
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Efficient implementation of elliptic curve cryptography. Efficient implementation of elliptic curve cryptography.

Bijan Ansari
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Ansari, Bijan, "Efficient implementation of elliptic curve cryptography." (2005). Electronic Theses and
Dissertations. 1881.
https://scholar.uwindsor.ca/etd/1881

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1881?utm_source=scholar.uwindsor.ca%2Fetd%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Efficient Im plem entation o f E lliptic Curve
C ryptography

by

Bijan Ansari

A Thesis
Submitted to the Faculty of Graduate Studies and Research through the

Department of Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada
2004

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1 * 1
Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09774-4
Our file Notre reference
ISBN: 0-494-09774-4

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Efficient Implementation of Elliptic Curve Cryptography

by

Bijan Ansari

APPROVED BY:

Department of Mechanical and Materials Engineering

M. Ahmadi
Department of Electrical and Computer Engineering

-------------- ------------------- 7^-----------------------------
H. Wu, Advisor

Department of Electrical and Computer Engineering

4 ̂ ASic^Ahmed, Chair of Defense _
Chair, Department of Electrical and Computer Engineering

University of Windsor
May 13, 2004

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

© 2004 Bijan Ansari

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise

retained in a retreival system or transmitted in any form, on any medium by any means

without prior written permission of the author.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Abstract

Elliptic Curve Cryptosystems (ECC) were introduced in 1985 by Neal Koblitz and Victor

Miller. Small key size made elliptic curve attractive for public key cryptosystem implemen­

tation. This thesis introduces solutions of efficient implementation of ECC in algorithmic

level and in computation level.

In algorithmic level, a fast parallel elliptic curve scalar multiplication algorithm based

on a dual-processor hardware system is developed. The method has an average computation

time of j Elliptic Curve Point Addition on an n-bit scalar. The improvement is n Elliptic

Curve Point Doubling compared to conventional methods. When a proper coordinate sys­

tem and binary representation for the scalar k is used the average execution time will be as

low as n Elliptic Curve Point Doubling, which makes this method about two times faster

than conventional single processor multipliers using the same coordinate system.

In computation level, a high performance elliptic curve processor (ECP) architecture is

presented. The processor uses parallelism in finite field calculation to achieve high speed

execution of scalar multiplication algorithm. The architecture relies on compile-time detec­

tion rather than of run-time detection of parallelism which results in less hardware. Imple­

mented on FPGA, the proposed processor operates at 6 6 M H z in GF(2167) and performs

scalar multiplication in 100pSec, which is considerably faster than recent implementations.

iv

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

To th e young m an who was m e, and perished under fanaticism

V

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

A cknow ledgments

I would like to thank my advisor Dr. Huapeng Wu for introducing me to elliptic curves and

giving me all that advice, help, and support throughout this research work. I also want to

thank professor Majid Ahmadi for his expert guidance and support, and Dr. B. Zhou for

reviewing this work.

Special thanks is due to professor Maher Sid-Ahmed who supported me by all means

through my study.

I am also grateful to my colleagues and friends, Katy Modaressi, Muqeeth Seyed Ali

and Kevin Banovic, for their time and friendship.

vi

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Contents

A bstract iv

D edication v

Acknowledgm ents vi

List o f Figures x

List o f Tables xii

List o f A bbreviations xiv

1 Introduction 1

1.1 Motivation .. 1

1.2 Thesis Outline .. 2

2 Prelim inaries on Elliptic Curve Cryptography 4

2.1 Basic C o n cep ts .. 4

2.2 Elliptic C u rv e s .. 6

2.2.1 Definition of Elliptic C urves... 6

2.2.2 Point Addition F o rm u la .. 7

2.2.3 Elliptic Curve Discrete Logarithm P ro b le m ... 11

2.3 Elliptic Curve Cryptosystem.. 12

2.4 Elliptic Curve Cryptography S tandard iza tion ... 14

vii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

CONTENTS

2.5 Intellectual Property I s s u e s ... 16

3 Introduction to ECC Com putations 18

3.1 In tr o d u ctio n .. 18

3.2 Elliptic Curve D efinition... 19

3.2.1 Different Forms of Elliptic Curve Equation .. 20

3.3 Elliptic Curve Point Representation ... 21

3.3.1 The Addition Formulas in Affine Coordinate 21

3.3.2 Projective Space and the Point at In fin ity ... 22

3.4 Choosing a Coordinate S y s te m ... 24

3.4.1 Different Coordinate S y stem s... 24

3.4.2 Coordinates S um m ary .. 27

3.5 Scalar M ultiplication.. 28

3.5.1 Speeding up Scalar Multiplication (k P) .. 30

3.5.2 Scalar Multiplication S um m ary .. 38

3.6 Special Methods for Scalar M ultip lica tion ... 38

3.6.1 Anomalous Binary Curves (Koblitz C u rv es)... 38

3.6.2 Point H alving.. 39

3.7 Montgomery Scalar Multiplication A lg o rith m ... 39

3.7.1 C a lcu la tio n .. 40

3.7.2 Performance ... 42

3.7.3 Side channel A t t a c k ... 42

4 Fast Parallel E lliptic Curve Scalar M ultiplication 45

4.1 In troduction... 45

4.2 Previous W o r k ... 45

4.2.1 Conventional Scalar Multiplication Methods [1 0] 46

4.2.2 Speeding up Scalar Multiplication ... 47

4.2.3 Parallel A rch itec tu res ... 47

4.3 Improved Parallel Scalar Multiplication .._ 48

viii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

CONTEXTS

4.3.1 Performance of the Parallel A lgorithm ... 50

4.3.2 Security Against Side Channel Attack (S C A) 51

4.4 Conclusion ... 52

5 A rchitecture for a Fast Elliptic Curve Processor (ECP) 55

5.1 Introduction.. 55

5.2 Previous W o r k .. 57

5.3 Elliptic Curve Calculation, Arithmetic H ie ra rch y .. 58

5.3.1 Finite Field A r i th m e tic .. 61

5.3.2 Finite Field Inverse... 63

5.3.3 Scalar Multiplication Algorithm ... 6 6

5.3.4 Performance Estimation for ECPs Based on BPWS Multipliers . . . 6 8

5.4 Design F lo w ... 69

5.5 A rchitecture... 71

5.6 Implementation ... 73

5.6.1 HDL S im ulation ... 73

5.6.2 Synthesis R e s u l t ... 74

5.6.3 Performance and co m p ariso n ... 75

5.7 Conclusion .. 75

6 Discussions 83

6.1 Summary of C o n trib u tio n .. 83

6.2 Future Work .. 84

References 85

A ppendix A Test Code 90

A ppendix B Chip Layout 112

VITA AUCTORIS 114

ix

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

List of Figures

2.1 Typical Graph of Elliptic Curve defined over the Field of Real Numbers . . 8

2.2 Graph of Elliptic Curve defined over GF(223) ... 8

2.3 Elliptic Curve Point Addition Operation P3 = P I + P 2 9

2.4 Diffie-Hellman key exchange... 13

3.1 Platform option for ECC im plem en ta tion ... 20

3.2 Projective L i n e ... 22

4.1 Point doubling Flowchart, Runs on ECDBL processor 48

4.2 Point Doubling Flowchart, Runs on ECADD p ro ce sso r 49

5.1 Arithmetic Hierarchy in Elliptic Curve C alcu la tion .. 61

5.2 Representing an element in Galois field GF(2m) .. 62

5.3 Parallel Finite Field Multiplier in GF(25) [58]... 63

5.4 Finite Field Squarer in GF(27) [58].. 64

5.5 Simplified Inverse C alculation.. 64

5.6 ALU Architecture for calculating Inverse C alculation....................................... 6 6

5.7 Elliptic Curve Processor Design F low ... 70

5.8 Architecture of the P ro c esso r ... 71

5.9 Architecture of the Finite Field M ultip lier... 72

5.10 Instruction set categories .. 73

5.11 Simulation Waveforms at s ta r tu p ... 80

5.12 Simulation Waveforms at the end of calcu lation ..~ 81

x

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

L IST OF FIGURES

5.13 Simulation Waveforms while calculating Inverse .. 82

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

List of Tables

2.1 Elliptic Curve Cryptography Challenge(www.certicom.com)................ 15

2 . 2 Elliptic Curve Standards and Algorithms ... 16

3.1 Addition Formula in Affine C oordinate.. 21

3.2 Addition Formula in Projective Coordinates for Fp .. 25

3.3 Addition Formula in Jacobian coordinates for Fp ... 26

3.4 Addition Formula in IEEE Standard for F 2 "* 27

3.5 Addition Formula in Chudnovsky Jacobian Coordinates for Fp 28

3.6 Addition Formula in Lopez-Dahab Projective Coordinates for ¥ 2™ 29

3.7 Cost of Point Addition and Doubling in Different Coordinate System 30

3.8 Classification of scalar multiplication techniques...................................... 31

3.9 kP using Double and Add M e th o d .. 32

3.10 kP using m-ary M e th o d ... 33

3.11 kP using Modified m-ary M ethod.. 34

3.12 kP using Window M ethod .. 35

3.13 Converting a number to N A F .. 36

3.14 kP using N A F representation for k .. 37

3.15 Number of Point operation in different scalar multiplication Method 38

3.16 Montgomery Scalar Multiplication A lg o rith m ... 39

3.17 Montgomery Scalar Multiplication Algorithm in Projective Coordinate . . . 40

3.18 Steps in Point Doubling, Mdouble() .. 41

3.19 Steps in Points Addition, MaddQ .." 42

xii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

LIST OF TABLES

3.20 Steps in Converting the Coordinates MxyQ (Table 3.17) 44

3.21 Cost of scalar multiplication for projective version of Montgomery algorithm 44

4.1 Scalar M ultip lication using standard binary m ethod (LSB f i r s t) 46

4.2 Execution time of k P using different conventional methods 47

4.3 Point Doubling Algorithm, Runs on ECADD processo r....................................... 50

4.4 Point Adding Algorithm, Runs on ECADD processo r.. 51

4.5 Execution time of ECADD and ECDBL in different coordinate system s 52

4.6 Simulation result of the parallel a lgo rithm .. 53

4.7 Simulation result for 160-bit scalar, for different coordinate system................ 54

5.1 Typical number of execution cycle of basic FF o p e ra tio n s 56

5.2 List of EC hardware implementations .. 59

5.3 Speed of kp of different ECPs, at the specified finite field, and maximum

fre q u e n c y .. 60

5.4 Itoh-Tsuji Inverse Algorithm ... 65

5.5 Classification of scalar multiplication techniques... 67

5.6 Cost of scalar multiplication on GF(2m) for different algorithms 6 8

5.7 Elliptic Curve Processor Instruction S e t ... 77

5.8 Area report in CMOS 0 .18 .. 78

5.9 Number of clock cycles for k P .. 78

5.10 Performance of the Elliptic Curve P rocessor... 79

xiii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

List of Abbreviations

ALU

ANSI

ASIC

BPWS

CISC

CLB

CMOS

CPU

DH

DLP

DSA

EC

EUA

ECADD

ECC

ECDBL

ECI)H

ECDLP

ECDSA

ECIES

ECDSA

ECIES

Arithmetic and Logic Unit

American National Standards Institute

Application Specific Integrated Circuit

Bit Parallel Word Serial

Complex Instruction Set Computer

Configurable Logic Block

Complementary Metal Oxide Semiconductor

Central Processing Unit

Diffie-Hellman

Discrete Logarithm Problem

Digital Signature Algorithm

Elliptic Curve

Extended Euclidean Algorithm

Elliptic Curve Addition operation

Elliptic Curve Cryptography, Elliptic Curve Cryptosystem

Elliptic Curve Doubling operation

Elliptic Curve Diffie-Hellman

Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Digital Signature Algorithm

Elliptic Curve Integrated Encryption Scheme

Elliptic Curve Digital Signature Algorithm

Elliptic Curve Integrated Encryption Scheme

xiv

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

L IST OF ABBREVIATIONS

ECMQV Elliptic Curve Menezes-Qu-Vanstone Protocol

ECP Elliptic Curve Processor

FF Finite Field

F ? Galois Field of 2m

FIPS Federal Information Processing Standards

Fp Galois Field of prime p

FPGA Field Programmable Gate Array

GF Galois Field

HDL Hardware Description Language

IEEE Institute of Electrical and Electronics Engineers

IOB Input/O utput Block

ISO International Standard Organization

IT Information Technology

LB Lower Bound

LSB Least Significant Bit

NAF Non-Adjacent form

NIST National Institute of Standards in Technology

ONB Optimal Normal Basis

PB Polynomial Basis

RISC Reduced Instruction Set Computer

RSA Rivest,Shamir, Adleman

RTL Register Transfer Level

SCA Side Channel Attack

SD Signed-Digit

SIMD Single Instruction Multiple Data

SoC System on Chip

SSL Secure Socket Layer

UB Uppen Bound

xv

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 1

Introduction

1.1 M otivation

W ith the rapid and expansive growth of Internet, the need for communication security is

increasing. Financial institutions, manufacturing plants and general public use Internet to

exchange private information. Further expansion of information technology (IT) is tied to

the confidence of Internet users to the security of data transaction on Internet. Secure infor­

mation exchange is vital for E-commerce, and public key cryptography is the most efficient

way to achieve data exchange security between two unfamiliar parties on the Internet.

Public key cryptography was introduced in 1976 by Diffie and Heilman [28]. RSA, the

first popular public key cryptosystem, which is based on the difficulty of integer factorization

was introduced shortly after. RSA is widely accepted and is used for many cryptographic

applications. In 1985, Koblitz [3] and Miller [4] independently introduced elliptic curve

cryptography, which is basically based on the group of points on an elliptic curve (EC) over

a finite field.

Providing the same security level, elliptic curve cryptosystem (ECC) uses smaller key

size compared to RSA. ECC implementations require less power, less memory and less

computation power compared to RSA implementations. These features makes ECC"Very

1

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

1. INTRODUCTION

attractive for implementation on constrained devices such as wireless devices, handheld

computers and smart cards.

Efficient implementation of elliptic curves cryptosystems can be classified into two basic

levels. In the higher level efficiency is tied to the efficiency of the scalar multiplication

algoritbms(Chapter 3 and 4). On lower level, efficiency goes down to finite field arithmetic,

and mostly to finite field multiplication (Chapter 5). This thesis proposes an efficient scalar

multiplication algorithm as well as a new architecture for efficient elliptic curve arithmetic

implementation.

Although implementing security algorithms in software is easier, it is relatively slow, and

has the effect of slowing down and consuming the valuable time of the main processor of

the host system. Hardware solutions are attractive specially when there is a large volume of

secure transactions. Considering the current growth trends it is expected that the demand

for fast security processors will be high in the future.

1.2 Thesis Outline

Chapter 2, gives an elementary introduction to Finite Fields and Elliptic Curves. It covers

some of the mathematical theory behind the construction of finite fields and elliptic curve

group and the basic equations that govern the point addition and point doubling on an

elliptic curve. Finally, it describes the idea of creating a security system based on elliptic

curve and gives estimation of the strength of elliptic curve cryptosystem.

Chapter 3, provides a comprehensive survey on currently used elliptic curve scalar multi­

plication algorithms. Different coordinate systems are explained and EC point addition and

doubling formula in each coordinate is expressed and compared to each other. Scalar mul­

tiplication algorithms are categorized . Algorithms based on scalar recording explained and

evaluated. Special scalar multiplication techniques such as point halving method, Mont­

gomery algorithm and ,ECC based on Koblitz curve discussed at the end of the chapter.

Chapter 4, introduces a new fast algorithm for scalar multiplication. The new technique

is explained and simulation results are compared to conventional double and add methods

[10].

2

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

1. INTRODUCTION

Chapter 5, describes the proposed architecture for a high speed elliptic curve processor.

A thorough survey on the elliptic curve processors hardware implementations is carried out,

and the proposed processor is compared to them. The RTL simulation result is provided

and is compared to few similar design. The results of the survey in chapter 2 is used here

to implement an efficient scalar multiplication algorithm.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Chapter 2

Preliminaries on Elliptic Curve

Cryptography

2.1 Basic Concepts

Groups

D efinition 1 . A group consists of a set G together with an operation * defined on G which

satisfies the following axioms.

1. Closure: for all a, b 6 G we have a * b € G

2 . Associativity: for all o, b, c 6 G we have (a* b) * c = a* (b* c)

3. Identity: for all a € G there exists e 6 G so that a*e — e*a = a. The unique element

e is called the neutral element in G.

4. Inverse: for all a E G there exists i £ G so that a* i = i * a = e. i is unique and is

called inverse of a

We use the notation {G, *) to represent group G with group operation *. (G, x) and

(G, +) are called multiplicative and additive group respectively. In an additive group, the

4

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

neutral element is represented by the symbol 0 and the inverse of a is denoted as —a. In a

multiplicative group, the neutral element is represented by the symbol 1 and the inverse of

a is denoted as a -1 .

(G,*) is called an Abelian or commutative group if for any a and b € G we have

a-kb — b* a.

if set G is finite, the group (G , *) is called a finite group. The number of elements in G

is called the order of the group and is denoted by | G |

R ings

D efin ition 2. A ring is a set R and two operations + and x (called addition and multi­

plication, respectively) defined over R which satisfies the following axioms:

1 . (R , +) is a commutative group.

2. Associativity of x : For all a, b, c 6 R we have (a x b) x c = a x (6 x c)

3. Distributivity of x over +: For all a, b, c G R, a x (b + c) = a x b + a x c and

(a + b) x c — a x c + b x c

A ring in which the multiplication x is commutative is called a commutative ring.

Fields

D efin ition 3. A field is a ring in which multiplication is commutative and every element

except 0 has a multiplicative inverse.

So, we can define the field F with respect to the operations x and + if:

1. {R, +) is a commutative group.

2. (R — {0}, x) is a commutative group

3. x is distributive over +

5

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

2. PRELIM INARIES ON ELLIPTIC CURVE CRYPTO G RAPH Y

If set F has finite number of elements then F is a finite field or a Galois Field . For example

the set Zp = {0 ,1 ,... ,p — 2,p — 1} where p is a prime, with modular addition and modular

multiplication is a finite field.

D efin ition 4. One way function is a function that provides for a computationally inex­

pensive mapping from set X to set Y for all x £ X but becomes computationally infeasible

when mapping an element from set Y to set X for most y 6 Y.

Discrete logarithm (DL) problem: A particular one-way function with x ,y € G such that

the discrete logarithm of x to base y, denoted by log y (x), has a unique integer solution z

where x = yz.

2.2 Elliptic Curves

Elliptic curves have been studied by mathematicians for more than a century. They have

been playing an important role in number theory and cryptography. Elliptic Curves have

been used in integer factorization and have played an important role in solving the famous

problem known as Fermat’s last theorem. Elliptic curve cryptography was proposed inde­

pendently by Victor Miller [4] and Neil Koblitz [3] in the 1985. Elliptic curve cryptosystems

are standardized and are commercially available.

2.2.1 Definition of Elliptic Curves

D efin ition 5. Elliptic curve E over field K. is a set of points (x, y) with x ,y 6 K. which

satisfy the equation:

E : y2 + a\xy + a$y = x 3 + a 2 X2 + 0 4 X + a& (2.1)

where 0 1 , 0 2 , 0 4 , 0 6 6 K, , together with a single element denoted O are called point of

infinity [1 0].

The elliptic curve over 1C is denoted by E{K.). The number of points on £ (th e cardinal­

ity) is denoted #E()C) or just # E .

6

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

An elliptic curve can be defined over various fields. For example, field of complex

numbers C, field of real numbers R, field of rational numbers Q, finite field over prime Fp

or an extension field Fpn. If fC is a field, and 0 1 , 0 2 , 0 4 , 0 6 6 1C, we say E is defined over

1C. In this case the elliptic curve will be the set of points (x , y) where x, y 6 1C and (x, y)

satisfy equation 2.1. In cryptography, elliptic curves over finite field Fp or Fp« are used.

Specifically F 2 « is used more often since it leads to a more efficient design.

