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Abstract

As multimodal camera networks have been deployed in various environment, image

fusion is playing a critical role for better visual perception and process parameter

measurement. The objective of the dissertation is to design robust vision-based ther-

mal control systems to tolerate uncertainties for industrial automaton. To be specific,

two new methods have been proposed, one for robust shape fitting in visual images

and another for packet loss recovery in thermal images.

Firstly, an adaptive curve fitting technique is proposed based on prediction error

sum of squares for the sampled data set containing outliers. The method converges

very fast and can achieve superaccuracy under certain conditions when compared

with other algorithms. The method is applied to estimate an optimal curve equation

of a casting die in the visual images.

Secondly, the thermal image loss generated by network traffic from camera nodes

to fusion center is modeled as a Markov chain. A graph cuts method is proposed

to recover the loss based on thermal pattern classification. Simulation results show

that thermal information can be partially retrieved, which may greatly increase the

robustness of a thermal management system.

The proposed methods are tested with a laboratory die casting process simulator

with two visual cameras and one thermal camera. A simple fuzzy PID controller is

designed to integrate the visual sensors into a control loop. The experimental results

show that the homogeneity of the temperature distribution in a die may become

achievable through the vision based thermal control system.
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Chapter 1

Introduction

This chapter contains a brief introduction to die casting processes, including structure

of a casting machine and four stages of a complete casting cycle. Research motivation

and literature survey are discussed thereinafter. The outline of this dissertation is

provided in the last section.

1.1 Background

It is argued that robust computer vision is the key bottleneck to the development

of autonomous systems such as industrial automation in a less structured or un-

structured real environment [1]. Furthermore, the manufacturing processes are now

mostly operated and coordinated through industrial communication networks which

bring extra difficulties to the visual sensor network based control.

In the past, multimodal visual sensors, which may contain a large number of

thermal cameras and ordinary visual cameras, have been widely deployed in video

surveillance. A great amount of algorithms have been proposed to fuse thermal and

visual image together to generate one picture containing information of both images

1



for better human perception. However, there are big differences in camera usage

between surveillance and industrial process. For a multimodal camera network that

monitoring human activities on the street, the image of a single human being only

occupies a small portion of the entire image. While for the industrial thermal control,

the image of the target has to be large enough for accurate temperature measurement.

Therefore, the algorithms for video surveillance have to be carefully examined before

it can be applied to an industrial process, since they are built for different purpose.

Deployment of multimodal visual sensors in a manufacturing factory may have

some special challenges that video surveillance does not. Although the surveillance

images are transferred through LAN/WAN for a large amount of nodes, the loss of

one or two data packets or even one or two image frames will not cause any serious

problems to its observer since human beings possess rather fantastic reasoning ability

than computers. However, things are quite different for industrial processes. The loss

of even one packet may cause the failure of the whole system, let alone the whole image

frame. For example, if thermal image, which conveys the temperature signal, is used

as a temperature feedback for a thermal management system, the measurement may

become inaccurate when there are packet losses in the thermal image. Malfunction

may be caused by the inaccuracy. Furthermore, a factory is usually noisier than the

street in terms of the working environment for a camera. There may be thousands

of machines running at the same time in a factory which may have electromagnetic

interference with the camera, and hence further corrupts the performance of the vision

guided control system.

As theories on computer vision advance, vision-guided control is a relatively new

addition to the research field of systems and control. In the wake of the realities,
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fundamental research has to be conducted with a focus on developing new methods

to guarantee operation performance of the vision-based control systems in a network

environment. Two of the fundamental questions can be formulated as:

1. Is it possible to localize an object accurately in a visual image that contains

lots of outliers/noise?

2. Can the thermal image be partially recovered after a lossy network?

The answer to these questions will lead to build a robust vision based thermal

control system. The purpose of this research is to integrate manufacturing systems

with vision sensor networks as feedback and/or feedforward signals, specifically, to de-

velop robust network based intelligent control algorithms for vision guided industrial

processes, based on techniques from image processing, pattern recognition, computer

vision, and large-scale computing.

1.2 Motivation

The research is motivated from an industrial problem. High pressure die casting

is a manufacturing process accomplished by injecting molten metal into a reusable

mould, called the die, in which the metal solidifies rapidly into nearly net-shape,

smooth-surface components such as engine blocks and transmission cases. A die

usually consists of two sections: one is stationary (fixed die half) while another is

movable (injector die half) to permit easy removal of the finished castings [2, 3, 4].

The schematic view of a die-casting machine is depicted in Figure 1.1. A complete

casting cycle can be roughly divided into four stages.

3



1. Cavity filling: The two die halves are clamped together tightly by a die casting

machine at the start of each casting cycle. Molten alloy is poured into the shot

sleeve, and then injected into the die cavity by the piston. The time for cavity

filling varies from 5 ms to 150 ms dependent on the casting size.

2. Solidification: The molten metal solidifies in the die cavity under certain applied

pressure, usually from 10 to 30 MPa, to reduce the formation of the porosity

and to increase the dimensional accuracy of the part. The die is also chilled by

internal cooling water lines to yield high productivity.

3. Casting Ejection: After the molten alloy solidifies, the die halves are separated;

the ejectors that are usually driven by hydraulic power expel the casting part,

and the part is taken out of platens by a robot or operator.

4. Die Lubrication: The surface of the die is then sprayed by water-based lubricant,

and is blown by compressed air in order to further reduce the temperature of

the die and oil its surface for next cycle.

Basically there are two functions for a casting die. One is to retain the desired

shape of the casting, and another is to remove the heat from the molten metal in a

reasonable amount of time. Therefore, the die plays a critical role in removing heat

from the molten metal. Proper control of die temperature is essential for producing

superior quality components and yielding high production rates.

A die may consist of dozens of die inserts, which are smaller units made of tool

steel. Each die insert has at least one internal cooling water line to allow its tem-

perature being controlled properly. Very often, each cooling line is operated with

maximum flow rate running through it. The conventional approach to control die
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Fixed Platen

Fixed Die Half

Die Cavity

Piston

Movable Platen

Ejector

Movable Die Half

Molten Metal

Figure 1.1: Structure of a typical casting die for high pressure die casting manufac-

turing processes.

Figure 1.2: Visual image and its thermal counterpart (in oC) of a casting (color online,

photo courtesy of Ryobi Die Casting (USA) Inc., Shelbyville IN, USA).
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temperature is based on the operators’ experience and trial-and-error. However, the

temperature distribution on a die surface is not homogeneous when controlled by

traditional method as illustrated in Figure 1.2, where the picture on right was taken

by an infrared camera immediately after a casting part is ejected form a die which

produces transmission cases shown by the left picture. The temperature distribution

varies significantly from 200oC to 400oC . It is implied that those areas with relatively

high temperatures are less efficient at removing heat from the molten metal.

The improper distribution of die temperatures may cause many casting defects.

On the one hand, localized over-cooling which leads to the formation of defects such

as poor fill can be manually adjusted by decreasing water flow rate in a specific cooling

line. On the other hand, casting defects such as porosity and hot tearing, which result

from hot spots with abnormal high temperatures present in the die, become difficult

to alleviate due to the fact that the established cooling lines are already running at

their maximum flow rates.

Owing to the increasing costs of raw materials, workmanship, energy, and the

growing competition, die casting manufacturers are motivated to fabricate products

with higher quality but lower cost, with greater quantity but smaller scrap rates. One

of the objectives of current research is to study the possibility of designing a vision-

based intelligent real-time monitoring and control system capable of intelligently and

continuously managing the water flow rates of cooling lines in a die, which makes its

desired thermal pattern achievable.
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1.3 Literature Survey on Casting Control

Since the literatures related to the topic of machine vision and vision guided control

are immense, the majority of the articles in this area will be reviewed in each chapter

thereinafter. In this section, only the literature survey on casting control is covered.

In the past, various efforts have been made to develop thermal management sys-

tems and a number of commercial temperature control units were designed to help

control the die temperature. Some major results are discussed as follows:

On-off Control [5]: Solenoid valves are employed as control actuators to vary the

flow rate in cooling water lines, while die temperatures are used as control feed-

back. Specifically, the valve is fully opened to charge cooling water into a die when

die surface temperature reaches a set point, and vice versa. It is obvious that the

die temperature tends to oscillate around the set point continuously by this control

scheme so that it cannot achieve precise results.

Proportional Control [6, 7]: To overcome the oscillation problem associated with

the on-off control, the proportional control was proposed by varying the casting cycle

time based on the die surface temperature. It alters the on-off ratio of solenoid valves

to control the flow rate of cooling waterlines. The ratio is fixed at 1:1 at a specific

temperature set point. Once die temperature is beyond the set point, solenoid valves

become fully opened to allow excessive amount of water running through the cooling

lines, and vice versa. It can be expected that this approach has a very slow response

time and may significantly reduce the productivity.

Proportional-Integral-Differential (PID) Control [8]: Although over 60 years have

been past since the first introduction of PID control, the first controller for die thermal

management appeared in 1999. This control scheme not only improves the response

7



time but also enhances the control precision. However, due to the fact that the die

temperature distribution depends on various die design and process variables for which

first principles models are very difficult to be obtained, the three control parameters,

proportional, integral and derivative terms, must be tuned individually for particular

system through trial-and-error.

Fuzzy PID Control [9]: A fuzzy PID controller is designed to minimize the tem-

perature differences between channels. Although the control system is capable of

adjusting the desired supply of cooling water into multiple cooling lines, it is based

on the so-called point measurement method, and can only solve a localized problem.

Local Temperature Controller [10]: In most recent advancement, a local controller

has been designed to confine the temperature fluctuation of a die insert into a given

range. However, the inhomogeneity of die temperature distribution can not be mini-

mized globally through this approach.

In all of the work mentioned above, only thermocouples are employed as temper-

ature sensor. To measure the die insert temperature through thermocouples, holes

need to be drilled from the rear of the die insert. There are many disadvantages

for using the thermocouple. First, although thermocouple is rugged and inexpen-

sive, the cost of placement is very high. Temperature measurement is sensitive to

the thermocouple’s location. A small deviation from the desired location because of

workmanship can cause a big error in output. Second, it is a kind of sluggish device

that needs time to response to a transient process, such as temperature drops in this

study. Last but not the least, drilling a hole may upset the maintenance of the die

insert, and consequently may reduce its service life.

In [11, 12], a thermal camera is employed to take photos of casting dies to deter-
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mine the hot/cold spots in an effort of re-designing the layout of cooling waterlines

to improve cooling water flow rate and reduce casting defects. However, due to high

cost, the process is not automated.

So far no work has been found that establishes a vison-based thermal control

system to address the problem of die thermal management. The existing system

lacks the capability of continuously and intelligently controlling the water flow rates

in multiple cooling lines in accordance with the fluctuation of global die temperatures,

and consequently are not able to correct the problems which are currently present in

most dies used in the industry.

1.4 Dissertation Outline

The dissertaion is organized as follows: after the Introduction, Chapter 2 provides

hardware and software structures of a vison-based thermal management system. In

Chapter 3, the emissivity measurement of casting dies is presented under different

conditions. The proposed robust curve fitting technique is covered in Chapter 4.

Reconstruction of three dimensional thermal image is studies in Chapter 5. Robust

temperature measurement against network packet loss is presented in Chapter 6. A

simple fuzzy PID control system is implemented in Chapter 7 for multiple die inserts.

Finally, the conclusions and suggestions for future work can be found in Chapter 8.

The main contributions are in Chapter 4 and 6.
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Chapter 2

Vision-based Thermal Control
System

This chapter presents the hardware and software structures of a vision-based thermal

control system that has been built for experiments. The key sensing components of

the system are two visual cameras and one infrared/thermal camera that enable the

system to acquire thermal information from the three dimensional (3D) geometry of

an object. A laboratory die casting simulator is also introduced in an effort of testing

the performance of the system.

2.1 System Overview

Digital image is formed by mapping the 3D structure of the viewed scene to a 2-

Dimensional (2D) array of numbers, which can be interpreted as a transformation

of the state of the world into a set of lower dimensionality. It is obvious that the

mapping is a many-to-one process. In order to recover 3D geometric information of

an object from 2D images, three configurations are widely used in practice:

• Eye-on-hand: A camera is attached to a moving mechanism such as robotic
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manipulator. Digital images are taken when camera is moving around the scene,

and the 3D structure is re-constructed from multiple redundant images. In

this configuration, only one camera is needed, but it does not have real-time

performance since camera has to be moved around in order to acquire enough

images. Therefore, it is not suitable for this application.

• Active 3D vision: A camera is combined with a dedicated light source, such as

laser line projector. The 3D structure of an object is inferred from the shape

distortion that the line exhibits when it contacts an object in view of the camera.

The full structure of an object can be obtained only when the projector finishes

the scanning process of the object. Therefore, real-time performance can not

be achieved for an object with large and complex area.

• Passive 3D vision: Two cameras are grouped together to form the so-called

stereo pair just like human being’s left and right eyes. The 3D structure and

distance of a scene can be inferred from two images taken from different view-

points. Despite that this configuration needs complicated algorithms for 3D re-

construction, it has the best real time performance and therefore will be adopted

in this study.

Since a stereo vision pair can only determine the geometric information of an

object, additional infrared/thermal camera is a must to measure the surface temper-

ature of the object. Therefore, three cameras are needed for the vision based thermal

control system. The schematic diagram of the system is shown in Figure 2.1. In this

system, personal computer (PC) with a data acquisition board is the command cen-

ter. The system monitors the temperature signals that are measured by the cameras,
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Figure 2.2: Formation of the 3D thermal image.

and flow rate signals that are measured through the flow sensors. To achieve the

desired thermal pattern on the die surface, pump and solenoid valve can be actuated

through the interface board to continuously adjust the flow rate of the cooling water.

It should be noted that the three cameras are the key sensing components of the

thermal control system. The path to form the 3D thermal image can be shown in

Figure 2.2. The temperature measurement procedures can be summarized as follows:

1. Acquire three digital pictures from three cameras simultaneously;

2. Fuse thermal image and visual image 1, which comes from visual camera 1, to

form a 2D thermal image;

3. Reconstruct 3D geometry of the object from visual image 1 and 2;

4. Compute the 3D thermal image from the 2D thermal and 3D geometric image

using visual image 1 as a medium.

While image fusion in Step 2 will be discussed in Chapter 4, and structure recon-

struction involved in Step 3 and 4 will be addressed in Chapter 5.
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Figure 2.3: Die casting process simulator.

2.2 Die Casting Process Simulator

Numerous experiments need to be carried out in order to design and implement the

vision-based thermal control system for die casting processes involving cooling of a die

with multiple channels. Since it would be very costly to conduct experiments directly

on a real die casting machine, a die casting process simulator has been built in lab-

oratory. The simulator is employed to preheat the die insert to certain temperature,

then cooling water is applied to cool down the insert.

The schematic diagram of the die casting process simulator is shown in Figure 2.3.

Instead of heating the die by directly pouring molten metal onto it, a 3kW furnace is

employed to preheat the die inserts. The inserts are mounted to a movable supporting

cart and can be pushed into the furnace by an electric motor until it is completely

enclosed by the furnace. An insulating plate, made of fiberglass, is placed between

the contact surface of the insert and the metal rack. The die insert is preheated in

the furnace to a certain temperature, then cooling water is applied to chill the insert.
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One complete experimental cycle, which simulates the real casting process can be

summarized as follows:

1. Preheat the die inserts in the furnace for 30 minutes;

2. Computer sends a command to the electric motor to pull the die inserts out of

the furnace;

3. Apply cooling water to the inserts for 20 seconds;

4. Computer sends another command to the motor to push the inserts into the

furnace. The system is ready for the next cycle.

The experimental cycle repeats itself automatically. The insert cooling stage is used to

simulate the solidification stage of a real die casting process. It should be mentioned

that it is the cooling stage of the die inserts, other than the heating period, that was

used to simulate the solidification stage of a real die casting process [3, 10], since the

die temperature is not constant in practice, high during mold filling and low when

the castings are being ejected.

The schematic diagram of the die inserts used in the experiment are shown in

Figure 2.4. Each insert is made of H13 tool steel and contains one cooling waterline.

To create a temperature field for control purpose, the three inserts are designed with

three different lengths to generate different thermal behavior under the same cooling

pattern.
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Figure 2.4: Die inserts.

