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Abstract

Elliptic Curve Cryptosystems (ECC) were introduced in 1985 by Neal Koblitz and Victor 

Miller. Small key size made elliptic curve attractive for public key cryptosystem implemen­

tation. This thesis introduces solutions of efficient implementation of ECC in algorithmic 

level and in computation level.

In algorithmic level, a fast parallel elliptic curve scalar multiplication algorithm based 

on a dual-processor hardware system is developed. The method has an average computation 

time of j  Elliptic Curve Point Addition on an n-bit scalar. The improvement is n Elliptic 

Curve Point Doubling compared to conventional methods. When a proper coordinate sys­

tem and binary representation for the scalar k is used the average execution time will be as 

low as n Elliptic Curve Point Doubling, which makes this method about two times faster 

than conventional single processor multipliers using the same coordinate system.

In computation level, a high performance elliptic curve processor (ECP) architecture is 

presented. The processor uses parallelism in finite field calculation to achieve high speed 

execution of scalar multiplication algorithm. The architecture relies on compile-time detec­

tion rather than of run-time detection of parallelism which results in less hardware. Imple­

mented on FPGA, the proposed processor operates at 6 6 M H z  in GF(2167) and performs 

scalar multiplication in 100pSec, which is considerably faster than recent implementations.
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Chapter 1

Introduction

1.1 M otivation

W ith the rapid and expansive growth of Internet, the need for communication security is 

increasing. Financial institutions, manufacturing plants and general public use Internet to 

exchange private information. Further expansion of information technology (IT) is tied to 

the confidence of Internet users to the security of data transaction on Internet. Secure infor­

mation exchange is vital for E-commerce, and public key cryptography is the most efficient 

way to achieve data exchange security between two unfamiliar parties on the Internet.

Public key cryptography was introduced in 1976 by Diffie and Heilman [28]. RSA, the 

first popular public key cryptosystem, which is based on the difficulty of integer factorization 

was introduced shortly after. RSA is widely accepted and is used for many cryptographic 

applications. In 1985, Koblitz [3] and Miller [4] independently introduced elliptic curve 

cryptography, which is basically based on the group of points on an elliptic curve (EC) over 

a finite field.

Providing the same security level, elliptic curve cryptosystem (ECC) uses smaller key 

size compared to RSA. ECC implementations require less power, less memory and less 

computation power compared to RSA implementations. These features makes ECC"Very

1
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1. INTRODUCTION

attractive for implementation on constrained devices such as wireless devices, handheld 

computers and smart cards.

Efficient implementation of elliptic curves cryptosystems can be classified into two basic 

levels. In the higher level efficiency is tied to the efficiency of the scalar multiplication 

algoritbms(Chapter 3 and 4). On lower level, efficiency goes down to finite field arithmetic, 

and mostly to finite field multiplication (Chapter 5). This thesis proposes an efficient scalar 

multiplication algorithm as well as a new architecture for efficient elliptic curve arithmetic 

implementation.

Although implementing security algorithms in software is easier, it is relatively slow, and 

has the effect of slowing down and consuming the valuable time of the main processor of 

the host system. Hardware solutions are attractive specially when there is a large volume of 

secure transactions. Considering the current growth trends it is expected that the demand 

for fast security processors will be high in the future.

1.2 Thesis Outline

Chapter 2, gives an elementary introduction to Finite Fields and Elliptic Curves. It covers 

some of the mathematical theory behind the construction of finite fields and elliptic curve 

group and the basic equations that govern the point addition and point doubling on an 

elliptic curve. Finally, it describes the idea of creating a security system based on elliptic 

curve and gives estimation of the strength of elliptic curve cryptosystem.

Chapter 3, provides a comprehensive survey on currently used elliptic curve scalar multi­

plication algorithms. Different coordinate systems are explained and EC point addition and 

doubling formula in each coordinate is expressed and compared to each other. Scalar mul­

tiplication algorithms are categorized . Algorithms based on scalar recording explained and 

evaluated. Special scalar multiplication techniques such as point halving method, Mont­

gomery algorithm and ,ECC based on Koblitz curve discussed at the end of the chapter.

Chapter 4, introduces a new fast algorithm for scalar multiplication. The new technique 

is explained and simulation results are compared to conventional double and add methods 

[10].

2
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1. INTRODUCTION

Chapter 5, describes the proposed architecture for a high speed elliptic curve processor. 

A thorough survey on the elliptic curve processors hardware implementations is carried out, 

and the proposed processor is compared to them. The RTL simulation result is provided 

and is compared to few similar design. The results of the survey in chapter 2 is used here 

to implement an efficient scalar multiplication algorithm.
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Chapter 2 

Preliminaries on Elliptic Curve 

Cryptography

2.1 Basic Concepts

Groups

D efinition 1 . A group consists of a set G together with an operation * defined on G which 

satisfies the following axioms.

1. Closure: for all a, b 6  G we have a * b € G

2 . Associativity: for all o, b, c 6  G we have (a* b) * c = a* (b* c)

3. Identity: for all a € G there exists e 6  G  so that a*e — e*a  =  a. The unique element 

e is called the neutral element in G.

4. Inverse: for all a E G there exists i £ G so that a*  i = i * a = e. i is unique and is

called inverse of a

We use the notation {G, *) to represent group G with group operation *. (G, x) and 

(G, +) are called multiplicative and additive group respectively. In an additive group, the

4
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2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

neutral element is represented by the symbol 0 and the inverse of a is denoted as —a. In a 

multiplicative group, the neutral element is represented by the symbol 1  and the inverse of 

a is denoted as a -1 .

(G,*) is called an Abelian or commutative group if for any a and b € G we have 

a-kb — b*  a.

if set G is finite, the group (G , *) is called a finite group. The number of elements in G 

is called the order of the group and is denoted by | G |

R ings

D efin ition  2. A ring is a set R  and two operations +  and x (called addition and multi­

plication, respectively) defined over R  which satisfies the following axioms:

1 . (R , +) is a commutative group.

2. Associativity of x : For all a, b, c 6  R  we have (a x b) x c =  a x ( 6  x c)

3. Distributivity of x over +: For all a, b, c G R, a x (b + c) = a x b + a x c  and 

(a + b ) x c  — a x c  + b x c

A ring in which the multiplication x is commutative is called a commutative ring. 

Fields

D efin ition  3. A field is a ring in which multiplication is commutative and every element 

except 0  has a multiplicative inverse.

So, we can define the field F  with respect to the operations x and +  if:

1. {R,  +) is a commutative group.

2. (R — {0}, x) is a commutative group

3. x is distributive over +

5
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2. PRELIM INARIES ON ELLIPTIC CURVE CRYPTO G RAPH Y

If set F  has finite number of elements then F  is a finite field or a Galois Field . For example 

the set Zp =  {0 ,1 ,... ,p — 2,p — 1} where p  is a prime, with modular addition and modular 

multiplication is a finite field.

D efin ition  4. One way function is a function that provides for a computationally inex­

pensive mapping from set X to set Y for all x £ X  but becomes computationally infeasible 

when mapping an element from set Y to set X for most y 6  Y.

Discrete logarithm (DL) problem: A particular one-way function with x ,y  € G  such that 

the discrete logarithm of x to base y, denoted by log y (x), has a unique integer solution z 

where x  =  yz.

2.2 Elliptic Curves

Elliptic curves have been studied by mathematicians for more than a century. They have 

been playing an important role in number theory and cryptography. Elliptic Curves have 

been used in integer factorization and have played an important role in solving the famous 

problem known as Fermat’s last theorem. Elliptic curve cryptography was proposed inde­

pendently by Victor Miller [4] and Neil Koblitz [3] in the 1985. Elliptic curve cryptosystems 

are standardized and are commercially available.

2.2.1 Definition of Elliptic Curves

D efin ition  5. Elliptic curve E  over field K. is a set of points (x, y) with x ,y  6  K. which 

satisfy the equation:

E  : y2 +  a\xy  +  a$y = x 3  +  a 2 X2 +  0 4 X +  a& (2.1)

where 0 1 , 0 2 , 0 4 , 0 6  6  K, , together with a single element denoted O are called point of 

infinity [1 0 ].

The elliptic curve over 1C is denoted by E{K.). The number of points on £ (th e  cardinal­

ity) is denoted #E()C) or just # E .

6
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2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

An elliptic curve can be defined over various fields. For example, field of complex 

numbers C, field of real numbers R, field of rational numbers Q, finite field over prime Fp 

or an extension field Fpn. If fC is a field, and 0 1 , 0 2 , 0 4 , 0 6  6  1C, we say E  is defined over 

1C. In this case the elliptic curve will be the set of points (x , y) where x, y 6 1C and (x, y) 

satisfy equation 2.1. In cryptography, elliptic curves over finite field Fp or Fp« are used. 

Specifically F 2 « is used more often since it leads to a more efficient design.

For fields of various characteristics, the equation 2.1 can be changed into simpler forms 

by a linear change of variables. For fields of characteristics two equation 2.1 is simplified to

E  : y2 + xy  = x 3 + a2x 2 +  0 6  (2.2)

where 0 2 , a 6 G F 2 n.

We consider the equations for field of characteristic 2 which is used in this work. Equa­

tion for a field other than characteristic 2 was omitted since they are not central to the 

discussions.

The Graph of Elliptic Curves

Figure 2.1 shows graphs of two typical elliptic curves defined over the field of real numbers. 

The graph of elliptic curve over a finite field is a finite of set of points as is depicted in 

figure 2.2. Each point in graph 2.2 is called a point on the elliptic curve and is denoted by 

a single letter such as P. The number of points on a elliptic curve over a finite field is an 

important cryptographic aspect of the curve and will be discussed later.

2.2.2 Point Addition Formula

Suppose P I  and P2 are two points on elliptic curve E{K). Choose P I and P2 and construct 

a line through these 2 points. In the general case, this line will always have a point of 

intersection with the curve. Now take this third point and construct a vertical line through 

it. The other point of intersection of this vertical line with the curve is defined as the sum 

of P I  and P2 , i.e. P3 =  P I  +  P2. If P I  and P2 are equal, then the line constructed

7
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Curve defined over the Field of Real Numbers

(b)

Figure 2.2: Graph of Elliptic Curve defined over GF(223)

0 I 2  3 4  3 6  7 8 9 10 I t  12 13 14 IS 16 17 18 19 20 21 22
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Figure 2.3: Elliptic Curve Point Addition Operation P3 =  P I  +  P2.

P2.

PI

in the first step is the tangent to the curve, which again, has exactly one other point of 

intersection with the curve. This operation is illustrated graphically in figure 2.3.

For each of the two elliptic curves equation 2.2 and 2.1 Analytical formulas representing 

P3  can easily be derived from the explained geometric procedures.

Addition formula for equation 2.1: The inverse of P I  = (x\ ,y i )  G E  is — P  =  (xi, — yi). 

If P2  ^  - P I  , then P3 =  P I  +  P2 =  (x3, y3) where

If P I  ±  P2
i2 + a : i

x 3 = A2 — A +  xi  — X2 

2/3 =  (Xi -  x 3 )A  -  2/1

(2.3)

9
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if P I  =  P 2 (2.4)

( 2 /3 =  {Xi +  2 3)A +  x 3 +  2/1 

Addition formula for equation 2.2: The inverse of P I  =  (2 1 , 2/1 ) G E  is — P  = (2 1 , 2 1  +  

?/i). If P2 7  ̂ —P I  , then P3 =  P I  +  P2 =  (2 3 , 2/3) where

In summary we define the following rules for elliptic curve point addition:

• If P  =  O we define —P  =  O

•  Equation 2.1: If P  =  (2 , y) =+■ —P  =  (2 , —y)

Equation 2.2: If P  =  (2 , y) =► —P  =  (2 , 2  +  2/)

•  If P I  7  ̂P2 =>• P3 =  P I  +  P 2  equation 2 . 1  and 2 . 2

• If P I  =  —P2 =► P I  +  P2 =  O

E llip tic  C urve G roup  Law

The Elliptic Curve addition operation satisfies the following properties:

1. Closer: (P  +  Q) € E

2. Commutativity: P  + Q = Q + P

3. Existence of identity: P + O = O + P

4. Existence of inverse: VP £ E3Q £ E  so that P  + Q = Q + P  = 0

\  _  »1+ 1/2 
X 1+X 2

if P I  ^  P2 z 3  =  A2  +  A +  2 1  +  2 2  +  0 2  

2/3 =  (si +  Z3 )A +  2 3  +  2/1

(2.5)

if P I  =  P2 (2 .6)

10
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5. Associativity: (P  +  Q) +  R  — (P  +  Q) +  R

All properties except 2 are easy to prove. For a proof on property 2 see [20].

Therefore Points on E  form an finite additive Abelian group with O as the identity 

element. If the elliptic curve is defined over a finite field, the elliptic curve additive group 

forms a finite Abelian group.

2 .2 .3  E llip tic  C urve D isc re te  L ogarithm  P ro b lem

For some group (G , x ) , suppose a, (3 G G. Given a  and /? find for an integer x  such 

that a 1  =  (3 is called the discrete logarithm problem (DLP). The DLP in Zp is considered 

difficult if p  has at least 150 digits and p  — 1 has at least one large prime factor (as close 

to p as possible). These criteria for p are safeguards against the known attacks on DLP. 

Although the discrete logarithm problem exists in any group, when used for cryptographic 

purposes the group is usually Zp. In fact discrete logarithm problem can be used to build 

cryptosystems with any finite Abelian group. Multiplicative groups in a finite field were 

originally proposed.

Definition 6 . elliptic curve discrete logarithm problem (ECDLP) is defined as follows: we 

define, kP  =  P  + P  + P  H h P
S i  ■ i. i.— v  ^

k times

• ECDLP: Suppose P,Q E E(Wq) and Q = k P  for some k . Given P  and Q find k

No efficient algorithm is known to date to solve the ECDLP. Numerous cryptosystems 

based their security on the difficulty of solving the DLP. For example El-Gamal Cryptosys­

tem in Zp and Diffie-Hellman key exchange [20].

There are also a number of cryptosystems whose security is based on the difficulty of 

factoring large integers. One well-known example is the public-key system called the RSA 

cryptosystem, which is by far the most popular public key algorithm.
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2.3 Elliptic Curve Cryptosystem

Cryptosystems using elliptic curves are based on ECDLP. The basic operation in ECC is 

k P  =  P  + P  4- P  +  b P. The following list shows some encryption system based on
s S/- ^

k times
ECC

• Diffie-Hellman key exchange

•  Messy- Omura Encryption

• El-Gamal Public Key Encryption

• El-Gamal Digital Signature

•  Elliptic Curve Digital Signature Algorithm (ECDSA).

Detail explanation of these encryption systems can be found in [20] and [21]

Exam ple o f an Elliptic Curve C ryptosystem s: Diffie-Hellman K ey Exchange

The Diffie-Hellman key exchange protocol was proposed in 1976 [28]. This protocol allows 

two or more participants to agree on a secret key without ever requiring access to a private 

channel. Even if Eve (The Eavesdropper) is able to see every message passed between the

principles, it is mathematically infeasible for her to deduce the secret key. The protocol is

as follows:

Suppose Alice and Bob want to agree on a shared secret key . First of all, there are 

public parameters P  6  E.  Then they start the following communication.

1 . Alice secretly chooses a random number n and sends Bob

2. Bob secretly chooses a random number m and sends Alice k s P  ■

3. The secret key is k_\keP =  kskAP-  Both Alice and Bob can easily compute, but Eve 

can’t, because of the difficulty of the discrete logarithm problem.

12
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Figure 2.4: Diffie-Hellman key exchange 

Alice Bob

kA =Alic Private Key kA =Bob Private Key

P = A Point on an EC (public knowledge)

4. Now Alice and Bob have the same key, ^ (fc ^ P ) and can use this key to send encrypted 

messages to each other

The most time consuming calculation in this system is k P  (Scalar Multiplication). Diffie- 

Hellman key exchange works for DLP as well as ECDLP.

Security o f an Elliptic Curve Cryptosystem

In this section we try to provide an overview of the security strength elliptic curve cryp­

tosystems. A typical system is based on Galois fields between 150-160, which are small 

enough for efficiency and are large enough for security.

There are two basic type of algorithms to solve discrete logarithm problem. General 

attacks which do not depend on the underlying group and specific attacks which depend on 

the representation [32].

Elliptic curve discrete logarithm problem is defined as follows: Let E{¥q) be an elliptic 

curve over F9  and let P  be a point in E(Wq) . For any point R  6  E(Fq) find the integer 

k, 0 < k < # P  -  1, ( # P  is the order of P ) such that kP  = R.