For fields of various characteristics, the equation 2.1 can be changed into simpler forms

by a linear change of variables. For fields of characteristics two equation 2.1 is simplified to

E : y2 + xy = x 3 + a2x 2 + 0 6 (2.2)

where 0 2 , a 6 G F 2 n.

We consider the equations for field of characteristic 2 which is used in this work. Equa­

tion for a field other than characteristic 2 was omitted since they are not central to the

discussions.

The Graph of Elliptic Curves

Figure 2.1 shows graphs of two typical elliptic curves defined over the field of real numbers.

The graph of elliptic curve over a finite field is a finite of set of points as is depicted in

figure 2.2. Each point in graph 2.2 is called a point on the elliptic curve and is denoted by

a single letter such as P. The number of points on a elliptic curve over a finite field is an

important cryptographic aspect of the curve and will be discussed later.

2.2.2 Point Addition Formula

Suppose P I and P2 are two points on elliptic curve E{K). Choose P I and P2 and construct

a line through these 2 points. In the general case, this line will always have a point of

intersection with the curve. Now take this third point and construct a vertical line through

it. The other point of intersection of this vertical line with the curve is defined as the sum

of P I and P2 , i.e. P3 = P I + P2. If P I and P2 are equal, then the line constructed

7

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

2. PRELIM INARIES ON ELLIPTIC CURVE CRYPTO G RAPH Y

Curve defined over the Field of Real Numbers

(b)

Figure 2.2: Graph of Elliptic Curve defined over GF(223)

0 I 2 3 4 3 6 7 8 9 10 I t 12 13 14 IS 16 17 18 19 20 21 22

8

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

Figure 2.3: Elliptic Curve Point Addition Operation P3 = P I + P2.

P2.

PI

in the first step is the tangent to the curve, which again, has exactly one other point of

intersection with the curve. This operation is illustrated graphically in figure 2.3.

For each of the two elliptic curves equation 2.2 and 2.1 Analytical formulas representing

P3 can easily be derived from the explained geometric procedures.

Addition formula for equation 2.1: The inverse of P I = (x\ ,y i) G E is — P = (xi, — yi).

If P2 ^ - P I , then P3 = P I + P2 = (x3, y3) where

If P I ± P2
i2 + a : i

x 3 = A2 — A + xi — X2

2/3 = (Xi - x 3)A - 2/1

(2.3)

9

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2. PRELIM INARIES ON ELLIPTIC CURVE CRYPTO G RAPH Y

if P I = P 2 (2.4)

(2 /3 = {Xi + 2 3)A + x 3 + 2/1

Addition formula for equation 2.2: The inverse of P I = (2 1 , 2/1) G E is — P = (2 1 , 2 1 +

?/i). If P2 7 ̂ —P I , then P3 = P I + P2 = (2 3 , 2/3) where

In summary we define the following rules for elliptic curve point addition:

• If P = O we define —P = O

• Equation 2.1: If P = (2 , y) =+■ —P = (2 , —y)

Equation 2.2: If P = (2 , y) =► —P = (2 , 2 + 2/)

• If P I 7 ̂P2 =>• P3 = P I + P 2 equation 2 . 1 and 2 . 2

• If P I = —P2 =► P I + P2 = O

E llip tic C urve G roup Law

The Elliptic Curve addition operation satisfies the following properties:

1. Closer: (P + Q) € E

2. Commutativity: P + Q = Q + P

3. Existence of identity: P + O = O + P

4. Existence of inverse: VP £ E3Q £ E so that P + Q = Q + P = 0

\ _ »1+ 1/2
X 1+X 2

if P I ^ P2 z 3 = A2 + A + 2 1 + 2 2 + 0 2

2/3 = (si + Z3)A + 2 3 + 2/1

(2.5)

if P I = P2 (2 .6)

10

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

5. Associativity: (P + Q) + R — (P + Q) + R

All properties except 2 are easy to prove. For a proof on property 2 see [20].

Therefore Points on E form an finite additive Abelian group with O as the identity

element. If the elliptic curve is defined over a finite field, the elliptic curve additive group

forms a finite Abelian group.

2 .2 .3 E llip tic C urve D isc re te L ogarithm P ro b lem

For some group (G , x) , suppose a, (3 G G. Given a and /? find for an integer x such

that a 1 = (3 is called the discrete logarithm problem (DLP). The DLP in Zp is considered

difficult if p has at least 150 digits and p — 1 has at least one large prime factor (as close

to p as possible). These criteria for p are safeguards against the known attacks on DLP.

Although the discrete logarithm problem exists in any group, when used for cryptographic

purposes the group is usually Zp. In fact discrete logarithm problem can be used to build

cryptosystems with any finite Abelian group. Multiplicative groups in a finite field were

originally proposed.

Definition 6 . elliptic curve discrete logarithm problem (ECDLP) is defined as follows: we

define, kP = P + P + P H h P
S i ■ i. i.— v ^

k times

• ECDLP: Suppose P,Q E E(Wq) and Q = k P for some k . Given P and Q find k

No efficient algorithm is known to date to solve the ECDLP. Numerous cryptosystems

based their security on the difficulty of solving the DLP. For example El-Gamal Cryptosys­

tem in Zp and Diffie-Hellman key exchange [20].

There are also a number of cryptosystems whose security is based on the difficulty of

factoring large integers. One well-known example is the public-key system called the RSA

cryptosystem, which is by far the most popular public key algorithm.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2. PRELIM INARIES ON ELLIPTIC CURVE CRYPTO G RAPH Y

2.3 Elliptic Curve Cryptosystem

Cryptosystems using elliptic curves are based on ECDLP. The basic operation in ECC is

k P = P + P 4- P + b P. The following list shows some encryption system based on
s S/- ^

k times
ECC

• Diffie-Hellman key exchange

• Messy- Omura Encryption

• El-Gamal Public Key Encryption

• El-Gamal Digital Signature

• Elliptic Curve Digital Signature Algorithm (ECDSA).

Detail explanation of these encryption systems can be found in [20] and [21]

Exam ple o f an Elliptic Curve C ryptosystem s: Diffie-Hellman K ey Exchange

The Diffie-Hellman key exchange protocol was proposed in 1976 [28]. This protocol allows

two or more participants to agree on a secret key without ever requiring access to a private

channel. Even if Eve (The Eavesdropper) is able to see every message passed between the

principles, it is mathematically infeasible for her to deduce the secret key. The protocol is

as follows:

Suppose Alice and Bob want to agree on a shared secret key . First of all, there are

public parameters P 6 E. Then they start the following communication.

1 . Alice secretly chooses a random number n and sends Bob

2. Bob secretly chooses a random number m and sends Alice k s P ■

3. The secret key is k_\keP = kskAP- Both Alice and Bob can easily compute, but Eve

can’t, because of the difficulty of the discrete logarithm problem.

12

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

Figure 2.4: Diffie-Hellman key exchange

Alice Bob

kA =Alic Private Key kA =Bob Private Key

P = A Point on an EC (public knowledge)

4. Now Alice and Bob have the same key, ^ (fc ^ P) and can use this key to send encrypted

messages to each other

The most time consuming calculation in this system is k P (Scalar Multiplication). Diffie-

Hellman key exchange works for DLP as well as ECDLP.

Security o f an Elliptic Curve Cryptosystem

In this section we try to provide an overview of the security strength elliptic curve cryp­

tosystems. A typical system is based on Galois fields between 150-160, which are small

enough for efficiency and are large enough for security.

There are two basic type of algorithms to solve discrete logarithm problem. General

attacks which do not depend on the underlying group and specific attacks which depend on

the representation [32].

Elliptic curve discrete logarithm problem is defined as follows: Let E{¥q) be an elliptic

curve over F9 and let P be a point in E(Wq) . For any point R 6 E(Fq) find the integer

k, 0 < k < # P - 1, (# P is the order of P) such that kP = R.

The most powerful general algorithm known at present is baby-step giant-step technique

[20]. Algorithms in this group have running time no better that 0(y/p), where p is the

13

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2. PRELIM INARIES ON ELLIPTIC CURVE CRYPTO G RAPH Y

largest prime dividing n. Shank’s baby-step giant-step method [20] requires 0(^/p) in both

time and space. The storage requirement can be reduced significantly by using the Pollard

method [20]. Pollard method requires y/p iterations on elliptic curve where each iteration

requires 3 elliptic curve additions. Each addition take 10 field multiplications where each

field multiplication takes 4 clock cycles to complete (using the proposed processor described

in the last chapter). Then we need 40y^> clock cycles or QAy/qpSec to solve ECDLP. If

the order of the curve E contains a prime factor of at least 36 decimal digits, then we need

« 0.4 x 1 0 18/nSec which is about 12000 years to complete the operation. See [32] for more

explanation.

All methods for solving the discrete logarithm problem, except index-calculus method,

can be adapted to solve EC discrete logarithm problem (ECDLP). This means that there

exists no method for solving m with a sub-exponential running time, m should be prime,

in order to be safeguarded against Weil decent attacks [63].

Certicom (www.certicom.com), a Canadian company, has announced challenges to break

a typical ECC. Table 2.1 shows the challenge and the estimated time to break the ECC.

2.4 Elliptic Curve Cryptography Standardization

The development of standards is a very important point for the use of a cryptosystem.

Standards help ensure security and interpret-ability of different implementations of one

cryptosystem. There axe several major organizations that develop standards. The most

important for security in information technology are:

• International Standards Organization (ISO)

• American National Standards Institute (ANSI)

• Institute of Electrical and Electronics Engineers (IEEE)

• Federal Information Processing Standards (FIPS)

• National Institute of Standards and Technology (NIST)

14

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

http://www.certicom.com

2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

Table 2.1: Elliptic Curve Cryptography Challenge(www.certicom.com)

Curve

Curve

Field size

(in bits)

Estimated number

of machine days

Prize

(US$)

Status

Status

ECC2-79 79 352 HAC, Maple SOLVED Dec. 1997

ECC2-89 89 11278 HAC, Maple SOLVED Feb. 1998

ECC2K-95 97 8637 $ 5,000 SOLVED May 1998

ECC2-97 97 180448 $ 5,000

ECC2K-108 109 1.3 x 106 $ 1 0 , 0 0 0 SOLVED Apr. 2000

ECC2-109 109 2 . 1 x 1 0 7 $ 1 0 , 0 0 0

ECC2K-130 131 2.7 x 109 $ 2 0 , 0 0 0

ECC2-131 131 6 . 6 x 1 0 1 0 $ 2 0 , 0 0 0

ECC2-163 163 2.9 x 101 5 $ 30,000

ECC2K-163 163 4.6 x 101 4 $ 30,000

ECC2-191 191 1.4 x 102° $ 40,000

ECC2-238 239 3.0 x 102 7 $ 50,000

ECC2K-238 239 1.3 x 102 6 $ 50,000

ECC2-353 359 1.4 x 104 5 $ 1 0 0 , 0 0 0

ECC2K-358 359 2 . 8 x 1 0 4 4 $ 1 0 0 , 0 0 0

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

http://www.certicom.com

2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

Table 2.2: Elliptic Curve Standards and Algorithms

Standard Schemes

ANSI X9.62 ECDSA

ANSI X9.63 ECIES, ECDH, ECMQV

FIPS 186-2 ECDSA

IEEE P I363 ECDSA, ECDH, ECMQV

IEEE P1363A ECIES

ISO 14888-3 ECDSA

ISO 15946 ECDSA, ECDH, ECMQV

Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic Curve Integrated Encryption Scheme (ECIES)

Elliptic Curve Menezes-Qu-Vanstone Protocol (ECMQV)

Elliptic Curve Diffie-Hellman (ECDH)

The most prominent ECC algorithm, the ECDSA was accepted in 1998 as ISO standard

(IS014888-3), 1999 as ANSI standard (ANSI X9.62), and 2000 as IEEE (P1363) and Fips

(186-2) standard. Several other standardization efforts are in progress. Table 2.2 shows the

Elliptic Curve standards

2.5 Intellectual Property Issues

Contrary to RSA, the basic idea of Elliptic Curve Cryptosystems has not been patented,

and in the beginning this seemed to be an important advantage. However, a number of

patents have been applied for, on techniques that mostly aim at improving efficiency. In

principle, it should still be possible to construct a secure, albeit not extremely efficient

elliptic curve cryptosystems without licensing patents. The patents are mostly held by

Certicom, a Canadian company which is marketing elliptic curve cryptosystem.

A number of these techniques are being considered for inclusion in standards and this

16

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

will potentially make it hard to implement interpretable elliptic curve systems without

licensing patents. On the other hand, some standardization organizations require the holders

of patents on standardized techniques to guarantee ’reasonable’ licensing conditions. In

summary, elliptic curves have lost many of their advantages as far as patents are concerned.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 3

Introduction to E C C Computations

3.1 Introduction

In order to implement and elliptic curve cryptosystem one has to decide on the following

options:

1. Defining Equation for Elliptic curve

• Weierstrass form [6]

• Koblitz Curves [2]

2. Representation of points [10]

• Affine Coordinates

• Projective

• Mixed Coordinates

3. Scalar Multiplication technique k P ie. k P — P + P + P + -- - + P
N V 11 1 y

k tim es

• Comb method [16]

18

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

• Window method [10]

• Montgomery method [61]

• Scalar Recording [7]

4. Field Representation

• Polynomial Basis

• Normal Basis

• Dual Basis

5. Finite Field operation Algorithm

• Multiplication

• Squaring

» Inversion

In this chapter items 1, 2 and 3 are explained. Algorithms for finite field operation are

explained in the last chapter. Item 4 is not discusses here.

Speed of a ECC system is determined by the above factors as well as implementation

platform (Fig. 3.1). Using a dedicated hardware to speedup the underlying finite field

arithmetic will increase the speed of elliptic curve operations as it is explained in the last

chapter.

3.2 Elliptic Curve Definition

Definition 7. Let AT be a field of characteristics ^ 2,3, lets x 3 + ax + b (where a,b € K)

be a cubic polynomial with no multiple roots. An elliptic curve over K is the set of points

(x, y) with x , y € K which satisfy the equation

y2 = x3 + ax + b (3.1)

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

Figure 3.1: Platform option for ECC implementation

Finite Field Arithmetic Implementation

Hardware Software

Classic Reconfigurable General purpose uP Embedded uP

ASIC FPGA Intel, RISC DSP, Smart Card

together with a single element denoted O and is called point at infinity. If K is of charac­

teristics 2, then an elliptic curve over K is the set of points satisfying the equation

y2 + y = x 3 + ax + b (3.2)

[!] ■

3 .2 .1 D ifferent Form s o f E llip tic C u rve E q uation

W eierstrass Form [6]

An affine Weierstrass equation over field I f is an equation of the form

E(K) : Y 2 = a \ X Y + a$y = X x 3 -f- a2 X 3 + a \ X + 0 6 (3-3)

with ai,a2,Q4,06 G K.

K oblitz Form [2]

Two extremely convenient families of curves are the anamolaus binary curves (or ABC’s

or Koblitz curves). These are the curves Eq and £) defined over Fjm by Ea : x 2 + xy =

x 3 + ax2 + 1 . We denote by E a(F2m) the group of F 2 m-rational points on E a This is the

group on which the public-key protocols are performed. As we will see, this group of curves

speeds up the scalar multiplication [7].

20

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

3.3 Elliptic Curve Point Representation

An elliptic curve can be represented using several coordinate systems. For each such system,

the speed of point additions {ECADD)and doubling (E C D B L) are different. Therefore

a good choice of coordinate system is an important factor for elliptic curve exponentia­

tions. We give here the addition and doubling formulas for affine, projective, Jacobian,

Chudnovsky and Lopez-Dahab coordinates. These coordinates are defined in section 3.4.1.

3 .3 .1 T h e A d d itio n F orm ulas in A ffine C oord in ate

Let

E a : y2 + xy = £3 + ax2 +b a,b € F 2 ">

be an elliptic curve E over F 2 "*. The addition formula for affine coordinates are the follow­

ings. Let Pi — (xi ,yi) and P2 = (£2 , 3/2) be two points on E a . Then the coordinates of

P3 — P1 + p 2 = (X3 , 3/3) can be computed as shown in table 3.1.

Table 3.1: Addition Formula in Affine Coordinate

P 1 ^ P 2 P 1 = P 2

\ y\-yt

£ 3 = A2 + A + x i + X2 + a X3 = same

2/3 = (£ 1 +£3)A + £3 + 2/1 X3 — same

Cost: I + 2M S Cost: I + 2M + S

For simplicity, we neglect addition and subtraction in F 2 "» because they are much faster

than multiplication and inversion in F 2 m . Let us denote the computation time of an addition

(resp. a doubling) by t (P + P) or t (ECADD) (resp. t(2P) or t {E C D B L)) and represent

multiplication (resp. inverse, resp. squaring) in F 2 *n by M (resp. I , resp. S). Then we see

that t (P + Q) = I + 2M + S and t{2A) = I + 2M + 25 [8] .

21

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

3 .3 .2 P ro jec tiv e S p ace and th e P o in t a t In fin ity

D efinition 8. n-Dimensional projective space over field K is the set of equivalence

classes of n-tuple (xo,xi,X 2 , ■ ■ ■ , x n) with xo ,x i ,X 2 , . . . , x „ g K . T w o n -tu p le (x0, x i , x 2, . ■.,

and (yo, yi, 2/2 , ■ • • > Vn) are said to be equivalent iff there exists non-zero element X e K such

that

(zo, x i , x 2, • • •, x n) (Aj/i, \ y 2 -t Ay3) • • • j ^Vn)

We write

(x Q, x i , X 2 , . . . , x n) ~ (2/0 , 2/1,2/2, - - • , 2/n)

Example: Projective line P It is the set of points (x, y) excluding (0,0) with the

points (Ax, Ay) identified with (x,y). If we select P = (x, y) , then all the points (Ax, Ay)

are on the line joining P to the origin. This is visualized in figure 3.2. Points with the same

shape are equivalent. For every equivalence class we can choose a point lying on the unit

circle as a representative. The projective line P^ is then represented by the unit circle with

diagonally opposite points identified together.

Figure 3.2: Projective Line

(xl.yl)

22

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

3. INTRODUCTION TO ECC COMPUTATIONS

The equivalence class of (x , y , z) is denoted by (x : y : z). If (x : y : z) is a point with

2 ^ 0 , then (x : y : z) = (x / z : y / z : 1). These are the finite points in .However, If 2 = 0,

then dividing by 2 should be thought of as giving 0 0 in either the x or y coordinate, and

therefore the points (x : y : 0) are called points at infinity in PjJ. The point at infinity on

an elliptic curve is identified with one of these points at infinity in P

The two-dimensional affine plane over K is defined by

A l = {(*.2/) \ o c ,y e k }

We have an inclusion

a I ^ P 2k

given by

(x,y) ‘- * (x : y . 1)

In this way affine plane is defined with the finite points in P^.

A polynomial is homogeneous of degree n if it is a sum of terms of the form axly^zk

with a € K and i + j + k — n. If f (x , y) is a polynomial in x and y, then we can make it

homogeneous by inserting appropriate powers of z. For example, if / (x , y) = y 2—x 3—A x —B

then we obtain the homogeneous polynomial F(x,y) = y2z — x3 — A x z 2 — B z 3. If F is

homogeneous of degree n then

F(x, y, 2) = z3f (x / z , y /z)

and

f (x , y) = F(x,y , 1)

The elliptic curve E is given by y2 — x 3 + Ax + B. The homogeneous from is y2z =

x3 + A x z2 + B z 3. The point (x, y) on the original curve, corresponds to points (x : y : 1)

in the projective version. To see what points on E lie at infinity, set 2 = 0 and obtain

x = 0. Therefore x = 0, and y can be any nonzero number. Rescale by y to find that

(0 : y : 0) = (0 : 1 : 0) is the only point at infinity on E. Using projective coordinate speeds

up computation on elliptic curve.

23

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

3.4 Choosing a Coordinate System

Using different projections, points on an elliptic curve can be represented in many different

ways, as it is shown in the following list.

