Second order effects in an elastic half-space acted upon by nonuniform loads.

Jianlin Guo
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Guo, Jianlin, "Second order effects in an elastic half-space acted upon by non-uniform loads." (1992).
Electronic Theses and Dissertations. 3390.
https://scholar.uwindsor.ca/etd/3390

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Acquisitions and
Bibliographic Services Branch
395 Wellington Street Ottawa Ontario KIA ON4

Direction des acquisitions et des services bibliographiques

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fail parvenir une photocopie de qualité inférieure.

La reproduction, même partipile, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

Canadä

SECOND ORDER EFFECTS IN AN ELASTIC HALF-SPACE ACTED UPON BY NON-UNIFORIM LOADS

by

Jianlin Guo

A Thesis
submitted to the Faculty of Graduate Studies and Research through the Department of Mathematics and Statistics in partial fulfillment of the requirements for the degree of Master of Science at the University of Windsor

Windsor, Ontario , Canada 1992
*. National Library
of Canada
Acquisitions and
Bibliographic Services Branch
395 Wellington Street Othawa, Ontario KTA ON4

Direction des acquisitions et des services bibliographiques
395, rue Wellington
Ottawa (Ontario) K1AON4

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Canadä

Nome
Guv Jianlin
Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

Muttremuatics

SUBJECT TERM

G/40/5 U.M.I
SUBJECT CODE

Subject Categories

THE HURANTTHES AND SOCIAL SCIENCES

(C)Jianlin Guo, All Rights Reserved, 1992

Approved by:

Dr. N.G. Zamani (Mathematics and Statistics)

Muntyk.s. Madugula

Dr. Murty K.S. Madugula (Civil and Environmental
Engineering)

$\overline{\text { Dr. P.N. Kaloni (Supervisor) }}$
(Mathematics and Statistics)

Abstract

In this thesis we consider the second order elasticity problems in an isotropic: compressible and incompressible elastic half-space which is acted upon by the nonuniformly distributed loads. The two cases of non-uniform normal and shear loading are considered separately. In both cases we obtain the closed form solutions. The method of integral transform is employed to determine the solutions for both linear and nonlinear cases.

The basic equations governing the finite elastic deformation are given in chapter I. For the purposes of reference the equilibrium equations of the classical elasticity and their general solutions are also written down in this chapter.

Chapter II is concerned with the normal load. By noticing the symmetry of the problem in the present case we employ the Papkovitch-Neuber displacement solution to both linear and second order problems. Several linear and a second order illustrations are presented. Some of these linear solutions also occur in the physical circumstances and the others are probably new. Solutions to the incompressible material are also considered. Some numerical results for the compressible and incompressible materials are given in the final section.

Chapter III discusses the shear load. Since the problem now is no longer symmetric the equations to be solved are much more complicated. The displacement vector is chosen to be the Garlerkin's solution plus an additional term. By this choice we are able to solve some non-homogeneous fourth order partial differential equations. Again some linear illustrations are presented and most of these appear to be new. A second order illustration is then discussed in the final section.

In the final chapter some conclusions are given.

Dedicated to my parents for their care and encouragement

ACKNOWLEDGEMENTS

I would like to acknowledge foremost the constructive guidance of my supervisor, Professor P. N. Kaloni. Without his patience, knowledge and help, this thesis could not have been completed.

I would like to thank the members of my committee, Professor N. G. Zamani and Professor Murty K.S. Madugula, for their comments and encot dagement. I would also like to thank Dr. R. Caron, Head of the Deparment of Mathematics and Statistics, for providing graduate assistantship and research facilities. In addition, I would like to thank Vrs. Yu Qin and Tonghui Wong for their help in tyang this thesis.

Finally, I would like to tlank Xiangli Luo, my wife, whose support and understanding was vital to my completion of this thesis.

TABLE OF CONTENTS

ABSTRACT i
DEDICATION ii
ACKNOWLEDGEMENTS iii
CHAPTER 1. BASIC EQUATIONS 1

1. Introduction 1
2. Constitutive Equations 5
3. Equilibrium Equations and Boundary Conditions 14
4. Equations of Linear Elasticity Theory 17
CHAPTER 2. SECOND ORDER EFFECTS IN AN ELASTIC
HALF-SPACE ACTED UPON BY A NON-UNIFORM NORMAL LOAD 20
5. Statement of the Problem 20
6. The Linear Solution 21
7. The Second Order Solution 24
8. Illustrations 30
9. Reduction to the Incompressible Case 37
10. Numerical Results 39
CHAPTER 3. SECOND ORDER EFFECTS IN AN ELASTIC HALF-SPACE ACTED UPON BY A NON-UNIFORM SHEAR LOAD 43
11. Statement of the Problem 43
12. The Linear Solution 44
13. The The Second Order Solution 48
14. Illustrations 57
CHAPTER 4. SUMMARY AND FUTURE DIRECTIONS 68
REFERENCES 70
APPENDICES 74
FIGURES 85
VITA AUCTORIS 87

CHAPTER I

BASIC EQUATIONS

1.1 Introduction.

In finite elasticity theory the mathematical equations governing the deformation of an isotropic compressible elastic material are highly nonlinear. As a result, the exact solutions of the boundary value problems have been possible in only some restricted cases. Most of these are axially symmetric problems for which the differential equations are effectively reduced to ordinary nonlinear equations and which can be integrated when material is incompressible. For two-dimensional problems other simplifications can be made and the complex variable method can often be used. However, when we are concemed with compressible materials or with general type of deformations recourse has to be taken to the approximate methods. The method of successive approximation is one such technique which has received considerable attention. In the method of successive approximation, the displacements,stresses, etc. are expanded in a power series in some suitable parameter, with non-zero radius of convergence. A general expansion scheme has been given by Green and Adkins(1970). Signorini(1949) and Stoppeli(1954,1955) have discussed the results on existence and uniqueness of series solution under suitable conditions. Signorini(1949) has shown that when the applied tractions are specified over the boundary, such that the total load is equipollent to zero but does not possess an axis of equilibrium, then a series expansion of the elastic equations is unique if it exists. Further, when the applied tractions and body forces both contain a multiplying parameter, Stoppeli $(1954,1955)$ has given a proof of existence and uniqueness of the solution of the general elastic equations. Stoppeli(1954,1955)
has also shown that the displacement can be expanded as an absolutely convergent power series in some parameter, with non-zero radius of convergence, provided the parameter is sufficiently small and provided sufficiently smooth solutions of the classical linear equations of elasticity exist. As Green and Adkins (1970) point out, there may, however, be solutions of the linear elastic equations which do not satisfy these conditions. Examples of such cases include the solutions of flat-ended punch problem and crack problems.

In the method of successive approximation, if we keep the first order terms in the parameter and neglect the terms of higher order than the first we get the classical or linear elasticity equations. If we keep the first and second order terms and neglect the terms of higher order than the second we get the second order elasticity equations. Similariy, if we keep all the terms lower or equal to the z-th order and neglect the terms of higher order than the n-th we obtain the n-th order elasticity equations. By series expansion, Signorini(1930) reduces a problem of the n-th order to n problems in linearized theory, for the same material. For the second order theory a method of the same kind was developed by Rivlin(1953). In this thesis we consider the second order elasticity equations. Second order solutions include terms which are quadratic in the displacement gradients. In general, obtaining a particular integral in explicit form is a formidable task in solving the second order problems. Rivlin(1953) and Green and Spratt(1954) were among the first to formulate second order theories. To find the solution of a second order problem, Rivlin(1953) gives following steps to be sufficient:

1. On the basis of the linearized theory, calculate the displacements arising from the given forces.
2. On the basis of the second order theory, calculate the additional forces needed to maintain the displacements found in step 1.
3. On the basis of the linearized theory, calculate the displacements corresponding to the additional forces just determined. These displacements, reversed, are the second order displacements arising from the given forces.

This approach reduces the second order problem to the solution of linear elasticity problem with body forces and surface displacements or tractions which are quadratic in the first order solutions. A comprehensive account of this method is given by Truesdell and Noll(1965), Green and Adkins(1970) and Spencer(1970). Earlier Spencer(1959) has also considered the approximation based on perturbation of the strain energy function. Goodman and Naghdi(1989) have presented the use of displacement potentials for the solution of compressible or incompressible second order elasticity problem, but this method is somewhat similar to Rivlin's method.

Several methods for solving special problems in the second order elasticity have also been developed. Shield(1967) has discussed inverse deformation results in finite elasticity and Choi and Shield(1981) have applied this approach to some axisymmetric problems. It is found that there are only two elastic constants that govern this special class of compressible material. Carlson and Shield(1965) have developed a method to find the second order solution for a special class of problems without solving the boundary value problem once the first order solution is known. For incompressible material a variety of techniques for the second order theories have been proposed. Chan and Carlson(1970) have developed a method and applied it to solve the second order torsion problem. The key to this method is that it reduces the second order problem to a classical problem of plane strain, without body force. Their results are expressed in terms of two elastic constants since the strain energy function in this situation takes the Mooney's form (Mooney(1940)). Chan and Carlson suggest that their method may be applicable to other problems, and their discussion is amplified by Hill(1973). Hill has shown that the Chan and Carlson's
procedure takes on complete generality whenever the deformation of the material is such that the strain energy function is a symmetric function of the strain invariants \bar{I}_{1} and \bar{I}_{2}. He has discussed this approach for a special class of material by using the results for the inverse deformation developed by Shield(1967). For axisymmetric deformation the general expansion e:pressions of isotropic incompressible clastic equations have been given by Selvadurai and Spencer(1972) and they have been applied by Selvadurai(1974) to torsion of a thick spherical shell. Carroll and Rooney (1984) have extended the Chan and Carlson's method and have shown that the induced body force field can be expressed as the sum of a conservative field and a residual field. The conservative field can be absorbed in the arbitrary pressure. The residual field is also conservative for several classes of problems, including torsion, plane strain, antiplane shearing and potential displacements. They discuss two such illustrative problems. The contact problems in second order elasticity theory have been considered by Choi and Shield(1981) and Sabin and Kaloni(1983, 1989). As stated earlier, Choi and Shield(1981) used the inverse deformation approach of Shield(1967) in their work, while Sabin and Kaloni(1989) employed the standard second order elasticity model in their calculations.

In the present thesis we follow Rivlin's approach to consider the second order problem in a compressible elastic half-space which is acted upon by non-uniformly distributed loads. In Chapter II we consider normal load case. In this case the problem is axisymmetric. We use Papkovitch-Neuber displacement solution and employ the method of integral transforms, as discussed by Sneddon(1972), in both the linear and second order solutions. Several special linear solutions are given in accordance with the classical results. In the final section we specialize the second order solution for isotropic incompressible material. Chapter III deals with the shear loads. The procedure of finding solutions is same as that in Chapter II.

However, the problem now is no longer axisymmetric and the equations to be solved are much more complicated. It turns out that by selecting the displacement vector to be the Garlerkin's solution plus the curl of an additional harmonic vector in the linear solution and tie Garlerkin's solution plus an irrotational term in the second order solution and by employing the integral transformation technique we are able to obtain the linear and second order solutions. Several linear solutions are again documented in this case and two of these solutions appear to be new. The second order solution is then discussed for one particular situation.

1.2 Constitutive Equations.

Suppose that the elastic body \mathcal{B} occupies the region \mathcal{R}_{0} at time $t=0$ and moves so that at a subsequent time t it occupies a region \mathcal{R}. We make the assumption(which is an essential feature of continuum mechanics) that we can identify individual particles of the body B, that is, we assume that we can identify a point of \mathcal{R} (denoted by P) with position vector y which is occupied at t by the particle which was at P_{0} at the time $t=0$. Then the motion of \mathcal{B} can be described by specifying the dependence of the positions y of the particles of \mathcal{B} at time t on their positions \mathbf{x} at time $t=0$, that is, by equations of the form

$$
\begin{equation*}
\mathbf{y}=\mathbf{y}(\mathbf{x}, t) \tag{1.1}
\end{equation*}
$$

We assume that the Jacobian

$$
\begin{equation*}
J=\operatorname{det}\left(\frac{\partial y_{i}}{\partial x_{j}}\right)>0 \tag{1.2}
\end{equation*}
$$

The physical significance of this assumption is that the material of the body cannot penetrate itself, and that material occupying a finite non-zero volume can-
not be compressed to a point or expanded to infinite volume during the motion. Mathematically (1.2) implies that (1.1) has the unique inverse

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}(\mathbf{y}, t) \tag{1.3}
\end{equation*}
$$

The displacement vector u of a typical particle from its position x in the reference configuration to its position y at time t is

$$
\begin{equation*}
\mathbf{u}=\mathbf{y}-\mathbf{x} \tag{1.4}
\end{equation*}
$$

In the material description \mathbf{u} is regarded as a function of \mathbf{x} and t, so that

$$
\begin{equation*}
\mathbf{u}(\mathbf{x}, t)=\mathbf{y}(\mathbf{x}, t)-\mathbf{x} \tag{1.5}
\end{equation*}
$$

and in the spatial description \mathbf{u} is regarded as a function of \mathbf{y} and t, so that

$$
\begin{equation*}
\mathbf{u}(\mathbf{y}, t)=\mathbf{y}-\mathbf{x}(\mathbf{y}, t) \tag{1.6}
\end{equation*}
$$

The representation (1.5) determines the displacement at time t of the particle defined by the material coodinates x_{j}. The representation (1.6) determines the displacement which has been undergone by the particle which occupies the position y at time t.

For linear elasticity the constitutive equations can be written as

$$
\begin{equation*}
t_{i k}=\frac{\partial W}{\partial e_{i k}} \tag{1.7}
\end{equation*}
$$

where W is the strain energy function which may be approximated by a quadratic function of the infinitesimal strain components $e_{i k}$. However, for finite elastic deformation the constitutive equations are much more complicated. The general form may be given by

$$
\begin{equation*}
t_{i k}=f_{i k}\left(F_{j p}\right) \tag{1.8}
\end{equation*}
$$

where $f_{i k}$ are the single-valued functions of $F_{j p}=\partial y_{j} / \partial x_{p}$ and satisfy $f_{i k}=f_{k i}$. When the material is hyper-elastic there exists strain energy function W which is an arbitrary function of the deformation gradient components $F_{j p}$ and can be expressed in the form $W=W(\mathbf{C})$ such that(cf. Atkin and Fox(1980))

$$
\begin{equation*}
t_{i k}=\frac{\rho}{\rho_{0}} \frac{\partial y_{i}}{\partial x_{k}} \frac{\partial y_{k}}{\partial x_{s}}\left(\frac{\partial W}{\partial C_{p s}}+\frac{\partial W}{\partial C_{s p}}\right) \tag{1.9}
\end{equation*}
$$

where $\mathbf{C}=\mathbf{F}^{T} \bullet \mathbf{F}, \rho_{0}$ and ρ are densities at time $t=0$ and time t respectively. Equation (1.9) is the general form of the constitutive equation for a finite elastic solid.

If the material is isotropic, then W is an invariant of \mathbf{C} and therefore it can be expressed as a function of the strain invariants \bar{I}_{1}, \bar{I}_{2} and \bar{I}_{3}, so that

$$
\begin{equation*}
W=W\left(\bar{I}_{1}, \bar{I}_{2}, \bar{I}_{3}\right) \tag{1.10}
\end{equation*}
$$

and we have

$$
\begin{gather*}
\frac{\partial W}{\partial C_{p s}}=\frac{\partial W}{\partial \bar{I}_{1}} \frac{\partial \bar{I}_{1}}{\partial C_{p s}}+\frac{\partial W}{\partial \bar{I}_{2}} \frac{\partial \bar{I}_{2}}{\partial C_{p s}}+\frac{\partial W}{\partial \bar{I}_{3}} \frac{\partial \bar{I}_{3}}{\partial C_{p s}} \tag{1.11}\\
\frac{\partial \bar{I}_{1}}{\partial C_{p s}}=\frac{\partial C_{k k}}{\partial C_{p s}}=\delta_{k p} \delta_{k s}=\delta_{p s} \tag{1.12}\\
\frac{\partial \bar{I}_{2}}{\partial C_{p s}}=\frac{1}{2} \frac{\partial C_{i i} C_{k k}-C_{i k} C_{i k}}{\partial C_{p s}}=\bar{I}_{1} \delta_{p s}-C_{p s} \tag{1.13}
\end{gather*}
$$

Since \bar{I}_{3} can be expressed as

$$
\bar{I}_{3}=\frac{1}{3}\left\{t r \mathbf{C}^{3}-\bar{I}_{1} t r \mathbf{C}^{2}+\bar{I}_{2} t r \mathbf{C}\right\}
$$

it follows that

$$
\begin{equation*}
\frac{\partial \vec{I}_{3}}{\partial C_{p s}}=\frac{1}{3}\left\{\bar{I}_{2} \delta_{p s}+\bar{I}_{1}^{2} \delta_{p s}-3 \bar{I}_{:} C_{p s}-\operatorname{tr} \mathbf{C}^{2} \delta_{p s}+3 C_{p k} C_{s K}\right\}=\bar{I}_{2} \delta_{p s}-\bar{I}_{1} C_{p s}+C_{p k} C_{s k} \tag{1.14}
\end{equation*}
$$

By substituting from (1.11) to (1.14) into (1.9) we obtain

$$
\begin{equation*}
t_{i k}=2 \frac{\rho}{\rho_{0}} \frac{\partial y_{i}}{\partial x_{p}} \frac{\partial y_{k}}{\partial x_{s}}\left\{\left(W_{1}+\bar{I}_{1} W_{2}+\bar{I}_{2} W_{3}\right) \delta_{p s}-\left(W_{2}+\bar{I}_{1} W_{3}\right) C_{p s}+W_{3} C_{p j} C_{s j}\right\} \tag{1.15}
\end{equation*}
$$

where

$$
W_{1}=\frac{\partial W}{\partial \bar{I}_{1}}, \quad W_{2}=\frac{\partial W}{\partial \bar{I}_{2}}, \quad W_{3}=\frac{\partial W}{\partial \bar{I}_{3}}
$$

This is a general form of the constitutive equation for an isotropic finite elastic solid. It may be expressed more concisely by using compact notation and $\bar{I}_{3}=\left(\rho_{0} / \rho\right)^{2}$ as

$$
\begin{equation*}
\mathbf{T}=2 \bar{I}_{3}^{-\frac{1}{2}} \mathbf{F} \bullet\left\{\left(W_{1}+\bar{I}_{1} W_{2}+\breve{I}_{2} W_{3}\right) \mathbf{I}-\left(W_{2}+\bar{I}_{1} W_{3}\right) \mathbf{C}+W_{3} \mathbf{C}^{2}\right\} \bullet \mathbf{F}^{\mathbf{T}} \tag{1.16}
\end{equation*}
$$

This equation can be further simplified by noting that

$$
\mathbf{B}=\mathbf{F} \bullet \mathbf{F}^{T}, \quad \mathbf{B}^{2}=\mathbf{F} \bullet \mathbf{C} \bullet \mathbf{F}^{T}, \quad \mathbf{B}^{3}=\mathbf{F} \cdot \mathbf{C}^{2} \bullet \mathbf{F}^{T}
$$

and hence equation (1.16) may be rewritten as

$$
\begin{equation*}
\mathbf{T}=2 \bar{I}_{3}^{-\frac{1}{2}}\left\{\left(W_{1}+\bar{I}_{1} W_{2}+\bar{I}_{2} W_{3}\right) \mathbf{B}-\left(W_{2}+\bar{I}_{1} W_{3}\right) \mathbf{B}^{2}+W_{3} \mathbf{B}^{3}\right\} \tag{1.17}
\end{equation*}
$$

By the Cayley-Hamilton Theorem, B satisfies that

$$
\begin{equation*}
\mathbf{B}^{3}-\check{I}_{1} \mathbf{B}^{2}+\check{I}_{2} \mathbf{B}-\bar{I}_{3} \mathbf{I}=0 \tag{1.18}
\end{equation*}
$$

and therefore the constitutive equation call finally be written as

$$
\begin{equation*}
\mathbf{T}=2 \bar{I}_{3}^{-\frac{1}{2}}\left\{\left(\bar{I}_{2} W_{2}+\bar{I}_{3} W_{3}\right) \mathbf{I}+W_{1} \mathbf{B}-\bar{I}_{3} W_{2} \mathbf{B}^{-1}\right\} \tag{1.19}
\end{equation*}
$$

This equation can also be written in the component form as

$$
\begin{equation*}
t_{i k}=2 \bar{I}_{3}^{-\frac{1}{2}}\left\{\left(\bar{I}_{2} W_{2}+\bar{I}_{3} W_{3}\right) \delta_{i k}+W_{1} B_{i k}-W_{2} G_{i k}\right\} \tag{1.20}
\end{equation*}
$$

where $G_{i k}$ denotes the co-factor of $B_{i k}$ in det $B_{i k}$. Further simplification arises if the material is incompressible. In this case $\bar{I}_{3}=1$, and the constitative equation can be expressed in the form

$$
\begin{equation*}
\mathbf{T}=-p \mathbf{I}+2 W_{1} \mathbf{B}-2 W_{2} \mathbf{B}^{-1} \tag{1.21}
\end{equation*}
$$

where $-p$ is an arbitrary hydrostatic pressure and is not given by a constitutive equation but can only be determined by using equation of motion and boundary conditions.

There are many forms of strain energy function, which are the special cases of equation (1.10), that have been proposed in the literature for compressible and incompressible elastic solids. We mention some of these here now.

For incompressible materials we note that $\bar{I}_{3}=1$ and hence

$$
\begin{equation*}
W=W\left(\bar{I}_{1}, \bar{I}_{2}\right) \tag{1.22}
\end{equation*}
$$

Since in the reference configuration $\mathbf{C}=\mathbf{I}$, the definitions of \bar{I}_{1} and \bar{I}_{2} imply $\bar{I}_{1}=\bar{I}_{2}=3$. Accordingly W can be regarded as a function of $\bar{I}_{1}-3$ and $\bar{I}_{2}-3$ which will vanish in the reference configuration. For incompressible materials, we have the earliest equation proposed by Treloar(1948)

$$
\begin{equation*}
W=C_{1}\left(\bar{I}_{1}-3\right) \tag{1.23}
\end{equation*}
$$

where C_{1} is a constant. It is also called as neo-Hookean equation. The next in the sequence is Mooney-Rivlin form(see Spencer (1980)) given by

$$
\begin{equation*}
W=C_{1}\left(\bar{I}_{1}-3\right)+C_{2}\left(\bar{I}_{2}-3\right) \tag{1.24}
\end{equation*}
$$

where C_{1} and C_{2} are again constants. Rivlin and Saunders(1952) suggested that an equation of the form

$$
\begin{equation*}
W=C_{1}\left(\bar{I}_{1}-3\right)+f\left(\bar{I}_{2}-3\right) \tag{1.25}
\end{equation*}
$$

gives more accurate description of vulcanised rubber for some ranges of extension.
More recent development in this direction is due to Ogden(1972) who proposed

$$
\begin{equation*}
W=\sum_{n}\left(\mu_{n} / \alpha_{n}\right)\left(b_{1}^{\alpha_{n}}+b_{2}^{\alpha_{n}}+b_{3}^{\alpha_{n}}-3\right) \tag{1.26}
\end{equation*}
$$

where b_{1}, b_{2}, b_{3} are the principal values of B, the μ_{n} are constants, and the α_{n} are not necessarily integers and may be positive or negative. Equation (1.26) includes neo-Hookean and Mooney-Rivlin forms as special cases.

Finally for compressible rubberlike materials, Blatz and Ko(1962) have suggested a strain energy function of the form

$$
\begin{align*}
W & =\frac{1}{2} \mu f\left\{J_{1}-1-\frac{1}{\nu}+\frac{1-2 \nu}{\nu} J_{3}^{-2 \nu / 1-2 \nu}\right\} \tag{1.27}\\
& +\frac{1}{2} \mu(1-f)\left\{J_{2}-1-\frac{1}{\nu}+\frac{1-2 \nu}{\nu} J_{3}^{2 \nu / 1-2 \nu}\right\}
\end{align*}
$$

where μ, f, ν are constants, and

$$
\begin{equation*}
J_{1}=\bar{I}_{1}, \quad J_{2}=\bar{I}_{2} / \bar{I}_{3}, \quad J_{3}=\bar{I}_{3}^{\frac{1}{2}} \tag{1.28}
\end{equation*}
$$

We note that when $\nu=1 / 2$ and the material is incompressible so that $\bar{I}_{3}=1$, (1.28) reduces to the Mooney-Rivlin form.

We now return to the development of the equation for the second order elasticity theory. For small deformation, such that $\partial u_{i} / \partial x_{k}$ are all small compared with unity, $\bar{I}_{1}-3, \bar{I}_{2}-3$ and $\bar{I}_{3}-1$ are, in general, of the first order of smallness in the quantities $\partial u_{i} / \partial x_{k}$. We may construct three other mutually independent scalar invariants,
J_{1}, J_{2} and J_{3} which are respectively of the first, second and third orders of smalluess in quantities $\partial u_{i} / \partial x_{k}$. Such scalar invariants may be defined by the relations

$$
\begin{align*}
& J_{1}=\bar{I}_{1}-3 \\
& J_{2}=\bar{I}_{2}-2 \bar{I}_{1}+3 \tag{1.29}\\
& J_{3}=\bar{I}_{3}-\bar{I}_{2}+\bar{I}_{1}-1
\end{align*}
$$

or

$$
\begin{align*}
& \bar{I}_{1}=J_{1}+3 \\
& \bar{I}_{2}=J_{2}+2 J_{1}+3 \tag{1.30}\\
& \bar{I}_{3}=J_{3}+J_{2}+J_{1}+1
\end{align*}
$$

Since W is a function of \bar{I}_{1}, \bar{I}_{2} and \bar{I}_{3}, it can be expressed as a function of J_{1}, J_{2} and J_{3}. If we consider finite deformations of the elastic body which are sufficiently small so that terms of higher degree than the second in the quantities $\partial u_{i} / \partial x_{k}$ cant be neglected in the expressions for the stress components, then we can, following Rivlin(1953), express W in the form

$$
\begin{equation*}
W=a_{0} J_{1}+a_{1} J_{2}+a_{2} J_{1}^{2}+a_{3} J_{1} J_{2}+a_{4} J_{1}^{3}+a_{5} J_{3} \tag{1.31}
\end{equation*}
$$

in which $a_{0}, a_{1}, \ldots, a_{5}$ are physical constants for the material considered. It has been shown by Murnaghan(1937) that if material is such that the stress is zero in the undeformed state, $a_{0}=0$, so that

$$
\begin{equation*}
W=a_{1} J_{2}+a_{2} J_{1}^{2}+a_{3} J_{1} J_{2}+a_{4} J_{1}^{3}+a_{5} J_{3} \tag{1.32}
\end{equation*}
$$

If J_{1}, J_{2} and J_{3} are regarded as functions of the displacement gradients and we neglect those terms in the displacement gradients occurring in (1.32), which are of
higher degree than the third, we obtain

$$
\begin{align*}
W= & 2\left(a_{1}+2 a_{2}\right)\left(\frac{\partial u_{k}}{\partial x_{k}}\right)^{2}-a_{1}\left(\frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{k}}{\partial x_{i}}\right)+2\left(a_{5}-a_{1}\right) \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{k}} \\
& +2\left(a_{1}+2 a_{2}-a_{3}-a_{5}\right) \frac{\partial u_{j}}{\partial x_{j}} \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{i}}{\partial x_{k}}+4\left(a_{3}+2 a_{4}+\frac{1}{3} a_{5}\right)\left(\frac{\partial u_{k}}{\partial x_{k}}\right)^{3} \\
& -2\left(a_{3}+a_{5}\right) \frac{\partial u_{j}}{\partial x_{j}} \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{k}}{\partial x_{i}}+\frac{2}{3} a_{5} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{k}} \frac{\partial u_{k}}{\partial x_{i}} \tag{1.33}
\end{align*}
$$

From (1.30) and (1.32) we get

$$
\begin{align*}
& \frac{\partial W}{\partial \bar{I}_{1}}=\left(a_{5}-2 a_{1}\right)+2\left(a_{2}-a_{3}\right) J_{1}+a_{3} J_{2}+3 a_{4} J_{1}^{2} \\
& \frac{\partial W}{\partial \bar{I}_{2}}=\left(a_{1}-a_{5}\right)+a_{3} J_{1} \tag{1.34}\\
& \frac{\partial W}{\partial \bar{I}_{3}}=a_{5}
\end{align*}
$$

Rivlin(1953) has shown that neglecting terms of higher degree than the second in $\partial u_{i} / \partial x_{k}$ in the expressions for $B_{i k}, G_{i k}, \bar{I}_{1}, \bar{I}_{2}, \bar{I}_{3}, J_{1}$ and J_{2} we obtain

$$
\begin{align*}
B_{i k} & =\delta_{i k}+e_{i k}+\alpha_{i k} \\
G_{i k} & =(1+2 \Delta+\alpha) \delta_{i k}-e_{i k}-\alpha_{i k}+E_{i k} \\
\bar{I}_{1} & =3+2 \Delta+\alpha \\
\bar{I}_{2} & =3+4 \Delta+2 \alpha+E \tag{1.35}\\
\bar{I}_{3} & =1+2 \Delta+\alpha+E \\
J_{1} & =2 \Delta+\alpha \\
J_{2} & =E
\end{align*}
$$

with the notations

$$
\begin{align*}
\varepsilon_{i k} & =\left(\frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{i}}\right) \\
\alpha_{i k} & =\frac{\partial u_{i}}{\partial x_{s}} \frac{\partial u_{k}}{\partial x_{s}} \\
e & =2 \Delta=\varepsilon_{s s} \tag{1.36}\\
\alpha & =\alpha_{s s} \\
E & =E_{s s}
\end{align*}
$$

where $E_{i k}=$ co-factor of $e_{i k}$ in det $e_{i k}$.
Substituting (1.34) and (1.35) into (1.20) and neglecting terms of higher degree than the second in $\partial u_{i} / \partial x_{k}$, we obtain

$$
\begin{align*}
t_{i k}= & 2\left[\left\{-a_{1} e_{i k}+2\left(a_{1}+2 a_{2}\right) \Delta \delta_{i k}\right\}+\left\{\left(4 a_{2}-2 a_{3}+a_{1}\right) \Delta e_{i k}-a_{1} \alpha_{i k}-\left(a_{1}-a_{5}\right) E_{i k}\right\}\right. \\
& \left.+\left\{\left(a_{1}+2 a_{2}\right) \alpha+\left(a_{1}+a_{3}\right) E+2\left(6 a_{4}+2 a_{3}-a_{1}-2 a_{2}\right) \Delta^{2}\right\} \delta_{i k}\right] \tag{1.37}
\end{align*}
$$

Here $e_{i k}$ and Δ are homogeneous expressions of the first degree in $\partial u_{i} / \partial x_{k}$ and $\alpha_{i k}, E_{i k}, \alpha$ and E are homogeneous expressions of the second degree. If we neglect terms of the second degree in $\partial u_{i} / \partial x_{k}$ in the expressions for $t_{i k}$, we obtain the expressions for the stress components of linear elasticity theory

$$
\begin{equation*}
t_{i k}=2\left[-a_{1} e_{i k}+2\left(a_{1}+2 a_{2}\right) \Delta \delta_{i k}\right] \tag{1.38}
\end{equation*}
$$

It is found that the Lame's constants λ and μ are given by

$$
\begin{align*}
& \lambda=4\left(a_{1}+2 a_{2}\right) \\
& \mu=-2 a_{1} \tag{1.39}
\end{align*}
$$

