University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Efficient implementation of elliptic curve cryptography.

Bijan Ansari
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Ansari, Bijan, "Efficient implementation of elliptic curve cryptography.” (2005). Electronic Theses and
Dissertations. 1881.

https://scholar.uwindsor.ca/etd/1881

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.


https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1881?utm_source=scholar.uwindsor.ca%2Fetd%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Efficient Implementation of Elliptic Curve
Cryptography

by

Bijan Ansari

A Thesis
Submitted to the Faculty of Graduate Studies and Research through the
Department of Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre référence
ISBN: 0-494-09774-4
Our file  Notre référence
ISBN: 0-494-09774-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Efficient Implementation of Elliptic Curve Cryptography
by

Bijan Ansari

APPROVED BY:

B! Zhou
Departmient of Mechanical and Materials Engineering

M. Ahmadi
Department of Electrical and Computer Engineering

’/
H. Wu, Advisor
Department of Electrical and Computer Engineering

¢ vl\)f A. Sid‘-/Ahmed, Chair of Defen'se
Chair, Department of Electrical and Computer Engineering

University of Windsor
May 13, 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12
/0'\){1

(© 2004 Bijan Ansari

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise
retained in a retreival system or transmitted in any form, on any medium by any means

without prior written permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Elliptic Curve Cryptosystems (ECC) were introduced in 1985 by Neal Koblitz and Victor
Miller. Small key size made elliptic curve attractive for public key cryptosystem implemen-
tation. This thesis introduces solutions of efficient implementation of ECC in algorithmic
level and in computation level.

In algorithmic level, a fast parallel elliptic curve scalar multiplication algorithm based
on a dual-processor hardware system is developed. The method has an average computation
time of 3 Elliptic Curve Point Addition on an n-bit scalar. The improvement is n Elliptic
Curve Point Doubling compared to conventional methods. When a proper coordinate sys-
tem and binary representation for the scalar k is used the average execution time will be as
low as n Elliptic Curve Point Doubling, which makes this method about two times faster
than conventional single processor multipliers using the same coordinate system.

In computation level, a high performance elliptic curve processor (ECP) architecture is
presented. The processor uses parallelism in finite field calculation to achieve high speed
execution of scalar multiplication algorithm. The architecture relies on compile-time detec-
tion rather than of run-time detection of parallelism which results in less hardware. Imple-
mented on FPGA, the proposed processor operates at 66 M Hz in GF(2'%7) and performs

scalar multiplication in 100uSec, which is considerably faster than recent implementations.
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Chapter 1

Introduction

1.1 Motivation

With the rapid and expansive growth of Internet, the need for communication security is
increasing. Financial institutions, manufacturing plants and general public use Internet to
exchange private information. Further expansion of information technology (IT) is tied to
the confidence of Internet users to the security of data transaction on Internet. Secure infor-
mation exchange is vital for E-commerce, and public key cryptography is the most efficient
way to achieve data exchange security between two unfamiliar parties on the Internet.

Public key cryptography was introduced in 1976 by Diffie and Hellman [28]. RSA, the
first popular public key cryptosystem, which is based on the difficulty of integer factorization
was introduced shortly after. RSA is widely accepted and is used for many cryptographic
applications. In 1985, Koblitz (3] and Miller [4] independently introduced elliptic curve
cryptography, which is basically based on the group of points on an elliptic curve (EC) over
a finite field.

Providing the same security level, elliptic curve cryptosystem (ECC) uses smaller key
size compared to RSA. ECC implementations require less power, less memory and less

computation power compared to RSA implementations. These features makes ECC very
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1. INTRODUCTION

attractive for implementation on constrained devices such as wireless devices, handheld
computers and smart cards.

Efficient implementation of elliptic curves cryptosystems can be classified into two basic
levels. In the higher level efficiency is tied to the efficiency of the scalar multiplication
algorithms(Chapter 3 and 4). On lower level, efficiency goes down to finite field arithmetic,
and mostly to finite field multiplication(Chapter 5). This thesis proposes an efficient scalar
multiplication algorithm as well as a new architecture for efficient elliptic curve arithmetic
implementation.

Although implementing security algorithms in software is easier, it is relatively slow, and
has the effect of slowing down and consuming the valuable time of the main processor of
the host system. Hardware solutions are attractive specially when there is a large volume of
secure transactions. Considering the current growth trends it is expected that the demand

for fast security processors will be high in the future.

1.2 Thesis Outline

Chapter 2, gives an elementary introduction to Finite Fields and Elliptic Curves. It covers
some of the mathematical theory behind the construction of finite fields and elliptic curve
group and the basic equations that govern the point addition and point doubling on an
elliptic curve. Finally, it describes the idea of creating a security system based on elliptic
curve and gives estimation of the strength of elliptic curve cryptosystem.

Chapter 3, provides a comprehensive survey on currently used elliptic curve scalar multi-
plication algorithms. Different coordinate systems are explained and EC point addition and
doubling formula in each coordinate is expressed and compared to each other. Scalar mul-
tiplication algorithms are categorized . Algorithms based on scalar recording explained and
evaluated. Special scalar multiplication techniques such as point halving method, Mont-
gomery algorithm and ,ECC based on Koblitz curve discussed at the end of the chapter.

Chapter 4, introduces a new fast algorithm for scalar multiplication. The new technique
is explained and simulation results are compared to conventional double and add methods

(10].
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1. INTRODUCTION

Chapter 5, describes the proposed architecture for a high speed elliptic curve processor.
A thorough survey on the elliptic curve processors hardware implementations is carried out,
and the proposed processor is compared to them. The RTL simulation result is provided
and is compared to few similar design. The results of the survey in chapter 2 is used here

to implement an efficient scalar multiplication algorithm.
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Chapter 2

Preliminaries on FElliptic Curve

Cryptography

2.1 Basic Concepts

Groups

Definition 1. A group consists of a set G together with an operation *x defined on G which

satisfies the following axioms.
1. Closure: for all a,b € G we have axb e G
2. Associativity: for all a,b,c € G we have (axb)*xc=ax (bxc)

3. Identity: for all a € G there exists e € G so that axe = exa = a. The unique element

e is called the neutral element in G.

4. Inverse: for all a € G there exists 2 € G so that axi =i%xa = e. i is unique and is

called inverse of a

We use the notation (G, *) to represent group G with group operation x. (G, x) and

(G, +) are called multiplicative and additive group respectively. In an additive group, the
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2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

neutral element is represented by the symbol 0 and the inverse of a is denoted as —a. In a

multiplicative group, the neutral element is represented by the symbol 1 and the inverse of

a is denoted as a~ 1.

(G,*) is called an Abelian or commutative group if for any a and b € G we have

axb=bxa.

if set G is finite, the group (G, «) is called a finite group. The number of elements in G
is called the order of the group and is denoted by | G |
Rings

Definition 2. A ring is a set R and two operations + and X (called addition and multi-

plication, respectively) defined over R which satisfies the following axioms:

1. {(R,+) is a commutative group.
2. Associativity of x: For all a,b,c € R we have (a x b)) x c=a x (b X ¢)

3. Distributivity of x over +: For all a,b,c € R,ax (b+¢) = axb+a x ¢ and
(a+b)xc=axc+bxc

A ring in which the multiplication X is commutative is called a commutative ring.

Fields

Definition 3. A field is a ring in which multiplication is commutative and every element

except 0 has a multiplicative inverse.

So, we can define the field F with respect to the operations x and + if:
1. (R,+) is a commutative group.
2. (R — {0}, x) is a commutative group

3. x is distributive over + -
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2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

If set F has finite number of elements then F is a finite field or a Galois Field . For example
the set Z, = {0,1,...,p—2,p— 1} where p is a prime, with modular addition and modular

multiplication is a finite field.

Definition 4. One way function is a function that provides for a computationally inex-
pensive mapping from set X to set Y for all z € X but becomes computationally infeasible

when mapping an element from set Y to set X for most y € Y.

Discrete logarithm (DL) problem: A particular one-way function with z,y € G such that
the discrete logarithm of x to base y, denoted by log y (x), has a unique integer solution z

where = = y®.

2.2 Elliptic Curves

Elliptic curves have been studied by mathematicians for more than a century. They have
been playing an important role in number theory and cryptography. Elliptic Curves have
been used in integer factorization and have played an important role in solving the famous
problem known as Fermat’s last theorem. Elliptic curve cryptography was proposed inde-
pendently by Victor Miller [4] and Neil Koblitz (3] in the 1985. Elliptic curve cryptosystems

are standardized and are commercially available.

2.2.1 Definition of Elliptic Curves

Definition 5. Elliptic curve E over field K is a set of points (z,y) with z,y € K which

satisfy the equation:
E: y2 + a1xy + azy = z3 + a2z2 + a4 + ag , (2.1)

where aj,a2,a4,a6 € K , together with a single element denoted O are called point of

infinity [10].

The elliptic curve over X is denoted by E(K). The number of points on E(the cardinal-
ity) is denoted #FE(K) or just #E. _
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2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

An elliptic curve can be defined over various fields. For example, field of complex
numbers C, field of real numbers R, field of rational numbers Q, finite field over prime Fp
or an extension field Fyn. If K is a field, and a1,a3,a4,06 € K, we say E is defined over
K. In this case the elliptic curve will be the set of points (z,y) where z,y € K and (z,y)
satisfy equation 2.1. In cryptography, elliptic curves over finite field F, or Fyn are used.
Specifically Fan is used more often since it leads to a more efficient design.

For fields of various characteristics, the equation 2.1 can be changed into simpler forms

by a linear change of variables. For fields of characteristics two equation 2.1 is simplified to

E:y*+zy=a®+az?+ag (2.2)

where a3, ag € Fan.
We consider the equations for field of characteristic 2 which is used in this work. Equa-
tion for a field other than characteristic 2 was omitted since they are not central to the

discussions.

The Graph of Elliptic Curves

Figure 2.1 shows graphs of two typical elliptic curves defined over the field of real numbers.
The graph of elliptic curve over a finite field is a finite of set of points as is depicted in
figure 2.2. Each point in graph 2.2 is called a point on the elliptic curve and is denoted by
a single letter such as P. The number of points on a elliptic curve over a finite field is an

important cryptographic aspect of the curve and will be discussed later.

2.2.2 Point Addition Formula

Suppose P1 and P2 are two points on elliptic curve E(X). Choose P1 and P2 and construct
a line through these 2 points. In the general case, this line will always have a point of
intersection with the curve. Now take this third point and construct a vertical line through
it. The other point of intersection of this vertical line with the curve is defined as the sum

of Pl and P2 ,ie. P3 = Pl + P2. If Pl and P2 are equal, then the line constructed
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2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

Figure 2.1: Typical Graph of Elliptic Curve defined over the Field of Real Numbers

C
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Figure 2.2: Graph of Elliptic Curve defined over GF(2%3)

0

12343567389 101121BKIS6ITIBIZNNNR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

Figure 2.3: Elliptic Curve Point Addition Operation P3 = P1 + P2.

P3
|
|
|
'

in the first step is the tangent to the curve, which again, has exactly one other point of
intersection with the curve. This operation is illustrated graphically in figure 2.3.
For each of the two elliptic curves equation 2.2 and 2.1 Analytical formulas representing

P3 can easily be derived from the explained geometric procedures.

Addition formula for equation 2.1: The inverse of P1 = (z1,y1) € E is —P = (z1, —11)-
If P2 # —P1, then P3 = P1+ P2 = (x3,y3) where

/\ = -‘Eziﬂ-‘i
If P1 # P2 r3=M - A+z) — 29 (2.3)

y=(T1—z3)A—n
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2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

/\=%+.’E1
if P1 = P2 z3 = A+ A+as (2.4)

ys = (z1 +z3)A + 23+ 41
Addition formula for equation 2.2: The inverse of P1 = (z1,y1) € E is —P = (z1, 21 +
y1). If P2 # —P1, then P3 = P1 + P2 = (23, y3) where

A= yi+y2
T+
if P1 # P2 x3=/\2+/\+a:1+z2+a2 (2'5)

w=(T1+z3)A+z3+ 0

/\=‘;%+.'121
if P1 = P2 z3 =X+ A +ay (2.6)

y3 = (z1 +z3)A+ 23+ 11

In summary we define the following rules for elliptic curve point addition:

o If P=(0© we define ~-P=0

e Equation 2.1: If P = (z,y) = —P = (z,—y)
Equation 2.2: If P = (z,y) = —P = (z,z + y)

e If P1 # P2 = P3 = Pl + P2 equation 2.1 and 2.2

e f Pl=~-P2=P1+P2=0

Elliptic Curve Group Law

The Elliptic Curve addition operation satisfies the following properties:
1. Closer: (P+Q)€ E
2. Commutativity: P+Q=Q + P
3. Existence of identity: P+O0 =0+ P

4. Existence of inverse: VP € E3Q € Esothat P+ Q=Q+P =0

10
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2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

5. Associativity: (P+Q)+R=(P+Q)+R

All properties except 2 are easy to prove. For a proof on property 2 see [20].
Therefore Points on E form an finite additive Abelian group with O as the identity
element. If the elliptic curve is defined over a finite field, the elliptic curve additive group

forms a finite Abelian group.

2.2.3 Elliptic Curve Discrete Logarithm Problem

For some group (G, X) , suppose &, € G. Given & and B find for an integer z such
that o = @ is called the discrete logarithm problem (DLP). The DLP in Z, is considered
difficult if p has at least 150 digits and p — 1 has at least one large prime factor (as close
to p as possible). These criteria for p are safeguards against the known attacks on DLP.
Although the discrete logarithm problem exists in any group, when used for cryptographic
purposes the group is usually Z,. In fact discrete logarithm problem can be used to build
cryptosystems with any finite Abelian group. Multiplicative groups in a finite field were

originally proposed.

Definition 6. elliptic curve discrete logarithm problem (ECDLP) is defined as follows: we
define, kP=P+P+P+---+ P

k times

e ECDLP: Suppose P,Q € E(F,) and Q = kP for some k . Given P and Q find &k

No efficient algorithm is known to date to solve the ECDLP. Numerous cryptosystems
based their security on the difficulty of solving the DLP. For example El-Gamal Cryptosys-
tem in Z, and Diffie-Hellman key exchange [20].

There are also a number of cryptosystems whose security is based on the difficulty of
factoring large integers. One well-known example is the public-key system called the RSA
cryptosystem, which is by far the most popular public key algorithm.

11
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2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

2.3 Elliptic Curve Cryptosystem

Cryptosystems using elliptic curves are based on ECDLP. The basic operation in ECC is
kP = P+ P+ P+---+ P. The following list shows some encryption system based on

. p—

k  times

ECC

Diffie-Hellman key exchange

Messy-Omura Encryption

e El-Gamal Public Key Encryption

El-Gamal Digital Signature

o Elliptic Curve Digital Signature Algorithm (ECDSA).

