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ABSTRACT 

 This thesis presents design, synthesis and characterization of a range of new 

liquid crystalline interlocked molecules and to study structure-property relationships 

between rotaxane design and mesomorphism. Chapter 1 introduces concepts of 

supramolecular chemistry and liquid crystals and cooperative effect between [2]rotaxane 

and liquid crystals towards functional molecular machines. 

In Chapter 2, a systematic approach to introduce liquid crystallinity into the 1,2-

bis(pyridinium)ethane/DB24C8 motif is described. The chapter begins with synthesis and 

purification of dumbbells (without macrocycle) and [2]rotaxanes (with macrocycle) 

substituted with purely aliphatic extended 3,5-disubstituted stoppers with increasing alkyl 

chain length. Chapter continues with phase characterization and structure-property 

relationships between dumbbells and rotaxanes. The dodecane chain was sufficiently 

fluid to induce smectic mesomorphism in both the dumbbell and [2]rotaxane, with 

[2]rotaxane forming SmA phase by POM and XRD analysis. 

Chapter 3 presents an extension to Chapter 2 with the addition of longer straight 

chain and branching aliphatic chains to our 1,2-bis(pyridinium)ethane/DB24C8 rotaxane 

motif to study structure-property relationships and phase characteristics. The ability of 

the side-chain to self-organized showed large differences in phase behaviour. The 

pentadecane straight chain extended [2]rotaxane exhibited a unidentified mesophase, the 

hexadecane straight chain [2]rotaxane showed SmA mesomorphism, the branched 

hexadecane and the hyperbranched [2]rotaxanes both showed lamellar soft crystal phases. 

Chapter 4 describes the effect of applying groups typical for low molecular 

weight LCs (siloxanes) to our 1,2-bis(pyridinium)ethane/DB24C8 motif and a modified 
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rotaxane design based on a bis(oxymethylbenzylpyridinium)ethane/DB24C8 motif. The 

structure-property relations between both systems, and in comparison with the dodecane 

chain substituted systems, are presented. The new design revealed SmC mesophases for 

both the dodecane and siloxane substituted [2]rotaxanes. 

Chapter 5 focuses on the introduction of chirality into the siloxane substituted 

[2]rotaxane with SmC mesomorphism presented in Chapter 4. Chirality was introduced 

via a chiral anion as well as incorporation of a chiral crown. Observations to changes in 

the superstructure from the incorporation of chirality is addressed. The chiral anion 

exchanged [2]rotaxane showed SmC* mesomorphism and the chiral crown [2]rotaxane 

showed SmX* mesomorphism. 

Chapter 6 presents the design and synthesis of a molecular shuttle based upon the 

structure-property relations determined from the previous chapters. 
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CHAPTER 1 
 

Introduction 
 
 

1.1 SUPRAMOLECULAR CHEMISTRY 

 Supramolecular chemistry is a mature and vigorous area of research, stemming 

from the fields of chemistry, biochemistry, physics and materials science.  It was 

classically defined as the 'chemistry of molecular assemblies and of the intermolecular 

bond' and 'chemistry beyond the molecule', by Jean-Marie Lehn.1 Its focus is on the non-

covalent intermolecular interactions used to self-assemble separate molecular or ionic 

components into highly ordered structures.2,3  Depending on the type of interactions a 

variety of terms for the process include: host-guest chemistry; molecular recognition; self 

assembly and template synthesis, just to name a few. The foundations for their origin 

have been set forth in the pioneering works of Pedersen4, Cram5, and Lehn6, for which 

they were awarded the Nobel Prize in Chemistry in 1987 (Figure 1.1). 

 
Figure 1.1 – Examples from the works of C. Pedersen4, J.-M. Lehn6 and D. Cram5 
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1.2 SUPRAMOLEUCLAR INTERACTIONS 

 The defining feature of supramolecular chemistry is the types of interactions 

involved in holding these assemblies together. Molecular chemistry is concerned with 

individual molecules that are connected by traditional covalent bonds; with strengths of 

200 - 400 kJ/mol. Supramolecular chemistry has the further complexity of involving the 

interactions of individual covalent entities through various types of non-covalent bonding 

interactions. Figure 1.2 shows examples of the types of non-covalent interactions 

observed and their relative strengths.7-12 The individual interactions vary in strength and 

it is the co-operation of these numerous non-covalent interactions that provides the 

supramolecular complexes with their overall stability. 

 

Figure 1.2 - Various types of non-covalent interactions. 
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 Ion-dipole interactions result from electrostatic interactions between an ion and 

the lone pairs of a polar molecule, which is the driving force for the solvation of ions by 

polar molecules. Dipole-dipole interactions result from significant attractive interactions 

when dipoles align. The high boiling points of aldehydes and ketones compared to their 

hydrocarbon counterparts can be attributed to dipole-dipole interactions between 

carbonyl groups. Hydrogen bonding, responsible for holding the double helix of DNA 

together, is a particular kind of dipole-dipole interaction which is relatively strong and 

highly directional. Hydrogen bonds are considered as the 'masterkey interactions in 

supramolecular chemistry'.2 Also responsible for stabilization of the DNA double helix, 

π-π interactions are regarded as a weak electrostatic interaction between the negatively 

charged π-electron cloud of one ring and the positive σ-framework of another.2  

1.3 INTERPENETRATED AND INTERLOCKED MOLECULES 

 Some of the most intriguing supramolecular complexes arise from a guest that is 

capable of threading through and occupying the cavity of a host. These interpenetrated 

complexes can further be modified such that the host and guest become permanently 

connected, through mechanical bonds, in an interlocked fashion. Much attention has been 

given to these types of compounds because of their potential applications which include 

the formation of sophisticated switchable molecular devices, development of materials 

with new physical properties and surface immobilization of catalytically photo or redox 

active species without the need to alter their properties by chemical modification.13-27  
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1.3.1 Threading and Dethreading of Pseudorotaxanes 

 Threading and dethreading movements refer to supramolecular complexes called 

pseudorotaxanes. These host-guest complexes are composed of at least two components, 

as illustrated in Figure 1.3. The complexes exist in equilibrium with their free 

components; a linear molecule, referred to as the thread, and a ring whose cavity is large 

enough to allow the thread to penetrate. Design of these host-guest systems requires that 

interactions exist between the two components that favour their complexation. 

Pseudorotaxanes are formed under thermodynamic control and are driven by the 

formation of one or a combination of the weak non-covalent interactions that define 

supramolecular complexes. The naming system adopted for pseudorotaxanes consists of 

placing a number in square brackets in front of the word pseudorotaxane. The number 

denotes the total number of individual components making up the complex,                    

i.e. [n]pseudorotaxane. 

++

 

Figure 1.3 – Illustration of a complexed [2]pseudorotaxane and its uncomplexed 
components. 
 
 Incorporating the supramolecular interactions described above, a number of 

different recognition motifs have been developed. Each one contains a minimum of one 

complementary interaction and stability is increased when such interactions are 

numerous. Stoddart developed two systems; one uses hydrogen bonding between a 

dibenzylammonium centre and the polyether oxygen atoms of dibenzo-24-crown-8, 

DB24C8 (Figure 1.4, left).28,29 The other, uses π-stacking interactions between an 
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electron poor paraquat unit and electron rich aromatics such as a dioxynaphthalene or  a 

tetrathiafulvalene group (Figure 1.4, right).30-33 

 
Figure 1.4 – Templates for pseudorotaxane formation used by Stoddart. 
 
 The octameric macrocycle cucurbituril (CB[8]) has been widely used as a 

templating motif by Kim et al.34 For example this macrocycle can complex a 

hexamethylene bridged bis(viologen) thread via a combination of hydrophobic 

interactions between the bridging alkyl chain and the inner cavity of CB[8] and ion-

dipole interactions between the pyridinium nitrogen atoms and the CB[8] oxygen atoms 

around the rims of the rings (Figure 1.5). The conformation of this pseudorotaxane was  

+ 2 e-- 2 e-

CB8

+ 2 e-- 2 e-

CB8

 

Figure 1.5 – Folding/unfolding pseudorotaxane by Kim et al. 
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shown to be electrochemically controlled. Folding of the thread within the cavity of the 

macrocycle was observed with a two electron reduction of the bis(viologen) thread, 

resulting in two radical cation viologen terminal groups that intramolecularly pair inside 

the CB[8] ring. Unfolding of the thread is accomplished by a two-electron oxidation. 

1.3.2 Rotaxanes 

 Rotaxanes are the interlocked analogue of pseudorotaxanes, consisting of a linear 

thread component that is stoppered on both ends with bulky groups and a macrocyclic 

ring. The bulky groups prevent dethreading and the ring and the stoppered thread are 

mechanically linked together. The naming system adopted for rotaxanes follows the same 

methodology as pseudorotaxanes. 

 There are three methods for the generation of rotaxanes: i) threading followed by 

stoppering,35 ii) slipping36,37 and iii) clipping38. All methods require the design to include 

the necessary components that are capable of the non-covalent interactions for the self-

assembly of the thread and macrocycle, known as 'templating'. The threading followed by 

stoppering method involves pre-forming the pseudorotaxane between the thread and the 

macrocycle, followed by covalently attaching bulky stopper groups to either end of the 

thread to prevent dethreading. All of the [2]rotaxanes prepared in this thesis were 

synthesized by threading followed by stoppering (Figure 1.6). 

1.3.3 Molecular Machines 

 A molecular machine is described as the assembly of a distinct number of 

components that are designed to perform machine-like movements as a result of an 

appropriate external stimulation.39 This requires the ability to induce and control their  
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2+ 2+ 2+ 2+

 

Figure 1.6 – Formation of a [2]rotaxane by threading followed by stoppering. 
 
relative motion. Triggering mechanical movements, which can be simplified to rotational 

or translational, can be achieved by chemical,40,41 electrochemical14,42,43 or photochemical 

stimuli. 40,43,44 

 A molecular shuttle is a rotaxane with two or more distinct recognition sites on 

the thread for the macrocyclic ring to occupy (Figure 1.7). Preferably, the macrocycle 

would reside at one site over the other, due to a large difference in the binding affinities 

for the macrocycle. A free energy difference of greater than 5.0 kJ/mol between the two 

translational isomers ensures that 90 % of the ring is positioned around one recognition 

site over the other, at room temperature.45 This is a situation which gives rise to a highly 

preferred ground state co-conformation; State 0. The application of an external stimulus 

either destroys the interactions at this site or enhances the interactions at the other site, 

causing the ring to 'shuttle' to the other site which temporarily provides better stabilizing 

interactions; State 1. Reversing the effects caused by the external stimulus completes the 

full cycle of the machine-like movement of the bistable rotaxane, making them one of the 

most accessible molecular machines. 
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State 0

State 1

External 
Stimulus a

External 
Stimulus b

State 0State 0

State 1State 1

External 
Stimulus a

External 
Stimulus b

External 
Stimulus a

External 
Stimulus b

 

Figure 1.7 – [2]Rotaxane as a molecular shuttle. 
 
 The first photochemically driven molecular shuttle, seen in Figure 1.8, was 

composed of an α-cyclodextrin macrocycle interlocked onto a dumbbell component 

containing an azobenzene unit.46 In the ground state, the α-cyclodextrin macrocycle 

preferentially encapsulates the trans-conformation of the azobenzene group. Upon 

irradiation with UV light (λ = 360 nm), the macrocycle moves to one of the adjacent 

paraquat2+ sites. The reverse is accomplished by irradiation with a different  

trans-azobenzene

cis-azobenzene

360 nm
430 nmα-CD

trans-azobenzene

cis-azobenzene

360 nm
430 nmα-CD

 
Figure 1.8 – Mechanical switching of α-CD by photoisomerization of the 
encapsulated azobenzene based dumbbell. 
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wavelength (λ = 430 nm) to restore the trans-conformation. This photochemically driven 

mechanical movement was verified by 1H-NMR and UV-Vis spectroscopy.  

 Skeletal muscles are natural linear motors possessing mechanical properties that 

are conferred to vertebrates. Focus has been aimed at reproducing some of the essential 

properties of muscles. A recent approach reported by Stoddart and co-workers24,19  of a 

molecular machine performing measurable mechanical work, involved a self-assembled 

monolayer (SAM) of a bistable [3]rotaxane molecular shuttle on a gold surface of 

cantilever beams that would bend the beam by contraction and expansion of the shuttle. 

Figure 1.9 shows the palindromic molecular shuttling system.  

 
Figure 1.9 – Structural and graphical47 representation of a disulfide-tethered 
molecular muscle [3]rotaxane constructed by Stoddart et al.  
 
The thread is composed of two pairs of distinct recognition sites for the 

cyclobis(paraquat-p-phenylene)4+ (CBPQT4+) macrocyclic ring; the tetrathiafulvalene 

(TTF) and the naphthalene groups, both of which are electron rich. In its ground state, the 

electron poor CBPQT4+ macrocycle has a higher affinity for the TTF recognition site. 

With a two-electron oxidation of TTF, electrostatic repulsion between the two forces the 
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macrocycle to the naphthalene site. The system is fully cycled by reduction of the 

dication TTF2+ back to its neutral state (Figure 1.10). The distance between the two 

macrocycles changes from 4.2 nm (fully extended state) to 1.4 nm (contracted state), 

upon oxidation/reduction of TTF. Control studies indicated that it is the contraction and 

extension of the surface-bound nanoscale molecular muscles that lead to the bending of 

the beam, which is five orders of magnitude larger in size than the [3]rotaxane molecular 

muscle.  

 
Figure 1.10 – Graphical representations47 of the proposed bending action a 
cantilever coated with the disulfide-tethered molecular muscle. 
 
 Another example of a molecular machine performing measurable mechanical 

work, which exhibits clear on/off behaviour was the two-component molecular elevator 

reported by Stoddart and co-workers.18,39 Figure 1.11 illustrates the molecular machine 

that undergoes movements reminiscent of an elevator. The trifurcated guest salt possesses 

diakylammonium sites (green) which are complexed by the tritopic host (red) through 

numerous hydrogen bonding and ion-dipole interactions. The interlocked [2]rotaxane 
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molecular elevator is generated with the addition 3,5-di-tert-butylbenzyl groups as the 

stoppers (grey) to form the additional recognition site of the bipyridinium group (blue). 

 

 
Figure 1.11 – Structural and graphical39 representation of nano-meter scale elevator 
with pseudorotaxane formation between the trifurcated cationic guest and tritopic 
host followed by stoppering with 3,5-di-tert-butylbenzylbromide, constructed by 
Stoddart et al. 
 
 The completely bistable acid-base molecular shuttle operation is illustrated in 

Figure 1.12. The host platform is situated on the upper level initially; State 0. Addition of 

the base causes the platform to shuttle to the lower level; State 1. Addition of the acid 

restores the platform to the upper level and the motion was shown to cycle repeatedly 

without any significant loss of reversibility. The distance travelled by the platform is 0.7 

nm and the nanoactuator can potentially generate a force up to 200 pN in motion from the 



Introduction 
 

12

upper level to the lower level. In contrast, the force generated by natural linear motors 

like myosin and kinesin are more than an order of magnitude smaller. 

-3H+

+3H+

State 0 State 1

-3H+

+3H+

State 0 State 1  
Figure 1.12 – Illustration for the operation of the nano-meter scale elevator.18 
  

1.4 LIQUID CRYSTALS 

1.4.1 General Introduction 

 Liquid crystals (LCs) are partially ordered, anisotropic fluids that are 

thermodynamically intermediate between that of three dimensionally ordered solid state 

crystals and the isotropic liquid. In these phases, the order of the crystalline state is only 

partly lost and the individual molecules have some degree of mobility. Because they can 

possess one or two dimensional ordering, they possess crystalline properties such as 

birefringence. Their discovery dates back to 1888, when the Austrian botanist Friedrich 

Reinitzer reported the observation of two compounds (cholesteryl benzoate and 

cholesteryl acetate) that apparently had two melting points.48 These were later determined 

to be cholesteric liquid crystals by Lehmann, who coined the term “liquid crystal” to 

describe this new state of matter.49  

 Liquid crystalline materials are generally divided into two categories; the 

thermotropic and lyotropic mesophases (Figure 1.13). The term “Mesophase” stems from 

the Greek word meso, meaning “in between”. Mesophases are intermediate between that 
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of a crystal and liquid phases and they may or may not possess liquid crystallinity. 

However, compounds forming liquid crystal phases are described as mesomorphic, or 

said to possess mesogenic properties.  Thermotropic liquid crystals are observed by a 

change in temperature, while lyotropic phases form in the presence of a suitable solvent. 

It follows that lyotropic liquid crystal phases are concentration dependent.  

 Liquid crystals are important in materials science and in the life sciences because 

they combine order and mobility. Important applications50 of thermotropic liquid crystals 

are optoelectronic displays, temperature sensors and selective reflecting pigments51. On 

the other hand, lyotropic liquid crystals are incorporated in cleaning processes52 and are 

important in the cosmetics industry, and are used as model systems for biomembranes53 

as well as templates for the preparation of mesoporous materials54. Only thermotropic 

liquid crystal materials will be considered here.  

Δ ΔΔ Δ

 

Figure 1.13 – Illustration of states of matter and two major classes of liquid crystals. 
 
 Thermotropic liquid crystals are classified further with respect to the molecular 

shape of the constituent molecules, being designated calamitic for rod-like, discotic for 

disk-like, and sanidic for brick or lath-like molecules (Figure 1.13). A common structural 
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feature of calamitic mesogens is a relatively rigid core, consisting of two or more ring 

structures which are substituted with two flexible end-groups, often alkyl or alkoxy 

chains (Figure 1.14a). Due to the elongated rigid core, one molecule axis is much longer 

than the other two. Discotic mesogens, on the other hand, are typically substituted with 

six flexible end-groups around a rigid, disk-like core (Figure 1.14b). From the disc-like 

nature, one molecule axis is much smaller than the other two. There are numerous 

variations of the general structures that may be implemented, leading to a vast variety of 

mesogenic compounds. 

 
Figure 1.14 – Examples of a) calamitic and b) discotic mesogens. 
 
 Thermotropic mesomorphism is governed by molecular design. This not only 

includes the anisotropic shape but also microsegregation55 effects of incompatible 

moieties in amphiphilic molecules including for example, perfluorinated side-chains56 or  

organosiloxane groups57. Intermolecular interactions, such as dipole-dipole interactions, 

can also play a key role in the induction of mesomorphism.  

1.4.2 Calamitic Liquid Crystals 

 A crystalline solid has long range order of the molecular positions in three 

dimensions. Upon heating of the solid to the isotropic liquid the process occurs through 
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one or more intermediate mesophases. Various degrees of positional order are broken 

which can lead to a liquid crystal phase. Generally, calamitic mesogens may form a 

nematic (N) or smectic (Sm) phase. Typically observed smectic phases are the smectic A 

(SmA) and the smectic C (SmC) phases. A typical thermotropic phase sequence is shown 

in Figure 1.15, illustrating the different types.58 

 
Figure 1.15 – Illustration of crystalline (Cr), smectic C (SmC), smectic A (SmA), 
nematic (N) and isotropic liquid (l) phases exhibited by calamitic mesogens. 
 
 The general structure template from which calamitic mesogens are generated 

follows the schematic representation shown in Figure 1.16. The groups labelled A and B 

(blue) represent linear rigid core groups and are typically aromatic. The central group C 

(teal) is an optional linker group and some examples are esters, stilbenes or azo groups. 

The end-groups R and R' are flexible terminal alkyl or alkoxy chains and these may be 

substituted via a linker as well, but typically are directly linked to the core. 

 

Figure 1.16 – The general structural template for calamitic LCs. 

The molecular structure of calamitic liquid crystals can be tailored to generate specific 

liquid crystal phases at specific temperatures. Certain structural moieties confer a certain 
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phase morphology and particular values of melting points and transition temperatures, as 

well as combinations of moieties for low molecular weight (LMW) systems. This 

becomes a crucial component when designing materials for specific applications. For 

application purposes, not only does the material require the necessary molecular structure 

to generate the desired liquid crystal phase at a specific temperature or range, but the 

material also needs to posses the necessary combination of physical properties for that 

application. Even still, the liquid crystal designed may not be suitable for the required 

application but valuable information based on the structure-property relations can be 

obtained. Since one molecule may form several different liquid crystal phases, it is 

difficult to establish conclusive trends.  

1.4.2.1  Nematic Liquid Crystals 

 The nematic phase is the least ordered phase; all positional order is lost and only 

long range orientational order in one dimension is exhibited. The long molecular axes are 

distributed around a particular direction, denoted the director n, while the molecule, 

centers of mass are isotropically distributed in all three dimensions (Figure 1.17). The 

alignment of the molecule’s long axes parallel to the director within the phase is only an 

approximate, time-averaged view of the molecular orientation. In actuality, the molecular 

orientation is more often described by angular distributions that the molecules assume 

with respect to the director. This distribution was described by Tsvetkov59 and defined as 

the order parameter S (Equation 1.1). 

     S = 1/2 〈3 cos2θ-1〉    Eq. 1.1 
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θ

nz

θ

nz

 

The brackets denote a statistical average of the molecules with their long molecular axis 

deviating from the director n by an angle θ. Thus, for perfectly orientated molecules the 

order parameter is S = 1, and for an isotropic liquid the order parameter is S = 0.  

5CB Cr 24 N 35 I

n

O CN

 
Figure 1.17 – Graphical and schematic representation of a nematic phase. 

 Due to the lack of positional order, the nematic phase is a fluid phase with 

viscosity approaching that of the isotropic liquid. Unsymmetrical molecules having one 

polar group and one short alkyl side-chain tend to generate a nematic phase. One of the 

most common LMW nematic LCs is 4-pentyl-4'-cyanobiphenyl, 5CB (Figure 1.17). The 

phase transition behaviour is shown in Figure 1.17; 5CB melts to an isotropic liquid at 24 

ºC and has a nematic phase stability of 35 ºC, which gives a nematic range of 11ºC. 

1.4.2.2 Smectic Liquid Crystals 

 In the smecitc A (SmA) phase molecules are free to rotate about their long axis, 

having orientational order and one-dimensional long-range positional order. Hence, they 
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form layers in which these layers are not clearly defined. The director n and thus the 

optic axis is oriented perpendicular to the smectic layer plane (Figure 1.18a). This phase 

is typically generated from elongated molecules with a rigid non-polar aromatic core 

substituted with flexible terminal chains at both ends.  

There also exists the possibility of various SmA layer arrangements. In simple 

monolayers, the smectic layer spacing d is approximately equal to the molecular length l 

(d ≈ l). Other possibilities are double layers, where the layer spacing d approximately 

equals double the length of the molecule (d ≈ 2l) or an interdigitated molecular 

arrangement can exist where the observed layer spacing is intermediate between the 

molecular length and double the molecular length (l ‹ d ‹ 2l).60  

 The concept of microsegregation plays a key role in understanding the formation 

of lamellar structures in smectic phases. This involves the assembly of chemically 

incompatible components within the mesogens into distinct domains or sublayers.55 

Formation of smectic phases is partially driven by microsegregation of the rigid aromatic 

molecular core from the flexible aliphatic side-chains. It is well known that smectic 

phases are stabilized by elongation of the terminal aliphatic chains and hence the 

diameter of the core also plays in important role in the generation of smectic layers. The 

formation of smectic phases can be strongly promoted by designing calamitic mesogens 

that combine hydrophilic and lipophilic segments; for example fluorocarbon and 

hydrocarbon segments, or siloxane and hydrocarbon segments. If the different regions are 

mixed, the stability of the liquid crystal phases decreases. 

 If the director (n) of the SmA phase tilts by an angle (θ) with respect to the layer 

normal a tilted SmC phase results (Figure 1.18a). The tilt of the molecules long axis is the 
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only difference between the two phases. The formation of the SmC phase is favoured by 

molecules with unsymmetrical polar aromatic cores. The antiparallel coupling of terminal 

dipoles is thought to induce a tilt.61,62 Also, the ability of mesogens to pack in a low 

energy zig-zag conformation results in a tilted structure.63 

 
Figure 1.18 – a) Illustrations of molecular packing in SmA and SmC phases and b) 
layer shrinkage from SmA to SmC phase. 
 
 The amplitude of the tilt angle is determined by thermodynamic variables, such as 

temperature and pressure. However, the direction is not predetermined. With a uniform 

tilt direction, the transition from the SmA to the SmC phase results in a tilt angle that is 

temperature dependent, with increasing tilt with decreasing temperature. In the low 

temperature range of the SmC phase, the majority of single component materials exhibit 

tilt angles in the range of θ ≈ 25º - 35º.60 A characteristic difference between the SmA 

and SmC phase is a substantial shrinkage (7- 10 %) in the smectic layer spacing upon 

tilting of the molecules long axis with respect to the layer normal (Figure 1.18b). 

Accordingly, the decrease in the layer spacing of the SmC (dSmC) phase relates to the 

SmA (dSmA) layer spacing by:  

     dSmC = dSmA cosθ            Eqn. 1.2  

where θ is the angle between the director (n) and the layer normal (z). 
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 There are several other smectic phases which possess higher degrees of order than 

the SmA or SmC phase and they exhibit short-range positional ordering, in which layers 

are uncorrelated, but also long-range orientational ordering within the layers.58 These 

include the hexatic B (SmB) phase which is similar to the SmA phase but with hexagonal 

packing. The SmF and SmI phases are tilted with pseudohexagonal packing; mesogens in 

the SmF phase tilt to the side of the hexagon while mesogens in the SmI phase tilt to the 

apex of the hexagon (Figure 1-19). 

 Additionally, crystal smectic phases exist, which have both long-range 

orientational and positional ordering leading to correlated layers, but still lack rotational 

order about the long molecular axes. These include the crystal B, E, G, H, J and K 

phases. 

 
Figure 1.19 – Plan views of molecular organization in SmB, SmI and SmF 
mesophases. The tilt is depicted by the direction of the triangle.58 
 

1.4.3 Chirality in Liquid Crystals 

 Chirality in soft matter can be present at both the molecular and supramolecular 

level. In liquid crystals, chirality can be introduced by several different avenues.64-68 

Chirality can be directly introduced within the molecule by incorporation of chiral 

elements, usually chiral centers which are thus single component chiral systems. Another 

popular way, especially for materials used in applications, is the addition of a small 

amount of a chiral guest (dopant) molecule to an achiral host phase. The amount of chiral 
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dopant is usually less than 5 %, and can themselves be mesogenic or non-mesogenic and 

induce chirality. Additionally, mixtures of chiral and achiral mesogenic materials can be 

prepared.  

 It has been well established that molecular chirality can give rise to helical 

supramolecular structures.69,70 This is not restricted to nematic phases which are turned 

into cholesteric phases. Chirality can also modify ordered mesophases by distortion of the 

interfaces. Some examples of this phenomenon include twist grain boundary (TGB*) 

phases and the blue phases (BP*), which are only observed in chiral materials with large 

twisting power. Also, the physical properties of LC phases are modified by the loss of 

mirror symmetry. Tilted chiral smectic phases can exhibit a spontaneous polarization, and 

are thus pyroelectric.71 This spontaneous polarization is switchable between two stable 

states by an applied electric field for several phases, SmC*, SmI* and SmF*. 

Ferroelectricity can be observed when LCs are subjected to the appropriate geometry and 

boundary conditions.72  

 In the cholesteric nematic phase N*, there is a spontaneous macroscopic helical 

superstructure with a twist axis that is perpendicular to the local director. The phase 

consists of local nematic 'layers', which are continually twisted with respect to each other. 

The helical superstructure is described by the temperature dependent pitch. The pitch can 

vary from 100 nm to 10 μm and the twist can be right- or left-handed, depending on the 

configuration of the chiral element(s) within the molecule. In the N* phase, due to the 

head-tail symmetry of the molecules, the periodicity L along the helix is given by half of 

the pitch, L = P/2. 
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 In contrast to the N* phase, where vertical boundary conditions result in a helical 

axis in the plane of the substrate, in the chiral smectic C (SmC*) helix lines are observed 

when the local director is oriented in the plane of the substrate. Unlike the N* phases, 

where the identity period is P/2, the distance between two dark lines in the SmC* phase 

gives the full pitch when the polarizer direction is along one of the in-plane director 

positions (Figure 1.20). An extensive overview on the effects of chirality in liquid 

crystals has recently been published by Kitzerow and Bahr.73 

 
Figure 1.20 – Schematic illustration of the helical superstructure of the chiral bulk 
SmC* phase and the direction of the director on the tilt cone. 
 

1.4.4 Liquid Crystal Phase Characterization 

 There are various techniques which must be employed in order to classify the type 

of liquid crystal phase observed.  The precise classification of each phase can sometimes 

be quite difficult when only small differences between phases exist. It is the combination 

of techniques that helps to elucidate the correct phase designation; these include, 

differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray 

diffraction (XRD).58  
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1.4.4.1 Differential Scanning Calorimetry (DSC) 

 Differential scanning calorimetry (DSC) is a thermo-analytical technique which is 

used to detect the enthalpy change associated with phase transitions, such as melting, 

crystallization, glass transitions, or LC to LC transitions, by measuring the heat either 

absorbed or released upon heating and cooling. This is accomplished by gradually 

heating and cooling a sample with respect to a reference, but keeping the sample and the 

reference maintained at nearly the same temperature throughout the experiment. DSC 

detects the energy changes or change in heat capacity for each transition with great 

sensitivity.74 As a result, a curve of heat flux versus temperature or versus time can be 

created.   

 Transitions for melting or crystallization processes are relatively drastic and hence 

have a relatively high energy of transition (Figure 1.21). For example, melting from a 

crystalline solid to an isotropic liquid generates an enthalpy change of 30 - 50 kJ/mol. 

Glass transition (Tg) refers to the transformation of a glass-forming liquid into a glass, 

which usually occurs upon rapid cooling. Figure 1.21 shows the plot for a glass 

transition, melting Tm (endothermic) and crystallization Tc (exothermic), of which Tm 

and Tc can be sharp or broad transitions depending upon the rate of heating or cooling. 

The glass transition is represented as a step in the DSC curve.  

 Glass transitions and LC-LC transitions result from smaller changes in structure 

and are reflected by relatively small enthalpy changes. For example, the SmA to isotropic 

liquid transition involves an enthalpy change of 4 - 6 kJ/mol. However, the nematic phase 

usually gives a smaller enthalpy change, 1 - 2 kJ/mol upon transition to the isotropic 

liquid. Enthalpy changes for transition between difference liquid crystal phases can also 
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be extremely small. For example, the SmC to SmA transition is typically less than 300 

J/mol. These changes can, however, be readily detected by POM. 

 

Figure 1.21 - A DSC plot showing the three typical phase transitions: Tg, Tm, Tc.74 

 The precise identity of the phase(s) cannot be determined, but the level of 

enthalpy change at that phase transition does provide some indication of the types of 

phases involved. Accordingly, DSC is used in conjunction with the other techniques to 

determine the type of mesophase that the material exhibits.  

1.4.4.2 Polarizing Optical Microscopy (POM) 

 Polarizing optical microscopy (POM) is a contrast-enhancing technique which 

improves the quality of the image acquired with birefringent (doubly refractive) materials 

and was developed to observe and photograph materials that are visible mainly due to 

their optically anisotropic property.60 Primarily, POM enables the identification of the 

type of LC and other mesophases from the optical texture that is generated. This 

technique is also essential when evaluating the physical properties of LCs in particular 

phases over various temperature ranges.  
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 The molecular arrangement of the molecules within a phase can be determined by 

careful analysis of the defect texture. These are studied when polarizers are crossed at 90º 

to each other. When no sample is in place light is extinguished and only black is seen. 

This is also the case with an isotropic liquid in place because no light passes through the 

analyzer (second polarizer). However, when birefringent medium is present, light is not 

extinguished and an optical texture is observed which conveys important information 

related to the molecular arrangement of the molecules. The observed textures are not only 

dependent upon the phase structure of the sample, but also upon the alignment of the 

sample. The two basic forms of alignment for LC compounds are homeotropic (vertical) 

and homogeneous (planar) alignment.58,60 In planar alignment, the long axes of the 

molecules are in-plane with the substrate, and a texture is observed.  In homeotropic 

alignment, the long axes of the molecules are normal to the substrate and parallel with the 

direction of the propagation of light. This results in no birefringence for any in-plane 

rotational position between the cross polarizers and the region appears black, this is 

termed pseudo-isotropic. 

 Nematics are easily identified by polarizing optical microscopy (POM), when 

viewed between crossed polarizers.60 They typically show schlieren textures, due to the 

director orienting parallel to the substrates (Figure 1.22a,b). Schlieren textures exhibit 

characteristic sets of curved dark brushes, which corresponds to the extinction position of 

the nematic field, with director n coinciding with the direction of either the polarizer or 

analyzer.  The brushes come together in a singular point and can be twofold or fourfold 

(Figure 1.22b).  These singularities are topological defects and are assigned a certain 
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strength s, with two-fold brushes s = ±½, and four-fold brushes s = ±1. Typically both       

s = ±½ and s = ±1 are observed for nematic LCs.  

 
Figure 1.22 – POM of N phase with schlieren textures featuring point defects with 2-
brush and 4-brush disclinations. b) Shows defects with the corresponding s value.  
 
  A typical texture characteristic of a SmA phase is a fan-shaped texture. Transition 

from a SmA to a SmC phase can be seen by the formation of a broken fan-shaped texture 

(Figure 1.23). Another characteristic feature of the SmC phase are schlieren textures in 

which singularities are resolved showing only four-fold defects, differing from the 

nematic schlieren textures that exhibit both. There are numerous characteristic defect 

textures for each phase, and classification requires a detailed analysis of these.60  

a) b)a) b)

 
Figure 1.23 – POM of a SmA phase (left) showing fan-shaped texture and of a SmC 
phase (right) showing a broken fan-shaped texture.75  
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1.4.4.3 X-Ray Diffraction (XRD) 

 X-Ray diffraction (XRD) occurs when light of a suitable wavelength interacts 

with a crystal, and the crystal acts as a three dimensional diffraction grating due to the  

periodic nature of its internal structure.76 XRD can be thought of as the ‘reflection’ of X-

rays from the planes of atoms within a crystal. X-rays are ‘reflected’ from the planes only 

at specific orientations of the crystal and occur when the conditions for constructive 

interference are fulfilled.76 The condition for the ‘reflection’ of X-rays by a crystal was 

outlined by W.H. Bragg and is illustrated in Figure 1.24. When a beam of monochromatic 

X-rays comes into contact with an atom in the plane at angle θ and the X-ray is scattered.  

Bragg’s equation is given by:  

     λ = 2 dhklsin θ    Eqn. 1.3 

The wavelength of the X-rays is given by λ. The equation relates the angle θ, at which 

these reflections are observed, to the dhkl spacing which occurs between the crystal 

planes.    

 

Figure 1.24 – Bragg reflection from a set of crystal planes with a spacing dhkl. 

 Accordingly, XRD is the most definitive technique employed for the 

identification of mesophases. XRD analysis of a LC will map the positions of the 

molecules within each phase, thereby determining the phase structure and the 
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classification to which the phase belongs.58 However, aligned samples are required to 

confirm phase designations. For example, the powder XRD profile for the bulk material 

of a SmA phase shows a diffuse outer ring and a sharp inner ring at a Bragg angle of 2θ 

corresponding to the smectic layer spacing, which is usually on the order of the molecular 

length. Due to the lack or positional ordering in nematics, a broad ring would be observed 

in the small angle region. The amorphous state of LCs is seen by diffuse reflections in the 

wide angle region. It follows then that if the material is crystalline there would be 

additional sharp reflections in this region. 

1.5 THE COOPERATIVE EFFECT 

 Because liquid crystals are ordered condensed states of molecules, they can be 

used as dynamic materials which play significant roles in information transport, sensing, 

catalysis and as mentioned previously optoelectronic displays.77-81 The ordering of liquid 

crystals is a cooperative phenomenon that is highly sensitive to small amounts of added 

dopant molecules. Over the past decade, stimuli-responsive bistable dopants have been 

employed as a means of controlling bulk LC properties as well as a way of amplifying 

molecular motion into mechanical work.82-85 For example, stimuli-responsive materials 

can incorporate either light-, heat-, or redox-responsive components.86-88 

 A recent example of a light responsive LC was reported by Ikeda,89 with the 

incorporation of an azobenzene chromophore into crossed-linked LC polymers (CLCPs). 

Incorporation of azobenzene groups into CLCPs causes large deformations induced by 

photoisomerization of the azobenzene. The types of movement observed by irradiation 

with UV light can include: bending, oscillating, twisting, swimming and rotational 

motions.90-93 This work demonstrated three-dimensional movements such as an inchworm 
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walk and a flexible robotic arm motion from laminated films composed of a CLCP layer 

containing azobenzene. 

 The CLCP films were prepared from a 1:4 mixture of LC monomers (1 and 2) in a 

glass cell coated with rubbed polyimide alignment layers (Figure 1.25a). The CLCP film 

exhibited a smectic phase after photopolymerization. Conveniently, the glass transition of 

the CLCP films were close to room temperature, allowing the films to function at room 

temperature. Figure 1.25b shows the photoinduced motion of the CLCP laminated film 

having a curved shape. The azobenzene mesogens are aligned along the long axis of the 

film and the CLCP laminated parts are curled due to the difference in the thermal 

expansion coefficients between the two layers. Upon irradiation with UV light, the film 

extends to a flat shape and reverts back to the initial bent shape upon irradiation with 

visible light. This can be repeated at room temperature just by changing the wavelength 

of light. 

 

 
Figure 1.25 – a) Structure of LCs used and b) time profile of the photoinduced 
inchworm walk of the LC laminated film by alternate irradiation with UV and 
visible light at room temperature.89 
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 A promising new approach towards nanoscale devices is the combination of 

molecular machines and liquid crystals. The liquid crystalline molecular order can 

provide the molecular machinery component with an organized dynamic environment. 

Furthermore, molecular machines have the capability to control the self-assembled 

behaviour of LC molecules. Very recent work has focused on the incorporation of LCs 

into polyrotaxanes, catenanes and rotaxanes for potential nanoscale devices.94-96 

 Polyrotaxanes are supramolecular polymers composed of a number of 

macrocycles which are threaded onto a linear polymer chain and are mechanically 

interlocked on the polymer chain by bulky groups.97-99 The characteristic feature of 

polyrotaxanes is that each macrocycle can translate and rotate on the polymer chain. This 

feature enables the preparation of molecular materials such as molecular tubes, insulated 

molecular wires incorporating conductive polymers100-1 and drug delivery systems.102-3 

Recently, a liquid crystalline polyrotaxane with mobile mesogenic side-chains was 

reported.94 The thread component was composed of poly(ethyleneglycol) (PEG) and the 

macrocycle was a α-cyclodextrin (α-CD) ring which was substituted with the mesogenic 

cyanobiphenylhexanoate (CB5PR) groups, providing high mobility which allowed for 

translation and rotation of the macrocycle (Figure 1.26). The polyrotaxane was classified 

as a nematic LC from POM and XRD analysis. A schlieren texture was obtained by 

microscopy and by XRD a diffuse peak in the wide-angle region and a broad peak in the 

low-angle region characteristic of a nematic phase.  
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Figure 1.26 – Structure of a mesogen-substituted polyrotaxane.94 
 
 The first LC [2]catenane has been described from a collaboration between the 

groups of Kato and Sauvage.95 They functionalized the [2]catenane with fork-like 

dendrons containing a fluorosubstituted cyclohexylbiphenyl unit, which tends to produce 

relatively wide smectic LC phases.81,104 The structure of the free LC [2]catenane is shown 

in Figure 1.27a. The complexed [2]catenane differs from the free with the addition of 

copper(I) complexed to the central core. Both compounds exhibited smectic LC phases. 

Interestingly, both were observed to possess the same glass transition temperature. In 

contrast, the isotropization temperature of the complexed [2]catenane is 30 ºC higher than 

that of the free [2]catenane. Hence, binding of the copper ion leads to thermal 

stabilization of the LC phase. This is likely due to an increase in rigidity in the central 

core upon complexation and stabilizes the assembled structure through inter ionic 

interactions. XRD analysis and POM studies suggested a SmA for both and a fan-shaped 

texture was obtained for the complexed non-aligned [2]catenane (Figure 1.27b,c). 
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a)

b) c)

[Cu(CH3CN)4][PF6]
Free [2]catenane

Cu(I) [2]catenane

a)

b) c)

[Cu(CH3CN)4][PF6]
Free [2]catenane

Cu(I) [2]catenane

 
Figure 1.27 – a) Structure of LC free [2]catenane, b) Possible organization into Sm 
phase and c) fan-shaped texture of non-aligned Cu(I) complexed LC [2]catenane.95 

 
 The first bistable LC [2]rotaxane molecular shuttle had been described from a 

collaboration between the groups of Kato and Stoddart.96 They designed an 

electrochemically switchable bistable [2]rotaxane molecular shuttle consisting of a tetra-

cationic cyclobis(paraquat-p-phenylene) as the mobile macrocycle and two different 

recognition sites in the thread, containing tetrathiafulvalene (TTF) and 1,5-

dioxynaphthalene groups (Figure 1.28). The macrocycle is shuttled by a two-electron 

oxidation of TTF followed by reduction of the dication TTF2+ back to its neutral state;  

similar to that discussed previously for the molecular muscle.47  

 Smectic A mesomorphism was introduced by the attachment of large liquid 

crystalline dendritic stoppers. Incorporation of a large number of ethylene glycol units 

lowered the melting temperature of the molecular shuttle, but the transition into the 

isotropic liquid still occurred above the decomposition temperature of the compound at 



Introduction 
 

33

150 ºC. This approach has been previously applied to other typical non-mesogens86,88,105-

111 and is generally successful if the dendritic mesomorphic groups are sufficiently large 

and numerous and dictate the self-organization of the entire compound. However, this 

basic methodology does have limits such as an increase in phase transition temperatures, 

an increase in viscosity and synthetic feasibility.  

