmin^v) >} is pushed 

to the stack because it is guaranteed that no edge on the path Pt < local.mirii(v), v > 

can form a cut-pair with the tree-edge (v, w). However, there might be some edges 

on Pt  < q, local.mirii(v) > with which, the candidate generator (v , w) forms a type-2 

cut-pair.

•  if dfs(v) = Si, then the search for type-2 cut-pairs in PBi has been over and any dummy 

entry from the top of stack must be popped-up.

During this phase a parameter virtual.edge(v) for storing an end-point is updated for each 

vertex v 6 V. Whenever a type-2 cut-pair {(u, w), (x, y)} is found, if the generator (x, y) does 

not participate in any type-1 cut-pair, then virtual.edge(y) is updated to v. If the edge (x, y) 

forms another type-2 cut-pair then virtual.edge{v) is updated again. This is to take care of 

some cases in which removing cut-pairs from the given graphs cause some vertices belong to 

the same 3-edge connected component appear in different connected components. After this 

phase, the value of virtual.edge{v) is checked for each vertex v and if it is not empty then an 

edge having the end-point value and the vertex v as its end-points is added to the given graph.
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It should be mentioned that the depth-first searches in phase two and three traverse the 

DFS spanning tree which has been obtained in the first phase, and that back-edges are only 

used during phase two. As we mentioned before, the algorithm Taoka performs multiple 

depth-first searches which induces a lot of overhead and lacks elegancy of the following two 

algorithms which each performs only one DFS.

In algorithm Taoka, the improved edge list structure (see Chapter 3) is used in order to 

deal with cut-pair deletion. However, in order to represent graphs and perform comparisons 

among the three algorithms, the model we proposed and explained in the previous chapter 

will be used in our implementation. Hence our implementation for algorithm Taoka does 

not follow exactly the same as what they have proposed. As was explained in Chapter 3, 

the changes result in consuming less time and space. As we know, lpa(v) is a back-edge 

(a, b) by which lowpt(v) is set as dfs[b]. Since we do not have any edge object in our data 

structure, we do not use lpa(v) for each vertex v. Instead we shall define a simple array 

called “start.of Jpa[v]n of size |Vj in order to store the starting vertex of lpa(v) (the starting 

vertex of back-edge (a, b) is the vertex a). Besides for both Taoka algorithm and Tsin [16] 

algorithms, we have another array called “toJow .pointer [v]” of size |Vj. It keeps a pointer 

to the vertex b in the adjacency list of a which represents the Ipa edge (a, b) for each v G V. 

We also use a pair, (start.of Jpa[v\, b), for examining and assignments of each lpa(v).

We can reuse the latter array in Procedure Type2 [13] without any initialization in order to 

keep pointers pointing at generator edges (x, y). It can be used as either toJow.pointer [TOS] 

(Where TOS  indicates the top of stack) or toJow.pointer [x] because each vertex x  G V  can 

associate with only one of its children in order to form a generator.

Furthermore, there are at most |Vj TOSs (The size of stack). Because for each path par

tition we have a dummy entry, and also for each potential generator we only need one space in
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the stack (i.e. the candidate is updated in order to compute other type-2 pairs with the same 

generator). On the other hand each entry has a candidate generator and a candidate path. 

The length of this path is at least one edge, and also it is not possible that two candidate 

paths in two different entries have any edge in common. Because EpBt D Epbj = 0 , ( i  =£ j ). 

Thus, the number of candidate generators in a path partition are less than the number of 

tree-edges in the same path partition. Suppose the number of candidate generators plus 

a dummy entry in a path partition is at most the number of tree-edges in the same path 

partition. Since sum of the number of tree-edges in all path partitions is at most | |, Hence 

the number of candidates in our stack is at most |V|.

In order to find 3-edge connected components of G, after cut-pairs are deleted from G 

and some necessary edges are added, Procedure DFS_connect (Chapter 1.3) is applied. In 

the procedure, the DFS  finds the vertex set for each connected component of the resulting 

graph. This can be done in 0(\V\ + \E\) time.

To determine if a given graph is 3-edge connected or not, the algorithm may go through 

all Procedures in order to find type-1 and type-2 cut-pairs, and compute path-partition, 

local-min and local-high parameters. However, sometimes it turns out that the graph is 

not 3-edge connected just by performing the first DFS. This is because the algorithm finds 

a type-1 cut-pair during the execution of type-1 Procedure. So the algorithm terminates 

without completely finishing even the first DFS. Another case in which the graph turns out 

to be a non 3-edge connected, is when there is no type-1 cut-pair and there is at least one 

type-2 cut-pair. In this case the algorithm has to perform all DFS’s and then terminates 

when it finds a cut-pair in the last DFS (type-2 Procedure). Otherwise, when there is no cut 

pair at all, the algorithm has to complete all DFS’s to be able to make a decision and report 

the graph as a 3-edge connected one (Yes instance).
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4.2 Tsin’s without-reduction algorithm(W OR)

For ease of reference, we shall call the Tsin’s without-reduction algorithm [16] as WOR hence

forth. This algorithm was proposed in 2006 and takes care of all cut-pairs by performing 

only one DFS. The algorithm removes cut-pairs and add some necessary edges in order to 

find a graph Q in which the vertex sets of its connected components are 3-edge connected 

components of G.

