# Efficient implementation of elliptic curve cryptography. 

Bijan Ansari<br>University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

## Recommended Citation

Ansari, Bijan, "Efficient implementation of elliptic curve cryptography." (2005). Electronic Theses and Dissertations. 1881.
https://scholar.uwindsor.ca/etd/1881

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

## NOTE TO USERS

This reproduction is the best copy available.

## UMI

# Efficient Implementation of Elliptic Curve Cryptography 

by

## Bijan Ansari


#### Abstract

A Thesis Submitted to the Faculty of Graduate Studies and Research through the Department of Electrical and Computer Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor


Windsor, Ontario, Canada

2004

Library and
Archives Canada
Published Heritage
Branch
395 Wellington Street
Ottawa ONK1A 0N4 Canada

Bibliothèque et Archives Canada

Direction du
Patrimoine de l'édition
395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre référence
ISBN: 0-494-09774-4
Our file Notre référence ISBN: 0-494-09774-4

## NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:
L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

## APPROVED BY:

Department of Mechanical and Materials Engineering
M. Ahmadi

Department of Electrical and Computer Engineering


M. A. Sid-Ahmed, Chair of Defense Chair, Department of Electrical and Computer Engineering

University of Windsor
May 13, 2004

## 1008282

## (c) 2004 Bijan Ansari

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise retained in a retreival system or transmitted in any form, on any medium by any means without prior written permission of the author.

## Abstract

Elliptic Curve Cryptosystems (ECC) were introduced in 1985 by Neal Koblitz and Victor Miller. Small key size made elliptic curve attractive for public key cryptosystem implementation. This thesis introduces solutions of efficient implementation of ECC in algorithmic level and in computation level.

In algorithmic level, a fast parallel elliptic curve scalar multiplication algorithm based on a dual-processor hardware system is developed. The method has an average computation time of $\frac{n}{3}$ Elliptic Curve Point Addition on an $n$-bit scalar. The improvement is $n$ Elliptic Curve Point Doubling compared to conventional methods. When a proper coordinate system and binary representation for the scalar $k$ is used the average execution time will be as low as $n$ Elliptic Curve Point Doubling, which makes this method about two times faster than conventional single processor multipliers using the same coordinate system.

In computation level, a high performance elliptic curve processor (ECP) architecture is presented. The processor uses parallelism in finite field calculation to achieve high speed execution of scalar multiplication algorithm. The architecture relies on compile-time detection rather than of run-time detection of parallelism which results in less hardware. Implemented on FPGA, the proposed processor operates at 66 MHz in $G F\left(2^{167}\right)$ and performs scalar multiplication in $100 \mu S e c$, which is considerably faster than recent implementations.

To the young man who was me, and perished under fanaticism

## Acknowledgments

I would like to thank my advisor Dr. Huapeng Wu for introducing me to elliptic curves and giving me all that advice, help, and support throughout this research work. I also want to thank professor Majid Ahmadi for his expert guidance and support, and Dr. B. Zhou for reviewing this work.

Special thanks is due to professor Maher Sid-Ahmed who supported me by all means through my study.

I am also grateful to my colleagues and friends, Katy Modaressi, Muqeeth Seyed Ali and Kevin Banovic, for their time and friendship.

## Contents

Abstract ..... iv
Dedication ..... v
Acknowledgments ..... vi
List of Figures ..... x
List of Tables ..... xii
List of Abbreviations ..... xiv
1 Introduction ..... 1
1.1 Motivation ..... 1
1.2 Thesis Outline ..... 2
2 Preliminaries on Elliptic Curve Cryptography ..... 4
2.1 Basic Concepts ..... 4
2.2 Elliptic Curves ..... 6
2.2.1 Definition of Elliptic Curves ..... 6
2.2.2 Point Addition Formula ..... 7
2.2.3 Elliptic Curve Discrete Logarithm Problem ..... 11
2.3 Elliptic Curve Cryptosystem ..... 12
2.4 Elliptic Curve Cryptography Standardization ..... 14
2.5 Intellectual Property Issues ..... 16
3 Introduction to ECC Computations ..... 18
3.1 Introduction ..... 18
3.2 Elliptic Curve Definition ..... 19
3.2.1 Different Forms of Elliptic Curve Equation ..... 20
3.3 Elliptic Curve Point Representation ..... 21
3.3.1 The Addition Formulas in Affine Coordinate ..... 21
3.3.2 Projective Space and the Point at Infinity ..... 22
3.4 Choosing a Coordinate System ..... 24
3.4.1 Different Coordinate Systems ..... 24
3.4.2 Coordinates Summary ..... 27
3.5 Scalar Multiplication ..... 28
3.5.1 Speeding up Scalar Multiplication ( $k P$ ) ..... 30
3.5.2 Scalar Multiplication Summary ..... 38
3.6 Special Methods for Scalar Multiplication ..... 38
3.6.1 Anomalous Binary Curves (Koblitz Curves) ..... 38
3.6.2 Point Halving ..... 39
3.7 Montgomery Scalar Multiplication Algorithm ..... 39
3.7.1 Calculation ..... 40
3.7.2 Performance ..... 42
3.7.3 Side channel Attack ..... 42
4 Fast Parallel Elliptic Curve Scalar Multiplication ..... 45
4.1 Introduction ..... 45
4.2 Previous Work ..... 45
4.2.1 Conventional Scalar Multiplication Methods [10] ..... 46
4.2.2 Speeding up Scalar Multiplication ..... 47
4.2.3 Parallel Architectures ..... 47
4.3 Improved Parallel Scalar Multiplication ..... 48
4.3.1 Performance of the Parallel Algorithm ..... 50
4.3.2 Security Against Side Channel Attack (SCA) ..... 51
4.4 Conclusion ..... 52
5 Architecture for a Fast Elliptic Curve Processor (ECP) ..... 55
5.1 Introduction ..... 55
5.2 Previous Work ..... 57
5.3 Elliptic Curve Calculation, Arithmetic Hierarchy ..... 58
5.3.1 Finite Field Arithmetic ..... 61
5.3.2 Finite Field Inverse ..... 63
5.3.3 Scalar Multiplication Algorithm ..... 66
5.3.4 Performance Estimation for ECPs Based on BPWS Multipliers ..... 68
5.4 Design Flow ..... 69
5.5 Architecture ..... 71
5.6 Implementation ..... 73
5.6.1 HDL Simulation ..... 73
5.6.2 Synthesis Result ..... 74
5.6.3 Performance and comparison ..... 75
5.7 Conclusion ..... 75
6 Discussions ..... 83
6.1 Summary of Contribution ..... 83
6.2 Future Work ..... 84
References ..... 85
Appendix A Test Code ..... 90
Appendix B Chip Layout ..... 112
VITA AUCTORIS ..... 114

## List of Figures

2.1 Typical Graph of Elliptic Curve defined over the Field of Real Numbers ..... 8
2.2 Graph of Elliptic Curve defined over $G F\left(2^{23}\right)$ ..... 8
2.3 Elliptic Curve Point Addition Operation $P 3=P 1+P 2$. ..... 9
2.4 Diffie-Hellman key exchange ..... 13
3.1 Platform option for ECC implementation ..... 20
3.2 Projective Line ..... 22
4.1 Point doubling Flowchart, Runs on ECDBL processor ..... 48
4.2 Point Doubling Flowchart, Runs on ECADD processor ..... 49
5.1 Arithmetic Hierarchy in Elliptic Curve Calculation ..... 61
5.2 Representing an element in Galois field $G F\left(2^{m}\right)$ ..... 62
5.3 Parallel Finite Field Multiplier in $G F\left(2^{5}\right)$ [58] ..... 63
5.4 Finite Field Squarer in $G F\left(2^{7}\right)$ [58] ..... 64
5.5 Simplified Inverse Calculation ..... 64
5.6 ALU Architecture for calculating Inverse Calculation ..... 66
5.7 Elliptic Curve Processor Design Flow ..... 70
5.8 Architecture of the Processor ..... 71
5.9 Architecture of the Finite Field Multiplier ..... 72
5.10 Instruction set categories ..... 73
5.11 Simulation Waveforms at startup ..... 80
5.12 Simulation Waveforms at the end of calculation ..... 81

[^0]
## List of Tables

2.1 Elliptic Curve Cryptography Challenge(www.certicom.com) ..... 15
2.2 Elliptic Curve Standards and Algorithms ..... 16
3.1 Addition Formula in Affine Coordinate ..... 21
3.2 Addition Formula in Projective Coordinates for $\mathbb{F}_{p}$ ..... 25
3.3 Addition Formula in Jacobian coordinates for $\mathbb{F}_{p}$ ..... 26
3.4 Addition Formula in IEEE Standard for $\mathbb{F}_{2^{m}}$ ..... 27
3.5 Addition Formula in Chudnovsky Jacobian Coordinates for $\mathbb{F}_{p}$ ..... 28
3.6 Addition Formula in Lopez-Dahab Projective Coordinates for $\mathbb{F}_{2^{m}}$ ..... 29
3.7 Cost of Point Addition and Doubling in Different Coordinate System ..... 30
3.8 Classification of scalar multiplication techniques ..... 31
$3.9 k P$ using Double and Add Method ..... 32
3.10 kP using $m$-ary Method ..... 33
$3.11 k P$ using Modified $m$-ary Method ..... 34
$3.12 k P$ using Window Method ..... 35
3.13 Converting a number to NAF . ..... 36
$3.14 k P$ using $N A F$ representation for $k$ ..... 37
3.15 Number of Point operation in different scalar multiplication Method ..... 38
3.16 Montgomery Scalar Multiplication Algorithm ..... 39
3.17 Montgomery Scalar Multiplication Algorithm in Projective Coordinate ..... 40
3.18 Steps in Point Doubling, Mdouble() ..... 41
3.19 Steps in Points Addition, Madd() ..... 42
3.20 Steps in Converting the Coordinates Mxy () (Table 3.17 ) ..... 44
3.21 Cost of scalar multiplication for projective version of Montgomery algorithm ..... 44
4.1 Scalar Multiplication using standard binary method (LSB first) ..... 46
4.2 Execution time of $k P$ using different conventional methods ..... 47
4.3 Point Doubling Algorithm, Runs on ECADD processor ..... 50
4.4 Point Adding Algorithm, Runs on ECADD processor ..... 51
4.5 Execution time of ECADD and ECDBL in different coordinate systems ..... 52
4.6 Simulation result of the parallel algorithm ..... 53
4.7 Simulation result for 160 -bit scalar, for different coordinate system. ..... 54
5.1 Typical number of execution cycle of basic FF operations ..... 56
5.2 List of EC hardware implementations ..... 59
5.3 Speed of $k p$ of different ECPs, at the specified finite field, and maximum frequency ..... 60
5.4 Itoh-Tsuji Inverse Algorithm ..... 65
5.5 Classification of scalar multiplication techniques ..... 67
5.6 Cost of scalar multiplication on $G F\left(2^{m}\right)$ for different algorithms ..... 68
5.7 Elliptic Curve Processor Instruction Set ..... 77
5.8 Area report in CMOS 0.18 ..... 78
5.9 Number of clock cycles for $k P$ ..... 78
5.10 Performance of the Elliptic Curve Processor ..... 79

## List of Abbreviations

| ALU | Arithmetic and Logic Unit |
| :--- | :--- |
| ANSI | American National Standards Institute |
| ASIC | Application Specific Integrated Circuit |
| BPWS | Bit Parallel Word Serial |
| CISC | Complex Instruction Set Computer |
| CLB | Configurable Logic Block |
| CMOS | Complementary Metal Oxide Semiconductor |
| CPU | Central Processing Unit |
| DH | Diffie-Hellman |
| DLP | Discrete Logarithm Problem |
| DSA | Digital Signature Algorithm |
| EC | Elliptic Curve |
| EUA | Extended Euclidean Algorithm |
| ECADD | Elliptic Curve Addition operation |
| ECC | Elliptic Curve Cryptography, Elliptic Curve Cryptosystem |
| ECDBL | Elliptic Curve Doubling operation |
| ECDH | Elliptic Curve Diffie-Hellman |
| ECDLP | Elliptic Curve Discrete Logarithm Problem |
| ECDSA | Elliptic Curve Digital Signature Algorithm |
| ECIES | Elliptic Curve Integrated Encryption Scheme |
| ECDSA | Elliptic Curve Digital Signature Algorithm |
| ECIES | Elliptic Curve Integrated Encryption Scheme |


| ECMQV | Elliptic Curve Menezes-Qu-Vanstone Protocol |
| :---: | :---: |
| ECP | Elliptic Curve Processor |
| FF | Finite Field |
| $F_{2}^{m}$ | Galois Field of $2^{m}$ |
| FIPS | Federal Information Processing Standards |
| $F_{p}$ | Galois Field of prime $p$ |
| FPGA | Field Programmable Gate Array |
| GF | Galois Field |
| HDL | Hardware Description Language |
| IEEE | Institute of Electrical and Electronics Engineers |
| IOB | Input/Output Block |
| ISO | International Standard Organization |
| IT | Information Technology |
| LB | Lower Bound |
| LSB | Least Significant Bit |
| NAF | Non-Adjacent form |
| NIST | National Institute of Standards in Technology |
| ONB | Optimal Normal Basis |
| PB | Polynomial Basis |
| RISC | Reduced Instruction Set Computer |
| RSA | Rivest,Shamir, Adleman |
| RTL | Register Transfer Level |
| SCA | Side Channel Attack |
| SD | Signed-Digit |
| SIMD | Single Instruction Multiple Data |
| SoC | System on Chip |
| SSL | Secure Socket Layer |
| UB | Uppen Bound |

## Chapter 1

## Introduction

### 1.1 Motivation

With the rapid and expansive growth of Internet, the need for communication security is increasing. Financial institutions, manufacturing plants and general public use Internet to exchange private information. Further expansion of information technology (IT) is tied to the confidence of Internet users to the security of data transaction on Internet. Secure information exchange is vital for E-commerce, and public key cryptography is the most efficient way to achieve data exchange security between two unfamiliar parties on the Internet.

Public key cryptography was introduced in 1976 by Diffie and Hellman [28]. RSA, the first popular public key cryptosystem, which is based on the difficulty of integer factorization was introduced shortly after. RSA is widely accepted and is used for many cryptographic applications. In 1985, Koblitz [3] and Miller [4] independently introduced elliptic curve cryptography, which is basically based on the group of points on an elliptic curve (EC) over a finite field.

Providing the same security level, elliptic curve cryptosystem (ECC) uses smaller key size compared to RSA. ECC implementations require less power, less memory and less computation power compared to RSA implementations. These features makes ECC very
attractive for implementation on constrained devices such as wireless devices, handheld computers and smart cards.

Efficient implementation of elliptic curves cryptosystems can be classified into two basic levels. In the higher level efficiency is tied to the efficiency of the scalar multiplication algorithms(Chapter 3 and 4). On lower level, efficiency goes down to finite field arithmetic, and mostly to finite field multiplication(Chapter 5). This thesis proposes an efficient scalar multiplication algorithm as well as a new architecture for efficient elliptic curve arithmetic implementation.

Although implementing security algorithms in software is easier, it is relatively slow, and has the effect of slowing down and consuming the valuable time of the main processor of the host system. Hardware solutions are attractive specially when there is a large volume of secure transactions. Considering the current growth trends it is expected that the demand for fast security processors will be high in the future.

### 1.2 Thesis Outline

Chapter 2, gives an elementary introduction to Finite Fields and Elliptic Curves. It covers some of the mathematical theory behind the construction of finite fields and elliptic curve group and the basic equations that govern the point addition and point doubling on an elliptic curve. Finally, it describes the idea of creating a security system based on elliptic curve and gives estimation of the strength of elliptic curve cryptosystem.

Chapter 3, provides a comprehensive survey on currently used elliptic curve scalar multiplication algorithms. Different coordinate systems are explained and EC point addition and doubling formula in each coordinate is expressed and compared to each other. Scalar multiplication algorithms are categorized. Algorithms based on scalar recording explained and evaluated. Special scalar multiplication techniques such as point halving method, Montgomery algorithm and ,ECC based on Koblitz curve discussed at the end of the chapter.

Chapter 4, introduces a new fast algorithm for scalar multiplication. The new technique is explained and simulation results are compared to conventional double and add methods [10].

Chapter 5, describes the proposed architecture for a high speed elliptic curve processor. A thorough survey on the elliptic curve processors hardware implementations is carried out, and the proposed processor is compared to them. The RTL simulation result is provided and is compared to few similar design. The results of the survey in chapter 2 is used here to implement an efficient scalar multiplication algorithm.

## Chapter 2

## Preliminaries on Elliptic Curve Cryptography

### 2.1 Basic Concepts

## Groups

Definition 1. A group consists of a set $G$ together with an operation * defined on $G$ which satisfies the following axioms.

1. Closure: for all $a, b \in G$ we have $a \star b \in G$
2. Associativity: for all $a, b, c \in G$ we have $(a \star b) \star c=a \star(b \star c)$
3. Identity: for all $a \in G$ there exists $e \in G$ so that $a \star e=e \star a=a$. The unique element $\mathbf{e}$ is called the neutral element in $G$.
4. Inverse: for all $a \in G$ there exists $i \in G$ so that $a \star i=i \star a=e . i$ is unique and is called inverse of $a$

We use the notation $\langle G, \star\rangle$ to represent group $G$ with group operation $\star .\langle G, \times\rangle$ and $\langle G,+\rangle$ are called multiplicative and additive group respectively. In an additive group, the
neutral element is represented by the symbol 0 and the inverse of $a$ is denoted as $-a$. In a multiplicative group, the neutral element is represented by the symbol 1 and the inverse of $a$ is denoted as $a^{-1}$.
$\langle G, \star\rangle$ is called an Abelian or commutative group if for any $a$ and $b \in G$ we have $a \star b=b \star a$.
if set $G$ is finite, the group $\langle G, \star\rangle$ is called a finite group. The number of elements in $G$ is called the order of the group and is denoted by $|G|$

## Rings

Definition 2. A ring is a set $R$ and two operations + and $\times$ (called addition and multiplication, respectively) defined over $R$ which satisfies the following axioms:

1. $\langle R,+\rangle$ is a commutative group.
2. Associativity of $\times$ : For all $a, b, c \in R$ we have $(a \times b) \times c=a \times(b \times c)$
3. Distributivity of $\times$ over + : For all $a, b, c \in R, a \times(b+c)=a \times b+a \times c$ and $(a+b) \times c=a \times c+b \times c$

A ring in which the multiplication $\times$ is commutative is called a commutative ring.

## Fields

Definition 3. A field is a ring in which multiplication is commutative and every element except 0 has a multiplicative inverse.

So, we can define the field $F$ with respect to the operations $\times$ and + if:

1. $\langle R,+\rangle$ is a commutative group.
2. $\langle R-\{0\}, \times\rangle$ is a commutative group
3. $\times$ is distributive over +

If set $F$ has finite number of elements then $F$ is a finite field or a Galois Field. For example the set $\mathbb{Z}_{p}=\{0,1, \ldots, p-2, p-1\}$ where $p$ is a prime, with modular addition and modular multiplication is a finite field.

Definition 4. One way function is a function that provides for a computationally inexpensive mapping from set X to set Y for all $x \in X$ but becomes computationally infeasible when mapping an element from set $Y$ to set $X$ for most $y \in Y$.

Discrete logarithm (DL) problem: A particular one-way function with $x, y \in G$ such that the discrete $\log a r i t h m$ of $x$ to base $y$, denoted by $\log y(x)$, has a unique integer solution $z$ where $x=y^{z}$.

### 2.2 Elliptic Curves

Elliptic curves have been studied by mathematicians for more than a century. They have been playing an important role in number theory and cryptography. Elliptic Curves have been used in integer factorization and have played an important role in solving the famous problem known as Fermat's last theorem. Elliptic curve cryptography was proposed independently by Victor Miller [4] and Neil Koblitz [3] in the 1985. Elliptic curve cryptosystems are standardized and are commercially available.

### 2.2.1 Definition of Elliptic Curves

Definition 5. Elliptic curve $E$ over field $\mathcal{K}$ is a set of points $(x, y)$ with $x, y \in \mathcal{K}$ which satisfy the equation:

$$
\begin{equation*}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{2.1}
\end{equation*}
$$

where $a_{1}, a_{2}, a_{4}, a_{6} \in \mathcal{K}$, together with a single element denoted $\mathcal{O}$ are called point of infinity [10].

The elliptic curve over $\mathcal{K}$ is denoted by $E(\mathcal{K})$. The number of points on $E$ (the cardinality) is denoted $\# E(\mathcal{K})$ or just $\# E$.

An elliptic curve can be defined over various fields. For example, field of complex numbers $\mathbb{C}$, field of real numbers $\mathbb{R}$, field of rational numbers $\mathbb{Q}$, finite field over prime $\mathbb{F}_{p}$ or an extension field $\mathbb{F}_{p^{n}}$. If $\mathcal{K}$ is a field, and $a_{1}, a_{2}, a_{4}, a_{6} \in \mathcal{K}$, we say $E$ is defined over $\mathcal{K}$. In this case the elliptic curve will be the set of points $(x, y)$ where $x, y \in \mathcal{K}$ and $(x, y)$ satisfy equation 2.1. In cryptography, elliptic curves over finite field $\mathbb{F}_{p}$ or $\mathbb{F}_{p^{n}}$ are used. Specifically $\mathbb{F}_{2^{n}}$ is used more often since it leads to a more efficient design.

For fields of various characteristics, the equation 2.1 can be changed into simpler forms by a linear change of variables. For fields of characteristics two equation 2.1 is simplified to

$$
\begin{equation*}
E: y^{2}+x y=x^{3}+a_{2} x^{2}+a_{6} \tag{2.2}
\end{equation*}
$$

where $\quad a_{2}, a_{6} \in \mathbb{F}_{2^{n}}$.
We consider the equations for field of characteristic 2 which is used in this work. Equation for a field other than characteristic 2 was omitted since they are not central to the discussions.