SmASmA

 

Figure 1.28 - A LC bistable [2]rotaxane molecular shuttle reported by Kato and 
Stoddart et al.96 

 

1.6 THE LOEB MOTIF 

 It was reported early on by Stoddart and co-workers, that bis(paraphenylene)-34-

crown-10 ether formed a [2]pseudorotaxane with the paraquat2+ ion (Figure 1.29a).112 
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The binding of paraquat2+ with the crown ether was primarily due to π-π interactions 

between the hydroquinol rings of the crown and the pyridinium rings of the paraquat2+. 

Numerous ion-dipole interactions (N+....O) between the pyridinium nitrogen atoms and the 

crown ether oxygen atoms, as well as hydrogen bond interactions between the guest and 

the host also contributed to binding.  
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Figure 1.29 – a) [2]Pseudorotaxane formed between paraquat2+ and a crown ether. 
b) Comparison of the N+...N+ distances in the paraquat2+ cation and the 1,2-
bis(pyridinium)ethane2+ cation. 
 
 Approximately 10 years later, Loeb and Wisner113 synthesized an isomer of 

paraquat2+, namely 1,2-bis(pyridinium)ethane, containing a higher charge concentration 

between the pyridinium nitrogen atoms: the N+...N+ distance was reduced from 7.00 Å in 

paraquat2+ to 3.75 Å in 1,2-bis(pyridinium)ethane (Figure 1.29b). It was observed that the 

1,2-bis(pyridinium)ethane cation was strongly complexed in the cavity of 24-crown-8 

containing macrocycles. A combination of solution 1H NMR spectroscopic studies and 

X-ray crystallographic data revealed that complexation was driven by several non-

covalent interactions, namely: i) N+....O ion-dipole interactions, ii) eight weak C-H...O 

hydrogen bonds and iii) significant stacking interactions (Figure 1.30).113,114 
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Figure 1.30 – Newman projection top view (top) and side view (bottom) showing 
non-covalent interactions between a 1,2-bis(4,4’bipyridinium)ethane4+ thread and 
the DB24C8 macrocyclic ring. 
 
 Over the past decade, the 1,2-bis(pyridinium)ethane/24C8 motif has proven to be 

a versatile system. It has been used for the formation of [2]pseudorotaxanes,113-115
 

[2]rotaxanes,116-119 [3]rotaxanes,120
 [3]catenanes,121

 molecular shuttles,122-124
 branched 

[n]rotaxanes,125
 dendrimeric rotaxanes126

 and metal organic rotaxane frameworks 

(MORFs).127-128 

1.7 SCOPE OF THE THESIS 

 Combining the self-assembly of supramolecular chemistry with self-organization 

inherent in liquid crystals has very recently become a focused area of research, since their 

cooperation has the potential to lead to a variety of functional nanoscale devices. That 

said, it is very unlikely that the well-established chemistry of low molecular weight liquid 

crystals will necessarily translate to complex interlocked systems and there is essentially 

nothing known about the structure-property relationship between rotaxane design and 
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mesomorphism. We also firmly believe that the control of molecular switches and the 

amplification of their cooperative motion to produce a macroscopic response within a 

mesophase can only be accomplished if there are contributions from both the shuttling 

macrocycle and the mesogenic groups. These types of materials have never been studied. 

Finally, it is essential that any new LC rotaxane can be prepared in large quantity and 

high purity and since any future application as a functional material will require good 

alignment in optical and/or electronic devices, the formation of an isotropic melt at 

temperatures below 200 ºC is essential.  

 To address the above comments, this thesis describes a systematic approach to the 

design and synthesis as well as the structure-property relationships of mesomorphic 

[2]rotaxanes incorporating the 1,2-bis(pyridinium)ethane/DB24C8 rotaxane motif. The 

thesis consists of two major parts: Chapters 2, 3, and 4 describe the structure-property 

relationships for the designed systems and Chapters 5 and 6 recount some preliminary 

experiments on areas of applicability; chirality in liquid crystals and mesomorphic 

molecular shuttles. In Chapters 2 and 3 a systematic approach to introduce liquid 

crystallinity into the 1,2-bis(pyridinium)ethane/DB24C8 rotaxane motif is described in 

which various purely aliphatic extended 3,5-disubstituted stoppers are introduced. The 

effect of applying groups typical for low molecular weight LCs to the Loeb motif is 

investigated in Chapter 4 along with the introduction of a modified rotaxane design. The 

introduction of chirality into mesomorphic [2]rotaxanes is presented in Chapter 5 along 

with the effect of chirality on the phase behavior. The design of a molecular shuttle based 

upon the structure-property relations determined from the previous chapters is presented 

in Chapter 6. 



CHAPTER 2 
 

Discovery of a Liquid Crystal [2]Rotaxane 
 
 
2.1 INTRODUCTION 
 
 The (1,2-bis(dipyridinium)ethane)-(dibenzo-24-crown-8) or Loeb motif has 

proven to be a versatile recognition template for the formation of interlocked and 

interpenetrated molecules.113-128 The interaction between a cationic 1,2-

bis(dipyridinium)ethane thread and a dibenzo-24-crown-8 (DB24C8) macrocyclic ring 

occurs by three sets of complementary interactions: (i) ion-dipole interactions between 

the N+-pyridinium and the oxygen atoms on the crown ether, (ii) a set of eight weak 

CH...O hydrogen bonds between the ortho-N+ hydrogen atoms and the oxygen atoms on 

the crown ether and (iii) π-π stacking interactions between the electron-rich catechol rings 

of the crown ether and the electron-poor pyridinium rings of the thread (Figure 2.1).  

 

Figure 2.1 – Newman projection top view (top) and side view (bottom) showing non-
covalent interactions between a 1,2-bis(dipyridinium)ethane4+ stoppered thread and 
DB24C8 macrocyclic ring. 



Discovery of a Liquid Crystal [2]Rotaxane 
 

38

Core LinkerTail Core LinkerTail

 

Figure 2.2 – Graphical representation of dumbbell (top) and [2]rotaxane (bottom) 
based on gemini surfactant and tetracatenar design for calamitic LCs. 
 
 This chapter describes the initial design of liquid crystalline materials 

incorporating this interaction. Mesomorphism can be introduced into our design by many 

avenues, the simplest of which was to incorporate non-mesogenic terminal stoppering 

units that contain long chain alkyl groups as part of an ester function (Figure 2.1 and 

Figure 2.2). The molecular weight was kept to a minimum, to avoid high melting clearing 

temperatures into the isotropic liquid, which is essential for processing and alignment of 

the materials. Comparative studies were done on the naked dumbbells (without a 

macrocycle) and ion sheltered [2]rotaxanes (with a macrocycle) to determine the effect of 

the macrocycle on mesomorphism (Figure 2.2). 

 The design of our system is similar to gemini surfactants129, which resembles the 

stoppered threads with a rod-like ionic aromatic core and long alkyl terminal chains 

(Figure 2.3a). The [2]rotaxanes are reminiscent of calamitic liquid crystalline 

polycatenars, namely tetracatenars, with a rigid polyaromatic rod-like core and four long 

terminal alkyl groups. A tetracatenar design was chosen for its potential to induce smectic 

(Sm) mesomorphism by providing sufficient packing volume of the side-chains to 
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counterbalance the large packing volume of the [2]rotaxane cores. Of all the reported 

tetracatenars only one tetracatenar presented by Bruce and Fazio et al130 was ionic and is 

shown in Figure 2.3b.  An anion containing a long aliphatic chain was chosen to lower 

melting temperatures.  In this systematic approach the 3,5-disubstituted stoppers were 

employed instead of the traditional 3,4-disubstituted stoppers because the latter would not 

adequately fill space to compensate for the bulky ionic core. This chapter focuses on 

introducing mesomorphism via functionalized stoppers to form thermally stable liquid 

crystals that can be processed and aligned into thin films. 

a)

b)

a)

b)

 

Figure 2.3 – Structural and graphical representation of a) a gemini surfactant 
synthesized by Menger and Keiper et al; b) a tetracatenar generated from the design 
synthesized by Bruce and co-workers. 
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2.2 SYNTHESIS AND CHARACTERIZATION 

2.2.1 Synthesis 

 Compound 2-1+ was combined with 4,4'-bipyridine in butanol and subjected to 

microwave irradiation for 5 h at 70 ºC to generate thread 2-22+ (Scheme 2.1). The 

resulting crude mixture was then filtered hot and resulting precipitate washed with 

methanol. Formation of the thread does not go to completion, thus it was necessary to 

purify the residue by column chromatography. The thread was isolated as the bromide 

salt and subsequently anion exchanged to the triflate salt via a two-layer extraction with 

NaOTf (aq)/MeNO2. 

NNN

Br

N

Br

Br

N

N

N

N

NN

2-1+ (99 %)
[2-2][Br]2 (54 %)
[2-2][OTf]2 (87 %)

reflux

MW 200 W
5h, 70 ºC

 

Scheme 2.1 - Synthetic route to thread 2-22+.  

 In this initial study, we systematically introduced relatively short alkyl groups in 

order to determine the minimum packing volume of side-chains required to induce a 

smectic LC phase in [2]rotaxanes. Compound 2-3 was synthesized according to a 

modified literature procedure.131  The new 3,5-bis(n-alkylcarboxy)benzylbromide 

stoppers were synthesized in two steps: 1) transesterification132 of dimethyl-5-

(hydroxymethyl)isophthalate with an excess of the n-alkyl alcohol in the presence of 

Ti(O-i-Pr)4 as the catalyst to generate the corresponding benzyl alcohols, bis(hexyl) 2-4, 
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bis(nonyl) 2-6 and bis(dodecyl) 2-8; 2) bromination of the benzyl alcohol with 

phosphorous tribromide to generate the bis(methyl) 2-3, bis(hexyl) 2-5, bis(nonyl) 2-7 

and bis(dodecyl)benzyl bromide 2-9 stoppers (Scheme 2.2). Due to the high purity 

requirement for incorporation into [2]rotaxanes, each compound was further purified by 

column chromatography. 
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Scheme 2.2 - Synthetic route to stoppers.  

 As outlined in Scheme 2.3, both the [2]rotaxanes (2-144+, 2-154+, 2-164+ and 2-

174+) and their analogous dumbbell shaped axles (2-104+, 2-114+, 2-124+ and 2-134+) were 

prepared by alkylating the terminal pyridine groups of axle 2-22+ with 3,5-bis(n-

alkylcarboxy)benzylbromides (2-6, 2-7, 2-8 and 2-9) in the presence (rotaxane) or 

absence (dumbbell) of the macrocycle dibenzo-24-crown-8, DB24C8. To synthesize the 

[2]rotaxanes, one equivalent of thread was reacted with eight to ten equivalents of crown 

ether and four to six equivalents of appropriate stopper and the mixtures were stirred at 

room temperature for three weeks to two months. Two different reaction conditions were 

used. [2]Rotaxanes 2-144+ and 2-154+ were synthesized by dissolving all reactants in a 

two phase mixture of MeNO2/NaOTf(aq), stirring at room temperature until all terminal 

pyridine groups were alkylated, whereas, [2]rotaxanes 2-164+ and 2-174+ were 

synthesized by initially dissolving the thread and crown in a minimum amount of hot 
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MeNO2 and combining this with the stopper which was dissolved in a minimum amount 

of CHCl3, followed by addition of saturated NaOTf and stirred at room temperature until 

 

Scheme 2.3 - Synthetic route for [2]rotaxanes and dumbbells. 

all terminal pyridine groups were alkylated. The uncomplexed thread and macrocycle are 

colourless (Figure 2.4a and 2.4b, respectively), however, significant π-π stacking 

interactions between the electron-rich catechol group of the crown and the electron-poor 

pyridinium rings of the axle give rise to a charge transfer interaction that imparts the 
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pseudorotaxane with a characteristic yellow colour and the rotaxane with a characteristic 

orange-red colour, (Figure 2.4c and 2.4d, respectively). This system introduced the 

further complexity of large solubility differences due to the large non-polar alkyl chains 

of the stopper with respect to the polar ionic core, and reaction times were longer with 

increasing amounts of CHCl3. Due to small amounts of residual starting materials after 

many recrystallizations, all rotaxanes were further subjected to column chromatography 

employing assorted combinations of polar solvents with salt solutions to move the 

charged species. The typical eluant was a 7:1:2 mixture of MeOH, 2M NH4Cl (aq) and 

MeNO2. Once the [2]rotaxanes were recovered from the column they were anion 

exchanged back to the triflate salt by way of a two-layer NaOTf (aq)/MeNO2 extraction. 

 

Figure 2.4 – Typical colours of a) free axle, b) free macrocycle, c) [2]pseudorotaxane 

and d) [2]rotaxane in MeCN. 

 Dumbbells were synthesized to study the effect of the macrocycle on 

mesomorphism from unsheltered ionic dumbbells to charge sheltered [2]rotaxanes. 

Dumbbells 2-104+and 2-114+ were synthesized by stirring the thread and stopper in 

MeNO2, where the alkylation was accelerated by heating to 60 ºC for three days. 

Dumbbells 2-124+and 2-134+ were synthesized in the same manner, but with the addition 
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of CHCl3 to ensure dissolution of the stopper. Synthesis of the dumbbells made the 

analysis of the non-covalent interactions in the [2]rotaxanes possible by comparing the 1H 

NMR chemical shifts of both species in the same solvent.  

2.2.2 1H NMR Spectroscopy 

 Generation of dumbbells by alkylation of the terminal pyridine group causes 

small chemical shift differences compared to that of the free axle 2-22+ in the 1H NMR 

spectra in CD3CN (Figure 2.5). Protons d and b are deshielded while protons c are 

shielded by stoppering, and protons a and e are unaffected. All 1H NMR spectra of 

[2]rotaxanes were identical with the only difference being an increase in the intensity of 

the aliphatic protons at 1.3 ppm due to an increase in the number of carbons in the chain 

(Figure 2.6).  
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Figure 2.5 - 1H NMR spectra of a) 2-114+ and b) 2-22+ in CD3CN. 
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Figure 2.6 - 1H NMR spectra of a) 2-174+, b) 2-22+ and c) DB24C8 in CD3CN. 
 
 The comparison of the 1H NMR spectra of the naked dumbbell 2-104+ to the 

[2]rotaxane 2-144+ prepared with the bis(pyridinium)ethane-DB24C8 binding motif 

clearly shows the effect of all three non-covalent interactions responsible for the initial 

self-assembly. Figure 2.7 shows that the ethylene protons of the recognition site, e, and α-

pyridinium protons, d, are deshielded due to hydrogen bonding with the oxygen atoms of 

the crown ether, while β-pyridinium protons, b and c, are shielded due to π-π stacking 

interactions between the electron rich catechol rings of the crown ether and the electron 

poor pyridinium rings of the dumbbell. The crown ether catechol protons are shielded for 
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the same reason, and the other protons on the dumbbell, g, h and f, do not shift as they 

are not directly involved in any non-covalent interactions with the crown ether. 
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Figure 2.7 - 1H NMR spectra of a) 2-104+, b) 2-144+ in CD3CN. 
 

2.2.3 Single Crystal X-ray Structure 

 The methyl substituted [2]rotaxane 2-144+ was prepared as a model compound. 

Crystals suitable for single crystal X-ray structural determination were grown by slow 

diffusion of iso-propanol layered on top of a saturated solution of rotaxane in MeCN. 

Figures 2.8a and 2.8b show the ball-and-stick and space filling views, respectively. The 

ball-and-stick representation shows the atom numbering scheme and the triflate anions 

are omitted for clarity. The four triflate counterions are included in the side-on-view of 

the space-filling model of [2]rotaxane 2-144+, where the pyridinium axle is blue, the 

crown ether wheel is red, the stoppering groups are green and the triflate anions are 

yellow. The interlocked nature of the [2]rotaxane can be seen clearly, with the crown 

ether arranged in an "S"-shaped conformation around the axle. The stoppering groups are 
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oriented almost perpendicular to the axle and wheel, which are parallel, giving the 

molecule an overall zigzag shape.  

 

Figure 2.8 - Single crystal structure of 2-144+ a) ball-and-stick view (carbon = black, 
oxygen = red, nitrogen = blue) and b) space filling view with anions. 
 
 Eight hydrogen bonds are formed between α-pyridinium and ethyl protons of the 

axle and oxygens of the DB24C8 macrocycle. The N...O distances vary from 3.83 Å 

(aliphatic oxygens) to 3.49 Å (aromatic oxygens). The C...O distances vary from 2.36 Å 

(aliphatic oxygens) to 2.66 Å (aromatic oxygens). The oxygen atoms are also involved in 

ion-dipole interactions with N+ and Cδ+ atoms. The distance between catechol and 

pyridinium aromatic rings range from 3.07 - 3.68 Å which is in the upper range for π-π 
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interactions.133-134 The approximate dimensions of this tetra-cation are 27.4 Å along the 

long axis, 7.0 Å in depth through the π-stacking and 10.6 Å in width orthogonal to the π-

stacking. However, when considering the counter ions the average width through the π-

stacking increases to 9.0 Å. 

 The shape and dimensions of the [2]rotaxane 2-144+ determined in this single 

crystal structure are used for modeling molecular packing in the mesophases discussed in 

the following sections. No significant colour difference is observed between the single 

crystal and the mesophase of the [2]rotaxanes, which verifies undisturbed π-stacking and 

supports the assumption that the packing of thread and core remain largely unchanged. 

2.3 LIQUID CRYTSAL PHASE CHARACTERIZATION  

2.3.1 Thermal Gravimetric Analysis (TGA) 

 The TGA curves for dumbbells and [2]rotaxanes were obtained at a rate of 2 

ºC/min under He (Figure 2.9 and Figure 2.10, respectively). Weight loss occurs in two 

distinct steps and the first step is attributed to the weight % values of the benzylic 

stoppers for all dumbbells and [2]rotaxanes. That the bond between the pyridinium group 

and benzylic stopper is thermally most labile is also supported by TGA coupled with 

mass spectrometry (TGA-MS) measurements on 2-144+. Fragment ion peaks 

characteristic for the stopper unit appear in the MS when the first weight loss occurs. The 

second step in the TGA curves of the rotaxanes was not as distinct and is caused by the 

loss of either macrocycle or thread. The calculated weight % values of the individual 

components for the dumbbells and [2]rotaxanes relative to the entire molecule, including 

the four triflate anions, are provided in Table 2.1.  
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Figure 2.9 - TGA curves of dumbbells at 2 ºC/min under He. 
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Figure 2.10 - TGA curves of [2]rotaxanes at 2 ºC/min under He. 
 
 Decomposition of dumbbells and [2]rotaxanes occurs at temperatures above 200 

ºC as indicated by the first weight loss event in the TGA. In general, a thermal 

decomposition temperature determined by TGA is accurate if one of the generated 
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fragments easily evaporates at the given temperature and this may be questionable here. 

Both, the quasi independence of the onset of weight loss on the size of the stoppers and 

the absence of transitions in the DSC at temperatures below the decomposition 

temperatures determined by TGA confirm that the initial bond cleavage results in an 

immediate weight loss event. 

Table 2.1 - Calculated weight % values for components of dumbbells and 
[2]rotaxanes along with actual weight % values for the first step losses. 

Compound 2 Stoppers  
(actual %) 

2 Stoppers  
(calc. %)  

Axle (%) 4 OTf anions DB24C8 
(%) 

2-104+ 29.3 30.6  25.3 44.1 -- 
2-114+ 43.1 42.6  20.9 36.5 -- 
2-124+ 51.4 50.0  18.9 33.1 -- 
2-134+ 51.9 52.4  17.3 30.2 -- 
2-144+ 22.7  23.0  18.9 33.1 25.0 
2-154+ 34.7  33.4  16.4 28.7 21.5 
2-164+ 42.1  38.4  15.1 26.5 19.9 
2-174+ 44.2  42.7  14.0 24.7 18.6 

 

2.3.2 Defect Textures Observed by Polarizing Optical Microscopy (POM) 

 All defect textures obtained by POM were viewed with crossed polarizers. The 

dumbbells and [2]rotaxanes were freshly crystallized from saturated MeCN solution onto 

microscope slides and dried under a flow of nitrogen gas. This procedure generates a 

maximum degree of crystallinity. Transfer of the samples was avoided because 

dumbbells 2-114+ through 2-134+ and [2]rotaxanes 2-154+ through 2-174+ formed soft 

crystal phases and the initially obtained crystallites are easily mechanically sheared to 

give liquid crystal-like textures. The softness of the crystallites was demonstrated by 

pressing/squeezing them with a cover glass slide. Sheared (squeezed) samples displayed 
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liquid crystal-like textures, which are probably not at equilibrium even though they are 

thermally stable due to the high viscosity of the materials. No crystallites are formed 

upon heating and cooling of the sheared bulk materials. 

 POM images of freshly crystallized and sheared dumbbells 2-114+ through 2-134+ 

are shown in Figures 2.11 - 2.13. The only change observed by POM was an increase in 

softness with increasing temperature, especially above 45 ºC, and increasing length of the 

aliphatic chains but none of the dumbbells cleared into the isotropic liquid below 200 ºC. 

They were not studied at higher temperatures because of the onset of decomposition. 

 
Figure 2.11 - POM of 2-114+ (crossed polarizers): a) crystallized from MeCN @ 25 
ºC, b) squeezed between glass slides @ 25 ºC and c) @ 200 ºC. 
 

 
Figure 2.12 - POM of 2-124+ (crossed polarizers): a) crystallized from MeCN @ 25 
ºC, b) squeezed between glass slides @ 25 ºC and c) @ 200 ºC. 

 



Discovery of a Liquid Crystal [2]Rotaxane 
 

52

 
Figure 2.13 - POM of 2-134+ (crossed polarizers): a) crystallized from MeCN @ 25 
ºC, b) squeezed between glass slides @ 25 ºC and c) @ 25 ºC upon cooling from 150 
ºC. 
 

Schlieren-type defect textures are observed for sheared phases of all three 

dumbbells and 2-134+, the most fluid compound of the three, also displays fan-shaped 

defect textures.  However, these textures are of little analytical value because they most 

likely represent non-equilibrium states and can not be obtained without the application of 

mechanical shear.  

Addition of the DB24C8 macrocycle induces major changes in the 

mesomorphism as sheltering of the ionic core reduces the crystallinity, viscosity and the 

phase transition temperatures of the materials. [2]Rotaxanes 2-154+ through 2-174+ clear 

into isotropic liquids (Ti) upon heating well below their decomposition temperatures of 

128, 118, and 137 ºC, respectively. Clearing into the isotropic liquid was broad for all 

[2]rotaxanes which ranged between 8 to 10 ºC, as observed by POM. Addition of the 

macrocycle clearly reduces the strength of the intermolecular interactions between the 

cores and the core's potential for inducing microphase segregation. This can be attributed 

to reduction of the strong interactions between the ionic axles which are considerably 

weakened upon complexation of the axle with the macrocycle. [2]Rotaxanes 2-154+ and 

2-164+ still form crystallites, spherulites and plates when slowly crystallized from MeCN, 
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that are identified as soft crystal phases at room temperature by applying a mechanical 

shear force (Figure 2.14a and Figure 2.15a, respectively).  2-154+ remains crystalline 

when squeezed between glass slides at 25 ºC and 2-164+ does not show any crystallinity 

under the same conditions, (Figure 2.14b and Figure 2.15b, respectively). Their textures 

become less birefringent with increasing temperature with no characteristic textures 

observed (Figure 2.14c and Figure 2.15c). The melting of these soft crystal phases into 

the isotropic liquids is thermally irreversible and isotropic soft solids are obtained upon 

cooling. This behaviour is likely a result of the high viscosity of the isotropic liquid 

phases even at 180 ºC. 

 
Figure 2.14 - POM of 2-154+ (crossed polarizers): a) crystallized from MeCN @ 25 
ºC, b) squeezed between glass slides @ 25 ºC and c) @ 80 ºC upon cooling from Ti. 
 

 
Figure 2.15 - POM of 2-164+ (crossed polarizers): a) crystallized from MeCN @ 25 
ºC, b) squeezed between glass slides @ 25 ºC and c) @ 80 ºC upon cooling from Ti. 
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Ultimately, an optimal balance between intermolecular interactions and fluidity 

was reached with 2-174+. Unlike 2-154+ and 2-164+, this material forms a LC phase rather 

than crystallites upon precipitation from MeCN and is significantly less viscous than the 

other two [2]rotaxanes, although its viscosity is still more comparable to a LC polymer 

than a small molecule LC (Figure 2.16a). When squeezed between glass slides a broken 

focal conic type texture with decreased birefringence is observed (Figure 2.16b). The 

natural texture obtained upon cooling from the Ti is a fan-like texture typical for smectic 

LC phases, confirming a preferential orientation of the molecule long axis parallel to the 

substrate (Figure 2.16c). No phase transitions other than the reversible clearing into the 

isotropic liquid were observed. 

 
Figure 2.16 - POM of 2-174+ (crossed polarizers): a) precipitate from MeCN @ 25 
ºC, b) squeezed between glass slides @ 123 ºC and c) @ 25 ºC upon cooling from Ti. 
 

2.3.3 Differential Scanning Calorimetry (DSC) 

 All samples for DSC analysis were freshly crystallized/precipitated from MeCN 

solution, exactly as previously described for POM studies and then dried under a stream 

of nitrogen gas before carefully being transferred into aluminum crucibles. Transition 

temperatures and calculated enthalpies are listed for all dumbbells and [2]rotaxanes in 

Table 2.2. Dumbbells 2-114+ and 2-124+ showed no transitions in subsequent heating and 
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cooling runs, after initial heating (Figure 2.17, orange and blue). In contrast, dumbbell 2-

134+ showed two reversible thermal transitions at -16 ºC (only observed on heating) and 

44 ºC with enthalpies of -0.8 and -9.5 kJ/mol, respectively (Figure 2.17, red). Only the 

irreversible endothermic transition at 100 ºC in the first heating run of 2-134+ coincides 

with a texture change observed by POM; none of the other transitions were detected by 

POM. The origin of these transitions remains uncertain and they were not investigated 

further, but likely involve thermally reversible and irreversible transitions between 

different soft crystal phases. 
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Figure 2.17 - Second heating DSC runs of dumbbells 2-114+, 2-124+ and 2-134+ at        
5 ºC/min under N2 and first heating runs (dashed) of 2-124+ and 2-134+. 
 

The only transitions observed by DSC for [2]rotaxanes 2-154+ through 2-174+ are 

glass transitions (Tg) between 30 and 90 ºC that decrease in temperature with increasing 

length of the aliphatic chains. All three [2]rotaxanes display glass transitions on heating 

while a glass transition on cooling was only resolved for 2-174+ (Figure 2.18). No 

transitions into the isotropic liquid were observed for any of the [2]rotaxanes that 

suggests they are broad and of low enthalpy.  
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Table 2.2 - Transition temperatures (ºC, midpoint) and enthalpies                        
(kJ/mol) determined by DSC at scan rates of 5 ºC/min for dumbbells                        
and 10 ºC/min for [2]rotaxanes. 

Compound 1st Heating 2nd Heating Cooling 

2-104+ 171.7 (-0.93) n.t. n.t. 
2-114+  n.t n.t. 
2-124+ 47.9 (-9.88) n.t  n.t. 
2-134+ 19.4 (-4.20) -16.2 (-0.75) 37.1 (9.06) 

 51.8 (-2.92) 44.3 (-9.49)  
 94.1 (-8.47)   

2-144+ 66.9 (-1.30) 67.7 (-0.60) 63.1 (1.16) 
2-154+  89 (Tg) n.t. 
2-164+  66 (Tg) n.t. 
2-174+  30 (Tg) 18 (Tg) 

n.t. : no transition observed. 
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Figure 2.18 - The second heating and cool DSC run of [2]rotaxane 2-174+ at              
10 ºC/min under N2. 
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2.3.4 Variable Temperature X-Ray Diffraction (vt-XRD) 

 Model dumbbell 2-104+ and model [2]rotaxane 2-144+ were measured at room 

temperature and showed typical diffraction patterns of crystalline powders (Figure 2.19a 

and 2.20a, respectively) whereas the diffraction patterns of dumbbells 2-114+ through 2-

134+ and [2]rotaxanes 2-154+ through 2-174+ have fewer and broadened peaks that are 

typical for disordered crystal phases and mesophases. Consequently, variable temperature 

X-ray diffraction experiments (vt-XRD) were performed on these compounds to monitor 

structural changes with temperature and determine the types of phases. 

 Dumbbells 2-114+ through 2-134+ and [2]rotaxanes 2-154+ through 2-174+ all show 

intense small angle reflections between 44 and 33 Å, which are attributed to layer 

spacings of lamellar phases because the spacings agree with the molecular lengths of the 

dumbbells and [2]rotaxanes. Peaks observed between 16 and 10 Å likely result from in-

plane packing order because the spacings agree with the widths of the molecules and their 

values are independent of the length of the molecules.  Reflections between 5 Å and 4 Å 

are associated with the packing of aliphatic chains and varied between sharp and broad. 

Sharp reflections indicate a crystalline state while one broad reflection (halo) indicates an 

amorphous state of the aliphatic chains.  

Dumbbells 2-114+ through 2-134+ exhibit crystalline phases and also show a 

lamellar packing of the molecules with layer spacings of 33, 39 and 43 Å, respectively 

(Figure 2.19b - d). These lamellar phases are highly ordered as indicated by the presence 

of second order reflections (d20). These values are in good agreement with the dimensions 

of the molecules, and the formation of one molecule thick lamellar layers is proposed.  
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Increasing the number of aliphatic chains decreases the crystallinity in the 

mesophases, to the point where an amorphous state of the aliphatic side chains is 

observed over the entire temperature range for 2-134+ (Figure 2.19d, inset). 

Unfortunately, the viscosity is still high and two lamellar phases could co-exist, with two 

separate small angle diffraction peaks at 64 and 43 Å. The two diffraction peaks may be 

explained by two different packing structures, since second order reflections are also 

observed for both at 32 and 21 Å, respectively; the phase could also potentially be 

columnar.   
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Figure 2.19 - vt-XRD data for a) 2-104+ at 25 ºC, b) 2-114+ (inset at 120 ºC), c) 2-124+ 
(inset at 170 ºC) and d) 2-134+ (inset at 50 ºC on cooling). 
 
 [2]Rotaxanes 2-154+ through 2-174+ all display highly ordered lamellar phases 

with layer spacings of 30, 36 and 40 Å, respectively (Figure 2.20b - d), the second order 
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reflections for only 2-164+ were broad. The lamellar order in 2-154+ and 2-164+ is not 

thermally reversible, however, the lamellar order in 2-174+ remains over many cycles. 

Like the dumbbells, these values are in good agreement with the dimensions of the 

molecules, and formation of one molecule thick lamellar layers with a non-tilted SmA 

phase is proposed.  The structure of the [2]rotaxanes, in contrast to the dumbbells, display 

a large decrease of lamellar packing order with increasing temperature; the largest 

between 40 ºC and 90 ºC. 
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Figure 2.20 - vt-XRD data of a) 2-144+, b) 2-154+, c) 2-164+ and d) 2-174+, (insets are 
XRD on cool). 
 

2.3.5 Processing and Alignment of LC Materials 

 Only dumbbell 2-134+ and [2]rotaxane 2-174+ were investigated by processing and 

alignment due to the high viscosity and crystallinity of the other materials. Dumbbell 2-
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134+ was not investigated in cells for parallel and perpendicular alignment because the 

material does not become fluid enough to enter a cell by capillary force. For a uniform 

planar SmA phase, the sample appears black when the optic axis is oriented along one of 

the polarizer directions, and maximum intensity is observed when the optic axis is 

oriented at 45º between polarizer and analyzer. We were able to draw fibres of 2-134+, but 

only partial alignment was achieved. The overlaid fiber was rotated by 45º but did not 

completely change from bright to black (Figure 2.21, right). Only one layer reflection at 

43 Å is observed in the aligned fibre by 2D-XRD even though the fibre represents a non-

equilibrium phase (Figure 2.21, left). This reflection correlates well to one of the first 

order reflections obtained from the XRD of the bulk material. The small angle reflection 

aligns orthogonal to the fiber direction, suggesting that the phase is either smectic or 

columnar which also agrees with POM studies. 

 
Figure 2.21 - 2D-XRD pattern (left) and POM (right) of 2-134+ as fibre drawn from 
the bulk material when submerged in decane/CH2Cl2 at 25 ºC (alignment shown 
with fibre rotated by 45 º, overlaid).  
 
  [2]Rotaxane 2-174+ was fluid enough to be mechanically sheared at 120 ºC 

producing nearly uniform planar alignment of its SmA phase in the direction of applied 

shear force; Figure 2.22a (arrow shows direction of shear force) and Figure 2.22b (rotated 

45º). Due to the high viscosity of the material, 2-174+ did not interact favorably with a 
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planar alignment layer in a cell, treated with rubbed polyimide. The formation of 

exclusively fan-like defect textures confirms a preferential orientation of the molecule 

long axis parallel to the substrates, but no uniformly aligned domains are generated in the 

cell (Figure 2.22c).  

 An optically-pseudo isotropic homeotropic monodomain was obtained when filled 

into a LC cell with vertical alignment layer (treated cetyl-trimethylammonium bromide), 

where there was no birefringence for any in-plane rotation of the sample, confirming the 

formation of a SmA phase with layers parallel to the substrate and molecular axis 

oriented perpendicular to the bounding glass plates (Figure 2.22d). Furthermore, 

diffraction patterns excluded the presence of higher ordered smectic phases such as SmB  

 
Figure 2.22 - POMs of 2-174+ a) shear alignment (in direction of arrow) and              
b) rotated by 45º. POMs of 2-174+ c) in cells treated for parallel (homogeneous) 
alignment with rubbed polyimide, 4 μm gap (left) and d) vertical (homeotropic) 
alignment with cetyl-trimethylammonium bromide, 6 μm gap, both at 70 ºC.  
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and the lack of any schlieren textures observed by POM studies excludes the presence of 

a tilted SmC phase.  

 Aligned fibres of 2-174+ were drawn, seen in Figure 2.23a, with fibre rotated by 

45º overlaid. 2D-XRD analyses of drawn fibres are in excellent agreement with 

reflections obtained in the bulk material. The first order (10) and (20) reflections of the 

layer spacing are orthogonal to the long axis of the fibre confirming an alignment of the 

smectic layers parallel to the long axis of the fibre, seen overlaid in Figure 2.23b. Unlike 

the bulk material, the drawn fibre is not an equilibrium phase, so a clear distinction 

between smectic phases SmA and SmC is not possible.  However, observed lengths are 

too long to support a tilt of the molecules long axis.  

 
Figure 2.23 - Drawn fibre of 2-174+ (alignment shown with fibre rotated by 45 º, 
overlaid), b) 2D-XRD pattern of drawn fibre at 25 º C, and c) molecular modeling 
(MM3) diagram showing self-organization of material into a SmA phase. Alkyl 
chains were input in a disordered fashion to simulate packing.  
 
 A molecular modeling (MM3) diagram of 2-174+ (Figure 2.23c), shows the self-

organization of the material into a SmA phase with the calculated molecular length 

shown (38 Å). Alkyl chains were input in a disordered fashion to simulate packing. It is 

likely that the alignment of this material is dominated by the large core and the side 

chains solely and randomly fill the space between the layers. 
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2.3.6 Calculated Packing Volume Ratios & Molecular Lengths 

 Space filling calculations were performed to compare the molecular dimensions 

with the layer spacings obtained by XRD for dumbbells 2-114+ to 2-134+  and 

[2]rotaxanes 2-154+  to 2-174+. The layer spacings are expectedly shorter than the 

extended length of these molecules, between 40 Å (dumbbells) and 50 Å ([2]rotaxanes), 

and agree well with calculations based on amorphous side chains and space filling 

considerations. The cylindrical volume of the core, without the DB24C8 macrocycle, but 

including the four triflate anions is estimated to be 1350 Å3, based on a length of 27.4 Å 

and an average diameter of 8.1 Å. The cylindrical volume of the [2]rotaxane core, with 

DB24C8 macrocycle, including the four triflate anions is estimated to be 2400 Å3, based 

on a length of 27.4 Å and an average diameter of 10.6 Å. The length and average 

diameter of the cores were calculated based on the dimensions of the [2]rotaxane core in 

the single crystal structure and free rotation over the long axis of the molecule (Figure 

2.8).  

 The volumes occupied by the side chains of the benzyl dicarboxylate units are 

calculated to be 430, 640 and 850 Å3 , for n-alkyl chains of 6, 9, and 12 carbon atoms 

respectively, based on established packing volumes in liquid phases.135,136 Based on these 

volumes and the diameters of the cores, the lengths of the cylindrical spaces occupied by 

the side chains of the benzyl dicarboxylate units were calculated and added to the length 

of the core (27.4 Å), giving excellent agreement with the observed spacings for all six 

compounds (Table 2.3). These calculated molecular lengths also confirm the formation of 

a SmA phase for 2-174+, since the tilted SmC layer spacings would be markedly shorter 

than 39 Å. The layer spacings of the [2]rotaxanes are 3-4 Å shorter than the analogous 
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dumbbells due to the increase in average diameter of the core with addition of the 

DB24C8 macrocycle, while packing volumes of aliphatic extended benzyl stoppers 

remain unchanged.  

 This model is independent of other packing considerations such as the degree of 

interdigitation between adjacent side-chains. Moreover, these calculations assume the 

presence of SmA phases but an average tilted orientation of the cores of the molecules 

with regard to the normal of the layers can not be excluded in all cases. Tilted Sm phases 

such as SmC would reduce the layer spacings and consequently disagree with the 

proposed model if the tilt angles are sufficiently large. Calculated packing volumes of the 

[2]rotaxanes suggest that formation of a stable and sufficiently fluid smectic LC phase 

requires a minimum 1:3 ratio of aliphatic chains of the extended benzylic stoppers to 

central [2]rotaxane core, which is important for the design of such materials for future 

synthesis  and potential application in devices. 

Table 2.3 - Obtained (XRD) layer spacings and                                                       
calculated molecular lengths of dumbbells 2-114+                                                                
to 2-134+ and [2]rotaxanes 2-154+ to 2-174+ 

Compound d10 (Å) lcalc (Å) 

2-114+ 32.6 35  
2-124+ 39.1 40  
2-134+ 43.4 44  
2-154+ 29.9 32 
2-164+ 36.1 35 
2-174+ 39.6 38 

 

2.3.7 Liquid Crystal Phase Determination 

 The mesophases were fully characterized by POM observations, DSC analysis 

and vt-XRD analysis. The phase characterization and transition temperatures measured 
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by POM and DSC on heating are shown in Figure 2.24. Dumbbells 2-114+ and 2-124+ 

both form a lamellar soft crystal phase over the entire temperature range studied and 

neither cleared into the isotropic liquid phase before their decomposition temperature, 

above 200 ºC. On the other hand, dumbbell 2-134+ forms an unidentified mesophase that  

is either smectic or columnar. This material did not clear into the isotropic liquid before 

its decomposition either.  

 [2]Rotaxanes 2-154+ and 2-164+ also form lamellar soft crystal phases over their 

entire temperature range until clearing into the isotropic liquid phase at 128 and 118 ºC. 

[2]Rotaxane 2-174+ formed a SmA phase over the entire temperature range until clearing 

into the isotropic liquid phase at 137 ºC. By POM, the absence of schlieren textures 

confirmed the presence of a SmA phase for 2-174+. Comparison of the experimental and 

calculated molecular lengths also agreed with the formation of a SmA phase. The initial 

decomposition for each compound is marked with a black line in Figure 2.24, with 

decomposition for all dumbbells and [2]rotaxanes occurring above 200 ºC. 
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Figure 2.24 - Phase transition temperatures for dumbbells 2-114+ through 2-134+ (left) 
and [2]rotaxanes 2-154+ through 2-174+ (right) measured by DSC and POM on heating. 
(navy, SmA; maroon, lamellar soft crystal; violet, unidentified mesophase). The start of 
decomposition is marked with a black line.) 
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2.4 SUMMARY AND CONCLUSIONS 

 A smectic [2]rotaxane was obtained by using a tetracatenar design and attachment 

of stoppers containing aliphatic side-chains of sufficient length and number. Dumbbells 

2-114+, 2-124+ and [2]rotaxanes 2-154+, 2-164+ all form lamellar soft crystal phases, whilst 

dumbbell 2-134+ formed an unidentified mesophase and [2]rotaxane 2-174+ was 

sufficiently soft to form a SmA phase, of which only the rotaxane was thermally 

reversible. This was confirmed by POM and vt-XRD. Addition of the DB24C8 

macrocycle to shelter the ionic core proved to be necessary for the formation of a true LC 

phase. Furthermore, 2-174+ was successfully aligned as a SmA phase in LC cells treated 

for homeotropic alignment as well as in fibres drawn in the LC phase. Calculated packing 

volumes of [2]rotaxanes revealed that a minimum packing volume ratio of 1:3 for 

aliphatic chains of the extended benzylic stoppers to the central [2]rotaxane core, is 

required for the formation of a stable and sufficiently fluid smectic LC phase. Alignment 

of these unusual materials is significant since it is essential for any detailed study of their 

properties and potential for application in devices. Presently, the SmA phase of 2-174+ is 

hampered by its high viscosity and hence is not easily aligned in thin films, by applying 

shear force or conventional LC alignment layers. 

