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Abstract

A geometric formalism for the treatm ent of n-qubit systems is presented in 

term s of the Clifford’s Geometric algebra C£m, as an alternative to  the tra ­

ditional m atrix  formulation. This objective is accomplished by generalizing 

the one-qubit system formulated in term s of the bivector space of C£3. This 

formulation is based in the well known isomorphism between the  so(3) and 

su{2) Lie algebras.

It is known th a t a quantum  system w ith N orthogonal states (levels) is 

controllable w ith the  S U (N )  group. However, a system with an even number 

of orthogonal states may also be state-controllable w ith the U S p (N )  group, 

which is a  subgroup of SU  (N ) w ith a  Lie algebra isomorphic w ith the Lie 

algebra of the symplectic group S p (N ).

The isomorphism between the sp(4) and sp in (5) Lie algebras allows the 

formulation of a two-qubit system in term s of the the bivector space of C£$, 

as a  natura l instance of the sp in (5) Lie algebra. Another isomorphism be­

tween the sp(4) Lie algebra and the anti-H erm itian space of C£4 is revealed, 

therefore allowing the formulation of a two-qubit system in term s of C£4 as 

well.

More isomorphisms are exposed between some subspaces of higher di­

mensional Clifford algebras w ith the Lie algebras of the U S p (N ) and SU  (N ) 

groups. The immediate consequence is the possibility to  represent an n-qubit

iv
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system in term s of some anti-H erm itian space of some Clifford algebra.

Another th reated  problem is the calculation of the average fidelity and 

it is shown how the original continuous integral can be reduced to  a finite 

series, leading to  a formula easier to evaluate.

Finally, an  equivalence between Fermion algebras and Clifford algebras 

is presented, revealing a  completely different way to  think about geometry.
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C hapter 1

Introduction

The main reason to  pursue new formations of physics in term s of Clifford’s 

Geometric algebra is to  gain insight th a t may be hidden when expressed in 

term s of the standard  formalism. Clifford algebras have already successfully 

described relativistic quantum  mechanics of a single particle [1, 2]. Some 

attem pts have been made to  develop many-body quantum  mechanics in 

term s of Clifford algebras, most of them  using the direct product of single 

qubit systems [3, 4]. This work explores the  possibility of using higher­

dimensional spaces and avoiding the use of the direct product.

The formalism of a single qubit is introduced in this chapter, and at 

the same tim e a gentle introduction to the formalism of Clifford algebras is 

given. Some details of this task  can be found in the Appendices.

1.1 Fundamental Axiom

Clifford algebras assume the existence of an associative product of vectors. 

The fundam ental axiom, from which the complete formalism of Clifford 

algebras of Euclidean spaces can be obtained, states th a t the square of a

1
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vector v  is a scalar. In fact, the square of a vector is identified as the scalar 

product (dot product) with itself

v 2 =  v v  =  v  ■ v. (1-1)

The generalized associative product between vectors is also called the 

geometric product. Additional insight is gained letting v  —> u  +  v  in the 

fundam ental axiom

(u +  v )(u  +  v) =  (u  +  v) • (u  +  v). (1 .2 )

After a distribution of the products we obtain

u 2 +  v u  +  u v  +  v 2 =  u  ■ u  +  2u ■ v  +  v  • v  (1.3)

from which the scalar product of the two vectors is identified as the sym­

m etric p art of the geometric product

u - v  =  ^ ( u v + v u ) .  (1.4)

An im portant consequence of this expression is th a t two vectors anticom­

m ute

u v  +  v u  =  0, (1.5)

if u  • v  =  0 .

The antisym m etric p art of the geometric product is defined as the wedge 

product

u  A v  =  ^ (u v  -  v u ). (1.6)

W ith  this definition in hand, the geometric product can be w ritten  as

u v  =  u  • v  +  u  A v , (1-7)

showing a decomposition of the geometric product of two vectors in term s

of two elements, one being scalar and the other being some kind of higher

order vector defined as a bivector.

2
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1.2 Orthonormal Basis

The formalism takes more concrete shape when an orthonorm al basis is 

defined. The fundam ental axiom leads to  the following identity obeyed by 

the n basis vectors e j of an n-dimensional Euclidean space

This condition implies th a t two different orthonorm al vectors anti commute

e je k =  - e ke j, j  (1.9)

and the square of any basis vector is one

e?e, =  1. (1.10)

The product of vectors is well defined and allows us to extend the basis 

to  all the possible m ultivector products in the Clifford algebra, which is 

denoted as Cin for an n-dimensional Euclidean space.

In order to  optimize the notation, a m ulti-product of basis elements is 

usually represented w ith the help of multiple indexes. For example, the 

bivector e ie 2 is represented as

eie2 =  ei2, (1-11)

such th a t the geometric product is implicitly understood and for example

ei2 =  —e2i- (1-12)

All the possible distinct biproducts of the basis vectors define the bivec-

3
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to r subspace of C£n

e ie 2

e ie 3 e2e3

{ejk} = e ie 4 e2e4 e3e4 (1.13)

k e3en ... en_ ie n . ^

The complete Clifford algebra C£n contains all the possible multivectors

such th a t the complete basis can be constructed as

{Cifn} =  {lj Cfcj, k x < k 2 < k^...kn (1.14)

Scalars are defined as grade 0 elements, vectors are defined as grade 1 

elements, bivectors are defined as grade 2 elements and so on, depending on 

the number of vectors th a t participate in the product.

The number of distinct C£n bivector basis elements defines the  dimension 

of the bivector subspace C£n

and so on until a highest grade multivector is obtained. The highest-grade 

multivector basis is a single element and called the volume element.

D im ension(B ivector C£n) (1.15)

Following w ith the trivectors in C£n , we see th a t

D im ension (T rivector C£n) (1.16)

The number of all the basis elements including all the different grades 

defines the dimension of the complete C£n algebra

D im ension(C£n) = (1.17)

4

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



For example, the Ct3 algebra contains 4 different grades w ith to ta l di­

mension 8 as shown in Table 1.1, where the trivector plays the role of the 

volume element.

Grade Denomination Basis element

0 Real Scalar 1

1 Vector e i, e 2, e 3

2 Bivector ei2j 623! e3i

3 Trivector (Pseudoscalar) ei23

Table 1.1. The CX3 algebra and its different elements.

An arb itrary  element th a t belongs to  the Cln algebra is called a  Clifford 

number. Any Clifford number can be expressed as a linear superposition of 

a complete basis, and if the superposition is only composed of elements of 

the same grade, this Clifford number is called homogeneous.

1.3 Reversion Conjugation

The reversion conjugation f is an anti-autom orphism  th a t reverses the order 

of the products, such th a t

(A B)t =  B ^ A \  (1.18)

where real scalars and vectors are defined to be invariant

a* =  a  (1.19)

l f =  1 (1.20)

The reversion conjugation applied to  a homogeneous multivector, which

comprises elements of a single grade, either m aintains the element invari­

an t or changes its sign. The reversion conjugation plays the role of the

5
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Herm itian conjugation in the standard  m atrix  representation of C£n, so the 

homogeneous mutivectors th a t do not change sign are defined as Hermitian. 

On the other hand, the homogeneous multivectors th a t change sign are de­

fined as anti-Herm itian. Herm itian Clifford numbers are made of elements 

of grades 0, 1 or whenever the grade is 0 or 1 m od 4. The remaining grades 

make anti-H erm itian Clifford numbers. The Herm itian or anti-H erm itian 

classification of some homogeneous multivectors is given in Table 1.2.

Grade Classification

0 Hermitian

1 Herm itian

2 Anti-Herm itian

3 Anti-Herm itian

4 Herm itian

5 Herm itian

6 Anti-Herm itian

7 Anti-Herm itian

Table 1.2. Grades with their classification as Hermitian or anti-Hermitian.

The classification in term s of Herm itian and anti-Herm itian elements is 

im portant because the exponential function of anti-Herm itian multivectors 

is expanded in term s of trigonom etric functions (sin and cos) and is thus 

bounded, whereas the exponential of Herm itian multivectors is expanded in 

term s of hyperbolic functions and is generally unbounded.

Another commonly used conjugation is the Clifford conjugation defined 

in Appendix A.

6
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1.4 M atrix Representation

A m ultivector basis can be represented through the use of a suitable set of 

matrices. A m atrix  representation of the vector Cl 3  algebra is given by the 

Pauli matrices shown in Table 1.3, where the identity was introduced with 

the subscript 0. A m atrix  representation is said to  be faithful whenever each

— 1

e2  =  <72 =

Table 1.3. The Pauli matrices representing orthonormal vectors and the identity 

representing the unit real scalar. All of them producing a faithful representation of 

the CI3 algebra

m atrix  represents a unique element of the basis. There are an infinite number 

of m atrix  representations, bu t we are mostly interested in the smallest ones 

th a t are still faithful.

It is possible to  obtain m atrix  representations for higher dimensions in 

term s of the direct product of the Pauli matrices. Once such a vector m atrix 

representation is given, it is straightforward to  calculate the m atrix  repre­

sentation of the complete Cln algebra. Representations th a t use quaternion 

num bers are not considered in this thesis.