Detail explanation of these encryption systems can be found in [20] and [21]

Example of an Elliptic Curve Cryptosystems: Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange protocol was proposed in 1976 [28]. This protocol allows
two or more participants to agree on a secret key without ever requiring access to a private
channel. Even if Eve (The Eavesdropper) is able to see every message passed between the
principles, it is mathematically infeasible for her to deduce the secret key. The protocol is

as follows:

Suppose Alice and Bob want to agree on a shared secret key . First of all, there are

public parameters P € E. Then they start the following communication.
1. Alice secretly chooses a random number n and sends Bob k4 P.
2. Bob secretly chooses a random number m and sends Alice kgP .

3. The secret key is k4kgP = kpk4P. Both Alice and Bob can easily compute, but Eve

can’t, because of the difficulty of the discrete logarithm problem.

12
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2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

Figure 2.4: Diffie-Hellman key exchange

Alice Bob
k, P k,P
k, (kP ) (kP )

k, =Alic Private Key k, =Bob Private Key

P = A Point on an EC (public knowledge)

4. Now Alice and Bob have the same key, kg(k 4 P) and can use this key to send encrypted

messages to each other

The most time consuming calculation in this system is kP (Scalar Multiplication). Diffie-

Hellman key exchange works for DLP as well as ECDLP.

Security of an Elliptic Curve Cryptosystem

In this section we try to provide an overview of the security strength elliptic curve cryp-
tosystems. A typical system is based on Galois fields between 150-160, which are small
enough for efficiency and are large enough for security.

There are two basic type of algorithms to solve discrete logarithm problem. General
attacks which do not depend on the underlying group and specific attacks which depend on
the representation{32].

Elliptic curve discrete logarithm problem is defined as follows: Let E(F,) be an elliptic
curve over Fg and let P be a point in E(Fy) . For any point R € E(F,) find the integer
k,0 < k < #P —1, (#P is the order of P) such that kP = R.

The most powerful general algorithm known at present is baby-step giant-step technique

[20]. Algorithms in this group have running time no better that O(,/p), where p is the

13
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largest prime dividing n. Shank’s baby-step giant-step method [20] requires O(,/p) in both
time and space. The storage requirement can be reduced significantly by using the Pollard
method [20]. Pollard method requires ,/p iterations on elliptic curve where each iteration
requires 3 elliptic curve additions. Each addition take 10 field multiplications where each
field multiplication takes 4 clock cycles to complete (using the proposed processor described
in the last chapter). Then we need 40,/p clock cycles or 0.4,/guSec to solve ECDLP. If
the order of the curve E contains a prime factor of at least 36 decimal digits, then we need
~ 0.4 x 10'®uSec which is about 12000 years to complete the operation. See [32] for more
explanation.

All methods for solving the discrete logarithm problem, except index-calculus method,
can be adapted to solve EC discrete logarithm problem (ECDLP). This means that there
exists no method for solving m with a sub-exponential running time. m should be prime,
in order to be safeguarded against Weil decent attacks [63].

Certicom (www.certicom.com), a Canadian company, has announced challenges to break

a typical ECC. Table 2.1 shows the challenge and the estimated time to break the ECC.

2.4 Elliptic Curve Cryptography Standardization

The development of standards is a very important point for the use of a cryptosystem.
Standards help ensure security and interpret-ability of different implementations of one
cryptosystem. There are several major organizations that develop standards. The most

important for security in information technology are:

e International Standards Organization (ISO)

American National Standards Institute (ANSI)

Institute of Electrical and Electronics Engineers (IEEE)

o Federal Information Processing Standards (FIPS)

National Institute of Standards and Technology (NIST)

14
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Table 2.1: Elliptic Curve Cryptography Challenge(www.certicom.com)

Curve Field size | Estimated number | Prize Status

Curve (in bits) | of machine days (US$) Status

ECC2-79 79 352 HAC, Maple | SOLVED Dec. 1997
ECC2-89 |89 11278 HAC, Maple | SOLVED Feb. 1998
ECC2K-95 | 97 8637 $ 5,000 SOLVED May 1998
ECC2-97 |97 180448 $ 5,000

ECC2K-108 | 109 1.3 x 108 $ 10,000 SOLVED Apr. 2000
ECC2-109 | 109 2.1 x 107 $ 10,000

ECC2K-130 | 131 2.7 x 109 $ 20,000

ECC2-131 | 131 6.6 x 1010 $ 20,000

ECC2-163 | 163 2.9 x 1018 $ 30,000

ECC2K-163 | 163 4.6 x 1014 $ 30,000

ECC2-191 {191 1.4 x 10% $ 40,000

ECC2-238 | 239 3.0 x 1077 $ 50,000

ECC2K-238 | 239 1.3 x 10%6 $ 50,000

ECC2-353 | 359 1.4 x 10% $ 100,000

ECC2K-358 | 359 2.8 x 104 $ 100,000
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Table 2.2: Elliptic Curve Standards and Algorithms

Standard Schemes

ANSI X9.62 | ECDSA

ANSI X9.63 | ECIES, ECDH, ECMQV
FIPS 186-2 ECDSA

IEEE P1363 | ECDSA, ECDH, ECMQV
IEEE P1363A | ECIES

ISO 14888-3 | ECDSA

ISO 15946 ECDSA, ECDH, ECMQV

Elliptic Curve Digital Signature Algorithm (ECDSA)
Elliptic Curve Integrated Encryption Scheme (ECIES)
Elliptic Curve Menezes-Qu-Vanstone Protocol (ECMQV)

Elliptic Curve Diffie-Hellman (ECDH)

The most prominent ECC algorithm, the ECDSA was accepted in 1998 as ISO standard
(IS014888-3), 1999 as ANSI standard (ANSI X9.62), and 2000 as IEEE (P1363) and Fips

(186-2) standard. Several other standardization efforts are in progress. Table 2.2 shows the

Elliptic Curve standards

2.5 Intellectual Property Issues

Contrary to RSA, the basic idea of Elliptic Curve Cryptosystems has not been patented,

and in the beginning this seemed to be an important advantage. However, a number of

patents have been applied for, on techniques that mostly aim at improving efficiency. In

principle, it should still be possible to construct a secure, albeit not extremely efficient

elliptic curve cryptosystems without licensing patents. The patents are mostly held by

Certicom, a Canadian company which is marketing elliptic curve cryptosystem.

A number of these techniques are being considered for inclusion in standards and this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16



2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

will potentially make it hard to implement interpretable elliptic curve systems without
licensing patents. On the other hand, some standardization organizations require the holders
of patents on standardized techniques to guarantee ’reasonable’ licensing conditions. In

summary, elliptic curves have lost many of their advantages as far as patents are concerned.

17
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Chapter 3

Introduction to ECC Computations

3.1 Introduction

In order to implement and elliptic curve cryptosystem one has to decide on the following

options:
1. Defining Equation for Elliptic curve

e Weierstrass form [6]

e Koblitz Curves [2]
2. Representation of points [10]

e Affine Coordinates
e Projective

o Mixed Coordinates

3. Scalar Multiplication technique kP ie. kP=P+P+P+..-+P

k times

e Comb method [16]

18
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3. INTRODUCTION TO ECC COMPUTATIONS

e Window method [10]
e Montgomery method [61]

o Scalar Recording {7]
4. Field Representation

e Polynomial Basis
¢ Normal Basis

o Dual Basis
5. Finite Field operation Algorithm

e Multiplication
e Squaring

» Inversion

In this chapter items 1, 2 and 3 are explained. Algorithms for finite field operation are
explained in the last chapter. Item 4 is not discusses here.

Speed of a ECC system is determined by the above factors as well as implementation
platform (Fig. 3.1). Using a dedicated hardware to speedup the underlying finite field
arithmetic will increase the speed of elliptic curve operations as it is explained in the last

chapter.

3.2 Elliptic Curve Definition

Definition 7. Let K be a field of characteristics # 2,3, lets 23 + az + b (where a,b € K)
be a cubic polynomial with no multiple roots. An elliptic curve over K is the set of points

(z,y) with z,y € K which satisfy the equation

V¥ =z+azr+b (3.1)

19
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3. INTRODUCTION TO ECC COMPUTATIONS

Figure 3.1: Platform option for ECC implementation

Finite Field Arithmetic Implementation

|
| |

Hardware Software

| |
| |

Classic Reconfigurable General purpose uP Embedded uP

ASIC FPGA Intel, RISC DSP, Smart Card

together with a single element denoted O and is called point at infinity. If K is of charac-

teristics 2, then an elliptic curve over K is the set of points satisfying the equation
V+y=z>+ax+b (3.2)
[1].

3.2.1 Different Forms of Elliptic Curve Equation
Weierstrass Form [6]

An affine Weierstrass equation over field K is an equation of the form
E(K):Y?2=0a1XY +a3y = X2® + a3 X3 + a4 X + ag (3.3)

with a1, a3,a4,a6 € K.

Koblitz Form [2]

Two extremely convenient families of curves are the anamolaus binary curves (or ABC’s
or Koblitz curves). These are the curves Ey and E; defined over Fom by E, : 2% + zy =
z3 4 az? + 1 . We denote by E4(Fam) the group of Fom-rational points on E, This is the
group on which the public-key protocols are performed. As we will see, this group of curves

speeds up the scalar multiplication [7].

20
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3.3 Elliptic Curve Point Representation

An elliptic curve can be represented using several coordinate systems. For each such system,
the speed of point additions (ECADD)and doubling (ECDBL) are different. Therefore
a good choice of coordinate system is an important factor for elliptic curve exponentia-
tions. We give here the addition and doubling formulas for affine, projective, Jacobian,

Chudnovsky and Lopez-Dahab coordinates. These coordinates are defined in section 3.4.1.

3.3.1 The Addition Formulas in Affine Coordinate
Let
E,:p?+zy=234+ax?+0 a,b € Fom

be an elliptic curve E over Fom. The addition formula for affine coordinates are the follow-
ings. Let P, = (z1,y1) and P, = (z2,y2) be two points on E, . Then the coordinates of
P; = P, + P, = (z3,y3) can be computed as shown in table 3.1.

Table 3.1: Addition Formula in Affine Coordinate

P1 # P2 P1=P2
A=zl A=4 4 g

z3=MN+A+z1+22+a | z3 = same

y3 = (z1 +23)A + 3+ y1 | T3 = same

Cost: I +2M + S Cost: I+2M+ S

For simplicity, we neglect addition and subtraction in Fom because they are much faster
than multiplication and inversion in Fam . Let us denote the computation time of an addition
(resp. a doubling) by t(P + P) or t(ECADD) (resp. t(2P) or t(ECDBL)) and represent
multiplication (resp. inverse, resp. squaring) in Fom by M (resp. I, resp. S). Then we see

that t(P +Q) = I +2M + S and t(24) = I +2M + 25 [§] .

21
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3.3.2 Projective Space and the Point at Infinity

Definition 8. n-Dimensional projective space Py over field K is the set of equivalence

classes of n-tuple (zo, 1, T2, . .., Tn) With zo, 1, z2, .. ., z, € K. Two n—tuple (zg, z1,%2,...,Tn)
and (yo0,¥1,Y2,- - -, Yn) are said to be equivalent iff there exists non-zero element A € K such
that

(€0, Z1, %2, .-, Zn) = (AY1, AY2, AU3, - -« AYn)

We write

(xo,w11w21 . '1xn) ~ (yO) YL y2,... yyn)

Example: Projective line Pi. It is the set of points (r,y) excluding (0,0) with the
points (Az, \y) identified with (z,y). If we select P = (z,y) , then all the points (Az, \y)
are on the line joining P to the origin. This is visualized in figure 3.2. Points with the same
shape are equivalent. For every equivalence class we can choose a point lying on the unit
circle as a representative. The projective line P} is then represented by the unit circle with

diagonally opposite points identified together.

Figure 3.2: Projective Line

A Y

xy)
(x1,yl)

(x2,y2) !
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The equivalence class of (z,y, z) is denoted by (z : y : 2). If (z : y : 2) is a point with
2z #0,then (z:y:2) = (z/z:y/z:1). These are the finite points in P§.However, If z = 0,
then dividing by 2 should be thought of as giving oo in either the z or y coordinate, and
therefore the points (z : y : 0) are called points at infinity in PZ. The point at infinity on
an elliptic curve is identified with one of these points at infinity in P}.

The two-dimensional affine plane over K is defined by

A ={(z,y) | z,y € k}

We have an inclusion

A,2c =—>P}}

given by

(z,y) = (z:y:1)

In this way affine plane is defined with the finite points in P}.

A polynomial is homogeneous of degree n if it is a sum of terms of the form az’y/2*
witha € K and i +j + k = n. If f(z,y) is a polynomial in = and y, then we can make it
homogeneous by inserting appropriate powers of z. For example, if f{z,y) = y?~z3—Az—B
then we obtain the homogeneous polynomial F(z,y) = y?z — 23 — Az2? — B2%. If F is

homogeneous of degree n then
F(z,y,2) = 2*f(z/2,y/z)

and
f(z,y) = F(z,y,1)

The elliptic curve E is given by 4> = 23 + Az + B. The homogeneous from is y2z =
z3 + Azz® + B2®. The point (z,y) on the original curve, corresponds to points (z : y : 1)
in the projective version. To see what points on E lie at infinity, set 2z = 0 and obtain
z = 0. Therefore z = 0, and y can be any nonzero number. Rescale by y to find that
(0:y:0)=(0:1:0) is the only point at infinity on E. Using projective coordinate speeds

up computation on elliptic curve.

23
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3.4 Choosing a Coordinate System

Using different projections, points on an elliptic curve can be represented in many different

ways, as it is shown in the following list.
o Affine Plane: (z,y) E.:y +zy=234+az?+b a,bcFom

e Projective Plane: (z = X/Z,y = Y/2) E,:Y?Z+XYZ = X3+ aX%Z +
bZ3 a,b € Fom

Jacobian: (z = X/Z2,y=Y/Z%) E;:Y?=X3+4+aXZ*+b2°%° q,b€F,

Chudnovsky: (X,Y,Z,22,23) P3=P,+ P, = P2=(X3,Y3, 23, Z32, Z33).

Lopez-Dahab: (x = X/Z,y=Y/Z?) E;:Y*+XYZ=X3+aXZ2+bZ* a,bc
Fym

3.4.1 Different Coordinate Systems
The Addition Formulas in Projective Coordinates
For projective coordinates, we set ¢ = X/Z and y = Y/Z, giving the equation:
E,:Y?Z=X3+aXZ%+b2° abel,
Ey:Y!Z+XYZ=X3+aX’Z+b2° a,b€Fpm

The addition formulas in projective coordinates for I, are the following. Let Py = (X1,Y1, Z1),
Py = (X3,Y2,25) and P3 = Py + P, = (X3,Y3,Z3), table 3.2 summarized the addition
formula [8].

