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Abstract

In this dissertation the following problems are conside;ed:
(1) the dynamic impact of a rigid axisymmetric indentor with a
viscoelastic half-space;
(11) the dynamic problems of a penny-shaped cracﬁ wifhin a viscoelastic
solid in tension and under toréion; N
l(iii)‘ toroidal crack prbbléms in tenslon and under torsion in both visco-
eléstic and elast%c solids, |
The general method used was to trapsform the problems to the solution af
dual (or triple) intergral equations. These were further reduced, to
the solution of- single integral equations., Approximate numerical solutions
were then found for these single Integral equations,
. In the first problem mentioned, all stresses and displacéﬁgﬁts ?
are given'as functions of ,the normal pressure beneath the indemtor. It
was found that the dynamic normal pressure differed slightly from that in
the static case. This result allows Fhe calculation of the other stresses
and displacements using the static normal pressure (a closed form expres%ion)

as a good approximation. Approximate values for the contact radius are

also given,

In the problem of the dynamié p;nny-shaped crack in tension, the
stress intensity factor énd normal displacement within the crack region are
given Iin the case of a constant growing crack and a normal pressure gepeﬁdent
on time alone. The dynamic effect on the stress intensity factor is showm,
to reduce this fgctor as the crack velocity increases., In was also determined,,
that the normaigdiSplacement within the c¢rack reglon was approximately 127

less than that of the static case.

. 111
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In tﬁe problem of the dynamic penny—shaped crack under torsion,
the stress intensity factor and the tangential displacement are determine?.
In thé formér, the dynamic effect was that.of a reduction with an'ihérgase
in velocity. However,:sye dynamic effect of tﬁe aisplacement was found
to be far more complex. The results given indicate that ‘more analysis

must_be carried out before the nature of the dynamic effect can be

predicted with a high level of confidence.

1

. In the elastic toroidal crack probléms considered, all the
stress Intensity factors are given as well as the displacéments in the
.crack region. It was found:poséible to obtain an exact expression for
the szress Intensity factor on the inner edge of a toroildal crack in
ténsion. In the limit, thé solutions givén were found t6 agree with

the known solutions for the cases of a penny-shéped crack in tension and
under torsion and an external crack in tension. However, the closed forp

solution found in the limiting case for an external crack under torsion

with axisymmetric loading is a new result,

The viscoelastic solutions to the toroidal crack problems were
found by an applicétion of an extension to the correspondence principle
of viscoelasticity. As has been noted in the literature, the stress |
intensity factors were found to be the same in viscoelasticity as in
elasticity while the viscoelastic displacements calculaged differed .from

v

their counterparts in elasticity.

Throﬁghout the'éissertation the philosophy was to follow general
procedures in solving the problems rather than ad hoc methods. These
procedures attempted to give a systematic way of h;ndling the complex
mixed boundary value problems in dynamic viscoelasticity (or elasticity).

It 1s hoped that these will be of some use in future research in these areas.

iv
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INTRODUCTION

The purpose of this dissertation is to consider the solutions of the
following problems: (i) the dynamic impact problem of a rigid axisymmetric
indentor with a viscoelastic(l) half-space; (ii) the dynamic‘problems of a
penny-shaped crack within a viscoelastic solid in temsion and under torsion,
and . (iii) toroidél crack problems in tension and under torsion in both
viscoelastic and-elastic solids. The historical backgroundgz) and the
specific results found, for each of the problems listed above, are discussed

in the following cutline,

Chapter 1 deals with the standard mathematical definitions and results
which are used throughout this work. Chapter 2 gives the formulation of
boundary value prdblems in quasi-étatic and dynamic viscoelasticity. For

both of these cases, general solutions to the field equations in terms of
p;tential fﬁnctions.are‘presented. In Hynamic viscoelastic problems we

assume Poisson's ratio to be a real constant. As has been noted' in Christ-
.ensen [1], withdﬁtgthis assumptién probleﬁs in general become intfactable.

In the particular situation of axisymmetry the general solutions are dis-
cussed in more detail and, the equivalent elastic solutions are stated és
well. The 1last section of Chapter 2 gives the pertinent results and equations
for the axisymmetric torsion problem in both viscéelasticity and elastiéity.

" Before continuing our description of the remaining chapters we briefly discuss

methods of solution of boundary value problems in viscoelasticity.

.

(I)In this work when using the terms viscoelastic or elastic we shall always

be referring to the linear theories.

(Z)The remarks that follow are mainly concerned with three-dimensional problenms.

S
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Problems in viscoelasticity are classified as either dynamic or quasi-
static depending upon whether the inertia terms in the equations éf.motion
are retained or neglected. The classical method of solving boundary value
problems in quasi-static ;iscoelasticit§ is to apply an integral transform
(with respect to time)} to the time-dependent field equa;ions_and bounddf}
cogditions. fhe transformed field equations then havelthe same form as the
field equations of elasticit& and if a solution to these, which is compatible
with the transformed boundary conditions, can be found then the solution to
thé original problem is reduced to a transf;rm inversion. This method is
referred to as the 'correspondence principle" (for reference see Lee [2]).
This method in général fails when the boundary reéions are %unctions of

' éime. Some work has been done either to modify fhe prinéﬁple, by Ting [3]
and Graham‘;nd Sabin [4] or give conditions under which it is still applie-
ablg even though the boundary.regions ére functions of time (see Graham,[5]).
For;the dynamic case several general methods have. been suggested for solving
boundary value problems in.visqoelasticitx (e.g. Tao [6] and Bland [7]).
The difficulty with th?se proposals is that they are either not applicable
in the case of moving boundaries or they require a family of exact elastic
dynamic solutions. ’Thé former is not very useful since most dynamic problems
of -interest have moving bou?daries. In the lgfter case, the obVvious criticism

is that only a few exact elastic splutions exist. We shall now describe the
W

- .

method we have used in solving dynamic problems in viscoelasticity.

The approach we have taken invelves flnding the general solutiofis by
means of integfal transform techniques which satisfy the field equations,
initial conditions and conditions at infinity. These solutions turn out to
be in terms of one orvmore unknown functions. B} applying the bouﬁdéry con-

ditions to the general solutions we then reduce the problem to a pair of dual

integral equations. These in turn are transformed into a Volterra integral



equation of the second kind. The free term in this latter integral equation
15 exactly the result that would be found for the quasi-static problems.
These equatlons are of such a complex nature that it is necessary to solve

them numerlcally The advantage that one gains in this technlque over that

of a numerical approach ab initio (e.g; finite element analysis) is that

mine the nature of the solution without ever resorting to the computer.

We shall now describe the outline of the remaining chapters ®

In Chaptér 3 we consider the dynamic problem of the impact of a rigid
axisymmetric indentor on a viscoelastic half- space The analogous problem'
in the static theory of elasticity was solved by Hertz [8]. A selution to
this problen was_glven by Hunter .[9] for the quasi-static theory of viscoe-

lasticity in the particular case when the indentor is 3 sphere. ' Both of

had to be performed to determine the contlact radius asa functioen of:timc,Papersty
Deresiewicz [10] and Graham [11] presented the necessary calculations for |
the elastic problem while Calvit [12] did the same for quasi-static viscce-
lasticity., The s50lution of the impact problem in the case of dynamic L\
elasticity was given by Tsai [13]. One particular result that Tsai obtained

was that the normal contact stress in the dynamic case differed 1n51gn1f1cantly
from the static or Hertz result. F01I6w1ng the method outlined in the previous
paragraph we have sclved the impact problem for dynamic v1scoelast1c1ty We
perform numerical integrations comparable to [12] to first determine the

contact radius. The results are given in Figure 5\2 We next calculated:

the normal stress beneath the indentor, (Table 3. 2) and as in [13] find

that there is no significant difference in the dynamic and quasi-static

results. The importance of this result is that all other stress and dis-

i




placement quantities are given in terms of this nermal pressure for which

we now have a closed form expression with insignificant error.

In Chapter 4 we present the dynamic solution of a growing penny-shaped
§?ack in a viscoelastic. solid cpened by a normal pressure acting on it;
§urface. This problem has been solved in several different ways in the casefr
of static elasticity (see Sneddon and Lowengrub [14]). The quasi-static
viscoelastic solution was given by Graham [15]. Créggs t16] considered the
dynamic problem of a crack growing with a constant velocity in an elastic
solid with constant normal pressure acting on it's surface. Atkinson [17]
re-cxamined Craggs method ahd solution and linked it to the iﬁtegral trans-
form approach. A mor;/ggneral prgbfg;\fQFn that examineé by Craggs and
Atkinson was considered by Tsai [18]. Tsai reduced his problem to a single
integral equation and solved this exactly in the case considered by Craggs.
Tsai, however, made no comparisoﬁ with Craggs solution. There are not many
results concerning crack problems in dynamic viscoelasticity. Willis [19]
has investigated a steady state dynamic viscoelastic crack problem. He;
considered the specific case ;f an extending crack in anti-plain strain.
Recently Atkinson and List [20] solved a preblem similar to that treated in
[19] with a different type of loading. The problem we consider in this
chapter also reduces to a single integral equation similar to tha{f}ound by
Tsai [18]. We also consider the specific case for which an exact sblution
was found in [18]. However in the viscoelastic problem an exact solution does
not seem feasible. Th; normal displacement has been calculated numerically

and the difference between the dynamic and static results-is indicated,

(Table 4.2)/ The other quantity of interest in crack problems, the stress
. .-’(‘1
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(3)

iﬁtensity factor™™’, is also determined by approximate means, (Figure 4.3).
In calculatién of the stress-intensity faetor it is noticed that the
expression for the normal stress contains two terms, one of which is the
quasi-static part, and the other, in the form of an integral, representing
the dynamic part. It is observed that the contribution to the singularity
in the normal stress \er the integral term is due to a def&vative, in the
integrand, of a function which possessed a jump discontinuity. Hence to
determine these integral's contribution to the stress intensity factor it is
only necessary to evaluate the jump discontinuity. Observati;ns of this
nature are not uncommon in viscoelasticity (c.f. Christensen [1], Chapter

N .
4). We may state that without using arguments of this nature the determin-

ation of the stress intensity factor would have been more difficult.

(

The dynamic problem of a growing penny-shaped crack under torsion in
a viscoelastic solid has been considered in Chapter 5. The history of this
problem is rather less extensive. A brief discussion is given in_[i4] for
the case of static elasticity. Quite recently, Kaloni and Smith [21] have
presented the solution to the quasi-static problem in viscoelasticity. S$ih
and Embley [22] and Kennedy and Achenbach [23] have givgn solutions to the
dynamic problem in elasticigz;”The former is more numerical in nature than
the latter., Neither give exact solutions. The solution Qq present in this
chapter-is similar in form to that of Chapter 4. We specialize our résults
to the case of a constant growing crack when the loading is of the form
5(t) - r, where S is a function of time 't and r is the curvilinear

co-ordinate. We calculate the tangential displacement u, and indicate the

&

4

(3)

The stress intensity factor for this problem is essentially the coefficient

of the singular part of the normal stress.



difference between the dynamic afd static results, (Table 5.2). Using the

methods developed in the last chapter we are again able to calculate the

ra

stress intensity factor, (Table 5.3). In the last section an exact
dynamic elastic solution of a constant growing penny-shaped crack under

torsion, when the loading is also constant, is presented.

In the final chapter, five distinct solutions are given, four of
these involve toroidal cracks and the fifth, an external crack under torsion.
We restrict our consideration in this chapter to the static théory of elast-
icity and quasi-static theory of viscoelasticity. Toroidal crack problems
have received little attention in the literature due, most likely, to the
difficult nature of the resulting boundary value problems. The toroidal
crack is a flat annular crack with an inner radius which decreases with time
and an outer radius which increases. The problem has several interesting
features besides that of the obvious physical applications., It provides a
iink petween twe crack problems which have been considered in the literature
previously, i.e. the penny-shaped crack problem énd the external crack problem.
Both of these problems are limiting cases of the toroidal crack problem. In
all the solutions that we find it is possible to recover those known solutions
for the limiting cases. One limiting case, that of an external crack in an
elastic solid under torsion has not appeared in literature to this date. The
solution we obtain in this case is in closed form and the displacement and

the stress intensity factor are calculated for general loading.

The toroidal crack in tension is considered for both elasticity and quasi-
static viscoelasticity. Solutions to this problem in elasticity have been

given by Smetanin [24] and Moss and Kobayashi [25]. The former presents an




approximﬁte solution valid for extreme cases of the ratio of the two radii.
The latter gives essentially an iterative method making use of the super-
position principle of linear elasticity. Approximate values of the stress
intensity factors are calculated but the ncrmal displacement is not calculated
which for this solution represents an estimate of the error. The solution
which we give exploits a technique by Cooke [26]. As a specific example we
consider the case of constant pressure on the crack surface. The normal
displacement is talculated for this case, (Figure 6.1). 1In the calculation

of the inner stress intensity factor, it is noticéd that certain terms in

the integral equation giving the normal stress can be ignored in the region
of the crack edge. By dropping these terms, we are able to solve exactly

the resulting integral equation and hence find the exact expression for the
stress intensity factor on the inside of the crack. As was observed in [24]
and [25], we found that this term becomes singular as the inner radius shrinks
to zero. This result confirms what has been noted in practice [25], i.e.
toroidal cracks in tension will always tend to become penny-shaped cracks,
sometimes with catastrophic results. We next calculate an approximate express-
ion for the outer stress intensity factor making use of our previcus results.
The expression we find agrees in the limiting case of a penny-shaped crack.
Both intensity factors are given in Figure 6.2. To solve the corresponding
viscoelasticity problem'we make use of the principle stated by Graham (5] and
are able to generalize our elastic results to the viscoelastic case. The

stress intensity factors for this problem are the same as that found in the

elastic case. The normal displacement is calculated and is given in Table 6.1.

In this chapter we also consider the problem of a teroidal crack under

torsion for both the elastic and viscoelastic cases. This problem has only

/



recently been considered in elasticity by Kanwal and Pasha [27]. They consider
approximate solutions for the two extreme cases of the ratio of the two radii.
There however appears to be some question about the nature of their solution.
The solution that we find is similar in nature to that obtained in the tension
case. For the specific loading of S0 T, SO a constant, we calculate the
displacement, (Figure 6.3) and the stress intensity factors (Figure 6.4). The
viscoelastic generalization is achieved in the same manner as before. Table

6.2 gives the results of the calculations of the tangential displacement in

the specific case outlined above.



CHAPTER 1

MATHEMATICAL PRELIMINARIES

1. .. The Stieltjes Convolution and Laplace Transform.

Throughout all chapters }H(t) denotes the Heaviside unit step-function,

of time alone, which is defined through

H(t) =0, -=<t <0, H(t) =1, 0<t <= (1.1.1)

o<

In this section we will assume that f£,g and h are always sufficiently
smooth functions of the position vector x and time t. Then the Stieltjes

convolution fxdg stands for the function defined by

’ _\L
[fxdg] (x,t) = f(x,t)g(x,0) + I f(x,t - 1) af (x,71)d7, 0 <t <o, (1.1.2)

I0 .
provided the integral is meaningful. Some properties of the convolution (1.1.2)

L.
which will be needed later, are listed below: ‘
f*dg = gxdf
fx«d(g+dh) = xdg)*dh = fxdgxdh o . (1.1.3)

f«xd(g + h) = fxdg + f+dh
f*dH = f.
)
If f(x,0) does not vanish then f has a unique Stieltjes inverse , f-1 .

such that
-1 -1 .
fxdf ~ = f “»df = H. (1.1.4)

Proofs of these properties, (1.1.3) and (1.1.4) ars/EEﬁfaéned in Gurtin and

Sterﬁberg [28]. While the notation introduced with respect to the Stieltjes

. '

of
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convolution is very convenient we must be careful of its use. For example
let the function a(t) be monotonically increasing in t, and let F be
defined as
fl(r,t) s r < a(t),
F(r,t) =
fz(r,t) . r > a(t).
Further, let G be some function of t, then we have the following in

general
[GxdF](r,t) ‘# [G*dfl](r,t) , 1 < a(r).

This follows from (1.1.2), the facf a_ is monotonically increasing and the

Qgefinition of F. It is however true that
[G*dF](r,t) = [G*dfz](r,t), T >‘g(t). (1.1.5)
We shall indicate by the notation

F(x,s) = LIf(x,t) ; t-»s] = [ f(i;t)e'Stdt, :
1= 10 (1.1.6)
£(x,t) = L [f(x,s) ;s > t],
the Laplacé transform with respect to time" t, of a function f(x,t), and
its inverse Laplace transform, respectfully. Several relations which are

consequences of (1.1.6) are stated now (for proofs sece e.g. Sneddon [29]).

The Convolution Theorem states
-1 .- — t
L [f(x,s) g(x,s) ; s +t] = I f(x,t - t)glx,t)dr (1.1.7)
o}

where the roles of £ and g on the.right hand side of -(1.1.7) may be

reversed.

-

The Laplace transform of the time derivative of a function is given by

-
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i (g—._f (_)_(_JS) = S?(i,s) - f(i,o). (1-1-8)

Further results are now given. If we take the Laplace transform of the

convolution (1.1.2) we obtain
L[ff*dlg) (x,t) 5 t=s] = F(x,5)g(x,0) + F(x,s) %%) (x,5)
which, on using equation (1.1.8), becomes
L[(fxdg) (x,t) 5 t=>s] = 5?(5,S)E£5,5)- (1.1.9)

By taking the inverse Laplace transform of (1.1.9) we get

[£xdg] (x,t) = LU [sE(x,9)F(x,8) ; s - t]. ’ (1.1.10)

2. The Hankel Transform.

If Vrf(r) is continuous and absolutely integrable on the positive real

line, and if v > -1/2, we indicate by the notation

£ U(E) = Hv[f ; Eli = Jorf(r)JU(rg)dr (1.2.1)

the Hankel transform of the function f£(r) of order v. Here Jv denctes

the Bessel function of order v. From the Hankel Inversion theorem we have
00 I* ‘
£(r) = f et (83, (x)dE - (1.2.2)
0
We now state a result involving the differential operator

(1.2.3)

1
HN! cN

3
ar

o
<
t]
Qr
HMI%
+
H[~



- 12 -

) - p2g
HO[BE 5 §] =-E2f, ()

In the particular cases v

we find

. [9%f 1 af | . 2ot

”0[3;2 v T £E] = -g fOCE),
32f 1 9f £ | _ 2 o*

Hl[ar + ?E - ;T ] E] = 'E fl(E)'

Proofs of (1.2.2) - (1.2.6) may be found in [29].

Other useful results are that
-v-1 3 v+1
H, [r o= [P a] =, (£ 5 E]
which in the particular case v = 0 reduces to
f f ~ *
Ho [5; toTs E] = Efl(E}-

We also note the recurrence relations

3 - -
= [r "J\,(e:r)] = -, G,

H a2

[0 ] = ey, 00

i

which in the particular cases v =0 and v =1 reduce to

3 =
UM L0 B £J, (ex)
and
3 _
Ty rJl(Er) = ETJO(ET),

respectively.

0 and v = 1, combining (1.2.3) and (1.2.4)

(1.

(1.

(1.

(1.

(1.

(1.

(1.

.4)

.5)

.6)

.7

.8)

.9

.10)
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»

3. Abel Transform.

We define the Abel transforms A, and A2 through the equations

1

[x £(t)dt

?1 (x) Al[f(t) ; x] o (XE_tZ)%

. 2 fre)dt
£,(x) = A () 5 x] = [x x5

The inverse transforns are then given as

t
em = At s =2 4 J

o}
£ = a5t E0 50y - 24

These transform are essentially the solutions given by Abel of integral
equations. They are stated as such and in more generality in Noble's paper
[30]. 1In his book [29], Sneddon defines Abel transforms slightly different

L}
in that a 1is replaced by « . However for our purposes a finite constant

is more appropriate.

4. Young's Approximate Product Intepration.

A. Young [31] proposed a method of approximate product integration of

x?l(x)dx
(t7 -xD%

xfz(x)dx

a
Jt (xZ -tH)H

n abscissae with associated

the form
b n
Ja £(x)¢(x)dx = rZlarf(xr) +R o,
where X13Xos woes xn(x1 <Xy < ... < xn) are
weights a;,az, ees G and R 1is a correction term.

this method are that the weights o, and the correction term R depend on
certain standard matrices. Further the formula is exact when
polynomial of degree less than n. The following formulae are developed

for a fixed ¢(x) and any f£(x) which can be expanded in a Taylor series.