 To improve on this system, the viscosity of these materials must be sufficiently 

reduced to improve processing and alignment in thin films. While keeping the (1,2-

bis(dipyridinium)ethane)/DB24C8 pseudorotaxane motif, this can be accomplished by 

either increasing the length of the aliphatic chains on the stopper, or by utilizing branched 

or hyperbranched aliphatic chains in order to increase the fluidity and stabilize the 

molecular packing of material, which is the focus of Chapter 3. 
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2.5 EXPERIMENTAL 

2.5.1 General Comments 

 Sodium trifluoromethanesulfonate, 4,4’-bipyridine, 1,2-dibromomethane, diethyl-

5-(hydroxymethyl)-isophthalate, 1-hexanol, 1-nonanol, 1-dodecanol, titanium 

isopropoxide, phosphorus tribromide, tetrabutyl ammonium iodide (TBAI) and DB24C8 

were purchased from Aldrich and used as received. Deuterated solvents were obtained 

from Cambridge Isotope Laboratories and used as received. Solvents were dried using an 

Innovative Technologies Solvent Purification System. Thin layer chromatography (TLC) 

was performed using Teledyne Silica gel 60 F254 plates and viewed under UV light. 

Column chromatography was performed using Silicycle Ultra Pure Silica Gel (230 – 400 

mesh). Flash column chromatography was performed using Teledyne Ultra Pure 

Silica/RP-C18 Silica Gel (230 – 400 mesh) on a Teledyne Isco Combiflash Rf. All flash 

chromatography was performed under pressure (120 mL/min. - 200 mL/min.) for normal 

phase silica and (10 mL/min. - 40 mL/min.) for RP-C18 silica, with increasing pressure 

corresponding to larger columns. Unless otherwise stated, all flash chromatography 

involved applied gradient elution from 0 - 100 % with increasing polar solvent with 

respect to less polar solvent. Length of column (column volumes - CV) were determined 

by separations on preliminary TLC runs.  

 1H NMR, 13C NMR and 2-D experiments were performed on a Brüker Avance 

500 instrument, with a working frequency of 500.13 MHz for 1H nuclei, and 125.7 MHz 

for 13C nuclei. Chemical shifts are quoted in ppm relative to tetramethylsilane, using the 

residual solvent peak as a reference standard. Conventional 2-D NMR experiments (1H-

1H COSY) and (1H-13C HETCOR) were conducted and used to help assign all peaks. 
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High resolution mass spectrometry (HR-MS) experiments were performed on a 

Micromass LCT electrospray (ESI) time-of-flight (TOF) mass spectrometer. Solutions of 

50-100 ng/µL were prepared in CH3CN and injected for analysis at a rate of 5 µL/min, 

using a syringe pump.  

 Calorimetric studies were performed on a Mettler Toledo DSC 822e instrument 

and thermal gravimetric analysis with mass spectrometric detection of evolved gases was 

performed on a Mettler Toledo TGA SDTA 851e instrument that was attached to a 

Pfeiffer Vacuum ThermoStarTM mass spectrometer (1-300 amu) via a thin glass 

capillary. Helium (99.99 %) was used to purge the system with a flow rate of 30 mL/min.  

Samples were held at 25 ºC for 30 min before heating to 550 ºC at 2 ºC/min. A mass 

range between 16 m/z and 150 m/z was constantly scanned. All samples were run in 

aluminum crucibles. Powder XRD measurements where recorded on a Brüker D8 

Discover diffractometer equipped with a Hi-Star area detector and GADDS software and 

operated at 40 kV and 40 mA.  CuKα1 radiation (λ = 1.54187 Å) was used and the initial 

beam diameter was 0.5 mm. A custom made Instec hot stage (based on HS-400) was used 

for VT-XRD that covers a temperature range of -40 ºC to 350 ºC.  Bulk samples for 

variable temperature XRD were filled into a 2 mm diameter hole in a 1 mm thick copper 

plate and covered with KaptonTM foil.  This plate was mounted in an Instec hot-stage, 

aligned, and run at theta angles of 0º, and 15º for 30 or 60 min.  Spectra were combined 

and evaluated in EVA and plotted with Origin. Polarized light microscopy was performed 

on an Olympus TPM51 polarized light microscope equipped with a Linkam variable 

temperature stage HCS410 and digital photographic imaging system (DITO1). 
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2.5.2 Synthesis of [2-1][OTf] 

 4,4’-Bipyridine (5.00 g, 0.0320 mol) was dissolved in 1,2-dibromoethane (150 

mL) and refluxed for 3 h. The solution was filtered hot and the resulting precipitate 

washed with cold diethyl ether (3 x 50 mL). The precipitate was collected and 

recrystallized from ethanol to yield a yellow crystalline powder. Yield: 10.86 g, 99 %. 

 

Table 2.4 - 1H NMR data of [2-1][Br] in D2O. MWBr-= 344.058 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.68 d  2 3Jab = 6.36 
b 7.87 d  2 3Jba = 6.36 
c 8.35 d  2 3Jcd = 6.77 
d 8.93 d 2 3Jdc = 6.77 
e 4.99 t 2 3Jef = 5.70 
f 3.92 t 2 3Jfe = 5.70 
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2.5.3 Synthesis of [2-2][OTf]2 

 [2-1][Br] (5.00 g, 0.0145 mol) and 4,4′-bipyridine (6.81 g, 0.0436 mol) were 

dissolved in 1-butanol (70 mL) and added to a thick-walled 80 mL vessel with stir bar 

and microwaved for 1 h at 70 ºC. The solution was filtered hot and the resulting 

precipitate washed with methanol. The precipitate was collected and recrystallized from 

H2O, first stirring with charcoal then filtering through celite followed by cooling on ice to 

yield colourless crystals. The product was then further purified and isolated by column 

chromatography on silica gel using a 7:1:2 mixture of MeOH, 2M NH4Cl (aq) and 

MeNO2 (3.89 g, 54 %). The resulting transparent crystals, Rf = 0.18, were anion 

exchanged to the triflate salt by way of a two layer NaOTf (aq)/MeNO2 extraction. Yield: 

4.32 g, 87 %. 
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Table 2.5 – 1H NMR data of [2-2][Br]2 in D2O. MWBr-= 500.229 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.77 d  4 3Jab = 4.48 
b 7.90 d  4 3Jba = 4.48 
c 8.48 d  4 3Jcd = 5.65 
d 8.98 d 4 3Jdc = 5.65 
e 5.40 s 4 -- 

 

Table 2.6 - 1H NMR data of [2-2][OTf]2 in CD3CN. MWOTf-= 638.559 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.76 d 4 3Jab = 6.88 
b 8.38 d 4 3Jba = 6.88 
c 7.81 d  4 3Jcd = 4.50 
d 8.87 d 4 3Jdc = 4.50 
e 5.16 s 4 -- 
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2.5.4 Synthesis of 2-3 

Diethyl-5-(hydroxymethyl)-isophthalate (3.00 g, 0.01153 mol), 1-hexanol (9.42 g, 

0.0922 mol), and Ti(O-i-Pr)4 (6.55 g, 0.0231 mol) were heated (130 ºC) under a nitrogen 

atmosphere overnight. The EtOH bi-product was removed via a Dean Stark apparatus. 

The solution was neutralized with 0.1 M HCl yielding a waxy solid which was then 

filtered and washed with H2O. The solid was taken up in CHCl3, dried with MgSO4, 

filtered and concentrated to a white solid. The product was then purified by column 

chromatography on silica gel with 99:1 (CHCl3: MeOH) as eluant. The resulting white 

solid was collected. Yield: 3.87 g, 92 %. 

 

Table 2.7 – 1H NMR data of 2-3 in CDCl3. MW= 364.476 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.56 s  1 -- 
b 8.21 s  2 -- 
c 4.76 s  2 -- 
d 4.32 t 4 3Jde = 6.74 

e 1.76 tt 4 3Jed = 6.74, 3Jef = 7.47 

f 1.41 tt 4 3Jfe = 7.47, 3Jfg = 7.47
g 1.32 m 8 -- 
h 0.88 t 6 3Jhg = 6.74 
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2.5.5 Synthesis of 2-4 

Diethyl-5-(hydroxymethyl)-isophthalate (2.00 g, 0.0077 mol), 1-nonanol (8.87 g, 

0.0615 mol), and Ti(O-i-Pr)4  (4.37 g, 0.0154 mol) were heated (130 ºC) under a nitrogen 

atmosphere overnight. The EtOH bi-product was removed via a Dean Stark apparatus. 

The solution was neutralized with 0.1 M HCl yielding a waxy solid which was then 

filtered and washed with H2O. The solid was taken up in CHCl3, dried with MgSO4, 

filtered and concentrated to a white solid. The product was then purified by column 

chromatography on silica gel with 99:1 (CHCl3: MeOH) as eluant. The resulting white 

solid was collected. Yield: 2.87 g, 83 %. 

a

OO

OH

OO
gf

c

e

d

b

g

h

g

g

g

 

Table 2.8 – 1H NMR data of 2-4 in CDCl3. MW= 448.635 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.58 s  1 -- 
b 8.22 s  2 -- 
c 4.76 s  2 -- 
d 4.34 t 4 3Jde = 6.76 

e 1.78 tt 4 3Jed = 6.76, 3Jef = 7.40 

f 1.43 tt 4 3Jfe = 3Jfg = 7.40 
g 1.32 m 20 -- 
h 0.87 t 6 3Jhg = 6.76 
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2.5.6 Synthesis of 2-5 

Diethyl-5-(hydroxymethyl)-isophthalate (3.00 g, 0.0115 mol), 1-dodecanol (17.18 

g, 0.0922 mol), and Ti(O-i-Pr)4 (6.55 g, 0.0231 mol) were heated (130 ºC) under a 

nitrogen atmosphere for 3 days. The EtOH bi-product was removed via a Dean Stark 

apparatus. The solution was neutralized with 0.1 M HCl yielding a waxy solid which was 

then filtered and washed with H2O. The solid was taken up in CHCl3, dried with MgSO4, 

filtered and concentrated to a white solid. The product was then purified by flash column 

chromatography on silica gel with 99:1 (CHCl3: MeOH) gradient as eluant. The resulting 

white solid was collected. Yield: 5.06 g, 82 %. 
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Table 2.9 – 1H NMR data of 2-5 in CDCl3. MW= 532.795 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.56 s  1 -- 
b 8.19 s  2 -- 
c 4.76 s  2 -- 
d 4.32 t 4 3Jde = 6.76 

e 1.75 tt 4 3Jed = 6.76, 3Jef = 7.41
f 1.37 tt 4 3Jfe = 3Jfg = 7.41 
g 1.24 m 32 -- 
h 0.86 t 6 3Jhg = 6.76 
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2.5.7 Synthesis of 2-6 

Dimethyl-5-(hydroxymethyl)-isophthalate (4.26 g, 0.0190 mol) was dissolved in 

THF (100 mL) under nitrogen and cooled (0 ºC) on ice. Phosphorus tribromide (14.25 

mL, 0.0143 mol) 1.0 M in CH2Cl2 was added dropwise over 15 min. and stirring 

continued for 4 h. The solution was concentrated and recrystallized from MeOH. Product 

purified by column chromatography on silica gel with 1:4 (hexanes: CH2Cl2) as eluant. 

The resulting white solid, Rf = 0.89, was collected. Yield: 4.47 g, 82 %. 

 

Table 2.10 – 1H NMR data of 2-6 in CDCl3. MW= 287.107 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.83 s  1 -- 
b 8.25 s  2 -- 
c 4.54 s  2 -- 
d 3.95 s 6 -- 

 

Table 2.11 – 1H NMR data of 2-6 in CD3CN. MW= 287.107 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.69 s  1 -- 
b 8.21 s  2 -- 
c 4.33 s  2 -- 
d 3.92 s 6 -- 
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2.5.8 Synthesis of 2-7 

2-3 (3.00 g, 0.0082 mol) was dissolved in THF (100 mL) under nitrogen and 

cooled (0 ºC) on ice. Phosphorus tribromide (6.17 mL, 0.0062 mol) 1.0 M in CH2Cl2 was 

added dropwise over 15 min. and stirring continued for 4 h. The solution was 

concentrated and recrystallized from MeOH. The product was purified by column 

chromatography on silica gel with 1:4 (hexanes: CH2Cl2) as eluant. The resulting white 

solid, Rf = 0.93, was collected. Yield: 3.36 g, 96 %. 
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Table 2.12 – 1H NMR data of 2-7 in CDCl3. MW= 427.374 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.56 s  1 -- 
b 8.21 s  2 -- 
c 4.52 s  2 -- 
d 4.32 t 4 3Jde = 6.74 

e 1.76 tt 4 3Jed = 6.74, 3Jef = 7.26 

f 1.41 tt 4 3Jed = 3Jef = 7.26 
g 1.32 m 8 -- 
h 0.88 t 6 3Jhg = 6.74 

 

Table 2.13 – 1H NMR data of 2-7 in CD3CN. MW= 427.374 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.44 s  1 -- 
b 8.21 s  2 -- 
c 4.32 s  2 -- 
d 4.29 t 4 3Jde = 6.67 

e 1.74 tt 4 3Jed = 6.67, 3Jef = 7.49 

f 1.44 tt 4 3Jfe = 7.49, 3Jfg = 7.49
g 1.32 m 8 -- 
h 0.88 t 6 3Jhg = 6.67 
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2.5.9 Synthesis of 2-8 

2-4 (3.50 g, 0.0078 mol) was dissolved in THF (100 mL) under nitrogen and 

cooled (0 ºC) on ice. Phosphorus tribromide (5.85 mL, 0.0059 mol) 1.0 M in CH2Cl2 was 

added dropwise over 15 min. and stirring continued for 8 h. The solution was 

concentrated and recrystallized from MeOH. Product purified by column chromatography 

on silica gel with 1:4 (hexanes: CH2Cl2) as eluant. The resulting white solid, Rf = 0.94, 

was collected. Yield: 3.69 g, 92 %. 
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Table 2.14 – 1H NMR data of 2-8 in CDCl3. MW= 511.532 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.58 s  1 -- 
b 8.22 s  2 -- 
c 4.54 s  2 -- 
d 4.34 t 4 3Jde = 6.74 

e 1.78 tt 4 3Jed =6.74, 3Jef = 7.47 

f 1.43 tt 4 3Jfe = 3Jfg = 7.47 
g 1.32 m 20 -- 
h 0.87 t 6 3Jhg = 6.74 

 

Table 2.15 – 1H NMR data of 2-8 in CD3CN. MW= 511.532 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.47 s  1 -- 
b 8.24 s  2 -- 
c 4.68 s  2 -- 
d 4.32 t 4 3Jde = 6.70 

e 1.76 tt 4 3Jed = 6.70, 3Jef = 7.43 

f 1.45 tt 4 3Jfe = 3Jfg = 7.43 
g 1.33 m 20 -- 
h 0.87 t 6 3Jhg = 6.70 
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2.5.10 Synthesis of 2-9 

2-5 (4.50 g, 0.0084 mol) was dissolved in THF (200 mL) under nitrogen and 

cooled (0 ºC) on ice. Phosphorus tribromide (6.33 mL, 0.0063 mol) 1.0 M in CH2Cl2 was 

added dropwise over 15 min. and stirring continued overnight. The solution was 

concentrated and recrystallized from MeOH. Product purified by flash column 

chromatography on silica gel with 1:4 (hexanes: CH2Cl2) as eluant. The resulting white 

solid, Rf = 0.92, was collected. Yield: 4.78 g, 95 %. 
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Table 2.16 – 1H NMR data of 2-9 in CDCl3. MW= 595.691 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.58 s  1 -- 
b 8.22 s  2 -- 
c 4.53 s  2 -- 
d 4.33 t 4 3Jde = 6.75 

e 1.77 tt 4 3Jed = 3Jef = 7.37 

f 1.42 m 4 -- 
g 1.31 m 32 -- 
h 0.86 t 6 3Jhg = 6.90 

 

Table 2.17 – 1H NMR data of 2-9 in CD3CN. MW= 595.691 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.47 s  1 -- 
b 8.25 s  2 -- 
c 4.68 s  2 -- 
d 4.33 t 4 3Jde = 6.70 

e 1.67 tt 4 3Jed = 6.70, 3Jef = 7.30 

f 1.44 tt 4 3Jfe = 3Jfg = 7.30 
g 1.32 m 32 -- 
h 0.87 t 6 3Jhg = 6.70 
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2.5.11 Synthesis of  [2-10][OTf]4 

[2-2][OTf]2 (100.0 mg, 0.156 mmol) and 2-6 (179.0 mg, 0.626 mmol) were 

dissolved in MeNO2 (60 mL) and the mixture was heated (60 ºC) 3 days. The precipitate 

formed was filtered, washed with MeNO2 and anion exchanged to the triflate salt. The 

ivory solid was dissolved in MeNO2, washed with H2O (3 x 10 mL), dried over MgSO4 

and the solvent removed. The product was isolated as a white solid. Yield: 98.2 mg, 46 

%. ESI-MS: m/z 1201.1558 (calc.) for C47H42F9N4O17S3 [M-3OTF]+, found 1201.1522.  

m/z 526.1016 (calc.) for C46H42F6N4O14S2 [M-2OTF]2+, found 526.1039. 
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Table 2.18 – 1H NMR data of [2-10][OTf]4 in CD3CN. MWOTf- = 1351.103 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a,d 9.03 dd 8 3Jab = 3Jdc = 6.77
b 8.46 d  4 3Jba = 6.77 
c 8.49 d  4 3Jcd = 6.77 
e 5.29 s 4 -- 

f 5.95 s 4 -- 

g 8.38 s 4 -- 
h 8.63 s 2 -- 
i 3.93 s 12 -- 
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Table 2.19 – 13C NMR data of [2-10][OTf]4 in CD3CN. MWOTf- = 1351.103 g/mol. 
Quaternary carbons assigned using software 

Carbon δ (ppm) # Carbons 

1 52.49 4 
2 165.28 4 
3 132.19 4 
4 131.30 2 
5 134.65 4 
6 133.94 2 
7 63.73 2 
8 146.00 4 
9 127.78 4 
10 148.12 2 
11 148.2 2 
12 128.10 4 
13 146.55 4 
14 59.70 2 
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COSY of [2-10][OTf]4 in CD3CN. 
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HETCOR of [2-10][OTf]4 in CD3CN. 
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2.5.12 Synthesis of [2-11][OTf]4 

[2-2][OTf]2 (80.0 mg, 0.125 mmol) and 2-7 (220.0 mg, 0.501 mmol) were 

dissolved in MeNO2 (60 mL) and heated (60 ºC) for 3 days. The precipitate formed was 

filtered, washed with MeNO2 and anion exchanged to the triflate salt. The ivory solid was 

dissolved in MeNO2, washed with H2O (3 x 10 mL), dried over MgSO4 and the solvent 

removed. The product was isolated as a white solid. Yield: 86.8 mg, 43 %. ESI-MS: m/z 

666.2581 (calc.) for C66H82F6N4O14S2 [M-2OTF]2+, found 666.2599.  

 

Table 2.20 – 1H NMR data of [2-11][OTf]4 in CD3CN. MWOTf- = 1631.634 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a,d 9.03 dd   8 3Jab = 3Jdc = 6.84 
b 8.47 d  4 3Jba = 6.84 
c 8.50 d  4 3Jcd = 6.84 
e 5.3 s 4 -- 

f 5.95 s 4 -- 

g 8.38 s 4 -- 
h 8.63 s 2 -- 
i 4.34 t 8 3Jij = 6.65 
j 1.77 tt 8 3Jji = 6.65, 3Jjk = 7.48
k 1.45 tt 8 3Jkj = 3Jkl = 7.48 
l 1.35 m 16 -- 

m 0.90 t 12 3Jml = 6.65 
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2.5.13 Synthesis of [2-12][OTf]4 

[2-2][OTf]2 (76.0 mg, 0.118 mmol) and 2-8 (242.0 mg, 0.473 mmol) were 

dissolved in MeNO2 (60 mL) and the mixture was heated (60 ºC) for 3 days. The 

precipitate formed was filtered, washed with MeNO2 and anion exchanged to the triflate 

salt. The ivory solid was dissolved in MeNO2, washed with H2O (3 x 10 mL), dried over 

MgSO4 and the solvent removed. The product was isolated as a white solid. Yield: 112.0 

mg, 53 %. ESI-MS: m/z 750.3520 (calc.) for C78H106F6N4O14S2 [M-2OTF]2+, found 

750.3519.   



Discovery of a Liquid Crystal [2]Rotaxane 
 

87

NN
N N

O

O

O

O

a b c d

ef

g

h

O(CH2)8CH3

H3C(H2C)8O

OCH2CH2CH2(CH2)5CH3

H3C(H2C)8O

i j k l m  

Table 2.21 – 1H NMR data of [2-12][OTf]4 in CD3CN. MWOTf- = 1799.533 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 9.02 d   4 3Jab = 6.83 
b 8.46 d  4 3Jba = 6.83 
c 8.49 d  4 3Jcd = 6.83 
d 9.05 d 4 3Jdc = 6.83 
e 5.29 s 4 -- 

f 5.95 s 4 -- 

g 8.38 s 4 -- 
h 8.63 s 2 -- 
i 4.33 t 8 3Jij = 6.65 
j 1.77 tt 8 3Jji = 6.65, 3Jjk = 7.40
k 1.44 tt 8 3Jkj = 3Jkl = 7.40 
l 1.32 m 40 -- 

m 0.87 t 12 3Jml = 6.65 
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2.5.14 Synthesis of [2-13][OTf]4 

[2-2][OTf]2 (80.0 mg, 0.125 mmol) and 2-9 (298.0 mg, 0.501 mmol) were 

dissolved in MeNO2 (60 mL) and the mixture was heated (60 ºC) for 4 days. The 

precipitate formed was filtered, washed with MeNO2 and anion exchanged to the triflate 

salt. The ivory solid was dissolved in MeNO2, washed with H2O (3 x 10 mL), dried over 

MgSO4 and the solvent removed. The product was isolated as a white solid. Yield: 97.2 

mg, 40 %. ESI-MS: m/z 834.4459 (calc.) for C90H130F6N4O14S2 [M-2OTF]2+, found 

834.4457, m/z 506.6464 (calc.) for C89H130F3N4O11S [M-OTF]3+, found 506.6479. 

 

Table 2.22 – 1H NMR data of [2-13][OTf]4 in CD3CN. MWOTf- = 1968.277 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a,d 9.02 dd   8 3Jab = 3Jdc = 6.85 
b 8.45 d  4 3Jba = 6.85 
c 8.48 d  4 3Jcd = 6.85 
e 5.28 s 4 -- 

f 5.95 s 4 -- 

g 8.38 s 4 -- 
h 8.62 s 2 -- 
i 4.33 t 8 3Jij = 6.85 
j 1.77 tt 8 3Jji = 6.85, 3Jjk = 7.42
k 1.44 tt 8 3Jkj = 3Jkl = 7.42 
l 1.31 m 64 -- 

m 0.87 t 12 3Jml = 6.85 
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2.5.15 Synthesis of [2-14][OTf]4 

[2-2][OTf]2 (70.0 mg, 0.110 mmol) and DB24C8 (491.0 mg, 1.100 mmol) were 

dissolved in a two-phase NaOTf (aq)/MeNO2 (1 and 30 mL) mixture. 2-6 (157.0 mg, 

0.548 mmol) was added and the mixture stirred at RT for 21 days. The MeNO2 was 

washed with H2O (3 x 10 mL), dried over MgSO4 and the solvent removed. The residue 

was stirred in toluene and remaining solid filtered. The resulting solid was stirred in 

CHCl3 and remaining solid filtered. Product was purified and isolated by column 

chromatography on silica gel using a 7:1:2 mixture of MeOH, 2M NH4Cl (aq) and 

MeNO2. The resulting deep orange solid, Rf = 0.515, was anion exchanged back to the 

triflate salt and collected. Yield: 72.0 mg, 37 %. ESI-MS: m/z 1649.3655 (calc.) for 

C71H74F9N4O25S3 [M-3OTF]+, found 1649.3715,  m/z 750.2064 (calc.) for 

C70H74F6N4O22S2 [M-2OTF]2+, found 750.2049. 
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Table 2.23 – 1H NMR data of [2-14][OTf]4 in CD3CN. MWOTf- = 1799.610 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.98 d 4 3Jab = 6.78 
b 8.19 d  4 3Jba = 6.78 
c 8.23 d  4 3Jcd = 6.78 
d 9.31 d 4 3Jdc = 6.78 
e 5.61 s 4 -- 

f 5.97 s 4 -- 

g 8.39 s 4 -- 
h 8.65 s 2 -- 
i 3.94 s 12 -- 
j 6.45 dd 4 3Jmeta = 3.56; 3Jortho = 5.93
k 6.64 dd 4 3Jmeta = 3.56; 3Jortho = 5.93
l 4.05 m 24 -- 
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Table 2.24 – 13C NMR data of [2-14][OTf]4 in CD3CN. MWOTf- = 1799.610 g/mol. 
Quaternary carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 52.47 4 
2 165.27 4 
3 132.19 4 
4 131.23 2 
5 134.43 4 
6 133.95 2 
7 63.59 2 
8 145.78 4 
9 127.22 4 
10 149.31 2 
11 148.87 2 
12 125.95 4 
13 147.10 4 
14 58.43 2 
15 121.50 4 
16 112.57 4 
17 146.82 4 
18 70.22 4 
19 67.63 4 
20 70.58 4 
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COSY of [2-14][OTf]4 in CD3CN. 
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HETCOR of [2-14][OTf]4 in CD3CN. 
 

10.0 9.0 8.0 7.0 6.0 5.0 4.0 ppm

100

140

130

120

110

90

80

70

60

ppm

 



Discovery of a Liquid Crystal [2]Rotaxane 
 

93

Single Crystal - X-ray Information: 

 The crystals were frozen in paratone oil inside a cryoloop. Reflection data was 

integrated from frame data obtained from hemisphere scans on a Brüker APEX 

diffractometer with a CCD detector. Decay was monitored by 50 standard data frames 

measured at the beginning and end of data collection. Diffraction data and unit-cell 

parameters were consistent with assigned space groups. Lorentzian polarization 

corrections and empirical absorption corrections, based on redundant data at varying 

effective azimuthal angles, were applied to the data series. The structure was solved by 

direct methods, completed by subsequent Fourier syntheses and refined using full-matrix 

least-squares methods against |F2| data. All non-hydrogen atoms were refined 

anisotropically. Hydrogen atoms were treated as idealized contributions. Scattering 

factors and anomalous dispersion coefficients are contained in the SHELXTL 5.03 

program library.137 Ball-and-stick and space-filling models were generated using the 

program DIAMOND.138 

Table 2.25 – Crystal data/details: structure solution/refinement for [2-14][OTf]4. 

Formula C74H77F12N5O29S4 Collection  Temp [K] 173.0(2) 

Formula Weight 1856.7 ρcalcd [g.cm-1] 1.523 
Crystal System Triclinic µ (MoKα) [mm-1] 0.231 
Space Group P-1 Min/max trans. 0.8535/1.0000 
a [Å] 12.442(3) Total reflections 38473 
b [Å] 16.488(4) R(int) 0.437 
c [Å] 20.443(5) R1 [I>2σI] 0.0808 
α [º] 104.939(3) R1 [all data] 0.0981 
β [º] 90.035(3) wR2 [I>2σI] 0.2165 
γ [º] 91.766(3) wR2 [all data] 0.2277 
V [Å3] 4049.8(17) Data/variables 14147/1118 
Ζ 2 GoF (F2) 1.072 
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2.5.16 Synthesis of [2-15][OTf]4 

[2-2][OTf]2 (40.0 mg, 0.063 mmol) and DB24C8 (281.0 mg, 0.626 mmol) were 

dissolved in a two-phase NaOTf (aq)/MeNO2 (1 and 30 mL) mixture. 2-7 (107.0 mg, 

0.251 mmol) and a catalytic amount of TBAI (10 mg) was added and the mixture stirred 

at RT for 1 month. The MeNO2 was washed with H2O (3 x 10 mL), dried over MgSO4 

and the solvent removed. The residue was stirred in toluene and remaining solid filtered. 

Product was purified and isolated by column chromatography on silica gel using a 7:1:2 

mixture of MeOH, 2M NH4Cl (aq) and MeNO2. The resulting deep orange solid, Rf = 

0.72, was anion exchanged back to the triflate salt and collected. Yield: 65.0 mg, 50 %. 

ESI-MS: m/z 890.3629 (calc.) for C90H114F6N4O22S2 [M-2OTF]2+, found 890.3621. 
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Table 2.26 – 1H NMR data of [2-15][OTf]4 in CD3CN. MWOTf- = 2080.145 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 9.00 d 4 3Jab = 6.62 
b 8.25 d  4 3Jba = 6.62 
c 8.27 d  4 3Jcd = 6.62 
d 9.32 d 4 3Jdc = 6.62 
e 5.61 s 4 -- 

f 5.98 s 4 -- 

g 8.39 s 4 -- 
h 8.65 s 2 -- 
i 4.35 t 8 3Jij = 6.62 
j 1.78 tt 8 3Jji = 6.62 3Jjk = 7.42 
k 1.46 tt 8 3Jkj = 3Jkl = 7.42 

l 1.35 m 16 -- 
m 0.90 t 12 3Jml = 6.68 

n 6.43 dd 4 3Jmeta = 3.75; 3Jortho = 5.74 

o 6.65 dd 4 3Jmeta = 3.75; 3Jortho = 5.74
p 4.02 m 24 -- 
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Table 2.27 – 13C NMR data of [2-15][OTf]4 in CD3CN. MWOTf- = 2080.145 g/mol. 
Quaternary carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 164.82 4 
2 131.06 4 
3 132.47 2 
4 134.44 4 
5 133.86 2 
6 63.56 2 
7 145.73 4 
8 127.17 4 
9 149.24 2 
10 148.80 2 
11 125.95 4 
12 147.06 4 
13 58.42 2 
14 121.46 4 
15 112.55 4 
16 146.83 4 
17 67.62 4 
18 70.22 4 
19 70.58 4 
20 65.76 4 
21 28.30 4 
22 25.37 4 
23 31.17 4 
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24 22.28 4 
25 13.33 4 

 

HETCOR of [2-15][OTf]4 in CD3CN. 
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2.5.17 Synthesis of [2-16][OTf]4 

[2-2][OTf]2 (70.0 mg, 0.110 mmol) and DB24C8 (491.0 mg, 1.100 mmol) were 

dissolved in a two-phase NaOTf (aq)/MeNO2 (1 and 30 mL) mixture. 2-8 (224.0 mg, 

0.438 mmol) was added, then CHCl3 was added dropwise until solid dissolved and a 

catalytic amount of TBAI (10 mg) was added and the mixture was stirred at RT for 45 

days. The MeNO2 was washed with H2O (3 x 10 mL), dried over MgSO4 and the solvent 

removed. The residue was stirred in cold toluene and remaining solid filtered. Product 

was purified and isolated by column chromatography on silica gel using a 7:1:2 mixture 

of MeOH, 2M NH4Cl (aq) and MeNO2. The resulting orange soft solid, Rf = 0.68, was 

anion exchanged to the triflate salt and collected. Yield: 31.0 mg, 13 %. ESI-MS: m/z 

974.4569 (calc.) for C102H138F6N4O22S2 [M-2OTF]2+, found 974.4568. 



Discovery of a Liquid Crystal [2]Rotaxane 
 

99

NN
N N

O

O
O

O

O

O
O

O

O

O(CH2)8CH3

H3C(H2C)8O
O

OCH2CH2CH2(CH2)5CH3

H3C(H2C)8O

O

O

a b c d

ef

g

h

i

n po

mlkj

 

Table 2.28 – 1H NMR data of [2-16][OTf]4 in CD3CN. MWOTf- = 2248.464 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.98 d 4 3Jab = 6.69 
b 8.18 d  4 3Jba = 6.69 
c 8.22 d  4 3Jcd = 6.69 
d 9.31 d 4 3Jdc = 6.69 
e 5.60 s 4 -- 

f 5.97 s 4 -- 

g 8.40 s 4 -- 
h 8.65 s 2 -- 
i 4.35 t 8 3Jij = 6.63 
j 1.78 tt 8 3Jji = 6.63 3Jjk = 7.39 
k 1.45 tt 8 3Jkj = 3Jkl = 7.39 

l 1.32 m 40 -- 
m 0.87 t 12 3Jml = 6.69 

n 6.43 dd 4 3Jmeta = 3.57; 3Jortho = 5.86 

o 6.65 dd 4 3Jmeta = 3.57; 3Jortho = 5.86
p 4.02 m 24 -- 
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Table 2.29 – 13C NMR data of [2-16][OTf]4 in CD3CN. MWOTf- = 2248.464 g/mol. 
Quaternary carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 164.79 4 
2 131.06 4 
3 132.43 2 
4 134.51 4 
5 134.07 2 
6 63.60 2 
7 145.76 4 
8 127.21 4 
9 149.23 2 
10 148.75 2 
11 125.99 4 
12 147.08 4 
13 58.44 2 
14 121.49 4 
15 112.54 4 
16 146.85 4 
17 68.15 4 
18 70.21 4 
19 70.60 4 
20 65.98 4 
21 28.31 4 
22 25.79 4 
23 29.35 4 
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24 28.97 4 
25 29.31 4 
26 31.54 4 
27 22.24 4 
28 13.51 4 
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2.5.18 Synthesis of [2-17][OTf]4 

[2-2][OTf]2 (80.0 mg, 0.125 mmol) and DB24C8 (562.0 mg, 1.253 mmol) were 

dissolved in a two-phase NaOTf (aq)/MeNO2 (1 and 40 mL) mixture and placed in an 80 

mL reaction vessel. 2-9 (298.0 mg, 0.501 mmol) was dissolved in CHCl3 (20 mL) and a 

catalytic amount of TBAI (10 mg) was added to 80 mL vessel with stir bar and 

microwaved for 30 h at 50 ºC. The MeNO2 was washed with H2O (3 x 10 mL), dried over 

MgSO4 and the solvent removed. The residue was stirred in MeCN, white solid filtered 

off and remaining solution concentrated. The orange residue was dissolved in cold EtOH, 

white solid filtered off and remaining solution concentrated. Product was purified and 

isolated by flash column chromatography on RP-C18 silica gel using MeOH as eluant, 

yielding a deep red/orange brittle solid. Yield: 98.0 mg, 29 %. ESI-MS: m/z 1058.5508 

(calc.) for C114H162F6N4O22S2 [M-2OTF]2+, found 1058.5515. m/z 656.0497 (calc.) for 

C113H162F3N4O19S [M-OTF]3+, found 656.0518.  
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Table 2.30 – 1H NMR data of [2-17][OTf]4 in CD3CN. MWOTf- = 2416.782 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.97 d 4 3Jab = 6.73 
b 8.18 d  4 3Jba = 6.73 
c 8.22 d  4 3Jcd = 6.73 
d 9.31 d 4 3Jdc = 6.73 
e 5.59 s 4 -- 

f 5.96 s 4 -- 

g 8.39 s 4 -- 
h 8.65 s 2 -- 
i 4.35 t 8 3Jij = 6.65 
j 1.78 tt 8 3Jji = 6.65; 3Jjk = 7.40 
k 1.45 tt 8 3Jkj = 3Jkl = 7.40 

l 1.32 m 64 -- 
m 0.87 t 12 3Jml = 6.69 

n 6.63 dd 4 3Jmeta = 3.64; 3Jortho = 5.87
o 6.42 dd 4 3Jmeta = 3.64; 3Jortho = 5.87
p 4.02 m 24 -- 
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Table 2.31 – 13C NMR data of [2-17][OTf]4 in CD3CN. MWOTf- = 2416.782 g/mol. 
Quaternary carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 164.79 4 
2 131.03 4 
3 132.44 2 
4 134.46 4 
5 133.92 2 
6 63.49 2 
7 145.76 4 
8 127.18 4 
9 149.20 2 
10 148.79 2 
11 126.04 4 
12 147.02 4 
13 58.40 2 
14 121.46 4 
15 112.55 4 
16 146.82 4 
17 67.62 4 
18 70.24 4 
19 70.60 4 
20 65.74 4 
21 28.34 4 
22 25.72 4 
23 29.33 4 
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24 29.38 8 
25 29.29 4 
26 28.98 4 
27 29.09 4 
28 31.66 4 
29 22.41 4 
30 13.41 4 

 



CHAPTER 3 
 

Improving Mesomorphism in [2]Rotaxanes 
 
 
3.1 INTRODUCTION 
 
 Self-assembly and self-organization1,6,28-33,139 represent powerful means for the 

spontaneous and programmed generation of nanoscale architectures based upon 

instructions stored in the building block components. This involves the formation of 

organized, discrete assemblies and the collective behaviour of ensembles such as liquid 

crytsals.140 The successful design of a liquid crystalline rotaxane assembly depends 

primarily on the choice of a suitable rotaxane core, but an often underestimated aspect is 

the influence of the substituents of the building blocks, where even the smallest changes 

can lead to unexpected consequences for the superstructure.  

 As shown in Chapter 2, a [2]rotaxane incorporating the                        

1,2-bis(dipyridinium)ethane/DB24C8 motif and based upon a tetracatenar design, 

substituted with dodecane aliphatic chains, demonstrated liquid crystallinity over a wide 

temperature range with formation of a lamellar SmA phase. This material is however, 

hampered by a high viscosity making processing and alignment in thin films quite 

challenging. This chapter describes the use of terminal benzylic stoppers with longer 

straight aliphatic chains, a branching chain and a hyperbranched chain in order to 

decrease crystallinity and increase the fluidity of these materials. The effect of odd versus 

even chain length will also be investigated, as well as comparison of straight chains to 

branching, to determine the ability of the stopper to efficiently fill space and the resulting 

effect this has on the resulting mesomorphism. 
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Figure 3.1 – Structural representation of [2]rotaxanes with the various aliphatic 
benzylic stoppers introdcued in this chapter. 
 

3.2 SYNTHESIS AND CHARACTERIZATION 

3.2.1 Synthesis 

 In Chapter 2, it was shown that the minimum packing volume of side-chains 

required to induce a smectic LC phase in [2]rotaxanes was achieved using straight 

dodecane chains. Hence, increasing the number of carbons in the chain and/or how they 

are distributed should still induce a smectic LC phase. The new 3,5-

bis(carboxyalkyl)benzyl bromide stoppers were synthesized in two steps. The first was a  

transesterification132 of dimethyl-5-(hydroxymethyl)-isophthalate with an excess of the 

appropriate alkyl alcohol in the presence of Ti(i-PrO)4 as the catalyst to generate the 

corresponding benzyl alcohol as bis(pentadecyl) 3-1, bis(hexadecyl) 3-2, bis(2-hexyl-1-

decyl) 3-3 and bis(1-octyl,5,7,7-trimethyl-2-(1,3,3-trimethylbutane)) (oxocol) 3-4. Next 
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was the bromination of the benzyl alcohol with phosphorous tribromide to generate the 

corresponding benzyl bromide stoppers 3-5, 3-6, 3-7 and 3-8 (Scheme 3.1). Due to the 

high purity requirement for incorporation into [2]rotaxanes, each compound was purified 

by flash column chromatography. 
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Scheme 3.1 – Synthetic route for stoppers. 
 

 The [2]rotaxanes based on our well established templating motif, incorporating 

1,2-bis(pyridinium)ethane threads and DB24C8 macrocycles,113-128 were synthesized in a 

fashion similar to that described in Chapter 2.  However, some modifications were 

introduced that proved to be marked advances in the synthesis of these complex 

structures. As outlined in Chapter 2, the preparation of the rotaxanes comprised some 

challenges, mainly time constraints.  Due to the solubility differences between the thread 

and stoppers with increased alkyl chain lengths, reaction times were long with stirring at 

room temperature from three weeks to nearly two months, usually resulting in incomplete 

rotaxane formation. Our efforts to decrease reactions times by heating were thwarted by a 

marked decrease in pseudorotaxane formation.  

 In recent years, an area of growing interest is that of microwave assisted organic 

synthesis.141-145 Due to the internal heating by microwaves, this technology can shorten 

reaction times, simplify work up procedures and improve overall efficiency. In our 

attempts to decrease reaction times and increase product yields, microwave irradiation 
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was employed in place of room temperature stirring. Microwave synthesis was employed 

at temperatures as high as 60 ºC and yielded nearly complete rotaxane formation (80-90 

%) on a gram-scale in 5 to 30 h. To synthesize the [2]rotaxanes 3-94+ and 3-114+ through 

3-134+ one equivalent of thread and five equivalents of the DB24C8 macrocycle were 

dissolved in a minimum amount of hot MeNO2 to form the pseudorotaxane and then this 

solution combined with the appropriate stopper dissolved in a minimum amount of 

CHCl3. The two solvent mixture was then subjected to microwave irradiation at 60 ºC for 

5h, followed by addition of saturated NaOTf (aq), and  continued  microwaving until all  

terminal pyridine  groups were alkylated (Scheme 3.2). 
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Scheme 3.2 - Improved synthetic route to [2]rotaxanes 3-94+, 3-114+, 3-124+and          
3-134+. 
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Significant π-stacking interactions between the electron-rich catechol of the 

crown and the electron-poor pyridinium rings of the axle give rise to a charge transfer 

interaction that imparts the pseudorotaxane with a characteristic yellow colour and the 

rotaxane with a characteristic orange-red colour. Rotaxane formation was monitored by 

1H NMR spectroscopy or more simply by a colour change before (yellow), and after 5h 

of microwaving (orange-red); see Figure 3.2. Since the different components have very 

different solubility properties, there are still some problems which prevent the reaction 

time from being shortened even further.  