The Addition Formulas in Jacobian Coordinates

For Jacobian coordinates, we set z = X/Z? and y = Y/Z?, giving the equation:

E;:Y?=X34aXZ'+02% abeF,

24
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Table 3.2: Addition Formula in Projective Coordinates for F,

P1# P2 Pl1=P2
u=Yy71 — Y12, u=aZ;? +3X;?
v =X2Z1 —X122 U=Y1Z1

w=1u?Z1Zy —v3 - 20%°X1Z, |w=XYiv
' 8

t=uw
X3 =vw X5 =2ut
Y = u(v?X1Zs —w) — 312, | V3 = u(dw — t) — 8Y%?
Z3 =322 Z3 = 8v3
Cost: 12M + 2§ Cost: TM + 58

The addition formulas in the Jacobian coordinates are presented in table 3.3. Table 3.4 rep-
resents the point addition and point doubling formulae adapted from IEEE P1363 standard
for comparison[21]A10-5, A10-7.

The Addition Formulas in Chudnovsky Jacobian Coordinates

We see that Jacobian coordinates offer a faster doubling and a slower addition than pro-
jective coordinates. In order to make an addition faster, we should represent internally a
Jacobian point as the quintuple (X,Y, Z, Z?, Z3). This is called the Chudnovsky Jacobian
coordinate and denoted by J.. The addition formulas in the Chudnovsky Jacobian coor-
dinates are the following. Let P1 = (X1,Y1,2),212, Z13), P2 = (X2, Y2, Z2, Z22, Z23) and
Py = Py + P, = P2 = (X3,Y3,23,232,Z33). Table 3.5 shows the addition procedure in
mathbbFy.

The Addition Formulas in Lopez-Dahab Coordinates
We set © = X/Z and y = Y/Z2, giving the equation:

Ej: Y24+ XYZ=X34+aXZ2+02* a,beFom

25
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Table 3.3: Addition Formula in Jacobian coordinates for F,

P1# P2 P1= P2
Uy = X122 S =4X,Y?

Uz = X22:2 M =3X:*+aZy*

S1 = X12,° = -25 + M?
S1=Y22,3

H1=U,-Ul

R=8-8-1

X3 =—H® - 2U01H? + R? Xs=T

Y;=-S51H3+ R({U1H? - X3) | Y3 = —8Y14+ M(S - T)
Z3 = Z1Z,H Z3 =2Y,Z;

Cost: 12M + 485 Cost: 4M +6S

like other projective coordinates this coordinate we don’t need inversion for ECADD and
ECDBL (Table 3.6)[9].

The key observation is that, point addition in projective coordinates can be done using
field multiplication only, with no inversion required. Thus the inversion are deferred, and
only one need to be performed at the end of a point calculation, if it is required that the final
result be given in affine coordinates. The cost of eliminating inversion is an increased number
of multiplication. So the appropriateness of using coordinated is strongly determined by

the ratio I/M. for an I/M > 10 projective coordinates is recommended(9] [10].

Mixed Coordinate

It is evidently possible to mix different coordinates, i.e. to add two points where one is
given in some coordinate system, and the other point is in some other coordinate system.
We can also choose the coordinate system of the result. Proper use of mixed coordinates

can lead to a faster point calculation. For a table of mix coordinate system refer to [8].

26
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Table 3.4: Addition Formula in IEEE Standard for Fom

P1# P2 P1=P2

Up = XoZ? (b=c?)

So = Yo 23 Zy = X\ 2}

U =X12¢ X2 = (X1 +cZ%)4

S =Y123 U=2,+ X} + 12
W=U+Uh Yo = X{Z, + UX?
R=5+5

T=R+2,

L=ZW

Zy=L2,

Xy =aZ2 +TR+ W3

V=RX,+LY

Y, =TX,+ VL?

Cost: 16M +7A+ 58 Cost: 5M +4A+ 58
Cost (Zy =1): 11M +TA+ 48

3.4.2 Coordinates Summary

Table 3.7 lsummarizes the cost of elliptic curve point calculation in different coordinates.
Selection of the coordinate system depends on the implementation platform. As a rule of
thumb, projective coordinates are preferred, unless there exists an efficient division imple-

mentation.

!In some cases number of additions is calculated to be used in the performance calculation of the developed

processor(chapter 5)
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Table 3.5: Addition Formula in Chudnovsky Jacobian Coordinates for Fp

P1 # P2 Pl1=P2
Ur = X122 S =4X,Y?

Us = X2Z12 M =3X\*+aZ:*

S =Y1293 T =25+ M?

Sy =Y22,3

Hl1=U,-Ul

R=8-8-1

X3 =—H3-2U1H? + R? X3=T

Ys=-S1H}+ R(U1H? - X3) | Ya=-8V1*+ M(S-T)
Zy = Z1ZoH Z3 = 2Y17Z,

Cost: 11M + 48 Cost: 5M +6S

3.5 Scalar Multiplication

Scalar multiplication (or point multiplication) is the heart of Elliptic Curve Cryptogra-
phy(ECC), which computes kP for a given point P and a scalar k. In public-key crypto-
graphic systems, elements of some group are raised to large powers. In case of RSA it is a*
and in case of Elliptic curve it is kP .

The scalar multiplication in ECC is the most dominant computation part of ECC. There
are many algorithms for computing the scalar multiplication. The IEEE standard one is the
binary non-adjacent form (NAF) which is not the most efficient one. Table 3.8 summarizes
scalar multiplication techniques.

Scalar multiplication in elliptic curves is a special case of the general problem of modular
exponentiation in Abelian group. Therefore it benefits from all the techniques available for
the general problem and the related short addition chain problem for integers. However
there are also efficiency improvements available elliptic curve case that have no analogue in

modular exponentiation. There are three kinds of these [10]:
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3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.6: Addition Formula in Lopez-Dahab Projective Coordinates for Fom

P1# P2 Pl1=P2
A=Y22+Yi A=bz,"
B=X2Z21+X

C=2B

D = B%(C +aZ,?)

E=AC

F = X3+ X223

G=X3+Y22Z3

Xs=A2+D+F | Xa=X"+4
Y3=EF+23G |Y3=AZ3+ X3(aZ3 +Y,2+ A%
Z3=C? Z3 = X127,2
Cost: 14M Cost: 5M

1. Choose the curve, and the base field over which it is defined, so as to optimize the

efficiency of elliptic scalar multiplication.

2. Use the fact that subtraction of points on an elliptic curve is just as efficient as
addition.If we allow subtractions of points as well, we can replace the binary expansion

of the coefficient n by a more efficient signed binary expansion.

3. Use complex multiplication. Every elliptic curve over a finite field comes equipped
with a set of operations which can be viewed as multiplication by complex algebraic

integers (as opposed to ordinary integers).

In general the following methods try to optimize kP. Generally the optimization is
based on{11]:

1. Recording of multiplier k&

2. Precomputation
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3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.7: Cost of Point Addition and Doubling in Different Coordinate System

Coordinate Transform P+Q 2P Field
Affine (X,Y) I+2M+S I+2M+S Fy
Standard projective (X/2,Y/Z) 12M + 28 ™ + 58 Fy
Jacobian projective (IEEE) | (X/22,Y/Z3) 12M + 48 4M + 58 Fp
Jacobian projective (IEEE) | (X/22,Y/Z3) 15M +55 +7A | 5M +55 +4A | Fom
Using mixed coordinate 11M +45+T7A

Chudnovsky projective (X,Y,2,2%,23) | 11M +4S 5M +68 Fp
Lopez-Dahab projective (X/2,Y/Z?%) 14M +58 5M +98 Fam

3.5.1 Speeding up Scalar Multiplication (kP)
Binary Method

This method which is also known as the double-and-add (square and multiply for RSA)
method, is over 2000 years old [12]. The basic idea is to compute g* or kP using the binary

expansion of k. Let

n-1
k=) b2 (3.4)

=0
Then the following algorithm will compute kP using binary method, it takes nx ECDBL
and § x ECADD on average [10].

m~ary Method ‘ -

The binary method has an obvious generalization: Let

d—1
k=) cm (3.5)

=0

The algorithm in table 3.10 computes kP using this representation.
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Table 3.8: Classification of scalar multiplication techniques

Name of Method Basic Idea Application Example

Comb [16] Precompute tables of Y 77 2¥iQ Q fix DH key exchange
addition chains [7] sum? = k; k fix DSA

Windowing (Fix, Variable) | Precompute tables memory k = g=—()1 cmt @ is not known | Security Server

m—ary [10]

Scalar recoding [7]

fewer zero in binary representation of k (NAF)
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3. INTRODUCTION TO ECC COMPUTATIONS

Table 3.9: kP using Double and Add Method

Algorithm: Scalar Multiplication: Binary Method [10]

Input: A point P, an integer k=3 15 b;2},b; = 0,1
Qutput @ = kP
Q—0
For i = n-1 to O by -1
Q< 2Q
if bj=1 then Q —~ Q+ P
EndFor
Return @

This method is particulary attractive if m = 27. For r = 3 it will be similar to octal
representation of k, and for r = 4 it will be similar to hexadecimal representation of k.
If m = 27 this algorithm takes (n — r) x ECDBL (since d = n/r,(d — 1)r = n —r) and
d x ECADD and (m — 1) x ECADD for precomputation [7][10].

Modified m-ary Method

In case of m = 27, It is possible to save some ECADD at precalculation phase, by dropping
the trailing zeros at each m; . ie. we calculate m;P when m; is odd.

Using this method number of ECADD is n/r + (m — 2)/2. The number of ECDBL
remain the same. It is worth mentioning that we need to select the optimized r for a
specific length of k. There is always a specific r for a k¥ which minimizes the number of

elliptic computations (7].

Window Method

The m-ary or 2"-ary method may be thought of as taking k-bit windows in the binary
representation of r, calculating the powers in the windows one by one, squaring them r

times to shift them over, and then multiplying by the power in the next window (7. In
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Table 3.10: kP using m-ary Method

Algorithm: Scalar Multiplication: m-ary Method [10]

Input: A point P, an integer k= Zf;ol kimi k; € {0,1,...,m—1}
Output @ = kP
Pl P
For i =2 to (m-1) by -1
P1; — P,_; + P (pre calculate, P, = iP)
Q—0
For i = d-1 to 0 by -1
Q — mQ (if m = 27, this requires r doubling)
Q—Q+kP (pre calculations is required to calculate all ¢; P)
EndFor

Return Q

other words it can be regarded as a specific case of window method, where bits of the
multiplier k are processed in blocks of r bits. Window method processes windows up to
length r disregarding fixed digit boundaries, and skips runs of zeros between them. These
runs are taken care of by point doubling, which need to be computed in any case. We
assume r > 1.

Using sliding windows has an effect equivalent to using fixed windows one bit larger,
but without increasing the precomputation cost. The computation cost of sliding window

method is estimated as n x ECDBL and n/(r + 1) x ECADD [10].

Redundant Number System: Binary NAF

Subtraction has virtually the same cost as addition in the elliptic curve group. The group
negative of (z,y) is (z, + y) in characteristics two and (z, —y) in odd characteristics. This
naturally leads us to scalar multiplication methods based on addition-subtraction chains,

which may reduce the number of point operation. The signed-digit (SD) representation-can
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Table 3.11: kP using Modified m-ary Method

Algorithm: Scalar Multiplication: Modified m-ary [10] Method

Input: A point P, an integer k = Z?;ol kim' k; € {0,1,...,m — 1}

Output Q =kP
P, — P, P, 2P
For i =1 to (m-2)/2 by -1
Pyt 1 — Py_1 + P, (pre calculate, odd multiplies of P)
Q-0
For i = d-1 to 0 by -1
If kj #0 then
Let s; and h; be such that k; =2%h;,h; odd
Q—(2779)Q
Q — Q + Py,
Else sj « T
Q —2%Q
EndFor
Return @

be applied to all methods discussed so far, but this technique cannot be used for modular
exponentiation in RSA.

This begins with the non-adjacent form (NAF) of the coefficient k: a signed binary
expansion with the property that no two consecutive coefficients are nonzero. For example,
NAF(29) =(1,0,0,—1,0,1) since 29 =32 — 4 + 1. ' :

Just as every positive integer has a unique binary expansion, it also has a unique NAF.
Moreover, NAF(k) has the fewest nonzero coefficients of any signed binary expansion of k

[7]. There are several ways to construct the NAF of k from its binary expansion.
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Table 3.12: kP using Window Method

Algorithm: Scalar Multiplication: Sliding Window Method [10]

Input: A point P, an integer k= 3 %) b;2% k; € {0,1}
Qutput @ = kP
P, — P, P, —2P
For i =1 to (277!-1)
Pyiy1 — Pai_1 + P3 (pre calculate, odd multiplies of P)
jen—-1Q <« 0O
For i = d-1 to 0 by -1
If k; #0 then
Let ¢ be the least integer such that j—t+1<7r and k; =1
hj — (kj, kj1,...,kt)y
Q— QUTHD)Q + By,
je—t—1
Else Q «—2Q,7«j—1
EndFor

Return @@

Consider representations

n-1
n= Zcﬂ" where ¢; € {-1,0,1} forall i (3.6)
i=0

Let the weight of a representation be the number of nonzero ¢;, and let w(z) be the min-
imum weight of any such representation of x. A non-adjacent form NAF is aj—representation
with ¢;cip =0 for all 7 > 0.

Theorem: Every integer x has exactly one NAF. The number of nonzero in the NAF is
w(z) The advantage of using the NAF is that, in general it has fewer nonzero than the binary
representation, reducing the number of multiplications. The expected number of nonzero

in a length n NAF is n/3. NAF(k) can be efficiently computed using the following
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3. INTRODUCTION TO ECC COMPUTATIONS

in table 3.13. Table 3.14 shows the algorithm for scalar multiplication using Binary NAF
method.

Table 3.13: Converting a number to NVAF

Algorithm: Computing the NAF of a positive [10] integer

Input: A positive integer k

Output NAF(k)

10

While k >= 1
If k is odd then: k;—2—(k mod 4),k—k—k;
Else k<0
ke—k/2,i=i+1

EndWhile

Return (k;_1,ki—2,...,k1,ko)

The m—ary method may of course also be generalized to allow negative digits. However,
the savings quickly go down, since the average number of nonzero in an n-digit generalized
NAF is n(m — 1)/(m + 1), which is not much better than the n(m —1)/(m) in the base-m
representation for large m. Using Binary NAF the algorithm in table 3.14 will compute
kP.

The cost of the algorithm is n doubles and n/3 additions. For a total of 4n/3 elliptic
operation. This is about one-eighth faster than the binary method, which uses the ordinary
binary expansion in place of the NAF and therefore requires an average of n/2 elliptic

additions rather than n/3.