The most powerful general algorithm known at present is baby-step giant-step technique 

[20]. Algorithms in this group have running time no better that 0(y/p),  where p is the

13
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largest prime dividing n. Shank’s baby-step giant-step method [20] requires 0(^/p)  in both 

time and space. The storage requirement can be reduced significantly by using the Pollard 

method [20]. Pollard method requires y/p iterations on elliptic curve where each iteration 

requires 3 elliptic curve additions. Each addition take 10 field multiplications where each 

field multiplication takes 4 clock cycles to complete (using the proposed processor described 

in the last chapter). Then we need 40y^> clock cycles or QAy/qpSec to solve ECDLP. If 

the order of the curve E  contains a prime factor of at least 36 decimal digits, then we need 

«  0.4 x 1 0 18/nSec which is about 12000 years to complete the operation. See [32] for more 

explanation.

All methods for solving the discrete logarithm problem, except index-calculus method, 

can be adapted to solve EC discrete logarithm problem (ECDLP). This means that there 

exists no method for solving m  with a sub-exponential running time, m  should be prime, 

in order to be safeguarded against Weil decent attacks [63].

Certicom (www.certicom.com), a Canadian company, has announced challenges to break 

a typical ECC. Table 2.1 shows the challenge and the estimated time to break the ECC.

2.4 Elliptic Curve Cryptography Standardization

The development of standards is a very important point for the use of a cryptosystem. 

Standards help ensure security and interpret-ability of different implementations of one 

cryptosystem. There axe several major organizations that develop standards. The most 

important for security in information technology are:

•  International Standards Organization (ISO)

• American National Standards Institute (ANSI)

• Institute of Electrical and Electronics Engineers (IEEE)

• Federal Information Processing Standards (FIPS)

• National Institute of Standards and Technology (NIST)

14
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Table 2.1: Elliptic Curve Cryptography Challenge(www.certicom.com)

Curve

Curve

Field size 

(in bits)

Estimated number 

of machine days

Prize

(US$)

Status

Status

ECC2-79 79 352 HAC, Maple SOLVED Dec. 1997

ECC2-89 89 11278 HAC, Maple SOLVED Feb. 1998

ECC2K-95 97 8637 $ 5,000 SOLVED May 1998

ECC2-97 97 180448 $ 5,000

ECC2K-108 109 1.3 x 106 $ 1 0 , 0 0 0 SOLVED Apr. 2000

ECC2-109 109 2 . 1  x 1 0 7 $ 1 0 , 0 0 0

ECC2K-130 131 2.7 x 109 $ 2 0 , 0 0 0

ECC2-131 131 6 . 6  x 1 0 1 0 $ 2 0 , 0 0 0

ECC2-163 163 2.9 x 101 5 $ 30,000

ECC2K-163 163 4.6 x 101 4 $ 30,000

ECC2-191 191 1.4 x 102° $ 40,000

ECC2-238 239 3.0 x 102 7 $ 50,000

ECC2K-238 239 1.3 x 102 6 $ 50,000

ECC2-353 359 1.4 x 104 5 $ 1 0 0 , 0 0 0

ECC2K-358 359 2 . 8  x 1 0 4 4 $ 1 0 0 , 0 0 0
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Table 2.2: Elliptic Curve Standards and Algorithms

Standard Schemes

ANSI X9.62 ECDSA

ANSI X9.63 ECIES, ECDH, ECMQV

FIPS 186-2 ECDSA

IEEE P I363 ECDSA, ECDH, ECMQV

IEEE P1363A ECIES

ISO 14888-3 ECDSA

ISO 15946 ECDSA, ECDH, ECMQV

Elliptic Curve Digital Signature Algorithm (ECDSA) 

Elliptic Curve Integrated Encryption Scheme (ECIES) 

Elliptic Curve Menezes-Qu-Vanstone Protocol (ECMQV) 

Elliptic Curve Diffie-Hellman (ECDH)

The most prominent ECC algorithm, the ECDSA was accepted in 1998 as ISO standard 

(IS014888-3), 1999 as ANSI standard (ANSI X9.62), and 2000 as IEEE (P1363) and Fips 

(186-2) standard. Several other standardization efforts are in progress. Table 2.2 shows the 

Elliptic Curve standards

2.5 Intellectual Property Issues

Contrary to RSA, the basic idea of Elliptic Curve Cryptosystems has not been patented, 

and in the beginning this seemed to be an important advantage. However, a number of 

patents have been applied for, on techniques that mostly aim at improving efficiency. In 

principle, it should still be possible to construct a secure, albeit not extremely efficient 

elliptic curve cryptosystems without licensing patents. The patents are mostly held by 

Certicom, a Canadian company which is marketing elliptic curve cryptosystem.

A number of these techniques are being considered for inclusion in standards and this

16
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will potentially make it hard to implement interpretable elliptic curve systems without 

licensing patents. On the other hand, some standardization organizations require the holders 

of patents on standardized techniques to guarantee ’reasonable’ licensing conditions. In 

summary, elliptic curves have lost many of their advantages as far as patents are concerned.
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Chapter 3 

Introduction to E C C  Computations

3.1 Introduction

In order to implement and elliptic curve cryptosystem one has to decide on the following 

options:

1. Defining Equation for Elliptic curve

• Weierstrass form [6]

• Koblitz Curves [2]

2. Representation of points [10]

• Affine Coordinates

• Projective

• Mixed Coordinates

3. Scalar Multiplication technique k P  ie. k P  — P  + P  + P  + -- - + P
N V 11 1 y

k tim es

• Comb method [16]

18
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3. INTRODUCTION TO ECC COMPUTATIONS

• Window method [10]

• Montgomery method [61]

• Scalar Recording [7]

4. Field Representation

• Polynomial Basis

• Normal Basis

• Dual Basis

5. Finite Field operation Algorithm

• Multiplication

• Squaring 

» Inversion

In this chapter items 1, 2 and 3 are explained. Algorithms for finite field operation are 

explained in the last chapter. Item 4 is not discusses here.

Speed of a ECC system is determined by the above factors as well as implementation 

platform (Fig. 3.1). Using a dedicated hardware to speedup the underlying finite field 

arithmetic will increase the speed of elliptic curve operations as it is explained in the last 

chapter.

3.2 Elliptic Curve Definition

Definition 7. Let AT be a field of characteristics ^ 2,3, lets x 3 + ax + b (where a,b € K)  

be a cubic polynomial with no multiple roots. An elliptic curve over K  is the set of points 

(x, y) with x , y  € K  which satisfy the equation

y2 = x3 + ax + b (3.1)
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Figure 3.1: Platform option for ECC implementation 

Finite Field Arithmetic Implementation

Hardware Software

Classic Reconfigurable General purpose uP Embedded uP

ASIC FPGA Intel, RISC DSP, Smart Card

together with a single element denoted O and is called point at infinity. If K  is of charac­

teristics 2, then an elliptic curve over K  is the set of points satisfying the equation

y2 + y  =  x 3 + ax +  b (3.2)

[ ! ] ■

3 .2 .1  D ifferent Form s o f  E llip tic  C u rve E q uation  

W eierstrass Form [6]

An affine Weierstrass equation over field I f  is an equation of the form

E(K)  : Y 2 =  a \ X Y  +  a$y =  X x 3 -f- a2 X 3 +  a \ X  +  0 6  (3-3)

with ai,a2,Q4,06 G K.

K oblitz Form [2]

Two extremely convenient families of curves are the anamolaus binary curves (or ABC’s 

or Koblitz curves). These are the curves Eq and £) defined over Fjm by Ea : x 2 + xy  = 

x 3 +  ax2 +  1 . We denote by E a(F2m) the group of F 2 m-rational points on E a This is the 

group on which the public-key protocols are performed. As we will see, this group of curves 

speeds up the scalar multiplication [7].

20
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3.3 Elliptic Curve Point Representation

An elliptic curve can be represented using several coordinate systems. For each such system, 

the speed of point additions {ECADD)and doubling (E C D B L ) are different. Therefore 

a good choice of coordinate system is an important factor for elliptic curve exponentia­

tions. We give here the addition and doubling formulas for affine, projective, Jacobian, 

Chudnovsky and Lopez-Dahab coordinates. These coordinates are defined in section 3.4.1.

3 .3 .1  T h e A d d itio n  F orm ulas in  A ffine C oord in ate

Let

E a : y2 +  xy  = £3 +  ax2 +b  a,b €  F 2 ">

be an elliptic curve E  over F 2 "*. The addition formula for affine coordinates are the follow­

ings. Let Pi — (xi ,yi )  and P2 =  (£2 , 3/2 ) be two points on E a . Then the coordinates of 

P3 — P1 + p 2 = (X3 , 3/3 ) can be computed as shown in table 3.1.

Table 3.1: Addition Formula in Affine Coordinate

P 1 ^ P 2 P 1 = P 2

\ y\-yt

£ 3  =  A2  +  A +  x i +  X2  +  a X3  =  same

2/3 =  ( £ 1  +£3)A +  £3 +  2/1 X3  — same

Cost: I  +  2M  S Cost: I  +  2M  +  S

For simplicity, we neglect addition and subtraction in F 2 "» because they are much faster 

than multiplication and inversion in F 2 m . Let us denote the computation time of an addition 

(resp. a doubling) by t (P  +  P)  or t (ECADD)  (resp. t(2P) or t {E C D B L )) and represent 

multiplication (resp. inverse, resp. squaring) in F 2 *n by M  (resp. I , resp. S). Then we see 

that t (P + Q) = I  + 2M  +  S  and t{2A) = I  +  2M + 25 [8] .

21
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3 .3 .2  P ro jec tiv e  S p ace and  th e  P o in t a t In fin ity

D efinition 8. n-Dimensional projective space over field K  is the set of equivalence 

classes of n-tuple (xo,xi,X 2 , ■ ■ ■ , x n) with xo ,x i ,X 2 , . . . , x „ g K .  T w o  n -tu p le  (x0, x i , x 2, . ■., 

and (yo, yi, 2/2 , ■ • • > Vn) are said to be equivalent iff there exists non-zero element X e K  such 

that

(zo, x i ,  x 2, • • •, x n) (Aj/i, \ y 2 -t Ay3) • • • j ^Vn)

We write

( x Q, x i , X 2 , . . . , x n ) ~  (2/0 , 2/1,2/2, - - • ,  2/n)

Example: Projective line P It is the set of points (x, y)  excluding (0,0) with the 

points (Ax, Ay) identified with (x,y). If we select P  =  (x, y) , then all the points (Ax, Ay) 

are on the line joining P  to the origin. This is visualized in figure 3.2. Points with the same 

shape are equivalent. For every equivalence class we can choose a point lying on the unit 

circle as a representative. The projective line P^  is then represented by the unit circle with 

diagonally opposite points identified together.

Figure 3.2: Projective Line

(xl.yl)
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The equivalence class of (x , y , z ) is denoted by (x : y : z). If (x : y : z) is a point with 

2 ^ 0 ,  then (x : y : z) = ( x / z  : y / z  : 1). These are the finite points in .However, If 2  =  0, 

then dividing by 2  should be thought of as giving 0 0  in either the x or y coordinate, and 

therefore the points (x : y : 0) are called points at infinity in PjJ. The point at infinity on 

an elliptic curve is identified with one of these points at infinity in P  

The two-dimensional affine plane over K  is defined by

A l  =  {(*.2/) \ o c ,y e k }

We have an inclusion

a I ^ P 2k

given by

(x,y)  ‘- * ( x : y .  1)

In this way affine plane is defined with the finite points in P^.

A polynomial is homogeneous of degree n  if it is a sum of terms of the form axly^zk 

with a € K  and i + j  + k — n. If f ( x ,  y) is a polynomial in x  and y, then we can make it 

homogeneous by inserting appropriate powers of z. For example, if / (x , y) =  y 2—x 3—A x —B  

then we obtain the homogeneous polynomial F(x,y)  =  y2z  — x3 — A x z 2 — B z 3. If F  is 

homogeneous of degree n  then

F(x, y, 2 ) =  z3f ( x / z ,  y /z)

and

f ( x , y )  =  F(x,y ,  1)

The elliptic curve E  is given by y2 — x 3 + Ax  +  B. The homogeneous from is y2z = 

x3 +  A x z2 + B z 3. The point (x, y) on the original curve, corresponds to points (x : y : 1) 

in the projective version. To see what points on E  lie at infinity, set 2  =  0 and obtain 

x =  0. Therefore x =  0, and y can be any nonzero number. Rescale by y to find that 

(0 : y : 0) =  (0 : 1 : 0) is the only point at infinity on E. Using projective coordinate speeds 

up computation on elliptic curve.
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3.4 Choosing a Coordinate System

Using different projections, points on an elliptic curve can be represented in many different 

ways, as it is shown in the following list.

•  Affine Plane: (x, y ) E a : y2 +  xy  = x 3 +  ax2 + b a,b e  F 2 ">

•  Projective Plane: (x = X / Z , y  = Y /Z )  Ep : Y 2Z  +  X Y Z  =  X 3 +  a X 2Z  +  

bZ3 a,b € F2 ™

• Jacobian: (x =  X / Z 2, y =  Y / Z 3) E j : Y 2 = X 3 + a X Z 4 +  bZ6 a, b e  ¥p

• Chudnovsky: (X, Y, Z, Z 2, Z 3) P3 =  Pj +  P2 = P2 = (X3, Y3, Z3, Z32, Z33).

•  Lopez-Dahab: (x -  X /Z ,  y = Y / Z 2) Ed : Y 2+ X Y Z  = X 3+ a X Z 2+bZ4 a , b e  

F2m

3.4 .1  D iffe ren t C o o rd in a te  S y s te m s

T h e  A d d itio n  Form ulas in  P ro je c tiv e  C oord inates

For projective coordinates, we set x =  X / Z  and y =  Y/Z ,  giving the equation:

Ep : Y 2Z  = X 3 +  a X Z 2 +  bZ3 a , b e F p

Ep : U2Z +  X Y Z  = X 3 + a X 2Z  + bZ3 a ,b e  F2m

The addition formulas in projective coordinates for Fp are the following. Let P i =  (ATi, Yj, Z\),  

P2 =  (X 2 , Y<i,Z2 ) and P3 = P\ + P2 = (X3 ,Y3 ,  Z3), table 3.2 summarized the addition 

formula [8].

T h e  A d d itio n  Form ulas in  Ja co b ia n  C oord inates

For Jacobian coordinates, we set x =  X / Z 2 and y = Y / Z 3, giving the equation:

E j  : Y 2 =  X 3 + a X Z 4 +  bZ6 a , b e F p

24
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3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.2: Addition Formula in Projective Coordinates for ¥p

P 1 ^ P 2 P1 = P2

u = Y2Z i -  YlZ2 u  — dZi2 +  3 X \ 2

V =  X 2 Z 1 — X 1 Z 2 v = Y1Z 1

w =  u2Z \ Z 2 — v3 — 2 v2X i Z 2 w = X{Y\v

t =  u8w

X 3 =  vw

1 1
1 to
 

<2 ; c
*.

Y3 = u(v2X\Z2 — w )  — v3Yi Z2 ^ 3  - u(4w — t) — 8Y 2v2

Z3 = v3Z\Z2 Z3 =  8v3

Cost: 12M + 2S Cost: 7M + 5S

The addition formulas in the Jacobian coordinates are presented in table 3.3. Table 3.4 rep­

resents the point addition and point doubling formulae adapted from IEEE P1363 standard 

for comparison[21]A10-5, A10-7.

The Addition Formulas in Chudnovsky Jacobian Coordinates

We see that Jacobian coordinates offer a faster doubling and a slower addition than pro­

jective coordinates. In order to make an addition faster, we should represent internally a 

Jacobian point as the quintuple (X , Y , Z, Z 2, Z 3). This is called the Chudnovsky Jacobian 

coordinate and denoted by Jc. The addition formulas in the Chudnovsky Jacobian coor­

dinates are the following. Let P I  =  (Xi, Y\, Z\ ,Z\2,  Z\3), P2 =  (X 2 , Y 2, Z 2 , Z 2 2 , Z2 3) and 

P3 = Pi + P2 = P 2  = (X 3 ,Y3 , Z 3 ,Z 3 2,Z 3 3). Table 3.5 shows the addition procedure in 

mathbbFp.

