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Abstract 

Transoceanic vessels entering the Great Lakes are required to undergo 

ballast water exchange to reduce the risk of transporting non-indigenous species. 

Ballast water exchange effectively reduces invertebrate density and richness in 

ballast; however, an alternative treatment is required for non-compliant ships.  

Sodium chloride brine was proposed to treat residual and incompletely-

exchanged ballast water. Laboratory experiments were conducted to determine 

the minimum brine treatment to exterminate >95% of ballast water taxa. 

Invertebrate communities were exposed to a range of brine concentrations (15‰ 

to 115‰) until complete mortality was reached. 

Biological evidence supports a one-hour exposure to 115‰ brine to treat 

ballast water. This treatment is broadly effective (>99.9%), regardless of 

treatment temperature, taxonomic group, or species’ habitat salinity. A median of 

0.00% (range 0.00-5.33) of individuals in ballast are expected to survive 

treatment, and the expected number of individuals released is within Canadian 

discharge standards.  Before implementation, ship-scale trials are required. 
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Introduction 

A non-indigenous species (NIS) is a species that has established outside 

of its native range. NIS are the second greatest cause of species endangerment 

globally (Lawler et al., 2006), and the greatest threat to biodiversity in freshwater 

ecosystems (Millenium Ecosystem Assessment, 2005). It is expected that all 

ecosystems will suffer severe impacts from NIS as introductions continue (United 

States Congressional Office, 1993). Additionally, NIS affect the economy, health 

and welfare of citizens (Colautti et al., 2006a). 

The economic impacts of NIS can be both direct and indirect. Production 

losses, increased maintenance costs, control programs, and lost tourism revenue 

are just a few examples of ways NIS can negatively impact the economy. The 

projected costs associated with invaders in Canada range from $13.3 to $34.5 

billion/year (Colautti et al., 2006a), and the costs in the United States, United 

Kingdom, Australia, South Africa, India, and Brazil together amount to roughly 

$314 billion per year (Pimental et al., 2005). As such, it is clear from an 

ecological and economic perspective that it is necessary to stop the spread of 

NIS. 

Invasive Species in the Great Lakes 

The Great Lakes have been invaded by at least 182 NIS (Ricciardi, 2006), 

59 of which have established since the completion of the St. Lawrence Seaway 

in 1959 (Kelly et al., 2009). Approximately 58-85% of established NIS are the 

result of unintentional introductions (Mills et al., 1993; Ricciardi, 2001), and 55-



2 

70% of these invaders have been transported to the Great Lakes in ballast water 

(Holeck et al., 2004; Ricciardi, 2006; NRC, 2008).  

To eliminate the spread of NIS, the transport of individuals, known as 

propagules, to new regions must be prevented (MacIsaac et al., 2002; Colautti et 

al., 2003). Propagule pressure, a measure of the cumulative number of NIS 

released into a new area coupled with the number of release events (Wonham et 

al., 2000), is directly related to the probability of establishment (Kolar and Lodge, 

2001; Colautti et al., 2006b). Therefore, in order to stop the establishment of new 

NIS in the Great Lakes, managers must eliminate or significantly reduce the 

incoming propagule pressure. Since ballast water is historically the most 

important introduction vector, it is the highest priority management need.  

Ballast water 

Ballast water is defined by the Canada Shipping Act as “water…taken on 

board a ship to control the trim, list, draught, stability and stresses of the ship, 

and includes the sediment settled out of the ballast water within a ship” (Canada 

Shipping Act, 2006). Ballast water is pumped into a ship’s ballast tanks to 

compensate for weight lost when cargo is unloaded from a ship, and pumped out 

when cargo is being loaded (Jenkins, 2007).  

Worldwide, shipping operations move 10 billion m-3 of ballast water and 

the biota contained within that water, annually (Rigby et al., 1999). Ballast water 

transfer provides a mechanism for aquatic biota to be transported distances far 

greater than their natural dispersion capabilities (Locke et al., 1993; Minton et al., 
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2005), and significantly contributes to propagule transfer in aquatic systems 

(Carlton, 1985; MacIsaac et al., 2002).  

Each ballast tank can be classified as ballast-on-board (BOB) or no 

ballast-on-board (NOBOB). When a tank is full of ballast water, it is classified as 

a BOB tank. BOB tanks can carry a large volume of water (~8500m3 / ship) and 

therefore a potentially large number of propagules into the Great Lakes 

(MacIsaac et al., 2002). When ballast water is not needed because the ship is 

loaded with cargo, tanks are empty and classified as NOBOB. However, due to 

the structure of ballast tanks and pump outlets, even NOBOB tanks carry 

unpumpable residual ballast water and sediment (Colautti et al., 2003). Although 

these tanks bring a relatively low volume of water (~46.8 m3 / ship) and number 

of propagules to the Great Lakes (Duggan et al. 2005), collectively the risk posed 

by these tanks has been high because vessels with NOBOB tanks represent 

~90% of vessel traffic entering the Great Lakes (MacIsaac et al., 2002; Colautti et 

al., 2003).  

In the Great Lakes, approximately 450 ships arrive from ports outside of 

Canada annually. These ships bring in nearly 500,000 m3 of foreign ballast water 

(Mark Minton, NBIC, pers. comm.), which may introduce millions of viable 

invertebrates into the Great Lakes (MacIsaac et al., 2002; Duggan et al., 2005). 

In order to protect the Great Lakes, shipping regulations have been established 

to decrease the risk that viable propagules will be delivered to, and establish in, 

the Great Lakes.  

Current Ballast Water Regulations 
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Voluntary regulations implemented by Canada in 1989, followed by 

mandatory regulations implemented by the United States in 1993 (United States 

Coast Guard, 1993), effectively require transoceanic vessels arriving in North 

America to undergo ballast water exchange (BWE) at sea, or equivalent 

treatment. These regulations aim to reduce the risk of spreading NIS, and 

originally targeted only BOB ships but were expanded to include NOBOB ships in 

2006 (Canada Shipping Act, 2006).  

Ballast water exchange is a process in which a ship either exchanges 

(BOB) or flushes (NOBOB) its ballast tanks with deep ocean water. Exchanged 

ballast water must have a salinity of at least 30‰, and be taken on board more 

than 200 nautical miles from land where the depth exceeds 2000 meters 

(Canada Shipping Act, 2006). The aim of this practice is to discharge freshwater 

species residing in the ballast water and replace the water with high-salinity 

marine water. Freshwater species that do not get flushed out to sea should be 

killed by incoming high salinity water, and any species that enter the tanks during 

flushing should be killed due to osmotic stress when released into freshwater at 

the destination port (Locke et al., 1991, 1993; United States Coast Guard, 1993).  

BWE effectively reduces the risk of spreading invasive species, 

particularly between freshwater regions (Gray et al., 2007; Santagata et al., 

2008). However, a supplementary ballast water treatment is needed because, on 

occasion, ships cannot perform BWE or may only be able to perform partial 

exchange. This can occur in conditions of poor weather when exchange may risk 

the safety of the ship and crew, or if there is an equipment failure that prevents 
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exchange (Canada Shipping Act, 2006). In fact, approximately 6.5% of ballast 

tanks (526 tanks) in transoceanic ships arriving in the Great Lakes between 2005 

and 2007 were non-compliant with exchange regulations (Matthew Deneau, 

Fisheries and Oceans Canada, pers. comm.).  

Current protocol states that non-compliant ships must notify the Minister of 

Transport and will then be instructed to either (i) retain some or all ballast water 

on board while in Canadian waters, (ii) exchange ballast water at a specified 

location, (iii) discharge ballast water at a specified location, or (iv) treat ballast 

water in accordance with an approved method (Canada Shipping Act, 2006). 

Alternatives (i), (ii), and (iii) may not be economically desirable to industry, since 

retaining ballast can interfere with cargo operations, and exchanging or 

discharging ballast at a specified location may result in delays and associated 

costs. As such, the option of treating ballast water in accordance with an 

approved method may be very attractive to ship operators.  

Regulations allow for environmentally-sound alternatives to BWE that are at least 

as effective in removing or killing harmful aquatic taxa and pathogens as BWE 

itself (Jenkins, 2007). More specifically, Canadian regulations state that after 

treatment, ballast water must not have more than:  

(i) 10 viable taxa m-3 ≥ 50μm in minimum dimension,  

(ii) 10 viable taxa mL-1 < 50μm and ≥ 10 μm in minimum dimension,  

(iii) one colony-forming unit (cfu) of toxicogenic Vibrio cholera 100 mL-1,  

(iv) 250 cfu of Escherichia coli  100mL-1 and  
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(v) 100 cfu of intestinal enterococci  100mL-1 (Table 1; Canada Shipping 

Act, 2006).  

These thresholds are in agreement with the IMO D-2 discharge standard that will 

be mandatory once the IMO Ballast Water Convention is ratified (IMO, 2004).  

By 2016, BWE will be phased out and all ships will be required to have a 

treatment system (Environment Canada, 2007). There are 26 treatment 

technologies currently in development that use various mechanisms such as 

filtration, biocides, heat exposure, electric pulse treatment, ultraviolet rays, 

ultrasound, magnetic fields, deoxygenation, and antifouling coatings to eliminate 

ballast water taxa (NRC, 1996; Lloyd’s Register, 2007; Mamlook et al., 2008). In 

fact, many of the treatment systems combine solid-liquid separation with 

disinfection (Lloyd’s Register, 2007). However, these treatments are still in 

development and testing, and as of yet, Canada has not approved any of these 

treatments. Until these treatment systems become available, an alternative 

treatment is needed for non-compliant ships, and even afterwards, a treatment 

will be needed for occasions when the shipboard treatment system becomes 

inoperable. 