A possible m atrix  representation of the vectors of Cl5 and CI7  are given in 

Table 1.4. The rest of the algebra can be found by calculating the respective 

m ultiproducts, bu t this does not guarantee a faithful representation. It 

can be shown th a t faithful representations of Cl4  and Cl7  can be found 

in term s of 4 x 4 and 8 x 8 matrices, respectively. On the other hand,

7
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Basis element Representation

ei <73 ® U\

e2 <73 <8 0 2

e3 0 3  <8> o 3

e4 — 02 (8) <7o

es 0 1 (8 CTQ

Basis element Representation

ei <70  <8> CT3  (g) Ol

e2 0 0  <S> 0 3  <8> 0 2

e3 0 0  €> 0 3  (8 > 0 3

e4 Oo <81 0 2  <8* Oq

65 0 3  <8 > o i  <3 oo

e 6 <71 ( 8  (Jl <8 > <7o

©7 02 <8 > <71 <8 > <7q

Table 1.4. Possible Matrix representation of the orthonormal vectors in C£5  and 

CSV Even though the CE5  vectors allow a matrix representation in terms of 4 x 4 

complex matrices, this does not generate a faithful representation of the universal 

CS?5 algebra because the volume element is represented by the identity matrix. A 

representation in terms of 8  x 8  complex matrices is sufficient to provide a faithful 

representation of the complete C i5  algebra

8
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a representation of Ci5 in term s of 4 x 4 matrices is not faithful because 

the volume element is represented by the identity m atrix. Table 1.5 shows 

th a t a given m atrix  represents bo th  a vector and a four-vector in Ci5 . In 

similar way, bo th  bivectors and trivectors share the same set of m atrices 

and finally, the volume element shares the the same representation as the 

unit real. This means th a t in this representation, a basis element and its 

product w ith the volume element share the same m atrix  representation. A

Basis element Representation

ei 0-3 <S> 01

e2 03 02

e3 03 ® 03

e4 -0-2 <8> o-o

e 5 — O'! <81 0"o

Basis element R epresentation

ei234 —01 <g> 00

61235 02 ® 00

ei245 03 ® 03

ei345 - 0 3  <8> 02

62345 03 ® 04

Table 1.5. Matrix representation of vectors and 4-vectors of Cis in terms of 4 x 4 

matrices, showing the use of the same set of matrices.

faithful representation of Ci$ is possible in term s of 8 x 8 matrices within 

the m atrix  representation of CI7 .

Non-faithful m atrix  representations may be well suited for some appli­

cations bu t they m ust always be used carefully. The Ci$ algebra does not 

have a faithful representation in term s of 4 x 4 matrices bu t this is not im­

portan t if only vectors or bivectors are used. The m atrix  representation of 

the bivector Ci§ algebra, shown in Table 1.6, is good enough to  represent 

the spin{5) Lie algebra, and this is useful in describing 2-qubit systems.

The complexification of a Clifford algebra, Cln x C, is possible by involv­

ing the im aginary number i in the abstract algebra (before the introduction 

of the m atrix  representation). This doubles the dimension of the Cin alge-

9
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Bivector Representation

ei2 ia 0 <8> <73

ei3 — 2lT0 <2) CT2

ei4 ia \ ® cti

eis - i a 2  <S> <J\

e23 iao <8> 0 1

Bivector Representation

e24 i(Ti <g> (72

e25 — 1(72 ® (72

634 icri <g> cr3

635 - i o 2  ® cr3

e45 —*(73 <8> (70

Table 1.6. Matrix representation of the bivector algebra of Of 5  in terms of 4 x 4 

matrices.

bra, because for each element there is another iejki...- An im portant

application of a complexified Clifford algebra is the use of the anti-H erm itian 

Ctii x C algebra to  represent the su(4) Lie algebra.

A nother accidental isomorphism exists between the anti-H erm itian CX4  x 

C space and the bivectors of Cie, and it is explictly shown in Table 1.7.

10
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Anti-Hermitian Cl\ x C Bivector Ci6

ei2 ei2

ei3 ei3

ei4 ei4

e234 eis

iei ei6

e23 e23

e24 e24

ei34 - e 25

ie 2 e26

e34 e34

ei24 e35

ie 3 e36

ei23 —e45

ze4 e46

ie 1234 ®56

Table 1.7. Table of the isomorphic elements of the anti-Hermitian Ci4 x C algebra 

and the bivector Ci6  algebra. Both of them generate a Lie algebra isomorphic to 

su(4).

11
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1.5 Em bedded Compact Lie Algebras

It is known th a t Clifford algebras provide an im portant alternative to  m a­

trices to  represent the generators of the classical Lie algebras (see Appendix 

B ), as shown by Doran et al. [5], This reference describes how to construct 

any classical Lie algebra w ithin the bivector algebra of a  certain Clifford 

algebra, not necessarily Euclidean. In this thesis we will explore the novel 

possibility of using the complete set of anti-Herm itian elements of certain 

Clifford algebras for similar purposes.

The study of the representation of n-qubit systems is im portant because 

they could ultim ately help us to  device be tte r control schemes and more 

efficient simulations. Some example of these new possibilities were given by 

Rau [6] and Uskov [7].

The bivector space of C£n  directly gives an instance of the sp in (N )  Lie 

algebra and the exponential of the bivector algebra gives an instance of the 

S p in (N )  group. The S p in (N )  group is known as the double cover of the 

S O (N )  group because for each element of S O (N ) there are two equivalent 

elements in S p in (N ). Given th a t O3̂  is the m atrix  representation of an 

element of the S O {N )  group and th a t r k are the components of a vector, 

the ro tation  is performed as

rj -> r '  =  Ojkr k (1.21)

On the other hand, if R  is an element of the S p in (N )  group and the  vector 

is represented as r  =  r 3 ej, the ro tation is performed in spinorial form as a 

un itary  transform ation

r  —> r ' =  R r R \  (1.22)

where we notice th a t both  R  and —R  can be used for the same purpose.

12
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The bivector subspace is p art of the larger anti-H erm itian subspace of 

the respective Clifford algebra. A fundam ental observation provided in this 

thesis is th a t the anti-H erm itian subspace can be used to form semisimple 

Lie algebras.

We are mostly interested in semisimple Lie algebras, characterized by not 

containing invariant closed subalgebras. This means th a t any element th a t 

commutes w ith the rest of the algebra must be disregarded as a potential gen­

erator. This is a  possibility for the volume element in some odd-dimensional 

Clifford algebras Cin such as n  =  3, 7 ,11,... or (n + 1 ) mod 4 =  0 in general. 

The anti-H erm itian subspace w ithout the volume element in these dimen­

sions will be denoted w ith a star super-index as anti-Hermitian*. If the 

Clifford algebra is complexified, the i element is also autom atically excluded 

as a potential generator.

Some of the Lie algebras th a t can be constructed within Clifford algebras 

are shown in Table 1.8. The proof th a t the anti-H erm itian Ci4 forms a 

sp(4) Lie algebra is shown in Appendix C. The proof of the  rest of the 

isomorphisms is not provided in this thesis because the procedures are very 

similar and not particularly illuminating. This table shows symplectic Lie 

algebras for 2 and 3 qubits bu t not for 4 and 5 qubits. This does not mean 

th a t they do not exist. This only means the the sp(16) and sp(32) Lie 

algebras do not have simple representations in term s of Clifford algebras 

Cin . For example, the sp(16) Lie algebra can be constructed w ith the union 

of the 120 elements of the anti — H erm itia n  Ci8 and the 16 elements shown 

in Table 1.9

There is an accidental isomorphism between the Lie algebra of the anti- 

Herm itian C ii algebra and the sp in (5) Lie algebra, and for this reason they 

are going to  be used for similar purposes. Table 1.10 shows the elements of

13
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C£n subspace Qubits Generators Lie algebra

Bivector Ci3 1 3 su (2 )

Anti-Hermitian Ci4 2 10 sp(4) ~  sp in (5)

Anti-Herm itian C i\ x C 2 15 su(4) ~  sp in (6 )

Anti-Herm itian CI5 3 20 sp in (5) x sp in (5)

Anti-Herm itian C£6 3 36 sp{ 8 )

Anti-Herm itian C£q x  C 3 63 su(8 )

Anti-Hermitian* Ci7 3 63 su( 8)

Anti-Herm itian Cis x C 4 255 sn(16)

Anti-Herm itian C£\o x C 5 1023 stt(32)

Anti-Hermitian* C£\\ 5 1023 su (32)

Anti-Herm itian C i \ 2 6 2080 sp(64)

Table 1.8. Some anti-Hermitian algebras and their Lie algebras. The * identifies 

the anti-Hermitian algebras from which the volume element has been removed.
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- i e i 4 7 8  -  ie i5 6 8

fe2468  -  ie i4 7 8

ie 2 4 6 8  -  f®2578

5 6 4 5 6 8  -  § e i2 3 6 8

3 6 4 5 7 8  -  § e i2 3 6 7 8

§ 6 3 4 6 8  -  |e 3 5 7 8  -  § e i2 4 7 8  ~ § e i2 5 6 8

§ 6 3 4 7 8  -  § 6 3 5 6 8  -  § e  12468 ~ § e i2 5 7 8

*e i3 4 6 8  -  ^ei3578

§6 2 3 6 8  -  § e i4 5 6 8

§ e2 3 7 8  -  § e i4 5 7 8

- f e i 3 5 7 8  -  ie23478

* e i3 4 6 8  -  fe23568

§ e i3 6 8  +  §624568

~ § e i 3 7 8  -  §624578

§ 634568  -  § e i2 6 8

§ 634578  ~  § e i2 7 8

Table 1.9. The 16 elements that have to be added to the anti-Hermitian CXg 

algebra to form a basis for the sp(16) Lie algebra.
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both  algebras and their equivalent elements.