For incompressible material it has been shown by Mooney(1940) that the strain energy function may be written, to terms of the third order of smallness in the principal extensions, as

$$
\begin{equation*}
W=C_{1}\left(\bar{I}_{1}-3\right)+C_{2}\left(\bar{I}_{2}-3\right) \tag{1.40}
\end{equation*}
$$

where C_{1} and C_{2} are constants. The stress components in this case may be written, to terms of the second order of smallness in the principal extensions, as

$$
\begin{equation*}
t_{i k}=2\left[B_{i k}^{\prime} C_{1}-G_{i k}^{\prime} C_{2}\right]+p \tag{1.41}
\end{equation*}
$$

where $B_{i k}^{\prime}=B_{i k}-\delta_{i k}$ and $G_{i k}^{\prime}=G_{i k}-\delta_{i k}$

1.3 Equilibrium Equations and Boundary Conditions.

If an elastic body undergoes deformation by a system of body forces X_{i} per unit mass of the material and surface forces $X_{\nu i}$ per unit area of surface measured in the undeformed state of the material, then in the static state the equations for equilibrium are given by

$$
\begin{equation*}
\frac{\partial t_{i k}}{\partial y_{k}}+\rho X_{i}=0 \tag{1.42}
\end{equation*}
$$

and the boundary conditions may be written as

$$
\begin{equation*}
X_{\nu i} \frac{d S}{d S^{\prime}}=t_{i k} l_{k}^{\prime} \tag{1.43}
\end{equation*}
$$

where $d S$ and $d S^{\prime}$ are elements of area of the surface of the body measured in the undeformed and deformed states respectively, so that $X_{\nu i} \frac{d S}{d S^{\prime}}$ is the surface traction per unit area of the surface measured in the deformed state of the body, and l_{k}^{\prime} are the direction-cosines of the normal to the deformed surface of the body. From $y_{i}=x_{i}+u_{i}$ we get

$$
\frac{\partial y_{i}}{\partial y_{k}}=\frac{\partial x_{i}}{\partial y_{k}}+\frac{\partial u_{i}}{\partial y_{k}}
$$

or

$$
\begin{equation*}
\delta_{i k}=\frac{\partial x_{i}}{\partial y_{k}}+\frac{\partial u_{i}}{\partial x_{j}} \frac{\partial x_{j}}{\partial y_{k}} \quad \mathrm{i}=1,2,3 \tag{1.44}
\end{equation*}
$$

Solving for $\partial x_{j} / \partial y_{k}$, we obtain

$$
\begin{equation*}
\frac{\partial x_{j}}{\partial y_{k}}=\bar{I}_{3}^{-\frac{1}{2}} \frac{\partial \bar{I}_{3}^{\frac{1}{2}}}{\partial H_{k j}} \tag{1.45}
\end{equation*}
$$

where $H_{i k}=\partial u_{i} / \partial x_{k} \quad(i, k:=1,2,3)$ and then

$$
\begin{equation*}
\frac{\partial}{\partial y_{k}}=\frac{\partial x_{j}}{\partial y_{k}} \frac{\partial}{\partial x_{j}} \tag{1.46}
\end{equation*}
$$

Using (1.46) and $\rho_{0}=\rho \bar{I}_{3}^{\frac{1}{2}}$ in (1.42), we get

$$
\begin{equation*}
\frac{\partial \check{I}_{3}^{\frac{1}{2}}}{\partial H_{k j}} \frac{\partial t_{i k}}{\partial x_{j}}+\rho_{0} X_{i}=0 \tag{1.47}
\end{equation*}
$$

From Spencer(1980) we note that

$$
\begin{equation*}
l_{k}^{\prime}=\operatorname{det} \mathrm{F} \frac{d S}{d S^{\prime}} \mathrm{l} \bullet \mathrm{~F}^{-1} \tag{1.48}
\end{equation*}
$$

or

$$
\begin{equation*}
l_{k}^{\prime}=\frac{d S}{d S^{\prime}} l_{s} \frac{\partial \bar{I}_{3}^{\frac{1}{2}}}{\partial H_{k s}} \tag{1.49}
\end{equation*}
$$

where l_{s} are the direction-cosines of the normal to the undeformed surface. Introducing (1.49) into (1.43) gives

$$
\begin{equation*}
X_{\nu i}=\frac{\partial \bar{I}_{3}^{\frac{1}{2}}}{\partial H_{k s}} l_{s} t_{i k} \tag{1.50}
\end{equation*}
$$

It has been shown by Rivlin(1953) that equations (1.47) and (1.50) can be written as

$$
\begin{equation*}
\left[(1+\Delta) \delta_{s k}-\frac{\partial u_{s}}{\partial x_{k}}\right] \frac{\partial t_{i k}^{\prime}}{\partial x_{s}}+\frac{\partial t_{i k}^{\prime \prime}}{\partial x_{k}}+\rho_{0} X_{i}=0 \tag{1.51}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{\nu i}=\left[(1+\Delta) \delta_{s k}-\frac{\partial u_{s}}{\partial x_{k}}\right] l_{s} t_{i k}^{\prime}+l_{k} t_{i k}^{\prime \prime} \tag{1.52}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{i k}=t_{i k}^{\prime}+t_{i k}^{\prime \prime} \tag{1.53}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{i k}^{\prime}=2\left[-a_{1} e_{i k}+2\left(a_{1}+2 a_{2}\right) \Delta \delta_{i k}\right] \tag{1.54}
\end{equation*}
$$

$$
\begin{align*}
i_{i k}^{\prime \prime}= & 2\left[\left\{\left(4 a_{2}-2 a_{3}+a_{1}\right) \Delta e_{i k}-a_{1} \alpha_{i k}-\left(a_{1}-a_{5}\right) E_{i k}\right\}\right. \\
& \left.+\left\{\left(a_{1}+2 a_{2}\right) \alpha+\left(a_{1}+a_{3}\right) E+2\left(6 a_{4}+3 a_{3}-a_{1}-2 a_{2}\right) \Delta^{2}\right\} \delta_{i k}\right] \tag{1.55}
\end{align*}
$$

The expression for $t_{i k}^{\prime}$ contains only terms of the first order in the space derivatives of u_{i} and that for $t_{i k}^{\prime \prime}$ contains only the second order terms. Now, the displacements u_{i} may be determined from equations (1.51) subject to the boundary conditions (1.52). Rivlin(1953) has proposed a general procedure to solve this boundary value problem in the second order theory of elasticity as following:
(I) Find the solution of the linear elastic problem represented by

$$
\begin{equation*}
\frac{\partial \tau_{i k}}{\partial x_{k}}+\rho_{0} X_{i}=0 \tag{1.56}
\end{equation*}
$$

subject to

$$
\begin{equation*}
X_{\nu i}=l_{k} \tau_{i k} \tag{1.57}
\end{equation*}
$$

where

$$
\begin{align*}
\tau_{i k} & =2\left[-a_{1} e_{i k}^{\prime}+2\left(a_{1}+2 a_{2}\right) \Delta^{\prime} \delta_{i k}\right] \\
e_{i k}^{\prime} & =\frac{\partial v_{i}}{\partial x_{k}}+\frac{\partial v_{k}}{\partial x_{i}} \tag{1.58}\\
\Delta^{\prime} & =\frac{1}{2} e_{s s}^{\prime}
\end{align*}
$$

(II) Obtain the solution to the second order elastic problem given by

$$
\begin{equation*}
\frac{\partial \tau_{i k}^{\prime \prime}}{\partial x_{k}}+\rho_{0} X_{i}^{\prime}=0 \tag{1.59}
\end{equation*}
$$

subject to

$$
\begin{equation*}
X_{\nu i}^{\prime}=l_{k} \tau_{i k}^{\prime \prime} \tag{1.60}
\end{equation*}
$$

where

$$
\begin{align*}
\tau_{i k}^{\prime \prime} & =2\left[-a_{1} e_{i k}^{\prime \prime}+2\left(a_{1}+2 a_{2}\right) \Delta^{\prime \prime} \delta_{i k}\right] \\
e_{i k}^{\prime \prime} & =\frac{\partial w_{i}}{\partial x_{k}}+\frac{\partial w_{k}}{\partial x_{i}} \tag{1.61}\\
\Delta^{\prime \prime} & =\frac{1}{2} e_{i k}^{\prime \prime}
\end{align*}
$$

and

$$
\begin{align*}
X_{\nu i}^{\prime} & =-\left[\Delta^{\prime} \delta_{i k}-\frac{\partial v_{s}}{\partial x_{k}}\right] l_{s} \tau_{i k}-l_{k} \tau_{i k}^{\prime} \tag{1.62}\\
\rho_{0} X_{i}^{\prime} & =\left(\Delta^{\prime} \delta_{i k}-\frac{\partial v_{s}}{\partial x_{k}}\right) \frac{\partial \tau_{i k}}{\partial x_{s}}+\frac{\partial \tau_{i k}^{\prime}}{\partial x_{k}} \tag{1.63}
\end{align*}
$$

where

$$
\begin{align*}
\tau_{i k}^{\prime}= & 2\left[\left\{\left(4 a_{2}-2 a_{3}+a_{1}\right) \Delta^{\prime} e_{i k}^{\prime}-a_{1} \alpha_{i k}^{\prime}-\left(a_{1}-a_{5}\right) E_{i k}^{\prime}\right\}\right. \\
& \left.+\left\{\left(a_{1}+2 a_{2}\right) \alpha^{\prime}+\left(a_{1}+a_{3}\right) E^{\prime}+2\left(6 a_{4}+2 a_{3}-a_{1}-2 a_{2}\right) \Delta^{\prime 2}\right\} \delta_{i k}\right] \tag{1.64}
\end{align*}
$$

with notations $\alpha_{i k}^{\prime}=\left(\partial v_{k} / \partial x_{s}\right)\left(\partial v_{k} / \partial x_{s}\right), \alpha^{\prime}=\alpha_{s s}^{\prime}, E^{\prime}=E_{s s}^{\prime}$ and $E_{i k}^{\prime}=$ co-factor of $e_{i k}^{\prime}$ in det $e_{i k}^{\prime}$. The displacements u_{i} are now given by

$$
\begin{equation*}
u_{i}=v_{i}+w_{i} \tag{1.65}
\end{equation*}
$$

1.4 Equations of Linear Elasticity Theory.

Since in order to solve the second order elasticity problems we need to solve first the corresponding problems in linear elasticity, for completeness, we now write down the basic equations of the linear elasticity theory. In the static state the equations of equilibrium take the form

$$
\begin{equation*}
\frac{\partial t_{i k}}{\partial x_{k}}+\rho X_{i}=0 \tag{1.66}
\end{equation*}
$$

For the isotropic medium the stress-strain relation takes the form

$$
\begin{equation*}
t_{i k}=\lambda \Delta \delta_{i k}+\mu\left(\frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{i}}\right) \tag{1.67}
\end{equation*}
$$

where Δ denotes the dilatation

$$
\begin{equation*}
\Delta=\frac{\partial u_{i}}{\partial x_{i}} \tag{1.68}
\end{equation*}
$$

If we replace Lame's constants λ and μ by the Young's modulus E and the Poisson's ratio η equation (1.67) becomes

$$
\begin{equation*}
t_{i k}=\frac{E}{2(1+\eta)}\left[\frac{2 \eta}{1-2 \eta} \Delta \delta_{i k}+\frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{i}}\right] \tag{1.69}
\end{equation*}
$$

If we substitute from (1.69) into (1.60) we find that displacements u_{i} satisfy the equation

$$
\begin{equation*}
\nabla^{2} u_{i}+\frac{1}{1-2 \eta} \frac{\partial \Delta}{\partial x_{i}}+F_{i}=0 \tag{1.70}
\end{equation*}
$$

where $F_{i}=\frac{2(i+v)}{E} \rho X_{i}$
In the absence of body forces equation (1.70) reduces to

$$
\begin{equation*}
\nabla^{2} u_{i}+\frac{1}{1-2 \eta} \frac{\partial \Delta}{\partial x_{i}}=0 \tag{1.71}
\end{equation*}
$$

The first general solution of the equilibrium equation (1.64) would appear to be due to Galerkin(1930). If we express the displacements u_{i} in terms of a vector G_{i} through the equation

$$
\begin{equation*}
u_{i}=2(1-\eta) \nabla^{2} G_{i}-\frac{\partial^{2} G_{k}}{\partial x_{k} \partial x_{i}} \tag{1.72}
\end{equation*}
$$

or in vector form

$$
\begin{equation*}
\mathbf{u}=2(1-\eta) \nabla^{2} \mathbf{G}-\nabla(\nabla \cdot \mathbf{G}) \tag{1.73}
\end{equation*}
$$

then equation (1.71) is equivalent to the biharmonic equation

$$
\begin{equation*}
\nabla^{4} G_{i}=0 \tag{1.74}
\end{equation*}
$$

Corresponding to the displacement field (1.72) we have the stress field

$$
\begin{align*}
t_{i k} & =\frac{E}{1+\eta}\left[\eta \delta_{i k} \frac{\partial\left(\nabla^{2} G_{j}\right)}{\partial x_{j}}+(1-\eta)\left\{\frac{\partial\left(\nabla^{2} G_{i}\right)}{\partial x_{k}}+\frac{\partial\left(\nabla^{2} G_{k}\right)}{\partial x_{i}}\right\}\right. \\
& \left.-\frac{\partial^{3} G_{j}}{\partial x_{i} \partial x_{k} \partial x_{j}}\right] \tag{1.75}
\end{align*}
$$

Another solution in terms of four scalar potential functions was given by Papkovitch(1932) and Neuber(1934). If we write

$$
\begin{equation*}
u_{i}=\frac{\partial\left[\Phi+x_{j} \psi_{j}\right]}{\partial x_{i}}-4(1-\eta) \psi_{i} \tag{1.76}
\end{equation*}
$$

or in vector form

$$
\begin{equation*}
\mathbf{u}=\nabla(\Phi+\mathbf{r} \cdot \Psi)-4(1-\eta) \Psi \tag{1.77}
\end{equation*}
$$

then the equations of elastic equilibrium (1.71) are equivalent to the equations

$$
\begin{equation*}
\frac{2(1-\eta)}{1-2 \eta}\left[\frac{\partial\left(\nabla^{2} \Phi\right)}{\partial x_{i}}+x_{j} \frac{\partial\left(\nabla^{2} \psi_{j}\right)}{\partial x_{i}}-(1-4 \eta) \nabla^{2} \psi_{i}\right]=0 \tag{1.78}
\end{equation*}
$$

It follows immediately that if Φ and ψ_{i} are harmonic functions, so that

$$
\begin{equation*}
\nabla^{2} \Phi=0, \quad \nabla^{2} \psi_{i}=0 \tag{1.79}
\end{equation*}
$$

equation (1.71) is satisfied. The stress field corresponding to this displacement field is given by the equations

$$
\begin{equation*}
t_{i k}=\frac{E}{1+\eta}\left[\frac{\partial^{2} \Phi}{\partial x_{i} \partial x_{k}}-(1-2 \eta)\left(\frac{\partial \psi_{k}}{\partial x_{i}}+\frac{\partial \psi_{i}}{\partial x_{k}}\right)+x_{j} \frac{\partial^{2} \psi_{j}}{\partial x_{i} \partial x_{k}}-2 \eta \frac{\partial \psi_{j}}{\partial x_{j}} \delta_{i k}\right] \tag{1.80}
\end{equation*}
$$

The connection between Galerkin's solution and the Papkovitch-Neuber solution was pointed out by $\operatorname{Mindlin}(1936)$. If we put

$$
\begin{align*}
\Phi & =\frac{1}{2} x_{i}\left(\nabla^{2} G_{i}\right)-\frac{\partial G_{i}}{\partial x_{i}} \\
\psi_{i} & =-\frac{1}{2}\left(\nabla^{2} G_{i}\right) \tag{1.81}
\end{align*}
$$

into the Papkovitch-Neuber solution we get Galerkin's solution.

CHAPTER II

SECOND ORDER EFFECTS IN AN ELASTIC HALF-SPACE ACTED UPON BY A NON-UNIFORM NORMAL LOAD

2.1 Statement of the Problem.

We consider a compressible elastic half-space in which a non-uniform normal load, of total amount P, is acting over a circle of radius a (see Fig.1). We choose cylindrical polar coordinates (r, θ, z) such that the load is acting in the plane $z=0$ in the z-direction. The boundary conditions are

$$
\begin{equation*}
X_{\nu r}=0, \quad X_{\nu z}=-2 \mu f(r) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
f(r)=\frac{(1+\delta)\left(a^{2}-r^{2}\right)^{\delta} H(a-r) P}{2 \pi \mu a^{2(1+\delta)}} \tag{2.2}
\end{equation*}
$$

ald $\delta>-1$ is a constant. $X_{\nu i}$ are the surface tractions and H is the Heaviside unit function. We assume that there are no body forces. According to the Rivlin's procedure the problem to be solved can be split into following two subproblems:
(I) The Linear Solution: solve

$$
\begin{array}{r}
\frac{\partial \tau_{r r}}{\partial r}+\frac{\partial \tau_{r z}}{\partial z}+\frac{\tau_{r r}-\tau_{\theta \theta}}{r}=0 \tag{2.3}\\
\frac{\partial \tau_{r z}}{\partial r}+\frac{\partial \tau_{z z}}{\partial z}+\frac{\tau_{r z}}{r}=0
\end{array}
$$

subiect to

$$
\begin{align*}
& \tau_{r z}(r, 0)=0 \\
& \tau_{z z}(r, 0)=-\frac{(1+\delta)\left(a^{2}-r^{2}\right)^{\delta} H(a-r) P}{\pi a^{2(1+\delta)}} \tag{2.4}
\end{align*}
$$

(II) The Second Order Solution: solve

$$
\begin{array}{r}
\frac{\partial \tau_{r r}^{\prime \prime}}{\partial r}+\frac{\partial \tau_{r z}^{\prime \prime}}{\partial z}+\frac{\tau_{r r}^{\prime \prime}-\tau_{\theta \theta}^{\prime \prime}}{r}+\rho_{0} X_{r}^{\prime}=0 \\
\frac{\partial \tau_{r z}^{\prime \prime}}{\partial r}+\frac{\partial \tau_{z z}^{\prime \prime}}{\partial z}+\frac{\tau_{r z}^{\prime \prime}}{r}+\rho_{0} X_{z}^{\prime}=0 \tag{2.5}
\end{array}
$$

subject to

$$
\begin{equation*}
\tau_{r z}^{\prime \prime \prime}(r, 0)=-X_{\nu r}^{\prime}, \quad \tau_{z}^{\prime \prime}(r, 0)=-X_{\nu z}^{\prime} \tag{2.6}
\end{equation*}
$$

where (cf. Appendix A_{1})

$$
\begin{align*}
& \rho_{0} X_{r}^{\prime}=-\left[\frac{\partial v_{r}}{\partial r} \frac{\partial \tau_{r r}}{\partial r}+\frac{\partial v_{z}}{\partial r} \frac{\partial \tau_{r r}}{\partial z}+\frac{v_{r}}{r^{2}}\left(\tau_{r r}-\tau_{\theta \theta}\right)+\frac{\partial v_{r}}{\partial z} \frac{\partial \tau_{r z}}{\partial r}+\frac{\partial v_{z}}{\partial z} \frac{\partial \tau_{r z}}{\partial z}\right] \\
&+ \frac{\tau_{r r}^{\prime}}{\partial r}+\frac{\partial \tau_{r z}^{\prime}}{\partial z}+\frac{\tau_{r r}^{\prime}-\tau_{\theta \theta}^{\prime}}{r} \\
& \rho_{0} X_{z}^{\prime}=-\left[\frac{\partial v_{r}}{\partial r} \frac{\partial \tau_{r z}}{\partial r}+\frac{\partial v_{z}}{\partial r} \frac{\partial \tau_{r z}}{\partial z}+\frac{v_{r} \tau_{r z}}{r^{2}}+\frac{\partial v_{r}}{\partial z} \frac{\partial \tau_{z z}}{\partial \tau}+\frac{\partial v_{z}}{\partial z} \frac{\partial \tau_{z z}}{\partial z}\right] \\
&+\frac{\partial \tau_{r z}^{\prime}}{\partial r}+\frac{\partial \tau_{z z}^{\prime}}{\partial z}+\frac{\tau_{r z}}{r} \tag{2.7}\\
& X_{\nu r}^{\prime}=-\frac{\partial v_{z}(r, 0)}{\partial r} \tau_{r r}(r, 0)+\tau_{r z}^{\prime}(r, 0) \tag{2.8}\\
& X_{\nu z}^{\prime}=\left[\frac{\partial v_{r}(r, 0)}{\partial r}+\frac{v_{r}(r, 0)}{r}\right] \tau_{z z}(r, 0)+\tau_{z z}^{\prime}(r, 0)
\end{align*}
$$

and

$$
\begin{align*}
\tau_{r r}^{\prime} & =2\left[\left(4 a_{2}-2 a_{3}+a_{1}\right) \Delta^{\prime} e_{r r}^{\prime}-a_{1} \alpha_{r r}^{\prime}-\left(a_{1}-a_{5}\right) E_{r r}^{\prime}+\Sigma\right] \\
\tau_{\theta \theta}^{\prime} & =2\left[\left(4 a_{2}-2 a_{3}+a_{1}\right) \Delta^{\prime} e_{\theta \theta}^{\prime}-a_{1} \alpha_{\theta \theta}^{\prime}-\left(a_{1}-a_{5}\right) E_{\theta \theta}^{\prime}+\Sigma\right] \\
\tau_{z z}^{\prime} & =2\left[\left(4 a_{2}-2 a_{3}+a_{1}\right) \Delta^{\prime} e_{z z}^{\prime}-a_{1} \alpha_{z z}^{\prime}-\left(a_{1}-a_{5}\right) E_{z z}^{\prime}+\Sigma\right] \tag{2.9}\\
\tau_{r z}^{\prime} & =2\left[\left(4 a_{2}-2 a_{3}+a_{1}\right) \Delta^{\prime} e_{r z}^{\prime}-a_{1} \alpha_{r z}^{\prime}-\left(a_{1}-a_{5}\right) E_{r z}^{\prime}\right] \\
\Sigma & =\left(a_{1}+2 a_{2}\right) \alpha^{\prime}+\left(a_{1}+a_{3}\right) E^{\prime}+2\left(6 a_{4}+2 a_{3}-2 a_{2}-a_{1}\right) \Delta^{\prime 2}
\end{align*}
$$

2.2 The Linear Solution.

For the linear solution we are required to solve the subproblem (I)
We employ Papkovitch-Neuber displacement solutions

$$
\begin{equation*}
v_{i}=\frac{\partial\left(\Phi+x_{j} \psi_{j}\right)}{\partial x_{i}}-4(1-\eta) \psi_{i} \tag{2.10}
\end{equation*}
$$

together with

$$
\begin{equation*}
\Phi=(1-2 \eta) \phi(r, z), \quad \psi_{1}=\psi_{2}=0, \quad \psi_{3}=\frac{\partial \phi(r, z)}{\partial z} \tag{2.11}
\end{equation*}
$$

where ϕ satisfies

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \tag{2.12}
\end{equation*}
$$

The displacement components in cylindrical polar coordinates are given by

$$
\begin{align*}
& v_{r}(r, z)=(1-2 \eta) \frac{\partial \phi}{\partial r}+z \frac{\partial^{2} \phi}{\partial r \partial z} \\
& v_{\theta}(r, z)=0 \tag{2.13}\\
& v_{z}(r, z)=-2(1-\eta) \frac{\partial \phi}{\partial z}+z \frac{\partial^{2} \phi}{\partial z^{2}}
\end{align*}
$$

By using the constitutive equations we find that

$$
\begin{align*}
\tau_{r z} & =2 \mu z \frac{\partial^{3} \phi}{\partial z \partial z^{2}} \\
\tau_{z z} & =-2 \mu\left[\frac{\partial^{2} \phi}{\partial z^{2}}-z \frac{\partial^{3} \phi}{\partial z^{3}}\right] \\
\tau_{r \theta} & =\tau_{z \theta}=0 \tag{2.14}\\
\tau_{r r} & =2 \mu\left[(1-2 \eta) \frac{\partial^{2}}{\partial r^{2}}+z \frac{\partial^{3} \phi}{\partial r^{2} \partial z}\right]-4 \mu \eta \frac{\partial^{2} \phi}{\partial z^{2}} \\
\tau_{\theta \theta} & =2 \mu\left[\frac{1-2 \eta}{r} \frac{\partial \phi}{\partial r}+\frac{z}{r} \frac{\partial^{2} \phi}{\partial r \partial z}\right]-4 \mu \eta \frac{\partial^{2} \phi}{\partial z^{2}}
\end{align*}
$$

If we let

$$
\begin{equation*}
\bar{\phi}=\int_{0}^{\infty} r J_{0}(\xi r) \phi(r, z) d r \tag{2.15}
\end{equation*}
$$

it then follows that (2.12) reduces to

$$
\begin{equation*}
\frac{\partial^{2} \bar{\phi}}{\partial z^{2}}-\xi^{2} \bar{\phi}=0 \tag{2.16}
\end{equation*}
$$

The appropriate solution to (2.16) is $\bar{\phi}=A e^{-\xi z}$, where A is an arbitrary function of ξ. On using the boundary condition (2.4) we find

$$
\begin{equation*}
A(\xi)=\frac{Q J_{(1+\delta)}(a \xi)}{\xi^{3+\delta}} \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=\frac{(1+\delta) \Gamma(1+\delta) P}{2^{1-\delta} \pi \mu a^{(1+\delta)}} \tag{2.18}
\end{equation*}
$$

Using (2.15) and taking following Hankel transforms: $H_{1}\left[v_{r}\right], H_{0}\left[v_{z}\right], H_{0}\left[\tau_{=}\right]$, $H_{1}\left[\tau_{r z}\right], H_{0}\left[\tau_{r r}+\tau_{\theta \theta}\right], H_{0}\left[v_{r}+\tau_{r r} / 2 \mu\right]$ and then taking the inverse transforms we find

$$
\begin{align*}
v_{r}(r, z)= & Q[z K(r, z,-\delta)-(1-2 \eta) K(r, z,-(1+\delta))] \\
v_{z}(r, z)= & Q[2(1-\eta) I(r, z,-(1+\delta))+z I(r, z,-\delta)] \\
\tau_{r r}(r, z)= & -2 \mu Q[I(r, z,-\delta)-z I(r, z,(1-\delta))] \\
& +\frac{2 \mu Q}{r}[(1-2 \eta) K(r, z,-(1+\delta))-z K(r, z,-\delta)] \tag{2.19}\\
\tau_{\theta \theta}(r, z)= & -4 \mu \eta Q I(r, z,-\delta) \\
& -\frac{2 \mu Q}{r}[(1-2 \eta) K(r, z,-(1+\delta))-z K(r, z,-\delta)] \\
\tau_{r z}(r, z)= & -2 \mu Q z K(r, z,(1-\delta)) \\
\tau_{z z}(r, z)= & -2 \mu Q[I(r, z,-\delta)+z I(r, z,(1-\delta))]
\end{align*}
$$

where

$$
\begin{align*}
I(r, z, s) & =\int_{0}^{\infty} \xi^{s} J_{0}(\xi r) J_{(1+\delta)}(\xi a) e^{-\xi z} d \xi \tag{2.20}\\
K(r, z, s) & =\int_{0}^{\infty} \xi^{\mathrm{a}} J_{1}(\xi r) J_{(1+\delta)}(\xi a) e^{-\xi z} d \xi
\end{align*}
$$

Equations (2.19) and (2.20) thus give the non-zero displacement and stress components for the linear elasticity problem. However, in many circumstances, the values of displacements and stresses, which are of most interet, are on the surface of the half-space. We shall now give the solutions on the surface $z=0$. From Gradshteyn and Ryzhik(1965) we note that

$$
\begin{gathered}
I(r, 0, s)= \begin{cases}\frac{2^{0} \Gamma((2+\delta+a) / 2)}{\Gamma((2+\delta-s) / 2) a^{2}+1} F_{1}\left(\frac{2+\delta+z}{2}, \frac{s-\delta}{2}, 1, \frac{r^{2}}{a^{2}}\right), & r \leq a \\
\frac{2^{2} \Gamma((2+\delta+a) / 2) a^{1+\delta}}{\Gamma((\delta-s) / 2) \Gamma(2+\delta) r^{2}+\delta+s} F_{1}\left(\frac{2+\delta+s}{2}, \frac{2+\delta+s}{2}, 2+\delta, \frac{a^{2}}{r^{2}}\right), & r>a\end{cases} \\
K(r, 0, s)= \begin{cases}\frac{2^{\circ} \Gamma((3+\delta+s) / 2)}{\Gamma((1+\delta-s) / 2) a^{2+s}} F_{1}\left(\frac{3+\delta+s}{2}, \frac{1-\delta+s}{2}, 2, \frac{r^{2}}{a^{2}}\right), & r \leq a \\
\frac{2^{0} \Gamma((3+\delta+s) / 2) a^{1+6}}{\Gamma((1-\delta-s) / 2) \Gamma(2+\delta) r^{2+\delta+s}} F_{1}\left(\frac{3+\delta+s}{2}, \frac{1+\delta+s}{2}, 2+\delta, \frac{a^{2}}{r^{2}}\right), & r>a\end{cases}
\end{gathered}
$$

where F_{1} is the hypergeometric function. Some typical components of the surface solutions are written below.

$$
\begin{aligned}
& v_{r}(r, 0)=-(1-2 \eta) Q K(r, 0-(1+\delta)) \\
& v_{z}(r, 0)=2(1-\eta) Q I(r, 0,-(1+\delta)) \\
& \tau_{r z}(r, 0)=0 \\
& \tau_{z z}(r, 0)=-2 \mu Q I(r, 0,-\delta) \\
& \tau_{r r}(r, 0)=-2 \mu Q I(r, 0,-\delta)+\frac{2 \mu(1-2 \eta)}{r} Q K(r, 0,-(1+\delta)) \\
& \tau_{\theta \theta}(r, 0)=-4 \mu \eta Q I(r, 0,-\delta)-\frac{2 \mu(1-2 \eta)}{r} Q K(r, 0,-(1+\delta))
\end{aligned}
$$

2.3 The Second Order Solution.

In order to solve the second order problem we note that the boundary value problem to be solved is now subproblem (II). We again use Papkovitch-Neuber displacement solutions with

$$
\Phi=\phi(r, z), \quad \psi_{1}=\psi_{2}=0, \quad \psi_{3}=\psi(r, z)
$$

The displacement and stress components are now given as

$$
\begin{align*}
& w_{r}(r, z)=\frac{\partial \phi}{\partial r}+z \frac{\partial \psi}{\partial r} \\
& w_{\theta}(r, z)=0 \tag{2.21}\\
& w_{z}(r, z)=\frac{\partial \phi}{\partial z}+z \frac{\partial \psi}{\partial z}-(3-4 \eta) \psi
\end{align*}
$$

and

$$
\begin{align*}
& \tau_{r z}^{\prime \prime}(r, z)=2 \mu\left[\frac{\partial^{2} \phi}{\partial r \partial z}+z \frac{\partial^{2} \psi}{\partial r \partial z}-(1-2 \eta) \frac{\partial \psi}{\partial r}\right] \\
& \tau_{: z}^{\prime \prime}(r, z)=2 \mu\left[\frac{\partial^{2} \phi}{\partial z^{2}}+z \frac{\partial^{2} \psi}{\partial z^{2}}-z(1-\eta) \frac{\partial \psi}{\partial z}+\frac{\eta}{(1-2 \eta)}\left(\nabla^{2} \phi+z \nabla^{2} \psi\right)\right] \\
& \tau_{r r}^{\prime \prime}(r, z)=2 \mu\left[\frac{\partial^{2} \phi}{\partial r^{2}}+z \frac{\partial^{2} \psi}{\partial r^{2}}-2_{r} \frac{\partial \psi}{\partial z}+\frac{\eta}{(1-2 \eta)}\left(\nabla^{2} \phi+\nabla^{2} \psi\right)\right] \tag{2.22}\\
& \tau_{\theta \theta}^{\prime \prime}(r, z)=2 \mu\left[\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{z}{r} \frac{\partial \psi}{\partial r}-2 \eta \frac{\partial \psi}{\partial z}+\frac{\eta}{(1-2 \eta)}\left(\nabla^{2} \phi+\nabla^{2} \psi\right)\right]
\end{align*}
$$