The Addition Formulas in Lopez-Dahab Coordinates

We set x — X / Z  and y = Y / Z 2, giving the equation:

E d : Y 2 + X Y Z  = X 3 +  a X Z 2 +  bZ4 a , b e F 2m

25
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3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.3: Addition Formula in Jacobian coordinates for Fp

P 1 ^ P 2 P I  = P 2

Ui = X xZ22 S  = 4 X t Y 2

U2 = X 2Z i 2 M  = 3 X 12 + aZ14

Si =  X x Z23 T  = - 2 S  + M 2

II CO

H1 = U2 -  Ul

r  = S2 - S -  1

X 3 = - H 3 -  2U\H2 +  R 2 j

II£

Y3 = - S i H 3 + R(U i H 2 - X 3) Y3 = -8Yi4 + M ( S  -  T )

Z3 = Z \Z2H

CMII

Cost: 12 M  + 4S Cost: 4M + 6S

like other projective coordinates this coordinate we don’t need inversion for E C  A D D  and 

E C D B L  (Table 3.6) [9].

The key observation is that, point addition in projective coordinates can be done using 

field multiplication only, with no inversion required. Thus the inversion are deferred, and 

only one need to be performed at the end of a point calculation, if it is required that the final 

result be given in affine coordinates. The cost of eliminating inversion is an increased number 

of multiplication. So the appropriateness of using coordinated is strongly determined by 

the ratio I / M .  for an I / M  > 10 projective coordinates is recommended[9] [10].

Mixed Coordinate

It is evidently possible to mix different coordinates, i.e. to add two points where one is 

given in some coordinate system, and the other point is in some other coordinate system. 

We can also choose the coordinate system of the result. Proper use of mixed coordinates 

can lead to a faster point calculation. For a table of mix coordinate system refer to [8].

26
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3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.4: Addition Formula in IEEE Standard for F2m

P l ^ P 2 P I  =  P2

U0 = X 0 Z l (b = c4)

So = Y0Z f Z2 =  X i  Z \

Ux = X i  Z l X 2 = (Xi  + cZ2)4

Si = Y iZ l U = Z2 + X 2 + Yi Z i

W  = U0 + Ui y 2 = X \ Z 2 +  U X 2

R  — So +  Si

t  = r  + z 2

L = ZqW

•■4IIbo

X2 =  aZ\  + T R  + W 3

V  — R X i  + LYi

Y2 = T X 2 +  V L 2

Cost: 15M +  7A +  55 Cost: 5M  +  4A + 55

Cost (Zi  =  1): 11M  +  7A  +  45

3.4.2 Coordinates Summary

Table 3.7 1 summarizes the cost of elliptic curve point calculation in different coordinates. 

Selection of the coordinate system depends on the implementation platform. As a rule of 

thumb, projective coordinates are preferred, unless there exists an efficient division imple­

mentation.

‘In some cases number of additions is calculated to be used in the performance calculation of the developed 

processor(chapter 5)
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Table 3.5: Addition Formula in Chudnovsky Jacobian Coordinates for Fp

P 1 ^ P 2 P1 = P2

Ui =  Xi  Z22 S  = 4 X i Y 2

U2 = X 2Z i 2 M  = 3 X \2 +  aZ i4

Si  =  YxZ23 T  = - 2 S  + M 2

S2 =  V2Zi3

H I  = U2 — Ul

r  = s 2 - s - i

X 3 =  - H 3 -  2UiH2 +  R 2

FhII£

Y3 = - S i H 3 +  R{UiH2 -  X 3) Y3 = - 8 Y i 4 + M ( S - T )

Z 3 = Z \Z2H Z3 =  2TiZi

Cost: 11M  + 4 S Cost: 5M  +  65

3.5 Scalar M ultiplication

Scalar multiplication (or point multiplication) is the heart of Elliptic Curve Cryptogra­

phy (ECC), which computes k P  for a given point P  and a scalar k. In public-key crypto­

graphic systems, elements of some group are raised to large powers. In case of RSA it is ak 

and in case of Elliptic curve it is k P  .

The scalar multiplication in ECC is the most dominant computation part of ECC. There 

are many algorithms for computing the scalar multiplication. The IEEE standard one is the 

binary non-adjacent form (NAF) which is not the most efficient one. Table 3.8 summarizes 

scalar multiplication techniques.

Scalar multiplication in elliptic curves is a special case of the general problem of modular 

exponentiation in Abelian group. Therefore it benefits from all the techniques available for 

the general problem and the related short addition chain problem for integers. However 

there are also efficiency improvements available elliptic curve case that have no analogue in 

modular exponentiation. There are three kinds of these [10]:
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Table 3.6: Addition Formula in Lopez-Dahab Projective Coordinates for F 2 m

P l ^ P 2 P I  = P 2

a  = y22 i 2 +  n A = bZi4

B  = X 2 Z 1 +  X \

C = Z \ B

D = B 2(C + aZ\2)

E  = A C

F  =  X 3 +  X 2 Z 3

G = X 3 + Y2 Z3

X 3 = A 2 + D + E X 3 = X l 4 + A

Y3 = E F  +  Z 3 G Y3 = A Z 3 + X 3 (aZ3 +  Y !2 +  A 4)

Z 3 =  C2 Z 3 =  X \ Z 2

Cost: 14 M Cost: 5M

1. Choose the curve, and the base field over which it is defined, so as to optimize the 

efficiency of elliptic scalar multiplication.

2. Use the fact that subtraction of points on an elliptic curve is just as efficient as 

addition.If we allow subtractions of points as well, we can replace the binary expansion 

of the coefficient n by a more efficient signed binary expansion.

3. Use complex multiplication. Every elliptic curve over a finite field comes equipped 

with a set of operations which can be viewed as multiplication by complex algebraic 

integers (as opposed to ordinary integers).

In general the following methods try  to optimize kP.  Generally the optimization is 

based on[ll]:

1. Recording of multiplier k

2. Precomputation
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Table 3.7: Cost of Point Addition and Doubling in Different Coordinate System

Coordinate Transform P  + Q 2 P Field

Affine ( X ,Y ) I +  2M + S I +  2M + S Fp

Standard projective {X/Z,  Y /Z ) 12 M  +  2 5 7M + 5S Fp

Jacobian projective (IEEE) { X / Z 2, Y / Z 3) 12M + 4S 4 M  + 5S Fp

Jacobian projective (IEEE) 

Using mixed coordinate

{ X / Z 2, Y / Z 3) 15 M  +  55 +  7A  

11M + 4S + 7A

5M + 5S + 4 A F2m

Chudnovsky projective { X , Y , Z , Z 2, Z 3) U M  + 4S 5M  + 6S Fp

Lopez-Dahab projective {X/Z,  Y / Z 2) 14 M  + 55 5M  + 9S F2m

3.5.1 Speeding up Scalar M ultiplication (kP)

Binary M ethod

This method which is also known as the double-and-add (square and multiply for RSA) 

method, is over 2000 years old [12]. The basic idea is to compute gk or k P  using the binary 

expansion of k. Let

n -l
k = J 2  bi? (3.4)

i=0
Then the following algorithm will compute k P  using binary method, it takes n x E C D B L  

and ^ x E C  AD D  on average [10].

m-ary M ethod

The binary method has an obvious generalization: Let

d—l 
k =  ^  Cirri1 

i=o

The algorithm in table 3.10 computes k P  using this representation

30
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Table 3.8: Classification of scalar multiplication techniques

Name of Method Basic Idea Application Example

Comb [16] Precompute tables of 2m Q Q fix DH key exchange

addition chains [7] sum^~gki k fix DSA

Windowing (Fix, Variable) 

m —ary [10]

Precompute tables memory k = Y ^ —o ciTn% Q is not known Security Server

Scalar recoding [7] fewer zero in binary representation of k (NAF)

CO
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Table 3.9: k P  using Double and Add Method

A lgorithm : Scalar Multiplication: Binary Method [10] 

Input: A p o in t P ,  an in te g e r  k =  b{ — 0,1

Output Q = kP

Q *— O

For i  = n-1 to  0 by -1 

Q «- 2Q

i f  bi =  1 then  Q <— Q + P  

EndFor 

Return Q

This method is paxticulary attractive if m  =  2r . For r  =  3 it will be similar to octal 

representation of k, and for r  =  4 it will be similar to hexadecimal representation of A;. 

If m  = 2r this algorithm takes (n — r) x E C D B L  (since d =  n/r, (d — 1 )r = n — r) and 

d x E C  A D D  and (m — 1) x E C  A D D  for precomputation [7] [10].

Modified m -ary  Method

In case of m  — 2r , It is possible to save some E C  A D D  at precalculation phase, by dropping 

the trailing zeros at each nn . ie. we calculate rrijP when is odd.

Using this method number of E C  A D D  is n / r  + (m — 2)/2. The number of E C D B L  

remain the same. It is worth mentioning that we need to select the optimized r for a 

specific length of k. There is always a specific r  for a k which minimizes the number of 

elliptic computations [7].

Window Method

The m-ary or 2r-ary method may be thought of as taking A;-bit windows in the binary 

representation of r, calculating the powers in the windows one by one, squaring them r  

times to shift them over, and then multiplying by the power in the next window [7]v In

32

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.10: kP  using m-ary Method

A lgorithm : Scalar Multiplication: m-ary Method [10]

In p u t: A p o in t P ,  an in te g e r  k — YliZo kirn1, ki € { 0 ,1 ,.. . ,  m  — 1}

Output Q = k P  

P I  *— P

For i  =2 to  (m-1) by -1

P l i  <— Pi- 1  +  P  (pre calculate, Pi — iP)

Q <— O

For i  = d-1 to  0 by -1

Q <— mQ  (if m =  2r, this requires r doubling)

Q <— Q +  k{P (pre calculations is required to calculate all ctP)  

EndFor 

Return Q

other words it can be regarded as a specific case of window method, where bits of the 

multiplier k are processed in blocks of r bits. Window method processes windows up to 

length r  disregarding fixed digit boundaries, and skips runs of zeros between them. These 

runs are taken care of by point doubling, which need to be computed in any case. We 

assume r  > 1.

Using sliding windows has an effect equivalent to using fixed windows one bit larger, 

but without increasing the precomputation cost. The computation cost of sliding window 

method is estimated as n  x E C D B L  and n /( r  +  1) x E C  A D D  [10].

R e d u n d an t N u m b e r System : B inary  N A F

Subtraction has virtually the same cost as addition in the elliptic curve group. The group 

negative of (x, y) is (x, x + y) in characteristics two and (x, —y) in odd characteristics. This 

naturally leads us to scalar multiplication methods based on addition-subtraction chains, 

which may reduce the number of point operation. The signed-digit (SD) representation can

33
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Table 3.11: kP  using Modified m-ary Method

A lgo rithm : Scalar Multiplication: Modified m-ary [10] Method

In p u t: A p o in t P ,  an in te g e r  k = YliZo k im \  ki £ { 0 ,1 ,.. . ,  m -  1}

Output Q =  kP

Pi <- P, P2 «- 2P

For i  =1 to  (m-2)/2 by -1

P 2 1 + 1  <— p 2t - i  +  P 2 (pre calculate, odd multiplies of P )

Q + - 0

For i  = d-1 to  0 by -1 

I f  kj 7^ 0 then

Let sj and hj be such th a t  kj = 2si h j , hj odd

Q ^ ( 2 r~°J)Q 

Q <— Q + Ph.,

E lse Sj <— r 

Q ^ - 2 siQ  

EndFor 

R eturn Q

be applied to all methods discussed so far, but this technique cannot be used for modular 

exponentiation in RSA.

This begins with the non-adjacent form (NAF) of the coefficient k : a signed binary 

expansion with the property that no two consecutive coefficients are nonzero. For example, 

NAF(29)  = (1,0,0, —1,0,1) since 29 =  32 — 4 +  1.

Just as every positive integer has a unique binary expansion, it also has a unique N A F .  

Moreover, N A F (k )  has the fewest nonzero coefficients of any signed binary expansion of k 

[7]. There are several ways to construct the N A F  of k from its binary expansion.
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Table 3.12: kP  using Window Method

Algorithm: Scalar Multiplication: Sliding Window Method [10]

Inpu t: A p o in t P ,  an in te g e r  k = W , h  G {0,1}

Output Q = kP  

Px <-P ,P 2 ^ 2 P  

For i  =1 to  (2r - 1 - l )

P21+1 P2 1 -1  +  P2 (pre calculate, odd multiplies of P)

j  <— n — IQ <— O 

For i  = d-1 to  0 by -1 

I f  kj ^ 0  then

Let t be th e  le a s t  in te g e r  such th a t  j  — t + 1  < r and kt = 1

hj < (fcj, kj—i , . . . )  kt ) 2  

Q ^ ( 2 0 - W ) ) g  +  P/i.

j  «- t -  1 

E lse Q <-2Q, j  <r-j - 1  

EndFor 

Return Q

Consider representations

n—1
n =  where c* e  { -1 ,0 ,1}  for all i (3.6)

i= 0

Let the weight of a representation be the number of nonzero c*, and let w(x) be the min­

imum weight of any such representation of x. A non-adjacent form N A F  is a representation 

with CiCi+\ =  0  for a li i  > 0 .

Theorem: Every integer x has exactly one NAF. The number of nonzero in the NAF is 

w(x) The advantage of using the NAF is that, in general it has fewer nonzero than the binary 

representation, reducing the number of multiplications. The expected number of nonzero 

in a length n N A F  is n/3. NAF(k)  can be efficiently computed using the following
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in table 3.13. Table 3.14 shows the algorithm for scalar multiplication using Binary N A F  

method.

Table 3.13: C onverting a number to N A F

A lgorithm : Computing the N A F  of a positive [10] integer 

Inpu t: A p o s it iv e  in te g e r  k

Output NAF(k)  

i *— 0

While k >= 1

I f  k i s  odd then : ki <— 2 — (k mod 4), A; <— k — ki

Else k <— 0 

k <— k / 2 , i = i +  1  

EndWhile

Return (&j_i, fcj_2 , . . . ,  k\, ko)

The m —ary method may of course also be generalized to allow negative digits. However, 

the savings quickly go down, since the average number of nonzero in an n-digit generalized 

N A F  is n(m  — 1 )/(m  +  1), which is not much better than the n(m — l)/(m ) in the base-m 

representation for large m. Using Binary N A F  the algorithm in table 3.14 will compute 

kP.

The cost of the algorithm is n  doubles and n /3  additions. For a total of 4n/3 elliptic 

operation. This is about one-eighth faster than the binary method, which uses the ordinary 

binary expansion in place of the N A F  and therefore requires an average of n /2  elliptic 

additions rather than n/3.

W id th -w  N A F  M eth o d  [10]

The so called width-ic N A F  method is the special case of signed modified m-ary method, 

or N A F  representation of modified m-ary method, where m =  2W. A width-w N A F  of an

36
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Table 3.14: k P  using N A F  representation for k

A lg o rith m : Scalar Multiplication: NAF Binary Method [10] 

In p u t: A p o in t P ,  an in te g e r  k =  X̂ -Tq1 Cj2\c* =  —1,0,1

Output Q = kP  

Q <— O

For i  = n-1 to  0 by -1 

Q «- 2 Q

i f  bi =  1 then  Q <— Q + P  

i f  bi =  —1 then  Q <— Q — P  

EndFor 

Return Q

integer k is an expression 

d - 1
k< e  { -2 ” , _ 1  +  1 , . . . , 0 ,1 ,3 , . . . 1 2u'- 1 }

i= 0

In other words each non-zero coefficient ki is odd, |/cj| < 2W~1, and at most one of any 

w consecutive coefficients is nonzero. Every positive integer has a unique width-u; N A F ,  

denoted N A F w(k). Note that N A F 2 (k) =  NAF(k) .  N A F w(k) can be efficiently computed 

using N A F  algorithm in table 3.13 modified as follows: in the first statement of the While 

loop replace ki «— 2 — (k mod  4) by ki +—2 — (k mod 2W), where k mod 2W denotes 

the integer u satisfying u =  k(mod2 w) and — 2 W ~ 1 < u <  2 W~1.

It is known that the length of N A F w(k) is at most one bit longer than the binary 

representation of k. Also, the average density of non-zero coefficients among all width-u; 

NA F s  of length n is approximately n/(w  +  1 ) [1 1 ]. It follows that the expected running 

time of scalar multiplication using Width-u; is approximately E C D B L  +  (2W~2 EC ADD)  

for precalculation and (u> +  1 ) E C  ADD + n .ECDBL)  for the scalar multiplication itself [9]. 

Note that the number of E C D B L  is not changed. When using projective coordinates, the 

running time in the case n  =  163 is minimized when u; =  4. For the cases n =  233 and
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n  =  283, the minimum is attained when w =  5; however, the running times are only slightly 

greater when w — 4.