2.3 Selection and Design of Hardware

A computerized vision-based thermal control system (VTCS) has been designed and

implemented in this study. The schematic diagram of the hardware structure is

illustrated in Figure 2.5, where a personal computer (PC) with a data acquisition

board serves as a command center. In the present study, the VTCS is required

to measure 2 types of analogue signals and output 2 kinds of digital signals. The

inputs to be measured are: 1) temperature signals along with geometric locations

from cameras; 2) flow rate signals from flow sensors. The main function of digital

outputs is to control pump speed and solenoid valves. The workflow of the system

can be summarized as follows:

1. Visual and thermal pictures are taken by the system through cameras to gen-

erate 2D/3D thermograph of the die inserts;

2. After the thermal pattern being processed, the size and location of the hot spots
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Figure 2.5: Hardware structure and information flow.

or cold spots on the die surface is computed;

3. Control algorithm of the system sends out control command to pump and valves

to adjust the flow rate of cooling channels such that the temperature of the hot

spots decreases more rapidly and the temperature of the cold spots decreases

more slowly than those of their surrounding areas. Through this approach, the

homogenous temperature distribution on the die surface may become achievable.

The desired measurement range for the temperature signal is from 0oC to 500oC

with accuracy ±10oC, which covers the window of die temperature variation in the

real die casting process [2]. For the water flow rate signal, the desired measurement

range is selected in a range from 2.08 L/min (0.55 GPM) to 9.46 L/min (2.5 GPM)

with a resolution of 0.0379 L/min (0.01 GPM). The main parts contained in the

VTCS are listed thereinafter.
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Figure 2.6: PC hosted data acquisition board.

2.3.1 PC Hosted Data Acquisition Board

There are two main functions of a PC hosted data acquisition board used in this

system: to convert analogue signals such as flow rate to their digital counterparts that

can be read by PC, and to transmit control commands to actuators such as pump

and valves. The Cyberresearchr 330k Hz 12-bit board with 8-channel differential

inputs or 16-channel single-ended inputs, part number PCI-DAS 1602/12 as shown in

Fugure 2.6, is selected due to its functionality and relatively low cost. The smallest

voltage that can be detected by this board with an input range from 0 to 10 V can

be calculated as:

∆U =
10V

212
= 2.44mV

2.3.2 Visual and Thermal Cameras

Infrared sensors are non-contacting devices that infer temperature by measuring the

thermal radiation emitted by a material. It can measure the temperature of a large

area instead of one spot at one time performed by a thermocouple. In this project, a

two-dimensional real thermograph can be directly determined by an infrared camera
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(a) Visual Camera (b) Thermal Camera

Figure 2.7: (a)Visual and (b) thermal camera for temperature measurement.
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Figure 2.8: The usage of computer ports for external communications.

system with high accuracy and fast response time.

The infrared camera used in this study is called MIDAS thermal imager from

Mikron Infrared Inc (Figure 2.7). Its resolution is 320×240 pixels; spectral band is

from 8.0 to 14.0 µm; temperature range is from 0 to 500oC; and measurement accuracy

is ±2K or ±2% reading. It communicate with the PC via USB port. The visual

camera used in this study is Prosilicar EC1350 imager with maximum resolution

1360×1024 pixels. It has IEEE1394 fireware port that can communicate directly

with a PC. The usage of the computer ports is shown in Figure 2.8. Two visual

cameras and one thermal camera are configured to a resolution of 320×240 pixels

with maximum image update rate 30 fps (frame per second).
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(a) Pump (b) Solenoid valve

Figure 2.9: Control actuators: (a) pump and (b) solenoid valve.

2.3.3 Pump and Solenoid Valve

An electrical-pulse-controlled, air-operated, double-diaphragm pump (Figure 2.9(a))

made by Wildenris chosen as control actuator. Through altering the pulse frequency,

the pump speed, which is denoted as stroke per minute (SPM), is changed accordingly

to vary water flow rates. The pump is capable of increasing water flow rate up to

9.46 liter/minute (L/min) or 2.5 gallon/minute (GPM).

Solenoid valves, model number SV-301 from OMEGA, are employed to open or

shut down extra cooling waterlines (Figure 2.9(b)).

2.3.4 Water Flow Rate Sensor

The cooling water flow rates in die insert are measured by the RotoFlowrflow sensors

in Figure 2.10 manufactured by GEMS Sensors Inc. The output range of the sensor

is from 0 to 10V DC proportional to the flow rate from 2.08 L/min (0.55GPM) to

18.9 L/min (5 GPM) as shown in Figure 2.11. This signal can be read directly by the

data acquisition board without signal amplifier. The minimum detectable flow rate
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Figure 2.10: Flow sensor.
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Figure 2.11: Output characteristics of the flow sensor.

can be calculated as

∆F =
18.9L/min

10× 103mV
× 2.44mV = 0.0046L/min

2.3.5 Input/Output Interface Box

All the flow rate signals and control signals are connected to or from the data acquisi-

tion board through the interface box (Figure 2.12). There are four main parts inside

the box: (1) adaptor board converts the 100-pin port of the data acquisition board
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Figure 2.12: Input/output interface box.

through a ribbon cable to a 100-connector mount for easy wiring; (2) connector board

contains several wiring terminals that all sensor and actuator wires go through them;

(3) chips and other electric parts are installed on the electric board; and (4) power

supply provides +5VDC, +12VDC power sources that the system needs.

Digital output pins on the data acquisition board are used as control outputs.

Solid-state relays are engaged to isolate the data acquisition board from the electrical

circuits of the pump, solenoid valves, warning light and alarm. The typical operating

current of solid-state relay in this study is about 20 mA, despite that the maximum

digital output current of the data acquisition board is only 2.5 mA, hence the inverter

chips (7406) are occupied to provide sufficient current sink to drive the solid-state

relay. The schematic diagram of the electric circuits in the interface box is shown in

Figure 2.13.
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Figure 2.13: Schematic diagram of the electric circuit in the interface box.

2.4 Software Design

The software program running on a PC is designed to acquire, monitor, and process

data in real-time, and then to send control command according to the temperature

fluctuation of the die inserts, all through interfacing to the plug-in data acquisition

board housed in the PC. The graphic user interface (GUI) is mainly responsible for

displaying real-time digital images of the die inserts and flow rate curves for each

cooling channel.

The main program routine consists of four sub-function modules (Figure 2.14):

data sampling, data display, data saving, and control. The data-sampling module is

responsible for acquiring images from cameras and flow rate data from flow sensors at

a sampling rate that can be specified by users. The data-displaying module displays

images and other data on the screen in the format of curves and values. The data-

saving module saves images in JPEG format, and temperature and flow rate data in
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Figure 2.14: Software subroutines.

an ASCII text file format to the hard disk for further analysis. The control module

can actuate solenoid valves and adjust pump speed manually or automatically based

on its built-in control algorithms.

2.5 Summary

The hardware and software structures of the vision-based thermal control system have

been introduced. The experiment carried out in next chapters will be based on these

structures.
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Chapter 3

Emissivity Determination

Different influential factor on the emissivity of a die surface is examined. Experiments

are carried out to determine the emissivity of a die surface both qualitatively and

quantitatively.

3.1 Introduction

Infrared camera has been employed to measure the temperature of a die surface [11].

Although emissivity, as a crucial parameter for temperature measurement, should be

determined case by case, no paper or book can be found as a reference for the effect

of different influential factor on the emissivity of a die surface. In this chapter this

problem will be examined both qualitatively and quantitatively.

Infrared ray, like radio waves, is part of electromagnetic spectrum in which the

major difference between each spectral band is in their wavelength. The wavelength

of the infrared radiation, which lies roughly from 0.70 to 1000µm, is longer than that

of visible light yet shorter than that of microwaves (Figure 3.1 ).

All materials above 0 degrees Kelvin emit infrared energy except black body, which
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Figure 3.1: Wavelengths of electromagnetic spectrum (in µm).

is a theoretical surface that absorbs all incident radiation from all directions and at

all wavelengths. The intensity of the emittance has a positive relationship with the

temperature of the material. In other words, the higher the temperature, the greater

the intensity of infrared energy that is emitted. Therefore, the temperature of an

object can be inferred by measuring the infrared energy it emits. The energy sensor,

which is made of semiconductor and is also called microbolometer, changes its resis-

tance when infrared rays are incident onto it. The resistance is then converted into

an electrical signal such as voltage to indicate the amplitude of the sensed energy or

temperature. The planar detector of the infrared camera usually contains thousands

of the microbolometers, which defines the resolution of the camera. The output volt-

ages of the detector are usually transferred into an intensity image for better visual

effect.
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3.2 Influential Factors on Emissivity

The spectral intensity of a plane source is defined as the power per unit wavelength

in wavelength interval dλ centered at a specific wavelength λ, per unit projected area

of the source, per unit solid angle, passing in a given direction θ and φ. As shown in

Figure 3.2, the spectral intensity can be written as

iλ(λ, θ, φ) =
d3P (λ, θ, φ)

dAcosθdωSdλ
(W/m2 · sr · µm)

where d3P (λ, θ, φ) is the power (W) leaving the element of the source plane surface

dA (m2) in direction θ and φ; dS is the element of the projected area; dωs (sr) is the

solid angle; and nA is the normal to dA.

As well as emitting infrared energy, materials also reflect, absorb and transmit

infrared energy. According to the theory of conservation of energy, the extent to which

materials reflect, absorb and transmit infrared energy is known as the emissivity of
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the material.

The directional spectral emissivity ελ(λ, T, θ, φ) is defined as the ratio of the spec-

tral intensity emitted by a body in direction θ and φ to the intensity that would be

emitted by a blackbody at the same temperature and wavelength.

ελ(λ, T, θ, φ) =
iλ,o(λ, T, θ, φ)

iλ,b(λ, T )

where iλ,o(λ, T, θ, φ) and iλ,b(λ, T ) are the spectral intensity of the object and a black-

body at the same temperature T respectively.

The emissivity is a dimensionless quantity. For a blackboy, it equals to 1. It is clear

that the emissivity of an object is dependent on the specific wavelength, temperature

and gazing direction θ and φ. The total directional total emissivity can be calculated

by:

ε(T, θ, φ) =

∫∞
λ=0

ελ(λ, T, θ, φ)iλ,b(λ, T )dλ∫∞
λ=0

iλ,b(λ, T )dλ
(3.1)

=
π

σT 4

∫ ∞

λ=0

ελ(λ, T, θ, φ)iλ,b(λ, T )dλ (3.2)

In the last step, the Stefan-Bolzmann’s Law is used. It states that the directional

total emissive power for a blackbody is given by

eb = π

∫ ∞

λ=0

iλ,b(λ, T )dλ = σT 4 (W/m2)

As a real object never behaves as an ideal blackbody, the emissivity depends on

factors such as temperature, emission angle, and wavelength. However, it is typical

in engineering to assume that the spectral emissivity of an object does not depend on

wavelength and emission angle, which leads to the diffuse and grey body assumption.

A surface is said to be grey in a given direction if its directional spectral emissivity
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Figure 3.3: A model for rough surface.

is independent of wavelength; and is said to be diffuse at a given wavelength if its

directional spectral emissivity is independent of direction. For a diffuse gray body,

its emissivity is given as

ελ = ελ(T )

That is to say that by assumption, the emissivity is only a function of the temperature.

The assumption will lead to measurement error, and it can be corrected by thorough

experiments or advanced approach, such as Monto-carlo ray-trace method.

The die surface may become rough after extensively usage when compared to a

new one. The emissivity could be greatly affected by the roughness of the die surface.

Figure 3.3 illustrates a model for rough surface constituted of facets with inclination

angle δ to the normal with a Gaussian distribution [19]:

f(δ) = exp(−q) · tan2δ

where q is a parameter measuring the degree of roughness inversely. The directional

total emissivity in a given direction θ can be written as [19]:

ε = εe + εr
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where εe is the emissivity corresponding to the intensity directly emitted and received

from the surface, and εr is the emissivity corresponding to the intensity emitted by

one facet and received after reflection on another facet. It follows that

εe =
1

cosθ

∫ π/2−θ

−π/2+θ

ε(δ − θ)
cos(δ − θ)f(δ)

cosδ
dδ + 2

∫ π/2

π/2−θ

ε(δ − θ)f(δ)dδ

And for a relatively small angle [19],

εr =
1

cosθ

∫ −π/6+θ/3

−π/4+θ/2

(1− ε(δ − θ))ε(π − 3|δ| − θ)
cos(3δ − θ)f(δ)

cosδ
dδ

+
1

cosθ

∫ π/4+θ/2

π/6+θ/3

(1− ε(δ − θ))ε(π − 3δ + θ)
cos(3δ − θ)f(δ)

cosδ
dδ

+
1

cosθ

∫ −π/4+θ/2

−π/2+θ

(1− ε(δ − θ))ε(π − 3|δ| − θ)
cos(δ − θ)f(δ)

cosδ
dδ

+
1

cosθ

∫ π/2−θ

π/4+θ/2

(1− ε(δ − θ))ε(π − 3δ + θ)
cos(δ − θ)f(δ)

cosδ
dδ

+2

∫ π/2

π/2−θ

(1− ε(δ − θ))ε(π − 3δ + θ)f(δ)dδ

It is clear that, for the same material, the emissivity is also a function of the roughness

of the surface.

3.3 Measurement Methodology

While standardized emissivity values for most materials are available, emissivity for

the same material is different under different condition such as surface roughness.

Therefore, the standard emissivity table can only be used as a reference. For accurate

temperature measurement, emissivity has to be determined case by case. Basically

there are two method to determine the emissivity: direct and indirect. For direct
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method, a calorimetric or radiometric technique is used with a blackbody as a refer-

ence [28, 29, 30]. While the indirect method uses the Kirckhoff’s law by measuring

the reflectivity first and then deducing the emissivity from it [31]. The emissivity

can also be determined through an infrared camera as it often contains an internal

function [32, 33].

Generally speaking, if an infrared camera is available, there are three ways to de-

termine the emissivity of the material, to ensure accurate temperature measurements:

1. Heat the die insert to a known temperature and measure the temperature of

the die surface using the infrared camera. Then adjust the emissivity value to

force the image to display the known temperature;

2. Attach a piece of masking tape with known emissivity to the insert surface, or

scorch a small area of the die surface with soot, or coat with a dull black paint.

Measure the temperature of the tape/soot first and use it as a reference, then

adjust the emissivity value to force the temperature of the other areas display

the reference temperature.

3. Drill a hole into the object with depth at least 6 times the diameter. This hole

acts as a blackbody with emissivity of 1.0 [28, 29, 30]. Measure the temperature

in the hole first as a reference, then adjust the emissivity value to force the

temperature of the other areas display the reference temperature.

The third method will be adopted in this study due to accuracy. A die insert, which

is made of the same material with the same surface condition, is used as a sample to

determined the emissivity. The schematic diagram of the cylindric insert is shown in

Figure 3.4. A small hole is drilled through the back with the length to radius ratio
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Figure 3.4: A die insert as a blackbody-type source for emissivity calibration.

given by L/r = 180/7 = 25.7 À 7. Thus the radiation leaving this hole should closely

approximate that of a blackbody. The system setup for the emissivity determination

is illustrated in Figure 3.5. The insert is heated and kept in the furnace at a constant

temperature, and its temperature is uniformly distributed as there is only a relatively

small window open for the infrared camera to acquire images.

According to Planck’s Law, the blackbody radiation emitted per unit area as a

function of wavelength is given by:

iλ,b(λ, T ) =
C1

λ5(exp(C2/λT − 1))
(3.3)

where C1 and C2 are the first and second radiation constants, and λ is the wavelength.

For a gray-body object, the radiation emitted per unit area can be written as

iλ,g(λ, Tg) =
εgC1

λ5(exp(C2/λTg − 1))
(3.4)

where Tg is the actual temperature of the insert, and εg is the emissivity of the insert

at the wavelength λ. The radiation measured by the infrared camera is through the

equation:

iλ,g(λ, Tg, εg) = iλ,c(λ, Tc, εc) (3.5)
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Figure 3.5: System setup for emissivity determination.

where Tc is the measured apparent temperature of the insert, and εc is the emissivity

parameter that is built in and can be adjusted through the camera. From Equations

(3.3)–(3.5), the real insert temperature Tg can be solved from its measured apparent

temperature Tc and is given by [26]:

Tg =
1

1
Tc
− λ

C2
ln εc

εg

(3.6)

It is obvious that Tg = TC if and only if εc = εg. The real temperature and emissivity

can be obtained from the above equation.

3.4 Experimental Results

It is clear from above analysis that the emissivity of a die surface is dependent on

its temperature, gazing angle and surface condition. Therefore, three experiments

are designed and carried out to investigate : 1) the effect of die temperature; 2) the

effect of measuring angle θ; and 3) the effect of roughness on the emissivity of the
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die surface. The emissivity mentioned thereinafter is the directional total emissivity

otherwise specified.

Experiment Procedures 3.1. The general experiment procedures to determine the

emissivity of the die surface can be summarized as follows:

1. Heat die insert in the furnace at about 500oC for about 30 minutes; turn off

the furnace and wait for 30 minutes to let the insert temperature become more

uniformly distributed;

2. Set the emissivity parameter of the camera to 1, and measure the temperature

of the hole and die surface via infrared camera. Use the hole temperature as the

reference temperature;

3. Adjust the emissivity parameter of the camera according to Equation 3.6 such

that the apparent temperature on die surface equals to the reference temperature

(i.e., the hole temperature in above step as it is a black-body type source); and

4. Repeat the above procedure for temperature 450oC, 400oC, 350oC, 300oC, 250oC,

200oC, 150oC, and 100oC.