On employing (2.22) into (2.3) we find

$$
\begin{equation*}
\nabla^{2} \phi=\phi_{0}, \quad \nabla^{2} \psi=\psi_{0} \tag{2.23}
\end{equation*}
$$

where

$$
\begin{align*}
& \phi_{0}=\frac{\rho_{0}}{4 \eta(1-\eta)}\left[z \frac{\partial}{\partial z} \int_{r}^{\infty} X_{r}^{\prime}(x, z) d x+2(1-2 \eta) \int_{r}^{\infty} X_{r}^{\prime}(x, z) d x-z X_{z}^{\prime}(r, z)\right] \\
& \psi_{0}=\frac{\rho_{0}}{4 \eta(1-\eta)}\left[X_{z}^{\prime}(r, z)-\frac{\partial}{\partial z} \int_{r}^{\infty} X_{r}^{\prime}(r, z) d x\right] \tag{2.24}
\end{align*}
$$

We again denote $\bar{\phi}$ and $\bar{\psi}$ as

$$
\bar{\phi}=\int_{0}^{\infty} r J_{0}(\xi r) \phi(r, z) d r, \quad \bar{\phi}_{0}=\int_{0}^{\infty} r J_{0}(\xi r) \phi_{0}(r, z) d r
$$

and then from (2.39) we find

$$
\bar{\phi}=C e^{-\xi z}+e^{-\xi z} \int_{0}^{z} e^{2 \xi z_{2}} \int_{0}^{z_{2}} \bar{\phi}_{0}\left(\xi, z_{1}\right) e^{-\xi z_{1}} d z_{1} d z_{2}
$$

where C is an arbitrary function of ξ. It then follows that

$$
\begin{equation*}
\phi=\int_{0}^{\infty} \xi J_{0}(\xi r)\left(C+\phi_{0}^{*}\right) e^{-\xi z} d \xi \tag{2.25}
\end{equation*}
$$

where

$$
\phi_{0}^{*}(\xi, z)=\int_{0}^{z} e^{2 \xi z_{2}} \int_{0}^{z_{2}} \bar{\phi}_{0}\left(\xi, z_{1}\right) e^{-\xi z_{1}} d z_{1} d z_{2}
$$

Similarly the solution of $(2.23)_{2}$ leads to

$$
\begin{equation*}
\psi=\int_{0}^{\infty} \xi J_{0}(\xi, r)\left(D+\psi_{0}^{*}\right) e^{-\xi z} d \xi \tag{2.26}
\end{equation*}
$$

where

$$
\psi_{0}^{*}(\xi, z)=\int_{0}^{z} e^{2 \xi z_{2}} \int_{0}^{z_{2}} \psi_{0}(\xi, z) e^{-\xi z_{1}} d z_{1} d z_{2}
$$

and D is an arbitrary function of ξ. On employing (2.25) and (2.26) into (2.22) we obtain

$$
\begin{aligned}
& \tau_{r z}^{\prime \prime}(r, 0)=2 \mu \int_{0}^{\infty} \xi J_{1}(\xi r)\left[C \xi^{2}+(1-2 \eta) D \zeta\right] d \xi \\
& \tau_{z z}^{\prime \prime}(r, 0)=2 \mu \int_{0}^{\infty} \xi J_{0}(\xi r)\left[C \xi^{2}+2(1-\eta) D \xi\right] d \xi+\frac{2 \mu(1-\eta)}{(1-2 \eta)} \phi_{0}(r, 0)
\end{aligned}
$$

On applying the boundary condition (2.6) we find

$$
\begin{align*}
& C=\frac{1}{2 \mu \xi^{2}}\left[(1-2 \eta) h_{1}(\xi)-2(1-\eta) h_{2}(\xi)\right] \tag{2.27}\\
& D=\frac{1}{2 \mu \xi}\left[h_{2}(\xi)-h_{1}(\xi)\right]
\end{align*}
$$

where

$$
\begin{align*}
& h_{1}(\xi)=\int_{0}^{\infty} r J_{0}(\xi r)\left[X_{\nu z}^{\prime}(r, 0)+\int_{0}^{\infty} \rho_{0} X_{r}^{\prime}(x, 0) d x\right] d r \tag{2.28}\\
& h_{2}(\xi)=\int_{0}^{\infty} r J_{1}(\xi r) X_{\nu r}^{\prime}(r, 0) d r
\end{align*}
$$

The displacements and stresses for the second order problem are thus given by

$$
\begin{align*}
w_{r}(r, z) & =-\int_{0}^{\infty} \xi^{2} J_{1}(\xi r)\left[C+D z+\xi \phi_{0}^{*}+\xi z \psi_{0}^{*}\right] e^{-\xi z} d \xi \\
w_{z}(r, z) & =\int_{0}^{\infty} \xi J_{0}(\xi r)\left\{\int_{0}^{z}\left[\bar{\phi}_{0}\left(\xi, z_{1}\right)+z \psi_{0}\left(\xi, z_{1}\right)\right] e^{-\xi z_{1}} d z_{1}\right\} e^{\xi z} d \xi \\
& -\int_{0}^{\infty} \xi J_{0}(\xi r)\left[C \xi+(3-4 \eta) D+D z \xi+\xi \phi_{0}^{*}+(3-4 \eta+z \xi) \psi_{0}^{*}\right] e^{-\xi z} d z \tag{2.29}
\end{align*}
$$

and

$$
\begin{aligned}
\tau_{r z}^{\prime \prime}(r, z) & =2 \mu \int_{0}^{\infty} \xi^{2} J_{1}(\xi r)\left[(1-2 \eta) D+C \xi+D z \xi+\xi \phi_{0}^{*}+(1-2 \eta+z \xi) \psi_{0}^{*}\right] e^{-\xi z} d \xi \\
& -2 \mu \int_{0}^{\infty} \xi^{2} J_{1}(\xi r)\left\{\int_{0}^{z}\left[\bar{\phi}_{0}^{*}\left(\xi, z_{1}\right)+z \psi_{0}\left(\xi, z_{1}\right)\right] e^{-\xi z_{1}} d z_{1}\right\} e^{\xi z} d \xi \\
\tau_{z z}^{\prime \prime}(r, z) & =\frac{2 \mu(1-\eta)\left[\phi_{0}(r, z)+z \psi_{0}(r, z)\right]}{(1-2 \eta)} \\
& +2 \mu \int_{0}^{\infty} \xi^{2} J_{0}(\xi r)\left[2(1-\eta) D+C \xi+D z \xi+\xi \phi_{0}^{*}+(2-2 \eta+\xi z) \psi_{0}^{*}\right] e^{-\xi z} d \xi \\
& -4 \mu(1-\eta) \int_{0}^{\infty} \xi J_{0}(\xi r)\left[\int_{0}^{z} \bar{\psi}_{0}\left(\xi, z_{1}\right) e^{-\xi z_{1}} d z_{1}\right] e^{\xi z} d \xi
\end{aligned}
$$

$$
\begin{align*}
\tau_{r r}^{\prime \prime}(r, z) & =\frac{2 \mu \eta}{(1-2 \eta)}\left[\phi_{0}(r, z)+z \psi_{0}(r, z)\right] \\
& +\frac{2 \mu}{r} \int_{0}^{\infty} \xi^{2} J_{1}(\xi r)\left[C+D z+\phi_{0}^{*}+z \psi_{0}^{*}\right] e^{-\xi=} d \xi \\
& +2 \mu \int_{0}^{\infty} \xi^{2} J_{0}(\xi r)\left[2 \eta D-C \xi-D z \xi-\xi \phi_{0}^{*}+(2 \eta-z \xi) \psi_{0}^{*}\right] e^{-\xi=} d \xi \\
& -4 \mu \eta \int_{0}^{\infty} \xi J_{0}(\xi r)\left[\int_{0}^{z} \bar{\psi}_{0}\left(\xi, z_{1}\right) e^{-\xi=1} d z_{1}\right] e^{\xi=} d \xi \tag{2.30}\\
\tau_{\theta \theta}^{\prime \prime}(r, z) & =\frac{2 \mu \eta}{(1-2 \eta)}\left[\phi_{0}(r, z)+z \psi_{0}(r, z)\right] \\
& -\frac{2 \mu}{r} \int_{0}^{\infty} \xi^{2} J_{1}(\xi r)\left[C+D z+\phi_{0}^{*}+z \psi_{0}^{*}\right] e^{-\xi=} d \xi \\
& +4 \mu \eta \int_{0}^{\infty} \xi^{2} J_{0}(\xi r)\left[D \xi+\xi \psi_{0}^{*}\right] e^{-\xi z} d \xi \\
& -4 \mu \eta \int_{0}^{\infty} \xi J_{0}(\xi r)\left[\int_{0}^{z} \bar{\psi}_{0}\left(\xi, z_{1}\right) e^{-\xi z_{1}} d z_{1}\right] e^{\xi=} d \xi
\end{align*}
$$

The expressions for $\tau_{z z}^{\prime}, \tau_{r z}^{\prime}$, etc. can be written as

$$
\begin{align*}
\frac{\tau_{z z}^{\prime}(r, z)}{2 Q^{2}}= & 4(1-2 \eta)\left(4 a_{2}-2 a_{3}+a_{1}\right) I(r, z,-\delta)[(1-2 \eta) I(r, z, 1-\delta)+z I(r, z,-\delta)] \\
& -4\left(a_{1}-a_{5}\right)\left[\frac{z}{r} K(r, z,-\delta)-\frac{(1-2 \eta)}{r} K(r, z,-(1+\delta))\right][z I(r, z, 1-\delta) \\
& \left.-\frac{z}{r} K(r, z,-\delta)-(1-2 \eta) I(r, z,-\delta)+\frac{(1-2 \eta)}{r} K(r, z,-(1+\delta))\right] \\
& -a_{1}[2(1-\eta) K(r, z,-\delta)+z K(r, z, 1-\delta)]^{2} \\
& -a_{1}[I(r, z,-\delta)+z I(r, z, 1-\delta)]^{2}+\frac{\Sigma}{Q^{2}} \tag{2.31}\\
\frac{\tau_{r z}^{\prime}(r, z)}{2 Q^{2}}= & 4(1-2 \eta) z\left(4 a_{2}-2 a_{3}+a_{1}\right) I(r, z,-\delta) K(r, z, 1-\delta) \\
& +2 a_{1}(1-\eta) K(r, z,-\delta)\left[2 z I(r, z, 1-\delta)-\frac{z}{r} K(r, z,-\delta)\right. \\
& \left.+\frac{(1-2 \eta)}{r} K(r, z,-(1+\delta))\right]+a_{1} z K(r, z,-\delta)\left[-\frac{z}{r} K(r, z,-\delta)\right. \\
& \left.-2(1-2 \eta) I(r, z,-\delta)+\frac{(1-2 \eta)}{r} K(r, z,-(1+\delta))\right] \\
& -4\left(a_{1}-a_{5}\right) z K(r, z, 1-\delta)\left[\frac{z}{r} K(r, z,-\delta)-\frac{(1-2 \eta)}{r} K(r, z,-(1+\delta))\right] \tag{2.32}
\end{align*}
$$

with similar expressions for $\tau_{\theta \theta}^{\prime}$ and $\tau_{r r}^{\prime}$ and where

$$
\begin{align*}
\frac{\Sigma}{Q^{2}}= & \left(a_{1}+2 a_{2}\right)\left\{\left[z I(r, z, 1-\delta)-\frac{z}{r} K(r, z,-\delta)-(1-2 \eta) I(r, z,-\delta)\right.\right. \\
& \left.+\frac{(1-2 \eta)}{r} K(r, z,-(1+\delta))\right]^{2}+[-z K(r, z, 1-\delta)+2(1-\eta) K(r, z,-\delta)]^{2} \\
& +\left[\frac{z}{r} K(r, z,-\delta)-\frac{(1-2 \eta)}{r} K(r, z,-(1+\delta))\right]^{2} \\
& +[z I(r, z, 1-\delta)+(1-2 \eta) I(r, z,-\delta)]^{2} \\
& \left.+[z K(r, z, 1-\delta)+2(1-\eta) K(r, z,-\delta)]^{2}\right\} \\
& +\left(a_{1}+a_{3}\right)\{-4[(1-2 \eta) I(r, z,-\delta)+z I(r, z, 1-\delta)][z I(r, z, 1-\delta) \\
& -(1-2 \eta) I(r, z,-\delta)]-4 z^{2} K^{2}(r, z, 1-\delta) \\
& +4\left[\frac{z}{r} K(r, z,-\delta)-\frac{(1-2 \eta)}{r} K(r, z,-(1+\delta))\right][z I(r, z, 1-\delta) \\
& \left.\left.-\frac{z}{r} K(r, z,-\delta)-(1-2 \eta) I(r, z,-\delta)+\frac{(1-2 \eta)}{r} K(r, z,-(1+\delta))\right]\right\} \\
& +8(1-2 \eta)^{2}\left(6 a_{4}+2 a_{3}-a_{1}-2 a_{2}\right) I^{2}(r, z,-\delta) \tag{2.33}
\end{align*}
$$

Equations (2.29), (2.30), (2.19) and (2.20) together with the expressions for $\tau_{i j}^{\prime}$ constitute the solutions of the second order problem. On the surface $z=0$ these solutions can be written as

$$
\begin{aligned}
w_{r}(r, 0) & =-\frac{1}{2 \mu}\left[(1-2 \eta) \int_{0}^{\infty} x X_{\nu z}^{\prime}(x, 0)+\int_{0}^{\infty} \rho_{0} X_{r}^{\prime}(y, 0) d y K_{1}(x) d x\right. \\
& \left.-2(1-\eta) \int_{0}^{\infty} x X_{\nu r}^{\prime}(x, 0) K_{3}(x) d x\right] \\
w_{z}(r, 0) & =-\frac{1}{2 \mu}\left[(1-2 \eta) \int_{0}^{\infty} x X_{\nu r}^{\prime}(x, 0) K_{2}(x) d x\right. \\
& \left.-2(1-\eta) \int_{0}^{\infty} x X_{\nu z}^{\prime}(x, 0)+\int_{0}^{\infty} \rho_{0} X_{r}^{\prime}(y, 0) d y K_{4}(x) d x\right] \\
\tau_{r z}^{\prime \prime}(r, 0) & =-X_{\nu r}^{\prime}(r, 0)=-\left[c_{\theta} I(r, 0,-\delta) K(r, 0,-\delta)\right. \\
& \left.+\frac{c_{7}}{r} K(r, 0,-\delta) K(r, 0,-(1+\delta))\right]
\end{aligned}
$$

$$
\begin{aligned}
\tau_{z z}^{\prime \prime}(r, 0) & =-X_{y z}^{\prime}(r, 0)=-\left[c_{8} I^{2}(r, 0,-\delta)-\frac{c_{9}}{r} I(r, 0,-\delta) K(r, 0,-(1+\delta))\right. \\
& \left.+\frac{c_{9}}{r^{2}} K^{2}(r, 0,-(1+\delta))+c_{10} K^{2}(r, 0,-\delta)\right] \\
\tau_{r z}^{\prime}(r, 0) & =\frac{4(1-\eta)(1-2 \eta) a_{1} Q^{2}}{r} K(r, 0,-\delta) K(r, 0,-(1+\delta)) \\
\tau_{z z}^{\prime}(r, 0) & =2(1-2 \eta)^{2} Q^{2}\left\{\left(a_{1}+4 a_{2}+12 a_{3}+48 a_{4}\right) I^{2}(r, 0,-\delta)\right. \\
& -\frac{a_{1}+2 a_{2}-2 a_{3}-2 a_{5}}{r} I(r, 0,-\delta) K(r, 0,-(1+\delta)) \\
& \left.+\frac{a_{1}+2 a_{2}-2 a_{3}-2 a_{5}}{r^{2}} K^{2}(r, 0,-(1+\delta))\right\} \\
& +8(1-\eta)^{2}\left(a_{1}+4 a_{2}\right) Q^{2} K^{2}(r, 0,-\delta)
\end{aligned}
$$

with similar expressions for $\tau_{r r}^{\prime}$ and $\tau_{\theta \theta}^{\prime}$. Also

$$
\begin{aligned}
\rho_{0} X_{r}^{\prime}(r, 0) & =\frac{c_{1}}{r}\left[I(r, 0,-\delta)-\frac{2}{r} K(r, 0,-(1+\delta))\right]^{2} \\
& +\frac{c_{2}}{r} K(r, 0,1-\delta) K(r, 0,-(1+\delta))+c_{3} I(r, 0,-\delta) K(r, 0,1-\delta) \\
& +c_{4} I(r, 0,1-\delta) K(r, 0,-\delta)+\frac{c_{5}}{r} K^{2}(r, 0,-\delta)
\end{aligned}
$$

where $c_{i j}$ are constants and listed in the appendix A_{4} and the kernel functions are given by

$$
\begin{aligned}
& K_{1}(x)= \begin{cases}\frac{1}{r}, & x<r \\
0, & x>r\end{cases} \\
& K_{2}(x)= \begin{cases}\frac{1}{\pi x}\left[F\left(\frac{x}{r}\right)-E\left(\frac{x}{r}\right)\right], & x<r \\
\frac{1}{\pi r}\left[F\left(\frac{r}{x}\right)-E\left(\frac{r}{x}\right)\right], & x>r\end{cases} \\
& K_{3}(x)= \begin{cases}0, & x<r \\
\frac{1}{x}, & x>r\end{cases} \\
& K_{4}(x)= \begin{cases}\frac{2}{\pi r} F\left(\frac{x}{r}\right), & x<r \\
\frac{2}{\pi x} F\left(\frac{r}{x}\right), & x>r\end{cases}
\end{aligned}
$$

where $F(x)=\int_{0}^{\frac{\pi}{2}}\left(1-x^{2} \sin ^{2} \tau\right)^{-\frac{1}{2}} d \tau$ and $E(x)=\int_{0}^{\frac{\pi}{2}}\left(1-x^{2} \sin ^{2} \tau\right)^{\frac{1}{2}} d \tau$ are the complete elliptic integrals of the first and second kind, respectively.

2.4 Illustrations.

It is now of some interest to write down the displacement and stress components for specific values of δ.

We present first some cases for linear elasticity theory.
(a) Linear Case.
(i) $\delta=-\frac{1}{2}$, this case is equivalent to the flat-ended punch problem. The solutions on the surface $z=0$ are in agreement with Sneddon(1965).

For $r \leq a$

$$
\begin{align*}
& v_{r}(r, 0)=-\frac{(1-2 \eta) P}{4 \pi \mu a} \frac{r}{a+\sqrt{a^{2}-r^{2}}} \\
& v_{z}(r, 0)=\frac{(1-\eta) P}{2 \mu a} \\
& \tau_{r z}(r, 0)=0 \\
& \tau_{z z}(r, 0)=-\frac{P}{2 \pi a} \frac{1}{\sqrt{a^{2}-r^{2}}} \tag{2.34a}\\
& \tau_{r r}(r, 0)=-\frac{P}{2 \pi a} \frac{1}{\sqrt{a^{2}-r^{2}}}+\frac{(1-2 \eta) P}{2 \pi r} \frac{1}{a+\sqrt{a^{2}-r^{2}}} \\
& \tau_{\theta \theta}(r, 0)=-\frac{\eta P}{2 \pi a} \frac{1}{\sqrt{a^{2}-r^{2}}}-\frac{(1-2 \eta) P}{2 \pi r} \frac{1}{a+\sqrt{a^{2}-r^{2}}}
\end{align*}
$$

For $r>a$

$$
\begin{align*}
v_{r}(r, 0) & =\frac{(1-2 \eta) P}{4 \pi \mu a} \\
v_{z}(r, 0) & =\frac{(1-\eta) P}{2 \pi \mu a} \arcsin \left(\frac{a}{r}\right) \\
\tau_{r z}(r, 0) & =0 \tag{2.34b}\\
\tau_{z z}(r, 0) & =0 \\
\tau_{r r}(r, 0) & =\frac{(1-2 \eta) P}{2 \pi r} \\
\tau_{\theta \theta}(r, 0) & =-\frac{(1-2 \eta) P}{2 \pi r}
\end{align*}
$$

(ii) $\delta=0$, corresponds to uniformly distributed load. The solutions on the surface $z=0$ are

For $r \leq a$

$$
\begin{align*}
& v_{r}(r, 0)=-\frac{(1-2 \eta) P}{4 \pi \mu} \frac{r}{a^{2}} \\
& v_{z}(r, 0)=\frac{2(1-\eta) P}{\mu a \pi^{2}} E\left(\frac{r}{a}\right) \\
& \tau_{r z}(r, 0)=0 \\
& \tau_{z z}(r, 0)=-\frac{P}{\pi a^{2}} \tag{2.35a}\\
& \tau_{r r}(r, 0)=-\frac{(1+2 \eta) P}{2 \pi a^{2}} \\
& \tau_{\theta \theta}(r, 0)=-\frac{(1+2 \eta) P}{2 \pi a^{2}}
\end{align*}
$$

For $r>a$

$$
\begin{align*}
& v_{r}(r, 0)=-\frac{(1-2 \eta) P}{4 \pi \mu r} \\
& v_{z}(r, 0)=\frac{2(1-\eta) P}{\pi^{2} \mu a}\left[\frac{r}{a} E\left(\frac{r}{a}\right)-\frac{r^{2}-a^{2}}{a r} F\left(\frac{a}{r}\right)\right] \\
& \tau_{r z}(r, 0)=0 \tag{2.35b}\\
& \tau_{z z}(r, 0)=0 \\
& \tau_{r r}(r, 0)=\frac{(1-2 \eta) P}{2 \pi r^{2}} \\
& \tau_{\theta \theta}(r, 0)=\frac{(1-2 \eta) P}{2 \pi r^{2}}
\end{align*}
$$

(iii) $\delta=\frac{1}{2}$,this case corresponds to the punch in the form of a paraboloid of revolution. The solutions on the surface $z=0$ are (cf. Sneddon(1965)):

For $r \leq a$

$$
\begin{aligned}
& v_{r}(r, 0)=-\frac{(1-2 \eta) P}{4 \pi \mu} \frac{\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right]}{r} \\
& v_{z}(r, 0)=\frac{3(1-\eta) P}{8 \mu a}\left[1-\frac{r^{2}}{2 a^{2}}\right]
\end{aligned}
$$

$$
\begin{align*}
& \tau_{r z}(r, 0)=0 \\
& \tau_{z z}(r, 0)=-\frac{3 P \sqrt{a^{2}-r^{2}}}{2 \pi a^{3}} \\
& \tau_{r r}(r, 0)=-\frac{3 P \sqrt{a^{2}-r^{2}}}{2 \pi a^{3}}+\frac{(1-2 \eta) P}{2 \pi r^{2}}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right] \tag{2.36a}\\
& \tau_{\theta \theta}(r, 0)=-\frac{3 \eta P \sqrt{a^{2}-r^{2}}}{\pi a^{3}}-\frac{(1-2 \eta) P}{2 \pi r^{2}}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right]
\end{align*}
$$

For $r>a$

$$
\begin{align*}
& v_{r}(r, 0)=-\frac{(1-2 \eta) P}{4 \pi \mu r} \\
& v_{z}(r, 0)=\frac{3(1-\eta) P}{8 \pi \mu a}\left[\left(2-\frac{r^{2}}{a^{2}}\right) \arcsin \left(\frac{a}{r}\right)+\frac{1}{a} \sqrt{r^{2}-a^{2}}\right] \\
& \tau_{r z}(r, 0)=0 \tag{2.36b}\\
& \tau_{z z}(r, 0)=0 \\
& \tau_{r r}(r, 0)=\frac{(1-2 \eta) P}{2 \pi r^{2}} \\
& \tau_{\theta \theta}(r, 0)=-\frac{(1-2 \eta) P}{2 \pi r^{2}}
\end{align*}
$$

(vi) $\delta=\frac{3}{2}$ In this case we find

For $r \leq a$

$$
\begin{align*}
& v_{r}(r, 0)=-\frac{(1-2 \eta) P}{4 \pi \mu r}\left[1-\left(1-\frac{r^{2}}{a^{2}}{ }^{\frac{5}{2}}\right]\right. \\
& v_{z}(r, 0)=\frac{15(1-\eta) P}{32 \mu a^{2} \sqrt{\pi}}\left[1-\frac{r^{2}}{a^{2}}+\frac{3 r^{4}}{8 a^{4}}\right] \\
& \tau_{r z}(r, 0)=0 \\
& \tau_{z z}(r, 0)=-\frac{5 P}{2 \pi a^{2}}\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}} \tag{2.37a}\\
& \tau_{r r}(r, 0)=-\frac{5 P}{2 \pi a^{2}}\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}+\frac{(1-2 \eta) P}{2 \pi r^{2}}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{5}{2}}\right] \\
& \tau_{\theta \theta}(r, 0)=-\frac{5 P}{2 \pi a^{2}}\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}-\frac{(1-2 \eta) P}{2 \pi r^{2}}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{5}{2}}\right]
\end{align*}
$$

For $r>a$

$$
\begin{align*}
v_{r}(r, 0) & =-\frac{(1-2 \eta) P}{4 \pi \mu r} \\
v_{z}(r, 0) & =\frac{15(1-\eta) P}{16 \pi \mu a^{2} r} r \frac{r^{2}-a^{2}}{2}+\frac{3\left(\frac{r^{2}}{2}-a^{2}\right)^{2}}{2 a^{2}} \frac{r}{a} \arcsin \frac{a}{r} \\
& \left.-\frac{3\left(\frac{r^{2}}{2}-a^{2}\right) r \sqrt{r^{2}-a^{2}}}{4 a^{2}}\right] \tag{2.37b}\\
\tau_{r z}(r, 0) & =0 \\
\tau_{z z}(r, 0) & =0 \\
\tau_{r r}(r, 0) & =\frac{(1-2 \eta) P}{2 \pi r^{2}} \\
\tau_{\theta \theta}(r, 0) & =-\frac{(1-2 \eta) P}{2 \pi r^{2}}
\end{align*}
$$

Similarly, for $\delta=5 / 2,7 / 2,9 / 2, \cdots$, we can $\varepsilon^{3 t}$ the other exact solutions.
(v) Point Load: By letting a tend to zero we obtain the solutions for the case of the point load. On noting that:

$$
\begin{aligned}
& \lim _{a \rightarrow 0} Q I(r, z, s)=\frac{P}{4 \pi \mu} \int_{0}^{\infty} \xi^{(1+\delta+s)} J_{0}(\xi r) e^{-\xi z} d \xi \\
& \lim _{a \rightarrow 0} Q K(r, z, s)=\frac{P}{4 \pi \mu} \int_{0}^{\infty} \xi^{(1+\delta+s)} J_{1}(\xi r) e^{-\xi z} d \xi
\end{aligned}
$$

and

$$
\int_{0}^{\infty} J_{n}(\xi r) e^{-\xi z} d \xi=\frac{\left[\sqrt{r^{2}+z^{2}}-z\right]^{n}}{r^{n} \sqrt{r^{2}+z^{2}}}
$$

we obtain

$$
\begin{aligned}
& v_{r}(r, z)=-\frac{P}{4 \pi \mu}\left[\frac{1-2 \eta)\left(\sqrt{r^{2}+z^{2}}-z\right)}{r \sqrt{r^{2}+z^{2}}}-\frac{r^{2}}{\sqrt[3]{r^{2}+z^{2}}}\right] \\
& v_{z}(r, z)=-\frac{P}{4 \pi \mu}\left[\frac{2(1-\eta)}{\sqrt{r^{2}+z^{2}}}+\frac{r^{2}}{\left(r^{2}+z^{2}\right)^{\frac{3}{2}}}\right]
\end{aligned}
$$

$$
\begin{align*}
& \tau_{r z}(r, z)=-\frac{3 P z^{2} r}{2 \pi\left(r^{2}+z^{2}\right)^{\frac{5}{2}}} \\
& \tau_{z z}(r, z)=-\frac{P}{2 \pi} \frac{3 z^{3}}{\left(r^{2}+z^{2}\right)^{\frac{6}{2}}} \tag{2.38}\\
& \tau_{r r}(r, z)=-\frac{P}{2 \pi}\left[\frac{1-2 \eta}{r^{2}}\left(1+\frac{z}{\sqrt{r^{2}+z^{2}}}\right)-\frac{3 r^{2} z}{\left(r^{2}+z^{2}\right)^{\frac{5}{2}}}\right] \\
& \tau_{\theta \theta}(r, z)=\frac{(1-2 \eta) P}{2 \pi}\left[\frac{z}{\left(r^{2}+z^{2}\right)^{\frac{6}{2}}}-\frac{1}{r^{2}}\left(1-\frac{z}{\sqrt{r^{2}+z^{2}}}\right)\right]
\end{align*}
$$

(b) Second Order Case.

In this case it suffices to give solutions for one value of δ, since computations become quite involved, and we select $\delta=\frac{1}{2}$. We first need to calculate the expressions for $\tau_{i j}^{\prime}$ and these are: for $r \leq a$

$$
\begin{align*}
\tau_{r z}^{\prime}(r, 0) & =\frac{2(1-\eta)(1-2 \eta) a_{1}}{3 r} Q^{2}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right] \\
\tau_{: z}^{\prime}(r, 0) & =2(1-2 \eta)^{2} Q^{2}\left\{\frac{2\left(a_{1}+4 a_{2}+12 a_{3}+48 a_{4}\right)}{\pi a^{3}}\left(a^{2}-r^{2}\right)\right. \\
& -\frac{2\left(a_{1}+2 a_{2}+2 a_{3}+2 a_{5}\right)}{3 \pi r^{2}} a\left[\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}-\left(1-\frac{r^{2}}{a^{2}}\right)^{2}\right] \tag{2.39}\\
& \left.+\frac{2\left(a_{1}+2 a_{2}+2 a_{3}+2 a_{5}\right)}{9 \pi r^{4}}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right]^{2}\right\} \\
& +\frac{(1-\eta)^{2}\left(a_{1}+4 a_{2}\right)}{a^{3}} Q^{2} r^{2}
\end{align*}
$$

with similar expressions for $\tau_{r r}^{\prime}$ and $\tau_{\theta \theta}^{\prime}$ and
for $r>a$

$$
\begin{align*}
\tau_{r:}^{\prime}(r, 0) & =\frac{4(1-\eta)(1-2 \eta) a_{1} a Q^{2}}{3 \pi r^{2}}\left[\frac{r}{a} \arcsin \left(\frac{a}{r}\right)-\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}}\right] \\
\tau_{z:}^{\prime}(r, 0) & =\frac{4(1-2 \eta)^{2}\left(a_{1}+2 a_{2}-2 a_{3}-2 a_{5}\right)}{9 \pi r^{4}} a^{3} Q^{2} \tag{2.40}\\
& +\frac{4(1-\eta)^{2}\left(a_{1}+4 a_{2}\right) Q^{2}}{\pi a}\left[\frac{r}{a} \arcsin \left(\frac{a}{r}\right)-\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}}\right]^{2}
\end{align*}
$$

with similar expressions for $\tau_{r r}^{\prime}(r, 0)$ and $;_{\theta \theta}(r, 0)$, where $Q=3 P /\left(4 \sqrt{2 \pi} \mu a^{3 / 2}\right)$.