• Affine Plane: (x, y) E a : y2 + xy = x 3 + ax2 + b a,b e F 2 ">

• Projective Plane: (x = X / Z , y = Y /Z) Ep : Y 2Z + X Y Z = X 3 + a X 2Z +

bZ3 a,b € F2 ™

• Jacobian: (x = X / Z 2, y = Y / Z 3) E j : Y 2 = X 3 + a X Z 4 + bZ6 a, b e ¥p

• Chudnovsky: (X, Y, Z, Z 2, Z 3) P3 = Pj + P2 = P2 = (X3, Y3, Z3, Z32, Z33).

• Lopez-Dahab: (x - X /Z , y = Y / Z 2) Ed : Y 2+ X Y Z = X 3+ a X Z 2+bZ4 a , b e

F2m

3.4 .1 D iffe ren t C o o rd in a te S y s te m s

T h e A d d itio n Form ulas in P ro je c tiv e C oord inates

For projective coordinates, we set x = X / Z and y = Y/Z , giving the equation:

Ep : Y 2Z = X 3 + a X Z 2 + bZ3 a , b e F p

Ep : U2Z + X Y Z = X 3 + a X 2Z + bZ3 a ,b e F2m

The addition formulas in projective coordinates for Fp are the following. Let P i = (ATi, Yj, Z\),

P2 = (X 2 , Y<i,Z2) and P3 = P\ + P2 = (X3 ,Y3 , Z3), table 3.2 summarized the addition

formula [8].

T h e A d d itio n Form ulas in Ja co b ia n C oord inates

For Jacobian coordinates, we set x = X / Z 2 and y = Y / Z 3, giving the equation:

E j : Y 2 = X 3 + a X Z 4 + bZ6 a , b e F p

24

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.2: Addition Formula in Projective Coordinates for ¥p

P 1 ^ P 2 P1 = P2

u = Y2Z i - YlZ2 u — dZi2 + 3 X \ 2

V = X 2 Z 1 — X 1 Z 2 v = Y1Z 1

w = u2Z \ Z 2 — v3 — 2 v2X i Z 2 w = X{Y\v

t = u8w

X 3 = vw

1 1
1 to

<2 ; c
*.

Y3 = u(v2X\Z2 — w) — v3Yi Z2 ^ 3 - u(4w — t) — 8Y 2v2

Z3 = v3Z\Z2 Z3 = 8v3

Cost: 12M + 2S Cost: 7M + 5S

The addition formulas in the Jacobian coordinates are presented in table 3.3. Table 3.4 rep­

resents the point addition and point doubling formulae adapted from IEEE P1363 standard

for comparison[21]A10-5, A10-7.

The Addition Formulas in Chudnovsky Jacobian Coordinates

We see that Jacobian coordinates offer a faster doubling and a slower addition than pro­

jective coordinates. In order to make an addition faster, we should represent internally a

Jacobian point as the quintuple (X , Y , Z, Z 2, Z 3). This is called the Chudnovsky Jacobian

coordinate and denoted by Jc. The addition formulas in the Chudnovsky Jacobian coor­

dinates are the following. Let P I = (Xi, Y\, Z\ ,Z\2, Z\3), P2 = (X 2 , Y 2, Z 2 , Z 2 2 , Z2 3) and

P3 = Pi + P2 = P 2 = (X 3 ,Y3 , Z 3 ,Z 3 2,Z 3 3). Table 3.5 shows the addition procedure in

mathbbFp.

The Addition Formulas in Lopez-Dahab Coordinates

We set x — X / Z and y = Y / Z 2, giving the equation:

E d : Y 2 + X Y Z = X 3 + a X Z 2 + bZ4 a , b e F 2m

25

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.3: Addition Formula in Jacobian coordinates for Fp

P 1 ^ P 2 P I = P 2

Ui = X xZ22 S = 4 X t Y 2

U2 = X 2Z i 2 M = 3 X 12 + aZ14

Si = X x Z23 T = - 2 S + M 2

II CO

H1 = U2 - Ul

r = S2 - S - 1

X 3 = - H 3 - 2U\H2 + R 2 j

II£

Y3 = - S i H 3 + R(U i H 2 - X 3) Y3 = -8Yi4 + M (S - T)

Z3 = Z \Z2H

CMII

Cost: 12 M + 4S Cost: 4M + 6S

like other projective coordinates this coordinate we don’t need inversion for E C A D D and

E C D B L (Table 3.6) [9].

The key observation is that, point addition in projective coordinates can be done using

field multiplication only, with no inversion required. Thus the inversion are deferred, and

only one need to be performed at the end of a point calculation, if it is required that the final

result be given in affine coordinates. The cost of eliminating inversion is an increased number

of multiplication. So the appropriateness of using coordinated is strongly determined by

the ratio I / M . for an I / M > 10 projective coordinates is recommended[9] [10].

Mixed Coordinate

It is evidently possible to mix different coordinates, i.e. to add two points where one is

given in some coordinate system, and the other point is in some other coordinate system.

We can also choose the coordinate system of the result. Proper use of mixed coordinates

can lead to a faster point calculation. For a table of mix coordinate system refer to [8].

26

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.4: Addition Formula in IEEE Standard for F2m

P l ^ P 2 P I = P2

U0 = X 0 Z l (b = c4)

So = Y0Z f Z2 = X i Z \

Ux = X i Z l X 2 = (Xi + cZ2)4

Si = Y iZ l U = Z2 + X 2 + Yi Z i

W = U0 + Ui y 2 = X \ Z 2 + U X 2

R — So + Si

t = r + z 2

L = ZqW

•■4IIbo

X2 = aZ\ + T R + W 3

V — R X i + LYi

Y2 = T X 2 + V L 2

Cost: 15M + 7A + 55 Cost: 5M + 4A + 55

Cost (Zi = 1): 11M + 7A + 45

3.4.2 Coordinates Summary

Table 3.7 1 summarizes the cost of elliptic curve point calculation in different coordinates.

Selection of the coordinate system depends on the implementation platform. As a rule of

thumb, projective coordinates are preferred, unless there exists an efficient division imple­

mentation.

‘In some cases number of additions is calculated to be used in the performance calculation of the developed

processor(chapter 5)

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.5: Addition Formula in Chudnovsky Jacobian Coordinates for Fp

P 1 ^ P 2 P1 = P2

Ui = Xi Z22 S = 4 X i Y 2

U2 = X 2Z i 2 M = 3 X \2 + aZ i4

Si = YxZ23 T = - 2 S + M 2

S2 = V2Zi3

H I = U2 — Ul

r = s 2 - s - i

X 3 = - H 3 - 2UiH2 + R 2

FhII£

Y3 = - S i H 3 + R{UiH2 - X 3) Y3 = - 8 Y i 4 + M (S - T)

Z 3 = Z \Z2H Z3 = 2TiZi

Cost: 11M + 4 S Cost: 5M + 65

3.5 Scalar M ultiplication

Scalar multiplication (or point multiplication) is the heart of Elliptic Curve Cryptogra­

phy (ECC), which computes k P for a given point P and a scalar k. In public-key crypto­

graphic systems, elements of some group are raised to large powers. In case of RSA it is ak

and in case of Elliptic curve it is k P .

The scalar multiplication in ECC is the most dominant computation part of ECC. There

are many algorithms for computing the scalar multiplication. The IEEE standard one is the

binary non-adjacent form (NAF) which is not the most efficient one. Table 3.8 summarizes

scalar multiplication techniques.

Scalar multiplication in elliptic curves is a special case of the general problem of modular

exponentiation in Abelian group. Therefore it benefits from all the techniques available for

the general problem and the related short addition chain problem for integers. However

there are also efficiency improvements available elliptic curve case that have no analogue in

modular exponentiation. There are three kinds of these [10]:

28

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.6: Addition Formula in Lopez-Dahab Projective Coordinates for F 2 m

P l ^ P 2 P I = P 2

a = y22 i 2 + n A = bZi4

B = X 2 Z 1 + X \

C = Z \ B

D = B 2(C + aZ\2)

E = A C

F = X 3 + X 2 Z 3

G = X 3 + Y2 Z3

X 3 = A 2 + D + E X 3 = X l 4 + A

Y3 = E F + Z 3 G Y3 = A Z 3 + X 3 (aZ3 + Y !2 + A 4)

Z 3 = C2 Z 3 = X \ Z 2

Cost: 14 M Cost: 5M

1. Choose the curve, and the base field over which it is defined, so as to optimize the

efficiency of elliptic scalar multiplication.

2. Use the fact that subtraction of points on an elliptic curve is just as efficient as

addition.If we allow subtractions of points as well, we can replace the binary expansion

of the coefficient n by a more efficient signed binary expansion.

3. Use complex multiplication. Every elliptic curve over a finite field comes equipped

with a set of operations which can be viewed as multiplication by complex algebraic

integers (as opposed to ordinary integers).

In general the following methods try to optimize kP. Generally the optimization is

based on[ll]:

1. Recording of multiplier k

2. Precomputation

29

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.7: Cost of Point Addition and Doubling in Different Coordinate System

Coordinate Transform P + Q 2 P Field

Affine (X ,Y) I + 2M + S I + 2M + S Fp

Standard projective {X/Z, Y /Z) 12 M + 2 5 7M + 5S Fp

Jacobian projective (IEEE) { X / Z 2, Y / Z 3) 12M + 4S 4 M + 5S Fp

Jacobian projective (IEEE)

Using mixed coordinate

{ X / Z 2, Y / Z 3) 15 M + 55 + 7A

11M + 4S + 7A

5M + 5S + 4 A F2m

Chudnovsky projective { X , Y , Z , Z 2, Z 3) U M + 4S 5M + 6S Fp

Lopez-Dahab projective {X/Z, Y / Z 2) 14 M + 55 5M + 9S F2m

3.5.1 Speeding up Scalar M ultiplication (kP)

Binary M ethod

This method which is also known as the double-and-add (square and multiply for RSA)

method, is over 2000 years old [12]. The basic idea is to compute gk or k P using the binary

expansion of k. Let

n -l
k = J 2 bi? (3.4)

i=0
Then the following algorithm will compute k P using binary method, it takes n x E C D B L

and ^ x E C AD D on average [10].

m-ary M ethod

The binary method has an obvious generalization: Let

d—l
k = ^ Cirri1

i=o

The algorithm in table 3.10 computes k P using this representation

30

(3.5)

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 3.8: Classification of scalar multiplication techniques

Name of Method Basic Idea Application Example

Comb [16] Precompute tables of 2m Q Q fix DH key exchange

addition chains [7] sum^~gki k fix DSA

Windowing (Fix, Variable)

m —ary [10]

Precompute tables memory k = Y ^ —o ciTn% Q is not known Security Server

Scalar recoding [7] fewer zero in binary representation of k (NAF)

CO

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.9: k P using Double and Add Method

A lgorithm : Scalar Multiplication: Binary Method [10]

Input: A p o in t P , an in te g e r k = b{ — 0,1

Output Q = kP

Q *— O

For i = n-1 to 0 by -1

Q «- 2Q

i f bi = 1 then Q <— Q + P

EndFor

Return Q

This method is paxticulary attractive if m = 2r . For r = 3 it will be similar to octal

representation of k, and for r = 4 it will be similar to hexadecimal representation of A;.

If m = 2r this algorithm takes (n — r) x E C D B L (since d = n/r, (d — 1)r = n — r) and

d x E C A D D and (m — 1) x E C A D D for precomputation [7] [10].

Modified m -ary Method

In case of m — 2r , It is possible to save some E C A D D at precalculation phase, by dropping

the trailing zeros at each nn . ie. we calculate rrijP when is odd.

Using this method number of E C A D D is n / r + (m — 2)/2. The number of E C D B L

remain the same. It is worth mentioning that we need to select the optimized r for a

specific length of k. There is always a specific r for a k which minimizes the number of

elliptic computations [7].

Window Method

The m-ary or 2r-ary method may be thought of as taking A;-bit windows in the binary

representation of r, calculating the powers in the windows one by one, squaring them r

times to shift them over, and then multiplying by the power in the next window [7]v In

32

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.10: kP using m-ary Method

A lgorithm : Scalar Multiplication: m-ary Method [10]

In p u t: A p o in t P , an in te g e r k — YliZo kirn1, ki € { 0 ,1 ,.. . , m — 1}

Output Q = k P

P I *— P

For i =2 to (m-1) by -1

P l i <— Pi- 1 + P (pre calculate, Pi — iP)

Q <— O

For i = d-1 to 0 by -1

Q <— mQ (if m = 2r, this requires r doubling)

Q <— Q + k{P (pre calculations is required to calculate all ctP)

EndFor

Return Q

other words it can be regarded as a specific case of window method, where bits of the

multiplier k are processed in blocks of r bits. Window method processes windows up to

length r disregarding fixed digit boundaries, and skips runs of zeros between them. These

runs are taken care of by point doubling, which need to be computed in any case. We

assume r > 1.

Using sliding windows has an effect equivalent to using fixed windows one bit larger,

but without increasing the precomputation cost. The computation cost of sliding window

method is estimated as n x E C D B L and n /(r + 1) x E C A D D [10].

R e d u n d an t N u m b e r System : B inary N A F

Subtraction has virtually the same cost as addition in the elliptic curve group. The group

negative of (x, y) is (x, x + y) in characteristics two and (x, —y) in odd characteristics. This

naturally leads us to scalar multiplication methods based on addition-subtraction chains,

which may reduce the number of point operation. The signed-digit (SD) representation can

33

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.11: kP using Modified m-ary Method

A lgo rithm : Scalar Multiplication: Modified m-ary [10] Method

In p u t: A p o in t P , an in te g e r k = YliZo k im \ ki £ { 0 ,1 ,.. . , m - 1}

Output Q = kP

Pi <- P, P2 «- 2P

For i =1 to (m-2)/2 by -1

P 2 1 + 1 <— p 2t - i + P 2 (pre calculate, odd multiplies of P)

Q + - 0

For i = d-1 to 0 by -1

I f kj 7^ 0 then

Let sj and hj be such th a t kj = 2si h j , hj odd

Q ^ (2 r~°J)Q

Q <— Q + Ph.,

E lse Sj <— r

Q ^ - 2 siQ

EndFor

R eturn Q

be applied to all methods discussed so far, but this technique cannot be used for modular

exponentiation in RSA.

This begins with the non-adjacent form (NAF) of the coefficient k : a signed binary

expansion with the property that no two consecutive coefficients are nonzero. For example,

NAF(29) = (1,0,0, —1,0,1) since 29 = 32 — 4 + 1.

Just as every positive integer has a unique binary expansion, it also has a unique N A F .

Moreover, N A F (k) has the fewest nonzero coefficients of any signed binary expansion of k

[7]. There are several ways to construct the N A F of k from its binary expansion.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.12: kP using Window Method

Algorithm: Scalar Multiplication: Sliding Window Method [10]

Inpu t: A p o in t P , an in te g e r k = W , h G {0,1}

Output Q = kP

Px <-P ,P 2 ^ 2 P

For i =1 to (2r - 1 - l)

P21+1 P2 1 -1 + P2 (pre calculate, odd multiplies of P)

j <— n — IQ <— O

For i = d-1 to 0 by -1

I f kj ^ 0 then

Let t be th e le a s t in te g e r such th a t j — t + 1 < r and kt = 1

hj < (fcj, kj—i , . . .) kt) 2

Q ^ (2 0 - W)) g + P/i.

j «- t - 1

E lse Q <-2Q, j <r-j - 1

EndFor

Return Q

Consider representations

n—1
n = where c* e { -1 ,0 ,1} for all i (3.6)

i= 0

Let the weight of a representation be the number of nonzero c*, and let w(x) be the min­

imum weight of any such representation of x. A non-adjacent form N A F is a representation

with CiCi+\ = 0 for a li i > 0 .

Theorem: Every integer x has exactly one NAF. The number of nonzero in the NAF is

w(x) The advantage of using the NAF is that, in general it has fewer nonzero than the binary

representation, reducing the number of multiplications. The expected number of nonzero

in a length n N A F is n/3. NAF(k) can be efficiently computed using the following

35

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

in table 3.13. Table 3.14 shows the algorithm for scalar multiplication using Binary N A F

method.

Table 3.13: C onverting a number to N A F

A lgorithm : Computing the N A F of a positive [10] integer

Inpu t: A p o s it iv e in te g e r k

Output NAF(k)

i *— 0

While k >= 1

I f k i s odd then : ki <— 2 — (k mod 4), A; <— k — ki

Else k <— 0

k <— k / 2 , i = i + 1

EndWhile

Return (&j_i, fcj_2 , . . . , k\, ko)

The m —ary method may of course also be generalized to allow negative digits. However,

the savings quickly go down, since the average number of nonzero in an n-digit generalized

N A F is n(m — 1)/(m + 1), which is not much better than the n(m — l)/(m) in the base-m

representation for large m. Using Binary N A F the algorithm in table 3.14 will compute

kP.

The cost of the algorithm is n doubles and n /3 additions. For a total of 4n/3 elliptic

operation. This is about one-eighth faster than the binary method, which uses the ordinary

binary expansion in place of the N A F and therefore requires an average of n /2 elliptic

additions rather than n/3.

W id th -w N A F M eth o d [10]

The so called width-ic N A F method is the special case of signed modified m-ary method,

or N A F representation of modified m-ary method, where m = 2W. A width-w N A F of an

36

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.14: k P using N A F representation for k

A lg o rith m : Scalar Multiplication: NAF Binary Method [10]

In p u t: A p o in t P , an in te g e r k = X̂ -Tq1 Cj2\c* = —1,0,1

Output Q = kP

Q <— O

For i = n-1 to 0 by -1

Q «- 2 Q

i f bi = 1 then Q <— Q + P

i f bi = —1 then Q <— Q — P

EndFor

Return Q

integer k is an expression

d - 1
k< e { -2 ” , _ 1 + 1 , . . . , 0 ,1 ,3 , . . . 1 2u'- 1 }

i= 0

In other words each non-zero coefficient ki is odd, |/cj| < 2W~1, and at most one of any

w consecutive coefficients is nonzero. Every positive integer has a unique width-u; N A F ,

denoted N A F w(k). Note that N A F 2 (k) = NAF(k) . N A F w(k) can be efficiently computed

using N A F algorithm in table 3.13 modified as follows: in the first statement of the While

loop replace ki «— 2 — (k mod 4) by ki +—2 — (k mod 2W), where k mod 2W denotes

the integer u satisfying u = k(mod2 w) and — 2 W ~ 1 < u < 2 W~1.

It is known that the length of N A F w(k) is at most one bit longer than the binary

representation of k. Also, the average density of non-zero coefficients among all width-u;

NA F s of length n is approximately n/(w + 1) [1 1]. It follows that the expected running

time of scalar multiplication using Width-u; is approximately E C D B L + (2W~2 EC ADD)

for precalculation and (u> + 1) E C ADD + n .ECDBL) for the scalar multiplication itself [9].

Note that the number of E C D B L is not changed. When using projective coordinates, the

running time in the case n = 163 is minimized when u; = 4. For the cases n = 233 and

37

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

3. INTRODUCTION TO ECC COMPUTATIONS

n = 283, the minimum is attained when w = 5; however, the running times are only slightly

greater when w — 4.

3 .5 .2 Scalar M u ltip lica tion S u m m ary

Table 3.15 summarizes number of point addition and point doubling in each of the discussed

scalar multiplication methods. As it is clear form the table, recording methods decrease

number of additions, but number of point doubling remains almost the same. Although

window methods are faster but they need extra memory to save 2 P, 3 P, — 1)P.

Table 3.15: Number of Point operation in different scalar multiplication Method

Method # P + Q (Average) # 2 P

Binary (double-add) n / 2 n

m-ary, m = 2 r n / r + (2 r - 1) n — r

modified m-ary, m = 2 r n / r + (2 r _ 1 — 1) n — r

Binary NAF (double-add,sub) n/3 n

width-u; N A F Method n / (r + 1) + 2 r ~ 2 « n

r-adic N A F (Koblitz curves only) n/3 0

3.6 Special M ethods for Scalar M ultiplication

3 .6 .1 A n om alou s B inary C urves (K o b litz C urves)

Two extremely convenient families of curves are the anomalous binary curves (or ABC’s).