3.4.1 Effect of temperature on emissivity

For the emissive angle θ at 0 in Figure 3.2, the typical thermal images of the insert

surface are shown in Figure 3.6, where only two pictures at about 500oC and 300oC are

selected for illustration only. The average temperature of area 1, where the blackbody

hole locates, and the average temperature of area 2 on the insert surface are acquired

and denoted as T1 and T2 respectively. The determined emissivity is illustrated in
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(a) Thermal image at temperature about 500oC

(b) Thermal image at temperature about 300oC

Figure 3.6: Thermal images for emissivity determination: (a) 500oC, (a) 300oC.

(color online).
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Table 3.1: Emissivity variations of an insert with different temperature settings

T1(
oC) 99.6 152.9 199.8 250.2 299.9 350.1 399.4 448.7 495.5

T2(
oC) 63.3 95.9 130.6 184.3 215.8 254.7 296.5 325.2 370.1

∆T (oC) 36.3 57.0 69.2 65.9 84.1 95.4 102.9 123.5 125.4

ε 0.50 0.52 0.52 0.58 0.59 0.61 0.63 0.63 0.64

Table 3.1, where the temperature difference ∆T = T1− T2. The measured emissivity

of the die surface along with T1 is also plotted in Figure 3.7. It can be seen that

the emissivity is not constant, and it increases as the temperature increases. The

temperature difference ∆T also increases as the real surface temperature T1 increases.

The relationship between the emissivity of the insert surface and the temperature

T1 and T2 can be modeled as:

ε = 0.00038 ∗ T1 + 0.46

with the coefficient of determination between measured and predicted values R2 =

0.9675, and

ε = 0.0005 ∗ T2 + 0.47

with the coefficient of determination between measured and predicted values R2 =

0.9742. The R2 value, which is no more than 1.0, measures how well the model fits

the original data [60]. The closer to 1.0, the better. The above equations are valid

when the environmental temperature is at 22.3oC; and can be used to adjust the

emissivity parameter of the camera according to its measured temperature at ε = 1.
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Figure 3.7: Measured emissivity of the die surface along with T1.

3.4.2 Effect of emissive angle on emissivity

In order to determine the effect of emissive angle on the emissivity of the die surface,

the zenith angle θ (the angle between the normal of the die insert surface and the

image plane of the camera) is set at 15o, 30o, 45o and 60o respectively. The experiment

results are shown in Table 3.2, and illustrated in Figure 3.8. It can be seen that the

emissivity of the same θ increases as the temperature increases, however, the slope

for different θ is different. The bigger the emissive angle, the less the slope. It

also implies that the bigger the θ, the bigger the temperature difference ∆T . If the

emissivity of the die surface is not properly determined, measurement error will occur

and measured temperatures become unacceptable.
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Table 3.2: Emissivity variations with different emissive angle

T1(
oC) 99.6 152.9 199.8 250.2 299.9 350.1 399.4 448.7 495.5

ε(θ = 0o) 0.50 0.52 0.52 0.58 0.59 0.61 0.63 0.63 0.64

ε(θ = 15o) 0.49 0.51 0.50 0.55 0.55 0.57 0.60 0.61 0.61

ε(θ = 30o) 0.48 0.50 0.50 0.53 0.54 0.55 0.57 0.57 0.57

ε(θ = 45o) 0.46 0.47 0.48 0.50 0.51 0.51 0.52 0.53 0.53

ε(θ = 60o) 0.43 0.43 0.44 0.45 0.45 0.46 0.45 0.46 0.45
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Figure 3.8: Effect of emissive angle on the measured emissivity.
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(a) surface 1 (b) surface 2 (c) surface 3

Figure 3.9: Three die inserts to be measured for the effect of surface roughness on

emissivity, (a) the least used, (b) moderately used, and (c) extensively used.

3.4.3 Effect of surface roughness on emissivity

A thick layer of oxide may deposit on the die surface after it has been used for a

period of time, which could change the color and the roughness of the surface, and

hence have greatly influence on the emissivity. To determine the effect of roughness

on the emissivity, three die inserts have been used for measurement as shown in Fig-

ure 3.9, where surface 1, 2 and 3 are selected as the least used, moderately used, and

extensively used die insert respectively, and the roughnesses of these surfaces are in

an increasing order. The experiment results are shown in Table 3.3, and illustrated in

Figure 3.10. The blackbody temperature T1 has been rounded up to its nearest hun-

dredth digit as the exactly same temperature can not be obtained after changing die

inserts in the furnace. It is evident that the emissivity of all surfaces increases as the

temperature increases. But the increasing rates of the emissivity with temperatures

for different surface conditions are different. The larger the roughness, the higher the

increasing rate of the emissivity. It may also imply that a high emissivity should be

used when temperature measurements are performed on extensively used die inserts.
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Table 3.3: Emissivity variations with different die surface condition

T1(
oC) 100 150 200 250 300 350 400 450 495

ε(1) 0.43 0.44 0.45 0.46 0.47 0.47 0.47 0.47 0.47

ε(2) 0.50 0.52 0.52 0.58 0.59 0.61 0.63 0.63 0.64

ε(3) 0.65 0.66 0.67 0.72 0.73 0.74 0.76 0.76 0.77
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Figure 3.10: Effect of die surface conditions on the measured emissivity.
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Table 3.4: Effect of Emissivity on Measured Temperature

TS2(
oC) 100 150 200 250 300 350 400 450 495

ε(2) 0.50 0.52 0.52 0.58 0.59 0.61 0.63 0.63 0.64

TS1(
oC) 88.4 128.1 170.6 209.3 248.5 288.3 323.6 352.8 387.2

TS3(
oC) 121.3 170.7 226.2 289.5 339.7 399.6 453.4 491.1 539.7

3.4.4 Effect of emissivity on measured temperature

As mentioned above, the emissivity is a critical parameter for temperature measure-

ment. One experiment has been carried out to understand the effect of emissivity on

the measured temperature, if the emissivity is not appropriately calibrated. The two

die inserts in Figure 3.9 (a) and (c) from above experiment are used. The tempera-

tures of the inserts are measured by the infrared camera while the emissivity value

is set to be the value of the insert (b). The results are summarized in Table 3.4 and

plotted in Figure 3.11, where TS2 represents the temperature of moderately used die

Surface 2, TS1 is the temperature of barely used die Surface 1, and TS3 stands for

the temperature of extensively used die Surface 3. Since the emissivity is set to that

of Surface 2, TS2 is the true temperature of the die surface. It is clear from Figure

3.11 that the measured temperature of the Surface 3 is higher than that of its true

temperature, while the measured temperature of the Surface 1 is lower. The similar

phenomena can also be observed as follows: 1) if the emissivity is set to that of Sur-

face 1, then the measured temperature of both Surface 2 and 3 is higher than that of

true temperature; 2) if the emissivity is set to that of Surface 3, then the measured

temperature of both Surface 1 and 2 is lower than that of true temperature.
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Figure 3.11: Measured emissivity of the die surface along with T1.

3.5 Summary

The emissivity of a die insert depends on many factors such as temperature, emissive

angle, and surface condition. As the die insert does not behave as a blackbody object,

extra caution has to be taken when deducing the real temperature from a thermal

imager. The real temperature obtained from a thermograph is very sensitive to the

emissivity settings. If the emissivity has not been carefully determined, measurement

error may accumulate to an unacceptable level. From above experiment, the following

phenomena have been observes: 1) the emissivity of the die insert increases as the

temperature climbs; 2) the emissivity decreases as the emissive angle increases; and

3) the roughness of the die insert may change as it has been used in production, and

hence may also have great impact on the measured emissivity.
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Chapter 4

Two–Dimensional Temperature
Measurement

This chapter presents the method on how to obtain the temperature of a 2D surface

from one visual image and one thermal image. Fundamental theories on digital image

are introduced first. An adaptive curve fitting method is proposed for robust object

localization against measurement outliers/noises. Visual image and thermal image

are then fused together to retrieve the 2D temperature from a surface.

The proposed robust method is to be examined extensively. Superaccuracy of

curve fitting can be achieved under certain conditions.

4.1 Introduction and Problem Formulation

The fitting of geometric primitives to a set of data points is one of the basic tasks in

machine vision. It has been widely used in industrial automation, medical diagnosis,

military robots, civil surveillance, and etc. Implementation of the fitting algorithms

may become challenging where real-time performance is required. Basically the algo-

rithms can be divided into two broad categories:
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Figure 4.1: Flow chart of 2D temperature measurement.

1. Clustering/voting techniques. Each data point is first classified into one or more

classes according to some criteria, then the optimal solution can be obtained

by a voting process. It includes RANSAC, Hough transform, Kalman filtering,

fuzzy cluster and etc [38, 39, 40]. These methods are generally robust, but are

time-demanding. Therefore, they are not suitable for real-time application;

2. Least square method. It uses geometric or algebraic distance as a cost function

to be minimized [41, 42, 43, 44, 45, 46, 47, 48]. It is generally computationally

efficient, but suffers from the outliers in the data set. A simple example is

illustrated in Figure 4.2, where the dotted line is the true ellipse, the small

circles are noise-free data point sampled from the ellipse with only one outlier

added (very right). The solid line is the fitted ellipse, which is severely biased

by the least square method.

So the question to be addressed in this chapter can be formulated as: is it possible

to find an algorithm that can tolerate the measurement outliers or noises to achieve
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Figure 4.2: Failure of least square method to find an appropriate solution: the dotted

line is the true ellipse (inner circle), the small circles are noise-free data point sampled

from the ellipse with only one outlier (very right), and the solid line is the ellipse

obtained through least square method (outer circle).

superaccuracy while has a fast convergence rate? In [49], the author claims that the

regression diagnostics approach depends heavily on a priori knowledge in choosing

the thresholds for outlier rejection. It will be shown in this section that the claim is

no longer hold for the proposed method.

The flowchart of the 2D temperature measurement is illustrated in Figure 4.1. It

is clear from the flowchart that the following problems have to be addressed for a 2D

thermal measurement system:

1. Emissivity of the die insert must be determined as it is a critical parameter for

an infrared thermometer;
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2. Image registration/correspondence has to be performed to align the thermal

and visual images such that cross reference between images can be established;

and

3. Local shape of a target will be carefully extracted from the visual image in order

to get accurate temperature of each die insert.

The concept of ‘adaptive’ will be adopted from signal processing field [35] to describe

the converging behavior of the proposed ellipse fitting technique.

4.2 Digital Images

Gray level digital images are presented as a two-dimensional array of numbers with

each element in the array called a pixel. Each number stands for the intensity of

the image at that relative position. Each gray level is represented with 8-bit, 10-bit,

12-bit, 14-bit, 16-bit or floating points encoding. For an 8-bit encoding, the intensity

is allowed 28 or 256 possible values. These values are usually assigned integer values

ranging from 0 to 255 with 0 being the darkest gray level and 255 the brightest

intensity level. Figure 4.3 shows a four pixel digital image, where it can be interpreted

as an intensity (or brightness) map I defined on a discretized compact region Ω of a

two-dimensional surface:

I : Ω ⊂ Z2 → Z+; (x, y) 7→ I(x, y)

For an 8-bit gray level image, I(x, y) ∈ [0, 255].

The most commonly used color image is encoded as either a red, green and blue

(RGB) image or hue, saturation and luminance (HSL) image. The representation of
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Figure 4.3: Representation of a four-pixel digital image.

a color image is similar to that of a gray level image except that the number of each

pixel represents three primitives: red, green and blue (if in RGB) or hue, saturation

and luminance (if in HSL). For example, if each primitive is encoded as 8-bit value,

then a color pixel is represented as 32-bit with the first 8-bit as unused alpha plane.

As mentioned before, thermal image is formed by measuring the infrared energy

emitted by an object. Originally, it is a gray level image that the intensity is pro-

portional to the surface temperature of the object. False or artificial color palette is

added to transform the original image to its color counterpart for better visual effect.

Extra care should be taken when manipulating thermal image since it contains the

temperature information of the object. Image processing algorithm may alter the

gray level value hence the temperature map of the object, which is unacceptable for

accurate temperature measurement.

4.3 Visual Image Processing

Since digital image is a typical two-dimensional sampled signal, it can be processed as

a two-dimensional systems as illustrated in Figure 4.4, where I(x, y) is the intensity

value of an image at location (x, y) and h(x, y) is the impulse response of a two-
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Figure 4.5: Visual image processing.

dimensional system such as a high pass filter. For a linear shift-invariant system

(LSI), the output Y (x, y) can be determined by [50]:

Y (x, y) = I(x, y) ~ h(x, y)

where ~ denotes convolution. The above equation can be further written as

Y (x, y) =
∞∑

k1=−∞

∞∑

k2=−∞
I(k1, k2)h(x− k1, y − k2)

As image and its filter have finite size in practice, for an M ×N sized image and an

m×m filter where m is a positive odd number and m < N, m < M,N ∈ Z+,M ∈ Z+,

the above equation can be rewritten as

Y (x, y) =

m−1
2∑

k1=−m−1
2

m−1
2∑

k2=−m−1
2

I(k1, k2)h(x− k1, y − k2) (4.1)

The above equation plays a critical role in image filtering theory, which lays the

foundation for the image processing algorithms.

The main purpose of the visual image processing is to estimate the shape and

location of the die inserts from their images. A snapshot of the inserts from visual
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camera 1 is illustrated in Figure 4.6(a). Before the shape of each channel can be

localized, the image must undergo some algorithms in order to extract its global or

local features. The process is illustrated in Figure 4.5 and carried out from Algorithm

5.7 to 4.3.

4.3.1 Image enhancement

Since the insert surface is very dark (having a low intensity value in the image), the

original image is transformed to turn the dark region into bright one for better visual

perception.

Algorithm 4.1. Image enhancement [36, 50, 73].

1. Image inverse: For each pixel in the image I(x, y), let

IN(x, y) = 255− I(x, y)

where IN(x, y) stands for the new intensity value for the transformed image.

After inversion, the bright regions are now containing useful information of the

image.

2. A look-up table transformation is adopted to extract the images of the insert

surfaces. For each image pixel IN(x, y), let I ′N(x, y) be the new pixel value such

that

I ′N(x, y) =





IN(x, y) if IN(x, y) ∈ [220, 255]

0 otherwise

3. (optional) Exponential transformation: to further decrease the brightness and

contrast in dark regions, an exponential transformation can be applied. This

operation will also increase the contrast in bright regions. ¦
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The output of the algorithm is shown in Figure 4.6(b), where the insert surfaces

are highlighted after enhancement for further processing.

4.3.2 Edge detection

The most commonly used image feature is edges that are defined as pixels at or around

which the image values change sharply. It is assumed that the acquired image is noisy,

so a Gaussian filter is applied to smooth the noise. A zero mean 1-D Gaussian filter

with variance σ is given by

g(x) =
1√
2πσ

exp(− x2

2σ2
)

Since image can be deemed as a two dimensional system, convolving it with a 2-D

Gaussian kernel g(x, y) as in Equation (4.1) can be written as [36, 73]

Ig(x, y) = I(x, y) ~ g(x, y)

=

m−1
2∑

k1=−m−1
2

m−1
2∑

k2=−m−1
2

g(k1, k2)I(x− k1, y − k2)

=
1

2πσ2

m−1
2∑

k1=−m−1
2

m−1
2∑

k2=−m−1
2

exp(−k2
1 + k2

2

2σ2
)I(x− k1, y − k2)

=
1

2πσ2

m−1
2∑

k1=−m−1
2

exp(− k2
1

2σ2
)

m−1
2∑

k2=−m−1
2

exp(− k2
2

2σ2
)I(x− k1, y − k2)

= I(x, y) ~ g(x) ~ g(y) (4.2)

It is clear that a 2-D Gaussian mask can be separated into two kernels under

convolution. Therefore, Gaussian smoothing can be computed by convolving first all

rows, then all columns of an image with a 1-D Gaussian kernel. In practice, a discrete
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(a) original visual image

(b) enhanced image

Figure 4.6: Image enhancement: the insert surfaces are highlighted after enhance-

ment.
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Gaussian mask is obtained by sampling a continuous Gaussian via [36, 73]

σ = w/5

where w is the mask width taken as an odd number. The discrete type can subtends

98.76% of the area of the continuous one and can be further approximated to an

integer form. Let f [x] be a sampled version from a continuous signal f(x)

f [x] = f(xT ), x ∈ Z

where T is the sampling period. From the well-known Nyquist sampling theorem

[37], the band-limited continuous signal f(x) can be reconstructed from its sampled

signal f [x] provided that the sampling frequency is at least twice than the Nyquist

frequency of f(x). That is

f(x) = f [x] ~ h(x), x ∈ R

where the reconstruction filter h(x) is an ideal sync function given by

h(x) =
sin(πx/T )

πx/T
, x ∈ R

The computation of the derivative of a sampled signal f [x] is first by applying the

derivative operator D{·} to the continuous function f(x), then taking the sampling

operator S{·} to the derivative. The derivative is given by

f ′(x) = D{f(x)} = D{f [x] ~ h(x)}

= D{
∞∑

k=−∞
f [x]h(x− k)}

=
∞∑

k=−∞
f [x]D{h(x− k)}

= f [x] ~ D{h(x)} = f [x] ~ h′(x)
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And the sampled version of the derivative can be calculated as

S{f ′(x)} = S{f [x] ~ h′(x)} = f [x] ~ S{h′(x)} = f [x] ~ h′[x]

An ideal sync function is infinite and in practice, it can be approximated once again

by a truncated Gaussian filter.