The solutions for the second order elastic problem turn out to be: for $r \leq a$

$$
\begin{align*}
& w_{\mathrm{r}}(r, 0)=-\frac{1-2 \eta}{2 \mu}\left\{\left(c_{12}+\frac{4-\pi^{2}}{2} c_{11}\right) \frac{r}{a}+\left(c_{13}+\frac{c_{14}}{4}\right) \frac{r^{3}}{a^{3}}\right. \\
& +\frac{c_{1}+c_{2}}{3 \pi \mu a}\left[r^{2} \ln \frac{a+\sqrt{a^{2}-r^{2}}}{a}+a^{2}-a \sqrt{a^{2}-r^{2}}\right] \\
& \left.-\frac{2\left(c_{1}+c_{9}\right)}{9 \pi r}\left[\frac{a^{3}-\left(a^{2}-r^{2}\right)^{\frac{3}{2}}}{a^{2}}+\frac{a^{3}}{r^{2}}-\frac{\left(a^{2}-r^{2}\right)^{\frac{8}{2}}}{a^{2} r^{2}}-\frac{5 a}{2}\right\}\right\} \\
& +\frac{1-\eta}{\mu}\left\{\frac{c_{6} I_{3}(r)}{2 \pi a^{3}}-\frac{c_{7} I_{4}(r)}{6 \pi a^{3}}+\frac{c_{6} a r^{2} I_{5}(r)}{2 \pi}\right. \\
& \left.+\frac{c_{7} a I_{6}(r)}{6 \pi}+\frac{c_{7} a I_{7}(r)}{3 \pi r^{2}}\right\} \\
& w_{z}(r, 0)=\frac{1-2 \eta}{2 \mu}\left\{\frac{\left(4 I_{1}+\pi\right) c_{7}}{12 \pi}+\frac{3 c_{6}+c_{7}}{18} \frac{\left(a^{2}-r^{2}\right)^{\frac{3}{2}}}{a^{3}}\right. \tag{2.41}\\
& \left.+\frac{c_{7}}{6}\left[\frac{\sqrt{a^{2}-r^{2}}}{a}+\ln \frac{a}{a+\sqrt{a^{2}-r^{2}}}\right]\right\} \\
& +\frac{1-\eta}{\mu}\left\{\frac{2\left(c_{15}+4 c_{11}-\pi^{2} c_{11}\right)}{\pi} E\left(\frac{r}{a}\right)+\frac{7\left(c_{14}+c_{10}\right)}{3 \pi} \frac{r^{3}}{a^{3}}\right. \\
& +\frac{4\left(3 c_{1}-c_{9}\right)}{9 \pi^{2} r}\left[I_{9}(r)+I_{12}(r)\right]+\frac{4\left(c_{1}+c_{2}\right)}{3 \pi^{2}}\left[\frac{I_{10}(r)}{a r}+r I_{13}(r)\right] \\
& -\frac{8\left(9 c_{1}+c_{9}\right)}{27 \pi^{2} r}\left[a I_{11}(r)+I_{14}(r)\right] \\
& +\frac{2\left(c_{14}+c_{16}\right)}{9 \pi a^{2}}\left[\left(a^{2}+4 r^{2}\right) E\left(\frac{r}{a}\right)+2\left(a^{2}-r^{2}\right) F\left(\frac{r}{a}\right)\right] \\
& \left.+\frac{4\left(c_{1}+c_{9}\right) I_{15}(r)}{9 \pi^{2} r^{3}}-\frac{8 c_{14} r I_{16}(r)}{\pi^{3}}-\frac{8 c_{11} r I_{17}(r)}{\pi}\right\} \\
& \tau_{r z}^{\prime \prime}(r, 0)=\frac{c_{6} r \sqrt{a^{2}-r^{2}}}{2 a^{3}}+\frac{c_{7}\left[a^{3}-\left(a^{2}-r^{2}\right)^{\frac{3}{2}}\right]}{6 a^{3} r} \\
& \tau_{z z}^{\prime \prime}(r, 0)=-\frac{2 c_{8}\left(a^{2}-r^{2}\right)}{\pi a^{3}}-\frac{2 c_{9}}{9 \pi} \frac{\left[a^{3}-\left(a^{2}-r^{2}\right)^{\frac{3}{2}}\right]^{2}}{a^{3} r^{4}} \tag{2.42}\\
& +\frac{2 c_{9}}{3 \pi} \frac{a^{3} \sqrt{a^{2}-r^{2}}-\left(a^{2}-r^{2}\right)^{2}}{a^{3} r^{2}}-\frac{\pi c_{10} r^{2}}{8 a^{3}}
\end{align*}
$$

with similar expressions for $\tau_{r r}^{\prime \prime}(r, 0)$ and $\tau_{\theta \theta}^{\prime \prime}(r, 0)$.
for $r>a$:

$$
\begin{align*}
& w_{r}(r, 0)=-\frac{1-2 \eta}{2 \mu}\left\{c_{10} \frac{a}{r}-\frac{c_{1}+c_{9}}{9 \pi} \frac{a^{3}}{r^{3}}+\frac{c_{14}}{\pi^{2}}\left[\frac{r}{a}+\frac{r^{3}}{a^{3}} \arcsin ^{2} \frac{a}{r}\right]\right. \\
& +\frac{2 c_{14}}{3 \pi^{2}} \frac{r \sqrt{r^{2}-a^{2}} \arcsin \frac{a}{r}}{a^{2}}-\frac{8 c_{14}}{3 \pi^{2}} \frac{\left(r^{2}-a^{2}\right)^{\frac{3}{2}} \arcsin \frac{a}{r}}{a^{2} r} \\
& \left.+\frac{2 c_{10}+4 c_{14}+5 c_{5}}{12 \pi} \frac{\sqrt{r^{2}-a^{2}} \arcsin \frac{a}{r}}{r}-2 c_{11} \frac{r}{a} \arcsin ^{2} \frac{a}{r}\right\} \\
& +\frac{1-\eta}{\mu}\left\{\frac{c_{6} I_{3}(r)}{2 \pi a^{3}}+\frac{c_{7} I_{4}(r)}{6 \pi a^{3}}+\frac{a c_{7} I_{8}(r)}{3 \pi^{2}}+\frac{a c_{7} I_{7}(r)}{3 \pi r^{2}}\right\} \\
& w_{z}(r, 0)=-\frac{(1-2 \eta) a c_{7}}{6 \pi \mu}\left[\frac{\sqrt{r^{2}-a^{2}}}{2 r^{2}}+\frac{\arcsin \frac{a}{r}}{2 a}+I_{2}(r)\right] \\
& +\frac{1-\eta}{\mu}\left\{\frac{2\left(c_{15}+4 c_{11}-\pi^{2} c_{11}\right)}{\pi a r}\left[r^{2} E\left(\frac{a}{r}\right)+\left(a^{2}-r^{2}\right) F\left(\frac{a}{r}\right)\right]\right. \tag{2.43}\\
& +\frac{2\left(c_{14}+c_{16}\right)}{9 \pi a r^{3}}\left[\left(a^{2}+4 r^{2}\right)\left(a^{2}-r^{2}\right) F\left(\frac{a}{r}\right)+\left(4 r^{4}+a^{2} r^{2}\right) E\left(\frac{a}{r}\right)\right] \\
& +\frac{4\left(3 c_{1}-c_{9}\right)}{9 \pi^{2} r} I_{8}(a)+\frac{4\left(c_{1}+c_{2}\right)}{3 \pi^{2} a r} I_{10}(a)-\frac{8\left(9 c_{1}+c_{9}\right) a}{27 \pi^{2} r} I_{11}(a) \\
& +\frac{4\left(c_{1}+c_{9}\right) a^{3}}{9 \pi^{2} r} I_{18}(r)-\frac{8 c_{14}}{\pi^{3} a r} I_{19}(r)-\frac{8 c_{11}}{\pi a r} I_{20}(r) \\
& \left.+\frac{4\left(c_{1}+c_{9}\right)}{9 \pi^{2} r^{3}} I_{15}(a)-\frac{8 c_{14} r}{\pi^{3}} I_{16}(a)-\frac{8 c_{11} r}{\pi} I_{17}(a)\right\} \\
& \tau_{r=}^{\prime \prime}(r, 0)=-\frac{c_{7}}{3 \pi} \frac{r^{2} \arcsin \frac{a}{r}-a \sqrt{r^{2}-a^{2}}}{r^{3}} \\
& \tau_{z z}^{\prime \prime}(r, 0)=-\frac{2 c_{9} a^{3}}{9 \pi r^{4}}-\frac{c_{10}}{2 \pi a}\left[\frac{r}{a} \arcsin \frac{a}{r}-\frac{\sqrt{r^{2}-a^{2}}}{r}\right]^{2}
\end{align*}
$$

with similar expressions for $\tau_{r r}^{\prime \prime}(r, 0)$ and $\tau_{\theta \theta}^{\prime \prime}(r, 0)$ and where I_{j} are listed in the Appendix A_{3} and $c_{i j}$ are listed in the appendix A_{4}.

In comparision to the linear solution given by (2.37) we note that expressions for displacement and stress in the second order theory are very complicated. In particular, the simple paraboloidal shape of linear elasticity, (2.37) $)_{3}$ is completely changed to a new form as given by $(2.42)_{1}$ and $(2.43)_{1}$. Similarly, the shape of the deformed boundary, on $z=0$, as compared to the linear theory, $(2.37)_{2}$, again is considerably changed in the second order theory (cf.(2.41) $)_{2}$ and (2.43) $)_{2}$).

2.5 Reduction to the Incompressible Case.

We now follow the limit process introduced by Rivlin(1953) to obtain results for isotropic incompressible materials. First we require a_{2} and a_{3} tend to infinity in such a manner that ($a_{3}-2 a_{2}$) remains finite. Moreover if we set

$$
\begin{align*}
& a_{1}=-\left(C_{1}+C_{2}\right) \tag{2.44}\\
& a_{5}=-\left(C_{1}+2 C_{2}\right)
\end{align*}
$$

then the strain energy function W takes the Mooney's form

$$
\begin{equation*}
W=C_{1}\left(I_{1}-3\right)+C_{2}\left(I_{2}-3\right) \tag{2.45}
\end{equation*}
$$

where C_{1} and C_{2} are constants. On employing the above limiting process and setting $\eta=\frac{1}{2}$ we find that complete second order solution, for this particular case, simplifies to

For $r \leq a$

$$
\begin{aligned}
u_{r}(r, 0) & =-\frac{Q^{2}}{2 \pi}\left[\frac{I_{3}(r)}{a^{3}}+a r^{2} I_{5}(r)\right] \\
u_{z}(r, 0) & =-\frac{3 P}{32 a_{1} a}\left[1-\frac{r^{2}}{2 a^{2}}\right]-\frac{Q^{2}}{4}\left\{\frac{3\left(4-\pi^{2}\right)}{\pi^{2}} E\left(\frac{r}{a}\right)\right. \\
& \left.-\frac{13 r I_{17}(r)}{\pi}\right\}
\end{aligned}
$$

For $r>a$

$$
\begin{align*}
u_{r}(r, 0) & =-\frac{I_{3}(a) Q^{2}}{2 \pi a^{3}} \\
u_{z}(r, 0) & =-\frac{3 P}{32 a_{1} a \pi}\left[\left(2-\frac{r^{2}}{a^{2}}\right) \arcsin \frac{a}{r}+\frac{\sqrt{r^{2}-a^{2}}}{a}\right\} \tag{2.46}\\
& -\frac{Q^{2}}{4}\left\{\frac{3\left(4-\pi^{2}\right)}{\pi^{2} a r}\left[r^{2} E\left(\frac{a}{r}\right)+\left(a^{2}-r^{2}\right) F\left(\frac{a}{r}\right)\right]\right. \\
& \left.-\frac{12 I_{20}(r)}{\pi^{2} a r}-\frac{12 r I_{17}(a)}{\pi^{2}}\right\}
\end{align*}
$$

The stresses are given by

For $r \leq a$

$$
\begin{aligned}
t_{r r}(r, 0) & =-\frac{3 P \sqrt{a^{2}-r^{2}}}{2 \pi a^{3}}-\frac{2 a_{1} a Q^{2} r I_{5}(r)}{\pi}-\frac{8 a_{1} Q^{2} I_{22}(r)}{\pi a r} \\
& +\frac{4 a_{1} Q^{2}\left(3 I_{23}(r)-I_{24}(r)\right) r}{\pi a}-\frac{2 a_{1} Q^{2}\left(I_{3}(r)+6 I_{21}(r)\right)}{\pi a^{3} r} \\
t_{z z}(r, 0) & =-\frac{3 P \sqrt{a^{2}-r^{2}}}{2 \pi a^{3}} \\
t_{r z}(r, 0) & =\frac{2 a_{1} Q^{2} r \sqrt{a^{2}-r^{2}}}{a^{3}} \\
t_{\theta \theta}(r, 0) & =-\frac{3 P \sqrt{a^{2}-r^{2}}}{2 \pi a^{3}}+\frac{\pi a_{1} Q^{2} r^{2}}{4 a^{3}}+\frac{2 a_{1} Q^{2}\left(I_{3}(r)+6 I_{21}(r)\right)}{\pi a^{3} r} \\
& +\frac{4 a_{1} Q^{2} r\left(3 I_{23}(r)-I_{24}(r)\right)}{\pi a}+\frac{2 a_{1} Q^{2} r I_{5}(r)}{\pi}-\frac{4 a_{1} Q^{2} I_{22}(r)}{\pi a r}
\end{aligned}
$$

For $r>a$

$$
\begin{align*}
t_{r r}(r, 0) & =\frac{2 a_{1} Q^{2}\left(12 I_{21}(a)-I_{24}(a)\right)}{\pi a^{3} r}-\frac{8 a_{1} Q^{2} I_{22}(a)}{\pi a r} \\
t_{z z}(r, 0) & =0 \\
t_{r z}(r, 0) & =0 \tag{2.47}\\
t_{\theta \theta}(r, 0) & =\frac{a_{1} Q^{2}}{4 \pi r}\left[\frac{r}{a} \arcsin \frac{a}{r} \frac{\sqrt{r^{2}-a^{2}}}{r}\right]^{2}+\frac{2 a_{1} Q^{2}\left(I_{3}(a)+6 I_{21}(a)\right.}{\pi a^{3} r} \\
& -\frac{4 a_{1} Q^{2} I_{22}(r)}{\pi a r}
\end{align*}
$$

It is apparent that the expressions in the case of incompressible material are much simpler as compared to those for compressible material. In particular we note that while there is significant change in the displacement components, the second order solution has no effect on the normal stress $t_{z z}$, on $z=0$, in the incompressible case. It should be remarked that Rivlin's method cannot be applied, as used in this thesis, by starting with (2.45). Known solutions for compressible material, however, can be specialized for incompressible material by the appropriate limiting process as illustrated above.

2.6 Numerical Results.

In order to show the second order effect, we now present some numerical solntions. In the following numerical calculations, the leading term is the solntion to be found in linear elasticity and the remaining term represents the second order solution. We are interested in the \mathbf{z}-direction displacement and stress.

For compressible material, the strain invariants, \bar{I}_{1}, \bar{I}_{2} and \bar{I}_{3}, can be written as

$$
\begin{align*}
\bar{I}_{1} & =3+2 e_{r r} \\
\bar{I}_{2} & =3+4 e_{r r}+2\left(e_{r r} e_{s s}-e_{r s} e_{r s}\right) \tag{2.48}\\
\bar{I}_{3} & =\operatorname{det}\left(\delta_{r s}+2 e_{r s}\right) \\
& =1+2 e_{r r}+2\left(e_{r r} e_{s s}-e_{r s} e_{r s}\right)+8 \operatorname{det}\left(e_{r s}\right)
\end{align*}
$$

where

$$
e_{r s}=\frac{1}{2}\left(\frac{\partial u_{r}}{\partial x_{s}}+\frac{\partial u_{s}}{\partial x_{r}}+\frac{\partial u_{k}}{\partial x_{r}} \frac{\partial u_{k}}{\partial x_{s}}\right)
$$

Using three other strain invariants, I_{1}^{*}, I_{2}^{*} and I_{3}^{*}, as constructed by Murnaghan(1937) we can rewrite $\bar{I}_{1}, \bar{I}_{2}, \bar{I}_{3}$ as

$$
\begin{align*}
& \bar{I}_{1}=3+2 I_{1}^{*} \\
& \bar{I}_{2}=3+4 I_{1}^{*}+4 I_{2}^{*} \tag{2.49}\\
& \bar{I}_{3}=1+2 I_{1}^{*}+4 I_{2}^{*}+8 I_{3}^{*}
\end{align*}
$$

where

$$
I_{1}^{*}=e_{r r}, \quad I_{2}^{*}=\frac{e_{r r} e_{s s}-e_{r s} e_{r s}}{2}, \quad I_{3}^{*}=\operatorname{det}\left(e_{r s}\right)
$$

The five elastic coefficients used by Murnaghan(1937) are λ, μ, l, m, n. The relationship between Murnaghan's and Rivlin's coefficients is given by Truesdell and Noll(1965) as

$$
\begin{align*}
& a_{1}=-\mu / 2, \quad a_{2}=(\lambda+2 \mu) / 8 \tag{2.50}\\
& a_{3}=m+\mu, \quad a_{4}=-\mu / 3+l, \quad a_{5}=n-\mu
\end{align*}
$$

Foux (1962) gives following experimental data for iron

$$
\begin{gather*}
\mu=8.26 \times 10^{3} \mathrm{~kg} / \mathrm{mm}^{2} \tag{2.51}\\
K=\lambda+2 \mu / 3=17.0 \times 10^{3} \mathrm{~kg} / \mathrm{mm}^{2} \\
l / \mu=-1.6, \quad m / \mu=-10.1, \quad n / \mu=-22.7 \tag{2.52}
\end{gather*}
$$

Using (2.50), (2.51) and (2.52) we find

$$
\begin{gather*}
a_{1} / \mu=-0.5, \quad a_{2} / \mu=\frac{1}{6}+\frac{17}{8.26}, \quad a_{3} / \mu=-9.1 \\
a_{4} / \mu=-\left(1.6+\frac{1}{3}\right), \quad a_{5} / \mu=-23.7 \tag{2.53}
\end{gather*}
$$

and

$$
\eta=\frac{862}{2963}
$$

Using above values and denoting $\bar{r}=r / a$ we get following numerical results for the displacement and the normal stress in the z-direction:

$$
\begin{array}{ccccc}
\bar{r} & 0.0 & 0.2 & 0.4 & 0.5 \\
u_{z} / a & 0.2659 \epsilon+0.9217 \epsilon^{2} & 0.2606 \epsilon+1.4730 \epsilon^{2} & 0.2446 \epsilon+1.5632 \epsilon^{2} & 0.2327 \epsilon+1.6842 \epsilon^{2} \\
t_{z z} / \mu & -0.4775 \epsilon+1.1453 \epsilon^{2} & -0.4678 \epsilon+0.9072 \epsilon^{2} & -0.4376 \epsilon+0.7695 \epsilon^{2} & -0.4135 \epsilon+0.6647 \epsilon^{2}
\end{array}
$$

\bar{r}
0.8
0.85
1.0-0
$1.0+0$
u_{z} / a
$0.1808 \epsilon+2.4798 \epsilon^{2}$
$0.1698 \epsilon+2.6887 \epsilon^{2}$
$0.1330 \epsilon+5.0624 \epsilon^{2}$
$0.1330 \epsilon+1.1170 \epsilon^{2}$
$t_{z=} / \mu-0.2865 \epsilon+0.1805 \epsilon^{2}$
$-0.2515 \epsilon+0.0658 \epsilon^{2}$
$-0.6250 \epsilon^{2}$
$0.7832 \epsilon^{2}$

$$
\bar{r}
$$

2.0
8.0
20.0

100
$u=/ a \quad 0.0580 \epsilon+0.7289 \epsilon^{2} \quad 0.0141 \epsilon+0.1772 \epsilon^{2} \quad 0.0056 \epsilon+0.0716 \epsilon^{2} \quad 0.0011 \epsilon+0.0149 \epsilon^{2}$
$\begin{array}{llll}t:=/ \mu & 0.0783 \epsilon^{2} & 0.0003 \epsilon^{2} & 0.0\end{array}$
where $\epsilon=P /\left(\mu a^{2}\right)$
From these tables we find that for compressible materials the second order effect is to enlarge z-direction displacement. The second order stress has, however, its direction opposite to the direction of the linear stress, and therefore it makes the total stress smaller in magnitude than the linear stress. We also find that the second order displacement and stress possess discontinuity at $r=a$.

The same caiculations have been made for an incompressible material, such as a rubber-like material. In this case, we have

$$
a_{1}=-\left(C_{1}+C_{2}\right), \quad a_{2}=-\left(C_{1}+2 C_{2}\right)
$$

and from the experiments of Haines and Wilson(1979), we have $C_{1}=0.179$ and $C_{2}=0.009$. These values give the following tables

$$
\begin{array}{ccccc}
\bar{r} & 0.0 & 0.2 & 0.4 & 0.5 \\
u_{z} / a & 0.1875 \epsilon+0.0975 \epsilon^{2} & 0.1837 \epsilon+0.0886 \epsilon^{2} & 0.1725 \epsilon+0.0872 \epsilon^{2} & 0.1641 \epsilon+0.0862 \epsilon^{2} \\
t_{z z} / \mu & -0.4775 \epsilon & -0.4678 \epsilon & -0.4376 \epsilon & -0.4135 \epsilon \\
& & & & \\
\bar{r} & 0.8 & 0.85 & 1.0-0 & 1.0+0 \\
u_{z} / a & 0.1275 \epsilon+0.0815 \epsilon^{2} & 0.1198 \epsilon+0.0805 \epsilon^{2} & 0.0938 \epsilon+0.0787 \epsilon^{2} & 0.0938 \epsilon+0.0442 \epsilon^{2} \\
t_{z z} / \mu & -0.2865 \epsilon & -0.2515 \epsilon & 0.0 & 0.0 \\
& & & & \\
& & & & \\
\bar{r} & 2.0 & 8.0 & 20.0 & 100.0 \\
u_{z} / a & 0.0409 \epsilon+0.0183 \epsilon^{2} & 0.0100 \epsilon+0.0051 \varepsilon^{2} & 0.0040 \epsilon+0.0021 \epsilon^{2} & 0.0008 \epsilon+0.0004 \epsilon^{2} \\
t_{z z} / \mu & 0.0 & 0.0 & 0.0 & 0.0
\end{array}
$$

where $\epsilon=P /\left(\mu a^{2}\right)$
From the above tables we note that for incompressible material the second order effect also increases the z-direction displacement. The magnitude of increase is, however, much smaller as compared to the compressible case. In the incompressible case, there is no effect of the second order elasticity in the z-direction normal stress, but it affects the $t_{r r}$ and $t_{\theta \theta}$ stress components. Also, displacement is not continuous at $r=a$.

Finally, we remark that for both compressible and incompressible materials, the parameter ϵ deternines the magnitude of the second order elastic effect, that is, the more the total appplied force P the larger the second order effect and the greater the elastic constant μ the smaller the second order effect.

CHAPTER III

SECOND ORDER EFFECTS IN AN ELASTIC HALF-SPACE ACTED UPON BY A NON-UNIFORM SHEAR LOAD

3.1 Statement of the Problem.

In this Chapter we consider an elastic half-space in which a non-uniform shear load, of total magnitude P, is acting over a circle of radius a in the \mathbf{x}-direction(see Fig.2). In classical elasticity, this problem of stress distribution within an elastic half-space when it is deformed by the uniform tangential force to the surface seems to have been considered first by Cerruti(1882). An alternative solution to this problem, using Hankel transform method, was also given by Muki(1960). Here we consider the second order problem with non-uniform tangential load. Again, we choose cylindrical polar coordinates (r, θ, z) such that the load is acting in the plane $z=0$. The boundary conditions are

$$
\begin{align*}
& t_{z z}=0 \\
& t_{r y}=\frac{(1+\delta) P}{\pi a^{2(1+\delta)}}\left(a^{2}-r^{2}\right)^{\delta} H(a-r) \cos \theta \tag{3.1}\\
& t_{\theta z}=-\frac{(1+\delta) P}{\pi a^{2(1+\delta)}}\left(a^{2}-r^{2}\right)^{\delta} H(a-r) \sin \theta
\end{align*}
$$

where constant $\delta>-1$. We assume that there are no body forces. For the lincar solutions and second order solutions the problem can also be split into two subproblems:
(I) The Linear Solution: solve

$$
\begin{array}{r}
\frac{\partial \tau_{r r}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{r \theta}}{\partial \theta}+\frac{\partial \tau_{r z}}{\partial z}+\frac{\tau_{r r}-\tau_{\theta \theta}}{r}=0 \\
\frac{\partial \tau_{r \theta}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{\theta \theta}}{\partial \theta}+\frac{\partial \tau_{\theta z}}{\partial z}+\frac{2}{r} \tau_{r \theta}=0 \tag{3.2}\\
\frac{\partial \tau_{r z}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{\theta z}}{\partial \theta}+\frac{\partial \tau_{z z}}{\partial z}+\frac{1}{r} \tau_{r z}=0
\end{array}
$$

subject to

$$
\begin{align*}
& \left.\tau_{z z}\right|_{z=0}=0 \\
& \left.\tau_{r z}\right|_{z=0}=\frac{(1+\delta) P}{\pi a^{2(1+\delta)}}\left(a^{2}-r^{2}\right)^{\delta} H(a-r) \cos \theta \tag{3.3}\\
& \left.\tau_{\theta z}\right|_{z=0}=-\frac{(1+\delta) P}{\pi a^{2(1+\delta)}}\left(a^{2}-r^{2}\right)^{\delta} H(a-r) \sin \theta
\end{align*}
$$

(II) The Second Order Solution: solve

$$
\begin{array}{r}
\frac{\partial \tau_{r r}^{\prime \prime}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{r \theta}^{\prime \prime}}{\partial \theta}+\frac{\partial \tau_{r z}^{\prime \prime}}{\partial z}+\frac{\tau_{r r}-\tau_{\theta \theta}^{\prime \prime}}{r}+\rho_{0} X_{r}^{\prime}=0 \\
\frac{\partial \tau_{r \theta}^{\prime \prime}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{\theta \theta}^{\prime \prime}}{\partial \theta}+\frac{\partial \tau_{\theta z}^{\prime \prime}}{\partial z}+\frac{2}{r} \tau_{r \theta}^{\prime \prime}+\rho_{0} x_{\theta}^{\prime}=0 \tag{3.4}\\
\frac{\partial \tau_{r z}^{\prime \prime}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{\theta z}^{\prime \prime}}{\partial \theta}+\frac{\partial \tau_{z z}^{\prime \prime}}{\partial z}+\frac{1}{r} \tau_{r z}^{\prime \prime}+\rho_{0} X_{z}^{\prime}=0
\end{array}
$$

subject to

$$
\begin{equation*}
\left.\tau_{z z}^{\prime \prime}\right|_{z=0}=-\bar{X}_{z}^{\prime \prime},\left.\quad \tau_{r z}^{\prime \prime}\right|_{z=0}=-\bar{X}_{r}^{\prime \prime},\left.\quad \tau_{\theta z}^{\prime \prime}\right|_{z=0}=-\bar{X}_{\theta}^{\prime \prime} \tag{3.5}
\end{equation*}
$$

where body forces and surface tractions are listed in the Appendix A_{1}.