These are the curves E q and E\ defined over F 2 by

Ea : y2 + xy = x 3 + ax2 + 1, a € {0,1}

Using Koblitz curves speeds up the scalar multiplication calculation as indicated in

table 3.15. However, there are concerns about the security of ECC using Koblitz curves. A

complete discussion on Koblitz curves can be found in [2].

38

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

3 .6 .2 P o in t H a lv in g

In [13], Knudsen introduces a new method for scalar multiplication on a non-supersingular

elliptic curve over GF(2m). The idea is to replace all point doubling with a faster operation,

called point halving. Moreover, Knudsen shows that the halving algorithm is superior to

previous algorithms when it is implemented using affine coordinates and normal basis.

However, the halving algorithm has a storage limitation if a polynomial basis is used, where

the required storage is in the order of magnitude 0 (n 2) bits. The halving algorithm and

the Montgomery method cannot take advantage of Koblitz curves properties.

3.7 M ontgom ery Scalar M ultiplication Algorithm

A different approach for computing kP was introduced by Montgomery [17] in 1987. This

approach is based on the binary method and the observation that the x-coordinates of the

sum of two points whose difference is known can be computed in terms of x-coordinates of

the involved points. This method uses the following variant of binary method.

Table 3.16: Montgomery Scalar Multiplication Algorithm

A lgorithm : Montgomery Scalar Multiplication, in Projective Coordinate

In p u t: A p o in t P = (x, y) £ E, an in te g e r k > 0, k = &«2’> e (0> 1}

O utput: Q = kP

P\ «- P, P2 <- 2P

For i = n-2 to 0

i f bi = 1 then

Pi <— Pi + P2, P2 <— 2 P 2

else

P2 <— Pi + P2 , Pi 2Pi

EndFor

Q - P i

Return Q _

39

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.17: Montgomery Scalar Multiplication Algorithm in Projective Coordinate

A lgo rithm : Montgomery Scalar Multiplication, in Projective Coordinate

In p u t: A point P = (x , y) £ E, an integer k = 6*2*, bi = 0,1

O utput: Q = kP

X I <— x, Z l <— 1 , X 2 <— a: 4 + b, Z 2 *— x 2

I f (k — 0 or x = 0)

R <— O

Stop
For i = n — 2 to 0

if ki = 1 then
Madd(Al, Zl , X2, Z 2) , Mdouble(X2, Z2)

else

Madd(A2, Z2, X I , Z l) , Mdouble(Al, Z l)

EndFor

Q =Mxy(Xl, Z1 ,X2 ,Z2)

Return Q

This method maintains the invariant relationship P2 —P1 = P, and performs an addition

and a doubling in each iteration. In [61] this algorithm is converted to projective space and

after simplification the following algorithm is derived.

3 .7 .1 C alcu lation

D oubling algorithm

Input: the finite field GF(2m); the field elements a and c = 6 2 "* ” 1 (c2 = b) defining a curve

E over GF(2m), the x-coordinate X / Z for a point P. Output: the x-coordinate X / Z for

the point 2 P.

x(2 P) = X 4 + b x Z 4 (3.7)

40

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.18: Steps in Point Doubling, MdoubleQ

1 T i = c

2

CN*II

3 Z = Z 2

4 Ti = Z x T i

5 Z = Z x X

6

11

7 X — X 2

8 X = X + Ti

z(2P) = X 2 x Z 2 (3.8)

This algorithm requires one general field multiplication, one field multiplication by the

constant c, four field squaring and one temporary variable (Table 3.18).

Addition algorithm

Input: the finite field GF(2m); the field elements a and b defining a curve E over GF(2TO);

the x-coordinate of the point P; the ^-coordinates X l / Z l and X 2 /Z 2 for the points P I

and P2 on E. Output: The x-coordinate X l / Z l for the point P I + P2.

= Ô i * Ei + X 2 x Z \) 2 (3.9)

X 3 = x x Z 3 + (Ai x Z 2) x (X 2 x Zi) (3.10)

This algorithm requires three general field multiplications, one field multiplication by x,

one field squaring and two temporary variables(Table 3.19).

Affine coordinates algorithm M xy()

Input: the finite field GF(2m); the affine coordinates of the point P = (x, y); the x-

coordinates X l / Z l and X 2/Z 2 for the points P I and P2. Output: The affine coordinates

41

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.19: Steps in Points Addition, MaddQ

1 T\ — x

2 X x = X x x Z 2

3 Zi = Z\ x X 2

4 T2 = X i x Zi

5 Zi = Zi + X i

6 Zl = z l

7 X i — Z i x Ti

(xk,yk) = (X2,Z2) for the point P I .

x k = ^ (3.11)

yk = {x + x k)[(y + x 2) + (^ + x) & + x)] x - + y (3.12)
Z 2 Z l X

This algorithm requires one field inversion, ten general field multiplications, one field

squaring and four temporary variables (Table 3.20).

3 .7 .2 P erform ance

The performance of Montgomery scalar multiplication algorithm is shown in Table 3.21.

Note that in Montgomery algorithm one point addition and one point multiplication is

needed for each bit in the scalar, while, whereas using NAF, on an average n /3 number

of point addition are needed for scalar multiplication. Even if the number of operation

is divided by 3 the number of operation in Montgomery algorithm is less th a t the other

methods.

3 .7 .3 S id e channel A ttack

Side channel attack (SCA) on cryptosystems uses leakage of a certain side-channel informa­

tion such as timing, electromagnetic radiation and power consumption to obtain information

42

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

3. INTRODUCTION TO ECC COMPUTATIONS

about the private key.In elliptic curve cryptosystems scalar multiplication algorithms are

target for SCA. In scalar multiplication k P is calculated were k is a secret key and P is

usually not a secret and even can be chosen by the attacker. If the sequence of executed

instructions in the algorithm is directly related to the bits of the private key a successful

power-analysis attack can be carried out on the cryptosystem. As in can be seen in table

3.9 it is possible to distinguish a point addition by measuring the power of the device which

is executing the algorithm. This makes the insecure against SCA. The algorithm presented

in 3.16 is secure against power attack since the operation performed in each step of the

scalar multiplication algorithm is not dependent to the bits of k.

The execution time of the algorithm in table 3.9 depends on the number of bits in the

binary representation of k. This makes the algorithm vulnerable to time analysis attack.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.20: Steps in Converting the Coordinates MxyQ (Table 3.17)

1 if Z\ = 0 then output (0,0) and stop

2 if Z2 — 0 then output (x, x + y) and stop

3 T\ = x

4 II
5 T3 = Z\ x Z2

6 Z\ — Z\ x 7i

7 Z 1 = Z 1 + X 1

8 Z 2 — Zi x T\

9 X i = Z2 x Xj

1 0 z 2 = z 2 + x 2

1 1 Z2 = Z2 x Zi

1 2 $ II

13 t a = t 4 + t 2

14 T4 = T4 x T3

15 t 4 = t 4 + z 2

16 T3 = T3 x T\

17 T3 = inverse(T3)

18 T4 = T 3 x T4

19 X 2 = X i X T3

2 0 Z 2 = X 2 + T\

2 1 Z 2 = Z2 x T4

2 2 ^ 2 = ^ 2 + T2

Table 3.21: Cost of scalar multiplication for projective version of Montgomery algorithm

Representation Point Addition Point Doubling

Montgomery, Projective version 4M+1S+2A 2M + 4S + 1 A

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 4

Fast Parallel Elliptic Curve Scalar

Multiplication

4.1 Introduction

This chapter presents a fast parallel elliptic curve scalar multiplication algorithm based on a

dual-processor hardware system. The method has an average computation time of ^ EC ADD

on an n-bit scalar. The improvement is nECDBL compared to conventional methods. When

a proper coordinate system and binary representation for the scalar k is used, the average

execution time will be as low as nECDBL, which proves this method to be about two times

faster than conventional single processor multipliers using the same coordinate system.

4.2 Previous Work

Scalar multiplication is the basic operation for Elliptic Curve public key cryptography. The

operation is defined as

Q = kP = P + P + . . . + P (4.1)

where P and Q are points on elliptic curve E defined over GF(2”) and A; is a scalar in

45

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

the range of 1 < k < Ord(E).

4.2.1 Conventional Scalar M ultiplication M ethods [10]

Double-and-add is probably the simplest (and oldest) method of scalar multiplication. The

basic idea is to compute kP using the binary expansion of k. Let

n—1

* = (4.2)
i=0

then algorithm 4.1 computes k P using Double-and-add method. The bit examination

can be done from the most significant bit (MSB first method) or the least significant bit

(LSB first method).

Table 4.1: Scalar Multiplication using standard binary method (LSB first)

A lgorithm : Point Multiplication, Binary Method

In p u t: A point P, an integer k = X̂ -Tq1 6 * € 0,1

O utput: Q = kP

Q <— P

R <— O For i = 0 to n-1 by 1
If bi — 1 Then

R <— R + Q

Q+- 2 Q

EndFor

Return R

The execution time for the algorithm is proportional to n Elliptic Curve point dou­

bling operation (ECDBL), and on average j Elliptic Curve point addition operation (ECADD).

Therefore the total average execution time will be nECDBL + ^ ECADD. If redundant repre­

sentation (ie., binary NAF) is used to represent the scalar k, the average number of one or

minus one in the representation of k will be reduced to In this case the average execution

46

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

time will be proportional to nECDBL 4- ÊCADD [10] [7]. Table 4.2 summarizes the execution

time of different conventional scalar multiplication methods.

Table 4.2: Execution time of k P using different conventional methods

Method Average Execution Time

Binary [10] (n - 1) ECDBL + ECADD

Binary NAF [10] (n - 1)ECDBL + ^ECADD

Window [10] nECDBL + ECADD

It can be seen from the algorithm that in least significant bit-first (LSB first) method

ECDBL and ECADD operations are independent, and they can be performed in parallel.

4.2.2 Speeding up Scalar M ultiplication

Many methods have been proposed in the literature to speed up scalar multiplication. These

methods are classified in table 3.8. Constraints in scalar multiplications are speed, memory

usage and security against side channel attack (SCA). Methods with precomputations, like

Window method and Comb method are faster but they need extra memory to store pre­

calculated values. Addition Chain methods and Comb methods are very effective when k

and P are known in advance, respectively. In comparison Window methods are efficient for

most cases.

4.2.3 Parallel Architectures

Parallel architectures for scalar multiplication can be done in the scalar multiplication

algorithm level or in the calculation of ECDBL or ECADD itself. In [19] Moller proposes a

parallel algorithm for scalar multiplication which is fast and secure against side channel

attack. This paper proposes a method which uses two processors and a circular buffer,

which acts as a communication channel between the two processors to reduce the average

time of the scalar multiplication to nECDBL. This way the total time for ECADD is saved,and

47

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

the system can be as fast as a system using radic N A F for Koblitz curves.

4.3 Improved Parallel Scalar M ultiplication

The proposed method for calculating k P uses two processors, one for execution of ECDBL

and one for ECADD. The two processors may operate asynchronously. The ECDBL processor

calculates 21P and stores them to a circular buffer. The ECADD processor reads from the

circular and performs the addition. Figures 4.1 and 4.3 depicts the operation flowchart of

the ECDBL processor and ECADD processor respectively.

Figure 4.1: Point doubling Flowchart, Runs on ECDBL processor

S t a r t

s t o p

b u f f e r _ f u l l (

p u t _ b u f f e r (Q)

The two processors share the circular buffer and a counter. The buffer can be a standard

circular buffer and should provide empty and full flags. _

48

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

Figure 4.2: Point Doubling Flowchart, Runs on ECADD processor

t a r t ,

b u f f e r _ e m p t y ()

= R + g e t _ b u f f e r ()

s t o p

The ECDBL processor fills up the buffer with 2lP, and ECDBL processor takes the points

from the buffer. If the data in the buffer are not consumed by the ECADD processor the

buffer becomes full and the ECDBL processor needs to wait until there is free room in the

buffer. On the other hand if there is not enough ones in the binary representation of k,

the buffer becomes empty after a while and ECADD processor needs to wait until data is put

into the buffer by ECADD processor. In the hardware implementation the buffer should be

implemented using dual port RAM/register so that both processors can have simultaneous

access to it. In software implementation locking mechanism is needed for accessing the

counter and the buffer, since they are accessed from the two processes.

49

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

Table 4.3: Point Doubling Algorithm, Runs on ECADD processor

A lgorithm : Point Doubling

In p u t: A point P, an integer k = ^"Jq 1 b%21, bi 6 0,1

O utput: 2iP, Stored in the buffer

Global: i , b u ffe r

Q + - P

i := 0
While i<n

If bi = 1 then

If buffer_full()
Continue

put _buff er(Q)

Endlf
Q < - 2 Q

i := i +1
EndWhile

4.3.1 Performance of the Parallel Algorithm

The performance of the algorithm depends on the ratio of ECADD/ECDBL and the probability

of occurrence of nonzero (1 — P(0)) in the binary representation of the multiplier k. The

ECADD/ECDBL ratio depends on the coordinate system in which the elliptic curve calculation

is performed. And P(nonzero) depends on the binary representation form of k. For example

in NAF representation P(nonzero) = 5 . Table 4.5 summarizes the cost of elliptic curve

point calculation in different coordinate systems.

Simulation results of the algorithm are summarized in table 4.6. The results show

that when NAF representation for k is used, the algorithm keeps the average number of

ECADD operations at about n/3, regardless of n and ECADD/ECDBL ratio. The number of

extra ECDBLs that we need in addition to ^ ECADD depends on ADD/DBL ratio. Therfore for

50

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

Table 4.4: Point Adding Algorithm, Runs on ECADD processor

A lgorithm : Point Addition

In p u t: 2iP, Read from the buffer

O utput: R = kP

Global: counter i , b u ffe r

R < - 0

While i<n Or Not bu ffer.em pty ()

I f Not buffer_em pty()

R*—R+ g e t_bu ffer()

EndWhile

R eturn R

equal ECADD the faster the ECDBL, the faster the multiplication will be. It can be seen

from the results that if ECADD/ECDBL > P (l) then essentially the number of ECDBL remains

constant, which means ECDBL is being executed almost always in the background. Running

the simulation for n = 160 leads to table 4.7 which predicts the execution of the algorithm

using different coordinate system for elliptic curve and NAF for representation of k. It can

bee seen from table 4.7 that the algorithm is 2 times faster than single processor scalar

multiplication method.

4.3.2 Security Against Side Channel Attack (SCA)

The execution time of the algorithm depends on the scalar integer k. For example if k —

100... 1001 the execution time will be close to nECDBL. In case of k = 10101... 101010 the

execution time will be ^ECADD. Therefore the algorithm cannot be immune to SCA. But,

since the execution time depends on the total number of ones and on the distribution of

ones, many values of k will have the same execution time. Therefore the algorithm offers

better security against SCA when compared to the standard double-and-add methods.

51

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

Table 4.5: Execution time of ECADD and ECDBL in different coordinate systems

Coordinate Transform ECADD/ECDBL Field

Affine {X ,Y) I + 2 M / I + 2 M = 1 Fp

Standard projective (.X / Z , Y / Z) 12M/7M =1.7 Fp

Jacobian projective (X / Z 2 , Y / Z 3) 12M /4M =3 Fp

Jacobian projective (X / Z 2, Y / Z 3) 14M /5M =2.8 ¥ 2m

Chudnovsky projective (X , Y , Z , Z 2 , Z 3) 11M/5M =2.2 Fp

Lopez-Dahab projective (X / Z , Y / Z 2) 14M /4M =3.5 F2m

4.4 Conclusion

A parallel method for scalar multiplication is introduced which uses two processors to

perform the kP operation. Using proper implementation this method is 200% faster than

single processor methods. The method can be implemented both in hardware and software.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Ta
bl

e
4.

6:

Si
m

ul
at

io
n

re
su

lt
of

the

pa
ra

lle
l

al
go

ri
th

m
4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

o o o COo cs CO CO CO

IVCOCO CO
CO

CO
CO
CO

CO
CO
CO

o o CO
0 0in

o
g

CO
COin

oo o o
CO 00

oo o
CD

00
00
CD

COrH
CN

o
COCO

COinCO
CO 00o CO

00
o 00ino

00

ooo ooCO
00

o o om co
00

cooo CO
0 0

co CO CO<N

oo
CO

oo
CO

oo
CO

oin<N
oin oo

CM
in

CO

53

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

Table 4.7: Simulation result for 160-bit scalar, for different coordinate system.

Coordinate #Proc. ECADD/ECDBL #ECADD #ECDBL #O p

Affine 2 1 53 106 1440M

Chudnovsky projective 2 2 . 2 ^ 2 53 54 800M

Jacobian projective 2 3 53 8 672M

Lopez-Dahab projective 2 3.5 ss 4 53 2 860M

Jacobian projective 1 (Table 3.14) 53 160 1276M

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Chapter 5

Architecture fo r a Fast Elliptic Curve

Processor (ECP)

5.1 Introduction

A high performance elliptic curve processor is presented. The processor uses parallelism in

instruction level to achieve high speed execution of scalar multiplication algorithm. The

architecture relies on compile-time detection rather than run-time detection of parallelism

which results in less hardware. Implemented on Xilinx Virtex 2000 FPGA, the proposed

processor operates at 6 6 M H z in GF(2167) and performs scalar multiplication in 100p5ec,

which is considerably faster than recent implementations. The 0.18pm ate level simulation,

shows that the processor can at 300M H z, performing k P in 22/j.Sec.

Efficient utilization of hardware resources is a key element in a fast processor design.

Most fast elliptic curve processors (ECP) use a bit-parallel word-serial (BPWS) finite field

multiplier, either in direct form [57] [53] or in Karatsuba form [46] [49] [53] . In all the

processors multipliers occupy the bulk of hardware. The proposed architecture maximizes

the utilization of the multiplier.

In the field of elliptic curve cryptography, when calculating the speed of a scalar multi­

55

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

plication algorithm, finite field multiplication is considered to be the most time consuming

operation. Finite field addition (and squaring in ONB designs) is considered to be free[10]

[21] (pp 127-130). It goes to such an extent that in the analysis of scalar multiplication

algorithms, the cost of addition is ignored . In some software implementation reports, the

cost of addition and squaring is ignored [9] as well. This can be true in software implementa­

tions or in hardware designs using serial finite field multipliers (see section 5.2). Considering

some high speed hardware designs, we conclude that, the execution time of addition and

squaring becomes comparable to execution time of multiplication(table 5.1).

Table 5.1: Typical number of execution cycle of basic FF operations

Design Multiplication Addition Squaring

[46] 9 > 2 2 (est.)

[57] 7 3 3

[53] 12 < M > 7 2 2

[62] 7 3 2

presented 8 3 2

Deducing from the above, overlapped execution hardware can be used to increase perfor­

mance. This approach, which is closer to complex instruction set computer (CISC) design,

is successfully employed in [53] to pair multiplication with addition, and multiplication

with squaring to increase the performance. However this approach increases the size and

complexity of hardware. Using parallelism in instruction level , the compiler analyzes the

program and detects operations to be executed in parallel. Such operations are packed

into one large instruction. Therefore no hardware in needed for run-time detection of paral­

lelism. The reduced instruction set computer (RISC) type instruction set helps to prepare a

more efficient instruction pack(fig. 5.10). The presented processor implements the following

features to achieve high execution speed.

• Parallelism in instruction level __

56

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

• RISC type instruction set

• One cycle instruction execution

• Pipeline finite field multiplier

5.2 Previous Work

The hardware implementation of ECC has come a long way from a modest beginning of

ASIC implementation on a 2 micron technology [32] running at 40M H z to the 0.13 micron

technology running at 500M H z [52]. The FPGA implementation started off on Xilinx

XC4000 with 2304 slices and 13000 gates [33] and presently is on Xilinx XC2V6000 having

6,000,000 gates running at 100M H z . [46]

Advances in ASIC and FPGA technologies have led to new architectures and faster

designs. Most changes are in the design of the finite field multiplier and in the architecture

itself. New designs take advantage of this to introduce more parallelism in finite field

calculation.

Elliptic curve cryptosystems can be implemented on GF(p) and GF(2m). Usually

GF(2m) lead to a smaller and faster design. However, due to pending patents there are

some restrictions on GF(2m) implementations. This thesis mainly discusses GF(2m) imple­

mentations. Based on the design constraints ECPs are implemented using ASIC or FPGA.