In a similar way, a 2-D continuous signal f(x, y) can be reconstructed from its

sampled signal f [x, y] with a sync function h(x, y)

f(x, y) = f [x, y] ~ h(x, y), x, y ∈ R

with

h(x, y) =
sin(πx/T )sin(πy/T )

π2xy/T 2
= h(x)h(y), x, y ∈ R

And the partial derivatives of the sampled signal f [x, y] are given by

fx[x, y] = f [x, y] ~ h′[x] ~ h[y]

fy[x, y] = f [x, y] ~ h[x] ~ h′[y]

Although image is a typical discrete 2-D signal, in image processing algorithms, the

symbol I(x, y) instead of I[x, y] is adopted by convention. Under this convention, the

image gradient ∇I(x, y) = [Ix(x, y), Ix(x, y)]T ∈ R2 at location (x, y)T ∈ Z2 can be

calculated as [36, 73]

Ix(x, y) =
∂I(x, y)

∂x
= I(x, y) ~ g′(x) ~ g(y)

=

m−1
2∑

k1=−m−1
2

m−1
2∑

k2=−m−1
2

I(k1, k2)g
′(x− k1)g(y − k2) (4.3)

Iy(x, y) =
∂I(x, y)

∂y
= I(x, y) ~ g(x) ~ g′(y)

=

m−1
2∑

k1=−m−1
2

m−1
2∑

k2=−m−1
2

I(k1, k2)g(x− k1)g
′(y − k2) (4.4)
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The algorithm implemented here is a modified Canny edge detector that can reduce

the probability of false and streaking contours.

Algorithm 4.2. Edge detection [36, 50, 73]. The input is an image I(x, y) and a

threshold τ > 0, for each pixel at (x, y) ∈ Z2

1. Apply Gaussian smoothing filter to the image as per Equation (4.2);

2. Compute the gradient ∇I = [Ix, Iy]
T at each pixel according the formulea (4.3)

and (4.4);

3. Estimate the edge strength

‖∇I(x, y)‖2 = ∇IT∇I = I2
x + I2

y

and the orientation of the edge normal

n(x, y) = arctan(Iy/Ix)

4. Approximate the edge normal to one of the four directions 0o, 45o, 90o and 135o,

if ‖∇I(x, y)‖ is smaller than at least one of its two neighbors along the direction,

assign ‖∇I(x, y)‖ = 0 to thin the edge points;

5. Follow the chains of the connected local maxima, if ‖∇I(x, y)‖ > τ , mark it as

an edge pixel. ¦

When real-time performance is required for an imaging system, the edge detection

algorithms can be simplified in a way such that images are convoluted with predefined

filters, such as Sobel filters, Laplacian kernels, Gaussian kernels, and etc [36, 50, 73].

The output of the algorithm is given in Figure 4.7.
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Figure 4.7: Detected edge of the insert surface.

4.3.3 Object localization

The contours of the objects are defined by the edge points detected from the above

algorithm. To find an appropriate model for a local shape, there are usually two

procedures to go. Firstly, the edge points must be grouped for each instance of the

target curve. The step has been fulfilled in the last algorithm since the normal of the

edge has been identified and the chain of the local maxima has been connected. Sec-

ondly, the best curve has to be found to interpolating the points. Hough Transform

is one of the most widely used methods for curve detection [36], which divides the

parameter space into small regions and counts for how many votes that each point

casts for all combinations of parameters if it were part of the target curve. The trans-

form copes well with occlusion, but becomes extensively time consuming as the size

of the parameter space increases exponentially with the number of model parameters.
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Once a set of image points has been identified, ellipse fitting is usually adopted to

generate a function for the given points. As the acquired image is contaminated by

noise, spurious peaks or outliers that do not fit the trend set by the balance of the

data. Generally speaking, there are two types of outlier models:

1. Mean shift outlier model has a breakdown at the ith point, which produces a

location shift;

2. Variance shift model has a breakdown at the ith point where its error variance

exceeds the error variance at the other data points.

The regression model can be significantly biased if the outliers have large mean

and/or variance shifts, imposing an adverse impact on the accuracy of the object

localization and hence temperature measurement.

In this section, a novel robust fitting method is proposed based on statistical

diagnostics. The basic idea is that the residual magnitude is expected to be large at

a specific data point in the above mentioned outlier models. The outliers are first

detected, a linear model is then derived to find the local shape.

Consider the generalized linear model with n observations of the paired variable

(X,y) :

y = Xβ + ε (4.5)

where X ∈ Rn×(k+1) are inputs with full column rank, y ∈ Rn×1 are the measured

response, β ∈ R(k+1)×1 are unknown regression coefficients to be found, ε ∈ Rn×1 are

the model error, and
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y =




y1

y2
...

yn


 , X =




1
X1

X2
...

Xk




T

=




1 x11 x21 · · · xk1

1 x12 x22 · · · xk2
...

...
...

...
1 x1n x2n · · · xkn


 ,

β =




β0

β1

β2
...

βk




, ε =




ε1

ε2
...
εn


 .

where Xi ∈ Rn×1 is column vector with

Xi = [xi1, xi2, · · · , xin]T (i = 1, 2, · · · , k).

Also define a colomn vector xi ∈ R(k+1)×1 as

xi = [1, x1i, x2i, · · · , xki]
T

Therefore, (yi,xi) is the i-th observed data point with i = 1, 2, · · · , n.

Let b ∈ R(k+1)×1 be the estimator for the regression coefficients β, then for the

least square method (LS) b satisfies

∂

∂b
[(y −Xb)T(y −Xb)] = −2XTy + 2(XTX)b = 0

It is easy to show that with a full column rank matrix X

b = (XTX)−1XTy (4.6)

where matrix XTX is symmetric and can be calculated as

XTX =




n
∑n

i=1 x1i

∑n
i=1 x2i · · · ∑n

i=1 xki∑n
i=1 x2

1i

∑n
i=1 x1ix2i · · · ∑n

i=1 x1ixki∑n
i=1 x2

2i · · · ∑n
i=1 x2ix3i

. . .
...∑n

i=1 x2
ki



∈ R(k+1)×(k+1)
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It is clear that the diagonal elements of the matrix XTX are the sums of the

squares of the elements in Xi, and its off diagonal elements are sums of cross products

of elements in Xi. Define a matrix H ∈ Rn×n as

H = X(XTX)−1XT

H is also called HAT matrix. It can be seen that H is idempotent (i.e. symmetric

and H2 = H) with its diagonal elements given by

hii = xT
i (XTX)−1xi

and off-diagonal elements are given by

hij = xT
i (XTX)−1xj (i 6= j)

Then ŷ ∈ Rn×1, the predicted value of y can be written as

ŷ = Xb = X(XTX)−1XTy = Hy

and

ŷi = xT
i (XTX)−1XTy (4.7)

and the vector of residuals e = [e1, e2, · · · , en]T ∈ Rn×1 are given by

e = y − ŷ = y −Xb = y −X(XTX)−1XTy = [I−H]y (4.8)

The residual of the regression is simply taken the form

ei = yi − ŷi

As H is idempotent,

Hŷ = H(Hy) = H2y = Hy
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which implies H(y − ŷ) = He = 0, i.e.,
∑n

j=1 ejhij = 0. Also from H2 = H, it implies

∑n
j=1 h2

ij = hii.

Since there are k+1 parameters to be estimated from n observations, the unbiased

estimator s2 for the residual variance can be written as

s2 =
(y −Xb)T(y −Xb)

n− (k + 1)
=

n∑
i=1

(yi − ŷi)
2

n− (k + 1)

In order to detect if a set of data is an outlier or not, a PRESS (prediction sum

of squares) statistic is used. First, the i−th observation (yi,xi) is removed from the

data set where i = 1, 2, · · · , n, then the remaining n − 1 observations are used to

estimate a new set of regression coefficients b−i. The predicted value at point xi is

given by

ŷi,−i = xT
i b−i

where the subscript of ŷi,−i means the predicted value at i-th point but the regression

model is obtained excluding the i-th point. The PRESS residual is obtained as

ei,−i = yi − ŷi,−i = yi − xT
i b−i (4.9)

Accordingly, the PRESS is defined as

PRESS =
n∑

i=1

(ei,−i)
2 =

n∑
i=1

(yi − ŷi,−i)
2

It appears that for n observations, the regression process needs to be repeated n

times in order to find the prediction error, but the PRESS statistic has some nice

properties that can greatly simplify the computation [58, 59, 60].
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Similar to Equation (4.6) if the method of sum of squares is used, the regression

coefficients b−i can be obtained as:

b−i = (XT
−iX−i)

−1XT
−iy−i

= (XTX− xix
T
i )−1XT

−iy−i (4.10)

Recall that, for a n×n nonsingular matrix M and a n×1 vector v, the Sherman-

Morrison-Woodbury theorem states that:

(M− vvT)−1 = M−1 +
M−1vvTM−1

1− vTM−1v

The Equation (4.10) can be rewritten as [58, 59, 60]:

b−i =

[
(XTX)−1 +

(XTX)−1xix
T
i (XTX)−1

1− xT
i M−1xi

]
XT
−iy−i

=

[
(XTX)−1 +

(XTX)−1xix
T
i (XTX)−1

1− hii

]
XT
−iy−i (4.11)

=

[
(XTX)−1 +

(XTX)−1xix
T
i (XTX)−1

1− hii

]
(XTy − xiyi)

= b− (XTX)−1xiyi +
(XTX)−1xix

T
i (XTX)−1(XTy − xiyi)

1− hii

= b− (XTX)−1xi
yi(1− hii)− xT

i b + hiiyi

1− hii

= b− (XTX)−1xi
yi − ŷi

1− hii

= b− (XTX)−1xiei

1− hii

(4.12)

Substituting the Equation (4.11) into (4.9), the residual can be obtained as:

ei,−i = yi − xT
i (XTX)−1XT

−iy−i −
hiix

T
i (XTX)−1XT

−iy−i

1− hii

=
(1− hii)yi − xT

i (XTX)−1XT
−iy−i

1− hii

=
(1− hii)yi − xT

i (XTX)−1(XTy − xiyi)

1− hii
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=
(1− hii)yi − ŷi + h11yi

1− hii

=
yi − ŷi

1− hii

=
ei

1− hii

(4.13)

Similarly, since there are k+1 parameters to be estimated from n−1 observations

for the PRESS statistic, the unbiased estimator s2
−1 for the residual variance can be

written as

(n− k − 2)s2
−i = (y −Xb−i)

T(y −Xb−i)

=
n∑

j=1

j 6=i

(yj − xT
j b−i)

2 (substitute Equation (4.12))

=
n∑

j=1

(
yj − xT

j b +
xT

j (XTX)−1xiei

1− hii

)2

−
(

yi − xT
i b +

hiiei

1− hii

)

=
n∑

j=1

(
ej +

hijei

1− hii

)2

− e2
i

(1− hii)2

=
n∑

j=1

e2
j +

2ei

1− hii

n∑
j=1

ejhij +
e2

i

(1− hii)2

n∑
j=1

h2
ij −

e2
i

(1− hii)2

=
n∑

j=1

e2
j +

hiie
2
i

(1− hii)2
− e2

i

(1− hii)2

=
n∑

j=1

e2
j −

e2
i

1− hii

= (n− k − 1)s2 − e2
i

1− hii

(4.14)

It is clear from Equations (4.9) and (4.14) that the PRESS residual and variance

can be calculated directly from the ordinary residual and variance, which greatly

eases the burden to repeat n − 1 regressions, and hence significantly reduces the

computational cost. Once the residual and variance are obtained, the outliers can be
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detected by hypothesis testing. For the mean shift outlier model, the mean of the

i-th PRESS residual is used. The hypothesis is given by:

H0 : E(ei,−i) = 0
H1 : E(ei,−i) 6= 0

(4.15)

For the variance shift model, the so-called R-student distribution is employed,

which is given by

ti =
ei

s−i

√
1− hii

(4.16)

In the case, s−i, the estimate of true variance σ, is used. The hypothesis can be

written as

H0 : σ2
i = 0

H1 : σ2
i 6= 0

(4.17)

The confidence level of the testing is usually taken at α = 0.05. Once the outlier

is detected, it will be excluded from the data set, then a new linear model is rebuilt

and the process is repeated. In practice, the method can be combined with other

curve fitting techniques to generate more robust results. One of the most useful tools

for curve detection is ellipse fitting. Consider the ellipse model with a set of data

point pi = [xi, yi]
T with i = 1, 2, · · · , n:

F (X,b) = XTb = ax2 + bxy + cy2 + dx + ey + f = 0 (4.18)

where b = [f, a, b, c, d, e]T is the regression coefficient and X = [1, x2, xy, y2, x, y]T .

|F (Xi,b)| is called the algebraic distance of a point (xi, yi) to the ellipse F (X,b) = 0.

The purpose of the fitting is to find a curve that minimizes the cost function

DB(b) =
n∑

i=1

(F (Xi)
2
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In order to avoid trivial solution b = 0 and ensure that the curve is an ellipse, the

following constrain is applied:

bT




0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




b = bTCb = 1

Therefore the algebraic fitting problem becoms:

min
b
‖bTXTXb‖

subject to: bTCb = 1

Let λ be a Lagrange multiplier, using least square method (LS), an object function

can be defined as

L = bTXTXb− 2λ(bTCb− 1)

The minimum value is attained when ∂L
∂b

= 0, which yields

XTXb = λCb (4.19)

This is a generalized eigenvalue problem and the solution b0 is the eigenvector cor-

responding to the only negative eigenvalue [42]. The method has an intrinsic disad-

vantage that prevents it from finding an optimal solution when all the sampled data

are perfectly lying on an ellipse. Under this circumstance, the matrix XTX becomes

identically singular and the trivial solution is b = 0. There are generally two ways to

fix this problem:

1. re-scaling the data points by:

x̃ij =
xij −

n

min
j=1

(xij)

sx

− 1, ỹij =
yij −

n

min
j=1

(yij)

sy

− 1
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where the scaling factors are given by:

sx =

n
max
j=1

(xij)−
n

min
j=1

(xij)

2
, sy =

n
max
j=1

(yij)−
n

min
j=1

(yij)

2

The new matrix X̃TX̃ is partially extracted to find the eigenvalue [54].

2. re-scaling the input according to the above scheme, then adding small random

noise to the data. The data is re-sampled to form the matrix X̃TX̃ [43].

In order to find the optimal approximation, the second method needs to be re-

peated for several times [43]. The final value of the ellipse parameters is taken by

averaging over the replications. Therefore, it has higher computational cost than the

first one, and hence is not preferred.

Algorithm 4.3. The input to the algorithm is a set of image points. The procedures

of the proposed robust object localization can be summarized as follows:

1. Use a numerical package to calculate the eigenvalue and hence find the solution

of b in (4.19);

2. Construct a linear model according to Equations (4.5) and (4.6), and use the

values of b from the above step as an initial guess;

3. Compute the PRESS residual and variance as per Equations (4.9) and (4.14)

respectively;

4. Conduct the hypothesis testing in (4.15) and/or (4.17) to find outliers;

5. Exclude the outliers from the data set, then repeat above step 1-4 when necessary;

The output bm identifies the best fit ellipse . ¦
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Figure 4.8: Registered and fused image: white boxes are from the visual camera (color

online).

The algorithm can optimize its coefficients to achieve better robustness and ac-

curacy. The experimental results of the object localization are presented in Section

4.5.

4.4 Image Correspondence

Image correspondence or registration is to precisely align two or more images such

that the corresponding pixels in two images represent the same physical point in the
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real world. There are various methods to conduct the registration, such as correla-

tion method, Fourier method, feature-based method, active contours, point mapping,

mutual information method, and etc. Reference [55] provides a recent survey on this

topic.