Tsin used a transformation in which any back-edge (x,y) is replaced by a new tree-edge 

(.x ,y ') and a new back-edge {y'y), where y' is a new vertex. This results in a new graph 

G' = (V7, E ' )  and its DFS tree T '  =  (V E T i ) such that there is a one-to-one correspondence 

between the cut-pairs in G and the type-2 cut-pairs in G'. Therefore, instead of finding 

cut-pairs in G, we can find just the type-2 cut-pairs in G'. However, it should be pointed

out that the algorithm does not carry out the transformation explicitly. The new edge and

vertex are thus fictitious. Therefore, the depth-first search is performed on G rather than G' 

and the generators are considered with respect to T ' . In the following, we shall give some 

necessary definitions for each v £ V  (Note the values of the parameters below are considered 

to be the same in both T' and T  for each v unless otherwise stated):

lowpt(v) = min({dfs(t)\3 s e  V  such that s is a descendant o f  v in T' and (s, t) is a 

back — edge} U (d/s(n)})

For each fictitious vertex y', lowpt{y') = y, where (y, y') is the fictitious back-edge.

Let re be a child of v in T' such that lowpt(w) =  lowpt(v). Then 

2nd — lowpt(v) = min{{lowpt(w')\w' is a child o f  v in T' and w ^  w'})

low(v) is the vertex whose DFS-number is lowpt(v).

2nd — low(v) is the vertex whose DFS-number is 2nd — lowpt(v).
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to — low(v) is the first vertex from whom v receives the final lowpt(v) value.

Note that the to — low(v) values are not the same in T  and T' when v is a leaf in T.

The WOR algorithm manipulate a stack[v] on which there is an entry {(x, y),p q} for 

each generator (x, y) in the subtree at v such that p q consists of all the cut-edges that could 

form cut-pairs with (x,y), and is also denoted by Pt < p, q >■ A similar stack was used in the 

last DFS of algorithm Taoka. The DFS is applied on G starting from the root, which could 

be any arbitrary vertex in V. For each vertex v € V, when there is no more incident edge on 

v to be encountered by the DFS, all of dfs(v), lowpt(v), 2nd — lowpt(v), low(v), 2nd — low(v), 

and to — low(v) have been finalized. At this point of time, to — low(v) is the first child 

from whom v receives the lowpt(v) value, where to — low(v) is a fictitious child if the edge 

(v, to — low(v)) is a back-edge in T. By the definitions of generator and in-edge/out-edge, 

any generator, lying in the subtree at v, which forms a cut-pair with a cut-edge on the r — v 

tree-path, must be the edgre (v,to — low(v)) or lying in the subtree at to — low(v). The 

stacks of other children are destroyed as will be explained later. Now depending on whether 

stack(v) is empty, two cases are to be considered separately:

1. If stack(v) is empty and lowpt(v) < 2nd — lowpt(v), then the edge (v, to — low(v)) is 

a potential generator. Moreover, if v is a leaf in T, the edge is a back-edge in T  and 

corresponds to the fictitious tree-edge (v,to — low(v)) in T'\ otherwise it is a tree-edge 

in both T  and T ' . By the definitions of generator and in-edge/out-edge, any edge that 

could form a cut-pair with this edge must lie on the path low(v) 2 nd — lowpt(v). 

Therefore, the entry {(v,to — low(v)), low(v) 2nd — low(v)} (with respect to T) is 

pushed onto the stack of v.

2. If stack{v) is not empty (v cannot be a leaf), let {(x,y),p  -w q} be the top entry 

of the stack. If dfs(q) < 2nd — lowpt(v) and (v, to — low(v)) does not form a cut- 

pair with (x,y), then the edge (v, to — low(v)) is a potential generator and an entry

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



{(u, to—low(v)), q -w 2 nd—low(u)} is pushed onto the stack, where q 2nd—low(v) in

cludes all the cut-edges that could form cut-pairs with (v, to—low(v)). Otherwise, all the 

entries {(x, y),p q} on the stack of v satisfying dfs(p) > 2 nd — lowpt(v) are popped 

out of stack (v), because none of them could form cut-pairs due to the definition of gen

erator and in-edge/out-edge. If the top entry satisfies dfs (p) < 2 nd—lowpt(v) < dfs(q), 

the path p q in the top entry is replaced by p ^  2 nd — low(v) because (x, y ) cannot 

form a cut-pair with any edge lying on the path PT < 2nd — low(v),q > due to the 

generator and in-edge/out-edge definitions.

The set of incoming back-edges of v is then examined and any entry {(x, y),p -w q} on 

stack(v) such that there exists an incoming back-edge (v, u) of v and u is a descendant of y, 

is popped out of stack(v). This is because none of them could generate cut-pairs due to the 

generator and in-edge/out-edge definitions. The depth-first search then backtracks to the 

parent of v.

Here, it should be mentioned that in traversing incident edges on each vertex v G V  

whenever the DFS encounters an outgoing back-edge (v, w) of v and dfs(w) < lowpt(v) then 

stack (v) becomes empty because by the definitions of generator and in-edge/out-edge no 

generator in the subtree of v can form a cut-pair with any edge on P? < r ,v  >. Furthermore; 

whenever the DFS backtracks from a child w, (w is a fictitious vertex if the DFS backtracks 

through a back-edge) all cut-pairs in the subtree at w have been found. If the top entry 

{(x, y),p q} on stack(w) satisfies q = w, then the edges (v,w) and (x,y) form a cut-pair. 