Elliptic curve hardware implementations can be categorized as follows:

1 . Implementations utilizing a general purpose CPU and a finite field accelerator: The

early hardware implementations fall into this category [32] and recently [41]. However,

because of the evolution of system on chip (SoC) these implementations are becoming

attractive [49].

2. Elliptic curve processors (ECP) based on serial finite field multiplier on GF(2m):

These processors are compact but slower than other implementations [45] [34].

3. ECPs based on bit-parallel word-serial (BPWS) finite field multiplier on GF(2m) :

This architecture results in a fast design and relatively larger hardware. With the

57

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

dramatic increase of hardware accommodation , most recent fast designs fall in to

this category [46] [57] [53].

4. P rocessors on CF(p): T hese processor use modular operations for finite field arith­

metic, therefore they utilize more hardware resources and are relatively slower than

GF{2m) implementations [29].

5. Dual field, general purpose crypto-processors: These processors are also available

commercially. They work in GF(p) as well as GF(2m). Since the design in not

optimized for GF{2 m) they are usually slower than the third category [38] [52].

Table 5.2 1 summarizes most published designs. In table 5.3 speed of these implemen­

tations are listed. Comparing these designs is not easy, since they have been optimized

for different purposes, having different architectures and are implemented on different plat­

forms. Since this work is optimized towards operating speed, in the following sections we

compare our results to the faster designs. Wherever possible, we estimate the speed of the

design we are comparing to, as if it would be implemented on a hardware similar to ours.

5.3 Elliptic Curve Calculation, Arithm etic Hierarchy

The hierarchy of arithmetics for EC point multiplication is depicted in figure 5.1. The

scalar multiplication (k P) algorithm is performed by repeated point addition and doubling

operations. The point operations in turn are composed of basic operations in the underlying

finite field (FF). The proposed processor performs finite field addition and squaring in one

1est.: estimated

FF: Flip Flop LUT: Look Up Table

M.O.: Massey Omura multiplier

ONB: Optimal Normal Basis

Poly.: Polynomial multiplier

Pr.: Presented

Sc.: Scalable, Being able to change both field size and the elliptic curve parameters without reprogramming

the hardware

58

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 5.2: List of EC hardware implementations

P la tfo rm Y ear H W R es. Sc.

[32] ASIC 1993 ONB 1 1 0 0 0 Gates

[33] XC4062XL 1998 Poly. 1810 CLB Only GF((2~4)~9) could be placed and routed

[34] XCV300-4 2 0 0 0 ONB 1290 Slice Only 64bits of k are set to one

[57] XCV400E 2 0 0 0 Poly 3002, 1769 LUT, FF D=16, Montgomery kP

[36] ASIC 0.25 2 0 0 0 Poly 165000 Gates V Simulation result

[37] XC4085XLA 2 0 0 1 M.O. 1450 CLB Rapid Prototyping, Core Generator

[38] ASIC 0.25 2 0 0 1 Poly 880000 Gates y/ Dual Field, Power consideration

[39] XCV1000 2 0 0 2 M.O. 48300 LUT

[41] XCV2000E 2 0 0 2 Poly 2790 Slice (est.) Koblitz Curve

[42] ASIC 0.35 2 0 0 2 Poly 14298 Gates Compact

[43] XCV1000-6 2 0 0 2 ONB 2614 Slice

[44] XC2S200 2 0 0 2 Poly y/ Montgomery kP

[45] ASIC 0.35 2 0 0 2 ONB 2 0 0 0 0 Gates

[46] XC2V6000 2003 Poly 19440, 16970 LUT, FF Clock is Predicted,

[47] ASIC 0.35 2003 Poly 56000 Gates y/ Montgomery affine, EUA for inverse

[48] ASIC 0.35 2003 ONB ALU, Asynchronous

[52] Asic 0.13 2003 Poly 117500 Gates y/ Dual Field, 500MHz (max) for this particular field

XC2V2000E-7 2003 Poly 20068, 6321 LUT, FF V Montgomery kP, 0.302mSec for unnamed curves

[62] XC2V2000 2003 Poly 10017, 1930 LUT, FF

Pr. XC2V2000 2004 Poly 13900, 3200 LUT, FF Montgomery kP

A
R

C
H

ITE
C

TU
R

E

FOR
A

FAST
ELLIPTIC

CURVE
PRO

CESSO
R

(E
C

P
)

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.3: Speed of kp of different ECPs, at the specified finite field, and maximum frequency

P la tfo rm G F (2m) C lk (M hz) kP (m s) Scalab le

[32] ASIC ONB 155 40 27.000 est.

[33] XC4062XL Poly. 8 x2 1 16 4.500 est.

[34] XCV300-4 ONB 113 45 3.700

[57] XCV400E Poly 167 76.7 0 . 2 1 0

[36] ASIC 0.25 Poly 163 6 6 1 . 1 0 0 V
EPF10K250 163 3 80.000

[37] XC4085XLA M.O. 155 37 1.290

[38] ASIC 0.25 Poly 160bits 50 5.200 est. V
[39] XCV1000 M.O. 191 36 0.270

[41] XCV2000E Poly 176 40 6.900

[42] ASIC 0.35 Poly 160 1 0 20.602 est.

[43] XCV1000-6 ONB 113 31 0.810

[44] XC2S200 Poly 163 55 3.770 V
[45] ASIC 0.35 ONB 209 2 0 30.000 est.

[46] XC2V6000 Poly 233 1 0 0 0.123 est.

[47] ASIC 0.35 Poly 167 1 0 0 2.300 est. v/

[48] ASIC 0.35 ONB 173 Asynch. 1 . 2 0 0 est.

[52] Asic 0.13 Poly 160 bits 500 0.190 V
[54] XC2V2000E-7 Poly 163 66.4 0.143 V
[62] XC2V2000 Poly 163 6 6 0.233

Pr. XC2V2000 Poly 167 6 6 0 . 1 0 0

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.1: Arithmetic Hierarchy in Elliptic Curve Calculation

Scalar M ultiplication Algorithm

Finite F ield A rithm etic

2PP+Q

Mult DivSquareAdd

kP

clock cycle (excluding register load and unload time). The finite field multiplication is more

costly. The number of clock cycles for its computation depends on size of the finite field.

Compared to FF-addition and FF-squaring and FF-Multiplication, the FF inversion is a

very expensive operation. It is performed by software using basic finite field operations

(Sect. 5.3.2).

5.3 .1 F in ite F ie ld A r ith m e tic

Elliptic curve calculation over finite fields is based on finite field addition, subtraction,

multiplication, squaring and division(Fig. 5.1). Here, we will focus on binary polynomial

fields GF(2m). Using polynomial basis for finite field representation a field element a £

GF(2m) can be represented as a — am- i x m ~ 1 + am- \ x m~l + . . . + a ix 1 + aoxo where

aj £ G F(2). Addition of two polynomials a and b is performed by adding coefficient a*

and bi in modulo 2, which is a bitwise XOR operation of a and b. For example, adding

two polynomials a = x 3 + x 2 + 1 and b = x 2 + x 1 can be computed as (1 1 0 1 + 0 1 1 0) =

(1101 X O R 0110) = 1011 or c = a + b = x 3 + a: 1 + 1. In GF(2m) calculation addition

and subtraction are the same, since 1 + 1 = 0 mod 2 , i.e. 1 is the inverse of 1. It is clear

that representing elements of G F (2 m) in a digital computer is easy, since it contains only

zeroes and ones(Fig. 5.2).

Multiplication of two elements a.b £ G F(2m) is carried out by multiplying two -poly-

61

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.2: Representing an element in Galois field GF(2m)

a o a > a 2 a 3 a4 a 5 a6

A member of GF(2A7)

nomials using the distributive law and then reducing the resultant polynomial in modulo

2 and then modulo f(x) . f (x) is of degree of m and defines GF{2m) for a chosen field

of degree to. For example, given polynomials a = x 3 + x + 1 and b = x 3 + 1 of G F(24),

represented as a = 1 0 1 1 and b = 1 0 0 1 , co = a x b = x 6 + x 4 + x + l can be computed as:

1 0 1 1 x 1 0 0 1

1001

+ 1001

+ 0000

+ 1001

= 1010011

Assuming f (x) = x 4 + x 3 + l , represented as f — 11001, the reduction c = co mod f =

x 2 + 1 can be performed as:

1010011

+11001

=0110111

+ 11001

=0000101

An illustrative way to look at reduction is that f is aligned with the most significant

bit of the operand and added until the degree of the result is smaller than to. A parallel

62

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.3: Parallel Finite Field Multiplier in G F(25) [58]

1*1 6

7*

6 4

7*1
■ £ k 7*
7^ 7^ 7^

r* \^ n 'vk

=©—

H E ® 1

architecture for finite field multiplication is depicted in figure 5.3. An AND gate matrix

and an XOR tree performs the multiplication. Squaring can be performed easily using XOR

gates, specially if the finite field is defined over a trinomial [58].

5 .3 .2 F in ite F ie ld Inverse

The multiplicative inverse of any element o E F 2 m is the element a - 1 E F2 m such that

aa~ 1 — 1 mod /(x) , where f (x) is the irreducible polynomial of the finite field.

Inversion is the most costly operation in finite field arithmetic. Basically there are two

methods for calculating inverse, using Fermat’s little theorem and using extended Euclidean

algorithm [64].

The Itoh-Tsuji algorithm [59] is the most efficient technique to compute an inverse based

63

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.4: Finite Field Squarer in G F(27) [58]

« 0 a -2 113 114 «« «<s

on Fermat’s little theorem. Fermat theorem in finite field states that,

a — 1 mod f (x) , therefore - i _ /,2 m —2 _ / 2 m_1 —1 ^ 2a = a = (a* - 1)".

Figure 5.5 depicts the basic idea in Itoh-Tsuji inverse algorithm, where a 2 * - 1 is calculated

in 3 steps (log2 8). In step n one field multiplication and 2n _ 1 field squaring is needed.

Figure 5.5: Simplified Inverse Calculation

noo 11110000

11111111 2 -1 a - a

In general a2" 1 can be calculated iteratively using equation 5.1. The complete algo­

rithm for inverse is shown in table 5.4.

a 2 " - 1 =
(a2 2)2 "/2 (a2 2 n even

(5.1)
a(a 2 § - 1) 2 n odd

Calculating a~ 1 in GF(2m) needs M (m) = [log2(m — 1)J + h(m — 1) — 1 multiplication

and m — 1 squaring, where h(x) is hamming weight of x (the number of non-zero bits in

the binary representation o fx).

64

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.4: Itoh-Tsuji Inverse Algorithm

Algorithm: Itoh-Tsuji Inverse Algorithm

In p u t: a G GF(2n), m = m ,2 \ m, e {0,1}

Output: b = a - 1

b = am n _ 1

e = 1

For i = n-2 to 0

b = b2e x b

e — 2 e

if to* = = 1 then

b = b2 x a

e = e + 1

End If
EndFor

b = b2

Return b

If the processor is meant to be used on a single finite field so the squaring can be

efficiently optimized [58]. For irreducible polynomial / (x) — x m + x l + I the maximum

squarer complexity is (m + f + l) /2 and 4m gates for f (x) — x m + x 11 + x a + x t3 + 1. For

trinomial the critical path delay is at most two gate delays [58].

Since the Itoh-Tsuji inverse algorithm is based on squaring and multiplication, only a

small hardware structure is needed for inverse. In fact, in the presented processor inverse

is performed by software. In order to perform efficient squaring, REP SQR A instruction is

defined, which performs squaring in one clock cycle. A data path from accumulator to the

squarer makes this instruction possible (Fig. 5.6).

The simulation waveforms which shows the squaring is shown in figure 5.13. For scalable

processors using Itoh-Tsuji algorithm is not efficient since squaring hardware cannot be

65

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.6: ALU Architecture for calculating Inverse Calculation

RBUS 1

mod]

WBUS

ACC

optimized for a specific field and therefore cannot be done in a single cycle.

Effect of inverse calculation in performance

For GF(2m) where m < 256 the inversion takes approximately 10M + (m — 1)5. A scalar

multiplication using Montgomery method takes 6 (m — 1)M + 5(m — 1)5 + 3(m — 1)A.

Implemented on an architecture similar to those in table 5.1 for G F(2167), inversion time

will be about 5% of scalar multiplication time. It can be concluded that fine tuning on the

inversion algorithm will not result in a high boost on the overall performance.

5 .3 .3 Scalar M u ltip lica tio n A lg o r ith m

Scalar multiplication is the fundamental operation in any elliptic curve cryptosystem. Points

on an elliptic curve E over finite field GF(2m) with a binary operation, called point addition,

form an finite additive Abelian group. If P is a point on elliptic curve E and A; is a

large scalar, computation of the form Q — kP = P + P + P H + P is defined as scalar
k times

multiplication. The result of scalar multiplication is another point Q on the elliptic curve.

The main question in any elliptic curve cryptosystems is: How fast can this operation can be

done? Table 5.5 categorizes commonly used methods for fast scalar multiplication [7] [10] [9].

Selecting a proper method for kP depends on the cryptography protocol being used as well

as the implementation platform.

66

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.5: Classification of scalar multiplication techniques

Name of Method Basic Idea

Comb [16] Precompute tables of 2m P

Addition chains [7] k = ^Zr=o1 h

Windowing (Fix, Variable) to—ary [10] Precompute tables of fcjP ki € { 0 ,1 ,.. . , to — 1 }

Scalar recoding [7] Fewer zero in binary representation of k (NAF)

Point Halving [13] [13] All point doubling replaced with point halving operation

Montgomery kP method [61] The x-coordinates of the sum of two points whose

difference is known can be computed in terms of

2 -coordinates of the involved points.

Koblitz curves [2] Using anomalous binary curves (or ABC’s)

In 1987 a new approach to scalar multiplication was proposed by Montgomery[17]. In

[61] Montgomery method is converted to projective space and a very efficient scalar mul­

tiplication algorithm is derived. Table 5.6 compares the calculation cost of Montgomery

method with IEEE standard method. As it is shown implementations based on the Mont­

gomery algorithm are faster. Most high speed ECC implementation in table 5.3, including

the proposed processor, have used this algorithm for scalar multiplication[57][53][44][47][52].

The interesting fact about this algorithm is that it is inherently secure against side channel

attack. In the proposed architecture, the algorithm is tuned for the pipeline multiplier

and the processor’s parallel architecture. The complete explanation of Montgomery scalar

multiplication is given in chapter 3.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.6: Cost of scalar multiplication on GF(2m) for different algorithms

Scalar Multiplication Algorithm # Operations

Montgomery, Projective version [61] (m-l)(6M+3A+5S) + (10M+7A+4S+I)

IEEE 1362, NAF representation (Average) [21] (m-l)(8.7M+6.3A+6.3S) +(3M +S+I)

5.3.4 Performance Estimation for ECPs Based on BPW S M ultipliers

Minimum number of clock cycle for kP calculation

The lower and upper bound of performance for the architectures which use Bit Parallel

Word Serial (BPWS) multipliers can be estimated as follows. The multiplication takes M —

fm/D~\ + 3 cycles, assuming 2 clock cycles for loading the input registers of the multiplier

and one cycle for storing the result. Although addition and squaring axe performed in one

cycle, extra cycles are needed to load and unload the registers, therefore A = 3 cycles for

addition and 5 = 2 cycle for squaring is assumed. Using Montgomery scalar multiplication

[61], the upper bound (UB) is derived in table 5.6. At the best case, where all additions and

squaring operations can be performed in parallel with multiplication (we assume M > A

, M > 5) the lower bound (LB)can be calculated by omitting all additions and squaring

operations. Therefore we will have,

UB = (m — 1) (6 M + 3 A + 55) + (10 M + 7A + 4S + I)

L B = (m — 1)(6M) + (10M 4-1) (5.2)

where M — \m/D~\ + 3, A — 3 ,5 = 2 ,1 « 10M + (m — 1)5

Experimenting with the processor architecture shows that the \m/D~\ = 4 ratio mini­

mizes the number of multiplication cycles but is long enough to let additions and/or squar­

ing to be done in parallel with multiplication. Therefore the lower bound for kP can be

approximated as

L B « 43(m - 1). (5.3)

Unless a proper pipeline mechanism is used, faster operation cannot be achieved using this

class of architecture.

68

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Critical Path length

If the finite field GF(2m) is generated by and irreducible polynomial f (x) then the maximum

critical path is equal to Ct — Ta + (R°g2 m l + (r — 1))Tx where r is the number of terms

in the irreducible polynomial f{x). In BPWS multipliers where,

TO-1 D - 1
A(x) = aix% i and B{x) = ^ 2 biX1, , where cn, hi e {0,1}

i=0 i=0

the critical path will be

CT = Ta + (riog2 D] + (r - 1))TX (5.4)

, where Tx and Ta are the delays of AND gate and XOR gate. Using irreducible trinomial

this can be further reduced to C t = Ta + (riog2(m — 1)] + 2)Tx [58]. C t determines the

upper bound for the clock frequency of the ECP.

5.4 D esign Flow

The presented crypto-processor requires components that operate on large bit vectors (167

bits on GF{2167)). This makes validation of synthesis results difficult and time consuming

due to large amount of simulation elements. The complexity often can be reduced by scaling

the signal vectors down. Adding such flexibility is excess work, but it pays off. The processor

is designed to work with any finite field which is based on a trinomial or a pentanomial.

Therefore most validations were performed on small fields like GF(215).

The design flow is depicted in Fig. 5.4. A bit-exact C program was developed, which

allows us to check the HDL thoroughly. Test vectors for Galois field of different sizes were

applied to both the HDL and the bit-exact program, and the results were checked against

each other using another program to ensure the proper operation of the hardware. An

assembler program for the crypto-processor is also developed which lets us to assemble

programs written for the processor. The processor was synthesized and optimized using

Synopsys Design Analyzer ® for CMOS 0.18 and Xilinx ISE® for FPGA.

69

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.7: Elliptic Curve Processor Design Flow
kP Algorithm
in Assembly

ECP Assembler

HDL Bit Exact C Program

Simulation
nc Verilog

\
The Same?

Synopsys
Synthesis

/ 3nS \
-C Timing Constrains >

\ Met? X

Gate Level Simulation
nc Verilog

: i
The Same?

-^Algorithm Fast Enough?^

CMOS 0.18 Layout

70

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.8: Architecture of the Processor

Main
Cntl.

Bus
Interface

ALU

Cmd
reg.

Stack

reg.
file

Prog.
Mem

regs.

Data

!—bit Proc.

GF(2An)
Processing
Units

5.5 A rchitecture

The architecture is highly optimized toward the execution of scalar multiplication algorithm.

It supports finite field arithmetic, some 8 bits integer calculation and control transfer in­

structions. The finite field arithmetic unit utilizes parallelism in instruction level , which

permits parallel execution of addition, squaring and multiplication. The finite field process­

ing unit consists of an ALU, a multiplier and a register file. These units are controlled by

the main control unit. In addition, a very small 8 -bit processor is provided which performs

integer calculations like counting and shifting. The communication with the host processor

is implemented through utilization of a command register and a data register. Initially,

the host processor uploads elliptic curve domain parameters and the code using these two

registers (Fig. 5.8). FYom then on, communication is limited to the exchange of raw and

processed data. Utilization of communication registers allows the two processors to operate

independently, and have different clock signals. The processor is implemented in G F(2167)

but neither the scalar multiplication code nor the architecture is hardwired to the size of

the Galois Field.

71

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.9: Architecture of the Finite Field Multiplier

RBUS

[m od

A x B mod f(x)

M ultiplier

The number of finite field multiplication in a scalar multiplication is approximately 6 (m —1)

for G F(2 m)(Table 5.6). Therefore a high performance multiplier is very crucial. ALU uses a

bit parallel word serial (BPWS) multiplier based on the algorithm in [60]. In order to achieve

a performance better than L B « 43(m — 1), the input registers A and B, intermediate

register Pi and output register P are configured as a pipeline (Fig.5.9). This arrangement

permits a finite field multiplication to be performed in M = [m/D] + 1 cycles, which would

otherwise take M = \m /D] + 3 in similar designs [53] [57].