Width-w NAF Method [10]

The so called width-w NAF method is the special case of signed modified m-ary method,
or NAF representation of modified m-ary method, where m = 2%. A width-w NAF of an

—
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Table 3.14: kP using NAF representation for k

Algorithm: Scalar Multiplication: NAF Binary Method [10]

Input: A point P, an integer k=Y 1y ;2 ¢ = —1,0,1
Qutput Q = kP
Q<0
For i = n-1 to O by -1
Q—2Q
if b;=1 then Q —~ Q + P
if bj=—1 then Q — Q- P
EndFor

Return @

integer & is an expression

d-1
k=) km', ke{-2""41,...,0,1,3,...,2¢ -1}

=0
In other words each non-zero coefficient ; is odd, [k;| < 2¥~1, and at most one of any
w consecutive coeflicients is nonzero. Every positive integer has a unique width-w NAF,
denoted NAF, (k). Note that NAFy(k) = NAF(k). NAF, (k) can be efficiently computed
using NAF algorithm in table 3.13 modified as follows: in the first statement of the While
loop replace k; — 2—(k mod 4)by k; —2—(k mod 2%), where k mod 2% denotes
the integer u satisfying u = k(mod2¥) and —2¥~! < 4 < 2¥-1,

It is known that the length of NAF, (k) is at most one bit longer than the binary
representation of k. Also, the average density of non-zero coefficients amoilg all width-w
NAFs of length n is approximately n/(w + 1) [11]. It follows that the expected running
time of scalar multiplication using Width-w is approximately ECDBL + (2*~2ECADD)
for precalculation and (w+ 1)ECADD + n.ECDBL) for the scalar multiplication itself[9].
Note that the number of ECDBL is not changed. When using projective coordinates, the

running time in the case n = 163 is minimized when w = 4. For the cases n = 233 and
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3. INTRODUCTION TO ECC COMPUTATIONS

n = 283, the minimum is attained when w = 5; however, the running times are only slightly

greater when w = 4.

3.5.2 Scalar Multiplication Summary

Table 3.15 summarizes number of point addition and point doubling in each of the discussed
scalar multiplication methods. As it is clear form the table, recording methods decrease
number of additions, but number of point doubling remains almost the same. Although

window methods are faster but they need extra memory to save 2P,3P,..., (w — 1)P.

Table 3.15: Number of Point operation in different scalar multiplication Method

Method #P +(Q (Average) | #2P
Binary (double-add) n/2 n
m-ary, m=2" n/r+ (27 ~1) n—r
modified m-ary, m = 2" nfr+ (271 -1) n—r
Binary NAF (double-add,sub) n/3 n
width-w NAF Method nf(r+1)+272 ~n
T-adic NAF (Koblitz curves only) | n/3 0

3.6 Special Methods for Scalar Multiplication

3.6.1 Anomalous Binary Curves (Koblitz Curves)

Two extremely convenient families of curves are the anomalous binary curves (or ABC’s).

These are the curves Eg and E; defined over F; by
E.:f+zy=a3+az?+1, a€{0,1}

Using Koblitz curves speeds up the scalar multiplication calculation as indicated in

table 3.15. However, there are concerns about the security of ECC using Koblitz curves. A

complete discussion on Koblitz curves can be found in [2].
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3.6.2 Point Halving

In [13], Knudsen introduces a new method for scalar multiplication on a non-supersingular
elliptic curve over GF(2™). The idea is to replace all point doubling with a faster operation,
called point halving. Moreover, Knudsen shows that the halving algorithm is superior to
previous algorithms when it is implemented using affine coordinates and normal basis.
However, the halving algorithm has a storage limitation if a polynomial basis is used, where
the required storage is in the order of magnitude O(n?) bits. The halving algorithm and

the Montgomery method cannot take advantage of Koblitz curves properties.

3.7 Montgomery Scalar Multiplication Algorithm

A different approach for computing kP was introduced by Montgomery [17] in 1987. This
approach is based on the binary method and the observation that the z-coordinates of the
sum of two points whose difference is known can be computed in terms of z-coordinates of

the involved points. This method uses the following variant of binary method.

Table 3.16: Montgomery Scalar Multiplication Algorithm

Algorithm: Montgomery Scalar Multiplication, in Projective Coordinate

Input: A point P=(z,y)€ E, an integer k>0, k= Z?;OI b:2', b €{0,1}
Qutput: @ =kP
P,—P, Py—2P
For i = n-2 to O
if b; =1 then
P —P+P, P«2P .
else
Po— P+ P, P«2P
EndFor
Qe—h

Return @
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Table 3.17: Montgomery Scalar Multiplication Algorithm in Projective Coordinate

Algorithm: Montgomery Scalar Multiplication, in Projective Coordinate

Input: A point P = (z,y) € E, an integer k = 37 b;2',b; = 0,1
OQutput: @ = kP
X1 e—2z,21 —1,Xy —z+b,2y — 22
If (k=0 or z=0)
R—~O
Stop
For i=n—21to 0
if k; =1 then
Madd(X1,Z1, X2,Z2), Mdouble(X2,22)
else
Madd(X2,22,X1,Z1), Mdouble(X1,Z1)
EndFor
Q =Mxy(X1,21,X2,Z2)

Return @

This method maintains the invariant relationship P, — P; = P, and performs an addition
and a doubling in each iteration. In [61] this algorithm is converted to projective space and

after simplification the following algorithm is derived.

3.7.1 Calculation

Doubling algorithm

Input: the finite field GF(2™); the field elements a and ¢ = 62" (c2 = b) defining a curve
E over GF(2™), the z-coordinate X/Z for a point P. Output: the z-coordinate X/Z for
the point 2P.

z(2P) = X*+bx2¢ 3.7
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Table 3.18: Steps in Point Doubling, Mdouble()

1|Th=c
2| X = X2
3|272=22
4 {TT=2ZxT,
51 Z=2xX
6| T =T?
T X=X2
8{ X=X+T,
2(2P) = X?x Z? (3.8)

This algorithm requires one general field multiplication, one field multiplication by the

constant ¢, four field squaring and one temporary variable ( Table 3.18).

Addition algorithm

Input: the finite field GF(2™); the field elements a and b defining a curve E over GF(2™);
the x-coordinate of the point P; the z-coordinates X1/Z1 and X2/Z2 for the points P1
and P2 on E. Output: The z-coordinate X1/Z1 for the point P1 + P2.

Z3 = (21X Za+ Xy x Z1)* (3.9)
X3 = zxZ3+ (Xl X Zz) X (Xz X Zl) (310)

This algorithm requires three general field multiplications, one field multiplication by x,

one field squaring and two temporary variables(Table 3.19).

Affine coordinates algorithm Mxy()

Input: the finite field GF(2™); the affine coordinates of the point P = (z,y); the x-
coordinates X1/Z1 and X2/Z2 for the points P1 and P2. Output: The affine coordinates
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Table 3.19: Steps in Points Addition, Madd()

1| Th==x
2| X1 =X1x 2,
3| Z1=2Z1 x X,
4l =X x2
S| Zv=2Z1+X1
6| 2, =22
T\ Xi=Z1xT
(zk,yk) = (X2, Z2) for the point P1.
Ty = % (3.11)
o= (el +ad) +(GE oG R X 2y (3.12)

This algorithm requires one field inversion, ten general field multiplications, one field

squaring and four temporary variables(Table 3.20).

3.7.2 Performance

The performance of Montgomery scalar multiplication algorithm is shown in Table 3.21.
Note that in Montgomery algorithm one point addition and one point multiplication is
needed for each bit in the scalar, while, whereas using NAF, on an average n/3 number
of point addition are needed for scalar multiplication. Ewven if the number of operation
is divided by 3 the number of operation in Montgomery algorithm is less that the other

methods.

3.7.3 Side channel Attack

Side channel attack (SCA) on cryptosystems uses leakage of a certain side-channel informa-

tion such as timing, electromagnetic radiation and power consumption to obtain information
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about the private key.In elliptic curve cryptosystems scalar multiplication algorithms are
target for SCA. In scalar multiplication £P is calculated were k is a secret key and P is
usually not a secret and even can be chosen by the attacker. If the sequence of executed
instructions in the algorithm is directly related to the bits of the private key a successful
power-analysis attack can be carried out on the cryptosystem. As in can be seen in table
3.9 it is possible to distinguish a point addition by measuring the power of the device which
is executing the algorithm. This makes the insecure against SCA. The algorithm presented
in 3.16 is secure against power attack since the operation performed in each step of the
scalar multiplication algorithm is not dependent to the bits of k.

The execution time of the algorithm in table 3.9 depends on the number of bits in the

binary representation of k. This makes the algorithm vulnerable to time analysis attack.
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Table 3.20: Steps in Converting the Coordinates Mxy() (Table 3.17 )

1 | if Z; = 0 then output (0,0) and stop
2 | if Z3 = 0 then output (z,z + y) and stop
3 Ti=z

4 | Txa=y

5 [Tz =21 %X Z

6 |Z1=21xTh

T | Zh=21+X

8 | Zo=22xTy

9 1 X1 =2Z2x X,

10| Za=2Z+ X2

11| 29 =29 x 21

12| Ty =T?

B\ Th=T4+T;

14 1 Ty=Ty x T3

15| Ty=Ty+ Z

16 | Ts=T3xT

17 | T3 = inverse(T3)

18| Ty=T3xT4

19| Xo=X; xT;

20| Zo=Xo+Th

21 | Zy =25 x Ty

22 | 2y =27+ T, :

Table 3.21: Cost of scalar multiplication for projective version of Montgomery algorithm

Representation Point Addition | Point Doubling

Montgomery, Projective version | 4M+1S+2A 2M +4S + 1A
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Chapter 4

Fast Parallel Elliptic Curve Scalar
Multiplication

4.1 Introduction

This chapter presents a fast parallel elliptic curve scalar multiplication algorithm based on a
dual-processor hardware system. The method has an average computation time of ZECADD
on an n-bit scalar. The improvement is nECDBL compared to conventional methods. When
a proper coordinate system and binary representation for the scalar k is used, the average
execution time will be as low as nECDBL, which proves this method to be about two times

faster than conventional single processor multipliers using the same coordinate system.

4.2 Previous Work

Scalar multiplication is the basic operation for Elliptic Curve public key cryptography. The

operation is defined as

Q=kP=P+P+...+P (4.1)

where P and @ are points on elliptic curve E defined over GF(2") and k is a scalar in
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4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

the range of 1 < k < Ord(E).

4.2.1 Conventional Scalar Multiplication Methods [10]

Double-and-add is probably the simplest (and oldest) method of scalar multiplication. The

basic idea is to compute kP using the binary expansion of k. Let

n—1
k= Z b2, (4.2)

=0
then algorithm 4.1 computes &P using Double-and-add method. The bit examination
can be done from the most significant bit (MSB first method) or the least significant bit

(LSB first method).

Table 4.1: Scalar Multiplication using standard binary method (LSB first)

Algorithm: Point Multiplication, Binary Method

Input: A point P, an integer k = ;:01 b;2t,b; €0,1
Qutput: @ =kP
Q<P
R—~QOFor i=0ton-1by1

If b; =1 Then

R—R+Q

Q—2Q

EndFor

Return R

The execution time for the algorithm is proportional to n Ellipﬁc Curve point dou-
bling operation (ECDBL), and on average 2 Elliptic Curve point addition operation (ECADD).
Therefore the total average execution time will be nECDBL + ZECADD. If redundant repre-
sentation (ie., binary NAF) is used to represent the scalar k, the average number of one or

minus one in the representation of k& will be reduced to -:1; In this case the average execution
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time will be proportional to nECDBL + $ECADD [10] [7]. Table 4.2 summarizes the execution

time of different conventional scalar multiplication methods.

Table 4.2: Execution time of kP using different conventional methods

Method Average Execution Time

Binary [10] (n — 1)ECDBL + Z25LECADD

Binary NAF [10] | (n — 1)ECDBL + 23LECADD

Window [10] nECDBL + Z27ECADD

It can be seen from the algorithm that in least significant bit-first (LSB first) method
ECDBL and ECADD operations are independent, and they can be performed in parallel.

4.2.2 Speeding up Scalar Multiplication

Many methods have been proposed in the literature to speed up scalar multiplication. These
methods are classified in table 3.8. Constraints in scalar multiplications are speed, memory
usage and security against side channel attack (SCA). Methods with precomputations, like
Window method and Comb method are faster but they need extra memory to store pre-
calculated values. Addition Chain methods and Comb methods are very effective when &
and P are known in advance, respectively. In comparison Window methods are efficient for

most cases.

4.2.3 Parallel Architectures

Parallel architectures for scalar multiplication can be done in the scalar-multiplication
algorithm level or in the calculation of ECDBL or ECADD itself. In [19] Moller proposes a
parallel algorithm for scalar multiplication which is fast and secure against side channel
attack. This paper proposes a method which uses two processors and a circular buffer,
which acts as a communication channel between the two processors to reduce the average

time of the scalar multiplication to nECDBL. This way the total time for ECADD is saved .and
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the system can be as fast as a system using radic NAF for Koblitz curves.

4.3 Improved Parallel Scalar Multiplication

The proposed method for calculating kP uses two processors, one for execution of ECDBL
and one for ECADD. The two processors may operate asynchronously. The ECDBL processor
calculates 2! P and stores them to a circular buffer. The ECADD processor reads from the
circular and performs the addition. Figures 4.1 and 4.3 depicts the operation flowchart of

the ECDBL processor and ECADD processor respectively.

Figure 4.1: Point doubling Flowchart, Runs on ECDBL processor

put_buffer (Q)

|

B

O -
[N
©0

F

The two processors share the circular buffer and a counter. The buffer can be a standard

circular buffer and should provide empty and full flags.
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Figure 4.2: Point Doubling Flowchart, Runs on ECADD processor

>
buffer_empty () X
R := R+get_buffer() <i : n>L

]

The ECDBL processor fills up the buffer with 2P, and ECDBL processor takes the points
from the buffer. If the data in the buffer are not consumed by the ECADD processor the
buffer becomes full and the ECDBL processor needs to wait until there is free room in the
buffer. On the other hand if there is not enough ones in the binary representation of %,
the buffer becomes empty after a while and ECADD processor needs to wait until data is put
into the buffer by ECADD processor. In the hardware implementation the buffer should be
implemented using dual port RAM/register so that both processors can have simultaneous
access to it. In software implementation locking mechanism is needed forr accessing the

counter and the buffer, since they are accessed from the two processes.
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Table 4.3: Point Doubling Algorithm, Runs on ECADD processor

Algorithm: Point Doubling

Input: A point P, an integer k = E::Ol b2, b; €0,1
Output: 2¢P, Stored in the buffer
Global: i, buffer
Q<P
iz=0
While i<n
If b; =1 then
If buffer_full()
Continue
put _buffer(Q)
EndIf
Q«—2Q
i:=1i +1

EndWhile

4.3.1 Performance of the Parallel Algorithm

The performance of the algorithm depends on the ratio of ECADD/ECDBL and the probability
of occurrence of nonzero { 1 — P(0) ) in the binary representation of the multiplier k. The
ECADD/ECDBL ratio depends on the coordinate system in which the elliptic curve calculation
is performed. And P(nonzero) depends on the binary representation form of k. For example
in NAF representation P(nonzero) = % Table 4.5 summarizes the vcost of elliptic curve
point calculation in different coordinate systems.