Feature base method will be used due to simplicity and accuracy. It is assumed

that: 1) there are non lens distortion in the images; 2) thermal image contains enough

features such as edges, corners and etc in order to build up the correspondence, or

the outer contour of the target in the thermal image is detectable. In projective

geometry, straight lines in real world remain straight in images, but parallel lines

converge toward so-called vanishing points. Since both visual image and thermal

image are planar, they can be mapped through rigid body movement from one plane

to another. The procedure is called projective transformation.

Let [x, y, 1]T ∈ R3×1 be the homogeneous coordinates of an image point p, and

let [X, Y, 1]T ∈ R3×1 be the homogeneous coordinates of another image point P

associated with the same object in real world, then the projective transformation can

be written as

κp = TP

where k ∈ R is a scale factor, and T ∈ R3×3 is the projection matrix. The above

equation can be solved to find κ and T through several linear equations. In the

current setting, T for Channel 1 is given by:

T =




0.3819 −0.0071 0.0000
−0.0334 0.3429 −0.0005
80.0661 59.6835 0.9274




The registered image are shown in Figure 4.8, where white boxes are the circumfer-

ences registered from visual image by projective transformation.
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In the process of finding correspondence points, the thermal image must be prop-

erly controlled such that the corners of each insert are very clear in the image. The

two camera can also be calibrated independently for feature based correspondence.

More information can be found in next chapter.

4.5 Experimental Results

There are two main results to be shown in this subsection: the proposed method of

robust object localization (called PRESS), and application results on the casting dies.

First, the general procedures on how the Algorithm 4.3 works are explained, along

with a qualitative comparison with a state-of-art robust method in [42, 43] (called

B2AC), then the detailed quantitative comparisons are presented under different in-

fluential factors such as noise, occulsion. Finally, the method is applied to measure

the temperature of the die surface to obtain the effect of the water flow on the die

temperature.

4.5.1 Experiment 1: general results

In order to test the robustness of Algorithm 4.3, synthesized data with controlled

noises are first used. Its results are compared with the so-called B2AC method or its

enhanced version (EB2AC) in [42, 43]. It has been shown that the B2AC/EB2AC

method has better performance in terms of noise tolerance than its counterparts, such

as BOOK [44], TAUB [45], GAND [46], BIAS [47], and etc. Therefore, it is sufficient

to compare the proposed method with B2AC/EB2AC to show if the performance has

been improved or not.

67



For the convenience of mathematical expression, the ellipse can be written as the

follwing form

[cx, cy, rx, ry, φ] (4.20)

where (cx, cy) is the center of the ellipse, rx and ry are the semimajor and semiminor

axis respectively, and φ is the counterclockwise orientation angle in radians or degrees

of its major axis with respect to Cartesian X-axis.

Experiment Procedures 4.4. This experiment is to obtain some initial results for

the proposed robust object localization.

1. Sample the ellipse [0, 0, 200, 100, 0.5 rad] to obtain N = 20 points uniformly

spaced around half of the circumference from θ = 0o to 180o with respect to its

major axis (i.e., half an ellipse can be seen, and the other half is occluded);

2. Add independent zero mean Gaussian noise with variance σ2 = 0.01 ∗ ry = 1 to

both x′s and y′s of the samples;

3. Turn 20% of the points (4 in this case) into outliers by adding a uniform de-

viate in [−ry, ry] to their both coordinates. And now the samples are severely

contaminated with noises;

4. Run B2AC and Algorithm 4.3 to get the comparative results. ¦

An illustrative example is shown in Table 4.5.1 and Figure 4.9. In Table 4.5.1 the

F̂i is the predicted value of F in Equation (4.18). Since the true value F = 0

ei = F̂i − Fi = F̂
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Table 4.1: Adaptive process of the proposed ellipse fitting method.

No. Points F̂i hii s−i t
(1)
i Removed t

(2)
i Removed t

(3)
i

1 (257.10,135.87) 0.68 0.81 0.17 9.13 Yes

2 (166.08,110.21) -0.28 0.29 0.39 -0.88 1.39 0.67

3 (150.94,119.90) -0.34 0.23 0.38 -0.99 0.15 0.14

4 (131.96,126.44) -0.32 0.26 0.38 -0.96 -0.41 -0.15

5 (109.54,129.68) -0.25 0.28 0.39 -0.75 -0.87 -0.42

6 (30.81,135.18) 0.49 0.32 0.36 1.64 4.26 Yes

7 (56.13,125.68) -0.06 0.17 0.40 -0.17 -1.27 -0.82

8 (26.45,119.56) 0.05 0.13 0.40 0.14 -0.86 -0.34

9 (-3.13,107.92) 0.05 0.12 0.40 0.14 -1.11 -1.07

10 (-32.01,96.18) 0.08 0.16 0.40 0.23 -0.61 -0.46

11 (-3.14,116.57) 0.32 0.21 0.39 0.93 1.21 3.28

12 (-90.31,59.89) -0.08 0.21 0.40 -0.22 -0.40 -0.69

13 (-113.85,41.76) -0.16 0.22 0.39 -0.46 -0.09 -0.27

14 (-138.41,19.19) -0.25 0.21 0.39 -0.74 0.27 0.30

15 (-153.42,-1.76) -0.36 0.21 0.38 -1.05 -0.12 -0.39

16 (-268.28,-64.45) 0.63 0.85 0.22 7.38 Yes

17 (-176.34,-40.06) -0.34 0.19 0.38 -0.97 0.16 0.27

18 (-182.69,-61.92) -0.20 0.19 0.39 -0.57 0.25 0.51

19 (-180.89,-79.58) 0.00 0.28 0.40 0.01 -0.06 -0.10

20 (-175.60,-96.70) 0.34 0.64 0.37 1.53 0.01 -0.26

69



−300 −200 −100 0 100 200 300

−200

−150

−100

−50

0

50

100

150

200

X

Y

(a) Samples and B2AC Method

−300 −200 −100 0 100 200 300

−200

−150

−100

−50

0

50

100

150

200

X

Y

(b) PRESS Method
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3rd Iteration and True Line

1
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Figure 4.9: Adaptive process of the proposed fitting method: the true ellipse is

represented by the dotted line, and the small circles stand for corrupted samples. (a)

solid line is the result of the B2AC fitting method; (b) the adaptive process of the

PRESS fitting method, the number i besides the small circles is the sequence of the

sampled data being removed after i-th iteration.
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The estimated variance of PRESS statistic tji is calculated according to Equation

(4.16), and the superscript j represents the iterative step. For the given samples, the

estimated ellipse generated by the B2AC method:

[−8.23, 33.19, 226.21, 64.53, 0.44 rad]

with coefficient of determination R2 = 0.8533. This result was used as an initial

guess for the Algorithm 4.3. A hypothesis is tested on the estimated value of the true

variance σ according to Equation (4.17). For the data with 20 samples, 6 parameters

and the confidence level α = 0.05, the R-student statistic value is given as t = 3.73.

Therefore, the data point is considered as an outlier if ti > 3.73. It can be seen from

Table 4.5.1 that the point 1 and 16 are removed, and the algorithm is repeated on

the rest 18 data points. It gives the estimated ellipse as:

[−6.87, 4.48, 196.71, 94.42, 0.55 rad]

For the data with 18 samples, 6 parameters and the confidence level α = 0.05, the R-

student statistic value is given as t = 3.83. Therefore, the data point 6 is eliminated.

And the 3-rd iteration gives

[−0.27,−1.28, 101.90, 200.30, 0.51 rad]

with R2 = 0.9983. The adaptive process is also shown in Figure 4.9, where the true

ellipse is represented by the dotted line, and the small circles stand for corrupted

samples. The solid line in Figure 4.9(a) is the result of the B2AC fitting method;

and the PRESS fitting method is illustrated in Figure 4.9(b), where the number i

besides the small circles is the sequence of the sampled data being removed after i-th

iteration. It can be seen the PRESS method converges nicely to an optimal solution.
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Figure 4.10: Adaptive process of the PRESS method with 100 sample points.
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In order to see the evolution of the elliptic parameters along with iterative steps,

another experiment is conducted as same as Experiment 4.4 except that the sample

contains 100 points. The points are corrupted by zero mean Gaussian noise and 20%

are turned into outliers. The adaptive process of the PRESS method are plotted

in Figure (4.10). Evolution of the residual sum of squares and elliptic parameters

along with iterative steps are also illustrated in Figure (4.11). It can be seen that

the residual sum of squares Rss are constantly being minimized at each step; while

the change of the absolute error for elliptic parameters are irregular at the beginning,

but they all converge to optimal values at the last couples of steps.

It can be seen qualitatively that the PRESS method has a better performance

than B2AC. Its accuracy shall be extensively examined under different conditions,

including:

1. level of outliers in the original data;

2. level of occlusion in the elliptic pattern;

3. level of noises in the original data;

4.5.2 Experiment 2: accuracy vs. outlier level

Figure 4.12 shows the results of comparison of accuracy with varying outlier level.

The sample is taken from the ellipse [0, 0, 200, 100, 0.5 rad] with N = 100 points

uniformly spaced around the circumference from θ = 0o to 360o with respect to its

major axis (i.e., no occlusion). The zero mean Gaussian noise is assumed as same

as Algorithm 4.3 with variance σ2 = 0.01 ∗ ry = 1, while the outlier level is varying
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Figure 4.11: Evolution of the residual sum of squares and elliptic parameters along

with iterative steps.
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from 0% to 50% of the points (from 0 to 50 points in this case), and amplitude of

the outlier is still a uniform deviate in [−ry, ry]. The elliptic parameters are taken by

averaging 500 independent runs. Since the residual sum of square Rss is a measure

of how well a model fits a data set, it can be seen from the figure that the accuracy

of the PRESS method always outperforms that of B2AC method.

Superaccuracy is attained by PRESS when the outlier level is less than 25%,

where Rss ≈ 0.1 for 100 points. As the outlier level goes over 30%, Rss increases and

the accuracy of PRESS decreases closer to that of B2AC. The elliptic parameters also

manifest the results as shown in Figure 4.12, where the absolute error of the PRESS

method is very small at outlier level less than 25%.

The accuracy of the PRESS method outperforms that of B2AC at varying noise

level σ. The comparative results are similar and hence omitted.

4.5.3 Experiment 3: accuracy vs. occlusion level

Figure 4.13 shows the performance of B2AC and PRESS at different occlusion level.

The sample is taken from the ellipse [0, 0, 200, 100, 0.5 rad] with N = 100 points

uniformly spaced around the circumference with θ = 360o, 270o, 180o and 90o (i.e., 0,

1/4, 1/2 and 3/4 occluded) respectively. The zero mean Gaussian noise is assumed

as same as Algorithm 4.3 with variance σ2 = 0.001 ∗ ry = 0.1, while the outlier level

is taken at 10% of the points (10 points in this case), and amplitude of the outlier is

still a uniform deviate in [−ry, ry]. It can be seen that the PRESS method converges

nicely to optimal solution. For the accuracy of both methods, the residual sum of

square Rss is taken by averaging 500 independent runs. It is clear from the Figure

4.14 that the accuracy of both B2AC and PRESS method decreases as the occlusion
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Figure 4.12: Comparison of accuracy with varying outlier level.
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Figure 4.13: Performance of B2AC and PRESS at different occlusion level.

level increases, but the performance of PRESS always outperforms that of B2AC. The

PRESS method can still achieve superaccuracy and find almost exactly solution to

the right ellipse even if 3/4 of the ellipse is occluded and 20% of the samples are

outliers.
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Figure 4.14: Comparison of accuracy between B2AC and PRESS at different occlusion

level.
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4.5.4 Experiment 4: stability and computational cost

The superaccuracy of the Algorithm 4.3 is achieved in a way that the outliers are

extruded from the whole sample according to their PRESS statistic, so there arises a

natural question: when will the extrusion process stop? While it is difficult to get a

closed form solution for the stability of the algorithm, the question can be analyzed

qualitatively. As least square method is a voting process that the regressive model

takes care of majority of the points. The outliers are usually among the minority to be

eliminated from the data set. When the number of outliers increase, the variance of

the whole sample usually increases too. It can be seen from Equation (4.16) that the

PRESS statistic ti for a specific point will decrease, which decreases its opportunity

to be marked as an outlier. Therefore, the algorithm is always stable since

1. The outliers can not increase to over 50%. If it were over 50%, the outliers

become the majority. The least square method will take care of the outliers

since they are majority. Of course the accuracy of the fitted model will decrease

considerably under this circumstance. The trend can also be seen from Figure

4.12.

2. For the worst case, even though it will not happen in reality, majority points

have been eliminated from the data set. The minimum points left can not be

less than 5. Since an ellipse has 5 parameters (in polar form as in Equation

(4.5.1), or 6 parameter in Cartesian form Equation (4.18)), it needs 5 points to

get an exactly solution without any regression. That is to say that the 5-point

model is error-free, and there will not exist any outlier. From this point of view,

the algorithm always converges.
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The algorithm has also been tested for tens of millions of independent runs, and no

instability has been found.

For the computational cost of an algorithm, the concept FLOP will be used [105].

A flop is defined as a single floating point operation, such as a multiplication or

addition, which provides a complexity measure that is independent of the hardware

and operating system. For a B2AC method with N sample points, it requires 26N

FLOPs to form the scatter matrix and additional 5182 FLOPs to perform the matrix

inversion and solve the eigenvector problem [53]. The total is 26N + 5182 FLOPs.

A recent study has developed a fast method (CHORD) that can solve the elliptic

problem in 13N + 109 FLOPs [48].

When a sample contains 6, 500 points with 1, 300 outliers (20%), it may be-

come a daunting task to distinguish these outliers at first glance. However, the

PRESS method converges very fast. Table 4.5.4 shows the average iterative steps

with different sample size and outlier levels. The sample is taken from the el-

lipse [0, 0, 200, 100, 0.5 rad] and is uniformly spaced around the circumference with

θ = 360o. The zero mean Gaussian noise is assumed to be σ2 = 0.01 ∗ ry = 1, while

the outlier level is taken at 10% and 20% of the points, and amplitude of the outlier

is a uniform deviate in [−ry, ry]. The iterative steps are taken as an average of 500

independent runs. It can be seen that the convergence steps increase as the outlier

levels and the data points increase. As the outliers are removed from a data set, the

FLOPs required after each iteration will decrease. The algorithm can work alone or

be combined with other methods. The average FLOPs for the PRESS method may

be estimated as n(26N + 5182) if working with B2AC method, or n(13N + 109) if

working with CHORD method, where n is the average value from Table 4.5.4.
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Table 4.2: Average iterative steps with different sample size and outlier levels.

No. of Iterations No. of Iterations

Points 10% Outliers 20% Outliers Points 10% Outliers 20% Outliers

6500 6.71 10.22 400 5.04 8.34

4000 6.54 9.78 250 4.88 8.09

2500 6.10 9.65 150 4.34 7.25

1500 5.83 9.38 100 3.86 6.74

1000 5.55 9.14 50 3.05 5.43

650 5.38 8.68 20 2.34 2.71

4.5.5 Experiment 5: real data

The proposed method is also tested on real image data. Figure 4.16 shows the ex-

perimental results of curve fitting on two die inserts: one contains straight lines and

another has one ellipse. On both cases, there are small amount of outliers coming

from the edge detection. The proposed method can detect the shapes more robustly.

4.5.6 Experiment 6: applications to casting dies

The purpose of this experiment is to acquire 2–D temperature signals from the surface

of a die insert with varying flow rate. Analysis of the experimental data generates an

understanding of the effect of internal cooling process on the averaged temperature of

the die surface. The equipment and hardware used have been described in Chapter
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Figure 4.15: Average iterative steps at different number of points and occlusion levels.

2. The experimental procedures are summarized as follows.

Experiment Procedures 4.5. Effect of cooling water flow rates on the averaged

surface temperature of Channel 1.

1. Heat the die insert Channel 1 to 480oC in the furnace;

2. Pull out the insert using the electric machine;

3. Turn on water supply to chill the insert with water flow rate to 2.65 L/min

(liter per minute, or 0.7 Gallon per minute (GPM))), 3.79 L/min (1.0 GPM),

4.92L/min (1.3 GPM), 6.05 L/min (1.6 GPM), and 7.19 L/min (1.9 GPM)

respectively;

4. At the same time when water is on, take photos on the insert surface, and record

experimental data during the cooling stage for 20 seconds.
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(a1) original image (b1) original image

(a2) Edges and LS method (straight line) (b2) B2AC method (solid line)

(a3) PRESS method (straight line) (b3) PRESS method (solid line)

Figure 4.16: Experimental results on curve fitting of two die inserts: (a) the line to

be fitted on the right (only right part of the outliers are fed to the regression model);

(b) ellipse fitting (the two straight lines of vertical edges are not shown).
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(a) 0 Second (b) 4th Second

(c) 8th Second (d) 12nd Second

(e) 16th Second (f) 20th Second

Figure 4.17: Temperature variations on the surface of Channel 1 with flow rate at

3.79L/min (color online). The white box is the shape of the surface fused from visual

camera.
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Figure 4.18: Averaged surface temperature of Channel 1 at different flow rate.