Bivector CP. 5 Anti-Herm itian CX4

ei2 ei2

ei3 ei3

ei4 ei4

e 15 ®234

e23 ®23

e 24 e24

e 25 —ei34

e34 e34

e35 ^124

e45 —ei23

Table 1.10. Equivalence table of the isomorphic Lie algebras spin(5) (bivectors in 

CS?5 ) and the anti-Hermitian subspace of CJIa as a Lie algebra.

1.6 Single qubit system s

A single qubit system is characterized by having two orthogonal states th a t 

are linearly combined with complex coefficients to  form the general state

\ip) =  Cl I T) +  c2| I). (1.23)

These coefficients are normalized such th a t

M 2 +  | c 2 | 2 =  1, (1.24)

so th a t the number of degrees of freedom is reduced to  3 (each complex 

coefficient contributes w ith two degrees of freedom). The notation indicates

16
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the orthogonal states of a spin-1/2 system, but they could represent the 

orthogonal states of any 2-level system.

The general s ta te  can be characterized by the orientation of a rigid body 

in three dimensions, which can be defined in term s of the 5 0 (3 )  rotation 

group. However, 517(2), which is the double cover of 5 0 (3 ) , is the right 

choice, because it can be used to  perform unitary  transform ations on the 

states. This isomorphism is the reason for the strong geometrical content 

of a  single-qubit system, which was rediscovered in many occasions [8, 9]. 

The rest of this chapter follows the Clz approach [10]. However there are 

other alternatives in term s of the space-time algebra, developed w ith the 

relativistic case in m ind [11, 3, 4, 12, 13].

Given th a t r  is a vector in C lz , it can be expanded in a basis as

r  =  x e \ + ye2 +  ze3. (1-25)

The spinorial form of a rotation takes the form

r  —> r ' =  R r r f ,  (1.26)

where the  so called rotor R , is w ritten as an exponential of the Clz bivector 

algebra (an instance of the su (2) Lie algebra)

R  =  eA, A  € su{2). (1.27)

A more explicit form of the rotor is

R  =  eflB/ 2, (1.28)

where B  is a Clz bivector such th a t B 2 =  —1. This bivector defines the plane

of ro tation and the real number 9 defines the ro tation  angle. For example,

17
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rotations in the three orthogonal planes are carried out by the following 

rotors

R a  =  e~ ^ ei2/2 (1.29)

R 2 3  =  e- n ^ / 2  (1 30)

R 3 1  = e - 6e3^ 2, (1.31)

The general orientation of a rigid body m any be given by the following rotor

R  =  e -</>ei2/ 2e —0 e 3i / 2e —7, e 12/2  ^ 3 3 )

In the three dimensional space, described by C£3, we usually associate a

rotation w ith a certain axis. This is possible because in Ci3 there are three

vectors and three bivectors, and in general it is possible to  associate a vector 

w ith a bivector. Each vector is dual to  the bivector of the  orthogonal plane. 

This is not possible in higher dimensions, where the only consistent way to  

perform a ro tation is by defining the plane in which the ro tation takes place.

The spinor wave function is introduced as the projection of the rotor

=  R P 3, (1.33)

where the projector, P3, is a paravector (see Appendix D) defined as

^3 =  i ( l  +  e3), (1.34)

where the unitary  vector along e 3 was chosen arbitrarily. This projector as 

any projector, is idempotent

P 3  =  P 3 P3  — P 3 P3 P 3 " ■ (1.35)

This can be proved either though direct com putation or by observing its

m atrix  representation

'  1 0 ’
(1.36)

18
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which also shows th a t P 3 does not have inverse. On the other hand, the 

complementary projector is

P 3 =  ^ ( l - e 3), (1.37)

w ith m atrix  representation

P 3 =  ^  ° j  , (1-38)

The resolution of the identity is easily seen as

1 =  P 3 + P 3. (1-39)

These complementary projectors are the eigenfunctions of e 3 because the 

following identities are verified by using the pacwoman property (Appendix 

E ) or direct com putation

e 3P3 =  (+ 1 )P 3 (1-40)

e3P 3 =  (—1 )P 3. (1-41)

The two orthogonal states can be identified as

IT ) -  P3 (1-42)

U > =  e iP 3, (1.43)

where the second sta te  can be reached from the first one by the following 

unitary  transform ation

| | )  = e lre13/ 2 p 3. ( 1 4 4 )

In this way, the m atrix  representation of the states are

1» -  ( ;  j  (i.45)

U> -  ( “  j  d .46)

19
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Using the pacwoman property, the spinor wave function can always be

where the coefficients, tpi and ^ 2 , belong to  the combined scalar-pseudoscalar 

C£3 algebra. This algebra is isomorphic to  the standard  complex algebra, 

where the volume element e i23 plays the role of the imaginary number i.

Once the m atrix  representation is used, the spinor wave function has the 

general form

where the components, ipi and ip2 , are now just two standard  complex num­

bers.

The formulation of density m atrices in term s of Clifford algebras is 

straightforward. If R  is a rotor and P  is the projector, the expression th a t 

plays the role of the density m atrix  for the pure state, T P , is

w ritten  in term s of the following null basis of paravectors (Appendix D )

{P 3 ,e iP 3} (1.47)

so th a t, in general, the following expansion is possible

T  =  ^ iP 3  +  ^2eiP3, (1.48)

(1.49)

(1.50)

Using the explicit projector (1.34), this becomes

(1.51)

bu t the effect of a general rotor directs the initial vector along an arb itrary  

direction denoted by a unit vector p

(1.52)

20
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This expression in the traditional notation th a t uses the Pauli m atrices is

However, this notation is very limiting because of many reasons including 

the fact th a t can be used only in three dimensions.

The action of a unitary  transform ation, carried out by the rotor, can 

be understood as a change in the spin polarization of the pure state. In 

fact, the direction of the polarization, p, determines the sta te  of the wave 

function up to  a global phase. The sphere defined by the range of the unit 

vector, p, is called Bloch sphere [8].

In the most general case of mixed states, the density m atrix is formulated 

as a superposition of pure density matrices as

where the  coefficients are normalized as probabilities

j = m

E w  = L (L55)

This general density m atrix can also be w ritten in term s of a un it polariza­

tion vector as

w ith a  =  1 for pure states and 0 <  a  < 1 for mixed states, where the 0 

value corresponds to  the fully mixed (unpolarized) state.

The Von Neumann entropy is usually defined in term s of the trace of the 

m atrix  representation as

(1.53)

p  =  p i R i P R \  + P 2 R i P R \  +  ... + P m R m P R l n ,  C1 -5 4 )

(1.56)

5  =  —T r(p ln (p )) (1.57)
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or as the scalar part in Clifford algebras (Appendixes F  and G)

S (a ) = —2(p\n(p))s, (1.58)

resulting in

=  (1.59)

as shown in Appendix H. The entropy of a pure sta te  is calculated in the 

following limit as

S (a  —> 1) =  0, (1.60)

whereas the fully mixed state  gives

S (a  —> 0) =  In 2. (1.61)

1.7 Interactions

A single-qubit system is in general a system w ith two levels. A spin-1/2 

system w ith m agnetic interaction, as studied in Nuclear M agnetic Resonance 

(NMR), and a two-level system, driven by an electromagnetic field, are two 

examples. Let us consider the following Ham iltonian driven by an electric 

field E (t), where h is set to one for convenience

H  =  —y  |1)(1| +  y  |2)(2| +  E (t) (m  |1>(2| +  /4 2|2)(1|). (1.62)

This Hamiltonian can be w ritten in term s of the Pauli m atrices as

H  =  y  az +  E {t)\p i2Wxel4,az i (1.63)

where p \ 2  =  \p n \e l(̂ - The electric field induces a transition of populations 

between the levels, but in general th a t process is inefficient if the m agnitude
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of the electric field times fj, 12 is small w ith respect to  wo- However, there 

is a resonant m ethod th a t allows very efficient transitions by tuning the 

frequency of the electric field. Let us define a harmonic electric field with 

frequency v  and write it as

E {t) = ecos (i/t) = ^{e ivta> +  (L64)

Furtherm ore, let us define the Rabi frequency as fi =  € | /J.121, so th a t the 

Ham iltonian becomes

H  = ^ < tz + ^ vt~ ^ a x + ^ e - * vt+®a'(Tx . (1.65)

Going further, the Hamiltonian can be w ritten as

H  =  e-*(vt+4>)/2̂ ( y ( j z +  -^e 2il,t<Tza x +  ^Lax )ei{vt+,t>)l2,,z. (1.66)

This form suggests the unitary  transform ation

iP = U V = e-'M +'W /20̂  (16 7 )

such th a t the Schrodinger equation becomes

(U*HU -  i r fU ) V  = M  (1.68)

or explicitly

Q (w o  -  v )°z  +  +  ^ e 2 %vt°xa ^ j  ^  =  M .  (1.69)

The term  w ith the exponential is highly oscillating, so it can be neglected 

Q (w 0 -  i/)cr2 +  ^crx^  ^  =  i ’j '.  (1.70)

The solution of this equation is straightforw ard

vj> =  ( 1 - 7 1 )

23
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I t is convenient to  define a unit vector as

(uq -  u )az + Q,crx
u  =

y/(WO ~  I/)2 +  ft2 

so th a t the solution is conveniently w ritten as

(1.72)

,T, (  t V (vo  -  v y  + n 2 . y/(u0 -  v )2 + n2 ^=  cos(—  ----------- 1) — tu s in (—--------------------- 1) Wo- (1-73)

The resonant case appears when u>o =  v  resulting in the most efficient con­

dition for the transfer of populations.
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C hapter 2

Controllability Condition

2.1 N otions of Controllability of Quantum Sys­

tem s

An n-qubit system can be seen as a composition of n single-qubit systems. 