Squarer

The ALU employs a bit-parallel squarer [58]. Synthesized for a specific Galois field, this

squarer leads to a very efficient hardware which performs the squaring in one clock cycle.

72

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Scalable 2 ECP implementations cannot use this architecture, since the size of finite field

is not known at the time of hardware synthesis. Therefore they have relatively longer kP

execution time [36] [38] [44] [47].

Instruction Set

The instruction set is sub divided into three categories: Finite field arithmetic, integer

processing and control transfer (Fig. 5.10, table 5.7). Finite field arithmetic instructions

are further split into three threads. The compiler analyzes the scalar multiplication program

and detects finite field operations to be executed in parallel. Such operations are packed

into one finite field arithmetic type instruction.

Figure 5.10: Instruction set categories

Simultaneous Execution
___________I__________

Finite Field Arithmetic

8-bit Processing

Control Transfer

Type ALU Mult Reg. File

Type OP Code Src Dest

Type OP Code Fig Addr

5.6 Im plem entation

5.6 .1 H D L S im u la tion

HDL simulation is carried out using Cadence NCVerilog®. Figure 5.11 and 5.12 shows the

waveforms at the beginning and end of the simulation on G F(2167). The hardware was

simulated and tested for G F(216), GF(2167) and G F(2233) using 1000, 100 and 10 random

test vectors respectively. The simulation takes 6660 clock cycles on G F(2167) which is

2 Being able to change both field size and the elliptic curve parameters without reprogramming the

hardware ~

73

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

O.lmSec at 6 6 M H z. In terms of execution speed, this result is faster than similar FPGA

implementations [53] [46] [62] [57].

5 .6 .2 S y n th esis R esu lt

FPG A

The HDL is synthesized for Xilinx XC2V2000 FPGA using Xilinx tools. Table 5.10 sum­

marizes the hardware resource usage of the processor in terms of lookup tables (LUT) and

flip-flops (FF) in FPGA implementation. The processor operates at 6 6 M H z and performs

the scalar multiplication in G F(2167) in 100fiSec . The synthesis result shows tha t the

maximum operation frequency for the processor is 90M H z.

ASIC Sim ulation

The processor is synthesized and simulated for TSMC CMOS 0.18 technology using Synopsys®

and Cadence NCVerilog®. Using synthesis information obtained from Synopsys®, the per­

formance and the hardware size of the processor on TSMC 0.18 \xm technology is obtained.

The hardware size is about 36000 gates and the clock frequency can be as high as 300M H z.

For the proposed architecture we have r = 3, D — 42, Ta « T x » 0.3n5ec (from Synopsys

report). Putting into equation 5.4 results to Ct ~ 9TX = 2.7nSec. Synopsys report shows

that the critical path equals to 3.2nSec. This confirms that the proposed architecture sat­

isfies the critical path bound Implemented on ASIC. It takes 22fiSec to complete one scalar

multiplication operation in G F(2 167), which is faster than reported ASIC implementations.

Table 5.8 summarizes the synthesis results in CMOS 0.18.

ASIC Im plem entation

The ASIC design flow in fig. 5.4 is carried out to the very end. ie. The CMOS 0.18 layout

is implemented using Cadence SoC Encounter. This layout is ready for fabrication. Refer

to appendix for a snap shop of the layout.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

5.6 .3 P erform an ce a n d com p arison

Table 5.9 shows the number of clock cycle needed to execute k P , for several processors.

These processors have the following specifications in common:

• They are among the fastest implementations of ECP (see Table 5.3).

• They are implemented on an advanced FPGA architecture.

• All use parallel polynomial based finite field multipliers.

• Number of clock cycles needed to perform kP is linearly dependent on field size m

(If we keep the size of m /D in finite field multiplier constant, where D is the sized of

digit or word in the bit-parallel word- serial multiplier).

• They Perform inverse using Itoh-Tsuji algorithm (except [53]).

• All Use Projective coordinates for kP calculation (most use BPWS).

It can be concluded that, for non scalable ECP processors, these specifications lead to an

efficient design. Among them, the proposed architecture needs less clock cycles to perform

scalar multiplication. Another important factor in the architecture is the maximum critical

path in the processor. However it is not easy to estimate what the maximum clock rate

for [57] [46] would be if they would have been implemented on the a platform like ours.

Simulation shows that the proposed processor can run at 300M H z when implemented

on CMOS 0.18 technology, which is the minimum possible critical path for this type of

architecture. This is also a good number compared to the designs in tables 5.3 and 5.2.

5.7 Conclusion

An architecture for an Elliptic curve processor is proposed. The processor can perform

10,000 scalar multiplications per second on G F(2167) , which is considerably faster that

the recent FPGA implementations. The processor has a very short critical path which is

on the parallel multiplier. Synthesis results in CMOS 0.18 micron show that the proeessor

75

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

can run at 300M H z clock frequency which results in 22fj,Sec for a scalar multiplication on

G F (2 167). The synthesis result confirms that the design satisfies the critical bound.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.7: Elliptic Curve Processor Instruction Set

8-bit processor
MOV rx , d8 move immediate data to rx register

DJNZ r x , addr decrement rx jump to addr if not zero

DEC rx decrement rx

INC rx increment rx

SHL {c,rx} shift left Carry and rx

SHL {rx ,c} shift left rx and Carry

MOV ry , rx move rx to ry

FF Arithmetic Unit
SQR A

ADD A, Rx

SHL A

FF Multiplier

START Mul

STOP Mul

Register File
MOV Rx, P move product to Rx

MOV Rx, A

MOV A, Rx

MOV S, Rx load multiplier register with Rx

Control Transfer
JMP f i g , s e t , addr fig is Z (Zero flag), C (Carry flag), M (User flag)

CALL f i g , s e t , addr

SET M

CLR M

RET

HALT

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.8: A rea report in CM OS 0.18

Unit Area (micron)

Multiplier 1272102

ALU 28585

Squarer 4976

Register File 202799

Proc8 5617

Total « 1555271

Table 5.9: Number of clock cycles for kP

Design Number of Clk for kP Point Representation

Presented 39 (to — l)+inv. Montgomery Projective

[46] 44(m — l)+inv. (est.) Projective with NAF 0

[57] 47(m — l)+inv. (est.) Montgomery Projective, D=42 b

[53] 57(m — 1) (est.) Montgomery Projective

[62] 93(m - l)+inv. (est.) Projective with NAF

inv. = (m — 1) + M ([log2(m — 1)J + h(m — 1) — 1), M « 7

“In [46] authors didn’t assume NAF representation for scalar k.
6In [57], maximum D is 16. Probably they were not able to use D=42 due to limited resource in their

FPGA. We assume D=42 here.

78

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.10: Performance of the Elliptic Curve Processor

Design kP

mSec

Inversion

Cycle

GF(2m) FPGA

LUT, FF

Clk

MHz

FPGA Year

Proposed 0 . 1 0 0 285 167 7562, 2378 6 6 XCV2000 2004

[57] 0 . 2 1 0 167 3000, 1769 76.6 XCV400E 2 0 0 0

[53] 0.143 326= 2m 163 20068, 6321 66.4 XCV2000 2 0 0 2

[62] 0.233 250 163 10017, 1930 6 6 XCV2000 2003

Proposed 0.140 451 233 13900, 3200 6 6 XCV2000 2004

[46] 0.123 est. - 233 19440, 16970 1 0 0 XCV6000 2003

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Elliptic Curve Processor
Bijan Ansari
University of Windsor
regfile at start 14)

Page 1 of 1

Cursor = 2.458,670ps
Baseline = 0

Cursor-Baseline = 2,458,670ps

(Q) elk 0

0 cntr ' d 2 4 6

cQ j reset 0

0 ^ Inst_addrt8:0] 'hO O F

ill 4Q> lnst_data[15:0j ' h 0 0 1 0

0 <4g. ACC[15:0) 'h A E 8 0

I Q j rf_we

*i ^ 1 rf_wr_addrI2:0]

1

'h 4

0 rf_wr_data[15:0] 'h A E 8 0

mem[7:0] (' h 0 0 0 0 0 0 k

0 - ^ » mem(7] ' h 0 0 0 0 0 0 0 k

0 mem(6] ' h 0 0 0 0 0 0 0 t

0 - ^ 1 mem[5] 'h O O O O O O O t

[+1 - ^ i mem(4] 'h O O O O O O O k

0 - % mem[3] 'h S B 6 C B B A >

0 - ^ j mem(2] 'h 6 1 7 C E 0 9 >

mem[1] 'b 5 6 4 2 A 5 A k

0 mem(0j ' h 3 5 F 6 2 0 5 t

4 3] rep.mode 0

E e e b x* r* b x* tio xn i n Xu xi4 xi5 1
: 1___

X ° ° l I T 002 X 003 X 004 X 005 K o o i \ otn) [o o b X 009 X ° 0 A X o o b X ° ° C X
)(0 0 i e X1000 X0232 1 (1000 X3200](322B X« 0 0 0 X0 2 0 I X0020 1(5000 X ? ? 0 4 _) (0 0 ? ? _ X

~ t 0076 X 0064 X 1410 T 0100

~~)(0064)(l4 1 0 X 0100 fo

(OOA7

(0 6 4

(OOOOOOOOOQ00000000000000000000000000000086

(8 000000001A E

[0 7 6 ~)(OOOOOQOOOOOOOOOOOOOOQOOOOOOOOOOOOOO(

(0 5 5 X 0000 7 6 ~

[0 2 4

(0 3 9

~~K 000000000 0 0 0 0 0 0 0 0 0 0 0 0

~ K o o o o o o o o o o o o o o q o o o o o o q o o o o o o o o o o o o o o o o o o 64

3
crq*c
CD

c/2

sc
£w0

1CD

o"
3
CO
p
c t -

CO

I inted on Mon Mar 22 17:15:40 EST 2004 Printed by SlmVision from Cadence Design Systems, Inc.

A
R

C
H

ITE
C

TU
R

E

FOR
A

FAST
ELLIPTIC

CURVE
PRO

CESSO
R

(E
C

P
)

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Elliptic Curve Processor
Bijan Ansari
University ot Windsor

9 after kP

Page 1 of 1

Cursor - 2.458,670ps
Baseline = 0

Cursor-Baseline - 2,458,670ps

cik

cn tr

r e s e t

inst_addr[8:0]

inst_data[15:0]

ACC[15:0]

rf_we

rf_wr_addrl2:0]

rf_wr_data(15:0]

mem[7:0J

mem[7]

mem[6]

mem(5j

mem[4]

mem[3]

mem{2]

mem[1]

mem[0]

iQi
%

{Qj

a
¥
0

0
0

S
ai
a

(Q i rep_mode

66,600ns

0

'd 2 4 6

0

'hO O F

'hO O lO

'h A E 8 0

1

'h 4

'h A E 8 0

(' hOO O O O O k

'hO O O O O O O k

'hO O O O O O O k

'hO O O O O O O k

' hOOOOO 0 0 k

' h 5 B 6 C B B A k

' h 6 1 7 C E 0 9 k

'h 5 6 4 2 A 5 A k

'h 3 5 F 6 2 0 5 k

i J _ ________________
6660~~1(6661 X 6662 X e 6 6 3)(~6664 ~)(6 6 6 5 \ 6 6 6 6 ~)(6667~~)[6668 X 6 6 6 9 ~) (6 6 7 0 ~)[6671 y 6 6 7 2 ~ y 6 6 7 3 ~) f6 6 7 4 ~)[6

X080) f o s I)[082)(083)fo 8 4)(085 ^ 0 8 6)(0 8 7)[0 8 8]fo89 j(08A ,)[0 8 B](o8C)(08D)fo8E)f

X 2000 X 0800)fo40Q X2438 X4*0Q \o20i)foOOO ~]xxxx
J*

OOA7

0 6 4

0 8 6

5C 0E 34E 1C A 952A 660C C 4034145FB SD C FA 400B 2D B A S

0 3 2 6 8 3 3 2 0 8 0A 1F C 2 D 4 7 7 9 3 6 F 6 2 A 4 F 1 E C E D I5 D 8 4 4 F 3

0A D 88D 02A A 202C 26D F 36F 3E B 044A 6C E F 31F 83A 849E

1 4 D D 6 C 2 4 C 9 F 9 C 3 1 7 5 C 6 C 1 2 6 2 1 6 9 8 0 8 5 5 E A E 9 7 5 1 C 1 4

7 C C 8 5 4 7 A C C E 24B E 9C A C 1166C 5679205C 4F C 4434E 28

)(2397 j (2 3 3 0

J L

1 2 3 9 7 1 2 3 3 0

I2 5 A 0 6 5 D B 8 8 1 0 1 F C 2 A 3 D 6 B 7 6 D E 5 4 0 1 F F 1 E S 1 E

3dq"C

o
S3

ICD

tr
CD
<T>CJ
CL

O
e-o
p-ct-
o

printed on Mon M ar2217:18:17EST2004 Printed by SimVision from Cadence Design Systems, Inc.

:.
A

R
C

H
ITE

C
TU

R
E

FOR

A
FAST

ELLIPTIC
CURVE

PRO
CESSO

R
(E

C
P

)

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Figure 5.13: Simulation Waveforms while calculating Inverse

h i

U U <N

P~ p S '

$ 0 $ 0 0 0 % 0 0 0 (3 ■ ~0—0 —0 — 0 —0 —0 —[+] ^
a 1 -----------------------

82

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Chapter 6

Discussions

6.1 Summary o f Contribution

This work proposes efficient methods for ECC both in algorithm level and in arithmetic

level. In algorithm level a parallel method for scalar multiplication is introduced which uses

two processors to perform the kP operation. Using proper implementation this method is

200% faster than conventional single processor methods. The method can be implemented

both in hardware and software.

At the arithmetic level, a high performance elliptic curve processor architecture on

GF{2m) is proposed. The architecture employs parallel execution of finite field arithmetic,

to achieve high execution speed. Implemented on Xilinx Virtex 2000 FPGA, the processor

can perform 10,000 scalar multiplications per second on G F (2167) , which is considerably

faster that the recent FPGA implementations. The processor has a very short critical

path which is on the parallel multiplier. Synthesis results on CMOS 0.18 micron show

that the processor can run at 300M H z clock frequency which results in 22fiSec for a

scalar multiplication on G F(2 167). The processor is compared to various ECC hardware

implementations. The comparison is limited to the processors on GF(2m). The processor

speed presented is higher than any other reported ECC hardware implementation.

83

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

6. DISCUSSIONS

6.2 Future Work

FPGAs are a suitable platform for the hardware implementation of the proposed parallel

algorithm. The information in chapter 3 can be used for the selection of proper point

representation system. For the proposed processor ASIC implementation is very desirable

since the simulation results shows the it will be the fastest kP calculation ever reported.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

References

[1] Neal Koblitz “A course in Number Theory and Cryptography” Spreiger Verlag 1987

[2] Neal Koblitz “CM-Curves With Good Cryptographic Properties” CRYPTO ’91,
Springer-Verlag LNCS 756 pp 279-287, 1992.

[3] Neal Koblitz “Elliptic curve cryptosystems.” “Mathematics of Computation, 48:203-
209, 1987.

[4] V.S. Miller “Use of elliptic curves in cryptography” Advances in Cryptology Proc.
Crypto’85 LNCS 218, H.C. Williams, Ed., Springer-Verlag, 1985, pp. 417-426

[5] V.S. Miller “Elliptic curve cryptosystems” Advances in Cryptology Proc. Crypto’85
Mathematics of Computation, Vol. 48, no. 177 (1987), pp. 208-209

[6] Andreas Enge “Elliptic Curves and their applications to cryptography: An introduc­
tion” Kluwer academic press 1999

[7] Daniel M. Gordon “A Survey of Fast Exponentiation Methods” journal of algorithms
27, 129-146 (1998),

[8] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono “Efficient Elliptic Curve Exponenti­
ation Using Mixed Coordinates” A SIA C R YP T’98, Springer-Verlag LNCS 1514, pp.
51-65, 1998.

[9] Darrel Hankerson, Julio Lopez Hernandez, and Alfred Menezes “Software Implemen­
tation of Elliptic Curve Cryptography over Binary Fields” CHES 2000, Springer-
Verlag LNCS 1965, pp. 1-24, 2000

[10] Ian Blake, Gadiel Seroussi and Nigel Smart “Elliptic Curves in Cryptography” Cam­
bridge University Press 2002

[1 1] Jerome A. Solinas “An Improved Algorithm for Arithmetic on a Family of Elliptic
Curves” CRYPTO ’97, Springer-Verlag LNCS 1294 pp. 357-371, 1997.

[12] Knuth D. E. Knuth “Seminumerical Algorithms”

[13] E. Knudsen “Elliptic Scalar Multiplication Using Point Halving” Proc. Advances in
Cryptology Asiacrypt 99 pp. 135-149, 1999.

85

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

REFERENCES

[14] FIPS 186-2 “Digital Signature Standard (DSS)” Federal Information Processing
Standards Publication 186-2, National Institute of Standards and Technology, 2000.

[15] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone “Faster Point Multi­
plication on Elliptic Curves with Efficient Endomorphisms” CRYPTO 2001, LNCS
2139, pp. 190-200, 2001.

[16] C. Lim and P. Lee, “More flexible exponentiation with precomputation” , Advances
in Cryptology, Crypto ’94, 1994, 95-107.

[17] P. Montgomery “Speeding the Pollard and elliptic curve methods of factorization”,
Mathematics of Computation, vol 48, pp.243-264.

[18] J. Lopez and R. Dahab “Improved algorithms for an elliptic curve arithmetic in
G F(2")” Selected areas in Cryptography - SAC 98, Springer-Verlag, LNCS 1556,
1996

[19] B. Moller “Parallelizable Elliptic Curve Point Multiplication method with Resis­
tance against Side-Channel Attacks” Information Security ISC-2002, Springer-Verlag
LNCS 2433

[20] L.C. Washington “Elliptic Curves, Number Theory and Cryptography” Chapman &
Hall/CRC, 2003

[21] IEEE “IEEE 1363-2000 standard” Standard specification for public key cryptography.

[22] D. Boneh and N.Daswani “Experimenting with electronic commerce on The Palm
Pilot” Financial Cryptography ’99, Springer-Verlag LNCS 1423 pp. 1-16, 1999

[23] J. Solinas, “Mersenne numbers” Technical Report CORR 99-39, University of Wa­
terloo, 1999

[24] D. Bailey and C. Paar, “Extension fields for fast arithmetic in public-key algorithms”
Advances in Cryptology, Crypto ’98, 1998, pp 472-485

[25] D. Gollmann, Y. Han and C. Mitchell, “integer representations and fast exponentia­
tion” Designs, Codes and Cryptography, 7 (1996) pp.135-151

[26] A. Menezes, P. van Oorschot and S. Vanstone, “Handbook of Applied Cryptography”
CRC Press, 1996

[27] F. Morain and J. Olivos, “Speeding up the computations on an elliptic curve us­
ing addition-subtraction chains” Informatique Theorique et Applications 24 (1990)
pp.531-544

[28] W. Diffie, and M.E. Heilman, “New Directions in Cryptography”, IEEE Transactions
on Information Theory, , vol. 22, no. 6 , November 1976, pp. 644-654.

86

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

REFERENCES

[29] S.B. Ors, L. Batina, B. Preneel and J. Vandewalle, “Hardware implementation of an
elliptic curve processor over GF(p)” , IEEE International Conference on Application-
Specific Systems, Architectures, and Processors, 2003. Proceedings, pp. 433 - 44324-
26 June 2003.

[30] Gutub A.A.-A., Ibrahim M.K., “High radix parallel architecture for GF(p) elliptic
curve processor”, International Conference on Acoustics, Speech, and Signal Process­
ing (ICASSP ’03) Volume: 2 , 6-10 April 2003 PagesiII - 625-8 vol.2

[31] Gutub A.A.-A., Ibrahim M.K., “High performance elliptic curve GF(2k) crypto­
processor architecture for multimedia” Multimedia and Expo, 2003. ICME ’03. Pro­
ceedings. 2003 International Conference on , Volume: 3 , 6-9 July 2003 Pages:81 -
84

[32] Agnew, G.B., Mullin, R.C.,Vanstone, S. A. “An implementation of elliptic curve cryp­
tosystems over G F(2155)” IEEE Journal on Selected Areas in Communications, Vol­
ume: 11 , Issue: 5 , pp. 804 - 813, June 1993.