3.2 The Linear Solution.

For solving the subproblem (I) we use Muki's displacement solution

$$
\begin{equation*}
\mathbf{v}=\frac{1}{2 \mu}\left\{2(1-\eta) \nabla^{2} \mathbf{G}-\nabla(\nabla \cdot \mathbf{G})+\nabla \times \mathbf{A}\right\} \tag{3.6}
\end{equation*}
$$

where \mathbf{G} is a bilharmonic vector and \mathbf{A} is a harmonic vector. Muki proposed single z components for both G and \mathbf{A}

$$
\begin{equation*}
\mathbf{G}=\left(0,0, G_{z}(r, \theta, z)\right), \quad \mathbf{A}=\left(0,0, A_{z}(r, \theta, z)\right) \tag{3.7}
\end{equation*}
$$

We select $G_{z}(r, \theta, z)=\phi(r, z) \cos \theta$ and $A_{z}(r, \theta, z)=\psi(r, z) \sin \theta$. Then the displacement components (v_{r}, v_{θ}, v_{z}) bocome

$$
\begin{align*}
& v_{r}=\frac{1}{2 \mu}\left[-\frac{\partial^{2} \phi}{\partial r \partial z}+\frac{2 \psi}{r}\right] \cos \theta \\
& v_{\theta}=\frac{1}{2 \mu}\left[\frac{1}{r} \frac{\partial \phi}{\partial z}-2 \frac{\partial \psi}{\partial r}\right] \sin \theta \tag{3.8}\\
& v_{z}=\frac{1}{2 \mu}\left[2(1-\eta) \nabla_{1}^{2} \phi-\frac{\partial^{2} \psi}{\partial z^{2}}\right] \cos \theta
\end{align*}
$$

which satisfy (3.2), provided $\phi(r, z)$ and $\psi(r, z)$ satisfy, respectively,

$$
\begin{align*}
& \nabla_{1}^{4} \phi=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{1}{r^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)^{2} \phi=0 \tag{3.9}\\
& \nabla_{1}^{2} \psi=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{1}{r^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \psi=0 \tag{3.10}
\end{align*}
$$

The stress field corresponding to displacement field (3.8) can be written as

$$
\begin{align*}
& \tau_{r r}=\left[\frac{\partial\left(\eta \nabla_{1}^{2} \phi-\frac{\theta^{2} \phi}{\partial r^{2}}\right)}{\partial z}+\left(\frac{2}{r} \frac{\partial \phi}{\partial r}-\frac{2 \psi}{r^{2}}\right)\right] \cos \theta \\
& \tau_{\theta \theta}=\left[\frac{\partial\left(\eta \nabla_{1}^{2} \phi-\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{\phi}{r^{2}}\right)}{\partial z}-\left(\frac{2}{r} \frac{\partial \psi}{\partial r}-\frac{2 \psi}{r^{2}}\right)\right] \cos \theta \\
& \tau_{z z}=\left[\frac{\partial\left((2-\eta) \nabla_{1}^{2} \phi-\frac{\partial^{2} \phi}{\partial z^{2}}\right)}{\partial z}\right] \cos \theta \\
& \tau_{\theta z}=\left[-\frac{1}{r}\left((1-\eta) \nabla_{1}^{2} \phi-\frac{\partial^{2} \phi}{\partial z^{2}}\right)-\frac{\partial^{2} \psi}{\partial z \partial r}\right] \sin \theta \\
& \tau_{r z}=\left[\frac{\partial\left((1-\eta) \nabla_{1}^{2} \phi-\frac{\partial^{2} \phi}{\partial z^{2}}\right)}{\partial r}+\frac{1}{r} \frac{\partial \psi}{\partial z}\right] \cos \theta \tag{3.11}\\
& \tau_{r \theta}=\left[\frac{\partial^{2} \frac{\phi}{r}}{\partial z \partial r}-\left(2 \frac{\partial^{2} \psi}{\partial r^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}\right)\right] \sin \theta
\end{align*}
$$

Use of (3.3) leads to

$$
\begin{gather*}
{\left.\left[\frac{\partial\left((2-\eta) \nabla_{1}^{2} \phi-\frac{\partial^{2} \phi}{\partial z^{2}}\right)}{\partial z}\right]\right|_{z=0}=0} \\
{\left.\left[-\frac{1}{r}\left((1-\eta) \nabla_{1}^{2} \phi-\frac{\partial^{2} \phi}{\partial z^{2}}\right)-\frac{\partial^{2} \psi}{\partial z \partial r}\right]\right|_{z=0}=-\frac{(1+\delta) P}{\pi a^{2(1+\delta)}}\left(a^{2}-r^{2}\right)^{\delta} H(a-r)} \tag{3.12}\\
{\left.\left[\frac{\partial\left((1-\eta) \nabla_{1}^{2} \phi-\frac{\partial^{2} \phi}{\partial z^{2}}\right)}{\partial r}+\frac{1}{r} \frac{\partial \psi}{\partial z}\right]\right|_{z=0}=\frac{(1+\delta) P}{\pi a^{2(1+\delta)}}\left(a^{2}-r^{2}\right)^{\delta} H(a-r)}
\end{gather*}
$$

We now denote by

$$
\begin{aligned}
\bar{\phi} & =\int_{0}^{\infty} r J_{1}(\xi r) \phi(r, z) d r \\
\bar{\psi} & =\int_{0}^{\infty} r J_{1}(\xi r) \psi(r, z) d r
\end{aligned}
$$

and take the first order Hankel transforms of (3.9) and (3.10), respectively, to obtain ordinary differntial equations for $\bar{\phi}(\xi, z)$ and $\bar{\psi}(\xi, z)$. Useful solution of
these differential equations for our purpose are

$$
\begin{align*}
& \bar{\phi}(\xi, z)=\left(A_{2}+A_{3} \xi z\right) e^{-\xi z} \\
& \bar{\psi}(\xi, z)=A_{1} e^{-\xi z} \tag{3.13}
\end{align*}
$$

where A_{1}, A_{2}, A_{3} are arbitrary functions of ξ. On taking the first order Hankel transform of (3.12) ${ }_{1}$, the second order Hankel transform of $(3.12)_{2}+(3.12)_{3}$ and the zero order Hankel transform of $(3.12)_{2}-(3.12)_{3}$ and solving the resulting equations for A_{1}, A_{2}, A_{3} we find

$$
\begin{align*}
& A_{1}=-\frac{T}{2} \frac{J_{1+\delta}(a \xi)}{\xi^{3+\delta}} \\
& A_{2}=-\frac{T}{2} \frac{(1-2 \eta) J_{1+\delta}(a \xi)}{\xi^{4+\delta}} \tag{3.14}\\
& A_{3}=\frac{T}{2} \frac{\left.\left.J_{1+\delta}\right) a \xi\right)}{\xi^{4+\delta}}
\end{align*}
$$

where $T=2^{1+\delta}(1+\delta) \Gamma(1+\delta) P /\left(\pi a^{1+\delta}\right)$.
We now take the following Hankel transforms of the stress and displacement functions: $H_{1}\left[\tau_{z z} / \cos \theta\right], H_{2}\left[\tau_{r z} / \cos \theta+\tau_{\theta z} / \sin \theta\right], H_{0}\left[\tau_{r z} / \cos \theta-\tau_{\theta z} / \sin \theta\right], H_{2}\left[v_{r} / \cos \theta+\right.$ $\left.v_{\theta} / \sin \theta\right], H_{0}\left[v_{r} / \cos \theta-v_{\theta} / \sin \theta\right], H_{1}\left[\tau_{r r} / \cos \theta+\tau_{\theta \theta} / \sin \theta\right], H_{1}\left[\tau_{r r} / \cos \theta+2 \mu v_{r} /(r \cos \theta)+\right.$ $\left.2 \mu v_{\theta} /(r \sin \theta)\right]$ and then using (3.13) and (3.14) on inverting the resulting equations we obtain

$$
\begin{aligned}
v_{r} & =\frac{T}{4 \mu}\left[-(2-\eta) L(0,-(1+\delta), z)-\eta L(2,-(1+\delta), z)+\frac{z}{2} L(0,-\delta, z)\right. \\
& \left.-\frac{z}{2} L(2,-\delta, z)\right] \cos \theta \\
v_{\theta} & =\frac{T}{4 \mu}\left[(2-\eta) L(0,-(1+\delta), z)-\eta L(2,-(1+\delta), z)-\frac{z}{2} L(0,-\delta, z)\right. \\
& \left.-\frac{z}{2} L(2,-\delta, z)\right] \sin \theta \\
v_{z} & =-\frac{T}{4 \mu}[(1-2 \eta) L(1,-(1+\delta), z)+z L(1,-\delta, z)] \cos \theta
\end{aligned}
$$

$$
\begin{align*}
\tau_{r r} & =T\left[\frac{\eta}{r} L(2,-(1+\delta), z)+\frac{z}{2 r} L(2,-\delta, z)+L(1,-\delta, z)-\frac{z}{2} L(0,-\delta, z)\right. \\
& \left.-\frac{z}{2} L(1,1-\delta, z)\right] \cos \theta \\
\tau_{\theta \theta} & =T\left[-\frac{\eta}{r} L(2,-(1+\delta), z)-\frac{z}{2 r} L(2,-\delta, z)-3 \eta L(1,-\delta, z)\right] \cos \theta \\
\tau_{z z} & =T\left[\frac{z}{2} L(1,1-\delta, z)\right] \cos \theta \tag{3.15}\\
\tau_{r z} & =T\left[-\frac{1}{2} L(0,-\delta, z)+\frac{z}{4} L(0,1-\delta, z)-\frac{z}{4} L(2,1-\delta, z)\right] \cos \theta \\
\tau_{\theta z} & =T\left[\frac{1}{2} L(0,-\delta, z)-\frac{z}{4} L(0,1-\delta, z)-\frac{z}{4} L(2,1-\delta, z)\right] \sin \theta \\
\tau_{r \theta} & =T\left[\frac{\eta}{r} L(2,-(1+\delta), z)-\frac{z}{2 r} L(2,-\delta, z)-\frac{1}{2} L(1,-\delta, z)\right] \sin \theta
\end{align*}
$$

where $L(n, s, z)$ is defined as

$$
\begin{equation*}
L(n, s, z)=\int_{0}^{\infty} \xi^{s} J_{n}(\xi r) J_{1+\delta}(\xi a) e^{-\xi z} d r \tag{3.16}
\end{equation*}
$$

Equations (3.15) and (3.16) give the displacement and stress components for the linear elasticity problem.

We here give the surface sol:tions. By denoting $L(n, s)$ for $L(n, s, 0)$ we can write the linear displacement and stress components as:

$$
\begin{align*}
v_{r} & =-\frac{T}{4 \mu}[(2-\eta) L(0,-(1+\delta))+\eta L(2,-(1+\delta))] \cos \theta \\
v_{\theta} & =\frac{T}{4 \mu}[(2-\eta) L(0,-(1+\delta))-\eta L(2,-(1+\delta))] \sin \theta \\
v_{z} & =-\frac{T}{4 \mu}(1-2 \eta) L(1,-(1+\delta)) \cos \theta \\
\tau_{r r} & =T\left[\frac{\eta}{r} L(2,-(1+\delta))+L(1,-\delta)\right] \cos \theta \\
\tau_{\theta \theta} & =-T\left[\frac{\eta}{r} r L(2,-(1+\delta))+3 \eta L(1,-\delta)\right] \cos \theta \tag{3.17}\\
\tau_{z z} & =0 \\
\tau_{r \theta} & =T\left[\frac{\eta}{r} L(2,-(1+\delta))-\frac{1}{2} L(1,-\delta)\right] \sin \theta \\
\tau_{r z} & =-\frac{T}{2} L(0,-\delta) \cos \theta \\
\tau_{\theta z} & =\frac{T}{2} L(0,-\delta) \sin \theta
\end{align*}
$$

3.3 The Second Order Solution.

In order to solve the second order: problem we are required to solve the subproblem (II). For the present, the additional forces and surface tractions may be written as

$$
\begin{align*}
& \rho_{0} X_{r}^{\prime}=f_{r}^{1}(r, z)+f_{r}^{2}(r, z) \cos 2 \theta \\
& \rho_{0} X_{\theta}^{\prime}=f_{\theta}(r, z) \cos \theta \sin \theta \tag{3.18}\\
& \rho_{0} X_{z}^{\prime}=f_{z}^{1}(r, z)+f_{z}^{2}(r, z) \cos 2 \theta
\end{align*}
$$

and

$$
\begin{align*}
& \bar{X}_{r}^{\prime \prime}=-X_{\nu r}^{1}(r, z)-X_{\nu r}^{2}(r, z) \cos 2 \theta \\
& \bar{X}_{\theta}^{\prime \prime}=-X_{\nu \theta}(r, z) \cos \theta \sin \theta \tag{3.19}\\
& \bar{X}_{z}^{\prime \prime}=-X_{\nu z}^{1}(r, z)-X_{\nu z}^{2}(r, z) \cos 2 \theta
\end{align*}
$$

We select displacement vector to be Garlerkin's solution plus an irrotational term

$$
\mathbf{w}=\frac{1}{2 \mu}\left\{2(1-\eta) \nabla^{2} \mathbf{G}-\nabla(\nabla \cdot \mathbf{G})+\nabla \Psi\right\}
$$

where

$$
\begin{align*}
& \mathbf{G}=\left\{G_{1}(r, z) \cos \theta, G_{2}(r, z) \sin \theta, G_{3}(r, z) \cos 2 \theta+G_{4}(r, z)\right\} \\
& \Psi=(1-2 \eta) \mu \Phi(r, z) \cos 2 \theta \tag{3.20}
\end{align*}
$$

With this choice, the displacement components become

$$
\begin{align*}
2 \mu w_{r} & =2(1-\eta)\left[\nabla_{1}^{2} G_{1} \cos ^{2} \theta+\nabla_{1}^{2} G_{2} \sin ^{2} \theta\right]-\frac{\partial G_{0}}{\partial r}-\frac{\partial^{2} G_{4}}{\partial r \partial z}-\frac{\partial^{2} G_{3}}{\partial r \partial z} \cos 2 \theta \\
& +(1-2 \eta) \mu \frac{\partial \Phi}{\partial r} \cos 2 \theta \\
2 \mu w_{\theta} & =2(1-\eta)\left[\nabla_{1}^{2} G_{2}-\nabla_{1}^{2} G_{1}\right] \cos \theta \sin \theta-\frac{1}{r} \frac{\partial G_{0}}{\partial \theta}+\frac{2}{r} \frac{\partial G_{3}}{\partial z} \sin 2 \theta \\
& -(1-2 \eta) \mu \frac{2 \Phi}{r} \sin 2 \theta \\
2 \mu w_{z} & =-\frac{\partial G_{0}}{\partial z}+\left[2(1-\eta) \nabla_{0}^{2} G_{4}-\frac{\partial^{2} G_{4}}{\partial z^{2}}\right]+\left[2(1-\eta) \nabla_{2}^{2} G_{3}-\frac{\partial^{2} G_{3}}{\partial z^{2}}\right] \cos 2 \theta \\
& +(1-2 \eta) \mu \frac{\partial \Phi}{\partial z} \cos 2 \theta \tag{3.21}
\end{align*}
$$

where

$$
\begin{align*}
& G_{0}=\frac{1}{2}\left[\frac{\partial G_{1}}{\partial r}+\frac{G_{1}}{r}+\frac{\partial G_{2}}{\partial r}+\frac{G_{2}}{r}\right]+\frac{1}{2}\left[\frac{\partial G_{1}}{\partial r}-\frac{G_{1}}{r}-\frac{\partial G_{2}}{\partial r}+\frac{G_{2}}{r}\right] \cos 2 \theta \\
& \nabla_{n}^{2}=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{n^{2}}{r^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \tag{3.22}
\end{align*}
$$

The stresses are given by

$$
\begin{align*}
& \tau_{r r}^{\prime \prime}=\frac{\eta}{2} g_{0}+(1+\eta)\left[\frac{\partial\left[\nabla_{1}^{2} G_{1}+\nabla_{2}^{2} G_{2}\right]}{\partial r}+\frac{\partial\left[\nabla_{1}^{2}-\nabla_{1}^{2} G_{2}\right]}{\partial r} \cos 2 \theta\right]-\frac{\partial^{2} G_{0}}{\partial r^{2}} \\
& +\frac{\partial\left[\eta \nabla_{0}^{2} G_{4}-\frac{\partial^{2} G_{4}}{\theta \mathrm{r}^{2}}\right]}{\partial z}+\frac{\partial\left[\eta \nabla_{2}^{2} G_{3}-\frac{\partial^{2} G_{3}}{\partial \mathrm{r}^{2}}\right]}{\partial z} \cos 2 \theta \\
& +\left[\mu \eta \nabla_{2}^{2} \Phi+(1-2 \eta) \mu \frac{\partial^{2} \Phi}{\partial r^{2}}\right] \cos 2 \theta \\
& \tau_{\theta \theta}^{\prime \prime}=\frac{\eta}{2} g_{0}+(1+\eta)\left[\frac{\nabla_{1}^{2} G_{1}+\nabla_{2}^{2} G_{2}}{r}+\frac{\nabla_{1}^{2} G_{2}-\nabla_{1}^{2} G_{1}}{r} \cos 2 \theta\right]-\left[\frac{1}{r} \frac{\partial G_{0}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} G_{0}}{\partial \theta^{2}}\right] \\
& +\frac{\partial\left[\eta \nabla_{0}^{2} G_{4}-\frac{1}{r} \frac{\partial G_{4}}{\partial r}\right]}{\partial z}+\frac{\partial\left[\eta \nabla_{2}^{2} G_{3}-\frac{1}{r} \frac{\partial G_{3}}{\partial r}+\frac{4}{r^{2}} G_{3}\right]}{\partial z} \cos 2 \theta \\
& +\left[\mu \eta \nabla_{2}^{2} \Phi+\frac{(1-2 \eta) \mu}{r}\left(\frac{\partial \Phi}{\partial r}-\frac{4 \Phi}{r}\right)\right] \cos 2 \theta \\
& \tau_{z z}^{\prime \prime}=\frac{\eta}{2} g_{0}-\frac{\partial^{2} G_{0}}{\partial z^{2}}+\frac{\partial\left[(2-\eta) \nabla_{0}^{2} G_{4}-\frac{\theta^{2} G_{4}}{\theta z^{2}}\right]}{\partial z}+\frac{\partial\left[(2-\eta) \nabla_{2}^{2} G_{3}-\frac{\theta^{2} G_{4}}{\partial z^{2}}\right]}{\partial z} \cos 2 \theta \\
& +\left[\mu \eta \nabla_{2}^{2} \Phi+(1-2 \eta) \mu \frac{\partial^{2} \Phi}{\partial z^{2}}\right] \cos 2 \theta \\
& \tau_{r z}^{\prime \prime}=\frac{1-\eta}{2}\left[\frac{\partial\left[\nabla_{1}^{2} G_{1}+\nabla_{1}^{2} G_{2}\right]}{\partial z}+\frac{\partial\left[\nabla_{1}^{2} G_{1}-\nabla_{1}^{2} G_{2}\right]}{\partial z} \cos 2 \theta\right]-\frac{\partial^{2} G_{0}}{\partial r \partial z} \\
& +\frac{\partial\left[(1-\eta) \nabla_{0}^{2} G_{4}-\frac{\partial^{2} G_{4}}{\partial z^{2}}\right]}{\partial r}+\frac{\partial\left[(1-\eta) \nabla_{2}^{2} G_{3}-\frac{\partial^{2} G_{3}}{\partial z^{2}}\right]}{\partial r} \cos 2 \theta \\
& +(1-2 \eta) \mu \frac{\partial^{2} \Phi}{\partial r \partial z} \cos 2 \theta \\
& \tau_{\theta z}^{\prime \prime}=(1-\eta) \frac{\partial\left[\nabla_{1}^{2} G_{2}+\nabla_{1}^{2} G_{1}\right]}{\partial z} \cos \theta \sin \theta+\frac{2}{r} \frac{\partial\left[\frac{\partial G_{1}}{\partial r}-G_{1}-\frac{\partial G_{2}}{\partial r}+G_{2}\right]}{\partial z} \cos \theta \sin \theta \\
& -\frac{4}{r}\left[(1-\eta) \nabla_{0}^{2} G_{3}-\frac{\partial^{2} G_{3}}{\partial z^{2}}\right] \cos \theta \sin \theta-\frac{4(1-2 \eta) \mu}{r} \frac{\partial \Phi}{\partial r} \cos \theta \sin \theta \\
& \tau_{r \theta}^{\prime \prime}=(1-\eta)\left[\frac{\nabla_{1}^{2} G_{2}-\nabla_{1}^{2} G_{1}}{r}+\frac{\partial\left[\nabla_{1}^{2} G_{1}-\nabla_{1}^{2} G_{2}\right]}{\partial r}\right] \cos \theta \sin \theta-\frac{1}{r} \frac{\partial^{2} G_{0}}{\partial r \partial \theta}+\frac{1}{2 r^{2}} \frac{\partial G_{0}}{\partial \theta} \\
& -\frac{4}{r} \frac{\partial\left[\frac{G_{3}}{r}-\frac{\partial G_{3}}{\partial r}\right]}{\partial z} \cos \theta \sin \theta+\frac{4(1-2 \eta) \mu}{r}\left[\frac{\Phi}{r}-\frac{\partial \Phi}{\partial r}\right] \cos \theta \sin \theta \tag{3.23}
\end{align*}
$$

where

$$
\begin{align*}
g_{0} & =\frac{\partial\left[\nabla_{1}^{2} G_{1}+\nabla_{1}^{2} G_{2}\right]}{\partial r}+\frac{\nabla_{1}^{2} G_{1}-\nabla_{1}^{2} G_{2}}{r} \tag{3.24}\\
& +\left\{\frac{\partial\left[\nabla_{1}^{2} G_{1}-\nabla_{1}^{2} G_{2}\right]}{\partial r}+\frac{\nabla_{1}^{2} G_{2}-\nabla_{1}^{2} G_{1}}{r}\right\} \cos 2 \theta
\end{align*}
$$

On substituting (3.18) and (3.23) into (3.4) and rearranging the terms we find

$$
\begin{gather*}
\nabla_{1}^{4}\left(G_{1}+G_{2}\right)=-2 f_{r}^{1} \tag{3-25}\\
\frac{\partial \nabla_{2}^{2} \Phi}{\partial \tau}-\frac{2}{r} \nabla_{2}^{2} \Phi=-\frac{2 f_{r}^{2}+f_{\theta}}{2} \tag{3.26}\\
\nabla_{1}^{4} G_{1}=\frac{f_{\theta}-2 f_{r}^{1}-(4 / r) \nabla_{2}^{2} \Phi}{2} \tag{3.27}\\
\nabla_{0}^{4} G_{4}=-f_{z}^{1} \tag{3.28}\\
\nabla_{2}^{4} G_{3}+\frac{\partial \nabla_{2}^{2} \Phi}{\partial z}=-j_{z}^{2} \tag{3.29}
\end{gather*}
$$

We now take the third order Hankel transform of both sides of equation (3.26) and obtain

$$
\begin{equation*}
\left(\frac{d^{2}}{d z^{2}}-\xi^{2}\right) \bar{\Phi}=\frac{1}{\xi} \int_{0}^{\infty} r J_{3}(\xi r) \frac{2 f_{r}^{2}+f_{\theta}}{2} d r \triangleq \phi(\xi, z) \tag{3.30}
\end{equation*}
$$

where

$$
\bar{\Phi}=\int_{0}^{\infty} r J_{2}(\xi r) \Phi(\xi, r) d r
$$

From (3.30) we find that appropriate solution of (3.26) is

$$
\begin{equation*}
\Phi=H_{2}\left[\left(A+\phi^{*}\right) e^{-\xi z} ; \xi \rightarrow r\right] \tag{3.31}
\end{equation*}
$$

where

$$
\phi^{*}=\int_{0}^{z} e^{2 \xi z} \int_{0}^{z_{2}} \phi\left(\xi, z_{1}\right) e^{-\xi z_{1}} d z_{1} d z_{2}
$$

and A is an arbitrary function of ξ. From equation (3.27), we find

$$
\begin{equation*}
\left(\frac{d^{2}}{d z^{2}}-\xi^{2}\right)^{2} H_{1}\left[G_{1}\right]=\int_{0}^{\infty} r J_{1}(\xi r) \frac{f_{\theta}-2 f_{r}^{1}-(4 / r) \nabla_{2}^{2} \Phi}{2} d r \triangleq g_{1}(\xi, z) \tag{3.32}
\end{equation*}
$$

The appropriate solution of (3.27) is given as

$$
\begin{equation*}
G_{1}=H_{1}\left[\left(A_{1} \xi z+g_{1}^{*}\right) e^{-\xi z} ; \xi \rightarrow r\right] \tag{3.33}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{1}^{*}(\xi, z)=\frac{1}{2 \xi} \int_{0}^{z} e^{2 \xi z_{2}} \int_{0}^{z_{2}}\left(2 z_{2}-z-z_{1}\right) g_{1}\left(\xi, z_{1}\right) e^{-\xi z_{1}} d z_{1} d z_{2} \tag{3.34}
\end{equation*}
$$

and A_{1} is arbitrary function of ξ.
In a similar manner it can be shown that

$$
\begin{align*}
& G_{2}=H_{1}\left[\left(A_{2} \xi z+g_{2}^{*}\right) e^{-\xi z} ; \xi \rightarrow r\right] \\
& G_{3}=H_{2}\left[\left(A_{3} \xi z+g_{3}^{*}\right) e^{-\xi ;} ; \xi \rightarrow r\right] \tag{3.35}\\
& G_{4}=H_{0}\left[\left(A_{4} \xi z+g_{4}^{*}\right) e^{-\xi z} ; \xi \rightarrow r\right]
\end{align*}
$$

where A_{2}, A_{3}, A_{4} are arbitrary functions of ξ, aud

$$
\begin{gather*}
g_{i}^{*}(\xi, z)=\frac{1}{2 \xi} \int_{0}^{z} e^{2 \xi z_{2}} \int_{0}^{z_{2}}\left(2 z_{2}-z-z_{1}\right) g_{i}\left(\xi, z_{1}\right) e^{-\xi z_{1}} d z_{1} d z_{2} \quad i=2,3,4 \tag{3.36}\\
g_{2}(\xi, z)=\int_{0}^{\infty} r J_{1}(\xi r) \frac{-2 f_{r}^{1}-f_{\theta}+(4 / r) \nabla_{2}^{2} \Phi}{2} d r \\
g_{3}(\xi, z)=-\int_{0}^{\infty} r J_{2}(\xi r)\left[f_{z}^{2}+\frac{\partial\left(\nabla_{2}^{2} \Phi\right)}{\partial z}\right] d r \tag{3.37}\\
g_{4}(\xi, z)=-\int_{0}^{\infty} r J_{0}(\xi r) f_{z}^{1} d r
\end{gather*}
$$

After having determined the solutions for Φ, G_{1} to G_{4}, we now need to determine the arbitrary functions A, A_{1} to A_{4}. This is accomplished by substituting the displacement components in the stress components and then using boundary condition
(3.5). After considerable algebraic manipulations we get

$$
\begin{align*}
A & =\frac{1}{(1-2 \eta) \mu \xi^{2}}\left[\frac{\left(9 \eta-8 \eta^{2}\right) h_{5}}{4-5 \eta+2 \eta^{2}}+\frac{(3-4 \eta) h_{2}+\left(1+2 \eta-4 \eta^{2}\right) h_{3}}{2\left(4-5 \eta+2 \eta^{2}\right)}\right] \\
A_{1} & =\frac{1}{\xi^{3}}\left[\frac{(1-2 \eta) h_{1}+2 \eta h_{4}}{3-4 \eta}+\frac{(1-\eta) h_{2}+h_{3}+2 \eta h_{5}}{2\left(4-5 \eta+2 \eta^{2}\right)}\right] \\
A_{2} & =\frac{1}{\xi^{3}}\left[\frac{(1-2 \eta) h_{1}+2 \eta h_{4}}{3-4 \eta}-\frac{(1-\eta) h_{2}+h_{3}+2 \eta h_{5}}{2\left(4-5 \eta+2 \eta^{2}\right)}\right] \tag{3.38}\\
A_{3} & =\frac{1}{\xi^{3}}\left[\frac{4(1-\eta) h_{5}}{4-5 \eta+2 \eta^{2}}+\frac{(1-2 \eta) h_{3}-(3-2 \eta) h_{2}}{2\left(4-5 \eta+2 \eta^{2}\right)}\right] \\
A_{4} & =\frac{(3-2 \eta) h_{4}-2(1-\eta) h_{1}}{(3-4 \eta) \xi^{3}}
\end{align*}
$$

where

$$
\begin{align*}
& h_{1}=\int_{0}^{\infty} r J_{1}(\xi r) X_{\nu r}^{1} d r \\
& h_{2}=\int_{0}^{\infty} r J_{3}(\xi r)\left(2 X_{\nu r}^{2}+X_{\nu \theta}\right) d r \\
& h_{3}=\int_{0}^{\infty} r J_{1}(\xi r)\left(2 X_{\nu r}^{2}-X_{\nu \theta}\right) d r \tag{3.39}\\
& h_{4}=\int_{0}^{\infty} r J_{0}(\xi r) X_{\nu z}^{1} d r \\
& h_{5}=\int_{0}^{\infty} r J_{2}(\xi r) X_{\nu z}^{2} d r-\mu(1-\eta) \phi(\xi, 0)
\end{align*}
$$

With the solutions for G and Ψ known we can write down the complete second order solutions from equations (3.21) to (3.24).

On the surface of the half-space, the second order displacement and stress com-
ponents can be written as

$$
\begin{aligned}
2 \mu w_{r} & =-2(1-\eta) \int_{0}^{\infty} x X_{\nu r}^{1} K_{11}(0, x) d x+(1-2 \eta) \int_{0}^{\infty} x X_{\nu z}^{1} K_{10}(0, x) d x+ \\
& \frac{\cos 2 \theta}{4-5 \eta+2 \eta^{2}}\left\{\int_{0}^{\infty} x\left(2 X_{\nu r}^{2}+X_{\nu \theta}\right)\left[\left(1+\eta-2 \eta^{2}\right) K_{13}(0, x)+\frac{2 \eta}{r} K_{33}(-1, x)\right] d x\right. \\
& -\int_{0}^{\infty} x\left(2 X_{\nu r}^{2}-X_{\nu \theta}\right)\left[2(1-\eta)^{2} K_{11}(0, x)+\frac{2(1-2 \eta)^{2}}{r} K_{21}(-1, x)\right] d x \\
& -\int_{0}^{\infty} x X_{\nu z}^{2}\left[\left(4+9 \eta+4 \eta^{2}\right) K_{12}(0, x)+\frac{2\left(4+5 \eta-8 \eta^{2}\right)}{r} K_{22}(-1, x)\right] d x \\
& +\mu(1-\eta) \int_{0}^{\infty} x \frac{2 f_{r}^{2}+f_{\theta}}{2}\left[\left(4+9 \eta+\eta^{2}\right) K_{13}(-1, x)\right. \\
& \left.\left.+\frac{2\left(4+5 \eta-8 \eta^{2}\right)}{r} K_{23}(-2, x)\right] d x\right\}
\end{aligned}
$$

$$
\begin{aligned}
2 \mu w_{\theta} & =\frac{2 \sin \theta}{4-5 \eta+2 \eta^{2}}\left\{\int_{0}^{\infty} x\left(2 X_{\nu r}^{2}-X_{\nu \theta}\right)\left[(1-\eta)^{2} K_{13}(0, x)-\frac{3(1-\eta)}{r} K_{23}(-1, x)\right] d x\right. \\
& +\int_{0}^{\infty} x\left(2 X_{\nu r}^{2}-X_{\nu \theta}\right)\left[(1-\eta) K_{11}(0, x)_{\frac{2 \eta(1-\eta)}{r}} K_{21}(-1, x)\right] d x \\
& +\int_{0}^{\infty} x X_{\nu z}^{2}\left[2 \eta(1-\eta) K_{12}(0, x)+\frac{4-13 \eta+8 \eta^{2}}{r} K_{22}(-1, x)\right] d x \\
& \left.-\mu(1-\eta) \int_{0}^{\infty} x \frac{f_{r}^{2}-f_{\theta}}{2}\left[2 \eta(1-\eta) K_{13}(-1, x)+\frac{4-13 \eta+8 \eta^{2}}{r} K_{23}(-2, x)\right] d x\right\}
\end{aligned}
$$

$$
\begin{align*}
2 \mu w_{z} & =(1-2 \eta) \int_{0}^{\infty} x X_{\nu r}^{1} K_{01}(0, x) d x-2(1-\eta) \int_{0}^{\infty} x X_{\nu z}^{1} K_{00}(0, x) d x \\
& \left.+\frac{\cos 2 \theta}{4-5 \eta+2 \eta^{2}}\left\{\frac{10-21 \eta+8 \eta^{2}}{2} \int_{0}^{\infty} x X_{\nu r}^{2}+X_{\nu \theta}\right) K_{23}(0, x) d x\right\} \\
& +\left(5 \eta-6 \eta^{2}\right) \int_{0}^{\infty} x\left(2 X_{\nu r}^{2}-X_{\nu \theta}\right) K_{12}(0, x) d x \tag{3.40}\\
& -\left(8-34 \eta+24 \eta^{2}\right)\left[\int_{0}^{\infty} x X_{\nu i}^{2} K_{22}(0, x) d x\right. \\
& \left.-\mu(1-\eta) \int_{0}^{\infty} x \frac{f_{r}^{2}+f_{\theta}}{2} K_{23}(-1, x) d x\right]
\end{align*}
$$