 
Figure 3.2 - Colour of [2]pseudorotaxane at t = 0 (left) and of [2]rotaxane 3-94+ at      
t = 5 h after applying microwave irradiation (right). 
 

3.2.2 Purification 

 Rotaxanes were typically purified by numerous recrystallizations followed by 

column chromatography employing assorted combinations of polar solvents with salt 

solutions to move the charged species.28-33,113-128 This particular system introduces the 

further complexity of large solubility differences for the reactants due to the large non-

polar alkyl chains of the stopper and the polar ionic core. For [2]rotaxanes purified in 

Chapter 2, decomposition in some manner was suspected due to the small amounts of 

product recovered from both bench top columns and preparative TLC plates with 7:1:2 

(MeOH: 2M NH4Cl: MeNO2) as eluant on ultrapure normal phase silica gel. It was also 
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observed that when employing automated flash chromatography with a Combiflash Rf 

system, cleavage at the quaternary pyridinium ethyl bridge was identified. This was noted 

by the recovery of the mono stoppered 4-4'-bipyridine in large quantities. This type of 

cleavage has been previously reported for methyl viologens with cleavage occurring 

through cation-radical formation in the presence of aqueous base.146-149  

 We are still uncertain as to the mechanism through which this cleavage occurs, 

since the reduction to the cation-radical usually requires a pH below 10, but are 

convinced that the silica gel facilitates its formation. We believe this occurs with all 

stoppered systems having the 1,2-bis(pyridinium)ethane bridge which is reflected in the 

low yields reported over the years. However, the product and cleaved species were 

chemically different enough not to have ever been isolated. Interestingly, we have yet to 

recover any 4-4'-bipyridine and assume this must be due to the stabilizing effects of the 

stopper. This hurdle was overcome by employing MeOH as the eluant on fully end-

capped RP-C18 silica gel, with full recovery of the rotaxane. The present issue with the 

RP-C18 silica is once any end capping groups are removed, for example after one to two 

uses, the cleaved species is once again detected. 

3.2.3 1H NMR Spectroscopy 

 Comparison of the 1H NMR spectra of the naked dumbbell 3-104+ to the 

[2]rotaxane 3-94+ prepared with the 1,2-bis(pyridinium)ethane/DB24C8 binding motif 

clearly shows the effect of all three non-covalent interactions with the introduction of the 

DB24C8 macrocycle (Figure 3.3). Ethylene protons of the recognition site, e, and α-

pyridinium protons, d, are deshielded due to hydrogen bonding with the oxygen atoms of 

the crown ether. Conversely, β-pyridinium protons, b and c, are shielded due to π-
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stacking interactions between the electron rich catechol rings of the crown ether and the 

electron poor pyridinium rings of the thread. Other protons g, h and f, do not shift as they 

are not directly involved in any non-covalent interactions with the crown ether. 
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Figure 3.3 - a) Structure of 3-104+ and 3-94+ and b) 1H NMR spectra of 3-104+ and     
3-94+ in CD3CN. 
 

3.2.4 Mass Spectrometry 

 Mass spectrometry was used as an analytical tool to confirm the formation of all 

molecular ions for [2]rotaxanes 3-94+ and  3-114+ through  3-134+ (Section 3.6).   For  
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Figure 3.4 - ESI-Mass spectra of experimental data for a) 3-9+, b) 3-92+, c) 3-93+ and 
d) 3-94+. 
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example, a sample of [3-9][OTf]4 was analyzed in a solution of acetonitrile and the 

spectra for the 1+, 2+, 3+ and 4+ molecular ions are shown in Figure 3.4. Sufficient 

resolution allowed for exact mass measurements to within 5 ppm of the calculated exact 

masses for all except the 1+ species, confirming the molecular formula of [3-9][OTf]4. 

Table 3.1 summarizes these MS values. The spectra show the typical splitting patterns for 

multiply charged species. 

Table 3.1 - Calculated and found exact masses for [2]rotaxane [3-9][OTf]4. 

Molecular Ion Calc. m/z (g/mol) Expt. m/z (g/mol) Δ (ppm) 

3-9+ 2434.2419 2436.6560 - 
 3-92+ 1142.6447 1142.6486 3.4 
 3-93+ 712.1123 712.1154 4.5 
 3-94+ 496.8460 496.8460 0 

 

3.3 LIQUID CRYTSAL PHASE CHARACTERIZATION  

3.3.1 Thermal Gravimetric Analysis (TGA) 

 The TGA curves for all [2]rotaxanes were obtained at a rate of 2 ºC/min under He 

(Figure 3.5). Decomposition occurs in the same manner as discussed in Chapter 2 with 

two distinct steps of weight loss. The first step loss is attributed to the stoppers, indicating 

that the bond between the pyridinium and benzylic stopper is thermally most labile with 

decomposition occurring above 200 ºC. The second step weight % loss is due to the 

DB24C8 macrocycle with decomposition occurring at temperatures above 325 ºC. The 

weight % values of the individual components for the [2]rotaxanes with regard to the 

entire molecule including the four triflate anions were calculated and are in good 

agreement with the separate steps in weight loss observed (Table 3.2).  
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Figure 3.5 - TGA curves of [2]rotaxanes 3-94+, 3-124+ and 3-134+ at 2 ºC/min under 
He. 
 

Table 3.2 - Calculated weight % values for components of [2]rotaxanes with actual 
weight % values for the first step losses. 

Compound 2 Stoppers  
(actual %) 

2 Stoppers  
(calc. %)  

Axle (%) 4 OTf anions DB24C8 
(%) 

3-94+ 45.2 46.5  13.2 23.1 17.3 
3-114+ 45.4 47.6  12.9 22.6 17.0 
3-124+ 46.8 47.6  12.9 22.6 17.0 
3-134+ 50.4  49.8  12.4 22.6 17.0 

 

3.3.2 Defect Textures Observed by Polarizing Optical Microscopy (POM) 

 The POMs observed for all [2]rotaxanes 3-94+ and 3-114 through 3-134+ did not 

show any characteristic textures, making classification difficult, although some exhibited 

some similarities to textures reported for small molecule LCs. Clearing into the isotropic 

liquid was broad for all [2]rotaxanes which ranged between 8 to 10 ºC, as observed by 

POM. [2]Rotaxanes 3-94+ and 3-114+ did not clear into the isotropic liquid phase before 

their decomposition at temperatures above 200 ºC, as determined by TGA, and thus their 
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textures were not studied above 190 ºC. Both showed similar behaviour upon heating and 

cooling cycles, with the exception that 3-94+ crystallized from MeCN with the formation 

of plates, and 3-114+ precipitated from MeCN forming a liquid crystalline phase (Figure 

3.6a and 3.7a, respectively). This difference is due to how the straight chains pack; the so 

called odd-even effect of aliphatic chains. Both materials demonstrated high 

birefringence across the entire temperature range from 15 to 190 ºC with a large number 

of disclination lines, which is a defect in the orientation of the director. The viscosity of 

these [2]rotaxanes were not significantly reduced compared to the [2]rotaxane 2-174+  

 
Figure 3.6 - POM of 3-94+ (crossed polarizers): a) crystallized from MeCN @ 25 ºC, 
b) squeezed between glass slides @ 100 ºC and c) @ 25 ºC upon cooling from 190 ºC. 
 

 
Figure 3.7 - POM of 3-114+ (crossed polarizers): a) precipitated from MeCN @ 25 
ºC, b) squeezed between glass slides @ 25 ºC and c) @ 25 ºC upon cooling from     
190 ºC. 
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discussed in Chapter 2. The natural textures of 3-94+ and 3-114+ are shown in Figure 3.6c 

and 3.7c, respectively. 

 [2]Rotaxane 3-124+ precipitated from MeCN forming a smectic schlieren-like 

texture with curvature and with singularities resolved showing four-fold brushes, typical 

of a tilted SmC phase (Figure 3.8a). Upon heating and softening of the material the 

texture changed to that of a less birefringent crystalline-like material between 

approximately 110 and 165 ºC, at which point the birefringence nearly disappeared with 

an increase in fluidity at 170 ºC (Figure 3.8b). A broken focal conic type texture grew in 

at 175 ºC and remained until clearing into the isotropic liquid phase at 193 ºC. The  

 
Figure 3.8 - POM of 3-124+ (crossed polarizers): a) precipitated from MeCN @ 25 
ºC, b) squeezed between glass slides @ 150 ºC, c) squeezed between glass slides @ 
185 ºC and d) @ 25 ºC upon cooling from Ti = 193 ºC. 
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broken focal conic type texture returned upon cooling at 182 ºC and remained when 

cooled to room temperature. All textural changes were reversible by POM with the 

exception of the schlieren texture with the four-fold brushes that was only observed when 

the material was precipitated from solution and hence the alignment was influenced by 

the solvent. The formation of broken focal conic defect textures confirms a preferential 

orientation in which the smectic layers are perpendicular to the substrate plane.  

 [2]Rotaxane 3-134+ crystallized from MeCN forming a soft crystalline phase with 

highly birefringent crystalline domains as well as smectic schlieren domains with 

singularities resolved showing four-fold brushes, again typical of a tilted SmC phase 

(Figure 3.9a). Upon heating and softening of the material the texture changed to that of a 

less birefringent oily-streak texture at 105 ºC and remained until clearing into the 

isotropic liquid phase at 172 ºC. As seen with all these [2]rotaxanes, upon cooling from 

the isotropic liquid a broken focal conic defect texture was observed, with many 

disclination lines, indicative of a lamellar phase. All textural changes were reversible by 

POM with the exception of the schlieren texture with the four-fold brushes that was only  

 
Figure 3.9 - POM of 3-134+ (crossed polarizers): a) crystallized from MeCN @ 25 ºC, 
b) squeezed between glass slides @ 109 ºC and c) @ 25 ºC upon cooling from            
Ti = 172 ºC. 
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ever observed when the material was crystallized from solution and hence is a result of 

the effect of solvent on molecular packing.  

3.3.3 Differential Scanning Calorimetry (DSC) 

 DSC analysis of both freshly crystallized and dried samples were recorded in 

order to observe the effect of the solvent on the changes in molecular packing within the 

soft crystal/liquid crystal phase(s). All crystallized samples were freshly 

crystallized/precipitated from an MeCN solution and then dried under a stream of 

nitrogen gas and carefully transferred into aluminum crucibles. All dried samples were 

heated to 85 ºC under vacuum for at least 8 h and then transferred into aluminum 

crucibles. All [2]rotaxanes showed polymorphism upon heating the crystallized samples, 

with additional peaks that were not observed upon subsequent heating of the crystallized 

samples and were never observed with the dried samples. This behaviour is a result of the 

materials ability to organize into an equilibrium state with increased fluidity upon 

increasing the temperature, which is supported by these additional transitions occurring at 

temperatures above 50 ºC coinciding with melting of the aliphatic side chains (Figure 

3.10).  

 Transition temperatures and calculated enthalpies are listed in Table 3.3 for the 

dried [2]rotaxanes. All showed glass transitions (Tg) upon heating and were not resolved 

on cooling for 3-114+ and 3-134+ (Figure 3.11). Melting into the isotropic liquid was only 

observed for 3-134+, coinciding with what was observed by POM. The odd straight chain 

[2]rotaxane 3-94+ showed thermally reversible melting transitions upon heating and 

crystallization transitions upon cooling centered at 21 ºC, the largest with an enthalpy of 

19.6 kJ/mol. Not surprisingly, the even straight chain [2]rotaxane 3-114+ showed similar  
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Figure 3.10 - First heating DSC runs of freshly crystallized (black) and dried 
(orange) [2]rotaxane 3-94+ at a rate of 10 ºC/min under N2. 
 
transitions with the largest enthalpy of 34.7 kJ/mol, occurring at approximately the same 

temperature as 3-94+. Small textural changes observed by POM for both 3-94+ and 3-114+ 

between 15 and 50 ºC coincide with transitions observed by DSC. 

Table 3.3 - Transition temperatures (ºC, midpoint)                                                        
and enthalpies (kJ/mol) determined by DSC at scan                                                                 
rates of 10 ºC/min for [2]rotaxanes. 

Compound 2nd Heating Cooling 

3-94+ -15 (Tg) -18 (Tg) 
 12.5 (-19.60) 17.8 (16.56) 
 17.8 (-16.22) 21.9 (9.96) 
  28.1 (5.96) 

3-114+ 16.4 (-34.75) 13.1 (31.81) 
 35.2 (-5.18) 22.6 (2.44) 
 83 (Tg) 30.1 (3.06) 

3-124+ 67 (Tg) 51 (Tg) 
 129.6 (6.53)  
 155.3 (-4.58)  

3-134+ 74 (Tg) n.t. 
 167.7 (-1.94)  

n.t. : no transition observed. 
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 The branched [2]rotaxane 3-124+ showed a broad reversible glass transition with 

the midpoint just over 50 ºC. Only upon heating is there an exothermic transition at 129.6 

ºC with an enthalpy of 6.53 kJ/mol, followed by an endothermic transition at 155.3 ºC 

with an enthalpy of 4.58 kJ/mol. The exothermic transition is a cold crystallization 

followed by the endothermic melting transition. Cold crystallization is a kinetic effect 

and occurs when the material does not have adequate time or mobility upon cooling from 

the isotropic liquid and hence does not fully crystallize. However upon heating, the 

material becomes mobile enough to crystallize further before the melting transition. 

These reversible transitions were confirmed by POM. 

a) b)

d)c)

-50 0 50 100 150 200
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 2nd heat
 Cool

H
ea

t G
en

er
at

ed
 (m

W
)

Temperature (oC)
-50 0 50 100 150 200

-0.4

-0.2

0.0

0.2

0.4  2nd heat
 Cool

H
ea

t G
en

er
at

ed
 (m

W
)

Temperature (oC)

-50 0 50 100 150 200
-0.4

-0.2

0.0

0.2

0.4
 2nd heat
 Cool

H
ea

t G
en

er
at

ed
 (m

W
)

Temperature (oC)

-50 0 50 100 150 200
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 2nd heat
 Cool

H
ea

t G
en

er
at

ed
 (m

W
)

Temperature (oC)

a) b)

d)c)

-50 0 50 100 150 200
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 2nd heat
 Cool

H
ea

t G
en

er
at

ed
 (m

W
)

Temperature (oC)
-50 0 50 100 150 200

-0.4

-0.2

0.0

0.2

0.4  2nd heat
 Cool

H
ea

t G
en

er
at

ed
 (m

W
)

Temperature (oC)

-50 0 50 100 150 200
-0.4

-0.2

0.0

0.2

0.4
 2nd heat
 Cool

H
ea

t G
en

er
at

ed
 (m

W
)

Temperature (oC)

-50 0 50 100 150 200
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 2nd heat
 Cool

H
ea

t G
en

er
at

ed
 (m

W
)

Temperature (oC)

 
Figure 3.11 - Second heating and cool DSC runs of [2]rotaxanes a) 3-94+, b) 3-114+,   
c) 3-124+ and d) 3-134+ at 10 ºC/min under N2. 
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3.3.4 Variable Temperature X-Ray Diffraction (vt-XRD) 

 Bulk samples for variable temperature X-ray diffraction (vt-XRD) were initially 

heated to 190 ºC for [2]rotaxanes 3-94+ and 3-114+ and to the isotopic liquid for 

[2]rotaxanes 3-124+ and 3-134+ and then cooled back to room temperature in order to 

allow the materials to self-organize into thermally controlled states.  Hence, data for vt-

XRD were collected for the second heating and cooling in order to study their transitions. 

All [2]rotaxanes show intense small angle reflections between 47 and 32 Å which are 

attributed to the layer spacing of lamellar phases, several peaks between 16 and 10 Å 

which likely result from in-plane packing order as well as sharp or broad reflections 

between 6 and 4 Å which indicate a crystalline or amorphous state of the aliphatic chains. 

The results obtained from the vt-XRD coincide with that obtained from DSC and POM. 

 Large differences are observed in the reflections for the odd and even straight 

chain substituted [2]rotaxanes 3-94+ and 3-114+ (Figure 3.12a and 3.12b, respectively). 

The odd chain [2]rotaxane 3-94+ forms a soft crystalline phase over the entire temperature 

range from -25 to 190 ºC with a reflection of 45.1 Å with moderate intensity and a 

reflection of 32.7 Å with strong intensity in the small angle region. The phase was not 

investigated further for the determination of the structure. However, 45.1 Å agrees with 

the length of the molecule.   

 On the contrary, the even [2]rotaxane 3-114+ forms an amorphous phase over the 

entire temperature range. A SmA phase is observed below 100 ºC with a layer spacing of 

46.6 Å and a second order reflection at 23.3 Å (Figure 3.12b). This layer spacing is in 

good agreement with the length of the molecule, and formation of approximately one 

molecule thick lamellar layers is proposed (Figure 3.12d). An additional mesophase is 
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observed above 100 ºC with intense reflections in the small angle region at 46.5 and 55.3 

Å. This unknown phase was not investigated further. However, both reflections are 

longer than the length of the molecule, suggesting that the phase is not lamellar. Hence, 

by increasing the length of the chain by only one carbon the ability of the molecules to 

adequately pack results in a smectic liquid crystal over the highly crystalline lamellar 

mesophase. Unfortunately, neither compound clears into the isotropic liquid before 

decomposition above 200 ºC.  
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Figure 3.12 - vt-XRD data for a) 3-94+, b) 3-114+ and c) 3-124+; d) molecular 
modeling (MM3) diagram showing self-organization of material into a SmA phase 
(alkyl chains were input in a disordered fashion to simulate packing.) 
 
 The branched hexadecane substituted [2]rotaxane 3-124+ forms a highly ordered 

lamellar phase as indicated by the presence of a second order reflection (d20). The layer 

spacing is 37.8 Å with the second order peak at 18.9 Å (Figure 3.12c). This layer spacing 

is in good agreement with the length of the molecule and formation of one molecule thick 
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lamellar layers is proposed. The branching chains pack well enough to allow 

crystallization, with a small amount of crystallinity being observed over the entire 

temperature range between 6 and 4 Å. An amorphous smectic phase is only observed 

upon cooling from the isotropic liquid and is shown in Figure 3.12c at 40 ºC upon 

cooling. This is a kinetic effect because crystallinity reoccurs in the side-chain region 

after several days at room temperature (Figure 3.12c, inset). 

 The introduction of a liquid hyperbranched chain (oxocol) was expected to avoid 

the crystallization of the side-chains due to the decreased likelihood that they could pack 

effectively. Surprisingly, this material was not only less fluid than [2]rotaxane 3-124+, but 

was highly crystalline over the entire temperature range (Figure 3.13b, inset). The 

structure may be lamellar because the smallest angle reflection with d-spacing of 36.8 Å 

has, by far, the highest intensity and this layer spacing agrees with the length of the 

molecule. None of these changes were observed by DSC but various textures were 

observed by POM coinciding with these changes observed by vt-XRD.  
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Figure 3.13 - vt-XRD data for 3-134+, a) with layer spacing defined and b) with 
crystallinity defined. 
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3.3.5 Processing of LC Materials 

 Due to the high viscosity of the [2]rotaxanes and high degree of crystallinity in 

[2]rotaxanes 3-94+ and 3-134+, alignment of these materials was not investigated. Since 

only 3-114+ and 3-124+ displayed lamellar phase behaviour, these were processed by 

applying shear force to determine the ease of alignment and relative viscosity compared 

to the highly viscous [2]rotaxane 2-174+. For a uniform planar SmA phase, the sample 

appears black when the optic axis is oriented along one of the polarizer directions, and 

maximum intensity is observed when the optic axis is oriented at 45º between polarizer 

and analyzer. Both [2]rotaxanes 3-114+ and 3-124+ were relatively fluid and mechanically 

sheared between glass slides at 150 and 160 ºC respectively, producing partial alignment 

with many domains in the direction of the applied shear force, Figure 3.14a (arrow shows 

direction of shear force) and Figure 3.14b (rotated by 45º). This would suggest a forced 

SmA phase with a preferential orientation of the molecule long axis parallel to the 

substrate and layers oriented orthogonal to the substrate. In contrast, these materials were 

not as fluid as the [2]rotaxane 2-174+ which was mechanically sheared at 120 ºC, 30 to 40 

ºC lower with an obvious reduced viscosity. 

 
Figure 3.14 - POMs of 3-114+ a) shear alignment at 150 ºC (in direction of arrow) 
and b) rotated by 45º. 
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3.3.6 Calculated Packing Volumes and Molecular Lengths 

 Space filling calculations were performed to compare the molecular dimensions 

with the layer spacings obtained by XRD for [2]rotaxanes 3-94+ and 3-114+ through 3-

134+. The layer spacings are comparable to the length of these molecules, and agree well 

with calculations based on amorphous side chains and space filling considerations. As 

mentioned in Chapter 2, the cylindrical volume of the [2]rotaxane core, with DB24C8 

macrocycle, including the four triflate anions is estimated to be 2400 Å3, based on a 

length of 27.4 Å and an average diameter of 10.6 Å. The length and average diameter of 

the cores were calculated based on the dimensions of the [2]rotaxane core in the single 

crystal structure and free rotation over the long axis of the molecule (Figure 2.8).  

 The volumes occupied by the side chains of the benzyl dicarboxylate units are 

calculated to be 1190, 1270, 1275 and 1360 Å3 , for alkyl chains of 15, 16, 16 (branched) 

and 18 (hyperbranched) carbon atoms respectively, based on established packing 

volumes in liquid phases.135-136 Based on these volumes and the diameters of the cores, 

the lengths of the cylindrical spaces occupied by the side chains of the benzyl 

dicarboxylate units were calculated and added to the length of the core (27.4 Å), giving 

reasonable agreement with the observed spacings for all four compounds (Table 3.4). 

Due to branching and hyperbranching of the chains, the calculated lengths are 

approximately 5 to 6 Å longer than the actual lengths of the molecules for [2]rotaxanes 3- 

124+ and 3-134+, respectively. The molecular length for 3-94+ was found to be 41 Å, but 

this crystalline phase is not likely a lamellar phase. 
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Table 3.4 - Obtained (XRD) and calculated layer                                                      
spacings of [2]rotaxanes 3-94+ and 3-114+ through 3-134+. 

Compound d10 (Å) lcalc (Å) 

3-94+ 32.7 41  
 45.1  

3-114+ 46.6 42  
3-124+ 37.8 42  
3-134+ 36.2 43 

 28.1  
 22.5  

 
 These calculated molecular lengths confirm the likelihood of a SmA phase for 3-

114+ (below 100 ºC) and 3-124+, since the tilted SmC layer spacing would be markedly 

shorter than the observed spacing. Consequently, the shorter observed layer spacings at 

28.1 Å and 22.5 Å with larger layer spacing at 36.2 Å for 3-134+ could be lamellar in 

nature but the phase was not investigated further.  

3.3.7 Liquid Crystal Phase Determination 

 The mesophases formed by [2]rotaxanes 3-94+ and 3-112+ through 3-132+ were 

fully characterized by POM observations, DSC analysis and vt-XRD analysis. The phase 

characterization and transition temperatures measured by POM and DSC on heating are 

shown in Figure 3.15. The aliphatic straight [2]rotaxanes 3-94+ and 3-114+ both showed 

similar transitions by DSC with melting transitions on heating at approximately 15 ºC, 

however, by POM and vt-XRD there was no change at this temperature. Neither cleared 

into the isotropic liquid before decomposition occurring above 200 ºC, with the odd chain 

[2]rotaxane 3-94+ forming an unidentified crystalline mesophase over the entire 

temperature range. The even chain [2]rotaxane formed a SmA phase, below 100 ºC and a 

unidentified phase over 100 ºC.  
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 By applying a branching extension of the stoppers [2]rotaxane 3-124+ did melt 

into the isotropic liquid at 193 ºC, but there was a small amount of crystallinity in the 

side-chain region over the entire range by XRD until forming a SmA phase above 165 ºC. 

The hyperbranched extended [2]rotaxane 3-134+ showed similar behaviour, showing a 

high degree of crystallinity and was highly viscous and the phase was also designated as 

a lamellar soft crystal. The branching of the alkyl chains did lower the temperature for 

melting into the isotropic liquid for the [2]rotaxanes, over the straight chains, but they 

exhibited crystallinity in the side-chain region over their entire temperature range studied 

and showed increased viscosity. The initial decomposition for each compound is marked 

with a black line in Figure 3.15, with decomposition for all occurring above 200 ºC.  
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Figure 3.15 - Phase transition temperatures for [2]rotaxanes 3-94+ and 3-114+ through 
3-134+ measured by DSC and POM on heating. (green, crystalline; violet, unidentified 
mesophase; navy, SmA; maroon, lamellar soft crystal. The start of decomposition is 
marked with a black line.) 
 

3.4 SUMMARY AND CONCLUSIONS 

 A reduction in the viscosity of liquid crystalline [2]rotaxanes incorporating the 

(1,2-bis(dipyridinium)ethane)/DB24C8 pseudorotaxane motif by increasing the length of 

the aliphatic chains on the stopper, and by utilizing a branched and hyperbranched 

aliphatic chain was attempted. The odd straight chain substituted [2]rotaxane 3-94+ was a 

soft crystalline material and its mesophase not identified. The even chain substituted 

[2]rotaxane 3-114+ formed a SmA liquid crystal below 100 ºC and an unidentified 
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amorphous mesophase above 100 ºC, with the SmA phase being confirmed by POM and 

vt-XRD. The branched [2]rotaxane 3-124+ formed a non-tilted lamellar phase with a 

small degree of crystallinity in the side-chain region with SmA phase above 165 ºC. The 

hyperbranched [2]rotaxane 3-134+ formed a lamellar crystalline mesophase. All showed 

slightly lower viscosity than [2]rotaxane 2-174+ at high temperatures, but increasing the 

overall molecular weight increased the clearing temperatures into the isotropic liquid 

phase and the odd and even straight chain [2]rotaxanes 3-94+ and 3-114+ did not clear into 

the isotropic liquid phase before their decomposition temperatures. Due to the small 

reduction in viscosity, the fluidity was not markedly increased and alignment of these 

materials was not investigated.  

 This design is at the mercy of high viscosity and high clearing temperatures into 

the isotropic liquid with increasing size. These setbacks can be overcome by employing 

two different approaches. One approach would be to employ stoppers extended with 

functionalities that are typical in small molecule calamitic liquid crystals; that is, 

something other than purely aliphatic chains. The other approach would focus on 

increasing the thermal stability of the system by removing the thermally labile pyridinium 

benzylic bond which breaks above 200 ºC. This requires new rotaxane designs which will 

be discussed in Chapter 4. 
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3.5 EXPERIMENTAL 

3.5.1 General Comments 

 Sodium trifluoromethanesulfonate, diethyl-5-(hydroxymethyl)-isophthalate, 1- 

pentadecanol, 1-hexadecanol, 2-hexyl-1-decanol, titanium isopropoxide, phosphorus 

tribromide, tetrabutyl ammonium iodide (TBAI) and DB24C8 were purchased from 

Aldrich and used as received. 1-Octanol,5,7,7-trimethyl-2-(1,3,3-trimethylbutane) 

(oxocol) was purchased from Nissan Chemical Industries and used as received. 

Deuterated solvents were obtained from Cambridge Isotope Laboratories and used as 

received. Solvents were dried using an Innovative Technologies Solvent Purification 

System. Thin layer chromatography (TLC) was performed using Teledyne Silica gel 60 

F254 plates and viewed under UV light. Column chromatography was performed using 

Silicycle Ultra Pure Silica Gel (230 – 400 mesh). Flash column chromatography was 

performed using Teledyne Ultra Pure Silica/RP-C18 Silica Gel (230 – 400 mesh) on a 

Teledyne Isco Combiflash Rf. All flash chromatography was performed under pressure 

(120 mL/min. - 200 mL/min.) for normal phase silica and (10 mL/min. - 40 mL/min.) for 

RP-C18 silica, with increasing pressure corresponding to larger columns. Unless 

otherwise stated, all flash chromatography involved applied gradient elution from 0 - 100 

% with increasing polar solvent with respect to less polar solvent. Length of column 

(column volumes - CV) were determined by separations on preliminary TLC runs. 1H 

NMR, 13C NMR and 2-D experiments were performed on a Brüker Avance 500 

instrument, with working frequency of 500.13 MHz for 1H nuclei, and 125.7 MHz for 13C 

nuclei. Chemical shifts are quoted in ppm relative to tetramethylsilane, using the residual 

solvent peak as a reference standard. Conventional 2-D NMR experiments (1H-1H 
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COSY) and (1H-13C HETCOR) were conducted and used to help assign all peaks. High 

resolution mass spectrometry (HR-MS) experiments were performed on a Micromass 

LCT Electrospray (ESI) time-of-flight (TOF) Mass Spectrometer. Solutions of 50-100 

ng/µL were prepared in CH3CN and injected for analysis at a rate of 5 µL/min using a 

syringe pump. Thermal gravimetric analysis was conducted on a Mettler Toledo TGA 

SDTA 851e.  Helium (99.99 %) was used to purge the system with a flow rate of 30 

mL/min.  Samples were held at 25 ºC for 30 min before heated to 550 ºC at 2 ºC/min. A 

mass range between 16 m/z and 150 m/z was constantly scanned. All samples were run in 

aluminum crucibles.  Powder XRD measurements where recorded on a Brüker D8 

Discover diffractometer equipped with a Hi-Star area detector and GADDS software 

operated at 40 kV and 40 mA.  CuKα1 radiation (λ = 1.54187 Å) was used and the initial 

beam diameter was 0.5 mm.  A custom made Instec hot stage (based on HS-400) was 

used for vt-XRD that covers a temperature range of -40 to 350 ºC. Bulk samples for 

variable temperature XRD were filled into a 2 mm diameter hole in a 1 mm thick copper 

plate. This plate was mounted in an Instec hot-stage, aligned, and run at theta angle 11º 

for 60 min.  Spectra were combined and evaluated in EVA and plotted with Origin. 

Polarized light microscopy was performed on an Olympus TPM51 polarized light 

microscope equipped with a Linkam variable temperature stage HCS410 and digital 

photographic imaging system (DITO1). 
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3.5.2 Synthesis of 3-1 

Diethyl-5-(hydroxymethyl)-isophthalate (2.79 g, 0.0111 mol), 1-pentadecanol 

(20.21 g, 0.0885 mol), and Ti(O-i-Pr)4 (4.71 g, 0.0166 mol) were heated (130 ºC) under a 

nitrogen atmosphere for 3 days. The EtOH bi-product was removed via a Dean Stark 

apparatus. The solution was neutralized with 0.1 M HCl yielding a waxy solid which was 

then filtered and washed with H2O. The solid was taken up in CHCl3, dried with MgSO4, 

filtered and concentrated to a white solid. The product was then purified by flash column 

chromatography on silica gel with (CHCl3: MeOH) gradient (0 - 5 % MeOH) as eluant. 

The resulting white solid was collected. Yield: 5.94 g, 87 %. 

 

Table 3.5 – 1H NMR data of 3-1 in CDCl3. MW= 616.954 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.56 s  1 -- 
b 8.19 s  2 -- 
c 4.73 s  2 -- 
d 4.30 t 4 3Jde = 6.79 

e 1.75 tt 4 3Jed = 6.79, 3Jef = 7.25
f 1.52 tt 4 3Jfe = 3Jfg = 7.25 
g 1.40 tt 4 3Jgf = 3Jgh = 7.25 
h 1.25 m 40 -- 
i 0.85 t 6 3Jhg = 6.87 
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3.5.3 Synthesis of 3-2 

Diethyl-5-(hydroxymethyl)-isophthalate (3.00 g, 0.0119 mol), 1-hexadecanol 

(23.06 g, 0.0951 mol), and Ti(O-i-Pr)4 (5.07 g, 0.0178 mol) were heated (130 ºC) under a 

nitrogen atmosphere for 4 days. The EtOH bi-product was removed via a Dean Stark 

apparatus. The solution was neutralized with 0.1 M HCl yielding a waxy solid which was 

then filtered and washed with H2O. The solid was taken up in CHCl3, dried with MgSO4, 

filtered and concentrated to a white solid. The product was then purified by flash column 

chromatography on silica gel with (CHCl3: MeOH) gradient (0 - 5 % MeOH) as eluant. 

The resulting white solid was collected. Yield: 6.37 g, 83 %. 
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Table 3.6 – 1H NMR data of 3-2 in CDCl3. MW= 645.441 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.56 s  1 -- 
b 8.24 s  2 -- 
c 4.83 s  2 -- 
d 4.33 t 4 3Jde = 6.74 

e 1.77 tt 4 3Jed = 6.74, 3Jef = 7.66
f 1.44 tt 4 3Jfe = 3Jfg = 7.66 
g 1.33 tt 4 3Jgf = 3Jgh = 7.25 
h 1.25 m 44 -- 
i 0.85 t 6 3Jhg = 6.91 
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3.5.4 Synthesis of 3-3 

Diethyl-5-(hydroxymethyl)-isophthalate (3.00 g, 0.0115 mol), 2-hexyl-1-decanol 

(11.18 g, 0.0461 mol), and Ti(O-i-Pr)4 (6.55 g, 0.0231 mol) were heated (130 ºC) under a 

nitrogen atmosphere for 3 days. The EtOH bi-product was removed via a Dean Stark 

apparatus. The solution was neutralized with 0.1 M HCl yielding a waxy solid which was 

then filtered and washed with H2O. The solid was taken up in CHCl3, dried with MgSO4, 

filtered and concentrated to a white solid. The product was then purified by flash column 

chromatography on silica gel with (CHCl3: MeOH) gradient (0 - 5 % MeOH) as eluant. 

The resulting white solid was collected. Yield: 6.92 g, 93 %. 

 

Table 3.7 – 1H NMR data of 3-3 in CDCl3. MW= 645.007 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.61 s  1 -- 
b 8.22 s  2 -- 
c 4.77 s  2 -- 
d 4.25 d 4 3Jde = 5.54 

e 1.78 tt 4 3Jed = 5.54, 3Jef = 5.68
f 1.37 m 48 -- 
g 0.86 t 6 3Jfg = 5.51 
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3.5.5 Synthesis of 3-4 

Diethyl-5-(hydroxymethyl)-isophthalate (3.00 g, 0.0115 mol), 1-oxocol (24.95 g, 

0.0922 mol), and Ti(O-i-Pr)4 (4.91 g, 0.0173 mol) were heated (130 ºC) under a nitrogen 

atmosphere for 3 days. The EtOH bi-product was removed via a Dean Stark apparatus. 

The solution was neutralized with 0.1 M HCl yielding a waxy solid which was then 

filtered and washed with H2O. The solid was taken up in CHCl3, dried with MgSO4, 

filtered and concentrated to a white solid. The product was then purified by flash column 

chromatography on silica gel with (CHCl3: MeOH) gradient (0 - 5 % MeOH) as eluant. 

The resulting white solid was collected. Yield: 5.82 g, 72 %. 
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Table 3.8 – 1H NMR data of 3-4 in CDCl3. MW= 701.114 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.56 s  1 -- 
b 8.22 s  2 -- 
c 4.79 s  2 -- 
d 4.25 m 2 -- 
e 1.83 m 1 -- 
f 1.71 m 1 -- 

g 1.40 m 1 -- 
h 1.12 m 2 -- 
i 1.23 m 2 -- 

j 1.44 m 2 -- 

k 0.97 m 3 -- 
l 0.91 m 3 -- 

m 0.88 m 18 -- 
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3.5.6 Synthesis of 3-5 

3-1 (3.50 g, 0.0057 mol) was dissolved in THF (100 mL) under nitrogen and 

cooled (0 ºC) on ice. Phosphorus tribromide (4.25 mL, 0.0043 mol) 1.0 M in CH2Cl2 was 

added dropwise over 15 min and stirring continued overnight. The solution was 

concentrated and recrystallized from MeOH. Product purified by flash column 

chromatography on silica gel with (hexanes: CH2Cl2) gradient (30 - 100% CH2Cl2) as 

eluant. The resulting white solid, was collected. Yield: 2.91 g, 75 %. 



Improving Mesomorphism in [2]Rotaxanes 
 

138

 

Table 3.9 – 1H NMR data of 3-5 in CDCl3. MW= 679.851 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.59 s  1 -- 
b 8.23 s  2 -- 
c 4.54 s  2 -- 
d 4.34 t 4 3Jde = 6.76 

e 1.78 tt 4 3Jed = 3Jef = 7.10 

f 1.43 tt 4 3Jfe = 3Jfg = 7.10
g 1.31 m 44 -- 
h 0.87 t 6 3Jhg = 6.93 

 

Table 3.10 – 1H NMR data of 3-5 in CD3CN. MW= 679.851 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.47 s  1 -- 
b 8.25 s  2 -- 
c 4.68 s  2 -- 
d 4.33 t 4 3Jde = 6.70 

e 1.67 tt 4 3Jed = 6.70, 3Jef = 7.30 

f 1.44 tt 4 3Jfe = 3Jfg = 7.30 
g 1.32 m 20 -- 
h 0.87 t 6 3Jhg = 6.70 
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3.5.7 Synthesis of 3-6 

3-2 (3.67 g, 0.0057 mol) was dissolved in THF (150 mL) under nitrogen and 

cooled (0 ºC) on ice. Phosphorus tribromide (4.28 mL, 0.0043 mol) 1.0 M in CH2Cl2 was 

added dropwise over 15 min and stirring continued overnight. The solution was 

concentrated and recrystallized from MeOH. Product purified by flash column 

chromatography on silica gel with (hexanes: CH2Cl2) gradient (30 - 100 % CH2Cl2) as 

eluant. The resulting white waxy solid was collected. Yield: 3.50 g, 87 %. 
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Table 3.11 – 1H NMR data of 3-6 in CDCl3. MW= 707.904 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.59 s  1 -- 
b 8.23 s  2 -- 
c 4.54 s  2 -- 
d 4.34 t 4 3Jde = 6.75 

e 1.78 tt 4 3Jed = 3Jef = 7.37 

f 1.42 m 4 -- 
g 1.31 m 48 -- 
h 0.86 t 6 3Jhg = 6.90 

 

Table 3.12 – 1H NMR data of 3-6 in CD3CN. MW= 707.904 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.47 s  1 -- 
b 8.25 s  2 -- 
c 4.68 s  2 -- 
d 4.33 t 4 3Jde = 6.70 

e 1.67 tt 4 3Jed = 6.70, 3Jef = 7.30 

f 1.44 tt 4 3Jfe = 3Jfg = 7.30 
g 1.32 m 48 -- 
h 0.87 t 6 3Jhg = 6.70 
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3.5.8 Synthesis of 3-7 

3-3 (4.53 g, 0.0070 mol) was dissolved in THF (175 mL) under nitrogen and 

cooled (0 ºC) on ice. Phosphorus tribromide (5.27 mL, 0.0053 mol) 1.0 M in CH2Cl2 was 

added dropwise over 15 min and stirring continued overnight. The solution was 

concentrated and product was purified by column chromatography on silica gel with 

(hexanes: CH2Cl2) gradient (30 - 100 % CH2Cl2) as eluant. The resulting beige oil was 

collected. Yield: 3.78 g, 76 %. 
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Table 3.13 – 1H NMR data of 3-7 in CDCl3. MW= 707.904 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.58 s  1 -- 
b 8.23 s  2 -- 
c 4.54 s  2 -- 
d 4.26 d 4 3Jde = 5.68 

e 1.78 ttt 2 3Jed = 3Jef = 8.61 

f 1.33 m 48 -- 
g 0.88 t 6 3Jhg = 9.85 

 

Table 3.14 – 1H NMR data of 3-7 in CD3CN. MW= 707.904 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.47 s  1 -- 
b 8.25 s  2 -- 
c 4.68 s  2 -- 
d 4.33 d 4 3Jde = 6.70 

e 1.67 ttt 2 3Jed = 6.70, 3Jef = 7.30 

f 1.44 m 48 -- 
h 0.87 t 6 3Jhg = 6.70 
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3.5.9 Synthesis of 3-8 

3-4 (5.78 g, 0.0082 mol) was dissolved in THF (200 mL) under nitrogen and 

cooled (0 ºC) on ice. Phosphorus tribromide (6.18 mL, 0.0062 mol) 1.0 M in CH2Cl2 was 

added dropwise over 15 min and stirring continued overnight. The solution was 

concentrated and product was purified by column chromatography on silica gel with 

(hexanes: CH2Cl2) gradient (30 - 100 % CH2Cl2) as eluant. The resulting pale yellow oil 

was collected. Yield: 4.03 g, 64 %. 