Simulation results of the algorithm are summarized in table 4.6. The results show
that when NAF representation for k is used, the algorithm keeps the average number of

ECADD operations at about n/3, regardless of n and ECADD/ECDBL ratio. The number of
extra ECDBLs that we need in addition to 3ECADD depends on ADD/DBL ratio. Therfore for
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Table 4.4: Point Adding Algorithm, Runs on ECADD processor

Algorithm: Point Addition

Input: 2'P, Read from the buffer
Qutput: R =kP
Global: counter i, buffer
RO
While i<n Or Not buffer_empty()
If Not buffer_empty()

R «— R+ get_buffer()

EndWhile

Return R

equal ECADD the faster the ECDBL, the faster the multiplication will be. It can be seen
from the results that if ECADD/ECDBL > P(1) then essentially the number of ECDBL remains
constant, which means ECDBL is being executed almost always in the background. Running
the simulation for n = 160 leads to table 4.7 which predicts the execution of the algorithm
using different coordinate system for elliptic curve and NAF for representation of k. It can
bee seen from table 4.7 that the algorithm is 2 times faster than single processor scalar

multiplication method.

4.3.2 Security Against Side Channel Attack (SCA)

The execution time of the algorithm depends on the scalar integer k. For example if k =
100...1001 the execution time will be close to nECDBL. In case of k = 10101...101010 the
execution time will be FECADD. Therefore the algorithm cannot be immune to SCA. But,
since the execution time depends on the total number of ones and on the distribution of
ones, many values of k will have the same execution time. Therefore the algorithm offers

better security against SCA when compared to the standard double-and-add methods.
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Table 4.5: Execution time of ECADD and ECDBL in different coordinate systems

Coordinate Transform ECADD/ECDBL Field
Affine (X,Y) I+2M/I+2M =1 | F,
Standard projective (X/2,Y/2) 12M/TM =17| Fp
Jacobian projective (X/Z%,Y/Z%) 12M/4M =3 Fp
Jacobian projective (X/Z%Y/Z%) 14M/5M =2.8 | Fam
Chudnovsky projective | (X,Y, Z, 22, 23) | 11M/5M =22 I
Lopez-Dahab projective | (X/Z,Y/Z?) 14M/4M =3.5 | Fom

4.4 Conclusion

A parallel method for scalar multiplication is introduced which uses two processors to

perform the kP operation. Using proper implementation this method is 200% faster than

single processor methods. The method can be implemented both in hardware and software.
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4. FAST PARALLEL ELLIPTIC CURVE SCALAR MULTIPLICATION

Table 4.7: Simulation result for 160-bit scalar, for different coordinate system.

Coordinate #Proc. ECADD/ECDBL | #ECADD | #ECDBL | #Op
Affine 2 1 53 106 1440M
Chudnovsky projective | 2 222 53 54 800M
Jacobian projective 2 3 53 8 672M
Lopez-Dahab projective | 2 354 53 2 860M
Jacobian projective 1 (Table 3.14) 53 160 1276M
54
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Chapter 5

Architecture for a Fast Elliptic Curve
Processor (ECP)

5.1 Introduction

A high performance elliptic curve processor is presented. The processor uses parallelism in
instruction level to achieve high speed execution of scalar multiplication algorithm. The
architecture relies on compile-time detection rather than run-time detection of parallelism
which results in less hardware. Implemented on Xilinx Virtex 2000 FPGA, the proposed
processor operates at 66 M Hz in GF(2167) and performs scalar multiplication in 100uSec,
which is considerably faster than recent implementations. The 0.18um ate level simulation,
shows that the processor can at 300M H z, performing kP in 22uSec.

Efficient utilization of hardware resources is a key element in a fast processor design.
Most fast elliptic curve processors (ECP) use a bit-parallel word-serial (BPWS) finite field
multiplier, either in direct form [57] [53] or in Karatsuba form [46] [49] [53] . In all the
processors multipliers occupy the bulk of hardware. The proposed architecture maximizes
the utilization of the multiplier.

In the field of elliptic curve cryptography, when calculating the speed of a scalar multi-
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5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

plication algorithm, finite field multiplication is considered to be the most time consuming
operation. Finite field addition (and squaring in ONB designs) is considered to be free[10]
[21] (pp 127-130). It goes to such an extent that in the analysis of scalar multiplication
algorithms, the cost of addition is ignored . In some software implementation reports, the
cost of addition and squaring is ignored [9] as well. This can be true in software implementa-
tions or in hardware designs using serial finite field multipliers (see section 5.2). Considering
some high speed hardware designs, we conclude that, the execution time of addition and

squaring becomes comparable to execution time of multiplication(table 5.1 ).

Table 5.1: Typical number of execution cycle of basic FF operations

Design Multiplication { Addition | Squaring
(46] 9 >2 2 (est.)
[57] 7 3 3

(53] 12<M>7 2 2

[62] 7 3 2
presented | 8 3 2

Deducing from the above, overlapped execution hardware can be used to increase perfor-
mance. This approach, which is closer to complex instruction set computer (CISC) design,
is successfully employed in [53] to pair multiplication with addition, and multiplication
with squaring to increase the performance. However this approach increases the size and
complexity of hardware. Using parallelism in instruction level , the compiler analyzes the
program and detects operations to be executed in parallel. Such operations are packed
into one large instruction. Therefore no hardware in needed for run-tifne detéction of paral-
lelism. The reduced instruction set computer (RISC) type instruction set helps to prepare a
more efficient instruction pack(fig. 5.10). The presented processor implements the following

features to achieve high execution speed.

e Parallelism in instruction level —
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5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

¢ RISC type instruction set
e One cycle instruction execution

¢ Pipeline finite field multiplier

5.2 Previous Work

The hardware implementation of ECC has come a long way from a modest beginning of
ASIC implementation on a 2 micron technology [32] running at 40M Hz to the 0.13 micron
technology running at 500M Hz [52]. The FPGA implementation started off on Xilinx
XC4000 with 2304 slices and 13000 gates [33] and presently is on Xilinx XC2V6000 having
6,000,000 gates running at 100M Hz. [46]

Advances in ASIC and FPGA technoiogies have led to new architectures and faster
designs. Most changes are in the design of the finite field multiplier and in the architecture
itself. New designs take advantage of this to introduce more parallelism in finite field
calculation.

Elliptic curve cryptosystems can be implemented on GF(p) and GF(2™). Usually
GF(2™) lead to a smaller and faster design. However, due to pending patents there are
some restrictions on GF(2™) implementations. This thesis mainly discusses GF(2™) imple-
mentations. Based on the design constraints ECPs are implemented using ASIC or FPGA.

Elliptic curve hardware implementations can be categorized as follows:

1. Implementations utilizing a general purpose CPU and a finite field accelerator: The
early hardware implementations fall into this category [32] and recently [41]. However,
because of the evolution of system on chip (SoC) these implementations are becoming

attractive {49].

2. Elliptic curve processors (ECP) based on serial finite field multiplier on GF(2™):

These processors are compact but slower than other implementations [45](34].

3. ECPs based on bit-parallel word-serial (BPWS) finite field multiplier on GF(2™) :

This architecture results in a fast design and relatively larger hardware. With the
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dramatic increase of hardware accommodation , most recent fast designs fall in to

this category [46] [57] [53].

4. Processors on GF(p): These processor use modular operations for finite field arith-
metic, therefore they utilize more hardware resources and are relatively slower than

GF(2™) implementations [29].

5. Dual field, general purpose crypto-processors: These processors are also available
commercially. They work in GF(p) as well as GF(2™). Since the design in not
optimized for GF(2™) they are usually slower than the third category [38] [52].

Table 5.2 ! summarizes most published designs. In table 5.3 speed of these implemen-
tations are listed. Comparing these designs is not easy, since they have been optimized
for different purposes, having different architectures and are implemented on different plat-
forms. Since this work is optimized towards operating speed, in the following sections we
compare our results to the faster designs. Wherever possible, we estimate the speed of the

design we are comparing to, as if it would be implemented on a hardware similar to ours.

5.3 Elliptic Curve Calculation, Arithmetic Hierarchy

The hierarchy of arithmetics for EC point multiplication is depicted in figure 5.1. The
scalar multiplication (kP) algorithm is performed by repeated point addition and doubling
operations. The point operations in turn are composed of basic operations in the underlying

finite field(FF). The proposed processor performs finite field addition and squaring in one

lest.: estimated
FF: Flip Flop LUT: Look Up Table
M.O.: Massey Omura multiplier
ONB: Optimal Normal Basis
Poly.: Polynomial multiplier
Pr.: Presented
Sc.: Scalable, Being able to change both field size and the elliptic curve parameters without reprogramming

the hardware
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Table 5.2: List of EC hardware implementations

Platform Year HW Res. Sc.
{32] | ASIC 1993 | ONB | 11000 Gates
[33] | XC4062XL 1998 | Poly. | 1810 CLB Only GF((2°4)"9) could be placed and routed
[34] | XCV300-4 2000 | ONB | 1290 Slice Only 64bits of k are set to one
[57] | XCV400E 2000 | Poly | 3002, 1769 LUT, FF D=16, Montgomery kP
[36) | ASIC 0.25 2000 | Poly | 165000 Gates v/ | Simulation result
[37] | XC4085XLA ]2001 | M.O. | 1450 CLB Rapid Prototyping, Core Generator
[38] | ASIC 0.25 2001 | Poly | 880000 Gates v/ | Dual Field, Power consideration
[39] | XCV1000 2002 | M.O. | 48300 LUT
[41} | XCV2000E 2002 | Poly | 2790 Slice (est.) Koblitz Curve
[42] | ASIC 0.35 2002 | Poly | 14298 Gates Compact
[43] | XCV1000-6 | 2002 | ONB | 2614 Slice
[44] | XC2S200 2002 | Poly v | Montgomery kP
{45] | ASIC 0.35 2002 | ONB | 20000 Gates
[46] | XC2V6000 2003 | Poly | 19440, 16970 LUT, FF Clock is Predicted,
[47] | ASIC 0.35 2003 | Poly | 56000 Gates v | Montgomery affine, EUA for inverse
[48] | ASIC 0.35 2003 | ONB ALU, Asynchronous
[52] | Asic 0.13 2003 | Poly | 117500 Gates v | Dual Field, 500MHz (max) for this particular field
[54] XC2V2000E-7 | 2003 | Poly | 20068, 6321 LUT,FF |./ | Montgomery kP, 0.302mSec for unnamed curves
[62] | XC2V2000 2003 | Poly | 10017,1930 LUT, FF
Pr. | XC2V2000 2004 | Poly | 13900, 3200 LUT, FF Montgomery kP
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Table 5.3: Speed of kp of different ECPs, at the specified finite field, and maximum frequency

Platform GF(2™) | Clk (Mhz) | kP(ms) Scalable
[32] | ASIC ONB | 155 40 27.000 est.
3] | XC4062XL | Poly. | 8x21 16 4500 est.
[34] | XCV300-4 | ONB | 113 45 3.700
[57] | XCV400E | Poly | 167 76.7 0.210
[36] | ASIC 0.25 | Poly | 163 66 1.100 J

EPF10K250 163 3 80.000
(37] | XC4085XLA | M.O. | 155 37 1.290
[38] | ASIC 0.25 | Poly | 160bits | 50 5.200 est. | +/
[39] | XCV1000 M.O. | 101 36 0.270
[41] | XCV2000E | Poly | 176 40 6.900
[42] | ASIC 0.35 | Poly | 160 10 20.602 est.
[43] | XCV1000-6 ONB | 113 31 0.810
[44] | XC28200 Poly | 163 55 3.770 v
[45] | ASIC0.35 | ONB | 209 20 30.000 est.
[46] | XC2V6000 Poly | 233 100 0.123 est.
[47] | ASIC 0.35 Poly | 167 100 2.300 est. | v/
[48] | ASIC 0.35 ONB | 173 Asynch. 1.200 est.
[52] | Asic 0.13 Poly | 160 bits | 500 0.190 v
[54] | XC2V2000E-7 | Poly | 163 66.4 0.143 "V
(62] | XC2v2000 | Poly | 163 66 0.233
Pr. | XC2V2000 Poly | 167 66 0.100
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Figure 5.1: Arithmetic Hierarchy in Elliptic Curve Calculation

kP
|

Scalar Multiplication Algorithm P+Q 2P

Finite Field Arithmetic Mult Add Square Div

clock cycle (excluding register load and unload time). The finite field multiplication is more
costly. The number of clock cycles for its computation depends on size of the finite field.
Compared to FF-addition and FF-squaring and FF-Multiplication, the FF inversion is a
very expensive operation. It is performed by software using basic finite field operations

(Sect. 5.3.2).

5.3.1 Finite Field Arithmetic

Elliptic curve calculation over finite fields is based on finite field addition, subtraction,
multiplication, squaring and division(Fig. 5.1). Here, we will focus on binary polynomial
fields GF'(2™). Using polynomial basis for finite field representation a field element a €
GF(2™) can be represented as ¢ = am—12™"1 + am-12™ 1 4 ... + a1zl + apzy where
a; € GF(2). Addition of two polynomials a and b is performed by adding coefficient a;
and b; in modulo 2, which is a bitwise XOR operation of a and b. For example, adding
two polynomials a = 23 + 22 4+ 1 and b = z2 + z! can be computed as (1101 + 0110) =
(1101 XOR 0110) = 101l or c=a+b =23+ ' + 1. In GF(2™) calculation addition
and subtraction are the same, since 1+1 =0 mod 2,i.e. 1isthe inverse of 1. It is clear
that representing elements of GF'(2™) in a digital computer is easy, since it contains only
zeroes and ones(Fig. 5.2).

Multiplication of two elements a,b € GF(2™) is carried out by multiplying two-poly-
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Figure 5.2: Representing an element in Galois field GF(2™)

a,|a |a,|a, |a, |a |a

6

A member of GF(2"7)

nomials using the distributive law and then reducing the resultant polynomial in modulo
2 and then modulo f(z). f(z) is of degree of m and defines GF(2™) for a chosen field
of degree m. For example, given polynomials a = z3 + z + 1 and b = 2% + 1 of GF(24),

represented as a = 1011 and b = 1001,co = a X b = 2% + ¢ + = + 1 can be computed as:

1011 x 1001
1001

+ 1001

+ 0000

+ 1001

= 1010011

Assuming f(z) = z*+23+1, represented as f = 11001, thereductionc=cy mod f =

z2 + 1 can be performed as:

1010011
+11001

=0110111 .
+ 11001

=0000101

An illustrative way to look at reduction is that f is aligned with the most significant

bit of the operand and added until the degree of the result is smaller than m. A parallel
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Figure 5.3: Parallel Finite Field Multiplier in GF(2%) [58)
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architecture for finite field multiplication is depicted in figure 5.3. An AND gate matrix
and an XOR tree performs the multiplication. Squaring can be performed easily using XOR

gates, specially if the finite field is defined over a trinomial [58].

5.3.2 Finite Field Inverse

The multiplicative inverse of any element a € Fam is the element a~! € Fom such that
aa"!=1 mod f(z), where f(z) is the irreducible polynomial of the finite field.

Inversion is the most costly operation in finite field arithmetic. Basically' there are two
methods for calculating inverse, using Fermat's little theorem and using extended Euclidean
algorithm [64].