$$
\begin{aligned}
& \tau_{r r}^{\prime \prime}=-\frac{3 X_{\nu z}^{1}}{3-4 \eta}-\frac{2(1-2 \eta)}{3-4 \eta} \int_{0}^{\infty} \frac{d\left(x X_{\nu r}^{1}\right)}{d x} K_{00}(0, x) d x+ \\
& \frac{1}{r}\left[\frac{3+2 \eta-4 \eta_{\eta}^{2}}{3-4 \eta} \int_{0}^{\infty} x X_{\nu z}^{1} K_{10}(0, x) d x-\frac{4(1-\eta)}{3-4 \eta} \int_{0}^{\infty} x X_{\nu r}^{1} K_{11}(0, x) d x\right] \\
& +\frac{\cos 2 \theta}{4-5 \eta+2 \eta^{2}}\left\{(1 + 5 \eta - 3 \eta ^ { 2 }) \left[4 \int_{0}^{\infty}\left(2 X_{\nu r}^{2}-X_{\nu \theta}\right) K_{02}(0, x) d x\right.\right. \\
& \left.-\int_{0}^{\infty} \frac{d\left(x\left(2 X_{\nu r}^{2}+X_{\nu \theta}\right)\right)}{d x} K_{00}(0, x) d x\right] \\
& -2(1-\eta) \int_{0}^{\infty} \frac{d\left(x\left(2 X_{\nu r}^{2}-X_{\nu \theta}\right)\right)}{d x} K_{00}(0, x) d x+\left(-4+\eta+6 \eta^{2}\right)\left[-X_{\nu z}^{2}\right. \\
& \left.+2 \int_{0}^{\infty} X_{\nu z}^{2} K_{01}(0, x) d x-\mu(1-\eta) \int_{0}^{\infty} x \frac{2 f_{r}^{2}+f_{\theta}}{2} K_{03}(0, x) d x\right] \\
& +\frac{1}{r} \int_{0}^{\infty} x\left(2 X_{\nu r}^{2}+X_{\nu \theta}\right)\left[\left(7-3 \eta+8 \eta^{2}\right) K_{13}(0, x)+\frac{18(1-\eta)}{r} K_{23}(-1, x)\right] d x \\
& +\frac{1}{r} \int_{0}^{\infty} x\left(2 X_{\nu r}^{2}-X_{\nu \theta}\right)\left[2\left(1-4 \eta+\eta^{2}\right) K_{11}(0, x)+\frac{12(1-\eta)}{r} K_{21}(-1, x)\right] d x \\
& +\frac{1}{r} \int_{0}^{\infty} x X_{\nu z}^{2}\left[\left(16-31 \eta+8 \eta^{2}\right) K_{12}(0, x)-\frac{6\left(4-13 \eta+8 \eta^{2}\right)}{r} K_{22}(-1, x)\right] d x \\
& -\frac{\mu(1-\eta)}{r} \int_{0}^{\infty} x \frac{2 f_{r}^{2}+f_{\theta}}{2}\left[\left(16-31 \eta+8 \eta^{2}\right) K_{13}(-1, x)\right. \\
& \left.\left.-\frac{6\left(4-13 \eta+8 \eta^{2}\right)}{r} K_{23}(-1, x)\right] d x+\mu \eta r^{2} \int_{r}^{\infty} \frac{2 f_{r}^{2}+f_{\theta}}{2 x^{2}} d x\right\} \\
& \tau_{r \theta}^{\prime \prime}=\frac{\cos \theta \sin \theta}{4-5 \eta+2 \eta^{2}}\left\{2(1-\eta)^{2} \int_{0}^{\infty}\left[3\left(2 X_{\nu r}^{2}+X_{\nu \theta}\right)+x \frac{d\left(2 X_{\nu r}^{2}+X_{\nu \theta}\right)}{d x}\right] K_{22}(0, x) d x\right. \\
& +2(1-\eta) \int_{0}^{\infty}\left[2 X_{\nu r}^{2}-X_{\nu \theta}-x \frac{d\left(2 X_{\nu r}^{2}-X_{\nu \theta}\right)}{d x}\right] K_{22}(0, x) d x+4 \eta(1-\eta) X_{\nu z}^{2} \\
& +\frac{4}{r} \int_{0}^{\infty} x\left(2 X_{\nu r}^{2}+X_{\nu \theta}\right)\left[-2(1-\eta) K_{13}(0, x)+\frac{9(1-\eta)}{r} K_{23}(-1, x)\right] d x \\
& +\frac{4}{r} \int_{0}^{\infty} x\left(2 X_{\nu r}^{2}-X_{\nu \theta}\right)\left[-2 \eta(1-\eta) K_{11}(0, x)+\frac{6 \eta(1-\eta)}{r} K_{21}(-1, x)\right] d x \\
& +\frac{4}{r} \int_{0}^{\infty} x X_{\nu=}^{2}\left[\left(4-13 \eta+8 \eta^{2}\right) K_{12}(0, x)-\frac{3\left(4-13 \eta+8 \eta^{2}\right)}{r} K_{23}(-1, x)\right] d x \\
& -\frac{4 \mu(1-\eta)}{r} \int_{0}^{\infty} x \frac{2 f_{r}^{2}+f_{\theta}}{2}\left[\left(4-143 \eta+8 \eta^{2}\right) K_{13}(-1, x)\right. \\
& \left.\left.-\frac{3\left(4-13 \eta+8 \eta^{2}\right)}{r} K_{23}(-2, x)\right] d x-4 \mu \eta(1-\eta)^{2} \int_{0}^{\infty} x \frac{2 f_{r}^{2}+f_{\theta}}{2} \cdot K_{23}(0, x) d x\right\}
\end{aligned}
$$

$$
\begin{align*}
& \tau_{\theta \theta}^{\prime \prime}=\frac{2 \eta}{3-4 \eta}\left[X_{\nu z}^{1}-\int_{0}^{\infty} \frac{d\left(x X_{\nu r}^{1}\right)}{d x} K_{00}(0, x) d x\right] \\
&+\frac{1}{r}\left[\frac{3-10 \eta+8 \eta^{2}}{3-4 \eta} \int_{0}^{\infty} x X_{\nu z}^{1} K_{10}(0, x) d x-2(1-\eta) \int_{0}^{\infty} x X_{\nu r}^{1} K_{11}(0, x) d x\right]+ \\
& \frac{\cos 2 \theta}{4-5 \eta+2 \eta^{2}}\left\{\left(-4 \eta+3 \eta^{2}\right) \int_{0}^{\infty}\left[3\left(2 X_{\nu r}^{2}+X_{\nu \theta}\right)+x \frac{d\left(2 X_{\nu r}^{2}+X_{\nu \theta}\right)}{d x}\right] K_{22}(0, x) d x\right. \\
&-2 \eta^{2} \int_{0}^{\infty}\left[2 X_{\nu r}^{2}-X_{\nu \theta}-x \frac{d\left(2 X_{\nu r}^{2}-X_{\nu \theta}\right)}{d x}\right] K_{22}(0, x) d x \\
&+\left(8 \eta-9 \eta^{2}\right) X_{\nu z}^{2}-\mu(1-\eta)\left(8 \eta-9 \eta^{2}\right) \int_{0}^{\infty} x \frac{2 f_{r}^{2}+f_{\theta}}{2} K_{23}(0, x) d x \\
&+\frac{1}{r} \int_{0}^{\infty} x\left(2 X_{\nu r}^{2}+X_{\nu \theta}\right)\left[\left(5-7 \eta+2 \eta^{2}\right) K_{13}(0, x)-\frac{18(1-\eta)}{r} K_{23}(-1, x)\right] d x \\
&+\frac{1}{r} \int_{0}^{\infty} x\left(2 X_{\nu r}^{2}+X_{\nu \theta}\right)\left[2\left(1-\tau^{2}\right) K_{11}(0, x)-\frac{12 \eta(1-\eta)}{r} K_{21}(-1, x)\right] d x \\
&+\frac{1}{r} \int_{0}^{\infty} x X_{\nu z}^{2}\left[\left(-4+17 \eta-12 \eta^{2}\right) K_{12}(0, x)+\frac{6\left(4-13 \eta+8 \eta^{2}\right)}{r} K_{22}(-1, x)\right] d x \\
&-\frac{\nu(1-\eta)}{r} \int_{0}^{\infty} x \frac{2 f_{r}^{2}+f_{\theta}}{2}\left[\left(-4+17 \eta-12 \eta^{2}\right) K_{13}(-1, x)\right. \\
&\left.\left.+\frac{6\left(4-13 \eta+8 \eta^{2}\right)}{r} K_{23}(-2, x)\right] d x+\mu \eta r^{2} \int_{r}^{\infty} \frac{2 f_{r}^{2}+f_{\theta}}{2 x^{2}} d x\right\} \\
& \tau_{1}
\end{align*}
$$

where

$$
\begin{aligned}
X_{\nu r}^{1} & =\frac{T^{2}}{8 \mu}\left[\frac{2 \eta(1-2 \eta)}{r^{2}} L(1,-(1+\delta)) L(2,-(1+\delta))\right. \\
& -\frac{\eta(1-2 \eta)}{r} L(0,-\delta) L(2,-(1+\delta))+\frac{1-2 \eta}{r} L(1,-\delta) L(1,-(1+\delta)) \\
& +\eta L(1,-\delta) L(0,-\delta)]-\tau_{r z}^{1} \\
X_{\nu r}^{2} & =\frac{T^{2}}{8 \mu}\left[\frac{3(1-2 \eta)}{2 r} L(1,-\delta) L(1,-(1+\delta))-\frac{\eta(1-2 \eta)}{r} L(0, \delta) L(2,-(1+\delta))\right. \\
& -(2-3 \eta) L(1,-\delta) L(0,-\delta)]-\tau_{r z}^{2}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
X_{\nu z}^{1} & =\frac{(1-2 \eta) T^{2}}{16 \mu} I^{2}(1,-\delta)-\tau_{z z}^{1} \\
X_{\nu z}^{2} & =\frac{T^{2}}{8 \mu}\left[\frac{1-2 \eta}{2} I^{2}(0,-\delta)-\frac{1-2 \eta}{2} L(0,-\delta) L(1,-(1+\delta))\right]-\tau_{z z}^{2} \\
X_{\nu \theta} & =\frac{T^{2}}{4 \mu}\left[\frac{3-4 \eta}{2} L(0,-\delta) L(1,-\delta)-\frac{\eta(1-\eta)}{r} L(0,-\delta) L(2,-(1+\delta))\right. \\
& \left.-\frac{(1-2 \eta)(1+6 \eta)}{2 r} L(1,-\delta) L(1,-(1+\delta))\right]-\tau_{\theta z}^{1} \\
\tau_{r z}^{1} & =\frac{T^{2}}{16 \mu^{2}}\left[b_{1} L(0,-\delta) L(1,-\delta)+b_{2} L(1,-\delta) L(2,-\delta)\right. \\
& +\frac{b_{3}}{r} L(1,-\delta) L(1,-(1+\delta))+\frac{b_{4}}{r^{2}} L(1,-(1+\delta)) L(2,-(1+\delta)) \\
& \left.+\frac{b_{5}}{r} L(0,-\delta) L(2,-(1+\delta))+\frac{b_{6}}{r} L(2,-\delta) L(2,-(1+\delta))\right] \\
\tau_{r z}^{2} & =\frac{T^{2}}{16 \mu^{2}}\left[b_{7} L(1,-\delta) L(0,-\delta)+b_{8} L(1,-\delta) L(2,-\delta)\right. \\
& \left.+\frac{b_{9}}{r} L(1,-\delta) L(1,-(1+\delta))+\frac{b_{10}}{r} L(0,-\delta) L(2,-(1+\delta))\right] \tag{3.42}\\
\tau_{z z}^{1} & =\frac{T^{2}}{16 \mu^{2}}\left[b_{11} I^{2}(1,-\delta) b_{12} I^{2}(0,-\delta)+\frac{b_{13}}{r^{2}} I^{2}(1,-(1+\delta))\right. \\
& +\frac{b_{14}}{r^{2}} I^{2}(2,-(1+\delta))+\frac{b_{15}}{r} L(0,-\delta) L(1,-(1+\delta)) \\
& +\frac{b_{16}}{r} L(1,-\delta) L(2,-(1+\delta))+b_{17} I^{2}(2,-\delta) \\
& \left.+\frac{b_{18}}{r} L(2,-\delta) L(1,-(1+\delta)) b_{19} L(0,-\delta) L(2,-\delta)\right] \\
\tau_{=z}^{2} & =\frac{T^{2}}{16 \mu^{2}}\left[b_{20} I^{2}(1,-\delta)+b_{21} I^{2}(0,-\delta)+\frac{b_{22}}{r} L(0,-\delta) L(1,-(1+\delta))\right. \\
& \left.+b_{23} L(1,-\delta) L(2,-(1+\delta))+b_{24} L(0,-\delta) L(2,-\delta)\right] \\
\tau_{\theta z}^{1} & =\frac{T^{2}}{8 \mu^{2}}\left[\frac{b_{25}}{r} L(1,-\delta) L(1,-(1+\delta))+b_{26} L(1,-\delta) L(0,-\delta)\right. \\
& +b_{27} L(1,-\delta) L(2,-\delta)+\frac{b_{28}}{r} L(0,-\delta) L(2,-(1+\delta)) \\
& \left.+\frac{b_{29}}{r^{2}} L(1,-(1+\delta)) L(2,-(1+\delta))\right] \\
\hline
\end{array}\right)
$$

$$
\begin{align*}
f_{r}^{2} & =\frac{T^{2}}{16 \mu^{2}}\left[b_{30} L(0,-\delta) L(0,-\delta)+\frac{b_{32}}{r^{2}} L(1,-\delta) L(2,-(1+\delta))\right. \\
& +\frac{b_{33}}{r} L(0,1-\delta) L(2,-(1+\delta))+b_{34} L(0,-\delta) L(1,1-\delta) \\
& +b_{35} L(2,-\delta) L(1,1-\delta)+\frac{b_{36}}{r} L(1,-(1+\delta)) L(1,1-\delta) \\
& +\frac{b_{37}}{r} L(0,-\delta) L(2,-\delta)+\frac{b_{38}}{r^{2}} L(0,-\delta) L(1,-(1+\delta)) \\
& \left.+b_{39} L(1,-\delta) L(2,1-\delta)+\frac{b_{40}}{r^{2}} L(2,-\delta) L(1,-(1+\delta))+\frac{b_{41}}{r} I^{2}(0,-\delta)\right] \\
f_{\theta} & =\frac{T^{2}}{8 \mu^{2}}\left[b_{42} L(1,-\delta) L(0,1-\delta)+\frac{b_{43}}{r} I^{2}(0,-\delta)+b_{44} L(0,-\delta) L(1,1-\delta)\right. \\
& +b_{45} L(2,-\delta) L(1,1-\delta)+\frac{b_{46}}{r} I^{2}(2,-\delta)+\frac{b_{47}}{r} L(0,1-\delta) L(2,-(1+\delta)) \\
& +\frac{b_{48}}{r^{2}} L(1,-\delta) L(2,-(1+\delta))+\frac{b_{49}}{r} L(1,1-\delta) L(1,-(1+\delta)) \\
& +b_{50} L(1,-\delta) L(2,-\delta)+\frac{b_{51}}{r} L(0,-\delta) L(2,-\delta) \\
& \left.+\frac{b_{52}}{r^{2}} L(2,-\delta) L(1,-(1+\delta))+\frac{b_{53}}{r} I^{2}(0,-\delta)+\frac{b_{54}}{r^{2}} L(0,-\delta) L(1,-(1+\delta))\right] \tag{3.43}
\end{align*}
$$

where we have following relations

$$
\tau_{r z}^{\prime}=\tau_{r z}^{1}+\tau_{r z}^{2} \cos 2 \theta, \quad \tau_{\theta z}^{\prime}=\tau_{\theta z}^{1}+\tau_{\theta z}^{2} \cos \theta \sin \theta, \quad \tau_{z z}^{\prime}=\tau_{z z}^{1}+\tau_{z z}^{2} \cos 2 \theta
$$

With similar expressions for $\tau_{r r}^{\prime}, \tau_{\theta \theta}^{\prime}, \tau_{r \theta}^{\prime}, f_{r}^{1}, f_{z}^{1}$ and f_{z}^{2}. We remark that the quantities $K_{i j}(s, x)$ and $b_{i j}$ are listed in Appendix A_{2} and Appendix A_{0} respectively.

3.4 Illustration.

The solutions presented above are applicable for all value of $\delta>-1$,but are very complicated. As illustrations of the method we give below the linear and second order solutions for the specific values of δ.

Linear Case.

(i) Point Force: We first check our results for Cerruti problem. On recalling that

$$
\lim _{a \rightarrow 0} T L(n, s, z)=\frac{P}{\pi} \int_{0}^{\infty} J_{n}(\xi r) \xi^{(s+\delta+1)} e^{-\xi z} d \xi
$$

we get

$$
\begin{gathered}
v_{r}=-\frac{P}{4 \pi \mu R}\left[\frac{r^{2}}{R^{2}}+\frac{r^{2}}{(R+z)^{2}}+\frac{(3-2 \eta) z}{(R+z)^{2}}\right] \cos \theta \\
v_{\theta}=\frac{P}{4 \pi \mu R}\left[\frac{2(1-\eta) r^{2}}{(R+z)^{2}}+\frac{3(2-\eta) z}{(R+z)^{2}}\right] \sin \theta \\
v_{z}=-\frac{P}{4 \pi \mu R}\left[\frac{r z}{R^{2}}+\frac{(1-2 \eta) r}{(R+z)}\right] \cos \theta \\
\tau_{r r}=\frac{P}{2 \pi R^{3}}\left[\frac{2 \eta r^{3}-(1-2 \eta) r z}{(R+z)^{2}}+\frac{4 r z+2 R r}{R+z}-\frac{3 r z^{2}}{R^{2}}\right] \cos \theta \\
\tau_{\theta \theta}=\frac{P}{2 \pi R^{3}}\left[\frac{(1-2 \eta) r z^{2}-2 \eta r^{3}}{(R+z)^{2}}-\frac{2 r z}{R+z}-6 \eta r\right] \cos \theta \\
\tau_{z z}=\frac{P}{2 \pi} \frac{3 r z^{2}}{R^{5}} \cos \theta \\
\tau_{r z}=-\frac{P}{2 \pi} \frac{3 z r^{2}}{R^{5}} \cos \theta \\
\tau_{\theta z}=0 \\
\tau_{r \theta}=\frac{P}{2 \pi R} \frac{(1-2 \eta) r}{(R+z)^{2}} \sin \theta
\end{gathered}
$$

where

$$
R^{2}=r^{2}+z^{2}
$$

(ii) we now consider the case $\delta=-\frac{1}{2}$. In this case we find that

For $r \leq a$

$$
\begin{aligned}
& v_{r}=-\frac{T}{4 \mu} \frac{(2-\eta) \sqrt{\pi}}{\sqrt{2 a}} \cos \theta \\
& v_{\theta}=\frac{T}{4 \mu} \frac{(2-\eta) \sqrt{\pi}}{\sqrt{2 a}} \sin \theta \\
& v_{z}=-\frac{T}{4 \mu} \frac{(1-2 \eta) r \cos \theta}{\sqrt{2 \pi} a^{\frac{3}{2}}\left(1+\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right)} \\
& \tau_{r r}=\tau_{\theta \theta}=\tau_{z z}=\tau_{r \theta}=0 \\
& \tau_{r z}=-\frac{T}{\sqrt{2 \pi a^{3}}}\left(1-\frac{r^{2}}{a^{2}}\right)^{-\frac{1}{2}} \cos \theta \\
& \tau_{\theta z}=\frac{T}{\sqrt{2 \pi a^{3}}}\left(1-\frac{r^{2}}{a^{2}}\right)^{-\frac{1}{2}} \sin \theta
\end{aligned}
$$

For $r>a$

$$
\begin{aligned}
& v_{r}=-\frac{T}{4 \mu}\left[(2-\eta) \sqrt{\frac{2}{\pi a}} \cdot \arcsin \frac{a}{r}+\eta \sqrt{\frac{2}{\pi a}} \frac{\sqrt{r^{2}-a^{2}}}{r^{2}}\right] \cos \theta \\
& v_{\theta}=\frac{T}{4 \mu}\left[(2-\eta) \sqrt{\frac{2}{\pi a}} \arcsin \frac{a}{r}-\eta \sqrt{\frac{2}{\pi a}} \frac{\sqrt{r^{2}-a^{2}}}{r^{2}}\right] \sin \theta \\
& v_{z}=-\frac{T}{4 \mu} \frac{(1-2 \eta) \sqrt{2 a} \cos \theta}{\sqrt{\pi r}} \\
& \tau_{r r}=T \sqrt{\frac{2 a}{\pi}}\left[\frac{\eta}{r^{2}}\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}}+\frac{1}{r^{2}}\left(1-\frac{a^{2}}{r^{2}}\right)^{-\frac{1}{2}}\right] \cos \theta \\
& \tau_{\theta \theta}=-T \frac{\eta \sqrt{2 a}}{\sqrt{\pi} r^{2}}\left[\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}}+3\left(1-\frac{a^{2}}{r^{2}}\right)^{-\frac{1}{2}}\right] \cos \theta \\
& \tau_{r \theta}=T \frac{\eta \sqrt{2 a}}{\sqrt{\pi} r^{2}}\left[\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}}-\frac{1}{2}\left(1-\frac{a^{2}}{r^{2}}\right)^{-\frac{1}{2}}\right] \sin \theta \\
& \tau_{z z}=\tau_{r z}=\tau_{\theta z}=0
\end{aligned}
$$

(iii) We next consider $\delta=0$. This case corresponds to a uniform shearing force. The results are

For $r \leq a$

$$
\begin{aligned}
& v_{r}=-\frac{T}{4 \mu}\left[\frac{4 \eta}{3 \pi} F\left(\frac{r}{a}\right)+\frac{4(3-2 \eta)}{3 \pi} E\left(\frac{r}{a}\right)+\frac{4 \eta a^{2}}{3 \pi r^{2}}\left(E\left(\frac{r}{a}\right)-F\left(\frac{r}{a}\right)\right)\right] \cos \theta \\
& v_{\theta}=\frac{T}{4 \mu}\left[-\frac{4 \eta}{3 \pi} F\left(\frac{r}{a}\right)-\frac{4(3-2 \eta)}{3 \pi} E\left(\frac{r}{a}\right)+\frac{4 \eta a^{2}}{3 \pi r^{2}}\left(E\left(\frac{r}{a}\right)-F\left(\frac{r}{a}\right)\right)\right] \sin \theta \\
& v_{z}=-\frac{T}{4 \mu} \frac{(1-2 \eta) r}{2 a} \cos \theta \\
& \tau_{r r}=T\left[\frac{2 \eta}{3 \pi r}\left(2 F\left(\frac{r}{a}\right)-E\left(\frac{r}{a}\right)\right)+\frac{4 \eta a^{2}-3 r^{2}}{3 \pi r^{3}}\left(E\left(\frac{r}{a}\right)-F\left(\frac{r}{a}\right)\right)\right] \cos \theta \\
& \tau_{\theta \theta}=-T \eta\left[\frac{2}{3 \pi r}\left(2 F\left(\frac{r}{a}\right)-E\left(\frac{r}{a}\right)\right)+\frac{4 a^{2}-9 r^{2}}{3 \pi r^{3}}\left(E\left(\frac{r}{a}\right)-F\left(\frac{r}{a}\right)\right)\right] \cos \theta \\
& \tau_{z z}=0 \\
& \tau_{r \theta}=T\left[\frac{2 \eta}{3 \pi r}\left(2 F\left(\frac{r}{a}\right)-E\left(\frac{r}{a}\right)\right)+\frac{8 \eta a^{2}+3 r^{2}}{6 \pi r^{3}}\left(E\left(\frac{r}{a}\right)-F\left(\frac{r}{a}\right)\right)\right] \sin \theta \\
& \tau_{r z}=-\frac{T}{2 a} \cos \theta \\
& \tau_{\theta z}=\frac{T}{2 a} \sin \theta
\end{aligned}
$$

For $r>a$

$$
\begin{aligned}
& v_{r}=-\frac{T}{4 \mu}\left[\frac{4(3-\eta)}{r \pi r} F\left(\frac{a}{r}\right)+\frac{4 a \eta}{3 \pi r} E\left(\frac{a}{r}\right)+\frac{4(3-\eta) r}{3 \pi a}\left(E\left(\frac{a}{r}\right)-F\left(\frac{a}{r}\right)\right)\right] \cos \theta \\
& v_{\theta}=\frac{T}{4 \mu}\left[\frac{4(3-2 \eta)}{3 \pi r} F\left(\frac{a}{r}\right)-\frac{4 a \eta}{3 \pi r} E\left(\frac{a}{r}\right)+\frac{4(3-2 \eta) r}{3 \pi a}\left(E\left(\frac{a}{r}\right)-F\left(\frac{a}{r}\right)\right)\right] \sin \theta \\
& v_{z}=-\frac{T}{4 \mu} \frac{(1-2 \eta) a}{2 r} \cos \theta \\
& \tau_{r r}=T\left[\frac{2 a \eta}{3 \pi r^{2}}\left(F\left(\frac{a}{r}\right)+2 E\left(\frac{a}{r}\right)\right)-\frac{(3-2 \eta)}{3 \pi a}\left(E\left(\frac{a}{r}\right)-F\left(\frac{a}{r}\right)\right)\right] \cos \theta \\
& \tau_{\theta \theta}=-T \eta\left[\frac{2 a}{3 \pi r^{2}}\left(F\left(\frac{a}{r}\right)+2 E\left(\frac{a}{r}\right)\right)-\frac{7}{3 \pi a}\left(E\left(\frac{a}{r}\right)-F\left(\frac{a}{r}\right)\right)\right] \cos \theta \\
& \tau_{z z}=\tau_{r z}=\tau_{\theta z}=0 \\
& \tau_{r \theta}=T\left[\frac{2 a \eta}{3 \pi r^{2}}\left(F\left(\frac{a}{r}\right)+2 E\left(\frac{a}{r}\right)\right)+\frac{(3+4 \eta)}{6 \pi a}\left(E\left(\frac{a}{r}\right)-F\left(\frac{a}{r}\right)\right)\right] \sin \theta
\end{aligned}
$$

(vi) Finally we consider $\delta=\frac{1}{2}$. In this case we get

For $r \leq a$

$$
\begin{align*}
& v_{r}=-\frac{T}{4 \mu}\left[\frac{(2-\eta) \sqrt{2 \pi a}}{4}-\frac{(4-3 \eta) \sqrt{\pi} r^{2}}{8 \sqrt{2 a^{3}}}\right] \cos \theta \\
& v_{\theta}=\frac{T}{4 \mu}\left[\frac{(2-\eta) \sqrt{2 \pi a}}{4}-\frac{(4-\eta) \sqrt{\pi r^{2}}}{8 \sqrt{2 a^{3}}}\right] \sin \theta \\
& v_{z}=-\frac{(1-2 \eta) T}{4 \mu} \frac{\sqrt{2 a^{3}}}{3 \sqrt{\pi} r}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right] \cos \theta \\
& \tau_{r r}=T \frac{(4+\eta) \sqrt{\pi} r}{8 \sqrt{2 a^{3}}} \cos \theta \\
& \tau_{\theta \theta}=-T \frac{13 \eta \sqrt{\pi} r}{8 \sqrt{2 a^{3}}} \cos \theta \tag{3.44}\\
& \tau_{z z}=0 \\
& \tau_{r \theta}=-T \frac{(2-\eta) \sqrt{\pi r}}{8 \sqrt{2 a^{3}}} \sin \theta \\
& \tau_{r z}=-\frac{T}{\sqrt{2 \pi a}}\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}} \cos \theta \\
& \tau_{\theta z}=\frac{T}{\sqrt{2 \pi a}}\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}} \sin \theta
\end{align*}
$$

For $r>a$

$$
\begin{align*}
& v_{r}=-\frac{T \sqrt{a}}{16 \mu \sqrt{2 \pi}}\left[\frac{(4-\eta) r}{a} \sqrt{1-\frac{a^{2}}{r^{2}}}+\left(8-4 \eta-(4-3 \eta) \frac{r^{2}}{a^{2}}\right) \arcsin \frac{a}{r}\right. \\
&\left.-\frac{2 \eta r}{a}\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{3}{2}}\right] \cos \theta \\
& v_{\theta}=\frac{T \sqrt{a}}{16 \mu \sqrt{2 \pi}}\left[\frac{(4-3 \eta) r}{a}\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}}+(8-4 \eta)-(4-\eta) \frac{r^{2}}{a^{2}} \arcsin \frac{a}{r}\right. \\
&\left.+\frac{2 \eta r}{r}\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{3}{2}}\right] \sin \theta \\
& v_{z}=-\frac{(1-2 \eta) T}{4 \mu} \frac{\sqrt{2 a^{3}}}{3 \sqrt{\pi r}} \cos \theta \\
& \tau_{r r}= \frac{T}{\sqrt{2 \pi a}}\left[\frac{4+\eta r}{4} \frac{\arcsin \frac{a}{r}-\frac{4-\eta}{4}\left(1-\frac{a^{2}}{r^{2}}\right.}{2}\right. \\
&\left.-\frac{\eta}{2}\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{3}{2}}\right] \cos \theta \\
& \tau_{\theta \theta}=-\frac{T \eta}{\sqrt{2 \pi a}}\left[\frac{5 r}{4 a} \arcsin \frac{a}{r}\right. \\
&\left.\quad-\frac{3}{4}\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}}-\frac{1}{2}\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{3}{2}}\right] \cos \theta \\
& \tau_{z z}=0 \\
& \tau_{r \theta}=\frac{T}{\sqrt{2 \pi a}}\left[\frac{2+\eta}{4}\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}}-\frac{2-\eta}{4} \frac{r}{a} \arcsin \frac{a}{r}\right. \tag{3.45}\\
&\left.-\frac{\eta}{2}\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{3}{2}}\right] \sin \theta \\
& \tau_{r z}=0 \\
& \tau_{\theta z}=0
\end{align*}
$$

We point out that in the foregoing expressions the symbols $F(x)$ and $E(x)$ represent the complete elliptic integrals of the first and second kind,respectively.

The expressions when $\delta=1$, can be computed easily. We find that these again involve the elliptic integrals.

We remark that, for $\delta=3 / 2,5 / 2,7 / 2,9 / 2, \cdots$, we can again find the exact solutions.

The Second Order Case.