 

Table 3.15 – 1H NMR data of 3-8 in CDCl3. MW= 764.010 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.60 s  1 -- 
b 8.23 s  2 -- 
c 4.53 s  2 -- 
d 4.26 m 4 -- 
e 1.83 m 2 -- 
f 1.69 m 2 -- 

g 1.39 m 2 -- 
h 1.11 m 4 -- 
i 1.23 m 4 -- 

j 1.42 m 8 -- 

k 0.96 m 6 -- 
l 0.90 m 6 -- 

m 0.87 m 36 -- 
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Table 3.16 – 1H NMR data of 3-8 in CD3CN. MW= 764.010 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.60 s  1 -- 
b 8.23 s  2 -- 
c 4.53 s  2 -- 
d 4.26 m 4 -- 
e 1.83 m 2 -- 
f 1.69 m 2 -- 

g 1.39 m 2 -- 
h 1.11 m 4 -- 
i 1.23 m 4 -- 

j 1.42 m 8 -- 

k 0.96 m 6 -- 
l 0.90 m 6 -- 

m 0.87 m 36 -- 
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3.5.10 Synthesis of [3-9][OTf]4 and [3-10][OTf]4   

[2-2][OTf]2 (271.0 mg, 0.424 mmol) and DB24C8 (952.0 mg, 2.122 mmol) were 

dissolved in a two-phase NaOTf (aq)/MeNO2 (1 and 35 mL) mixture and placed in a 

thick-walled 80 mL reaction vessel. 3-5 (1.15 g, 1.697 mmol) was dissolved in CHCl3 (45 

mL) and a catalytic amount of TBAI (10 mg) was added to 80 mL vessel with stir bar and 

microwaved for 30 h at 60 ºC. The MeNO2 was washed with H2O (3 x 10 mL), dried over 

MgSO4 and the solvent removed. The residue was stirred in cold MeCN, solid filtered off 

and remaining solution concentrated. The orange residue was dissolved in cold EtOAc, 

solid filtered off and remaining solution concentrated. The orange residue was dissolved 

in cold toluene, solid filtered off and remaining solution concentrated. Product 3-94+ was 

purified and isolated by flash column chromatography on RP-C18 silica gel using MeOH 

as eluant, yielding a red soft solid. Yield: 581.5 mg, 53 %. ESI-MS: m/z 1142.6447 

(calc.) for C126H186F6N4O22S2 [M-2OTF]2+, found 1142.6486. m/z 712.1123 (calc.) for 

C125H186F3N4O19S [M-OTF]3+, found 712.1154. m/z 496.8461 (calc.) for C124H186N4O16 

[M]4+, found 496.8460. The dumbbell 3-104+ (without DB24C8 macrocycle) was also 

isolated from the column. The product was isolated as a waxy pale beige solid. Yield: 

72.48 mg, 8 %. ESI-MS: m/z 918.5398 (calc.) for C102H154F6N4O14S2 [M-2OTF]2+, found 

918.5396, m/z 562.7090 (calc.) for C101H154F3N4O11S [M-OTF]3+, found 562.7088.  
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Table 3.17 – 1H NMR data of [3-9][OTf]4 in CD3CN. MWOTf- = 2585.097 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 9.01 d 4 3Jab = 6.85 
b 8.22 d  4 3Jba = 6.85 
c 8.26 d  4 3Jcd = 6.85 
d 9.33 d 4 3Jdc = 6.85 
e 5.61 s 4 -- 

f 5.98 s 4 -- 

g 8.40 s 4 -- 
h 8.65 s 2 -- 
i 4.35 t 8 3Jij = 6.58 
j 1.78 tt 8 3Jji = 3Jjk = 7.41 
k 1.45 tt 8 3Jkj = 3Jkl = 7.41 

l 1.32 m 88 -- 
m 0.87 t 12 3Jml = 6.88 
n 6.43 dd 4 3Jmeta = 3.63; 3Jortho = 5.90 

o 6.65 dd 4 3Jmeta = 3.63; 3Jortho = 5.90
p 4.01 m 24 -- 
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Table 3.18 – 13C NMR data of [3-9][OTf]4 in CD3CN. MWOTf- = 2585.097 g/mol. 
Quaternary carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 164.86 4 
2 132.53 4 
3 131.11 2 
4 134.52 4 
5 133.94 2 
6 63.64 2 
7 145.82 4 
8 127.25 4 
9 149.31 2 
10 148.90 2 
11 126.03 4 
12 147.14 4 
13 58.49 2 
14 121.55 4 
15 112.61 4 
16 146.89 4 
17 67.68 4 
18 70.29 4 
19 70.65 4 
20 65.83 4 
21 28.41 4 
22 25.81 4 
23 29.47 4 
24 31.74 4 
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25 22.49 32 
26 13.50 4 
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Table 3.19 – 1H NMR data of [3-10][OTf]4 in CD3CN. MWOTf- = 2134.985 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 9.07 d 4 3Jab = 6.81 
b 8.46 d  4 3Jba = 6.81 
c 8.49 d  4 3Jcd = 6.81 
d 9.01 d 4 3Jdc = 6.81 
e 5.29 s 4 -- 

f 5.96 s 4 -- 

g 8.38 s 4 -- 
h 8.67 s 2 -- 
i 4.33 t 8 3Jij = 6.60 
j 1.76 tt 8 3Jji = 3Jjk = 7.39 
k 1.44 tt 8 3Jkj = 3Jkl = 7.39 

l 1.32 m 88 -- 
m 0.88 t 12 3Jml = 6.86 
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3.5.11 Synthesis of [3-11][OTf]4 

[2-2][OTf]2 (257.5 mg, 0.403 mmol) and DB24C8 (1.44 g, 3.226 mmol) were 

dissolved in a two-phase NaOTf (aq)/MeNO2 (1 and 35 mL) mixture and placed in a 

thick-walled 80 mL reaction vessel. 3-6 (910.0 mg, 1.613 mmol) was dissolved in CHCl3 

(45 mL) and a catalytic amount of TBAI (10 mg) was added to 80 mL vessel with stir bar 

and microwaved for 20 h at 50 ºC. The MeNO2 was washed with H2O (3 x 10 mL), dried 

over MgSO4 and the solvent removed. The residue was stirred in cold MeCN, solid 

filtered off and remaining solution concentrated. The orange residue was dissolved in 

cold EtOAc, solid filtered off and remaining solution concentrated. The orange residue 

was dissolved in cold toluene, solid filtered off and remaining solution concentrated. 

Product was purified and isolated by flash column chromatography on RP-C18 silica gel 

using MeOH as eluant, yielding a red soft solid. Yield: 532.5 mg, 50 %. ESI-MS: m/z 

730.7998 (calc.) for C129H194F3N4O19S [M-OTF]3+, found 730.7989. m/z 510.8617 (calc.) 

for C128H194N4O16 [M]4+, found 510.8642.  
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Table 3.20 – 1H NMR data of [3-11][OTf]4 in CD3CN. MWOTf- = 2641.204 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.98 d 4 3Jab = 6.54 
b 8.17 d  4 3Jba = 6.54 
c 8.21 d  4 3Jcd = 6.54 
d 9.31 d 4 3Jdc = 6.54 
e 5.60 s 4 -- 

f 5.97 s 4 -- 

g 8.39 s 4 -- 
h 8.65 s 2 -- 
i 4.35 t 8 3Jij = 6.58 
j 1.78 tt 8 3Jji = 3Jjk = 7.36 
k 1.42 tt 8 3Jkj = 3Jkl = 7.36 

l 1.33 m 96 -- 
m 0.88 t 12 3Jml = 6.89 
n 6.43 dd 4 3Jmeta = 3.61; 3Jortho = 5.87 

o 6.64 dd 4 3Jmeta = 3.61; 3Jortho = 5.87
p 4.04 m 24 -- 
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Table 3.21 - 13C NMR data of [3-11][OTf]4 in CD3CN. MWOTf- = 2641.204 g/mol. 
Quaternary Carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 164.83 4 
2 132.51 4 
3 131.09 2 
4 134.50 4 
5 135.98 2 
6 63.61 2 
7 145.80 4 
8 127.22 4 
9 149.31 2 
10 149.23 2 
11 126.05 4 
12 147.12 4 
13 58.41 2 
14 121.52 4 
15 112.57 4 
16 146.86 4 
17 67.65 4 
18 70.25 4 
19 70.61 4 
20 65.82 4 
21 28.39 4 
22 25.80 4 
23 29.46 40 
24 31.34 4 
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25 22.49 4 
26 13.50 4 
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3.5.12 Synthesis of [3-12][OTf]4 

[2-2][OTf]2 (197.0 mg, 0.309 mmol) and DB24C8 (1.11 g, 2.468 mmol) were 

dissolved in a two-phase NaOTf (aq)/MeNO2 (1 and 25 mL) mixture and placed in a 

thick-walled 80 mL reaction vessel. 3-7 (875.0 mg, 1.234 mmol) was dissolved in CHCl3 

(20 mL) and a catalytic amount of TBAI (10 mg) was added  to 80 mL vessel with stir 

bar and microwaved for 25 h at 50 ºC. The MeNO2 was washed with H2O (3 x 10 mL), 

dried over MgSO4 and the solvent removed. The residue was stirred in cold MeCN, solid 

filtered off and remaining solution concentrated. The orange residue was dissolved in 

cold EtOAc, solid filtered off and remaining solution concentrated. The orange residue 

was dissolved in cold toluene, solid filtered off and remaining solution concentrated. 

Product was purified and isolated by flash column chromatography on RP-C18 silica gel 

using MeOH as eluant, yielding a bright red/orange brittle solid. Yield: 480.7 mg, 59 %. 

ESI-MS: m/z 1170.6760 (calc.) for C130H194F6N4O22S2 [M-2OTF]2+, found 1170.6970. 

m/z 730.7998 (calc.) for C129H194F3N4O19S [M-OTF]3+, found 730.8020.  
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Table 3.22 - 1H NMR data of [3-12][OTf]4 in CD3CN. MWOTf- = 2641.204 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 9.06 d 4 3Jab = 6.76 
b 8.33 d  4 3Jba = 6.76 
c 8.31 d  4 3Jcd = 6.76 
d 9.34 d 4 3Jdc = 6.76 
e 5.61 s 4 -- 

f 6.02 s 4 -- 

g 8.44 s 4 -- 
h 8.65 s 2 -- 
i 4.27 d 8 3Jij = 5.31 
j 1.79 ttt 4 3Jji = 5.89, 3Jjk = 5.80 
k 1.42 dt 16 3Jkj = 6.58, 3Jkl = 6.28 

l 1.36 tt 16 -- 
m 1.27 m 64 -- 
n 0.85 tt 24 -- 
o 6.42 dd 4 3Jmeta = 3.17; 3Jortho = 6.25 

p 6.63 dd 4 3Jmeta = 3.17; 3Jortho = 6.25
q 4.02 m 24 -- 
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Table 3.23 - 13C NMR data of [3-12][OTf]4 in CD3CN. MWOTf- = 2641.204 g/mol. 
Quaternary Carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 165.76 4 
2 132.39 4 
3 130.90 2 
4 134.53 4 
5 134.07 2 
6 63.60 2 
7 145.76 4 
8 127.21 4 
9 149.23 2 
10 148.75 2 
11 125.99 4 
12 147.08 4 
13 58.44 2 
14 121.49 4 
15 112.54 4 
16 146.85 4 
17 70.25 4 
18 67.61 4 
19 70.60 4 
20 67.98 4 
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21 37.27 4 
22 31.65 8 
23 26.55 8 
24 29.37 8 
25 20.55 4 
26 29.13 4 
27 31.72 8 
28 22.46 8 
29 13.51 8 
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3.5.13 Synthesis of [3-13][OTf]4 

[2-2][OTf]2 (189.0 mg, 0.296 mmol) and DB24C8 (1.06 g, 2.368 mmol) were 

dissolved in a two-phase NaOTf (aq)/MeNO2 (1 and 20 mL) mixture and placed in a 

thick-walled 80 mL reaction vessel. 3-8 (904.0 mg, 1.184 mmol) was dissolved in CHCl3 

(10 mL) and a catalytic amount of TBAI (10 mg) was added to 80 mL vessel with stir bar 

and microwaved for 30 h at 50 ºC. The MeNO2 was washed with H2O (3 x 10 mL), dried 

over MgSO4 and the solvent removed. The residue was stirred in cold MeCN, solid 

filtered off and remaining solution concentrated. The orange residue was dissolved in 

cold EtOAc, solid filtered off and remaining solution concentrated. The orange residue 

was dissolved in cold toluene, solid filtered off and remaining solution concentrated. 

Product was purified and isolated by flash column chromatography on RP-C18 silica gel 

using MeOH as eluant, yielding a bright red/orange brittle solid. Yield: 546.0 mg, 67 %. 

ESI-MS: m/z 1226.7385 (calc.) for C138H210F6N4O22S2 [M-2OTF]2+, found 1226.7382. 

m/z 538.8930 (calc.) for C136H210N4O16 [M]4+, found 538.8929.  
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Table 3.24 - 1H NMR data of [3-13][OTf]4 in CD3CN. MWOTf- = 2753.416 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 9.00 d 4 3Jab = 6.60 
b 8.24 d  4 3Jba = 6.60 
c 8.27 d  4 3Jcd = 6.60 
d 9.33 d 4 3Jdc = 6.60 
e 5.61 s 4 -- 

f 5.99 s 4 -- 

g 8.39 s 4 -- 
h 8.68 s 2 -- 
i 4.31 m 8 -- 
j 1.82 m 4 -- 
k 1.71 m 4 -- 

l 1.41 m 4 -- 
m 1.12 m 8 -- 
n 1.24 m 8 -- 

o 1.41 m 16 -- 

p 0.97 m 12 -- 
q 0.90 m 12 -- 
r 0.87 m 72 -- 
s 6.42 dd 4 3Jmeta = 3.90; 3Jortho = 5.59 

t 6.63 dd 4 3Jmeta = 3.90; 3Jortho = 5.59
u 4.03 m 24 -- 
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Table 3.25 - 13C NMR data of [3-13][OTf]4 in CD3CN. MWOTf- = 2753.416 g/mol. 
Quaternary Carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 164.77 4 
2 132.48 4 
3 130.86 2 
4 134.45 4 
5 133.94 2 
6 63.60 2 
7 145.76 4 
8 127.22 4 
9 149.33 2 
10 148.80 2 
11 125.98 4 
12 147.09 4 
13 58.44 2 
14 121.49 4 
15 112.59 4 
16 146.88 4 
17 70.25 4 
18 67.69 4 
19 70.63 4 
20 66.99 4 
21 51.09 4 
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22 24.80 4 
23 26.55 8 
24 22.11 4 
25 26.43 4 
26 49.60 4 
27 30.61 4 
28 29.34 12 
29 30.82 8 
30 18.16 4 

 



CHAPTER 4 
 

A New Design: Liquid Crystal [2]Rotaxanes 
 
 
4.1 INTRODUCTION 
 
 Control over the relative position and motion of components in interpenetrated or 

interlocked molecules can impart machine-like properties at the molecular level, such as 

translation of the macrocycle in a [2]rotaxane molecular shuttle.39-43,123-124,150-151 The 

possibility of integrating molecular machines into self-organized materials arises from 

interest in the potential to control molecular switches with amplification of their 

cooperative motion to produce a macroscopic response within a mesophase. 

 As mentioned in Chapters 2 and 3, a number of [2]rotaxanes based upon a 

tetracatenar motif have demonstrated liquid crystallinity over a wide temperature range. 

However, this [2]rotaxane design has only produced materials with a high viscosity that 

would not be useful for incorporation into a functional material based on a molecular 

shuttle. The high viscosity of the material renders the possibility of shuttling in the 

material at elevated temperatures nearly impossible. The system is also at the mercy of 

high clearing temperatures into the isotropic liquid with increasing size. As mentioned in 

Chapters 2 and 3, although the [2]rotaxanes are thermally stable to 200 ºC, the 

isotropization temperatures for the larger [2]rotaxanes are presently within 10 ºC of this 

making reversibility an issue due to decomposition. 

 Two approaches were taken to address these shortcomings. The first, was to 

employ stoppers extended with functionalities that are typical in small molecule calamitic 

liquid crystals. Use of fluid siloxanes in place of entirely aliphatic chains, for example, 
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has the possibility to reduce the viscosity of the material and lower glass transition 

temperatures because of the greater flexibility of the siloxane backbone.152-156 It was also 

hoped that the presence of the siloxane tail might lead to lower clearing temperatures and 

more interesting physical properties.157 The second approach focuses on increasing the 

thermal stability of the system and reducing its ionic character. This new design 

incorporates stoppering by ester formation, previously reported by Takata et al.,158,159 
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Figure 4.1 – Structural representation of [2]rotaxane: four-charge design (top) and  
[2]rotaxane: two-charge design (bottom) based on tetracatenar design for calamitic 
LCs. 
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which are thermally more stable than the bond between the pyridinium group and 

benzylic stopper. This structural change also reduces the ionic charge of the core from 

four to two. Comparative studies were carried out on the [2]rotaxanes with the aliphatic 

dodecane chain and [2]rotaxanes with an aliphatic extended siloxane functionality to 

determine the effect of these design changes on mesomorphism (Figure 4.1).  

4.2 SYNTHESIS AND CHARACTERIZATION 

4.2.1 Synthesis 

4.2.1.1 Synthesis: Four-Charge Design 

 The new aliphatic extended siloxane stopper was constructed first (Scheme 4.1). 

This begins with the transesterification of dimethyl-5-(hydroxymethyl)-isophthalate with 

an excess of the alkene 3-butene-1-ol in the presence of Ti(O-i-Pr)4 as the catalyst to 

generate the corresponding benzyl alcohol (4-1). Subsequent hydrosilylation of 4-1 in the 

presence of a Pt(0) catalyst gave the bis(siloxane) 4-2. The reaction was monitored by 1H 

NMR spectroscopy and stopped after full formation. This was important to limit the 

amount of beta-elimination. Repeated attempts at bromination of 4-2 via the method 

employed in Chapters 2 and 3 by addition of PBr3 in a 1.0 M CH2Cl2 solution yielded a 

mere 5-12 % of the bis(siloxane)benzylbromide (4-3). 4-2 was most likely destroyed with 

the formation of hydrobromic acid by hydrolysis/condensation of siloxane groups due to 

the acidic environment.160,161 Alternatively, the alcohol was converted to the mesylate in 

the presence of triethylamine to give the product (4-4) in near quantitative yield. 

Compounds 4-1 through 4-4 were oils and were all purified by flash column 

chromatography. 
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Scheme 4.1 - Synthetic route to new stoppers 4-1 through 4-4. 

 Processing and alignment studies require liquid crystalline rotaxanes that can be 

prepared in larger quantities and with high purity. Synthesis and isolation of four-charged 

[2]rotaxanes 2-174+ and 4-54+ were performed in a similar manner to the [2]rotaxanes 

described in Chapter 3. Use of microwave synthesis for 2-174+ allowed isolation of larger 

quantities with higher purity in a fraction of the original time. Scheme 4.2 outlines this 

synthetic methodology. Microwave synthesis was employed at 50 ºC and 200 W and 

yielded near complete rotaxane formation on a gram scale in 25 h for 2-174+ and 10 h for 

4-54+. As in Chapter 3, the [2]rotaxanes were purified by column chromatography on 

reverse phase C18 silica gel at a flow rate of 10 mL/min. 
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Scheme 4.2 - Synthetic route for [2]rotaxanes 2-174+ and 4-54+. 

4.2.1.2 Synthesis: Two-Charge Design 

 The 1,2-bis(4-pyridinium-4-benzylalcohol)ethane two-charged thread was 

previously synthesized in our group162 with an improved version of that synthesis shown 

in Scheme 4.3. A Suzuki coupling reaction was used to synthesize 4-7 in near 

quantitative yield and this was subsequently reduced in the presence of NaBH4 to 

generate 4-8 in a yield of 78 %. Further reaction of 4-8 with 1,2-dibromoethane under 

microwave irradiation at 80 ºC and 200 W for 5 h, gave 4-92+ which was then anion 

exchanged to the triflate salt.  
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Scheme 4.3 - Synthetic route for two-charged thread.  

 The anhydride stoppers were synthesized according to Scheme 4.4. Precursors 2-5 

and 4-1 were first oxidized in the presence of Jones reagent, converting the alcohols to 

acids 4-10 and 4-11.  Hydrosilylation,  under  conditions  mentioned  previously gave  the  

Scheme 4.4 - Synthetic route for stoppers 4-10 through 4-15. 
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bis(siloxane) as the benzoic acid 4-12. Formation of the anhydrides163 (4-13 through 4-

15) from their corresponding acids was achieved quantitatively using half of an 

equivalent of tosyl chloride and excess base. Reaction completion was monitored by 1H 

NMR and 13C NMR spectroscopy.  

 Part of the synthetic attractiveness of this system lies in the ability to incorporate 

different properties into the [2]rotaxane simply by changing the benzyl stoppering group. 

This compact design permits the gram-scale preparation of a range of different rotaxanes 

for systematic studies of their mesomorphism and provides access to liquid crystalline 

rotaxanes that can be processed and aligned more easily.  The methyl substituted 

[2]rotaxane 4-172+ was prepared as a simple model compound. As outlined in Scheme 

4.5, both the [2]rotaxanes 4-172+ and 4-192+ were  synthesized  by  ester  formation  under  
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Scheme 4.5 - Synthetic route for [2]rotaxanes 4-174+ through 4-194+. 
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modified conditions reported by Takata et al.158,159, with Bu3P as the catalyst. Significant 

synthetic improvements were noted; in particular, for this two-charge design the full 

rotaxane formation was complete in 3 h. Interestingly, there is no formation of the usual 

dumbbell side-product (without DB24C8 macrocycle) using this method for which there 

is no apparent explanation. 

4.2.2 1H NMR and 13C NMR Spectroscopy 

 The formation of anhydride stoppers 4-13 through 4-15 were monitored by both 

1H NMR and 13C NMR spectroscopy, since fourier transform infrared (FT-IR) 

spectroscopy was not extremely definitive. Due to symmetry, the 1H NMR spectra of the 

acid and the anhydride are identical, though the 1H NMR spectra does show the complete 

disappearance of the TsCl protons upon complete anhydride formation. 13C NMR 

spectroscopy proved to be the best analytical tool for proving that only the anhydride was  

a)

b)

175 ppm170 165 160 155 150 145 140 135 130 125

a)

b)

175 ppm170 165 160 155 150 145 140 135 130 125175 ppm170 165 160 155 150 145 140 135 130 125  

Figure 4.2 - Stacked 13C NMR spectra of a) 3,5-dicarboxymethylbenzoic acid and b) 
4-14 in the region between 120-175 ppm in CDCl3. 



A New Design: Liquid Crystal [2]Rotaxanes 
 

170

present.  The anhydride synthesis was confirmed by a shift in the carbonyl carbon peak 

from ~170 ppm, for the benzoic acids, to ~160 ppm, for the benzyl anhydrides. The 13C 

NMR spectra for the di-methyl substituted benzoic acid and anhydride are shown in 

Figure 4.2. 

 Figure 4.3 shows the 1H NMR spectra of dumbbell 4-64+ and [2]rotaxane 4-54+ in 

CD3CN illustrating typical 1,2-bis(pyridinium)ethane interactions with DB24C8. The 

ethylene protons of the recognition site, o, and α-pyridinium protons, n, are deshielded 

due to hydrogen bonding with the oxygen atoms of the crown ether, while β-pyridinium 

protons, m and l, are shielded due to π-stacking interactions caused by the ring currents 

of the aromatic rings on the crown ether. The crown ether catechol protons are shielded 

for the same reason. Other protons on the dumbbell, f, h and i, do not shift as they are not 

directly involved in any non-covalent interactions with the crown ether. 
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Figure 4.3 - Stacked 1H NMR spectra of a) dumbbell 4-64+ and b) [2]rotaxane 4-54+ 
in CD3CN. 
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 As expected, [2]rotaxanes 4-182+ and 4-192+ exhibited large chemical shift 

differences compared to that of the free thread 4-92+ and uncomplexed DB24C8 

macrocycle (Figure 4.4).  
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Figure 4.4 - Stacked 1H NMR spectra of a) [2]rotaxane 4-182+ , b) [2]rotaxane 4-192+, 
c) 2-92+ and d) DB24C8 in CD3CN. 
 
 Though this design lacks the strong π-π interactions of the four-charged design, 

comparison of the 1H NMR spectra of the naked dumbbell 4-162+ to the [2]rotaxane 4-

172+ clearly shows the same effect of all three non-covalent interactions responsible for 

the initial self-assembly (Figure 4.5). Where ethylene protons of the recognition site, i, 
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and α-pyridinium protons, h, are deshielded due to hydrogen bonding with the oxygen 

atoms of the crown ether and the β-pyridinium protons g and f, are shielded due to π-

stacking interactions caused by the ring currents of the aromatic rings on the crown ether. 
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Figure 4.5 - Stacked 1H NMR spectra of a) dumbbell 4-162+ and b) [2]rotaxane 4-
172+ in CD3CN. 
 

4.2.3 UV-Visible Spectroscopy 

 The UV-visible spectra of 2-174+ and 4-182+ were obtained using 1 x 10-3 M 

solutions in MeCN (Figure 4.6). The λmax and absorbance values are listed in Table 4.1. 

The molar extinction coefficients were calculated using the Beer-Lambert Law. 

[2]Rotaxanes 2-174+ and 4-54+ are both deep orange in solution, having their λmax at 415 

nm in the visible region of the spectrum. The large absorption is due the intramolecular 

charge transfer between the catechol of the macrocyle and the viologen-like, 

dipyridinium groups  on the recognition site. [2]Rotaxanes 4-182+ and 4-192+  lack the 

strong CT transfer interaction of the four-charged compounds and are both pale yellow in 
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solution, with their λmax at < 400 nm; presumably in the UV range obscured by the other 

absorbances of the molecule.  
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Figure 4.6 - UV-visible spectra of [2]rotaxanes 2-174+ (orange) and 4-182+ (black) in 
CH3CN. 
 

Table 4.1 - Summary of UV-vis data for [2]rotaxanes 2-174+, 4-54+, 4-182+ and 4-192+. 

Compound Concentration λmax Absorbance ε (L cm-1mol-1) 

2-174+ 1 x 10-3 415 0.657 657 
4-54+ 1 x 10-3 415 0.657 657 
4-182+ 1 x 10-3 < 400 -- -- 
4-192+ 1 x 10-3 < 400 -- -- 

 

4.2.4 Single Crystal Structure 

 Single crystal growth of the model compound 4-172+ would aid in packing 

volume and aspect ratio considerations in the liquid crystalline [2]rotaxane molecular 

shuttle design. Unfortunately, the growth of good quality crystals for 4-172+ was 

unsuccessful. However, crystals were grown of the 3,5-dimethyl substituted [2]rotaxane, 

by another group member.162 Figure 4.7 shows a structural model obtained from the 
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combination of the crystal structure of the 3,5-dimethyl substituted [2]rotaxane and 

molecular modeling (MM3) calculations after changing the methyl substituents to 

carboxymethyl groups. This was done in order to estimate packing volumes and 

molecular lengths. The [2]rotaxane was crystallized with tetrafluoroborate as the counter 

anion. 

 
Figure 4.7 - Model of 4-172+ generated from single crystal structure of the 3,5-
dimethyl benzylated [2]rotaxane using MM3; a) ball-and-stick view (carbon = black, 
oxygen = red, nitrogen = blue) and b) space filling view with anions. 
 
 Figures 4.7a and 4.7b show the ball-and-stick and space filling views, 

respectively. The ball-and-stick representation shows the atom numbering scheme and 

the counter anions omitted for clarity. The two tetrafluoroborate counter ions are included 
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in the side-on-view of the space-filling model of [2]rotaxane 4-172+, where the 

benzylpyridinium thread is blue, the crown ether macrocycle is red, the stoppering groups 

are green and the anions are yellow. The interlocked nature of the [2]rotaxane can be seen 

clearly, with the crown ether arranged in the typical "S"-shaped conformation around the 

thread. The stoppering groups in the two-charged model are oriented with a zigzag shape, 

as was observed for the four-charged compound 2-144+, however the stoppering groups 

are extended and rotated outward resulting in a longer length. The near planarity of the 

bipyridine rings in the four-charged model is lost in the two-charged model, resulting in a 

twisting of the benzyl pyridinium rings with a dihedral angle C14-C13-C16-C17 of  

29.6º. Eight hydrogen bonds are formed between the α-pyridinium and ethyl protons of 

the thread and the oxygen atoms of the DB24C8 macrocycle. The N...O distances vary 

from 4.36 Å (aliphatic oxygens) to 3.43 Å (aromatic oxygens). The C...O distances vary 

from 4.09 Å (aliphatic oxygens) to 3.19 Å (aromatic oxygens). The oxygen atoms are  

also involved in ion-dipole interactions with N+ and Cδ+. The ring distance ranges 

between 3.46 - 3.73 Å between the catechol of the crown ether and benzyl of the 

dumbbell, which are in the upper range for π-π interactions.133,134  

 Large differences in shape and orientation are observed in changing the design 

from four-charges to two-charges. The overall extended molecular length is increased 

with the incorporation of the ester function on the stoppers. From a space filling 

perspective, the rectangular cylindrical shape of the [2]rotaxane four-charged core 

changes to a tilted oblique cylindrical shape in the two-charged core, suggesting that a tilt 

of the molecules long axis might be obtained in liquid crystal phases as long as the cores 

pack in the same fashion. The approximate dimensions of this di-cation are 36.8 Å along 
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the long axis, 9.6 Å in depth through the π-stacking and 10.7 Å in width. Assuming the 

cores pack the same in mesogenic materials, the approximate dimensions of the cores in 

the crystal lattice can be used to calculate volumes occupied and molecular lengths which 

will aid in phase determination for the mesogenic materials.  

4.3 LIQUID CRYTSAL PHASE CHARACTERIZATION  

4.3.1 Thermal Gravimetric Analysis (TGA) 

 The TGA curves for [2]rotaxanes 2-174+, 4-182+ and 4-192+ were obtained at a 

rate of 2 ºC/min under He (Figure 4.8). As mentioned in Chapter 2, the first step loss of 

2-174+ was the stoppers, indicating that the bond between the pyridinium and benzylic 

stopper is thermally most labile with decomposition occurring above 200 ºC. By 

replacing this bond with an ester, in 4-182+ the thermal stability is increased to 260 ºC 

which is 60 º C higher than the four-charged 2-174+. Surprisingly, for 4-192+ the siloxane 

moiety is the most thermally labile with decomposition occurring at 158 ºC which is 42 

ºC below that of the [2]rotaxane 2-174+. Hence, the first two step losses are both 

attributed to the stopper in 4-192+ and the subsequent step weight % loses for all 

[2]rotaxanes is due to loss of the DB24C8 macrocycle with decomposition occurring at 

temperatures above 325 ºC. The weight % values of the individual components for the 

[2]rotaxanes relative to the entire molecule including the triflate anions were calculated 

and are in good agreement with the separate steps in weight loss observed by TGA (Table 

4.2). Only the first step weight loss observed by TGA are tabulated with the calculated 

weight losses of all individual components since we are only concerned with the initial 

decomposition of these materials.  
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Figure 4.8 - TGA curves of four-charged [2]rotaxane 2-174+ and two-charged 
[2]rotaxanes 4-182+ and 4-192+ obtained at rate of 2 ºC/min under He. 
 

Table 4.2 - Calculated weight % values for components of [2]rotaxanes with 
measured weight % values for the first step losses. 

Compound 2 Stoppers  
(measured %) 

2 Stoppers 
(calc. %)  

Thread 
(%) 

OTf 
anions 

DB24C8 
(%) 

2-174+ 44.2  42.7  14.0 14.0 18.6 
4-182+ 49.23 48.2  18.1 13.5 20.4 
2-192+ 51.3  56.7  15.1 11.3 17.0 

 

4.3.2 Defect Textures by Optical Polarizing Microscopy (POM) 

 As previously mentioned in Chapter 2, [2]rotaxane 2-174+ formed a LC phase that 

was relatively viscous. The fan-like texture obtained, typical for smectics, confirmed a 

preferential orientation of the molecule long axis parallel to the substrates and layers 

orthogonal to the substrate (Figure 2.16c). By replacing the aliphatic chains with an 

alkane-siloxane moiety in [2]rotaxane 4-54+, a decrease in viscosity for the material was 

expected. [2]Rotaxane 4-54+ precipitated from MeCN as a birefringent glass, and when 
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squeezed between glass slides the material softened which was observed by POM (Figure 

4.9a and 4.9b, respectively). Interestingly, [2]rotaxane 4-54+ showed increased viscosity 

upon heating and did not melt into the isotropic liquid phase before it's decomposition 

temperature of 158 ºC. No textures of analytical quality were observed (Figure 4.9c). 

Attempts to re-dissolve the material resulted in a plastic-like precipitate that was now 

insoluble in all common organic solvents. Even more surprisingly, this peculiar 

behaviour was only observed when the material was heated. A likely reason for these 

drastic changes in properties is cross-linking of the siloxane groups. This occurs when the 

Si-O bond is hydrolyzed, which facilitates polymerization. 

 
Figure 4.9 - POM of 4-54+ (crossed polarizers): a) crystallized from MeCN @ 25 ºC, 
b) squeezed between glass slides @ 25 ºC and c) @ 25 ºC upon cooling from 150 ºC. 
 
 In reducing the charges on the core from four to two, there was a substantial 

reduction in viscosity for both [2]rotaxanes 4-182+ and 4-192+. The [2]rotaxane 4-182+ 

forms a soft LC phase upon precipitation from MeCN and is significantly less viscous 

than the four-charged [2]rotaxane 2-174+ (Figure 4.10a). When squeezed between glass 

slides the texture changes but the birefringence remains (Figure 4.10b). The natural 

texture obtained upon cooling from the isotropic liquid (Ti = 111 ºC) is a schlieren texture 

typical for tilted smectic LC phases (SmC), where the director points along a direction 
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that is tilted with respect to the smectic layer, the so-called tilt angle (Figure 4.10c). 

Reduction of the charges from 2-174+ to 4-182+ not only reduced the viscosity of the 

material, but also decreased the clearing into the isotropic liquid  by 26 ºC. No phase 

transitions were observed upon further heating and cooling cycles other than the 

reversible transition into the Ti. 

 
 
Figure 4.10 - POM of 4-182+ (crossed polarizers): a) precipitated from MeCN @ 25 
ºC, b) squeezed between glass slides @ 25 ºC and c) @ 25 ºC upon cooling from       
Ti = 111 ºC. 
 
 The natural texture obtained by POM for [2]rotaxane 4-192+ was dependent on the 

type of glass surface employed. When squeezed between untreated glass slides, 4-192+ 

forms an unspecific texture (Figure 4.11a) and elongated germs, also called smectic 

bâtonnets60, grow in at 146 ºC when the sample was cooled from its isotropic liquid (Ti = 

151 ºC). A fan-like texture (Figure 4.11b) is obtained as natural texture upon further 

cooling and remained at room temperature. The texture is very similar to that obtained for 

the four-charged 2-174+ and indicates a preferential orientation of the molecules long axis 

parallel to the substrates. 

On freshly cleaned glass, which was washed with water to give a hydrophilic 

surface the initial texture looked similar to that observed for untreated glass (Figure 

4.11d). Significant changes to the sample were observed when the material was cooled 
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from the isotropic liquid phase where resolved singularities showed four-fold brushes 

typical of a tilted SmC phase. These were fully resolved when cooled back to room 

temperature (Figure 4.11e and 4.11f). From these observations we conclude that 4-192+ 

must form a SmC phase and not a SmA phase. Again, no other phase transitions were 

observed upon further heating and cooling cycles other than the reversible transition into 

the Ti.  

 
Figure 4.11 - POM of 4-192+ (crossed polarizers), untreated glass (top strip): a) 
precipitated from MeCN @ 25 ºC, b) at 146 ºC upon cooling from Ti = 151 ºC and c) 
at 25 ºC upon cooling from Ti. Freshly cleaned (hydrophilic) glass (bottom strip):    
d) precipitated from MeCN @ 25 ºC, e) at 146 ºC upon cooling from Ti = 151 ºC and 
f) at 25 ºC upon cooling from Ti. 
 
 Both two-charged [2]rotaxanes were equally fluid at elevated temperatures, which 

should improve processing and alignment in thin films. Interestingly, introduction of the 

siloxane moiety (4-192+) over the fully aliphatic group (4-182+) increased the transition 

temperature into the isotropic liquid by 40 ºC. Both two-charged [2]rotaxanes exhibit 
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schlieren textures with exclusively fourfold brushes, which are indicative of the 

formation of tilted SmC phases. 

4.3.3 Differential Scanning Calorimetry (DSC) 

 All samples for DSC analysis were freshly crystallized/precipitated from MeCN, 

dried over a stream of nitrogen gas and carefully transferred into aluminum crucibles. 

First heating runs showed several transitions that were not thermally reversible and will 

not be discussed here. Transition temperatures and calculated enthalpies of the 2nd and 

subsequent heating runs as well as cooling runs are listed in Table 4.3. The only 

reversible transitions observed were glass transitions, Tg, occurring between 30 and 70 ºC 

for [2]rotaxanes 4-54+, 4-182+ and 4-192+ which is consistent with behaviour seen in 

Chapter 2, in that they are amorphous solids. These transitions coincide with softening 

observed by POM above the glass transition temperature. The glass transitions were 

resolved on cooling only for 4-192+, with a midpoint at approximately 45 ºC upon heating 

and cooling. Compound 4-182+ showed an additional broad exothermic peak at -38 ºC 

(19.0 kJ/mol), which is likely a transition from an amorphous solid to a crystalline solid 

but was not resolved on heating and not investigated further (Figure 4.12). Clearing into 

the isotropic liquid observed by POM were not resolved by DSC analysis. 

Table 4.3 - Transition temperatures (ºC, midpoint) and enthalpies (kJ/mol) 
determined by DSC at scan rates of 10 ºC/min for [2]rotaxanes. Clearing              
into the isotropic liquid (Ti) were determined by POM. 

Compound 2nd Heating Cooling Ti 

2-174+ 30 (Tg) 18 (Tg) 137 
4-54+ 39 (Tg)  n.t. >158 
4-182+ 40 (Tg) -37.5 (19.0) 111 
4-192+ 42 (Tg) 48 (Tg) 151 

n.t. : no transition observed. 
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Figure 4.12 - Second heating and cooling DSC runs of [2]rotaxane 4-182+ at              
10 ºC/min under N2. 
 

4.3.4 Variable Temperature X-Ray Diffraction (vt-XRD) 

 Data for vt-XRD were collected for the second heating and cooling. [2]Rotaxanes 

2-174+, 4-54+, 4-182+ and 4-192+ all displayed lamellar phases with layer spacings of 40, 

33, 40 and 40 Å, respectively (Figure 4.13a - c). All four rotaxanes show a broad 

reflection (halo) at about 4.5 Å that is indicative of aliphatic chains in an amorphous state 

and verify the presence of liquid crystal phases. The aliphatic-siloxane substituted 

[2]rotaxanes 4-54+ and 4-192+ both showed an additional broad reflection centered 

between 5 and 6 Å, which is the reported packing distances between siloxane 

chains.157,164 Similarly, due to the ability of [2]rotaxane 4-54+ to form a plastic-like 

material upon heating, only the room temperature XRD of the bulk material was recorded 

in order to confirm the formation of a lamellar phase and to retrieve layer spacings for 

comparison with the two-charged siloxane extended [2]rotaxane 4-192+. The lamellar 

order in 4-182+ and 4-192+ is thermally reversible.  
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 For the dodecane substituted [2]rotaxanes 2-174+ and 4-182+, the overall molecular 

length of the core increases from the four-charged design to the two-charged design by 

approximately 7 Å. The difference between the first order reflections, responsible for the 

layer to layer spacing, is less than one angstrom between the two (39.6 and 40.3 Å, 

respectively). With 2-174+ confirmed to form a SmA phase in Chapter 2, the molecules 

long axis must tilt in 4-182+ to account for such a small difference in the layer spacing. 

The formation of a SmC phase is supported by the observed schlieren textures and the 

change in preferred molecular conformation based on single crystal structures. 
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Figure 4.13 - XRD of a) 4-54+ and vt-XRD of b) 4-182+ and c) 4-192+. 

 When comparing the aliphatic-siloxane substituted [2]rotaxanes 4-54+ and 4-192+, 

the overall core molecular length again increases by approximately 7 Å. The layer 

spacing increases from 32.8 to 40.2 Å for 4-54+ and 4-192+, respectively, with a difference 



A New Design: Liquid Crystal [2]Rotaxanes 
 

184

of 7.4 Å. This suggests that both the four-charged 4-54+ and two-charged 4-192+ 

molecules exhibit SmC phases. A definitive distinction between a tilted and non-tilted 

phase by XRD requires alignment of the compounds, but comparison of the calculated 

molecular lengths of 40 Å, 47 Å, and 50 Å for 4-54+, 4-182+, and 4-192+, respectively (see 

Section 4.3.6), with observed spacings of 33, 40, and 40 Å strongly suggests that all three 

compounds form SmC phases.  

4.3.5 Alignment of LC Materials 

 Alignment of [2]rotaxanes 4-54+, 4-182+ and 4-192+ is essential for detailed 

structural analysis of their mesophases and important for potential applications. All three 

rotaxanes require elevated temperatures for alignment because of their high viscosity. 

[2]Rotaxane 4-54+ is the most viscous of the three rotaxanes and was only investigated by 

shear alignment at 80 ºC. Reasonably uniform planar alignment in the direction of the 

applied shear force (Figure 4.14) was achieved but higher temperatures are required for 

more uniform mechanical alignments. Temperatures above 80 ºC unfortunately, trigger 

cross-linking and formation of a polymeric material as mentioned above.  

 
Figure 4.14 - POMs of 4-54+ a) shear alignment at 80 ºC (in direction of arrow) and 
b) rotated by 45º. 
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 The [2]rotaxane 4-182+ was mechanically sheared between sheets of Teflon at 75 

ºC producing nearly uniform planar alignment of the optic axis in the direction of applied 

shear force (Figure 4.15). If the material is sheared at higher temperatures, the initially 

obtained texture of planar alignment immediately relaxes into a schlieren texture (Figure 

4.10c). This suggests that 4-182+ prefers a homeotropic orientation on Teflon. Planar 

alignment in a cell treated with rubbed polyimide was unsuccessful because only 

schlieren textures were formed that did not change in light transmission when rotated 

(Figure 4.15c). 

 

Figure 4.15 - POMs of 4-182+ a) shear alignment at 75 ºC (in direction of arrow) and 
b) rotated by 45º, c) in cell treated for parallel (homogeneous) alignment with 
rubbed polyimide, 4 μm gap.  
 