»

3

X

<

a .

The main features of

f(x)

(1.3.1}

(1.3.2)

(1.4.1)
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The function ¢(x) may be discontinudus provided

b DR
J (x - n) p(x)dx
a .

& _‘-—\
exists for each s < (n-1),
Let ) . : .
b
s s
J (x - n) ¢(x)dx = h7ps (1.4.2)
a
where
ho= (x - x)/(n-1) o (1.4.3)
and s =0,1, ..., (n= 11. Further' if we denote
(xr -n) = hxr (1.4.4)
then in vector notation
Xa = u (1.4.5)
where X is an n x n matrix with element X3 j = x>l ana u is a column
vector whose i'th component is i 1 {c.f., (1.4.2)). Hence the weightsg,
a., .are given by
-1
a = X 'yu. (1.4.6)

We are free to choose X, and n ta be any value within the range in which
the expansion of f£(x) is valid. These values then are not restricted to

lie within the range of integration. By (1.4.4) we observe that once a choice
of xr and n has been made we can calculate the inverse of X once and

for all. As an example we consider equal interval end-point formulae. We

-1

let n=x;, and x_ = X+ (r - IDh. X has been calculated by Young in

1 T



this case for p =2,

out cop lete “fnte ration,
mp g

¢(x).

7.

o
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Ve quote the result for p - 5 .
-50 35 -10 1
86 -104 36 -4
=72 114 ~-48 6 ) (1.4.7)
32 - 567, -4
- 6 11 -6 1
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CHAPTER 11
THE FORMULATION OF BOUNDARY VALUE PROBLEMS -
\ & ,
IN VISCOELASTICITY AND ELASTICITY
,
1.  Introduction. , , : ‘7

~
VAL

Suppose a fixed region R with boundary B is occupied by a homo-
geneous and’i§otropic linear viscoelastic solid. ¢ Let U eij’ 955
each of which is to rapresent_a function of the position vector x  and

time t .where ‘x is a pointin R and 0 < t < =, denote the Cartesian

components of. displacement, strain, and stress respectively. Then, follow-

ing the usual indicial notation we can record the fundamental system of

T

field equations relevant to the linear theory of viscoelasticity”(é.g. see

Christensen [1]). Tﬁé'yinearized displacement - strain relations take the

form ‘ -

v
/

‘The basic field equations are given as ¢

\\\\,

oij.,j(}“,t) + Fl()_{_at) = QJ . N (2'
'-" 01_] ,j (i’t + Fl (E:t) = p'é'tj_\(ist_) ’ - ; . (2'
) v 01] (J_(._,t) = 0 i(i,‘t) - . (2.

N E
where 'Fi denotes the components of the prescribed body force and p the

density of the material. Eqﬁations (2.1.2) apply to quasi-static problems

and (2.1.3} apply to dynamic problems. In this work we shall use the integral

form of the stress-strain relations. We cite the relaxation integral law,
(e.g. see [1] or [28]) 7

[

e 2ot = T . BN

1.1)

1.2)

1.3)

1.4)

g8



+

: ‘ th -5
» Oij(ist) = [Gl*delJ](_X_st) + 61] [T‘ *fleKK](‘)*(“,t) . (2'15)

o >

where Gij is Kroheckér's-delta. Here G1 and GZ’ which are functions

L]

of time t, 0 <t < =, denote the relaxation functions in shear and
. kS \ * v
jsotropic compression respectively. 'In equaEion ¢2~%.5) we have used the
\ v () f .

notation -defined by (1.1.2). °’

b}

i ° .
To complete the formulation of any boundary value problem in viscoelast-
icify we need to:specify cert'ain boundary and initial conditions. If we
prescribe the surface disp.laceﬂr—nent and traction, respectively, on complement-

. éry subsets Bl(t), Bz(t) of the boundary B then the boundary conditions

take the form

»
~

]
L , ; (%)

U (x0)

| =

on B (1),

. N (2.1.6)
v) a5 (I (x,t) T, (x,t) , x on B,(2),

where nj[ﬁ)t) are the components of the outward drawn unit normal to B.

A

&

The initial conditions are specified to be of the type

ui(i,O)_ = “'1(5) ) X in R,
o, (2.1.7)
i _ .
Et—(ix D) - Vi (i) » X 1in R.

'in the above U, T, W, V are given vector valued functions, which are at least
plece-wise contiﬁggus in the'respective demains. Equations (2.1.1), (2;1.31:-
{2,1.7),' represent a complete formulation of a dynamic boundary value problem
in viscoelasticity. Similarly equaﬁions (2.1.1), (2.1.2), (2.1.4) ~ (2.1.6) give

a Complete formulation for quasi-static problems in viscoelasticity. .

,,,,,,
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2. The General Solution in the form of Potential Functions.

(z) Dynamic Problems

For this class of problems to simplify the subsequent analysis we assume

4

similar bchaviouf in both shear and dilation. Then G and G, will be

1 2
related by a constant value v of Poisson's ratio as follows

. -2y
G (1) = gy 5M

!

-

(2.2.1)

If we combine equations (2.1.1), (2.1.3), (2.1.5) and (2.2.1) we can‘

write the field equations, in terms of displacements alenc, as

2
5 1 a7y
z (ui,jj tTo “j,jﬂ] (x,8) + B (00) = Py (1)

Following the usual vector notation we can write the above in the equivalent

form

G ) L 32
g (vtn e v - wl] o) ¢ Pt = e (1)
. P LTy =% = = LRpRS g2 (Lt

(2.2.2)

Equation (2.2.2) can be simplified by the following device. We decompose the

body force F and the displacement u in the following manner

F o= F + TXE

-2

and

u o= o+ VXY

ra

where ¢ and ¢ are unknown scalar and vector functions respectively.

elementary vector analysis we have

Y..E. =V2¢_-

e e S e e me e e

{2.2.3)

(2.2.4)

By

(2.2.5)
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r

If we subsfitute (2.2.3), (2.2.4), and (2.2.5) into (2.2.2) we obtain

AN

G -,
) ! 2 - 2 :
[5— *d (\7 (V¢ + V X p) + ) V(v ¢))] (x,t) i
52 . o -
F IR rIXE = egm T XY

which can also be written as
-]

1 -v " 2 . 32¢ .
v {(ﬁ)[cl dve](x,t) + Fy - °W}

e 2

Thus (2.2.4) leads to a solution of (2.2.2) provided ¢ and ¥  are chosen

to satisfy the equations

1 - v 2 _ 32¢
T3y [G*d7el(x,t) = pger - Fp
G 2
1 .02 e
[-i—de vI(x,t) = pozz - Ey

The general procedure of writing the displacement u in the form of (2.2.4)
is discussed more extensively in Sneddon and Berry [32] for the dynamic

elastic problem.

{(b) Quasi-Static Problems

For quasi-static problems we shall not make the assumption (2.2.1}.
Gurtin and Sternberg[28] have given a generalized Papkovitch Neuber solution
of equations (2.1.1), (2.1.2), (2.1.4) and (2.1.5).

In particular if Fi is set zero then

(2.2.6)

(2.2.7)

(2.2.8}
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u= [(G; + 26,)*d¥(¢ + x - PIx,t)
where
vZi¢ = vZp = 0.
3. Axisymmetric Problems.

{a) Dynamic Problems

We choose the co-ordinate system

¢
v

With the choice of (2.3
3

where we have set Fi

and stresses in the co-ordinate system in terms of ¢ and §

(2.3.1). If we combine (2.3.1) and (2.2.4) then we arrive at

When we substitute (2.3.4) into (2.1.1) and (2.1.5) we obtain

1t

¢ (r,
(0,u(r,z,t),0)

z,t)

>

- 4[(261

{(r,6,z) and let

+ G,)rdpl (x,1),

_(2.2'.9)

(2.2.10)

(2.3.1)

.1) equations (2.2.7) and (2.2.8) take the form

ﬂ (r,z,t) = —§ (r,z,t) ,  (2.3.2)

{(2.3.3)

'l

zeTo. We also record, for future use, the displacement

- 3%
T ar
g = ¢

= 2%
z 3z

i)
3z

3y

+ —
or

+

v :
T -

as

given by

(2.3.4)
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7z

a
1

T

8T

where
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[G,*d(v24)]

*d(—%— azar}+1\:2v
L (G- 3]
oo 22 e 130 - 2
%[Gl*d(azar 'a—zi"vz‘l'“yﬁr)]

2y [6,440729))

—[6,*d (V)] ",

Ty =0 y
2 2
2 - 3 la .2
VS ErT Yy ar a2

(b) Quasi-Static Problems

In this case,

¢(r,z,

qu:lpz:O . tp:s:

With the aid of

o
i}

T

6o

ZZ

T

for ¢ and y. in (2.2.10} we let

£) =[(26, + 6,)=d(6 + 26,) 7 xdx] (r,2,8),

L)

9X
-—Z. (I',Z,t..).

(2.3.6), we can write the displacements and stresses as

-1, 38X 32x
[361*d(G1 * 2G2) *d 31"] Y 3rez !
-1, 3x 3Zx _
-2[(26) * G)*d(Gy + 26)) Tr ] vz

_Gl*d[%%§.- z%;§§; " %Gl*d(Gl + 2G2)'1*d%§] ,
-G, d[322 _.%.2122 + 36,%d(G) + 2G2)'1*d%§§1 )
~Gl*d[2—i§— - z%%)-;—] s

zGl*dgggzz ,

g, =g, =0, T

(2.3.5)

(2.3.6)

(2.3.7)
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5
where T
. a2x 1 3x 3x  _
af " rar * o - O | (2.3.8)
In the elastic case, that is when
Gl(t) = 2yH(t) and Gz(t) = 3KH(t) , (2.3.9)
equations {2.3.7) with the use of (1.1.3) reduce to
_ X a2x
uI‘ = (1 Z{J)Br araz ]
= 201 - 33X 3%x
u, = -20 .'“)az Tt 0
_ 32x 33x {1 - 2v) ax
Orr H_zu(ifz T Larlaz * T 3T :
5 - 3%x _ E_Bzx . (1 - 2v) 32x
88 322 ~ T Frez arz /) 7
o o f2%x 33
Ozz WazZ 7 “5z% ’
o = X | (2.3.10)
T H araz 4 . 3.
= = = 0
Y9 T %z = %r
Equations (2.3.10) represent a general solution to the field equations of
elasticity in the case of axisymmetry. The field equations of linear
elasticity are given by'zafiif),'(z.l.z), (2.1.4) and in place of (2.1.5)
we have
= 3K - 2u :
0'1J (i)t) - Zuelj (i’t) + dij( 3 ) eKK(l’t)’ (2'3'11)}

4, Torsion Problems.

When considering torsion problems in linear viscoelasticity or elasticity

we assume that u,. =u = 0 and ug does not depend on 0. This assumption

=




- 23 -

leads to following stress-displacement relationships in viscoelasticity

d

G
(rzt) P*d

)
ue:l (r,2,t)

Z
(I‘ Z t) —f (—_ - _> (I',Z,t)‘

and

similarly we find in elasticity that

au

Uze(rrz) = M 'a— (T,Z)

ore(r,Z) =

and (2.4.2) hold for this problem.

The equation of motion, in this case,

”

in viscoelasticity can be written as

2 2 2
3 Ug \ 1% ug +__a Ug - G-l*d 3 Ug
ar? T ar  rZ  az° 1 2
for dynamic problems and
2 2
Bue +l3u8 _“e+?’“e=0
AT T or 7 322

for quasi-static problems.

ST

. For elastic problems equation (}2/.4.4] takes the

form f
32u u 32y 32y
e + -];. .—8- - 8 -+ = 9— e
BT T or 7 3;2_ u e

whereas (2.4.5) remains the samW.

(2.4.1)

(2.4.2)

.(2.4.3)

(2.4.4”

(2.4.5)

(2.4.6)
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-~ CHAPTER 111

THE IMPACT OF A RIGID AXISYMMETRIC INDENTOR

ON A VISCOELASTIC HALF-SPACE

.

1. Statement of the Problem.

Suppose that the region R is the half-space z > 0 with the boundary
B givén by the plane 1z = 0. We consider the problem of determining the
displacement and stress’ fields set up in a viscoelastic half-space when- it
is deformed by the impact.of anaxisymmetric indentor of smooth profile. It
is assumed that over the contact area,%ﬁg(t), the normal surface displace-
fent must conform to Ehe surface geometry of the indentor while outside
f1(t) the normal traction vanishes. In addition the boundary is assumed to
be free of shear trachoqsa Thus in: terms of circular cylindrical gg:brdinates

~

{r,0,z), we are considering the problem governed by the following boundary

conditions:
0., (r,0,8) = g (x,0,t) =0 - »T2 0,
uz(r,O,t) = D(t) - b(r)H(t) » 0 <1 < a(t), (3.1.1)
ozz(r,O,t) =0 » , T > a(t), (””/
and the conditions at infinity
oijgi,t) + 0 as (xixi + o (3.1.2}

where the fidld quantities are independent of 8 and a(t), the contact
radius,is initially an increasing function of time. We assume the body
force Fi is zero. In (3.1.1) b 1is prescribed by the surface of the

indentor and D(t) is the depth of penetration, at time t, of its tip

into the half-space. Note that we can only specify one of either the contact
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radius af(t) or phe depfh of penetration D(t). This is due to the condit-
ion that if the indentor has a smooth profile the normal stress o, must -—~
remain finite around the edge of contact between the indenter and half-space
(see Sneddon [33] or Graham [34]}. However for the impact problem we have

an additional equation (that arises from Newton's second law of motion) which
determines D(t} (or a(t)) in terms of the impact velocity V. The equation

is
d?D(t
m EET( ) L pee) (3.1.3)
where m is the mass of the indéntor, P is the total pressure over the

contact area, and where we have used the fact that

d%u (v d2D(T)
th(qéo’t) T dtZ

To complete the statement of the problem we prescribe that initially the half-

space is undeformed, i.e.,
Gijtffo) = ui(i,Q) =0 (3.1.4)

and in conjunction with (3.1.3)

. dD(0) _
at

1
- -

. D(O) =0 (3.1.5)

Equations (2.3.2) - (2.3.5) subject to the boundary and initial conditions
(3.1.1) - (3.1.5) now determine a dynamic viscoelastic impact problem.

.

In order to solve the above problem we first consider an associated second

problem given by the equations (2.3.2) = ?&.3.5), (3.1.1) - (3.1.4) and

() _

D(O) = Q 2 dt

0. : (3.1.6)

-



- 26 =

@

“

If (ﬁi, éij’ g..) 1is the solution to the second problem and (ui, €5 O:.:)

ij 37715
is the solution to the first problem then it is simple.to verify that the two

solutions will be identical except for the normal displacement where we have
uz(r,z,t) = ﬁz(r,z,t) + Vo, (3.1.7)

Hence we can solve the second problem and then use (3.1.7) to obtain the complete

solution to the original problem. The reason for this procedure is to eliminate

complications that arise when we use the Laplace transform.

v~

2. A General Solution of an Axisymmetric' Shear Free Half-Space Problem in

Dynamic Viscoelasticity.

We begin by finding general solutions to the equations (2.3.2) and (2.3.3)
subject to the conditions (3.1.2), (3.1.4) and (3.1.6). Keeping the last two

4
conditions in mind, we assume that

6(r,z,0) = §%~(r,z,0) = ¥(r,z,0) = %%—(r,z,O) - 0. o (3.2.1)

We now apply the Laplace transform to both (2.3.2) and (2.3.3) and with the

aid of (1.1.9) ard (1.1.8) find

@
)
A=

13 . 2
2T Tt s - KE (3.2.2)
3%y lag ¢ 32y _ 2
A I - (3.2.5)
where we define K; and Kz as
1l -2v) s
A 5 i
R Y IO
(3.2.4)
2 2ps

K = 3
2 Gys)
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and note the relation

2(1 - v)
2 = 2 2 = LA Y/
K2 = K5 / K Y

At this point, we also introduce the elastic wave speeds

GI[O) (1 - v)

¢+ 7 p (1 - 2v)
. G, (0)
€2 - 2p

?

(3.2.5)

On taking the Hankel transforms of orders zero and one of equations

(3.2.2) and (3.2.3) respectively, and following the notation of (1.2.1) and

the results (1.2.5) and (1.2.6}, we obtain

23 %
d ¢0

- 2 275
az -~ - (& ke

dZID—*
]. 2 i ~k
T (o, Kz)wi

Solutions of these equations can

or = A e ™% 4 c,
vo= B e B2 c,
where
c:-2 = 52 + Ki ,
B2 = gi + K% ,

az
e

EBZ

be written as

>

¢ and c, as
(3.2.6)
(3.2.7)
{(3.2.8)
) |
<:*_\\n
(3.2.9)

I

and A, B, C1 and C are undetermined constants. Recalling the condition

(3.1.2) we note that we must set Cl = C2 =0 so that ¢ and ¢ remain

finite for large z. Hence equations (3.2.8) become



_ _ ~0Z
¢S = Ae H]
(3.2.10)
* = -Bz
1 Be

We now determine a relationship between the unknown constants A and B
by using the first boundary condition of (3.1.1). To do this we take the
Laplace transform of Oy as given by (2.3.5) and after making use of (3.2.3)
obtain

sG 32¢ a2y 2— o
7, = |zomor T 1 (5.2-11)

T

Next we apply Hankel transform of order one to the above equation and with

the use of (1.2.10) find

-, SE]- 2 d ___* d 2 — 2__* . V.
Ozrl =7 |“dz (-243) - gz 1t Ko¥1 : (3.2.12) !

Substitution of (3.2.10) into (3.2.12) ,when z = 0, gives

sﬁl )
- . a2
ozrl 7 2taA - 2B<B + Kzé] . (3.2.13)
However, by (3.1.1), we have that when =z = 0, E:r = 0. Hence on combining
| h 1

this result with (3.2.13) we get
) s

B o= —2E% A . ' (3-2.1;;\\\‘\

282 - K%

On substituting (3.2.14) into (3.2.10) and applying the Hankel and Laplace

inversion theorems we determine

${r,2,t) = L'l{I EA(E)e®F I (ex)dE 5 s t;} ,
i ‘ Bz (3.2.15)
w 2820A(E)e” ]
(Tt s L-l{] (2% + KZ) J,(gr)de 5 s t;}.
W o

<ot am,




The functions ¢ and ¢ defined above determine the displacements and
stresses through equations (2.3.4), i2.3.5) within an arbitrary function,
A(E). These displacements and stresses are now stated for future use:

e = R 2nge B2 E2A(E)J. (ET)dE 3 st
r 0> 2E< + KZZ R 1 o s
@ —BZ
- . -1 -0z 2523 .
[ - T s s ee

® -Bz o |9, CEr)
-1, S | -az _ Zope 2 1
G *do . =L {L [e - m] E<A(E) [ = - EJO(EI‘.)] dg

T L Ee'“zA(s)JO(Er)ds N t} ,

=
H

=
u
1

c

i

e

-1, 11 [T ez 208 )
Gy *dogg = 1 {r JO [e TR Kz] E2A(£)J, (Ex)dE
\J](% @ caz
A L ge  TA(E)J_(Er)dE ;s> t} ,  o3-2.18)

o]

Y -Rz
-1 . 1 -1 2 sy —az _ 4g%age ) . 1
Gl *dczz =3 L [[ EZE_’, + Kz)e - -Ez—_'_—‘]z%' EA(E)JO(Er)dE ; s+t )

G;l*do = L_lﬂ [e™®% - e_Bz]gzaA(E)Jl,(gr)dg ;s t}

%

We point out that in deriving equations (3.2.16) the following equations and
results were used : (1.2.8), (1.2.9), (1.2.10), (3.2.3), (3.2.4), (3.2.5), 5,
(2.3.3) and (2.3.4). Equations (3.2.16) then represent a solution of a class

of axisymmetric shear free half-space problems in dynamic viscoelasticity.

:

The unknown function A will be determined by the specification of /a-.:"\}
further boundary conditions on B. The result of these boundary condit@hs
4
N
when imposed will be the creation of one or more integral equations. The

solution of these equations will be the unknown function A. Hence it

T e
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follows that we can reduce a class of boundary value problems in the dynamic
theory of viscoelasticity to the soluticn of one or more integral equations

in terms of a single unknown function.