## The Graph of Elliptic Curves

Figure 2.1 shows graphs of two typical elliptic curves defined over the field of real numbers. The graph of elliptic curve over a finite field is a finite of set of points as is depicted in figure 2.2. Each point in graph 2.2 is called a point on the elliptic curve and is denoted by a single letter such as $P$. The number of points on a elliptic curve over a finite field is an important cryptographic aspect of the curve and will be discussed later.

### 2.2.2 Point Addition Formula

Suppose $P 1$ and $P 2$ are two points on elliptic curve $E(\mathcal{K})$. Choose P1 and P2 and construct a line through these 2 points. In the general case, this line will always have a point of intersection with the curve. Now take this third point and construct a vertical line through it. The other point of intersection of this vertical line with the curve is defined as the sum of $P 1$ and $P 2$, i.e. $P 3=P 1+P 2$. If $P 1$ and $P 2$ are equal, then the line constructed

Figure 2.1: Typical Graph of Elliptic Curve defined over the Field of Real Numbers


(b)

Figure 2.2: Graph of Elliptic Curve defined over $\operatorname{GF}\left(2^{23}\right)$


Figure 2.3: Elliptic Curve Point Addition Operation $P 3=P 1+P 2$.

in the first step is the tangent to the curve, which again, has exactly one other point of intersection with the curve. This operation is illustrated graphically in figure 2.3.

For each of the two elliptic curves equation 2.2 and 2.1 Analytical formulas representing $P 3$ can easily be derived from the explained geometric procedures.

Addition formula for equation 2.1: The inverse of $P 1=\left(x_{1}, y_{1}\right) \in E$ is $-P=\left(x_{1},-y_{1}\right)$. If $P 2 \neq-P 1$, then $P 3=P 1+P 2=(x 3, y 3)$ where

$$
\text { If } P 1 \neq P 2 \quad\left\{\begin{array}{l}
\lambda=\frac{y_{2}+y_{1}}{x_{2}+x_{1}}  \tag{2.3}\\
x_{3}=\lambda^{2}-\lambda+x_{1}-x_{2} \\
y_{3}=\left(x_{1}-x_{3}\right) \lambda-y_{1}
\end{array}\right.
$$

$$
\text { if } P 1=P 2 \quad\left\{\begin{array}{l}
\lambda=\frac{y_{1}}{x_{1}}+x_{1}  \tag{2.4}\\
x_{3}=\lambda^{2}+\lambda+a_{2} \\
y_{3}=\left(x_{1}+x_{3}\right) \lambda+x_{3}+y_{1}
\end{array}\right.
$$

Addition formula for equation 2.2: The inverse of $P 1=\left(x_{1}, y_{1}\right) \in E$ is $-P=\left(x_{1}, x_{1}+\right.$ $\left.y_{1}\right)$. If $P 2 \neq-P 1$, then $P 3=P 1+P 2=(x 3, y 3)$ where

$$
\begin{align*}
& \text { if } P 1 \neq P 2 \quad\left\{\begin{array}{l}
\lambda=\frac{y_{1}+y_{2}}{x_{1}+x_{2}} \\
x_{3}=\lambda^{2}+\lambda+x_{1}+x_{2}+a_{2} \\
y_{3}=\left(x_{1}+x_{3}\right) \lambda+x_{3}+y_{1}
\end{array}\right.  \tag{2.5}\\
& \text { if } P 1=P 2 \quad\left\{\begin{array}{l}
\lambda=\frac{y_{1}}{x_{1}}+x_{1} \\
x_{3}=\lambda^{2}+\lambda+a_{2} \\
y_{3}=\left(x_{1}+x_{3}\right) \lambda+x_{3}+y_{1}
\end{array}\right. \tag{2.6}
\end{align*}
$$

In summary we define the following rules for elliptic curve point addition:

- If $P=\mathcal{O}$ we define $-P=\mathcal{O}$
- Equation 2.1: If $P=(x, y) \Rightarrow-P=(x,-y)$

Equation 2.2: If $P=(x, y) \Rightarrow-P=(x, x+y)$

- If $P 1 \neq P 2 \Rightarrow P 3=P 1+P 2$ equation 2.1 and 2.2
- If $P 1=-P 2 \Rightarrow P 1+P 2=\mathcal{O}$


## Elliptic Curve Group Law

The Elliptic Curve addition operation satisfies the following properties:

1. Closer: $(P+Q) \in E$
2. Commutativity: $P+Q=Q+P$
3. Existence of identity: $P+\mathcal{O}=\mathcal{O}+P$
4. Existence of inverse: $\forall P \in E \exists Q \in E$ so that $P+Q=Q+P=\mathcal{O}$
5. Associativity: $(P+Q)+R=(P+Q)+R$

All properties except 2 are easy to prove. For a proof on property 2 see [20].
Therefore Points on $E$ form an finite additive Abelian group with $\mathcal{O}$ as the identity element. If the elliptic curve is defined over a finite field, the elliptic curve additive group forms a finite Abelian group.

### 2.2.3 Elliptic Curve Discrete Logarithm Problem

For some group $\langle G, \times\rangle$, suppose $\alpha, \beta \in G$. Given $\alpha$ and $\beta$ find for an integer $x$ such that $\alpha^{x}=\beta$ is called the discrete logarithm problem (DLP). The DLP in $\mathbb{Z}_{p}$ is considered difficult if $p$ has at least 150 digits and $p-1$ has at least one large prime factor (as close to $p$ as possible). These criteria for $p$ are safeguards against the known attacks on DLP. Although the discrete logarithm problem exists in any group, when used for cryptographic purposes the group is usuailly $\mathbb{Z}_{p}$. In fact discrete logarithm problem can be used to build cryptosystems with any finite Abelian group. Multiplicative groups in a finite field were originally proposed.

Definition 6. elliptic curve discrete logarithm problem (ECDLP) is defined as follows: we define, $k P=\underbrace{P+P+P+\cdots+P}_{k \text { times }}$

- ECDLP: Suppose $P, Q \in E\left(\mathbb{F}_{q}\right)$ and $Q=k P$ for some $k$. Given $P$ and $Q$ find $k$

No efficient algorithm is known to date to solve the ECDLP. Numerous cryptosystems based their security on the difficulty of solving the DLP. For example El-Gamal Cryptosystem in $\mathbb{Z}_{p}$ and Diffie-Hellman key exchange [20].

There are also a number of cryptosystems whose security is based on the difficulty of factoring large integers. One well-known example is the public-key system called the $R S A$ cryptosystem, which is by far the most popular public key algorithm.

### 2.3 Elliptic Curve Cryptosystem

Cryptosystems using elliptic curves are based on ECDLP. The basic operation in ECC is $k P=\underbrace{P+P+P+\cdots+P}_{k \text { times }}$. The following list shows some encryption system based on ECC

- Diffie-Hellman key exchange
- Messy-Omura Encryption
- El-Gamal Public Key Encryption
- El-Gamal Digital Signature
- Elliptic Curve Digital Signature Algorithm (ECDSA).

Detail explanation of these encryption systems can be found in [20] and [21]

## Example of an Elliptic Curve Cryptosystems: Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange protocol was proposed in 1976 [28]. This protocol allows two or more participants to agree on a secret key without ever requiring access to a private channel. Even if Eve (The Eavesdropper) is able to see every message passed between the principles, it is mathematically infeasible for her to deduce the secret key. The protocol is as follows:

Suppose Alice and Bob want to agree on a shared secret key. First of all, there are public parameters $P \in E$. Then they start the following communication.

1. Alice secretly chooses a random number n and sends Bob $k_{A} P$.
2. Bob secretly chooses a random number m and sends Alice $k_{B} P$.
3. The secret key is $k_{A} k_{B} P=k_{B} k_{A} P$. Both Alice and Bob can easily compute, but Eve can't, because of the difficulty of the discrete logarithm problem.

Figure 2.4: Diffie-Hellman key exchange

4. Now Alice and Bob have the same key, $k_{B}\left(k_{A} P\right)$ and can use this key to send encrypted messages to each other

The most time consuming calculation in this system is $k P$ (Scalar Multiplication). DiffieHellman key exchange works for DLP as well as ECDLP.

## Security of an Elliptic Curve Cryptosystem

In this section we try to provide an overview of the security strength elliptic curve cryptosystems. A typical system is based on Galois fields between 150-160, which are small enough for efficiency and are large enough for security.

There are two basic type of algorithms to solve discrete logarithm problem. General attacks which do not depend on the underlying group and specific attacks which depend on the representation [32].

Elliptic curve discrete logarithm problem is defined as follows: Let $E\left(\mathbb{F}_{q}\right)$ be an elliptic curve over $\mathbb{F}_{q}$ and let $P$ be a point in $E\left(\mathbb{F}_{q}\right)$. For any point $R \in E\left(\mathbb{F}_{q}\right)$ find the integer $k, 0 \leq k \leq \# P-1,(\# P$ is the order of $P)$ such that $k P=R$.

The most powerful general algorithm known at present is baby-step giant-step technique [20]. Algorithms in this group have running time no better that $O(\sqrt{p})$, where $p$ is the
largest prime dividing $n$. Shank's baby-step giant-step method [20] requires $O(\sqrt{p})$ in both time and space. The storage requirement can be reduced significantly by using the Pollard method [20]. Pollard method requires $\sqrt{p}$ iterations on elliptic curve where each iteration requires 3 elliptic curve additions. Each addition take 10 field multiplications where each field multiplication takes 4 clock cycles to complete (using the proposed processor described in the last chapter). Then we need $40 \sqrt{p}$ clock cycles or $0.4 \sqrt{q} \mu \mathrm{Sec}$ to solve ECDLP. If the order of the curve $E$ contains a prime factor of at least 36 decimal digits, then we need $\approx 0.4 \times 10^{18} \mu \mathrm{Sec}$ which is about 12000 years to complete the operation. See [32] for more explanation.

All methods for solving the discrete logarithm problem, except index-calculus method, can be adapted to solve EC discrete logarithm problem (ECDLP). This means that there exists no method for solving $m$ with a sub-exponential running time. $m$ should be prime, in order to be safeguarded against Weil decent attacks [63].

Certicom (www.certicom.com), a Canadian company, has announced challenges to break a typical ECC. Table 2.1 shows the challenge and the estimated time to break the ECC.

### 2.4 Elliptic Curve Cryptography Standardization

The development of standards is a very important point for the use of a cryptosystem. Standards help ensure security and interpret-ability of different implementations of one cryptosystem. There are several major organizations that develop standards. The most important for security in information technology are:

- International Standards Organization (ISO)
- American National Standards Institute (ANSI)
- Institute of Electrical and Electronics Engineers (IEEE)
- Federal Information Processing Standards (FIPS)
- National Institute of Standards and Technology (NIST)

Table 2.1: Elliptic Curve Cryptography Challenge(www.certicom.com)

| Curve <br> Curve | Field size <br> (in bits) | Estimated number <br> of machine days | Prize <br> (US $\$$ ) | Status <br> Status |
| :--- | :--- | :--- | :--- | :--- |
| ECC2-79 | 79 | 352 | HAC, Maple | SOLVED Dec. 1997 |
| ECC2-89 | 89 | 11278 | HAC, Maple | SOLVED Feb. 1998 |
| ECC2K-95 | 97 | 8637 | $\$ 5,000$ | SOLVED May 1998 |
| ECC2-97 | 97 | 180448 | $\$ 5,000$ |  |
| ECC2K-108 | 109 | $1.3 \times 10^{6}$ | $\$ 10,000$ | SOLVED Apr. 2000 |
| ECC2-109 | 109 | $2.1 \times 10^{7}$ | $\$ 10,000$ |  |
| ECC2K-130 | 131 | $2.7 \times 10^{9}$ | $\$ 20,000$ |  |
| ECC2-131 | 131 | $6.6 \times 10^{10}$ | $\$ 20,000$ |  |
| ECC2-163 | 163 | $2.9 \times 10^{15}$ | $\$ 30,000$ |  |
| ECC2K-163 | 163 | $4.6 \times 10^{14}$ | $\$ 30,000$ |  |
| ECC2-191 | 191 | $1.4 \times 10^{20}$ | $\$ 40,000$ |  |
| ECC2-238 | 239 | $3.0 \times 10^{27}$ | $\$ 50,000$ |  |
| ECC2K-238 | 239 | $1.3 \times 10^{26}$ | $\$ 50,000$ |  |
| ECC2-353 | 359 | $1.4 \times 10^{45}$ | $\$ 100,000$ |  |
| ECC2K-358 | 359 | $2.8 \times 10^{44}$ | $\$ 100,000$ |  |

Table 2.2: Elliptic Curve Standards and Algorithms

| Standard | Schemes |
| :--- | :--- |
| ANSI X9.62 | ECDSA |
| ANSI X9.63 | ECIES, ECDH, ECMQV |
| FIPS 186-2 | ECDSA |
| IEEE P1363 | ECDSA, ECDH, ECMQV |
| IEEE P1363A | ECIES |
| ISO 14888-3 | ECDSA |
| ISO 15946 | ECDSA, ECDH, ECMQV |

Elliptic Curve Digital Signature Algorithm (ECDSA)
Elliptic Curve Integrated Encryption Scheme (ECIES)
Elliptic Curve Menezes-Qu-Vanstone Protocol (ECMQV)
Elliptic Curve Diffie-Hellman (ECDH)

The most prominent ECC algorithm, the ECDSA was accepted in 1998 as ISO standard (ISO14888-3), 1999 as ANSI standard (ANSI X9.62), and 2000 as IEEE (P1363) and Fips (186-2) standard. Several other standardization efforts are in progress. Table 2.2 shows the Elliptic Curve standards

### 2.5 Intellectual Property Issues

Contrary to RSA, the basic idea of Elliptic Curve Cryptosystems has not been patented, and in the beginning this seemed to be an important advantage. However, a number of patents have been applied for, on techniques that mostly aim at improving efficiency. In principle, it should still be possible to construct a secure, albeit not extremely efficient elliptic curve cryptosystems without licensing patents. The patents are mostly held by Certicom, a Canadian company which is marketing elliptic curve cryptosystem.

A number of these techniques are being considered for inclusion in standards and this
will potentially make it hard to implement interpretable elliptic curve systems without licensing patents. On the other hand, some standardization organizations require the holders of patents on standardized techniques to guarantee 'reasonable' licensing conditions. In summary, elliptic curves have lost many of their advantages as far as patents are concerned.

## Chapter 3

## Introduction to ECC Computations

### 3.1 Introduction

In order to implement and elliptic curve cryptosystem one has to decide on the following options:

1. Defining Equation for Elliptic curve

- Weierstrass form [6]
- Koblitz Curves [2]

2. Representation of points [10]

- Affine Coordinates
- Projective
- Mixed Coordinates

3. Scalar Multiplication technique $k P$ ie. $k P=\underbrace{P+P+P+\cdots+P}_{k \text { times }}$

- Comb method [16]
- Window method [10]
- Montgomery method [61]
- Scalar Recording [7]


## 4. Field Representation

- Polynomial Basis
- Normal Basis
- Dual Basis

5. Finite Field operation Algorithm

- Multiplication
- Squaring
- Inversion

In this chapter items 1, 2 and 3 are explained. Algorithms for finite field operation are explained in the last chapter. Item 4 is not discusses here.

Speed of a ECC system is determined by the above factors as well as implementation platform (Fig. 3.1). Using a dedicated hardware to speedup the underlying finite field arithmetic will increase the speed of elliptic curve operations as it is explained in the last chapter.

### 3.2 Elliptic Curve Definition

Definition 7. Let $K$ be a field of characteristics $\neq 2,3$, lets $x^{3}+a x+b$ (where $a, b \in K$ ) be a cubic polynomial with no multiple roots. An elliptic curve over $K$ is the set of points $(x, y)$ with $x, y \in K$ which satisfy the equation

$$
\begin{equation*}
y^{2}=x^{3}+a x+b \tag{3.1}
\end{equation*}
$$

Figure 3.1: Platform option for ECC implementation

together with a single element denoted $\mathcal{O}$ and is called point at infinity. If $K$ is of characteristics 2 , then an elliptic curve over $K$ is the set of points satisfying the equation

$$
\begin{equation*}
y^{2}+y=x^{3}+a x+b \tag{3.2}
\end{equation*}
$$

[1].

### 3.2.1 Different Forms of Elliptic Curve Equation

## Weierstrass Form [6]

An affine Weierstrass equation over field $K$ is an equation of the form

$$
\begin{equation*}
E(K): Y^{2}=a_{1} X Y+a_{3} y=X x^{3}+a_{2} X^{3}+a_{4} X+a_{6} \tag{3.3}
\end{equation*}
$$

with $a_{1}, a_{2}, a_{4}, a_{6} \in K$.

## Koblitz Form [2]

Two extremely convenient families of curves are the anamolaus binary curves (or ABC's or Koblitz curves). These are the curves $E_{0}$ and $E_{l}$ defined over $\mathbb{F}_{2^{m}}$ by $E_{a}: x^{2}+x y=$ $x^{3}+a x^{2}+1$. We denote by $E_{a}\left(\mathbb{F}_{2^{m}}\right)$ the group of $\mathbb{F}_{2^{m-r a t i o n a l}}$ points on $E_{a}$ This is the group on which the public-key protocols are performed. As we will see, this group of curves speeds up the scalar multiplication [7].

### 3.3 Elliptic Curve Point Representation

An elliptic curve can be represented using several coordinate systems. For each such system, the speed of point additions ( $E C A D D$ ) and doubling ( $E C D B L$ ) are different. Therefore a good choice of coordinate system is an important factor for elliptic curve exponentiations. We give here the addition and doubling formulas for affine, projective, Jacobian, Chudnovsky and Lopez-Dahab coordinates. These coordinates are defined in section 3.4.1.

### 3.3.1 The Addition Formulas in Affine Coordinate

Let

$$
E_{a}: y^{2}+x y=x^{3}+a x^{2}+b \quad a, b \in \mathbb{F}_{2^{m}}
$$

be an elliptic curve $E$ over $\mathbb{F}_{2^{m}}$. The addition formula for affine coordinates are the followings. Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be two points on $E_{a}$. Then the coordinates of $P_{3}=P_{1}+P_{2}=\left(x_{3}, y_{3}\right)$ can be computed as shown in table 3.1.

Table 3.1: Addition Formula in Affine Coordinate

| $P 1 \neq P 2$ | $P 1=P 2$ |
| :--- | :--- |
| $\lambda=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ | $\lambda=\frac{y_{1}}{x_{1}}+x_{1}$ |
| $x_{3}=\lambda^{2}+\lambda+x_{1}+x_{2}+a$ | $x_{3}=$ same |
| $y_{3}=\left(x_{1}+x_{3}\right) \lambda+x_{3}+y_{1}$ | $x_{3}=$ same |
| Cost: $I+2 M+S$ | Cost: $I+2 M+S$ |

For simplicity, we neglect addition and subtraction in $\mathbb{F}_{2^{m}}$ because they are much faster than multiplication and inversion in $\mathbb{F}_{2^{m}}$. Let us denote the computation time of an addition (resp. a doubling) by $t(P+P$ ) or $t(E C A D D)$ (resp. $t(2 P)$ or $t(E C D B L)$ ) and represent multiplication (resp. inverse, resp. squaring) in $\mathbb{F}_{2^{m}}$ by $M$ (resp. $I$, resp. $S$ ). Then we see that $t(P+Q)=I+2 M+S$ and $t(2 A)=I+2 M+2 S[8]$.

### 3.3.2 Projective Space and the Point at Infinity

Definition 8. $n$-Dimensional projective space $P_{K}^{n}$ over field $K$ is the set of equivalence classes of $n$-tuple ( $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ ) with $x_{0}, x_{1}, x_{2}, \ldots, x_{n} \in K$. Two $n$-tuple ( $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ ) and $\left(y_{0}, y_{1}, y_{2}, \ldots, y_{n}\right)$ are said to be equivalent iff there exists non-zero element $\lambda \in K$ such that

$$
\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\lambda y_{1}, \lambda y_{2}, \lambda y_{3}, \ldots, \lambda y_{n}\right)
$$

We write

$$
\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right) \sim\left(y_{0}, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

Example: Projective line $P_{\mathbb{R}}^{1}$. It is the set of points $(x, y)$ excluding $(0,0)$ with the points ( $\lambda x, \lambda y$ ) identified with $(x, y)$. If we select $P=(x, y)$, then all the points $(\lambda x, \lambda y)$ are on the line joining $P$ to the origin. This is visualized in figure 3.2. Points with the same shape are equivalent. For every equivalence class we can choose a point lying on the unit circle as a representative. The projective line $P_{\mathbb{R}}^{1}$ is then represented by the unit circle with diagonally opposite points identified together.

Figure 3.2: Projective Line


The equivalence class of $(x, y, z)$ is denoted by $(x: y: z)$. If $(x: y: z)$ is a point with $z \neq 0$, then $(x: y: z)=(x / z: y / z: 1)$. These are the finite points in $P_{K}^{3}$.However, If $z=0$, then dividing by $z$ should be thought of as giving $\infty$ in either the $x$ or $y$ coordinate, and therefore the points $(x: y: 0)$ are called points at infinity in $P_{K}^{n}$. The point at infinity on an elliptic curve is identified with one of these points at infinity in $P_{K}^{3}$.