Figure 4.17 shows the temperature variations on the surface with flow rate at 3.79

L/min, where the white box is the identified circumference of the insert from the

visual camera. It can be seen that the temperature drop starts from the center of the

surface as the cooling waterline seats behind the center.

The experimental results are also plotted in Figure 4.18. It depicts the variation

of the die insert temperature with cooling time under different water flow rates for

a sampling period of 20 seconds recorded by the system with a sampling rate of 4

data per second. It can be seen from the figure that the surface temperature does

not change at the first 2 seconds. It is reasonable since the bottom of cooling channel

is 10 mm away from the surface as shown in Figure 2.4, and it needs time for the
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heat to be diffused. The experimental data also show that the surface temperatures

decrease rapidly after 2 seconds. An increase in the water flow rate reduces the surface

temperature.

It is noted that the averaged surface temperature measured by the camera behaves

quite differently with that of point based method measured by thermocouple [3, 16].

More of this will be explained in the next chapter after 3–D model.

4.6 Summary

This chapter proposed an adaptive curve fitting technique that can achieve robust

results when the sampled data set containing certain amount of outliers. The method

has been tested and compared with other techniques. Superaccuracy of curve fitting

can be achieved under certain conditions. It is also applied to find optimal curves

for casting dies in visual images. Finally, a 2D temperature measurement system is

used to study the effect of cooling water flow rate on the averaged temperature of an

insert surface.

86



Chapter 5

Three–Dimensional Temperature
Measurement

In this chapter, computer vision techniques are applied to reconstruct a three- dimen-

sional (3-D) thermal model of casting dies from two visual cameras and one infrared

camera. Some new observations are reported on the die surface during cooling pro-

cess. First a perspective camera model is introduced, then procedures of camera

calibration and stereo reconstruction are presented. Finally, the thermal behavior on

a insert surface is examined based on the 3D thermal model.

5.1 Introduction

Computer vision as a universe sensing method has a broad application in industries,

such as agriculture [63], quality inspection [64], transportation [65], medical treatment

[66], autonomous vehicles [67], to name a few. Stereo vision remains as a flushing

field that attract attention from many researcher [68].

Camera parameters must be estimated for a stero vision system. Generally speak-

ing, 3D information can be inferred from both calibrated and uncalibrated camera.
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To reduce the computational cost , camera calibration is an effective way to achieve

better performance in real-time applications. While there are lots of algorithms, the

direct parameter calibration [69] is the most used one in industrial applications due

to simplicity.

The 3D reconstruction is based on stereo correspondence between the images from

two or more cameras [70]. If cameras are calibrated first, the reconstruction can be

achieved without ambiguity. If only intrinsic parameters are known, the 3D object

can be recovered up to an unknown scaling factor. Further, if there are no camera

information available and only some correspondence points at hand, the shape of an

object or scene can only be reconstructed up to an unknown projective transformation

[71, 72].

The general procedure for 3D measurement in industrial automation can be fol-

lowed as: camera calibration, stereo correspondence, and 3D reconstruction. The

theory on 3-D computer vision used in this chapter are mainly from [36, 73].

5.2 Camera Calibration

Generally speaking, there are two most commonly used camera models: one is the

perspective model which assumes the aperture of a camera lens decreases to zero,

therefore all rays go through the optical center; another is the weak-perspective model

which turns the mapping between camera frame and image plane into a linear one

by assuming that the average depth of the scene is much smaller than the average

distance between any two scene points along the optical axis. The former model is

adopted in the section.
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Figure 5.1: The perspective camera model.

Figure 5.1 shows the perspective camera model that consists of an image plane

with coordinates [x, y] ∈ R2 and o the image center; a reference coordinates [XC , Y C , ZC ]

∈ R3 attached to the camera frame with a projection center O; and the distance be-

tween o and O also called focal length f ∈ R. Consider a 3D point PC(XC , Y C , ZC)

in camera reference coordinates and its image p(x, y) in image plane, it can be written

from the two similar triangles:

x = −f
XC

ZC
, y = −f

Y C

ZC
(5.1)

The above equations simply define a mapping

π : R3 → R2; PC 7→ p.

It is clear that the mapping loses one degree of freedom. In order to recover the

original point PC from it image p, additional images and/or sensors are needed. The

image coordinates have negative sign to make p appear to be upside down. For

computational convenience, it can be corrected by simply moving the image plane
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Figure 5.2: Coordinate transformation from metric to pixel.

to the position between O and PC to generate the so-called frontal pinhole camera

model.

Since images are usually expressed in pixels instead of metric unit as shown in

Figure 4.3, coordinate transformation has to be carried out to transform the image

point p(x, y) into its pixel counterpart pim(xim, yim). The transformation is illustrated

in Figure 5.2, where each grey square represents an image pixle, (ox, oy) is the image

center expressed in pixels, and sx, sy are the effective size of the pixel (in millimeters)

in the horizontal and vertical direction respectively. It can be shown that

x = −(xim − ox)sx

y = −(yim − ox)sy
(5.2)

Substituting Equation (5.2) into (5.1) gives

xim = −fx
XC

ZC + ox

yim = −fy
Y C

ZC + oy

(5.3)

where fx = f/sx and fy = f/sy. For simplicity, the subscript of xim and yim will be

dropped from now on and x and y will be used respectively.
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Figure 5.3: The 3 coordinate systems: arrow means linkage between two systems.

There are three coordinate systems in computer vision, namely, image plane,

camera reference frame and world coordinates. The unknown camera reference frame

is created to set up a link between images and the real world as shown in Figure

5.3. Now consider the same point PC(XC , Y C , ZC) in camera reference frame and

its expression in world coordinate PW (XW , Y W , ZW ), their relation can be written

under the rigid body transformation




XC

Y C

ZC


 = R




XW

Y W

ZW


 + T (5.4)

where R and T are the rotation matrix and translation vector respectively, and given

by

R =




r11 r12 r13

r21 r22 r23

r31 r32 r33


 ∈ R3×3, T =




Tx

Ty

Tz


 ∈ R3×1

with RRT = I (i.e., R is orthogonal). If it is assumed that there is no radial dis-

tortion effect on the image, the unknown parameters in above equations are classi-

fied into two categories: extrinsic parameters (R and T ), and intrinsic parameters

(fx, α and (ox, oy)), where aspect ratio α = sy/sx.

Substituting Equation (5.1) into (5.4) generates

x− ox = −fx
r11X

W + r12Y
W + r13Z

W + Tx

r31XW + r32Y W + r33ZW + Tx

(5.5)

y − oy = −fy
r21X

W + r22Y
W + r23Z

W + Ty

r31XW + r32Y W + r33ZW + Tx

(5.6)
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The above two equations can also be written in matrix form in a so-called homoge-

neous coordinates: 


x1

x2

x3


 = MintMext




XW

Y W

ZW

1


 (5.7)

where x1/x3 = x and x2/x3 = y; Mint and Mext are called intrinsic and extrinsic

matrix respectively and are given by

Mint =



−fx o ox

0 −fy oy

0 0 1


 ∈ R3×3

and

Mext =




r11 r11 r11 Tx

r21 r22 r23 Ty

r31 r32 r33 Tz


 ∈ R3×4

Further, from Equations (5.5) and (5.6), it is easy to show

(x−ox)fy(r21X
W +r22Y

W + r23Z
W +Ty) = (y−oy)fx(r11X

W + r12Y
W + r13Z

W +Tx)

(5.8)

(x− ox)(r31X
W + r32Y

W + r33Z
W +Tz) = −fx(r11X

W + r12Y
W + r13Z

W +Tx) (5.9)

These are direct link from image plane to the real world coordinates without the

inaccessible camera reference frame. The unknown intrinsic and extrinsic parameters

can be solved if a sufficient number of points can be found on a known calibration

pattern. There are two steps to estimate the parameters.

Step 1: assume (ox, oy) = (0, 0) and estimate other parameters:

From Equation (5.8), if n corresponding pairs of points ((XW
i , Y W

i , ZW
i ), (xi, yi))

with i = 1, 2, · · · , n are identified from real world coordinates and image plane, the

calibration problem turns to solve a homogeneous system with n linera equations

Av = 0 (5.10)
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where

A =




x1X
W
1 x1Y

W
1 x1Z

W
1 x1 −y1X

W
1 −y1Y

W
1 −y1Z

W
1 −y1

x2X
W
2 x2Y

W
2 x2Z

W
2 x2 −y2X

W
2 −y2Y

W
2 −y2Z

W
2 −y2

...
...

...
...

...
...

...
...

xnX
W
n xnY

W
n xnZW

n xn −ynXW
n −ynY W

n −ynZW
n −yn


 ∈ R

n×8

v = (r21, r22, r23, Ty, αr11, αr12, αr13, αTx) ∈ R1×8

Once again, it is a singular value decomposition (SVD) problem of A = UDV T .

v̂, the solution of v up to an unknown scale factor, is the column of V corresponding

to the smallest singular value along the diagonal of D [107]. Let

v̂ = (v̂1, v̂2, v̂3, v̂4, v̂5, v̂6, v̂7, v̂8)

and the unknown factor be γ, then

v = γv̂

From the fact that RRT = I, it gives

√
v̂2

1 + v̂2
2 + v̂2

3 =
√

γ2(r2
21 + r2

22r
2
23) = |γ| (5.11)

√
v̂2

5 + v̂2
6 + v̂2

7 =
√

γ2α2(r2
11 + r2

12r
2
13) = α|γ| (5.12)

Then α and |γ| can be determined from the above two equations. Recall that for every

point ZC > 0, as expressed in Equation (5.5), x and (r11X
W + r12Y

W + r13Z
W + Tx)

must have opposite sign. Therefore, the sign of γ is determined to ensure that

x(r11X
W + r12Y

W + r13Z
W + Tx) < 0 (5.13)

Next the parameters Tx and fx are to be determined. Similarly, according to

Equation 5.9 for n corresponding pairs of points, it gives

B

(
Tz

fx

)
= b
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where

B =




x1, (r11X
W
1 + r12Y

W
1 + r13Z

W
1 + Tx)

x2, (r11X
W
2 + r12Y

W
2 + r13Z

W
2 + Tx)

...,
...

xn, (r11X
W
n + r12Y

W
n + r13Z

W
n + Tx)


 ∈ R

n×2

and

b =




−x1(r31X
W
1 + r32Y

W
1 + r33Z

W
1 + Tx)

−x2(r31X
W
2 + r32Y

W
2 + r33Z

W
2 + Tx)

...
xn(r31X

W
n + r32Y

W
1 + r33Z

W
n + Tx)


 ∈ R

n×1

Using the least square method, the two parameters can be found as

(
Tz

fx

)
= (BTB)−1BTb (5.14)

Step 2: estimate (ox, oy):

The estimation of the image center is relatively simple. In perspective projection,

straight line in R3 is projected onto a straight line in the image plane. However, the

projection of two parallel lines intersect in the image plane. The concept of vanishing

point will be used to estimate the image center (ox, oy). A vanishing point is defined

as the common intersection of all the image lines taken from several parallel lines in

R3. For a triangle ∆ formed on the image plane by three vanishing points of three

mutually orthogonal sets of parallel lines in R3, the orthocenter of ∆ is the image

center.

The calibration tools for the three cameras are shown in Figure 5.4. A standard

cube [36] is usually employed for visual cameras as shown in (a). While for thermal

camera, a plastic board with holes 4mm apart is used as illustrated in Figure 5.4(b).

It can be placed before a thermal source, and an image of the board is shown in

(c). For calibration purpose, the center of each holes are located first, then Zhang’s
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method [74] can be applied to obtain the intrinsic and extrinsic parameters of the

thermal camera.

Algorithm 5.1. Camera calibration for two visual cameras [36, 73].

1. Measure the world coordinates of the vertex of the calibration squares;

2. Use edge, corner or line detectors to locate the image lines the squares;

3. Compute three vanishing points and find the orthocenter of the three points. The

orthocenter is also the image center;

4. Use pairs of corresponding points to calculate the SVD in Equation (5.10), and

find its vector associated with the smallest singular value to determine part of

rotation matrix R and translation vector T ;

5. Determine α, γ and its sign from Equations (5.11),(5.12),(5.13);

6. Solve Equation (5.14) and hence find the rest part of the R and T . ¦

5.3 Epipolar Geometry

The epipolar geometry plays an important role in 3-D computer vision. As shown

in Figure 5.5, there are two perspective cameras 1 and 2 with projection center O1

and O2 respectively. Vectors P1 and P2 are the same point in different coordinates

with respect to camera 1 and 2, and vectors p1 and p2 are projections of the point

P on camera 1 and 2 respectively. All the coordinates are in their respective camera

reference frame. The line through (O1, O2) intersects the image plane 1 and 2 (or

its extension) respectively at point e1 and e2 that are called epipoles. The plane

95



(a) a standard calibration cube for visual cameras

(b) a plastic board with holes for thermal camera

(c) thermal image of the plastic board

Figure 5.4: Calibration tools for three cameras (color online).
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Figure 5.5: The epipolar geometry:

determined by (O1, O2, P ) is called epipolar plane. The epipolar lines l1 and l2 are

the intersections of epipolar plane with image plane 1 and 2 respectively.

From rigid body transformation, the two camera reference frames are linked

through a rotation matrix R ∈ R3×3, and a translation vector T = (O2−O1) ∈ R3×1.

Therefore,

P2 = R(P1 − T ) (5.15)

Given p1, from image plane 1’s perspective, the real point P could be anywhere on

the ray from O1 to p1. However, the image of of this ray is the epipolar line in the

image plane 2. Therefore, p2, the correspondence point of p1 must lie on the epipolar

line. As a result, searching for correspondence point can be conducted only on a 1-D

line, which greatly improve the computational efficiency of the 3-D reconstruction.

It is noted that only one epipolar line passes through any image point and all the

epipolar lines of one camera must go through its epipole.
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The epipolar plane can be written in a cross product form:

0 = (P1 − T )T T × P2

= P T
2 RT × P2 (substitute 5.15)

= P T
2 RSP1

In the last step, the fact that a vector product can be written as a multiplication by

a rank-deficient matrix has been used, where

S =




0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0




It is clear that S has rank 2. Let E = RS. Then E is called the essential matrix, the

mapping between points and epipolar lines. it also directly gives

pT
2 Ep1 = 0 (5.16)

The above equation is in camera reference frame, and has to be transformed into

image frame in pixel coordinates. Let M1 and M2 be the intrinsic matrices from

Equation 5.7 associated with camera 1 and 2 respectively, and let p̃1 and p̃2 be the

points in pixel coordinates corresponding to p1 and p2, then

p̃1 = M1p1, p̃2 = M2p2

Plugging into Equation (5.16):

p̃T
2 F p̃1 = 0 (5.17)

where F = M−T
2 EM−1

1 is called fundamental matrix.

Algorithm 5.2. Compute essential, fundamental matrices and epipoles [36, 73].

For n input correspondence points with n ≥ 8
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Figure 5.6: Reconstruction by triangulation.

1. construct n linear equations according to Equation (5.17) as in the camera cal-

ibration algorithm;

2. calculate the SVD of the n equations. F is the column vector associated with

the smallest singular value, up to an unknown signed scale factor;

3. compute the SVD of F : F = UDV T ; set the smallest singular value in D to 0

in order to ensure the singularity constraint;

4. the F is then given by F = UDV T ;

5. the epipole e1 is the column vector of V associated with 0 singular value, and e2

is the column vector of U associated with 0 singular value.

In some applications, one pair of conjugate epipolar lines can be further trans-

formed to be collinear and parallel to one of the image axies.
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(a) image feature points shown in small circles

(b) reconstructed thermal image

(b) reconstructed thermal image

Figure 5.7: Reconstruction by triangulation: (a) image corners are extracted first

which are also the corners of inserts; (b) thermal data are then patched among these

corners to form a 3D thermal image (color online).
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5.4 3-D Reconstruction

If the intrinsic and extrinsic parameters of a stereo system are known, the 3-D shape

of an object can be reconstructed unambiguously. Figure 5.6 shows the reconstruction

by triangulation. Let R1 and T1, and R2 and T2 be the extrinsic parameters of camera

1 and 2 with respect to the same world coordinates, and let R and T be the extrinsic

parameters between the two cameras as shown in Figure 5.5, then for a point P in

the world coordinates, there exist

P1 = R1P + T1

P2 = R2P + T2

P2 = R(P1 − T )

Using P2 as a medium, it can be solved

R = R2R
T
1 , T = T1 −RT T2

In reality, the two rays (O1, p1) and (O2, p2) may not intersect in space due to

computational accuracy. Under this circumstance, the reconstruction problem be-

comes to find the shortest line that joins l1 and l2, the middle point of the is the

reconstructed 3-D point.