[33] M. Rosner. “Elliptic curve cryptosystems on reconfigurable hardware” , Master’s
thesis, ECE Dept., Worcester Polytechnic Institute, Worcester, USA, May 1998.

[34] “K.H. Leung , K.W. Ma , W.K. Wong , P.H.W. Leong ”, FPGA implementation
of a microcoded elliptic curve cryptographic processor, IEEE Symposium on Field-
Programmable Custom Computing Machines, 2000 , pp. 6 8 - 76, 17-19 April 2000.

[35] Gerardo Orlando and Christof Paar “A High-Performance Reconfigurable Elliptic
Curve Processor for G F(2 m)” CHES 2000, LNCS 1965, pp. 41-56 2000

[36] S. Okada, N . Torii, K. Itoh and M. Takenaka “Implementation of Elliptic Curve
Cryptographic Co-processor over GF(2m) on an FPGA”, CHES 2000, LNCS 1965,
pp. 25-40, 2000.

[37] Ernst M., Klupsch S., Hauck O., Huss S.A., “Rapid prototyping for hardware accel­
erated elliptic curve public-key cryptosystems” , International Workshop on Rapid
System Prototyping, pp.24 - 29, 25-27 June 2001.

[38] Goodman J., Chandrakasan A.P., “An energy-efficient reconfigurable public-key cryp­
tography processor”, IEEE Journal of Solid-State Circuits, Volume: 36 , Issue: 1 1

, Nov. 2001 Pages: 1808 - 1820,

[39] M. Bednara ,M. Daldrup, J. von zur Gathen , J. Shokrollahi , J. Teich , “Reconfig­
urable implementation of elliptic curve crypto algorithms”, Parallel and Distributed
Processing Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-
ROM , Pages: 157 - 164, 15-19 April 2002.

[40] M. Bednara, M. Daldrup , J. Teich , J. von zur Gathen, J. Shokrollahi, “Tradeoff
analysis of FPGA based elliptic curve cryptography”, IEEE International Symposium
on Circuits and Systems, 2002. ISCAS 2002, Volume: 5 pp.V-797 - V-800, ^26-29
May 2002.

87

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

REFERENCES

[41] T. Kerins, E. Popovici, W. Marnane , and P. Fitzpatrick “Fully Parameterizable
Elliptic Curve Cryptography Processor over QF(2 m)”, Springer-Verlag, LNCS 2438,
pp. 750-759, 2002.

[42] K. Ju-H yun, L. Dong-H o, “A compact finite field processor over GF(2m) for elliptic
curve cryptography” , Circuits and Systems, 2002. ISC AS 2002. IEEE International
Symposium on , Volume: 2 , 26-29 May 2002 Pages:II-340 - 11-343 vol.2.

[43] P.H.W. Leong ,I.K.H. Leung , “A microcoded elliptic curve processor using FPGA
technology” , IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Volume: 10, Issue: 5, Pages:550 - 559, Oct. 2002.

[44] M.J. Potgieter , B.J. van Dyk, “Two hardware implementations of the group opera­
tions necessary for implementing an elliptic curve cryptosystem over a characteristic
two finite field” , African Conference in Africa, 2002. IEEE AFRICON. 6th , Vol­
ume: 1 , 2-4 Oct. 2 0 0 2 , Pages:187 - 192.

[45] X. Zeng, X. Zhou, Q. Zhang, “Hardware/software co-design of elliptic curves public-
key cryptosystems”, IEEE 2002 International Conference on Communications, Cir­
cuits and Systems and West Sino Expositions, Volume: 2 , pp. 1496 - 1499 vol.2, 29
June-1 July 2002.

[46] Grabbe C., Bednara M., von zur Gathen J., Shokrollahi J., Teich J., “A high perfor­
mance VLIW processor for finite field arithmetic”, Proceedings of the International
Parallel and Distributed Processing Symposium, 22-26 April 2003.

[47] H. Chi, L. Jimnei, Junyan Ren, Qianling Zhang, “Scalable elliptic curve encryption
processor for portable application” , 5th International Conference on ASIC, 2003.
Proceedings, Volume: 2 , Pages:1312 - 1316, Oct. 21-24, 2003.

[48] L. Pak-Keung ,C. Chiu-Sing ,C. Cheong-Fat ,P. Kong-Pang, “A low power asyn­
chronous G F(2173) ALU for elliptic curve crypto-processor”, Proceedings o f the 2003
International Symposium on Circuits and Systems, 2003. IS CAS ’03., Volume: 5,
Pages:V-337 - V-340, 25-28 May 2003.

[49] M. Jung, F. Madlener, M. Ernst and S. A. Huss “A Reconfigurable Coprocessor for
Finite Field Multiplication in GF{2”)” , IEEE Workshop on Heterogeneous reconfig­
urable Systems on Chip, Hamburg, April 2002.

[50] L. Gao , L. Hanbo, G.E. Sobelman , “A compact fast variable key size el­
liptic curve cryptosystem co-processor” , Seventh Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 1999. FCCM ’99. Proceedings.
Pages:304 - 305, 21-23 April 1999.

[51] G. Lijun, S. Shrivastava, G. E. Sobelman A l, “Elliptic Curve Scalar Multiplier Design
Using FPGAs” , Springer- Verlag, LNCS, Volume 1717 / 1999.

88

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

REFERENCES

[52] A. Satoh, K. Takano, “A scalable dual-field elliptic curve cryptographic processor” ,
IEEE Transactions on Computers, Volume: 52 , Issue: 4 , pp. 449 - 460, April 2003.

[53] Nils Gura, Sheueling Chang Shantz, Hans Eberle, Sumit Gupta, Vipul Gupta, Daniel
Finchelstein , Edouard G oupy, D ouglas Stebila, “An End-tO-End Systems Approach
to Elliptic Curve Cryptography” Sun Microsystems Laboratories 2002-2003

[54] N. Gura, S.C.Shantz, H. Eberle, S. Gupta, V. Gupta, D. Finchelstein, E. Goupy, D.
Stebila, “An End-to-End Systems Approach to Elliptic Curve Cryptography” , Sun
Microsystems Laboratories 2002-2003.

[55] N. Nguyen, K. Gaj , D. Caliga , T. El-Ghazawi, “Implementation of elliptic curve
cryptosystems on a reconfigurable computer”, IEEE International Conference on
Field-Programmable Technology (FPT), 2003. Proceedings. 2003, pp. 60 - 67, 15-17
Dec. 2003.

[56] Hauck 0 ., Katoch A., Huss S.A., “VLSI system design using asynchronous wave
pipelines: a 0.35pm CMOS 1.5 GHz elliptic curve public key cryptosystem chip”,
Sixth International Symposium on Advanced Research in Asynchronous Circuits and
Systems, (ASYNC 2000) Proceedings, pp. 188 - 197, 2-6 April 2000.

[57] Gerardo Orlando and Christof Paar “A High-Performance Reconfigurable Elliptic
Curve Processor for GF(2m)” CHES 2000, LNCS 1965, pp. 41-56 2000

[58] H. Wu, “Bit-Parallel Finite Field Multiplier and Squarer using polynomial basis” ,
IEEE transaction on Computers, Vol. 51, No.7, July 2002.

[59] T. Itoh and S.Tsuji “A Fast algorithm for computing multiplicative inverse in GF{2m)
using normal bases” , Info, and Comput., col. 78(3), pp.171-177, 1998.

[60] L. Song and K. K. Parhi. “Low-energy digit-serial/parallel finite field multipliers” ,
Journal of VLSI Signal Processing Systems, pp. 1-17, 1997.

[61] J. Lopez and R. Dahab “Fast Multiplication on Elliptic Curves over GF(2") without
Precomputation” CHESS’99, Springer-Verlag, LNCS 1717, pp. 316-327 1999

[62] Jonathan Lutz “High performance elliptic curve cryptographic co-processor” Masters
thesis, University of Waterloo 2003

[63] S.Galbraith and N. Smart “A cryptographic application of Weil descent” Codes and
Cryptography, LNCS 1746, Springer-Verlag, pp. 191-200, 1999

[64] D. W. Hardy “Applied algebra, Codes. Cipher and Discrete Algorithms” Prentice
Hall, 2003

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Appendix A

Test Code

1 # i n c l u d e < s t d l i b . h >

2 # i n c l u d e <stdio.h>
3 # i n c l u d e "gmp.h"
4 # i n c l u d e < t i m e . h >

5 # i n c l u d e <math.h>
6
7 //typedef unsigned long long scalar_t;
8 # d e f i n e s c a l a r _ t m p z . t

9
10 i n t get.bit (scalar_t k, i n t i);
11 v o i d set_bit (scalar_t k, i n t i);
12 v o i d clr_bit (scalar.t k, i n t i);
13 i n t kP-time_s (c h a r * ks, i n t t_add, i n t *na, i n t *nd);
14 i n t kP_time_s2 (c h a r * ks, i n t ADD_DBLjratio);
15 c h a r *str_reverse (c h a r *d, c h a r *s);
16 v o i d to_NAF (scalar.t k);
17 v o i d to_NAF2 (scalar.t k);
18 c h a r *itos (scalar.t k);
19 v o i d test_recording(void);
20 i n t kP-time (scalar.t k, i n t n.bits, i n t t_add, i n t *na, i n t *nd,
21 I n t *cnt_in_add_ave, i n t *cnt_in_addjnax, i n t buf_len
22);
23 i n t ave_kP_time (i n t n_samples, i n t n.bits, i n t ADD_DBL_ratio, i n t

24 buf _len) ;
25 //#def ine ADD_DBLJlATI0 3 —

90

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX A. TEST CODE

26
27 int main(void)
28 {
29 //perf ormance_table() ;
30 perf ormance_vs_buflen_graph() ;
31
32 return 0;
33 }
34

37 int n.bits, t;
38 c h a r *s, d[50];
39 time_t rawtime;
40
41 //- algorithm parameters
42 int ADD_overJDBL_ratio = 3;
43 int buf_len = 4;
44 i n t nsamples = 10000;
45
46 time (fcrawtime); printf ("\n*/,s\n\n" , ctime(&rawtime));
47 printf ("#Samples = 7»i", nsamples) ;
48 printf("\n\\#bits & ADD/DBL & \\#ECADD & \\#ECDBL & \\#0p & \\#0p Std
49 DBL-ADD Method & Ave \\#Data in buf & Max \\#Data in buf & Speed
50 up \\hline\\hline");
51 printf("\ n = ") ;

52
53 for(ADD_over_DBL_ratio=l; ADD_over_DBL_ratio<6; ADD.over_DBL_ratio++)
54 {
55 printf ("\n---\\hline");

62
63 / *
64 test_recording(); printf("\n\n");
65
66 s = "10101010000001111111111000001100000001";
67 t = kP_time_s2(s, ADD_overJ)BL_ratio);
68
69 str_reverse(d, s);

56
57
58
59
60

//nsamples = 0x7FFFFFFF; //result of the scount takes 2 days and is
wrong!

for (n_bits=150; n_bits<=300; n_bits+=50)
ave_kP_time(nsamples, n.bits, ADD_over_DBL_ratio,buf_len);

61 }

91

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX A. TE ST CODE

70 t = kP.time_s2(d, ADD.over_DBL_ratio);
71 * /
72 time (&rawtime); printf ("\n'/,s\n\n" ,ctime(&rawtime));
73
74 return 0;
75 }
76
77 int performance.vs.buf len_graph(void)
78 {
79
80 int ADD.over_DBL_ratio = 3;
81 int buf_len = 4;
82 int nsamples = 100;
83 int n.bits;
84
85 printf("#Samples = %i\n\n", nsamples);
86
87 //for(n_bits=150; n_bits<=300; n_bits+=50)
88 n.bits = 160;
89
90
91 f or (buf _len=l; buf_len<=10; buf_len++)
92
93 {
94 printf ("\n ’/.i ", buf JLen);
95 for (ADD .over _DBL_ratio=l; ADD.over _DBL_ratio<6;
96 ADD_over_DBL_ratio++)
97 {
98 ave_kP.time(nsamples, n.bits, ADD.over_DBL_ratio, buf_len);
99 }
100 printf(" ", buf_len);
101 }
102
103 /*
104 for (ADD.over _DBL_ratio=l; ADD.over -DBL_xatio<6; ADD .over JDBL_ratio++)
105 {
106 printf ("\n\n #ADD/DBL = %i ", ADD.overJDBLjratio) ;
107 for(buf_len=l; buf_len<=10; bufj.en++)
108 {
109 printf ("\n ’/»i ", buf_len) ;
110 ave_kP_time (nsamples, n.bits, ADD.over _DBL_ratio, buf JLen);
111 }
112 }*/
113

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX A. TE ST CODE

114 r e t u r n 0 ;
115 }
116
117 # d e f i n e M A X .I N T ~ ((u n s i g n e d l o n g i n t) 1)
118 # d e f i n e a v e (i) ((i n t) ((d o u b l e) (i) / (n _ s a m p l e s) + 0 . 5))
119 int ave_kP_time(int n.samples, int n.bits, int ADD-DBLjratio, int bufJLen)
120 {
121 mpz.t k;
122 gmp_randstate_t r_state;
123 int na, nd, cnt.in.add.ave, cnt.in_add.max, t;
124 u n s i g n e d long i n t i;
125 int t_sum, na_sum, nd_sum;
126 int cnt.in_add_ave.ave, cnt_in_add_max_ave;
127
128 gjnp_randinit_default (r_state);
129 mpz.init(k);
130
131
132 cnt.in.add-jnax.ave = cnt_in_add_ave_ave = t_sum = na_sum = nd_sum = 0;
133 for(i=0; i<n_samples; i++)
134 {
135 //mpz_rrandomb generates long strings of zeros or ones, might be
136 better f o r testing
137 mpz.urandomb (k, r_state, n.bits); //200 bits random number
138 to_NAF2(k);
139 t = kP.time(k, n_bits, ADD_DBL_ratio, &na, fend, &cnt_in.add_ave,
140 &cnt.in_add_max, buf.len);
141 t.sum += t;
142 na_sum += na;
143 nd_sum += nd;
144 cnt_in_add_ave_ave += cnt_in_add_ave;
145 cnt.in.addjtax.ave + = cnt_in_add_max;
146 //printf ("Xi-", cnt_in_add_max_ave);
147 / / if((i& OxOOOOFFFF) == 0) printf(" %lu", i);
148 //printf ("\n— k='/.s nADD =%d nDBL =’/,d T =°/,d", itos(k), na, nd
149 t);
150 // gmp_printf ("\n— k=°/,#04Zx nADD =°/,d nDBL ="/,d T =°/,d", k, na,
151 nd, t);
152 }
153
154 printf (" \ n n _ b i t s = ° / 0i , n _ s a m p l e s = % l u A D D / D B L = ' / , i t _ a v e = ' / . i n A d d _ a v e = % i , n
155 D B L _ a v e = 7 (i " , n.bits, nsamples, ADD_DBL_ratio, tjsum/nseimples,
156 na_sum/nsamples, nd.sum/nsamples);
157

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX A. TE ST CODE

158 //- printf for performance.table
159 printf("\n7.i & Zi & Zi & Zi & Zi & Zi & Z3.1f & Zi &
160 Zi \\hline", n.bits, ADD_DBL_ratio, ave(na_sum), ave(nd_sum) ,
161 ave(t.sum), n_bits+ n_bits*ADD_DBL_ratio/3, ((double)n_bits +
162 n_bits/3.*ADD_DBL_ratio)/(t_sum/n_samples), ave((double)
163 cnt.in_add_ave.ave/ADD-DBL_ratio), ave((double)
164 cnt-in_add_max_ave/ADD_DBL_ratio));
165
166 //- printf for performance_vs_buflen_graph
167 printf ("Z3.1f ", ((double)n.bits + n.bits/3.*ADD_DBL_ratio)/(
168 t.sum/n.samples));
169
170 mpz.clear (k);
1 7 1 r e t u r n 1 ;
172 }
173
174 i n t kP.time(scalar.t k, i n t n.bits, i n t t_add, i n t *na, i n t *nd, i n t
175 *cnt_in_add_ave, i n t *cnt.in.add.max, i n t bufJLen)
176 {
177 i n t i, b, in.add, n_add, n_dbl, cnt.in.add, dbl.wait;
178 l o n g l o n g i n t ciaa; //count in add average!
179 i n t max.cnt.in.add = buf_len*t_add;
180
181 dbl.wait = n_add = n.dbl =0;
182 in_add = get_bit(k, 0)==1; //put initial conditions
183 cnt.in.add = in.add ? t_add : 0;
184
185 //cannot find n.bit by mpz functions because it omits leading zeros
186 //and so decreases n.dbl!
187 //n.bits = mpz_sizeinbase(k, 2);
188
189
190 *cnt_in_add_ave = *cnt_in_add_max = ciaa =0;
191 for(i=0; iCn.bits; i++)
192 {
193
194 while (cnt.in.add > max.cnt .in .add)
195 {
196 cnt.in.add — ;
197 dbl.wait ++;
198 }
199
200 if (cnt_in_add > *cnt_in_add_max) //this gives the maximum buffer size
201 *cnt_in_add_max = cnt_in_add;

94

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

APPENDIX A. TEST CODE

202
203 ciaa += cnt.in.add; //average of cnt_in_add essentially it is
204 proportional to the number of data in the circular buffer
205 b = get_bit(k, i);
206
207 //if in addition state
208 if(in.add)
209 {
210 cnt.in.add— ;
211 if(b==l)
212 {
213 n.add ++;
214 cnt_in_add += t.add; //accumulate the time that you need to stay
215 in add mode
216 }
217 e l s e //b is 0
218 {
219 if (cnt.in.add ==0) //if u have been enuf in add state and there
220 is no more one
221 {
222 in_add = 0; //change state
223 n.dbl ++;
224 }
225 }
226 }
227 e l s e //in dbl state
228 {
229 if(b==0)
230 n.dbl ++;
231 e l s e //b is 1
232 {
233 in.add = 1; //change state
234 n.add ++;
235 cnt_in_add = t.add;
236 }
237 }
238 }
239
240 //should it be added to n.add? I think it should but the result is wrond
241 FATAL chk bjn
242 // n.add += (cnt.in.add/t.add) +((cnt_in_add70t_add) !=0 ? 1 :0) ; //ceil(
243 cnt.in.add/t.add)
244 *na = n.add;
245 *nd = n_dbl + dbl.wait;

95

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

APPENDIX A. TE ST CODE

nt get.bit(scalar.t k, int i)

r e t u r n mpz.tstbit (k, i);

oid set_bit(scalar.t k, int i)

mpz-setbit (k, i);

o i d clr.bit(scalar.t k, i n t i)

mpz.clrbit (k, i);

246 *cnt_in_add.ave = ciaa / n.bits;
247
2 4 8 r e t u r n *na * t_add + *nd;
2 4 9
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266 i n t kP_time_s(char * ks, i n t t.add, i n t *na, i n t *nd)
267
268 mpz.t k;
2 6 9 i n t rc;
270
271 mpz.init(k);
272 mpz_set_str(k, ks, 2);
273 //rc = kP_time(k, strlen(ks), t.add, na, nd);
274 mpz.clear (k);
275
276 r e t u r n rc;
277
278 }
279
280 i n t kP_time_s2(char * ks, i n t ADD_DBL_ratio)
281 {
2 8 2 m t na, nd, t;
283
284
285 t = kP_time_s(ks, ADD_DBL_ratio, &na, &nd) ;
286 printf ("\ns=’/,s, n_bits='/,i, t=7,i na=%i, nd=“/„i", ks, strlen(ks), t, na,
287 nd);
2 8 8
2 8 9 r e t u r n 0 ;