3. The Solution of Certain Dual Integral Equations.

In section 3.2 we have found a general solution to equations (2.3.2) -
(2.3.5}) subject to (3.1.2), (3.1.4), (3.1.6) and the first condition of
(3.1.1). We shall now impose the remaining two conditions of (3.1.1) upon

the solution given by equations (3.2.16). The result is a pair of dual

“
integral equations: ¥

- ® 2
L I{LQ - ﬁ—gg—}%) EaA(E)J (ET)dE 5 s » % = D(t) - b(r), 0 < T <a(t)
(3.3.1)

G co
1 ,.-1 .4g2
FordL fo [2.:2 K3 - z—gzﬁ‘i—xg] EAE)T (Er)de 5 s - t} =0, T > a(t)

(3.3.2)
We can reduce the complexity of these equations by defining a new function
- P(r,t) such that
— 45248 . ‘
D% = 2 2y .
PO EZE + KZ) m A(E). (3.3.3)

If we substitute (3.3.3) into (3.3.1) and (3.3.2) we obtain

~3 bt EGKE ﬁ;(‘g:s) .
L Jo [(2e2 + Ké)‘ ~4£2aB) JD(Er)dE ; 8 - {} = D(t) - b(r), 0 < < a(t)
(3.5.4)
G
[El *dP](r,t) =0 , r >a(t) . (3.3.5)

Since a(t) 1is monotonically increasing, it follow; from (1.1.5) and (3.3.5)

that ll)
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P(r,ti =0 , 1r>a(t). ' (3.3.6)

Furthermore we observe that
G1
Gzz(r,O,t) = - [T * (u):!(rst) . (3.3.7)
Before proceeding with the sglution of (3.3.4) we note that we must find the
Laplace inverse of the function f(£,s) "defined as

EuKz

?(Exs) = [(252 + Ké)z - 454(18] (3.3.8)

If we let n = Kz/g then by using (3.2.5) and (3.2.9) we find

n(l + n2/K2)%
[(2 + n2)% - 4(1 +n9%( + nt/KD)%] (3.3.9)

= 1
f(g,s) = =
(€,s) g
The above equation with the help of (A.1) and (A.17) can be Tewritten as
f(e,s) = LET) N) COS(EYC'T)E-chszT. (3.3.10)
K, 281 ), 2 .
where Zl is defined by (A.17). We point out that in this equation we have

introduced the elastic wave speed <, (see (3.2.6)) for dimensicnality

purposes.

By (3.%.8) and (3.3.10) we now simplify (3.3.4) to get the following

o

(1-v) J P*(£,t)J (Er)dg = D(t) - b(r) (3.3.11)
. 0 v

’ =

- I J J, (gr)dg J cos (£ye,x)[u,*dP¥] (x,§,t)dx, 0 < x < a(t),
0 0

where

. u,(t,7) = L™ (3.3.12)

i csz(s) —chzr
S e ; s+t

oeem L -~
[T I PR
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We observe that (3.3.11) has the form of (B.10) if we treat the right

hand side as a known function f(r). Also by (3.3.6), P satisfies (B.2).

Hence we can make use of the result (B.13) in (3.3.11) to obtain

2 d P8 a4 ko - b(x)]
R s uey i Jr G ?“??55'HE'JO AP E
2Z1 5 a(t) odp o oo
+ F;TT_?-;T'§; J Tsz—t—;zjg j cos (&p)dg J cos(gycsz.
0 (o] N

[uy*dP>Tlx,6,t)dx

where we have also used the result (see [35]).

P xJ_(Ex) .
o - sin(ép)
Jo (? - xOF* ° TF ) /

For notational convenience we denote PI as

[=+]

PI(r,t) = f cos (Er}dg I cos(Eyczx) .
o o

[uz*dP;](x,g,t)dx

(3.3.13)

(3.3.14)

(3.3.15)

If we use (3.3.15) in (3.3.13) and .integrate the righffhand side by parts, we

find

ety < 2 D(t) 2 a(t) Jact) b’ (x)dx

Tl -v} (@ -r9% T 71 - v) @2 - 9% las - x7T%

, 2 Ja(t) 15, Ig b! (x)dx
L R B N P A N Ly 1

2] P (a(t),t) y a(t)
1 I 2 1 1 9 -
Tl - v) @2 -5t T Y Ir (€7 - rd)%ggpl(ﬁ,t)di .

-

I

b rulnat g set bl b e e T

(3.3.16)
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From (3.3.16) we deduce the following two equations
a(t) £
~ 2 1 3 b' (x)dx
p(r;t) = + 'ﬂ(l _ V) Jr (52 _'IZJEE BE EJO [E - X ];i >

2], a(ty , .
*+ m(l - v) J (gz - rz)%-ﬁ PI (E,t)dE 3 (3.3.17)
r

and

’ a(t) 1 .
D(t) = a(t) J T§2£§l%§75 + [P (alt),b).  (3.3.18)
. o .

~

The solution of equations '(3.3.17) and (3.3.18) gives the solution of the dual
 integral equations (3.3.1) and (3.3.2). ‘Fhen‘these equations are solved we
then have -a solution to equations (2.3.2) - (2.3.5).subject to (3.1.2), (3.1.4),
(3.1.6) and {3.1.1). Furthermore if.this solution also satisfies (3.1.3) we
will then have the solution to the second préblém posed in section 3.1. The
a@dition of the term Vt to the.normél displacement; u, will complete the

solution to the original problem.
In view of (3.3.7) we note that we can Tewrite (3.1.3) as

2p
m g?z'(t)

]

a(t)
-P(t) = -2n J rdzz(r,O,t)dr ’
0

d2p
m EEz(t)

I8

a(t) ’
- J r[G,*dP] (r,t)dr. (3.3.19)
0 :

a
When the solution to the above equations is' found the generalbdisplace-
ments and stresses are determined by equations (3.2.16) and (3.3.3). In

particular in the plane z = 0 the displacements and stresses éan be inteérated

to give

- ArIL T



-2 [ L2
uI' - 27 J‘O Pg(glt)Jl(Er)dE 2 T2 ¥ ]
u_ = (1-v) L Pr(e,t) (E,m)dE + ] Ty o
-1, - _a - 2v) : '
6 edoy, = - wP(r,t) T L P%(g,t)J, (ex)de
V) 1
e i i ] 1 Ty .
-1 ey, (-2 [T ,
6o = - T ¢ JO P (g, )9, (er)de
1 1
TSI - W) L, T * 7 I, T
clids = - L P(r,1) : | | (3.3.20)
22 2 : . T
a =0,
T -

where 22 is defined by (A.25) and

—1
1

1 JO £J, (£7) Jocostczyar)[uz*dP;](E,t)deE ,

=
™~
I
My
o 8

Jl(Er) JOCOS(CZYET)[Uz*dP;](E,t)deE ,

to (3.3.21)

T, = JO J (&T) J cos(czygf)[uz*dP;}(E,tJdeE

We note that equations (3.3.20) were arrived at by using equations (3.2.16},

Q

(3.3.3), (A.20), (A.21), (A.26) and (A.27).

We emphasize that to complete the solution of the problem the surface
geometry 'of the indentor must be specified and that the unknown functions
P(r,t), D(t) and a(t) are determined from the solution of (3.3.17) -

(3.3.19) and (3.3.15).
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4. The Case of a Spherical Indentor

In this section we shall consider the impact of a rigid sphere with a
viscoelastic half-space. For this case the condition on u, in (3.1.1)
is given as A '

u,(0,0,8) = D(t) - I H(e) , 0<r<aq (3.4.1)

where R is the radius of the sphere. As a result equations (3.3.17) and

+

(3.3.18) can be simplified to be

. S -k
p(r:t) - TI'R(l - \)) (a (t) r )
2
* '{El ) J‘a(t)_{’z——z‘“l Lop (et (3.4.2)
m -V T (E - T )5535 I E, E ¥ e 2
and
2 &
pee) = 2 L Lo (a0 . (3.4.3)
. R 11
Equations (3.4.3) and (3.3.19) can be combined to give one equation by
eliminating D(t). We do this by integrating (3.3.19) twice and using
(3.1.5}. The resulting equation combines with (3.4.3) to give
t 0 a(e,)
2(t) = _ TR 1.2
az(t) = RVt - J J J . r{Gl*dP](r,az)drdezda1
o ‘0 ‘o
- I, Pra(e),e) . (3.4.4)

Equations (3.4.2) and (3.4.4) differ from the results in the quasi-static

case by the terms involving P To gain an approximate solution we shall

I
use the leading term in (3.4.2) as a first approximation fo%h P(r,t}.
This-approximation will then be used to calcﬁlate PI and a(t). This

being doﬁe, a second approximation can then be calculated for P(r,t)
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from (3.4.2). We note that the Hankel transform of the first approx-

imatdkon of P is
-

. _ 4 sin(ta(t)) _ a(t)cos(ca(t))
) = W £3 g2 ]

[For simplicity sake we shall throughout this work treat approximations
and exact expressions notationally the same.] We first use (3.4.5) to
simplify PI and then reduce (3.4.4) to a form suitable for numerical

-~
computations. Substitution of ({3.4.5) into (3.3.15) gives

{==] o t .
PI(r,t) = EﬁfTﬂj_;j'Jocos(gr)dE focos(Eyczx)Jouz(t-r,x)giﬂéﬂglaédwdx,
[ .

(3.4.5)

(3.4.6)

t o ’ - ‘
Pilr,t) = Fﬁffij‘;T [ a(r)é(T)dTJ Uz(t-r,x)dxj COS[Er)cos(gybzx)iiﬂéééldg,
o] 0 o :
- 't B o0 ‘ o 4
PI(r,t) = RO T J a(T)é(T)dTJ uz(t-T,x)de Z sin(gyi)gi
v (o] [s) o) 1:1 E.:
where
Yl = ?(T) + T+ Czyx s
Y, < a(r) +r - c,yx

Ys = a(T) - T _'czyx E)

Yy = 2a(1)

1
L2
+
lg]
(33
p
b

Since*we have the result that
e dx _ 1w .
Jo 51n(ax)—§- = 3 sign(a) ,

we must determine the sign of Y; in the regicn of integration
R={(x,0[0<t<t, 0<x<w} for r<a(t). Table 3.1 gives the
sign of Qi in the regions indicated in Figure 3.1 as well as the total

contribution, C, from different regions,

R

(3.4.7)

(3.4,8)

A
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¥
Table 3.1 The sign of Y5 in the region AK .
At T S B R
M M| Ay Ay
71 + + + +
Yz + + + -
'y3 - -+ - -
-y4 - + + +
L c 0 2w T o

Figure 3.1 r < a(t) , R = MUAUAUA, a(‘;r) =T.

v

We can see that only two regions contribute in the integration of PI. Using

these results we can simplify (3.4.6) and obtain
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tr r+a(t
1 . €Y g
PI(r,t) = FﬁfTETTfT a(tla(r) uz(t ~ T,x)wdxdr
)
Y

r-a(t
c
2

+ r+a(t

J . €2
+ a(t)a(rt) u,(t ~ 1,x)ndxdr

+ a(t)a(t) uz{t - T,X)2ndxdrt ¢ . (3.4.9)
0 .

t
T

If we differentiate PI(r,t) with respect to r then the result is

0

t
3 _ 1 . . r + a(r)
g rt) = ﬁTE‘TT;jE;;’ foa(T)a(TJuz(t T, > }dt

t
J T A, (t - o, 22y,
o) 2y

)

" .
f a(TJé[T)uz(t - T,El%l;:—a)dTi} . (3.4.10)
t 2

T
Let- us now return to the consideration of equation (3.4.4), If we substitute
<
our approximation for P in this equation and drop the last term we find

2

4 t 6,19, d
- Jo JO jo c;l(az-ezs)—+-ad83 (0,0 dodo, .

a2 (t) = RVt
We switch the order of integration of the first two integrals and after
integrating the inner integral obtain

4

' t 2 3
200y = - - _ g da’
8% () = RVt ~ gt L Jo(t ez)Jo 6 @, Bs)des(es)desdez .

The orders of integration can be changed once more to give
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t 3 t .
2 ren 4 , da ,,/
a%(t) = RVt - 3= 557 Jo 35— ) Je(t - 8,76, (8, - 0)do,do . (3.4.11)

To solve the integral equation (3.4.11) we use the technique suggested by Lee
and Rogers [36]. To begin with we let t = s, s is an integer and 6 will

be the step-size. With -this change (3.4.11) can be written as

2 -6 4 f i8 da® ° 5 '
0=a (56) - RVs +.m dT(a) e(S -el)Gl(Gl—G)delde .

i= (i-1)6 (3.4.12)
If & is small enough we may make the approximation, ~
3 . 3 s o a3 s o
g% (o) < 8018 270G =18 gor -1)6<0 <16 - (3.4.13)
This approximation transforms equation (3.4.12) into the form ‘
i sé
4 3 ad)-ad (-1 |
0 = a?(s8) - RVSS + z———. T |/ (s6-8_)G, (8,-6)do_do .
3(1 - v)m i=1) (i-1)6 5 Jo 1-714Y1 1
. (3.4.14)
Following [36] we write (3.4,14) as
2 . S 3
0 = a®(sé) -, RVsS + 3(1 T E a®(i8) - a3(@ - 1T .
54 s
. %- J (sﬁ-el)Gl(Bl-iG)del + J (sd- Bl)G Gl -(1 l)ﬁ)de
ié (i-1) (3.4.15)
By making the change of variables 6 = 91 - id we can transform the two
integrals above so-that we have
a%(s6) - RVSS + =2 Z [a (i8) - a¥(GE-n8) 1.
3(1 - V)m
[F(§ - 1) +F(s -i+1)] =0, (3.4.16)
where
s§ .
F(s) = J (s6 - B)Gl(a)de . (3.4.17)

o]
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The series in (3.4.16) can be simplified if we introduce the notation

that a(is) = a; Using this notation, we write the series, A, in

+1°
(3.4.16) as
s .
A= i£1 (ai+1 - ai)[F(s -+ Fs -1+ 1)),
s5-1 g
A= i=§ ai+l[F(s_— i) + F{s - i+ 1)] + al, [F(0) + F(1)]

S
-3 ai[F(s - 1) + F(s - i+ DI ai[F(s'- 1) + F(s)].
i=2

However, from (3.4.17), we have F(0) = 0 and also that

ay = aj(O) = 0. In the second series above we let j=1=~1 and find

s5-1 5 ’
. § aj+1[F(s -3 -1} +F(s - 1].
j= .

Using these results we reduce A to

s-1

A= i=§ af [FGs -4+ 1) - F(s - i-1)]+ F()ad,, . | (3.4.18)

The substitution of (3.4.18) into (3.4.16) gives

2F (1) 3, 2 2 sl
B0 - oTm Ps4l * gep - RVSS ¢ T~ .=z a; ,[F(s-i+1) - F(s-i-1)] = 0,
(3.4.19)
where we are still using the convention ' \\
a(ie) = a; . Y (3.4.20)

5.7 The Numerical Solution for a Maxwell Material.

In this section we specialize the above results for a Maxwell material,

in which case
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-n
Ge Mot . ‘ : . (3.5.1)

-

relaxation time. From (3.2.4}, (3.2.6), (3.5.1)

The constant o is th

we can simplify (3.3.12) as

6+1ou
. _ -T(52+Sno) . (3.5.2)
UZ(t’T) - 21r1 ( )

§-ie o

If we let s + no/ = p then (3.5.2) becomes

e~ tno/2 r8+ie o TP 2.n5/4)% Ptap
u2[t,1) = 771 Ia IEP + N /2)——2—ﬁz7zjg——— (3.5.3)

We observe that (see [37]).

1 -b(s2-a2)%
L - af% S t} = I [a(t? - b2)%]H(t - b), (3.5.4)

where I0 is the modified Bessel's function of zero order [38].

With the help of (3.5.4) we can write (3.5.3) as

G
Ll (t,0= ( ) ‘Lat [IO[UO/Z(T:Z - 12)15]}‘1(11 - T)}
n
+ 2—° [:Io[no/z(t2 - 12)1‘—‘]H(t - TED . ‘ (3.5.5)

The result (3.5.5) when substituted into (3.4.10) yields

1 (r,t) = 1 ate))ace) (EE. ls(t-t ) - 2(e)4 (5)) el %(t-t )
m Y T RT [y B \G, ) N T Ty, G, )

T a(T))d

1 - r .
m Joa(T)a(T) n - 1, oy

+

t {
I T agoao nee - 1, 20y,

) a2
t ' "

- [ e wee - T,a'fg—;rm} , (3.5.6)
t 2 7

PSRN
I:-.\—_---.- EEV N
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where
a(tl) + T a(tz) -
tl =t - (—-E'y—') N t2 =1t - (—T) y - : (3.57)
2 2
N AR CANICEDS
e, = 55 ) )~z —=o35 + IoIng/2(t2 - <2)%] (. H(t-1).
(3.5.8)
Now if (3.5.1) is substituted into (3.4.17) we determine
\
Go -Ngso .
F(s) = -3 [e Mos® n sél (3.5.9)
0
In practise it turns out that the numbers dealt with are so small that
computer round off gives e‘noS(S = 1. Hence to gain better results we
expand ¢"0%%  4nd find
2 3 4
st (n,s6) (ngs81° -~ (ns6)
=1 - nsé + on - =T + a7 = e e e s
When this expansion is substituted into (3.5.9) we obtain
2 3 L 2s2 S
Fer) - GO‘S_ 2. s nOG . [ noﬁ ) ] -
2 3 4.3 ot ’
Since ndé << 1, we will truncate this series after the third term giving
) G §2 r3n 6 riy 62 : :
t 0 2 0 o
F(s) = [; 3 * T . (3.5.10)

Equations (3.4.19)and (3.5.10), after considerable algebraic simplification

give the following result

cof, a3 _ + cof_ a2
3 %5+

4 a1 a1 7 cofi =0, s>1, (3.5.11)

where
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' 2 52
G 52 _ n06 + n O6 . .
4 o 3 12 ?

cof, =
- cof3 = 3m(l - v) ,
s-1 (3.5.12)
e 2 3 Frs - 1y -
cof, = 46 6 _Z al . F(s - 1) cofSRVsd ,
is]
Le n06 ’ : ngéz .
F(r) = r - - [3r2 + 1] + 3 [r3 + r].
Equation (3.5.11) is a cubic equation in as+1 and all the cofi .
i=1,2,3, are independent of a1 -
For s =1 we have
3 2 _ -
; cof4 a; + cof3 a3 cof3 RV o, (3.5.13)

This equation can be solved numerically for a, and the result is used to

solve for a3 etc.

It is also necessary to calculate values for a(t)a(t). To derive
an expression for this term we first differentiate (3.4.11) and find
t

- ,
22(0A() - RV + o 4 5 fv ﬁf ®) { G, (0,-6)do ds = 0. (3.5.14)
o) )

We next consider equation (3.4.11) again and this time integrate the inner

integral by parts to obtain

46 it

. [ -0 E3a
o .

2 - _—
a<(t) RVt + 30 - v)mno

, ‘ t t -
-4 3”6y [ G (0. - 8)de.dg = O (3.5.15)
3(1 - v]mno o 48 g 11 . 1 ’

where we have used (3.5.1). ‘Equations (3.5.14) and (3.5.15) gombine to

give
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Table 3.2 Percentage difference between the first and sccond approximations

of P(r, t) for varying r and t. In the table below T
i

is expressed

as a fraction of the contact radius a(t) and t as a fraction of T,

the time taken to reach a maximum penetration.

e,
N &7 1 5 . .9
Za(e)
1 -.00029 L0021 0037
.5 -.00029 , |, o021 0037
9 -.00029 L0021 .0037

KN

A L T
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4G t

-
2a(t)a(t) - BV + noa?(e) - RVen  + gg——s f (t - e)ggi(e)dé = 0.
0

& -

Integratﬁng this equation by parts and seclving for a(t)a(t) we find
e 4G t
3 = = . 2 o= 3
a(t)?(t) 5 {FV(I + tno) Ny (t) 30 - vim foa (e)dé:}. (3.5.16)

By making the same approximation that gave (3.4.15) we are able to finally

rewrite (3.5.16) as
a_ .a_ b= 1 RV(1l + sn_4) S al
s5+1 s+1 2 o} o s+l

) ZGOG 3 S"l 3
) TEI o om Beer T 2L ai+1]i} - (3.5.17)
— . 1_1

Equations (3.5.11) and (3.5.17) were solved numerically and the results

are given in Figure 3.2. The values of the constants used are listed below.