The two-dimensional affine plane over $K$ is defined by

$$
A_{k}^{2}=\{(x, y) \mid x, y \in k\}
$$

We have an inclusion

$$
A_{k}^{2} \hookrightarrow P_{K}^{2}
$$

given by

$$
(x, y) \hookrightarrow(x: y: 1)
$$

In this way affine plane is defined with the finite points in $P_{K}^{3}$.
A polynomial is homogeneous of degree $n$ if it is a sum of terms of the form $a x^{i} y^{j} z^{k}$ with $a \in K$ and $i+j+k=n$. If $f(x, y)$ is a polynomial in $x$ and $y$, then we can make it homogeneous by inserting appropriate powers of $z$. For example, if $f(x, y)=y^{2}-x^{3}-A x-B$ then we obtain the homogeneous polynomial $F(x, y)=y^{2} z-x^{3}-A x z^{2}-B z^{3}$. If $F$ is homogeneous of degree $n$ then

$$
F(x, y, z)=z^{3} f(x / z, y / z)
$$

and

$$
f(x, y)=F(x, y, 1)
$$

The elliptic curve $E$ is given by $y^{2}=x^{3}+A x+B$. The homogeneous from is $y^{2} z=$ $x^{3}+A x z^{2}+B z^{3}$. The point $(x, y)$ on the original curve, corresponds to points $(x: y: 1)$ in the projective version. To see what points on $E$ lie at infinity, set $z=0$ and obtain $x=0$. Therefore $x=0$, and y can be any nonzero number. Rescale by $y$ to find that $(0: y: 0)=(0: 1: 0)$ is the only point at infinity on $E$. Using projective coordinate speeds up computation on elliptic curve.

### 3.4 Choosing a Coordinate System

Using different projections, points on an elliptic curve can be represented in many different ways, as it is shown in the following list.

- Affine Plane: $(x, y) \quad E_{a}: y^{2}+x y=x^{3}+a x^{2}+b \quad a, b \in \mathbb{F}_{2^{m}}$
- Projective Plane: $(x=X / Z, y=Y / Z) \quad E_{p}: Y^{2} Z+X Y Z=X^{3}+a X^{2} Z+$ $b Z^{3} \quad a, b \in \mathbb{F}_{2^{m}}$
- Jacobian: $\left(x=X / Z^{2}, y=Y / Z^{3}\right) \quad E_{J}: Y^{2}=X^{3}+a X Z^{4}+b Z^{6} \quad a, b \in \mathbb{F}_{p}$
- Chudnovsky: $\left(X, Y, Z, Z^{2}, Z^{3}\right) \quad P_{3}=P_{1}+P_{2}=P 2=\left(X_{3}, Y_{3}, Z_{3}, Z_{3} 2, Z_{3} 3\right)$.
- Lopez-Dahab: $\left(x=X / Z, y=Y / Z^{2}\right) \quad E_{d}: Y^{2}+X Y Z=X^{3}+a X Z^{2}+b Z^{4} \quad a, b \in$ $\mathbb{F}_{2^{m}}$


### 3.4.1 Different Coordinate Systems

## The Addition Formulas in Projective Coordinates

For projective coordinates, we set $x=X / Z$ and $y=Y / Z$, giving the equation:

$$
\begin{gathered}
E_{p}: Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3} \quad a, b \in \mathbb{F}_{p} \\
E_{p}: Y^{2} Z+X Y Z=X^{3}+a X^{2} Z+b Z^{3} \quad a, b \in \mathbb{F}_{2^{m}}
\end{gathered}
$$

The addition formulas in projective coordinates for $\mathbb{F}_{p}$ are the following. Let $P_{1}=\left(X_{1}, Y_{1}, Z_{1}\right)$, $P_{2}=\left(X_{2}, Y_{2}, Z_{2}\right)$ and $P_{3}=P_{1}+P_{2}=(X 3, Y 3, Z 3)$, table 3.2 summarized the addition formula [8].

## The Addition Formulas in Jacobian Coordinates

For Jacobian coordinates, we set $x=X / Z^{2}$ and $y=Y / Z^{3}$, giving the equation:

$$
E_{J}: Y^{2}=X^{3}+a X Z^{4}+b Z^{6} \quad a, b \in \mathbb{F}_{p}
$$

Table 3.2: Addition Formula in Projective Coordinates for $\mathbb{F}_{p}$

| $P 1 \neq P 2$ | $P 1=P 2$ |
| :--- | :--- |
| $u=Y_{2} Z_{1}-Y_{1} Z_{2}$ | $u=a Z_{1}^{2}+3 X_{1}{ }^{2}$ |
| $v=X_{2} Z_{1}-X_{1} Z_{2}$ | $v=Y_{1} Z_{1}$ |
| $w=u^{2} Z_{1} Z_{2}-v^{3}-2 v^{2} X_{1} Z_{2}$ | $w=X_{1} Y_{1} v$ |
|  | $t=u^{8} w$ |
| $X_{3}=v w$ | $X_{3}=2 v t$ |
| $Y_{3}=u\left(v^{2} X_{1} Z_{2}-w\right)-v^{3} Y_{1} Z_{2}$ | $Y_{3}=u(4 w-t)-8 Y^{2} v^{2}$ |
| $Z_{3}=v^{3} Z_{1} Z_{2}$ | $Z_{3}=8 v^{3}$ |
| Cost: $12 M+2 S$ | Cost: $7 M+5 S$ |

The addition formulas in the Jacobian coordinates are presented in table 3.3. Table 3.4 represents the point addition and point doubling formulae adapted from IEEE P1363 standard for comparison[21]A10-5, A10-7.

## The Addition Formulas in Chudnovsky Jacobian Coordinates

We see that Jacobian coordinates offer a faster doubling and a slower addition than projective coordinates. In order to make an addition faster, we should represent internally a Jacobian point as the quintuple ( $X, Y, Z, Z^{2}, Z^{3}$ ). This is called the Chudnovsky Jacobian coordinate and denoted by $J_{c}$. The addition formulas in the Chudnovsky Jacobian coordinates are the following. Let $P 1=\left(X_{1}, Y_{1}, Z_{1}, Z_{1} 2, Z_{1} 3\right), P 2=\left(X_{2}, Y_{2}, Z_{2}, Z_{2} 2, Z_{2} 3\right)$ and $P_{3}=P_{1}+P_{2}=P 2=\left(X_{3}, Y_{3}, Z_{3}, Z_{3} 2, Z_{3} 3\right)$. Table 3.5 shows the addition procedure in $m a t h b b F_{p}$.

## The Addition Formulas in Lopez-Dahab Coordinates

We set $x=X / Z$ and $y=Y / Z^{2}$, giving the equation:

$$
E_{d}: Y^{2}+X Y Z=X^{3}+a X Z^{2}+b Z^{4} \quad a, b \in \mathbb{F}_{2^{m}}
$$

Table 3.3: Addition Formula in Jacobian coordinates for $\mathbb{F}_{p}$

| $P 1 \neq P 2$ | $P 1=P 2$ |
| :--- | :--- |
| $U_{1}=X_{1} Z_{2}{ }^{2}$ | $S=4 X_{1} Y^{2}$ |
| $U_{2}=X_{2} Z_{1}{ }^{2}$ | $M=3 X_{1}{ }^{2}+a Z_{1}{ }^{4}$ |
| $S_{1}=X_{1} Z_{2}{ }^{3}$ | $T=-2 S+M^{2}$ |
| $S_{1}=Y_{2} Z_{1}{ }^{3}$ |  |
| $H 1=U_{2}-U 1$ |  |
| $R=S_{2}-S-1$ |  |
| $X_{3}=-H^{3}-2 U_{1} H^{2}+R^{2}$ | $X_{3}=T$ |
| $Y_{3}=-S_{1} H^{3}+R\left(U_{1} H^{2}-X_{3}\right)$ | $Y_{3}=-8 Y_{1} 4+M(S-T)$ |
| $Z_{3}=Z_{1} Z_{2} H$ | $Z_{3}=2 Y_{1} Z_{1}$ |
| Cost: $12 M+4 S$ | Cost: $4 M+6 S$ |

like other projective coordinates this coordinate we don't need inversion for ECADD and $E C D B L$ (Table 3.6) [9].

The key observation is that, point addition in projective coordinates can be done using field multiplication only, with no inversion required. Thus the inversion are deferred, and only one need to be performed at the end of a point calculation, if it is required that the final result be given in affine coordinates. The cost of eliminating inversion is an increased number of multiplication. So the appropriateness of using coordinated is strongly determined by the ratio $I / M$. for an $I / M \geq 10$ projective coordinates is recommended[9] [10].

## Mixed Coordinate

It is evidently possible to mix different coordinates, i.e. to add two points where one is given in some coordinate system, and the other point is in some other coordinate system. We can also choose the coordinate system of the result. Proper use of mixed coordinates can lead to a faster point calculation. For a table of mix coordinate system refer to $[8]$.

Table 3.4: Addition Formula in IEEE Standard for $\mathbb{F}_{\mathbf{2}^{m}}$

| $P 1 \neq P 2$ | $P 1=P 2$ |
| :--- | :--- |
| $U_{0}=X_{0} Z_{1}^{2}$ | $\left(b=c^{4}\right)$ |
| $S_{0}=Y_{0} Z_{1}^{3}$ | $Z_{2}=X_{1} Z_{1}^{2}$ |
| $U_{1}=X_{1} Z_{0}^{2}$ | $X_{2}=\left(X_{1}+c Z_{1}^{2}\right)^{4}$ |
| $S_{1}=Y_{1} Z_{0}^{3}$ | $U=Z_{2}+X_{1}^{2}+Y_{1} Z_{1}$ |
| $W=U_{0}+U_{1}$ | $Y_{2}=X_{1}^{4} Z_{2}+U X^{2}$ |
| $R=S_{0}+S_{1}$ |  |
| $T=R+Z_{2}$ |  |
| $L=Z_{0} W$ |  |
| $Z_{2}=L Z_{1}$ |  |
| $X_{2}=a Z_{2}^{2}+T R+W^{3}$ |  |
| $V=R X_{1}+L Y_{1}$ |  |
| $Y_{2}=T X_{2}+V L^{2}$ |  |
| Cost: $15 M+7 A+5 S$ |  |
| Cost $\left(Z_{1}=1\right): 11 M+7 A+4 S$ |  |

### 3.4.2 Coordinates Summary

Table $3.7{ }^{1}$ summarizes the cost of elliptic curve point calculation in different coordinates. Selection of the coordinate system depends on the implementation platform. As a rule of thumb, projective coordinates are preferred, unless there exists an efficient division implementation.

[^1]Table 3.5: Addition Formula in Chudnovsky Jacobian Coordinates for $\mathbb{F}_{p}$

| $P 1 \neq P 2$ | $P 1=P 2$ |
| :--- | :--- |
| $U_{1}=X_{1} Z_{2}{ }^{2}$ | $S=4 X_{1} Y^{2}$ |
| $U_{2}=X_{2} Z_{1}{ }^{2}$ | $M=3 X_{1}{ }^{2}+a Z_{1}{ }^{4}$ |
| $S_{1}=Y_{1} Z_{2}{ }^{3}$ | $T=-2 S+M^{2}$ |
| $S_{2}=Y_{2} Z_{1}{ }^{3}$ |  |
| $H 1=U_{2}-U 1$ |  |
| $R=S_{2}-S-1$ |  |
| $X_{3}=-H^{3}-2 U_{1} H^{2}+R^{2}$ | $X_{3}=T$ |
| $Y_{3}=-S_{1} H^{3}+R\left(U_{1} H^{2}-X_{3}\right)$ | $Y_{3}=-8 Y_{1}{ }^{4}+M(S-T)$ |
| $Z_{3}=Z_{1} Z_{2} H$ | $Z_{3}=2 Y_{1} Z_{1}$ |
| Cost: $11 M+4 S$ | Cost: $5 M+6 S$ |

### 3.5 Scalar Multiplication

Scalar multiplication (or point multiplication) is the heart of Elliptic Curve Cryptography (ECC), which computes $k P$ for a given point $P$ and a scalar $k$. In public-key cryptographic systems, elements of some group are raised to large powers. In case of RSA it is $a^{k}$ and in case of Elliptic curve it is $k P$.

The scalar multiplication in ECC is the most dominant computation part of ECC. There are many algorithms for computing the scalar multiplication. The IEEE standard one is the binary non-adjacent form (NAF) which is not the most efficient one. Table 3.8 summarizes scalar multiplication techniques.

Scalar multiplication in elliptic curves is a special case of the general problem of modular exponentiation in Abelian group. Therefore it benefits from all the techniques available for the general problem and the related short addition chain problem for integers. However there are also efficiency improvements available elliptic curve case that have no analogue in modular exponentiation. There are three kinds of these [10]:

Table 3.6: Addition Formula in Lopez-Dahab Projective Coordinates for $\mathbb{F}_{2^{m}}$

| $P 1 \neq P 2$ | $P 1=P 2$ |
| :--- | :--- |
| $A=Y_{2} Z_{1}{ }^{2}+Y_{1}$ | $A=b Z_{1}{ }^{4}$ |
| $B=X_{2} Z_{1}+X_{1}$ |  |
| $C=Z_{1} B$ |  |
| $D=B^{2}\left(C+a Z_{1}{ }^{2}\right)$ |  |
| $E=A C$ |  |
| $F=X_{3}+X_{2} Z_{3}$ |  |
| $G=X_{3}+Y_{2} Z_{3}$ |  |
| $X_{3}=A^{2}+D+E$ | $X_{3}=X_{1}{ }^{4}+A$ |
| $Y_{3}=E F+Z_{3} G$ | $Y_{3}=A Z_{3}+X_{3}\left(a Z_{3}+Y_{1}{ }^{2}+A^{4}\right)$ |
| $Z_{3}=C^{2}$ | $Z_{3}=X_{1}{ }^{2} Z_{1}{ }^{2}$ |
| Cost: $14 M$ | Cost: $5 M$ |

1. Choose the curve, and the base field over which it is defined, so as to optimize the efficiency of elliptic scalar multiplication.
2. Use the fact that subtraction of points on an elliptic curve is just as efficient as addition.If we allow subtractions of points as well, we can replace the binary expansion of the coefficient $n$ by a more efficient signed binary expansion.
3. Use complex multiplication. Every elliptic curve over a finite field comes equipped with a set of operations which can be viewed as multiplication by complex algebraic integers (as opposed to ordinary integers).

In general the following methods try to optimize $k P$. Generally the optimization is based on[11]:

1. Recording of multiplier $k$
2. Precomputation

Table 3.7: Cost of Point Addition and Doubling in Different Coordinate System

| Coordinate | Transform | $P+Q$ | $2 P$ | Field |
| :--- | :--- | :--- | :--- | :---: |
| Affine | $(X, Y)$ | $I+2 M+S$ | $I+2 M+S$ | $\mathbb{F}_{p}$ |
| Standard projective | $(X / Z, Y / Z)$ | $12 M+2 S$ | $7 M+5 S$ | $\mathbb{F}_{p}$ |
| Jacobian projective (IEEE) | $\left(X / Z^{2}, Y / Z^{3}\right)$ | $12 M+4 S$ | $4 M+5 S$ | $\mathbb{F}_{p}$ |
| Jacobian projective (IEEE) | $\left(X / Z^{2}, Y / Z^{3}\right)$ | $15 M+5 S+7 A$ | $5 M+5 S+4 A$ | $\mathbb{F}_{2^{m}}$ |
| Using mixed coordinate |  | $11 M+4 S+7 A$ |  |  |
| Chudnovsky projective | $\left(X, Y, Z, Z^{2}, Z^{3}\right)$ | $11 M+4 S$ | $5 M+6 S$ | $\mathbb{F}_{p}$ |
| Lopez-Dahab projective | $\left(X / Z, Y / Z^{2}\right)$ | $14 M+5 S$ | $5 M+9 S$ | $\mathbb{F}_{2^{m}}$ |

### 3.5.1 Speeding up Scalar Multiplication $(k P)$

## Binary Method

This method which is also known as the double-and-add (square and multiply for RSA) method, is over 2000 years old [12]. The basic idea is to compute $g^{k}$ or $k P$ using the binary expansion of $k$. Let

$$
\begin{equation*}
k=\sum_{i=0}^{n-1} b_{i} 2^{i} \tag{3.4}
\end{equation*}
$$

Then the following algorithm will compute $k P$ using binary method, it takes $n \times E C D B L$ and $\frac{n}{2} \times E C A D D$ on average [10].

## $m$-ary Method

The binary method has an obvious generalization: Let

$$
\begin{equation*}
k=\sum_{i=0}^{d-1} c_{i} m^{i} \tag{3.5}
\end{equation*}
$$

The algorithm in table 3.10 computes $k P$ using this representation.

Table 3.8: Classification of scalar multiplication techniques

| Name of Method | Basic Idea | Application | Example |
| :--- | :--- | :--- | :--- |
| Comb [16] | Precompute tables of $\sum_{i=0}^{n-1} 2^{w i} Q$ | $Q$ fix | DH key exchange |
| addition chains [7] | $s u m_{i=0}^{n-1} k_{i}$ | $k$ fix | DSA |
| Windowing (Fix, Variable) <br> $m$-ary [10] | Precompute tables memory $k=\sum_{i=0}^{d-1} c_{i} m^{i}$ | $Q$ is not known | Security Server |
| Scalar recoding [7] | fewer zero in binary representation of k (NAF) |  |  |

Table 3.9: $k P$ using Double and Add Method

```
Algorithm: Scalar Multiplication: Binary Method [10]
    Input: A point \(P\), an integer \(k=\sum_{i=0}^{n-1} b_{i} 2^{i}, b_{i}=0,1\)
    Output \(Q=k P\)
    \(Q \leftarrow \mathcal{O}\)
    For \(i=n-1\) to 0 by -1
        \(Q \leftarrow 2 \mathrm{Q}\)
        if \(b_{i}=1\) then \(Q \leftarrow Q+P\)
    EndFor
    Return \(Q\)
```

This method is particulary attractive if $m=2^{r}$. For $r=3$ it will be similar to octal representation of $k$, and for $r=4$ it will be similar to hexadecimal representation of $k$. If $m=2^{r}$ this algorithm takes $(n-r) \times E C D B L$ (since $\left.d=n / r,(d-1) r=n-r\right)$ and $d \times E C A D D$ and $(m-1) \times E C A D D$ for precomputation [7][10].

## Modified m-ary Method

In case of $m=2^{r}$, It is possible to save some $E C A D D$ at precalculation phase, by dropping the trailing zeros at each $m_{i}$. ie. we calculate $m_{i} P$ when $m_{i}$ is odd.

Using this method number of $E C A D D$ is $n / r+(m-2) / 2$. The number of $E C D B L$ remain the same. It is worth mentioning that we need to select the optimized $r$ for a specific length of $k$. There is always a specific $r$ for a $k$ which minimizes the number of elliptic computations [7].

## Window Method

The $m$-ary or $2^{r}$-ary method may be thought of as taking $k$-bit windows in the binary representation of $r$, calculating the powers in the windows one by one, squaring them $r$ times to shift them over, and then multiplying by the power in the next window [7]: In

Table 3.10: $k P$ using $m$-ary Method

```
Algorithm: Scalar Multiplication: m-ary Method [10]
Input: A point \(P\), an integer \(k=\sum_{i=0}^{d-1} k_{i} m^{i}, k_{i} \in\{0,1, \ldots, m-1\}\)
Output \(Q=k P\)
\(P 1 \leftarrow P\)
For \(i=2\) to ( \(m-1\) ) by -1
    \(P 1_{i} \leftarrow P_{i-1}+P\left(\right.\) pre calculate, \(\left.P_{i}=i P\right)\)
\(Q \leftarrow \mathcal{O}\)
For \(i=d-1\) to 0 by -1
    \(Q \leftarrow m Q \quad\) (if \(m=2^{r}\), this requires r doubling)
    \(Q \leftarrow Q+k_{i} P \quad\) (pre calculations is required to calculate all \(c_{i} P\) )
EndFor
Feturn Q
```

other words it can be regarded as a specific case of window method, where bits of the multiplier $k$ are processed in blocks of $r$ bits. Window method processes windows up to length $r$ disregarding fixed digit boundaries, and skips runs of zeros between them. These runs are taken care of by point doubling, which need to be computed in any case. We assume $r \geq 1$.

Using sliding windows has an effect equivalent to using fixed windows one bit larger, but without increasing the precomputation cost. The computation cost of sliding window method is estimated as $n \times E C D B L$ and $n /(r+1) \times E C A D D[10]$.

## Redundant Number System: Binary NAF

Subtraction has virtually the same cost as addition in the elliptic curve group. The group negative of $(x, y)$ is $(x, x+y)$ in characteristics two and $(x,-y)$ in odd characteristics. This naturally leads us to scalar multiplication methods based on addition-subtraction chains, which may reduce the number of point operation. The signed-digit (SD) representation can

Table 3.11: $k P$ using Modified $m$-ary Method

```
Algorithm: Scalar Multiplication: Modified m-ary [10] Method
Input: A point \(P\), an integer \(k=\sum_{i=0}^{d-1} k_{i} m^{i}, k_{i} \in\{0,1, \ldots, m-1\}\)
Output \(Q=k P\)
\(P_{1} \leftarrow P, P_{2} \leftarrow 2 P\)
For \(i=1\) to \((\mathbb{m}-2) / 2\) by -1
        \(P_{2 i+1} \leftarrow P_{2 i-1}+P_{2}\) (pre calculate, odd multiplies of \(P\) )
\(Q \leftarrow \mathcal{O}\)
For \(\mathrm{i}=\mathrm{d}-1\) to 0 by -1
        If \(k_{j} \neq 0\) then
            Let \(s_{j}\) and \(h_{j}\) be such that \(k_{j}=2^{s_{j}} h_{j}, h_{j}\) odd
            \(Q \leftarrow\left(2^{r-s_{j}}\right) Q\)
            \(Q \leftarrow Q+P_{h_{j}}\)
        Else \(s_{j} \leftarrow r\)
    \(Q \leftarrow 2^{s_{j}} Q\)
EndFor
Return \(Q\)
```

be applied to all methods discussed so far, but this technique cannot be used for modular exponentiation in RSA.

This begins with the non-adjacent form (NAF) of the coefficient $k$ : a signed binary expansion with the property that no two consecutive coefficients are nonzero. For example, $N A F(29)=(1,0,0,-1,0,1)$ since $29=32-4+1$.