Furthermore (regardless of whether q = w), if lowpt(w) < lowpt(v), stack(v) is assigned 

to  stack(w) because there m ight be some generators in th e  subtree a t w th a t  could form 

cut-pairs with edges on Pt < r,v  >. Otherwise, stack(w) becomes empty since no generator 

in the subtree of w can form a cut-pair with any edge on Pt < r, v >.
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When the DFS backtracks to r, all cut-pairs have been determined and deleted from 

G. Moreover, for every cut-pair {(v,w), (x, y)} such that (x,y) is a generator that is not a 

back-edge, and (v, w) is the tree-edge closest to r that forms a cut-pair with (x, y), a virtual 

edge (v , y) is added to G. The resulting graph is the desired graph Q.

In order to handle stacks, only a stack of size |V| (since there are at most \V\ candidate

generators) in one time memory allocating is constructed. Also four variables vtop, vbot, wtop 

and wbot are defined; each points to an entry in the constructed stack. They correspond to 

the top of stack(v), bottom of stack(v), top of stack(w) and bottom of stack(w)', respec

tively. The two variables wtop and wbot are global while vtop and vbot are local variables 

for each DFS call. When v is visited for the first time, vtop and vbot are initialized to wtop 

and wbot; respectively. Each time the DFS backtracks from v to its parent, the assignments 

of wtop <— vtop and wbot <— vbot are performed. Each time stack(w) is get empty, the 

assignment of wtop <— wbot is performed. And also each time stack(v) <— stack(w), the

assignments of vtop <— wtop and vbot <— wbot are performed.

For determining whether the given graph is 3-edge connected, the algorithm stops once 

it finds the first cut-pair since it is obvious that the graph is not 3-edge connected, and the 

graph is reported as a no instance. If there is no cut-pair in the graph then the DFS would 

run to its completion and the graph is reported as a yes instance.

In order to find the 3-edge connected components of G, after all the cut-pairs are deleted 

from G and some necessary virtual edges are added, Procedure DFS_connect (Chapter 1.3) is 

applied on Q. In the procedure, the D FS  finds the vertex set for each connected component 

of Q. This can be done in 0(\V\ + |2?|) time.
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4.3 Tsin’s with-reduction algorithm(W R)

For simplicity we shall call the algorithm as WR. This algorithm was proposed in 2005 and 

uses an operation called absorb-eject to gradually transform the given graph G into a null 

graph by performing only one depth-first search over the given graph. Each vertex in the 

resulting graph corresponds to a 3-edge connected component as it has absorbed all other 

vertices in the same 3-edge connected component. Hence, by keeping track of all the vertices 

of G absorbed by each vertex of the null graph, the set of all 3-edge connected components of 

G is computed. In contrast with the other two algorithms, algorithm WR does not look for 

cut-pairs and it directly computes all the 3-edge connected components without any further 

step after the DFS terminates.

It should be mentioned that algorithm WR constructs link lists of all back-edges (other 

than adjacency lists) and searches through them for back-edges that have become self-loops, 

in order to determine whether deg(u) = 2, u E V, at the time the DFS backtracks from vertex 

u to its parent. This part of the algorithm takes 0(\E\) time and space. We shall show that 

the determination of deg(u) can be done in 0(|V j) time and space, and the construction of 

such lists can be avoided. However, since the DFS traverses adjacency lists, the complexity 

of the entire algorithm remains asO(|V|-(-|J5|).

Each time an absorb-eject operation is applied on an edge e =  (w, u) at vertex w in a 

graph G', both the vertex u and the edge e are absorbed by the vertex w. At this time, if 

deg(u) in G' is 2, vertex w throws away vertex u in order to make it an isolated vertex in 

the final null graph. Regardless of whether deg(u) =  2, all the remaining edges incident on 

vertex u become incident edges on vertex w where any resulting self-loop is deleted.
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Absorb-eject operation

Let G' =  (V',E') and e =  (w,u) G E' such that either (i) dego'{u) — 2, or (ii) e is not a 

cut-edge. The graph obtained from G' by applying an absorb-eject operation on e at w is the 

graph G'/e = (V", E") such that E" =  E' — Eu U Ew+, where Eu is the set of edges incident 

on u in G' and Ew+ = { / ' =  (w, z) \3f  G Eu, such that f  — (u, z) for  some z G V' -  {u>}}, 

and

v „ _  i V' if de9G'{u) =  2,

V' — {u} if e is not a cut-edge.

All possible cases of the absorb-eject operation is shown in Figure 4.3. In case (i) vertex u 

becomes an isolated vertex in G'/e. In case (ii) vertex w absorbs vertex u. In both cases the 

edge e is absorbed by vertex w. In case (ii), since e is not a cut-edge therefore degc(u) ^  2; 

this clearly shows that each of these two cases is distinct.

An embodiment of an edge /  is the edge /  itself, or the edge f  = (w , z) G Ew+ such that 

/  =  (u, z) G Eu, or an embodiment of an embodiment of / .  For each w G V', let a(w) =  {w} 

initially, and let a(w) = a(w) U a(u) when vertex w absorbs vertex u. Clearly, a(w) denotes 

the set consisting of vertex w and all the vertices that have been absorbed either by vertex 

w or by vertices that have been absorbed by vertex w.

It should be mentioned that when the absorb-eject operation is applied on a tree-edge 

e =  (w, u) at vertex w, the types of the edges incident on u are kept so that if f  is a tree-edge 

(back-edge, respectively) in G', then its embodiment f  is a tree-edge (back-edge, respec

tively) in G'/e as well.