The Itoh-Tsuji algorithm [59] is the most efficient technique to compute an inverse based
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Figure 5.4: Finite Field Squarer in GF(2") [58]

lp a1 Q2 A3 a4 a4y Qg

S

€p €1 €2 C¢3 €4 €5 Cg

on Fermat’s little theorem. Fermat theorem in finite field states that,
a®"'=1 mod f(z),therefore = a ! =0a2""2= (a?" 1),

Figure 5.5 depicts the basic idea in Itoh-Tsuji inverse algorithm, where a?*-1 is calculated

in 3 steps (log; 8 ). In step n one field multiplication and 2"~ field squaring is needed.

Figure 5.5: Simplified Inverse Calculation

10 1100 11110000
a a a
8
1/ 1111 o 2-1
a a \ a a =a
i 11 1111
a a a

In general a?"~1 can be calculated iteratively using equation 5.1. The complete algo-

rithm for inverse is shown in table 5.4.

(a28)2"*(a?3"1) n even

a(a®%71)? n odd

= (5.1)
Calculating a=! in GF(2™) needs M(m) = |logy(m —1)| + h(m — 1) — 1 multiplication
and m — 1 squaring. where h(z) is hamming weight of z (the number of non-zero bits in

the binary representation of z).
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Table 5.4: Itoh-Tsuji Inverse Algorithm

Algorithm: Itoh-Tsuji Inverse Algorithm

Input: a € GF(2"), m= Y1, m2i,m; € {0,1}
Output: b=a"!
b = qMn-1
e=1
For i = n-2 to 0
b=0b% xb
e=2e
if m; == 1 then
b=b xa
e=e+1
EndIf

Return b

If the processor is meant to be used on a single finite field so the squaring can be
efficiently optimized [58]. For irreducible polynomial f(z) = z™ + ! + 1 the maximum
squarer complexity is (m + ¢ + 1)/2 and 4m gates for f(z) = 2™ + zt! + 2% + z!3 + 1. For
trinomial the critical path delay is at most two gate delays [58].

Since the Itoh-Tsuji inverse algorithm is based on squaring and multiplication, only a
small hardware structure is needed for inverse. In fact, in the presented processor inverse
is performed by software. In order to perform efficient squaring, REP SQR A instruction is
defined, which performs squaring in one clock cycle. A data path from accumulator to the
squarer makes this instruction possible (Fig. 5.6).

The simulation waveforms which shows the squaring is shown in figure 5.13. For scalable

processors using Itoh-Tsuji algorithm is not efficient since squaring hardware cannot be
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Figure 5.6: ALU Architecture for calculating Inverse Calculation
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optimized for a specific field and therefore cannot be done in a single cycle.

Effect of inverse calculation in performance

For GF(2™) where m < 256 the inversion takes approximately 10M + (m — 1)S. A scalar
multiplication using Montgomery method takes 6(m — 1)M + 5(m — 1)S + 3(m — 1)A.
Implemented on an architecture similar to those in table 5.1 for GF(2167), inversion time
will be about 5% of scalar multiplication time. It can be concluded that fine tuning on the

inversion algorithm will not result in a high boost on the overall performance.

5.3.3 Scalar Multiplication Algorithm

Scalar multiplication is the fundamental operation in any elliptic curve cryptosystem. Points
on an elliptic curve E over finite field GF(2™) with a binary operation, called point addition,
form an finite additive Abelian group. If P is a point on elliptic curve F and % is a
large scalar, computation of the form Q = kP = P+ P+ P +--- 4+ P is defined as scalar

k ;mes -
multiplication. The result of scalar multiplication is another point @) on the elliptic curve.

The main question in any elliptic curve cryptosystems is: How fast can this operation can be
done? Table 5.5 categorizes commonly used methods for fast scalar multiplication [7][10][9].
Selecting a proper method for kP depends on the cryptography protocol being used as well

as the implementation platform.
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Table 5.5: Classification of scalar multiplication techniques

Name of Method Basic Idea

Comb [16] Precompute tables of 3 7 2¥P

Addition chains [7] k=3t ks

Windowing (Fix, Variable) m—ary [10] | Precompute tables of k,P k; € {0,1,...,m —1}

Scalar recoding [7] Fewer zero in binary representation of k (NAF)

Point Halving [13] [13] All point doubling replaced with point halving operation
Montgomery kP method [61] The z-coordinates of the sum of two points whose

difference is known can be computed in terms of

z-coordinates of the involved points.

Koblitz curves (2] Using anomalous binary curves (or ABC’s)

In 1987 a new approach to scalar multiplication was proposed by Montgomery[17]. In
[61) Montgomery method is converted to projective space and a very efficient scalar mul-
tiplication algorithm is derived. Table 5.6 compares the calculation cost of Montgomery
method with IEEE standard method. As it is shown implementations based on the Mont-
gomery algorithm are faster. Most high speed ECC implementation in table 5.3, including
the proposed processor, have used this algorithm for scalar multiplication[57][53][44][47][52].
The interesting fact about this algorithm is that it is inherently secure against side channel
attack. In the proposed architecture, the algorithm is tuned for the pipeline multiplier
and the processor’s parallel architecture. The complete explanation of Montgomery scalar

multiplication is given in chapter 3.
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Table 5.6: Cost of scalar multiplication on GF(2™) for different algorithms

Scalar Multiplication Algorithm # Operations

Montgomery, Projective version [61] (m-1)(6M+3A+5S) + (10M+7A+4S+1)

IEEE 1362, NAF representation (Average) [21] | (m-1)(8.7M+6.3A+6.3S) +(3M+S+I)

5.3.4 Performance Estimation for ECPs Based on BPWS Multipliers
Minimum number of clock cycle for kP calculation

The lower and upper bound of performance for the architectures which use Bit Parallel
Word Serial (BPWS) multipliers can be estimated as follows. The multiplication takes M =
[m/D] + 3 cycles, assuming 2 clock cycles for loading the input registers of the multiplier
and one cycle for storing the result. Although addition and squaring are performed in one
cycle, extra cycles are needed to load and unload the registers, therefore A = 3 cycles for
addition and § = 2 cycle for squaring is assumed. Using Montgomery scalar multiplication
[61], the upper bound (UB) is derived in table 5.6. At the best case, where all additions and
squaring operations can be performed in parallel with multiplication (we assume M > A
, M > §) the lower bound (LB)can be calculated by omitting all additions and squaring

operations. Therefore we will have,

UB=(m-1)(6M+3A+55)+ (10M +7A+4S+1)
LB = (m —1)(6M) + (10M + I) (5.2)
where M = [m/D] +3,A=3,5=2,I = 10M + (m -1)S
Experimenting with the processor architecture shows that the {m/D] = 4 ratio mini-
mizes the number of multiplication cycles but is long enough to let additions and/or squar-
ing to be done in parallel with multiplication. Therefore the lower bound for 4P can be
approximated as

LB ~ 43(m —1). (5.3)

Unless a proper pipeline mechanism is used, faster operation cannot be achieved using this

class of architecture.
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Critical Path length

If the finite field GF(2™) is generated by and irreducible polynomial f(z) then the maximum
critical path is equal to Cr = T4 + ([logy m] + (r — 1))Tx where r is the number of terms

in the irreducible polynomial f(z). In BPWS multipliers where,

m—1 D-1
Az) = Z a;z' , and B(z) = Z bz, , where a;, b; € {0,1}
=0 =0
the critical path will be
Cr=Ts+ ([logy D] + (r —1))Tx (5.4)

, where Tx and T4 are the delays of AND gate and XOR gate. Using irreducible trinomial
this can be further reduced to Cr = T4 + ([loga(m — 1)] + 2)Tx [58]. Cr determines the
upper bound for the clock frequency of the ECP.

5.4 Design Flow

The presented crypto-processor requires components that operate on large bit vectors (167
bits on GF(2!67) ). This makes validation of synthesis results difficult and time consuming
due to large amount of simulation elements. The complexity often can be reduced by scaling
the signal vectors down. Adding such flexibility is excess work, but it pays off. The processor
is designed to work with any finite field which is based on a trinomial or a pentanomial.
Therefore most validations were performed on small fields like GF(215).

The design flow is depicted in Fig. 5.4. A bit-exact C program was developed, which
allows us to check the HDL thoroughly. Test vectors for Galois field of different sizes were
applied to both the HDL and the bit-exact program, and the results were checked against
each other using another program to ensure the proper operation of the hardware. An
assembler program for the crypto-processor is also developed which lets us to assemble
programs written for the processor. The processor was synthesized and optimized using

Synopsys Design Analyzer ® for CMOS 0.18 and Xilinx ISE® for FPGA.
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Figure 5.7: Elliptic Curve Processor Design Flow
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Figure 5.8: Architecture of the Processor
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5.5 Architecture

The architecture is highly optimized toward the execution of scalar multiplication algorithm.
It supports finite field arithmetic, some 8 bits integer calculation and control transfer in-
structions. The finite field arithmetic unit utilizes parallelism in instruction level , which
permits parallel execution of addition, squaring and multiplication. The finite field process-
ing unit consists of an ALU, a multiplier and a register file. These units are controlled by
the main control unit. In addition, a very small 8-bit processor is provided which performs
integer calculations like counting and shifting. The communication with the host processor
is implemented through utilization of a command register and a data register. Initially,
the host processor uploads elliptic curve domain parameters and the code using these two
registers (Fig. 5.8). From then on, communication is limited to the exchange of raw and
processed data. Utilization of communication registers allows the two processors to operate
independently, and have different clock signals. The processor is implemented in GF(2167)
but neither the scalar multiplication code nor the architecture is hardwired to the size of

the Galois Field. _
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Figure 5.9: Architecture of the Finite Field Multiplier

n+w

A x B mod f(x)

Multiplier

The number of finite field multiplication in a scalar multiplication is approximately 6(m—1)
for GF'(2™)(Table 5.6). Therefore a high performance multiplier is very crucial. ALU uses a
bit parallel word serial (BPWS) multiplier based on the algorithm in [60]. In order to achieve
a performance better than LB =~ 43(m — 1), the input registers A and B, intermediate
register P; and output register P are configured as a pipeline (Fig.5.9). This arrangement
permits a finite field multiplication to be performed in M = [m/D] +1 cycles, which would
otherwise take M = [m/D] + 3 in similar designs [53] [57].

Squarer

The ALU employs a bit-parallel squarer [58]. Synthesized for a specific Galois field, this

squarer leads to a very efficient hardware which performs the squaring in one clock Tycle.
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Scalable 2 ECP implementations cannot use this architecture, since the size of finite field
is not known at the time of hardware synthesis. Therefore they have relatively longer kP

execution time [36](38][44][47].

Instruction Set

The instruction set is sub divided into three categories: Finite field arithmetic, integer
processing and control transfer (Fig. 5.10, table 5.7). Finite field arithmetic instructions
are further split into three threads. The compiler analyzes the scalar multiplication program
and detects finite field operations to be executed in parallel. Such operations are packed

into one finite field arithmetic type instruction.

Figure 5.10: Instruction set categories

Simultaneous Execution
]

Finite Field Arithmetic | Type | ALU | Mult| Reg. File

8-bit Processing Type | OP Code | Src | Dest

Control Transfer Type | OP Code |{Flg| Addr

5.6 Implementation

5.6.1 HDL Simulation

HDL simulation is carried out using Cadence NCVerilog®. Figure 5.11 and 5.12 shows the
waveforms at the beginning and end of the simulation on GF(2167), The hardware was
simulated and tested for GF(21¢), GF(2!%7) and GF(22%%) using 1000, 100 and 10 random

test vectors respectively. The simulation takes 6660 clock cycles on GF(2'87) which is

2Being able to change both field size and the elliptic curve parameters without reprogramming the

hardware
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0.1mSec at 66 M Hz. In terms of execution speed, this result is faster than similar FPGA
implementations [53](46][62][57].

5.6.2 Synthesis Result
FPGA

The HDL is synthesized for Xilinx XC2V2000 FPGA using Xilinx tools. Table 5.10 sum-
marizes the hardware resource usage of the processor in terms of lookup tables (LUT') and
flip-flops (FF) in FPGA implementation. The processor operates at 66 M Hz and performs
the scalar multiplication in GF(2167) in 100uSec . The synthesis result shows that the

maximum operation frequency for the processor is 90M H z.

ASIC Simulation

The processor is synthesized and simulated for TSMC CMOS 0.18 technology using Synopsys®
and Cadence NCVerilog®. Using synthesis information obtained from Synopsys®, the per-
formance and the hardware size of the processor on TSMC 0.18 um technology is obtained.
The hardware size is about 36000 gates and the clock frequency can be as high as 300M H z.
For the proposed architecture we have r = 3, D = 42,T4 = Tx = 0.3nSec (from Synopsys
report). Putting into equation 5.4 results to Cp = 9Tx = 2.7nSec. Synopsys report shows
that the critical path equals to 3.2n.Sec. This confirms that the proposed architecture sat-
isfies the critical path bound Implemented on ASIC. It takes 22uSec to complete one scalar
multiplication operation in GF(2!67), which is faster than reported ASIC implementations.

Table 5.8 summarizes the synthesis results in CMOS 0.18.

ASIC Implementation

The ASIC design flow in fig. 5.4 is carried out to the very end. ie. The CMOS 0.18 layout
is implemented using Cadence SoC Encounter. This layout is ready for fabrication. Refer

to appendix for a snap shop of the layout.
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5.6.3 Performance and comparison

Table 5.9 shows the number of clock cycle needed to execute kP, for several processors.

These processors have the following specifications in common:

e They are among the fastest implementations of ECP (see Table 5.3).
¢ They are implemented on an advanced FPGA architecture.
o All use parallel polynomial based finite field multipliers.

e Number of clock cycles needed to perform kP is linearly dependent on field size m
(If we keep the size of m/D in finite field multiplier constant, where D is the sized of

digit or word in the bit-parallel word- serial multiplier).
e They Perform inverse using Itoh-Tsuji algorithm (except [53]).

o All Use Projective coordinates for kP calculation (most use BPWS).

It can be concluded that, for non scalable ECP processors, these specifications lead to an
efficient design. Among them, the proposed architecture needs less clock cycles to perform
scalar multiplication. Another important factor in the architecture is the maximum critical
path in the processor. However it is not easy to estimate what the maximum clock rate
for [57] [46] would be if they would have been implemented on the a platform like ours.
Simulation shows that the proposed processor can run at 300M Hz when implemented
on CMOS 0.18 technology, which is the minimum possible critical path for this type of

architecture. This is also a good number compared to the designs in tables 5.3 and 5.2.