Just as every positive integer has a unique binary expansion, it also has a unique $N A F$. Moreover, $N A F(k)$ has the fewest nonzero coefficients of any signed binary expansion of $k$ [ 7 ]. There are several ways to construct the $N A F$ of $k$ from its binary expansion.

Table 3.12: $k P$ using Window Method

```
Algorithm: Scalar Multiplication: Sliding Window Method [10]
Input: A point \(P\), an integer \(k=\sum_{i=0}^{d-1} b_{i} 2^{i}, k_{i} \in\{0,1\}\)
Output \(Q=k P\)
\(P_{1} \leftarrow P, P_{2} \leftarrow 2 P\)
For \(\mathrm{i}=1\) to \(\left(2^{r-1}-1\right)\)
    \(P_{2 i+1} \leftarrow P_{2 i-1}+P_{2}\) (pre calculate, odd multiplies of \(P\) )
\(j \leftarrow n-1 Q \leftarrow \mathcal{O}\)
For \(i=d-1\) to 0 by -1
    If \(k_{j} \neq 0\) then
        Let \(t\) be the least integer such that \(j-t+1 \leq r\) and \(k_{t}=1\)
        \(h_{j} \leftarrow\left(k_{j}, k_{j-1}, \ldots, k_{t}\right)_{2}\)
        \(Q \leftarrow\left(2^{(j-t+1)}\right) Q+P_{h_{j}}\)
        \(j \leftarrow t-1\)
        Else \(Q \leftarrow 2 Q, j \leftarrow j-1\)
    EndFor
    Return \(Q\)
```


## Consider representations

$$
\begin{equation*}
n=\sum_{i=0}^{n-1} c_{i} 2^{i} \quad \text { where } \quad c_{i} \in\{-1,0,1\} \quad \text { for all } i \tag{3.6}
\end{equation*}
$$

Let the weight of a representation be the number of nonzero $c_{i}$, and let $w(x)$ be the minimum weight of any such representation of x . A non-adjacent form $N A F$ is a representation with $c_{i} c_{i+1}=0$ for all $i \geq 0$.

Theorem: Every integer $x$ has exactly one NAF. The number of nonzero in the NAF is $w(x)$ The advantage of using the NAF is that, in general it has fewer nonzero than the binary representation, reducing the number of multiplications. The expected number of nonzero in a length $n \quad N A F$ is $n / 3 . N A F(k)$ can be efficiently computed using the following
in table 3.13. Table 3.14 shows the algorithm for scalar multiplication using Binary $N A F$ method.

Table 3.13: Converting a number to $N A F$

```
Algorithm: Computing the NAF of a positive [10] integer
    Input: A positive integer \(k\)
    Output \(N A F(k)\)
    \(i \leftarrow 0\)
    While \(\mathrm{k}>=1\)
        If \(k\) is odd then: \(\quad k_{i} \leftarrow 2-\left(\begin{array}{ll}k & \bmod \quad 4\end{array}\right), k \leftarrow k-k_{i}\)
        Else \(k \leftarrow 0\)
        \(k \leftarrow k / 2, i=i+1\)
    EndWhile
    Return \(\left(k_{i-1}, k_{i-2}, \ldots, k_{1}, k_{0}\right)\)
```

The $m$-ary method may of course also be generalized to allow negative digits. However, the savings quickly go down, since the average number of nonzero in an $n$-digit generalized $N A F$ is $n(m-1) /(m+1)$, which is not much better than the $n(m-1) /(m)$ in the base- $m$ representation for large $m$. Using Binary $N A F$ the algorithm in table 3.14 will compute $k P$.

The cost of the algorithm is $n$ doubles and $n / 3$ additions. For a total of $4 n / 3$ elliptic operation. This is about one-eighth faster than the binary method, which uses the ordinary binary expansion in place of the $N A F$ and therefore requires an average of $n / 2$ elliptic additions rather than $n / 3$.

## Width-w NAF Method [10]

The so called width- $w$ NAF method is the special case of signed modified $m$-ary method, or NAF representation of modified $m$-ary method, where $m=2^{w}$. A width-w NAF of an

Table 3.14: $k P$ using $N A F$ representation for $k$

```
Algorithm: Scalar Multiplication: NAF Binary Method [10]
Input: A point \(P\), an integer \(k=\sum_{i=0}^{n-1} c_{i} 2^{i}, c_{i}=-1,0,1\)
Output \(Q=k P\)
\(Q \leftarrow \mathcal{O}\)
For \(\mathrm{i}=\mathrm{n}-1\) to 0 by -1
        \(Q \leftarrow 2 \mathrm{Q}\)
        if \(b_{i}=1\) then \(Q \leftarrow Q+P\)
        if \(b_{i}=-1\) then \(Q \leftarrow Q-P\)
EndFor
Return \(Q\)
```

integer $k$ is an expression

$$
k=\sum_{i=0}^{d-1} k_{i} m^{i}, \quad k_{i} \in\left\{-2^{w-1}+1, \ldots, 0,1,3, \ldots, 2^{w}-1\right\}
$$

In other words each non-zero coefficient $k_{i}$ is odd, $\left|k_{j}\right|<2^{w-1}$, and at most one of any $w$ consecutive coefficients is nonzero. Every positive integer has a unique width- $w N A F$, denoted $N A F_{w}(k)$. Note that $N A F_{2}(k)=N A F(k) . N A F_{w}(k)$ can be efficiently computed using NAF algorithm in table 3.13 modified as follows: in the first statement of the While loop replace $k_{i} \leftarrow 2-\left(\begin{array}{lll}k & \bmod & 4\end{array}\right)$ by $k_{i} \leftarrow 2-\left(\begin{array}{ll}k & \bmod \quad 2^{w}\end{array}\right)$, where $k \bmod 2^{w}$ denotes the integer $u$ satisfying $u=k\left(\bmod 2^{w}\right)$ and $-2^{w-1} \leq u<2^{w-1}$.

It is known that the length of $N A F_{w}(k)$ is at most one bit longer than the binary representation of $k$. Also, the average density of non-zero coefficients among all width- $w$ $N A F$ s of length $n$ is approximately $n /(w+1)$ [11]. It follows that the expected running time of scalar multiplication using Width-w is approximately $E C D B L+\left(2^{w-2} E C A D D\right)$ for precalculation and $(w+1) E C A D D+n \cdot E C D B L)$ for the scalar multiplication itself[9]. Note that the number of $E C D B L$ is not changed. When using projective coordinates, the running time in the case $n=163$ is minimized when $w=4$. For the cases $n=23 \overline{3}$ and
$n=283$, the minimum is attained when $w=5$; however, the running times are only slightly greater when $w=4$.

### 3.5.2 Scalar Multiplication Summary

Table 3.15 summarizes number of point addition and point doubling in each of the discussed scalar multiplication methods. As it is clear form the table, recording methods decrease number of additions, but number of point doubling remains almost the same. Although window methods are faster but they need extra memory to save $2 P, 3 P, \ldots,(w-1) P$.

Table 3.15: Number of Point operation in different scalar multiplication Method

| Method | $\# P+Q$ (Average) | $\# 2 P$ |
| :--- | :--- | :---: |
| Binary (double-add) | $n / 2$ | $n$ |
| $m$-ary, $m=2^{r}$ | $n / r+\left(2^{r}-1\right)$ | $n-r$ |
| modified $m$-ary, $m=2^{r}$ | $n / r+\left(2^{r-1}-1\right)$ | $n-r$ |
| Binary NAF (double-add, sub) | $n / 3$ | $n$ |
| width-w $N A F$ Method | $n /(r+1)+2^{r-2}$ | $\approx n$ |
| $\tau$-adic $N A F$ (Koblitz curves only) | $n / 3$ | 0 |

### 3.6 Special Methods for Scalar Multiplication

### 3.6.1 Anomalous Binary Curves (Koblitz Curves)

Two extremely convenient families of curves are the anomalous binary curves (or ABC's). These are the curves $E_{0}$ and $E_{1}$ defined over $\mathbb{F}_{2}$ by

$$
E_{a}: y^{2}+x y=x^{3}+a x^{2}+1, \quad a \in\{0,1\}
$$

Using Koblitz curves speeds up the scalar multiplication calculation as indicated in table 3.15. However, there are concerns about the security of ECC using Koblitz curves. A complete discussion on Koblitz curves can be found in [2].

### 3.6.2 Point Halving

In [13], Knudsen introduces a new method for scalar multiplication on a non-supersingular elliptic curve over $G F\left(2^{m}\right)$. The idea is to replace all point doubling with a faster operation, called point halving. Moreover, Knudsen shows that the halving algorithm is superior to previous algorithms when it is implemented using affine coordinates and normal basis. However, the halving algorithm has a storage limitation if a polynomial basis is used, where the required storage is in the order of magnitude $O\left(n^{2}\right)$ bits. The halving algorithm and the Montgomery method cannot take advantage of Koblitz curves properties.

### 3.7 Montgomery Scalar Multiplication Algorithm

A different approach for computing $k P$ was introduced by Montgomery [17] in 1987. This approach is based on the binary method and the observation that the $x$-coordinates of the sum of two points whose difference is known can be computed in terms of $x$-coordinates of the involved points. This method uses the following variant of binary method.

Table 3.16: Montgomery Scalar Multiplication Algorithm

```
Algorithm: Montgomery Scalar Multiplication, in Projective Coordinate
Input: A point \(P=(x, y) \in E, \quad\) an integer \(k>0, \quad k=\sum_{i=0}^{n-1} b_{i} 2^{i}, \quad b_{i} \in\{0,1\}\)
Output: \(Q=k P\)
    \(P_{1} \leftarrow P, \quad P_{2} \leftarrow 2 P\)
For \(i=n-2\) to 0
    if \(b_{i}=1\) then
        \(P_{1} \leftarrow P_{1}+P_{2}, \quad P_{2} \leftarrow 2 P_{2}\)
    else
        \(P_{2} \leftarrow P_{1}+P_{2}, \quad P_{1} \leftarrow 2 P_{1}\)
    EndFor
    \(Q \leftarrow P_{1}\)
    Return \(Q\)
```

Table 3.17: Montgomery Scalar Multiplication Algorithm in Projective Coordinate

```
Algorithm: Montgomery Scalar Multiplication, in Projective Coordinate
Input: A point \(P=(x, y) \in E\), an integer \(k=\sum_{i=0}^{n-1} b_{i} 2^{i}, b_{i}=0,1\)
Output: \(Q=k P\)
    \(X 1 \leftarrow x, Z 1 \leftarrow 1, X_{2} \leftarrow x^{4}+b, Z_{2} \leftarrow x^{2}\)
    If ( \(k=0\) or \(x=0\) )
        \(R \leftarrow \mathcal{O}\)
    Stop
    For \(i=n-2\) to 0
        if \(k_{i}=1\) then
        \(\operatorname{Madd}(X 1, Z 1, X 2, Z 2), M d o u b l e(X 2, Z 2)\)
    else
        Madd ( \(X 2, Z 2, X 1, Z 1\) ) , Mdouble( \(X 1, Z 1\) )
EndFor
\(Q=\operatorname{Mxy}(X 1, Z 1, X 2, Z 2)\)
Return \(Q\)
```

This method maintains the invariant relationship $P_{2}-P_{1}=P$, and performs an addition and a doubling in each iteration. In [61] this algorithm is converted to projective space and after simplification the following algorithm is derived.

### 3.7.1 Calculation

## Doubling algorithm

Input: the finite field $G F\left(2^{m}\right)$; the field elements a and $c=b^{2^{m-1}}\left(c^{2}=b\right)$ defining a curve $E$ over $G F\left(2^{m}\right)$, the $x$-coordinate $X / Z$ for a point $P$. Output: the $x$-coordinate $X / Z$ for the point $2 P$.

$$
\begin{equation*}
x(2 P)=X^{4}+b \times Z^{4} \tag{3.7}
\end{equation*}
$$

Table 3.18: Steps in Point Doubling, Mdouble()

| 1 | $T_{1}=c$ |
| :--- | :--- |
| 2 | $X=X^{2}$ |
| 3 | $Z=Z^{2}$ |
| 4 | $T_{1}=Z \times T_{1}$ |
| 5 | $Z=Z \times X$ |
| 6 | $T_{1}=T_{1}^{2}$ |
| 7 | $X=X^{2}$ |
| 8 | $X=X+T_{1}$ |

$$
\begin{equation*}
z(2 P)=X^{2} \times Z^{2} \tag{3.8}
\end{equation*}
$$

This algorithm requires one general field multiplication, one field multiplication by the constant $c$, four field squaring and one temporary variable ( Table 3.18).

## Addition algorithm

Input: the finite field $G F\left(2^{m}\right)$; the field elements $a$ and $b$ defining a curve E over $G F\left(2^{m}\right)$; the x -coordinate of the point $P$; the $x$-coordinates $X 1 / Z 1$ and $X 2 / Z 2$ for the points $P 1$ and $P 2$ on $E$. Output: The $x$-coordinate $X 1 / Z 1$ for the point $P 1+P 2$.

$$
\begin{align*}
Z_{3} & =\left(x_{1} \times Z_{2}+X_{2} \times Z_{1}\right)^{2}  \tag{3.9}\\
X_{3} & =x \times Z_{3}+\left(X_{1} \times Z_{2}\right) \times\left(X_{2} \times Z_{1}\right) \tag{3.10}
\end{align*}
$$

This algorithm requires three general field multiplications, one field multiplication by x , one field squaring and two temporary variables(Table 3.19).

## Affine coordinates algorithm $\mathbf{M x y}$ ()

Input: the finite field $G F\left(2^{m}\right)$; the affine coordinates of the point $P=(x, y)$; the x coordinates $X 1 / Z 1$ and $X 2 / Z 2$ for the points $P 1$ and $P 2$. Output: The affine coordinates

Table 3.19: Steps in Points Addition, Madd()

| 1 | $T_{1}=x$ |
| :--- | :--- |
| 2 | $X_{1}=X_{1} \times Z_{2}$ |
| 3 | $Z_{1}=Z_{1} \times X_{2}$ |
| 4 | $T_{2}=X_{1} \times Z_{1}$ |
| 5 | $Z_{1}=Z_{1}+X_{1}$ |
| 6 | $Z_{1}=Z_{1}^{2}$ |
| 7 | $X_{1}=Z_{1} \times T_{1}$ |

$(x k, y k)=(X 2, Z 2)$ for the point $P 1$.

$$
\begin{align*}
& x_{k}=\frac{X_{1}}{Z_{1}}  \tag{3.11}\\
& y_{k}=\left(x+x_{k}\right)\left[\left(y+x^{2}\right)+\left(\frac{X_{2}}{Z_{2}}+x\right)\left(\frac{X_{1}}{Z_{1}}+x\right)\right] \times \frac{1}{x}+y \tag{3.12}
\end{align*}
$$

This algorithm requires one field inversion, ten general field multiplications, one field squaring and four temporary variables(Table 3.20).

### 3.7.2 Performance

The performance of Montgomery scalar multiplication algorithm is shown in Table 3.21. Note that in Montgomery algorithm one point addition and one point multiplication is needed for each bit in the scalar, while, whereas using NAF, on an average $n / 3$ number of point addition are needed for scalar multiplication. Even if the number of operation is divided by 3 the number of operation in Montgomery algorithm is less that the other methods.

### 3.7.3 Side channel Attack

Side channel attack (SCA) on cryptosystems uses leakage of a certain side-channel information such as timing, electromagnetic radiation and power consumption to obtain information
about the private key.In elliptic curve cryptosystems scalar multiplication algorithms are target for SCA. In scalar multiplication $k P$ is calculated were $k$ is a secret key and $P$ is usually not a secret and even can be chosen by the attacker. If the sequence of executed instructions in the algorithm is directly related to the bits of the private key a successful power-analysis attack can be carried out on the cryptosystem. As in can be seen in table 3.9 it is possible to distinguish a point addition by measuring the power of the device which is executing the algorithm. This makes the insecure against SCA. The algorithm presented in 3.16 is secure against power attack since the operation performed in each step of the scalar multiplication algorithm is not dependent to the bits of $k$.

The execution time of the algorithm in table 3.9 depends on the number of bits in the binary representation of $k$. This makes the algorithm vulnerable to time analysis attack.

Table 3.20: Steps in Converting the Coordinates Mxy() (Table 3.17)

| 1 | if $Z_{1}=0$ then output $(0,0)$ and stop |
| :--- | :--- |
| 2 | if $Z_{2}=0$ then output $(x, x+y)$ and stop |
| 3 | $T_{1}=x$ |
| 4 | $T_{2}=y$ |
| 5 | $T_{3}=Z_{1} \times Z_{2}$ |
| 6 | $Z_{1}=Z_{1} \times T_{1}$ |
| 7 | $Z_{1}=Z_{1}+X_{1}$ |
| 8 | $Z_{2}=Z_{2} \times T_{1}$ |
| 9 | $X_{1}=Z_{2} \times X_{1}$ |
| 10 | $Z_{2}=Z_{2}+X_{2}$ |
| 11 | $Z_{2}=Z_{2} \times Z_{1}$ |
| 12 | $T_{4}=T_{1}^{2}$ |
| 13 | $T_{4}=T_{4}+T_{2}$ |
| 14 | $T_{4}=T_{4} \times T_{3}$ |
| 15 | $T_{4}=T_{4}+Z_{2}$ |
| 16 | $T_{3}=T_{3} \times T_{1}$ |
| 17 | $T_{3}=$ inverse $\left(T_{3}\right)$ |
| 18 | $T_{4}=T_{3} \times T_{4}$ |
| 19 | $X_{2}=X_{1} \times T_{3}$ |
| 20 | $Z_{2}=X_{2}+T_{1}$ |
| 21 | $Z_{2}=Z_{2} \times T_{4}$ |
| 22 | $Z_{2}=Z_{2}+T_{2}$ |
|  |  |

Table 3.21: Cost of scalar multiplication for projective version of Montgomery algorithm

| Representation | Point Addition | Point Doubling |
| :--- | :--- | :--- |
| Montgomery, Projective version | $4 \mathrm{M}+1 \mathrm{~S}+2 \mathrm{~A}$ | $2 \mathrm{M}+4 \mathrm{~S}+1 \mathrm{~A}$ |

## Chapter 4

## Fast Parallel Elliptic Curve Scalar

## Multiplication

### 4.1 Introduction

This chapter presents a fast parallel elliptic curve scalar multiplication algorithm based on a dual-processor hardware system. The method has an average computation time of $\frac{n}{3}$ ECADD on an $n$-bit scalar. The improvement is $n$ ECDBL compared to conventional methods. When a proper coordinate system and binary representation for the scalar $k$ is used, the average execution time will be as low as $n$ ECDBL, which proves this method to be about two times faster than conventional single processor multipliers using the same coordinate system.

### 4.2 Previous Work

Scalar multiplication is the basic operation for Elliptic Curve public key cryptography. The operation is defined as

$$
\begin{equation*}
Q=k P=P+P+\ldots+P \tag{4.1}
\end{equation*}
$$

where $P$ and $Q$ are points on elliptic curve $E$ defined over $G F\left(2^{n}\right)$ and $k$ is a scalar in
the range of $1<k<\operatorname{Ord}(E)$.

### 4.2.1 Conventional Scalar Multiplication Methods [10]

Double-and-add is probably the simplest (and oldest) method of scalar multiplication. The basic idea is to compute $k P$ using the binary expansion of $k$. Let

$$
\begin{equation*}
k=\sum_{i=0}^{n-1} b_{i} 2^{i} \tag{4.2}
\end{equation*}
$$

then algorithm 4.1 computes $k P$ using Double-and-add method. The bit examination can be done from the most significant bit (MSB first method) or the least significant bit (LSB first method).

Table 4.1: Scalar Multiplication using standard binary method (LSB first)

```
Algorithm: Point Multiplication, Binary Method
Input: A point \(P\), an integer \(k=\sum_{i=0}^{n-1} b_{i} 2^{i}, b_{i} \in 0,1\)
Output: \(Q=k P\)
\(Q \leftarrow P\)
\(R \leftarrow \mathcal{O}\) For \(i=0\) to \(n-1\) by 1
    If \(b_{i}=1\) Then
            \(R \leftarrow R+Q\)
        \(Q \leftarrow 2 \mathrm{Q}\)
    EndFor
    Return \(R\)
```

The execution time for the algorithm is proportional to $n$ Elliptic Curve point doubling operation (ECDBL), and on average $\frac{n}{2}$ Elliptic Curve point addition operation (ECADD). Therefore the total average execution time will be $n E C D B L+\frac{n}{2} E C A D D$. If redundant representation (ie., binary NAF) is used to represent the scalar $k$, the average number of one or minus one in the representation of $k$ will be reduced to $\frac{1}{3}$. In this case the average execution
time will be proportional to $n E C D B L+\frac{n}{3}$ ECADD [10] [7]. Table 4.2 summarizes the execution time of different conventional scalar multiplication methods.

Table 4.2: Execution time of $k P$ using different conventional methods

| Method | Average Execution Time |
| :--- | :--- |
| Binary [10] | $(n-1)$ ECDBL $+\frac{n-1}{2}$ ECADD |
| Binary NAF [10] | $(n-1)$ ECDBL $+\frac{n-1}{3}$ ECADD |
| Window [10] | $n E C D B L+\frac{n}{w+1}$ ECADD |

It can be seen from the algorithm that in least significant bit-first (LSB first) method ECDBL and ECADD operations are independent, and they can be performed in parallel.

### 4.2.2 Speeding up Scalar Multiplication

Many methods have been proposed in the literature to speed up scalar multiplication. These methods are classified in table 3.8. Constraints in scalar multiplications are speed, memory usage and security against side channel attack (SCA). Methods with precomputations, like Window method and Comb method are faster but they need extra memory to store precalculated values. Addition Chain methods and Comb methods are very effective when $k$ and $P$ are known in advance, respectively. In comparison Window methods are efficient for most cases.