 [2]Rotaxane 4-192+ behaved in much the same way as 4-182+ when subjected to 

identical conditions. The material was aligned by applying shear force giving near planar 

alignment between sheets of Teflon at 120 ºC with the optic axis pointing in the direction 

of the applied shear force (Figure 4.16). However, due to the high temperature, the 

material reorients into a homeotropic alignment within 10 - 15 seconds evidenced by the 

formation of a schlieren texture (Figure 4.16c). Attempts to cool the forced SmA planar 

alignment were successful when sheared between Teflon at 100 ºC and then quickly 

cooled to room temperature. 2D-XRD of this film shows that the layers are well aligned 
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orthogonally to the direction of shear. The layer spacing is 42 Å, which is 2 Å longer than 

that seen in the bulk. A weak reflection at 14 Å, parallel to the layer spacing, corresponds 

to the approximate distance between the siloxane chains and the core of the [2]rotaxane. 

 
Figure 4.16 - POMs of 4-192+ a) shear alignment at 120 ºC (in direction of arrow), b) 
rotated by 45º and c) schlieren texture obtained after 15 seconds. d) Shear alignment 
of thin film pulled from teflon (in direction of arrow), e) rotated by 45º, and f) 2D-
XRD pattern of thin film at 25 ºC 
 

4.3.6 Calculated Packing Volume Ratios & Molecular Lengths 

 Space filling calculations were performed to compare the molecular dimensions 

with the layer spacings obtained by XRD for the four-charged [2]rotaxanes 2-174+, 4-54+  

and the two-charged [2]rotaxanes 4-182+ and 4-192+. As expected, the layer spacings are 

shorter than the extended length of these molecules and agree well with calculations 

based on amorphous side chains and space filling considerations described below.  
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 As previously mentioned in Chapters 2 and 3, the cylindrical volume of the four-

charged core, including the DB24C8 macrocycle and the four triflate anions is estimated 

to be 2400 Å3 based on a length of 27.4 Å and an average diameter of 10.6 Å. With the 

ester function, the cylindrical volume of the two-charged core, including the DB24C8 

macrocycle and the two triflate anions, is estimated to be 3280 Å3 based on a length of 

36.8 Å and an average diameter of 10.6 Å. The length and average diameter of the cores 

were calculated based on the dimensions of the cores in the single crystal structures and a 

free rotation over the long axis of the molecule (Figure 2.8 and Figure 4.7).  

 The volume occupied by the dodecane aliphatic side chains of the benzyl 

dicarboxylate stoppers was calculated to be 850 Å3, and the volume occupied by the 

butyl-siloxane side chains was calculated to be 1200 Å3, based on established packing 

volumes in liquid phases.135,136 Based on these volumes and the diameters of the cores, 

the lengths of the cylindrical spaces occupied by the side chains of the benzyl 

dicarboxylate stoppers were calculated and added to the length of the core, giving 

excellent agreement with the observed spacing for 2-174+. The calculated total lengths are 

larger for 4-54+ and both two-charged compounds (Table 4.4). These calculated 

molecular lengths also confirm the formation of a SmA phase for 2-174+, since a tilted 

SmC layer spacing would be markedly shorter than the observed spacing. Consequently, 

the markedly shorter observed layer spacings for 4-54+, 4-182+ and 4-192+, compared to 

their calculated molecular lengths, confirm the formation of SmC phases for all three.  

 The calculated length of the molecule was used to calculate the approximate tilt 

angle for [2]rotaxanes 4-182+ and 4-192+, with the long axis of the molecule tilted with 

respect to the director. The angles were determined to be 31 º and 36 º, respectively.  
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Table 4.4 - Obtained (XRD) layer spacings and                                                    
calculated molecular lengths of [2]rotaxanes 2-174+,                                                      
4-54+, 4-182+ and 4-192+. 

Compound d10 (Å) lcalc (Å) 

2-174+ 39.6 38  
4-54+ 32.8 40  
4-182+ 40.3 47  
4-192+ 40.2 50 

 
 The applied model of cylindrical space filling is independent of other packing 

considerations such as the degree of interdigitation between adjacent side-chains. The 

calculated ratios are very similar to those mentioned in Chapter 2, confirming the 

formation of a stable and sufficiently fluid smectic LC phase for all [2]rotaxanes 4-54+, 4-

182+ and 4-192+.  

4.3.7 Liquid Crystal Phase Determination 

 The mesophases formed by [2]rotaxanes 4-54+, 4-182+ and 4-192+ were fully 

characterized by POM observations, DSC analysis and vt-XRD analysis and 

characterization of the [2]rotaxane 2-174+ was included for comparison. The phase 

characterization and transition temperatures measured by POM and DSC on heating are 

shown in Figure 4.17. [2]Rotaxanes 2-174+, 4-54+ and 4-192+ form a single mesophase 

over the entire temperature range studied; 2-174+ forms a SmA phase, 4-54+ forms a 

lamellar gel and 4-192+ forms a SmC phase. [2]Rotaxane 4-182+ formed a SmC phase and 

DSC analysis revealed a transition below -29 ºC which is likely due to crystallization. By 

POM the absence of schlieren textures confirmed the presence of a SmA phase for 2-174+ 

and the presence of schlieren textures for 4-182+ and 4-192+ confirmed the presence of a 

SmC phase. The approximate tilt angles for [2]rotaxanes 4-182+ and 4-192+ were 
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determined to be 31º and 36º. Comparison of the experimental and calculated molecular 

lengths also agreed with these phase designations. Thus, in reducing the charge on the 

core from four to two, there is an obvious increase in the fluidity for both the n-alkyl and 

alkyl-siloxane systems and this was also observed when processing these materials. In 

addition, clearing into the isotopic liquid phase occurred at lower temperatures for the 

two-charged systems over the four-charged. The thermal stability was increased by 

stoppering with ester formation, however the alkyl-siloxane systems showed decreased 

thermal stability due to hydrolysis of the siloxane moiety. The initial decomposition for 

each compound is marked with a black line in Figure 4.17, with decomposition for 2-174+ 

occurring above 200 ºC, 4-182+ above 260 ºC and both 4-54+ and 4-192+ above 158 ºC.  
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Figure 4.17 - Phase transition temperatures for [2]rotaxanes 2-174+, 4-54+, 4-182+ and 
4-192+ measured by DSC and POM on heating. (green, Cr; navy, SmA; orange, SmC; 
violet, lamellar gel. The start of decomposition is marked with a black line.) 
 

4.4 SUMMARY AND CONCLUSIONS 

 The viscosity of the four-charged [2]rotaxane design was decreased by appending 

a siloxane moiety to the stoppers in place of the entirely aliphatic chains previously 

discussed. This [2]rotaxane formed a lamellar phase, as confirmed by XRD, but the 

material polymerized at elevated temperatures. By employing stoppering by formation of 

an ester, the ionic charge of the core was reduced from four positive charges to two, and 

this design showed not only a reduction in viscosity but cleared into the isotropic liquid 
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phase at lower temperatures and displayed increased thermal stability. The two-charged 

aliphatic stoppered [2]rotaxane showed increased thermal stability up to 260 ºC, 60 ºC 

higher than that of the four-charged material. This material formed a highly ordered SmC 

phase, which was confirmed by POM and vt-XRD. Clearing temperatures into the 

isotropic phase were lowered by 26 ºC when comparing the four-charged to the two-

charged material for the entirely aliphatic [2]rotaxanes. However, the siloxane moiety 

proved to be the most thermally labile with decomposition occurring at 158 ºC in the two-

charged material, which was 42 ºC below that of the four-charged material. However, this 

[2]rotaxane did form a highly ordered SmC phase which was also confirmed by POM and 

vt-XRD. Both the four-charged and two-charged [2]rotaxanes exhibited improvements in 

ease of processing and alignment in thin films. 
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4.5 EXPERIMENTAL 

4.5.1 General Comments 

 Sodium trifluoromethanesulfonate, 1,2-dibromoethane, diethyl-5-

(hydroxymethyl)-isophthalate, 3-butene-1-ol, titanium isopropoxide, platinum(0)-1,3-

divinyl-1,1,3,3-tetramethyldisiloxane complex, Pt(dvs), solution in xylenes (~2 % Pt), 

phosphorus tribromide, methanesulfonyl chloride (mesylchloride), triethylamine, 4-

bromopyridine, 4-formylphenyl boronic acid, palladium triphenylphosphine, chromium 

trioxide, 3,5-dicarboxymethylbenzoic acid, p-toluenesulfonylchloride, tributylphosphine 

and DB24C8 were purchased from Aldrich and used as received. 1,1,1,3,3,5,5-

Heptamethylsiloxane was purchased from Gelest Inc. and used as received. Deuterated 

solvents were obtained from Cambridge Isotope Laboratories and used as received. 

Solvents were dried using an Innovative Technologies Solvent Purification System. 

Microwave synthesis was carried out in either a 10 mL or 80 mL vessel on a CEM 

Discover microwave at 200W. Thin layer chromatography (TLC) was performed using 

Teledyne Silica gel 60 F254 plates and viewed under UV light. Column chromatography 

was performed using Silicycle Ultra Pure Silica Gel (230 – 400 mesh). Flash column 

chromatography was performed using Teledyne Ultra Pure Silica/RP-C18 Silica Gel (230 

– 400 mesh) on a Teledyne Isco Combiflash Rf. All flash chromatography was performed 

under pressure (120 mL/min. - 200 mL/min.) for normal phase silica and (10 mL/min. - 

40 mL/min.) for RP-C18 silica, with increasing pressure corresponding to larger columns. 

Unless otherwise stated, all flash chromatography applied gradient elution from 0 - 100 

% with increasing polar solvent with respect to less polar solvent. Length of column 

(column volumes - CV) was determined by separation seen by TLC.  
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1H NMR, 13C NMR and 2-D experiments were performed on a Brüker Avance 

500 instrument, with working frequency of 500.13 MHz for 1H nuclei, and 125.7 MHz 

for 13C nuclei, respectively. Chemical shifts are quoted in ppm relative to 

tetramethylsilane, using the residual solvent peak as a reference standard. Conventional 

2-D NMR experiments (1H-1H COSY) and (1H-13C HETCOR) were conducted and used 

to help assign all peaks. High resolution mass spectrometry (HR-MS) experiments were 

performed on a Micromass LCT Electrospray (ESI) time-of-flight (TOF) Mass 

spectrometer. Solutions of 50-100 ng/µL were prepared in CH3CN and injected for 

analysis at a rate of 5 µL/min using a syringe pump.  

Calorimetric studies were performed on a Mettler Toledo DSC 822e and thermal 

gravimetric analysis with mass spectrometric detection of evolved gases was performed 

on a Mettler Toledo TGA SDTA 851e that was attached to a Pfeiffer Vacuum 

ThermoStarTM mass spectrometer (1-300 amu) via a thin glass capillary.  Helium (99.99 

%) was used to purge the system with a flow rate of 30 mL/min.  Samples were held at 25 

ºC for 30 min before heating to 550 ºC at 2 ºC/min. A mass range between 16 m/z and 

150 m/z was constantly scanned. All samples were run in aluminum crucibles. Powder 

XRD measurements where recorded on a Brüker D8 Discover diffractometer equipped 

with a Hi-Star area detector and GADDS software and operated at 40 kV and 40 mA.  

CuKα1 radiation (λ = 1.54187 Å) was used and the initial beam diameter was 0.5 mm. A 

custom made Instec hot stage (based on HS-400) was used for VT-XRD that covers a 

temperature range of -40 ºC to 350 ºC.  Bulk samples for variable temperature XRD were 

filled into a 2 mm diameter hole in a 1 mm thick copper plate and covered with KaptonTM 

foil.  This plate was mounted in an Instec hot-stage, aligned, and run at theta angles of 0º, 



A New Design: Liquid Crystal [2]Rotaxanes 
 

193

and 15º for 30 or 60 min.  Spectra were combined and evaluated in EVA and plotted with 

Origin. Polarized light microscopy was performed on an Olympus TPM51 polarized light 

microscope equipped with a Linkam variable temperature stage HCS410 and digital 

photographic imaging system (DITO1). 
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4.5.2 Synthesis of 4-1  

Diethyl-5-(hydroxymethyl)-isophthalate (5.63 g, 0.0223 mol), 3-butene-1-ol 

(12.87 g, 0.1785 mol), and Ti(O-i-Pr)4 (6.34 g, 0.0223 mol) were heated (130 ºC) under a 

nitrogen atmosphere for three days. The EtOH bi-product was removed via a Dean Stark 

apparatus. The solution was neutralized with 0.1 M HCl and the product extracted with 

CH2Cl2. The organic layer was washed with H2O, dried with MgSO4, filtered and 

concentrated to yellow oil. The product was then purified by flash column 

chromatography on silica gel with (hexanes: EtOAc) gradient (0 - 100 % EtOAc) as 

eluant. The resulting colorless oil was collected. Yield: 6.72 g, 99 %.  

 

Table 4.5 - 1H NMR data of 4-1 in CDCl3. MW = 304.338 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 4.74 s 2 -- 
b 8.15 s 2 -- 
c 8.50 s  1 -- 
d 4.35 t 4 3Jde = 6.74 
e 2.50 dt 4 3Jed = 6.74; 3Jef = 6.99 

f 5.83 dtd 2 3Jfh = 10.28; 3Jfe = 3Jfg = 6.99 

g 5.08 dd 2 3Jgf = 10.28; 2Jgh = 1.45 
h 5.13 dd 2 3Jhf = 17.15; 2Jhg = 1.45 
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Table 4.6 – 13C NMR data of 4-1 in CDCl3. MW = 304.338 g/mol. Quaternary 
carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 68.27 1 
2 140.95 1 
3 133.81 2 
4 131.69 2 
5 128.20 1 
6 164.73 2 
7 64.82 2 
8 33.54 2 
9 135.49 2 
10 17.02 2 
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COSY of 4-1 in CD3CN.   
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4.5.3 Synthesis of 4-2  

4-1 (3.97 g, 0.0130 mol) was dissolved in dry toluene in a schlenk flask, under 

nitrogen at 15 ºC. 1,1,1,3,3,5,5-Heptamethylsiloxane (7.85 mL, 0.0287 mol) was added 

via glass syringe, followed by Pt(dvs) (0.50 mL). The mixture was then stirred until the 

reaction was complete (5 - 15 min). Solvents were evaporated via vacuum line. The 

product was then purified by flash column chromatography on silica gel with (hexanes: 

EtOAc) gradient (0 - 10 % EtOAc) as eluant. The resulting colorless oil was collected. 

Yield: 6.64 g, 68 %. 

 

Table 4.7 – 1H NMR data of 4-2 in CDCl3. MW= 749.347 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 4.80 s  2 -- 
b 8.21 s  2 -- 
c 8.58 s 1 -- 
d 4.34 t 4 3Jde = 6.75 

e 1.81 tt 4 3Jed = 6.75; 3Jef = 7.35
f 1.48 tt 4 3Jfe = 3Jfg = 7.35 

g 0.61 t 4 3Jgf = 8.40 

h 0.01 s 12 -- 
i 0.08 s 12 -- 
j 0.07 s 18 -- 
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Table 4.8 – 13C NMR data of 4-2 in CDCl3. MW= 749.347 g/mol. Quaternary 
carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 67.36 1 
2 139.11 1 
3 133.89 2 
4 131.65 2 
5 129.98 1 
6 165.43 2 
7 65.28 2 
8 32.13 2 
9 17.37 2 
10 18.61 2 
11 0.47 4 
12 1.32 4 
13 1.96 6 
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COSY of 4-2 in CDCl3. 
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4.5.4 Synthesis of 4-3  

4-2 (3.12 g, 0.0042 mol) was dissolved in dry THF (80 mL) under nitrogen and 

cooled (0 ºC) on ice. Phosphorus tribromide (3.12 mL, 0.0031 mol) 1.0 M in CH2Cl2 was 

added dropwise over 15 min. and stirring continued for 4 h. The solution was 

concentrated and product purified by flash column chromatography on silica gel with  

(hexanes: EtOAc) gradient (0 - 30 % EtOAc) as eluant. The resulting colorless oil was 

collected. Yield: 0.41 g, 12 %. 

 

Table 4.9 – 1H NMR data of 4-3 in CDCl3. MW= 812.244 g/mol  

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 4.53 s  2 -- 
b 8.23 s  2 -- 
c 8.59 s 1 -- 
d 4.35 t 4 3Jde = 6.75 

e 1.82 tt 4 3Jed = 6.75; 3Jef = 7.29
f 1.49 tt 4 3Jfe = 3Jfg = 7.29 

g 0.61 t 4 3Jgf = 8.43 

h 0.01 s 12 -- 
i 0.08 s 12 -- 
j 0.07 s 18 -- 
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Table 4.10 – 13C NMR data of 4-3 in CDCl3. MW= 812.244 g/mol. Quaternary 
carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 31.54 1 
2 138.69 1 
3 134.01 2 
4 131.71 2 
5 130.46 1 
6 165.32 2 
7 65.39 2 
8 32.12 2 
9 17.86 2 
10 19.75 2 
11 0.17 4 
12 1.27 4 
13 1.81 6 
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4.5.5 Synthesis of 4-4  

4-2 (3.38 g, 0.0045 mol) was dissolved in dry CH2Cl2 (~ 0.2 M) containing 50 % 

molar excess of triethylamine (31.74 mL, 0.2259 mol) and the reaction vessel was cooled 

(-15 ºC) with MeOH/NaCl bath. A 10 % excess of mesyl chloride (3.50 mL, 0.0452 mol) 

was added dropwise over 15 min. and stirring continued for 15 min. The solution was 

transferred to a separatory funnel and washed with ice water followed by 10 % HCl, 

saturated NaHCO3 brine and water. The organic layer was concentrated and crude orange 

oil purified by flash column chromatography on silica gel with (hexanes: EtOAc) 

gradient (5 - 30 % EtOAc) as eluant. The resulting pale yellow oil was collected. Yield: 

3.52 g, 96 %. 
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Table 4.11 – 1H NMR data of 4-4 in CDCl3. MW= 827.438 g/mol  

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 3.03 s  3 -- 
b 5.30 s  2 -- 
c 8.25 s  2 -- 
d 8.68 s 1 -- 
e 4.36 t 4 3Jef = 6.78 

f 1.82 tt 4 3Jfe = 6.78; 3Jfg = 7.13
g 1.48 tt 4 3Jgf = 3Jgh = 7.13 

h 0.61 t 4 3Jgf = 8.38 

i 0.01 s 12 -- 
j 0.08 s 12 -- 
j 0.07 s 18 -- 
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Table 4.12 – 13C NMR data of 4-4 in CDCl3. MW= 827.438 g/mol. Quaternary 
carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 38.34 1 
2 69.60 1 
3 134.52 1 
4 133.59 2 
5 131.89 2 
6 131.39 1 
7 165.31 2 
8 65.61 2 
9 32.19 2 
10 17.93 2 
11 19.80 2 
12 0.16 4 
13 1.23 4 
14 1.87 6 
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4.5.6 Synthesis of Compound [4-5][OTf]4 and [4-6][OTf]4   

 [2-2][OTf]2 (61.49 mg, 0.0963 mmol) and DB24C8 (215.94 mg, 0.4815 mmol) 

were dissolved in a two-phase NaOTf (aq)/MeNO2 (0.5 and 25 mL) mixture and placed 

in a thick-walled 80 mL reaction vessel. 4-4 (312.54 mg, 0.3852 mmol) was dissolved in 

CHCl3 (10 mL) and a catalytic amount of TBAI (5 mg) was added to the 80 mL vessel 

with a stir bar and microwaved for 10 h at 50 ºC. The MeNO2 layer was washed with 

H2O (3 x 10 mL), dried over MgSO4 and the solvent removed. The orange residue was 

recrystallized from EtOAc several times. Excess crown precipitated out first followed by 

rotaxane with small amounts of crown. The product was then purified and isolated by 

flash column chromatography on RP-C18 silica gel using MeOH as eluant, yielding a 

deep red/orange glassy solid. Yield: 118.02 mg, 43 %. ESI-MS: m/z 1274.4546 (calc.) 

for C110H178F6N4O30S2Si12 [M-2OTF]2+, found 1274.4545. m/z 562.751 (calc.) for 

C110H178N4O26Si12 [M]4+, found 562.748. The dumbbell (without DB24C8 macrocycle) 

was also isolated from the column. The product was isolated as a waxy pale beige solid. 

Yield: 26.31 mg, 12 %. ESI-MS: m/z 1050.3497 (calc.) for C86H146F6N4O22S2Si12 [M-

2OTF]2+, found 1050.3503, m/z 650.5823 (calc.) for C85H146F3N4O19SSi12 [M-OTF]3+, 

found 650.5612.    



A New Design: Liquid Crystal [2]Rotaxanes 
 

205

NN
N N

O

O
O

O

O

O
O

O R

R
O

O

O

R

O

O

k l m n

oj

i

h

sp rq
s

O O
Si Si Si

c c b b a

a

a

f

g e

d

= R

 

Table 4.13 – 1H NMR data of [4-5][OTf]4 in CD3CN. MWOTf- = 2849.884 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 0.06 s 4 -- 
b 0.08 s  36 -- 
c 0.01 s  24 -- 
d 0.63 t 8 3Jde = 8.35 

e 1.51 tt 8 3Jef = 3Jed = 7.25 
f 1.82 tt 8 3Jfg = 6.68; 3Jfe = 7.25 

g 4.36 t 8 3Jgf = 6.68 

h 8.63 s 2 -- 
i 8.40 s 4 -- 
j 5.98 s 4 -- 
k 9.02 d 4 3Jkl = 6.64 
l 8.24 d  4 3Jlk = 6.64 

m 8.28 d  4 3Jmn = 6.64 

n 9.34 d 4 3Jnm = 6.64 
o 5.59 s 4 -- 
p 6.66 dd 4 3Jmeta = 3.58; 3Jortho = 5.75
q 6.42 dd 4 3Jmeta = 3.58; 3Jortho = 5.75
r 3.99 t 8 -- 
s 4.15 m 16 -- 
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Table 4.14 – 1H NMR data of [4-6][OTf]4 in CD3CN. MWOTf- = 2401.378 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 0.06 s   36 -- 
b 0.08 s  24 -- 
c 0.01 s  24 -- 
d 0.63 t 8 3Jde = 8.33 
e 1.51 tt 8 3Jed = 3Jef = 3.89 

f 1.81 tt 8 3Jfe = 3Jfg = 6.87 

g 4.35 t 8 3Jgf = 6.87 
h 8.62 s 2 -- 
i 8.39 s 4 -- 
j 5.95 s 4 -- 
k 9.04 d 4 3Jkl = 6.45 
l 8.48 d 4 3Jlk = 6.45 

m 8.51 d 4 3Jmn = 6.45 
n 9.07 d 4 3Jnm = 6.45 
o 5.31 s 4 -- 
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4.5.7 Synthesis of 4-7  

 This compound was synthesized according to literature
165 

with slight modification 

of the published procedure. 4-Bromopyridine (5.00 g, 0.0257 mol), 4-formylphenyl 

boronic acid (3.86 g, 0.0257 mol) and NaCO3  (4.24 g, 0.0511 mol) were dissolved in 

MeCN (200 mL) and degassed water (100 mL) under nitrogen.  The Pd(PPh3)4 catalyst 

was then added and the reaction refluxed for 20 h.  The reaction mixture was cooled to 

room temperature, filtered and washed with MeCN.  The product was extracted with 

CHCl3 (3 x 100 mL), washed with H2O (2 x 100 mL) and then dried with MgSO4.  The 

solvent was removed by a rotary evaporator and the resulting solid was subjected to 

column chromatography with CHCl3:MeOH gradient (0-5 % MeOH) as eluant.  The 

product was obtained as a white powder. Yield: 4.71 g, 99 %.  

 

Table 4.15 - 1H NMR data of 4-7 in CDCl3. MW = 183.206 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.70 d 2 3Jab = 6.01 
b 7.53 d 2 3Jba = 6.01 
c 7.78 d 2 3Jcd = 8.15 

d 7.99 d 2 3Jdc = 8.15 

e 10.08 s 1 -- 
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4.5.8 Synthesis of 4-8  

4-7 (5.50 g, 0.0300 mol) was dissolved in EtOH (250 mL) under nitrogen and 

cooled on ice (0 ºC).  NaBH4 (2.273 g, 0.0601 mol) was added very slowly and the 

reaction was left to stir over night.  The NaBH4 was neutralized by slow addition of 1.0 

M HCl (~80 mL), and the reaction filtered and washed with CH2Cl2.  The organic layer 

was washed with NaHCO3 (2 x 100 mL), followed by H2O (2 x 100 mL) and then dried 

with MgSO4.  The solvent was evaporated using a rotary evaporator and the product was 

then purified by flach column chromatography on silica gel with (CHCl3: MeOH) 

gradient (0 - 5 % MeOH) as eluant. The resulting white solid was collected. Yield: 4.34 

g, 78 %.   

 

Table 4.16 - 1H NMR data of 4-8 in CD3CN. MW = 185.222 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.61 d 2 3Jab = 5.83 
b 7.60 d 2 3Jba = 5.83 
c 7.47 d 2 3Jcd = 8.17 

d 7.71 d 2 3Jdc = 8.17 

e 4.64 s 2 -- 
f 2.19 s 1 -- 
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COSY of 4-8 in CD3CN.  
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4.5.9 Synthesis of [4-9][OTf]2  

 Was synthesized according to a previous method with modification.162 4-8 (1.42 

g, 0.0077 mol) and 1,2-dibromoethane (0.33 mL, 0.0038 mol) were dissolved in hot 

MeNO2 (50mL) in a thick-walled 80 mL vessel and microwaved for 5 h at 80 ºC. The 

precipitate was filtered hot and washed with hot MeNO2. The white solid was anion 

exchanged to the triflate salt by two layer hot NaOTf (aq)/MeNO2. The hot MeNO2 was 

washed with H2O (2 x 10 mL) and concentrated to yield white powder. Yield: 2.38 g, 89 

% ESI-MS: m/z 547.1509 (calc.) for C27H26F3N2O5S [M-OTF]+, found 547.1517.  
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Table 4.17 - 1H NMR data of [4-9][Br]2 in D2O. MWBr- = 558.305 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 4.63 s 4 -- 
b 7.85 d 4 3Jbc = 7.83 
c 7.50 d 4 3Jcb = 7.83 
d 8.25 d 4 3Jde = 6.15 
e 8.66 d 4 3Jed = 6.15 

f 5.19 s 4 -- 

 

Table 4.18 - 1H NMR data of [4-9][OTf]2 in CD3CN. MWOTf- = 696.103 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 4.70 s 4 -- 
b 7.94 d 4 3Jbc = 8.30 
c 7.61 d 4 3Jcb = 8.30 
d 8.31 d 4 3Jde = 6.91 

e 8.64 d 4 3Jed = 6.91 

f 5.10 s 4 -- 
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Table 4.19 – 13C NMR data of [4-9][OTf]2 in CD3CN. MWOTf- = 696.103 g/mol. 
Quaternary carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 62.97 2 
2 147.88 2 
3 127.75 4 
4 128.42 4 
5 131.97 2 
6 157.62 2 
7 125.48 4 
8 144.85 4 
9 59.12 2 

 

COSY of [4-9][OTf]2 in CD3CN.  
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HETCOR of [4-9][OTf]2 in CD3CN.  
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4.5.10 Synthesis of 4-10 

2-5 (4.78 g, 0.0090 mol) was dissolved in acetone (200 mL), treated with Jones 

reagent (18.67 mL, 0.0233 mol) added dropwise, and stirred for 2 - 3 h. The reaction 

mixture was quenched with 1-isopropanol (100 mL) and the precipitate filtered off. The 

solvent was concentrated to yield a crude white solid. The product was purified by flash 

column chromatography on silica gel with (CH2Cl2: MeOH) gradient (1 - 10 % MeOH) 

as eluant. The resulting waxy white solid was collected. Yield: 4.76 g, 96 %.  

 

Table 4.20 – 1H NMR data of 4-10 in CDCl3. MW= 546.778 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 11.32 s  1 -- 
b 8.92 s  2 -- 
c 8.91 s  1 -- 
d 4.38 t 4 3Jde = 6.76 

e 1.80 tt 4 3Jed = 6.76, 3Jef = 7.13
f 1.43 tt 4 3Jfe = 3Jfg = 7.13 
g 1.36 m 4 -- 
h 1.28 m 28 -- 
i 0.86 t 6 3Jhg = 6.61 
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Table 4.21 – 13C NMR data of 4-10 in CDCl3. MW= 546.778 g/mol. Quaternary 
carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 170.35 1 
2 130.27 1 
3 135.10 2 
4 131.87 2 
5 135.54 1 
6 165.02 2 
7 66.11 2 
8 28.74 2 
9 26.07 2 
10 29.41 4 
11 29.69 8 
12 32.01 2 
13 22.79 2 
14 14.21 2 
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4.5.11 Synthesis of 4-11  

4-1 (6.07 g, 0.0199 mol) was dissolved in acetone (300 mL), treated with Jones 

reagent (41.44 mL, 0.0519 mol) added dropwise, and stirred for 2 - 3 h. The reaction 

mixture was quenched with 1-isopropanol (200 mL) and precipitate filtered off. The 

solvent was concentrated to a crude colorless oil. The product was purified by flash 

column chromatography on RP-C18 silica gel with (H2O: MeOH) gradient (10 - 100 % 

MeOH) as eluant. The resulting colorless oil was collected. Yield: 5.46 g, 86 %.  

 

Table 4.22 - 1H NMR data of 4-11 in CDCl3. MW = 318.321 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.04 s 1 -- 
b 8.90 s 2 -- 
c 8.88 s  1 -- 
d 4.44 t 4 3Jde = 6.68 
e 2.56 dt 4 3Jed = 6.68; 3Jef = 6.88 

f 5.88 dtd 2 3Jfh = 10.18; 3Jfe = 3Jfg = 6.88 

g 5.19 dd 2 3Jgf = 10.18; 2Jgh = 1.37 
h 5.13 dd 2 3Jhf = 17.16; 2Jhg = 1.37 
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Table 4.23 – 13C NMR data 4-11 in CDCl3. MW = 318.321 g/mol. Quaternary 
carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 170.28 1 
2 130.53 1 
3 133.73 2 
4 131.66 2 
5 135.46 1 
6 164.90 2 
7 64.85 2 
8 33.18 2 
9 135.19 2 
10 117.81 2 
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4.5.12 Synthesis of 4-12 

4-11 (6.73 g, 0.0212 mol) was dissolved in dry toluene (100 mL) in a schlenk 

flask, under nitrogen at 15 ºC. 1,1,1,3,3,5,5-Heptamethylsiloxane (12.74 mL, 0.0465 mol) 

was added via a glass syringe, followed by Pt(dvs) (2.0 mL), and the reaction mixture 

was stirred until the reaction was complete (5 - 15 min). Solvents were evaporated via 

vacuum line. The product was then purified by column chromatography on silica gel with 

(hexanes: EtOAc) gradient (0 - 10 % EtOAc) as eluant. The resulting milky oil was 

collected. Yield: 7.64 g, 47 %. 

 

Table 4.24 – 1H NMR of data 4-12 in CDCl3. MW= 763.331 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 11.72 s  1 -- 
b 8.92 s  2 -- 
c 8.91 s 1 -- 
d 4.40 t 4 3Jde = 6.93 

e 1.85 tt 4 3Jed = 6.93; 3Jef = 7.92
f 1.51 tt 4 3Jfe = 3Jfg = 7.92 

g 0.62 t 4 3Jgf = 8.40 

h 0.01 s 12 -- 
i 0.09 s 12 -- 
j 0.07 s 18 -- 

 



A New Design: Liquid Crystal [2]Rotaxanes 
 

220

 

Table 4.25 – 13C NMR data of 4-12 in CDCl3. MW= 763.331 g/mol. Quaternary 
carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 170.72 1 
2 130.34 1 
3 139.09 2 
4 131.86 2 
5 135.50 1 
6 165.01 2 
7 65.73 2 
8 32.17 2 
9 17.92 2 
10 19.82 2 
11 1.89 4 
12 0.24 4 
13 1.34 6 
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IR of 4-12 
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4.5.13 Synthesis of 4-13 

3,5-Dicarboxymethylbenzoic acid (3.00 g, 0.0126 mol), TsCl (1.20 g, 0.0063 mol) 

and K2CO3 (10.44 g, 0.0756 mol) was refluxed in 50:50 (MeCN: toluene) for 12 h. The 

crude mixture was filtered and concentrated to a white solid. The solid was taken up in 

CH2Cl2 and washed with 1.0 M NaHCO3 (1 x 30 mL), H2O (2 x 10 mL), dried over 

MgSO4, and the solvent removed. The product was isolated as a white powder. Yield: 

1.17 g, 20 %.  

 

Table 4.26 – 1H NMR data of 4-13 in CDCl3. MW= 458.372 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 4.03 s  12 -- 
b 9.01 s  2 -- 
c 8.99 s 4 -- 
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Table 4.27 – 13C NMR data of 4-13 in CDCl3. MW= 458.372 g/mol. Quaternary 
carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 160.57 2 
2 129.63 2 
3 135.41 4 
4 131.97 4 
5 136.21 2 
6 164.97 4 
7 52.89 4 
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4.5.14 Synthesis of 4-14 

 4-10 (2.00 g, 0.0037 mol), TsCl (0.35 g, 0.0018 mol), and K2CO3 (3.03 g, 0.0219 

mol) was refluxed in CHCl3 for 2 h. The crude mixture was filtered and concentrated to a 

white solid. The solid was taken up in CH2Cl2 and washed with 1.0 M NaHCO3 (1 x 50 

mL), H2O (2 x 50 mL), dried over MgSO4, and the solvent removed. The product was 

isolated as a white waxy solid. Yield: 2.00 g, 50 %.   

 

Table 4.28 – 1H NMR data of 4-14 in CDCl3. MW= 1047.488 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.92 s  4 -- 
b 8.91 s  2 -- 
c 4.39 t 8 3Jde = 6.69 

d 1.81 tt 8 3Jed = 6.69, 3Jef = 7.07
e 1.42 tt 8 3Jfe = 3Jfg = 7.07 
f 1.28 m 32 -- 
g 0.87 t 12 3Jhg = 6.45 
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Table 4.29 – 13C NMR data of 4-14 in CDCl3. MW= 1047.488 g/mol. Quaternary 
carbons assigned by software 

 

 

Carbon δ (ppm) # Carbons 

1 160.68 2 
2 129.52 2 
3 135.22 4 
4 132.29 4 
5 136.07 2 
6 164.55 4 
7 66.16 4 
8 28.66 4 
9 25.99 4 
10 29.42 8 
11 31.92 16 
12 31.99 4 
13 22.69 4 
14 14.11 4 



A New Design: Liquid Crystal [2]Rotaxanes 
 

226

IR of 4-14  
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4.5.15 Synthesis of 4-15 

 4-12 (3.67 g, 0.0048 mol), TsCl (0.46 g, 0.0024 mol) and K2CO3 (3.99 g, 0.0289 

mol) was refluxed in CHCl3 for 1.5 h. The crude mixture was filtered and concentrated to 

a colorless oil. The oil was taken up in CH2Cl2 and washed with 1.0 M NaHCO3 (1 x 50 

mL), H2O (2 x 50 mL), dried over MgSO4, and the solvent removed. The product was 

isolated as a colorless oil. Yield: 3.61 g, 50 %. 

 

Table 4.30 – 1H NMR data of 4-15 in CDCl3. MW= 1508.647 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 8.98 s  4 -- 
b 8.93 s 2 -- 
c 4.40 t 8 3Jcd = 7.98 

d 1.85 tt 8 3Jdc = 7.98; 3Jde = 7.18
e 1.51 tt 8 3Jed = 3Jef = 7.18 

f 0.62 t 8 3Jfe = 8.31 

g 0.02 s 24 -- 
h 0.10 s 24 -- 
i 0.09 s 36 -- 

 



A New Design: Liquid Crystal [2]Rotaxanes 
 

228

 

Table 4.31 – 13C NMR data of 4-15 in CDCl3. MW= 1508.647 g/mol. Quaternary 
carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 160.88 2 
2 129.58 2 
3 135.09 4 
4 132.32 4 
5 136.10 2 
6 164.67 4 
7 65.92 4 
8 32.16 4 
9 17.92 4 
10 19.79 4 
11 1.90 8 
12 0.24 8 
13 1.35 12 

 



A New Design: Liquid Crystal [2]Rotaxanes 
 

229

IR of 4-15  

4000 3500 3000 2500 2000 1500 1000 500

0.0

0.2

0.4

0.6

0.8

1.0
Tr

an
sm

itt
an

ce
 (%

)

Wavenumber (cm-1)

4000 3500 3000 2500 2000 1500 1000 500

0.0

0.2

0.4

0.6

0.8

1.0
Tr

an
sm

itt
an

ce
 (%

)

Wavenumber (cm-1)



A New Design: Liquid Crystal [2]Rotaxanes 
 

230

4.5.16 Synthesis of [4-16][OTf]2 

 [4-9][OTf]2 (93.17 mg, 0.1337 mmol) and 4-13 (503.47 mg, 0.4681 mmol) were 

dissolved in dry 1:1 (CHCl3: MeCN) (40 mL) under a nitrogen atmosphere. A catalytic 

amount of tributylphosphine (20 µL) was added via glass syringe and stirring continued 

until the reaction was complete (3 - 4 h.). The solvent was removed under reduced pressure, 

and the product stirred in CHCl3 overnight. The precipitate formed was filtered and 

washed with CHCl3. The product was isolated as a pale beige waxy solid. Yield: 44.10 

mg, 29 %. ESI-MS: m/z 987.2253 (calc.) for C49H42F3N2O15S [M-OTF]+, found 

987.2250, m/z 419.1364 (calc.) for C48H42N2O12 [M]2+, found 419.1361. 
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Table 4.32 – 1H NMR data of [4-16][OTf]2 in CD3CN. MWOTf- = 1136.992 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 4.34 t 8 3Jfe = 6.33 

b 8.74 s 2 -- 
c 8.76 s 4 -- 
d 5.52 s 4 -- 
e 7.75 d 4 3Jef = 8.10 
f 7.98 d 4 3Jfe = 8.10 
g 8.32 d 4 3Jgh = 6.57 
h 8.58 d 4 3Jhg = 6.57 
i 5.08 s 4 -- 
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Table 4.33 – 13C NMR data of [4-16][OTf]2 in CD3CN. MWOTf- = 1136.992 g/mol. 
Quaternary carbons assigned using software 

Carbon δ (ppm) # Carbons 

1 66.02 4 
2 164.97 4 
3 131.78 4 
4 134.84 2 
5 134.59 4 
6 130.64 2 
7 164.77 2 
8 66.14 2 
9 133.28 2 
10 128.45 4 
11 129.58 4 
12 141.05 2 
13 157.49 2 
14 125.46 4 
15 146.14 4 
16 58.24 2 
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4.5.17 Synthesis of [4-17][OTf]2  

 [4-9][OTf]2 (119.23 mg, 0.1712 mmol), DB24C8 (383.82 mg, 0.8558 mmol) and 

4-13 (274.59 mg, 0.5990 mmol) were dissolved in dry 7:3 (CHCl3: MeCN) (100 mL) 

under nitrogen atmosphere. A catalytic amount of tributylphosphine (30 µL) was added 

via glass syringe and stirring continued overnight. The solvent was removed under reduced 

pressure, and the product stirred in toluene. The precipitate formed was filtered, washed 

with toluene several times and dried under reduced pressure. The resulting solid was 

dissolved in minimum hot MeCN (10 mL) and then cold EtOAc (10 mL) was added and 

cooled in fridge overnight. The pale yellow precipitate was collected. Yield: 43.61 mg, 

16 %. ESI-MS: m/z 1450.4584 (calc.) for C74H77F3N2O23S [M-OTF]+, found 1450.4579, 

m/z 650.7529 (calc.) for C73H77N2O20 [M]2+, found 650.7520. 
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Table 4.34 – 1H NMR data of [4-17][OTf]2 in CD3CN. MWOTf- = 1585.498 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 3.95 s   12 -- 
b 8.76 s  2 -- 
c 8.80 s  4 -- 
d 5.50 s 4 -- 
e 8.02 d 4 3Jef = 8.02 

f 7.65 d 4 3Jfe = 8.02 

g 7.67 d 4 3Jgh = 6.81 
h 9.09 d 4 3Jhg = 6.81 
i 5.54 s 4 -- 
j 6.53 dd 4 3Jmeta = 3.72; 3Jortho = 6.55 

k 6.65 dd 4 3Jmeta = 3.72; 3Jortho = 6.55
l 4.04 t 8 -- 

m 3.99 m 16 -- 
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4.5.18 Synthesis of [4-18][OTf]2  

 [4-9][OTf]2 (253.66 mg, 0.3641 mmol), DB24C8 (816.54 mg, 1.8206 mmol) and 

4-14 (1.37 g, 1.2744 mmol) were dissolved in dry 7:3 (CHCl3: MeCN) (125 mL) under 

nitrogen a atmosphere. A catalytic amount of tributylphosphine (40 µL) was added via 

glass syringe and stirring continued until the reaction was complete (3.5 h.). The solvent 

was removed under reduced pressure and the product was stirred in MeCN. The insoluble 

solid was filtered off and MeCN concentrated to a pale yellow solid. This solid was then 

recrystallized from EtOAc multiple times to recover the excess DB24C8, then the yellow 

waxy solid was purified by flash column chromatography with RP-C18 silica gel with 

80:20 (MeCN: MeOH) isocratic elution initially followed by gradient (20 - 100 % 

MeOH) as eluant. The yellow glassy solid was collected. Yield: 256.71 mg, 32 %. ESI-

MS: m/z 951.5855 (calc.) for C116H162N2O20 [M]2+, found 951.5851. 