96

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX A. TEST CODE

290 }
291
292 char *str_reverse(char *d, char *s)
293 {
294 int len, i;
295
296 len = strlen(s);
297 d[len] = 0;
298 for(i=0; i<len; i++)
299 d[len-i-l] = s[i];
300
301 r e t u r n d;
302 }
303
304 /*this pice of software is from
305 ~/ansari4/Tutorials/Cryptography/C_Libraries/ECC/elliptic/ec_curve. c
306 an elliptic curve library writen by Paulo S.L.M. Barreto <pbarreto@uninet.
307 com.b r> http://pleuieta.terra.com.br/infonnatica/paulobarreto/
308 it shows a parrallel way of converting and integer to NAF
309 */
310 v o i d to_NAF2(scalar.t k)
311 {
312 mpz.t h;
313 i n t nb;
314
315 mpz_init(h);
316 mpz_mul_ui (h, k, 3);
317 mpz_xor(k, h, k); //we treat -1 and 1 the same! because we only want to
318 count
319 mpz_div_2exp (k, k, 1);
320 nb = mpz_sizeinbase(k, 2);
321 // if C nb > *n_bits)
322 // *n_bits = nb;
323
324
325 mpz_clear(h); :
326 }
327
328
329 o i d tO-NAF(scalar.t x)
330 {
331 i n t s, i, n.bits;
332 mpz.t y;
333 int xi, xi.l, ci;

97

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

http://pleuieta.terra.com.br/infonnatica/paulobarreto/

APPENDIX A. TEST CODE

334
335 //See Coren, Computer Arithmetic book, Page 146, Table 6.4 for the
336 Algorithm
337 i n t state.table [] = { 0, 2, 2, 1, 0, 3, 3, l};
338
339 mpz_init (y) ;
340 n.bits = mpz_sizeinbase(x, 2);
341 ci = 0;
342 //- it checks one extra bit, but that extra bit is zero and I need it
343 to make NAF
344 for(i=0; i<=n_bits; i++)
345 {
346 xi = get_bit(x, i);
347 xi.l = get_bit(x, i+1);
348 s = state.table[(xi_l<<2) | (xi < < 1) | ci] ;
349 if(s & 2)
350 set.bit(y, i);
351 else
352 clr_bit(y, i);
353 ci = s&l;
354 }
355
356 mpz_set(x, y);
357 mpz.clear (y);
3 5 8 }
3 5 9
3 6 0 void testjrecording(void)
3 6 1 {
3 6 2 mpz.t k;
3 6 3 c h a r *s;
3 6 4
3 6 5 s = " 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 " ;
3 6 6 //s = " 1 1 1 1 0 1 " ;
3 6 7 mpz.init(k);
3 6 8
3 6 9 mpz_set_str(k, s, 2) ;
3 7 0 to_NAF (k);
3 7 1 printf (" \ns=°/.s \nk=°/0s " , s, itos(k));
3 7 2
3 7 3 mpz_set_str(k, s, 2) ;
3 7 4 to_NAF2(k);
3 7 5 printf (" \ns='/,s \nk=“/,s", s, itos(k));
3 7 6 printf(" \ n ") ;
3 7 7 mpz.clear(k);

98

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX A. T E ST CODE

378 }
379
380 # d e f i n e M A X J J _ B I T S 1 0 2 4
381 char *itos(scalar.t k)
3 8 2 {

383 i n t i, nb;
384 s t a t i c char buf [MAXJLBITS+1] ;
385 c h a r *s = buf;
386
387 nb = mpz_sizeinbase(k, 2)—1;
388 i f (nb> MAX_N_BITS) nb = MAXJLBITS;
389 for(i=nb; i>=0; i—)
390 *s++ = get.bit(k, i)? ’1’ : ’O’;
391 *s = 0;
392
393 r e t u r n buf;
394 }
395
396

1 # i n c l u d e < b o r z o i . h >
2 # i n c l u d e < f s t r e a m >
3 # i n c l u d e < u n i s t d . h >
4 # i n c l u d e " n i s t . c u r v e s . h "
5
6 / *
7 (c) Bijan Ansari Tue Dec 16 14:59:49 EST 2003
8 all parts of Monti algorithm works Mon Dec 29 21:28:08 EST 2003
9
10 This program uses borZoi Elliptic Curve library to Implement Projective
11 coordinate version of Montgomery scalar multiplication.
12 This is done to check the result of the Elliptic Curve Processor
13
14 */
15
16 r

17 // the register file, and an indexed way to access it!
18 F2M XI;
19 F2M X2;
20 F2M ZI;
21 F2M Z.2;
22 F2M R4;
23 F2M b;
24 F2M x;

99

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX A. TE ST CODE

25 F2M y;
26
27 F2M *R = &X1;
28
29 Biglnt k; //the scalar
30 EC_Domain_Parameters dp = NIST_B_233;
31 //int m, kl, k2; //f(x) = x~m + x~kl + x~k2 + 1
32 //const int m = 1 5 , kl = 4;
33 //const int m = 1 6 7 , kl = 6;
34 //const int m = 233, kl = 74;
35 //longinteger k //the scalar
36
37 typedef unsigned char byte;
38 int scalar_mult(void);
39 void projective_montgomery_scalar_multiplicationl(void);
40 void projective_montgomery_scalar.multiplication(void);
41 void original_montgomery_scalar_multiplication(void);
42 void aff ine_to_projective(void);
43 void Montgomery_P_plus_Q P_plus_Pl(void) ;
44 void Montgomery.? _plus_Q P_plus_P2(void) ;
45 void Itoh_Tsuji_inverse(int m, int in, int out);
46 void calc_xyl(void);
47 void calc_xy2(void);
48 void Mdouble(int src);
49 void Madd(int dest);
50 int scalar_mult(void);
51 void swap (void);
52 void print(char *s, F2M x, F2M y);
53 void init_regfile(void);
54 void dump_regfile(int n);
55 #define dump(A){ std::cout < < "\n" < < #A < < "= " < < A; }
56 //void dump(F2M A);
57 void use_Trionomial(int m, int kl);
58 inline F2M operator* (const F2M& a, int n) ;
59
60
61
62 / * -
63 scalarunult () tested at Tue Feb 17 19:58:53 EST 2004 again
64 it produces correct result using all 4 scalar multiplication
65 functions
66 * /
67
68

100

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX A. TEST CODE

69 ;ni main(void)
70 {
71
72 use_Trionomial(167, 6);
73 //scalar .mult() ;
74
75 init_regfile();
76 //WARNING msb of k MUST be one, otherwise the result is not the same
77 as the
78 //asm program in the ECP. because ECP assumes MSB of k is one.
79
80 //for GF(2~233)
81 k = 1;
82 k « = 232;
83
84 //for GF(2~15)
85 k = l;//in the asm program R4 is k!
86 k « = 14;
87
88
89 //for GF(2“167)
90 k = 1;
91 k <<= 166;
92
93
94 k |= hexto_BigInt("D7");
95
96 projectivejnontgomery_scalar_multiplication2();
97
98 std::cout < < "\n— " ;
99 }
100
101 void print(char *s, F2M x, F2M y)
102 {
103
104
105 }
106
107 int.
108 {
109
110
111
112

101

std::cout < < "\n— " < < s ;
std::cout <<"\nx=" < < x < < "\ny=" < < y;

scalar .mult(v o i d)

/♦♦Warning**
original_montgomery_scalar_multiplication() , curve.mul(k, dp.G) use

the
global "dp" variable and the finite field which is defined there"while

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX A. TEST CODE

113 projective_montgomery_scalar.multiplicationl() and
114 projective_montgomery_scalar_multiplication2() use the finite filed
115 which is defined at the start of the mainO program ie use_Trionomial(
116 233, 74)
117 */
118 //k = hexto_BigInt("A9993E364706816ABA3E25717850C26C9CD0D89D");
119 k = hexto_BigInt("D7"); //in the asm program R4 is k!
120
121 use_Trionomial(15, 4);
122 b = dp.b;
123 x = dp.G.x;
124 y = dp.G.y;
125 R[3] = 1; //R[3] must be zero otherwise affine_to_projective()
126 doesn’t work fine
127
128 //in the hardware R4 is k, but here k is in another variable
129 initjregfile();
130 print("original points", x, y);
131
132 projective_montgomery_scalar_multiplication2() ;
133 print("projective_montgomery_scalar_multiplication2()" , X2, Z2);
134
135 proj ectivejnontgomery.scalarjnultiplicationl ();
136 print ("projective-montgomery_scalar_multiplicationl()", X2, Z2);
137
138
139 original_montgomery.scalar.multiplication0 ;
140 print("original-Scalar_multiplication()", X2, Z2) ;
141
142 Curve curve (dp.a, dp.b);
143 Point P = curve.mul(k, dp.G);
144 print("Borzoi library", P.x, P.y);
145
146 std::cout < < "\n— " ;
147 }
148
149 void init_regfile()
150 {
151 //values are interpreted as hex
152
153 str_to_F2M("39" ,R[0]) ;
154 str_to_F2M("24" ,R[1]) ;
155 str_to_F2M("55" ,R[2]) ;
156 str_to_F2M("76" ,R[3]) ;

102

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX A. TEST CODE

157 str_to_F2M("D7",R[4]); //MSB of k MUST be one, ECP asm programs
158 assumes so!
159 str_to_F2M("86" ,R[5]) ; //R[4] is k and MSB of k must be one, that's
160 why it is 16 bits and the others are 8 bits just to make
161 things simple
162 str_to_F2M("64" ,R [6]) ;
163 str_toJF2M("A7" ,R[7]) ;
164
165 /*
166 str_to_F2M("1",R[0]);
167 str_to_F2M("2" ,R [1]) ;
168 str_to_F2M("3" ,R[2]);
169 str_to_F2M("4" ,R[3]);
170 str_to_F2M("5" ,R[4]);
171 str_to_F2M (" 6", R [5]);
172 str_to_F2M("7" ,R[6]);
173 str_to_F2M("8" ,R[7]) ;
174 */
175 }
176
177
178
179 v o i d affine_to_projective(v o i d)

180 {
181 XI = x;
182 ZI = R [3]; //R[3]; in the ECP assembly file here we have R[3]
183
184 Z2 = x~2;
185 X2 = (Z2~2) + b;
186
187 }
188 o i d projective_montgomery_scalar_multiplicationl()
189 {
190 m t 1;
191 int i;
192
193 1 = k.numBits ();
194 aff ine_to_projective();
195
196 for(i=l-2; i>=0; i—)
197 {
198 std::cout < < "\n==l==\nbit " < < i < < "= "<< k.getBit(i) ;
199 if(k.getBit(i) == 1)
200 {

103

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX A. TEST CODE

201 Madd(l); Mdouble(2);
202 }
203 else
204 {
205 Madd(2); Mdouble(l);
206 }
207 dump_regfile(i);
208 std::cout < < "\n==l==";
209 }
210 //calc_xyl(); //answer is in X2, Z2
211 }
212
213 //this is the implemented algorithm
214 void projective_montgomery_scalar_multiplication2()
215 {
216 int 1;
217 int i;
218
219 dump_regfile(0);
220 1 = k.numBits ();
221 aff ine_to_projective();
222 dump_regfile(l);
223
224 std::cout < < "\nnum bits= " < < 1 ;
225 std::cout < < "\nk= " < < k ;
226 for(i=l-2; i>=0; i--)
227 {
228 std::cout < < "\n==2==\nbit " < < i < < "= "<< k.getBit(i) ;
229 if(k.getBit(i) == 1)
230 swapO;
231
232 Montgomery_P_plus_Q P_plus_P2();
233
234 if(k.getBit(i) == 1)
235 swapO;
236 dump_regfile(i); :
237 std:: cout < < "\n==2==M;
238 }
239 calc_xy2(); //answer is in X2, Z2 */
240 dump_regfile(-l);
241 }
242
243 void original_montgomery_scalarjnultiplication(void)
244 {

104

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

APPENDIX A. TE ST CODE

245 Curve curve (dp.a, dp.b);
246 Point PI, P2;
247 int i, 1;
248 Point P(x, y);
249
250 1 = k.numBits ();
251 PI = P;
252 P2 = curve.dbl(P);
253 for(i=l-2; i>=0; i—)
254 {
255 if(k.getBit(i) ==1)
256 {
257 PI = curve.add(PI, P2);
258 P2 = curve.dbl(P2);
259 }
260 else
261 {
262 P2 = curve.add(PI, P2);
263 PI = curve.dbl(PI);
264 }
265 }
266
267 X2 = Pl.x;
268 Z2 = Pl.y;
269 }
270
271 void Mdouble(int src)
272 {
273 F2M X, Z;
274
275 if(src==l)
276 {
277 X = XI;
278 Z = ZI;
279 }
280 else
281 {
282 X = X2;
283 Z = Z2;
284 }
285
286 F2M x3 = (X~4) + b * (Z~4);
287 F2M z3 = (Z*2) * (X~2);
288

105

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

APPENDIX A. T E ST CODE

289
290
291
292
293
294
295
296
297

if(src==l)
{

XI = x3;
ZI = z3;

}
else
{

X2 = x3;
Z2 = z3;

298 }
299
300 }
301
302 void Madd(int d est)
303 {
304 F2M z3 = (XI * Z2 + X2* Z l) “2;
305 F2M x3 = (x * z3) + (XI * Z2) * (X2 * Z I) ;
306
307 if(d e s t= = l)
308 {
309 XI = x3;
310 ZI = z3;

316 }
317 }
318
319 v o i d , swap (v o i d)
320 {
321 F2M T;
322
323 T = XI; XI = X2; X2 = T;
324 T = ZI; ZI = Z2; Z2 = T;
325 }\
326 void Montgomery _P_plus_Q P_plus_Pl (void)
327 {
328 /* equivalent to
329 (XI, ZI) = Mdouble(Xl, ZI)
330 (X2, Z2) = Madd(Xl, ZI, X2, Z2)
331 */
332 //this is implemented in monti4.s

311 }
312 else
313 {
314 X2 = x3;
315 Z2 = z3;

106

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

APPENDIX A. TEST CODE

333 X2 = ZI * X2; / / I
334 ZI = ZI " 2;
335
336 Z2 = XI * Z2; //2
337 XI = XI ~ 2;
338
339 R4 = ZI ~ 2;
340
341 ZI = XI * ZI; / /3
342
343
344 XI = XI “ 2;
345
346 F2M t X2 + Z2;
347 X2 = X2 * Z2; / / 4
348 Z2 = t ’ 2;
349
350
351 R4 = R4 * b; / / 5
352 XI = XI + R4;
353
354
355 R4 = x *■ Z2; / / 6
356 X2 = X2 + R4;
357 }
358
359
360 --oid Montgomery_P_plus_Q P_plus_P2(void)
361 {
362 //this is implemented in monti4.s
363 R[l] = R[2] * R [1] ; dump(R[l]) ; //I
364 R[2] = R[2] “ 2;
365
366 R[3] = R[0] * R[3] ; dump(R[3]) ;//2
367 R[0] = R[0] " 2;
368
369 R[4] = R[2] * 2;
370
371 R[2] = R[0] * R[2] ; dump (R [2]) ;//3
372
373 R[0] = R[0] ~ 2;
374
375 F2M t = R [1] + R[3];
376 R[l] = R[l] * R[3] ; dump(R[l]) ;//4

107

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

APPENDIX A. TE ST CODE

377 R[3] = t " 2;
378
379
380 R[4] = R[4] * R[5] ; dump (R [4]) ;//5 R5 = b
381 R[0] = R[0] + R[4] ;
382
383
384 R[4] = R[6] * R [3]; dump(R[4]);//6 R6 = x
385 RCl] = R [1] + R[4];
386
387 std:: cout<<"\n-----
388 dump(R[3]):
389 dump(R[2])
390 dump(R[l])
391 dump(R[0]);
392 }
393
394 //this routine is written in a way to be the same as the
395 //hardware implementation, and it doesn’t mean it is a good
396 //software implementation
397 void Itoh_Tsuji_inverse(int m, int in, int out)
398 {
399 //A is the accumulator, S is the input register of the multiplier
400 //this is implemented in inv.rom
401 F2M A, S;
402 byte mO, e, sq_cnt, i, c;
403
404 A = R[in];
405 e = 1;
406 //m0 = dp.m & (~1);
407 mO = m & (!1);
408 i = 8;
409
410 while((i!=0) && ((mO & 0x80) == 0))
411 {
412 mO <<= 1;
413 i— ;
414 }
415
416
417 if(i!=0) //skip the first ’1’ too
418 {
419 mO <<=1;
420 i~;

108

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

APPENDIX A. TEST CODE

421 }
422
423 w h i le (i !=0)
424 {
425 S = A;
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

c = (mO & 0x80) != 0;
mO <<= 1;
e = (e<<l) | c;

l'

A = S * A;

}

sq_cnt = e;
while(sq_cnt—)

A = A~ 2;

if (c)
{

S = R[in] ;
A = A“2;
A = S * A;

444 }
445
446 A = A~2;
447 R[out] = A;
448
449
450 //borzoi is stupid!, sometimes doesn’t reduce the result of
451 multiplication!!
452 }
453
454
455 void calc_xyl()
456 { r
457 // find this from Lopez paper and orlando paper (all are in the white
458 folder)
459 F2M xk, yk;
460
461 //F2M F2M::inverse ()
462 //F2M F2M::sqr ()
463
464 R4 = x*Zl*Z2; ^

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

109

APPENDIX A. TE ST CODE

465
466
467 R4 = R4.inverse();
468 /*
4 6 9 R 4 = T 3 j

470 Itoh_Tsuji_inverse(dp.m, 4, 4); use this one becaue dp is not always
471 correctly set!
472 T3 = R4;
473 */
474
475 F2M T = x * Z2 * XI;
476 dump(T);
477
478 xk = x * Z2 * XI * R4;
479 yk = (xk + x) * R4 * (Z1*Z2 * (y+ (x"2)) + (X2 + x*Z2) * (XI + x*Zl))
+

480 y;
481
482 X2 = xk;
483 Z2 = yk;
484
485 }
486
487
488 I I ---
489 —
490 void dump_regfile(int n)
491 {
492 std::cout < < "\n-"<<n<<" Reg file
493 for (int i=7; i>=0; i—)
494 std: :cout « "\nR" < < i « "= " « R[i] ;
495 }
496
497 void use_Trionomial(int m, int k)
498 {
499 F2X pt=Trinomial (m, k, 0);
500 setModulus (pt);
501 }
502
503 inline F2M operator" (const F2M& a, int n)
504 {
505 F2M c=a;
506
507 while(— n>0) //>0 for n equal 0 ~~4

110

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX A. T E ST CODE

508 c*=a;
509 re tu rn c;
510 }
511
512

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Appendix B

Chip Layout

Chip layout: program memory, power rings, power strips, clock tree

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

APPENDIX B. CHIP LAYOUT

Oooryfan Cite* d o c fr . Ikning SI f t i t f r vfrtiy 7bo|*

mm j im i mm&
Tools -

^ Ull

*̂1 sol

r Views

/ \

as 1

*5 :...
i S 3 S i ;

I ff i i 8 1 I
S i I S i i

f n t

f : r i ; 8 i 1
• ■ i l l 3 i i

I : i 8 ! ; S J :
I i i *8 f t !

r v s
Instance ■r r
Net ■r r
:PG Net j r r -
Blockage 3r r
C ongestfonB r T>:
Row J
Metal FW ■r r
All Layersi j j
Metal! « - r
Metalz nr r
Metal? ■r r
Metal4 .■r r
MetalS #K I3
Metals * i r H
VlZ a e t f a
VZ3 W r;
V34 j r r
V4S
VE6 I

1 1
%wSS
•

N

Chip layout: The whole chip in SoCE
a ; | ;1('

113

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

VITA AU CTO RIS

Name:
Year of Birth:
Education:
1979 - 1982
1983 - 1988
2002 - 2004
Email:

Bijan Ansari
1964

High school diploma, Isfahan University High School, Isfahan, Iran
B.Sc. Isfahan University of Technology, Isfahan, Iran
M.A.Sc. University of Windsor, Windsor, Ontario
bijan486@yahoo.com

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

mailto:bijan486@yahoo.com

	Efficient implementation of elliptic curve cryptography.
	Recommended Citation

	tmp.1615935476.pdf.JJdgo