A simple form of a n-qubit s ta te  is

l^> =  IV’l) ® 1̂ 2) ® •• ® IV’n), (2 .1)

which is an example of a pure separable state. A complete basis for the 

n-qubit H ilbert space can be made of N  =  2" states as

 ̂\ -M ^  I -M ^  1 -t>\ ^  I

\ \  I) ® •• ® | I) <8> | | )  ® U ) /

(2 .2 )
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These n-qubit systems are a subset of the more general quantum  systems of 

finite discrete levels.

Each qubit can be represented by the projection of a rotor in Ct3 as 

explained in C hapter 1. This means th a t an n-qubit system could be rep­

resented in term s of the direct product of rotors in Ci3 . For example, the 

sta te  (2.1) could be represented as

I®) =  (R i ® R 2 ® •• ® Rn){Pb ® Ffe ® .. ® P3)- (2.3)

As an alternative, these systems can be also represented in term s of rotors 

in higher dimensions. Choosing a suitable Clifford algebra it is possible to  

avoid the use of the direct product. This approach is explicitly described 

in Chapters 2 and 3 for two and three qubits and is mainly developed in 

the pursuit of gaining more insight. Besides theoretical objectives, this can 

be also useful for designing com puter programs th a t would rely only on the 

im plem entation of the geometric product and would avoid calculations in 

the m atrix  representation entirely.

The ability to  represent n-qubit states within a certain Clifford algebra 

means th a t we are able to  represent an arb itrary  sta te  of the H ilbert space. 

This ability is equivalent to being able to  represent the un itary  operators 

needed to  transform  any given sta te  to  any other s ta te  in the Hilbert space. 

The sta te  of an n-qubit system can be viewed as lying on a  2N  sphere, 

and the Lie group th a t enables one to  access any sta te  on this sphere is 

S O (2N ). However, there are also certain subgroups th a t are able to access 

the complete Hilbert space. These groups were found by Montgomery and 

Samelson [14] and listed in general applications to  control theory by Brockett 

[15]. Specific applications to  quantum  mechanics were made by [16] and 

more recently by [17], who summarized in a theorem  the conditions for the
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controllability of states. This theorem  says th a t given the following unitary  

transform ation of pure states

V’o - » ip = ec xpo, (2.4)

the states are completely controllable if and only if the Lie algebra is isomor­

phic to  su (N )  or sp (N ) for even N  and s u (N ) for odd N . The symplectic 

algebras of interest sp (N ) generate unitary  groups denoted as U Sp (N )  th a t 

belong to  the intersection of the unitary  and symplectic groups. S ta te  con­

trollability ensures the controllability of pure-state density matrices, bu t not 

the controllability of m ixed-state density matrices.

2.2 Infinitessim al Controllability Condition

Even though the controllability of a scheme can be established by identifying 

the Lie algebra and its dimension, this section introduces a sufficient control 

condition based on an infinitesimal expansion of the  exponential form. This 

sufficient condition is useful for establishing the controllability of a scheme 

given a set of generators, especially when the complete Lie algebra of the 

generators is not known.

A control scheme can be defined in term s of a sequence of un itary  op­

erators, each param etrized by a single variable. Theorem 2.3 is going to  be 

used to  choose such a sequence of un itary  operators, bu t first the following 

prelim inary work is needed.
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The prim itive projector P, whose m atrix  representation is

( \  0 .. ^

P  =
0 0

(2.5)

\0  0

represents a s ta te  of the system th a t can be taken as a reference sta te  of a 

pass sta te  (or pivot state). According to  the theorem  of Albertini et al. [17], 

it is possible to  transform  the system from the pass state, P , to  an  arb itrary  

sta te  by means of a  unitary  operator of the form e£su, where £ su is an 

element of su  ( N ) . We therefore say th a t su  (N ) is a state-control algebra 

relative to  the pass sta te  P. (A stronger statem ent can be made, bu t is not 

needed a t this point.) In particular, a transform ation to  an arb itrary  sta te  in 

the infinitesimal neighborhood of P  is realized by eSCsu, where S£su is some 

infinitesimal element of su  (N ) . As we show below by construction, there 

are also subalgebras of s u (N )  able to  exercise control in the  infinitesimal 

neighborhood of P.

D e fin itio n  2.1 A Lie algebra, A  C s u (N ) ,  is said to be a state-control 

algebra fo r  the system in the infinitesimal neighborhood of the pass state P  

i f  fo r  any state
/

ip =

1 +  i5y\ 0 

6 x 2  +  i 6 y 2  0

\

(2 .6 )

\5xjy +  i 6 ;y 0 . . .  j  

in the infinitesimal neighborhood o f P  there exists an infinitesimal element 

of the form

6£  = 6dj £ i  e  A ,
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with nonzero real parameters 5&i £  M, where {C j} is a basis o f A , that takes 

P  into xp :

eMj CjP  =  (1 +  S0j C j)P  =  Ip

with real displacements dxj =  Sx] (S61,SO2, ..) £ R, Syj = Sy3{S0l , 582, ..) £ 

R.

Prom the definition, the following theorem  follows immediately:

T h eorem  2.1 Let A  C s u (N )  be a state-control algebra fo r  the system in 

the infinitesimal neighborhood of the pass state P . It is then equivalent to 

su  (N ) in its infinitesimal action around P  (2.6). That is, fo r  any infinites­

imal element 6£su o f su  (N ) ,  there exists an infinitesimal element SC £ A  

such that
e&Csup  _  e&Cp

The next theorem  extends this result.

T h eorem  2.2  Given that 6CSU is an arbitrary infinitesimal instance of 

su (N ) and A  C su  (N ) is a state-control algebra fo r  the system in the in­

finitesim al neighborhood of the pass state P , an infinitesimal instance SC of 

A  can be found such that

e6Csuecop = esceCoPj (2 .7 )

where Co is any fin ite element o f A  (not necessarily infinitesimal).
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P roof. Defining the infinitesimal element 8L'SU by the un itary  transfor­

mation

5C'su = e - Ca8Csuec°, (2.8)

it is clear th a t th a t 8 C'SU and 8 CSU are elements of the same Lie algebra, 

namely su  (N ) .  By the theorem  above, we know th a t an infinitesimal ele­

ment 8 £! 6 A  exists th a t is equivalent to  8 C'SU a t P  :

gbC-sup =  e-^ogi5£sue£o _  esc p

It follows th a t

e6CSueC0p  = eCoe6C’p  =  eSCeCop̂  (2 .9)

where 8C = ec°8C e~ c° is clearly infinitesimal and belongs to  the same Lie 

algebra, nam ely A , as £ q and 8 C . Thus, the theorem  is proved. ■

T h eorem  2.3  Let A  C su (N ) be a state-control algebra fo r  the system  in 

the infinitesimal neighborhood o f the pass state P. It is also a state-control 

algebra relative to the pass state, P , not ju s t in the infinitesimal neighborhood 

of P.

P roof. As noted above, the pass state, P , can be transform ed into any 

sta te  ip by a unitary  operator eCsu, where £ su is an element of su (N ). The 

exponential can be w ritten as a limit:

tp = ec ™P =  lim (1  + — \  P, (2.10)
n —*oo \  n  J

C \ n_1 L•‘-'.SU \ ‘-'S

which can be decomposed as

V>= lim ( l  +  — 1 e T p .  (2.11)
n->oo \  n  J

Theorems (2.1) establishes th a t in the limit n  —» oo, the action of the in­

finitesimal transform ation e ~ ^  can be replaced by the action of e~ ^, where
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^  is an element of the Lie algebra A  th a t satisfies the full infinitesimal

expansion (2.6):

ip =  lim +  e~^ P. (2.12)
n—>00 Y n  J

By theorem  (2.2), such a substitution can be reproduced for each of the 

factors of the infinite sequence so th a t

ip =  lim e ~ ? P ,  (2-13)
n—*oo

which reduces the action of the S U (N ) group to  the group generated by 

the Lie algebra A . Thus, the Lie algebra A  can be used to define the state- 

control scheme. ■

This theorem  implies th a t it is only necessary to  test the infinitesimal 

expansion (2.6) around the state  P  to ensure the infinitesimal accessibility 

around any other s ta te  by using the Lie algebra defined by the generators 

of the infinitesimal expansion.