Algorithm 5.3. Reconstruction from triangulation [36, 73]. For the conjugate image

pairs p1 and p2,

1. l1 is represented by ap1 with a ∈ R, and l2 is represented by bRT p2 + T with

b ∈ R;
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2. Solve the linear equation to find the shortest line that joins l1 and l2:

ap1 − (bRT p2 + T ) + c(p1 ×RT p2) = 0;

3. find the midpoint of the line.

The output is a set of reconstructed 3-D points

5.5 Experimental Results

In this application, the 3D thermal image reconstruction follow two main steps :

1. extract feature points from two visual cameras. The most important image

feature in this application is the image corners, which are also coincident to

be the corners of the die inserts. The world coordinates of these corners are

calculated based on the camera calibration information;

2. patch thermal data. Since the correspondence has already been built between

one visual image and the thermal image, the thermal data can then be patched

to among the corners to form the 3D image. As the surface of the insert is

planar, projective transformation can be used.

The experimental results of reconstruction is shown is Figure 5.7. 3D thermal

images contain a large amount information that can be used to calculate the surface

temperature distribution, heat removal rate on the surface, and etc. These infor-

mation are only partially available in 2D images, hence can not used for accurate

computation.
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(a) at 0 second (b) at 8th second

(c) at 16th second (d) at 20th second

Figure 5.8: Rectified thermal images of Channel 1 at flow rate 3.79 L/min (color

online).
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5.5.1 Temperature distribution on insert surface

In projective geometry, the straight lines in real world are mapped to straight lines

in image plane, but a pair of parallel lines tend to intersect at the vanishing point.

Therefore, the shape of a rectangle in real world may not be kept in image plane. It

is clear from the previous chapter that the square surface of the die insert is distorted

in a 2D thermal image and is no longer a square. However, the geometric information

is directly accessible from the 3D thermal image. Therefore, the thermal behavior on

the die surface should be re-examined after 3D reconstruction.

The rectified images of Channel 1 are shown in Figure 5.8 at 0, 8, 16, 20 seconds

respectively with cooling water flow rate at 3.75 L/min. It can be seen that the

measured surface is approximately 40mm× 40mm square close to the real one.

The Cooling induced temperature inhomogeneity on the surface of Channel 1 is

plotted in Figure 5.9 at flow rate 3.79 L/min. The area of the surface to be plotted

is 30mm × 30mm square centered on the whole insert surface. It can be seen from

the figure that the temperature distribution is more homogeneous at 0 second when

cooling water is not applied. As the cooling process proceeds after 0 second, although

the averaged surface temperature drops, the temperature inhomogeneity is generated

and remains to the end of the sampling period. The temperature difference are listed

in Table 5.1.

5.5.2 Comparison with thermocouple

Traditionally thermocouple has been widely used in temperature monitoring in die

casting industry. A thermocouple is inserted into the die insert through a hole drilled
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Figure 5.9: Cooling induced temperature inhomogeneity on the surface of Channel 1

at flow rate 3.79 L/min (color online).
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Table 5.1: Temperature difference (in oC) at different cooling time

Time (s) 0 8 16 20

Max Temperature 486.1 452.3 371.2 334.8

Min Temperature 471.1 371.0 301.6 274.2

Difference 15.0 81.3 69.6 60.6

Mean on Surface 479.8 415.0 336.0 303.5

o a b x

Figure 5.10: Different sensor locations.
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from its back. It is also called point sensing method because temperature information

can only be acquired at a specific position where the thermocouple seats. The de-

structive sensing method upsets the operation of die maintenance, and makes casting

production costly.

As thermal imaging is a surface sensing method, it can be demonstrated that

measurement accuracy of a point sensing method is very sensitive to the location of

the point. Assume there are no other radiation effect, it is sufficient to pick up several

points on the insert surface to see how their temperatures vary along with time.

For simplicity, two points are selected as shown in Figure 5.10, where o is the

geometric center of the die insert, and the distances oa = 10 mm and ob = 15 mm.

Once again, the experiment is taken on Channel 1 with flow rate at 3.79 L/min. The

results are shown in Figure 5.11, where measured temperature at location a is always

lower than that of location b since a is closer to the cooling channel. Therefore, the

point based temperature measurement is sensitive to geometric locations, and can

not be used as a direct control reference for real time thermal management system.

5.5.3 Heat flux

Conductive heat transfer occurs due to the temperature gradients in the die insert. To

understand the effect of the cooling on heat transfer away from the die insert surface,

the heat flux is calculated in Figure 5.10 along x− axis. According to Fouriers law:

q̇n = −k
dT

dn

where q̇n is the heat flux in the n-direction (J/s/m2), k stand for the die H13 thermal

conductivity (J/s/m), T represents the die temperature distribution along n-direction
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Figure 5.11: Temperature variations at two different locations .

(K), and n depicts the direction along which temperature gradient exists (m). It is

reasonable to assume that there are local isothermal surfaces around locations a and

b. The temperature distribution is assumed to be linear along the x-direction from o

to a, and o to b respectively. Instantaneous heat flux across the isothermal location

a and b in the x-direction can be estimated by using the following equation:

q̇a(t) = −k
To − Ta(t)

xo − xa

= −k
∆To−a

∆x

where q̇a(t) is the heat flux across location a at instant time t in the x-direction,

To(t) the absolute temperature at location o at instant time t, Ta(t) the absolute

temperature at location a at instant time t, and ∆x is the distance between location

o and a in the x-direction. Same equation can be established for location b.

The transient response of the die insert temperature at location o is depicted in

Figure 5.12(a). The heat flux across locations a and b in x-direction is shown in Figure

5.12(b). Experimental results show that the heat flux across both locations increases

rapidly after the cooling water is applied, and decreases slightly after reaching its
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(a) Temperature at location o. (b) Heat flux.

Figure 5.12: Heat flux: (a) temperature variations at center location o; (b)heat flux

across location a and b.

peak value at about the 8th second.

5.6 Summary

A 3D vision system is built to study the thermal behavior of a die insert surface.

It is found that the temperature on the surface may become inhomogeneous during

cooling processes. The center temperature, due to closer to the cooling channel, is

usually lower than that of its surrounding neighbors. It is also shown that the point

based temperature measurement is sensitive to geometric locations, and hence should

be cautious when used for real time thermal control system.
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Chapter 6

Robust Temperature Measurement

In this chapter, graph cuts are applied to classify the thermal pattern on the insert

surface. The loss of temperature measurement due to packet loss of thermal images

over a networked system can be recovered using the graph cut method. Synthesized

data are used for simulation.

6.1 Introduction

Nowadays the manufacturing processes are mostly operated and coordinated through

industrial communication networks, where sensing components and processing center

may be in difference places. A networked sensing and control system is illustrated

in Figure 6.1, where the thermal images must be encoded before they can be trans-

mitted to the network. After the processing center gets the decoded images from

the network, it may compute the temperature of the target, then send control com-

mand over the network. Since there are other traffic running over the same network,

the image packets may be lost over a busy network. The loss is usually modeled as

Markov chain [76]. Two typical effect caused by packet loss over network are shown
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in Figure 6.2, where black areas are lost pixels. The temperature measurement may

become inaccurate due to the loss, and malfunction may be caused by the inaccuracy.

Furthermore, a factory is usually noisier in terms of the working environment for a

camera. There may be thousands of machines running at the same time in a factory

which may introduce electromagnetic interference with the camera, and hence further

corrupts the performance of the vision guided control system.

In the past, lots of algorithms are proposed to recover the image loss over a network

(see [80] and the reference therein). However, most of them are focused on encoder

and decoder side, which may work better with motion pictures. The static scene is

typical for an industrial process where there are less or no motions at all.

Graph theory has been widely used in machine vision [81]. It has been demon-

strated that efficient image segmentation can be achieved by graph cuts and its deriva-

tives [82]. Broadly speaking, the loss recovery can be simplified as a thermal pattern

classification problem. The chapter proposes to use graph cuts to recover the packet

loss directly from the thermal image. It is assumed that

1. Packet loss should not be over 50% of the thermal image of a target;

2. The scene is static, and the location of packet loss is known;

3. The image is encoded by square blocks.

Synthesized data are used for simulation. For convenience, the surface images of

Channel 1 are used directly in this study to test the performance of proposed algo-

rithm.
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Figure 6.1: A networked sensing and control system.

(a) Jitter Effect (b) Block Loss

Figure 6.2: Two typical effect caused by packet loss over network where black areas

are lost pixels.
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Figure 6.3: A weighted graph.

6.2 Graph Cuts

A graph G = (V,E) is an ordered pair, where V is a nonempty set whose elements are

called vertices or nodes, and where E is a set of unordered pairs of distinct vertices of

V whose elements are called edges or links. A simple graph is illustrated in Figure 6.3,

where v1, v2, v3, v4 ∈ V are vertices, and the pair {v1, v2} ∈ E that joins the vertices

v1 and v2 is one of its five edges. The edge {v1, v2} is often abbreviated as v1v2 for

brevity.

If vivj ∈ E with vi, vj ∈ V , then vi and vj are said to be adjacent to each other.

The adjacency matrix A = (aij)n×n for a graph G with n vertices is defined as aij = 1

if vi and vj are adjacent to each other, and aij = 0 otherwise, where i, j = 1, 2, · · · , n.

The adjacency matrix of Figure 6.3 can be written as

A =




0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0




A graph G is called weighted graph if there exists a function w : E → R. The

weight w(vivj) with vivj ∈ E is often abbreviated as wij. The weight matrix W =
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Figure 6.4: A graph cut.

(wij)4×4 for the Figure 6.3 can be written as

W =




0 w12 w13 w14

w12 0 0 w24

w13 0 0 w34

w14 w24 w34 0




A graph can be partitioned into two disjoined set P and Q with P ∪Q = V , and

P ∩Q = ∅. The partition is called cut, and its numeric value is defined as

cut(P, Q) =
∑

p∈P, q∈Q

wpq (6.1)

An example of graph cut is illustrated in Figure 6.4, where the dash line partition

the graph into two parts P and Q, with cut(P,Q) = w12 + w24.

Similarly, graph association can be defined as

assoc(P, V ) =
∑

p∈P, v∈V

wpv

which measures the total connections from all nodes in P to the entire nodes in V ,

where P ⊂ V .

Let X be a n × 1 indicator vector for P with its element xi = 1 if vi ∈ P and

xi = −1 otherwise, then (X +1)/2 and (X−1)/2 are also indicator vector for xi > 0
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and xi < 0 respectively with 1 an n × 1 vector of all ones. The X in Figure 6.4 is

given by

X = (−1, 1,−1,−1)T

Let di =
∑

j wij be the total connection from vi to all other nodes, and let D =

diag{d1, d2, · · · , dn} with i = 1, 2, · · · , n, then it is easy to show that

1T (D −W )1 = 0 (6.2)

Let k and b be two ratios defined as

b =

∑
xi>0 di∑
xi<0 di

, k =

∑
xi>0 di∑

i di

then

k =

∑
xi>0 di∑

xi>0 di +
∑

xi<0 di

=
(
∑

xi>0 di/
∑

xi<0 di)

1 + (
∑

xi>0 di/
∑

xi<0 di)
=

b

1 + b
(6.3)

The optimal bi-partition of a graph can be achieve by minimizing the cut value

in Equation 6.2. A clustering method is proposed in [78] to partition a graph into

k subgraphs. However, the method tends to cut small isolated nodes in the graph.

To avoid the bias, a normalized cut is proposed. The normalized cut value can be

written as [79]:

Ncut(P,Q) =
cut(P,Q)

assoc(P, V )
+

cut(Q,P )

assoc(Q, V )

=

∑
(xi>0,xj<0)−wijxixj∑

xi>0 di

+

∑
(xi<0,xj>0)−wijxixj∑

xi<0 di

=
(1 + X)T (D −W )(1 + X)

4k1T D1
+

(1−X)T (D −W )(1−X)

4(1− k)1T D1

=
XT (D −W )X + 1T (D −W )1 + 2(1− 2k)1T (D −W )X

4k(1− k)1T D1

=
(1 + b)2

[
XT (D −W )X + 1T (D −W )1

]
+ 2(1− b2)1T (D −W )X

4b1T D1

=
[(1 + X)− b(1−X)]T (D −W ) [(1 + X)− b(1−X)]

4b1T D1
(6.4)
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In the above derivation, Equations 6.2–6.3 are used.

Let Y = (1 + X)− b(1−X) ∈ {1,−b}, then

Y T DY =
∑
xi>0

di + b2
∑
xi<0

di = b
∑
xi<0

di + b2
∑
xi<0

di = b1T D1

Therefore, the optimal partition of G under normalized graph cuts becomes [79]:

min
X

Ncut(X) = min
Y

Y T (D −W )Y

Y T DY

subject to yi ∈ {1,−b}. Since above equation is the Rayleigh quotient [105], it can

be solved by the generalized eigenvalue problem:

(D −W )Y = λDY (6.5)

The minimum value is achieved by the second smallest eigenvector, and its minimum

value is the corresponding eigenvalue [105]. Ideally the eigenvectors take two discrete

values with different signs, but if the eigenvectors take continuous values, it can be

split into evenly spaced parts [79].

The normalized graph cut is used first to classified the thermal pattern on a insert

surface into several clusters, then the lost packet (image pixels) is patched with the

value corresponding to the averaged temperature of the cluster where the packet

belongs to.

Algorithm 6.1. Packet loss recovery: the input is the thermal image subject to packet

loss over transmission network, and the position of the lost packet in the image is

assumed to be known.

1. Find the temperature range of the insert surface excluding the lost regions;
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2. Construct a graph G = (V,E) with each pixel as a vertex and connect each pair

of pixels by an edge. Calculate the weight matrix according to

wij =





exp{−‖Ti−Tj‖22
σ2

T
∗ exp{−‖Zi−Zj‖22

σ2
Z

}, if ‖Zi − Zj‖2 < r

0, otherwise

where Ti is the temperature at the pixel position i in V , Zi is the the pixel position

of i in original image, σT can be taken as 10% to 20% of the temperature range,

and σZ can be taken as 10% to 20% of the diagonal length of the original image;

and

3. Solve the generalized eigenvalue problem in Equation 6.5, then partition the

thermal image into several clusters with each cluster defined by two or more

isotherm;

4. For each lost image packet, patch the pixels with the value corresponding to the

averaged temperature where the packet loss resides.

6.3 Experimental Results

In this section, an subjective result is presented first to show how the algorithm works,

then quantitative comparison between lost and recovered temperature is examined.

6.3.1 General results

An example showing that is illustrated in Figure 6.5. The image is taken from the

insert surface of Channel 1 at 8-th second with cooling water flow rate at 3.78L/min.

When a packet loss is detected in the thermal image, its thermal pattern can be
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classified into three clusters using normalized graph cuts. The lost pixels are patched

with the values corresponding to the average temperatures of each cluster. Although

the recovered result is rather rough, it can be refined by partitioning the thermal

image into more classes. Its accuracy shall be extensively examined under different

conditions, including:

1. level of packet loss;

2. level of data length;

3. level of clusters.

6.3.2 Accuracy

Since ground truth image is available, the comparison of accuracy between lost and

recovered images can be conducted by computing the absolute error with the original

temperature contained in the ground truth image.

The averaged temperature of the insert surface of Channel 1 at 8-th second with

cooling water flow rate at 3.78L/min is used as comparison. The experimental results

are shown in Tables 6.1-6.2, which is averaged over 100 independent runs. Since the

temperature is encoded with 2 bytes length (from 0oC to 500oC), the packet length

of 32, 128, 512 bytes is corresponding to 4× 4, 8× 8, and 16× 16 pixels in the image.

It can be seen from the tables that the proposed method can recover the almost 50%

of the lost temperature under the probability of packet loss less than 0.1. Hence the

control system with the proposed robust measurement technique may have better

performance.
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Figure 6.5: Roughly recovered thermal image: (top) a thermal image with a packet

loss; (middle) the thermal pattern is classified into three clusters; (bottom) lost pixels

are patched with the values corresponding to the average temperatures of each cluster.
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Table 6.1: Absolute error (oC) with variations in packet length and probability of

packet drop (3 clusters)

Method
Packet Length (bytes) Prob. of

32 128 512 Packet Loss

Lost 3.83 4.07 4.28
0.01

Recovered 1.26 1.92 2.33

Lost 18.87 19.25 19.94
0.05

Recovered 9.01 9.89 10.11

Lost 39.83 40.44 41.77
0.1

Recovered 21.65 23.91 25.07

Lost 79.72 80.16 82.35
0.2

Recovered 56.88 58.26 60.93

Table 6.2: Absolute error (oC) with variations of cluster level (probability of packet

drop at 0.1)

Level
Packet Length (bytes)

32 128 512

2 26.86 29.35 31.73

3 21.65 23.91 25.07

4 16.89 19.32 21.11

5 10.82 14.17 16.74
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6.4 Summary

Graph cuts are applied to recover the packet loss of thermal images. When a packet

loss is detected in the thermal image, its thermal pattern can be classified into several

clusters using normalized graph cuts. The lost pixels are patched with the values

corresponding to the average temperatures of each cluster. Simulation results show

that the proposed method can recover part of the temperature loss due to network

effect.
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Chapter 7

Thermal Process Control

A fuzzy PID controller is designed to demonstrate the possibility to implement the

vision-based thermal control system. The respectively averaged surface temperature

of three die inserts, which are measured by cameras, are used as state feedback, and

the control goal is to minimize the temperature difference among the inserts. The

demo shows that the system can work efficiently.