5.7 Conclusion

An architecture for an Elliptic curve processor is proposed. The processor can perform
10,000 scalar multiplications per second on GF(2167) , which is considerably faster that
the recent FPGA implementations. The processor has a very short critical path which is

on the parallel multiplier. Synthesis results in CMOS 0.18 micron show that the proeessor
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can run at 300M Hz clock frequency which results in 22uSec for a scalar multiplication on

GF(2'7). The synthesis result confirms that the design satisfies the critical bound.
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Table 5.7: Elliptic Curve Processor Instruction Set

8-bit processor

MOV rx, d8 move immediate data to rx register
DJNZ rx, addr decrement rx jump to addr if not zero
DEC rx decrement rx
INC rx increment rx
SHL {c,rx} shift left Carry and rx
SHL {rx,c} shift left rx and Carry
MOV ry, rx move rx to ry
FF Arithmetic Unit
SQR A
ADD A, Rx
SHL A
FF Multiplier
START Mul
L§IOP Mul

Register File

MOV Rx, P move product to Rx

MOV Rx, A

MOV A, Rx

MOV S, Rx load multiplier register with Rx

Control Transfer
JMP flg,set, addr flg is Z (Zero flag), C (Carry flag), M (User flag)

CALL flg,set, addr

SET M

CLR M

RET

HALT

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. ARCHITECTURE FOR A FAST ELLIPTIC CURVE PROCESSOR (ECP)

Table 5.8: Area report in CMOS 0.18

Unit Area (micron)
Multiplier 1272102
ALU 28585
Squarer 4976
Register File 202799
Proc8 5617
Total ~ 1555271

Table 5.9: Number of clock cycles for kP

Design Number of Clk for kP | Point Representation

Presented | 39(m — 1)+inv. Montgomery Projective

[46] 44(m — 1)+inv. (est.) | Projective with NAF ¢

[57] 47(m — 1)+inv. (est.) | Montgomery Projective, D=42 ®
(53] 57(m —1) (est.) Montgomery Projective

[62] 93(m — 1)-+inv. (est.) | Projective with NAF

inv. = (m—1)+ M(llogg(m —1)| + h(m -1)-1),M =7

°In [46] authors didn’t assume NAF representation for scalar k.
%In [57), maximum D is 16. Probably they were not able to use D=42 due to limited resource in their

FPGA. We assume D=42 here.
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Table 5.10: Performance of the Elliptic Curve Processor

Design kP Inversion | GF(2™) | FPGA Clk | FPGA Year
mSec Cycle LUT, FF MHz
Proposed | 0.100 285 167 7562, 2378 66 XCV2000 | 2004
[57] 0.210 167 3000, 1769 76.6 | XCV400E | 2000
[63] 0.143 326=2m | 163 20068, 6321 | 66.4 | XCV2000 | 2002
(62] 0.233 250 163 10017, 1930 | 66 XCV2000 | 2003
Proposed | 0.140 451 233 13900, 3200 | 66 XCV2000 | 2004
[46] 0.123 est. | - 233 19440, 16970 | 100 | XCV6000 | 2003
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Figure 5.13: Simulation Waveforms while calculating Inverse
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Chapter 6

Discussions

6.1 Summary of Contribution

This work proposes efficient methods for ECC both in algorithm level and in arithmetic
level. In algorithm level a parallel method for scalar multiplication is introduced which uses
two processors to perform the kP operation. Using proper implementation this method is
200% faster than conventional single processor methods. The method can be implemented
both in hardware and software.

At the arithmetic level, a high performance elliptic curve processor architecture on
GF(2™) is proposed. The architecture employs parallel execution of finite field arithmetic,
to achieve high execution speed. Implemented on Xilinx Virtex 2000 FPGA, the processor
can perform 10,000 scalar multiplications per second on GF(2!%7) , which is considerably
faster that the recent FPGA implementations. The processor has a very short critical
path which is on the parallel multiplier. Synthesis results on CMOS 0.18 micron show
that the processor can run at 300M H:z clock frequency which results in 22uSec for a
scalar multiplication on GF(2'67). The processor is compared to various ECC hardware
implementations. The comparison is limited to the processors on GF(2™). The processor

speed presented is higher than any other reported ECC hardware implementation. ™
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6. DISCUSSIONS

6.2 Future Work

FPGAs are a suitable platform for the hardware implementation of the proposed parallel
algorithm. The information in chapter 3 can be used for the selection of proper point
representation system. For the proposed processor ASIC implementation is very desirable

since the simulation results shows the it will be the fastest kP calculation ever reported.
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Appendix A

Test Code

1 #include <« stdlib.h>

2 #include «stdio.h>»

3 #include "gmp.h"

4 #include < time.h>

5 #include <math.h>

6

7 //typedef unsigned long long scalar._t;

8 #define scalar_t mpz_t

9

10 int  get_bit (scalar_t k, int i);

11 void set_bit (scalar_t k, int i);

12 void clr_bit (scalar_t k, int i);

13 int kP_time.s (char * ks, int t_add, int *na, int *nd);

14 int kP_time._s2 (char * ks, int ADD.DBL_ratio);

15 char *str_reverse (char *d, char *s);

16 void toNAF (scalar._t k);

17 void to_NAF2 (scalar_t k); )

18 char *itos (scalar.t k); :

19 void test_recording(void);

20 int  kP_time (scalar_t k, int n_bits, int t._add, int *na, int *nd,
21 int *cnt_in_add_ave, int *cnt_in_add max, int buf_ len
22 );

23 int ave kP_time (int n_samples, int n.bits, int ADD.DBL_ratio, int
24 buf_len);

25 //#define ADD_DBL_RATID 3 —
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26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

int main(void)

{

}

//performance_table();
performance.vs_buflen_graph();

return 0;

int performance_table(~oid)

{

int n.bits, t;
char *s, d[50];
time.t rawtime;

//- algorithm parameters
int ADD_over DBL ratio = 3;
int buf.len = 4;

int nsamples = 10000;

time ( &rawtime ); printf("\n%s\n\n",ctime(&rawtime));

printf ("#Samples = %i", nsamples);

printf("\n\\#bits & ADD/DBL & \\#ECADD & \\#ECDBL & ‘’#0p & \\#0Op Std
DBL-ADD Method & Ave \\#Data in buf & Max \\#Data in buf & Speed
up ‘\\hline‘‘hline");

printf ("\n ==== ==== ");

for (ADD_over DBL.ratio=1; ADD_over DBL_ratio<6; ADD_over_ DBL_ratio++)

{

printf ("\n-—----------mm e \\hline");

//nsamples = Ox7FFFFFFF; //result of the scount takes 2 days and is
wrong!
for(n_bits=150; n_bits<=300; n_bits+=50)
ave kP_time(nsamples, n._bits, ADD_over DBL.ratio,buf_len );

} -

/*
test_recording(); printf("\n\n");

"10101010000001111111111000001100000001";
kP_time_s2(s, ADD_over DBL_ratio);

s
t

str_reverse(d, s);
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70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

t = kP_time_s2(d, ADD_over DBL_ratio);
*/

time ( &rawtime ); printf("\n%s\n\n",ctime(&rawtime));

return O;

int performance_vs_buflen_graph(void)

int ADD_over DBL_ratio = 3;
int buf_len = 4;

int nsamples = 100;

int n_bits;

printf ("#Samples = %i\nin", nsamples);
//for(n_bits=150; n_bits<=300; n_bits+=50)

n.bits = 160;

for(buf_len=1; buf_len<=10; buf_len++)

{
printf("\n %i ", buf_len);
for (ADD.over DBL_ratio=1; ADD_over DBL_ratio<6;
ADD_over DBL_ratio++)
{
ave kP_time(nsamples, n_bits, ADD over DBL ratio, buf._len );
}
printf (" ", buf_len);
}
/*
for (ADD_over DBL_ratio=1; ADD_over DBL_ratio<6; ADD_over DBL_ratio++) .
{ B
printf("\n\n #ADD/DBL = %i ", ADD_over DBL_ratio);
for(buf_len=1; buf_len<=10; buf_len++)
{
printf("\n %i ", buf_len);
ave kP_time(nsamples, n._bits, ADD_over DBL ratio, buf_len );
}
pe/
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114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
148
150
161
152
163
154
155
156
157

}

return 0;

#define MAX_INT ~((unsigned long int) 1)
#define ave(i) ((int) ((double) (i)/(n.samples)+0.5))
int ave kP _time(int n_samples, int n.bits, int ADDDBL_ratio, int buf_len)

{

mpz_t k;

gmp.randstate.t r.state;

int na, nd, cnt_in_add_ave, cnt_in_add._max, t;
unsigned long int 1ij;

int t.sum, na.sum, nd_sum;

int cnt_in_add_ave_ave, cnt.in_add _max_ave;

gmp.randinit.default (r_state);
mpz_init(k);

cnt_in_add-max_ave = cnt.in_add_ave_ave = t_sum = na_sum = nd.sum = O;
for(i=0; i<n_samples; i++)

//mpz_rrandomb generates long strings of zeros or ones, might be

better for testing

mpz_urandomb (k, r_state, n_bits); //200 bits random number

to NAF2(k);

t = kP_time(k, n_bits, ADDDBL_ratio, &na, &nd, &cnt_in_add_ave,

&cnt_in_add.max, buf_.len );

tsum += t;

na_sum += na;

nd_sum += nd;

cnt_in_add_ave_ave += cnt_in_add_ave;

cnt_in_add max_ave += cnt_in_add max;

//printf ("/i-", cnt_in_add max.ave);

// 1if((i& OxO000FFFF) == 0) printf(" %lu", i);

//printf("\n-— k=Ys nADD =%d nDBL =Yd T =%d", itos(k), na, nd, .

t); :

// gmpprintf("\n-- k=%#04Zx nADD =jd nDBL =Y%d T =¥d", k, na,

nd, t);

}

printf("\nn bits=%i, n.samples=%lu ADD/DBL=%i t.ave=%i n Add.ave=%i, n
DBL_ave=Yi", n_bits, nsamples, ADDDBL.ratio, t.sum/nsamples,
na_sum/nsamples, nd_sum/nsamples);

—
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168
1569
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

}

//- printf for performance_table

printf( "\n%i & & Ui & Vi & Y1 & %i & %3.1f & Ui &
%1 “‘hline", n_bits, ADDDBL_ratio, ave(na_sum), ave(nd_sum),
ave(t_sum), n.bits+ n_bits*ADD DBL ratio/3, ((double)n_bits +
n-bits/3.*ADD DBL_ratio)/(t.sum/n_samples), ave((double)
cnt_in_add._ave_ave/ADD DBL_ratio), ave((double)
cnt_in_add max_ave/ADD DBL_ratio));

//- printf for performance._vs_buflen_graph
printf( "%3.1f ", ((double)n bits + n_bits/3.*ADD DBL_ratio)/(
t_sum/n_samples));

mpz_clear (k);
return 1;

int kP_time(scalar_t k, int n_bits, int t_add, int *na, int *nd, int

{

*cnt_in_add_ave, int *cnt_in_addmax, int buf_lemn)

int i, b, in_add, n_-add, n_dbl, cnt_in.add, dbl.wait;
long long int ciaa; //count in add average!
int max.cnt.in_add = buf_len*t_add;

dbl_wait = n.add = n.dbl =0;
in_.add = get_bit(k, 0)==1; //put initial conditions
cnt_.in.add = in.add ? t.add : O;

//cannot find n bit by mpz functions because it omits leading zeros
//and so decreases n_dbl!
//nbits = mpz_sizeinbase(k, 2);

*cnt_in_add_ave = *cnt_in_add_.max = ciaa =0;
for(i=0; i<n.bits; i++)

{
while (cnt_in_add > max._cnt_in_add) 7
{
cnt.in_add --;
dbl_wait ++;
}

if(cnt_in_add > *cnt.in_add max) //this gives the maximum buffer size
*cnt_in_addmax = cnt.in_add; -
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202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

}
/1

ciaa += cnt_in_add; //average of cnt_in._add essentially it is
proportional to the number of data in the circular buffer
b = get_bit(k, i);

//if in addition state
if (in_add)
{
cnt_in_add--;
if (b==1)
{
n_add ++;
cnt_in_add += t_add; //accumulate the time that you need to stay
in add mode
}

else //b is O
{
if(cnt_in_add ==0 ) //if u have been enuf in add state and there
is no more one
{

in.add = 0; //change state
n_dbl ++;

}
}
}
else //in dbl state
{
if (b==0)
n_dbl ++;
else //b is 1
{
in.add = 1; //change state
n_add ++;
cnt_in.add = t_add;

}
} -

should it be added to n.add? I think it should but the result is wrond.

FATAL chk bjn

// n_add += (cnt_in_add/t_add) +((cnt_in_add%t_add)!=0 ? 1 :0) ; //ceil(
cnt_in_add/t_add)

*na = n_add;

*nd = n.dbl + dbl_wait; -
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246 *cnt_in_add.ave = ciaa / n.bits;

247

248 return *na * t.add + *nd;

249 }

250

251 int get_bit(scalar_t k, int i)

252 {

2563 return mpz.tstbit (k, 1i);

254 }

255

256 void set_bit(scalar_t k, int i)

257 {

258 mpz_setbit (k, i);

259 }

260

261 void clr_bit(scalar_t k, int i)

262 {

263 mpz_clrbit (k, i);

264 }

265

266 int kP_time_s(char * ks, int t.add, int *na, int *nd)
267 {

268 mpz.t k;

269 int rc;

270

271  mpz_init(k);

272 mpz_set_str(k, ks, 2);

273 //rc = kP_time(k, strlen(ks), t_add, na, nd);
274 mpz_clear (k);

275

276 return rc;

277

278 }

279

280 int kP_time_s2(char * ks, int ADD DBL_ratio)
281 { ’ :
282 int na, nd, t;

283

284

285 t = kP_time._s(ks, ADDDBL_ratio, &na, &nd);
286 printf("‘ns=%s, nbits=}i, t=%i na=%i, nd=%i", ks, strlen(ks), t, na,
287 nd) ;

288

289 return 0;
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290 }

291

292 char *str_reverse(char *d, char *s)
203 {

294 int len, i;

295

296 len = strlen(s);

297 d[len] = 0;

298 for(i=0; i<len; i++)

299 d[len-i-1] = s[i];
300

301 return d;

302 }

303

304 /*this pice of software is from

305 ~/ansari4/Tutorials/Cryptography/C _Libraries/ECC/elliptic/ec_curve.c

306 an elliptic curve library writen by Paulo S.L.M. Barreto <pbarretoQuninet.
307 com.b r> http://planeta.terra.com.br/informatica/paulobarreto/

308 it shows a parrallel way of converting and integer to NAF

309 =*/

310 void toNAF2(scalar._t k)
311 {

312 mpz_t h;

313 int nb;

314

315 mpz-init(h);

316 mpzmului (h, k, 3);

317 mpzxor(k, h, k); //we treat -1 and 1 the same! because we only want to
318 count

319 mpz.div2exp (k, k, 1);

320 nb = mpz_sizeinbase(k, 2);

321  // if( nb > =*n_bits)

322 // *n_bits = nb;

323

324

325 mpz_clear(h); -
326 }

327

328

329 -oid toNAF(scalar.t x)

330 {

331 int s, i, n_bits;

332 mpz_t y;

333 int xi, xi_1, ci; -
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334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

//See Coren, Computer Arithmetic book, Page 146, Table 6.4 for the
Algorithm
int state_table(] = { 0, 2, 2, 1, 0, 3, 3, 1};
mpz_init(y);
n.bits = mpz_sizeinbase(x, 2);
ci=0;
//- it checks one extra bit, but that extra bit is zero and I need it
to make NAF
for(i=0; i<=n_bits; i++)
{
xi = get.bit(x, i );
xi.l = get bit(x, i+1);
s = state_table[(xi_-1<<2) | (xi << 1) | cil;
if(s & 2)
set_bit(y, i);
else
clr bit(y, i);
ci = s&i;
}
mpz_set(x, y);
mpz._clear(y) ;
}
void test_recording(void)
{
mpz_t k;
char *s;
s = "101010111101011111101011111100011101001010010101011111100110101";
//s = "111101";
mpz-init (k) ;
mpz_set_str(k, s, 2);
to_NAF (k) ;
printf (" \ns=Ys \nk=Ys", s, itos(k));
mpz_set_str(k, s, 2);
to NAF2(k) ;
printf (" \ns=Ys \nk=Ys", s, itos(k));
printf (" ‘\n");
mpz_clear (k) ; -
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378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

/

O© 00 ~NO O WN -

L
- O

NN N NN - = 2 s
B W NP O OO ~NOODd WK

}

#d
ch

{

*

efine MAXXN_BITS 1024
ar *itos( scalar_t k)

int i, nb;
static char buf [ MAX_N_BITS+1];
char *s = buf;

nb = mpz_sizeinbase(k, 2)-1;
if (nb> MAX_N_BITS) nb = MAX.N_BITS;
for(i=nb; i>=0; i--)

xs++ = get bit(k, 1)? ’17 : ’0’;
*s = 0;

return buf;

#include <borzoi.h>
#include «fstream>
#include <unistd.h>
#include "nist_curves.h"

(c) Bijan Ansari Tue Dec 16 14:59:49 EST 2003
all parts of Monti algorithm works Mon Dec 29 21:28:08 EST 2003

This program uses borZoi Elliptic Curve library to Implement Projective

coordinate version of Montgomery scalar multiplication.