The practical value of theorem  (2.3) lies in the potential to  optimize 

the com putational work to  establish the controllability of a certain control 

scheme, given an initial set of generators. Current m ethods require the 

calculation of the complete Lie algebra through the recursive application of 

the Lie products, bu t this is an expensive procedure in com putational term s 

when the dimension of the matrices is large. By using this new sufficient 

condition, one is allowed to stop the recursion as soon as the infinitesimal 

expansion (2.6) has been achieved.

Before going to  the next subsection, we could sta te  another related the­

orem th a t may clarify the concept of complete accessibility of the neighbor­

hood around the sta te  P

T h eorem  2.4  The Jacobian o f the transformation o f variables around the
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state P  defined in infinitesimal expansion (2.6) is different from  zero

de*(f f ),P *  °’ (2‘14)

where qi = 5 y i,q 2  = Sx2, <73 =  Sy2, ■ • •, q2 N -i  =  SyN .

P ro o f .  This theorem  is proved by realizing th a t in the infinitesimal 

limit, the qk are linear functions of 60^ bu t never constant. ■

2.3 Explicit Control Scheme

Now we present an explicit control scheme, to  show th a t an arb itrary  sta te  

of a  quantum  system, w ith an even number of energy levels th a t are sym m et­

rically distributed about an offset, can be produced from another arb itrary  

sta te  using a set of fields. Moreover the Lie algebra generated by these field- 

couplings are seen to  be of dimension N ( N  +  l) /2 . This scheme is based 

on the subspace controllability theorem  [18] th a t describes the m ethod of 

transferring any superposition of states to  any other superposition through 

a pivot s ta te  (pass state). If the implemented interactions accomplish the 

objective to  completely transfer all the am plitudes from an arb itrary  su­

perposition of states to  the pivot state, the sta te  controllability is implied 

because the inverse transform ation can be carried out to restore the orig­

inal arb itrary  superposition. This builds on the work done by Eberly and 

coworkers on the control of harmonic oscillator states [19, 20].

This scheme can be implemented on an even TV-level system with sym­

metric energies and the sequence of interactions results in a set of generators 

th a t ultim ately form a symplectic Lie algebra. The two-qubit case w ith sym­

metric energy levels as shown in figure (2.1) is described in detail below.
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Assuming th a t the two-qubit system is in a superposition of the four 

basis states

| * )  =  c o |0 )  +  c i | 1 )  +  c 2 |2 )  +  c 3 |3 ) ,  (2.15)

the pa th  to  the ground (pass) s ta te  is accomplished as

•  Applying a certain pulse of frequency A 2i in order to  transfer the 

complete am plitude in state  |3) to  sta te  |2). This transfer, as all the 

others referred in this sequence, involves two generators in order to 

take into account the phase of the states. The sym m etry of the energy 

levels implies th a t there is also a simultaneous transfer of am plitudes 

between the states |0) and 11), but this is irrelevant for our purposes.

•  Applying a pulse of frequency u>\ to  transfer the am plitude from state  

|2) to sta te  |1).

•  Applying a  pulse of frequency A 2j to  transfer the am plitude of s tate  

|1) to  the ground sta te  |0) (this is the same interaction applied in the 

first step).

The generators of the interaction A i 2 (see Figure 2.1) are

G \ =
1

and the generator of the interaction u)\ are

0 1 0

- 1 0 0

0 0 0

0 0 - 1

G'i =

i 0 0 

0 0 0

0 0 0
(2.16)

^0 0 0 0^ ^0 0 0 0^

0 0 1 0 0 0 i 0
g 2 = G '2  =

0 - 1 0 0 0 i 0 0

1° 0 0 V 1° 0 0 V

(2.17)
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Figure 2.1. Representation of a four-level system with symmetric energy levels.

This initial set of generators is equivalent to  the m atrix  representation 

of the following elements

The complete algebra is then found from all the new possible independent 

com m utators calculated recursively until the linear space is exhausted [21]. 

The dimension of this Lie algebra is seen to  be 10 as is the dimension of 

sp(4). This fact leads us to  conclude th a t this Lie algebra is isomorphic to 

sp(4) because the other alternative would be su(4) w ith dimension 15.

Two particular generators th a t can be used to  define the C artan  subal-

G 'i =  e 23

=  —(eis +  e24)/2

G '2  =  ( e u  -  e2s)/2

G\ — —ei3 (2.18)

(2.19)

(2 .20 ) 

(2 .21)
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gebra are directly calculated from the initial generators as

C\ =  [G1; Gj]

C2  = [G2 ,G'2\ =

^2i 0 0 0 ^
0 —2i 0 0

0 0 2 i 0

1 ° 0 0 2 i j

^0 0 0 0N

0 2 i 0 0

0 0 --2  i 0

0 0 V

(2 .22 )

(2.23)

The Ham iltonian must be defined within the C artan  subalgebra because 

a basis of the C artan  subalgebra provides the maximum num ber of inde­

pendent generators th a t can be simultaneously diagonalized. Adding any 

other independent diagonal m atrix  would autom atically open the original 

Lie algebra. The C artan  subalgebra w ith the basis elements C\ and C 2  cor­

responds to  a system w ith symmetric energy levels as can be seen explicitly 

by writing the Hamiltonian w ithout loss of generality as

zj _  , Wi
H  ~  2 i Cl +  " " M- 0 ’ =

^u 2 0 0 o ^
0 U)l 0 0

0 0 -LJl 0

V° 0 0 - ^ 2

the interactions give 7

(2.24)
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N /2  complex generators as follows

G  i  =

G[

( 0 1 0 .. 0 0 0N ^0 0 0 0 0 0s
- 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 -1 0 0 0 0

Gi —

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 - 1 0 0

0 0 . .  0 - 1 V 1° 0 0 0 0 0/'o i 0 . . 0 0 o'' *0 0 0 . . 0 0 o''
i 0 0 0 0 0 0 0 i 0 0 0

0 0 0 0 0 0 0 i 0 0 0 0

g '2  =

0 0 0 0 0 0 0 0 0 0 i 0

0 0 0 0 0 i 0 0 0 i 0 0

v° 0 0 . . 0 i V 1° 0 0 . . 0 0 V
(2.25)

from which, it can be verified th a t a Lie algebra of dimension N ( N + 1)/2 can 

be found after an exhaustive com putation of all the possible commutators. 

The C artan  subalgebra of dimension N /2  can be calculated directly from
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the initial set as

Ci =  [G i.G i]

c 2 =  [ c 2, c y

^ 2  i 0 0

0 - 2  i 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 

0 2 i 0 

0 0 - 2*

0 0 

0 0 

0 0

0

0

0

0 0 

0 0 

0 0

0 0 0 

0 2t 0 

0 0 - 2* 

0 0 0

0 0 0

0 0 0

2 i 0 0

0 - 2  i 0

0 0 0

(2.26)

C n / 2  — [GjV/2)G)v/2] — •••,

which ultim ately are able to  define the most general Hamiltonian w ith sym­

m etric energy levels.

These results are expected because N (N  +  l ) /2  is the dimension of the 

Lie algebra sp (N ), and N /2 , the dimension of its C artan  subalgebra. Sim­

ilar results are going to  be presented in the next two chapters, where the 

representation is given in term s of Clifford algebras.
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C hapter 3

Two-qubit System

3.1 Two-qubit Control w ith 5C/(4)

The purpose of this chapter is to  express the Lie algebras of interest, su(4) 

and sp(4), in term s of certain Clifford algebras and to  study the  control 

schemes based on them. The last p art of the chapter deals w ith the descrip­

tion of the entanglement of pure states.

The control of pure two-qubit states can be carried out by S U (4). The 

accidental isomorphism between su(4) and sp in (6 ), was exploited by Havel 

and Doran [22] in order to  develop a geometrical formulation of a two-qubit 

system. However there are more possibilities by using other Lie algebras 

presented in Table 1.8. The following statem ents summarize some im portant 

facts th a t are used in the rest of this chapter

• There is an instance of the su(4) Lie algebra in term s of the anti- 

Herm itian C£ 4  x C.

•  The anti-H erm itian Ct4 (real) is seen to  form a  Lie algebra isomorphic 

to  sp(4).
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•  The sp in (5) lie algebra, which is accidentally isomorphic to  the sp(4) 

Lie algebra, is naturally  obtained in term s of the bivectors in Ci5 .

• The su(2) x su (2) Lie algebra is a subalgebra of stt(4) bu t not a sub­

algebra of sp(4)

The explicit calculation of the C artan  m atrix  of the anti-Herm itian CL4 

algebra is shown in Appendix C. The C artan  m atrix  contains the essential 

inform ation of the Lie algebra and therefore two isomorphic Lie algebras 

share the same C artan  matrix.

A basis of the complexified anti-Herm itian Ci4 x C algebra is given in 

Table 3.1.

e i2 =

e i 3 =  

e 23 =

icr0 <8> cr3 

—i d 0 8  02 

*00 <g> 0  1

e i 23 =  

i e  4 =

f e i 234 ~

i u 3 ®  cr0 

—i( j2 00 

—icr 1 <gi ctq

e i 4 = *01 <E> 01 624  = icr\ <E) 02

e 34 = icr 1 <8> cr3 e i 24 = icr2 G  03

e i 34 = icy2 ®  CT2 6234 = - i c r 2 <8101

i e  1 = icrz (?) cr 1 ze2 = *03 8) 02

i e  3 = icrz ®  cr3

Table 3.1. Matrix representation of the complexified anti-Hermitian Ct± x C space.