### 4.2.3 Parallel Architectures

Parallel architectures for scalar multiplication can be done in the scalar-multiplication algorithm level or in the calculation of ECDBL or ECADD itself. In [19] Moller proposes a parallel algorithm for scalar multiplication which is fast and secure against side channel attack. This paper proposes a method which uses two processors and a circular buffer, which acts as a communication channel between the two processors to reduce the average time of the scalar multiplication to $n$ ECDBL. This way the total time for ECADD is saved.and
the system can be as fast as a system using $\tau$ adic $N A F$ for Koblitz curves.

### 4.3 Improved Parallel Scalar Multiplication

The proposed method for calculating $k P$ uses two processors, one for execution of ECDBL and one for ECADD. The two processors may operate asynchronously. The ECDBL processor calculates $2^{i} P$ and stores them to a circular buffer. The ECADD processor reads from the circular and performs the addition. Figures 4.1 and 4.3 depicts the operation flowchart of the ECDBL processor and ECADD processor respectively.

Figure 4.1: Point doubling Flowchart, Runs on ECDBL processor


The two processors share the circular buffer and a counter. The buffer can be a standard circular buffer and should provide empty and full flags.

Figure 4.2: Point Doubling Flowchart, Runs on ECADD processor


The ECDBL processor fills up the buffer with $2^{i} P$, and ECDBL processor takes the points from the buffer. If the data in the buffer are not consumed by the ECADD processor the buffer becomes full and the ECDBL processor needs to wait until there is free room in the buffer. On the other hand if there is not enough ones in the binary representation of $k$, the buffer becomes empty after a while and ECADD processor needs to wait until data is put into the buffer by ECADD processor. In the hardware implementation the buffer should be implemented using dual port RAM/register so that both processors can have simultaneous access to it. In software implementation locking mechanism is needed for accessing the counter and the buffer, since they are accessed from the two processes.

Table 4.3: Point Doubling Algorithm, Runs on ECADD processor

```
Algorithm: Point Doubling
    Input: A point \(P\), an integer \(k=\sum_{i=0}^{n-1} b_{i} 2^{i}, b_{i} \in 0,1\)
    Output: \(2^{i} P\), Stored in the buffer
    Global: i, buffer
    \(Q \leftarrow P\)
    \(i:=0\)
While i<n
        If \(b_{i}=1\) then
            If buffer_full()
                    Continue
            put_buffer ( \(Q\) )
        EndIf
        \(Q \leftarrow 2 Q\)
        i := i +1
    EndWhile
```


### 4.3.1 Performance of the Parallel Algorithm

The performance of the algorithm depends on the ratio of ECADD/ECDBL and the probability of occurrence of nonzero $(1-P(0))$ in the binary representation of the multiplier $k$. The ECADD/ECDBL ratio depends on the coordinate system in which the elliptic curve calculation is performed. And $P$ (nonzero) depends on the binary representation form of $k$. For example in NAF representation $P($ nonzero $)=\frac{1}{3}$. Table 4.5 summarizes the cost of elliptic curve point calculation in different coordinate systems.

Simulation results of the algorithm are summarized in table 4.6. The results show that when NAF representation for $k$ is used, the algorithm keeps the average number of ECADD operations at about $n / 3$, regardless of $n$ and ECADD/ECDBL ratio. The number of extra ECDBLs that we need in addition to $\frac{n}{3}$ ECADD depends on ADD/DBL ratio.Therfore for

Table 4.4: Point Adding Algorithm, Runs on ECADD processor

```
Algorithm: Point Addition
    Input: \(2^{i} P\), Read from the buffer
    Output: \(R=k P\)
    Global: counter i, buffer
    \(R \leftarrow \mathcal{O}\)
    While i<n Or Not buffer_empty ()
        If Not buffer_empty()
        \(R \leftarrow R+\) get_buffer ()
EndWhile
Return \(R\)
```

equal ECADD the faster the ECDBL, the faster the multiplication will be. It can be seen from the results that if ECADD/ECDBL $>P(1)$ then essentially the number of ECDBL remains constant, which means ECDBL is being executed almost always in the background. Running the simulation for $n=160$ leads to table 4.7 which predicts the execution of the algorithm using different coordinate system for elliptic curve and NAF for representation of $k$. It can bee seen from table 4.7 that the algorithm is 2 times faster than single processor scalar multiplication method.

### 4.3.2 Security Against Side Channel Attack (SCA)

The execution time of the algorithm depends on the scalar integer $k$. For example if $k=$ $100 \ldots 1001$ the execution time will be close to $n$ ECDBL. In case of $k=10101 \ldots 101010$ the execution time will be $\frac{n}{2}$ ECADD. Therefore the algorithm cannot be immune to SCA. But, since the execution time depends on the total number of ones and on the distribution of ones, many values of $k$ will have the same execution time. Therefore the algorithm offers better security against SCA when compared to the standard double-and-add methods.

Table 4.5: Execution time of ECADD and ECDBL in different coordinate systems

| Coordinate | Transform | ECADD/ECDBL | Field |  |
| :--- | :--- | :--- | :--- | :---: |
| Affine | $(X, Y)$ | $I+2 M / I+2 M$ | $=1$ | $\mathbb{F}_{p}$ |
| Standard projective | $(X / Z, Y / Z)$ | $12 M / 7 M$ | $=1.7$ | $\mathbb{F}_{p}$ |
| Jacobian projective | $\left(X / Z^{2}, Y / Z^{3}\right)$ | $12 M / 4 M$ | $=3$ | $\mathbb{F}_{p}$ |
| Jacobian projective | $\left(X / Z^{2}, Y / Z^{3}\right)$ | $14 M / 5 M$ | $=2.8$ | $\mathbb{F}_{2^{m}}$ |
| Chudnovsky projective | $\left(X, Y, Z, Z^{2}, Z^{3}\right)$ | $11 M / 5 M$ | $=2.2$ | $\mathbb{F}_{p}$ |
| Lopez-Dahab projective | $\left(X / Z, Y / Z^{2}\right)$ | $14 M / 4 M$ | $=3.5$ | $\mathbb{F}_{2^{m}}$ |

### 4.4 Conclusion

A parallel method for scalar multiplication is introduced which uses two processors to perform the $k P$ operation. Using proper implementation this method is $200 \%$ faster than single processor methods. The method can be implemented both in hardware and software.
Table 4.6: Simulation result of the parallel algorithm

| \#bits | ADD/DBL | \#ECADD | \#ECDBL | \#Op | \#Op Standard <br> DBL-ADD Method | Speed up | Ave. \#Data in buff | Max \#Data in buff |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150 | 1 | 50 | 100 | 150 | 200 | 1.3 | 0 | 1 |
| 200 | 1 | 67 | 133 | 200 | 266 | 1.3 | 0 | 1 |
| 250 | 1 | 83 | 167 | 250 | 333 | 1.3 | 0 | 1 |
| 300 | 1 | 100 | 200 | 300 | 400 | 1.3 | 0 | 1 |
| 150 | 2 | 50 | 50 | 150 | 250 | 1.7 | 0 | 1 |
| 200 | 2 | 67 | 66 | 200 | 333 | 1.7 | 0 | 1 |
| 250 | 2 | 83 | 83 | 250 | 416 | 1.7 | 0 | 1 |
| 300 | 2 | 100 | 100 | 300 | 500 | 1.7 | 0 | 1 |
| 150 | 3 | 50 | 10 | 160 | 300 | 1.9 | 2 | 4 |
| 200 | 3 | 67 | 13 | 213 | 400 | 1.9 | 2 | 4 |
| 250 | 3 | 83 | 16 | 266 | 500 | 1.9 | 2 | 4 |
| 300 | 3 | 100 | 19 | 320 | 600 | 1.9 | 2 | 4 |
| 150 | 4 | 50 | 41 | 242 | 350 | 1.5 | 3 | 4 |
| 200 | 4 | 67 | 58 | 325 | 466 | 1.4 | 3 | 4 |
| 250 | 4 | 83 | 75 | 409 | 583 | 1.4 | 3 | 4 |
| 300 | 4 | 100 | 92 | 492 | 700 | 1.4 | 3 | 4 |
| 150 | 5 | 50 | 87 | 337 | 400 | 1.2 | 3 | 4 |
| 200 | 5 | 67 | 120 | 454 | 533 | 1.2 | 3 | 4 |
| 250 | 5 | 83 | 153 | 571 | 666 | 1.2 | 3 | 4 |
| 300 | 5 | 100 | 187 | 688 | 800 | 1.2 | 3 | 4 |

Table 4.7: Simulation result for 160 -bit scalar, for different coordinate system.

| Coordinate | \#Proc. | ECADD/ECDBL | \#ECADD | \#ECDBL | \#Op |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Affine | 2 | 1 | 53 | 106 | 1440 M |
| Chudnovsky projective | 2 | $2.2 \approx 2$ | 53 | 54 | 800 M |
| Jacobian projective | 2 | 3 | 53 | 8 | 672 M |
| Lopez-Dahab projective | 2 | $3.5 \approx 4$ | 53 | 2 | 860 M |
| Jacobian projective | 1 (Table 3.14) |  | 53 | 160 | 1276 M |

## Chapter 5

## Architecture for a Fast Elliptic Curve Processor (ECP)

### 5.1 Introduction

A high performance elliptic curve processor is presented. The processor uses parallelism in instruction level to achieve high speed execution of scalar multiplication algorithm. The architecture relies on compile-time detection rather than run-time detection of parallelism which results in less hardware. Implemented on Xilinx Virtex 2000 FPGA, the proposed processor operates at 66 MHz in $G F\left(2^{167}\right)$ and performs scalar multiplication in $100 \mu S e c$, which is considerably faster than recent implementations. The $0.18 \mu \mathrm{~m}$ ate level simulation, shows that the processor can at 300 MHz , performing $k P$ in $22 \mu \mathrm{Sec}$.

Efficient utilization of hardware resources is a key element in a fast processor design. Most fast elliptic curve processors (ECP) use a bit-parallel word-serial (BPWS) finite field multiplier, either in direct form [57] [53] or in Karatsuba form [46] [49] [53]. In all the processors multipliers occupy the bulk of hardware. The proposed architecture maximizes the utilization of the multiplier.

In the field of elliptic curve cryptography, when calculating the speed of a scalar multi-
plication algorithm, finite field multiplication is considered to be the most time consuming operation. Finite field addition (and squaring in ONB designs) is considered to be free[10] [21] (pp 127-130). It goes to such an extent that in the analysis of scalar multiplication algorithms, the cost of addition is ignored. In some software implementation reports, the cost of addition and squaring is ignored [9] as well. This can be true in software implementations or in hardware designs using serial finite field multipliers (see section 5.2). Considering some high speed hardware designs, we conclude that, the execution time of addition and squaring becomes comparable to execution time of multiplication(table 5.1).

Table 5.1: Typical number of execution cycle of basic FF operations

| Design | Multiplication | Addition | Squaring |
| :--- | :--- | :--- | :--- |
| $[46]$ | 9 | $\geq 2$ | 2 (est.) |
| $[57]$ | 7 | 3 | 3 |
| $[53]$ | $12 \leq M \geq 7$ | 2 | 2 |
| $[62]$ | 7 | 3 | 2 |
| presented | 8 | 3 | 2 |

Deducing from the above, overlapped execution hardware can be used to increase performance. This approach, which is closer to complex instruction set computer (CISC) design, is successfully employed in [53] to pair multiplication with addition, and multiplication with squaring to increase the performance. However this approach increases the size and complexity of hardware. Using parallelism in instruction level, the compiler analyzes the program and detects operations to be executed in parallel. Such operations are packed into one large instruction. Therefore no hardware in needed for run-time detéction of parallelism. The reduced instruction set computer (RISC) type instruction set helps to prepare a more efficient instruction pack(fig. 5.10). The presented processor implements the following features to achieve high execution speed.

- Parallelism in instruction level
- RISC type instruction set
- One cycle instruction execution
- Pipeline finite field multiplier


### 5.2 Previous Work

The hardware implementation of ECC has come a long way from a modest beginning of ASIC implementation on a 2 micron technology [32] running at 40 MHz to the 0.13 micron technology running at 500 MHz [52]. The FPGA implementation started off on Xilinx XC4000 with 2304 slices and 13000 gates [33] and presently is on Xilinx XC2V6000 having $6,000,000$ gates running at 100 MHz . [46]

Advances in ASIC and FPGA technoiogies have led to new architectures and faster designs. Most changes are in the design of the finite field multiplier and in the architecture itself. New designs take advantage of this to introduce more parallelism in finite field calculation.

Elliptic curve cryptosystems can be implemented on $G F(p)$ and $G F\left(2^{m}\right)$. Usually $G F\left(2^{m}\right)$ lead to a smaller and faster design. However, due to pending patents there are some restrictions on $G F\left(2^{m}\right)$ implementations. This thesis mainly discusses $G F\left(2^{m}\right)$ implementations. Based on the design constraints ECPs are implemented using ASIC or FPGA. Elliptic curve hardware implementations can be categorized as follows:

1. Implementations utilizing a general purpose CPU and a finite field accelerator: The early hardware implementations fall into this category [32] and recently [41]. However, because of the evolution of system on chip ( SoC ) these implementations are becoming attractive [49].
2. Elliptic curve processors (ECP) based on serial finite field multiplier on $G F\left(2^{m}\right)$ : These processors are compact but slower than other implementations [45][34].
3. ECPs based on bit-parallel word-serial (BPWS) finite field multiplier on $G F\left(2^{m}\right)$ : This architecture results in a fast design and relatively larger hardware. With the
dramatic increase of hardware accommodation, most recent fast designs fall in to this category [46] [57] [53].
4. Processors on $G F(p)$ : These processor use modular operations for finite field arithmetic, therefore they utilize more hardware resources and are relatively slower than $G F\left(2^{m}\right)$ implementations [29].
5. Dual field, general purpose crypto-processors: These processors are also available commercially. They work in $G F(p)$ as well as $G F\left(2^{m}\right)$. Since the design in not optimized for $G F\left(2^{m}\right)$ they are usually slower than the third category [38] [52].

Table $5.2^{1}$ summarizes most published designs. In table 5.3 speed of these implementations are listed. Comparing these designs is not easy, since they have been optimized for different purposes, having different architectures and are implemented on different platforms. Since this work is optimized towards operating speed, in the following sections we compare our results to the faster designs. Wherever possible, we estimate the speed of the design we are comparing to, as if it would be implemented on a hardware similar to ours.

### 5.3 Elliptic Curve Calculation, Arithmetic Hierarchy

The hierarchy of arithmetics for EC point multiplication is depicted in figure 5.1. The scalar multiplication ( $k P$ ) algorithm is performed by repeated point addition and doubling operations. The point operations in turn are composed of basic operations in the underlying finite field(FF). The proposed processor performs finite field addition and squaring in one

[^2]Table 5.2: List of EC hardware implementations

|  | Platform | Year |  | HW Res. |  | Sc. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [32] | ASIC | 1993 | ONB | 11000 | Gates |  |  |
| [33] | XC4062XL | 1998 | Poly. | 1810 | CLB |  | Only GF $\left(\left(2^{\wedge} 4\right)^{\wedge} 9\right)$ could be placed and routed |
| [34] | XCV300-4 | 2000 | ONB | 1290 | Slice |  | Only 64bits of k are set to one |
| [57] | XCV400E | 2000 | Poly | 3002, 1769 | LUT, FF |  | $\mathrm{D}=16$, Montgomery kP |
| [36] | ASIC 0.25 | 2000 | Poly | 165000 | Gates | $\sqrt{ }$ | Simulation result |
| [37] | XC4085XLA | 2001 | M.O. | 1450 | CLB |  | Rapid Prototyping, Core Generator |
| [38] | ASIC 0.25 | 2001 | Poly | 880000 | Gates | $\checkmark$ | Dual Field, Power consideration |
| [39] | XCV1000 | 2002 | M.O. | 48300 | LUT |  |  |
| [41] | XCV2000E | 2002 | Poly | 2790 | Slice (est.) |  | Koblitz Curve |
| [42] | ASIC 0.35 | 2002 | Poly | 14298 | Gates |  | Compact |
| [43] | XCV1000-6 | 2002 | ONB | 2614 | Slice |  |  |
| [44] | XC2S200 | 2002 | Poly |  |  | $\sqrt{ }$ | Montgomery kP |
| [45] | ASIC 0.35 | 2002 | ONB | 20000 | Gates |  |  |
| [46] | XC2V6000 | 2003 | Poly | 19440, 16970 | LUT, FF |  | Clock is Predicted, |
| [47] | ASIC 0.35 | 2003 | Poly | 56000 | Gates | $\sqrt{ }$ | Montgomery affine, EUA for inverse |
| [48] | ASIC 0.35 | 2003 | ONB |  |  |  | ALU, Asynchronous |
| [52] | Asic 0.13 | 2003 | Poly | 117500 | Gates | $\sqrt{ }$ | Dual Field, 500 MHz (max) for this particular field |
| [54] | XC2V2000E-7 | 2003 | Poly | 20068, 6321 | LUT, FF | $\sqrt{ }$ | Montgomery kP, 0.302 mSec for unnamed curves |
| [62] | XC2V2000 | 2003 | Poly | 10017, 1930 | LUT, FF |  |  |
| Pr. | XC2V2000 | 2004 | Poly | 13900, 3200 | LUT, FF |  | Montgomery kP |

5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.3: Speed of $k p$ of different ECPs, at the specified finite field, and maximum frequency

|  | Platform |  | $\mathbf{G F}\left(\mathbf{2}^{\mathbf{m}}\right)$ | Clk (Mhz) | $\mathbf{k P}(\mathbf{m s})$ | Scalable |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $[32]$ | ASIC | ONB | 155 | 40 | 27.000 est. |  |
| $[33]$ | XC4062XL | Poly. | $8 \times 21$ | 16 | 4.500 est. |  |
| $[34]$ | XCV300-4 | ONB | 113 | 45 | 3.700 |  |
| $[57]$ | XCV400E | Poly | 167 | 76.7 | 0.210 |  |
| $[36]$ | ASIC 0.25 | Poly | 163 | 66 | 1.100 | $\sqrt{ }$ |
|  | EPF10K250 |  | 163 | 3 | 80.000 |  |
| $[37]$ | XC4085XLA | M.O. | 155 | 37 | 1.290 |  |
| $[38]$ | ASIC 0.25 | Poly | 160 bits | 50 | 5.200 est. | $\sqrt{ }$ |
| $[39]$ | XCV1000 | M.O. | 191 | 36 | 0.270 |  |
| $[41]$ | XCV2000E | Poly | 176 | 40 | 6.900 |  |
| $[42]$ | ASIC 0.35 | Poly | 160 | 10 | 20.602 est. |  |
| $[43]$ | XCV1000-6 | ONB | 113 | 31 | 0.810 |  |
| $[44]$ | XC2S200 | Poly | 163 | 55 | 3.770 | $\sqrt{ }$ |
| $[45]$ | ASIC 0.35 | ONB | 209 | 20 | 30.000 est. |  |
| $[46]$ | XC2V6000 | Poly | 233 | 100 | 0.123 est. |  |
| $[47]$ | ASIC 0.35 | Poly | 167 | 100 | 2.300 est. | $\sqrt{ }$ |
| $[48]$ | ASIC 0.35 | ONB | 173 | Asynch. | 1.200 est. |  |
| $[52]$ | Asic 0.13 | Poly | 160 bits | 500 | 0.190 | $\sqrt{ }$ |
| $[54]$ | XC2V2000E-7 | Poly | 163 | 66.4 | 0.143 | $-\sqrt{ }$ |
| $[62]$ | XC2V2000 | Poly | 163 | 66 | 0.233 |  |
| Pr. | XC2V2000 | Poly | 167 | 66 | 0.100 |  |
|  |  |  |  |  |  |  |

Figure 5.1: Arithmetic Hierarchy in Elliptic Curve Calculation

clock cycle (excluding register load and unload time). The finite field multiplication is more costly. The number of clock cycles for its computation depends on size of the finite field. Compared to FF-addition and FF-squaring and FF-Multiplication, the FF inversion is a very expensive operation. It is performed by software using basic finite field operations (Sect. 5.3.2).

### 5.3.1 Finite Field Arithmetic

Elliptic curve calculation over finite fields is based on finite field addition, subtraction, multiplication, squaring and division(Fig. 5.1). Here, we will focus on binary polynomial fields $G F\left(2^{m}\right)$. Using polynomial basis for finite field representation a field element $a \in$ $G F\left(2^{m}\right)$ can be represented as $a=a_{m-1} x^{m-1}+a_{m-1} x^{m-1}+\ldots+a_{1} x^{1}+a_{0} x_{0}$ where $a_{i} \in G F(2)$. Addition of two polynomials $a$ and $b$ is performed by adding coefficient $a_{i}$ and $b_{i}$ in modulo 2 , which is a bitwise XOR operation of $a$ and $b$. For example, adding two polynomials $a=x^{3}+x^{2}+1$ and $b=x^{2}+x^{1}$ can be computed as $(1101+0110)=$ (1101 XOR 0110) $=1011$ or $c=a+b=x^{3}+x^{1}+1$. In $G F\left(2^{m}\right)$ calculation addition and subtraction are the same, since $1+1=0$ mod 2 , i.e. 1 is the inverse of 1 . It is clear that representing elements of $G F\left(2^{m}\right)$ in a digital computer is easy, since it contains only zeroes and ones(Fig. 5.2).