3 .5 .2  Scalar M u ltip lica tion  S u m m ary

Table 3.15 summarizes number of point addition and point doubling in each of the discussed 

scalar multiplication methods. As it is clear form the table, recording methods decrease 

number of additions, but number of point doubling remains almost the same. Although 

window methods are faster but they need extra memory to save 2 P, 3 P, — 1 )P.

Table 3.15: Number of Point operation in different scalar multiplication Method

Method # P  + Q (Average) # 2  P

Binary (double-add) n / 2 n

m-ary, m  = 2 r n / r  +  (2 r -  1) n — r

modified m-ary, m  =  2 r n / r  +  (2 r _ 1  — 1) n — r

Binary NAF (double-add,sub) n/3 n

width-u; N A F  Method n / ( r  + 1) +  2 r ~ 2 «  n

r-adic N A F  (Koblitz curves only) n/3 0

3.6 Special M ethods for Scalar M ultiplication

3 .6 .1  A n om alou s B inary  C urves (K o b litz  C urves)

Two extremely convenient families of curves are the anomalous binary curves (or ABC’s). 

These are the curves E q and E\  defined over F 2  by

Ea : y2 +  xy  =  x 3 + ax2 +  1, a € {0,1}

Using Koblitz curves speeds up the scalar multiplication calculation as indicated in 

table 3.15. However, there are concerns about the security of ECC using Koblitz curves. A 

complete discussion on Koblitz curves can be found in [2].
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3 .6 .2  P o in t H a lv in g

In [13], Knudsen introduces a new method for scalar multiplication on a non-supersingular 

elliptic curve over GF(2m). The idea is to replace all point doubling with a faster operation, 

called point halving. Moreover, Knudsen shows that the halving algorithm is superior to 

previous algorithms when it is implemented using affine coordinates and normal basis. 

However, the halving algorithm has a storage limitation if a polynomial basis is used, where 

the required storage is in the order of magnitude 0 ( n 2) bits. The halving algorithm and 

the Montgomery method cannot take advantage of Koblitz curves properties.

3.7 M ontgom ery Scalar M ultiplication Algorithm

A different approach for computing kP  was introduced by Montgomery [17] in 1987. This 

approach is based on the binary method and the observation that the x-coordinates of the 

sum of two points whose difference is known can be computed in terms of x-coordinates of 

the involved points. This method uses the following variant of binary method.

Table 3.16: Montgomery Scalar Multiplication Algorithm

A lgorithm : Montgomery Scalar Multiplication, in Projective Coordinate 

In p u t: A p o in t P  = (x, y) £ E, an in te g e r  k > 0, k =  &«2’> e  (0> 1}

O utput: Q = kP

P\ «- P, P2 <- 2P  

For i  = n-2 to  0 

i f  bi = 1  then

Pi <— Pi +  P2, P2 <— 2 P 2

else

P2 <— Pi + P2 , Pi 2Pi

EndFor

Q - P i

Return Q _
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Table 3.17: Montgomery Scalar Multiplication Algorithm in Projective Coordinate

A lgo rithm : Montgomery Scalar Multiplication, in Projective Coordinate 

In p u t: A point P  =  (x , y) £ E,  an integer k = 6*2*, bi = 0,1

O utput: Q = kP

X I  <— x, Z l  <— 1 , X 2 <— a: 4  +  b, Z 2 *— x 2 

I f  (k — 0 or x  =  0) 

R  <— O 

Stop
For i = n — 2 to 0 

if ki = 1 then 
Madd(Al, Zl ,  X2, Z 2 ) , Mdouble(X2, Z2) 

else

Madd(A2, Z2, X I ,  Z l ) , Mdouble(Al, Z l )

EndFor

Q =Mxy(Xl, Z1 ,X2 ,Z2)

Return Q

This method maintains the invariant relationship P2 —P1 = P,  and performs an addition 

and a doubling in each iteration. In [61] this algorithm is converted to projective space and 

after simplification the following algorithm is derived.

3 .7 .1  C alcu lation  

D oubling algorithm

Input: the finite field GF(2m); the field elements a and c =  6 2 "* ” 1 (c2  =  b) defining a curve 

E  over GF(2m), the x-coordinate X / Z  for a point P.  Output: the x-coordinate X / Z  for 

the point 2 P.

x(2 P) = X 4 + b x Z 4 (3.7)

40
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3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.18: Steps in Point Doubling, MdoubleQ

1 T i = c

2

CN*II

3 Z  =  Z 2

4 Ti = Z x T i

5 Z  = Z  x X

6

11

7 X  — X 2

8 X  =  X  +  Ti

z(2P) = X 2 x Z 2 (3.8)

This algorithm requires one general field multiplication, one field multiplication by the 

constant c, four field squaring and one temporary variable ( Table 3.18).

Addition algorithm

Input: the finite field GF(2m); the field elements a and b defining a curve E over GF(2TO);

the x-coordinate of the point P; the ^-coordinates X l / Z l  and X 2 /Z 2  for the points P I

and P2 on E. Output: The x-coordinate X l / Z l  for the point P I  +  P2.

= Ô i * Ei  +  X 2 x Z \ ) 2  (3.9)

X 3  =  x x Z 3 + (Ai x Z 2 ) x  (X 2 x Zi)  (3.10)

This algorithm requires three general field multiplications, one field multiplication by x, 

one field squaring and two temporary variables(Table 3.19).

Affine coordinates algorithm  M xy()

Input: the finite field GF(2m); the affine coordinates of the point P  =  (x, y); the x- 

coordinates X l / Z l  and X 2/Z 2  for the points P I  and P2. Output: The affine coordinates
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R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.19: Steps in Points Addition, MaddQ

1 T\ — x

2 X x = X x x Z 2

3 Zi = Z\  x  X 2

4 T2 = X i  x Zi

5 Zi = Zi  + X i

6 Zl = z l

7 X i  — Z i x  Ti

(xk,yk)  = (X2,Z2)  for the point P I .

x k =  ^  (3.11)

yk = {x + x k)[(y + x 2) + ( ^  + x ) &  + x)] x -  + y (3.12)
Z  2 Z l  X

This algorithm requires one field inversion, ten general field multiplications, one field 

squaring and four temporary variables (Table 3.20).

3 .7 .2  P erform ance

The performance of Montgomery scalar multiplication algorithm is shown in Table 3.21. 

Note that in Montgomery algorithm one point addition and one point multiplication is

needed for each bit in the scalar, while, whereas using NAF, on an average n /3  number

of point addition are needed for scalar multiplication. Even if the number of operation 

is divided by 3 the number of operation in Montgomery algorithm is less th a t the other 

methods.

3 .7 .3  S id e  channel A ttack

Side channel attack (SCA) on cryptosystems uses leakage of a certain side-channel informa­

tion such as timing, electromagnetic radiation and power consumption to obtain information
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3. INTRODUCTION TO ECC COMPUTATIONS

about the private key.In elliptic curve cryptosystems scalar multiplication algorithms are 

target for SCA. In scalar multiplication k P  is calculated were k is a secret key and P is 

usually not a secret and even can be chosen by the attacker. If the sequence of executed 

instructions in the algorithm is directly related to the bits of the private key a successful 

power-analysis attack can be carried out on the cryptosystem. As in can be seen in table 

3.9 it is possible to distinguish a point addition by measuring the power of the device which 

is executing the algorithm. This makes the insecure against SCA. The algorithm presented 

in 3.16 is secure against power attack since the operation performed in each step of the 

scalar multiplication algorithm is not dependent to the bits of k.

The execution time of the algorithm in table 3.9 depends on the number of bits in the 

binary representation of k. This makes the algorithm vulnerable to time analysis attack.
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Table 3.20: Steps in Converting the Coordinates MxyQ (Table 3.17 )

1 if Z\ = 0 then output (0,0) and stop

2 if Z2 — 0 then output (x, x + y) and stop

3 T\ =  x

4 II
5 T3  =  Z\ x Z2

6 Z\ — Z\  x 7i

7 Z 1 = Z 1 + X 1

8 Z 2 — Zi  x  T\

9 X i  = Z2 x  Xj

1 0 z 2 =  z 2 +  x 2

1 1 Z2 =  Z2 x Zi

1 2 $ II

13 t a = t 4 + t 2

14 T4 = T4 x T3

15 t 4 = t 4 + z 2

16 T3 = T3 x T\

17 T3 = inverse(T3)

18 T4 = T 3 x T4

19 X 2 = X i X  T3

2 0 Z 2 =  X 2 +  T\

2 1 Z 2 = Z2 x T4

2 2 ^ 2  =  ^ 2 +  T2

Table 3.21: Cost of scalar multiplication for projective version of Montgomery algorithm

Representation Point Addition Point Doubling

Montgomery, Projective version 4M+1S+2A 2M +  4S +  1 A
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Chapter 4

Fast Parallel Elliptic Curve Scalar 

Multiplication

4.1 Introduction

This chapter presents a fast parallel elliptic curve scalar multiplication algorithm based on a 

dual-processor hardware system. The method has an average computation time of ^ EC ADD 

on an n-bit scalar. The improvement is nECDBL compared to conventional methods. When 

a proper coordinate system and binary representation for the scalar k is used, the average 

execution time will be as low as nECDBL, which proves this method to be about two times 

faster than conventional single processor multipliers using the same coordinate system.

4.2 Previous Work

Scalar multiplication is the basic operation for Elliptic Curve public key cryptography. The 

operation is defined as

Q = kP = P  + P  + . . . + P  (4.1)

where P  and Q are points on elliptic curve E  defined over GF(2”) and A; is a scalar in
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4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

the range of 1 < k < Ord(E).

4.2.1 Conventional Scalar M ultiplication M ethods [10]

Double-and-add is probably the simplest (and oldest) method of scalar multiplication. The 

basic idea is to compute kP  using the binary expansion of k. Let

n—1

* =  (4.2)
i=0

then algorithm 4.1 computes k P  using Double-and-add method. The bit examination 

can be done from the most significant bit (MSB first method) or the least significant bit 

(LSB first method).

Table 4.1: Scalar Multiplication using standard binary method (LSB first)

A lgorithm : Point Multiplication, Binary Method 

In p u t: A point P, an integer k = X̂ -Tq1 6 * € 0,1 

O utput: Q = kP

Q <— P

R  <—  O For i  = 0 to n-1 by 1 
If bi — 1 Then 

R  <— R  +  Q 

Q+-  2 Q

EndFor 

Return R

The execution time for the algorithm is proportional to n Elliptic Curve point dou­

bling operation (ECDBL), and on average j  Elliptic Curve point addition operation (ECADD). 

Therefore the total average execution time will be nECDBL +  ^ ECADD. If redundant repre­

sentation (ie., binary NAF) is used to represent the scalar k, the average number of one or

minus one in the representation of k will be reduced to In this case the average execution
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time will be proportional to nECDBL 4- ÊCADD [10] [7]. Table 4.2 summarizes the execution 

time of different conventional scalar multiplication methods.

Table 4.2: Execution time of k P  using different conventional methods

Method Average Execution Time

Binary [10] (n -  1) ECDBL +  ECADD

Binary NAF [10] (n -  1)ECDBL +  ^ECADD

Window [10] nECDBL +  ECADD

It can be seen from the algorithm that in least significant bit-first (LSB first) method 

ECDBL and ECADD operations are independent, and they can be performed in parallel.

4.2.2 Speeding up Scalar M ultiplication

Many methods have been proposed in the literature to speed up scalar multiplication. These 

methods are classified in table 3.8. Constraints in scalar multiplications are speed, memory 

usage and security against side channel attack (SCA). Methods with precomputations, like 

Window method and Comb method are faster but they need extra memory to store pre­

calculated values. Addition Chain methods and Comb methods are very effective when k 

and P  are known in advance, respectively. In comparison Window methods are efficient for 

most cases.

4.2.3 Parallel Architectures

Parallel architectures for scalar multiplication can be done in the scalar multiplication 

algorithm level or in the calculation of ECDBL or ECADD itself. In [19] Moller proposes a 

parallel algorithm for scalar multiplication which is fast and secure against side channel 

attack. This paper proposes a method which uses two processors and a circular buffer, 

which acts as a communication channel between the two processors to reduce the average 

time of the scalar multiplication to nECDBL. This way the total time for ECADD is saved,and
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the system can be as fast as a system using radic N A F  for Koblitz curves.

4.3 Improved Parallel Scalar M ultiplication

The proposed method for calculating k P  uses two processors, one for execution of ECDBL 

and one for ECADD. The two processors may operate asynchronously. The ECDBL processor 

calculates 21P  and stores them to a circular buffer. The ECADD processor reads from the 

circular and performs the addition. Figures 4.1 and 4.3 depicts the operation flowchart of 

the ECDBL processor and ECADD processor respectively.

Figure 4.1: Point doubling Flowchart, Runs on ECDBL processor

S t a r t

s t o p

b u f f e r _ f u l l  (

p u t _ b u f f e r ( Q )

The two processors share the circular buffer and a counter. The buffer can be a standard 

circular buffer and should provide empty and full flags. _
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Figure 4.2: Point Doubling Flowchart, Runs on ECADD processor

t a r t ,

b u f f e r _ e m p t y ()

= R + g e t _ b u f f e r ()

s t o p

The ECDBL processor fills up the buffer with 2lP, and ECDBL processor takes the points 

from the buffer. If the data in the buffer are not consumed by the ECADD processor the 

buffer becomes full and the ECDBL processor needs to wait until there is free room in the 

buffer. On the other hand if there is not enough ones in the binary representation of k, 

the buffer becomes empty after a while and ECADD processor needs to wait until data is put 

into the buffer by ECADD processor. In the hardware implementation the buffer should be 

implemented using dual port RAM/register so that both processors can have simultaneous 

access to it. In software implementation locking mechanism is needed for accessing the 

counter and the buffer, since they are accessed from the two processes.
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Table 4.3: Point Doubling Algorithm, Runs on ECADD processor 

A lgorithm : Point Doubling

In p u t: A point P,  an integer k =  ^"Jq 1 b%21, bi 6  0,1 

O utput: 2iP,  Stored in the buffer 

Global: i ,  b u ffe r

Q + - P

i := 0 
While i<n

If bi =  1 then 

If buffer_full()
Continue 

put _buff er(Q )

Endlf 
Q < - 2 Q  

i := i +1 
EndWhile

4.3.1 Performance of the Parallel Algorithm

The performance of the algorithm depends on the ratio of ECADD/ECDBL and the probability 

of occurrence of nonzero ( 1 — P(0) ) in the binary representation of the multiplier k. The 

ECADD/ECDBL ratio depends on the coordinate system in which the elliptic curve calculation 

is performed. And P(nonzero) depends on the binary representation form of k. For example 

in NAF representation P(nonzero) = 5 . Table 4.5 summarizes the cost of elliptic curve 

point calculation in different coordinate systems.

Simulation results of the algorithm are summarized in table 4.6. The results show 

that when NAF representation for k is used, the algorithm keeps the average number of 

ECADD operations at about n/3, regardless of n  and ECADD/ECDBL ratio. The number of 

extra ECDBLs that we need in addition to ^ ECADD depends on ADD/DBL ratio. Therfore for
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Table 4.4: Point Adding Algorithm, Runs on ECADD processor

A lgorithm : Point Addition 

In p u t: 2iP,  Read from the buffer 

O utput: R  =  kP  

Global: counter i ,  b u ffe r  

R < - 0

While i<n Or Not bu ffer.em pty ()

I f  Not buffer_em pty()

R*—R+  g e t_bu ffer()

EndWhile 

R eturn R

equal ECADD the faster the ECDBL, the faster the multiplication will be. It can be seen 

from the results that if ECADD/ECDBL > P ( l)  then essentially the number of ECDBL remains 

constant, which means ECDBL is being executed almost always in the background. Running 

the simulation for n =  160 leads to table 4.7 which predicts the execution of the algorithm 

using different coordinate system for elliptic curve and NAF for representation of k. It can 

bee seen from table 4.7 that the algorithm is 2 times faster than single processor scalar 

multiplication method.