A basis of the anti-Herm itian C l\ space th a t defines an instance of the 

sp(4) algebra is given in Table 3.2. The respective explicit m atrix  represen­

tation  is given in Table 3.4. A basis of the su (2) x su(2) Lie algebra is given 

in Table 3.3.

Generalizing the single-qubit case, we write the spinor wave-function as
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e i 2 = ioo  ®  <73

e 13 = — iao  <8> <72

^23 = i(To <2> <71

e i 4 = ia i  ®  <7i

e 2 4 = i<71 ®  <72

634 = i<71 <8> <73

e i2 3 = i(73 <8> <7o

e i2 4 = - i< 7 2  8> <73

e i3 4 = i<72 <8> <72

e234 = - i< 7 2  ®  <71

Table 3.2. Matrix representation of the anti-Hermitian G?4 algebra.

e i 2 = ZCTo ®  <73

631 i<7o 8  <72

<'/.! = i<7o 8  <71

e i2 3  = i<73 ®  <70

* e i2 3 4  = — i<7l <8l <70

i e  4 = — it72 8  <70

Table 3.3. Representation of the su(2) x su(2 ) Lie algebra
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- y

- i

- i

—i

Table 3.4. Explicit matrix representation of the generators of the anti-Hermitian 

C£4 algebra. The elements e i2 and e i23 can be naturally chosen as a basis of the 

Cartan subalgebra.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



the projection of the exponential form of the Lie algebra as

$  =  ec P, (3.1)

where P  in m atrix representation is

( l 0 0 o)

0 0 0 0

0 0 0 0

0 0 ° )

(3.2)

An infinitesimal expression of the six(4) Lie algebra around zero can be 

constructed as follows

C =  Y ,  l S d Je J +  J 2  50 j k&j k  “b ^   ̂ <50j k m& jk m  ~b *50 12340 1234,
0 < j < N  0 < j < k < 4  0 < j < k < m < 4

(3.3)

where the infinitesimal angles <50jfc... are real numbers. The first-order ex­

pansion of the exponential form is

(  1 +  iS03 +  *<5012 +  iS8 123 0  0  0 ^

i 56 \  — 58  2 +  <5013 +  *<5023 0 0 0

<504 — f <501234 +  <50124 +  *<5034 0 0 0

^<50234 — <5024 +  *<5014 — *50134 0 0 Oy

and thus, it satisfies the infinitesimal expansion (2.6).

This allows us to  define control schemes to  access the complete Hilbert 

space. For example, it is possible to  define the following control scheme in 

an infinitesimal neighborhood of P

yp =  g~0234e234/2g0i4e i4/2 g —i04e4/2g—i01234ei234/2g—0i3ei3/2g023e23/2g0i2ei2/2 p

(3.5)

<F =  &-P  = (3.4)
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because the infinitesimal expansion gives

f 1 + ise 12/2

1 6 8 2 3 /2  — 6 6 1 3 /2  

i 6 8 \ 2 3 i / 2  — 6 8 4 / 2  

\i58u/2 — 6 8 2 3 4 / 2

This expansion is made around the state  P  bu t an explicit com putational 

calculation shows th a t the complete infinitesimal expansion also exists ev­

erywhere except at isolated points. Theorem 2.3 of chapter 2 guarantees the 

complete infinitesimal expansion around any point when all the  Lie algebra 

is used.

The fundamental prim itive projector P  is defined as

P  =  - (1  — iei23)(l — iei2) (3.7)

such th a t its m atrix  representation is

P  = ^ ( l + c r 3 ®<7o)(l+<To®(T3). (3.8)

In this form, the primitive projector P  is seen to  be the product of two 

independent commuting projectors th a t are defined as

P 12 =  ^(1  -  ie 12) =  ^ (1  +  1 <8>cr3) (3.9)

Pi23 =  ^(1  -  i e m )  =  ^ ( 1 +  <r3 <g> 1), (3.10)

such th a t P \ 2  is associated with one qubit and P 123 is associated w ith the 

o ther qubit.

T he prim itive projector P  is part of four prim itive projectors th a t provide 

a resolution of the identity. It is convenient to  introduce a  new label to 

denote the projector P  as

Qi = P, (3-11)
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so th a t the other three primitive projectors are defined as

^0 0 0 0^

0 1 0  0
<?2 =  -Pl23-P-12 =  7(1  -  *ei23)(l +  *612)

Q 3  — P - 1 2 3 P 1 2  — ^(1  +  *ei23)(l -  *ei2) =

0 0 0 0 

\ 0  0 0 0 /

^0 0 0 0^ 

0 0 0 0 

0 0 1 0  

\ 0  0 0 0 /

(3.12)

(3.13)

Qa •P-123-P-12  =  ^(1 +  ie 123) ( l  +  ie  12) =

0̂ 0 0 0N
0 0 0 0
0 0 0 0

V° 0 0 V
.(3.14)

Thus, the identity can be resolved as

1 =  Qi  +  Q 2  +  Q 3  +  Qa- (3.15)

The C artan  subalgebra of su(4) contains three elements. A natural 

choice of members of the C artan  subalgebra are those elements w ith di­

agonal m atrix  representation

C  =  {ei2, ei23, ie3). (3.16)

The free-evolution Hamiltonian is constructed w ith the C artan  subalgebra. 

There are three basis elements so we can always form a Hamiltonian with 

arb itrary  spacing between the energy levels.
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3.2 Control w ith USp(4)

The anti-Herm itian Cl a space is an instance of the sp(4) Lie algebra. The 

argum ent of the exponential form constructed w ith the infinitesimal real 

num bers 69jk and 69jkm is

£  =  66 \ 2^12 +  ^ 13^13 +  <5014^14 +  £023^23 +  5024624 +

•5034634 + *501236123 + 501246124 + ̂ 01346134 + 502346234,
so th a t the  expansion up to first order is

/

q P  =  R P  =  ec P  =

1 +  *5012 +  *50123 

(5013 +  *5023 

50124 +  *5034

0 0 0 

0 0 0 

0 0 0
(3.17)

^50234 — 5024 +  *5014 ~  *50134 0 0 0y

and therefore we conclude th a t the Lie algebra satisfies the infinitesimal 

expansion (2.6).

A possible control scheme th a t satisfies the infinitesimal expansion (2.6) 

could be defined by applying the following minimal sequence of seven unitary  

transform ations w ith seven param eters

\J) — pp — eue234/2euei4/2e023e23/2g0i3ei3/2e0i24ei24/2g034e34/2e0i2ei2/2p

(3.18)

The Hamiltonian, w ritten  in term s of the  C artan  subalgebra is given by

iH
U>i — U>2 U>1 +  U>2
 o e 12 H 7,-------e 123. (3.19)
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which has the following m atrix  representation

u 0 0 0 N

0 0J2 0 0

0 0 —{jJ2 0

v ° 0 0 - U i )

The m atrix  representation of the Hamiltonian shows a  system w ith a 

symmetric distribution of energy levels. A more general system cannot be 

represented w ithout breaking the sp(4) Lie algebra and extending it to  su(4).

3.3 Control W ith  Spin(h)

The spin{5) Lie algebra is isomorphic to  sp(4). This can be proved by 

calculating the C artan  matrices and then  verifying th a t are the same. The 

spin(5) Lie algebra is constructed by using the Ct$ bivectors. Evidently, the 

first-order expansion around the identity fulfills the pure-state controllability 

condition

/

R P eAP

i56\ 2 — iSOis 

<5013 +  *<5023 

*<5034 -(- <5035

0 0 0 

0 0 0 

0 0 0
(3.21)

*̂<5014 +  <5015 — <5024 +  *<5025 0 0 Oy 

where the Lie algebra is given by the linear space of all the bivectors

A =  <50i2ei2 +  <50i3ei3 +  <50i4ei4 +  <50isei5... (3.22)

The fundam ental primitive projector P  is now defined as

1
P  = - (1  +  *e45)( l  — *ei2) (3.23)
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and the un itary  group is the Spin(5) group. The advantage of this rep­

resentation is th a t the unitary  transform ations preserve the grade of the 

multivectors bu t this cannot be exploited easily because the 4 x 4  m atrix 

representation is not faithful.

3.4 Entanglem ent of Pure States

For pure states w ith spinor 4/ =  R P ,  the algebraic object th a t plays the role 

of the density m atrix  is

P  -> p =  R P R t =  (R P m r f ) ( R P 12R*) = { R P n R ^ i R P n z R ' ) .  (3.24)

If the initial s ta te  is chosen as P, the non-entangled pure states can be 

generated by using the Lie algebra su(2) x su(2),  which transform s P  as

P  —> ^  (1 +  (£i<xi ® 00 +  £202 <S> (To +  £303 ® Co)) (3.25) 

(1 +  (771 er0 ® cri +  77200 (g> 02 +  77300 <8> 03 )) (3.26)

where the coefficients 7)j and £j are normalized to unity ~  1) YlV j — 1- 

A more efficient notation of th is transform ation reads

P  —> p = ^ (1  +  P 2 ®<r0) ( l  +  00 <8>pi), (3.27)

where P 1P 1 =  00 and P 2P 2 =  0 0 , such th a t |p i | =  |p 2 | =  1.