Multiplication of two elements $a, b \in G F\left(2^{m}\right)$ is carried out by multiplying two poly-

Figure 5.2: Representing an element in Galois field $G F\left(2^{m}\right)$


A member of GF(2^7)
nomials using the distributive law and then reducing the resultant polynomial in modulo 2 and then modulo $f(x) . f(x)$ is of degree of $m$ and defines $G F\left(2^{m}\right)$ for a chosen field of degree $m$. For example, given polynomials $a=x^{3}+x+1$ and $b=x^{3}+1$ of $G F(24)$, represented as $a=1011$ and $b=1001, c_{0}=a \times b=x^{6}+x^{4}+x+1$ can be computed as:

```
1011 x 1001
            1001
+ 1001
+ 0000
+ 1001
= 1010011
```

Assuming $f(x)=x^{4}+x^{3}+1$, represented as $f=11001$, the reduction $c=c_{0} \quad \bmod \quad f=$ $x^{2}+1$ can be performed as:

1010011
+11001
$\qquad$
$=0110111$
$+11001$
---...---
$=0000101$

An illustrative way to look at reduction is that f is aligned with the most significant bit of the operand and added until the degree of the result is smaller than $m$. A parallel

Figure 5.3: Parallel Finite Field Multiplier in $G F\left(2^{5}\right)$ [58]

architecture for finite field multiplication is depicted in figure 5.3. An AND gate matrix and an XOR tree performs the multiplication. Squaring can be performed easily using XOR gates, specially if the finite field is defined over a trinomial [58].

### 5.3.2 Finite Field Inverse

The multiplicative inverse of any element $a \in \mathbb{F}_{2^{m}}$ is the element $a^{-1} \in \mathbb{F}_{2^{m}}$ such that $a a^{-1}=1 \bmod f(x)$, where $f(x)$ is the irreducible polynomial of the finite field.

Inversion is the most costly operation in finite field arithmetic. Basically there are two methods for calculating inverse, using Fermat's little theorem and using extended Euclidean algorithm [64].

The Itoh-Tsuji algorithm [59] is the most efficient technique to compute an inverse based

Figure 5.4: Finite Field Squarer in $G F\left(2^{7}\right)$ [58]

on Fermat's little theorem. Fermat theorem in finite field states that,

$$
a^{2^{m}-1}=1 \quad \bmod \quad f(x), \text { therefore } \Rightarrow a^{-1}=a^{2^{m}-2}=\left(a^{2^{m-1}-1}\right)^{2}
$$

Figure 5.5 depicts the basic idea in Itoh-Tsuji inverse algorithm, where $a^{2^{8}-1}$ is calculated in 3 steps ( $\log _{2} 8$ ). In step $n$ one field multiplication and $2^{n-1}$ field squaring is needed.

Figure 5.5: Simplified Inverse Calculation


In general $a^{2^{n}-1}$ can be calculated iteratively using equation 5.1. The complete algorithm for inverse is shown in table 5.4.

$$
a^{2^{n}-1}= \begin{cases}\left(a^{2 \frac{n}{2}}\right)^{2^{n / 2}}\left(a^{2 \frac{n}{2}-1}\right) & n \text { even }  \tag{5.1}\\ a\left(a^{2 \frac{n}{2}-1}\right)^{2} & n \text { odd }\end{cases}
$$

Calculating $a^{-1}$ in $G F\left(2^{m}\right)$ needs $M(m)=\left\lfloor\log _{2}(m-1)\right\rfloor+h(m-1)-1$ multiplication and $m-1$ squaring. where $h(x)$ is hamming weight of $x$ (the number of non-zero bits in the binary representation of $x$ ).

Table 5.4: Itoh-Tsuji Inverse Algorithm

```
Algorithm: Itoh-Tsuji Inverse Algorithm
Input: \(a \in G F\left(2^{n}\right), \quad m=\sum_{i=0}^{n-1} m_{i} 2^{i}, m_{i} \in\{0,1\}\)
Output: \(b=a^{-1}\)
\(b=a^{m_{n-1}}\)
\(e=1\)
For \(\mathrm{i}=\mathrm{n}-2\) to 0
    \(b=b^{2^{e}} \times b\)
    \(e=2 e\)
    if \(m_{i}==1\) then
        \(b=b^{2} \times a\)
        \(e=e+1\)
    EndIf
EndFor
\(b=b^{2}\)
Return \(b\)
```

If the processor is meant to be used on a single finite field so the squaring can be efficiently optimized [58]. For irreducible polynomial $f(x)=x^{m}+x^{t}+1$ the maximum squarer complexity is $(m+t+1) / 2$ and $4 m$ gates for $f(x)=x^{m}+x^{t 1}+x^{t 2}+x^{t 3}+1$. For trinomial the critical path delay is at most two gate delays [58].

Since the Itoh-Tsuji inverse algorithm is based on squaring and multiplication, only a small hardware structure is needed for inverse. In fact, in the presented processor inverse is performed by software. In order to perform efficient squaring, REP SQR A instruction is defined, which performs squaring in one clock cycle. A data path from accumulator to the squarer makes this instruction possible (Fig. 5.6).

The simulation waveforms which shows the squaring is shown in figure 5.13. For scalable processors using Itoh-Tsuji algorithm is not efficient since squaring hardware cannot be

Figure 5.6: ALU Architecture for calculating Inverse Calculation

optimized for a specific field and therefore cannot be done in a single cycle.

## Effect of inverse calculation in performance

For $G F\left(2^{m}\right)$ where $m<256$ the inversion takes approximately $10 M+(m-1) S$. A scalar multiplication using Montgomery method takes $6(m-1) M+5(m-1) S+3(m-1) A$. Implemented on an architecture similar to those in table 5.1 for $G F\left(2^{167}\right)$, inversion time will be about $5 \%$ of scalar multiplication time. It can be concluded that fine tuning on the inversion algorithm will not result in a high boost on the overall performance.

### 5.3.3 Scalar Multiplication Algorithm

Scalar multiplication is the fundamental operation in any elliptic curve cryptosystem. Points on an elliptic curve $E$ over finite field $G F\left(2^{m}\right)$ with a binary operation, called point addition, form an finite additive Abelian group. If $P$ is a point on elliptic curve $E$ and $k$ is a large scalar, computation of the form $Q=k P=\underbrace{P+P+P+\cdots+P}_{k \text { times }}$ is defined as scalar multiplication. The result of scalar multiplication is another point $Q$ on the elliptic curve. The main question in any elliptic curve cryptosystems is: How fast can this operation can be done? Table 5.5 categorizes commonly used methods for fast scalar multiplication [7][10][9]. Selecting a proper method for $k P$ depends on the cryptography protocol being used as well as the implementation platform.

Table 5.5: Classification of scalar multiplication techniques

| Name of Method | Basic Idea |
| :--- | :--- |
| Comb [16] | Precompute tables of $\sum_{i=0}^{n-1} 2^{w i} P$ |
| Addition chains [7] | $k=\sum_{i=0}^{n-1} k_{i}$ |
| Windowing (Fix, Variable) $m$-ary [10] | Precompute tables of $k_{i} P \quad k_{i} \in\{0,1, \ldots, m-1\}$ |
| Scalar recoding [7] | Fewer zero in binary representation of k (NAF) |
| Point Halving [13] [13] | All point doubling replaced with point halving operation |
| Montgomery $k P$ method [61] | The $x$-coordinates of the sum of two points whose <br> difference is known can be computed in terms of <br> $x$-coordinates of the involved points. |
| Koblitz curves [2] | Using anomalous binary curves (or ABC's) |

In 1987 a new approach to scalar multiplication was proposed by Montgomery[17]. In [61] Montgomery method is converted to projective space and a very efficient scalar multiplication algorithm is derived. Table 5.6 compares the calculation cost of Montgomery method with IEEE standard method. As it is shown implementations based on the Montgomery algorithm are faster. Most high speed ECC implementation in table 5.3, including the proposed processor, have used this algorithm for scalar multiplication[57][53][44][47][52]. The interesting fact about this algorithm is that it is inherently secure against side channel attack. In the proposed architecture, the algorithm is tuned for the pipeline multiplier and the processor's parallel architecture. The complete explanation of Montgomery scalar multiplication is given in chapter 3.

Table 5.6: Cost of scalar multiplication on $G F\left(2^{m}\right)$ for different algorithms

| Scalar Multiplication Algorithm | \# Operations |
| :--- | :--- |
| Montgomery, Projective version [61] | $(\mathrm{m}-1)(6 \mathrm{M}+3 \mathrm{~A}+5 \mathrm{~S})+(10 \mathrm{M}+7 \mathrm{~A}+4 \mathrm{~S}+\mathrm{I})$ |
| IEEE 1362, NAF representation (Average) [21] | $(\mathrm{m}-1)(8.7 \mathrm{M}+6.3 \mathrm{~A}+6.3 \mathrm{~S})+(3 \mathrm{M}+\mathrm{S}+\mathrm{I})$ |

### 5.3.4 Performance Estimation for ECPs Based on BPWS Multipliers

## Minimum number of clock cycle for $k P$ calculation

The lower and upper bound of performance for the architectures which use Bit Parallel Word Serial (BPWS) multipliers can be estimated as follows. The multiplication takes $M=$ $\lceil m / D\rceil+3$ cycles, assuming 2 clock cycles for loading the input registers of the multiplier and one cycle for storing the result. Although addition and squaring are performed in one cycle, extra cycles are needed to load and unload the registers, therefore $A=3$ cycles for addition and $S=2$ cycle for squaring is assumed. Using Montgomery scalar multiplication [61], the upper bound (UB) is derived in table 5.6. At the best case, where all additions and squaring operations can be performed in parallel with multiplication (we assume $M>A$ , $M>S$ ) the lower bound (LB)can be calculated by omitting all additions and squaring operations. Therefore we will have,

$$
\begin{align*}
& U B=(m-1)(6 M+3 A+5 S)+(10 M+7 A+4 S+I) \\
& L B=(m-1)(6 M)+(10 M+I)  \tag{5.2}\\
& \text { where } M=\lceil m / D\rceil+3, A=3, S=2, I \approx 10 M+(m-1) S
\end{align*}
$$

Experimenting with the processor architecture shows that the $\lceil m / D\rceil=4$ ratio minimizes the number of multiplication cycles but is long enough to let additions and/or squaring to be done in parallel with multiplication. Therefore the lower bound for $k P$ can be approximated as

$$
\begin{equation*}
L B \approx 43(m-1) . \tag{5.3}
\end{equation*}
$$

Unless a proper pipeline mechanism is used, faster operation cannot be achieved using this class of architecture.

## Critical Path length

If the finite field $G F\left(2^{m}\right)$ is generated by and irreducible polynomial $f(x)$ then the maximum critical path is equal to $C_{T}=T_{A}+\left(\left\lceil\log _{2} m\right\rceil+(r-1)\right) T_{X}$ where $r$ is the number of terms in the irreducible polynomial $f(x)$. In BPWS multipliers where,

$$
A(x)=\sum_{i=0}^{m-1} a_{i} x^{i}, \text { and } B(x)=\sum_{i=0}^{D-1} b_{i} x^{i}, \text {, where } a_{i}, b_{i} \in\{0,1\}
$$

the critical path will be

$$
\begin{equation*}
C_{T}=T_{A}+\left(\left\lceil\log _{2} D\right\rceil+(r-1)\right) T_{X} \tag{5.4}
\end{equation*}
$$

, where $T_{X}$ and $T_{A}$ are the delays of AND gate and XOR gate. Using irreducible trinomial this can be further reduced to $C_{T}=T_{A}+\left(\left[\log _{2}(m-1)\right]+2\right) T_{X}[58] . C_{T}$ determines the upper bound for the clock frequency of the ECP.

### 5.4 Design Flow

The presented crypto-processor requires components that operate on large bit vectors (167 bits on $G F\left(2^{167}\right)$ ). This makes validation of synthesis results difficult and time consuming due to large amount of simulation elements. The complexity often can be reduced by scaling the signal vectors down. Adding such flexibility is excess work, but it pays off. The processor is designed to work with any finite field which is based on a trinomial or a pentanomial. Therefore most validations were performed on small fields like $G F\left(2^{15}\right)$.

The design flow is depicted in Fig. 5.4. A bit-exact C program was developed, which allows us to check the HDL thoroughly. Test vectors for Galois field of different sizes were applied to both the HDL and the bit-exact program, and the results were checked against each other using another program to ensure the proper operation of the hardware. An assembler program for the crypto-processor is also developed which lets us to assemble programs written for the processor. The processor was synthesized and optimized using Synopsys Design Analyzer ${ }^{\circledR}$ for CMOS 0.18 and Xilinx ISE ${ }^{\circledR}$ for FPGA.

Figure 5.7: Elliptic Curve Processor Design Flow


Figure 5.8: Architecture of the Processor


### 5.5 Architecture

The architecture is highly optimized toward the execution of scalar multiplication algorithm. It supports finite field arithmetic, some 8 bits integer calculation and control transfer instructions. The finite field arithmetic unit utilizes parallelism in instruction level, which permits parallel execution of addition, squaring and multiplication. The finite field processing unit consists of an ALU, a multiplier and a register file. These units are controlled by the main control unit. In addition, a very small 8 -bit processor is provided which performs integer calculations like counting and shifting. The communication with the host processor is implemented through utilization of a command register and a data register. Initially, the host processor uploads elliptic curve domain parameters and the code using these two registers (Fig. 5.8). From then on, communication is limited to the exchange of raw and processed data. Utilization of communication registers allows the two processors to operate independently, and have different clock signals. The processor is implemented in $G F\left(2^{167}\right)$ but neither the scalar multiplication code nor the architecture is hardwired to the size of the Galois Field.

Figure 5.9: Architecture of the Finite Field Multiplier


## Multiplier

The number of finite field multiplication in a scalar multiplication is approximately $6(m-1)$ for $G F\left(2^{m}\right)$ (Table 5.6). Therefore a high performance multiplier is very crucial. ALU uses a bit parallel word serial (BPWS) multiplier based on the algorithm in [60]. In order to achieve a performance better than $L B \approx 43(m-1)$, the input registers $A$ and $B$, intermediate register $P_{i}$ and output register $P$ are configured as a pipeline (Fig.5.9). This arrangement permits a finite field multiplication to be performed in $M=\lceil m / D\rceil+1$ cycles, which would otherwise take $M=\lceil m / D\rceil+3$ in similar designs [53] [57].

## Squarer

The ALU employs a bit-parallel squarer [58]. Synthesized for a specific Galois field, this squarer leads to a very efficient hardware which performs the squaring in one clock cycle.

Scalable ${ }^{2}$ ECP implementations cannot use this architecture, since the size of finite field is not known at the time of hardware synthesis. Therefore they have relatively longer $k P$ execution time [36][38][44][47].

## Instruction Set

The instruction set is sub divided into three categories: Finite field arithmetic, integer processing and control transfer (Fig. 5.10, table 5.7). Finite field arithmetic instructions are further split into three threads. The compiler analyzes the scalar multiplication program and detects finite field operations to be executed in parallel. Such operations are packed into one finite field arithmetic type instruction.

Figure 5.10: Instruction set categories


### 5.6 Implementation

### 5.6.1 HDL Simulation

HDL simulation is carried out using Cadence NCVerilog ${ }^{\circledR}$. Figure 5.11 and 5.12 shows the waveforms at the beginning and end of the simulation on $G F\left(2^{167}\right)$. The hardware was simulated and tested for $G F\left(2^{16}\right), G F\left(2^{167}\right)$ and $G F\left(2^{233}\right)$ using 1000,100 and 10 random test vectors respectively. The simulation takes 6660 clock cycles on $G F\left(2^{167}\right)$ which is

[^3]0.1 mSec at 66 MHz . In terms of execution speed, this result is faster than similar FPGA implementations [53][46][62][57].

### 5.6.2 Synthesis Result

## FPGA

The HDL is synthesized for Xilinx XC2V2000 FPGA using Xilinx tools. Table 5.10 summarizes the hardware resource usage of the processor in terms of lookup tables (LUT) and flip-flops (FF) in FPGA implementation. The processor operates at 66 MHz and performs the scalar multiplication in $G F\left(2^{167}\right)$ in $100 \mu S e c$. The synthesis result shows that the maximum operation frequency for the processor is 90 MHz .

## ASIC Simulation

The processor is synthesized and simulated for TSMC CMOS 0.18 technology using Synopsys ${ }^{\circledR}$ and Cadence NCVerilog ${ }^{\circledR}$. Using synthesis information obtained from Synopsys ${ }^{\circledR}$, the performance and the hardware size of the processor on TSMC $0.18 \mu \mathrm{~m}$ technology is obtained. The hardware size is about 36000 gates and the clock frequency can be as high as 300 MHz . For the proposed architecture we have $r=3, D=42, T_{A} \approx T_{X} \approx 0.3 n$ Sec (from Synopsys report). Putting into equation 5.4 results to $C_{T} \approx 9 T_{X}=2.7 n$ Sec. Synopsys report shows that the critical path equals to $3.2 n S e c$. This confirms that the proposed architecture satisfies the critical path bound Implemented on ASIC. It takes $22 \mu$ Sec to complete one scalar multiplication operation in $G F\left(2^{167}\right)$, which is faster than reported ASIC implementations. Table 5.8 summarizes the synthesis results in CMOS 0.18.

## ASIC Implementation

The ASIC design flow in fig. 5.4 is carried out to the very end. ie. The CMOS 0.18 layout is implemented using Cadence SoC Encounter. This layout is ready for fabrication. Refer to appendix for a snap shop of the layout.

### 5.6.3 Performance and comparison

Table 5.9 shows the number of clock cycle needed to execute $k P$, for several processors. These processors have the following specifications in common:

- They are among the fastest implementations of ECP (see Table 5.3).
- They are implemented on an advanced FPGA architecture.
- All use parallel polynomial based finite field multipliers.
- Number of clock cycles needed to perform $k P$ is linearly dependent on field size $m$ (If we keep the size of $m / D$ in finite field multiplier constant, where $D$ is the sized of digit or word in the bit-parallel word- serial multiplier).
- They Perform inverse using Itoh-Tsuji algorithm (except [53]).
- All Use Projective coordinates for $k P$ calculation (most use BPWS).

It can be concluded that, for non scalable ECP processors, these specifications lead to an efficient design. Among them, the proposed architecture needs less clock cycles to perform scalar multiplication. Another important factor in the architecture is the maximum critical path in the processor. However it is not easy to estimate what the maximum clock rate for [57] [46] would be if they would have been implemented on the a platform like ours. Simulation shows that the proposed processor can run at 300 MHz when implemented on CMOS 0.18 technology, which is the minimum possible critical path for this type of architecture. This is also a good number compared to the designs in tables 5.3 and 5.2.

### 5.7 Conclusion

An architecture for an Elliptic curve processor is proposed. The processor can perform 10,000 scalar multiplications per second on $G F\left(2^{167}\right)$, which is considerably faster that the recent FPGA implementations. The processor has a very short critical path which is on the parallel multiplier. Synthesis results in CMOS 0.18 micron show that the processor
can run at 300 MHz clock frequency which results in $22 \mu \mathrm{Sec}$ for a scalar multiplication on $G F\left(2^{167}\right)$. The synthesis result confirms that the design satisfies the critical bound.
5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.7: Elliptic Curve Processor Instruction Set

| 8-bit processor |  |
| :--- | :--- |
| MOV rx, d8 | move immediate data to rx register |
| DJNZ rx, addr | decrement rx jump to addr if not zero |
| DEC rx | decrement rx |
| INC rx | increment rx |
| SHL \{c,rx\} | shift left Carry and rx |
| SHL \{rx, c\} | shift left rx and Carry |
| MOV ry, rx | move rx to ry |
| FF Arithmetic Unit |  |
| SQR A |  |
| ADD A, Rx |  |
| SHL A |  |
| FF Multiplier |  |
| START Mul |  |
| STOP Mul |  |
| Register File |  |
| MOV Rx, P |  |
| MOV Rx, A |  |
| MOV A, Rx |  |
| MOV S, Rx |  |
| Control Transfer |  |
| JMP flg, set, addr | flg is Z (Zero flag), C (Carry flag), M (User flag) |
| CALL flg, set, addr |  |
| SET M |  |
| CLR M |  |

Table 5.8: Area report in CMOS 0.18

| Unit | Area (micron) |
| :--- | ---: |
| Multiplier | 1272102 |
| ALU | 28585 |
| Squarer | 4976 |
| Register File | 202799 |
| Proc8 | 5617 |
| Total | $\approx 1555271$ |

Table 5.9: Number of clock cycles for $k P$

| Design | Number of Clk for $k P$ | Point Representation |
| :--- | :--- | :--- |
| Presented | $39(m-1)+$ inv. | Montgomery Projective |
| $[46]$ | $44(m-1)+$ inv. (est.) | Projective with NAF ${ }^{a}$ |
| $[57]$ | $47(m-1)+$ inv. (est.) | Montgomery Projective, D=42 ${ }^{b}$ |
| $[53]$ | $57(m-1)$ (est.) | Montgomery Projective |
| $[62]$ | $93(m-1)+$ inv. (est.) | Projective with NAF |

inv. $=(m-1)+M\left(\left\lfloor\log _{2}(m-1)\right\rfloor+h(m-1)-1\right), M \approx 7$

[^4]Table 5.10: Performance of the Elliptic Curve Processor

| Design | kP <br> mSec | Inversion <br> Cycle | $G F\left(2^{m}\right)$ | FPGA <br> LUT, FF | Clk <br> MHz | FPGA | Year |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Proposed | 0.100 | 285 | 167 | 7562,2378 | 66 | XCV2000 | 2004 |
| $[57]$ | 0.210 |  | 167 | 3000,1769 | 76.6 | XCV400E | 2000 |
| $[53]$ | 0.143 | $326=2 m$ | 163 | 20068,6321 | 66.4 | XCV2000 | 2002 |
| $[62]$ | 0.233 | 250 | 163 | 10017,1930 | 66 | XCV2000 | 2003 |
| Proposed | 0.140 | 451 | 233 | 13900,3200 | 66 | XCV2000 | 2004 |
| $[46]$ | 0.123 est. | - | 233 | 19440,16970 | 100 | XCV6000 | 2003 |

## Elliptic Curve Processor

Bijan Ansari
Unversity of Windsor
regtie at stat up
regtile at start up
Cusor $=2,458,670 p s$
Baseline $=0$

Figure 5.11: Simulation Waveforms at startup
5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Bijan Ansari
University of Windsor
regitle ather kP


Figure 5.13: Simulation Waveforms while calculating Inverse
Page 1 of 1
Elliptic Curve Processor

Printed on Mon Mar 22 18:36:43 EST 2004
Printed by SimVision from Cadence Design Systems, Inc.