G, = 1.659 x 101 dyne/cm?2,
v= .3, -
R = .87313 cm. ,
4 ' T{\
m = =R gm. . : (3.5.18)
3 I
pp = 7.8 gm. /emd. §
V = 70.6 cn./sec. ,
- "~
§ =107%, ng = 1

Having calculated a(t) and .é(t) we return to equation (3.4.2) in order
to find a second approximation for P(r,t}. Since the integrané of the
integral in (3.4.2) has a singularity we must take special precautions.

We use Young's method of approximaté product integration to integrate

(3.4.2). This method is outlined in section 1.4. Following the theory
. rd
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stated there we write

A 2y 5 3P
P(r,t) = izl i ax

where @, are given by (1.4.6), (1.4.7), (C.3), and the X by (C.Z).
The integrations in (3.5.6) and for the operator El were carried
out by Gaussian quadrature formula (see Kopal [39] for a discussion of

this method).

6. Discussion.

The results.of the second approximation of P{r,t) appear in Table 3.2
for various values of r and t. There was in general a difference of less
than 1% between the first and second approximations. This suggests that
we use the first approximation when we calculate other stress or displace-
ment quantities. This procedure represents a large saving in computer time
since to calculate the second approximation of P(r,t) for one value takes
approximately 40 sec. of C.P.U. time, while the first approximation can be

determined by hand once a(t) is known.

o e i’

. . .
e CHO IR D R vy BPICHE o CRLN P (3.5.19)
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CHAPTER IV

THE DYNAMIC SOLUTION OF A GROWING PENNY-SHAPED CRACK

IN TENSION IN AN INFINITE VISCOELASTIC SCLID

1. Statement of the Problem. ’ .

In this chapter we will give a solution to the problem of a plane .
circular crack in an infinite viscoelastic medium which is opened by
a normal pressure acting on its surface. In terms of circular cylind-
rical co-ordinates (r,8,z), \fhe distribution of stress and displacement

for this problem is the same as that in a semi-infinite body 1z > O,

when its surface, B, 1is subject to the boundary conditions:

crz(r,O,t) = czé(r,o,t) =0 , >0

)

Uzz(r,O,t) -p(r,t) , 0 < < a(t) . (4.1.1)

uz(r,O,t)_@JO , T > a(t) ,
and the conditions at infinity {(3.1.2). Here a(t), which gives the
radius of the crack at time t, is monotonically increasing and we
assume that the body force F, is zero. The problem thus posed will

be considered solved when we find the solution to equatioﬁs (2.3.2) -
(2:3.5) subject to the boundary and initial conditiomns (4.1.1), (3.1.2},
(3.1.4) and (3.1.6). However, apart from the last two conditions of
(4.1.1), weNEOte that the stresses and displacements given by (3.2.16)
satisfy all the above remaining conditions, in terms of an unknown
function A. When (4.1.1) is employed in (3.2.16) these_equations
résult in a pair of dual integral equations which determine the function

A. '
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2. The Solution of Certain Dual Integral Equations.

As stated above we shall impose the last two conditions of (4.1.1)
upon the solution given by equations (3.2.16). The result is the

following pair of dual integral equations:

G - = 2 ,
-p(r,t) = 2—1 *d L 1 {L E252+1<§) - %22—%] EA(E)I, (6r)dE; s + t

o <7r <a(t), (4.2.2)

- L”l{ijo [} 22 T ] EaA(£)J (Er)de 5 s + {} , ro>a(t). - (4.2.3)

We simplify these dual integral equations by defining a new function

o
!

W(r,t) such that

2
AGE) = T/ I: ;g +1<] : (4.2.4)

If we substitute (4.2.4) into (4.2.2) and (4.2.3) these equations reduce

N,
~

to
G, . f e [E24KE)%- 4g?aB] .
p(r,t) = 5 *d L f aK§ E‘fi;Jo(Er)dE ; S % , 0 < <a(t),
° (4.2.5)
0 = W(r,t) , r > a(t) . (4.2.6)
From (4.2.6) we note that the function W(r,t) is actually the normal
~displacement uz(r,O,t). We further simplify (4.2.5} by defining
Wir,t) = 2[G11*dw] z,t) . (4.2.7)
Then, if we use results (1.1.8), (1.1.9), {(1.1.4), and (4.2.7) we find
that (4.2.5) transforms to ' ‘
- [°1 F252+K2)2 4£2a8—1
p(r,t) = J 7 w*; s+t ( gJ (Er)dg, 0 < <al(t).
e Ll ek J oo 0 (4.2.8)

e

N les cvamrehss Yo~ I e

<3
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Let us denote the function F(g,t) to be the function whose Laplace

transform is given as

- [(2E2+K%)2 - 462u§l_ ‘
- |
. Flg,8) = - aK§~ 1Y - (4.2.9)
| —

To determine F(g,t) we first make the change of variable n = K2/5

in (4.2.9) and find ,

"
= " 1 + n2- c1+n2/1<2)%(1+n2)%)]
F(£,s) szo [;1 T nZ7%D) + 4 (; (InZ/K% 03 (4.2.10)
where we have used (3.2.5) and (3.2.9). The above equation, with the help

of (A.28), (A.36) and (A.37) can be rewritten as

kK2
w0K2

3

Fie,s) T xJo(xt')e"“t'dt' (4.2.11)
(o}

+

—_ o 1 _ntl
* 1 1
wOK2 JO T 4 23 gos(yt )l e dt

By a slight change of variables in (4.2.11) and integrating one term we

find _ .
- E;; b _ '-chlr
F(g,s) = =5t [ JO(CIF’T)WSK%CIe dr
o}
N _ -Kye,T
+ 4523 I cos (¢, yETIW*K,c e dr . (4.2.12)
Q

We now take the Laplaée inverse of (4.2.12) and obtain

gw*(E,t)

F{g,t) = I

-] a . .
— + JoJo(clgr)a—t[ul dwo] (g,t)dt (4.2.12)

+/4EZS JOCOS(CZYET)[uz*dw;](g,t)dr

where

LT £ 4 e = o e
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’ K2c, -K,c,T
uy(E,7) = ! [fgzl e Tl s ;] (4.2.13)

and u, is given by (3.3.12). We use the result (4.2.12) to simplify

(4.2.8) and get the following

1 E Y) JO EZW;(E,t)JO(ET)dE = P(I‘,t)

o

-.JogJocar) [o 3o (e ETI5T [u;*dws] (2, 1) duds

-4 23 [ gZJD(gr) [ cos(czyET)[uz*dwg](g,t)drdg , 0 <r <a(t). (4.55111\\
0 ) 1
Equation (4.2.14) has the form (B.1) and also from (4.2.6) and (4.2.7) we

can see that w{r,t) satisfies the condition (B.2). Hence using the

solution (B.9) we obtain fer 0 < r < a(t)},

—

X L
ep(E,t)dg
ox? - £29% %

m

1

| (t)
_ 20 - ) Ia J
w{r,t) =
4 " (x< - 9% o
ooy, falt) ® @ :
- ng—;—El-[ T¥Z"%7F?F§ {:4 23 J £ sin(Ex) J cos(czygr){uz*dw;](g,t)drdg
0 0

- I sin(£x) J JO(CiET)%E-{ul*dw;](a,t)deé:}dx’ © (4.2.15)
0 o

where we have used the result (3.3.14).

4

For notaticnal convenience we introduce the terms T11 and T22 by

the equations:

=]

T (t,y) = j cos (£x) I cos(c,yET) [u,*dwr (£, t)drdE
e © 0 (4.2.16)~

L+

Tpa(x,t) = J sin(£x) IOJO(cleTjgg-[ulfdwg](g,t)deéf.

o
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Using (4.2.16) we can rewrite (4.2.15) with a little manipulation as

_20 - (A8 *Ep(e,t)de a
w(r,t) = m > fr (x2 = TtH% o (X2 —ED)%E dx ‘ >
(4.2.17)
2(1 - v (38 1 8
B T - [r xZ - 12)% -4 23 ax Tt Tap g9

‘At this point we write the stress and displacement fields for this problem

in terms of w(r,t) which must be determined from (4.2.17). On substitut-
ing (4.2.4) and (4.2.7) into (3.2.16) we obtain:

1 (%2 <z -2, £2 — ‘
Gl*?ur = 2L {].[Y e O% _ 2aBe B ]_gﬁg w; Jl(gr)dg ;5 » f:} R

o

1 {r - - —_
G *du_ = 2L U [v2e %% _ 2p2¢7R%) %‘{ wy Jo(Er)dg 5 s » ,t} )

o)

- m E 'J (er) ’
-1 -az ~Bz, £2 1
Grr = 2L {J [Yze a - 2{!8@ ] ——'2-2}(2 W; T - EJO (51‘) dg

o

o o}

[++] 2 _ _ -
+ ETTL¥_;T.I YOE ez whJo(ET)dE 5 s - t:}’,

_ -1/1 © 2 -2 -z, &2 et
Tog = 2L {f; JO[Y e - 2gRe "7] EE%-WO Jl(gr)dg

Vv ® ZE s ¥ Tk .
- _2(1 — U) JO lu— e Wo JO(Er)dE H ‘S -+> t} 3

S U B -8z, & = :
Oug = -L {f}o[y“e o 4g2aBe ©7) Eig'w; Jo(gr)dg ;5 -+ t;} ,

| o N _ 2 - .
g, = -2L {T[O[e oz _ ¢ ez] ligh‘w; Jl(Er)dE HE- B t:} s

where

2 2 2p2 4 g2 2 = p2 4 K2 2 = g2 4 x2 )
¥ 262 + X, a g2+ k8, 8 £ + X5 . (4.2.18)

Ty e e
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It is possible to integrate these equations further for the special case

z = 0, We find in this case:

G, *du
T

1 - % JO Ews(e,t)J) (em)de + 2] T,

Gl*duz = w(r,t) ,

J. (g1
2 1 2
069 = - Jo[-ﬁf = + 1\)5 S JO(EI‘) Ew;(s,t)dg .

.2 2V v
* §£5T6 Ty Z4T4 T -V Ts

_ 72, J1n) £
O = Jo 3 - T Jo(Er) Ewg(E;t)dE

2 v
- E‘ZSTG TTov gt Zz6T4 :

[s) = -
2z 1 -

2 .
JOE WH(E,)J(ET)dE - 423T4 - T,

ir

where

0

e ' e
T4 = Jo £ Jo(ér) Jocos(czyﬁr)[u2 dwOJ(E,t)drdE ,

=
]

o o0 5 .
B R S R —

W

Tg Jo EJl(Er) Jocos(YET)[uz*dwg](E,t]deE .

The Z cperators are defined in Appendix A by equations (A.40). It is
important to note that in (4.2.19) if all terms imvolving T's were
dropped then we would have the result found in the quasi-static theory.

Hence these terms represent the dynamic part of the solution.

If we make use of (B.3) the terms Ti can be rewritten in a simpler

(4.2.19)

{4.2.20)



- 54 -

form, For example if we denote by Q the integral in the inteérand

for T4 then we find
® a2 0F cos (Es)ds
= 22
T4 JOE ™ jo (rc - 5%} Qde

.

Interchanging the orders of integration and carrying out some minor

manipulations we arrive at

T @
2 1 a2
T4 = - E.fo TET_:"Ezjﬁ'EEZ'JOCOS(ES)QdEdS‘

Similar results can be found for TS and T6. If we make use of (3.3.14)

then we can write

T
_ 2 1 32
Ty = -7 JO 2 - s9)% as? T (s.tydds

T
_ 2 13
T, = 2 Jo 5oy 5% Top (5 taY)ds (4.2.21)
T
.2 1
Ty = - = jO(T TS T ,(s,t,y)ds

In order to determine completely the stresses and displacements, given by

(4.2.11) and (4.2.21), we note that we should specify a(t) and P(r,t).

3. The Case When a(t) = Vt and P(r,t} = P(t).

In this case equation (4.2.15) becomes

W, t) = 2 (1~ v)P(e) (a2(t) - 2y | : (4.3.1)

- a(t) - '
- 26 " . j CH E 2% l}zs g_p Ty - Tzz:] dp, 0 2r<a(t)
T

The above equation must be solved numerically. When this is done the results

can be substituted into {5.1.16) or (5.1.19) to determine the stresses and
displacements in general. However this appreach fails in the vicinity of

singularities, which the stress field possesses near the crack tip as




_——— e

|
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approaches é(t)+.‘-The singularity will be of the form 0 T ) .
To determine K we have to consider an approximate solution of (5.2.1)
and integrate analytically rather than numerically.

We shall take as an approximate solution to (4.3.1)
w(r,t) = D(t)(a%(t) - )%
D(t) = 2:(l - vYP(t)D
T v o
Here D0 can be considered as a dynamic correction factor.d?@ermined from
the numerical solution of (4.3.1)., This is analogous to the elastic

dynamic problem for which (4.3.2) represents an exact solution in the case

P(t) = Po,[18]. The Hankel transform of order zero of w is given as

WE(E,t) = D(E) \:Si“(ga_) - a °°§E@il

Ed
We now consider the expression for the normal stress component in the

crack plane since it is directly related to the stress intensity factor.

If we substitute (4.3.3) into o, as given in (4.2.19) we Tind for

T > a(t)
D . -1 Da(t) 1
9, ;Q‘_ T Sin (a(t)/I'J + (1 - v) (r% - a%(t))*
87 (F 1 3 T
T3 L, e AT TR

T
2 1 )
‘FJQ(?—_SZT’T?s‘TzzdS o x>alt)

where the first term has been simplified by using {B.4) and the result,

[38],
{

J sin(at)J_(rt) g%-: sin_l(a/r) , 0O<ax<r
)

(4.3.2)

(4.3.3)

(4.3.4)

(4.3.5)



In order that the last two integrals contribute to the stress singular-
3T

ity at a(t) the terms and T22. should have jump discontinuities

at a(t). We introduce the notation

[£]_ = lim £(x) - lim £(x) . (4.3.6)
? x+at x+a” . /\
We can then write (4.3.4) as ‘ ‘ y
aT
| patt) 8 1
Y22 © [1 -v 7 Z3 [as ] [T22] :l < - az(t))zz
D . -1 8 ® 22T -
- T— sin (a(t)/r) + — 23 J T —_‘T_(as 1s
. t 0
g . [T 1 Ty 2 (28 9752
T ris f (r¢ - s9)% 3sZ ds - _[ (¢ - s?)%2 3s. ds
a(t) ™. - 0 .
2 (T 1 3T22
. F.Ja(t) TR e ds (4.3.7)

The last terms can now be integrated numerically since the singular part

has been removed. We can now calculate the stress intensity factor which

-is defined by the relation

N(t) = lim  {[r - a(t)]%czz(r,o,t)] e (4,3.8)

r+at(t)

In the present case N is given as

.aT -
N(t} = [Zatt)}g li)a_(tz, * %Z3&|:as_ll—jla - % [T22]a:| ‘ (4.3.9)
: Ty ) '
Te find N{t)} we now must calculate [55—]3_ and [T22] . We observe /7
that the time derivative of w;(g,t) appea7 in (4.2.16). From (4.3.3) /r
we see that time derivative of \fé is© ‘
N
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aw*

5t (6,) = D(va(0)a(n)TREa®) b.(t)[:Si“(Ei‘.(t)) - “”“’SFSE““”J' ~.
(4.3.£bg'

It has been examined in some detail and determined that only the first term
“ oT

as
only substitute ‘the first term in (4.3.10) for

or T,.,. Tﬁus we shall
. - 22
ow

ato (E,t) when we calculate

contributes to any jump disconti ity in

0 ’ 11
and [T,,] . With this in mind we first consider . From
H] a ., - 227a

(4.2.16) and the first term in (4.3.10) we write .

L Y

9Ty,

75 %; J cos({Es)dE J
)

L3 ’ t .
cos(czyxE) I D(T)uz(t—r,x)Eiﬂégélaédex .

o ‘o0 \

t

o«

D(t)a(r)a(r)dt I u, (t-7,x)dx j.cos(Es)cos(sczyx)sin(sa)gg-,
o o] < :

3
3s s

[=%]
-
—
—
]
———y

o]

aT t w© o 4
13 . . . d
asll Z-EE-J D(t)a(r)a(t)dr J uz(t—r,x)dx I Z sm(EYi)E5 s
o o] o 1=1

(4.3.11)

where the Y; are given by (3.4.7). In view of the result (3.4.8) we must

(S '

determine the sign of Ys in the region of'integration
R = {(x,1)]0 LT2t, 0fx<«} , for s <a(t) and s > a(t). Table

4.1 gives tﬁé sign of Y5 in the regions indicated in Fig. 4.1 and 4.2 as

well as the

Y4

Figure 4.1 s < af(t R ; '
| (t) AIUA2UA3UA4

-
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i8]

\
Fipure 4.2 s > t = A= A
g a(t) R A(fe) ASUAA

Table 4.1 The sign of Y; in the region AK .

Al AZ AS A4
Y, + + + +
o + + + -
Y3 - + - -
Y, - + + +
C 0 27 T 0

total contribution from that region. We note that for s < a(t) two regions

’ \
contribute whije for s » a(t) only one contributes. Using these results

we can simplify (4.3.11) for the two cases. In the st case we have
T, yz g § /Y €y
55 = z—-agﬁ{:fo D(r)td= fs—vruz(t—r,x)ﬂ dx
¥

4
P

S Tr o S re— T
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-
s+VT1
c.y ‘
t 2
+ I D(t)vdt J u, (t-1,x)7 dx
s/V V- s
Y
Vt-s

t a2
+ f D(t)rdT J uz(t-r,x)Zw dx s s < alt)
s/V 0 )

and in the second case

s+Vt
¥
My vz g ft
= — — | D({t)rdr U, (t-t,x)7m dx , s > a(t)
as 4 3s
: o] S- VT
c,Y

“ If we carry out the differentiation with respect to s then we find that
there will be no contribution from the limits of the outer integrals. Hence

after some minor -simplification we obtain

- aT 2 s/V
= i _ Vi I D(T)Tu (t- T,S+Vt)d - J TD(T)u (t- Ty VT)dr

4c2y
t : Vt ' *
- f D(T)Tuz(t-T, _S)d'r s s <af(t) , ' (4.3.12)
'(JQV s/V €Y
, and
aT 2 t
11 _ Vn S+VT
35 C 4c2y J D(T)T[u {t-1, oy —} - 2(t -T, oy )]dr , 5 > a(t). (4.3.13)
5 If we combine (4.3.12), (4.3.13) and (4.3.6) we can now write
2 t
11 Ve . s+V1 +V1.
g———] = lim J (1) [u, (t-1,—/——) - u,(t- T, )]dr
. [ 5 Ja 4CZY s+a(t)* ) 2 €y “2 Zy
s'/V st+a(t)” )
- | D@l (n, ) - u(eer 2T ““)]d e
o 2y "2

t .
- s-Vr Vi-s'
Js|/VD(T)T[u (t-T, & ) - uz(tl-'r,czy )]dT:}_.

i n L ITemem s o T e e



)
The firét two integrals in the ;bove expression go to zero when the
indicated limits are taken; however, the last gives a contribution.
To see what this, is we make the following change of variables,
s=Vt +Ve , s'=Vt-Ve-and ez=t -1, E? 0. With these

changes the above becomes ’ -

3T ) 1 ' '
[asll} = - %Eﬁ—-lim J (t-ez)D(t—ez)[euz(ez, E—(!:!l)——)
a 27 evot o _ Y o
- euy(ez, eV-V2)y14, (4.3.14)
Czy .