4.3.2 Security Against Side Channel Attack (SCA)

The execution time of the algorithm depends on the scalar integer k. For example if k —

100... 1001 the execution time will be close to nECDBL. In case of k = 10101... 101010 the 

execution time will be ^ECADD. Therefore the algorithm cannot be immune to SCA. But, 

since the execution time depends on the total number of ones and on the distribution of 

ones, many values of k will have the same execution time. Therefore the algorithm offers 

better security against SCA when compared to the standard double-and-add methods.
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Table 4.5: Execution time of ECADD and ECDBL in different coordinate systems

Coordinate Transform ECADD/ECDBL Field

Affine {X ,Y ) I  + 2  M / I  +  2 M  = 1 Fp

Standard projective (.X / Z , Y / Z ) 12M/7M  =1.7 Fp

Jacobian projective ( X / Z 2 , Y / Z 3) 12M /4M  =3 Fp

Jacobian projective ( X / Z 2, Y / Z 3) 14M /5M  =2.8 ¥ 2m

Chudnovsky projective (X , Y , Z , Z 2 , Z 3) 11M/5M =2.2 Fp

Lopez-Dahab projective ( X / Z , Y / Z 2) 14M /4M  =3.5 F2m

4.4 Conclusion

A parallel method for scalar multiplication is introduced which uses two processors to 

perform the kP  operation. Using proper implementation this method is 200% faster than 

single processor methods. The method can be implemented both in hardware and software.
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4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

Table 4.7: Simulation result for 160-bit scalar, for different coordinate system.

Coordinate #Proc. ECADD/ECDBL #ECADD #ECDBL #O p

Affine 2 1 53 106 1440M

Chudnovsky projective 2 2 . 2  ^  2 53 54 800M

Jacobian projective 2 3 53 8 672M

Lopez-Dahab projective 2 3.5 ss 4 53 2 860M

Jacobian projective 1 (Table 3.14) 53 160 1276M

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



Chapter 5

Architecture fo r  a Fast Elliptic Curve 

Processor (ECP)

5.1 Introduction

A high performance elliptic curve processor is presented. The processor uses parallelism in 

instruction level to achieve high speed execution of scalar multiplication algorithm. The 

architecture relies on compile-time detection rather than run-time detection of parallelism 

which results in less hardware. Implemented on Xilinx Virtex 2000 FPGA, the proposed 

processor operates at 6 6 M H z  in GF(2167) and performs scalar multiplication in 100p5ec, 

which is considerably faster than recent implementations. The 0.18pm ate level simulation, 

shows that the processor can at 300M H z,  performing k P  in 22/j.Sec.

Efficient utilization of hardware resources is a key element in a fast processor design. 

Most fast elliptic curve processors (ECP) use a bit-parallel word-serial (BPWS) finite field 

multiplier, either in direct form [57] [53] or in Karatsuba form [46] [49] [53] . In all the 

processors multipliers occupy the bulk of hardware. The proposed architecture maximizes 

the utilization of the multiplier.

In the field of elliptic curve cryptography, when calculating the speed of a scalar multi­
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plication algorithm, finite field multiplication is considered to be the most time consuming 

operation. Finite field addition (and squaring in ONB designs) is considered to be free[10] 

[21] (pp 127-130). It goes to such an extent that in the analysis of scalar multiplication 

algorithms, the cost of addition is ignored . In some software implementation reports, the 

cost of addition and squaring is ignored [9] as well. This can be true in software implementa­

tions or in hardware designs using serial finite field multipliers (see section 5.2). Considering 

some high speed hardware designs, we conclude that, the execution time of addition and 

squaring becomes comparable to execution time of multiplication(table 5.1 ).

Table 5.1: Typical number of execution cycle of basic FF operations

Design Multiplication Addition Squaring

[46] 9 > 2 2  (est.)

[57] 7 3 3

[53] 12 < M  > 7 2 2

[62] 7 3 2

presented 8 3 2

Deducing from the above, overlapped execution hardware can be used to increase perfor­

mance. This approach, which is closer to complex instruction set computer (CISC) design, 

is successfully employed in [53] to pair multiplication with addition, and multiplication 

with squaring to increase the performance. However this approach increases the size and 

complexity of hardware. Using parallelism in instruction level , the compiler analyzes the 

program and detects operations to be executed in parallel. Such operations are packed 

into one large instruction. Therefore no hardware in needed for run-time detection of paral­

lelism. The reduced instruction set computer (RISC) type instruction set helps to prepare a 

more efficient instruction pack(fig. 5.10). The presented processor implements the following 

features to achieve high execution speed.

•  Parallelism in instruction level __
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• RISC type instruction set

• One cycle instruction execution

• Pipeline finite field multiplier

5.2 Previous Work

The hardware implementation of ECC has come a long way from a modest beginning of 

ASIC implementation on a 2  micron technology [32] running at 40M H z  to the 0.13 micron 

technology running at 500M H z  [52]. The FPGA implementation started off on Xilinx 

XC4000 with 2304 slices and 13000 gates [33] and presently is on Xilinx XC2V6000 having

6,000,000 gates running at 100M H z .  [46]

Advances in ASIC and FPGA technologies have led to new architectures and faster 

designs. Most changes are in the design of the finite field multiplier and in the architecture 

itself. New designs take advantage of this to introduce more parallelism in finite field 

calculation.

Elliptic curve cryptosystems can be implemented on GF(p) and GF(2m). Usually 

GF(2m) lead to a smaller and faster design. However, due to pending patents there are 

some restrictions on GF(2m) implementations. This thesis mainly discusses GF(2m) imple­

mentations. Based on the design constraints ECPs are implemented using ASIC or FPGA. 

Elliptic curve hardware implementations can be categorized as follows:

1 . Implementations utilizing a general purpose CPU and a finite field accelerator: The 

early hardware implementations fall into this category [32] and recently [41]. However, 

because of the evolution of system on chip (SoC) these implementations are becoming 

attractive [49].

2. Elliptic curve processors (ECP) based on serial finite field multiplier on GF(2m): 

These processors are compact but slower than other implementations [45] [34].

3. ECPs based on bit-parallel word-serial (BPWS) finite field multiplier on GF(2m) : 

This architecture results in a fast design and relatively larger hardware. With the
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dramatic increase of hardware accommodation , most recent fast designs fall in to 

this category [46] [57] [53].

4. P rocessors on CF(p): T hese processor use modular operations for finite field arith­

metic, therefore they utilize more hardware resources and are relatively slower than 

GF{2m) implementations [29].

5. Dual field, general purpose crypto-processors: These processors are also available 

commercially. They work in GF(p) as well as GF(2m). Since the design in not 

optimized for GF{2 m) they are usually slower than the third category [38] [52].

Table 5.2 1 summarizes most published designs. In table 5.3 speed of these implemen­

tations are listed. Comparing these designs is not easy, since they have been optimized 

for different purposes, having different architectures and are implemented on different plat­

forms. Since this work is optimized towards operating speed, in the following sections we 

compare our results to the faster designs. Wherever possible, we estimate the speed of the 

design we are comparing to, as if it would be implemented on a hardware similar to ours.

5.3 Elliptic Curve Calculation, Arithm etic Hierarchy

The hierarchy of arithmetics for EC point multiplication is depicted in figure 5.1. The 

scalar multiplication (k P ) algorithm is performed by repeated point addition and doubling 

operations. The point operations in turn are composed of basic operations in the underlying 

finite field (FF). The proposed processor performs finite field addition and squaring in one

1est.: estimated 

FF: Flip Flop LUT: Look Up Table 

M.O.: Massey Omura multiplier 

ONB: Optimal Normal Basis 

Poly.: Polynomial multiplier 

Pr.: Presented

Sc.: Scalable, Being able to change both field size and the elliptic curve parameters without reprogramming 

the hardware
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Table 5.2: List of EC hardware implementations

P la tfo rm Y ear H W  R es. Sc.

[32] ASIC 1993 ONB 1 1 0 0 0 Gates

[33] XC4062XL 1998 Poly. 1810 CLB Only GF((2~4)~9) could be placed and routed

[34] XCV300-4 2 0 0 0 ONB 1290 Slice Only 64bits of k are set to one

[57] XCV400E 2 0 0 0 Poly 3002, 1769 LUT, FF D=16, Montgomery kP

[36] ASIC 0.25 2 0 0 0 Poly 165000 Gates V Simulation result

[37] XC4085XLA 2 0 0 1 M.O. 1450 CLB Rapid Prototyping, Core Generator

[38] ASIC 0.25 2 0 0 1 Poly 880000 Gates y/ Dual Field, Power consideration

[39] XCV1000 2 0 0 2 M.O. 48300 LUT

[41] XCV2000E 2 0 0 2 Poly 2790 Slice (est.) Koblitz Curve

[42] ASIC 0.35 2 0 0 2 Poly 14298 Gates Compact

[43] XCV1000-6 2 0 0 2 ONB 2614 Slice

[44] XC2S200 2 0 0 2 Poly y/ Montgomery kP

[45] ASIC 0.35 2 0 0 2 ONB 2 0 0 0 0 Gates

[46] XC2V6000 2003 Poly 19440, 16970 LUT, FF Clock is Predicted,

[47] ASIC 0.35 2003 Poly 56000 Gates y/ Montgomery affine, EUA for inverse

[48] ASIC 0.35 2003 ONB ALU, Asynchronous

[52] Asic 0.13 2003 Poly 117500 Gates y/ Dual Field, 500MHz (max) for this particular field

XC2V2000E-7 2003 Poly 20068, 6321 LUT, FF V Montgomery kP, 0.302mSec for unnamed curves

[62] XC2V2000 2003 Poly 10017, 1930 LUT, FF

Pr. XC2V2000 2004 Poly 13900, 3200 LUT, FF Montgomery kP
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5. ARCHITECTURE FOR  A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.3: Speed of kp  of different ECPs, at the specified finite field, and maximum frequency

P la tfo rm G F (2m) C lk  (M hz) kP (m s) Scalab le

[32] ASIC ONB 155 40 27.000 est.

[33] XC4062XL Poly. 8 x2 1 16 4.500 est.

[34] XCV300-4 ONB 113 45 3.700

[57] XCV400E Poly 167 76.7 0 . 2 1 0

[36] ASIC 0.25 Poly 163 6 6 1 . 1 0 0 V
EPF10K250 163 3 80.000

[37] XC4085XLA M.O. 155 37 1.290

[38] ASIC 0.25 Poly 160bits 50 5.200 est. V
[39] XCV1000 M.O. 191 36 0.270

[41] XCV2000E Poly 176 40 6.900

[42] ASIC 0.35 Poly 160 1 0 20.602 est.

[43] XCV1000-6 ONB 113 31 0.810

[44] XC2S200 Poly 163 55 3.770 V
[45] ASIC 0.35 ONB 209 2 0 30.000 est.

[46] XC2V6000 Poly 233 1 0 0 0.123 est.

[47] ASIC 0.35 Poly 167 1 0 0 2.300 est. v/

[48] ASIC 0.35 ONB 173 Asynch. 1 . 2 0 0  est.

[52] Asic 0.13 Poly 160 bits 500 0.190 V
[54] XC2V2000E-7 Poly 163 66.4 0.143 V
[62] XC2V2000 Poly 163 6 6 0.233

Pr. XC2V2000 Poly 167 6 6 0 . 1 0 0
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5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.1: Arithmetic Hierarchy in Elliptic Curve Calculation

Scalar M ultiplication Algorithm

Finite F ield  A rithm etic

2PP+Q

Mult DivSquareAdd
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clock cycle (excluding register load and unload time). The finite field multiplication is more 

costly. The number of clock cycles for its computation depends on size of the finite field. 

Compared to FF-addition and FF-squaring and FF-Multiplication, the FF inversion is a 

very expensive operation. It is performed by software using basic finite field operations 

(Sect. 5.3.2).

5.3 .1  F in ite  F ie ld  A r ith m e tic

Elliptic curve calculation over finite fields is based on finite field addition, subtraction, 

multiplication, squaring and division(Fig. 5.1). Here, we will focus on binary polynomial 

fields GF(2m). Using polynomial basis for finite field representation a field element a £ 

GF(2m) can be represented as a — am- i x m ~ 1 +  am- \ x m~l +  . . .  +  a ix 1 + aoxo where 

aj £ G F(2). Addition of two polynomials a and b is performed by adding coefficient a* 

and bi in modulo 2, which is a bitwise XOR operation of a and b. For example, adding 

two polynomials a = x 3 + x 2 + 1 and b = x 2 +  x 1 can be computed as ( 1 1 0 1  +  0 1 1 0 ) =  

(1101 X O R  0110) =  1011 or c = a + b = x 3 +  a: 1 +  1. In GF(2m) calculation addition 

and subtraction are the same, since 1 +  1 =  0 mod 2 , i.e. 1 is the inverse of 1. It is clear 

that representing elements of G F (2 m) in a digital computer is easy, since it contains only 

zeroes and ones(Fig. 5.2).

Multiplication of two elements a.b £ G F(2m) is carried out by multiplying two -poly-
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5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.2: Representing an element in Galois field GF(2m)

a o a > a 2 a 3 a4 a 5 a6

A member of GF(2A7)

nomials using the distributive law and then reducing the resultant polynomial in modulo 

2 and then modulo f(x ) . f (x )  is of degree of m and defines GF{2m) for a chosen field 

of degree to. For example, given polynomials a = x 3 + x  + 1 and b = x 3 +  1 of G F(24), 

represented as a = 1 0 1 1  and b =  1 0 0 1 , co = a x b  = x 6 + x 4 + x + l  can be computed as:

1 0 1 1  x 1 0 0 1

1001

+ 1001

+ 0000

+ 1001

= 1010011

Assuming f ( x )  = x 4 + x 3 + l , represented as f  — 11001, the reduction c =  co mod f  = 

x 2 + 1  can be performed as:

1010011

+11001

=0110111 

+ 11001

=0000101

An illustrative way to look at reduction is that f is aligned with the most significant 

bit of the operand and added until the degree of the result is smaller than to. A parallel
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5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.3: Parallel Finite Field Multiplier in G F(25) [58]

1*1 6

7*

6 4

7*1
■ £ k 7*
7^ 7^ 7^

r* \^  n 'vk

=©—  

H E ® 1

architecture for finite field multiplication is depicted in figure 5.3. An AND gate matrix 

and an XOR tree performs the multiplication. Squaring can be performed easily using XOR 

gates, specially if the finite field is defined over a trinomial [58].

5 .3 .2  F in ite  F ie ld  Inverse

The multiplicative inverse of any element o E F 2 m is the element a - 1  E F2 m such that 

aa~ 1 — 1 mod /(x ) , where f (x )  is the irreducible polynomial of the finite field.

Inversion is the most costly operation in finite field arithmetic. Basically there are two 

methods for calculating inverse, using Fermat’s little theorem and using extended Euclidean 

algorithm [64].

The Itoh-Tsuji algorithm [59] is the most efficient technique to compute an inverse based
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5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.4: Finite Field Squarer in G F(27) [58]

« 0  a -2 113 114 «« «<s

on Fermat’s little theorem. Fermat theorem in finite field states that,

a — 1 mod f (x )  , therefore - i  _  /,2 m —2  _  / 2 m_1 —1 ^ 2a = a = (a* - 1)".

Figure 5.5 depicts the basic idea in Itoh-Tsuji inverse algorithm, where a 2 * - 1  is calculated 

in 3 steps (log2  8  ). In step n one field multiplication and 2n _ 1  field squaring is needed.

Figure 5.5: Simplified Inverse Calculation

noo 11110000

11111111 2 -1  a -  a

In general a2" 1 can be calculated iteratively using equation 5.1. The complete algo­

rithm for inverse is shown in table 5.4.

a 2 " - 1 =
(a2 2 )2 "/2 (a2 2 n  even

(5.1)
a(a 2 § - 1 ) 2  n  odd

Calculating a~ 1 in GF(2m) needs M (m ) =  [log2(m — 1)J +  h(m  — 1 ) — 1 multiplication 

and m  — 1  squaring, where h(x) is hamming weight of x  (the number of non-zero bits in 

the binary representation o fx ).
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Table 5.4: Itoh-Tsuji Inverse Algorithm

Algorithm: Itoh-Tsuji Inverse Algorithm 

In p u t: a G GF(2n), m  =  m ,2 \ m, e  {0,1}

Output: b =  a - 1

b =  am n _ 1  

e =  1

For i  = n-2 to  0

b = b2e x b  

e — 2 e

if to* = =  1  then  

b = b2 x a 

e =  e +  1 

End If 
EndFor 

b = b2 

Return b

If the processor is meant to be used on a single finite field so the squaring can be 

efficiently optimized [58]. For irreducible polynomial / ( x) — x m + x l + I the maximum 

squarer complexity is (m +  f +  l) /2  and 4m gates for f ( x )  — x m +  x 11 +  x a  + x t3  + 1. For 

trinomial the critical path delay is at most two gate delays [58].