Brine treatment 

The addition of sodium chloride (NaCl) brine has been proposed as a 

cost-effective treatment for management of both residual and partially exchanged 

ballast water (Jenkins, 2007). The alteration of the physical and chemical 

environment caused by the addition of brine to ballast tanks is expected to cause 

mortality of ballast water organisms by negatively affecting their metabolic 
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processes (Schlieper, 1971). Changes in salinity can alter the activity rate, 

volume, volume regulation, internal osmotic concentration, internal ionic content, 

ionic regulation, respiration rate, and oxygen requirements of organisms 

(Schlieper, 1971). It is therefore expected that a large change in salinity will 

cause a great disruption in the metabolic processes mentioned above, and cause 

mortality of organisms. Further, as seawater (30‰ salinity) used in BWE is 

effective in reducing the viability of freshwater and brackish water taxa by 

causing osmotic stress, NaCl brine (230‰ full-strength) is expected to be at least 

as effective as BWE if the final salinity of the treated ballast water is at least 

30‰.  

Natural salt water (i.e. marine and brackish water) consists of various 

cationic and anionic salts which act in antagonistic ways. This enables the 

physiological effects of these ions to reach a balance (Schlieper, 1971). 

Conversely, brine is manufactured from rock salt, and therefore does not have 

the same balance of ions as natural salt water. Brine has higher concentrations 

(>2.5x) of sodium, chloride, calcium and strontium, and much lower 

concentrations (<5x) of potassium and magnesium. Although some studies have 

shown that high calcium content can negate some negative effects of salinity 

alteration (Schlieper, 1971), it is expected that, overall, a high concentration of 

salts in an “unnatural” balance will cause mortality in aquatic taxa. In fact, studies 

have shown that acute tolerance to NaCl is usually lower than acute tolerance to 

natural or artificial seawater (Kefford et al., 2004) 
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Brine is readily-available along the Great Lakes corridor (see Appendix 1), 

and could easily be applied to a ballast tank by attaching a hose from a tanker 

truck to the tank’s sounding tube. Application via sounding tube is ideal because 

it is always accessible at dock, and would allow for brine to be applied directly to 

the ballast tank in a location where residuals pool once the ship has stern trim 

(Jenkins, 2007).  

  The unit cost for brine production ranges between $20-$60 m-3, but with 

delivery and related costs it is expected that brine treatment would cost $130-

$180 m-3. A NOBOB ballast tank generally contains less than 10 m3 of residual 

water (Jenkins, 2007), and each ship carries an average of 46.8m3 of ballast 

water in total (Duggan et al., 2005). If a ship entered the seaway with a ballast 

tank at 0‰, total treatment cost would be approximately $5200-7200 per ship. 

However, the majority of these costs are associated with delivery. If this 

treatment is put into practice, brine suppliers could significantly decrease these 

costs by installing large brine storage tanks at ports and arranging brine delivery 

from nearby production facilities. Also, it is likely that most tanks requiring 

treatment would have undergone partial exchange, in which case lower 

quantities of brine would be needed to reach the targeted treatment salinity and 

costs would decrease. 

Santagata et al. (2009) conducted species-specific trials to determine the 

efficacy of NaCl brine treatment. It was determined that a one hour treatment of 

110‰ brine was sufficient to cause 100% mortality in 95% of the species tested. 

These results, however, are based solely on the analysis of 33 species, 8 of 
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which were specifically targeted due to their high salinity tolerance. In order to 

better understand the efficacy of brine treatment in practice, it is necessary to 

conduct trials with entire zooplankton communities (Kefford et al., 2005) from 

different habitat salinities and at different treatment temperatures.  

Evaluating NaCl brine as a ballast water treatment 

In this thesis, I explore the biological efficacy of NaCl brine treatment in 

vitro. I expect that most, if not all, zooplankton will be exterminated by short-term 

exposure to concentrated NaCl brine. The null hypothesis is that survival in 

control and treatment groups will be equal. To test this hypothesis, I compare the 

survival of aquatic invertebrates exposed to NaCl brine treatment with control 

survival.  

The first objective of this study is to determine the brine concentration and 

exposure time required to exterminate at least 95% of aquatic invertebrates that 

may enter the Great Lakes in ballast water. I propose that higher brine 

concentrations and longer brine exposure times will yield increased mortality. 

Alternatively, the null hypothesis is that increasing the brine concentration and/or 

exposure time will have no effect on survival. This will be evaluated by exposing 

invertebrates to different brine concentrations and exposure times to determine if 

a difference in survival results.  

To thoroughly evaluate mortality to brine exposure, I chose to examine the 

brine tolerance of a variety of taxa from marine, freshwater and brackish-water 

habitats. This was accomplished by using individuals collected from i) exchanged 

BOB tanks in vessels arriving in the Great Lakes, ii) the Detroit River, and iii) 
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ports in the North Sea. These collection sites were chosen to include i) open-

ocean marine taxa and hardy coastal taxa that have survived BWE and should 

be representative of taxa that would likely be introduced to the Great Lakes 

under current ballast water management regulations, ii) freshwater taxa that 

currently reside in the Great Lakes system, and iii) high-risk taxa (i.e. taxa with a 

wide salinity tolerance that inhabit a region that has historically been a donor of 

Great Lakes invaders). By testing NaCl brine treatment on taxa from a variety of 

environments, I can be more confident that the efficacy of brine treatment 

reported in my study is robust, regardless of the life history of incoming NIS.  

Invertebrates from ports in the North Sea, specifically Rotterdam, Antwerp 

and Bremen, were used to represent “high-risk taxa” for three reasons. First, 

shipping traffic entering the Great Lakes is dominated by ships arriving from 

European ports (Ruiz and Santagata, 2007), so there is a high propagule 

pressure from these ports to the Great Lakes. If shipments between Great Lakes 

ports in the United States and Canada are excluded, European ports represented 

63% (1373.0 tonnes) and 35% (937.7 tonnes) of cargo shipped to and from the 

Great Lakes by foreign ports in 2005 and 2006 (Statistics Canada, 2006). 

Specifically, most of this traffic originates from the Lower Rhine region (including 

Rotterdam and Antwerp), other places in the North Sea (including Bremen) and 

the Baltic Sea (Ricciardi and MacIsaac, 2000; Colautti et al., 2003; Sax and 

Gaines, 2008). Second, climatic matching between the Great Lakes and North 

Sea ports (Table 3; Reid and Orlova, 2002) makes it probable that incoming 

propagules from the North Sea will be able to tolerate the Great Lakes’ climate. 
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These individuals are, therefore, a particularly high invasion risk because if 

delivered in ballast they have a high probability of establishing. In fact, 73 

established NIS in the Great Lakes originated from the North Sea (Grigorovich et 

al., 2003). Third, North Sea taxa are expected to be tolerant of salinity changes 

because they are exposed to tidal salinity fluctuations in their natural habitat 

(Barnes, 1994). They are therefore thought to be a good indicator of an effective 

treatment, because they are likely to be able to cope with moderate salinity 

changes. Further, since these ports have a salinity range of 0.2-30‰ 

(Grigorovich et al., 2003; Table 3), taxa from a variety of habitat salinities can be 

targeted to examine the effect of increasing habitat salinity on survival to brine 

exposure. I expect that taxa collected from high salinity environments will be 

more tolerant of brine exposure than organisms collected from low salinity 

environments. The null hypothesis is that invertebrates from habitats of varying 

salinity will have equal mortality after brine exposure. This will be tested by 

comparing the survival of taxa from habitats of varying salinity after exposure to 

the same brine treatment to determine if mortality rates are consistent.  

I expect that taxa collected from ports will be healthier than taxa collected 

from ballast tanks, and I therefore believe that port taxa will be more resistant to 

brine treatment. Alternatively, mortality may be consistent for taxa collected from 

ports and ballast tanks. This will be tested by comparing mortality rates between 

port and ballast tank taxa taken from the same salinity and exposed to the same 

brine treatment.  
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The second objective of this study was to determine if temperature will 

alter the efficacy of NaCl brine treatment. Temperature and salinity are two of the 

most important physical factors affecting marine and brackish-water organisms 

(Kinne, 1963). Most aquatic invertebrates are essentially thermo-conformers, and 

an increase or decrease in temperature will alter their metabolic rate (Kinne, 

1963). This may cause an increase or decrease in the capacity to osmo-regulate 

in hyperosmotic salinities. In this way, temperature can enlarge, shift, or narrow 

the salinity tolerance of an organism (Kinne, 1963; Schlieper, 1971). During the 

Great Lakes shipping season, taxa in ballast tanks may experience temperatures 

from 0-27°C (Reid and Orlova, 2002). It was necessary to conduct trials at 

different temperatures to ensure that an approved treatment would be equally 

effective throughout the shipping season. I expect that invertebrates will be more 

resistant to brine treatment at lower temperatures. Conversely, the null 

hypothesis is that survival to brine treatment will not be affected by temperature. 

This will be evaluated by comparing survival rates after brine exposure at two 

temperatures to determine if a difference exists. 

The final objective of this thesis was to determine if mortality to brine 

treatment was consistent amongst all taxa. Ballast tanks can transport large 

communities of zooplankton and these zooplankton can have very different 

physiological tolerances. It was necessary to ensure that an approved brine 

treatment would be sufficiently strong to cause mortality in any invertebrate 

transported to the Great Lakes in a ballast tank. As such, entire zooplankton 

communities were used to enable a greater variety of species to be tested than in 



13 

conventional species-specific studies (Kefford et al., 2005). The null hypothesis is 

that mortality from brine exposure will be consistent for all types of invertebrates.  