A New Design: Liquid Crystal [2]Rotaxanes 
 

236

 

Table 4.35 – 1H NMR data of [4-18][OTf]2 in CD3CN. MWOTf- = 2202.667 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 0.85 t   12 3Jab = 6.93 
b 1.23 m  56 -- 
c 1.35 tt  8 3Jcd = 6.88 
d 1.44 tt 8 3Jdc = 6.88; 3Jde = 7.15 
e 1.77 tt 8 3Jed = 7.15; 3Jef = 6.50 

f 4.34 t 8 3Jfe = 6.50 

g 8.74 s 2 -- 
h 8.77 s 4 -- 
i 5.51 s 4 -- 
j 7.98 d 4 3Jjk = 8.10 
k 7.65 d 4 3Jkj = 8.10 
l 7.67 d 4 3Jlm = 6.86 

m 9.07 d 4 3Jml = 6.86 

n 5.49 s 4 -- 
o 6.53 dd 4 3Jmeta = 3.74; 3Jortho = 6.52 

p 6.65 dd 4 3Jmeta = 3.74; 3Jortho = 6.52
q 4.04 t 8 3Jqr = 5.09 

r 3.99 m 16 -- 
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Table 4.36 – 13C NMR data of [4-18][OTf]2 in CD3CN. MWOTf- = 2202.667 g/mol. 
Quaternary carbons assigned using software 

Carbon δ (ppm) # Carbons 

1 13.53 4 
2 22.51 4 
3 31.76 4 
4 28.37 8 
5 29.47 16 
6 25.83 4 
7 29.04 4 
8 65.83 4 
9 164.69 4 
10 131.32 4 
11 132.00 2 
12 133.97 4 
13 133.89 2 
14 164.60 2 
15 66.45 2 
16 133.48 2 
17 128.97 4 
18 128.57 4 
19 140.49 2 
20 155.71 2 
21 124.13 4 
22 145.71 4 
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23 57.71 2 
24 119.14 4 
25 112.31 4 
26 147.01 4 
27 61.62 4 
28 70.24 4 
29 70.60 4 
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4.5.19 Synthesis of [4-19][OTf]2  

 [4-9][OTf]2 (193.79 mg, 0.2782 mmol), DB24C8 (623.83 mg, 1.3909 mmol) and 

4-15 (1.47 g, 0.9736 mmol) were dissolved in dry 7:3 (CHCl3: MeCN) (150 mL) under a 

nitrogen atmosphere. A catalytic amount of tributylphosphine (50 µL) was added via 

glass syringe, and stirring continued until the reaction was complete (3 h). The solvent 

was removed under reduced pressure. The crude yellow waxy solid was then recrystallized 

from EtOAc multiple times to recover the excess DB24C8 and then the yellow waxy 

solid was purified by flash column chromatography with RP-C18 silica gel with 90:10 

(MeCN: MeOH) isocratic elution followed by gradient (10 - 100 % MeOH) as eluant. 

The soft yellow waxy solid was collected. Yield: 186.22 mg, 25 %. ESI-MS: m/z 

1168.4893 (calc.) for C112H178N2O28Si12 [M]2+, found 1168.4980. 
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Table 4.37 – 1H NMR data of [4-19][OTf]2 in CD3CN. MWOTf- = 2635.773 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 0.06 s   36 -- 
b 0.09 s  24 -- 
c 0.01 s  24 -- 
d 0.64 t 8 3Jde = 6.55 
e 1.53 tt 8 3Jed = 6.55; 3Jef = 6.87 

f 1.83 tt 8 3Jfe = 6.87; 3Jfg = 8.20 

g 4.39 t 8 3Jgf = 8.20 
h 8.76 s 2 -- 
i 8.80 s 4 -- 
j 5.53 s 4 -- 
k 7.67 d 4 3Jkl = 8.20 
l 7.65 d 4 3Jkl = 8.20 

m 8.00 d 4 3Jmn = 6.53 
n 9.08 d 4 3Jnm = 6.53 

o 5.51 s 4 -- 
p 6.66 dd 4 3Jmeta = 3.70; 3Jortho = 6.47 

q 6.54 dd 4 3Jmeta = 3.70; 3Jortho = 6.47
r 4.05 m 8 -- 
s 4.00 m 16 -- 
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Table 4.38 – 13C NMR of data [4-19][OTf]2 in CD3CN. MWOTf- = 2635.773 g/mol. 
Quaternary carbons assigned using software 

Carbon δ (ppm) # Carbons 

1 0.32 12 
2 0.16 8 
3 0.53 8 
4 19.56 4 
5 17.34 4 
6 31.89 4 
7 65.40 4 
8 164.66 4 
9 131.28 4 
10 131.96 2 
11 133.84 4 
12 133.91 2 
13 164.54 2 
14 66.38 2 
15 133.43 2 
16 128.90 4 
17 128.52 4 
18 140.46 2 
19 155.70 2 
20 124.11 4 
21 145.65 4 
22 57.66 2 



A New Design: Liquid Crystal [2]Rotaxanes 
 

243

23 121.17 4 
24 112.30 4 
25 146.99 4 
26 67.80 4 
27 70.75 4 
28 70.27 4 

 



CHAPTER 5 
 

Chirality in a Liquid Crystal [2]Rotaxane 
 
 
5.1 INTRODUCTION 
 
 Chirality in soft matter can be present at the molecular and supramolecular level. 

In liquid crystals, chirality can be introduced by several different avenues.64-68 Chirality 

can be directly introduced within the liquid crystalline molecule by incorporation of 

chiral elements, usually chiral centers which are thus single component chiral systems. 

Another popular way, especially for materials used in applications, is the addition of a 

small amount of a chiral guest (dopant) molecule to an achiral host phase. The amount of 

chiral dopant is usually less than 5 %, and the ability of the dopant to induce chirality 

does not depend on it being mesogenic or non-mesogenic. Additionally, mixtures of 

chiral and achiral mesogenic materials can be prepared.  

 Introduction of chirality into mesogenic materials introduces large changes in the 

molecular self-organization and thus on the respective liquid crystal behaviour. By 

introducing chirality a spontaneous macroscopic helical superstructure with a twist axis 

perpendicular to the local director is observed. This twist can be right- or left-handed, 

depending on the configuration of the chiral element(s) within the molecule. For 

example, when the molecules of a SmC phase are chiral the phase structure is basically 

the same except that the molecular chirality causes a small and gradual change in the 

direction of the molecular tilt. There is no change in the tilt angle with respect to the layer 

normal and this change in tilt direction from layer to layer describes the helix (Figure 

5.1b). The achiral SmC phase symmetry consists of a two-fold rotation axis (C2) parallel 
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to the layers, a mirror plane (m) orthogonal to the layers, and an inversion center (i) 

(Figure 5.1a). When the tilted molecules of the SmC phase become chiral, the symmetry 

is reduced to solely a two-fold axis of rotation. Hence, the chiral tilted SmC* phases all 

exhibit a local spontaneous polarization, Ps, and this spontaneous polarization can be 

reoriented between two stable states by applying an electric field.166-169 The Ps is reduced 

to zero throughout a bulk sample and the SmC* phase is hence defined as helielectric. 

The attractiveness of this phase is its promising properties for applications in fast 

switching, high contrast, and large viewing displays, as well as other non-display items. 

Figure 5.1b illustrates the helical superstructure of the chiral bulk SmC* phase (left) and 

the corresponding direction of the vector for the spontaneous polarization together with 

the respective direction of the director on the tilt cone (right). 
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Figure 5.1 – a) Schematic illustration of the symmetry elements of the achiral SmC 
phase, b) schematic illustrations of the helical superstructure of the chiral bulk 
SmC* phase and the direction of the director on the tilt cone and the corresponding 
direction of the vector of the spontaneous polarization (Ps). 
 
 This chapter focuses on the possibility of introducing chirality into a liquid crystal 

[2]rotaxane. Observations to changes in the superstructure, depending on the approach to 

introduce chirality will also we addressed. Of interest, with a charged LC [2]rotaxane, is 
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the possibility of introducing chirality in several ways: core structure (chiral thread, chiral 

macrocycle or chiral anions), end groups (chiral side-chains), and doping, as well as any 

combination of the three. This chapter focuses on the introduction of chirality via a chiral 

anion and a chiral macrocycle, which should be the least disruptive to the LC phase. The 

liquid crystalline [2]rotaxane chosen for this study was the alkyl-siloxane extended two-

charge [2]rotaxane [4-19][OTf]2 discussed in Chapter 4, which formed a SmC liquid 

crystal phase (Figure 5.2). The ultimate goal was to determine if there was an observable 

chiral induction by introducing chirality into the [2]rotaxane, via the core of the rotaxane 

and/or to the ends of the stoppers. 

The simplest approach to introduce chirality into the core was to anion exchange 

the trifluoromethane sulfonate counter ions with a chiral anion. The chiral anion chosen 

for this work was (-)-camphor-10-sulfonate, which was commercially available. This 

particular anion was chosen because it was similar in size and functionality to the 
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Figure 5.2 – [2]Rotaxane [4-19][OTf]2 chosen for the introduction of chirality. 
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trifluoromethane sulfonate (triflate) anion and thus no large disruptions in the core to core 

packing of the molecules were expected. 

 The other approach would be to synthetically incorporate chirality into each 

individual interlocked molecular core. The initial design involves the incorporation of a 

chiral DB24C8 macrocycle into the [2]rotaxane. By appending the chiral group to the 

macrocycle, the collective non-covalent interactions favoring pseudorotaxane formation 

are not disrupted. Another widely used approach to introduce chirality is to use a chiral 

dopant. Although this concept was not explored during this thesis work, an appropriate 

chiral dopant could be either a chiral siloxane, to interact with the side-chains, or a 

synthesized chiral mesogenic [2]rotaxane, to mix with the achiral mesogenic [2]rotaxane. 

5.2 SYNTHESIS AND CHARACTERIZATION 

5.2.1 Synthesis 

 In order to introduce chirality into the [2]rotaxane core via a chiral anion, the 

triflate anion of [2]rotaxane [4-19][OTf]2 was anion exchanged for (-)-camphor-10-

sulfonate (-)CamSO3 (Scheme 5.1). This procedure was repeated multiple times to 

ensure all anions had been converted. 

 Chirality was incorporated into the crown at the 3- and 4- positions of the 

catechol ring as this was thought to cause the least disruption to [2]pseudorotaxane 

formation. An added bonus was that incorporation of ether groups makes the catechol 

rings on the crown more electron rich and increased the association constant for 

[2]pseudorotaxane formation relative to DB24C8. The chiral crown was synthesized in 

two steps (Scheme 5.2). Bromomethylation170-173 of the DB24C8 macrocycle was carried 

out with an excess of paraformaldehyde and a 40 % hydrobromic acid solution in acetic 
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acid/CHCl3 to generate the corresponding tetra(bromomethyl) derivative 5-2 in 95 % 

yield. Alkylation with (R)-2-butanol and sodium hydride provided the tetrakis((R)-2-

butyl-oxymethyl) derivative 5-3 in 45 % yield.  
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Scheme 5.1 – Synthetic route for [2]rotaxane [5-1][(-)CamSO3]2. 
 
 As mentioned in Chapter 4, the synthesis of the two-charged [2]rotaxanes by ester 

formation follows a modified version of that reported by Takata et al.158,159 [2]Rotaxane 

[5-5][OTf]2 was synthesized by combining one equivalent of the thread [4-9][OTf]2 with 

an excess of both the anhydride stopper 4-15 and the new tetrasubstituted chiral  DB24C8 
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macrocycle  5-3 (Scheme5.3). [5-5][OTf]2 was then purified by column chromatography 

on reverse  phase  C18 silica  gel.  In order to avoid cross-linking of siloxane groups as 

discussed in Chapter 4, the material collected from the column was never fully 

concentrated to dryness but anion exchanged to the triflate anion by a two-layer 

MeNO2/NaOTf (aq) mixing and washed with copious amounts of water before 

concentrating to a solid. 

 

Scheme 5.2 – Synthetic route to tetra-substituted crowns 5-2 and 5-3. 
 
  5.2.2 1H NMR Spectroscopy 

 The conversion of [2]rotaxane [4-19][OTf]2 to [5-1][(-)CamSO3]2 was 

conveniently monitored by 1H NMR spectroscopy due to the presence of eleven 

chemically inequivalent protons on the chiral anion (Figure 5.3). The strained ring system 

in the chiral anion has a favorable geometry for overlapping orbitals and the complex 1H 

NMR spectrum for the anion shows long-range coupling. The diastereotopic x and x’ 
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protons of the chiral anion are slightly shielded when in close proximity to the 

[2]rotaxane due to ion-ion interactions between the sulfonate group of the anion and the 

pyridinium groups on the thread. By integration, the number of protons were appropriate 

for two anions to one [2]rotaxane molecule, consistent with all the triflate anions being 

exchanged to the chiral anions in this new material. 
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Scheme 5.3 - Synthetic route to [2]rotaxane [5-5][OTf]2. 

 The 1H NMR spectrum of chiral crown 5-3 shows the effect of the chiral center 

on neighboring protons (Figure 5.4). Protons e, e', b and b' are diastereotopic, having 

different chemical shifts and split each other with a geminal coupling constant. All other 

protons show typical splitting patterns and are not affected by the chiral center. 
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Comparison of the 1H NMR spectra of the naked dumbbell [5-6][OTf]2 and the 

[2]rotaxane [5-5][OTf]2 clearly shows the effect of the three non-covalent interactions 

responsible for the initial self-assembly, as previously discussed in Chapter 4 (Figure 

4.5). Ethylene protons of the recognition site, o, and α-pyridinium protons, n, are 

deshielded due to hydrogen bonding with the oxygen atoms of the crown ether and the β-

pyridinium protons m and l, are shielded due to π-π interactions between the electron rich 

rings on the crown ether and the electron poor pyridinium rings on the thread. 
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Figure 5.3 - 1H NMR spectra of free [NH4][(-)CamSO3](top) and [5-1][(-)CamSO3]2 
(bottom) in CD3NO2. 
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Figure 5.4 - 1H NMR spectrum of 5-3 in CD3CN. 
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Figure 5.5 - Stacked 1H NMR spectra of a) dumbbell [5-6][OTf]2 and b) [2]rotaxane 
[5-5][OTf]2 in CD3CN. 
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5.2.3 Results and Discussion: Pseudorotaxane Studies 

 The [2]pseudorotaxane formation between [4-9][OTf]2 and 5-3 was studied in 

order to determine an association constant and indirectly to provide a guide to the 

appropriate amount of excess crown ether required to ensure full [2]pseudorotaxane 

formation for the eventual synthesis of [2]rotaxane [5-5][OTf]2. The [2]pseudorotaxane 

was formed when equimolar solutions of the thread [4-9][OTf]2 and chiral macrocycle  

5-3 were mixed at 25 ºC in CD3CN. Equilibrium was rapidly attained and a new set of 

peaks, in addition to those assigned to the free components, were observed in the 1H 

NMR spectrum (Figure 5.6). The chemical shifts of the new resonances were consistent 

with the formation of a [2]pseudorotaxane complex in solution with a rate of association-

dissociation that was slow compared to the NMR timescale. Evidence for 

[2]pseudorotaxane formation was observed not only in solution, but also in the "gas 

phase" using electrospray mass spectrometry. 

The ethylene protons of the recognition site, f, and α-pyridinium protons, e, are 

deshielded due to hydrogen bonding with the oxygen atoms of the crown ether, while β-

pyridinium protons, d and c, are shielded due to π-π stacking interactions between the 

aromatic rings on the crown ether and the pyridinium rings of the thread. The crown ether 

catechol proton j and protons of the chiral group, k, k', l, m, n, n' and o, are shielded for 

the same reason. Variable temperature 1H NMR experiments were also performed in 

order to determine thermodynamic parameters for the interaction of [4-9][OTf]2 with 5-3 

in CD3CN (2 x 10-3 M) at 298 K. The spectra at various temperatures, in the range 3 - 8 

ppm, are shown in Figure 5.7, and a van't Hoff plot is shown in Figure 5.8. 
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Figure 5.6 - 1H NMR spectrum of a 2 x 10-3 M solution of [5-4][OTf]2
 in CD3CN at 

289 K. The uncomplexed protons of the free components are designated by ux and 
the complexed [2]pseudorotaxane protons are designated by cx. 
 
 Since the rate of threading/unthreading is slow on the NMR timescale, calculation 

of the concentrations of complexed and uncomplexed species is possible by integration. 

The single-point method can be used to calculate Kassoc.174 This method uses the known 

initial concentrations of crown ether and thread and the signal integrals of a complexed 

and uncomplexed NMR signal representing the same proton. The equation for Kassoc is: 

 H + G    H•G  Kassoc = [H•G]      Eq. 4.1 
       [H][G] 
 
using notation of host (H) and guest (G). 

Plots of ΔGº, ΔHº and TΔSº versus T are shown in Figure 5.9; ΔGº is relatively 

insensitive to temperature, whereas at high temperatures this process is enthalpy driven, 

and at low temperatures the process becomes entropy driven. The association constant 

Kassoc for [5-4][OTf]2  is 327 M-1 and  ΔGº is -19.1 kJ/mol at 298 K. 
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Figure 5.7 - VT 1H NMR spectra of [5-4][OTf]2

 in CD3CN. 
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Figure 5.8 - The van't Hoff plot for [5-4][OTf]2 plotted from 1H NMR data. 
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Figure 5.9 - Variation of ΔGº, ΔHº and TΔSº with temperature for [5-4][OTf]2. 
 

5.3 LIQUID CRYTSAL PHASE CHARACTERIZATION  

 Thermal gravimetric analysis (TGA) was not performed on any of these 

compounds as the thermal lability is at the mercy of the siloxane moiety on the stoppers, 

as shown in Chapter 4, with decomposition occurring at temperatures above 158 ºC.  
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5.3.1 Defect Textures Observed by Polarizing Optical Microscopy (POM) 

 The POM studies of both chiral [2]rotaxanes presented here are preliminary 

experiments to look at the reproducibility of the textures. All defect textures obtained by 

POM were viewed with crossed polarizers. The same type of schlieren texture observed 

for the achiral siloxane extended [2]rotaxane [4-19][OTf]2 was also observed for both 

chiral [2]rotaxanes [5-1][(-)CamSO3]2 and [5-5][OTf]2, suggesting that the long axis of 

the molecule is still tilted with respect to the director, even though the chemical makeup 

of each molecule has changed (Figure 5.10c,d and 5.11b, respectively). No visible 

crystallinity was detected by POM for either chiral [2]rotaxanes when squeezed between 

glass slides. Both were soft, strongly birefringent solids. 

 The [2]rotaxane [5-1][(-)CamSO3]2 displayed several textural changes upon 

heating. Above 85 ºC, the material became increasingly fluid and reorganized to a oily-

streak texture with birefringent lines (Figure 5.10b). This texture remained until 130 ºC, 

when a schlieren texture was observed until clearing into the isotropic liquid at 151 ºC 

(Figure 5.10c). Where singularities are resolved, the typical four-fold brushes observed 

with tilted smectics were seen. Upon cooling from the isotropic liquid, the schlieren 

texture returns forming small domains, with many disclination lines typical for highly 

viscous materials.  
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c) d)

a) b)

c) d)

 
Figure 5.10 - POM of [5-1][(-)CamSO3]2 (crossed polarizers): a) squeezed between 
glass slides @ 25 ºC, b) @ 90 ºC upon heating, c) @ 135 ºC upon heating and d) @ 
25 ºC upon cooling from Ti = 153 ºC. All are shown at 50x magnification. 
 
 The chiral crown [2]rotaxane [5-5][OTf]2 showed a decrease in fluidity, compared 

to [5-1][(-)CamSO3]2 and little change was observed upon heating until 100 ºC, at which 

point a schlieren texture was observed and remained until clearing into the isotropic 

liquid at 155 ºC (Figure 5.11b), which is close to its decomposition temperature. Upon 

cooling from the isotropic liquid, there were domains of spherulites that grew in at 150 ºC 

and other domains of a fan-like texture were observed after 30 seconds to 1 minute 

(Figure 5.11c, d). If the pitch of the helix is on the order of several micrometers, it can be 

observed by POM as an equidistant line pattern superimposed on the SmC* fans. This 

equidistant line pattern, due to the helical superstructure, is observed in the magnified 

images of each domain (Figure 5.11e, f). The lines are parallel to the smectic layer planes 

and the distance between two adjacent dark lines provides the pitch of the helix; the helix 
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axis is perpendicular to the lines. So in the SmC* phase, the helix line pattern follows the 

smectic layer planes, while the helix axis gives the local direction of the smectic layer 

normal. From the natural texture of the SmC* phase, the pitch was estimated to be 

between 1.3 and 1.4 μm.  

 

Figure 5.11 - POM of [5-5][OTf]2 (crossed polarizers): a) squeezed between glass 
slides @ 25 ºC, b) @ 100 ºC upon heating, c) @ 140 ºC upon cooling from Ti = 155 
ºC, t = 10 s, d) @ 140 ºC, t = 45 s and e, f) the two difference magnified areas of d. 
 

5.3.2 Differential Scanning Calorimetry (DSC) 

 DSC analysis of both chiral [2]rotaxanes [5-1][(-)CamSO3]2 and [5-5][OTf]2  

only displayed glass transitions; which was reversible upon cooling for [2]rotaxane       

[5-1][(-)CamSO3]2 (Figure 5.12). The midpoint temperatures for the glass transitions are 

listed in Table 5.1.  
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Figure 5.12 - Second heating and cooling DSC runs of [2]rotaxane [5-5][OTf]2 at    
10 ºC/min under N2. 
 

Table 5.1 - Transition temperatures (ºC, midpoint)                                             
observed by DSC at scan rates of 10 ºC/min for                                                  
[2]rotaxanes. 

Compound 2nd Heating Cooling 

5-12+ 32 (Tg) 44 (Tg) 
5-52+ 65 (Tg) n.t. 

n.t. : no transition observed. 

5.3.3 Variable Temperature X-Ray Diffraction (vt-XRD) 

 Data for vt-XRD were collected for the second heating and cooling cycles. 

[2]Rotaxanes [5-1][(-)CamSO3]2 and [5-5][OTf]2 displayed highly ordered lamellar 

phases with a near identical layer spacing of 41 Å, similar to that observed for the achiral 

[2]rotaxane [4-19][OTf]2. Neither of these exhibited second order reflections in the bulk 

material (Figure 5.13a and b). This confirms that the chiral [2]rotaxanes                        

[5-1][(-)CamSO3]2 and [5-5][OTf]2 also have tilted smectic phases. POM studies for 

both [2]rotaxanes showed schlieren textures that are characteristic for a SmC phase. The 
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calculated lengths of the molecules for both chiral [2]rotaxanes remains nearly 

unchanged from the achiral [2]rotaxane [4-19][OTf]2 and the tilt angles for                     

[5-1][(-)CamSO3]2 and [5-5][OTf]2 were estimated to be 36º and 34º, with the long axis 

of the molecule tilted with respect to the director. 

 The [2]rotaxane [5-1][(-)CamSO3]2 showed a very broad reflection centered 

between 5 and 6 Å, corresponding to the disordered lateral arrangement of the alkyl 

extended siloxane groups within each layer.157,164 In contrast, the [2]rotaxane [5-5][OTf]2 

showed a higher degree of order over the entire range studied (Table 5.2). This suggests a 

more efficient packing of the molecules in the mesophase of [5-5][OTf]2 compared to  

[5-1][(-)CamSO3]2. The reflections resulting in distances at 15 and 10 Å are within the 

range of core to core distances based on estimated molecular lengths and are likely due to 

in-plane packing order.  

Table 5.2 – vt-XRD data for [5-1][(-)CamSO3]2 and [5-5][OTf]2
 upon cooling. The 

values are consistent over several heating and cooling cycles. 

Compound dmeas (Å) Indexation k 2θ Intensity 

5-12+ 40.5 10 2.18 vs 
 5.61  2.14 br 

5-52+ 41.32 10 2.14 vs 
 15.4  5.75 m 
 9.97  8.88 sh 
 7.46  11.90 sh 
 5.53  15.82 sh 
 4.77  18.50 sh 
 4.49  19.73 sh 

vs, very strong; m, medium; br, broad; sh, sharp. 
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Figure 5.13 - vt-XRD data of a) [5-1][(-)CamSO3]2 and b) [5-5][OTf]2. 
 

5.3.4 Processing of LC Materials 

 An attempt at parallel alignment of these materials on glass by applying shear 

force was undertaken and the polarized micrographs are shown in Figure 5.14. 

[2]Rotaxane [5-1][(-)CamSO3]2 was relatively fluid above 50 ºC and the material was 

sheared at 85 ºC, which appeared to align at low magnification. However, when 

magnified further the textures showed a moderately developed unidirectional line pattern 

(Figure 5.14a). This may suggest a long pitch SmC* under planar anchoring conditions, 

and from this the pitch was estimated to be between 4.0 and 7.0 μm, which is nearly three 

times larger than the pitch for [5-5][OTf]2. Interestingly, when this material was rotated 

by 45º the birefringent areas between the lines showed only four-fold brushes (Figure 

5.14b). From this polarized micrograph the pitch was estimated to be between 2.0 and 6.0 

μm, which is still quite a bit larger than [5-5][OTf]2. 

 The chiral crown [2]rotaxane [5-5][OTf]2 is less fluid than [5-1][(-)CamSO3]2, 

but became reasonably fluid above 100 ºC. Mechanical shear alignment was attempted at 

120 ºC but only a schlieren texture of small domain size and many disclination lines was 
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observed. Brightness remained unchanged when the sample was rotated suggesting that 

no macroscopic alignment of one of the optic axes occurred (Figure 5.14c). 

 

Figure 5.14 - POMs of a) [5-1][(-)CamSO3]2 mechanically sheared at 85 ºC (in 
direction of arrow) and b) rotated by 45º. c) Schlieren texture obtained for             
[5-5][OTf]2 after mechanically shearing at 120 º C, which remained throughout 
rotation of the sample. 

5.3.6 Liquid Crystal Phase Determination 

 The mesophases formed by [2]rotaxanes [5-1][(-)CamSO3]2 and [5-5][OTf]2 

have thus far been characterized by initial POM observations, DSC analysis and vt-XRD 

analysis. The phase characterization and transition temperatures measured by POM and 

DSC on heating are shown in Figure 5.15. Both formed chiral lamellar phases that 

cleared into the isotropic liquid just before their decomposition temperatures of 151 ºC 

and 155 ºC for [2]rotaxanes [5-1][(-)CamSO3]2 and [5-5][OTf]2, respectively. 

[2]Rotaxane [5-1][(-)CamSO3]2 remained amorphous over the entire temperature range 

and was thus a SmC* liquid crystal. The chiral crown [2]rotaxane [5-5][OTf]2 showed 

additional peaks in the wide angle region of the XRD over the entire temperature range 

and could be classified as a higher ordered chiral smectic phase SmX*. The long axis of 

the molecule was tilted with respect to the layers and this was supported by textures 

observed by POM and by comparison to the calculated and experimentally determined 

molecular lengths. The approximate tilt angles for [2]rotaxanes [5-1][(-)CamSO3]2 and 
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[5-5][OTf]2 were determined to be 36º and 34º. The initial decomposition for each 

compound is marked with a black line in Figure 5.15, with decomposition for both 

occurring above 158 ºC.  

[5-1][(-)CamSO3]2:

[5-5][OTf]2:

-60 -40 -20 0 20 40 60 80 100 120 140 160 180 200

Temperature (°C)

decomposition

[5-1][(-)CamSO3]2:

[5-5][OTf]2:

-60 -40 -20 0 20 40 60 80 100 120 140 160 180 200

Temperature (°C)

decomposition

 
Figure 5.15 - Phase transition temperatures for [2]rotaxanes [5-1][(-)CamSO3]2 and    
[5-5][OTf]2

 measured by DSC and POM on heating. (orange, SmC*; cyan, SmX*. The 
start of decomposition is marked with a black line.) 
 

5.4 SUMMARY AND CONCLUSIONS 

 In this preliminary study, chirality was introduced into the siloxane extended 

SmA [2]rotaxane [4-19][OTf]2 by two different avenues. Avenue one is based on anion 

exchange of the triflate anion with the chiral (-)-camphor-10-sulfonate anion. This 

produced a SmC* phase for [2]rotaxane [5-1][(-)CamSO3]2 with an estimated pitch range 

between 2.0 and 7.0 μm, determined from applying shear force to induce parallel 

alignment. The tilt angle was estimated to be 36º with respect to the director based on 

XRD data and the calculated molecular length.  

 Avenue two introduces chirality into each [2]rotaxane by using a chiral crown. 

This formed a SmX* phase for [2]rotaxane [5-5][OTf]2 with an estimated pitch range 

between 1.4 and 1.3 μm, determined from the natural defect texture by POM. The tilt 

angle was estimated to be 34º with respect to the director based on XRD data and the 

calculated molecular length.  

 Due to time constraints further analysis required was not completed; variable 

temperature circular dichroism (vt-CD) in solution and on thin films to determine if there 
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is an amplification in the CD spectrum in the thin film and alignment in a wedge cell in 

an attempt to calculate the pitch. Also, future projects on doping the achiral [2]rotaxane 

with a chiral dopant to induce a chiral [2]rotaxane liquid crystal should be undertaken. 
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5.5 EXPERIMENTAL 

5.5.1 General Comments 

 (-)-Camphor-10-sulfonic acid ammonium salt, paraformaldehyde, hydrobromic 

acid, sodium hydride, (R)-2-butanol and DB24C8 were purchased from Aldrich and used 

as received. Deuterated solvents were obtained from Cambridge Isotope Laboratories and 

used as received. Thin layer chromatography (TLC) was performed using Teledyne Silica 

gel 60 F254 plates and viewed under UV light. Column chromatography was performed 

using Silicycle Ultra Pure Silica Gel (230 – 400 mesh). Flash column chromatography 

was performed using Teledyne Ultra Pure Silica/RP-C18 Silica Gel (230 – 400 mesh) on a 

Teledyne Isco Combiflash Rf. All flash chromatography was performed under pressure 

(120 mL/min. - 200 mL/min.) for normal phase silica and (10 mL/min. - 40 mL/min.) for 

RP-C18 silica, with increasing pressure corresponding to larger columns. Unless 

otherwise stated, all flash chromatography involved applied gradient elution from 0 - 100 

% with increasing polar solvent with respect to less polar solvent. Length of column 

(column volumes - CV) were determined by separations on preliminary TLC runs.  

 1H NMR, 13C NMR and 2-D experiments were performed on a Brüker Avance 

500 instrument, with a working frequency of 500.13 MHz for 1H nuclei, and 125.7 MHz 

for 13C nuclei. Chemical shifts are quoted in ppm relative to tetramethylsilane, using the 

residual solvent peak as a reference standard. Conventional 2-D NMR experiments (1H-

1H COSY) and (1H-13C HETCOR) were conducted and used to help assign all peaks. 

High resolution mass spectrometry (HR-MS) experiments were performed on a 

Micromass LCT Electrospray (ESI) time-of-flight (TOF) Mass Spectrometer. Solutions 
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of 50-100 ng/µL were prepared in CH3CN and injected for analysis at a rate of 5 µL/min 

using a syringe pump.  

 Calorimetric studies were performed on a Mettler Toledo DSC 822e and thermal 

gravimetric analysis with mass spectrometric detection of evolved gases was performed 

on a Mettler Toledo TGA SDTA 851e that was attached to a Pfeiffer Vacuum 

ThermoStarTM mass spectrometer (1-300 amu) via a thin glass capillary.  Helium (99.99 

%) was used to purge the system with a flow rate of 30 mL/min.  Samples were held at 25 

ºC for 30 min before heating to 550 ºC at 2 ºC/min. A mass range between 16 m/z and 

150 m/z was constantly scanned. All samples were run in aluminum crucibles. Powder 

XRD measurements where recorded on a Brüker D8 Discover diffractometer equipped 

with a Hi-Star area detector and GADDS software and operated at 40 kV and 40 mA.  

CuKα1 radiation (λ = 1.54187 Å) was used and the initial beam diameter was 0.5 mm. A 

custom made Instec hot stage (based on HS-400) was used for VT-XRD that covers a 

temperature range of -40 ºC to 350 ºC.  Bulk samples for variable temperature XRD were 

filled into a 2 mm diameter hole in a 1 mm thick copper plate and covered with KaptonTM 

foil.  This plate was mounted in an Instec hot-stage, aligned, and run at theta angles of 0º, 

and 15º for 30 or 60 min.  Spectra were combined and evaluated in EVA and plotted with 

Origin. Polarized light microscopy was performed on an Olympus TPM51 polarized light 

microscope equipped with a Linkam variable temperature stage HCS410 and digital 

photographic imaging system (DITO1). 
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5.5.2 Synthesis of compound 5-12+ 

 [4-19][OTf]2 (70.0 mg, 0.0266 mmol) was dissolved in MeNO2 (4 mL) and 

stirred for one day after addition of saturated (-)-camphor-10-sulfonic acid ammonium 

(100.0 mg, 0.5 mL) solution. The MeNO2 was washed with H2O (20 x 3 mL), dried over 

MgSO4 and the solvent removed yielding a bright yellow glassy solid (62.0 mg).  

 

Table 5.3 - 1H NMR data of [5-1][(-)CamSO3]2 in CD3NO2. MW = 2800.212 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 0.13 s   36 -- 
b 0.16 s  24 -- 
c 0.77 s  24 -- 
d 0.73 t 8 3Jde = 8.40 
e 1.64 tt 8 3Jed = 8.40; 3Jef = 6.96 

f 1.93 tt 8 3Jfe = 6.96; 3Jfg = 6.50 

g 4.47 t 8 3Jgf = 6.50 
h 8.87 s 2 -- 
i 8.91 s 4 -- 
j 5.75 s 4 -- 
k 7.78 m 4 -- 
l 7.76 m 4 -- 

m 8.12 d 4 3Jmn = 6.65 
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n 9.30 d 4 3Jnm = 6.65 

o 5.61 s 4 -- 
p 6.79 dd 4 3Jmeta = 3.68; 3Jortho = 6.53 

q 6.67 dd 4 3Jmeta = 3.68; 3Jortho = 6.53
r 4.19 m 8 -- 
s 4.12 m 16 -- 
t 2.01 m 2 -- 
t’ 1.33 m 2 -- 
u 1.83 d 2 2Ju,u’ = 18.10 

u’ 2.74 m 2 -- 
v 1.52 m 2 -- 
w 2.01 m 2 -- 
w’ 1.36 m 2 -- 
x 3.07 d 2 2Jx,x’ = 14.70 
x’ 2.57 d 2 2Jx’,x = 14.70 
y 0.82 s 6 -- 
z 1.10 s 6 -- 
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5.5.3 Synthesis of compound 5-2 

DB24C8 (2.00 g, 4.4592 mmol) and paraformaldehyde (10.601 g, 6.6885mmol) 

were added to a 125 mL flask with stir bar which was then evacuated and backfilled, N2 

(g). Then 15 mL of degassed CHCl3 was added to the flask, followed by 60 mL of acetic 

acid and heated to 60 ºC. Once the temperature had reached 60 ºC 30 mL of hydrogen 

bromide was added with heating continued for two days. The resulting beige precipitate 

was filtered and washed with copious amounts of H2O. The solid was then stirred in hot 

CHCl3 and filtered and dried via vacuum line. The resulting light beige solid was 

collected. Yield: 3.47 g, 95 %. 

 

Table 5.4 – 1H NMR data of 5-2 in CDCl3. MW= 820.197 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 4.58 s  8 -- 
b 6.83 s  4 -- 
c 4.15 t 8 3Jcd = 4.23 
d 3.89 t 8 3Jdc = 4.23 

e 3.79 s 16 -- 
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Table 5.5 – 13C NMR data of 5-2 in CDCl3. MW= 820.197 g/mol  

Carbon δ (ppm) # Carbons 

1 31.63 4 
2 130.19 4 
3 113.97 4 
4 148.11 4 
5 69.48 4 
6 70.62 4 
7 71.25 4 
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5.5.4 Synthesis of compound 5-3 

NaH (3.36 g, 0.1400 mol) and (R)-2-butanol (3.82 g, 0.0515 mol) were added to 

100 mL of dry DMF in a 500 mL Schlenk flask under a nitrogen atmosphere which was 

stirred for 1 h. An additional 150 mL of dry DMF was added followed by addition of 5-2 

(8.454 g, 0.0103 mol). The mixture was heated at 50 ºC and stirring continued for 24 h. 

Reaction mixture was cooled to room temperature and the NaH was neutralized by slow 

addition of 2.0 M NH4Cl (aq) then basified with 1.0 M Na2CO3. The formed precipitate 

was filtered and washed with CHCl3 (~200 mL). The aqueous layer was discarded and 

the organic layer was washed with H2O (2 x 150 mL), dried over MgSO4 and 

concentrated to a crude yellow solid. The product was purified by flash column 

chromatography on RP-C18 silica gel with H2O: MeOH gradient elution. The resulting 

white solid was collected. Yield: 3.65 g, 45 %. 
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Table 5.6 – 1H NMR data of 5-3 in CD3CN. MW= 793.035 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 0.90 t 12 3Jab,b’ = 7.47 
b 1.56 dq  4 3Jba = 3Jbc = 6.03, 2Jb,b’ = 51.89 
b’ 1.46 dq 4 3Jb’a = 3Jb’c = 6.03 
c 3.42 qt 4 3Jcb = 3Jcd = 6.03 

d 1.14 d 12 3Jdc = 6.13 

e 4.50 d 4 2Je,e’ = 2Je’,e = 11.59, 2Je,e’ = 43.22
e’ 4.39 d 4 2Je,e’ = 2Je’,e = 11.59 
f 6.96 s 4 -- 
g 4.09 t 8 3Jgh = 4.29 
h 3.79 t 8 3Jhg = 4.29 
i 3.68 s 8 -- 
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Table 5.7 – 13C NMR data of 5-3 in CDCl3. MW= 793.035 g/mol 

Carbon δ (ppm) # Carbons 

1 19.89 4 
2 76.44 4 
3 29.15 4 
4 10.17 4 
5 70.62 4 
6 129.23 4 
7 114.92 4 
8 145.71 4 
9 68.03 4 
10 69.42 4 
11 70.09 4 
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COSY of 5-3 in CD3CN. 

ppm
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5.5.5 Synthesis of compound 5-42+ 

[4-9][OTf]2 (1.39 mg, 0.0020 mmol) and 5-3 (4.75 mg, 0.0060 mmol) were 

stirred in MeNO2 (1.0 mL) until solution turned yellow. The solution was evaporated to 

yield the crude yellow solid which was not purified further. ESI-MS: m/z 1339.6533 

(calc.) for C71H98F3N2O17S+ [M-OTF]+, found 1339.6537, m/z 595.3504 (calc.) for 

C70H98N2O14
2+ [M]2+, found 595.3503. Yield: 2.92 mg, 98 %. 
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Table 5.8 – 1H NMR data of [5-4][OTf]2 in CD3CN. MW= 1489.670 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 4.72 s 4 -- 
b 7.54 d  4 3Jbc = 8.43 
c 7.57 d 4 3Jcb = 8.43 
d 7.91 d 4 3Jde = 6.82 

e 9.01 d 4 3Jed = 6.82 

f 5.45 s 4 -- 
g 4.04 m 8 -- 
h 3.98 m 16 -- 
i 6.7 s 4 -- 
j 4.11 d 4 2Jj,j’ = 2Jj’,j = 11.96, 2Jj,j’ = 48.79 
j' 3.38 d 4 2Jj,j’ = 2Jj’,j = 11.96 
k 1.09 d 12 3Jkl = 6.06 

l 3.26 qt 4 3Jlm = 3Jlk = 6.01 
m 1.43 dq  4 3Jmn = 3Jml = 6.01, 2Jm,m’ = 49.62 
m' 1.41 dq 4 3Jm’n = 3Jm’l = 6.01 
n 0.92 t 12 3Jnm,m’ = 7.48 
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5.5.6 Synthesis of compound 5-52+ 

[4-9][OTf]2 (45.0 mg, 0.0646 mmol), 5-3 (179.3 mg, 0.2261 mmol) and 4-15 

(292.4 mg, 0.1938 mmol) were dissolved in dry 6:4 (CHCl3: MeCN) (50 mL) under a 

nitrogen atmosphere. A catalytic amount of tributylphosphine (25 µL) was added via 

glass needle syringe and stirring continued until reaction complete (2 h). The solvent was 

removed under pressure. The crude yellow waxy solid was then purified by flash column 

chromatography with RP-C18 silica gel with 90:10 (MeCN: MeOH) isocratic elution 

followed by gradient (10 - 100 % MeOH) as eluant. The soft yellow waxy solid was 

collected. Yield: 128.0 mg, 63 %. ESI-MS: m/z 1339.6356 (calc.) for C132H218N2O32Si2
2+ 

[M]2+, found 1339.6350. 