This is done to check the result of the Elliptic Curve Processor

*/

// the register file, and an indexed way to access it!

F2M
F2M
F2M
F2M

X1;
X2;
Z1;
Z2;

F2M R4;

F2M

b;

F2M x;
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25 F2M y;

26

27 F2M *R = &X1;

28

29 Biglnt k; //the scalar

30 EC_Domain_Parameters dp = NIST_B_233;

31 //int m, k1, k2; //E(x) = x"m + x"kl + x°k2 + 1

32 //const int m = 15, k1 = 4;

33 //const int m = 167, ki = §;

34 //const int m = 233, k1 = 74;

35 //longinteger k //the scalar

36

37 typedef unsigned char byte;

38 int scalarmult(void);

39 void projective montgomery_scalar multiplicationi(void);

40 void projectivemontgomery_scalar multiplication2(void);

41 void original montgomery_scalar multiplication(void);

42 void affine_to_projective(void);

43 void Montgomery.P_plus_Q__P_plus_P1(void);

44 void Montgomery P plus_Q__P_plus_P2(void);

45 void Itoh-Tsuji_inverse(int m, int im, int out);

46 void calcxyl(void);

47 void calc.xy2(void);

48 void Mdouble(int src);

49 void Madd(int dest);

50 int scalarmult(vcid);

51 void swap (veid);

52 void print(char *s, F2M x, F2M y);

53 void init_regfile(void);

54 void dump.regfile(int n);

55 #define dump(A){ std::cout << "\n" << #A << "= " << A; }
56 //void dump(F2M A);

57 void use_Trionomial(int m, int k1);

58 inline F2M operator” (const F2M& a, int n);

59

60 :
61 '
62 /*-

63 scalarmult() tested at Tue Feb 17 19:58:53 EST 2004 again
64 it produces correct result using all 4 scalar multiplication
65 functions

66 */

67

68
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69 int main(void)

70 {
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
o8
99 }
100
101
102
103
104
105
106
107
108
109
110
111
112

vol

{

}

int

{

use_Trionomial (167, 6);
//scalarmult();

init_regfile();

//WARNING msb of k MUST be one, otherwise the result is not the same

as the

//asm program in the ECP. because ECP assumes MSB of k is omne.

//for GF(27233)
k=1;
k <<= 232;

//for GF(2°15)
k = 1;//in the asm program R4 is k!
k <<= 14;

//for GF(27167)
k=1;
k <<= 166;

k |= hextoBigInt("D7");

projective montgomery._scalar multiplication2();

std::cout << "\n--" ;

d print(char *s, F2M x, F2M y)

std::cout << "\n—-" << 8§ ;

std::cout <<"\nx=" << x << "\ny=" << y;

scalarmult(void)

/**Warning**

original montgomery.scalar multiplication(), curve.mul(k, dp.G) use

the

global "dp" variable and the finite field which is defined there while
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113 projective montgomery._scalar multiplicationl() and

114 projective montgomery_scalar multiplication2() use the finite filed
115 which is defined at the start of the main() program ie use_Trionomial(
116 233, 74)

117 */

118 //k = hexto BigInt("A9993E364706816ABA3E25717850C26C9CDOD8ID") ;
119 k = hextoBigInt("D7"); //in the asm program R4 is k!

120

121 use_Trionomial (15, 4);

122 b = dp.b;

123 x = dp.G.x;

124 y = dp.G.y;

126 R[3] = 1; //R[3] must be zero otherwise affine to _projective()
126 doesn’t work fine

127

128 //in the hardware R4 is k, but here k is in another variable
129 init_regfile();

130 print("original points", x, y);

131

132 projective montgomery.scalar multiplication2();

133 print ("projective montgomery scalar.multiplication2()", X2, Z2);
134

135 projective montgomery_scalar multiplicationl();

136 print ("projective montgomery.scalarmultiplication1 ()", X2, Z2);
137

138

139 original montgomery_scalar.multiplication();

140 print ("original_scalar multiplication()", X2, Z2);

141

142 Curve curve (dp.a, dp.b);

143 Point P = curve.mul(k, dp.G);

144 print("Borzoi library", P.x, P.y);

145

146 std::cout << "\n--" ;

147 }

148 ' =

149 void init.regfile()

150 {

151 //values are interpreted as hex

1562

153 str_to F2M("39",R[0]);

154 str_to F2M("24",R[1]);

155 str_to F2M("55" ,R[2]);

156 str_to F2M("76",R[31); -
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157 str_to F2M("D7",R[4]); //MSB of k MUST be one, ECP asm programs
158 assumes so!

159 str_to F2M("86" ,R[5]); //R[4] is k and MSB of k must be one, that’s
160 why it is 16 bits and the others are 8 bits just to make
161 things simple

162 str_to F2M("64" ,R[6]);

163 str_to_F2M("A7",R[7]);

164

165 /x*

166 str_to F2M("1" ,R[0]);

167 str_to FeM("2",R[1]);

168 str_to F2M("3",R[2]);

169 str_to F2M("4" ,R[3]);

170 str_to.F2M("5",R{4]);

171 str_to F2M("6",R[5]);

172 str_to F2M("7",R[6]);

173 str_to F2M("8" ,R[7]);

174 */

175 }

176

177

178

179 veoid affine_to_projective(void)

180 {

181 X1 = x;

182 Z1 = R[3]; //R(31; in the ECP assembly file here we have R[3]
183

184 22 = x72;

185 X2 = (Z2°2) + b;

186

187 }

188 -oid projective. montgomery._scalar multiplicationi()

189 {

190 int 1;

191 int 1i;

192

193 1 = k.numBits Q);

194 affine_to_projective();

195

196 for(i=1-2; i>=0; i--)

197 {

198 std::cout << "‘n==1==\nbit " << i << "= "<< k.getBit(i) ;
199 if(k.getBit(i) == 1)

200 { -
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201
202
203
204
205
206
207
208
209
210
211 }
212

Madd(1); Mdouble(2);

}

else

{
}

dump._regfile(i);
std::cout << "\n==1==";

Madd(2); Mdouble(1);

}

//calcxyl1(); //answer is in X2, Z2

213 //this is the implemented algorithm
214 void projective montgomery_scalar.multiplication2()

215 {
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241 }
242

int 1;
int i;

dump_regfile(0);

1 = k.numBits ();
affine._to_projective();
dump-regfile(1);

std::cout << "\nnum bits= " << 1 ;
std::cout << "\nk= " << k ;
for(i=1-2; i>=0; i--)
{
std::cout << "\n==2==\nbit " << i << "= "<< k.getBit(i) ;
if(k.getBit(i) == 1)
swap() ;

Montgomery P_plus_Q___P_plus P2();

if (k.getBit(i) == 1)
swap();
dump.regfile(i); :
std::cout << "\n==2==";
}
calcxy2(); //answer is in X2, Z2 */
dump_regfile(-1);

243 void original montgomery._scalar multiplication(void)

244 {
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245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

Curve curve (dp.a, dp.b);
Point P1, P2;

int i, 1;

Point P(x, y);

1 = k.numBits ();

P1 = P;

P2 = curve.dbl(P);
for(i=1l-2; i>=0; i--)

{
if(k.getBit (i) ==1)
{
P1 = curve.add(P1, P2);
P2 = curve.dbl(P2);
}
else
{
P2 = curve.add(Pi, P2);
P1 = curve.dbl(P1);
}
}
X2 = Pl.x;
22 = Pl.y;

void Mdouble(int src)

F2M X, Z;
if (src==1)
{
X = X1;
Z=171;
}
else
{
X = X2;
Z z2;
}
F2M x3 = (X"4) + b * (Z74);

Fo2M z3 = (2°2) * (X~2);
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289 if (src==1)

290 {

291 X1 = x3;
292 Z1 = z3;
293 }

294 else

295 {

296 X2 = x3;
297 Z2 = z3;
298 }

299

300 }

301

302 void Madd(int dest)
303 {

304 F2M z3
308 F2M x3

(X1 = Z2 + X2% Z1)"2;
(x * 23) + (X1 * Z2) * (X2 * Z1);

306

307 if (dest==1)

308 {

309 X1 = x3;

310 21 = z3;

311 }

312 else

313 {

314 X2 = x3;

315 22 = 23;

316 }

317 }

318

319 void swap (void)

320 {

321 F2M T;

322

323 T=2X1; X1 =1X2; X2 =T;

324 T=21; 21 = 22; 22 = T; =
325 }\

326 void Montgomery P plus_Q__P_plus P1(void)
327 {

328 /* equivalent to

329 (X1, Z1) = Mdouble(X1, Z1)

330 (X2, Z2) = Madd(X1, Z1, X2, Z2)
331 */

332 //this is implemented in monti4.s
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333 X2 =21 * X2; //1

334 21 =21 " 2

335

336 22 = X1 * Z2; //2
337 X1 =Xt~ 2;

338

339 R4 =21 ~ 2;

340

341 Z1 = X1 = 21; //3
342

343

344 X1 =X1"2;

345

346 F2M t = X2 + Z2;
347 X2 = X2 * 22; //4
348 22 =t " 2;

349

350

351 R4
352 X1
353

354

355 R4
356 X2
357 }

358

359

360 void Montgomery P_plus_Q__P_plus P2(void)
361 {

362 //this is implemented in monti4.s
363 R(1] = R[2] * R[1]; dump(R[11);//1

R4 * b; //5
X1 + R4;

x * 22; //6
X2 + R4;

364 R{2] = R[2] "~ 2;

365

366 R{3] = R[0] * R[3]; dump(R{31);//2
367 R[0] = R[0] "~ 2;

368 -
369 R{4] = R[2] ~ 2;

370

371 R[2] = R[0] * R[2]; dump(R[2]);//3
372

373 R{0] = R[0] "~ 2;

374

375 F2M t = R[1] + R[3];
376 R{1] = R{1] = R[3]; dump(RI[1]);//4
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377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

}

//this routine is written in a way to be the same as the
//hardware implementation, and it doesn’t mean it is a good

R[3] =t = 2;

R[4] =

R[0] = R[0] + R[4];
R[4] = R[6] *

R[1] = R[1] + R[4];

std::cout<<"\n----~ ",
dump (R[31);
dump(R[2]);
dump(R[1]);
dump(R[0]) ;

//software implementation
void Itoh._Tsuji_inverse(int m, int in, int out)

{

R[4] * R[5); dump(R[4]);//5 R5 =D

R[3]; dump(R([4]);//6 R6 = x

//A is the accumulator, S is the input register of the multiplier

//this is implemented in inv.rom

F2M A, S;
byte m0, e, sqecnt, i, c;

A = R[in];

e =1,

//m0 = dp.m & (~1);
md =m& (!1);
i=8;

while( (i1=0) && ((m0 & 0x80) == 0))

{
m0 <<= 1;
i--;

1f(it=0) //skip the first ’1’ too

{
m) <<=1;
i--;
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421}

422

423  while(i!=0)

424 |

425 S = A;

426 sq_cnt = e;

427 while(sqg-cnt--)
428 A = A"2;
429

430 A =S8 % A;

431

432 ¢ = (m0 & 0x80) != 0;
433 m0 <<= 1;

434 e = (e<<1) | c;
435

436 if (c)

437 {

438 S8 = R(in];
439 A =472
440 A =S * A,
441

442 }

443 i--;

444 }

445

446 A = A”2;

447 Rlout] = A;

448

449

450 //borzoi is stupid!, sometimes doesn’t reduce the result of
451 multiplication!!

452 }

453

454

455 void calcxyl()

456 { :
457 // find this from Lopez paper and orlando paper (all are in the white
458 folder)

459 F2M xk, yk;

460

461 //F2M F2M::inverse ()

462 //F2M F2M::sqr ()

463

464 R4 = x*Z1*7Z2;
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465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
+
480
481
482
483
484
485 }
486
487

488 //--
489 ---

R4
/*
R4

R4.inverse();

T3;

Itoh Tsuji_inverse(dp.m, 4, 4); use this one becaue dp is not always

correctly set!

T3 = R4;

*/

F2M T = x * 22 * X1;

dump(T) ;

xk = x * Z2 * X1 * R4;

yk = (xk + x) * R4 * (Z1*%Z2 * (y+ (x72)) + (X2 + x*Z2) * (X1 + x*Z1))
Y

X2 = xk;

22 = yk;

490 void dump-regfile(int n)

491 {
492
493
494
495 }
496

std::cout << "\n-"<<n<<" Reg file -";
for(int i=7; i>=0; i--)

std::cout << "\nR" << i << "= " << R[i];

497 void use_Trionomial(int m, int k)

498 {
499
500
501 }
502

F2X pt=Trinomial (m, k, 0); -
setModulus (pt);

503 inline F2M operator” (const F2M& a, int n)

504 {
505
506
507

F2M c=a;

while(--n>0) //>0 for n equal 0
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508 c*=3;
509 return c;
510 }

511

512
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Chip Layout

Chip layout: program memory, power rings, power strips, clock tree

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B. CHIP LAYOUT

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA AUCTORIS

Name: Bijan Ansari
Year of Birth: 1964
Education:

1979 - 1982 High school diploma, Isfahan University High School, Isfahan, Iran
1983 - 1988 B.Sc. Isfahan University of Technology, Isfahan, Iran

2002 - 2004 M.A .Sc. University of Windsor, Windsor, Ontario

Email: bijan486@yahoo.com

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


mailto:bijan486@yahoo.com

	Efficient implementation of elliptic curve cryptography.
	Recommended Citation

	tmp.1615935476.pdf.JJdgo