I t is possible to  param etrize the general spinor w ith a completely con­

trollable scheme w ith six param eters excluding the global phase such th a t 

only two of the Euler-like angles induce entanglement, say u  and v

\J/ _  p p  — gt>e234/2g«ei4/2g023e23/2g013ei3/2g0124ei24/2g034e34/2p  ^2 2gj

where the generators {e23, e i 3} control the orientation of the polarization 

P i and the generators {0124, 634} control the orientation of the polarization
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P 2- A unitary  transform ation th a t induces entanglement is called tanglor. 

The tanglor operator in the current case is

UE (U, V) =  e” e234/2e«e14/2 (3.29)

The spinor decomposition provided by [22] does not allow infinitesimal con­

trol around the P  s ta te  as w ith the most common param etrization of the 

single qubit case. This seems to  be the reason why it only indicates only one 

param eter for the entanglement of two qubits. More work should be done 

to  clarify this point.

The density m atrix  of a pure state, entangled or not, can be expanded

as

p = ^ ( l - » q 2) ( l - i q 1), (3.30)

where q i and q 2 belong to the anti-Herm itian Cl 4  x C space, (isomorphic

to su(4)) and are only constrained to  obey the following conditions

q iq i  =  1 (3.31)

q 2qi2 =  1  (3.32)

[qi.qi] =  0 (3 .33)

A measurement of the entanglement is given by the entropy of entangle­

ment th a t is calculated from the partia l trace over one of the particles. The 

action of the partia l trace on a given qubit can be understood as an effective 

average. The partia l traces in term s of the partia l scalar part (Appendix E) 

are

Pi =  2(p)s®i (3.34)

P2 =  2(p)i<g,s, (3.35)
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or in term s of the partia l traces

Pl =  [Tr 8  1] (p) (3.36)

P2  = [ l® T r](p ) , (3.37)

so th a t the entropy of entanglement is arbitrarily w ritten either in term s of 

scalar parts of p\ or p 2  as

E  = -2<pi ln(px))5 =  —2(p2 ln(p2))Sl (3.38)

or in term s of the trace

E  = - T r ( p  i ln(p i)) =  -7 Y (p 2 ln(p2)). (3.39)

However, a slightly different definition is needed in order to  extend the 

entanglement measurement to  n qubits. The new entanglement measure is 

defined as follows in term  of the sum of the two possible partial scalar parts

E  =  -2 (p !  ln (p i))5 -  2(p2 In(p2))s,  (3.40)

or equivalently

E  =  - T r ( p i  ln (p i)) -  Tr{p2 In(p2)). (3.41)

In the two-qubit case, the two possible partia l scalar parts give the  same 

result, hence, the new definition of entanglement simply leads to  an extra 

factor of two. The entanglement of a pure two-qubit system is then given 

by the following formula

E  =  -4 (p i ln (p i) ) s , (3.42)

or equivalently in term s of the trace as

£  =  - 2 r r ( p i l n ( P l)). (3.43)
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The values of the entropy of entanglement ranges from 0 for non-entangled 

states, where the reduced states p\ and P2  are pure states, to  21n(2) for 

m aximally entangled states. In this la tter case the reduced states are fully 

mixed pi = P2  = oo/2.

This new definition of the entanglement is adopted because its extension 

to  pure n-qubit states leads to  a maximum entanglement measure of n ln(2). 

The three-qubit case is studied in the next chapter where the  maximum 

entanglement m easurement gives 31n(2).

If we apply this formula to  the spinor s ta te  given by S' =  Ue P  (see 

equation3.29) the entropy of entanglement is explicitly calculated as

E(u , v) =  - 2 ( ^ )  I n ( ^ )  -  2 ( 1 ^ )  l n ( i ^ ) ,  (3.44)

where a  =  cos u  cos v.

The entropy of entanglement is directly related w ith the remaining polar­

ization after the application of the partial trace. The polarization remaining 

on the qubit on the right slot is

P i =  2 ( p -  -)s® i, (3.45)

Applying this formula to  the sta te  ’S' =  Ue P  we obtain

|p i | =  | cos(u) cos(u)|, (3.46)

which is nothing else th an  |a |. The remaining polarization on the other

qubit is calculated in the same way, giving the same value. The plot of the

entropy of entanglement as a function of the variables u  and v is shown in 

figures (3.1) and (3.2), showing a maximum value of 21n(2).

A given tanglor does not induce the same am ount of entanglement on all 

pure non entangled states. For example, the following non entangled state
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F igure 3.2. Entropy of entanglement of two qubits for the pure state p = 

U e ( u , v ) P U e ( u , for a broader range.
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is completely immune to  the tanglor (3.29) if v  =  0

p =  ^ (1  +<7i ®<7o)(l +  <70 ® C7i). (3.47)

The four orthogonal states can be identified as

ITT) =  P  (3-48)

| U ) =  e V 2 e i3  p  =  e i3 p  (3 .4 9 )

| | | )  =  e7r/ 2ei24p _  e 124P  (3.50)

| U ) =  e7r/2e234p _  e 234P, (3.51)

or in term s of the Pauli m atrices

ITT) =  -P (3-52)

| t l )  =  — i<x0 <8> er2.P (3.53)

| IT ) =  -102 ® — —icr2 <S> croP (3.54)

| i i ) =  —i<J2 <S> <JiP. (3.55)

Applying the (3.29) unitary operator on | | | ) we obtain the following 

state

Ue {u , v)| TT) =  (cos(u/2) cos(u/2) — f sin(u/2) sin(u/2))| TT) +

(cos(u /2 ) s in (v /2 ) + fc o s (v /2 ) s in (u /2 ))| | | ) .

The following Bell states are found and labeled as

V>2 =  - ^ ( | T T )  +  I U ) )  =  UE ( 0 ,tt/2 ) |T T ) (3.56)

ip1 =  - 7= (I TT) -  I IT)) =  UE (0 , - t t / 2)| TT ) (3.57)
v /2V

(3.58)
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On the other hand, we have the following expression with an additional 

prefactor

Ue {u , v)e,r/ 2ei3| TT) =  (cos(n/2) cos(n/2) — is in (u /2 )s in (n /2 )) |  T l ) +

(cos(it/2)sin(n/2) +  ico s(u /2 )s in (u /2 )) | )

so th a t the  other two Bell states are given by

*> =  ^ ( i u >  +  u t »  =  c/£7(o ,7r/2)e7r/2ei3i t t )  (3.59)

r  = ± ( \ U ) - \ l V )  = % ( 0 , - i r / 2 ) e ^ | T t > .  (3-60)

The Bell states can be classified into two groups. The first group contains 

only the singlet Bell s ta te  w ith the following density m atrix

p° =  i ( l  -  <7i <g> <Ji -  <72 ® cr2 -  <J3 <g> 03 ) (3.61)

This state  obeys the properties of the singlet zero angular m omentum and 

therefore is invariant under rotations of the kind

ft — ^g^O'3®ffOe0O’2®a'o^ (g) e8<JQ®V3 j g2 )

The second group of the Bell states forms a trip let th a t can be accom­

m odated in the following form

pn =  j ( l  +  o\  <g> £Ti +  a-i <g> 02 +  03 <g> 03) -  i n  <g) n, (3.63)
4 A

such th a t the trip let Bell states are

Pl =  “ ( I  -  O’! (g) CTi +  CT2 ® (72 +  (J3 (g) CT3) (3.64)

p2 =  i ( l  +  <7l g> (7l -  <72 ® (72 +  (73 <g> (73) (3.65)

, 1
p =  - ( 1  +  C7l g> (J\ +  (72 <g> (72 — (73 <g) (73) (3.66)
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These states are not invariant under general rotations but each of them  is 

invariant under rotations in a plane perpendicular to  their respective n.

A fundam ental property of pure entangled states is tha t they cannot be 

expressed in the form (3.27). This means th a t the polarizations cannot be 

expressed as single-body terms. The polarization of the  two qubits for the 

p1 Bell s ta te  are calculated from their initial polarizations as

UE (0, —tt/2 )(—iei2)UE{0, — 7r/2)t —> i e u  = - o \  <g> a\  (3.67)

UE (0, - n / 2 ) ( - i e n 3)UE (0, -7 r /2 ) t —> - i e i 34 =  ct2 ® cr2, (3.68)

showing th a t the polarizations lack of single-body term s at all. This is also 

the case for the rest of the Bell states. This suggests th a t the entanglement 

can be measured by the content of m ulti-body term s in the polarizations.