A depth-first search is applied by the algorithm on G starting at a vertex r, which can
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Figure 4.3: (i)deg'G(u) =  2 and e is a cut-edge. (ii)e is a not a cut-edge

be any vertex in V. For each tree-edge in T, during the DFS the absorb-eject operation is 

applied to either the tree-edge or an embodiment of the tree-edge. Each time the absorb-eject 

operation is applied, either condition (i) or condition (ii) is satisfied. The purpose of condi

tion (ii) is to collect vertices belonging to the same 3-edge connected component under one 

vertex because the two end-points of edge e which is not a cut-edge, are in the same 3-edge 

connected component. When all the vertices in a 3-edge connected component have been 

gathered under a vertex u, degG'(u) becomes 2, where G' is the graph to which G has been 

transformed. When the DFS backtracks to the parent of vertex u, Condition (i) is satisfied. 

Therefore, the absorb-eject operation is applied at the parent, to absorb the tree-edge e and 

isolate u from the graph. This is because the two edges incident on u form a cut-pair such 

that a(u) is a 3-edge connected component of G.

When the DFS backtracks from vertex w to its parent, the subtree at w in T, has been 

transformed into a graph consisting of a set of isolated vertices and a tree-path Pw associ

ating with some back-edges, called the w — path. Each back-edge associated with Pw has 

one of its end-point on the u>-path and the other on the r — w tree-path. The w-path is 

denoted by Pw : (w =)wq — w\ — — ■ ■ ■ — Wk, where wq, w\.. .Wk  are the vertices on the

path and wo, Wk are the end vertices of the path. Furthermore, there exists a back-edge
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/  =  (wk,x) where pre(x) — lowpt(w), and there is no back-edge connecting any two vertices 

on the w-path. Each isolated vertex corresponds to a 3-edge connected component of G. The 

tree-edge (w,wi) on the rc-path is a candidate in order to form a cut-pair with an edge lying 

on the r — w tree-path.

The determination of the w-path is as the following. When the DFS visits vertex w for 

the first time, the w — path is initialized to a null path. Whenever the DFS backtracks from 

a child u such that lowpt{u) is smaller than the current value of lowpt(w) or encounters a 

back-edge (w,u) with dfs(u) smaller than the current value of lowpt(w), then the tc-path is 

updated. In the former case, the w-path becomes the path consisting of the tree-edge (w, u) 

and the u-path. In the latter case, it becomes the null path. The absorb-eject operation is 

then applied at vertex w to absorb all the edges on the previous w-path because none of the 

edges on the path can form a cut-pair with any edge on r — w path. In other words, all the 

vertices on it including w belong to the same 3-edge connected component.

In Figure 4.4(a) a graph G is shown with solid lines denoting tree-edges and dotted ar

rows denoting back-edges. In Figure 4.4(b) the graph to which G has been transformed when 

the DFS backtracks from vertex u to vertex w is shown. Note that the current w-path is 

w — w\ — W2 — wz and the w-path is u — a — b. In Figure 4.4(c) the current ic-path is updated 

to u-path w — a — b while the previous w-path w — Wi — ic2  — ^ 3  is absorbed by vertex w\ this 

is because lowpt(u) < lowpt(w). Moreover, since deg(u) =  2, an absorb-eject operation was 

applied on the edge e at w (Figure 4.4(b)). When the DFS encounters an incoming back-edge 

/ '  =  (w, u) that is not a self-loop at vertex w, the back-edge / '  must be an embodiment of 

an incoming back-edge /  =  (iu, u') of w in T. Since v! is a descendant of w in T, u' must 

be located in a subtree of at a child of w in T. The DFS has traversed the subtree and 

consequently the subtree must have been transformed into a tree-path and a set of isolated 

vertices such that vertex u has absorbed vertex u'. Vertex u cannot be any of the isolated
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Figure 4.4: When DFS backtracks from vertex u to vertex w. (Extracted from [15])

vertices because of the existence of the edge / '.  Hence, It must be located on the tree-path. 

The tree-path either is the current ic-path or must have been absorbed by vertex w earlier. 

In the latter case u = w which means / '  is a self-loop. In the former case, vertex u must 

be a vertex located on the current (non-null) ic-path. The absorb-eject operation is then 

applied at w to absorb the section of the current w-path from w to u (see Figure 4.5). This
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w.’H il
^  * ■ *  edge to be absorbed

Figure 4.5: When an incoming back-edge is encountered. (Extracted from [15])

is because no edge lying on this section could generate new cut-pairs. Note that at this step 

the operation is applied to absorb each tree-edge (w, x) on Pw if it lies on P[w..u\ (Lemma 9 

of [15]). The edge lies on P[w..u] if x  is an ancestor of u' in T. The final w-path is determined 

when the search backtracks to the parent of vertex w.

The DFS eventually backtracks to the root r  from a vertex u, which is the last child of 

r. At this time, the graph G has been transformed to a graph consisting of a set of isolated 

vertices and the path r + Pu, where +  is the concatenation operator. If deg(u) = 2, an 

absorb-eject operation is performed on the tree-edge (r, u ) at r. Then r absorbs the path 

r + Pu because lowpt(r) = 1. This results a set of isolated vertices each represents a 3-edge 

connected component of G.