 

Table 5.9 – 1H NMR data of [5-5][OTf]2 in CD3CN. MW= 3144.741 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 0.07 s   36 -- 
b 0.09 s  24 -- 
c 0.01 s  24 -- 
d 0.65 t 8 3Jde = 8.36 
e 1.54 tt 8 3Jed = 8.36; 3Jef = 7.59 

f 1.84 tt 8 3Jfe = 7.59; 3Jfg = 6.50 
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g 4.40 t 8 3Jgf = 6.50 
h 8.84 s 4 -- 
i 8.78 s 2 -- 
j 5.55 s 4 -- 
k 7.68 d 4 3Jkl = 8.15 
l 7.62 d 4 3Jlk = 8.15 

m 7.93 d 4 3Jmn = 6.50 
n 9.05 d 4 3Jnm = 6.50 

o 5.48 s 4 -- 
p 4.00 m 8 -- 
q 4.03 m 16 -- 
r 6.68 s 4 -- 
s 4.04 d 4 2Js,s’ = 11.85 
s’ 3.89 d 4 2Js’,s = 11.85 
t 0.82 t 12 3Jtu = 3Jtu’ = 7.45 
u 1.43 dq 4 3Jut = 3Juv = 6.71, 2Ju,u’ = 44.61 

u’ 1.34 dq 4 3Ju’,t = 3Ju’,v = 6.71 

v 3.15 qt 4 3Jvu = 3Jvw = 6.01 

w 1.00 d 12 3Jwv = 6.05 
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5.5.7 Synthesis of 5-62+ 

 [4-9][OTf]2 (32.16 mg, 0.0461 mmol) and 4-15 (243.8 mg, 0.1616 mmol) were 

dissolved in dry 7:3 (CH2Cl2: MeCN) (30 mL) under nitrogen atmosphere. A catalytic 

amount of tributylphosphane (15 µL) was added via glass needle syringe and stirring 

continued until reaction complete (3 - 4 h). The solvent was removed under pressure 

yielding the crude yellow oil. The oil was purified by flash column chromatography on 

RP-C18 silica gel with CH2Cl2 as eluant followed by MeOH. The product was isolated as 

a pale beige oil. Yield: 73.70 mg, 73 %. ESI-MS: m/z 943.3445 (calc.) for 

C88H146N2O20Si12 [M]2+, found 943.3449.   
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Table 5.10 – 1H NMR data of [5-6][OTf]2 in CDCl3. MWOTf- = 2187.267 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 0.07 s  36 -- 
b 0.08 s  24 -- 
c 0.01 s  24 -- 
d 0.61 t 8 3Jde = 7.21 
e 1.50 tt 8 3Jed = 7.21; 3Jef = 7.52 

f 1.81 tt 8 3Jfe = 3Jfg = 7.52 

g 4.38 t 8 3Jgf = 8.34 
h 8.83 s 2 -- 
i 8.86 s 4 -- 
j 5.53 s 4 -- 
k 7.72 d 4 3Jkl = 8.05 
l 7.85 d 4 3Jlk = 8.05 

m 8.27 d 4 3Jmn = 6.43 
n 9.66 d 4 3Jnm = 6.43 
o 5.42 s 4 -- 

 



CHAPTER 6 
 

Towards Liquid Crystalline Molecular Machines 
 

6.1 INTRODUCTION 

6.1.1 [2]Rotaxane Molecular Shuttles 

 Supramolecular architectures such as rotaxanes have generated great attention, 

particularly because of their dynamic properties.175-181 Many molecular machines and 

motors have been proposed over the last decade which incorporate such interlocking or 

threaded molecular systems39-43,114-123 as well as non-interlocking complexes.182-184 In a 

[2]rotaxane molecular shuttle, there are two recognition sites on the thread for the 

macrocycle to occupy. As a result, the complex possesses translational isomerism. Initial 

work done in our group incorporated the bis(dipyridinium)ethane/DB24C8 motif into a 

molecular shuttle, where both recognition sites were based upon 1,2-

bis(pyridinium)ethanes.116,120,122 A non-degenerate shuttle consisting of a 1,2-bis(4,4'-

dipyridinium)ethane site stoppered with a t-butylbenzyl group and a 1-(4,4'-dipyridinium) 

site stoppered with a t-butylpyridine group and incorporating the DB24C8 macrocycle is 

shown in Figure 6.1. At room temperature, the 1H NMR spectrum showed that the crown 

ether was rapidly shuttling between the two sites and there was only one set of averaged 

proton resonances. vt-1H NMR spectroscopy determined coalescence to occur at 0 ºC and 

the rate of exchange between the two populated co-conformational states was calculated 

to be 222 s-1 with a ΔG≠ = 54 kJ/mol. Integration of the peaks in the limiting spectrum 

allowed determination of the isomer ratio which was found to be 2:1, with the 1,2-
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bis(4,4'-dipyridinium)ethane site (blue) being favoured over the 1-(4,4'-dipyridinium)-2-

(t-butylpyridinium)ethane site (green). This preference was attributed primarily to the 4-t-

butylpyridine methyl group preventing the crown ether catechol group from π-stacking 

efficiently over the pyridinium ring. 

 
Figure 6.1 - Non degenerate [2]rotaxane molecular shuttle. 

6.1.2 Mesogenic [2]Rotaxane Molecular Shuttles 

 A promising new approach towards nanoscale devices is the combination of 

molecular machines and liquid crystals, which are mobile and ordered condensed states. 

At the same time, the study of such compounds in solution is interesting in itself. The 

liquid crystalline molecular order can provide the molecular machinery component with 

an organized dynamic environment. Furthermore, molecular machines have the capability 

to control the self-assembled behaviour of LC molecules.  

 Only recently has the first bistable LC [2]rotaxane molecular shuttle been 

described by a collaboration between the groups of Kato and Stoddat.96 They designed an 
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electrochemically switchable bistable [2]rotaxane molecular shuttle consisting of the 

tetra-cationic cyclobis(paraquat-p-phenylene) as the mobile macrocycle and two different 

recognition sites in the thread, containing tetrathiafulvalene and 1,5-dioxynaphthalene 

groups (Figure 6.2). Smectic A mesomorphism was introduced by the attachment of large 

liquid crystalline dendritic stoppers. Incorporation of a large number of ethylene glycol 

units lowered the melting temperature of the molecular shuttle, but tedious purification 

procedures were required and isotropization still occurred above the decomposition 

temperature of the complex at 150 ºC.   

SmASmA

 
Figure 6.2 - A LC bistable [2]rotaxane molecular shuttle done by Kato and Stoddart 
et al. 
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This approach has been previously applied to other typical non-mesogens86,88,105-

111 and is generally successful if the dendritic mesomorphic groups are sufficiently large 

and numerous and dictate the self-organization of the entire compound. However, this 

methodology does have limits such as an increase in phase transition temperatures, an 

increase in viscosity and synthetic feasibility.  

 Control of molecular switches and the amplification of their cooperative motion 

to produce a macroscopic response within a mesophase can only be accomplished by 

contributions from both the shuttling macrocycle and the mesogenic groups. These types 

of studies also require LC rotaxanes that can be prepared in large quantities and with high 

purity. Future applications such as functional materials also require a good alignment of 

these compounds in optical and/or electronic devices, which usually requires the 

formation of an isotropic melt at temperatures below 200 ºC.   

 It has recently been shown in the Loeb group that incorporation of Fréchets' 

polyaryl ether dendrons into the components of a molecular shuttle based upon the 1,2-

bis(dipyridinium)ethane/DB24C8 motif increases the barrier to shuttling and biases the 

distribution of co-conformations in favor of a single recognition site.124 The dendrons 

were employed as both a stopper and an appendage of the DB24C8 macrocycle. In this 

system, it was observed that as the size of the dendritic moiety increased in generation on 

either the stopper or the macrocycle, the barrier to shuttling increased and the rate of 

shuttling decreased. There was a preference for the more compact "short" co-

conformation of the complex with the macrocycle occupying the bis(4,4'-

bipyridinium)ethane recognition site. This is illustrated in Figure 6.3, where each sphere 

indicates the number of generations of the aryl ether unit. These complexes formed a 
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nematic mesophase over the entire temperature range and cleared into the isotropic liquid 

well before their decomposition temperature, which was above 200 ºC; all possessed a 

high degree of viscosity. 

 
Figure 6.3 - Co-conformations of nematic [2]rotaxane molecular shuttle substituted 
with Fréchet polyaryl ether dendrons. Each sphere represents a generation.  
 

6.1.3 Our Approach to a Mesogenic [2]Rotaxane Molecular Shuttle 

 Based upon the body of knowledge that we have gained from the mesogenic 

[2]rotaxanes discussed in the previous chapters, the approach to our design for a bistable 
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LC molecular shuttle incorporates components that have been shown to induce 

mesomorphism while possessing the fluidity required at high temperatures for 

processing. There are various types of recognition sites that can be incorporated into the 

shuttle thread in order to form a pseudorotaxane. Some possible groups are shown in 

Figure 6.4. These were chosen for their ease of synthesis or simply because they are 

commercially available and they have been shown to interact with the DB24C8 

macrocycle.114-123 These play an important role depending upon the perturbation desired 

to shuttle the macrocycle from one site to the other. For example, the bis(dipyridinium) 

and diazapyrene components can be oxidized producing Coulumbic charge-charge 

repulsion with the macrocycle and shuttle the macrocycle to the alternate site and can be 

reversed by reduction (Figure 6.4a, b). It may be possible to overcome the base 

sensitivity of the bis(dipyridinium) and diazapyrene components by introducing an alkyl 

bridge (Figure 6.4c, d). The alkyl bridge also introduces flexibility in the [2]rotaxane 

core. Components that undergo cis-trans isomerization upon irradiation, such as 

azobenzene derivatives, are also a convenient way to change the conformation of the 

complex and cause shuttling. The trans form is generally more stable than the cis form, 

which reverts thermally to the trans form on time scales ranging from milliseconds to 

months depending upon the particular system.185 

 It was decided that our new unsymmetrical [2]rotaxane molecular shuttle design 

would contain a bis(4,4'-bipyridinium)ethane stoppered with 3,5-lutidine on one end and 

a 4,4'-pyridinebenzyl group that is stoppered by ester formation (Figure 6.5). A triether 

octadecane substituted benzene was chosen as the stopper because the additional chain 
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length and number of chains should aid in fluidity. Only one end was stoppered with the 

mesogenic group to create a truly unsymmetrical thread where translation of the  

NN

NN
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N

NN
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N N

N
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Figure 6.4 - Various components for the thread that will form a pseudorotaxane 
with the DB24C8 macrocycle. 
 
macrocycle from one site to the other should create large differences in the size of the 

molecule, which we hope to observe macroscopically. For reasons discussed in Chapter 

5, the macrocycle chosen was a tetra-substituted DB24C8 crown ether which was 

extended with octadecane chains. The aliphatic chains should shelter the ionic core, 

keeping the viscosity of the material as low as possible.  

 This material is expected to induce layered self-assembled structures with  

smectic LC phases. From an electronic perspective, the macrocycle will occupy the site 

closest to the stopper and additional interactions with the alkyl chains on the stopper and 

macrocycle could further stabilize this interaction. This should be the major co-

conformation in solution and may also be in the solid state. If upon heating the material 

and the chains possess enough fluidity, the macrocycle may shuttle to the other site, 

producing a longer molecule where the alkyl chains of both the stopper and macrocycle 
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could reorganize to give efficient microphase segregation. If there is preference for one 

co-conformation over the other, we should also observe a colour change due to the 

difference in aromatic interactions for each site. This shuttling can be studied by VT 

analysis both in solution and in thin films using 1H NMR spectroscopy, UV-Vis 

spectroscopy, XRD and POM analysis.  

 

 
Figure 6.5 - Proposed design for a LC bistable [2]rotaxane molecular shuttle. 
 

6.2 SYNTHESIS AND CHARACTERIZATION 

6.2.1 Synthesis 

 The benzoic acid 6-2 was prepared using a modified version of a previously 

reported procedure186 for the alkylation of propyl gallate. This produced 6-1 

quantitatively and was followed by deprotection of the propyl group to give 6-2 in 89 % 

yield (Scheme 6.1). The anhydride 6-3 was generated from the corresponding acid 6-2 
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quantitatively using half of an equivalent of tosyl chloride and excess base. Reaction 

completion was monitored by 1H NMR and 13C NMR spectroscopy.  

 
Scheme 6.1 - Synthetic route for stoppers 6-1 through 6-3. 
 

Synthesis of the tetrakis(oxyoctadecyl)-DB24C8 macrocycle followed similar 

conditions described in Chapter 5, by alkylation of 5-2 with 1-octadecanol to generate 6-4 

in 23 % yield. Due to the insolubility of 5-2, it was used without purification and hence 

the low yield of 6-4 was due primarily to the many variations of multiply substituted 

products and possible isomers of 5-2. All of which were recovered by column 

chromatography on reverse phase silica gel.  

  

Scheme 6.2 - Synthetic scheme for crown 6-4. 

 The shuttle thread compounds 6-52+ through 6-74+ were synthesized by alkylation 

via microwave synthesis to give the products as the bromide salt. Each was subsequently 
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anion exchanged, to the tetrafluoroborate salt for 6-52+ and 6-63+, and to the triflate salt 

for 6-74+ via a two-layer extraction. Compound 2-2+ was combined with an excess of 3,5-

lutidine and subjected to microwave irradiation to generate thread precursor 6-52+ 

(Scheme 6.3). This thread precursor was subjected to the same conditions with an excess 

of 1,2-dibromoethane to generate 6-63+. Then thread precursor 6-63+ and an excess of 4-8 

were dissolved in MeNO2 and microwaved for 3h under the same conditions to give 6-

74+. 
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Scheme 6.3 - Synthetic route for thread 6-52+ through 6-74+.  

 The first attempt at synthesizing the molecular shuttle was by ester formation of 

thread 6-74+ with an excess of the anhydride stopper 6-3 and an excess of the tetra-

substituted DB24C8 macrocycle 6-4 with Bu3P as the catalyst. Surprisingly, once the 
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catalyst was added to the mixture of free components the reaction immediately turned 

yellow, then green and within minutes dark royal blue. This indicates radical formation of 

the paraquat146-149 unit in the thread, which in turn cleaved every ethyl bridge, generating 

all of the single components of the shuttle thread; 4,4'-bipyridine, 3,5-lutidine and the  

 

Scheme 6.4 - Synthetic routes for molecular shuttle 6-94+. 
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4,4'-pyridinebenzyl alcohol.  This radical formation was facilitated by the basicity of the 

Bu3P, having a pKa of 8.43. Hence, an alternate synthetic route via microwave synthesis 

was attempted. 

 Alternatively, the new stopper 6-8 was synthesized by ester formation under 

modified conditions discussed in Chapters 4 and 5, with Bu3P as the catalyst (Scheme 

6.5). Due to solubility differences in the starting materials the reaction time was long and 

required heating with the product formation coming to a halt just under 50 % conversion. 

With this as the stopper, the complementary thread to synthesize the molecular shuttle is 

now 6-63+.  

 

Scheme 6.5 - Synthetic route for thread 6-8. 

 To synthesize the molecular shuttle 6-94+ by microwave synthesis one equivalent 

of thread 6-63+ and five equivalents of the tetra-substituted DB24C8 macrocycle 6-4 were 

dissolved in a hot CHCl3/MeOH solution to ensure dissolution and pseudorotaxane 
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formation, followed by the addition of excess stopper 6-8 and microwaved continuously 

for 5 h cycles at 50 ºC until all of 6-63+ was alkylated (Scheme 6.4).  

6.2.2 1H NMR Spectroscopy 

 The formation of anhydride stopper 6-3 was monitored by both 1H NMR and 13C 

NMR spectroscopy, since fourier transform infrared (FT-IR) spectroscopy did not allow 

for unambiguous distinction between the acid and anhydride. As mentioned in Chapter 4, 

due to symmetry, the 1H NMR spectra of the acid and the anhydride are also identical 

though the 1H NMR spectra does show the complete disappearance of the TsCl protons 

upon complete anhydride formation. 13C NMR spectroscopy proved to be the best 

analytical tool for proving that only the anhydride was present.  The anhydride synthesis 

was confirmed by a shift in the carbonyl carbon peak from ~172 ppm, for the benzoic 

acid, to ~163 ppm, for the benzyl anhydrides (Figure 6.6).  

a)

b)

ppm180 170 160 150 140 130 120 110

a)

b)

ppm180 170 160 150 140 130 120 110180 170 160 150 140 130 120 110  
Figure 6.6 - Stacked 13C NMR spectra of a) 6-2 (acid) and b) 6-3 (anhydride) in the 
region between 100-180 ppm in CDCl3. 
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 The labeled 1H NMR spectrum of the tetra-substituted crown ether 6-4 is shown 

in Figure 6.7, with a singlet at 6.9 ppm due to the equivalent aromatic protons f, followed 

by the singlet at 4.5 ppm for the protons labeled e which are shielded by 0.3 ppm with the 

formation of the ether group from. The ethylene glycol protons g, h, and i are unaffected 

by the alkylation and appear in the range of 3.8 to 4.2 ppm. Also, the characteristic 

aliphatic protons a, b and c are unaffected and appear within the range of 0.8 to 1.6 ppm.  
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Figure 6.7 - 1H NMR spectrum of crown 6-4 in CDCl3. 
 
 The stacked 1H NMR spectra of the two shuttle threads 6-63+ and 6-74+ are shown 

in Figure 6.8. There were no differences observed for any of the pyridinium protons upon 

the formation of 6-74+ from 6-63+ other than the expected deshielding of protons j by 1.4 

ppm due to the new pyridinium group. The molecular shuttle reaction progress was 

monitored by 1H NMR spectroscopy with full alkylation confirmed by the complete 

transference of protons j from 4.1 ppm in 6-63+ to 5.3 ppm in 6-74+. 



Towards Liquid Crystalline Molecular Machines 
 

296

9.0 8.0 7.0 6.0 ppm5.0 4.0 3.0

a

a

b

b

c,g

c,g

e,d,i

j,e,i,d

j

o
p

f,h

f,h

k l m n

b)

a)

h g

e

fg

N

N

N

d
c

b

a
i

j
N

HO

n

o

l km

p

h g

e

fg

N

N

N

d
c

b

a

Br

i

j

9.0 8.0 7.0 6.0 ppm5.0 4.0 3.09.0 8.0 7.0 6.0 ppm5.0 4.0 3.09.0 8.0 7.0 6.0 ppm5.0 4.0 3.0

a

a

b

b

c,g

c,g

e,d,i

j,e,i,d

j

o
p

f,h

f,h

k l m n

b)

a)

h g

e

fg

N

N

N

d
c

b

a
i

j
N

HO

n

o

l km

p

h g

e

fg

N

N

N

d
c

b

a

Br

i

j

 
Figure 6.8 - Stacked 1H NMR spectra of a) shuttle thread precurosr [6-6][OTf]3 and 
b) shuttle thread [6-7][OTf]4 in CD3CN. 
 
 Due to the solubility differences amongst the thread, stopper and macrocycle, 

monitoring the reaction progress is complex. In polar solvents, such as CD3CN the 

pseudorotaxane formation is broad and upon cooling the sample all but the thread 

become insoluble and it is difficult to predict the solubility of the complex. However, in 

organic solvents such as CD2Cl2 all components except for the thread will dissolve and 

variable temperature experiments are employed. In CD2Cl2, another proton needs to be 

monitored for generation of the molecular shuttle. The proton spectrum for the alternate 

stopper 6-8 in CD2Cl2 is shown in Figure 6.9. The proton l is monitored for product 

formation, which will be deshielded from 8.7 ppm to 9.1 - 9.3 ppm upon alkylation 
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and/or complexation with the macrocycle. Because this stopper is in excess the 

disappearance of protons j from 6-63+ are also monitored in CD3CN at the same time. 
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Figure 6.9 - 1H NMR spectrum of alternate shuttle thread 6-8 in CD2Cl2. 
 

6.3 SUMMARY AND CONCLUSIONS 

 Two synthetic approaches for the generation of a single type of LC [2]rotaxane 

molecular shuttle have been described. This methodology makes use of simple 

modifications of pre-existing systems to change the properties of the material. However, 

many issues need to be addressed and studied. 

 For these complexes to be considered for functional materials there are still some 

fundamental questions that need to be answered. Will the macrocycle be easily shuttled in 

thin films? If the macrocycle does shuttle in a thin film, how thick can the film be without 

affecting the movement of the macrocycle between sites? How do we know if it is a 

combination of the liquid crystal and molecular machine that are contributing to any 
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visible macroscopic change? How can the motion be monitored and controlled in thin 

films? How can the number of counterions be reduced to further decrease viscosity, if 

required?  

 The answers to these and other important questions could lead to the future 

development of nanosegregated LC molecular machines that can be controlled to produce 

a macroscopic response within a mesophase. 
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6.4 EXPERIMENTAL 

6.4.1 General Comments 

 Propyl gallate, potassium carbonate, formic acid, 1-bromooctadecane, 1-

octadecanal, sodium hydride, p-toluenesulfonylchloride, 3,5-lutidine, sodium 

trifluoromethanesulfonate, sodium tetrafluoroborate, 1,2-dibromoethane and DB24C8 

were purchased from Aldrich and used as received. Deuterated solvents were obtained 

from Cambridge Isotope Laboratories and used as received. Solvents were dried using an 

Innovative Technologies Solvent Purification System. Thin layer chromatography (TLC) 

was performed using Teledyne Silica gel 60 F254 plates and viewed under UV light. 

Column chromatography was performed using Silicycle Ultra Pure Silica Gel (230 – 400 

mesh). Flash column chromatography was performed using Teledyne Ultra Pure Silica 

Gel (230 – 400 mesh) on a Teledyne Isco Combiflash Rf. 1H NMR, 13C NMR and 2-D 

experiments were performed on a Brüker Avance 500 instrument, with working 

frequency of 500.13 MHz for 1H nuclei, and 125.7 MHz for 13C nuclei, respectively. 

Chemical shifts are quoted in ppm relative to tetramethylsilane, using the residual solvent 

peak as a reference standard. Conventional 2-D NMR experiments (1H-1H COSY) and 

(1H-13C HETCOR) were conducted and used to help assign all peaks. High resolution 

mass spectrometry (HR-MS) experiments were performed on a Micromass LCT 

Electrospray (ESI) time-of-flight (TOF) Mass Spectrometer. Solutions of 50-100 ng/µL 

were prepared in CH3CN and injected for analysis at a rate of 5 µL/min using a syringe 

pump.  
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6.4.2 Synthesis of 6-1 

Potassium carbonate (35.16 g, 0.2544 mol) and propyl gallate (6.00 g, 0.02827 

mol), were suspended in a mixture of acetone/DMF (90:10 mL) and stirred for 1h. The 1-

bromooctadecane (32.99 g, 0.0990 mol) was then added and the mixture was refluxed 

overnight. The reaction mixture was then poured into 1.5 L of H2O and pH brought to 5-6 

with the addition of 2.0 M formic acid. The product was extracted with CH2Cl2 (200 mL) 

and the organic layer dried with MgSO4 and the solvent evaporated. The resulting syrup 

was purified by flash column chromatography on basic alumina with CH2Cl2 as the 

eluant. The resulting white waxy solid was collected. Yield: 27.27 g, 99 %.  

 

Table 6.1 – 1H NMR spectral data of 6-1 in CD2Cl2. MW= 969.635 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 1.02 t  3 3Jab = 7.45 
b 1.72 q  2 3Jba = 6.71 
c 4.23 t 2 3Jcb = 6.71 
d 7.27 s 2 -- 
e 4.00 t 6 3Jef = 7.15 
f 1.80 tt 6 3Jfe = 3Jfg = 7.15 
g 1.48 tt 6 3Jgf = 7.15 
h 1.35 m 84 -- 
i 0.89 t 9 3Jih = 6.91 
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6.4.3 Synthesis of 6-2 

6-1 (27.27 g, 0.0281 mol) was suspended in a solution 0.5 M KOH in EtOH:H2O 

(600: 10 mL) and refluxed for 1-2 h, or until reaction complete. The reaction mixture was 

then cooled to room temperature and acidified with 2.0 M formic acid to pH ~6. The 

product precipitated with the addition of 200-300 mL of H2O and was filtered off and 

dried in vaccuo to give the product was a colourless solid. Yield: 23.27 g, 89 %.  

 

Table 6.2 – 1H NMR spectral data of 6-2 in CD2Cl2. MW= 927.555 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 7.31 s 2 -- 
b 4.02 t 6 3Jbc = 6.52 
c 1.82 tt 4 3Jcb = 3Jce = 6.99 
d 1.73 tt 2 3Jdb = 3Jde = 6.99 
e 1.51 tt 6 3Jec = 6.99 
f 1.29 m 84 -- 
g 0.89 t 9 3Jgf = 6.90 
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Table 6.3 – 13C NMR spectral data of 6-2 in CD2Cl2. MW= 927.555 g/mol. 
Quaternary carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 171.67 1 
2 123.52 1 
3 108.70 2 
4 152.94 2 
5 143.27 1 
6 69.30 2 
7 29.37 2 
8 29.78 36 
9 26.15 3 
10 31.99 3 
11 22.75 3 
12 14.16 3 
13 73.62 1 
14 30.41 1 
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IR of 6-2  

4000 3500 3000 2500 2000 1500 1000 500
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm-1)

4000 3500 3000 2500 2000 1500 1000 500
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm-1)  



Towards Liquid Crystalline Molecular Machines 
 

304

6.4.4 Synthesis of 6-3 

 6-2 (8.00 g, 0.0082 mol), TsCl (838.4 mg, 4.3124 mmol), and K2CO3 (6.83 g, 

0.0493 mol) was refluxed in CHCl3 for 2-4 h. The crude mixture was filtered and 

concentrated to a white solid. The solid was taken up in CH2Cl2 and washed with 1.0 M 

NaHCO3 (1 x 50 mL), H2O (2 x 50 mL), dried over MgSO4, and the solvent removed. 

The product was isolated as a white waxy solid. Yield: 8.00 g, 50 %.   

 

Table 6.4 – 1H NMR spectral data of 6-3 in CDCl3. MW= 1837.094 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 7.36 s 4 -- 
b 4.03 t 8 3Jbc = 6.47 
c 1.83 tt 8 3Jcb = 3Jcf = 7.35 
d 4.09 t 4 3Jde = 6.47 
e 1.79 tt 4 3Jed = 3Jeg = 7.35 
f 1.49 tt 8 3Jfc = 7.35 
g 1.28 m 172 -- 
h 0.90 t 18 3Jhg = 6.87 
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Table 6.5 – 13C NMR spectral data of 6-3 in CD2Cl2. MW= 1837.094 g/mol. 
Quaternary carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 162.56 2 
2 123.52 2 
3 108.70 4 
4 152.94 4 
5 143.27 2 
6 69.30 4 
7 29.37 4 
8 29.78 72 
9 26.15 6 
10 31.99 6 
11 22.75 6 
12 14.16 6 
13 73.62 2 
14 30.41 2 
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IR of 6-3  
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6.4.5 Synthesis of compound 6-4 

NaH (2.40 g, 0.1000 mol) and 1-octadecanol (23.69 g, 0.0876 mol) were added to 

300 mL of dry DMF in a 1 L shlienk flask under a nitrogen atmosphere which was stirred 

for 1 h at 50 ºC. An additional 200 mL of dry DMF was added followed by slow addition 

of 5-2 (10.26 g, 0.0125 mol). The mixture was heated at 50 ºC and stirring continued for 

24 h. Reaction mixture was cooled to room temperature and the NaH was neutralized by 

slow addition of 2.0 M NH4Cl (aq) then basified with 1.0 M Na2CO3. The precipitate 

formed was filtered and washed with CHCl3 (~200 mL). The aqueous layer was 

discarded and the organic layer was washed with H2O (2 x 150 mL), dried over MgSO4 

and concentrated to a crude dark brown waxy solid. The product was purified by flash 

column chromatography on RP-C18 silica gel with MeOH as eluant, and product was 

forced off the column by hexane elution. The product was then further purified by flash 

column chromatography on silica gel with 99:1 (CHCl3: MeOH) isocratic elution to yield 

product was a dark brown waxy solid. The dark brown solid was dissolved in CHCl3, 

stirred in charcoal and then filtered through celite and solvent evaporated. The resulting 

white solid was collected. Yield: 4.54 g, 23 %. 
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Table 6.6 – 1H NMR spectral data of 6-4 in CDCl3. MW= 1578.524 g/mol.  

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 0.88 t 12 3Jab = 6.61 
b 1.25 m  120 -- 
c 1.57 tt 8 3Jcd = 6.66 
d 3.43 t 8 3Jdc = 6.66 

e 4.46 s 8 -- 
f 6.90 s 8 -- 
g 4.15 t 8 3Jgh = 4.06 
h 3.90 t 8 3Jhg = 4.06 
i 3.82 s 8 -- 
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Table 6.7 – 13C NMR spectral data of 6-4 in CDCl3. MW= 1578.524 g/mol. 
Quaternary carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 14.14 4 
2 22.72 4 
3 31.96 4 
4 26.36 4 
5 29.76 48 
6 29.39 4 
7 69.83 4 
8 71.27 4 
9 129.96 4 
10 115.09 4 
11 148.13 4 
12 69.64 4 
13 70.02 4 
14 70.55 4 
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6.4.6 Synthesis of [6-5][BF4]2  

 [2-1][Br] (6.00 g, 0.0174 mol) and 3,5-lutidine (9.92 mL, 0.0892 mol) were 

dissolved in MeNO2 (70mL) in a thick-walled 80 mL vessel and microwaved for 5 h at 

80 ºC. The reaction mixture was cooled in the fridge and resulting precipitate was filtered 

and stirred in CHCl3 ( 7.77 g, 96 % ). The beige precipitate was filtered off and was then 

anion exchanged to the tetrafluoroborate salt by two layer NaOTf(aq)/MeNO2. The 

MeNO2 was washed with H2O (2 x 10 mL) and concentrated to yield a beige powder. 

Yield: 6.73 g, 84 % ESI-MS: m/z 440.1250 (calc.) for C20H21F3N3O3S [M-OTF]+, found 

440.1247, m/z 145.5962 (calc.) for C19H21N3 [M]2+, found 145.5959. 

 

Table 6.8 - 1H NMR spectral data of [6-5][Br]2 in D2O. MWBr- = 451.198 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 2.33 s 6 -- 
b 8.19 s 1 -- 
c 8.38 s  2 -- 
d 5.12 t 2 3Jde = 6.08 
e 5.21 t 2 3Jed = 6.08 

f 8.77 d 2 3Jfg = 6.79 

g 8.34 d 2 3Jgf = 6.79 
h 7.78 d 2 3Jhi = 6.23 
i 8.65 d 2 3Jih = 6.23 
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Table 6.9 - 1H NMR spectral data of [6-5][BF4]2 in CD3CN. MWBF4- = 464.999 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 2.03 s 6 -- 
b 9.04 s 1 -- 
c 9.23 s  2 -- 
d 5.13 t 2 3Jde = 7.91 
e 5.25 t 2 3Jed = 7.91 

f 9.80 d 2 3Jfg = 7.05 

g 9.20 d 2 3Jgf = 7.05 
h 8.54 d 2 3Jhi = 6.88 
i 9.63 d 2 3Jih = 6.88 
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Table 6.10 – 13C NMR spectral data of [6-5][BF4]2 in CD3CN. MWBF4- = 464.999 
g/mol. Quaternary carbons assigned using software 

Carbon δ (ppm) # Carbons 

1 17.43 2 
2 148.29 2 
3 140.03 1 
4 142.01 2 
5 60.21 1 
6 59.62 1 
7 146.29 2 
8 128.09 2 
9 152.23 1 
10 148.72 1 
11 125.40 2 
12 149.18 2 
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COSY of [6-5][BF4]2 in CD3CN.  
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6.4.7 Synthesis of [6-6][BF4]3  

 [6-5][BF4]2 (1.621 g, 0.0035 mol) and 1,2-dibromoethane (4.48 mL, 0.052 mol) 

were dissolved in butanol (50mL) in a thick-walled 80 mL vessel and microwaved for 3 h 

at 80 ºC. The reaction mixture was cooled in the fridge and resulting precipitate was 

filtered and washed with cold MeNO2. The purple brown solid was dissolved in H2O, 

stirred in charcoal and then filtered through celite and solvent evaporated. The white solid 

was then anion exchanged to the tetrafluoroborate salt by two layer NaOTf(aq)/MeNO2, 

for synthesis of [6-7][OTf]4 (2.01 g, 88 %), and anion exchanged to the triflate salt in the 

same way, for the synthesis of  the shuttle [6-9][OTf]4. The MeNO2 layers were washed 

with H2O (4 x 10 mL) and concentrated to yield white powder. Yield: 1.70 g, 82 %, 

[BF4]  and 1.65 g, 76 %, [OTf]. ESI-MS: m/z 696.0267 (calc.) for C23H25BrF6N3O6S2 

[M-2OTF]+, found 696.0264, m/z 273.5371 (calc.) for C22H25BrF3N3O3S [M-OTF]2+, 

found 273.0740. 
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Table 6.11 - 1H NMR spectral data of [6-6][Br]3 in D2O. MWBr- = 639.059 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 2.33 s 6 -- 
b 8.18 s 1 -- 
c 8.40 s  2 -- 
d 5.12 t 2 3Jde = 6.12 
e 5.26 t 2 3Jed = 6.12 

f 9.05 d 2 3Jfg = 6.29 

g 8.48 d 2 3Jgf = 6.29 
h 8.45 d 2 3Jhi = 6.38 
i 8.95 d 2 3Jih = 6.38 

j 5.03 t 2 3Jjk = 5.40 

k 3.91 t 2 3Jkj = 5.40 

 

Table 6.12 - 1H NMR spectral data of [6-6][BF4]3 in CD3CN. MWBF4- = 659.791 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 2.48 s 6 -- 
b 8.27 s 1 -- 
c 8.47 s  2 -- 
d 5.08 t 2 3Jde = 6.32 
e 5.24 t 2 3Jed = 6.32 

f 9.01 d 2 3Jfg = 6.26 

g,h 8.51 d 4 3Jgf = 3Jhi = 6.26 
i 8.92 d 2 3Jih = 6.26 
j 5.06 t 2 3Jjk = 5.70 

k 4.00 t 2 3Jkj = 5.70 
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Table 6.13 - 1H NMR spectral data of [6-6][OTf]3 in CD3CN MWOTf- = 846.555 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 2.51 s 6 -- 
b 8.28 s 1 -- 
c 8.57 s  2 -- 
d 5.12 t 2 3Jde = 6.58 
e 5.27 t 2 3Jed = 6.58 

f 9.03 d 2 3Jfg = 6.96 

g,h 8.51 d 4 3Jgf = 3Jhi = 6.96 
i 9.00 d 2 3Jih = 6.96 
j 5.07 t 2 3Jjk = 5.85 

k 4.02 t 2 3Jkj = 5.85 

 

 

Table 6.14 – 13C NMR spectral data of [6-6][BF4]3 in CD3CN. MWBF4- = 659.761 
g/mol. Quaternary carbons assigned using software 

Carbon δ (ppm) # Carbons 

1 17.49 2 
2 148.32 2 
3 140.05 1 
4 141.99 2 
5 60.17 1 
6 59.59 1 
7 146.27 2 
8 128.14 2 
9 151.20 1 
10 150.73 1 
11 127.42 2 
12 146.16 2 
13 62.37 1 
14 30.32 1 
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6.4.8 Synthesis of [6-7][OTf]4  

 [6-6][BF4]3 (226.1 mg, 0.3427 mmol) and 4-8 (317.4 mg, 1.7314 mmol) were 

dissolved in hot MeNO2 (40mL) in a thick-walled 80 mL vessel and microwaved for 3 h 

at 80 ºC. The mixture was cooled to room temperature and resulting precipitate was 

filtered and washed with cold MeNO2. The dark brown solid was dissolved in H2O, 

stirred in charcoal and then filtered through celite and solvent evaporated (279.2 mg, 74 

%. The white solid was then anion exchanged to the triflate salt by two layer 

NaOTf(aq)/MeNO2. The MeNO2 was washed with H2O (4 x 10 mL) and concentrated to 

yield white powder. Yield: 331.9 mg, 87 % ESI-MS: m/z 951.1444 (calc.) for 

C36H36F9N4O10S3 [M-3OTF]+, found 951.1443, m/z 401.0959 (calc.) for C35H36F6N4O7S2 

[M-2OTF]2+, found 401.0962. 

 

Table 6.15 - 1H NMR spectral data of [6-7][Br]4 in D2O. MWBr- = 824.281 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 2.38 s 6 -- 
b 8.23 s 1 -- 
c 8.46 s  2 -- 
d 5.17 t 2 3Jde = 6.73 
e 5.31 t 2 3Jed = 6.73 

f 9.09 d 2 3Jfg = 6.92 

g 8.54 d 4 3Jgf = 3Jgh = 6.92 
h 9.02 d 2 3Jhg = 6.92 
i 5.26 t 2 3Jij = 6.25 

j 5.38 t 2 3Jji = 6.25 
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k 8.74 d 2 3Jkl = 6.97 

l 8.30 d 2 3Jlk = 6.97 

m 7.52 d 2 3Jmn = 8.34 

n 7.88 d 2 3Jnm = 8.34 

o 4.65 s 2 -- 
  

Table 6.16 - 1H NMR spectral data of [6-7][OTf]4 in CD3CN. MWOTf- = 1100.9416 
g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 2.51 s 6 -- 
b 8.27 s 1 -- 
c 8.53 s  2 -- 
d 5.10 t 2 3Jde = 6.56 
e 5.28 t 2 3Jed = 6.56 

f 9.01 d 2 3Jfg = 6.97 

g 8.53 d 4 3Jgf = 3Jgh = 6.97 
h 8.99 d 2 3Jhg = 6.97 
i 5.18 t 2 3Jij = 6.54 

j 5.32 t 2 3Jji = 6.54 

k 8.75 d 2 3Jkl = 6.93 

l 8.36 d 2 3Jlk = 6.93 

m 7.63 d 2 3Jmn = 8.23 

n 7.97 d 2 3Jnm = 8.23 

o 4.71 d 2 3Jop = 5.74 
p 3.50 t 1 3Jpo = 5.74 
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Table 6.17 – 13C NMR spectral data of [6-7][OTf]4 in CD3CN. MWOTf- = 1100.9416 
g/mol. Quaternary carbons assigned using software 

Carbon δ (ppm) # Carbons 

1 17.49 2 
2 131.99 2 
3 148.37 1 
4 142.06 2 
5 58.83 1 
6 60.06 1 
7 146.49 4 
8 128.16 4 
9 151.11 1 
10 151.07 1 
11 59.38 1 
12 60.17 1 
13 144.99 2 
14 125.51 2 
15 157.67 1 
16 140.01 1 
17 127.75 2 
18 128.42 2 
19 147.88 1 
20 62.99 1 
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COSY of [6-7][OTf]4 in CD3CN.  
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HETCOR of [6-7][OTf]4 in CD3CN.  
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6.4.9 Synthesis of 6-8  

 4-8 (253.00 mg, 1.3660 mmol) and 6-3 (2.509 g, 1.3660 mmol) were dissolved in 

dry 7:3 (CHCl3: MeCN) (120 mL) under nitrogen a atmosphere. A catalytic amount of 

tributylphosphine (80 µL) was added via glass syringe and stirring continued at 60 ºC for 

seven days. The solvent was removed under reduced pressure and the product was stirred in 

cold CHCl3 and resulting precipitate filtered off. The crude CHCl3 mixture was adsorbed 

onto silica and product was purified by flash column chromatography with normal phase 

silica gel with CHCl3 as eluant for 10 column volumes, followed by 99:1 (CHCl3:MeOH) 

isocratic elution. The colourless waxy solid was collected. Yield: 871.3 mg, 59 %.  

N

c b adf

O

H3C(H2C)14H2CH2CH2CO

OCH2CH2CH2(CH2)14CH3

O

e

j k

g

h

i

H3C(H2C)14H2CH2CH2CO

l  

Table 6.18 - 1H NMR spectral data of 6-8 in CD2Cl2. MW = 1094.761 g/mol 

Proton δ (ppm) Multiplicity # Protons J (Hz) 

a 0.90 t 9 3Jab = 6.88 
b 1.28 m 42 -- 
c 1.49 tt  6 3Jcb = 3Jcd = 7.23 
d 1.83 tt 4 3Jdc = 3Jdf = 7.23 
e 1.75 tt 2 3Jec = 3Jef = 7.73 

f 4.03 t 6 3Jfd = 3Jfe = 6.12 

g 7.32 s 2 -- 
h 5.41 s 2 -- 
i 7.71 d 4 3Jij = 8.21 

j 7.59 d 4 3Jji = 8.21 

k 7.56 d 4 3Jkl = 6.15 

l 8.66 d 2 3Jlk = 6.15 
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Table 6.19 – 13C NMR spectral data of 6-8 in CD2Cl2. MW= 1094.761 g/mol. 
Quaternary carbons assigned by software 

Carbon δ (ppm) # Carbons 

1 146.11 2 
2 125.45 2 
3 157.49 1 
4 141.03 1 
5 129.59 2 
6 128.45 2 
7 133.26 1 
8 66.11 1 
9 164.79 1 
10 130.66 1 
11 109.31 2 
12 153.78 2 
13 144.45 1 
14 74.11 1 
15 30.39 1 
16 69.33 2 
17 29.37 2 
18 29.78 36 
19 26.14 3 
20 32.03 3 
21 22.81 3 
22 14.12 3 
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6.4.10 Synthesis of [6-9][OTf]4  

6-6 (84.70 mg, 0.1284 mmol) and  6-4 (810.53 mg, 0.5135 mmol) were dissolved 

in a hot 1:1 CHCl3: MeOH solution (20 mL) in a thick-walled 80 mL reaction vessel, to 

form the pseudorotaxane. Then 6-8 (562.13 mg, 0.5135 mmol) in 10 mL of hot CHCl3 

was added to the vessel with a stir bar and microwaved continuously for 5 h cycles at 50 

ºC until all of 6-6 was alkylated. Presently, the alkylation has not yet gone to completion.    
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