Since the Itoh-Tsuji inverse algorithm is based on squaring and multiplication, only a 

small hardware structure is needed for inverse. In fact, in the presented processor inverse 

is performed by software. In order to perform efficient squaring, REP SQR A instruction is 

defined, which performs squaring in one clock cycle. A data path from accumulator to the 

squarer makes this instruction possible (Fig. 5.6).

The simulation waveforms which shows the squaring is shown in figure 5.13. For scalable 

processors using Itoh-Tsuji algorithm is not efficient since squaring hardware cannot be
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5. ARCHITECTURE FOR A  FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.6: ALU Architecture for calculating Inverse Calculation
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optimized for a specific field and therefore cannot be done in a single cycle.

Effect of inverse calculation in performance

For GF(2m) where m  <  256 the inversion takes approximately 10M  + (m — 1)5. A scalar 

multiplication using Montgomery method takes 6 (m — 1 )M  +  5(m — 1)5 +  3(m — 1 )A. 

Implemented on an architecture similar to those in table 5.1 for G F(2167), inversion time 

will be about 5% of scalar multiplication time. It can be concluded that fine tuning on the 

inversion algorithm will not result in a high boost on the overall performance.

5 .3 .3  Scalar M u ltip lica tio n  A lg o r ith m

Scalar multiplication is the fundamental operation in any elliptic curve cryptosystem. Points

on an elliptic curve E  over finite field GF(2m) with a binary operation, called point addition,

form an finite additive Abelian group. If P  is a point on elliptic curve E  and A; is a

large scalar, computation of the form Q — kP  = P  +  P  +  P  H +  P  is defined as scalar
k times

multiplication. The result of scalar multiplication is another point Q on the elliptic curve. 

The main question in any elliptic curve cryptosystems is: How fast can this operation can be 

done? Table 5.5 categorizes commonly used methods for fast scalar multiplication [7] [10] [9]. 

Selecting a proper method for kP  depends on the cryptography protocol being used as well 

as the implementation platform.
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5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.5: Classification of scalar multiplication techniques

Name of Method Basic Idea

Comb [16] Precompute tables of 2m P

Addition chains [7] k =  ^Zr=o1 h

Windowing (Fix, Variable) to—ary [10] Precompute tables of fcjP ki € { 0 ,1 ,.. . ,  to — 1 }

Scalar recoding [7] Fewer zero in binary representation of k (NAF)

Point Halving [13] [13] All point doubling replaced with point halving operation

Montgomery kP  method [61] The x-coordinates of the sum of two points whose 

difference is known can be computed in terms of 

2 -coordinates of the involved points.

Koblitz curves [2] Using anomalous binary curves (or ABC’s)

In 1987 a new approach to scalar multiplication was proposed by Montgomery[17]. In 

[61] Montgomery method is converted to projective space and a very efficient scalar mul­

tiplication algorithm is derived. Table 5.6 compares the calculation cost of Montgomery 

method with IEEE standard method. As it is shown implementations based on the Mont­

gomery algorithm are faster. Most high speed ECC implementation in table 5.3, including 

the proposed processor, have used this algorithm for scalar multiplication[57][53][44][47][52]. 

The interesting fact about this algorithm is that it is inherently secure against side channel 

attack. In the proposed architecture, the algorithm is tuned for the pipeline multiplier 

and the processor’s parallel architecture. The complete explanation of Montgomery scalar 

multiplication is given in chapter 3.
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Table 5.6: Cost of scalar multiplication on GF(2m) for different algorithms

Scalar Multiplication Algorithm #  Operations

Montgomery, Projective version [61] (m-l)(6M+3A+5S) +  (10M+7A+4S+I)

IEEE 1362, NAF representation (Average) [21] (m-l)(8.7M+6.3A+6.3S) +(3M +S+I)

5.3.4 Performance Estimation for ECPs Based on BPW S M ultipliers 

Minimum number of clock cycle for kP  calculation

The lower and upper bound of performance for the architectures which use Bit Parallel 

Word Serial (BPWS) multipliers can be estimated as follows. The multiplication takes M  — 

fm/D~\ +  3 cycles, assuming 2 clock cycles for loading the input registers of the multiplier 

and one cycle for storing the result. Although addition and squaring axe performed in one 

cycle, extra cycles are needed to load and unload the registers, therefore A  =  3 cycles for 

addition and 5  =  2  cycle for squaring is assumed. Using Montgomery scalar multiplication 

[61], the upper bound (UB) is derived in table 5.6. At the best case, where all additions and 

squaring operations can be performed in parallel with multiplication (we assume M  > A  

, M  > 5) the lower bound (LB)can be calculated by omitting all additions and squaring 

operations. Therefore we will have,

UB = (m — 1 ) ( 6  M  +  3 A  + 55) +  (10 M  + 7A + 4S + I)

L B  = (m — 1)(6M) +  (10M 4-1) (5.2)

where M  — \m/D~\ +  3, A  — 3 ,5  =  2 ,1 «  10M  +  (m — 1)5

Experimenting with the processor architecture shows that the \m/D~\ =  4 ratio mini­

mizes the number of multiplication cycles but is long enough to let additions and/or squar­

ing to be done in parallel with multiplication. Therefore the lower bound for kP  can be 

approximated as

L B  «  43(m -  1). (5.3)

Unless a proper pipeline mechanism is used, faster operation cannot be achieved using this 

class of architecture.

68

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Critical Path length

If the finite field GF(2m) is generated by and irreducible polynomial f (x )  then the maximum 

critical path is equal to Ct  — Ta +  (R°g2 m l +  (r — 1 ))Tx  where r  is the number of terms 

in the irreducible polynomial f{x). In BPWS multipliers where,

TO-1 D - 1
A(x) = aix% i and B{x) =  ^ 2  biX1, , where cn, hi e  {0,1} 

i=0 i=0

the critical path will be

CT =  Ta  + ( riog2  D] +  (r -  1  ))TX (5.4)

, where Tx  and Ta  are the delays of AND gate and XOR gate. Using irreducible trinomial 

this can be further reduced to C t  =  Ta +  (riog2(m — 1 )] +  2 )Tx  [58]. C t  determines the 

upper bound for the clock frequency of the ECP.

5.4 D esign Flow

The presented crypto-processor requires components that operate on large bit vectors (167 

bits on GF{2167) ). This makes validation of synthesis results difficult and time consuming 

due to large amount of simulation elements. The complexity often can be reduced by scaling 

the signal vectors down. Adding such flexibility is excess work, but it pays off. The processor 

is designed to work with any finite field which is based on a trinomial or a pentanomial. 

Therefore most validations were performed on small fields like GF(215).

The design flow is depicted in Fig. 5.4. A bit-exact C program was developed, which 

allows us to check the HDL thoroughly. Test vectors for Galois field of different sizes were 

applied to both the HDL and the bit-exact program, and the results were checked against 

each other using another program to ensure the proper operation of the hardware. An 

assembler program for the crypto-processor is also developed which lets us to assemble 

programs written for the processor. The processor was synthesized and optimized using 

Synopsys Design Analyzer ® for CMOS 0.18 and Xilinx ISE® for FPGA.
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Figure 5.7: Elliptic Curve Processor Design Flow
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Figure 5.8: Architecture of the Processor
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5.5 A rchitecture

The architecture is highly optimized toward the execution of scalar multiplication algorithm. 

It supports finite field arithmetic, some 8  bits integer calculation and control transfer in­

structions. The finite field arithmetic unit utilizes parallelism in instruction level , which 

permits parallel execution of addition, squaring and multiplication. The finite field process­

ing unit consists of an ALU, a multiplier and a register file. These units are controlled by 

the main control unit. In addition, a very small 8 -bit processor is provided which performs 

integer calculations like counting and shifting. The communication with the host processor 

is implemented through utilization of a command register and a data register. Initially, 

the host processor uploads elliptic curve domain parameters and the code using these two 

registers (Fig. 5.8). FYom then on, communication is limited to the exchange of raw and 

processed data. Utilization of communication registers allows the two processors to operate 

independently, and have different clock signals. The processor is implemented in G F(2167) 

but neither the scalar multiplication code nor the architecture is hardwired to the size of 

the Galois Field.
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Figure 5.9: Architecture of the Finite Field Multiplier
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The number of finite field multiplication in a scalar multiplication is approximately 6 (m —1) 

for G F(2 m)(Table 5.6). Therefore a high performance multiplier is very crucial. ALU uses a 

bit parallel word serial (BPWS) multiplier based on the algorithm in [60]. In order to achieve 

a performance better than L B  «  43(m — 1), the input registers A  and B, intermediate 

register Pi and output register P  are configured as a pipeline (Fig.5.9). This arrangement 

permits a finite field multiplication to be performed in M  =  [m/D] + 1  cycles, which would 

otherwise take M  = \m /D ] +  3 in similar designs [53] [57].

Squarer

The ALU employs a bit-parallel squarer [58]. Synthesized for a specific Galois field, this 

squarer leads to a very efficient hardware which performs the squaring in one clock cycle.
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Scalable 2  ECP implementations cannot use this architecture, since the size of finite field 

is not known at the time of hardware synthesis. Therefore they have relatively longer kP  

execution time [36] [38] [44] [47].

Instruction Set

The instruction set is sub divided into three categories: Finite field arithmetic, integer 

processing and control transfer (Fig. 5.10, table 5.7). Finite field arithmetic instructions 

are further split into three threads. The compiler analyzes the scalar multiplication program 

and detects finite field operations to be executed in parallel. Such operations are packed 

into one finite field arithmetic type instruction.

Figure 5.10: Instruction set categories

Simultaneous Execution 
___________I__________

Finite Field Arithmetic

8-bit Processing

Control Transfer

Type ALU Mult Reg. File

Type OP Code Src Dest

Type OP Code Fig Addr

5.6 Im plem entation

5.6 .1  H D L  S im u la tion

HDL simulation is carried out using Cadence NCVerilog®. Figure 5.11 and 5.12 shows the

waveforms at the beginning and end of the simulation on G F(2167). The hardware was

simulated and tested for G F(216), GF(2167) and G F(2233) using 1000, 100 and 10 random

test vectors respectively. The simulation takes 6660 clock cycles on G F(2167) which is

2 Being able to change both field size and the elliptic curve parameters without reprogramming the 

hardware ~

73

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

O.lmSec at 6 6 M H z. In terms of execution speed, this result is faster than similar FPGA 

implementations [53] [46] [62] [57].

5 .6 .2  S y n th esis  R esu lt  

FPG A

The HDL is synthesized for Xilinx XC2V2000 FPGA using Xilinx tools. Table 5.10 sum­

marizes the hardware resource usage of the processor in terms of lookup tables (LUT) and 

flip-flops (FF) in FPGA implementation. The processor operates at 6 6 M H z  and performs 

the scalar multiplication in G F(2167) in 100fiSec . The synthesis result shows tha t the 

maximum operation frequency for the processor is 90M H z.

ASIC Sim ulation

The processor is synthesized and simulated for TSMC CMOS 0.18 technology using Synopsys® 

and Cadence NCVerilog®. Using synthesis information obtained from Synopsys®, the per­

formance and the hardware size of the processor on TSMC 0.18 \xm technology is obtained. 

The hardware size is about 36000 gates and the clock frequency can be as high as 300M H z. 

For the proposed architecture we have r  =  3, D — 42, Ta «  T x  »  0.3n5ec (from Synopsys 

report). Putting into equation 5.4 results to Ct  ~  9TX =  2.7nSec. Synopsys report shows 

that the critical path equals to 3.2nSec. This confirms that the proposed architecture sat­

isfies the critical path bound Implemented on ASIC. It takes 22fiSec to complete one scalar 

multiplication operation in G F(2 167), which is faster than reported ASIC implementations. 

Table 5.8 summarizes the synthesis results in CMOS 0.18.

ASIC Im plem entation

The ASIC design flow in fig. 5.4 is carried out to the very end. ie. The CMOS 0.18 layout 

is implemented using Cadence SoC Encounter. This layout is ready for fabrication. Refer 

to appendix for a snap shop of the layout.
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5.6 .3  P erform an ce a n d  com p arison

Table 5.9 shows the number of clock cycle needed to execute k P , for several processors. 

These processors have the following specifications in common:

• They are among the fastest implementations of ECP (see Table 5.3).

• They are implemented on an advanced FPGA architecture.

• All use parallel polynomial based finite field multipliers.

• Number of clock cycles needed to perform kP  is linearly dependent on field size m  

(If we keep the size of m /D  in finite field multiplier constant, where D  is the sized of 

digit or word in the bit-parallel word- serial multiplier).

• They Perform inverse using Itoh-Tsuji algorithm (except [53]).

• All Use Projective coordinates for kP  calculation (most use BPWS).

It can be concluded that, for non scalable ECP processors, these specifications lead to an 

efficient design. Among them, the proposed architecture needs less clock cycles to perform 

scalar multiplication. Another important factor in the architecture is the maximum critical 

path in the processor. However it is not easy to estimate what the maximum clock rate 

for [57] [46] would be if they would have been implemented on the a platform like ours. 

Simulation shows that the proposed processor can run at 300M H z  when implemented 

on CMOS 0.18 technology, which is the minimum possible critical path for this type of 

architecture. This is also a good number compared to the designs in tables 5.3 and 5.2.

5.7 Conclusion

An architecture for an Elliptic curve processor is proposed. The processor can perform 

10,000 scalar multiplications per second on G F(2167) , which is considerably faster that 

the recent FPGA implementations. The processor has a very short critical path which is 

on the parallel multiplier. Synthesis results in CMOS 0.18 micron show that the proeessor
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can run at 300M H z  clock frequency which results in 22fj,Sec for a scalar multiplication on 

G F (2 167). The synthesis result confirms that the design satisfies the critical bound.
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Table 5.7: Elliptic Curve Processor Instruction Set

8-bit processor
MOV rx , d8 move immediate data to rx register

DJNZ r x , addr decrement rx jump to addr if not zero

DEC rx decrement rx

INC rx increment rx

SHL {c,rx} shift left Carry and rx

SHL {rx ,c} shift left rx and Carry

MOV ry , rx move rx to ry

FF Arithmetic Unit
SQR A

ADD A, Rx

SHL A

FF Multiplier

START Mul

STOP Mul

Register File
MOV Rx, P move product to Rx

MOV Rx, A

MOV A, Rx

MOV S, Rx load multiplier register with Rx

Control Transfer
JMP f i g , s e t ,  addr fig is Z (Zero flag), C (Carry flag), M (User flag)

CALL f i g , s e t ,  addr

SET M

CLR M

RET

HALT

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



5. ARCHITECTURE FOR A  FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.8: A rea report in  CM OS 0.18

Unit Area (micron)

Multiplier 1272102

ALU 28585

Squarer 4976

Register File 202799

Proc8 5617

Total «  1555271

Table 5.9: Number of clock cycles for kP

Design Number of Clk for kP Point Representation

Presented 39 (to — l)+inv. Montgomery Projective

[46] 44(m — l)+inv. (est.) Projective with NAF 0

[57] 47(m — l)+inv. (est.) Montgomery Projective, D=42 b

[53] 57(m — 1) (est.) Montgomery Projective

[62] 93(m -  l)+inv. (est.) Projective with NAF

inv. =  (m — 1 ) +  M ( [log2(m — 1)J +  h(m  — 1) — 1 ), M  «  7 

“In [46] authors didn’t  assume NAF representation for scalar k.
6In [57], maximum D is 16. Probably they were not able to  use D=42 due to limited resource in their 

FPGA. We assume D=42 here.
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5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.10: Performance of the Elliptic Curve Processor

Design kP

mSec

Inversion

Cycle

GF( 2m) FPGA 

LUT, FF

Clk

MHz

FPGA Year

Proposed 0 . 1 0 0 285 167 7562, 2378 6 6 XCV2000 2004

[57] 0 . 2 1 0 167 3000, 1769 76.6 XCV400E 2 0 0 0

[53] 0.143 326= 2m 163 20068, 6321 66.4 XCV2000 2 0 0 2

[62] 0.233 250 163 10017, 1930 6 6 XCV2000 2003

Proposed 0.140 451 233 13900, 3200 6 6 XCV2000 2004

[46] 0.123 est. - 233 19440, 16970 1 0 0 XCV6000 2003
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5. ARCHITECTURE FOR A  FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.13: Simulation Waveforms while calculating Inverse
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Chapter 6

Discussions

6.1 Summary o f Contribution

This work proposes efficient methods for ECC both in algorithm level and in arithmetic 

level. In algorithm level a parallel method for scalar multiplication is introduced which uses 

two processors to perform the kP  operation. Using proper implementation this method is 

200% faster than conventional single processor methods. The method can be implemented 

both in hardware and software.