To determine whether a given graph is 3-edge connected, the DFS stops once it finds the 

first vertex with degree 2, and the graph is reported as non-3-edge connected (i.e. a ‘no’ 

instance). On the other hand, if the algorithm does not find any vertex with degree 2, then
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the DFS would run to its completion, and the graph is reported as 3-edge connected (i.e. a 

‘yes’ instance).

Lemma 3: [Lemma 6(ii) of [15]] Let u E V  — {r}. At the time the DFS backtracks from u 

to its parent w, Pu : (u —)uo — u\ — U2 — .. .  — Uk such that for each back-edge f  = (Ui, x),

0 < i < k, x lies on the r — w tree-path.

During the execution, when the DFS backtracks from w the absorb-eject operation has 

been applied on nw tree-edges, where 0 < nw < \Etw\. Note that each of the tree-edges is 

either a tree-edge in Tw or an embodiment of a tree-edge in Tw. Each time the operation is 

applied we have a set a*, 1 < i < nw, consisting of all the parallel back-edges between w and 

one of its proper descendants, Vi, 1 < i < nw. We define Aw = IJSu

Lem m a 4: The number of incomming back-edges ofw  is \AW\.

Proof: The case where nw = 0 is obvious.

Let nw > 1. Suppose when the DFS backtracks from w, each incoming back-edge 

(vi, w) of vertex w has the end-point vt lying on the same Px path, where Px is w(= 

x q )  — Xi — X2 — ■■■ — xriw. Regardless of whether Px is Pw or w + Pu, the absorb-eject operation 

absorbs the vertices Xi along the path. Let bi be the set of parallel back-edges between w 

and Vi. By Lemma 3, any back-edge with one end-point Xi has the other end-point on the 

r — w path. Therefore no back-edge can have Vi and Vj as its end-points, 1 < i, j  < nw and

1 j .  Consequently, no incoming back-edge of w can be added by applying the absorb-eject 

operation. As a result, bi fl bj =  0. It follows that | bf\ = \ IJ]1̂  af\ — |AW|. Hence, \AW\ 

is the number of incoming back-edges of w (whose other end-points lies on Px).
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Since each incoming back-edge of w is an edge (vi,w) such that Vi lies on a PWj, 1 < 

j  < k, where k < nw (note that PW] is either Pw or w + Pu), it follows that the set 

of all incoming back-edges of w can be partitioned into a collection of disjoint subsets 

Ct =  {Sj\ 1 <  j  < k} such that there is a one-to-one correspondence between C\ and the 

collection {{(uj, u;)|uj lies on Pw.} | 1 < j  < k}. From the preceding paragraph, for each 

PWj, 1 < j < k ,  | AWj | is the number of incoming back-edges of w whose other end-points lies 

on PWj. It follows that \AW\ =  X^Li IAuJ =  XljLi \Sj\- As Yl^=i is f^e total number of 

incoming back-edges of w, the lemma thus follows. □

Lemma 5: Let u,w  6 V such w is the parent of u and G' be the graph to which G has 

been transformed before the absorb-eject operation is applied on the tree edge e =  (w, u) at 

w. Then after the operation, deg[w] — deg'[w] + deg[u] — 2 — 2k, where deg'[w] is the degree 

of w before the operation is performed and k is the number of parallel back-edges between w 

and u in G'.

Proof: Let k be the number of parallel edges between w and u. It is easily verified that 

0 < k < \B\. Let k' be the number of outgoing back-edges whose other end-point is not 

w. Clearly k! =  deg[u\ — k — 1. As the absorb-eject operation is performed, these k' edges 

become incident outing back-edges of w. So k' must be considered in updating deg[w\ in 

G'/e. However deg[w\ must also be reduced by both 1 and k because w has lost the tree-edge 

e and those k edges had become self-loops which should be disregarded. Therefore, deg[w\ 

becomes deg[w] + k' — 1 — k. Hence deg[w] becomes deg[w] +  deg[u\ — 2k — 2. The lemma 

thus follows. □

Corollary 3: When the DFS backtracks from vertex w to its parent, deg[w] — deg'[w] + 

degcg(vi) — 2 h  ~  2nw, where deg'[w) is the degree of w before the first adsorb- 

eject operation is applied to it, Gi is the graph to which G has been transformed when the
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adsorb-eject operation is performed on (iu , V { )  and ki is the number of parallel back-edges 

between w and Vi in Gi.

Proof: Immediate from Lemma 5. □

Now, instead of spending 0(\E\) time and space by using the way mentioned in Lemma 

11 of [15] for determining if deg[u] = 2 in Section 1.1 of the algorithm, we can spend 0(|Vj) 

time and space on the degree determination if we first initialize the degree of all vertices to 

zero and then add 3 statements (Each takes 0(1) time) to the algorithm as explained below:

•  Firstly, in Section 1 of the algorithm, we insert the statement deg[w] <— deg[w) +  1. So 

that when the DFS visits vertex w for the first time the statement is also executed. 

This is to take every edge incident on w into account. Note that deg[w] is initialized 

to zero.

Secondly, we add the statement deg[w] <— deg[w] + deg[u] — 2 in Procedure Absorb- 

path within the for loop. So that any time the absorb-eject operation is applied by 

calling the Procedure, the statement is also executed. Since the absorb-eject operation 

is applied nw times in total for vertex w, a total of XT=i ^e9Giivi) is added and a total 

of 2nw is subtracted in computing the final value of deg[w\. This takes care of two of 

the terms in the formula of Corollary 3.