In order to simplify this further we consider the following

" E = éuz(et,sr) ,, >0

! . ’ .
From (3.3.12) we can write E as - . gz_g
1 K, -c,Ket .
E =l [:Ecz 2 22 [RN-g e{] (4.3.15)
5 . X
where from (3.2.4) and (3.2.6j
G, (0)s? .
c%K% = ‘ (4.3.16)
' ENON
1f we make the change of variables Xx = se then’
- sGy(s) = glx,e) = gJ Gl(t)e_Xt/Edt .
: : o

|
o

CE R _ 1
g(x,e) = J Gl(t'e)e Xt gt
o

- The limit of g(x,e) as e + 0 is

Lim_ g(x,e) = G (0) (4.3.17)

e+0

Lt et Bl e e e zoas N
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We can then make the change of variables x = se¢ in (4.3.15) and

using (4.3.16, (4.3.17) obtain the .following result

l[e-xr

lim eu {et,et) = L~ s X+ t] =68(t - 1) (4.5.18)

0t 2

Applying this resuit we can reduce (4.3.14) to

[aTlljl _ _ VZrtD(t) [1 slz - v [, (V—Vz)Bd
a5 a 4c2y o czy czy . t

If we break up the integral and make a change of variables we can make use

of the properties of the Dirac delta function to finally obtain

. /1 _

T aventnee) [S2Y 0 S
| s o L/ 4c,y c,y-V c y+V

'aTll'] ) mv2a(t)D(t) '
| @s _|a -7 2(y¢~v§) ’ (4.3.19)

where v, = V/c2 .

To find [Tzﬁ] we first combine T from (4.2.16) and the first
a .

22
term of (4.3.10) to get

L] o t . '
Ty, = Josin(ss)da IO Jo(clax)%— LD(T)ul(t"T’x)imé—Ea) andrdx .

This expression can be rearranged as follows

o

S t . oo . C.
09 = %E Iodn I D(t)aadz Ioul(t—r,x)dx [ cos(gn)sin(ga)Jo(Eclx)dg R

0 (o}

—
1

5 t o« '
T,y = E—-%;—I dn J D(t)rde J Ul(t-T,X)dX'
0 0 0

&

[ [sin(g(n+a(x)))*+ sin(g(alc)-n))1J, (Ec;x)dg
o]

i
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If we use the identity

- . H(b ~ a)
sin(bt)J (at)dt = - 2
. Jo © vbZ - a2
/?ﬁi then T22 becomes )
_ v2 3 (S t <0 H{a(t)+n -clx]
T2 7% Ld” LD(”T‘“ L“l(”'f‘) (OO
H[lacr) nl - e)x]
B (O EDEamr x‘ﬁjd" -oe
We now write for the two cases, s < a(t)
v s Vzl u (t-1,x)dx
= 3 D(T)TdT Jo RO cfx‘}ﬁ
- Cl uy (t-1,x)dx
D
J Jn/v(r)rdr Jo [(VT n)< - clxé]%
s n/v n_VT 1 (£-7,x)dx
. Ld-n L D(t)tdr ’ [V % e
and sv> a(t) Vran
V2 3 S t c1 ul(t-r,x)dx
T22 =53 {odn JOD(T)TdT J [(Vtem 2 - cfx‘]5
% oy

a(t)  ,t cy ul(t-%,x)dx
+ j dn Jn/VD(T)TdT { [(Ve-n)2 = cfx‘]%

n-vt

a(t) /v 3 ul(t—r,x)dx-
- Io dn [o D(t)tdt [(h-vo)2 - cix‘]%

[ t CI u (tﬂT x}dx
[l [ e }

—

T T R e L e ke e ——

(4.3.20)

{4.3.21)

(4.3.22)
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.

When we calculate [T22] it can be seen that only contribution comes
* . a
from the derivatives of limits of the last three integrals for T22,
s > a(t). -
Thus we find, * Yren?
V3 t €1 u) (t-7,%)dx
[T,,] == lim J D(t)rdrI SRV tea
227 2 Y nisate) dnrgy o [VT=n1}® - ex?]
n'-vr
1 .
’ n'/v c1 ul(t-r,x)dx
- lim J D(T)tdr J T T
nt+a (t)/o ) [(n"-Vr)© - Xl
n-Vt
: ot <] ul(t—T,x)dx
+ lim_ - j D{t)tdt J va —o . (4.3.23)
nral (t) ‘o 0 [(n-V7)# - €x I

We point.out that there is a certain amount of cancellation between the

last two integfals and care must be taken to insure the correct results.

To evaluate the above'integrals we let =n = Vt + Ve , n' = Vt - Ve

3

and y_: t - T

The result is - -

pv3 . € Vl (e-y) U.l (y;x)dx
[Tyl === Elirg+ fo(t-y)D(t—y)dy Jo Ve Gey? - (4.3.24)
t vy (=€) ul(y;x)dx
"Jeft‘Y)D(t‘Y)dY 0 V2 {y-2)2 - cfx[?f
‘ .t v u; (y,x)dx

‘To simplify this further we let y = ez and x = er and take the limit

for the first integral. The other two integrals partially cancel in the

limit and for the remainder we make the same changes as for the, first., In

both cases we make use of a similar result as (4.3.18}, namely

T Heraewagits v T
: ; V.
K



— 64 -

c
lim, ‘eu, (et,et) ® Ls -0 (4.3.25)
¢
g+0 2
The expression for [Tzz] now becomes
a
v
1
c V3 [
_ 1 1+vy d :
(T2l = 7cZ D) - t'{:! VI(I-y)Z - c2y”]
2 0 1
o
. [l-vl dy
o [V?(l'fy)2 Ak
which can be completely integrated to give
K2vZa(£)D(t) .
. (4.3.26)

=1 17____1ZP€__—F—__
[T22]a - 2 1 -V -
. 1° . .
Collecting the results (4.3.19) and (4.3.26) with (4.3.2) and (4.3.9) ve

Vd-

can write N as
! z 2(1-v)2v? f

2a(t)]? ) 1 B

= - - - __———-_"z_""‘ . I

N(t) .l_j;_;L_ P(t)D, [} 44 v) Iy r g (1-2u)(1—v1)4-] (4.3.27)

h those results given for this problem in elasticity

This result agrees wit
then (4.3.27) is exactly

in the case P(t) = Pg- 1f we let b, = a+ e)"l

the result found in [18]. Note ¢ is defined in [18].

We can simplify

3 . .
(?.3.27) by fully evaluating the integrals in the operatoT 23. By integrating
and perfo;ming some algebraic maﬁipulation we reduce (4.3.27) to

" 3 : k2 - v3)°
N(t) = __[.z_a_r(rj'—)—]— P(t)DOQ-—V%E)— [4(1 - V%] - W—'_—‘;%)—g ) (4.3.28)
\_‘_

3.2.5) qnd (3.2.6). The form of (4.3.28) is exactly

where we have used (
v N
ote that the above comments

given in [16] for the elastic problem. w?/p
Lts in [16] and [18] are in 3g

that
reement with each other.

indicate that the resu

This point has mnot been made in the past.
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We point out that the above analysis which has given (4.3,27) can
most likely be generalized to the case when a(t) = vt? g:e. for an
accelerating crack. Wé have, however, not explored this idea any

further.

4. Numerical Calculations for a Maxwell Material.

The two quantities of primary intercst are N(t) - given by (4.3.28) and

the normal displacement u .. To show the dynamic effect on these terms we

calculate the following normalized quantities

(4.4.1)

N(t) D (1 -+v) L K(2 - vg)z
e , = 2 a1 - v3)?P .
a(t) =P (t) ™5 2 (X -vz) %
and w/ws .
where ws(r,t) =.% (1 - v)PO(a?(t) - )% 7 (4.4.2)

and w 1is given by (4.3.1). We note that by (4.2.7) w is related to u,
in such a way that the ratio w/ws indicatgs the dynamic effect on u, -
We also point out thét for numerical computations we have set P(t) = Po,
a constant.

In carrying out the calculations we specify G1 to be given by (3.5.1)

and make use of (3.5.5).

We take as a first approximatioﬁ of w, (4.4.2) and substitute this into
the second term of (4;3.1). In calculating this term we arrive at an express-
jon similar to (3.5.6). The results of these calculations appear in Table

4.2 which gives the ratio w/ws. We use these computations to determine an

o

“average correction factor D0 which is used in calculating the normalized

1
stress intensity factor. This ratid is then calculated and the results appear

in Figure 4.3.

i
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Table 4.2 (a) Calculated values of w(r, t)/ws(r, t) for v,= 5.
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t
.001 .01 .1 1
/e
0 1 8665 .866 .861 .36
.2 .86611 .8654 .8585 .364
.4 .86578 .865 85834 .391
.6 .86531 .8646 85838  .437
.8 .86477 .864 .85838  .489




Table 4.2 (b) Calculated values of w(r, t)/ws(r,

t = .01,
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} for r/vVt

.1 .7 .9
"o
.1 (0.99248 0.9423 0.7692 0.663
10 0.99253 0.9424 0.7672 0.660
100 0.9896 0.915 0.619 0.432

Ty
O\

-
—~

Lz

.5 and



00}
|

¢t JUNoId
. ) N>
060 080 040 09¢C Om& ot'0 020 020

oro oo

000

- 68 -

3

- 600

—~ 01°0

~ G1'0

Fozo

- G2°0

—~ 0¢'0

- G€'0

SS3JHLS TTVNOISNIWIG-NON

/N HO1o¥d ALISN3ILINI

(d 2(v2))




-
[

- 69 - ¥

5. Discussion
‘ 4
In calculating values of w(r, t) from equation (4.3.1) we made the
assumption that not < 1. This assumption is justified by the fact that

for all but the smallest values of v, the time of crack growtg will be

very small.

We obscrve from Table 4.2 (a) that there is little variation in the -
fractional difference between the first and second approximations for
t<.land < Vt. If wihmake the approximation that the difference over
this range 6f T ﬁnd t is constant and-eqhal to the averﬁge value -.13679
then the solution of (4:3.1) is of the form
wir, t) = DO ws(r, ) (4.5.1) \\

where D0 is a constant. When we substitute (4.5.1) into equation (4.3.1)

E

we @igd the identity

D w =w -.13879 D w
o s S 0 s

L

from which we obtain the following value of D0

D = 1 = .B7967
1.13679

Hence the above approximation, that the difference is a constant, yields
‘the approximate solution

w(r, t) = .87967 ws(r, t) forr < Vt, t < .1 {4.5.2)
This means that for Vy = .5 the dynamic displacement u, will be approximately
12% less than the corresponding static displacement. The trend indicated by _/
Table 4.2 implies that this percentage will‘grow much larger if

> .
n0 1 or v2+ 1

LRI [
B S
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We note that the range of the expression on the rgght hand side of
(4.4.1) is from Do/TT to 0, for v, = 0 to .93501 respectively. In Figure
4.3 the value used for Do was 1. If the correct value had been used the

general - form would not be changed but only the scale.

™
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CHAPTER V

THE DYNAMIC SOLUTION OF A GRCWING PENNY-SHAPED CRACK‘

UNDER TORSION IN AN INFINITE VISCOELASTIC SOLID

1. Statement and Formulation of the Problem. -

We consider an infinite viscoelastic solid containing a circular
crack which is under torsion. We choose cylindrical pelar coordinﬁtgg
(r,8,z) such that thc/§Zack lies in the plane z = 0 and has fadius
a(t) where a ‘is a monotonic increasing function of time. The
distribution of stress and displacement for this problem is the same as

that in a semi-infinite body z > 0, when its surface, B, is subject

to the boundary conditions:

oez(r,O,t) = -5(r,t) s 0 <1t <a(t)

ue(r,O,t) =0 . r > a(t)
and the conditions at infinity
ug(r,z,t) » 0 as J;E_$7;T‘+ @
In addition we specify the initial conditions

Bue
ue(r,z,0)= a_t'_ (r,Z,O) = 0.

The sclution of this problem reduces to solving (2.4.4
(5.1.1), (5.1.2) and (5.1.3). A general solution to (2.4.4) subject to
(5.1.2) and (5.1.3) is determined as follows. If we take the Laplace
transform of (2.4.4) we find, using (4.1.3), that

3%u

2— —_
i Jo + 1-339 - Jo + 0 . K2u
ard T 9T Tz 3zZ 278

where &

ject to (2.4.1),

(5.1.1)

(5.1.2)

(5.1.3)

(5.1.4)
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k2 - 28 _
2 Gl(s) .

We now apply the Hankel transform of.order one to (5.1.4) and employ the

result (1.2.6) -to obtain

25k
d7ugy

, - 2 290 -
T (€2 + K3)u¥, 0. (5.

The solution to (5.1.5) is

ur, = A B2 , where g2 = g2 + K2 | ' (s

2

We point out that we héve made use of (5.1.2) in arriving at equation(5.1.6).
Here A is an unknowﬁ function of & and s , the transform variables. On
applying the inverse Laplace and Hankel transforms to {5.1.6) we obtain the

generalhsalution of (2.4.4) subject to (5.1.2) and (5.1.3) as

-l [ -z :
Uy (r,z,t) = L ?135 (&,s)e Jy(gr)dg ;s » '} (5.
We can now write %, and % in terms of the unknown function A as
follows:

I

t
A
L_.l

' e -8z .
oze(r.Z,t)‘ 5 JO EA(E.S)ée Jl(Er)dE ; s+t}

;L_

(5.

1.5)

.1.6)

1.7)

1.8)

G, (= an 23, (€x)
9y (T12,t) = 21 I{JO EA(Es)e B2 £3_(6r) -.—1—r— dE 5 s + 1}

The problem remains to find a function A(£,s) such that Uy and Oy, 35

defined by ({5.1.7) and (g.l.S) meet the boundary conditions (5.1.1).

Explicitly, we must solve the dual integral equations:

L'l{f EA(E,s) J (er)de s+t:('=0, T > -a(t) .
© : (s.

G oo
2-} *dL"lﬁ EA(E,s) 8J,(ex)de ;.5 t]-_= S(r,t), 0 <r < a(t)
o :

-

i

1.9)
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b

' '
.2.  Solution of the Dual Integral Equations.

Wwe first note that from the first cquation of {5.1.9) we can deduce

that

AE,S) = Ty (Ess) e ) (5.

had
EN

We next define a new function e(r,t) sd&hn;hat

EAGE,s) = 25 B (s)e(6,5) - (s.

»
)

If we substitute (5.2.2) into (5.1.9) we obtain

. , ,
G oo .
51— *d [L ot Jl(gr)de;] ) =0 , 1> aft) o 5.
and ]
[ LUl (e,s) 5 s > 1] I (endde = S, 0w calt). (5.
(o]

Since af(t) is monotonically increasing, it follows from {1.1.5) that we

can replace (5.2.3) by the simpler equation

[ ef(e,t) J,(Er)dg = 0 , T > alt) . G
] _

J

gl : . s
Before proceeiggg further we note that we must find the Laplace 1nverse

of g. To do this we rewrite g8 in the following manner:

= (£2 £2 1 ‘
B = (c% K%)*“ﬁzl[ W:\ -5 ﬁ—rgﬁ] - -

",
LA TN

If we let n = Kz/g in the first term in (5.2.6) wé’ can make use of (A.ﬁl)

and (A.42) to conclude
-3

etV e e vam e - e m e = e T T

.1)

.2)

.3)

-4)

5)

.6)
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g2 ’ o -Kyct
K, 1(2('5’2+E'22‘)3§ L KEc, 27 IOCOS(Cziw)e dr . (5.2.7)

Similarly if we let pn = K2 in the second term we can identify the result

as the Laplace transform with respect to n of Jo(gt). We thus'gbtaig\

1 ~Kycot

W = CZJ Jo(gczr)e dr . . (5.2.8)
0

Combining the results (5.2.6) and (5.2.7) we write (5.2.4) as

L=~

I gey(e,t) J,(g,r)de = So(rﬁt) » 0< 1< a(t) (5.2.9)
0

N

where

So(r,t) = S(r,t) + 27 JO ng(gr)dg [J cos(Eczry).

o]

o

[uz*de‘{](a,tJdT} - Jo I, (gr)de -Jo 3 (ge,T)

%? [ugede?] (£, t) dr. ' (5.2.10)

where u, is given by (3.3.12) and

u3(6,7) = Ky (6,7) ' | | o (5.2.11)

The solution of the dual integral equations represented by (5.2;9) and

(5.2.5) can be fouﬁd by using a general result of-Noble [30]. We find.

- that
' (25}%. A L s So(x,t)xzdx
.BI (E:t) =, 'ﬂ_‘;i_" 4['0 S ‘ J3/2 (Esjds Jo _"2_(5 ':Xz_)'i: ’
and - ' ‘ N (5.2.12)

o -. ) a .".‘
E(r,t) = f Jl(gr)(zi f s-% Jéfz(gs)ds .
) o . Yo

[S So(x,t)xzdx %

' 4 5.2.13
o WiomE L - o G

.‘. v / . s ) .
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where

‘ G
gEF(g,t) = eJ(E,t) - C(5.2.14)

‘We observe by (5.2.1), (5.2.2) and (5.2.14), that

6
E(r,t) =|:2_- *due] (r,t) . ) (5.2.15)

We obtain by reversing the orders of integration of the first two integrals
N B

and employing the result (c.f.[29], page 314)

g2y vl :
H(a-£) (5.2.16)

= I-p+w _ F;v (a2-
X J (ax)J (gx)dx = -
Jo s v ZU_U-IF(u-v)au

that

a s S (x,t)x%dx
21 f ds [ 0 (5.2.17)

E(r,t) = T sZ(s2-7v2)% . (sZ-x0)%
: )
We shall now substitute equation (5.2.10) into (5.2.17} and make}use
of the result [38] “ .
2 .
s Jl(gx)x X = sin(gs) _ s cos (Es)
o (35-x°)% £* € -

(5.2.18)

to get

a L
o ds 7 s(x,t)x?
E(r,t), = ;—.Jr sZ(s2-r)% Jo sZ-x2)3

'

o .
. %z_[ EIT§%§EZT¥ .{:27 J [sin(gs) - sgcos{gs)]de .
T - 0

. I cos(gczry)[uz*dﬁi](g,t)dr F
o) .

T

- J [Eigliil - s cos(es)Jdg J Jo(gcth%E-[us*dEI](g,t)d;:}_ (5.2.19)
o o

The integral equatioﬁ (5.2.19) must be solved to complete the solution of

~

Ha
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the problem. At this point we record %2 and Gef‘ in terms of the

unknown function E when z =20
L3

¥

o

0p, (1,0,1) = - [o E2E} (€,1)J, (r)dg

* Zsf EZJI(Er)def cos (gc,ty) [u,*dEY] (g, t)dr
o) o] N

] e

. 3 N
- fo 67, (Er)de [o To(6e,t) S [ugedBr] (e, t)dr

o0

2J, (£r)
oer(r,O,t) = J EEI(E,t) ‘EJO(&:r) - = de . ‘(5.2.20)
(o] . .

We can simplify the expressioh for Tyy by first noting the identity

3 (er) = L2 [0 s sin(es) ds (5.2.21)
150 57 o (x5 ) . T

This can be obtained by differentiating (B.3) with }espect to £ . If we
o
substitute this result for J1 into (5.2.20) we find

o0

o _ P z
Uez(r,ﬂ,t) = ‘(0 6 EI(E':’t)Jl(Er)dE

'%%E(—rzs_szﬁg—s [Z7Q1 - Qz] ds ’ ts.z.zz)
whereé N

Q = g—s J: sin{gs) J: cos (£c,ty) [uz*dEi‘] (€,t)dr ‘ (5.2.23)°
and

Q2 = f: cos (£s) [: Jo(gczr) SE-[uS*dEI](g,t)dr . (5.2.24)
When S(r,t) and a(t) are specified, the integral equation (5.2.19) cag !

' i
be solved numerically for E(r,t).
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We shall now consider the particular case when

>

S(r,t) = S(t)r (5.2.25)

and

alt) = Vt . : (5.2.26)

To find the unknown function E we must resort to numerical methods,
A
Once this is done, the result can be substituted into (5.2.20) and

(5.2.22) for Top and Tes respectively. However, the nature of

O, At the crack tip, i.e. r + a’, s again difficult to determine
numerically because of the singularity there. Hence for this value we
will-derive an approximate analytic expression by taking the first term—

in (5.2.19) as the value of E(r,t). This term, upon taking tbg»ﬁankel \\\\\
e

transform of order ocne, becomes \\\
\|
t) . <
_ 45(t) al sin{gs) s cos(£s) _
EI(E,t) =5 Jo s £2 - G ds . (5.2.27)

If we differentiate this by t we/find

_— 2 ;
e - FO i 5 o - el e |

N 4§Tgt) as l:sin(ga) _a cos(Ea)] . ’ (5.2.28)

2 g

When these terms are substituted into (5.2.22) we get for r > a(t),

384 2_227% -
crp(r0) - SIS OS2 e it

8 1 (Y s 3 s [T .
'W?Lm =7 E‘{:Z7B_SJO sin(gs)dg

® t a(t)[ . '
f cos (£¢,xy) f u, (t-1,%) l:s'(r) f n I:SHE‘EE”) -1 °°§(‘5”)] dn
[o] [¢] o] .

z aen
RS



- 78 -

. S(rjaé [siggga) _ acos(ea) ] drdx

g

(5.2.29)

a(r) . . i
J ”flgitgn) _n coz(&n) ]dn + S(t)aa [5122(533 .2 czs(ga):, :] dw} . .
. .