In this case, since the calculation is very complicated we only select $\delta=\frac{1}{2}$.
In order to find the second order solutions we first need to find $L(n, s)$. The remaining calculations involve integration and algebraic manipulations. First we list $L(n, s)$, as required for our purposes:

$$
\begin{align*}
& L\left(0,-\frac{3}{2}\right)= \begin{cases}\left(\frac{\pi a}{8}\right)^{\frac{1}{2}}\left(1-\frac{1}{2} \frac{r^{2}}{a^{2}}\right), & r \leq a \\
\left(\frac{a}{8 \pi}\right)^{\frac{1}{2}}\left[\frac{\left(r^{2}-a^{2}\right)^{\frac{1}{2}}}{a}+\left(2-\frac{r^{2}}{a^{2}}\right) \arcsin \frac{a}{r}\right], & r>a\end{cases} \\
& L\left(0,-\frac{1}{2}\right)= \begin{cases}\left(\frac{2}{\pi a}\right)^{\frac{1}{2}}\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}, & r \leq a \\
0, & r>a\end{cases} \\
& L\left(0, \frac{1}{2}\right)= \begin{cases}\left(\frac{\pi}{2 a^{3}}\right)^{\frac{1}{2}}, & r \leq a \\
\left(\frac{2}{\pi a}\right)^{\frac{1}{2}}\left[\frac{1}{a} \arcsin \frac{a}{r}-\left(\frac{1}{r^{2}-a^{2}}\right)^{\frac{1}{2}}\right], & r>a\end{cases} \\
& L\left(1,-\frac{3}{2}\right)= \begin{cases}\left(\frac{2 a^{3}}{9 \pi r^{3}}\right)^{\frac{1}{2}}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right], & r \leq a \\
\left(\frac{2 a^{3}}{\left.0 \pi r^{2}\right)^{\frac{1}{2}}},\right. & r>a\end{cases} \\
& L\left(1,-\frac{1}{2}\right)= \begin{cases}\left(\frac{\pi r^{2}}{8 a^{3}}\right)^{\frac{1}{2}}, & r \leq a \\
\left(\frac{1}{2 \pi \Omega}\right)^{\frac{1}{2}}\left[\frac{r}{a} \arcsin \frac{a}{r}-\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}}\right], & r>a\end{cases} \tag{3.46}\\
& L\left(1, \frac{1}{2}\right)= \begin{cases}\left(\frac{2 r^{2}}{\pi a^{5}}\right)^{\frac{1}{2}}\left(1-\frac{r^{2}}{a^{2}}\right)^{-\frac{1}{2}}, & r<a \\
0, & r>a\end{cases} \\
& L\left(2,-\frac{3}{2}\right)= \begin{cases}\left(\frac{\pi r^{4}}{128 a^{3}}\right)^{\frac{1}{2}}, & r \leq a \\
\left(\frac{r}{32 \pi a}\right)^{\frac{1}{2}}\left[\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}}+\frac{r}{a} \arcsin \frac{a}{r}-2\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{3}{2}}\right], & r>a\end{cases} \\
& L\left(2,-\frac{1}{2}\right)= \begin{cases}\left(\frac{2}{9 \pi a}\right)^{\frac{1}{2}}\left[2 \frac{a^{2}}{r^{2}}\left(1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}\right)-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}\right], & r \leq a \\
\left(\frac{8 a^{3}}{9 \pi r^{4}}\right)^{\frac{1}{2}}, & r>a\end{cases} \\
& L\left(2, \frac{1}{2}\right)= \begin{cases}0, & r<a \\
\left(\frac{2 a^{3}}{\pi r^{3}}\right)^{\frac{1}{2}}\left(1-\frac{a^{2}}{r^{2}}\right)^{-\frac{1}{2}}, & r>a\end{cases}
\end{align*}
$$

On substituting thes values and the other values from (3.41) to (3.43) into (3.40) we find the second order displacements to be:

$$
\begin{aligned}
\frac{16 \mu^{2} w_{r}}{T^{2}} & =-2(1-\eta) M_{1}(r)+(1-2 \eta) M_{2}(r)+\frac{\cos 2 \theta}{4-5 \eta+2 \eta^{2}}\left[\left(1+\eta-2 \eta^{2}\right) M_{3}(r)\right. \\
& +\frac{2 \eta}{r} M_{4}(r)-2(1-\eta)^{2}-\frac{1(1-2 \eta)^{2}}{r} M_{6}(r)-\left(4+9 \eta+4 \eta^{2}\right) M_{7}(r) \\
& +\frac{2\left(4+5 \eta-8 \eta^{2}\right)}{r} M_{8}(r)+\frac{\mu(1-\eta)\left(4+9 \eta+4 \eta^{2}\right)}{2} M_{\theta}(r) \\
& \left.+\frac{\mu(1-\eta)\left(4+5 \eta-8 \eta^{2}\right)}{r} M_{10}(r)\right]
\end{aligned}
$$

$$
\frac{16 \mu^{2} w_{\theta}}{T^{2}}=\frac{2 \sin 2 \theta}{4-5 \eta+2 \eta^{2}}\left[(1-\eta)^{2} M_{3}(r)-\frac{3(1-\eta)}{r} M_{4}(r)+(1-\eta) M_{5}(r)\right.
$$

$$
-\frac{2 \eta(1-\eta)}{r} M_{6}(r)+2 \eta(1-\eta) M_{7}(r)+\frac{4-13 \eta+8 \eta^{2}}{r} M_{8}(r)
$$

$$
\left.-\mu \eta(1-\eta)^{2} M_{9}(r)-\frac{\mu(1-\eta)\left(4-13 \eta+8 \eta^{2}\right)}{2 r} M_{10}(r)\right]
$$

$$
\begin{align*}
\frac{16 \mu^{2} w_{z}}{T^{2}} & =(1-2 \eta) M_{11}(r)-2(1-\eta) M_{12}(r) \\
& +\frac{\cos 2 \theta}{4-5 \eta+2 \eta^{2}}\left[\frac{10-21 \eta+8 \eta^{2}}{2} M_{13}(r)+\left(5 \eta-6 \eta^{2}\right) M_{14}(r)\right. \tag{3.47}\\
& \left.-\left(8-34 \eta+24 \eta^{2}\right) M_{15}(r)+\mu(1-\eta)\left(8-34 \eta+24 \eta^{2}\right) M_{16}(r)\right]
\end{align*}
$$

where

$$
\begin{aligned}
M_{1}(r) & =B_{1} \int_{0}^{a} x^{2}\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}} K_{11}(0, x) d x+B_{2} \int_{0}^{a}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{3}{2}}\right] K_{11}(0, x) d x \\
& +B_{3} \int_{a}^{\infty} P(x) K_{11}(0, x) \frac{d x}{x}-\frac{4 b_{2}+b_{0}}{24} \int_{0}^{a}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\right] K_{11}(0, x) d x \\
& +B_{4} \int_{a}^{\infty}\left(1-\frac{a^{2}}{x^{2}}\right)^{\frac{1}{2}} K_{11}(0, x) \frac{d x}{x^{3}}
\end{aligned}
$$

$$
\begin{aligned}
M_{2}(r) & =B_{5} \int_{0}^{a} x\left(1-\frac{x^{2}}{a^{2}}\right) K_{10}(0, x) d x-B_{6} \int_{0}^{a} x^{3} K_{10}(0, x) d x \\
& -\frac{a^{3} b_{13}}{9 \pi} \int_{0}^{a}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\right]^{2} K_{10}(0, x) \frac{d x}{x^{3}} \\
& -\frac{2 a^{3} b_{18}}{9 \pi} \int_{0}^{a}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{3}{3}}\right]\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\right] K_{10}(0, x) \frac{d x}{x^{3}} \\
& -\frac{4 a^{3} b_{17}}{9 \pi} \int_{0}^{a}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\right]^{2} K_{10}(0, x) \frac{d x}{x^{3}} \\
& -\frac{a\left(3 b_{15}-b_{18}\right)}{9 \pi} \int_{0}^{a}\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{3}{2}}\right] K_{10}(0, x) \frac{d x}{x} \\
& -\frac{a\left(6 b_{10}-4 b_{17}\right)}{9 \pi} \int_{0}^{a}\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\right] K_{10}(0, x) \frac{d x}{x} \\
& -B_{7} \int_{a}^{\infty} K_{10}(0, x) \frac{d x}{x^{3}}-B_{8} \int_{a}^{\infty} P^{2}(x) K_{10}(0, x) d x \\
& -\frac{a\left(b_{14}+2 b_{10}\right)}{16 \pi} \int_{a}^{\infty}\left(1-\frac{a^{2}}{x^{2}}\right)^{\frac{1}{2}} P(x) K_{10}(0, x) \frac{d x}{x} \\
& -\frac{b_{14} a^{3}}{16 \pi} \int_{a}^{\infty}\left(1-\frac{a^{2}}{x^{2}}\right) K_{10}(x) \frac{d x}{x^{3}}
\end{aligned}
$$

$$
M_{3}(r)=B_{0} \int_{0}^{a}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{3}{2}}\right] K_{13}(0, x) d x
$$

$$
-\frac{b_{8}+b_{27}}{8} \int_{0}^{a}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\right] K_{13}(0, x) d x
$$

$$
+B_{10} \int_{0}^{a} x^{2}\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}} K_{13}(0, x) d x+B_{11} \int_{a}^{\infty} P(x) K_{13}(0, x) \frac{d x}{x}
$$

$$
-\frac{a^{3} b_{29}}{6 \pi} \int_{a}^{\infty}\left(1-\frac{a^{2}}{x^{2}}\right)^{\frac{1}{2}} K_{13}(0, x) \frac{d x}{x^{3}}
$$

$$
M_{5}(r)=B_{12} \int_{0}^{a}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{3}{2}}\right] K_{11}(0, x) d x
$$

$$
+\frac{b_{27}-b_{8}}{3} \int_{0}^{a}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\right] K_{11}(0, x) d x
$$

$$
-B_{13} \int_{0}^{a} x^{2}\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}} K_{11}(0, x) d x+B_{14} \int_{a}^{\infty} P(x) K_{11}(0, x) \frac{d x}{x}
$$

$$
+\frac{a^{3} b_{2 \theta}}{6 \pi} \int_{a}^{\infty}\left(1-\frac{a^{2}}{x^{2}}\right)^{\frac{1}{2}} K_{11}(0, x) \frac{d x}{x^{3}}
$$

$$
\begin{aligned}
M_{7}(r) & =-\frac{\pi\left(4 b_{20}+b_{23}\right)}{64 a^{3}} \int_{0}^{a} x^{3} K_{12}(0, x) d x \\
& +B_{15} \int_{0}^{a} x\left(1-\frac{x^{2}}{a^{2}}\right) K_{12}(0, x) d x- \\
& \frac{a\left(2 \mu(1-2 \eta)+b_{22}\right)}{3 \pi} \int_{0}^{a}\left[\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}-\left(1-\frac{x^{2}}{a^{2}}\right)^{2}\right] K_{12}(0, x) \frac{d x}{x} \\
& -\frac{2 a b_{24}}{3 \pi} \int_{0}^{a}\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\right] K_{12}(0, x) \frac{d x}{x} \\
& -\frac{4 b_{20}+b_{23}}{16 \pi a} \int_{a}^{\infty} P^{2}(x) K_{12}(0, x) x d x \\
& -\frac{a b_{23}}{8 \pi} \int_{a}^{\infty}\left(1-\frac{a^{2}}{x^{2}}\right)^{\frac{1}{2}} P(x) K_{12}(0, x) \frac{d x}{x}
\end{aligned}
$$

$$
\begin{align*}
M_{9}(r) & =B_{16} \int_{0}^{a} x^{2} K_{13}(-1, x) d x-\frac{4\left(b_{35}+b_{45}\right)}{3 \pi a} \int_{0}^{a}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\right] K_{13}(-1, x) d x+ \\
& B_{17} \int_{0}^{a}\left(1-\frac{x^{2}}{a^{2}}\right) K_{13}(-1, x) d x+\frac{2 b_{36}}{3 \pi a} \int_{0}^{a}\left[\left(1-\frac{x^{2}}{a^{2}}\right)^{-\frac{1}{2}}-\left(1-\frac{x^{2}}{a^{2}}\right)\right] K_{13}(-1, x) d x \\
& +\frac{4 a\left(b_{27}+b_{51}\right)}{3 \pi} \int_{0}^{a}\left[\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}-\left(1-\frac{x^{2}}{a^{2}}\right)\right] K_{13}(-1, x) \frac{d x}{x^{2}} \\
& +B_{18} \int_{0}^{a}\left[\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}-\left(1-\frac{x^{2}}{a^{2}}\right)^{2}\right] K_{13}(-1, x) \frac{d x}{x^{2}} \\
& +\frac{4 a^{3}\left(b_{40}+b_{42}\right)}{9 \pi} \int_{0}^{a}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{3}{2}}\right]\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\right] K_{13}(-1, x) \frac{d x}{x^{4}} \\
& +\frac{\varepsilon b_{46}}{9 \pi a} \int_{0}^{a} R(x) K_{13}(-1, x) d x+\frac{b_{50}}{6 a^{2}} \int_{0}^{a} x^{2} R(x) K_{13}(-1, x) d x \\
& +B_{19} \int_{a}^{\infty} P(x) Q(x) K_{13}(-1, x) \frac{d x}{x^{4}}+B_{20} \int_{a}^{\infty} P^{2}(x) K_{13}(-1, x) d x \\
& +\frac{a\left(b_{33}+b_{48}\right)}{4 \pi} \int_{a}^{\infty}\left(1-\frac{a^{2}}{x^{2}}\right)^{\frac{1}{2}} P(x) K_{13}(-1, x) \frac{d x}{x^{2}} \\
& +B_{21} \int_{a}^{\infty} \frac{K_{13}(-1, x)}{x^{4}} d x+\frac{a\left(b_{33}+b_{47}\right)}{2 \pi} \int_{a}^{\infty}\left(1-\frac{a^{2}}{x^{2}}\right)^{\frac{1}{2}} Q(x) K_{13}(-1, x) d x \\
& +\frac{a b_{39}}{\pi} \int_{a}^{\infty}\left(1-\frac{a^{2}}{x^{2}}\right)^{-\frac{1}{2}} K_{23}(-1, x) \frac{d x}{x^{2}}+\frac{2 a b_{50}}{3 \pi} \int_{a}^{\infty} P(x) K_{13}(-1, x) \frac{d x}{x} \tag{3.48}
\end{align*}
$$

and where

$$
\begin{align*}
& P(x)=\frac{x}{a} \arcsin \frac{a}{x}-\left(1-\frac{a^{2}}{x^{2}}\right)^{\frac{1}{2}} \\
& Q(x)=\frac{x}{a} \arcsin \frac{a}{x}-\left(1-\frac{a^{2}}{x^{2}}\right)^{-\frac{1}{2}} \tag{3.49}\\
& R(x)=\frac{2 a^{2}}{x^{2}}\left[1-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}\right]-\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{1}{2}}
\end{align*}
$$

We remark that by replacing $K_{13}(0, x)$ with $K_{23}(-1, x)$ in M_{3} we get M_{4}, by replacing $K_{11}(0, x)$ with $K_{21}(-1, x)$ in M_{5} we get M_{8}. Similarly we get M_{8} and M_{10} by replacing $K_{12}(0, x), K_{13}(-1, x)$ with $K_{22}(-1, x), K_{23}(-2, x)$ in M_{7} and M_{9}, respectively.Again, when we replace $K_{11}(0, x), K_{10}(0, x), K_{13}(0, x), K_{11}(0, x), K_{12}(0, x)$, $K_{13}(0, x)$ by $K_{01}(0, x), K_{00}(0, x), K_{23}(0, x), K_{21}(0, x), K_{22}(0, x), K_{23}(-1, x)$ in M_{1}, $M_{2}, M_{3}, M_{5}, M_{7}, M_{9}$ respectively, we obtain $M_{11}, M_{12}, M_{13}, M_{14}, M_{15}, M_{16}$. For the stress components we only give the components $\tau_{z=}^{\prime \prime}$ and $\tau_{z r}^{\prime \prime}$ and the other components can be computed in a similar manner. We find
(i) For $r \leq a$

$$
\begin{aligned}
& \frac{8 \mu^{2} \tau_{=2}^{\prime \prime}}{T^{2}}=B_{5}\left(1-\frac{r^{2}}{a^{2}}\right)-B_{0} r^{2}-\frac{a^{3} b_{13}}{9 \pi r^{4}}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right]^{2}-\frac{4 a^{2} b_{17}}{9 \pi r^{4}}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}\right]^{2}- \\
& \frac{2 a^{3} b_{18}}{9 \pi r^{4}}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right]\left[1-\left(1-\frac{r^{2}}{a^{2}}{ }^{\frac{1}{2}}\right]-\frac{a\left(3 b_{15}-b_{18}\right)}{9 \pi r^{2}}-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right]-\right. \\
& \frac{a\left(6 b_{10}-4 b_{17}\right)}{9 \pi r^{2}}\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}\right]+\cos 2 \theta\left\{B_{15}\left(1-\frac{r^{2}}{a^{2}}\right)-\frac{4\left(b_{20}+b_{23}\right) \pi r^{2}}{64 a^{3}}\right. \\
& \left.-\frac{a\left(2 \mu(1-2 \eta)+b_{22}\right)}{3 \pi r^{2}}\left[\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}-\left(1-\frac{r^{2}}{a^{2}}\right)^{2}\right]-\frac{2 a b_{24}}{3 \pi r^{2}}\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}\right]\right\} \\
& \frac{8 \mu^{2} \tau_{r}^{\prime \prime}}{T^{2}}=B_{1} r\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}+\frac{B_{2}}{r}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right]-\frac{4 b_{2}+b_{6}}{24 r}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}\right] \\
& +\cos 2 \theta\left\{-B_{22} r\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}+\frac{3 \mu(1-2 \eta)-b_{9}}{12 r}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{3}{2}}\right]\right. \\
& \left.-\frac{b_{8}}{6 r}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{\frac{1}{2}}\right]\right\}
\end{aligned}
$$

(ii) For $r>a$

$$
\begin{aligned}
\frac{8 \mu^{2} \tau_{:=}^{\prime \prime}}{T^{2}}= & -\frac{B_{7}}{r^{4}}-\bar{B}_{8} P^{2}(r)-\frac{a^{3} b_{14}}{16 \pi r^{4}}\left(1-\frac{a^{2}}{r^{2}}\right)-\frac{a\left(b_{14}+2 b_{10}\right)}{16 \pi r^{2}} P(r)\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}} \\
& -\cos 2 \theta\left[\frac{4 b_{20}+b_{23}}{16 \pi r^{2}} P^{2}(r)+\frac{a b_{23}}{8 \pi r^{2}} P(r)\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}}\right] \\
\frac{8 \mu^{2} \tau_{r=}^{\prime \prime}}{T^{2}} & =\frac{B_{3} P(r)}{r^{2}}+\frac{B_{4}}{r^{2}}\left[P(r)+\frac{2 a^{2}}{r^{2}}\left(1-\frac{a^{2}}{r^{2}}\right)^{\frac{1}{2}}\right] \\
& +\left[\frac{a \mu(1-2 \eta)}{\pi}-\frac{a\left(2 b_{8}+b_{5}\right)}{6 \pi}\right] \frac{\cos 2 \theta P(r)}{r^{2}}
\end{aligned}
$$

In the above $B_{i j}$ are given in the Appendix $A_{5}, P(r)$ is defined in (3.49), and T is given by (3.14).

CHAPTER IV

SUMMARY AND FUTURE DIRECTIONS

In this thesis, after reviewing the development of the compressible finite elasticity equations we have given solutions to two traction boundary value problems for the second order elastic materials.

In the first problem we have found an analytical solution for the problem in a compressible elastic half-space which is acted upon by a non-uniform normal distributed load for any value of $\delta>-1$. The integral transform method is employed to determine both linear and second order solutions. These solutions are then specialized for particular value of δ. In the linear case we consider:
(i) $\delta=-\frac{1}{2}$, a solution which corresponds to the flat-ended punch problem. Our solution agrees with that given by Sneddon(1965).
(ii) $\delta=0$, corresponds to uniformly distrinuted load. This solution agrees with Boussine:q's solution as given in Sneddon(1972).
(iii) $\delta=\frac{1}{2}$, corresponds to the punch with form of a paraboloid of revolution. The solution again agrees with Sneddon(1965).
(iv) By letting $a \rightarrow 0$ we get the solution for a point load. The soluton again agrees with Sneddon(1972).
(v) The solutions for $\delta=\frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \ldots$ are all new. Hopefully these will soon find applications in other practical situations.

For the second order elastic case, general expressions for the displacement and stress components are given when $\delta=\frac{1}{2}$. Some numerical calculations are carried out and it is noted that the effect of the consideration of the second order elasticity is to increase the displacement in the z-direction and to decrease the overall value of the normal stress in the same direction. The solutions are then specialized for an
incompressible elastic material and the corresponding numerical solntions are also presented and discussed.

In the second problem, an analytical solution, again, is found for the problem when the compressible elastic half-space is acted upon by a non-miform shear load. Even though, because of the non-symmetrical nature of the problem, the mathematical aualysis is much more difficult in this case, we have succeeded in obtaining exact solution. The method of integral transform is again employed for both linear and second order solutions. In the linear case we again specialized δ for different possible values and found that the solution when $\delta=0$, corresponding to uniform shear force, and when $a \rightarrow 0$, the point force solution, again match with the existing solutions. The solutions in other cases, when $\delta=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$ are, to our knowledge, all new. For the second order elastic case the general expressions for the displacement and stress components are given when $\delta=\frac{1}{2}$. Numerical solution pertaining to this case are being carried out.

All the above solutions,both for linear and second order elastic cases, apart of being new solutions, are also useful as preparatory material for contact or crack problems. We recall that in the case of contact problems we assume shearing stresscs vanish on the boundary and prescribe normal component of the displacement vector. In the case of crack problems we prescribe normal stress within the crack region and assume shearing stresses to vanish on the boundary planc. In the case of contact problems we thus have solution known outside the contact region but have to match it with the displacement solution in the contact region. By considering different values for δ we can identify different kind of punch shapes and then determine the corresponding solutions both for the second order and new linear cases. Similar remarks apply to crack problems. We hope to carry out such calculations in the near future.

REFERENCES

1. R.I. Atkin and N. Fox, An Introduction to the Theory of Elasticity, Longman, London and New York, 1980.
2. P.J. Blatz and W. L. Ko, Application of Finite Elasticity Theory to Deformation of Rubbery Materials, Trans. Soc. Rheology 6, (1962), 223.
3. D.E. Carlson and R.T. Shield, Second and Higher Order Effects in a Class of Problems in Planc Finite Elasticity, Arch. Rat. Mech. Anal. 19, (1965), 189.
4. M.M. Carroll and F.J. Rooney, Simplification of the Second-Order Problem for Incompressible Elastic Solids, Q.J. Mech. Appl. Math. 37, (1984), 261.
5. V. Cerruti, Ricrehe Intono all Equilibric de Corpi Elastici Isotropi, Atti. Accorri. Nazl. Lincei. Me. Classe. Sci. Fis. Met. Nat., 13, (1882), 81.
6. C. Chan and D.E. Carlson, Second Order Incompressoble Elastic Torsion, Int. J. Engrg. Sci. 8, (1970), 415.
7. I. Choi and R.T. Shield, Second-Order Effects in Problems for a Class of Elastic Materials, Z. Angew. Math. Phys. 32, (1981), 361.
8. A. Foux, An Experimental Investigation of the Poynting Effect, (c.f. Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics, International Symposium, Haifa, Israel, April 23-27, 1962).
9. B. Galerkin, Contribution a la Solution Generale du Probleme de Trois Dimensions, C.R. Acad. Sci. Paris 190, (1934), 1047.
10. W.H. Goodman and P.M. Naghdi, The Use of Displacement Potentials in Second Order Elasticity, J. Elasticity. 22, (1989), 25.
11. I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York, 1965.
12. A.E. Green and J.E. Adkins, Large Elastic Deformations (2nd ed.), Oxford

University Press, 1970.
13. A.E. Green and E.B. Spratt, Second Order Effect in the Deformation of Elastic: Solids, Proc. R. Soc. London. A224, (1954), 347.
14. D.W. Haines and W.D. Wilson, J. Math. Phys. Solids 27, (1979), 345.
15. J.M. Hill, Notes on a Paper by C. Chan and D.E. Carlson,"Second-Order Incompressible Elastic Torsion", Int. J. Engrg. Sci. 11, (1973), 331.
16. R.W. Little, Elasticity, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973. /no 17 R. D. Mindlin, Force at a Point in the Interior of a Semi-infinite Solid, Physics 7, (1936), 195.
18. M. Mooney, A Theory of Large Elastic Deformation, J. Appl. Phys. 11, (1940), 582.
19. R. Muki, Asymmetric Problems of the Theory of Elasticity for a Scmi-Infiuitc Solid and a Thick Plate, In Progress in Solid Mechanics, I.N. Sneddon and R. Hill Editors, North-Holland Publish Co., Amsterdam.
20. F.D. Murnaghan, Finite Deformation of an Elastic Solid, Amer. J. Math. 50, (1937), 235.
21. F.D. Murnaghan, Finite Deformation of an Elastic Solid, New York: John Wiley and Sons, 1951.
22. H. Neuber, Ein neuer Ansatz zur Losung reumlicher Problcme der Elastizitatstheorie, Z. Angew. Math. u. Mech. 14, (1934), 128.
23. R. W. Ogden, Large Deformation Isotropic Elasticity- On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids.
24. P.F. Papkovich, The Representation of the General Integral of the Fundamental Equations of Elasticity Theory in Terms of Harmonic Functions, Izv.Akad.Nauk S.S.S.R. Phys-Math. Ser., 10, (1932a), 1425.
25. P.F. Papkovich, Solution Generale des Equations Differentielles Fondamentales
d'Elasticite Exprimee par Trois Fonctions Harmoniques, C.R. Acad. Sci. Paris, 195, (1932b), 531.
20. R.S. Rivlin, The Solution of Problems in Second Order Elasticity Theory, J. Ration. Mech. Analysis. 2, (1953), 52.
27. R. S. Rivlin and D. W. Saunders, Large Elastic Deformation of Isotropic Materials VII: Experiments on the Deformation of Rubber, Phil. Trans. R. Soc. Lond. A243, (1951), 251.
28. G.C.S. Sabin and P.N. Kaloni, Contact Problem of a Rigid Indentor in Second Order Elasticity Theory, J. Appl. Math. Phys. 34, (1983), 370.
29. G.C.S. Sabin and P.N. Kaloni, Contact Problem of a Rigid Indentor with Rotational Friction in Second Order Elasticity, Int. J. Engrg. Sci. 27, (1989), 203.
30. A.P.S. Selvadurai and A.J.M. Spencer, Second-Order Elasticity with Axial Symmetry -I. General Theory, Int. J. Engrg. Sci. 10, (1972), 97.
31. A.P.S. Selvadurai, Second-Order Elastic Effects in the Torsion of a Spherical Annular Region, Int. J. Engrg. Sci. 12, (1974), 295.
32. R.T. Shield, Inverse Deformation Results in finite Elasticity, Z. Angew. Math. Phys. 18, (1967), 490.
33. A. Signorini, Transformazioni Termoelastiche Finite, Annali Mat. Pure Appl. 30, (1949), 10.
34. A. Signoyini, Sulle Deformazioni Termoelastiche Finite, Proc. 3rd Internat. Congr. Appl. Math., 2, (1930), 80-89.
35. I.N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972.
36. I.N. Syeddon, The Relation Between Load and Peneiration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile, Int. J. Engrg. Sci. 3, (1965), 47.
37. I.N. Sneddon, The Use of Transform Methods in Elasticity, Tech.Report.AFOSR. 64-1789, North Carolina State University, Rayleigh, N.C., 1904.
38. A.J.M. Spencer, The Static Theory of Finite Elasticity, J. Inst. Math. Applics. 6, (1970), 164-200.
39. A.J.M. Spencer, On Finite Elastic Deformations with a Perturbed Strain-encrgy Function, Q. J. Mech. Appl. Math. 12, (1959), 129.
40. A.J.M. Spencer, Continuum Mechanics, Longman, London and New York, 1980.
41. F. Stoppeli, Un Teorema di Esistenza e di Unicita Relativo alle Equazioni Dell'elastostatica Isoterma per Deformazioni Finite, Ricerche Mat. 3, (1954), 247-267.
42. F. Stoppeli, Sulla Svilluppabilita in Serie di Potenze di un Parametro delle Soluzioni delle Equazioni Dell'elastostatica Isoterma, Ric. Mat. 4, (1955), 58-73.
43. L. R. G. Treloar, Stresses and Birefringence in Rubber Subjected to General Homogeneous Strain, Proc. Phys. Soc. 60 (1948), 135.
44. C.A. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, Handbuch der Physik (Ed. S. Flugge), vol. III/3, Springer-Verlag,Berlin 1965.

Appendix A_{1}

For completeness we here give expressions for some quantities in cylindrical polar coordinate by assuming $v_{r}=v_{r}(r, z, \theta), v_{\theta}=v_{\theta}(r, z, \theta)$ and $v_{z}=v_{z}(r, z, \theta)$.

$$
\begin{gathered}
c_{r r}^{\prime}=2 \frac{\partial v_{r}}{\partial r}, \quad c_{\theta \theta}^{\prime}=2\left(\frac{v_{r}}{r}+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}\right), \quad e_{z=}^{\prime}=2 \frac{\partial v_{z}}{\partial z} \\
c_{r \theta}^{\prime}=\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}-\frac{\partial v_{\theta}}{\partial r}-\frac{v_{\theta}}{r}, \quad c_{r z}^{\prime}=\frac{\partial v_{z}}{\partial r}+\frac{\partial v_{r}}{\partial z}, \quad e_{\theta z}^{\prime}=\frac{\partial v_{\theta}}{\partial z}+\frac{1}{r} \frac{\partial v_{z}}{\partial \theta} \\
\alpha_{r r}^{\prime}=\left(\frac{\partial v_{r}}{\partial r}\right)^{2}+\left(\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}-\frac{v_{\theta}}{r}\right)^{2}+\left(\frac{\partial v_{r}}{\partial z}\right)^{2} \\
\alpha_{r \theta}^{\prime}=\frac{\partial v_{r}}{\partial r} \frac{\partial v_{\theta}}{\partial r}+\frac{\partial v_{r}}{\partial z} \frac{\partial v_{\theta}}{\partial z}+\frac{1}{r^{2}}\left(\frac{\partial v_{r}}{\partial \theta} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial v_{r}}{\partial \theta} v_{r}-\frac{\partial v_{\theta}}{\partial \theta} v_{\theta}-v_{r} v_{\theta}\right) \\
\alpha_{\theta \theta}^{\prime}=\left(\frac{\partial v_{\theta}}{\partial r}\right)^{2}+\left(\frac{\partial v_{\theta}}{\partial z}\right)^{2}+\left(\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{r}}{r}\right)^{2} \\
\alpha_{r z}^{\prime}=\frac{\partial v_{r}}{\partial r} \frac{\partial v_{z}}{\partial r}+\frac{1}{r^{2}} \frac{\partial v_{z}}{\partial \theta}\left(\frac{\partial v_{r}}{\partial \theta}-v_{\theta}\right)+\frac{\partial v_{z}}{\partial z} \frac{\partial v_{r}}{\partial z} \\
\alpha_{z=}^{\prime}=\left(\frac{\partial v_{z}}{\partial r}\right)^{2}+\left(\frac{1}{r} \frac{\partial v_{z}}{\partial \theta}\right)^{2}+\left(\frac{\partial v_{z}}{\partial z}\right)^{2} \\
\alpha_{\theta z}^{\prime}=\frac{\partial v_{z}}{\partial r} \frac{\partial v_{\theta}}{\partial r}+\frac{1}{r^{2}} \frac{\partial v_{z}}{\partial \theta}\left(\frac{\partial v_{\theta}}{\partial \theta}+v_{r}\right)+\frac{\partial v_{z}}{\partial z} \frac{\partial v_{\theta}}{\partial z}
\end{gathered}
$$

On recognizing that the boundary is $z=0$ and the elastic body occupies the halfspace $z \geq 0$, we have $\left(l_{1}, l_{2}, l_{3}\right)=(0,0,-1)$, expressions for the tractions on $z=0$ take the form

$$
\begin{aligned}
& X_{\nu r}^{\prime}=-\frac{\partial v_{z}}{\partial r} \tau_{r r}-\frac{\tau_{r \theta}}{r} \frac{\partial v_{z}}{\partial \theta}+\left(\Delta^{\prime}-\frac{\partial v_{z}}{\partial z}\right) \tau_{r z}+\tau_{r z}^{\prime} \\
& X_{\nu \theta}^{\prime}=-\frac{\partial v_{z}}{\partial r} \tau_{r \theta}-\frac{\tau_{\theta \theta}}{r} \frac{\partial v_{z}}{\partial \theta}+\left(\Delta^{\prime}-\frac{\partial v_{z}}{\partial z}\right) \tau_{\theta z}+\tau_{\theta z}^{\prime} \\
& X_{\nu z}^{\prime}=-\frac{\partial v_{z}}{\partial r} \tau_{r z}-\frac{\tau_{\theta z}}{r} \frac{\partial v_{z}}{\partial \theta}+\left(\Delta^{\prime}-\frac{\partial v_{z}}{\partial z}\right) \tau_{z z}+\tau_{z z}^{\prime}
\end{aligned}
$$

Here

$$
\Delta^{\prime}=\frac{\partial v_{r}}{\partial r}+\frac{v_{r}}{r}+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial v_{z}}{\partial z}
$$