Lastly, we add the statement deg[w] deg[w]—2 in the then  part of Statement 1.6.0. of 

the algorithm. So that each time the DFS encounters an incoming back-edge the state

ment is also executed. From the preceding paragraph, it remains to deduct 2 Yli=i ki 

from deg[w] in order to calculate the final value of deg[w}. By Lemma 4, the size of Aw 

is the  num ber of incoming back-edges of w. Since ki =  l la *l =  \AW\. we thus

have X^=i ki ^he number of incoming back-edges of w. As the newly added state

ment is executed whenever an incoming back-edge is encountered, a total of 2 Y^= i ki 

is thus deducted in computing the final value of deg(w). Hence, by Corollary 3, deg[w]
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is correctly computed.

• It is unnecessarily to add the second statement mentioned above to the th en  part of 

Statement 1.1 of the algorithm; although the absorb-eject operation is applied. This is 

if the statement was added, then if deg[u] = 2 when the DFS backtracks from u to w, 

deg[w] would be updated to deg[w] + deg[u] — 2 — deg[w\ +  2 — 2 which is deg[w] itself! 

To be more specific, if Pu is not null, then deg[w] needs no update because by applying 

the operation, vertex w looses the tree edge (w, u) but on the other hand gains the first 

tree-edge on Pu. If Pu is Null, then vertex w looses the tree-edge (w, u) but gains the 

only back-edge on u.

• We shall verify the spending time and space on the degree determination in Section 1.1 

using this method. We note that we need only |Vj memory space for this purpose since 

we only need a simple array deg[w] of size |Vj. Furthermore, the logical if expression 

in Section 1.1 takes a total of 0(|Vj) time to determine the degree for all the vertices 

in V — {r}; since only the value of deg[w] must be checked for each w.
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Chapter 5

Comparison

We performed three types of experiment to compare the execution times of the three al

gorithms. They are: testing for 3-edge connectivity, determining cut-pairs, and computing 

3-edge connected components. The platform we used for the experiments is as below:

• Hardware:

-  Model: Dell 650 Precision Workstation

-  Processor: Pentium 4, 3.2GHz Intel/Xeon, 512KB L2 cache

-  Memory: 4GB

• Software:

-  Operating System: Linux, Fedora core 2.6.12

-  Programming Language: C

5.1 Data Set

In order to perform experiments and show execution times of each algorithm, we generated 

two different sets of graphs using a random graph generator. Since the algorithm of Taoka
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et al. accepts only 2-edge connected graphs, all the graphs in the two sets are thus 2-edge 

connected. The first set Si consists of 305 sparse graphs such that \/G — (V, E) e  Si, 12.5 < 

< 16.5. The input sizes (|E\ + |Vj) of the graphs in Si are distinct and are randomly 

chosen from the interval of [600,000..60,000,000].

On the other hand, the second set S2  consists of 301 dense graphs where VG £ S2, |^| ~  

The input sizes of the graphs in S2  are distinct and are randomly chosen from the 

interval of [6,000,000.. 110,000,000].

Moreover, after performing an experiment for finding 3-edge connected components on 

the sets, it turned out that 180 and 201 graphs are 3-edge connected in the first set and 

second set, respectively. Note that since the graphs are randomly generated, we might not 

have enough number of 3-edge-connected graphs or non-3-edge connected graphs in our sets. 

In the following we will explain how to obtain the desired number of 3-edge-connected graphs. 

So we can run the experiment for determining 3-edge-connected graphs, while we have a fair 

number of Yes and No instances.

5.1.1 Generating the experim ental input graphs

Starting with an edgeless graph G = (V., E) and a number t (a threshold), we visit all ver

tices in V. Each time we visit a vertex v, we generate a random number Enum, where 

1 < Enum < t. The t parameter indicates that at most how many edges are added to the 

adjacency list of v while Enum  is the actual number of edges added by the time we visit 

v. Having a larger value for t results in generating a graph with higher density. To gener

ate each of the Enum  edges for v, we generate a random vertex number, w, in the interval 

[l..|Vj]. If w = v, we generate w again since we are not interested in self-loops. We then 

add an edge (v, w) to G by adding v to the adjacency list of w, and w to the adjacency list of v.
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5.1.2 Generating connected graphs

After we create a random graph G — (V, E), if the graph is not connected, we will turn it 

into a connected graph. This can be easily done by finding the connected components and 

then adding edges to make the graph connected. We find the connected components of G 

using the algorithm explained in [17]. The details are given below:

1 c = 0;

2 S = 0 ;

3 for (i=l;i<=Vnum;i++)

4 visited[i] == 0

5 for (i=l;i<=Vnum;i++)

6 if (visited[i] == 0) {

7 c = c + 1;

8 sc = 0 ;

9 DFS_connect(i); //Procedure DFS_connect (Chapter 1.3) is called to compute sc.

10 j = a random vertex in sc;

11 S = S U sc

12 k = a random vertex in S;

13 if (i != 1) { //there is more than one connected component.

14 add j to the list of k in a random position;

15 add k to the list of j in a random position;

16 }

17 }

5.1.3 Generating 2-edge connected graphs

After we generated a connected graph we have to turn it into a 2-edge connected one. We 

do this through a DFS procedure. Let w,v  €E V. Each time the DFS backtracks from a child
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w to its parent v, if lowpt(w) =  pre(w) then the edge (v, w) is a bridge. Therefore we add 

an edge (low(v),node) where node is either a child of w or w itself (in case w has no child). 