Methods 

The efficacy of NaCl brine treatment was assessed using entire 

communities of invertebrates collected from the field. A total of 17 experiments 

were conducted on individuals with a variety of life histories exposed to various 

brine concentrations (15‰, 30‰, 45‰, 60‰, 77‰, 115‰), exposure times (1h-6 

days) and temperatures (11°C and 22°C). A variety of brine concentrations were 

examined to find the lowest effective brine concentration, in order to minimize the 

cost of treatment while ensuring that >95% of organisms would be exterminated. 

Trials were ended when all organisms appeared dead, and as such, exposure 

times varied between one hour and six days on account of the variation in brine 

tolerance of taxa in trials. Finally, exposure temperatures of 11°C and 22°C were 

chosen based on ballast tank temperatures during sample collection in August 

and December, and used to examine the effect of temperature on treatment 

efficacy.  

Field Collection 

Zooplankton was collected from the field and transferred to the lab to 

undergo testing. Collection sites included i) exchanged BOB tanks of five ships 

arriving in the Great Lakes (July to November 2007), ii) the Detroit River (August 

2007, May 2008) and iii) the North Sea ports of Rotterdam, Antwerp and Bremen 

(July to August, 2008). Slight variations in methodology were used for 

invertebrates collected from these three sites, and to distinguish between 
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methodologies, they will be referred to as ballast tank, Detroit River, and North 

Sea experiments, respectively.  

For ballast tank experiments, animals were collected from BOB tanks of 

ships arriving to the Great Lakes using vertical plankton net tows (53μm). For 

Detroit River experiments, freshwater taxa were collected from the Detroit River 

using vertical plankton net tows (53μm). A volume necessary to obtain a 

minimum of 1000 individuals was sampled. Filtered site water, as used herein, 

refers to water collected at the sampling location that has been filtered (GF/F 

Whatman filter, 0.7 μm pore size) to remove organisms and other organic matter. 

Taxa were rinsed into a 25L bucket containing unfiltered site water (ballast tank 

or Detroit River water, respectively), for transport to the laboratory. An extra 25L 

of site water was collected to be filtered and used to dilute NaCl brine to test 

salinities. Ambient salinity and temperature were measured at the time of 

collection.  

For North Sea experiments, samples were collected from locations of 

varying salinity at the ports of Rotterdam, The Netherlands (five locations- See 

Figure 1), Antwerp, Belgium (three locations- see Figure 2), and Bremen, 

Germany (one location). These ports were chosen because they have a similar 

climate to the Great Lakes, a wide range of ambient salinities from which to 

sample, and most importantly, because they are all classified as high-risk donor 

ports (Colautti et al., 2003; Ruiz and Santagata, 2007). A trial was also 

conducted with a sample from the Waal River in Nijmegen, The Netherlands. 

Experiments were conducted in July and August 2008 and a port map was used 
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to determine sampling locations that encompassed various ambient salinities. 

Docks and other access points were used to obtain access to the water. 

Zooplankton was collected using vertical plankton net tows (53μm), and the 

volume necessary to obtain a minimum of 1200 individuals was sampled. Site 

water was collected by lowering a 20L bucket into the water, and temperature 

and salinity at time of collection were noted. Complete collection information for 

ballast tank, Detroit River, and North Sea experiments is available in Table 4. 

NaCl brine exposure experiments 

Upon arrival to the laboratory, samples collected from warm water (18-

23oC; see Table 4) were stored at ambient room temperature until trials began, 

whereas samples collected from cold water (5-15oC; see Table 4) were placed in 

an environmental chamber at 11oC; experiments began no more than 24 hours 

after sample collection, and animals were not fed during this interval. Each 

sample was thoroughly mixed and two sub-samples were taken to estimate 

zooplankton density. Experiments began by filtering invertebrates through a 

40μm sieve and rinsing them into a counting tray with brine at a desired salinity 

concentration or control (filtered site water). Five replicates were set up for each 

concentration and control in ballast tank and Detroit River experiments, whereas 

four replicates were done for North Sea experiments. The volume of filtrate was 

dependent on animal density (target of ≥50 individuals per replicate for ballast 

tank and Detroit River experiments, target of ≥100 individuals per replicate for 

North Sea experiments since only 4 replicates were done). 
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For ballast tank experiments, salinities of 60‰, 77‰, and 115‰ were 

used based on findings of a feasibility study (Jenkins, 2007). In one trial, a 

salinity of 45‰ was also tested to determine if a long exposure at a lower 

concentration could also be effective. The major ion constituents of stock NaCl 

brine (Pollard Highway Products, Harrow, ON, Canada) were determined in the 

metals lab at GLIER, University of Windsor. Brine of desired salinity was 

produced by diluting stock NaCl brine (300‰) with filtered site water. Salinity was 

checked using a handheld or digital refractometer. Lower salinities of 15‰, 30‰, 

and 60‰ were used for Detroit River experiments, since preliminary trials 

indicated that mortality of Detroit River taxa was high even at low brine 

concentrations. For North Sea experiments, only salinities of 77‰ and 115‰ 

were tested since survival as high as ~60% was observed in one replicate 

(ballast tank taxa) after one hour of 60‰ brine exposure, and because personnel 

were limited. Ballast tank and Detroit River studies were conducted at 11oC and 

22oC, whereas North Sea experiments were only conducted at ambient 

temperature, since there was no significant difference attributed to temperature 

after analyzing results from ballast tank and Detroit River trials (see Results).  

Invertebrate survival was assessed hourly in each replicate by viewing 

individuals under a Leica dissecting microscope at 10-80x magnification. Taxa 

that did not exhibit any movement, even in reaction to stimulation with a 

dissection probe, were considered dead. Due to time constraints, only live or 

dead counts could be taken for each tray; control groups were checked to 

determine the number of dead taxa in each tray, whereas treatment groups were 
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checked to determine the number of live taxa in each tray. When all taxa in all 

replicates of a given concentration appeared dead, brine exposure was ended. At 

this time, the individuals in each replicate were rinsed into filtered site water and 

allowed one hour of recovery time before survival was reassessed. Water 

samples from each replicate were tested to ensure that test temperature and 

salinity were maintained until the experiment was ended.  

After the final assessment, taxa were preserved in 95% ethanol. For North 

Sea trials, taxa alive after the final assessment were preserved separately from 

individuals that did not survive brine exposure. Preserved samples were later 

counted in entirety and zooplankton was identified using Balcer et al. (1984), 

Koste (1984), Barnes (1994), Hayward and Ryland (1995), Johnson and Allen 

(2005), Bartsch (2006), and Newell and Newell (2006). All surviving taxa from 

North Sea experiments were identified to the lowest possible taxonomic level. 

Additionally, fixed-count sampling techniques were employed to subsample 100 

individuals from each North Sea and Detroit River trial to identify to genus level 

(Barbour and Gerritsen, 1996). These identifications were used to compile a non-

exhaustive list of the prevalent species in trials (Appendix 2). Taxa from ballast 

water experiments were identified to the lowest possible level by a taxonomic 

expert and are also included in Appendix 2.  

Data Analysis 

Survival rates from brine exposure experiments were calculated as the 

proportion of individuals alive at a given time point. On occasion, individuals 

believed dead at one time point were found to be alive at a subsequent time 
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point. This was often the result of individuals being transferred into filtered site 

water and being given an hour to recover from treatment; if this was the case, 

survival rates for earlier time periods were adjusted to correct for later, higher, 

survival rates.  

The number of dead individuals found in treatment groups may be 

attributed to i) individuals dead at the beginning of testing, ii) individuals that died 

naturally during the test, and iii) individuals that died as a result of brine 

exposure. To accurately report the mortality caused by brine treatment, it was 

necessary to exclude individuals that died from (i) and (ii) from analysis. The 

survival rate to brine treatment was calculated as:  

Survival rate (%) = TS / CS x 100%    Equation 1 

where TS and CS are the number of viable individuals / number of dead 

individuals in the treatment (15‰, 30‰, 45‰, 60‰, 77‰, 115‰) and control 

(filtered site water) at a given time, respectively. In cases where this equation 

yielded a survival rate greater than 1, this value was reduced to 1 for further 

analysis.  

Survival rates did not follow a normal distribution (Shapiro-Wilk Normality 

test, p<0.05), and could not be markedly improved with transformation of data. 

Therefore, non-parametric Kruskal-Wallis tests were performed to determine if 

survival rates for different brine treatments or survival rates at different treatment 

temperatures varied significantly (Zar, 1999). Kruskal-Wallis tests were also used 

to determine if there was a difference in survival to brine treatment based on an 

individual’s life history (habitat salinity, taxonomic group, collection area). 
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Wilcoxon rank sum tests were used to perform pair-wise comparisons of 

variables found to be significantly different using a Kruskal-Wallis test. For 

statistical analysis, any replicate, or taxonomic group within a replicate, that had 

less than 10 individuals was excluded. A significance level of 95% was used for 

all analyses.  

Since non-parametric analysis allows only the examination of one variable 

at a time, it was often necessary to perform a separate analysis of variance for 

each experiment. Since these tests examined independent data, a Bonferroni 

correction was not needed. However, in cases where multiple tests were done to 

evaluate the same data, for example when differences in survival were examined 

between brine concentrations for all individuals in a trial and then for specific 

groups of organisms in a trial (see Appendix 3), a Bonferroni correction was 

applied when interpreting data.  