The first three terms in (5.2.29) represent the quasi-static solution. The

-3 “— -} t
- f cos(£s)de [ Jo(gczx)dx g—tf usft—-r,x) [3(13 .
O 0 . o]

integral in (5.2.29) will not give a singularity as r - a’ unless the term
in brackets, in the integrand, has a jump discontinuity at r = a(t)~ As
before, we employ the notation that
[f1; = lim £(x) - lim_ £(x) . (5.2.30)
X+a x-+a
We assume that the term in question does have such a discontinuity and

write (5.2.29) as

0, (£+0,t) = l:azcthtt) -2 27[Q}7]a . 2 [QZ]a:l

4a(t) 2a(t)S(t) (r2-a2)% (5.2.31)

2 . -1
Snr (r2-al)z T - ;’S(t)r sin " (a/r)

a T
" 'SﬁizF ID G?f_sfﬁg_s [Z7Q1 - Q% ds —‘g—'rrz? L(?Zf—s‘z?i ds g_s[z'iql - Qz]
The last two integrals can now be handled numerically. The task remaining

is to verify our assumption that there does exist jump discontinuities and

find them. From our experience with this type of problem we can determine

that only the terms containing the power g'l will contribute to jump
discontinuities. Hence we need 'only to consider the following two terms

from Q1 and QZ’ which we shall denote as

@

m t '
Q = - %; Io sin(gs)de focos(gczxy) [0 u, (t-1,x)8(7) - { \\\

a?(1)a(r) %;a_) drdx (5.2.32)
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and
- ' w t '
Qé = - l COS(ES)%%;[ Jo(gczx)dx %f I us(t"T,X)S(T)'
o o 0

cos(ga) 4. ' ‘ (5.2.33)

a?(na(r) =

To calculate the jump in Qi we follow the same analysis that led to

equation (4.3.11). Accordingly we find

t o w. 4 g
Q - _-%-%; [ S(t)a2(t)a(r)dr J U, (t-1,x)dx [ ‘Z sin(gv,) Eg
. o . o ° 1—1
where
Yl f s + aft) + czxx,
Y, =5 + a(t) ¢ ¢,¥x,
2 2
\ \ (5.2.34)

YS = 5 - a(T) + Czyx’ .
Y, = 8 - alr) - cyx,

and their graphs are indicated in Figure 4.1 and 4.2, The table of signs

for Yi for the present problem is given by Table 5.1. Y

Table 5.1 The sign of A in. the region AK

Al Az A3 A4
Yl + + + +
YZ Tt + + -
¥y + - + +
Y4 + - - -
C 27 0 T 0

Following the same procedure, by which we arrived at (4.3.12) and (4.3.13),

N a 0
we find in the present case
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0 = - - r 5 (x)12u, (t-7, 2 de
s 4c2y C,Y
t Vt-5
e + J S{1)12u (t “Toe Jdr . -
s/V >3y ‘ (5.2.35)

s/V ~
+ J S(T)Tzuz(t—r,s:VT)dT , s <a(t)
o | e,y )

and

s+V1

Q) = - : Jt S(1) 12 [u, (-1 S-Vz
L dey g a4

=) + u, (t- -T2 )]dr , s > a(t) (5.2.36)

We now combine (5.2.30), (5.2.35) and (5.2.36) to get

5 Q] = -2 in ltS(T)Tz[u (t-r, 3300y
1 a - 4Czy S+ﬂ+(t) o czy\
s»a” (t)
. ) uz(t—r s +VT)]d Js'/VS(T)Tz[U (t-t, CV;) . '
o .
- u,(t-T, cvy'}]dr \
2 .,
s ;)TZ | ( ‘ é%ﬂﬁiidh (t-7,25) 14 » (5.2.37)
Sy ( (v, (t-T, ciyJ{:aEZ -1, <y T . y .2,

When the limits are taken in (5.2.375 the first two integrals go to zero.

The last integral however; gives a non-zero contribution. It's value is

determined in the same manﬁef as (4.3.19) .and we recqrd the findl result
'S(t}az(;)vg

1 =...I‘.- ]
qu]a 2 (Yz-Vg) (5.2.38)

We return now to the determination of [Qé] . We note that equation (5.2.33)
a .

e can be written-§§
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o0

. (5 t
QL=+ 2= | dn | Sma2(a()dr | u,{t-t,x)dx s
2 at | 3
N ) o o
. I sin(gn)cos(ga) Jotgczx)dg . (5.2.39)
)
In {5.2.39) we have added a term independent of s which when ¥ifferentiated

will disappear. This term is represented by the lower limit of the outer

integral. We now follow the analysis which led to calculatidn of [T2
the previous chapter. We make use of a trigonometric identity and (4.3.20)

to find that

| N v ] t *
Q-2 2 j dn f S(1)a2(r)dr .fusit-r:x)'
0 0 o

.| H(n+a(x)-c,x) H[|n-a(t)| -c2¥J-] L (5.2.40)
[(n+a(t))*-c5x°]% v [(n-a(r))z-chjjﬁwdx e

We can expand (5.2.40) for the two cﬁgg;j——; < a(t) and s > a(t) and
arrive at parallel equations to (4.3.21) and (4.3.22). We now use (5.2.30)

A
and calfulate {Qé] to be
a

\\\ ¥Yt-n'

’ 2 e e, ug(t-r,x) —
Q] = -5—<+ lim_ J S(t)a“(r)dr J _‘ i 4%
Qz a 2 nra (t) Tl'/V,_ [(VT ﬂ') CZX ]5i
n'"-Vz ‘ B
nt /v . ¢, us(t-'r,x]
- 1lim_ ] S(r)a?(t)dx j T BV IRY sy e dx
113 n+a (t} ‘o k g(n VT) sz ]55
- : n-Vt
t c ) (5.2.41)
+ 1i.m+ J S(T)az(r)dr J 2 us(t-'r,x) dx
n+a (t) ‘o ‘ [(n-Vr)Z-cox?]%
'Equation (5.2.41). is similar to (4.3.23). Hence,since
| S
lim_ eu, (et,et) = — §(t-1), . . (5.2.42)
+ 3 c
e+0 2 7r~/“\

we deduce that




S(t)ath)vg

N ‘ J
Q] = - 3 —TT:;%ﬁ;;—- . ___;:j) i (5.2.43)

We point out that the result (5.2.42) can be found by the same method which
determined (4.3.18). Similarly (5.2.43) was obtained using the same

arguments that led to (4.3.26). “

We summarize our results now by collecting (5.2.38), (5.2.43} and

(5.2.31) and writing the singular part of UZZ as

s 4a§‘t)S(t) v2 v2
o> = _—1%1r-1r1§ -l 147 2 2 :
6z 3mr{r<-a 7 r - — . 5.2.44
T ) yz-vé __[1-\1?2]’i ( )

£

The term involving J, can be integrated to give

s _ 4a3(1)S(t)
Oa, = TeapenE Tt V2 o (5.2.45)

’yith this term we are thus able to determine Yoz completely when the
£ !

rema}nder of (5.2.31) is evaluated numerically:

We now define the stress intensity factor for this problem to be

N(t) = lim, {[r - a(t) * 0y, (1,010} . (5.2.46)
T+a ' .

From equations (5.2.31), (5.2.45) and (5.2.46) we find N(t) to be

 4a2(1)S(t o '
N(t) = T a(0) RV v% | | (5.2.47}

From this equation we observe that the term vl - v% represents a correction

factor on the quasi-static result.

o >

The above technique can also be used to find an approximate expression
-

in the case when S(r,t) z S(r). We state the final result

—

e e 2
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Table 5.2 Calculated values of E(r,t)/Es(r,t) for v, = .5

2

.000001 . 0000_2 .0001 ,001 .01
r/v i
t \ .
~

2 .828 874 ,869 .869 .87

4 .88 .928 .939 .941 L9041

.6 .896 . .981 1.011 1.015 1,015

.8 .881 .903 ,904 .904 .905 .

p-
// . - —;‘\w




Table 5.3 Stress intensity factor for varying v

[

-.84 -

2.

N(t) (2a(tle—
az(t) Sit)

' /_.4\04&3\/

f .42441 \

.42228°

.41583

. 38898
.36755
.33953
. 30309
.25465

.18499 i
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2¥Y1 - v2 a(t)
- Y2 S (%) x2dx
N - TEEET I (5-2-48)

As a final remark we point out that it is also likely possible to replace
S(x) in (5.2.48) by S(x,t) but the analysis then becomes more

complicated and has not been considered.

-~ #3. Numerical Calculations for a Maxwell Material.

, ,
The quantities of interest are .N(t) given by (5.2.48) and the tangent-

ial displacement u

0 To indicate the dynamic\éffect on u_ we have

.8
calculated the quantity E/ES' where E 1is given by (5.%.19) and (5.2.25)

and E_ is defined as , ~

E (r,t) = ‘% (éz(t) - )% s (5.3.1)

o]

The results of these calculations are in Table 5.2. We note that for

‘humerical computations we have set S(t) = SO.

- .
The stress intensity factor is calculated in a normalized form and the
] . : N
~ results are given in Table 5.3.

o2y

4. An Exact Solution of a Dynamic Elastic Crack Under Torsion.

In the course of the present investigation an .exact dynamic sclution was
found in the case of a growing penny shaped crack in an elastic solid under

torsion when a(t) = Vt and S(r,t} =S . The general analysis that led.

to the integral equations (5.1.9) still holds when the material is elastic.
]

. ' - v
Equations (5¢1.9) however, tak& the simple form,

=
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_ 2 - -
S1 = ifftvgjg ;' 82 = (1 Vz) - and

Ly
i
U I uB;(E,t) Jl(Er)dE =0 , T > a(t) , ‘ (5.4.1}
0 .
” -1 VEZ ZIZ2 1ok . . -
[ EL T [YE“+s /c2 ugl {E,5); s » t] Jl(gr)qg = S0 , 0 <1 < a(t) (5.4.2)
AN
Equation (5.4.1) is identical to that found in static elastigify. Hence
if we let ug be equal to the result found in the static problem then
(5.4.1) wiil be automatically met. The question however, remains whether
this choice also satisfies equation (5.4.2). It turns out that the answer .
to this question is in the affirmative and the general expression for
%, with the use of (5.4.2) can be integrated to give ' . ®
_ A - - cos(ag) a .
cez(r,O,t) =S, J;{E%—-+ s-1 —F * S, 3 Sln(ag}
_ ¢ cos(yaf) . -
% lyg —p—— }Jl(ar)di : O )
where *
| v, [a @2 - 1) |
.UQ(T.O;t) =g = - , 0<T<a(t),
2 . 2 . (5.4.4)

- .2 [0 R £y |
c{a%f(y) - L mz_—vz,_—jz—-——dy. (5.4.5)

L

The integral in (5.4.3) can bewgﬁmplified by making use of the results

. 3. (€ . o -
[ cos(af) — dE = H(x - a) /rl-a , : (5.4.6)
0o £ : o T A
= aH(r-a) - \ S
sin(ag) J.(Er)dg = —m—= . . (5.4.7)
J0 ’ 1 rvré-a2
- We fing that .
3 ¢ ) .
.\ o
4 y !
. T T ﬂ..,,,,,t_:-:ur, - \\ "~'u,,__-;4..:-\'.-——-‘;::'-'_“—;':“'.':‘. . - -:T-_:/
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- TT S H(r-a)a2s
% (r,0,t) = - S0 + SO H(r - a) ' ra S1 g &~ 2
z . . 2r szraz )
/r2a? ' _
- Sq Lg —- (e - ay) ‘ O (5.4.8)

.

This result satisfies (5.4.2).and hence verifies our original assumption.

-
The stress intensity factor can be calculated to be .
a(t) s, — '
N(E) = TR, 1-v2 . (5.4.9)

This result has not- appeared in the literature to this date. The term
'Acer on the plane®.z = 0 will be the same as that for the static case.
Away from the plane all terms however, differ from the static results.

5. Discussion = )

The results listed in Table 5.2 indicate that the dygamic effect

on the tangeﬁgial displacement 15 of a ceomplex nature. Tt observed in

calculating ug that the solution seemed less stable for €8.

The exact explanation of these observations must await further numerical

»

analysis. TFor the present, .the results displayed in Table 5.2 should only

-

be considered in & qualitative manner.

WL ST N LS I T T LTI T L=t or— T Top———er --—ﬁ-"—w-——' -
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. ""8 CHAPTER VI

THE TOROIDAL CRACK PROBLEM IN ELASTICITY

1. A Toridal Crack in a Infinite Elastic Solid in Tension.
»

In this section we will give a solution to the problem of a plane
toroidal crack in an infinite elastic medium which is opened by a normal
pressure acting on its surface. In terms of circular cylindrical co-
ordinates, ({r,0,z), the stresses and displacements for this problem
are the same as that in a semi—inf;nite body z > 0 when its surface B,

is subject to the boundary conditions:
arz(r,O) = aza(r,O) =0 o r>0,

ozz(r,O) = -P(r) »  a<T<hb,

uz(r,O) =0 , 0O<r<a, bz<<r,

and the conditions at infinity (3.1.2],

The problem posed above requires the solution of equations (2.3.10),
(2.3.8), (6.1.1) and (3.1.2). We observe that the stresses given by
(2.3.10) satisfy the first condition of (6.1.1) immediately. We now find
a general solution to -equation (2.3.8). If we take the‘Hankel transform

of order zero we obtain using (1.2.5)

) d2x*
] ~ 2 ox =
2> (£,2) - 2 (5,2) = 0.

The solution of (6.1.2) which also‘satisfies (3.1.2) is
* - b2
x>(£,2) = e "TA(E)

-and hence we have

(6.1.1)

(6.1.2)

(6.1.3)
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x(r,z) = J EAg)e ™ (eryag . '
o}

Bysubstitﬁting (6.1.4)into (2.3.10) we get the stresses and displacements
b1 -

in terms of an unknown function y(g) defined as fA(¢) = w(E):

LT

uy, = - f (1 - 2v - ezley(e)e ™y (eryag
] .

o
1§

f (201 - v) + gzlepede™™ ™ (s
o

e £20e% (g% (e | .
0 .

Q
;

(' ¥ %E'J [(X - 2v) - EZ]Ew(E)e—EZJl(Er)dg ,
O . .

Q
|

- _ ” 2 -gz
98 duv Jo E<p(E)e I (Er)dg

- %E-f [ - 20) - g2lew(e)é g
0 )

-

-2 f (1 + g2)g2y()e™ % _(gr)de
]

Q
1]

22

T

[
it
]
3
h =4
[
—
o 8
(s
)
=
~
lial
A
@
|
ury
N
[
—
-~
ol
H
-
[n
e

If we employ the last two conditionsgof (é.l.l) on (6.1.5) the unknown

function y(g) will be determined #s thel§olution of a set of triple

/
integral equations. /

2. Solution of a Set of Triple Integral Equations. |

By combining the remaining two conditions of (G.I.y) and (6.1.5) we

find:

(6.1.4)

(6.1.5)
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f Ep(g)J (mdg =0 , 0<T<
SY0 h

a 2
©
=y
I E2p(g)J (gr)dg = -P(xr) , a<Ts<b y . (6.2.1)
o} . .

/ J E¢(E)JO(Er)d£ =0 , r>hb.
/ o

e solution of equations of this type has been considered by Cooke f26]. His

S

T

pproach transforms the problem to that of a Fredholm integral equation of

the second kind in either the unknown normal stress on the inside (0 < r < a),

or outside (r > b), ¢2. In terms of o', g2 and the prescribed

Q
-

function P(r) we can write the solution of (6.1.2) as

b

. ,
£w(e) = j Aot (DI (ENAN - [ AP (DI ()
-0 a

=]

+j‘ AUZ(A)JO(E)\)dA s . (6.2.2)
b

where from Cooke we have

P(t)dt

b
_ 2 t(bz-tz)%
a2(x) =+ T(A2-b2)% J (\Z-t2)

b
- FT(‘%?_bT)'%J P(E)K, (t,2)dE (6.2.3)

a

@

* chiz-bz)g [boz(t)Kz(t)x)dt » b<aAc<w

and
b b
L) = t(t2-a2) %P (t)dt 4
o' B = w{aZ-3%)% Ja (ti—iZ)( Jde T (aZ-3e)HE JaP(t)Kltt,A)dt
’ . |
* TR0 Ia o' (DK (t,dt 0 <A <3, (6.2.4)
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y{y? - a2)% r t(bz'@dt

Kz(y,:\) = o (aZ_tZJ%(AZ_tZJ (yz_t:a) >
o s [ t(tz-azlj;sdt
Kl(YsA) - Y(b -y )

, EZDI AR ATy (t277)

It is only necessary to solve. one of either (6.2.3) or (6.2.4} since the

two functions are related by the equation,

b L p2_42y%
UZ(A) = ﬂ(ig_bé)% fa E;B-tg)) P(t)qt
2 ezt ‘ L
o (A%-b%)E IO OZgzy o'(Bdt b < <, | ¢

To write the normal displacement we note that when z = 0,
' * = -
w (€,0) = 2(1 - v)y(g)

and we can relate u, and 9, in the following manner

____,u__m?.* .
UZZ(T,O) = (1 _ U) Io E UZO(E’O)JOCEr)dE

From (B.1), (B.9) and (6.1.1) we may conclude that

] 2(1-v) b ds s AGZZ(A,O)dA s
T r (s*-1%)% o (s2-1%)% ’ - ="

which can be expanded as follows

b s
_2{1-v) ds AP(A)dA -
uz(r,Ol TR Jr (s4-r%)% [a (s€-1%)
b a
2(1-v) ds Aa! () dp .
Y Jr (s?-17)% fo (sZ-A2yz > 2ir b

An alternate form to (6.2.10) is the following,

(6.2.5)

(6.2.6)

(6.2.7)

{6.2.8)

e,

(6.2.9)7

(6.2.10)
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2(1-v1_JT ds Ib AP(A)dA

L‘Z(I"O) =T u a (xZ-s2)74 s (AZ-s52)%
: e (6.2.11)
2(1-v) [T ds . [7 a2()da )
- r a< < b. /
Ty fa (xZ-5%)% Ib (Az—s?)% ’ ezp =

It is interesting to consider two limiting cases of this problem, namely -

the penny shaped crack (a - 0) and the external crack (b + «). In the

first case if we let a -+ 0, then' K2 + 0 and (6.2.3) reduces to

2 r’ tP(t) (bz-tz)’i

0,0 2T BETy GTeDE dt

On using the result that
b sds _ 1 (bz—tz);ﬁ : 6.2.12
c (Sz_tz)ao\z_szpn T3 % - e (Az_bz_)ﬁi . (6.2.12)

and integrating by parts, after interchanging the order of integration,

we find
g, (b) b gl(t)dt
Uzz(r’o) =—1—— - J it DA , r > b. a
FEmnal N
where
2 t sP(s)ds

g, (t) = T Jo tZ-s)%

This is the result given in [13], page 136. As for the displacement, if we

let a-+ 0 in (6.2.10), we obtain

1<y fb gl(s)ds

UZ(T,O) = m . (52_1..&)55 »

" . T
Again this is the same result as in [13]. 2

In the other limiting case as b - =, then Kl + 0 and (6.2.4)

becomes
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3
tP(t) t2-a?
22000 7 [a eyt -

‘This time we use the result

t sds _ 1 (t2-42) : (6.2.13)
(si AEAGE sz)% = TeEa) (@2 )% cer

and perform the same operations as before to arrive at

(t) gz(a)

g _{r,0) = [ : dt + ———— , 0<r<a, (6.2.14)
2 a Vt2-r2 YaZ-12
where
_2 ®  sP(s)ds .
g, () = 3 ft TIOE

Similarly the normal displacement is given by (6.1.11) in the limiting case
as

r g,(s)ds
uz(r’o) = _(_];L)[ ._2__-A T > a.