Note that low(v) is its value at the time the DFS backtracks from w.

5.1.4 Generating non-3-edge connected graphs

We had observed that when the density is high, the graph we generated was always 3-edge 

connected. Obviously, it is desirable to generate non-3-edge connected graphs for the algo

rithms. In this case, we have the random graph generator to choose a number c and generate 

c different graphs, where the total number of vertices of the graphs is |V|. The set of vertices 

for each graph, which is 3-edge connected, is denoted by Sj, 1 < i < c. Then we connect the 

graphs to each other as below:

1 S = 0 ;

2 for (i=l;i<=c;i++) {

3 S = S U Si;

4 for (j=l;j<=2;j++) {

5 vl = a random vertex in ŝ;

6 v2 = a random vertex in S;

7 add v2 to the list of vl in a random position;

8 add vl to the list of v2 in a random position;

9 {

10 {

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2 Result

We performed experiments to show the execution time of each algorithm for roughly 600 

random 2-edge connected graphs. The results are depicted in Figures 5.1 to 5.10. The plots 

in Figures 5.1 to 5.5 are results of the experiments on the first set Si) the one whose graphs 

are of lower densities. The plots in the remaining figures are results for the second set S2 ; 

the one whose graphs are of higher densities. Moreover, the plots in Figures 5.1 and 5.6 are 

results of the experiment that computes 3-edge connected components, and the plots in the 

remaining figures are results for finding cut-pairs and also determining whether the input 

graph is 3-edge connected.

Looking at the plots, we observe that Taoka has almost the longest execution time in 

the experiments. As we described the algorithm before, this was expected since the algo

rithm performs different depth-first searches in multiple phases. In some cases the algorithm 

determines No instances faster than the others (See Figure 5.4 and 5.9). This is because 

the algorithm is able to find type-1 cut-pairs in the first DFS, so it stops whenever it finds 

the first type-1 cut-pair. On the other hand in Figure 5.4 we observe that the algorithm 

is remarkably slow in some cases because in these cases there is no type-1 cut-pair so the 

algorithm eventually finds a type-2 cut-pair in the last phase. Overall, it is hard to say which 

algorithm is good in determining No instances, because it depends on when an algorithm 

can find the first cut-pair or 3-edge connected component.

Looking at Figure 5.6, after the input size goes beyond 6.6 x 107, the WR algorithm starts 

to collapse as it runs out of memory on the platform; while the other algorithms including 

the modified version of WR, which spends 0(|V |) time and space on degree determination 

of vertices, still run.

WR terminates successfully on the first four graphs after the input size goes beyond
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6.6 x 107 (Figure 5.6). This is because these four graphs are not 3-edge connected and their 

sizes are close to 6.6 x 107. When a vertex is determined to be of degree 2, all the outgoing 

back-edges of all the vertices in the same 3-edge connected component with the vertex have 

become self-loops, with the exception of at most one of them. So the freed up memory space 

of the self-loops result in enough space to allow the algorithm to completely find the next 

3-edge connected component. This is the case until all the 3-edge connected components are 

found and the algorithm terminates execution. However, the freed up memory space of the 

self-loops could not help the algorithm to run to its completion for the other graphs (69 out 

of 301) which have input sizes beyond 6.6 x 107. Hence, the modified version of WR increases 

the largest input graph size it could handle by 34% while being the fastest among all the 

algorithms.

As we can see in the figures in the chapter, the challenge is between WOR and WR. This 

is because Taoka performs different depth-first searches in multiple phases while the others 

each performs only one depth-first search. In computing 3-edge connected components WOR 

searches the adjacency lists 3 times while WR searches adjacency lists and back-edge lists 

each once. In Figure 5.1 we also see that WR is faster than WOR in computing 3-edge 

connected components.

In determining Yes instances (3-edge connected graphs) WOR does not have to search 

adjacency lists in order to find connected components. Therefore, its performance becomes 

better. This is clearly shown In Figure 5.3.

The modified version of WR has the best performance since it does not need to construct 

and search back-edge lists for degree determination of vertices. As explained in chapter 4.3 

instead of spending 0(\E\) time and space on this part, the modified version of WR use a 

different method to do the same which takes a total of 0(|V |) time and space.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100-

80“

80-

40-

20 -

r4 T aokaetal.
algorithm
Tsin's without-reduction 
algorithm
Tsin's wth-reduction 
algorithm
Tsin's with-redudion 
algorithm (modified)

*t  i  : : i t  : i : I r
0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000

X axis: In p u t size(|E |-t-|V |), Y axis: Execution tim e(Second)

Figure 5.1: Serach fo r  3 — edge connected components; 12.5 < 1} < 16.5

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 DO
, Taoka et al.