Results  

Zooplankton mortality was measured at six brine concentrations (115‰, 

77‰, 60‰, 45‰, 30‰, 15‰) and control (filtered site water) with exposure times 

ranging from one hour to six days. Table 4 provides detailed sampling 

information and Tables 5, 6, 7, and 8 provide median survival rates for each trial 

evaluating brine treatment at 115‰, 77‰, 60‰, and 15‰ and 30‰, 

respectively. Statistical results can be found in Appendices 3 through 7. 

Individuals treated with 115‰ brine for one hour had a median survival 

rate of 0.00% (range 0.00-5.33) (Figure 3; Table 5), and complete extermination 

was reached in 12 of 15 trials (Figure 4; Table 5). Only five individuals (2 
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unidentified copepod nauplii, 2 Cirripedia larvae, 1 Nanorchestes mite) of 13183 

individuals tested were able to survive this treatment. Zooplankton exposed to 

77‰ brine for one hour had a median survival rate of 0.00% (range 0.00-12.09) 

(Figure 3; Table 6), and complete mortality was reached in six of 15 trials (Figure 

4; Table 6). A total of 126 individuals (~1.0%) were able to survive this treatment. 

Mortality caused by 115‰ brine was significantly higher than mortality from 77‰ 

brine in four experiments (Figure 4; Kruskal-Wallis, p<0.05; Appendix 3).  

Individuals treated with 60‰ brine for one hour had a median survival rate 

of 0.00% (range 0.00-100.00) (Figure 3; Table 7). When this treatment was 

extended to two hours, the median survival rate was still 0.00%, but the range 

was much smaller (range 0.00-4.36) (Figure 3; Table 7). These results are not 

directly comparable to results from the 77‰ and 115‰ treatments above, since 

these results were not generated from the same experiments (see Table 4). 

However, there was no significant difference in survival between ballast tanks 

taxa exposed to brine at 60‰ and 77‰ (Figure 5c; Kruskal-Wallis, p>0.15; 

Appendix 3). A 45‰ brine exposure was much less effective than 60‰ brine 

treatment, as evidenced by marine taxa, collected from a 34‰ ballast tank, that 

were able to survive six days of exposure to 45‰ brine. At this time, the 

experiment was terminated although some copepods were still alive.  

In Detroit River experiments, all individuals were exterminated by one hour 

of exposure to 30‰ or 60‰ brine treatment (322 individuals) (Figure 5a; Tables 

7, 8), and these treatments are therefore considered equal (Kruskal-Wallis, 

p>0.05; Appendix 3). Three hours of 15‰ brine treatment was less effective; one 
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copepod nauplii and two rotifers were able to survive to give a median survival 

rate of 0.00% (range 0.00-29.82) (Figure 3, Table 8).  

Temperature 

Mortality from brine exposure was examined at 22oC and 11oC for ballast 

tank and Detroit River zooplankton (Figure 6). Detroit River taxa were exposed to 

15‰ brine (three hours), 30‰ brine (one hour) and 60‰ brine (one hour) at 

these temperatures. There was no significant difference in survival between 

individuals tested at 22oC and 11oC (Figure 6a; Kruskal-Wallis, p>0.3; Appendix 

4). Ballast tank taxa were also exposed to brine (60‰, 77‰ and 115‰; one 

hour) at 22oC and 11oC. There was no significant difference in survival between 

these temperatures for 77‰ or 115‰ treatment (Figure 6b; Kruskal-Wallis, 

p≥0.5; Appendix 4). However, a treatment of 115‰ brine caused complete 

mortality at 22ºC, while two copepod nauplii survived this treatment at 11ºC 

(Table 5). It was not possible to test for a difference in survival due to 

temperature after exposure to 60‰ brine, because there were differences 

amongst experiments within treatments (see habitat salinity results; Kruskal-

Wallis, p <0.05; Appendix 5). 

Habitat Salinity 

Freshwater taxa were much more susceptible to brine treatment than both 

brackish and marine taxa. No freshwater taxa survived one hour of exposure to 

30‰ brine (Figure 5a; Table 8), whereas some brackish and marine taxa were 

able to survive exposure to 60‰, 77‰ and 115‰ brine (Figures 5b, 5c; Tables 

5, 6, 7). In addition, marine (34‰) ballast tank taxa had significantly greater 
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survival after one hour of exposure to 60‰ brine than brackish-water (22‰) taxa 

(Kruskal-Wallis, p<0.05; Appendix 5). This difference was not evident after 

exposure to 77‰ or 115‰ brine (Figure 5b; Kruskal-Wallis, p>0.05; Appendix 5), 

but for these brine treatments, high mortality was observed in all trials (Tables 5, 

6). 

North Sea zooplankton was collected from the ports of Rotterdam, 

Antwerp and Bremen at 10 locations with salinity ranging from 1‰ to 22‰ (Table 

4). There was a significant difference in survival among taxa from these locations 

after a one hour exposure to 77‰ brine (Figure 4; Kruskal-Wallis, p<0.001; 

Appendix 5; Wilcoxon p<0.05). In fact, survival was significantly greater for 

individuals from 20 to 22‰ habitats than for individuals from 1 to 9‰ habitats 

(Wilcoxon, p<0.005). There was no difference after one hour of exposure to 

115‰ brine (Kruskal-Wallis, p>0.05), but at this concentration, eight of 10 trials 

had complete extermination and the remaining trials had very low survival rates 

(<0.1%) (Table 5).  

Taxonomic Group  

Zooplankton tested were grouped into copepods, copepod nauplii, rotifers, 

and “other” taxa. Cirripedia larvae were present in three trials (R2, R3, R5), and 

were considered as a separate group in these trials. “Other” taxa included mites, 

cladocerans (including Bosmina), mysids, Leptadora, Diaphanasoma, 

gastropods, protists, veligers, microcentipedes, insects, and Noctiluca scintillans. 

There was a significant difference in survival amongst these taxonomic groups at 

77‰ and 115‰ (Figure 7; Kruskal-Wallis, p<0.001; Appendix 6), but no 
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difference at 60‰ (Kruskal-Wallis, p>0.05; Appendix 6). Four copepod nauplii, 94 

Cirripedia larvae, and 18 “other” taxa were able to survive one hour of treatment 

with 77‰ brine. “Other” survivors included mites, gastropods, microcentipedes 

and veligers. Two copepod nauplii and three Cirripedia larvae were able to 

survive one hour of exposure to 115‰ brine. For both of these treatments (one 

hour exposure to 77‰ and 115‰ brine), significantly more “Cirripedia larvae” 

survived than copepods, copepod nauplii, or rotifers (Wilcoxon rank sum test, 

p<0.015), and “other” survival was not significantly different than any other group 

(Wilcoxon rank sum test, p>0.04). 

Collection area (Port water vs. Ballast water) 

Rotterdam port taxa (habitat salinity of 22‰) had significantly higher 

survival than ballast tank taxa (collected from 22‰) (Figure 8; Kruskal-Wallis, 

p<0.05; Appendix 7) after one hour of exposure to 77‰ brine. Once again, there 

was no significant difference when these groups were tested at 115‰ brine 

(Kruskal-Wallis, p>0.05; Appendix 7). At this concentration, survival of both 

ballast and port taxa was very low (>1.1%) (Table 5), but interestingly, survival 

was actually greater for ballast tank taxa (Figure 8). 

Identification of Survivors  

Live individuals were only preserved separately from dead individuals in 

North Sea trials, and as such, survivor identification was only possible for these 

experiments. A total of three individuals in North Sea trials were able to survive 

115‰ brine treatment (Table 9). Two individuals, both collected from 21‰ water 

in Rotterdam, were identified as Cirripedia larvae. Cirripedia larvae were present 
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in a total of three trials (303 individuals), but both survivors were isolated from the 

same experiment. The median survival rate for these individuals after one hour of 

115‰ treatment was 0.00% (range 0.00-0.09). The remaining survivor, identified 

as a mite of the Nanorchestes genus, was collected from 22% water at the port 

of Rotterdam. This individual was the only Nanorchestes mite present in trials at 

115‰. 

A total of 98 North Sea taxa survived one hour of 77‰ brine treatment 

(Table 9). These individuals were identified as 93 Cirripedia larvae, two 

unidentified “other” taxa, one Nanorchestes mite, one Rhombognathides mite, 

and one Littorina neglecta. Cirripedia larvae were present in three trials (381 

individuals), and survivors were isolated from each. The median survival rate for 

these individuals was 2.06% (range 0.00-12.21). Both mites and Littorina 

neglecta were very rare in trials.  

Discussion 

Results indicate that NaCl brine is an effective treatment to prevent the 

introduction of NIS. As expected, mortality decreased as habitat salinity 

increased (Figure 4), and in general, greater mortality was observed at higher 

brine concentrations (Figure 5). A one hour, 30‰ brine treatment was sufficient 

to cause complete mortality in Detroit River experiments, indicating that 

freshwater organisms are very susceptible to brine treatment. However, brackish 

and marine water organisms require much higher brine concentrations (77‰ and 

115‰) to reach similar mortality (>99%) after one hour of treatment.  
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The first objective of this study was to determine a brine treatment that 

would exterminate >95% of taxa in ballast tanks. One hour treatments of 77‰ 

and 115‰ brine were both found to be very effective (>99% mortality) against all 

taxa in trials (Figure 3; Tables 5, 6). Since it is most practical and cost-effective to 

treat ballast water with the lowest effective brine concentration, a 77‰ treatment 

is more desirable than a 115‰ treatment, assuming similar mortality rates for 

exposed organisms. In this study, a one hour, 115‰ brine treatment was 

statistically more effective than a one hour, 77‰ treatment in only four of 15 

experiments (Figure 5). However, the 115‰ brine treatment yielded complete 

extermination in an additional four experiments when the 77‰ treatment did not. 