7.1 Introduction

As mentioned in previous chapter, the improper distribution of die temperatures may

cause many casting defects [3]. Conventionally, control of die temperature is based

on operators’ experience and trial-and-error. On the one hand, localized over-cooling

which leads to the formation of defects such as poor fill can be manually adjusted

by decreasing water flow rates in a specific cooling line. On the other hand, casting

defects such as porosity and hot tearing, which result from hot spots with abnormal

high temperatures present in the die, become difficult to alleviate if the established

cooling lines are already running at maximum flow rates.
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In general, a system model is necessary for applying traditional control approach

to design an effective controller. However, distribution of die temperature depends

on a lot of factors such as geometry of die and casting process variables, for which it

would be difficult to derive a detailed model. Instead of modeling a complex process,

an operator’s skilled control actions can also be modeled in terms of fuzzy implica-

tions using the input-output data associated with the control actions. Then a fuzzy

controller can be designed based on the “input-output model” to compensate the

undesirable behavior of the process [83]. This section will use the configuration in

Figure 2.1. Consider that Water Inlets 1 and 2 are established cooling waterlines in

a die. In this scheme, an extra waterline supplying water with a water tank from

Water Inlet 0 controlled by a pump and solenoid valves is connected to the exist-

ing cooling channels. The pump and solenoid valves can be actuated automatically

to bring additional cooling water to the locally overheated die insert. Since it has

been demonstrated that an increase in internal cooling water flow rates reduces the

temperatures of casting dies rapidly [3], the desired thermal pattern of the die insert

becomes achievable through this scheme. The fuzzy PID controller is designed to

minimize the temperature differences among multiple channels in a die insert.

7.2 Two-input Fuzzy PID Controller

Fuzzy control, in principle, imitates human being’s fuzzy thinking style and imple-

ments control action without having much knowledge on the underlying dynamics of

the system [83, 84, 85]. The basic architecture of the fuzzy control system is shown

in Figure 7.1, where µ(x) is the membership function of input vector x, and µ(c) is
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Figure 7.1: Basic Structure of Fuzzy control system

Figure 7.2: Fuzzy PID control system

the membership function of output vector c.

The empirical knowledge on how the domain experts operate the process is mod-

eled and stored in the fuzzy rule base. Sugeno-type fuzzy model is widely used in

various industrial applications. In general form, it can be written as [85]

Rule k: IF x1 is A1
i, and x2 is A2

j, THEN ck = aix1 + bjx2 + ck0

where A1
i and A2

j are the fuzzy sets in antecedent that describe the nature of the

inputs, such as low, okay or high, and ai, bj, and ck0 are constants. If ai = bj = 0 ,

the rule base becomes a zero-order Sugeno fuzzy model, i.e., the consequent part of

the fuzzy rule is a singleton spike.

It is known that fuzzy PI control has poor performance in transient response for
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Figure 7.3: Fuzzy reasoning process

higher order processes due to the integration operation, while it is difficult for fuzzy

PD to remove steady state error. Therefore fuzzy PID control has more advantageous.

Various architectures of fuzzy PID control are available in literature. The one used

in this application is shown in Figure 7.2 [88, 89], where α and β are constants. At

any time t = k, the crisp error e and error change ė are defined as

e(k) = r − x(k)
ė(k) = e(k)− e(k − 1)

(7.1)

where r is the reference signal. It has also been shown in [88, 90] that if a fuzzy

controllers with 1)Larsen’s product-sum inference method or Mamdani’s minimum

inference engine; 2)center of gravity defuzzification method; 3)triangular uniformly

distributed membership functions for the inputs; and 4)singleton output (zero-order

Sugeno model), the output of the fuzzy controller has a PD form:

c = c0 + kpe + kdė

where c0, kp, and kd are coefficients. Then it follows that the control signal u in
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Figure 7.2 can be written as

u = (αc0 + βc0t) + (αkp + βkd)e + βkp

∫
edt + αkdė

= u0 + k̄pe + k̄i

∫
edt + k̄dė

(7.2)

where u0 = αc0 + βc0t, k̄p = αkp + βkd, k̄i = βkp, and k̄d = αkd. Thus a fuzzy PID

controller can be obtained from a fuzzy PD controller.

The control goal in this application is to limit the absolute value of the temperature

differences between two channels in a given bound within a given time period, i.e., to

find a time t such that

ei(k) = |Mi(k)−M3(k)|≤δ, i = 1, 2, ∀t≥T (7.3)

where Mi(t) and M3(t) represent measured temperatures at time t = k in Celsius

Degree at Channel i (i = 1, 2) and Channel 3, δ and T are positive constants in

Celsius Degree and Second respectively. Temperature of Channel 3 M3(t) is used as

reference signal since it is the lowest among the three from observations.

The input variables to the fuzzy controller are temperature differences between

two channels (abbreviated as error) and the error changes, denoted as ei and ėi with

(i = 1, 2) respectively. The system has three output variables, namely, pump speed

and on/off signals of two solenoid valves. Let c be the output pump speed, and s1,

s2 be the status of the solenoid valves with 0 representing close and 1 representing

open. The operator’s control actions can be modeled as a collection of Sugeno fuzzy

rules combined by the connective ELSE. A possible rules are listed below:

Rule 1: IF e1 and e2 are okay, THEN c1 = 0, s1 = 0, s2 = 0, ELSE;

Rule 2: IF e1 is okay and e2 is high,, THEN c2 = 40SPM, s1 = 0, s2 = 1, ELSE;

Rule 3: IF e1 is high and e2 is high,, THEN c3 = 100SPM, s1 = 1, s2 = 1, ELSE;
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Rule 4: IF e1, e2, ė2 are okay and ė1 is positive, THEN c4 = 40SPM, s1 = 1,

s2 = 0, ELSE;

Rule 5: IF e1, e2, ė1 are okay and ė2 is positive, THEN c5 = 20SPM, s1 = 0,

s2 = 1, ELSE;

Rule 6: IF e1, e2, are okay and ė1, ė2 are positive, THEN c6 = 80SPM, s1 = 1,

s2 = 1, ELSE;

Rule 7: IF e1 is low, THEN s1 = 0, ELSE;

Rule 8: IF e2 is low, THEN s0 = 0, ELSE;

The output consequences are not symmetry with respect to the origin due to the

fact that the temperature sensors are buried in different depths in each channel in

order to simulate temperature gradient for control purpose. See Section 2 for more

details.

Suppose that at time t = k, the four input variables are given by ei and ėi with

i = 1, 2 respectively. A crisp output of the fuzzy controller, c, may be inferred from

the Mamdani’s minimum inference method through following procedures:

Step 1: For each implication Rule i, find ci from fuzzy rule base listed above;

Step 2: Let αi be the weighting factor of the ith rule, which is a measure of the con-

tribution of the ith rule to the fuzzy control action. The αi is given as

αi = Ai
1(e1)∧Ai

2(ė1)∧Ai
3(e2)∧A4

i(ė2)≡min[A1
i(e1), A2

i(ė1), A
i
3(e2), A4

i(ė2)]

127



Step 3: The fuzzy controller output c can be calculated as the average of all ci with

the weights αi .

c =

∑8
i=1αici∑8
i=1αi

The fuzzy reasoning process is shown in Figure 7.3, where only Rule 2 is listed as

examples with input variables e1 = 3, and e2 = 13 respectively. For each given pair

of input (e, ė), the consequences ci can be find directly from the fuzzy rule base. The

weight factors are calculated through fuzzy min operator between the memberships

from the two inputs. Control output is then averaged over all consequences with the

weight factors.

Final control signal u as shown in Figure 7.2 can be obtained by taking α = 1

and β = 0.1 in this application, and integral is taken from t = k − 4 to t = k. Since

Windows XP used in this study is an operating system that does not have real-time

performance, the latency, which is defined as the time interval for application software

to transmit command to hardware, is unpredictable. Malfunction of the controller

may be caused, especially when the control action updating rates are faster than the

latency. For example, control failure may happen when the next control command

comes while the previous control command has not been executed yet. In addition,

sensors and actuators also introduce time delays to the control system, which further

corrupts the performance of the controller. Therefore, it is impractical to send out

control command after every sampling (0.25 second in this application). Experimental

results to be shown in Section 5 will also indicate that there are significant time delays

in the process. In order to minimize the adverse effect of the time delay, fuzzy values

can be quantized and stored in memory in the form of a look-up table as shown in

Table 7.1. The computer acquires temperature signals from each cooling channel at
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Table 7.1: Look-up table for Fuzzy PID Controller (unit: SPM)

Error(oC) e1 ≥10 −10 < e1 < 10 e1 < −10

e2 ≥10 100 (s1 = 1, s2 = 1) 40 (s1 = 0, s2 = 1) 40 (s1 = 0, s2 = 1)

−10 < e2 < 10 60 (s1 = 1, s2 = 0) 0 (s1 = 0, s2 = 0) 0 (s1 = 0, s2 = 0)

e2 < −10 60 (s1 = 1, s2 = 0) 0 (s1 = 0, s2 = 0) 0 (s1 = 0, s2 = 0)

a fixed sampling rate; then e and ė are calculated after each sampling. For a given

temperature error and error change, the corresponding pump speed can be found from

the table.

7.3 Experimental Results

As the furnace is bottom heated and the length of the three die inserts is different,

their temperatures are different when pulled out from the furnace. Then, the fuzzy

controller set in to adjust the temperature differences between two channels. In this

experiment, the control goal is set to δ = 10oC and T = 20 seconds in Equation 7.3.

The experimental procedures are summarized as follows:

Experiment Procedures 7.1. A fuzzy controller.

1. Preheat the die insert to 480oC ; pull them out of the furnace; and

2. Open Water Inlet 1 and 2 at a flow rate of 2.65 L/min (0.7 GPM) to cool

down Channel 1 and 2 respectively, while keep a small amount of water running

through Channel 3 (less than 0.55 GPM); and at the same time

3. Use the cameras as temperature sensors, and start the fuzzy controller to supply
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Figure 7.4: Temperature variations of three surfaces under a fuzzy controller.
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extra water to Channel 1 and 2.

Figure 7.4 illustrates the temperature variation of the die insert at three locations

(Channel 1, 2 and 3). It can be seen from the figure that the temperature at Channel

1 is much higher than that of Channel 2 and 3 at 0 second. The flow rates of Channel

1 and 2 are also plotted in Figure 7.5. At the first 7 seconds, the pump speed is

adjusted to 100 SPM since the temperatures of both Channel 1 and 2 are higher than

that of 3. Upon the opening of Water Inlet 0, 1 and 2, the temperature at locations

1 and 2 decreases rapidly. As the temperature difference between Channel 2 and 3 is

minimized to within 10oC, the pump speed changes to 60 SPM in accordance with

the fuzzy control table and the solenoid valve 2 closes, which cuts off the extra water

to Channel 2. At around 19 seconds, the temperature difference between Channel

1 and 3 is minimized to within 10oC, the pump stops and solenoid valve 1 closes.

In contrary, the constant water flow rate of Channel 2 decreases the temperature

at location 2 steadily. There is a difference in the behaviour of the temperature

drops between the two locations of the die insert. This observation indicates that the

designed vision based control system is capable of reducing die temperature locally

by varying the water flow rates of each individual channel in a die which may contain

multiple cooling lines.

It should be noted that time delay (latency) occurs when the fuzzy controller

updates the pump speed as shown in Figure 7.5. Therefore, it is impractical to

change the control action after each sampling.

The averaged temperature of the insert surfaces before and after control is listed

in Table 7.2. The graphic comparison of the temperatures is also plotted in Figure

7.6. Although there are specific hot/cool spots on each surface, the temperature
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Table 7.2: Averaged temperature (oC) of the insert surfaces before and after control

Time Channel 1 Channel 2 Channel 3

0-th second 479.8 414.4 370.3

20-th second 270.1 26980 262.5

distribution among three channels become more homogeneous.

7.4 Summary

A simply Fuzzy PID controller has been designed and implemented to test the per-

formance of the visual sensor. The experimental results show that the system has a

great potential for real world applications.
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Channel 1 at 0 second Channel 1 at 20 second

Channel 2 at 0 second Channel 2 at 20 second

Channel 3 at 0 second Channel 3 at 20 second

Figure 7.6: Comparison of the temperatures of the insert surfaces before and after

control.
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Chapter 8

Conclusions and Future Work

This chapter summarizes the main conclusions of the present work, and suggestions

for future research are also provided.

8.1 Summary of Main Contributions

In this study, a vision-based thermal control system has been developed for industrial

automation. Two new methods have been proposed to achieve robust temperature

measurement. The primary original contributions of the dissertation can be summa-

rized as follows:

1. An adaptive curve fitting technique is proposed based on PRESS statistic test

for the sampled data set containing noises or outliers. The method converges

very fast, and superaccuracy can be obtained under certain conditions when

compared with other methods. The method is applied to estimate an optimal

curve of casting dies from the visual images;

2. A method for the recovery of thermal image loss is proposed. The thermal image

loss generated by network traffic from camera nodes to fusion center is modeled
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as a Markov chain. A graph cuts method is used to recover the loss based on

thermal pattern classification. Simulation results show that thermal informa-

tion can be partially retrieved, which may greatly increase the robustness of a

thermal management system.

Other contributions may include:

1. A vision-based fuzzy PID controller has been implemented to minimize the

temperature difference among the die inserts. The controller is capable of effec-

tively adjusting the pump speed and turn on/off the solenoid valves according

to the temperature difference and the error change. Consequently the flow rate

of cooling water can be varied to reduce the temperature of the hot insert;

2. A 3D thermal model has been reconstructed. It has been found that tempera-

tures on individual insert surface are locally inhomogeneous during the cooling

processes. The center temperature, due to closer to the cooling channel, is usu-

ally lower than that of its surrounding neighbors. But globally, the averaged

temperature of several die inserts can be controlled to achieve more homoge-

neous temperature distribution as demonstrated by the controller; and

3. Different influential factors on the emissivity of die surface have been discussed

and experiments have been conducted to examine the factors qualitatively and

quantitatively.
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8.2 Suggestions for Future Research

It should be noted that numerous improvements need to be carried out in order to put

the results of the present work into practical use. The major suggestions for future

research can be divided into two categories.

On the technical side:

1. It should be noted that it is possible to generate a 3D thermal image from an

infrared camera alone and the two visual cameras can be eliminated on the

condition that: 1) the CAD information is available; 2) the outer contour of the

die can be detected from its thermal image. A laser profiler can also be used to

replace the two visual camera;

2. Robust thermal image features. It is an interesting topic in visual image on how

to find the robust image features. In the thermal image domain, it becomes more

challenging since image corners in visual images may disappear in thermal image

when they have the same or similar temperature with their neighbors. If image

features decreases, it will have adverse effect on the image correspondence, local

shape determination, especially in an unstructured environment;

3. The two robust algorithm can be further improved. As both of them involves

iterations, so it may become a time consuming process especially for the sec-

ond one. Since thermal image is formed from temperatures, a simple contour

connection algorithm needs to be designed for practical use.

4. It has been found that for the adaptive curve fitting algorithm, if the outliers are

over 50%, there is no room to improve the accuracy of the algorithm. Except
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for those searching algorithm such as RANSAC, new method has to be designed

for real time applications.

On the application side:

1. Die casting simulator. The currently used simulator has limited functions that

hinder its ability to simulate complexity involved in real die casting processes.

Although it simulates the solidification stage of the die casting process, the

stage of die lubrication and the cycling nature of the process cannot be obtained

from the current settings. The simulator has to be re-designed to consider the

entire cycle of die casting processes, including die lubrication which reduces the

temperature of the die surface and consequently makes contribution to heat

transfer from the die to its surroundings.

2. Since the die is closed during production, it is impossible to acquire thermal

images at that stage. The image of a die surface is accessible only after the

die is open and the casting is ejected. It is reasonable to assume that a hot

spot, after the die is open, is still a hot spot before the die is open. Under

this circumstances, if the control goal is to minimize the final temperature

differences, a controller needs to be redesigned through an iterative process.

As vision-based control system is relatively a new addition to the control field, new

theories and applications come out frequently. Also at the same time, new emerging

industrial problems become increasingly challenging.
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