At the arithmetic level, a high performance elliptic curve processor architecture on 

GF{2m) is proposed. The architecture employs parallel execution of finite field arithmetic, 

to achieve high execution speed. Implemented on Xilinx Virtex 2000 FPGA, the processor 

can perform 10,000 scalar multiplications per second on G F (2167) , which is considerably 

faster that the recent FPGA implementations. The processor has a very short critical 

path which is on the parallel multiplier. Synthesis results on CMOS 0.18 micron show 

that the processor can run at 300M H z  clock frequency which results in 22fiSec for a 

scalar multiplication on G F(2 167). The processor is compared to various ECC hardware 

implementations. The comparison is limited to the processors on GF(2m). The processor 

speed presented is higher than any other reported ECC hardware implementation.
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6. DISCUSSIONS

6.2 Future Work

FPGAs are a suitable platform for the hardware implementation of the proposed parallel 

algorithm. The information in chapter 3 can be used for the selection of proper point 

representation system. For the proposed processor ASIC implementation is very desirable 

since the simulation results shows the it will be the fastest kP  calculation ever reported.
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Appendix A

Test Code

1  # i n c l u d e  < s t d l i b . h >

2 # i n c l u d e  <stdio.h>
3 # i n c l u d e  "gmp.h"
4  # i n c l u d e  < t i m e . h >

5 # i n c l u d e  <math.h>
6
7 //typedef unsigned long long scalar_t;
8  # d e f i n e  s c a l a r _ t  m p z . t

9
10 i n t get.bit (scalar_t k, i n t  i);
11 v o i d set_bit (scalar_t k, i n t  i);
12 v o i d clr_bit (scalar.t k, i n t  i);
13 i n t kP-time_s ( c h a r  * ks, i n t  t_add, i n t  *na, i n t  *nd);
14 i n t kP_time_s2 ( c h a r  * ks, i n t  ADD_DBLjratio);
15 c h a r *str_reverse ( c h a r  *d, c h a r  *s);
16 v o i d to_NAF (scalar.t k);
17 v o i d to_NAF2 (scalar.t k);
18 c h a r *itos (scalar.t k);
19 v o i d test_recording(void);
20 i n t kP-time (scalar.t k, i n t  n.bits, i n t  t_add, i n t  *na, i n t  *nd,
21 I n t  *cnt_in_add_ave, i n t  *cnt_in_addjnax, i n t  buf_len
22 );
23 i  n t ave_kP_time ( i n t  n_samples, i n t  n.bits, i n t  ADD_DBL_ratio, i n t

24 buf _len) ;
25 //#def ine ADD_DBLJlATI0 3 —
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26
27 int main(void)
28 {
29 //perf ormance_table() ;
30 perf ormance_vs_buflen_graph() ;
31
32 return 0;
33 }
34

37 int n.bits, t;
38 c h a r  *s, d[50];
39 time_t rawtime;
40
41 //- algorithm parameters
42 int ADD_overJDBL_ratio = 3;
43 int buf_len = 4;
44 i n t  nsamples = 10000;
45
46 time ( fcrawtime ); printf ("\n*/,s\n\n" , ctime(&rawtime));
47 printf ("#Samples = 7»i", nsamples) ;
48 printf("\n\\#bits & ADD/DBL & \\#ECADD & \\#ECDBL & \\#0p & \\#0p Std
49 DBL-ADD Method & Ave \\#Data in buf & Max \\#Data in buf & Speed
50 up \\hline\\hline");
51 printf("\ n = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = " )  ;

52
53 for(ADD_over_DBL_ratio=l; ADD_over_DBL_ratio<6; ADD.over_DBL_ratio++)
54 {
55 printf ("\n-------------------------------------------\\hline");

62
63 / *
64 test_recording(); printf("\n\n");
65
66 s = "10101010000001111111111000001100000001";
67 t = kP_time_s2(s, ADD_overJ)BL_ratio);
68
69 str_reverse(d, s);

56
57
58
59
60

//nsamples = 0x7FFFFFFF; //result of the scount takes 2 days and is 
wrong!

for (n_bits=150; n_bits<=300; n_bits+=50)
ave_kP_time(nsamples, n.bits, ADD_over_DBL_ratio,buf_len );

61 }
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70 t = kP.time_s2(d, ADD.over_DBL_ratio);
71 * /
72 time ( &rawtime ); printf ("\n'/,s\n\n" ,ctime(&rawtime));
73
74 return 0;
75 }
76
77 int performance.vs.buf len_graph(void)
78 {
79
80 int ADD.over_DBL_ratio = 3;
81 int buf_len = 4;
82 int nsamples = 100;
83 int n.bits;
84
85 printf("#Samples = %i\n\n", nsamples);
86
87 //for(n_bits=150; n_bits<=300; n_bits+=50)
88 n.bits = 160;
89
90
91 f or (buf _len=l; buf_len<=10; buf_len++)
92
93 {
94 printf ("\n ’/.i ", buf JLen);
95 for (ADD .over _DBL_ratio=l; ADD.over _DBL_ratio<6;
96 ADD_over_DBL_ratio++)
97 {
98 ave_kP.time(nsamples, n.bits, ADD.over_DBL_ratio, buf_len );
99 }
100 printf(" ", buf_len);
101 }
102
103 /*
104 for (ADD.over _DBL_ratio=l; ADD.over -DBL_xatio<6; ADD .over JDBL_ratio++)
105 {
106 printf ("\n\n #ADD/DBL = %i ", ADD.overJDBLjratio) ;
107 for(buf_len=l; buf_len<=10; bufj.en++)
108 {
109 printf ("\n ’/»i ", buf_len) ;
110 ave_kP_time (nsamples, n.bits, ADD.over _DBL_ratio, buf JLen );
111 }
112 }*/
113
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114 r e t u r n  0 ;
115 }
116
117 # d e f i n e  M A X .I N T  ~ ( ( u n s i g n e d  l o n g  i n t )  1 )
118 # d e f i n e  a v e ( i )  ( ( i n t ) ( ( d o u b l e ) ( i ) / ( n _ s a m p l e s ) + 0 . 5 )  )
119 int ave_kP_time(int n.samples, int n.bits, int ADD-DBLjratio, int bufJLen)
120 {
121 mpz.t k;
122 gmp_randstate_t r_state;
123 int na, nd, cnt.in.add.ave, cnt.in_add.max, t;
124 u n s i g n e d  long i n t  i;
125 int t_sum, na_sum, nd_sum;
126 int cnt.in_add_ave.ave, cnt_in_add_max_ave;
127
128 gjnp_randinit_default (r_state);
129 mpz.init(k);
130
131
132 cnt.in.add-jnax.ave =  cnt_in_add_ave_ave = t_sum = na_sum = nd_sum = 0;
133 for(i=0; i<n_samples; i++)
134 {
135 //mpz_rrandomb generates long strings of zeros or ones, might be
136 better f o r  testing
137 mpz.urandomb (k, r_state, n.bits); //200 bits random number
138 to_NAF2(k);
139 t = kP.time(k, n_bits, ADD_DBL_ratio, &na, fend, &cnt_in.add_ave,
140 &cnt.in_add_max, buf.len );
141 t.sum += t;
142 na_sum += na;
143 nd_sum += nd;
144 cnt_in_add_ave_ave += cnt_in_add_ave;
145 cnt.in.addjtax.ave + =  cnt_in_add_max;
146 //printf ("Xi-", cnt_in_add_max_ave);
147 / /  if((i& OxOOOOFFFF) == 0) printf( "  %lu", i);
148 //printf ("\n—  k='/.s nADD =%d nDBL =’/,d T =°/,d", itos(k), na, nd
149 t);
150 // gmp_printf ("\n—  k=°/,#04Zx nADD =°/,d nDBL ="/,d T =°/,d", k, na,
151 nd, t);
152 }
153
154 printf ( " \ n n _ b i t s = ° / 0i , n _ s a m p l e s = % l u  A D D / D B L = ' / , i  t _ a v e = ' / . i  n  A d d _ a v e = % i ,  n
155 D B L _ a v e = 7 ( i " , n.bits, nsamples, ADD_DBL_ratio, tjsum/nseimples,
156 na_sum/nsamples, nd.sum/nsamples);
157
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158 //- printf for performance.table
159 printf( "\n7.i & Zi & Zi & Zi & Zi & Zi & Z3.1f & Zi &
160 Zi \\hline", n.bits, ADD_DBL_ratio, ave(na_sum), ave(nd_sum) ,
161 ave(t.sum), n_bits+ n_bits*ADD_DBL_ratio/3, ((double)n_bits +
162 n_bits/3.*ADD_DBL_ratio)/(t_sum/n_samples), ave((double)
163 cnt.in_add_ave.ave/ADD-DBL_ratio), ave((double)
164 cnt-in_add_max_ave/ADD_DBL_ratio));
165
166 //- printf for performance_vs_buflen_graph
167 printf ( "Z3.1f ", ((double)n.bits + n.bits/3.*ADD_DBL_ratio)/(
168 t.sum/n.samples) );
169
170 mpz.clear (k);
1 7 1  r e t u r n  1 ;
172 }
173
174 i n t  kP.time(scalar.t k, i n t  n.bits, i n t  t_add, i n t  *na, i n t  *nd, i n t
175 *cnt_in_add_ave, i n t  *cnt.in.add.max, i n t  bufJLen)
176 {
177 i n t  i, b, in.add, n_add, n_dbl, cnt.in.add, dbl.wait;
178 l o n g  l o n g  i n t  ciaa; //count in add average!
179 i n t  max.cnt.in.add = buf_len*t_add;
180
181 dbl.wait = n_add = n.dbl =0;
182 in_add = get_bit(k, 0)==1; //put initial conditions
183 cnt.in.add = in.add ? t_add : 0;
184
185 //cannot find n.bit by mpz functions because it omits leading zeros
186 //and so decreases n.dbl!
187 //n.bits = mpz_sizeinbase(k, 2);
188
189
190 *cnt_in_add_ave = *cnt_in_add_max = ciaa =0;
191 for(i=0; iCn.bits; i++)
192 {
193
194 while (cnt.in.add > max.cnt .in .add)
195 {
196 cnt.in.add — ;
197 dbl.wait ++;
198 }
199
200 if (cnt_in_add > *cnt_in_add_max) //this gives the maximum buffer size
201 *cnt_in_add_max = cnt_in_add;
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202
203 ciaa += cnt.in.add; //average of cnt_in_add essentially it is
204 proportional to the number of data in the circular buffer
205 b = get_bit(k, i);
206
207 //if in addition state
208 if(in.add)
209 {
210 cnt.in.add— ;
211 if(b==l)
212 {
213 n.add ++;
214 cnt_in_add += t.add; //accumulate the time that you need to stay
215 in add mode
216 }
217 e l s e  //b is 0
218 {
219 if (cnt.in.add ==0 ) //if u have been enuf in add state and there
220 is no more one
221 {
222 in_add = 0; //change state
223 n.dbl ++;
224 }
225 }
226 }
227 e l s e  //in dbl state
228 {
229 if(b==0)
230 n.dbl ++;
231 e l s e  //b is 1
232 {
233 in.add = 1; //change state
234 n.add ++;
235 cnt_in_add = t.add;
236 }
237 }
238 }
239
240 //should it be added to n.add? I think it should but the result is wrond
241 FATAL chk bjn
242 // n.add += (cnt.in.add/t.add) +((cnt_in_add70t_add) !=0 ? 1 :0) ; //ceil(
243 cnt.in.add/t.add)
244 *na = n.add;
245 *nd = n_dbl + dbl.wait;
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nt get.bit(scalar.t k, int i) 

r e t u r n  mpz.tstbit (k, i);

oid set_bit(scalar.t k, int i) 

mpz-setbit (k, i);

o i d  clr.bit(scalar.t k, i n t  i) 

mpz.clrbit (k, i);

246 *cnt_in_add.ave = ciaa / n.bits;
247
2 4 8  r e t u r n  *na *  t_add +  *nd;
2 4 9
250
251
252
253
254
255
256
257
258
259
260 
261 
262
263
264
265
266 i n t  kP_time_s(char * ks, i n t  t.add, i n t  *na, i n t  *nd)
267
268 mpz.t k;
2 6 9  i n t  rc;
270
271 mpz.init(k);
272 mpz_set_str(k, ks, 2);
273 //rc = kP_time(k, strlen(ks), t.add, na, nd);
274 mpz.clear (k);
275
276 r e t u r n  rc;
277
278 }
279
280 i n t  kP_time_s2(char * ks, i n t  ADD_DBL_ratio)
281 {
2 8 2  m t  na, nd, t;
283
284
285 t = kP_time_s(ks, ADD_DBL_ratio, &na, &nd) ;
286 printf ("\ns=’/,s, n_bits='/,i, t=7,i na=%i, nd=“/„i", ks, strlen(ks), t, na,
287 nd);
2 8 8
2 8 9  r e t u r n  0 ;
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290 }
291
292 char *str_reverse(char *d, char *s)
293 {
294 int len, i;
295
296 len = strlen(s);
297 d[len] = 0;
298 for(i=0; i<len; i++)
299 d[len-i-l] = s[i];
300
301 r e t u r n  d;
302 }
303
304 /*this pice of software is from
305 ~/ansari4/Tutorials/Cryptography/C_Libraries/ECC/elliptic/ec_curve. c
306 an elliptic curve library writen by Paulo S.L.M. Barreto <pbarreto@uninet.
307 com.b r> http://pleuieta.terra.com.br/infonnatica/paulobarreto/
308 it shows a parrallel way of converting and integer to NAF
309 */
310 v o i d  to_NAF2(scalar.t k)
311 {
312 mpz.t h;
313 i n t  nb;
314
315 mpz_init(h);
316 mpz_mul_ui (h, k, 3);
317 mpz_xor(k, h, k); //we treat -1 and 1 the same! because we only want to
318 count
319 mpz_div_2exp (k, k, 1);
320 nb = mpz_sizeinbase(k, 2);
321 // if C nb > *n_bits)
322 // *n_bits = nb;
323
324
325 mpz_clear(h); :
326 }
327
328
329 o i d  tO-NAF(scalar.t x)
330 {
331 i n t  s, i, n.bits;
332 mpz.t y;
333 int xi, xi.l, ci;
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334
335 //See Coren, Computer Arithmetic book, Page 146, Table 6.4 for the
336 Algorithm
337 i n t  state.table [] = { 0, 2, 2, 1, 0, 3, 3, l};
338
339 mpz_init (y) ;
340 n.bits = mpz_sizeinbase(x, 2);
341 ci = 0;
342 //- it checks one extra bit, but that extra bit is zero and I need it
343 to make NAF
344 for(i=0; i<=n_bits; i++)
345 {
346 xi = get_bit(x, i );
347 xi.l = get_bit(x, i+1);
348 s = state.table[(xi_l<<2) | (xi < <  1) | ci] ;
349 if(s & 2)
350 set.bit(y, i);
351 else
352 clr_bit(y, i);
353 ci = s&l;
354 }
355
356 mpz_set(x, y);
357 mpz.clear (y);
3 5 8  }
3 5 9
3 6 0  void testjrecording(void)
3 6 1  {
3 6 2  mpz.t k;
3 6 3  c h a r  *s;
3 6 4
3 6 5  s =  " 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 " ;
3 6 6  //s =  " 1 1 1 1 0 1 " ;
3 6 7  mpz.init(k);
3 6 8
3 6 9  mpz_set_str(k, s, 2 ) ;
3 7 0  to_NAF (k);
3 7 1  printf (" \ns=°/.s \nk=°/0s " , s, itos(k));
3 7 2
3 7 3  mpz_set_str(k, s, 2 ) ;
3 7 4  to_NAF2(k);
3 7 5  printf (" \ns='/,s \nk=“/,s", s, itos(k));
3 7 6  printf(" \ n " ) ;
3 7 7  mpz.clear(k);
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378 }
379
380 # d e f i n e  M A X J J _ B I T S  1 0 2 4
381 char *itos( scalar.t k)
3 8 2  {

383 i n t  i, nb;
384 s t a t i c  char buf [ MAXJLBITS+1] ;
385 c h a r  *s = buf;
386
387 nb = mpz_sizeinbase(k, 2)—1;
388 i f  (nb> MAX_N_BITS) nb = MAXJLBITS;
389 for(i=nb; i>=0; i— )
390 *s++ = get.bit(k, i)? ’1’ : ’O’;
391 *s = 0;
392
393 r e t u r n  buf;
394 }
395
396