In this case, a biological difference exists even though no statistical difference 

was found. Therefore, in eight of 15 experiments, the 115‰ brine treatment was 

more effective, and it is considered a better ballast water treatment. 

However, in addition to the brine exposure concentration, many factors 

can affect the salinity tolerance of a species and these factors must be examined 

before a treatment recommendation is made. The variables examined in this 

study include the temperature at application, the invertebrates’ native habitat 

salinity, the type of invertebrate (i.e. copepod, copepod nauplii, rotifer, Cirripedia 

larvae, “other”) and the location from which the invertebrate was collected (port 

vs. ballast tank)  

The effects of salinity on taxa can be modulated by temperature (Kinne, 

1963; Browne and Wanigasekera, 2000), and during the period when 

international ships are active on the Great Lakes, temperature can fluctuate from 
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0°C to 27°C (Reid and Orlova, 2002). An acceptable brine treatment must be 

effective throughout the shipping season, so it was necessary to consider the 

effect of temperature on survival in trials. Survival to brine treatment was not 

significantly affected by temperature at the brine concentrations examined 

(Figure 6), thus I would expect that brine application should be equally effective 

throughout the shipping season.  

A species’ salinity tolerance is, not surprisingly, influenced by the salinity 

of its habitat (Costlow et al., 1966; Laughlin and Neff, 1981; Fockedey et al., 

2005). Consequently, it was necessary to test taxa from a variety of habitats to 

ensure that all taxa arriving to the Great Lakes via ballast water would be 

exterminated by brine treatment. This was accomplished by examining taxa 

entering the Great Lakes in exchanged ballast tanks, taxa from “high-risk” ports, 

and native Great Lakes’ fauna. Altogether, these experiments included taxa from 

habitat salinities of 0‰ to 34‰. Mortality was not influenced by habitat salinity 

when taxa were treated with 115‰ brine, but taxa from higher salinity 

environments survived one hour of exposure to 77‰ brine significantly better 

than those from less saline environments. Specifically, significant differences in 

survival were found between North Sea taxa collected from 

oligohaline/mesohaline environments (1 to 9‰), and polyhaline (20 to 22‰) 

environments (Venice system, 1959; Figure 5). Treatment with 77‰ brine is 

therefore not recommended since it will not be equally effective for all taxa 

entering the Great Lakes. Nevertheless, these results are reassuring since they 

show that taxa entering the Great Lakes from areas with low salinity - which 
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would pose the greatest establishment threat to the lakes - are the least likely to 

survive exposure to brine treatment.  

Analyzing survival by taxonomic group indicated that Cirripedia larvae 

were the group most likely to survive brine treatment at 77‰ and 115‰, and the 

most frequent survivor in trials. However, these individuals are not considered an 

invasion risk to the Great Lakes. Already, the propagule pressure for Cirripedia 

species to the Great Lakes is high, as many individuals enter via hull fouling. 

However, these individuals are marine species, and are negatively affected by 

freshwater exposure. A comprehensive study on hull fouling has found that 

Cirripedia are always dead or in poor condition when found attached to ship hulls 

in the Great Lakes (Sylvester and MacIsaac, in review). Additionally, since 

“other” organisms, which would include Cirripedia larvae, represent only 1.5% of 

the invertebrate organisms in ballast tanks (Duggan et al., 2005), it is unlikely 

that they would be present in ballast in high enough densities to establish a 

population. Therefore, it is somewhat encouraging that Cirripedia larvae are the 

most likely taxa to survive treatment, since they pose a low risk of invasion to the 

Great Lakes.  

Furthermore, identification of the remaining North Sea survivors confirms 

that most surviving taxa are unlikely to pose a risk to the Great Lakes. Altogether 

five species (98 individuals) from the North Sea were able to survive exposure to 

77‰ brine (Table 9). These individuals included Cirripedia larvae, a 

Nanorchestes mite, a Rhombognathides mite, Littorina neglecta, and one 

unidentified species. A literature review was conducted to determine if these 
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individuals were likely to pose a risk of invasion to the Great Lakes. 

Nanorchestes mites are also a very low risk for invasion. These mites are 

typically terrestrial, but feed on algae and can be found on shores (Dr. Heather 

Proctor, University of Alberta, pers. comm.). Since they are a terrestrial species, 

these individuals would not likely survive a voyage in a ballast tank, and are 

therefore not expected to be able to be transported to the Great Lakes. 

Rhombognathides species are known to survive several days in high salinity 

water (Dr. Ilse Bartsch, German Center for Marine Biodiversity Research, pers. 

comm.), and could potentially survive all salinity-based ballast water treatments, 

including BWE. In fact, the surviving individual in trials had survived 24 hour of 

77‰ brine exposure. Nonetheless, Rhombognathides species are not believed to 

be a risk for invasion, because nearly all Rhombognathides species are already 

present on the shores of Atlantic Canada and have likely had many chances to 

establish in the Great Lakes, thus far unsuccessfully. Finally, Littorina neglecta 

are not expected to be invasive because they are a sexually-reproducing species 

with very low mobility (capable of moving ~1.5m per month) (Rolán-Alvarez, 

2007). With the low propagule dosage expected for “other” taxa, it is very unlikely 

that two individuals would survive transit in a ballast tank, be released into the 

Great lakes, find appropriate habitat, and be able to locate each other to 

reproduce and establish a population.  

Two species (three individuals) were able to survive one hour of 115‰ 

brine treatment. These individuals were collected from polyhaline habitats of 

21‰ and 22‰ in Rotterdam (Table 9), and identified as two Cirripedia larvae and 
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one Nanorchestes mite. As discussed above, it is very unlikely that these 

individuals pose an invasion risk to the Great Lakes.  

Finally, this study examined the efficacy of brine treatment on taxa 

collected from docks/ports (Detroit River and North Sea) and ballast tanks. Taxa 

that have arrived to the Great Lakes in ballast water are likely in poor condition 

from the transit (Wonham et al., 2001) and may be more susceptible to 

unfavourable conditions. If this is true, port taxa are expected to be more 

resistant to brine treatment than ballast taxa. In fact, taxa collected from port 

water had significantly better survival than taxa collected from ballast water when 

exposed to 77‰ brine (Figure 7). This pattern was not evident at 115‰, likely 

because this treatment is sufficiently strong to exterminate even healthy 

individuals. Since most experiments conducted in my study examined the 

survival of the more-resistant port taxa, I expect that the survival rates reported 

herein would be even lower in practice because all taxa would have to endure 

ballast water transport before treatment. 

In summary, the biological evidence presented above provides support for 

a one hour brine treatment of 115‰ to exterminate ballast water taxa. This 

treatment is significantly more effective than all other treatments tested, and its 

efficacy is not affected by treatment temperature, species’ habitat salinity, or by 

taxonomic group. This treatment exterminated >99.9% of individuals in trials, and 

the highest median survival rate in any experiment was 0.07%. Since significant 

differences in survival due to habitat salinity and taxonomic group were found 

after a 77‰ brine exposure, it is likely that these factors always affect salinity 
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tolerance. However, the 115‰ treatment is strong enough to overcome these 

effects and kill even the most resilient taxa. 

In order to be recommended for use in the Great Lakes, brine treatment 

must comply with alternative treatment discharge standards. Given a median 

survival rate of 0.00% (range 0.00-5.33) after one hour of exposure to 115‰ 

brine, I can determine if this survival rate is indeed compliant with Canadian 

regulations. Regulations state that an approved alternative treatment must meet 

the IMO D-2 discharge standard, which requires, amongst other things, <10 

viable taxa m-3 ≥ 50μm in discharged ballast water after treatment (IMO 2004).  

Duggan et al. (2005) sampled 33 transoceanic ships and reported the 

median number of animals in residual water entering the Great Lakes from a 

variety of source regions. When ballast originating in the Great Lakes was 

excluded, a median of 280 taxa m-3 were found in unexchanged NOBOB ship 

residual water. If this water was treated with 115‰ brine, I expect that a median 

of 0.00 (range 0.00-14.92) individuals m-3 of ballast water would survive 

treatment. In contrast, current BWE practices result in a total abundance of 60.00 

(range 0.00-5440.00) invertebrates m-3 remaining in a NOBOB tank or 2672.90 

(range 40.00 to 26220.00) invertebrates m-3 for a BOB tank (Dr. Sarah Bailey, 

Fisheries and Oceans Canada , pers. comm.). Therefore, a 115‰ brine 

treatment is much more effective than BWE, and since <10 individuals are 

expected to be released m-3, it is also in compliance with the D-2 discharge 

standard (IMO 2004).  
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Successful invasion requires propagules that can tolerate the biotic and 

abiotic conditions of the new habitat (Williamson, 1996; Ruiz et al., 2000; Colautti 

and MacIsaac, 2004). Since most open ocean taxa are unlikely to establish in 

freshwater environments (Adolph, 1925), managers are most concerned with 

freshwater and brackish-water individuals. If only freshwater and brackish water 

animals are considered, ~50 animals are expected to enter the Great Lakes m-3 

of ballast water discharged without treatment (Duggan et al., 2005). Therefore, 

after one hour of treatment with 115‰ brine, I can expect 0.00 (range 0.00-2.67) 

freshwater and brackish water individuals m-3 to be released. After BWE, ships 

release a median of 0.00 (range 0.00-426.67) freshwater and brackish-water 

individuals m-3 of ballast water discharged (Dr. Sarah Bailey, Fisheries and 

Oceans Canada, pers. comm.). Therefore, the maximum density expected to be 

released following brine treatment would be far lower than that following BWE 

(e.g. 2.67 vs. up to 426.67 individuals). It is important to note that marine taxa 

cannot be discounted as an invasion risk, since there are several notable marine 

species that have established in freshwater (i.e. sea lamprey, blueback herring, 

alewife), however this study has shown that efficacy of brine treatment is very 

high even when including marine taxa in analysis. 