" a v¥ri-s?
Both of these results agree with those in [14], page 183.
Returning to the original problem we now .consider the specific case
when P(r) = PO. The free terms in the integral equations (6.2.3) and

(6.2.4) can now be integrated to a point. We first list, for references,

some integrals we shall néed to integrate these terms.

b a2y L o
: I t %%gﬁ%z%— dt = ¢ - VAZbZ sin == , A>b ,
) /A\%-a2

. b

i 2.2 —_— - c

: I (t -2 ) dt = ¢ - vYa%-22 sin 1 , A<a ,
Yb2-23

1

GO

»

; b ——

i 2_42 2_32

: [t(:-i))d”'c"g'* = R

; ' a ct+ vb2-32

: b 2_52)% J— /22 -

P J t Sy (t 37) " 4t = -c - /Az-az)ln A DT , A>b , y
; a . c+ /aZ-al
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a 5.k :‘
B t(bz_tZ) dt AZ_ 5
fo (-t JE0T) 22y © i?‘kz-iz‘?? " [%YFE:EE;: a#ﬁz‘gf]

1 EZ_X; 1 1] a2¢p2-y2 _
+ = . - a‘(bc-y<)- b?.(yz_az
2 Jys-a% }Ty2 [Sln y‘c“ ). +% »A>b,b>y>a,

CGE 32)15 2_y2 —
fb (e=- bd)”“(t‘ M) ey < Ez-lz)—,z:l—ﬂ 1n [/?2"}‘2 : »"b2-A2:I

l 2-a2 1 - _2 2_,,2
t2 b%?;zjrz[snl [(ya)-(b-y)_, g],)\<a b>Y>a .

f -y) [: -1 [aszz*}’z) ~ b2(y2 az)] %] o

cT-
~= =~ b cos” F - a%be (A2-b2) f
[a%+c? Y"'J’f[ad (A‘ b‘) + A<ctyZ] Axp,

B =

n
(8]

(ST
'———\

b

~

‘<

DJ

[~

‘-—l
F_“__T
r‘———q
|-

*<

m

N

o

1

f-\

o

(]

I

‘\<

u
L___l
L—___J

n
n
ST
1
L
]

B ¢}
~
[¥

M
>.:
N
p —

‘—_-v

o]

r——|

n

[N
>'=
+

O

e,

—t
-

where c¢c2 = p2.52,
' | (6.2.15)

Coll »
ectlng equations [6 2. 3) (6.2.4), (6.215}, (6.2.6) and* (6.2.15) we find
in case P(r) ".Po, that ,

- -1
.4+-P bcos” " (a/b
o2 o @A g
, T2 (A2-b2)% , ~ P sin [c/¥22-a7

4p. o~ . '
o bYA2-aZ 22 : _
" Tzt ln[ . ,:c"““ = H:c e T o n KE_&_}
4 Poazbc(AZ_bZ)!sf \l c + ¥22-32
pd

Slﬂ (V)dv
(a/.-pczszsi[az(Az béj " AAC‘)'YZT

+

™

+ 4 ” 2 ) )
= K,y a s b ,
b T _(6.2.16)

where
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1 I by)a2-a2 + ay/)2-b2 y(yz-az)3
KZ(Y’)\) = m In [_. T ].

(A2-y2)
1 (y2p2) b/ATTEZ + a/yZ-bZ '
5 T pID% }Eg_yfa)) In l: == ;ca 2 :I sA > b, (6.2.17)
and ‘ o A o -
4 Poc 2 _l ———
o' () = rrEomE T T Do Sin T Le/EaRl

4 P —
) va2-32 + yb2-32 5T J/az-32 ~
R (BT

. - 1\5 1
4 P, c(a2-32) [ sin"L (v) v
o]

+ ﬂ‘ 52_12 o+ c2v2

a o

+ %TJ ot (MK y,A)dy A <ad s, . : (6.2.18)

_ 0

where )

: L1 VTS + BIZ | y(b2-y2)*

A = e 1“[ : ] 520

2.y2)% . Z-yZ Z.y2 o
(azflz);ﬁ )E?(,a,l{)) In [/a T L Y:], A< a o (6.2.19)

From (6.2.10) we can write the normal displacement as

21w, [b/bT-F , (p2-32)F(o,a/p) - péE(dx,a/p)jI

u,(0,0) = = d (o.2/0)
b a )

-2(1-v) ds Ao’ (A)da

Ty fp (5%-p2)% Jo {s2-22)% a<p<hb, {6.2.20)

where F and E are elliptic integrals of the first and second kind

respectively [40] and
A
sin2¢ = (b2-p2)/c2 . ' (6.2.21)

Of primary interest in ¢' and g2 is the singularity at crack edges ‘)f

p=a and p =Db. Knowledge of the terms containing the singularities is



necessary to calculate the stress intensity factors. To this-end wk
-3
consider o' and note that it is possible to find it exactly in the

-

immediate neighbourhood of the crack edge. Accordlngly, we first make

. ' I '
the following transfogﬂgtions in the independent variable p and the

-
-

function o' as follows

p = ./a2-c2y2
and . o ' . ;
) =y o (aZ-cHyT) /P
If we use (6.2.22) and (6.2.23) iﬁr(6.2.18)'we obtain

4

Sy) = el Y‘ ln"}(l//l + yz)

Ao

+ iZ'—ITy?')‘Eg In[y + v1 iz][1 + (1 + Yz)Liln[Y/(l + \/l + zJ]]

1
. 4 y sin_ (v)dv
¢ o ye+v2

4y In [y + ¢i+y2] (a/c x(1+x2)lﬁ

o (UvyDE xtoyz S
, 4 ale In[x + ¥1+x2] S(x)d 0 /
=S xTyZ x)dx , <y <a/c

’

Now when A + a  then y + 0. Hafice if we let y be arbitrarily small

the only significant terms onthe right hand side of (6&3.24) will be the

S

i

(6.2.22)

(6.2.23)

(6.2.24)

first and last terms. This suggests that we consider the following equation

_ 4 4 ale Infx + vV1+x2]
N O R S fo xZ—y?Z S, (0dx .

4 K

Let us now set

(6.2.25)
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. W

. - 2 ‘g2
‘ yz=%[%?s+%r] ;og(x) = 1n [x+ /T +xE]

§(s) 5. 6(s) S (/(aZs/cE + af[ch)/2)

G(s) = g(/(a?s/c? + at/c2)/2) oo | (6.2.26),
then (6.2.25) becomes . s 4
. > F
-l oL -
pis) _ 4 2 p(x) 12
40 g :1 = d% , -1 <s < 1. (6.2.27)
Equatidns which have the form of (6.2.27j are -known as Carleman type [a1g.
The solution of (6.2.27) can be found by the use of a result from [41];
N 3 . o
namely . ’
a f %(’_‘—)35 £(Y)A(y) - sign o (62.28)
-1 ,
where o . .
‘ 10 N L '
A(x) = ————=— - , (6.2.29)
YE2 (x) + aln? : .
and ;- ‘
o . , -1 N . .
BX) = = f tan _Jar/€()]1 gy 7, (6.2¢30)
LI Y Y - X , .
The function £ must be continuous in the open interval (-1, 1).
If we let
p(x) = 2 AR £(x) = 1 f (6.2.31)
wZ v Y G(x) .
and’ ‘ S - '
a = 2 (6.2.32)
s w2 .

then by the result (6.2.28) ¢ satisfies (6.2.27). We now transform back

to the original fumction S0 and we have

Ve
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. . A}

-

Y 4 wes(zcz}’zlazjl) ) . - ) )
. SHY) =gz o 17T+ RANE . (6.2.33) -

The expre551on for S given by (6.2.33) represents a solution to (6.2.25).
By the nature of the two equations (6.2. 24) and (6.2.25) we have {hat
lim, S(y) = lim, s (y) : (6.2.34)
' o}
- y—)-O }’+0 '

Hence from (6.2.34), (6.2.33), (6.2.30}, (6.2.22) and {6.2.23) we can deduce

that .
4 POC B(p) .
- (p) 2/a2 (7% + 4F4(p/c)]% for (a - o) <€, (6.2.35)
. ralc ] » .
B(o) = = J y fan Jﬁ”?f}m , , (6.2.36)
. . e Yo . -
F(y) = 1n [t/aZ_CZ},Z ; Jbz-czyz] , ' . . . ) (6_,2_37)

‘ . . P
where -e-<< 1.

We can now calculate the stress intensity factor (see equatién (4.3.8) for

definit%on) on the inside, N, to be

4P N B(a) _ :
4 ) Ni =W e ' (6.2.38)
where'

2 {a/b) [log(a/c) - 2]
T+ 4/4F2(0)]

B(?) = %~ tan [2/ﬂF(0)] In*[a/c] -

&

1 -
dhlm

Ia/c [log(a?/c?-y2) - 2]¥ 2/c -
R e 4/w‘F4(yJ](b4/c = )d/f
_ 16 Ia’C . F(y) [log(a2/c2-y?2) - 2] dy

ra Y T+ 4722 ) 12 (b7 /ey ?)

(6.2.39)

Y

and F is given by (6.2.37). To calculate the stress intensityafactor

on the outer edge, No‘ we make use of the relation (6.é.7).
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By substituting (6.2.18) into (6.2.7) we Find that

T oaw :
- 0 -1 2
No = TT253% [ b cos "(a/b) +.c log[(b + a)/c] [1 - :l . (6.2.40)
Figure 6.1 gives a graph of Ni and No.

Using the free term of (6.2.18) as an approximaticn for o' and
taking account of (6.2.35) we can calculate approximate values for
uz(p,O). Figure 6.2 gives normalized values of uz(p,O) for various

values of the ratios p/b and a/b.

3. A Toroidal Crack in an Infinite Elastic Solid Under Torsion.

We consider the problem of a plane toroidal.crack in an infinite eclastic
medium which is under torsion, We follow the same procedure as in Section

»
6.2 and consider the half-space z > 0. In the present problem we have the

boundary conditions

cez(r,D) =-5(r) , a<r=<b

4, (r,00 =0 , O0<r<a, ber (6.3.1)
We shall make use of the general solution (5.1.7) in the particular case of
static elasticity. With these restrictidns (5.1.7) can be rewritten as
. o - z '
uy(r,2) = f gp(e)e” “u, (er)dg (6.5.2)
o . -

If we combine (6.3.2), (2.4.3) and (6.3.1} the result is the following set

of triple integral equations:

f gp(g}d,(69dg = 0, 0 <r <a,
2 o _‘ , , (6.3.3)
f E2y(g)J, Er)dg = -8(r} , a<T<b

0 -
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[

r > b.

]
o
-

[ EV(E)T, (ex)de
o]

The solution of this set of integral equations has been considered in [26].
The solution of the problem again reduces to that of a Fredholm integral

equation of the second kind in either ' or <2 , where ' is the

unknown stress Gez(p,O) for 0 <p <a and 12 represents g for

8z
p > b. We can give the solution of (6.3.2) as

a ‘ b .
Ev(E) = J At'(A)J) (EX)da - [ AS(A)J (Ex)da
0 . a
+ JbArz(l)Jl(ET)dA , | . (6.3.4)&
where we have
. /
2 A b (t"’-—a-’-)lﬁ )
T (x) = T IoDE I (7 2) S(t)dt .
a
4 _2 ’ S(y) M d ‘ 6.3.5
" TTlaZAD)E L (y) M, (y,2)dy o (6.3.5)
4 A a
+ TTZ(aZ_AZ)SE [ T‘(Y] Ml()’)A)dY » 0 i A < a r
o}
and
2 . b tZ(bZ,tZJ% -
TZ(A) = ;TIY:EEEEX f _-TKZ:fTT_ ${t)dt
4 b ' ’
- ;z-(gz*:gz‘)*g;[ S{y) M,(y,X)dy (6.3.6) .,
a
" TR, r O M)y, B e <,
b .
e 2_q29% d .
M, (y,A) = y2 (b2-y2) % Ib t(tz(fﬂ?(%é-bzyfﬁ?fﬁ , | (6.3.7)
_ L 2 t3(b2-t2)1§ dt
Mz()’))\) - (}’2-8_2) Io (;\2-1:2) (az_tz)gﬁ(yz_tz) (6.3.8)
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Furthermore t' and t2 are related by the following equation,

b Y
2 2(p2-t2)" S(t
12 () = Tf(?\z-bl)!i)\ '(a L ;\E-)‘tz ( ) dt
P a ,2mp2-t2)%
- Ly I tkg_tzt 1 t)dt , ber<e (6.3.9)

1

The component of displacement ue(r,O) can be written as

u (r,0) = 2r Jb - * §£%llég%-dx
o’ T X2 (xZ-1)% a (x%-2%)
(6.3.10)
LT ° 1 : Ti(l)kzdxdx a<r=<b
™ K (xZ-12)1 ) (x2-A%)% ’ AL
1f we again look at limiting cases of this problem we find, in the case
a - 0, that
b %
.2 t2 (b2-t2)7S(t)
09, (1:0) = TRTHIYEL Jo v dt
and
b X
_2r 1 S(A)A2da
Both these results agree with [14] page 158 in the simple case N§(r) =S,
a constant. On the other hand, by letting b + «» we find
gy dgs rg,(a)
oez(r,O) =T [ —_— EE—-(t)dt + , D<r=<a (6.3.12}
a yt2-r2 aZ-r
and
SO U R GRS 6.3.13
#e(r, ) = W %2y 83(X) x , T>a, (6.3.13)
where
J2 s -
g3(x) T Jx m dt . (6.3.14)

These equations were arrived at by the same type of manipulations that gave
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(6.2.14). To the bést of our knowledge the solution to the.external
crack under torsion with axisymmetrit loading represented by equations
(6.3.12) - (6.3.14) has nof been given in the literature previously. If
*the function g, 1s differentiablé in the neighbourhood of ; = a theh
the first term of (6.3.12) wiii not have a singularity in it and we can

write the stress infensity factor for this problem as

U]
ot
(R
3

N
Y p-+a

va ~p o,.(0,0)
N = % g4(a)

Let us now return to the original problem and consider the specific
example when

S(r) = Sor

We record for reference the following integrals:

" (tz-az)lﬁ dt _ a
fb 72 Na(Ep7) (t2y7) |~ Bpryr Inl(bral/el

1 el | TT T
t oI In c
AT |

L}

~NiaZl - 2.y2) - (y2-g42
+ v 12 7 -2 cos 1 (b%-y?) z(y a?) , a<y«<b,p<a,
2y (y%-p%): /EZ:?Z S
Is] 3 li . 35.
Y (b2-y2) - EE 2 - 22 24 (a2-p2) s P <&,
Ja Ye-p dy = 3 T PC e (b%-p=)* In ¢ + (bZ-p2)%

I}

b I (2 2 3 -c3 )
[ - ;E'bz-}E oy T+ p2e - p2(p2-b2)%sin (¢/vpFaD) p>b,
a

(6.3.15)

(6.3.16)
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a L 3p2.y2)% ,
y3(b2-y*) _ -ab -
Io I arytyE & = 7t (e[ (bra)/c]

*p

2¥p2-b° 1n bv/p?-a® + a/p=-b > b
YoZ-aZ o¢ o f o

a b
y (b2-y2) - .
Jo (p2-yZ) (a2-y2)4 dy: = .ln [(b+a)/c]

+

o o]

VpZ-aZ pe
2 3p2.42)% .
lLé;LilLl_. sin~! < dy = (p2b - b sin_l[c/b] ’
[o pot e I

- [p2c - c3/3] n/2 - cag/6'+ cp? - c2/6]In[(b + a)/c]

' S
2002 - b2 _ sin (c/y)dy . , 21
02 (p b)L'muym—h . p>b. (6.3.17)
Collecting together equations (6.3.5), (6.3.7), (6.3.16), (6.3.17) and

(6.3.9) we find, in the case 5(r) = Sor, that

1 - 47 Syte ac? 1 b+a :
T (°? T %2 (al-p2)s Lo+ Top? c

. 2. 2% .1 .
- Eﬂfﬂg sin'l + 4 SODC(a p*) sin l(v)dv
T (bZ_DZ)ﬁ ) ﬂ2 o CZVZ + (32_02)

4 S, 2. 244 2_,2y% 3 2. 2%
0 (b2-p2)2 + [a ) c L (a )
+ —2-‘—‘2—"2—11—“ (b = ) In [ 'P p 2 }[ - Ep—f + (bz‘pz) 1n [——L—‘E‘c " (bz—pz) ]]

. a . ‘
v * %2’%2_7,2)72 JO MY (y,p) ' (¥)dy » 0<p<a, (6.3.18)

and

48
263 . -1
72(p) = ﬂ2(22-b2)’5p S(:I:HZ;_ sin ~(c/b)

(1/n - 1/6)abe + [p2c(l - 2/w) + c3(1/m - 1/6) +

I" Wra:m;\:; SULLUTIOTISTI L. VLT DT A
AL S .
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N

- ~ERLICREVE ENURIOIS IR E0E8 Sin-z[ c ]

' et
_Z_C__L_._b In [bp_a +ap_a}|:x2 +Ez_al]_n[h+_ail]

T Vp7-a? pc 3b c
15 [P sin~lie/yd 1
- pz(pz_bz) J’ W_—bg——x + b(pz_bZ) sin (C/b)
C .

2 a 42242y

h ﬂ(pz"bz)%p [ pgutdt ) T'R(t)dt N b < p o< @,
where
M (y,p) = %Z YaZ-p? ln[ /bZ-p7 : ‘/az-pzil X;’Z{,/Fi__v' y?
-p

SR OSTA ["b‘-y‘ : “a‘-y‘} 227 In [b__} . HTYE

pe-y [+
and Tﬁ represents t' as given by (6.3.18) minus the first two terms.

The displacement ue(p,OJ becomes in this case

28

45 (,0) = 3= 3 % (92-a2)F(8,a/p) - [22-a2] E(4,a/p)
NI el I E;_T
3c e " pib
) gg'[b 1 P oooede
e 2 (rt-pl)* o (xZ-tD)%= T

where ¢ is defined by (6.2.21). The stress intensity factors for, this
problem can be approximated from {(6.3.18) and (6.3.19} if we take the
singular part of the free term in each equation. We find by this method

that

45
0

No = 7200 [%ba sin"l(e/b) + (/7 - l/ﬁ)abcy

+ [b2e¢(l - 2/7) + c3(1/x - 1/6) - 2ac3/3nb]ln[(a+b)/c]]

(6.3.19)

(6.3.20)

(6.3.21)

(6.3.22)
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and
4 Soca 2 b
NI = m 1+ m In [(b+a)/c] . (5.3.23)

Figure 6.3 gives a graph of Ni and No'

Using the free term of (6.3.21) as an approf%mation for 1' we can
calculate approximate values for ue(r,o). Figure 6.4 gives normalized

\
values for ue(r,O) for various values of the ratios r/B and a/b.

4. TwoToroidal Crack Problems in Viscoelasticity.

In this section we shall give the solutions to the two problems out-
lined in sections (6.2} and (6.3) when the solid is viscoelastic. For the
viscoelastic case we will assume that both a and b, the inner and outer
radii, are functions of time. Further we assume that a(t) is monotically
decreasing with time while b(t) is monotically increasing. If we denote
by q(t) the crack surface area then @(t) must be a monotonic increasing
function of time. The normal method used to solve boundary value problems
in linear viscoelasticity is the classical correspondence principle (see
[2] for reference). This method in general fails when the boundary regions
are functions of time. Some work has been done either to modify the
principle [3] and [4] or give conditions under which it is still applicable
even though the boundary region is a function of time [5]. We shall make
use of the latter reference since our prcblems meet the conditibns set
forth therein. The conditions, as they pertain to our problems, are that
elasfic constants are absent from the expressien for diz(p,o,t)( or
ogz(p,o,t)) for p e B - p(t) and appear as a separate factor in the
expression for ui(p,O,t) (or ug(p,O,t)), for p e @(t). The superscript

e denotes the elastic solution to the problem at hand. Let us first

2
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consider a toroidal crack in tension in a viscoelastic solid. Since the
elastic solutions given by (6.2.3), (6.2.4) and (6.2.10) for a toroidal
crack in tension meet the above conditions we can immediately write the

viscoelastic solution to the same problem as

N

UZ(D,Oxt) = K(O)Vlcp:oxt)

S S

t
J K'(@)v,(p,0,t-0)ds , a(t) <p < b(t),
o

and azz(p,O,t) is given by o' and ¢2 as defined by (6.2.3} and

(6.2.4). The function v, and K are defined as

e
v (,0,8) = w (p,0,8) TH— 3

1

K(t) = 2[(26; + G,) * d(G; + 202)‘ * dGIl](t).