## Chapter 6

## Discussions

### 6.1 Summary of Contribution

This work proposes efficient methods for ECC both in algorithm level and in arithmetic level. In algorithm level a parallel method for scalar multiplication is introduced which uses two processors to perform the $k P$ operation. Using proper implementation this method is $200 \%$ faster than conventional single processor methods. The method can be implemented both in hardware and software.

At the arithmetic level, a high performance elliptic curve processor architecture on $G F\left(2^{m}\right)$ is proposed. The architecture employs parallel execution of finite field arithmetic, to achieve high execution speed. Implemented on Xilinx Virtex 2000 FPGA, the processor can perform 10,000 scalar multiplications per second on $G F\left(2^{167}\right)$, which is considerably faster that the recent FPGA implementations. The processor has a very short critical path which is on the parallel multiplier. Synthesis results on CMOS 0.18 micron show that the processor can run at 300 MHz clock frequency which results in $22 \mu \mathrm{Sec}$ for a scalar multiplication on $G F\left(2^{167}\right)$. The processor is compared to various ECC hardware implementations. The comparison is limited to the processors on $G F\left(2^{m}\right)$. The processor speed presented is higher than any other reported ECC hardware implementation. -

### 6.2 Future Work

FPGAs are a suitable platform for the hardware implementation of the proposed parallel algorithm. The information in chapter 3 can be used for the selection of proper point representation system. For the proposed processor ASIC implementation is very desirable since the simulation results shows the it will be the fastest $k P$ calculation ever reported.

## References

[1] Neal Koblitz "A course in Number Theory and Cryptography" Spreiger Verlag 1987
[2] Neal Koblitz "CM-Curves With Good Cryptographic Properties" CRYPTO '91, Springer-Verlag LNCS 756 pp 279-287, 1992.
[3] Neal Koblitz "Elliptic curve cryptosystems." "Mathematics of Computation, 48:203209, 1987.
[4] V.S. Miller "Use of elliptic curves in cryptography" Advances in Cryptology Proc. Crypto'85 LNCS 218, H.C. Williams, Ed., Springer-Verlag, 1985, pp. 417-426
[5] V.S. Miller "Elliptic curve cryptosystems" Advances in Cryptology Proc. Crypto'85 Mathematics of Computation, Vol. 48, no. 177 (1987), pp. 203-209
[6] Andreas Enge "Elliptic Curves and their applications to cryptography: An introduction" Kluwer academic press 1999
[7] Daniel M. Gordon "A Survey of Fast Exponentiation Methods" journal of algorithms 27, 129-146 (1998),
[8] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono "Efficient Elliptic Curve Exponentiation Using Mixed Coordinates" ASIACRYPT'98, Springer-Verlag LNCS 1514, pp. 51-65, 1998.
[9] Darrel Hankerson, Julio Lopez Hernandez, and Alfred Menezes "Software Implementation of Elliptic Curve Cryptography over Binary Fields" CHES 2000, SpringerVerlag LNCS 1965, pp. 1-24, 2000
[10] Ian Blake, Gadiel Seroussi and Nigel Smart "Elliptic Curves in Cryptōgraphy" Cambridge University Press 2002
[11] Jerome A. Solinas "An Improved Algorithm for Arithmetic on a Family of Elliptic Curves" CRYPTO '97, Springer-Verlag LNCS 1294 pp. 357-371, 1997.
[12] Knuth D. E. Knuth "Seminumerical Algorithms"
[13] E. Knudsen "Elliptic Scalar Multiplication Using Point Halving" Proc. Advances in Cryptology Asiacrypt 99 pp. 135-149, 1999.
[14] FIPS 186-2 "Digital Signature Standard (DSS)" Federal Information Processing Standards Publication 186-2, National Institute of Standards and Technology, 2000.
[15] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone "Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms" CRYPTO 2001, LNCS 2139, pp. 190-200, 2001.
[16] C. Lim and P. Lee, "More flexible exponentiation with precomputation", Advances in Cryptology, Crypto '94, 1994, 95-107.
[17] P. Montgomery "Speeding the Pollard and elliptic curve methods of factorization", Mathematics of Computation, vol 48, pp.243-264.
[18] J. Lopez and R. Dahab "Improved algorithms for an elliptic curve arithmetic in $G F\left(2^{n}\right) "$ Selected areas in Cryptography - SAC 98, Springer-Verlag, LNCS 1556, 1996
[19] B. Moller "Parallelizable Elliptic Curve Point Multiplication method with Resistance against Side-Channel Attacks" Information Security ISC-2002, Springer-Verlag LNCS 2433
[20] L.C. Washington "Elliptic Curves, Number Theory and Cryptography" Chapman \& Hall/CRC, 2003
[21] IEEE "IEEE 1363-2000 standard" Standard specification for public key cryptography.
[22] D. Boneh and N.Daswani "Experimenting with electronic commerce on The Palm Pilot" Financial Cryptography '99, Springer-Verlag LNCS 1423 pp. 1-16, 1999
[23] J. Solinas, "Mersenne numbers" Technical Report CORR 99-39, University of Waterloo, 1999
[24] D. Bailey and C. Paar, "Extension fields for fast arithmetic in public-key algorithms" Advances in Cryptology, Crypto '98, 1998, pp 472-485
[25] D. Gollmann, Y. Han and C. Mitchell, "integer representations and fast exponentiation" Designs, Codes and Cryptography, 7 (1996) pp.135-151
[26] A. Menezes, P. van Oorschot and S. Vanstone, "Handbook of Applied Cryptography" CRC Press, 1996
[27] F. Morain and J. Olivos, "Speeding up the computations on an elliptic curve using addition-subtraction chains" Informatique Theorique et Applications 24 (1990) pp.531-544
[28] W. Diffie, and M.E. Hellman, "New Directions in Cryptography", IEEE Transactions on Information Theory, , vol. 22, no. 6, November 1976, pp. 644-654.
[29] S.B. Ors, L. Batina, B. Preneel and J. Vandewalle, "Hardware implementation of an elliptic curve processor over GF(p)", IEEE International Conference on ApplicationSpecific Systems, Architectures, and Processors, 2003. Proceedings, pp. 433-4432426 June 2003.
[30] Gutub A.A.-A., Ibrahim M.K., "High radix parallel architecture for GF(p) elliptic curve processor", International Conference on Acoustics, Speech, and Signal Processing (ICASSP '03) Volume: 2, 6-10 April 2003 Pages:II - 625-8 vol. 2
[31] Gutub A.A.-A., Ibrahim M.K., "High performance elliptic curve $G F\left(2^{k}\right)$ cryptoprocessor architecture for multimedia" Multimedia and Expo, 2003. ICME '03. Proceedings. 2003 International Conference on , Volume: 3, 6-9 July 2003 Pages:81 84
[32] Agnew, G.B., Mullin, R.C.,Vanstone, S.A. "An implementation of elliptic curve cryptosystems over GF $\left(2^{155}\right)$ " IEEE Journal on Selected Areas in Communications, Volume: 11 , Issue: 5 , pp. 804-813, June 1993.
[33] M. Rosner. "Elliptic curve cryptosystems on reconfigurable hardware", Master's thesis, ECE Dept., Worcester Polytechnic Institute, Worcester, USA, May 1998.
[34] "K.H. Leung, K.W. Ma , W.K. Wong, P.H.W. Leong ", FPGA implementation of a microcoded elliptic curve cryptographic processor, IEEE Symposium on FieldProgrammable Custom Computing Machines, 2000, pp. 68-76, 17-19 April 2000.
[35] Gerardo Orlando and Christof Paar "A High-Performance Reconfigurable Elliptic Curve Processor for $G F\left(2^{m}\right)$ " CHES 2000, LNCS 1965, pp. 41-56 2000
[36] S. Okada, N. Torii, K. Itoh and M. Takenaka "Implementation of Elliptic Curve Cryptographic Co-processor over $G F\left(2^{m}\right)$ on an FPGA", CHES 2000, LNCS 1965, pp. 25-40, 2000.
[37] Ernst M., Klupsch S., Hauck O., Huss S.A., "Rapid prototyping for hardware accelerated elliptic curve public-key cryptosystems", International Workshop on Rapid System Prototyping, pp.24-29, 25-27 June 2001.
[38] Goodman J., Chandrakasan A.P., "An energy-efficient reconfigurable public-key cryptography processor", IEEE Journal of Solid-State Circuits, Volume: 36 , Issue: 11 , Nov. 2001 Pages:1808-1820,
[39] M. Bednara ,M. Daldrup, J. von zur Gathen, J. Shokrollahi, J. Teich, "Reconfigurable implementation of elliptic curve crypto algorithms", Parallel and Distributed Processing Symposium., Proceedings International, IPDPS 2002, Abstracts and CDROM , Pages:157-164, 15-19 April 2002.
[40] M. Bednara, M. Daldrup, J. Teich, J. von zur Gathen, J. Shokrollahi, "Tradeoff analysis of FPGA based elliptic curve cryptography", IEEE International Symposium on Circuits and Systems, 2002. ISCAS 2002, Volume: 5 pp.V-797-V-800, 26-29 May 2002.
[41] T. Kerins, E. Popovici, W. Marnane , and P. Fitzpatrick "Fully Parameterizable Elliptic Curve Cryptography Processor over $G F\left(2^{m}\right)$ ", Springer-Verlag, LNCS 2438, pp. 750-759, 2002.
[42] K. Ju-Hyun, L. Dong-Ho, "A compact finite field processor over $G F\left(2^{m}\right)$ for elliptic curve cryptography", Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on, Volume: 2, 26-29 May 2002 Pages:II-340-II-343 vol.2.
[43] P.H.W. Leong ,I.K.H. Leung, "A microcoded elliptic curve processor using FPGA technology", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume: 10, Issue: 5, Pages:550-559, Oct. 2002.
[44] M.J. Potgieter, B.J. van Dyk, "Two hardware implementations of the group operations necessary for implementing an elliptic curve cryptosystem over a characteristic two finite field", African Conference in Africa, 2002. IEEE AFRICON. 6th, Volume: 1, 2-4 Oct. 2002, Pages:187-192.
[45] X. Zeng, X. Zhou, Q. Zhang, "Hardware/software co-design of elliptic curves publickey cryptosystems", IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, Volume: 2, pp. 1496-1499 vol.2, 29 June-1 July 2002.
[46] Grabbe C., Bednara M., von zur Gathen J., Shokrollahi J., Teich J., "A high performance VLIW processor for finite field arithmetic", Proceedings of the International Parallel and Distributed Processing Symposium, 22-26 April 2003.
[47] H. Chi, L. Jimnei, Junyan Ren, Qianling Zhang, "Scalable elliptic curve encryption processor for portable application", 5th International Conference on ASIC, 2003. Proceedings, Volume: 2, Pages:1312-1316, Oct. 21-24, 2003.
[48] L. Pak-Keung ,C. Chiu-Sing ,C. Cheong-Fat ,P. Kong-Pang, "A low power asynchronous $G F\left(2^{173}\right)$ ALU for elliptic curve crypto-processor", Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03., Volume: 5, Pages:V-337 - V-340, 25-28 May 2003.
[49] M. Jung, F. Madlener, M. Ernst and S. A. Huss "A Reconfigurable Coprocessor for Finite Field Multiplication in $G F\left(2^{n}\right)$ ", IEEE Workshop on Heterogeneous reconfigurable Systems on Chip, Hamburg, April 2002.
[50] L. Gao , L. Hanbo, G.E. Sobelman , "A compact fast variable key size elliptic curve cryptosystem co-processor", Seventh Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 1999. FCCM '99. Proceedings. Pages:304-305, 21-23 April 1999.
[51] G. Lijun, S. Shrivastava, G. E. Sobelman A1, "Elliptic Curve Scalar Multiplier Design Using FPGAs", Springer-Verlag, LNCS, Volume 1717 / 1999.
[52] A. Satoh, K. Takano, "A scalable dual-field elliptic curve cryptographic processor", IEEE Transactions on Computers, Volume: 52, Issue: 4, pp. 449-460, April 2003.
[53] Nils Gura, Sheueling Chang Shantz, Hans Eberle, Sumit Gupta, Vipul Gupta, Daniel Finchelstein, Edouard Goupy, Douglas Stebila, "An End-to-End Systems Approach to Elliptic Curve Cryptography" Sun Microsystems Laboratories 2002-2003
[54] N. Gura, S.C.Shantz, H. Eberle, S. Gupta, V. Gupta, D. Finchelstein, E. Goupy, D. Stebila, "An End-to-End Systems Approach to Elliptic Curve Cryptography", Sun Microsystems Laboratories 2002-2003.
[55] N. Nguyen, K. Gaj, D. Caliga, T. El-Ghazawi, "Implementation of elliptic curve cryptosystems on a reconfigurable computer", IEEE International Conference on Field-Programmable Technology (FPT), 2003. Proceedings. 2003, pp. 60-67, 15-17 Dec. 2003.
[56] Hauck O., Katoch A., Huss S.A., "VLSI system design using asynchronous wave pipelines: a $0.35 \mu m$ CMOS 1.5 GHz elliptic curve public key cryptosystem chip", Sixth International Symposium on Advanced Research in Asynchronous Circuits and Systems, (ASYNC 2000) Proceedings, pp. 188-197, 2-6 April 2000.
[57] Gerardo Orlando and Christof Paar "A High-Performance Reconfigurable Elliptic Curve Processor for $G F\left(2^{m}\right)$ " CHES 2000, LNCS 1965, pp. 41-56 2000
[58] H. Wu, "Bit-Parallel Finite Field Multiplier and Squarer using polynomial basis", IEEE transaction on Computers, Vol. 51, No.7, July 2002.
[59] T. Itoh and S.Tsuji "A Fast algorithm for computing multiplicative inverse in $G F\left(2^{m}\right)$ using normal bases", Info. and Comput., col. 78(3), pp.171-177, 1998.
[60] L. Song and K. K. Parhi. "Low-energy digit-serial/parallel finite field multipliers", Journal of VLSI Signal Processing Systems, pp. 1-17, 1997.
[61] J. Lopez and R. Dahab "Fast Multiplication on Elliptic Curves over $G F\left(2^{n}\right)$ without Precomputation" CHESS'99, Springer-Verlag, LNCS 1717, pp. 316-327 1999
[62] Jonathan Lutz "High performance elliptic curve cryptographic co-processor" Masters thesis,University of Waterloo 2003
[63] S.Galbraith and N. Smart "A cryptographic application of Weil descent" Codes and Cryptography, LNCS 1746, Springer-Verlag, pp. 191-200, 1999
[64] D. W. Hardy "Applied algebra, Codes. Cipher and Discrete Algorithms" Prentice Hall, 2003

## Appendix A

## Test Code

```
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include "gmp.h"
4 #include <time.h>
5 #include <math.h>
6
7//typedef unsigned long long scalar_t;
8 #define scalar_t mpz_t
9
10 int get_bit (scalar_t k, int i);
11 void set_bit (scalar_t k, int i);
12 void clr_bit (scalar_t k, int i);
13 int kP_time_s (char * ks, int t_add, int *na, int *nd);
14 int kP_time_s2 (char * ks, int ADD_DBL_ratio);
15 char *str_reverse (char *d, char *s);
16 void to_NAF (scalar_t k);
17 void to_NAF2 (scalar_t k);
18 char *itos (scalar_t k);
19 void test_recording(void);
20 int kP_time (scalar_t k, int n_bits, int t_add, int *na, int *nd,
21 int *cnt_in_add_ave, int *cnt_in_add_max, int buf_len
22 );
23 int ave_kP_time (int n_samples, int n_bits, int ADD_DBL_ratio, int
24 buf_len);
25 //#define ADD_DBL_RATIO 3
```

```
26
 int main(void)
28 {
29 //performance_table();
30 performance_vs_buflen_graph();
31
32 return 0;
33}
34
35 int performance_table(%oid)
36 {
37 int n_bits, t;
38 char *s, d[50];
39 time_t rawtime;
4 0
41 //- algorithm parameters
42 int ADD_over_DBL_ratio = 3;
43 int buf_len = 4;
44 int nsamples = 10000;
4 5
46 time ( &rawtime ); printf("\n%s\n\n",ctime(&rawtime));
4 7 \text { printf("\#Samples = \%i", nsamples);}
48 printf("\n\\#bits & ADD/DBL & \\#ECADD & \\ECDBL & \#Dp & \\#Dp Std
49 DBL-ADD Method & Ave \\#Data in buf & Max \\#Data in buf & Speed
50 up \\hline\hline");
51 printf("\n==========================================================");
52
53 for(ADD_over_DBL_ratio=1; ADD_over_DBL_ratio<6; ADD_over_DBL_ratio++)
54 {
55
5 6
5 7
5
5 9
60 avekP time(nsamples, n bits ADD over
6 0
}
62
63 /*
64 test_recording(); printf("\n\n");
65
66 s = "10101010000001111111111000001100000001";
67 t = kP_time_s2(s, ADD_over_DBL_ratio);
6 8
69 str_reverse(d, s);
```

```
    t = kP_time_s2(d, ADD_over_DBL_ratio);
    */
    time ( &rawtime ); printf("\n%s\n\n",ctime(&rawtime));
    return 0;
}
77 int performance_vs_buflen_graph(void)
80 int ADD_over_DBL_ratio = 3;
81 int buf_len = 4;
82 int nsamples = 100;
83 int n_bits;
85 printf("#Samples = %i\n`n", nsamples);
//for(n_bits=150; n_bits<=300; n_bits+=50)
    n_bits = 160;
91 for(buf_len=1; buf_len<=10; buf_len++)
            printf("\n %i ", buf_len);
            for(ADD_over_DBL_ratio=1; ADD_over_DBL_ratio<6;
                ADD_over_DBL_ratio++)
            {
                    ave_kP_time(nsamples, n_bits, ADD_over_DBL_ratio, buf_len );
            }
            printf(" ", buf_len);
        }
        /*
        for(ADD_over_DBL_ratio=1; ADD_over_DBL_ratio<6; ADD_over_DBL_ratio++).
        {
            printf("\n\n #ADD/DBL = %i ", ADD_over_DBL_ratio);
            for(buf_len=1; buf_len<=10; buf_len++)
            {
                printf("\n %i ", buf_len);
                    ave_kP_time(nsamples, n_bits, ADD_over_DBL_ratio, buf_len );
            }
        }*/
```

76
78 \{
79
84
86
87
88
89
90
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

```
114
115}
116
120 {
127
129 mpz_init(k);
130
131
132
133
134
135
136
138 to_NAF2(k);
                157
```

```
117 #define MAX_INT ~((unsigned long int) 1)
```

117 \#define MAX_INT ~((unsigned long int) 1)
118 \#define ave(i) ((int)((double)(i)/(n samples)+0.5))
118 \#define ave(i) ((int)((double)(i)/(n samples)+0.5))
119 int ave_kP_time(int n_samples, int n_bits, int ADD_DBL_ratio, int buf_len)
119 int ave_kP_time(int n_samples, int n_bits, int ADD_DBL_ratio, int buf_len)
1 2 1 ~ m p z \_ t ~ k ;
1 2 1 ~ m p z \_ t ~ k ;
122 gmp_randstate_t r_state;
122 gmp_randstate_t r_state;
123 int na, nd, cnt_in_add_ave, cnt_in_add_max, t;
123 int na, nd, cnt_in_add_ave, cnt_in_add_max, t;
124 unsigned long int i;
124 unsigned long int i;
125 int t_sum, na_sum, nd_sum;
125 int t_sum, na_sum, nd_sum;
126 int cnt_in_add_ave_ave, cnt_in_add_max_ave;
126 int cnt_in_add_ave_ave, cnt_in_add_max_ave;
128 gmp_randinit_default (r_state);
128 gmp_randinit_default (r_state);
137 mpz_urandomb (k, r_state, n_bits); //200 bits random number
137 mpz_urandomb (k, r_state, n_bits); //200 bits random number
139 t = kP_time(k, n_bits, ADD_DBL_ratio, \&na, \&nd, \&cnt_in_add_ave,
139 t = kP_time(k, n_bits, ADD_DBL_ratio, \&na, \&nd, \&cnt_in_add_ave,
\&cnt_in_add_max, buf_len );
\&cnt_in_add_max, buf_len );
t_sum += t;
t_sum += t;
na_sum += na;
na_sum += na;
nd_sum += nd;
nd_sum += nd;
cnt_in_add_ave_ave += cnt_in_add_ave;
cnt_in_add_ave_ave += cnt_in_add_ave;
cnt_in_add_max_ave += cnt_in_add_max;
cnt_in_add_max_ave += cnt_in_add_max;
//printf("%i-", cnt_in_add_max_ave);
//printf("%i-", cnt_in_add_max_ave);
// if((i\& 0x0000FFFF) == 0) printf(" %Iu", i);
// if((i\& 0x0000FFFF) == 0) printf(" %Iu", i);
//printf("\n-- k=%s nADD =%d nDBL =%d T =%d", itos(k), na, nd, .
//printf("\n-- k=%s nADD =%d nDBL =%d T =%d", itos(k), na, nd, .
t);
t);
// gmp_printf("\n-- k=%\#04Zx nADD =%d nDBL =%d T =%d", k, na,
// gmp_printf("\n-- k=%\#04Zx nADD =%d nDBL =%d T =%d", k, na,
nd, t);
nd, t);
}
}
printf("\nn_bits=%i, n_samples=%lu ADD/DBL=%i t_ave=%i n Add_ave=%i, n
printf("\nn_bits=%i, n_samples=%lu ADD/DBL=%i t_ave=%i n Add_ave=%i, n
DBL_ave=%i", n_bits, nsamples, ADD_DBL_ratio, t_sum/nsamples,
DBL_ave=%i", n_bits, nsamples, ADD_DBL_ratio, t_sum/nsamples,
na_sum/nsamples, nd_sum/nsamples);
na_sum/nsamples, nd_sum/nsamples);

```
    return 0;
```

    return 0;
    {
cnt_in_add_max_ave = cnt_in_add_ave_ave = t_sum = na_sum = nd_sum = 0;
cnt_in_add_max_ave = cnt_in_add_ave_ave = t_sum = na_sum = nd_sum = 0;
for(i=0; i<n_samples; i++)
for(i=0; i<n_samples; i++)
{
{
//mpz_rrandomb generates long strings of zeros or ones, might be
//mpz_rrandomb generates long strings of zeros or ones, might be
better for testing
better for testing
Z

```
                        Z
```