Treatment with 115‰ brine caused 100% mortality for all zooplankton 

from habitats of ≤20‰, and the lowest median mortality observed in any trial was 

99.93% (±0.11 SD) with individuals from a 22‰ habitat (Table 7). This trial can 

be used to compute the “worst-case scenario” survival rate; a combination of the 

highest survival rate and the highest number of individuals expected in ballast 
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water (2134 individuals m-3). If this occurred, 1.49 (±2.35 SD) individuals m-3 

would potentially survive to be released following brine treatment. This value is 

approximately six times lower than the maximum allowable discharge mandated 

by the IMO, and approximately 40 times lower than that reported after BWE (Dr. 

Sarah Bailey, Fisheries and Oceans Canada, pers. comm.).  

Further, I can assess the propagule dosage expected after brine 

treatment. Considering that a NOBOB ship contains an average of 46.8 m3 of 

residual water (Duggan et al., 2005), approximately 0.00 (range 0.00-249.44) 

individuals will be released into the Great Lakes during deballasting after one 

hour of brine treatment at 115‰. This is well below the discharge standard which 

would allow <468 individuals. Although it is theoretically possible that 1 asexual 

individual can successfully found a population (Drake, 2005), propagule pressure 

theory dictates that the fewer individuals that are introduced, the lower the 

chance an invasion will succeed (e.g. MacIsaac et al., 2002; Lockwood et al., 

2005). In all likelihood, most of the individuals in the ballast tank will be killed by 

exposure to brine, and those that are not may find the release habitat 

unfavourable or have difficulty locating mates. It is not expected that an NIS will 

establish with such a low propagule dosage.  

Clearly, the expected number of individuals released after treatment 

depends on many factors and may vary greatly. However, the number of 

individuals released after a one-hour 115‰ brine treatment is well below the 

IMO’s (2004) D-2 discharge standard in nearly all cases discussed here. 

Additionally, I am confident that the study taxa represent a sufficiently diverse 
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group of individuals to assume that the conclusions are robust no matter the 

source of zooplankton transported to the Great Lakes in ballast water.  

All things considered, it is recommended that a minimum one hour 

treatment of 115‰ brine be used to treat ballast water in non-compliant ships 

entering the Great Lakes. Biological evidence provides strong support for this 

treatment since treatment was broadly effective and >99.9% of individuals were 

killed in trials (Figure 4; Tale 5), and further, analysis has shown that this 

treatment is compliant with the Canadian ballast water discharge regulations. 

This recommendation must, however, be tempered by several caveats. 

First, although ballast water may contain many types of taxa, only zooplankton 

were tested in these experiments. Zooplankton were used as model organisms 

because they are abundant in ballast tanks, because their viability can be 

assessed easily using light microscopy, and because the Great Lakes have 

sustained many invasions recently by zooplankton (e.g. Bythotrephes 

longimanus, Cercopagis pengoi, Daphnia lumholtzi). Discharge standards, 

however, regulate not just zooplankton, but the total number of individuals for five 

classes of organisms (Table 1). Thus, it is necessary to consider all taxa when 

assessing brine treatment, and results from zooplankton alone may not reflect 

efficacy against all biotic groups. At a minimum, I would recommend that fish, 

phytoplankton, and microbes also be considered.  

Since fish are a sexual species, high propagule pressure is necessary for 

individuals to find appropriate mates (Drake and Lodge, 2004). Although fish 

have been found in ballast tanks (Carlton and Geller, 1993; Wonham et al., 
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2000), they are not expected to have high propagule pressure because they are 

usually excluded from ballast uptake by intake screens that prevent the entry of 

large animals when ballast is loaded. It is therefore expected that fish pose a low 

introduction risk even if they can survive ballast water treatment. Regardless, 

preliminary tests have shown that the round goby (Neogobius melanostomus), a 

previously introduced fish which is known to be susceptible to BWE (Ellis and 

MacIsaac, 2009), is killed by brine exposure of 45‰ to 60‰ (Santagata et al., 

2008). 

Phytoplankton are constrained by the same osmoregulatory mechanisms 

that apply to zooplankton, but most exhibit a remarkable ability to tolerate 

changes in salinity (Kirst, 1989). However, this usually means that they can 

tolerate salinities below, rather than above, their habitat salinity (Brand, 1984). In 

fact, a review of 46 marine phytoplankton species reported salinity tolerances 

between 0 and 46‰ (Brand, 1984). Although it is not certain if exposure to 115‰ 

brine will kill phytoplankton, I expect that brine would negatively affect these taxa 

based on the information above.  

Fungi, bacteria and viruses are also a concern as they can cause great 

problems to both human and ecosystem health. The salinity tolerance of these 

taxa may vary, but most fungi are killed at a NaCl concentration of two to 30‰, 

and excluding halophilic taxa, most bacteria are killed at a NaCl concentration of 

100‰ or less (Dr. Carol Litchfield, George Mason University, personal 

communication). Viruses, which require a host, should be killed when host taxa 
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are killed. Therefore, I expect that brine treatment should be effective in 

eliminating most fungi, bacteria and viruses from ballast water. 

Altogether, although it has not been empirically tested, I expect that all 

taxa that are transported in ballast water, with the exception of halophilic 

bacteria, will be negatively affected by brine treatment. Further, since ballast 

water exchange is currently relied upon to reduce the propagule pressure of all 

taxa, and acute tolerance to natural seawater is usually higher than NaCl 

(Kefford et al., 2004), it is expected that brine will be at least as effective in 

eliminating ballast water taxa as BWE. 

The next issue to consider is the environmental impact of releasing brine 

into the Great Lakes. Recently, there has been increasing concern about the 

environmental implications of road salt run-off entering waterways (d’Itri, 1992; 

Jones et al., 1992; Forman and Alexander, 1998), and because brine would be 

released into the environment post-treatment, it could contribute to the problem. 

However, it is unlikely ships’ brine would be a great concern for three reasons. 

First, brine would dilute readily upon its release and most aquatic invertebrates 

tolerate acute exposures in the doses expected (Blasius and Merritt, 2002). 

Second, the amount of brine entering the Great Lakes would be insignificant 

compared to the amount that already enters as road salt run-off each year, if this 

treatment is used as intended (i.e. as a backup for incomplete exchange or if a 

treatment technology fails) (Jenkins, 2007). Third, the net impact of treating a 

NOBOB ship, would be far less than that of a BOB ship that enters the Great 

Lakes after conducting ballast water exchange (Jenkins, 2007). I do not, 
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therefore, believe that brine treatment will cause a significant negative impact to 

the environment. 

The final caveat to this study is that laboratory-based testing methods 

were used instead of ship-scale trials. I used lab-based studies because they are 

much more logistically and economically feasible, and they allowed me to 

manipulate variables that would not have been feasible in shipboard studies. 

However, since my study only examined brine efficacy in vitro, it is not possible 

to say for certain that the results would be identical to those in vivo. For example, 

my recommendation of a 115‰ treatment assumes complete mixing of brine in 

tanks to achieve a uniform treatment salinity. However, vertical tank mixing does 

not always occur when ballast water flushing is completed (United States Coast 

Guard, 2004). It is therefore a concern that brine may not mix thoroughly with 

residual waters in ballast tanks (Jenkins, 2007), and a uniform brine salinity may 

not be achieved. If thorough mixing does not occur, higher survival rates can be 

expected since lower brine concentrations are not as effective in exterminating 

taxa. Therefore, I recommend that ship-scale studies be conducted before 

treatment is put into practice. 

The objectives of this thesis were to evaluate the efficacy of NaCl brine 

treatment to i) determine an acceptable treatment standard to exterminate >95% 

of ballast tank taxa, ii) determine any biotic or abiotic condition that may 

decrease the efficacy of this treatment, and iii) determine if mortality was 

consistent amongst all taxa. After thorough investigation, I believe that a one-

hour treatment of 115‰ brine will exterminate nearly all ballast water taxa. 
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Treatment efficacy was influenced by the habitat salinity and taxonomic group of 

invertebrates in trials; however, at a concentration of 115‰, variation was 

insignificant and the treatment was highly and broadly effective. After literature 

review, I believe that ballast water taxa not examined in this study will be 

negatively affected by brine treatment. Additionally, I do not believe that brine 

release into the Great Lakes will be a significant hazard. However, before 

implementation, full ship-scale trials are necessary to ensure that similar results 

are seen in vivo. In conclusion, I believe that 115‰ brine treatment will be a very 

effective and beneficial treatment for ballast water that will pose little interference 

to commercial shipping, but greatly enhance the protection of the Great Lakes 

against NIS. 
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Table 1. Maximum density of organisms and indicator microbes discharged after 

ballast water treatment (Canada Shipping Act, 2006). (cfu = colony-forming unit) 

Organism or Indicator Microbe Allowable discharge 

Organisms ≥ 50μm <10 viable organisms m-3 

Organisms <50μm ≥ 10μm <10 viable organisms mL-1 

Toxicogenic Vibrio cholera  

(O1 and O139) 

1 cfu 100mL-1 or 

1 cfu g-1 zooplankton samples (wet 

weight) 

Escherichia coli 250 cfu 100mL-1 

Intestinal enterococci 100cfu 100mL-1 
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Table 2. Major ion constituents of Natural Seawater and NaCl brine. NaCl brine 

was analyzed in the Metal Analysis Laboratory, GLIER, University of Windsor by 

J.C. Barrett.  