The fact thé stress field is the same for both problems implies that
Figure 6.1 for the stress intensity factors is applicable in this case as
well. The displacement however must be obtained from-(6.4.1) in terms of

the elastic solution, If we consider the particular case of a Maxwell

material then

“t/, -1
G {t) = G_e » G(E) = (1/60)(1 + t/rol
and .
1 -2y :
68 = 155 &M

where v , Poisson's ratio, is a constant. In this case (6.4.1) becomes

t
e 1 e .
uz(pmo:t) = uz(pgﬂst) + i IO Uz(p,o,e)dﬁ . +

(6.4.1)

(6.4.2)

(6.4.3)
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<

Table 6.1 Calculated values of the normalized viscoelastic displacement
Uz for ‘\ID/V.1 = .5 and where R = a(t)/b{(t). For comparison, the last
column contains values for the U, that results in the case of a penny

shaped crack.

p/b(tit 0 25 .5 75 1 1

R 0.0 0.0 0.0 0.0 1 1.79
£3%§53 \g.o 286 .507 .754  1.16  1.75
(2+3R)

(323R) 0.0 .321 .606  .894 1.20 1.35
‘ .
Li%?l 0.0 .243  .442 629 .81 .83

1 .0.0 0.0 0.0 0.0 0.0 0.0

: 0.0 .33 612 .905  1.26 1.6l ""‘*;>
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If we specify Ty 1 and P(r,t) = P0

]

'a(t) 1 - v, - ' (6.4.4)

b(t) 1+ Vot

then (6.4.3) can be integrated. The fesul%s are given in Table 6.1 for

various values of p[b and Vit when .VO/Vi = .5,

If we now consider the problem of a viscoelastic)solid containing a

toroidal crack under torsion, we find, by the same method as before

- 4 -1
UB(D,O,T-) = '_'n_‘ Gl (O)VZ(D,O,t)‘

t .
+ 4 dG"l(e)v (p,0,t-8)ds, (6.4.5)
T 'd—e-l 2 ]
. 0

and o, (p,0,t) is given by =<' and 12 as defined by (6.3.5) and (6.3.6).

The function v, is defined as

= 4 . Mmoo :
vz(p,O,t).— qe(p,O,t) 5 . . . (6.4.6)

The stress intensity factors for this problem are given, by Figure 6.2. If
the material is Maxwell's then following the same procedure as before we
find

t
_ e 1 e,
x\} ue(p,O,t) = ue(p,O,t) + ;;-fo ue(p,O,B)dB

We specify this time that T, = 1 and -S(r,t) = rS0 and (6.4.4)}. These

specifications result in Table 6.2 which gives u, for various values of

. .8
LR

p/b and V.t when V /V. = 2.,
i o i
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Table 6«2 Calculated values of the normalized viscoelastic displacement
Ue for VD/Vi = 2 and where R = a(t)/b{t). For comparison the last
column contained values for the normalized viscoelastic displacement Ug

that results in the case of a penny shaped crack.

N .25 S 75 1
/b (t)
i R 0 0 0 0 0
1+54R .231  .259 234 .189  .21s
2‘“53R 304 .382  .406  .416  .378
o
3‘“52R 306 .395 1435  .464 441
4+5R 249 1325 362 .387 382
1 0 0 0 0 0 {;7

. ‘:77,_.”_“_1- L e e b T I T T —— e . L. B
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5. Discussion .-,
« In dctﬁfhining the results contained in Figures 1-4 we have used the~

Gaussian quadature formulae for any integrations needed except in a fecw -

L

special cases.™ |

- : J‘,
(a) Toroidal c¢rack in tension

~ From Figurc 6.1 we can sce that the inmer stress intensity factor is
largér than the outer. We may conclude if the crack grows that it will
grow on the inside first. Hence toroidal cracks in tension will tend to
become penny shaped cracks. Furﬁher, as 'the ratio of inner and outer radii
approaches zero, the innef stress intensity factor becomes unbounded. This
leads, to the pessibility of large and sudden failure for solids in tension

which have toroidal cracks with a small ratio. hf)

a
We note that from Figure 6.2 that the normal displacement is not

symmetric. The displacement rises very sharply on the inside and falls

.morc gently on the ocutside. This is due to the larger stress intensity

factor on the inside. 1In Table 6.2 we have the corresponding viscoelastic

displacement. The same trend continues that was observed in the elastic case.

An interesting point is to compare the displacements of a viscoelast}c

N

toroidal crack that has become a penny shaped onc‘and a penny shaped crack
which has always been one. The last two columns in Table 6.2 give this
comparison. The reason for the higﬁer values on the inside is because
fhé benhz\iEiggg crack has always had a history at those points which

is flot the case for the teroidal crack.

T . ’
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(b) Toroidal crack under torsion

"~

We observe from Figurﬁ 6.3 that the“behaviour ;f the inner and outer
stress intensity factors is quite different from those in the tension_ casc.
In Fhis casec the iﬁner stress inpensity factor is always smaller thaﬁ the
outer: The tangential displacement u, as well has a different f&}m from
that of u, in the tension case. It rises steeply on the outside and slopes
gently on the inside. As before we have made, in the viscoelastic casc,

a comparison between the toroidal crack which becomes a penny shapeéd one

and the crack which has always been penny shaped. ' The last two columns of

.
,

-

Table 6.2 show this difference. . p—



- 116 -

APPENDIX A

1. A contour integration resulting from Chapter 3.

N

Here we shall determine the Laplace inverse of h(n) which is given

as -

N ok
RnF = TR
where g(n) = [(2+n?)2 - 4 (1+n2)*(1+n2/K2)%]f

 The Laplace inverse of (A.1) is given as '
' - S+ie t

ey = = [ n(1+n2/K2) 2 e"dn

213 Je jw TT2+n‘)1—4(1+n4)%(1+n1/K2)%]

To evaluate h(t) we consider the contour C in connection with Figure
- A

A.1. We have that

. §+iR 6 8 3
J I(n)dn = 1lim J + 7 I + 7 [ + 7 J . I(n)dn
C Rro {_J6-iR =1 YGr, =1 -L; i=1 7CRy

T 1

-

where 1 represents the integrand of (A.2}.

Figure A.l.

~

(A.1)

(A.2)

(A.3)
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To simplify the contour C we first note that if r is sufficiently '
small, R sufficiently large and segments Li’ i=1, .., 8 sufficiently

close to the y-axis, then we find

. K+T c l+r .
J Idn - J I'idy <75 IJ Idn - [ I'idy| < iT
L2 K-t
-r R
[ . E
J - J -I'idy 9T IJ Idn - J -I'idy} < T s
L 1+r L4 K+r
K- ~1-r
- I'idy| < <, |J Idn - J I'idy | <« &,
JL j 15 L KT 15
K+r -R
[ - J -Itidy| < %g-, lf Idn - J -I'idy] < %g ,
L ~l+r L8 -K-r
J Idn E§ for i=1, 6
Gri

In the above we dencte the principal part of I by I'. On the contours

: ig -
CRi we let n = Re'”. For sufficiently large R we have

K
0
< ’R>Ro)

n(l+r12/1(2)£5
[(Z-n8) 2 < 4(1+n?)%(1+nZ/K2) %

where KO and R0 are f1n1te constants. We now write

l J I(n)dn'f_J | fdn|
CR, CR,

5_;% eatR Jnfzde ;
e K !
:.ﬁE St sin-l[5/R] s
where Y = cos-l(G/R) -and we have approximated eRcose, @< <n/2,
by edt. The- integral CR3 can be bounded in exactly the same manner.
For the contour integral CR2 we have
K

< —

J““/z Rcoso
e

[ I(n)dn de
CR, /2
-

(A.4)

(A.5)
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But in this region of integration cos & < 0 and eRcos 95_1. Thus we
obtain the bound .
Kow .
f Iydn| < == = : (A.6)
CR2

Using the results of (A.5) and (A.6) we conclude that if R is sufficiently
large

.
) f I{n)dn
i=] CRi

Before going further let us collect the results found so far. From (A.4),

< f—s . (A.7)

(A.7) and (A.3) we find for sufficiently large R and small r that

-(1+1) §-iR

K-rJ . R . =R
f I({n)dn + J 211" (iy)dy + f 2iI' (iy)dy + [ 2iI' (iy)dy
C l+r K+r - (X+1)
- (K-1) §+iR '
+ f 211" (iy}dy - j IM)dn| < e . (A.8)

We take the limit as R + = and r + 0 and obtain

§+iwm K
f I(n)dn = J I(n)dn + 2i f [I'(iy) = I'(-iy)]dy
§-ie C . 1

+ 21 J (I'(iy) - I'(-iy)ldy . X (A.9)
K

The first integral on rigﬂf hand side of (A.9) can be evaluated by the
Residue Theorem of complex variables. We observe that g(n) has eight
roots. Two of these are of the form =*iY s 0 <Y <1 and there is a

double rgkt of zero. The nature of the four remaining roots is dependent
: HD)

V

on the value of v. Tt has been determined that for v f—“o = ,263082.,.

the four roots are of the form tin and 1iY£ where Yl > Y2 > K. If

[ . .
vy <V then the roots have the form #a * ib. It has been determined that

SRS TN TSI I L T et e rvan v TR I, T e rem——— - e e
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r
only the first four roots described give a real contribution by the

Residue Theorem.” The residue at zero is given as

Lin  n2(1+ n2/K2)%"
0 : g(n)

1im nI(n)
n+0

lim 2

v O I (10

The residuesat =+iY are
£

lim  (n £ iv)I(n) = lim
n+Eiy . Ny

{(n £ iV)n(1 + né/KZ)%ent
‘ g(n) .

£(1 - v2/KD) %Y vy (ayy, (A.11)
where

T+ =_'£g-
g'(2y) i dn(n) n=ti/y

Since g'(-v) = -g'(v) the residues at =+ivy combine to give

s

lim (n - iY)I(n) + lim (n + iY)}I(n) =
iy nr-1Yy

2y(1 - ¥2/K2) %cos(vt) |
g'(y)

(A.12)

Now by the Residue Theorem we write from (A.10) and (A.12) that

. ~ . _ L2y - YZ/Kz)%cos(Ygﬂ
[Cl(n)dn = 21?1[(1 v) - 2 ) _J . (A.13)

To simplify the last two integrals of (A.9) we consider I({iy) 4as follows

. iyt 2 7¢2y% 2)?
roy o dye™ (1 - y2/K2)?(2 - ¥
TOY) = T - T6 (T - 27K O =77

+ aiye T - y2/k2(1 - y2)
- - 1600~ wZ/F 0~ 5

(A.14)

The first term of (A.14) has a branch point at y = K and in any contour

integration about it we must delete that part of the y-axis where y > K.
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Similarly the second teré has a branch point at y =1 and we must
delete y > 1. As a result of these comments only the second term in
(A 14) i; involved in the integral from 1 to K of (A.9), We findi
for this integral that

Kyaoy2/xy -y felVhe V)
AT - 16U /RE (1) Y

K
f (1" (iy)-I'(-iy}]dy = +4i f
1

- IK y (1-y2/K2) (y2-1) %cos (yt)dy
p (@n#)7 + 16(1-n?/K%) (n*-1)

By the same method we simplify the integral from K to = in (A.9).
this result with (A.15} and (A.13) we rewrite (ATQ) as

LA '
T Jﬁ_im I(n)dn = (1 - v) + 21 cos(yt) -

R

[AJIS)

Taking

_{A.16)

where for notational convenience we have introduced the operater Zl defined

as

(1 - ¥2/K2) EE(yt)

LEvn - g (7).
K vz b 2 /42
) §_J y(yr2 - 131 - y2/k3) £(yt) "
w J, @ -nZ3® + 161 - nZ /K (mE - 1y Y
g_f” y(y2/K2 - 0¥ (yt)dy
T T ) @ )T e AR - AYEGE - 1%

-4

(A.17)

mparing (A.16) and (A.2) we obgerve that we have found h(t). We now rewrite

(A.1) as

n
b

h(n) = a-v) 21 J cos(yt)e—ntdt .
(o]

(A.18)

As our last observation on this problem we note that Y must be determined

by numerical methods for pa:tiéular-yalues of wv. It has been found for

instance that if v = .35 then Y = .935. T

(A.19)

4
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2. Results Needed in the Integration of Equations (3.3.20).

Equations (3.3.20) are found as a result of equations (3.2.16) and-

(3 3. 3) .In order to 1nte rate, (3.3.20) we must first find the follpwin
g g

Laplace inverses:

2{;‘2 + K% - 2(:3
- Y =,
El (£,s) 2 (252 + K?_)Z - 45208 o
_ ‘ KZ(ZEZ ¥ KZ) l_
Ez(EDS) = (252 + Ké)z - 452a8 p;
<wgfnote (A.20) can be written as
' ”ﬁ?kZ(zgz + K2)P* .
E (g,s) = P* - 2 -0
1= o. (2g° + K%)2 - dEcop

Hence we need only find the Laplace inverse of E

we find the inverse of

9

— 2 4 2
h - = rl( n )
l(n) g(n) »
where. g is given by (A.1). The analysis that gave
find Hi(n). We record the final result,
_ 201 - -nt
by = -J;———iiL I, Jo cos(yt)e "dt
e
where
o 22 - YH)f(ye)
L2f0®) g
8 [ 22y p2-na-y2 )"
il 1 @YD + 16 G2-1y 1-yZ7KZy

(A.

(A.

To fipd th}é inverse 7

/

7

(A

We make use of (A.24) and make a slight change of variables and find

Ey(6,8) = ~(1 - 2v)P*(g,t) - [, f cos (&ye,x) [u, *dP*]dx :

‘h(n) can be used to
(A.
f(yt)dt. (A.
(A.

o (A.

20)

21)

22)

23)

24)

25}

26)
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0

CEy(Est) = 201 - WIPX(g,t) + ), Lcostsyczx) [u,*dP*]dx , | - (A.27)
w?;re u, is given by (3.3.12).
| ne

3. The Laplace Inverses of Two Functions From (4.2.10).

We consider first the Laplace inverse of g(n) where

_ 1+ 12 - (1 + n2/K2)%(1 + p2)%
) = g B

The Laplace inyerse can formally be written as

' S+i= 2 _ 2k X
TR = 21+1 Ls _ |:1 -~ (1 54,112;1(2 ﬁn% 1+ n2) :lentdﬂ - (A.29)
-1 ' =

The analfsis that gave equation (A.9) can be repeated in this case and hence

: > o
our problem has reduced to finding the residues 6f (A.29) and evaluating the

branch cuts. We observe that the integrand of (A.29) has only a simple pole

at the origin within the contour C. By the Residue Theorem we may write

-

o Len? - (1 n2/K2050 + g2y nt
JCI(n)dn = ZW; iig n : 1+ n‘/Kf)3n3 e
2mi ‘
K L (#.30)

where we have used (3.3.8). To siﬁplify the last two integrals of (A.9) we

note that

_ y2yelrt 2 % iyt
) = E)lr‘/x}f-r 231)5»'5 o Y y’l) - ' | (A-31)

The first term has a branch point at y = K and in any contour integration
about it we must delete that part”of the y-axis where y > K. Similarly,
the second term has a branch point at y = 1 and we must delete y > 1

for this term. As a result of these comments we can write

-



i
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1

: Koo 1y B
J [I'(iy) = I'(-iy)]dy J_QFL ORI
1

K 1 '
2 J ﬁX;%il_ cos(yt)dy , (A.32)
1

and

> ® [1-y2+ (y2/K2-11%(v2_11%
[ - vemey e IK, B I 00T cosnyey . a33)
K

If we combine (A.30), (A.32), (A.33), (A.9) and (A.29) we find

g(t) = %Elt)—-v)“ v T, cosyt)’ | (A.34)

where

-

../{1

-2 = (r2-1 o 2 [T (y2-1)f(yn) '
, Zsf(Y) il flr'——szg—*'f(xijy s IK T;Z7E2:T¥%"?T dy . (A, 35)

We can then rewrite (A.28) as\\ -

=

HOESFTS osOneMar

- vin f X3? o © \ ! (436

where wg have simply to take the Laplad% transform of (A.34) with respect

tb n-.

< . ) .
The second result is elementary in that from tables on Laplace -transforms

we have

1 ® -nt : ,
T+ 2Z/K% ~ K JO Jo(Kt)e Ntae . ‘ (A.37)

4. Results Needed to Integrate Equations (4.2.19).

Following the methods outlined in previous parts of this appendix we

rewrite the terms
252 4+ g2
£ K5

ERR N CES L

and (A.38)

R R P

T A el



- 124 -

(262 + K2) - 2082 + KDH(e2 v kD)7

Ey(6,8) = G KZ)% K3
as
K o ~K.,T
— - _ 1 _2 2
Ez(gys) - T EZE *. E JO ZSCOS(YET)e dT 3
— o -KZT
.-El(E,s) = 2¢ - 2K25 J Z4cos(ygr)e dt
o
K¢, o -K.c, T
271 171
, E Jo Jo{clgr)e drt .

The Z operators used here and in (4.1.14) are defined to be

® f(y)d
(yngz—l)g y °

K

Lw) = 2|

™

£ = 2 [600 + [E0
% = 2 E) s LEOD

S. A Result Needed for Equation (5.2.6).

We record the result that

1

A = GreE

can be rewritten as

[+ ]

am = - E7J cos (ty)e Mat
o]

- 2 £(y) dy
z-,f(}') = -T? E Y(y _ 1) .

This result was obtained in exactly the same manner as those before.

TR T S T TMARR el il

(A.39)

(A.40)

(A.41)°

(A.42)

(A.43)
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APPENDIX B

Solution of Two Integral Equations

1. The solution of the following integral equation is sought

oo

[ 52¢;(5)J0(5r)dg = f(r) » O<rca
0 .

for the unknown function ¢{r) given that

o{r) = 0 , T >a.

If we make use of the results (see [35])
cos(tt)
. m—i‘rys— e
o g
H(, - t it
f cos (g0)J, (en)dg = Hhmtl
0 .

aid (B.2), then with some manipulation we can arrive at the result

T

2
JOCET) =T f

2 d a

r .
) t d e (A) _
T wr odr fo (rZ-tH% dt Jt (A%-t<) ddt = £(x).

But the integrals on the left hand side are just the inverse Abel trans-

forms, equations (1.3.2), so we can write (B.5)'as

-

R N N O R RN

The soluticn of (B.6) can be written immediately
2 .
$(r) = S A A [XE() 5 t] 5 ox) o

"or written out fully

2 (1 bOxfx) dx .
¢(x) = ;-Jr (ts-r9)% Jo (t‘—x‘f%gvdt :

LTI T s AT

(B.1)

(B.2)

(8.3)

(B.4)

(B.5)

(B &)

;B.?)

(B.8)
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2. Here we wish to find the solution of the following integral

equation

I $2(E)J (gr)dE = £(r) , O <x < (B.9)
o]

'|A

where {B.2) still holds. We again use (B.3) and (B.4} to transform (B.9)

to

2 (1 a
ki [ TZ-t2)s L ?iplig\a dt = f(r) , O<rca (B.10)
0

o+

The left hand side of (B.10) can again be written in terms of Abel trans-

forms as follows

%AI[AZ[M(A) . t]; 1] = £() . r ' (B.11)
The solution of (B.1l) can be written as
-
2re(n) = A ARG 5 €] Tl (8.12)
or
e - - L4 3 gpd (" xE(xdx (5.15)
W dr | 5% at | T '
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APPENDIX C

In this appendix we calculate u from equation (1.4.2) in the

particular case

by

~

(X)) = ——

kN

X* = T

Xp =T, X = X% (r - 1)h , X = a,

*From (C.1), (C.Z) and (1.4.2) we find

ifn i
0 (-1) (1‘) P II’H'].—i » N _>_1 ’

where (%) are the binomial coefficients  and

I

n+l

The integrals of

1

=

P

h

L
n

=r/h
Ja xndx
r .- Vx%-1Z

(C.5) have been evaluated and the results are

n [n1+ s ] ’
p .

1]

Ed

n-2
m "°s + (n - 2)p21n_2) , n>3 ,

1
12 = 5.
A In n } 1
where
5
m

sz - P2 N

a/h .

(C.1)

{(C.2)

(C.3)

(C.4)

(C.5)

(C.e)

(C.7)
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