The body forces are given by

$$
\begin{aligned}
& \rho_{0} X_{r}^{\prime}=-\frac{\partial v_{r}}{\partial r} \frac{\partial \tau_{r r}}{\partial r}+\frac{2 \tau_{r \theta}}{r} \frac{\partial v_{\theta}}{\partial r}-\frac{\partial v_{z}}{\partial r} \frac{\partial \tau_{r r}}{\partial z}+\frac{v_{\theta}}{r} \frac{\partial \tau_{r \theta}}{\partial r} \\
&-\frac{v_{r}}{r^{2}}\left(\tau_{r r}-\tau_{\theta \theta}\right)-\frac{\partial v_{r}}{\partial z} \frac{\partial \tau_{r z}}{\partial r}+\frac{\tau_{\theta z}}{r} \frac{\partial v_{\theta}}{\partial z}-\frac{\partial v_{z}}{\partial z} \frac{\partial \tau_{r z}}{\partial z} \\
&- \frac{1}{r}\left[\frac{\partial v_{r}}{\partial \theta} \frac{\partial \tau_{r \theta}}{\partial r}+\frac{\partial \tau_{r r}}{\partial \theta} \frac{\partial v_{\theta}}{\partial r}+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} \frac{\partial \tau_{r \theta}}{\partial \theta}\right] \\
&+ {\left[\frac{v_{r}}{r} \frac{\partial \tau_{r \theta}}{\partial \theta}+\frac{\partial v_{\theta}}{\partial \theta} \frac{\tau_{r r}-\tau_{\theta \theta}}{r}+\frac{\partial \tau_{r z}}{\partial \theta} \frac{\partial v_{\theta}}{\partial z}+\frac{\partial v_{z}}{\partial \theta} \frac{\partial \tau_{r \theta}}{\partial z}\right] } \\
&+ \frac{\partial \tau_{r r}^{\prime}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{r r}^{\prime}}{\partial \theta}+\frac{\partial \tau_{r z}^{\prime}}{\partial z}+\frac{\tau_{r r}^{\prime}-\tau_{\theta \theta}^{\prime}}{r} \\
& \rho_{0} X_{\theta}^{\prime}=-\frac{\partial v_{r}}{\partial r} \frac{\partial \tau_{r \theta}}{\partial r}-\frac{\partial v_{\theta}}{\partial r} \frac{\tau_{r r}-\tau_{\theta \theta}}{r}-\frac{\partial v_{z}}{\partial r} \frac{\partial \tau_{r \theta}}{\partial z}+\frac{v_{\theta}}{r} \frac{\partial \tau_{\theta \theta}}{\partial r} \\
&- \frac{2 v_{r}}{r^{2}} \tau_{r \theta}-\frac{\partial v_{r}}{\partial z} \frac{\partial \tau_{\theta z}}{\partial r}-\frac{\tau_{r z}}{r} \frac{\partial v_{\theta}}{\partial z}-\frac{\partial v_{z}}{\partial z} \frac{\partial \tau_{\theta z}}{\partial z} \\
&- \frac{1}{r}\left[\frac{\partial v_{r}}{\partial \theta} \frac{\partial \tau_{\theta \theta}}{\partial r}+\frac{\partial v_{\theta}}{\partial r} \frac{\partial \tau_{r \theta}}{\partial \theta}+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} \frac{\partial \tau_{\theta \theta}}{\partial \theta}\right] \\
&+ {\left[\frac{v_{r}}{r} \frac{\partial \tau_{\theta \theta}}{\partial \theta}+\frac{2 \tau_{r \theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial v_{\theta}}{\partial z} \frac{\partial \tau_{\theta z}}{\partial \theta}+\frac{\partial v_{z}}{\partial \theta} \frac{\partial \tau_{\theta \theta}}{\partial z}\right] } \\
&+ \frac{\partial \tau_{r \theta}^{\prime}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{\theta \theta}^{\prime}}{\partial \theta}+\frac{2 \tau_{r \theta}^{\prime}}{r}+\frac{\partial \tau_{\theta z}^{\prime}}{\partial z} \\
& \rho_{0} X_{z}^{\prime}=-\frac{\partial v_{r}}{\partial r} \frac{\partial \tau_{r z}}{\partial r}+\frac{\tau_{\theta z}}{r} \frac{\partial v_{\theta}}{\partial r}-\frac{\partial v_{z}}{\partial r} \frac{\partial \tau_{r z}}{\partial r} \\
&+\frac{v_{\theta}}{r} \frac{\partial \tau_{\theta z}}{\partial r}-\frac{v_{r} \tau_{r z}}{r^{2}}-\frac{\partial v_{r}}{\partial z} \frac{\partial \tau_{z z}}{\partial r}-\frac{\partial v_{z}}{\partial z} \frac{\partial \tau_{z z}}{\partial z} \\
&-\frac{1}{r}\left[\frac{\partial v_{r}}{\partial \theta} \frac{\partial \tau_{\theta z}}{\partial r}+\frac{\partial v_{z}}{\partial r} \frac{\partial \tau_{r z}}{\partial \theta}+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} \frac{\partial \tau_{\theta z}}{\partial \theta}\right] \\
&+\left[\frac{\tau_{r z}}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{r}}{r} \frac{\partial \tau_{\theta z}}{\partial \theta}+\frac{\partial v_{\theta}}{\partial z} \frac{\partial \tau_{z z}}{\partial \theta}+\frac{\partial v_{z}}{\partial \theta} \frac{\partial \tau_{\theta z}}{\partial z}\right] \\
&+\frac{\partial \tau_{r z}^{\prime}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{\theta z}^{\prime}}{\partial \theta}+\frac{\tau_{r z}^{\prime}}{r}+\frac{\partial \tau_{z z}^{\prime}}{\partial z} \\
&
\end{aligned}
$$

Appendix A_{2}

$$
\begin{aligned}
& K_{00}(0, x)= \begin{cases}\frac{2}{\pi r} F\left(\frac{x}{r}\right), & x<r \\
\frac{2}{\pi r} F\left(\frac{r}{x}\right), & x>r\end{cases} \\
& K_{11}(0, x)= \begin{cases}\frac{2}{\pi r}\left[F\left(\frac{x}{r}\right)-E\left(\frac{x}{r}\right)\right], & x<r \\
\frac{2}{\pi x}\left[F\left(\frac{r}{x}\right)-E\left(\frac{r}{x}\right)\right], & x>r\end{cases} \\
& K_{10}(0, x)= \begin{cases}\frac{1}{r}, & x<r \\
0, & x>r\end{cases} \\
& K_{01}(0, x)= \begin{cases}0, & x<r \\
\frac{1}{x}, & x>r\end{cases} \\
& K_{02}(0, x)= \begin{cases}\frac{2}{\pi r} F\left(\frac{x}{r}\right)+\frac{4 r}{\pi x^{2}}\left[E\left(\frac{x}{r}\right)-F\left(\frac{x}{r}\right)\right], & x<r \\
\frac{4}{\pi x} E\left(\frac{r}{x}\right)-\frac{2}{\pi x} F\left(\frac{r}{x}\right), & x>r\end{cases} \\
& K_{03}(0, x)= \begin{cases}0, & x<r \\
\frac{1}{x}\left(1-2 \frac{r^{2}}{x^{2}}\right), & x>r\end{cases} \\
& K_{12}(0, x)= \begin{cases}0, & x<r \\
\frac{r}{x^{2}}, & x>r\end{cases} \\
& K_{21}(0, x)= \begin{cases}\frac{x}{r^{2}}, & x<r \\
0, & x>r\end{cases} \\
& K_{13}(0, x)= \begin{cases}\frac{13 F\left(\frac{f}{r}\right)-5 E\left(\frac{x}{r}\right)}{3 \pi x}+\frac{16 r^{2}}{3 \pi x^{3}}\left[E\left(\frac{x}{r}\right)-F\left(\frac{x}{r}\right)\right], & x<r \\
\frac{11}{3 \pi r}\left[F\left(\frac{r}{x}\right)-E\left(\frac{r}{x}\right)\right]+\frac{8 r}{3 \pi x^{2}}\left[2 E\left(\frac{r}{x}\right)-F\left(\frac{r}{x}\right)\right], & x>r\end{cases} \\
& K_{22}(0, \dot{\alpha})= \begin{cases}\frac{2}{3 \pi r}\left[F\left(\frac{z}{r}\right)-2 E\left(\frac{x}{r}\right)\right]-\frac{4 r}{3 \pi x^{2}}\left[E\left(\frac{x}{r}\right)-F\left(\frac{x}{r}\right)\right], & x<r \\
\frac{2}{3 \pi x}\left[F\left(\frac{r}{x}\right)-2 E\left(\frac{r}{x}\right)\right]-\frac{4 x}{3 \pi r^{2}}\left[E\left(\frac{r}{x}\right)-F\left(\frac{r}{x}\right)\right], & x>r\end{cases} \\
& K_{23}(0, x)= \begin{cases}0, & x<r \\
\frac{r^{2}}{x^{3}}, & x>r\end{cases} \\
& K_{13}(-1, x)= \begin{cases}0, & x<r \\
\frac{r}{2 x}\left(1-\frac{r^{2}}{x^{2}}\right), & x>r\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& K_{21}(-1, x)= \begin{cases}\frac{2 r}{3 \pi r}\left[F\left(\frac{r}{r}\right)+2 E\left(\frac{r}{r}\right)\right]+\frac{2 r}{3 \pi r}\left[E\left(\frac{r}{r}\right)-F\left(\frac{r}{r}\right)\right], & x<r \\
\frac{2}{3 \pi}\left[2 F\left(\frac{r}{r}\right)-E\left(\frac{r}{r}\right)\right]+\frac{4 r^{2}}{3 \pi r^{2}}\left[E\left(\frac{r}{r}\right)-F\left(\frac{r}{r}\right)\right], & x>r\end{cases} \\
& K_{22}(-1, x)= \begin{cases}\frac{x^{2}}{4 r^{2}}, & x<r \\
\frac{r^{2}}{4 x^{2}}, & x>r\end{cases} \\
& K_{23}(-2, x)= \begin{cases}\frac{x^{3}}{24 r^{2}}, & x<r \\
\frac{r^{2}}{8 x}\left(1-\frac{2 r^{2}}{3 x^{3}}\right), & x>r\end{cases} \\
& K_{23}(-1, x)=-\frac{2 x}{15 \pi r}\left[9 F\left(\frac{x}{r}\right)+2 E\left(\frac{x}{r}\right)\right]+\frac{8 r}{15 \pi x} F\left(\frac{x}{r}\right) \\
& +\left(\frac{16 r^{3}}{15 \pi x^{3}}-\frac{24 r}{15 \pi x}\right)\left[E\left(\frac{x}{r}\right)-F\left(\frac{x}{r}\right)\right], \quad x<r \\
& K_{23}(-1, x)=\frac{8 r^{2}}{15 \pi x^{2}}\left[2 F\left(\frac{r}{x}\right)-E\left(\frac{r}{x}\right)\right]+\frac{2}{15 \pi}\left[2 F\left(\frac{r}{x}\right)-3 E\left(\frac{r}{x}\right)\right] \\
& -\frac{4 x^{2}}{15 \pi r^{2}}\left[E\left(\frac{r}{x}\right)-F\left(\frac{r}{x}\right)\right], \quad x>r
\end{aligned}
$$

where $E(r)$ and $F(r)$ are complete elliptic integrals of the first and second kind, respectively.

Appendix A_{3}

$$
\begin{aligned}
& I_{1}=\int_{0}^{1} \frac{\arcsin t}{t} d t \\
& I_{2}=\int_{0}^{1} \frac{\arcsin \frac{a t}{r}}{a t} d t \\
& I_{3}=\int_{0}^{x} t \sqrt{a^{2}-t^{2}}\left[F\left(\frac{t}{r}\right)-E\left(\frac{t}{r}\right)\right] d t \\
& I_{4}=\int_{0}^{x}\left[a^{3}-\left(a^{2}-t^{2}\right)^{\frac{3}{2}}\right]\left[F\left(\frac{t}{r}\right)-E\left(\frac{t}{r}\right)\right] d t \\
& I_{5}=\int_{r}^{a} \sqrt{t^{2}-r^{2}}\left[F\left(\frac{t}{a}\right)-E\left(\frac{t}{a}\right)\right] \frac{d t}{t^{5}} \\
& I_{6}=\int_{r}^{a}\left[t^{3}-\left(t^{2}-r^{2}\right)^{\frac{3}{2}}\right]\left[F\left(\frac{t}{a}\right)-E\left(\frac{t}{a}\right)\right] \frac{d t}{t^{5}}
\end{aligned}
$$

$$
\begin{aligned}
& I_{7}=\int_{0}^{\pi}\left[r^{2} \arcsin \frac{t}{r}-t \sqrt{r^{2}-t^{2}}\right]\left[F\left(\frac{t}{a}\right)-E\left(\frac{t}{a}\right)\right] \frac{d t}{t^{2}} \\
& I_{8}=\int_{a}^{r}\left[\frac{t}{a} \arcsin \frac{a}{t}-\frac{\sqrt{t^{2}-a^{2}}}{t}\right]\left[F\left(\frac{t}{a}\right)-E\left(\frac{t}{a}\right)\right] \frac{d t}{t^{2}} \\
& I_{9}=\int_{0}^{x}\left[a-\sqrt{a^{2}-t^{2}}\right] F\left(\frac{t}{r}\right) \frac{d t}{t} \\
& I_{10}=\int_{0}^{x} t \ln \frac{a+\sqrt{a^{2}+t^{2}}}{a} F\left(\frac{t}{r}\right) d t \\
& I_{11}=\int_{0}^{x}\left[\frac{1}{2}-\frac{a^{3}-\left(a^{2}-t^{2}\right)^{\frac{3}{2}}}{3 a t^{2}}\right] F\left(\frac{t}{a}\right) \frac{d t}{t} \\
& I_{12}=\int_{r}^{a}\left[t-\sqrt{t^{2}-r^{2}}\right] F\left(\frac{t}{a}\right) \frac{d t}{t} \\
& I_{13}=\int_{r}^{a} \ln \frac{t+\sqrt{t^{2}-r^{2}}}{t} F\left(\frac{t}{a}\right) \frac{d t}{t^{2}} \\
& I_{14}=\int_{r}^{a}\left[\frac{t}{2}-\frac{t^{3}-\left(t^{2}-r^{2}\right)^{\frac{3}{2}}}{3 r^{2}}\right] F\left(\frac{t}{a}\right) \frac{d t}{t} \\
& I_{15}=\int_{0}^{x} t^{2} F\left(\frac{t}{a}\right) d t \\
& I_{10}=\int_{0}^{x}\left[\frac{r}{t} \arcsin \frac{t}{r}-\frac{\sqrt{r^{2}-t^{2}}}{r}\right]^{2} F\left(\frac{t}{a}\right) \frac{d t}{t^{2}} \\
& I_{17}=\int_{0}^{x}\left[\arcsin { }^{2}\left(\frac{t}{r}\right)-\frac{t^{2}}{r^{2}}\right] F\left(\frac{t}{a}\right) \frac{d t}{t^{2}} \\
& I_{18}
\end{aligned}
$$

Appendix A_{4}

$$
\begin{aligned}
& c_{1}=2(1-2 \eta)^{2}\left(a_{1}-4 a_{2}+4 a_{3}\right) Q^{2} \\
& c_{2}=2(1-2 \eta)\left[(1-2 \eta)\left(3 a_{1}+20 a_{2}-12 a_{3}-4 a_{5}\right)+2\left(3 a_{1}-4 a_{5}\right)\right] Q^{2} \\
& c_{3}=2(1-2 \eta)\left[(1-2 \eta)\left(a_{1}+4 a_{2}+12 a_{3}+48 a_{4}\right)+2\left(a_{1}+8 a_{2}-4 a_{3}\right)\right] Q^{2} \\
& c_{4}=8(1-\eta)\left[2(1-\eta)\left(a_{1}+4 a_{2}\right)-a_{1}\right] Q^{2} \\
& c_{5}=-16(1-\eta)^{2}\left(3 a_{1}+4 a_{2}\right) Q^{2} \\
& c_{6}=8(1-\eta) a_{1} Q^{2} \\
& c_{T}=-4(1-\eta)(1-2 \eta) a_{1} Q^{2} \\
& c_{8}=2(1-2 \eta)\left[(1-2 \eta)\left(a_{1}+4 a_{2}+12 a_{3}+48 a_{4}\right)-2 a_{1}\right] Q^{2} \\
& c_{9}=4(1-2 \eta)^{2}\left(a_{1}+2 a_{2}-2 a_{3}-2 a_{5}\right) Q^{2} \\
& c_{10}=8(1-\eta)^{2}\left(a_{1}+2 a_{2}\right) Q^{2} \\
& c_{11}=(1-\eta)(5-4 \eta) a_{1} Q^{2} / \pi \\
& c_{12}=(1-2 \eta) Q^{2}\left[(1-2 \eta)\left(3 a_{1}+36 a_{2}+10 a_{3}+43 a_{4}+8 a_{5}\right)+24\left(2 a_{2}-a_{3}\right)\right] / \pi \\
& c_{13}=(1-2 \eta) Q^{2}\left[12\left(a_{5}+6 a_{3}-12 a_{2}\right)\right. \\
& \left.-(1-2 \eta)\left(27 a_{1}+156 a_{2}+300 a_{3}+129 a_{4}+4 a_{5}\right)\right] / \pi \\
& c_{14}=(1-2 \eta)(3-2 \eta) \pi a_{1} Q^{2} \\
& c_{15}=2(1-2 \eta) Q^{2}\left[(1-2 \eta)\left(53 a_{1}+220 a_{2}+236 a_{3}+1296 a_{4}-52 a_{5}\right)\right. \\
& \left.+6\left(-a_{1}+16 a_{2}-8 a_{3}-2 a_{5}\right)\right] /(9 \pi) \\
& c_{16}=2(1-2 \eta) Q^{2}\left[12\left(a_{5}-12 a_{2}+6 a_{3}\right)\right. \\
& \left.-(1-2 \eta)\left(43 a_{1}+188 a_{2}+268 a_{3}+1296 a_{4}-28 a_{5}\right)\right] /(8 \pi) \\
& c_{17}=2(1-2 \eta) Q^{2}\left[2\left(6 a_{1}+24 a_{2}-12 a_{3}-2 a_{5}\right)\right. \\
& \left.+(1-2 \eta)\left(5 a_{1}+36 a_{2}+209 a_{3}+144 a_{4}-4 a_{5}\right)\right] /(3 \pi)
\end{aligned}
$$

$$
\begin{aligned}
& c_{18}=2(1-2 \eta) Q^{2}\left[12\left(-3 a_{1}-12 a_{2}+6 a_{3}+a_{5}\right)\right. \\
& \left.\quad 7-(1-2 \eta)\left(17 a_{1}+100 a_{2}+698 a_{3}+432 a_{4}-12 a_{5}\right)\right] /(9 \pi) \\
& c_{19}=2(1-2 \eta) Q^{2}\left[(1-2 \eta)\left(67 a_{1}+260 a_{2}+244 a_{3}+1296 a_{4}-44 a_{5}\right)\right. \\
& \left.\quad+36\left(4 a_{2}-2 a_{3}-a_{5}\right)\right] /(36 \pi)+(1-\eta) a_{1} Q^{2} / \pi
\end{aligned}
$$

Appendix A_{5}

$$
\begin{aligned}
& B_{1}=\frac{\eta \mu(1-2 \eta)}{8 a^{2}}-\frac{2 b_{1}-4 b_{2}+3 b_{5}-b_{6}}{48 a^{2}} \\
& B_{2}=\frac{\mu(1-2 \eta)(2+\eta)}{12}-\frac{4 b_{3}+b_{4}}{48} \\
& B_{3}=\frac{a}{8 \pi}\left[\mu(2+\eta)(1-2 \eta)-\left(2 b_{2}+b_{3}+\frac{b_{4}+2 b_{6}}{4}\right)\right] \\
& B_{4}=\frac{a^{3}}{3 \pi}\left[\mu \eta(1-2 \eta)-\frac{b_{4}+2 b_{6}}{4}\right] \\
& B_{5}=\frac{1}{\pi a}\left[\mu(1-2 \eta)-b_{12}-\frac{b_{17}}{9}+\frac{b_{19}}{3}\right] \\
& B_{6}=\frac{\pi}{16 a^{3}}\left[b_{11}+\frac{b_{14}}{16}+\frac{b_{16}}{4}\right] \\
& B_{7}=\frac{a^{3}}{16 \pi}\left[2 b_{13}+8 b_{1}+4 b_{18}\right] \\
& B_{8}=\frac{16 b_{11}+b_{14}+4 b_{16}}{64 \pi a} \\
& B_{9}=\frac{\mu(1-3 \eta)(1-2 \eta)}{4}-\frac{4 b_{25}+b_{29}+4 b_{9}}{32} \\
& B_{10}=-\frac{\mu(1-2 \eta)}{2 a^{2}}+\frac{12 b_{26}+4 b_{27}+3 b_{28}-12 b_{7}+4 b_{8}-3 b_{10}}{24 a^{2}} \\
& B_{11}=\frac{a}{6 \pi}\left[(8-24 \eta)(1-2 \eta) \mu-\left(4 b_{8}+2 b_{9}+4 b_{25}+8 b_{27}+b_{29}\right)\right] \\
& B_{12}=\frac{(2+3 \eta)(1-2 \eta)}{3}+\frac{4 b_{25}+b_{29}-4 b_{9}}{24} \\
& B_{13}=\frac{(7-19 \eta) \mu+\mu \eta(1-2 \eta)}{2 a^{2}}+\frac{12 b_{26}-4 b_{27}+3 b_{28}+12 b_{7}-4 b_{8}+3 b_{10}}{24 a^{2}} \\
& B_{14}=\frac{a}{6 \pi}\left[(16+24 \eta)(1-2 \eta) \mu-4 b_{8}-2 b_{9}+4 b_{25}+8 b_{27}+b_{29}\right]
\end{aligned}
$$

$$
\begin{aligned}
B_{15} & =\frac{3 \mu(1-2 \eta)-3 b_{21}+b_{24}}{3 \pi a} \\
B_{16} & =\frac{\pi\left(16 b_{30}+8 b_{31}+2 b_{32}+4 b_{33}+8 b_{42}+4 b_{43}+2 b_{27}+b_{48}\right)}{16 a^{3}} \\
& +\frac{6 b_{34}-2 b_{35}+6 b_{44}-2 b_{45}}{3 \pi a^{3}} \\
B_{17} & =\frac{6 b_{41}-2 b_{37}+6 b_{53}-2 b_{51}}{3 \pi a} \\
B_{18} & =\frac{2 a\left(3 b_{38}-b_{40}+3 b_{54}-b_{52}\right)}{9 \pi} \\
B_{19} & =\frac{4 b_{30}+b_{33}+4 b_{42}+b_{47}}{4 \pi a} \\
B_{20} & =\frac{4 b_{31}+b_{32}+4 b_{42}+b_{47}}{4 \pi a} \\
B_{21} & =\frac{4 a^{3}\left(b_{40}+b_{25}+2 b_{45}\right)}{9 \pi} \\
B_{22} & =\frac{\mu \eta(1-2 \eta)+4 \mu(2-3 \eta)}{8 a^{2}}+\frac{12 b_{7}-4 b_{8}+3 b_{10}}{48 a^{2}}
\end{aligned}
$$

Appendix A_{6}

$$
\begin{aligned}
& b_{1}=-\left(4-9 \eta+10 \eta^{2}\right) a_{1}+(1-2 \eta)(6+4 \eta)\left(2 a_{2}-a_{3}\right)+(5-2 \eta) a_{5} \\
& b_{2}=-(1-2 \eta)(2-\eta) a_{1}-2(1-2 \eta)^{2}\left(2 a_{2}-a_{3}\right)+(1-2 \eta) a_{5} \\
& b_{3}=6(1-2 \eta)(1-\eta) a_{1}+4(1-2 \eta)^{2}\left(2 a_{2}-a_{3}\right)-2(1-2 \eta) a_{5} \\
& b_{4}=-12 \eta(1-2 \eta) a_{1}+8 \eta(1-2 \eta) a_{5} \\
& b_{5}=(14-4 \eta)^{2} a_{1}-16 \eta a_{5} \\
& b_{6}=4 \eta(1-2 \eta)\left(a_{1}-a_{5}\right) \\
& b_{7}=\left(6+5 \eta-10 \eta^{2}\right) a_{1}+(1-2 \eta)(6+4 \eta)\left(2 a_{2}-\not a_{3}\right)+(5-2 \eta) a_{5} \\
& b_{8}=\eta(1-2 \eta) a_{1}-2(1-2 \eta)^{2}\left(2 a_{2}-a_{3}\right)-(1-2 \eta) a_{5} \\
& b_{9}=(1-2 \eta)(2-6 \eta) a_{1}+4(1-2 \eta)^{2}\left(2 a_{2}-a_{3}\right)+2(1-2 \eta) a_{5} \\
& b_{10}=-6(1-2 \eta) a_{1}+4 \eta(1-2 \eta) a_{5}
\end{aligned}
$$

$$
\begin{aligned}
& b_{11}=4 \eta^{2} a_{1}+16\left(\eta+\eta^{2}\right) a_{2}+\left(12-32 \eta-16 \eta^{2}\right) a_{3}+48(1-2 \eta)^{2} a_{4}-4 a_{5} \\
& b_{12}=\frac{7-16 \eta}{2} a_{1}+\left(27-28 \eta+12 \eta^{2}\right) a_{2}-\left(3-2 \eta+2 \eta^{2}\right) a_{3} \\
& b_{13}=-(1-2 \eta)^{2}\left(a_{1}-4 a_{2}+2 a_{3}\right) \\
& b_{14}=16 \eta^{2}\left(a_{1}+2 a_{2}-2 a_{3}-2 a_{5}\right) \\
& b_{15}=2(1-2 \eta)^{2}\left(a_{1}-2 a_{2}+2 a_{3}\right) \\
& b_{10}=4 \eta^{2}\left(7 a_{1}-2 a_{2}+4 a_{3}-4 a_{5}\right) \\
& b_{17}=\frac{(1-2 \eta)^{2}}{2}\left(2 a_{2}-a_{3}\right) \\
& b_{18}=2(1-2 \eta)^{2}\left(a_{1}+a_{3}\right) \\
& b_{19}=-(1-2 \eta)^{2}\left(a_{1}+a_{3}\right) \\
& b_{20}=-\left(8+4 \eta^{2}\right)^{2} a_{1}-16(1-\eta) a_{2}+(1-2 \eta)(20-24 \eta) a_{3}+48(1-2 \eta)^{2} a_{4}+4 a_{5} \\
& b_{21}=2(1-2 \eta)^{2} a_{2}-4(1-2 \eta)\left(a_{1}+a_{3}\right) \\
& b_{22}=-4(1-2 \eta)^{2} a_{2}-8(1-2 \eta)\left(a_{1}+a_{3}\right) \\
& b_{23}=-16 \eta(2-\eta)\left(a_{1}+a_{3}\right) \\
& b_{24}=4(1-2 \eta)\left(a_{1}+a_{3}\right) \\
& b_{25}=-6(1-2 \eta) a_{1}+4(1-2 \eta)^{2}\left(2 a_{2}+a_{3}\right)+(1-2 \eta)(6-4 \eta) a_{5} \\
& b_{26}=-\left(10-19 \eta+6 \eta^{2}\right) a_{1}-(1-2 \eta)(10-4 \eta)\left(2 a_{2}-a_{3}\right)+\left(7-6 \eta+4 \eta^{2}\right) a_{5} \\
& b_{27}=-(1-2 \eta)(11-4 \eta) a_{1}-2(1-2 \eta)^{2}\left(2 a_{2}-a_{3}\right)+(1-2 \eta)(3-2 \eta) a_{5} \\
& b_{28}=-\left(18+4 \eta^{2}\right) a_{1}+16 \eta a_{5} \\
& b_{20}=4 \eta(1-2 \eta) a_{1} \\
& b_{30}=\left(8-32 \eta+2 \eta^{2}\right) a_{1}+\left(8-56 \eta+16 \eta^{2}\right) a_{2}+(1-2 \eta)(20-44 \eta) a_{3} \\
& +96(1-2 \eta)^{2} a_{4}-(6-2 \eta) a_{5} \\
& b_{31}=\left(8+4 \eta+40 \eta^{2}\right) a_{1}-16\left(2-7 \eta+2 \eta^{2}\right) a_{2}+8(1+3 \eta-4 \eta)^{2} a_{3} \\
& -96(1-2 \eta)^{2} a_{4}-4 \eta a_{5}
\end{aligned}
$$

$$
\begin{aligned}
& b_{32}=-8\left(19 \eta-7 \eta^{2}\right) a_{1}-64\left(2 \eta-\eta^{2}\right) a_{3} \\
& b_{33}=\left(66 \eta-44 \eta^{2}\right) a_{1}+32 \eta(1-2 \eta) a_{2}+32 \eta^{2} a_{3}-8 \eta(3-2 \eta) a_{5} \\
& b_{34}= \frac{17+16 \eta-4 \eta^{2}}{2} a_{1}-16(1-2 \eta) a_{2}+2\left(1-4 \eta^{2}\right) a_{3}-3(5-2 \eta) a_{5} \\
& b_{35}=\frac{5-16 \eta+12 \eta^{2}}{2} a_{1}+4(1-2 \eta)^{2} a_{2}-(1-2 \eta)(6-4 \eta) a_{3}-3(1-2 \eta) a_{5} \\
& b_{36}=-\frac{(1-2 \eta)(13+2 \eta)}{2} a_{1}+(1-2 \eta)(10-4 \eta) a_{3}+6(1-2 \eta) a_{5} \\
& b_{37}=-2(1-2 \eta)(9-5 \eta) a_{1}+2(1-2 \eta)(5-2 \eta) a_{5} \\
& b_{38}=2-(1-2 \eta)^{2}\left(a_{1}-a_{5}\right) \\
& b_{39}=\left(2-\eta+\eta^{2}\right) a_{1}+(1-2 \eta)(2-2 \eta)\left(2 a_{2}-a_{3}\right)+(1-\eta) a_{5} \\
& b_{40}=2(1-2 \eta)^{2}\left(2 a_{2}-a_{3}\right) \\
& b_{41}=-4(2-\eta)^{2}\left(a_{1}-a_{5}\right) \\
& b_{42}=\left(12-2 \eta+6 \eta^{2}\right) a_{1}-(1-2 \eta)(4+4 \eta)\left(2 a_{2}-a_{3}\right)-\left(6-10 \eta+4 \eta^{2}\right) a_{5} \\
& b_{43}=-4\left(12 \eta-11 \eta^{2}\right) a_{1}+8(3-2 \eta) a_{2}-8(1-2 \eta)(5-7 \eta) a_{3} \\
&-96(1-2 \eta)^{2} a_{4}+20 \eta(1-2 \eta) a_{5} \\
& b_{44}=\left(9-17 \eta+6 \eta^{2}\right) a_{1}+2(1-2 \eta)^{2}\left(2 a_{2}-a_{3}\right)+(1-2 \eta)(2-\eta) a_{5} \\
& b_{45}=\left(4-9 \eta+2 \eta^{2}\right) a_{1}+2(1-2 \eta)^{2}\left(2 a_{2}-a_{3}\right)-(1-2 \eta)(2-\eta) a_{5} \\
& b_{46}=-(1-2 \eta)^{2}\left(a_{1}-a_{5}\right) \\
& b_{47}=\left(32 \eta-24 \eta^{2}\right) a_{1}+16 \eta(1-2 \eta)\left(2 a_{2}-a_{3}\right)-8 \eta(3+2 \eta) a_{5} \\
&\left.b_{48}=\left(16+24 \eta-108 \eta^{2}\right) a_{1}+32(2 \eta-2 \eta)^{2}\right) a_{3}+128 \eta^{2} a_{5} \\
& b_{49}=-\left(2-34 \eta+40 \eta^{2}\right) a_{1}-4(1-2 \eta)^{2}\left(2 a_{2}-a_{3}\right)+(1-2 \eta)(8-4 \eta) a_{5} \\
& b_{50}=\left(8-12 \eta+6 \eta^{2}\right) a_{1}+(1-2 \eta)(4-4 \eta)\left(2 a_{2}-a_{3}\right)-\left(6-10 \eta+4 \eta^{2}\right) a_{5}
\end{aligned}
$$

$$
\begin{aligned}
& b_{51}=-(1-2 \eta)(30-12 \eta) a_{1}-8(1-2 \eta)^{2} a_{3}+12(1-2 \eta) a_{5} \\
& b_{52}=-2(1-2 \eta)^{2} a_{1} \\
& b_{53}=-3(1-2 \eta)^{2} a_{1}-4(1-2 \eta)^{2} a_{2}-8(1-2 \eta) a_{3}-(1-2 \eta)(3+2 \eta) a_{5} \\
& b_{54}=(1-2 \eta)(17-10 \eta) a_{1}+8(1-2 \eta)^{2} a_{2}+16\left(1-2 r_{l}\right) a_{3}
\end{aligned}
$$

Fig. 1. Normal Loading

Fig. 2. Shear Loading

VITA AUCTORIS

NAME:
Jainlin Guo
PLACE OF BIRTH: Gansu, P.R. China
YEAR OF BIRTH: 1959
EDUCATION: Central South University of Technology Changsha, P.R. China 1978-1982 B. Sc.
Hunan University, Changsha, P.R. China 1983-1986 M. Sc.