Ion  Natural Seawater (g kg-1) NaCl brine (g kg-1) 

Sodium (Na+) 10.7811 26.343 

Potassium (K+) 0.3991 0.083 

Magnesium (Mg++) 1.2841 0.107 

Calcium (Ca++) 0.4121 1.40 

Strontium (Sr++) 0.0081 0.027 

Chloride (Cl-) 19.3531      31.436 

Sulfate (SO4
--) 2.7121       4.649 

Bicarbonate (HCO3
-) 0.1261 Not available 

Bromide (Br-) 0.0671 Not available 

Boric Acid (B(OH)3) 0.0261 Not available 

Fluoride (F-) 0.0011      0.177 

Iron 0.0002 0.001 

Boron 0.0042 0.005 

 

1Hovanec and Coshland, 2004 

2Turekian, 1968 
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Table 3. Environmental data on North Sea collection locations. 

Port, Country Annual 

Temperature 

Range (°C) 

Salinity range 

(‰) 

Invasion 

Risk 

Antwerp, Belgium 1-25 0.7-10 High1 

Rotterdam, The Netherlands 5-25 0.2-30 High1 

Bremen, Germany 1-24 1-24 High1 

 

Great Lakes Region2 0-27 <0.2 N/A 

 

1Ruiz and Santagata, 2007 

2Reid and Orlova, 2002 
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Table 4. Zooplankton collection information, experimental treatments applied, 

number of replicates (reps), and number of organisms tested for each trial. 

Collection locations: S- BOB tank that has undergone BWE; D- Detroit River; A= 

Port of Antwerp; R- Port of Rotterdam; B=Port of Bremen; N- Waal River, 

Nijmegen. 

Exp Date Collection Test 

Temp. 

(ºC) 

Brine 

Salinities 

Tested 

(‰) 

Reps # of 

orgs. 

tested 

Area Temp. 

(ºC) 

Salinity 

(‰) 

B 27/07/07 S 22.8 30 22 60, 77, 115 5 2555 

1A 21/08/07 D 22.0 0 22 15, 30, 60 5 308 

C 10/09/07 S 18.7 39 22 60, 77, 115 5 135 

D 25/10/07 S 15.0 22 11 60, 77, 115 5 2067 

E 12/11/07 S 10.0 34 11 60, 77, 115 5 1857 

F 27/11/07 S 5.0 34 11 60, 77, 115 5 1443 

1B 02/05/08 D 11.0 0 11 15, 30, 60 4 571 

W1 16/07/08 A 20.3 4 22 77, 115 4 2083 

R2 17/07/08 R 19.3 22 22 77, 115 4 2855 

W2 21/07/08 A 20.5 9 22 77, 115 4 3041 

R3 22/07/08 R 18.6 4 22 77, 115 4 7078 

R4 22/07/08 R 17.3 21 22 77, 115 4 2025 

R5 24/07/08 R 21.6 20 22 77, 115 4 7736 

G1 29/07/08 B 24.0 2 22 77, 115 4 2313 
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W3 31/07/08 A 24.2 8 22 77, 115 4 1873 

R6 01/08/08 R 21.3 3 22 77, 115 4 3740 

N1 04/08/08 N 21.0 1 22 77, 115 4 1196 
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Table 5. Median (range) survival rate of organisms after one hour of brine 

exposure at a salinity of 115‰. If no range is marked, survival in all replicates is 

equal to that reported for the median. All taxa were collected from North Sea 

ports with the exception of those marked with an asterisk which were collected 

from BOB tanks arriving in the Great Lakes.  

Exp. 

Temp 

(°C) 

Source

Salinity 

(‰) 

Survival rate (%) 

Copepod Copepod 

nauplii 

Rotifer Other All 

22 1 0 0 0 0 0 

22 2 0 0 0 0 0 

22 3 0 0 0 0 0 

22 4 0 0 0 0 0 

22 4 0 0 0 0 0 

22 8 0 0 0 0 0 

22 9 0 0 0 0 0 

22 20 0 0 0 0 0 

22 21 0 N/A 0 0.09 (0-0.38) 0.07 (0-0.23) 

22 22 0 N/A 0 0 (0-0.54) 0 (0-0.34) 

11 22* 0 0 (0-8.29) 0 N/A 0 (0-5.33) 

22 30* 0 0 N/A 0 0 

11 34* 0 0 N/A 0 0 

11 34* 0 0 N/A 0 0 

22 39* 0 0 0 0 0 
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Table 6. Median (range) survival rate of organisms after one hour of brine 

exposure at a salinity of 77‰. If no range is marked, survival in all replicates is 

equal to that reported for the median. All taxa were collected from North Sea 

ports with the exception of those marked with an asterisk which were collected 

from BOB tanks arriving in the Great Lakes.  

Exp. 

Temp 

(°C) 

Source

Salinity 

(‰) 

Survival rate (%) 

Copepod Copepod 

nauplii 

Rotifer Other All 

22 1 0 0 0 0 0 

22 2 0 0 0 0 0 

22 3 0 0 0 0 (0-36.36) 0 (0-0.33) 

22 4 0 0 N/A 0 0 

22 4 0 0 0 0 0 

22 8 0 0 0 0 (0-54.55) 0 (0-0.98) 

22 9 0 0 N/A 0 (0-46.38) 0 (0-0.46) 

22 20 0 N/A 0 0 (0-3.28) 0 (0-0.60) 

22 21 0 0 0 0 (0-2.80) 0 (0-1.65) 

22 22 0 0 0 12.21  

(0-21.45) 

7.75  

(0-12.09) 

11 22* 0 0 (0-10.22) N/A 0 0 (0-5.78) 

22 30* 0 0 N/A 66.67  

(50.00-100.00) 

2.43  

(1.83-3.30) 

11 34* 0 0 N/A 0 0 
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11 34* 0 0 N/A 0 (0-100.00) 0 (0-2.75) 

22 39* 0 0 0 0 0 
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Table 7. Median (range) survival rate for organisms after exposure to 60‰ brine. 

If no range is marked, survival in all replicates is equal to that reported for the 

median. Taxa were collected from ballast tanks on BOB ships arriving in the 

Great Lakes, except those salinities marked with an asterisk which were 

collected from the Detroit River.  

Collection 

Salinity 

(‰) 

Exposure 

Time 

(hours) 

Exp. 

Temp 

(°C) 

Survival rate (%) 

Copepod Copepod 

nauplii 

Rotifer Other All 

0* 1 22 0 0 0 0 0 

0* 1 11 0 0 0 0 0 

22 1 11 0 

(0-3.46) 

2.97 

(0-5.23) 

N/A 0 2.37 

(0-3.75) 

30 2 22 0 

(0-7.27) 

0 

(0-2.89) 

N/A 0 

(0-

 

2.24 

(0-2.61) 

34 1 11 0 

(0-100.00) 

0 0 N/A 0 

(0-100.00) 

34 2 11 0 

(0-19.00) 

0 N/A 0 0 

(0-4.36) 

39 1 22 0 0 0 0 0 
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Table 8. Median (range) survival rate of organisms collected from a salinity of 

0‰ (freshwater taxa) after one hour of brine exposure at a salinity of 15‰, or 

30‰. If no range is marked, survival in all replicates is equal to that reported for 

the median. All taxa were collected from the Detroit River. 

[Brine] 

(‰) 

Experiment 

temperature 

(°C) 

Survival rate (%) 

Copepod Copepod 

nauplii 

Rotifer Other All 

15 22 0 0 

(0-40.70) 

0 

(0-100.00) 

0 0 

(0-29.82) 

11 0 0 0 0 0 

30 22 0 0 0 0 0 

11 0 0 0 N/A 0 
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Table 9. Individuals that survived brine exposure in North Sea trials. 

Brine 

Treatment 

Habitat salinity at 

collection (‰) 

Species Number of individuals 

115‰ 21 Cirripedia larvae 2 

115‰ 22 Nanorchestes mite 1 

77‰ 3 Rhombognathides mite 1 

77‰ 8 Unidentified 1 

77‰ 8 Littorina neglecta 1 

77‰ 9 Unidentified 1 

77‰ 20 Cirripedia larvae 8 

77‰ 21 Cirripedia larvae 15 

77‰ 22 Cirripedia larvae 70 

77‰ 22 Nanorchestes mite 1 
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Figure 2. Sampling sites at port of Antwerp. Salinity (‰) at collection is indicated. 

9‰

8‰

4‰

50



0

5

10

15

20

25

30

Brine concentration (‰)

S
ur

vi
va

l r
at

e 
(%

)
Figure 3. Mean (+SD) survival rate for zooplankton exposed to NaCl brine. White lines 

mark median values. Exposure time is one hour unless concentration is marked with an 

asterisk; (*) indicates two hours of exposure and (**) indicates three hours of exposure. 

Note that the first two bars (15, 30) represent data for freshwater zooplankton only, while the 
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Figure 5. Mean (+SD) survival rate for (A) freshwater, (B) North Sea, and (C) ballast

water zooplankton exposed to NaCl brine. White lines mark median values. Exposure

time is one hour unless concentration is marked with an asterisk; (*) indicates two hours 

of exposure and (**) indicates three hours of exposure. Survival rates have been
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Figure 6. Mean (+SD) survival rate for (A) freshwater and (B) ballast water zooplankton

exposed to brine treatment at 22°C (solid bar) and 11°C (open bar).White lines (22°C) 

and black lines (11°C) mark median values. Exposure time is one hour unless 

concentration is marked with an asterisk; (*) indicates three hours of exposure. Survival 

rates have been corrected to account for survival in controls (see Methods). All survival 

differences between exposure temperatures were found to be non-significant.  