1 # i n c l u d e  < b o r z o i . h >
2  # i n c l u d e  < f s t r e a m >
3 # i n c l u d e  < u n i s t d . h >
4  # i n c l u d e  " n i s t . c u r v e s . h "
5
6 / *
7 (c) Bijan Ansari Tue Dec 16 14:59:49 EST 2003
8 all parts of Monti algorithm works Mon Dec 29 21:28:08 EST 2003
9
10 This program uses borZoi Elliptic Curve library to Implement Projective
11 coordinate version of Montgomery scalar multiplication.
12 This is done to check the result of the Elliptic Curve Processor
13
14 */
15
16 r

17 // the register file, and an indexed way to access it!
18 F2M XI;
19 F2M X2;
20 F2M ZI;
21 F2M Z.2;
22 F2M R4;
23 F2M b;
24 F2M x;
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25 F2M y;
26
27 F2M *R = &X1;
28
29 Biglnt k; //the scalar
30 EC_Domain_Parameters dp = NIST_B_233;
31 //int m, kl, k2; //f(x) = x~m + x~kl + x~k2 + 1
32 //const int m = 1 5 ,  kl = 4;
33 //const int m = 1 6 7 ,  kl = 6;
34 //const int m = 233, kl = 74;
35 //longinteger k //the scalar
36
37 typedef unsigned char byte;
38 int scalar_mult(void);
39 void projective_montgomery_scalar_multiplicationl(void);
40 void projective_montgomery_scalar.multiplication(void);
41 void original_montgomery_scalar_multiplication(void);
42 void aff ine_to_projective(void);
43 void Montgomery_P_plus_Q P_plus_Pl(void) ;
44 void Montgomery.? _plus_Q P_plus_P2(void) ;
45 void Itoh_Tsuji_inverse(int m, int in, int out);
46 void calc_xyl(void);
47 void calc_xy2(void);
48 void Mdouble(int src);
49 void Madd(int dest);
50 int scalar_mult(void);
51 void swap (void);
52 void print(char *s, F2M x, F2M y);
53 void init_regfile(void);
54 void dump_regfile(int n);
55 #define dump(A){ std::cout < <  "\n" < <  #A < <  "= " < <  A; }
56 //void dump(F2M A);
57 void use_Trionomial(int m, int kl);
58 inline F2M operator* (const F2M& a, int n) ;
59
60 
61
62 / * -
63 scalarunult () tested at Tue Feb 17 19:58:53 EST 2004 again
64 it produces correct result using all 4 scalar multiplication
65 functions
66  * /
67
68
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69 ;ni main(void)
70 {
71
72 use_Trionomial(167, 6);
73 //scalar .mult() ;
74
75 init_regfile();
76 //WARNING msb of k MUST be one, otherwise the result is not the same
77 as the
78 //asm program in the ECP. because ECP assumes MSB of k is one.
79
80 //for GF(2~233)
81 k = 1;
82 k « =  232;
83
84 //for GF(2~15)
85 k = l;//in the asm program R4 is k!
86 k « =  14;
87
88
89 //for GF(2“167)
90 k = 1;
91 k <<= 166;
92
93
94 k |= hexto_BigInt("D7");
95
96 projectivejnontgomery_scalar_multiplication2();
97
98 std::cout < <  "\n— " ;
99 }
100
101 void print(char *s, F2M x, F2M y)
102 {
103
104
105 }
106
107 int.
108 {
109
110 
111 
112

101

std::cout < <  "\n— " < <  s ;
std::cout <<"\nx=" < <  x < <  "\ny=" < <  y;

scalar .mult( v o i d )

/♦♦Warning**
original_montgomery_scalar_multiplication() , curve.mul(k, dp.G) use

the
global "dp" variable and the finite field which is defined there"while
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113 projective_montgomery_scalar.multiplicationl() and
114 projective_montgomery_scalar_multiplication2() use the finite filed
115 which is defined at the start of the mainO program ie use_Trionomial(
116 233, 74)
117 */
118 //k = hexto_BigInt("A9993E364706816ABA3E25717850C26C9CD0D89D");
119 k = hexto_BigInt("D7"); //in the asm program R4 is k!
120
121 use_Trionomial(15, 4);
122 b = dp.b;
123 x = dp.G.x;
124 y = dp.G.y;
125 R[3] = 1; //R[3] must be zero otherwise affine_to_projective()
126 doesn’t work fine
127
128 //in the hardware R4 is k, but here k is in another variable
129 initjregfile();
130 print("original points", x, y );
131
132 projective_montgomery_scalar_multiplication2() ;
133 print("projective_montgomery_scalar_multiplication2()" , X2, Z2);
134
135 proj ectivejnontgomery.scalarjnultiplicationl ();
136 print ("projective-montgomery_scalar_multiplicationl()", X2, Z2);
137
138
139 original_montgomery.scalar.multiplication0  ;
140 print("original-Scalar_multiplication()", X2, Z2) ;
141
142 Curve curve (dp.a, dp.b);
143 Point P = curve.mul(k, dp.G);
144 print("Borzoi library", P.x, P.y);
145
146 std::cout < <  "\n— " ;
147 }
148
149 void init_regfile()
150 {
151 //values are interpreted as hex
152
153 str_to_F2M("39" ,R[0] ) ;
154 str_to_F2M("24" ,R[1]) ;
155 str_to_F2M("55" ,R[2] ) ;
156 str_to_F2M("76" ,R[3] ) ;
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157 str_to_F2M("D7",R[4]); //MSB of k MUST be one, ECP asm programs
158 assumes so!
159 str_to_F2M("86" ,R[5] ) ; //R[4] is k and MSB of k must be one, that's
160 why it is 16 bits and the others are 8 bits just to make
161 things simple
162 str_to_F2M("64" ,R [6] ) ;
163 str_toJF2M("A7" ,R[7] ) ;
164
165 /*
166 str_to_F2M("1",R[0]);
167 str_to_F2M("2" ,R [1] ) ;
168 str_to_F2M("3" ,R[2]);
169 str_to_F2M("4" ,R[3] );
170 str_to_F2M("5" ,R[4] );
171 str_to_F2M (" 6", R [5]);
172 str_to_F2M("7" ,R[6] );
173 str_to_F2M("8" ,R[7] ) ;
174 */
175 }
176
177
178
179 v o i d  affine_to_projective( v o i d )

180 {
181 XI = x;
182 ZI = R [3]; //R[3]; in the ECP assembly file here we have R[3]
183
184 Z2 = x~2;
185 X2 = (Z2~2) + b;
186
187 }
188 o i d  projective_montgomery_scalar_multiplicationl()
189 {
190 m t  1;
191 int i;
192
193 1 = k.numBits ();
194 aff ine_to_projective();
195
196 for(i=l-2; i>=0; i— )
197 {
198 std::cout < <  "\n==l==\nbit " < <  i < <  "= "<< k.getBit(i) ;
199 if(k.getBit(i) == 1)
200 {
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201 Madd(l); Mdouble(2);
202 }
203 else
204 {
205 Madd(2); Mdouble(l);
206 }
207 dump_regfile(i);
208 std::cout < <  "\n==l==";
209 }
210 //calc_xyl(); //answer is in X2, Z2
211 }
212
213 //this is the implemented algorithm
214 void projective_montgomery_scalar_multiplication2()
215 {
216 int 1;
217 int i;
218
219 dump_regfile(0);
220 1 = k.numBits ();
221 aff ine_to_projective();
222 dump_regfile(l);
223
224 std::cout < <  "\nnum bits= " < <  1 ;
225 std::cout < <  "\nk= " < <  k ;
226 for(i=l-2; i>=0; i--)
227 {
228 std::cout < <  "\n==2==\nbit " < <  i < <  "= "<< k.getBit(i) ;
229 if(k.getBit(i) == 1)
230 swapO;
231
232 Montgomery_P_plus_Q P_plus_P2();
233
234 if(k.getBit(i) == 1)
235 swapO;
236 dump_regfile(i); :
237 std:: cout < <  "\n==2==M;
238 }
239 calc_xy2(); //answer is in X2, Z2 */
240 dump_regfile(-l);
241 }
242
243 void original_montgomery_scalarjnultiplication(void)
244 {
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245 Curve curve (dp.a, dp.b);
246 Point PI, P2;
247 int i, 1;
248 Point P(x, y);
249
250 1 = k.numBits ();
251 PI = P;
252 P2 = curve.dbl(P);
253 for(i=l-2; i>=0; i— )
254 {
255 if(k.getBit(i) ==1)
256 {
257 PI = curve.add(PI, P2);
258 P2 = curve.dbl(P2);
259 }
260 else
261 {
262 P2 = curve.add(PI, P2);
263 PI = curve.dbl(PI);
264 }
265 }
266
267 X2 = Pl.x;
268 Z2 = Pl.y;
269 }
270
271 void Mdouble(int src)
272 {
273 F2M X, Z;
274
275 if(src==l)
276 {
277 X = XI;
278 Z = ZI;
279 }
280 else
281 {
282 X = X2;
283 Z = Z2;
284 }
285
286 F2M x3 = (X~4) + b * (Z~4);
287 F2M z3 = (Z*2) * (X~2);
288
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289
290
291
292
293
294
295
296
297

if(src==l)
{

XI = x3; 
ZI = z3;

}
else
{

X2 = x3; 
Z2 = z3;

298 }
299
300 }
301
302 void Madd(int d est)
303 {
304 F2M z3 = (XI * Z2 + X2* Z l) “2;
305 F2M x3 = (x * z3) + (XI * Z2) * (X2 * Z I ) ;
306
307 if(d e s t= = l)
308 {
309 XI = x3;
310 ZI = z3;

316 }
317 }
318
319 v o i d ,  swap ( v o i d )
320 {
321 F2M T;
322
323 T = XI; XI = X2; X2 = T;
324 T = ZI; ZI = Z2; Z2 = T;
325 }\
326 void Montgomery _P_plus_Q P_plus_Pl (void)
327 {
328 /* equivalent to
329 (XI, ZI) = Mdouble(Xl, ZI)
330 (X2, Z2) = Madd(Xl, ZI, X2, Z2)
331 */
332 //this is implemented in monti4.s

311 }
312 else
313 {
314 X2 = x3;
315 Z2 = z3;
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333 X2 = ZI * X2; / / I
334 ZI = ZI "  2;
335
336 Z2 = XI * Z2; //2
337 XI = XI ~ 2;
338
339 R4 = ZI ~ 2;
340
341 ZI = XI * ZI; / /3
342
343
344 XI = XI “  2;
345
346 F2M t X2 + Z2;
347 X2 = X2 * Z2; / / 4
348 Z2 = t ’ 2;
349
350
351 R4 = R4 * b; / / 5
352 XI = XI + R4;
353
354
355 R4 = x *■ Z2; / / 6
356 X2 = X2 + R4;
357 }
358
359
360 --oid Montgomery_P_plus_Q P_plus_P2(void)
361 {
362 //this is implemented in monti4.s
363 R[l] = R[2] * R [1] ; dump(R[l] ) ; //I
364 R[2] = R[2] “ 2;
365
366 R[3] = R[0] * R[3] ; dump(R[3]) ;//2
367 R[0] = R[0] " 2;
368
369 R[4] = R[2] * 2;
370
371 R[2] = R[0] * R[2] ; dump (R [2] ) ;//3
372
373 R[0] = R[0] ~ 2;
374
375 F2M t = R [1] + R[3];
376 R[l] = R[l] * R[3] ; dump(R[l] ) ;//4
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377 R[3] = t " 2;
378
379
380 R[4] = R[4] * R[5] ; dump (R [4] ) ;//5 R5 = b
381 R[0] = R[0] + R[4] ;
382
383
384 R[4] = R[6] * R [3]; dump(R[4]);//6 R6 = x
385 RCl] = R [1] + R[4];
386
387 std:: cout<<"\n-----
388 dump(R[3]):
389 dump(R[2])
390 dump(R[l])
391 dump(R[0]);
392 }
393
394 //this routine is written in a way to be the same as the
395 //hardware implementation, and it doesn’t mean it is a good
396 //software implementation
397 void Itoh_Tsuji_inverse(int m, int in, int out)
398 {
399 //A is the accumulator, S is the input register of the multiplier
400 //this is implemented in inv.rom
401 F2M A, S;
402 byte mO, e, sq_cnt, i, c;
403
404 A = R[in];
405 e = 1;
406 //m0 = dp.m & (~1);
407 mO = m & (!1);
408 i = 8;
409
410 while( (i!=0) && ((mO & 0x80) == 0))
411 {
412 mO <<= 1;
413 i— ;
414 }
415
416
417 if(i!=0) //skip the first ’1’ too
418 {
419 mO <<=1;
420 i~;
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421 }
422
423 w h i le ( i !=0)
424 {
425 S = A;
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

c = (mO & 0x80) != 0; 
mO <<= 1; 
e = (e<<l) | c;

l'

A = S * A;

}

sq_cnt = e; 
while(sq_cnt— ) 

A = A~ 2;

if (c) 
{

S = R[in] ; 
A = A“2;
A = S * A;

444 }
445
446 A = A~2;
447 R[out] = A;
448
449
450 //borzoi is stupid!, sometimes doesn’t reduce the result of
451 multiplication!!
452 }
453
454
455 void calc_xyl()
456 { r
457 // find this from Lopez paper and orlando paper (all are in the white
458 folder)
459 F2M xk, yk;
460
461 //F2M F2M::inverse ()
462 //F2M F2M::sqr ()
463
464 R4 = x*Zl*Z2; ^
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465
466
467 R4 = R4.inverse();
468 /*
4 6 9  R 4  =  T 3  j

470 Itoh_Tsuji_inverse(dp.m, 4, 4); use this one becaue dp is not always
471 correctly set!
472 T3 = R4;
473 */
474
475 F2M T = x * Z2 * XI;
476 dump(T);
477
478 xk = x * Z2 * XI * R4;
479 yk = (xk + x) * R4 * (Z1*Z2 * (y+ (x"2)) + (X2 + x*Z2) * (XI + x*Zl))
+

480 y;
481
482 X2 = xk;
483 Z2 = yk;
484
485 }
486
487
488 I I ---------------------------------------------------------------------
489 —
490 void dump_regfile(int n)
491 {
492 std::cout < <  "\n-"<<n<<" Reg file
493 for (int i=7; i>=0; i— )
494 std: :cout «  "\nR" < <  i «  "= " «  R[i] ;
495 }
496
497 void use_Trionomial(int m, int k)
498 {
499 F2X pt=Trinomial (m, k, 0);
500 setModulus (pt);
501 }
502
503 inline F2M operator" (const F2M& a, int n)
504 {
505 F2M c=a;
506
507 while(— n>0) //>0 for n equal 0 ~~4
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508 c*=a;
509 re tu rn  c;
510 }
511
512
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Appendix B 

Chip Layout

Chip layout: program memory, power rings, power strips, clock tree

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



APPENDIX B. CHIP LAYOUT

Oooryfan  Cite* d o c fr . Ikning SI f t i t f r  vfrtiy 7bo|*

mm j im i  mm&
Tools -

^  Ull

*̂1 sol

r  Views

/ \

as 1

*5 ... ... :...
i S 3  S i ;

I ff  i i 8  1 I
S i  I S i  i

f n t

f : r i ; 8  i 1
• ■ i l l  3 i i 

I : i 8  ! ; S  J :
I i i *8 f t !

r v s
Instance ■r r
Net ■r r
:PG Net j r r -
Blockage 3r  r
C ongestfonB r T>:
Row J
Metal FW ■r r
All Layersi j  j
Metal! « - r
Metalz nr r
Metal? ■r r
Metal4 .■r r
MetalS #K I3
Metals * i r  H
VlZ a e t f a
VZ3 W  r;
V34 j r  r
V4S
VE6 I

1 1
%wSS
•

N

Chip layout: The whole chip in SoCE
a ; |  ;1('

113

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



VITA AU CTO RIS

Name:
Year of Birth: 
Education: 
1979 - 1982 
1983 - 1988 
2002 - 2004 
Email:

Bijan Ansari 
1964

High school diploma, Isfahan University High School, Isfahan, Iran 
B.Sc. Isfahan University of Technology, Isfahan, Iran 
M.A.Sc. University of Windsor, Windsor, Ontario 
bijan486@yahoo.com

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .

mailto:bijan486@yahoo.com

	Efficient implementation of elliptic curve cryptography.
	Recommended Citation

	tmp.1615935476.pdf.JJdgo