158 //- printf for performance_table
159
174 int kP_time(scalar_t k, int n_bits, int t_add, int *na, int *nd, int
175 *ent_in_add_ave, int *cnt_in_add_max, int buf_len)
176 \{
177 int i, b, in_add, n_add, n_dbl, cnt_in_add, dbl_wait;
178 long long int ciaa; //count in add average!
179 int max_cnt_in_add = buf_len*t_add;
180
181 dbl_wait $=$ n_add $=$ n_dbl $=0$;
182 in_add $=$ get_bit $(k, 0)==1$; //put initial conditions
183 cnt_in_add = in_add ? t_add : 0;
184
185
186
187 //n_bits = mpz_sizeinbase(k, 2);
188
189
190 *cnt_in_add_ave $=$ *cnt_in_add_max $=$ ciaa $=0$;
191 for (i=0; i<n_bits; i++)
192 \{
193
194 while (cnt_in_add > max_cnt_in_add)
195 \{
196
cnt_in_add --;
dbl_wait ++;
\}
if (cnt_in_add > *cnt_in_add_max) //this gives the maximum buffer size
*cnt_in_add_max = cnt_in_add;

202
203

```
    ciaa += cnt_in_add; //average of cnt_in_add essentially it is
                proportional to the number of data in the circular buffer
    b = get_bit(k, i);
    //if in addition state
    if(in_add)
    {
        cnt_in_add--;
        if(b==1)
        {
            n_add ++;
            cnt_in_add += t_add; //accumulate the time that you need to stay
                    in add mode
    }
        else //b is 0
        {
        if(cnt_in_add ==0 ) //if u have been enuf in add state and there
            is no more one
        {
            in_add = 0; //change state
            n_dbl ++;
        }
        }
    }
    else //in dbl state
    {
        if(b==0)
            n_dbl ++;
        else //b is 1
        {
            in_add = 1; //change state
            n_add ++;
            cnt_in_add = t_add;
        }
    }
//should it be added to n_add? I think it should but the result is wrond.
FATAL chk bjn
// n_add += (cnt_in_add/t_add) +((cnt_in_add%t_add)!=0 ? 1 :0) ; //ceil(
                    cnt_in_add/t_add)
*na = n_add;
*nd = n_dbl + dbl_wait;
```

\}

```
246 *cnt_in_add_ave = ciaa / n_bits;
247
248 return *na * t_add + *nd;
249}
250
251 int get_bit(scalar_t k, int i)
252{
253 return mpz_tstbit (k, i);
254}
255
256 void set_bit(scalar_t k, int i)
257 {
258 mpz_setbit (k, i);
259 }
260
261 void clr_bit(scalar_t k, int i)
262 {
263 mpz_clrbit (k, i);
264 }
265
266 int kP_time_s(char * ks, int t_add, int *na, int *nd)
267 {
268 mpz_t k;
269 int rc;
270
271 mpz_init(k);
272 mpz_set_str(k, ks, 2);
273 //rc = kP_time(k, strlen(ks), t_add, na, nd);
274 mpz_clear (k);
275
276 return rc;
277
278}
279
280 int kP_time_s2(char * ks, int ADD_DBL_ratio)
281 {
282 int na, nd, t;
283
284
285 t = kP_time_s(ks, ADD_DBL_ratio, &na, &nd);
286 printf("\ns=%s, n_bits=%i, t=%i na=%i, nd=%i", ks, strlen(ks), t, na,
287
288
289
    return 0;
```

```
290 }
291
292 char *str_reverse(char *d, char *s)
293 {
294
295
296
297
298
299
300
301 return d;
302 }
303
304 /*this pice of software is from
305 ~/ansari4/Tutorials/Cryptography/CLibraries/ECC/elliptic/ec_curve.c
306 an elliptic curve library writen by Paulo S.L.M. Barreto <pbarreto@uninet.
307 com.b r> http://planeta.terra.com.br/informatica/paulobarreto/
308 it shows a parrallel way of converting and integer to NAF
309 */
310 :oid to_NAF2(scalar_t k)
311 {
312 mpz_t h;
313 int nb;
314
315
316 mpz_mul_ui (h, k, 3);
317 mpz_xor(k, h, k); //we treat -1 and 1 the same! because we only want to
count
mpz_div_2exp (k, k, 1);
    nb =mpz_sizeinbase(k, 2);
    // if( nb > *n_bits)
    // *n_bits = nb;
323
324
325
326 }
327
328
329 roid to_NAF(scalar_t x)
330 {
331 int s, i, n_bits;
332 mpz_t y;
333 int xi, xi-1, ci;
```

334
335
375 printf(" $\mathrm{ns}=\% \mathrm{~s} \backslash \mathrm{nk}=\% \mathrm{~s}$ ", s, itos(k));
376 printf(" ${ }^{\prime} \mathrm{n}^{\prime}$ );
377 mpz_clear(k); Algorithm
int state_table []$=\{0,2,2,1,0,3,3,1\}$;
mpz_init(y);
n_bits $=$ mpz_sizeinbase ( $x, 2$ );
ci $=0$; to make NAF
for (i=0; i<=n_bits; i++)
\{
xi $=$ get_bit $(x, i)$;
xi_1 = get_bit ( $x, i+1$ );
s = state_table[(xi_1<<2)|(xi<<1)|ci];
if (s \& 2)
set_bit(y, i);
else
clr_bit(y, i);

## $\mathrm{ci}=\mathrm{s} \& 1$;

mpz_set ( $x, y$ );
mpz_clear ( $y$ );
void testrecording(void)
\{
mpz_t k;
char *s;
//s = "111101";
mpz_init(k);
mpz_set_str(k, s, 2);
to NAF (k);
printf(" $\backslash n s=\% s \backslash n k=\% s ", s, i t o s(k))$;
mpz_set_str(k, s, 2);
to_NAF2(k);
//See Coren, Computer Arithmetic book, Page 146, Table 6.4 for the
//- it checks one extra bit, but that extra bit is zero and I need it
$\mathrm{s}=\mathrm{=} 101010111101011111101011111100011101001010010101011111100110101 " ;$

```
378 }
379
380 #define MAX_N_BITS 1024
381 char *itos( scalar_t k)
382 {
383 int i, nb;
384 static char buf[ MAX_N_BITS+1];
385 char *s = buf;
386
387 nb = mpz_sizeinbase(k, 2)-1;
388 if(nb> MAX_N_BITS) nb = MAX_N_BITS;
389 for(i=nb; i>=0; i--)
390 *s++ = get_bit(k, i)? '1' : '0';
391 *s = 0;
392
393 return buf;
394 }
395
396
1 #include <borzoi.h>
2 #include <fstream>
# #include <unistd.h>
# #include "nist_curves.h"
5
6/*
7 (c) Bijan Ansari Tue Dec 16 14:59:49 EST 2003
8 all parts of Monti algorithm works Mon Dec 29 21:28:08 EST 2003
9
10 This program uses borZoi Elliptic Curve library to Implement Projective
1 1 ~ c o o r d i n a t e ~ v e r s i o n ~ o f ~ M o n t g o m e r y ~ s c a l a r ~ m u l t i p l i c a t i o n . ~
12 This is done to check the result of the Elliptic Curve Processor
13
14 */
15
16
17 // the register file, and an indexed way to access it!
18 F2M X1;
19 F2M X2;
20 F2M Z1;
1 F2M Z.2;
F2M R.4;
F2M b;
4 F2M x;
```

```
F2M y;
27 F2M *R = &X1;
BigInt k; //the scalar
EC_Domain_Parameters dp = NIST_B_233;
//int m, k1, k2; //f(x) = x^m + x^k1 + x^k2 + 1
//const int m= 15, k1 = 4;
//const int m=167, k1 = 6;
//const int m = 233, k1 = 74;
//longinteger k //the scalar
37 typedef unsigned char byte;
38 int scalar_mult(void);
39 void projective_montgomery_scalar_multiplication1(void);
40 void projective_montgomery_scalar_multiplication2(void);
41 void original_montgomery_scalar_multiplication(void);
42 void affine_to_projective(void);
43 void Montgomery_P_plus_Q___P_plus_P1(void);
44 void Montgomery_P_plus_Q__-P_plus_P2(void);
45 void Itoh_Tsuji_inverse(int m, int in, int out);
46 void calc_xy1(void);
47 void calc_xy2(void);
48 void Mdouble(int src);
49 void Madd(int dest);
50 int scalar_mult(void);
51 void swap (void);
52 void print(char *s, F2M x, F2M y);
53 void initregfile(roid);
54 void dump_regfile(int n);
55 #define dump(A){ std::cout << "\n"<< #A<<"="<<< A; }
56 //void dump(F2M A);
57 void use_Trionomial(int m, int k1);
58 inline F2M operator` (const F2M& a, int n);
62 /*-
63 scalar_mult() tested at Tue Feb 17 19:58:53 EST 2004 again
64 it produces correct result using all 4 scalar multiplication
65 functions
* */
```

26
28
36
59
60
61
67
68

```
    int main(void)
70 {
71
72 use_Trionomial(167, 6);
73 //scalarmult();
74
75 init_regfile();
76
7 7
78
7 9
80 //for GF(2^233)
81 k = 1;
82 k <<= 232;
83
84 //for GF(2-15)
85 k = 1;//in the asm program R4 is k!
86 k <<= 14;
87
88
89 //for GF(2^167)
90 k = 1;
91 k <<= 166;
92
93
94
95
96
97
98 std::cout << "\n--" ;
99 }
100
101 void print(char *s, F2M x, F2M y)
102 {
103 std::cout << "\n--" << s ;
104 std::cout <<"\nx=" << x << "\ny=" << y;
105 }
106
107 int scalar_mult(void)
108 {
109 /**Warning**
110 original_montgomery_scalar_multiplication(), curve.mul(k, dp.G) use
111
112 global "dp" variable and the finite field which is defined there while
```

projective_montgomery_scalar_multiplication1() and
projective.montgomery_scalar_multiplication2() use the finite filed
which is defined at the start of the main() program ie use.Trionomial (
233,74 )
*/
//k = hexto_BigInt("A9993E364706816ABA3E25717850C26C9CD0D89D");
$\mathrm{k}=$ hexto_BigInt("D7"); //in the asm program R4 is k!
use_Trionomial (15, 4);
$\mathrm{b}=\mathrm{dp} . \mathrm{b}$;
$x=$ dp.G. $x$;
$y=$ dp.G. $y$;
$R[3]=1$; //R[3] must be zero otherwise affine_to_projective()
doesn't work fine
//in the hardware R4 is $k$, but here $k$ is in another variable
init_regfile();
print("original points", $x, y$ );
projective_montgomery_scalar_multiplication2();
print("projective_montgomery_scalar_multiplication2()", X2, Z2);
projective_montgomery_scalar multiplication1();
print("projective_montgomery_scalar_multiplication1()", X2, Z2);
original_montgomery_scalar.multiplication();
print("original_scalar.multiplication()", X2, Z2);
Curve curve (dp.a, dp.b);
Point $P=$ curve.mul (k, dp.G);
print("Borzoi library", P.x, P.y);
std: : cout $\ll$ " $\backslash$ n--" ;
\}
oid init_regfile()
//values are interpreted as hex
str_to_F2M("39", R[0]);
str_to_F2M("24", R[1]);
str_to_F2M("55",R[2]);
str_to_F2M("76",R[3]);

```
157
158
159
160
161
162
163
164
165 /*
166
167
168
169 str_to_F2M("4",R[3]);
170 str_to_F2M("5",R[4]);
171 str_to_F2M("6",R[5]);
172 str_to_F2M("7",R[6]);
173 str_to_F2M("8",R[7]);
174 */
175 }
176
177
178
179
180 {
181
182
183
184
185
186
187 }
189 {
190 int l;
191 int i;
192
193
194
195
196
197
198
199
200
```

```
188 oid projective_montgomery_scalar_multiplication1()
```

188 oid projective_montgomery_scalar_multiplication1()

```
    str_to_F2M("D7",R[4]); //MSB of k MUST be one, ECP asm programs
```

    str_to_F2M("D7",R[4]); //MSB of k MUST be one, ECP asm programs
            assumes so!
            assumes so!
    str_to_F2M("86",R[5]); //R[4] is k and MSB of k must be one, that's
    str_to_F2M("86",R[5]); //R[4] is k and MSB of k must be one, that's
        why it is 16 bits and the others are 8 bits just to make
        why it is 16 bits and the others are 8 bits just to make
        things simple
        things simple
    str_to_F2M("64",R[6]);
    str_to_F2M("64",R[6]);
    str_to_F2M("A7",R[7]);
    str_to_F2M("A7",R[7]);
    str_to_F2M("1",R[0]);
    str_to_F2M("1",R[0]);
    str_to_F2M("2",R[1]);
    str_to_F2M("2",R[1]);
    str_to_F2M("3",R[2]);
    str_to_F2M("3",R[2]);
    }
    void affine_to_projective(void)
    void affine_to_projective(void)
    {
    X1 = x;
    X1 = x;
    Z1 = R[3]; //R[3]; in the ECP assembly file here we have R[3]
    Z1 = R[3]; //R[3]; in the ECP assembly file here we have R[3]
    Z2 = x 2 ;
    Z2 = x 2 ;
    X2 = (Z2~2) + b;
    ```
    X2 = (Z2~2) + b;
```



```
{
    l = k.numBits ();
    l = k.numBits ();
    affine_to_projective();
    affine_to_projective();
    for(i=1-2; i>=0; i--)
    for(i=1-2; i>=0; i--)
    {
    {
        std::cout << " n==1==\nbit " << i << "= "<< k.getBit(i) ;
        std::cout << " n==1==\nbit " << i << "= "<< k.getBit(i) ;
        if(k.getBit(i) == 1)
        if(k.getBit(i) == 1)
        {
```

        {
    ```
```

201
202
203
204
205
206
207
208 std::cout << "\n==1==";
209 }
210 //calc_xy1(); //answer is in X2, z2
211}
212
213 //this is the implemented algorithm
214 void projective_montgomery_scalar_multiplication2()
215 {
216 int l;
217 int i;
218
219 dump_regfile(0);
220 l = k.numBits ();
221 affine_to_projective();
222 dump_regfile(1);
223
224 std::cout << "\nnum bits= " << l ;
225 std::cout << "\nk= " << k ;
226 for(i=l-2; i>=0; i--)
227 {
228
std::cout << "\n==2==\nbit " << i << "= "<< k.getBit(i) ;
if(k.getBit(i) == 1)
swap();
230
231
232
233
234
235
236
237 std::cout << "\n==2==";
238 }
239 calc_xy2(); //answer is in X2, Z2 */
240 dump_regfile(-1);
241}
242
243 void original_montgomery_scalar_multiplication(void)
244 {

```
```

245 Curve curve (dp.a, dp.b);
246 Point P1, P2;
247 int i, l;
248 Point P(x, y);
249
250 l = k.numBits ();
251 P1 = P;
252 P2 = curve.dbl(P);
253 for(i=1-2; i>=0; i--)
254 {
255 if(k.getBit(i) ==1)
256
257
258
259
260
261
262
263
264
265 }
266
267
268
269 }
270
271 vojd Mdouble(int src)
272{
273
274
275 if (src==1)
276
277
278
279
280
281
282
283
284
285
286 F2M x3 = (X^4) + b * (Z^4);
287 F2M z3 = (Z^2) * (X^2);
288
F2M X, Z;
{
X = X1;
Z = Z1;
}
else
{
X = X2;
Z = Z2;
}

```
```

289 if(src==1)
290
291
292
2 9 3
294
295
296
297
298 }
299
300 }
301
302 void Madd(int dest)
303 {
304 F2M z3 = (X1 * Z2 + X2* Z1) - 2;
305 F2M x3 = (x * z3) + (X1 * Z2) * (X2 * Z1);
306
307 if(dest==1)
308 {
309 X1 = x3;
310 Z1 = z3;
311 }
312 else
313 {
314
315
316 }
317 }
318
319 void swap (void)
320 {
321
F2M T;
322
323 T = X1; X1 = X2; X2 = T;
324 T = Z1; Z1 = Z2; Z2 = T;
325 }
326 void Montgomery_P_plus_Q__P_plus_P1(void)
327 {
328 /* equivalent to
329 (X1, Z1) = Mdouble(X1, Z1)
330
331
332
{
X1 = x3;
Z1 = z3;
}
else
{
X2 = x3;
Z2 = z3;
}
}
{
}
X2 = x3;
Z2 = z3;
}
}
\
{
(X2, Z2) = Madd(X1, Z1, X2, Z2)
*/
//this is implemented in monti4.s

```
```

333 X2 = Z1 * X2; //1
334 Z1 = Z1 - 2;
335
336 Z2 = X1 * Z2; //2
337 X1 = X1 - 2;
338
339 R4 = Z1 - 2;
340
341 Z1 = X1 * Z1; //3
342
343
344 X1 = X1 - 2;
345
346 F2M t = X2 + Z2;
347 X2 = X2 * Z2; //4
348 Z2 = t - 2;
349
350
351 R4 = R4 * b; //5
352 X1 = X1 + R4;
353
354
355 R4 = x * Z2; //6
356 X2 = X2 + R4;
357 }
358
359
360 roid Montgomery_P_plus_Q__P_plus_P2(void)
361 {
362 //this is implemented in monti4.s
363 R[1] = R[2] * R[1]; dump(R[1]);//1
364 R[2] = R[2] - 2;
365
366 R[3] = R[0] * R[3]; dump(R[3]);//2
367 R[0] = R[0] ~ 2;
368
369 R[4] = R[2] - 2;
370
371 R[2] = R[0] * R[2]; dump(R[2]);//3
372
373 R[0] = R[0] - 2;
374
375 F2M t = R[1] + R[3];
376 R[1] = R[1] * R[3]; dump(R[1]);//4

```
```

377 R[3] = t - 2;
378
379
380
394 //this routine is written in a way to be the same as the
395 //hardware implementation, and it doesn't mean it is a good
396 //software implementation
397 void Itoh_Tsuji_inverse(int m, int in, int out)
398 {
399 //A is the accumulator, S is the input register of the multiplier
400 //this is implemented in inv.rom
4 0 1 ~ F 2 M ~ A , ~ S ;
402 byte m0, e, sq_cnt, i, c;
4 0 3
404 A = R[in];
405 e = 1;
406 //m0 = dp.m \& (~1);
407 m0 = m \& (!1);
4 0 8 ~ i ~ = ~ 8 ; ~ ;
4 0 9
410 while( (i!=0) \&\& ((m0 \& 0x80) == 0))
4 1 1 ~ \{
412 m0 <<= 1;
413 i--;
414 }
4 1 5
416
417 if(i!=0) //skip the first '1' too
418 {
4 1 9
420
{
m0<<<=1;
i--;

```
```

421 }
4 2 2
423 while(i!=0)
455 void calc_xy1()
4 5 6
457 // find this from Lopez paper and orlando paper (all are in the white
461 //F2M F2M::inverse ()
462 //F2M F2M::sqr ()
463
464 R4 = x*Z1*Z2;

```

424
```

4 6 5
4 6 6
467 R4 = R4.inverse();
468 /*
469 R4 = T3;
470 Itoh_Tsuji_inverse(dp.m, 4, 4); use this one becaue dp is not always
475 F2M T = x * Z2 * X1;
476 dump(T);
477
4 7 8
490 void dumpregfile(int n)
491 {
4 9 2
4 9 3
4 9 4
495 }
4 9 6
497 void use_Trionomial(int m, int k)
498 {
499 F2X pt=Trinomial (m, k, 0);
500 setModulus (pt);
501}
5 0 2
503 inline F2M operator^ (const F2M\& a, int n)
504 {
5 0 5
506
507 while(--n>0) //>0 for n equal 0

```
```

508 c*=a;
509 return c;
510 }
5 1 1
5 1 2

```

\section*{Appendix B}

\section*{Chip Layout}


Chip layout: program memory, power rings, power strips, clock tree


Chip layout: The whole chip in SoCE

\section*{VITA AUCTORIS}

Name: Bijan Ansari
Year of Birth: 1964
Education:
1979-1982
1983-1988
High school diploma, Isfahan University High School, Isfahan, Iran
1983-1988 B.Sc. Isfahan University of Technology, Isfahan, Iran
2002-2004 M.A.Sc. University of Windsor, Windsor, Ontario
Email: bijan486@yahoo.com```


[^0]:    5.13 Simulation Waveforms while calculating Inverse 82

[^1]:    ${ }^{1}$ In some cases number of additions is calculated to be used in the performance calculation of the developed processor(chapter 5)

[^2]:    ${ }^{1}$ est.: estimated
    FF: Flip Flop LUT: Look Up Table
    M.O.: Massey Omura multiplier

    ONB: Optimal Normal Basis
    Poly.: Polynomial multiplier
    Pr.: Presented
    Sc.: Scalable, Being able to change both field size and the elliptic curve parameters without reprogramming the hardware

[^3]:    ${ }^{2}$ Being able to change both field size and the elliptic curve parameters without reprogramming the hardware

[^4]:    ${ }^{a}$ In [46] authors didn't assume NAF representation for scalar $k$.
    ${ }^{b}$ In [57], maximum $D$ is 16 . Probably they were not able to use $\mathrm{D}=42$ due to limited resource in their FPGA. We assume $D=42$ here.