A)

15* 30 60

0
2
4
6
8

10
12
14
16
18
20
22

77 115

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

0 0 0 00

B)

S
ur

vi
va

l r
at

e 
(%

)

Brine concentration (‰)
54



Figure 7. Mean (+SD) survival rate for copepoda (black bars), copepod nauplii (vertical 

stripe bars), rotifera (grey bars), “other” taxa (open bars), and Cirripedia larvae (diagonal stripe

bars) exposed to one hour of NaCl brine. Horizontal lines mark median values. (*) indicates 

significant difference in survival between groups. Survival rates have been corrected to account 

for survival in controls (see Methods).
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Figure 9. Photos of surviving individuals from North Sea trials. (A) Rhombognathides mite

(B) Nanorchestes mite (C) Cirripedia larvae (D) gastropoda.
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Appendix 2. Non-exhaustive list of taxa included in trials.  

Annelida 
 Oligochaete 
  Oligochaete indet. 

Polychaete 
Polychaete larvae  
Phyllodocidae indet. 
Spionidae indet. 

  
Arthropoda  

Arachnida  
Acarina 

Nanorchestes spp. 
Rhombognathides spp.  

Cirripedia 
Cirripedia larvae 

Crustacea 
Branchiopoda  

Cladocera indet. 
   Bosmina spp. 
   Leptodora spp. 
   Diaphanasoma spp. 

Crustacea indet. (nauplius) 
 Copepoda 

Calanoida indet. 
Acartia tonsa 
Eurytemora spp.  
Paracalanus parvus 
Pseudiaptomus coronatus  
Pseudocalanus elongatus 

Cyclopoida indet. 
Cyclopina spp.  
Diacyclops spp. 
Halicyclops spp. 
Mesocyclops spp. 
Oithona helgolandicus  
Oncaea borealis  

Harpacticoida indet. 
Laophonte spp. 
Nitocra spp.  
Diosaccus spp.  

Malacostraca  
Mysidae indet. 

  Decapoda larvae  
Ctenophora  
 Nuda  
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Beroida spp. 
Dinoflagellata  

Noctiluciphycae  
Noctiluca scintillans 

Hexapoda  
 Insecta 
  Insecta indet. 
Mollusca  

Gastropoda indet. 
Littorina neglecta 
Omalgyra spp. 

Protozoa  
Heliozoa indet. 

Rotifera  
  Conochilus spp. 
  Keratella spp.   

Lecane spp. 
  Synchaeta spp. 
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Appendix 3. Results of Kruskal-Wallis test to determine the effect of brine 
concentration on survival. All exposure times were one hour. Significant differences are 
shown in bold.  Collection information for each experiment can be found in Table 4. 
Groups: A= all organisms, C= copepoda, N=copepod nauplii, R=rotifera, L=Cirrepdia 
larvae and O=all organisms that are not copepoda, copepod nauplii, rotifera, or 
Cirripedia larvae.   

Experiment [Brine] 
 Group 

U (Mann-Whitney) or 
H (Kruskal-Wallis) 

value 
Degrees of 

freedom 
p 

value 

1A 30,60 A 8 1 1 
1B 30,60 A 8 1 1 

B 
 

77, 115 
 

A 25 1 0.005 
C 12.5 1 1 
N 12.5 1 1 

C 60,77 A .5 1 1 
D 60,77,115 A 1.276 2 0.528 
E 60,77,115 A 4.286 2 0.170 
F 77,115 A 15 1 0.317 

G1 77,115 A 6 1 1 
N1 77,115 A 8 1 1 

R2 77,115 
A 16 1 0.018 
R 8 1 1 
L 16 1 0.018 

R3 77,115 
A 16 1 0.018 
R 8 1 1 
L 13 1 0.139 

R4 77,115 A 8 1 1 

R5 77,115 
A 14 1 0.047 
R 8 1 1 
L 14 1 0.047 

R6 77,115 A 10 1 0.317 
W1 77,115 A 8 1 1 
W2 77,115 A 10 1 0.317 
W3 77,115 A 10 1 0.317 
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Appendix 4.  Results of Kruskal-Wallis test to determine the effect of temperature on 
survival rates. Collection information for each experiment can be found in Table 4. 
Significant differences are shown in bold. Group: A= all organisms   

Phase Experiments 
Compared 

Exposure 
Time and 

[Brine]  
 

Group 
U (Mann-Whitney) 

or 
H (Kruskal-Wallis) 

value 

Degrees 
of 

freedom 
P 

value 

Ballast 
tank 

BC vs. DEF 1 hr / 77ppt A 23.0 1 0.050 
There is no significant difference between ballast water organisms exposed to 
one hour of 77ppt brine treatment at 22°C (BC) or 11°C (DEF). 

Ballast 
tank 

B vs. DEF 1 hr / 115ppt A 40 1 0.564 
There is no significant difference between ballast water organisms exposed to 
one hour of 115ppt brine treatment at 22°C (B) or 11°C (DEF). 

Detroit 
River 

1A vs. 1B 
3hr / 15ppt A U=10 1 0.317 
1h / 30ppt A U=8 1 1 
1h / 60ppt A U=8 1 1 

No significant difference in survival between freshwater organisms exposed to 
brine treatment at 22°C (1A) or 11°C (1B). 
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Appendix 5. Results of Kruskal-Wallis test to determine the effect of habitat salinity on 
survival to brine treatment.  All exposure times were one hour.  Collection information 
for each experiment can be found in Table 4. Significant differences are shown in bold.  
Group: A= all organisms.   

Experiments 
Compared 

[Brine] 
 Group U (Mann-Whitney) or 

H (Kruskal-Wallis) value 
Degrees of 

freedom 
P 

value 
B vs. C 77ppt A 5 1 0.143 

There is no significant difference in survival of zooplankton between B 
(30ppt) and C (39ppt) due to habitat salinity after 1 hour of exposure to 
77ppt brine. 

D vs. E 60ppt A 13.5 1 0.046 
There is a significant difference in survival of zooplankton between D 
(22ppt) and E (34ppt) due to habitat salinity after 1 hour of exposure to 
60ppt brine. 

D vs. EF 77ppt A 33.5 1 0.137 
There is no significant difference between D (22ppt), and E (34ppt), F 
(34ppt) after 1 hour of exposure to 77ppt brine.  

D vs. EF 115ppt A 30 1 0.157 
There is no significant difference between D (22ppt), and E (34ppt), F 
(34ppt) after 1 hour of exposure to 115ppt brine. 

All North  
Sea trials 

77ppt A 29.813 8 <0.001 
There is a significant difference between Phase III experiments 
attributed to habitat salinity for “all” organisms.   

All North Sea 
trials 

115ppt A 8.211 8 0.413 
There is no significant difference between Phase III experiments 
attributed to habitat salinity after 1 hour of exposure to 115ppt brine. 

 

 

 

 

 

 

 

 

 

 

73



Appendix 6. Results of Kruskal-Wallis tests used to compare survival between grouped 
organisms in trials.  All exposure times were one hour. Significant differences are shown 
in bold.  Groups: A= all organisms, C= copepoda, N=copepod nauplii, R=rotifera, 
L=Cirripedia larvae and O=all organisms that are not copepoda, copepod nauplii, 
rotifera, or Cirripedia larvae.   

[Brine] Groups 
Compared 

Kruskal-Wallis 
test statistic 

Degrees of 
freedom P value 

60 C/N/R/O 3.517 3 0.319 
77 C/N/R/L/O 26.049 4 <0.001 

115 C/N/R/L/O 35.966 4 <0.001 
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Appendix 7. Results of Kruskal-Wallis test used to determine the effect of organism 
collection site on survival to brine treatment.  All exposure times were 1 hour. Collection 
information for each experiment can be found in Table 4. Significant differences are 
shown in bold. Group: A= all organisms.   

Experiments 
Compared 

[Brine]  
 Group 

U (Mann-Whitney) or 
H (Kruskal-Wallis) 

value 
Degrees of 

freedom 
P 

value 

D vs. R2 77ppt  A 2 1 0.046 
There is a significant difference in survival between port taxa and ballast tank taxa.  

D vs. R2 115ppt A 10 1 1 
There is no significant difference in survival between port taxa and ballast taxa. 
 

 

75



76 
 

Vita Auctoris 
 
Name:   Johanna Newbold Bradie 
 
Place of Birth: Windsor, Ontario, Canada 
 
Hometown:  Amherstburg, Ontario, Canada 
 
Education:  General Amherst High School, Amherstburg, Ontario 
   1999-2003, Grade 12 Diploma, Ontario Academic Credits 
 
   University of Western Ontario, London, Ontario 

2003-2007, Honours BSc Biology- Genetics and Medical 
Science 

 
   Great Lakes Institute for Environmental Research,  

University of Windsor, Windsor, Ontario 
2007-2009, MSc Environmental Science 

 
 


	University of Windsor
	Scholarship at UWindsor
	2009

	Brine-induced mortality of non-indigenous species in ballast water
	Johanna Bradie
	Recommended Citation


	thesis_1
	Body_Final
	Results

	Figures_Final
	Figures.pdf
	Fig1.pdf
	Fig2
	Fig3
	Fig4
	Fig5
	Fig6
	Fig7
	Fig8

	Fig9

	Appendices_Final
	appendix1.pdf
	Slide Number 1

	Appendices1

	VitaAuctoris_Final