■ algorithm
. Tsin's without-reduction 

algorithm
B Tsin's with-redudion 

algorithm
Tsin’s  with-redudion 
algorithm (modified)

i ----------- 1----------- 3----------- 1----------- i----------- r
10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000

X axis: In p u t size(|E |-f-|V |), Y axis: Execution tim e(Second)

Figure 5.2: Determining whether graphs are 3—edge connected or N O T ; 12.5 < <

56

16.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100 '

m

&

, Taoka et al.
• algorithm

Tsin's without-redudion 
algorithm 

a Tsin's with-redudion 
algorithm
Tsin's with-redudion 
algorithm (modified)

-r_----- --— ------ _ i_ ----------- j--------- -— r
10000000 20000000 30000000 40000000 50000000 60000000

X axis: In p u t size(|E | +  |V[), Y axis: Execution tim e(Second)

Figure 5.3: Determining 3 — edge connectivity; only Yes instances; 12.5 < j^j < 16.5

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1DD

a v  : a
J* ♦

Taoka et al.
algorithm
Tsin's without-reduetion 
algorithm
Tsin's with-reduction 
algorithm
Tsin's with-reduction 
algorithm (modified)

X" ■ ." 1 1 .----- —T----------- I--------:— r
10000000 20000000 30000000 4QQ0QQQ0 5Q000000 60000000

X axis: Inpu t size(|E | +  |V j), Y axis: Execution tim e(Second)

Figure 5.4: Determining 3 — edge connectivity, only No instances; 12.5 < < 16.5

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100 -

80“

6 0 -

4 0 -

20 -

4:

at? .{>&

«S? ■«*"mQQT # °oq9

Taoka et al.
algorithm

n Tsin's without-reduetion 
' algorithm 

Tsin's with-reduction 
algorithm

~ t  - f — — — — — j  ■ ' j  i j  |   1 i
0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000

X axis: Inpu t size(]E |-f jV]), Y axis: Execution tim e(Second)

n
Figure 5.5: Determining cut — pairs on No instances; 12.5 < ^  < 16.5

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40-

20 -

Taoka et al.
algorithm
Tsin's without-reduetion 
algorithm
Tsin's with-reduction 
algorithm
Tsin's with-reduction 
algorithm (modified)

0.0E0 2.0E7 4.0E7 6.0E7 8.0E7 1.0E8 1.2E8

X axis: Input size(~ |E|), Y axis: Execution time(Second)

Figure 5.6: Serach fo r  3 — edge connected components; |i2| ~

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80-

40-

20 -

0.0E0
_ T  . r -

2.0E7 4.0E7
T

6.0E7 8.0E7 1 .0E8

X axis: In p u t s ize (^  |E[), Y axis: Execution tim e(Second)

f  Taoka el al.
algorithm
Tsin's without-reduetion 
algorithm 

B Tsin's with-reduction 
algorithm
Tsin's with-redudion 
algorithm (modified)

1 .2E8

Figure 5.7: Determining whether graphs are 3 — edge connected or N O T ; \E\ ~  ^

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



O.GEQ
T 

4.0E7 6 OE/ 8.0E7

X axis: In p u t s ize(~  |E j), Y axis: Execution tim e(Second)

Taoka et al.
algorithm
Tsin's without-reduetion 
algorithm
Tsin's with-reduction 
algorithm
Tsin’s with-reduction 
algorithm (modified)

1 r
1.0E8 1 .2E8

Figure 5.8: Determining 3 — edge connectivity; only Yes instances; \E\

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50-

40-

30-

20 -

10 -

0 0E0

■ *

& taa 4& stt&m wtttM. non

— i—  
*>0Ef

X I
1 .QE8

*, Taoka et al.
algorithm

, , Tsin's without-reduetion 
"  algorithm
B Tsin's with-redudion 

algorithm
* Tsin's with-redudion 

algorithm (modified)'

4.0E7 6.0E7 8.0E7

X axis: In p u t s ize(~  |E |) ,  Y axis: Execution tim e(Second)

Figure 5.9: Determining 3 — edge connectivity; only No instances; \E\ m i
4

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60-

40-

20-

0-

0.QE0

$
,

-t

» o o m aie H *  obo mi

2.0E7 4.QE7
1 — 
S.0E7

—(— 
8.0E7

Taoka et al.
algorithm
Tsin's without-reduetion 
algorithm 

B Tsin's with-reduction 
algorithm

T.0E8

X axis: In p u t s ize(~  |E |) ,  Y axis: Execution tim e(Second)

Figure 5.10: Determining cut — pairs on No instances', \E\ ~

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6

Conclusion and Future work

One of the important reasons that we were able to perform experiments on such large input 

sizes is because of the data structure model we proposed in Chapter 3 to deal with cut-pair 

deletions. Without this model, the largest input size we were able to handle would have been 

about half of the largest input size we are able to handle.

The modified version of WR has the best performance in computing 3-edge connected 

components and determining Yes instances. This is because the algorithm does not need to 

construct and search back-edge lists for degree determination of vertices. As a result, it is 

now able to determine if the degree of each vertex is 2, which is a key step in the algorithm, 

in 0(|Vj) (rather than 0{\E\)) time and space as explained in Chapter 4.3. This algorithm 

could be useful in resolving the irreducibility problem for the Feynman diagrams.

The WOR algorithm has the best performance in finding cut-pairs. This is because it 

does not have to search the adjacency lists again as it does not have to find the connected 

components while the WR algorithm has to construct and search in the back-edge lists. The 

WOR algorithm can be used in Bioinformatics where finding the cut-pairs of a graph is an 

important process. One disadvantage of the modified version of WR is that it cannot find
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cut-pairs because it does not construct back-edge lists.

Our future work is to apply the algorithms to even much larger input sizes. One direction 

is to adapt them to the external memory model [18]. On such a model, the size of the input 

graph is larger than the size of the main memory of the computer so that a substantial 

portion of the input graph must be stored on the external memory.
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