3.5 M ixed States

The density m atrix  of a mixed sta te  is characterized for a weaker polariza­

tion, so, it is natu ral to  investigate the role of the following form if the state  

is separable

i ( l  +  p 2 ® cro)(l +  CTo®Pi), (3-69)

but now 0 <  (3 — |p i | <  1 and 0 <  a  =  |p 2 j <  1. This form of the

mixed sta te  suggests a  decomposition in term s of four projectors th a t may 

be considered as pure non-entangled density matrices, namely

p „ „ r  P2, Pi =  ^ ( 1  +  p 2 <8> CT0 ) ( 1  +<70 (8) P i ) (3 .70 )

P .r  P2,“ Pl =  ^ ( l  +  P 2 ® C T o ) ( l - ( T o « i P l ) (3 .71)

p  „
P2 > Pi =  ^ ( 1 - P 2 ® C T o ) ( l  +  cr0 <8ipi) (3 .72)

^ >- P 2 , - P l =  ^ ( 1  - p 2 ®CT0) ( 1  -  CTO ® P i ) , (3 .73)
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where p i  and P 2 are respectively parallel to  p i  and P 2 .

From the pacwoman property, and the fact th a t the sum of these states 

gives a  resolution of the identity

1 — Pp2, px + Pt>2,-t>\ + P-f>2, pi + P-P2,-Pn (3-74)
the mixed sta te  (3.69) is decomposed as

P =  +  a ) ( l  +  P)Pi>2, pi +  4 (1  +  a ) ( l  _  0)P p2 ,-Pi +  (3.75)
1
- v-  _ / v _ . - p 2, PI ' 47 (1 -  a ) (  1 +  f3)P-p2, P! +  7 (1  -  a ) ( l  -  P)P-i>2 ,~P!- (3.76)

The four projectors act as four eigenvectors of p because

pPP 2 , Pi =  ^ ( 1  "h Qi)(l +  fi)Pf>2 , p i (3 .77 )

pPf>2,~ p i  =  4 ( 1  +  a ) ( l  — P)Pp2,-Pi (3 .78 )

Pp -  P 2 ,p i  =  ^ ( l - a K l + ^ P - f e . p !  (3 .79)

pP—P2,-p i =  ^(1  — a ) ( l  — @)P-P2,-Pi- (3 .80 )

The four eigenvalues lie in a space of two degrees of freedom, whereas the 

eigenvalues of a general separable mixed state  have three degrees of freedom. 

This means th a t the most general separable s ta te  cannot be w ritten as (3 .69) .  

A generalization th a t solves this problem is

P =  7 j ( l  +  P2 ® 0o)(l +  0  p i )  +  (1 -  7)po, (3 .81 )

where po is some pure separable state  th a t can be chosen as P p 2, p, so th a t
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the respective eigenvalues can be w ritten as

Pi =  7 ^ (1  +  <*)(!+/?) +  ( 1 - 7 )  (3-82)

Pi =  7 ^ (1  +  « ) ( ! - / ? )  (3-83)

P3 =  7 ^ (1  -  «)(1 + P) (3-84)

P4 = 7 I ( l - a ) ( l - / J ) .  (3.85)

We therefore conclude th a t the most general separable two-qubit mixed 

sta te  has cardinality 2 [23], because we were able to  write it as the sum of 

two density matrices, each of them  as the direct product of the two partial 

density matrices.

The two possible partial traces of a two-qubit system are

pi = [T r® l](p )  (3.86)

P2  =  [ l® T r]( /0  (3.87)

which give

Pi =  7 ^ (0 0  +  P i ) +  ( 1 - 7 ) ^ 0  + P i) (3.88)

Pi =  7 ^ ( cro +  P 2) +  (1 — 7 )^ (<To +  P 2) (3-89)

th a t after collecting term s gives

Pi = \  (0f> +  (1 - 7 ( 1  -  |P il))P i) (3-90)

Pi = ^ ( o ,o +  ( l - 7 ( l - |P 2 | ) ) P 2 ) .  (3.91)

The m agnitude of the polarizations left are are extracted  as

|2pi — cr01 =  l - 7 ( l - | P l |) (3.92)

|2p2 -<7o| =  1 - 7 ( 1 - | P2|). (3.93)
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These expressions show th a t there is no loss of polarization if the  initial 

s ta te  is pure (and separable) because |p i | =  |p 2 | =  1 in this case. If this 

system is subject to  a un itary  transform ation th a t induces entanglement, the 

remaining polarizations are reduced because the polarization vectors enter 

a larger space th a t comprises m ulti-body terms.

3.6 Separability Conditions

There are m any other entanglement measures th a t have been proposed along 

w ith m any separability conditions. An im portant separability condition 

known as the partial positive transpose (P P T ), was given by [24, 25]. It 

is easily seen th a t the transpose of a single qubit can be understood as an 

operation th a t changes the sign of 02 only, as applied in [26] . Denoting this 

operation by $ t , the transpose of a single qubit is defined as

=  —&2 (3.94)

$ T ( 0 j :O ,l ,3 )  =  CTj:0,l,3 (3.95)

The partia l transpose on the particle of the right slot of the tensor product, 

(1 <g> $ T), can defined such th a t

(1 <g> $ t ) ( 0 j  ® cr2) =  Cj ® 02 (3.96)

(1 ®  $ t ) ( ^ j ®  <7fc:0,i,3) =  (3.97)

w ith the partia l transpose on the left slot defined in similar way.

The Peres-Horodecki [24, 25] criterion applied to  2-qubit systems estab­

lishes th a t a  sufficient and necessary condition for the system to be separable 

is th a t the partia l transpose m aintains the spectrum  as positive. This means 

th a t the partial transpose of a  non-separable 2-qubit s ta te  does not lead to
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a valid density m atrix  at all. For example, the  eigenvalues of the  partial 

transpose of the pure density m atrix  coming from the unitary transform a­

tion (3.29)

p = UEP U l  (3.98)

gives

p i =  ^(1  — cos(u) cos(u)) (3.99)
£

P2  = ^(1  +  cos(u) cos(n)) (3.100)

P3 =  — ̂  \J sin(u)2 +  cos(u)2 sin(t;)2 (3.101)

P4 =  ^  J sin(u)2 +  cos(u)2 sin(u)2, (3.102)

The th ird  eigenvector is negative, so the partia l transposition of the pure 

density m atrix  is not a  density m atrix, unless the entanglement is zero.
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C hapter 4

Three-qubit System

4.1 Control w ith  USp(8)

A three-qubit system as an eight-state system is state-controllable either by 

su(8), w ith dimension 63, or by sp(8), w ith dimension 36.

Accoding to  Table 1.8, there are two instances of su(8) in term s of the 

anti-H erm itian G y  space and the anti-H erm itian CIq x  C space. On the 

other hand, this table also shows th a t there is an instance of the  sp(8) Lie 

algebra in term s of the anti-H erm itian Cl6 space. The purpose of the rest 

of this section is to  study the control schemes defined by the anti-Herm itian 

CIq space.

Given the following expression of the anti-Herm itian CIq space

=  ^  $jk^jk  d" ^  '  &@jkm^jkm 1 ^123456^1234561 (IT )
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the first order expansion of the exponential form is

/

ec P  =

id 12 — id45 +  id 123 -  *0345 

013 +  *023 ~  *0145 +  0245 

-1034  -  035 -  0124 +  10125

0...

0 . . .

0.

—1014 — 015 +  024 — *025 +  *0134 +  0135 +  0234 +  *0235 0..

—1046 — 056 — *0346 — 0356 0-

—10146 — 0156 +  0246 — *0256 O '

-0 3 6  +  10126 -  *0456 -  0123456 0..

—016 — *026 +  0136 +  *0236 0.. y
(4.2)

Thus, the anti-H erm itian Cl6 space is a state-control algebra for the  system 

in the  infinitesimal neighborhood of the pass sta te  P.

A possible param etrization w ith 15 param eters can be designed by choos­

ing a  set of 15 generators th a t fulfill the infinitesimal control condition (2.6). 

A table of a possible generators w ithin the anti-Herm itian Cl§ space is give 

in Table 4.1. Numerical results indicate th a t this param etrization allows us 

to  access the complete Hilbert space, except a t isolated points.

The C artan  subalgebra has dimension 4, which is sufficient to  define a 

Ham iltonian w ith symmetric energy levels. A natural basis of the C artan  

subalgebra can be taken as

{ei2,e45,ei23,e345}. (4.3)

The symmetric nature of the Hamiltonian w ith the C artan  subalgebra is
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Global phase e i 2 i a o  <g> (To 0  <7-3

£56 4(72 0  <70 0  <70

£46 —it71 0  <73 0  <jq

Polarization £124 i(JO ®  <72 0  (73

£ 3 4 — 4(70 ®  <7i 0  (73

£ 1 3 — 4<7o <S> <T0 <S> <72

£ 2 3 4<7o 0  <7o <8 <7i

£ 2 4 — itJQ 0  (7i 0  (72

£ 1 4 — 40o 0  CTl 0  (Tl

B ipartite Entanglem ent £246 — 4(71 0  <7o <S) (72

£146 — 4(71 (g> (7o 0  (71

£456 4(72 0  <72 0  <70

£123456 4(72 0  <7i <g) (To

T ripartite Entanglem ent £16

£26

4(71 0  (72 0  <7i 

4(71 0 ( 7 2 0 ( 7 2

Table 4.1. List of 15 generators, that satisfy the controllability condition. The first 

generator controls the global phase, the next six generators control the orientation 

of the three polarizations, and the rest induce entanglement.
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evident in the following form

H  =  » i ( —ci +  e2 -  £3 +  £4)ei2 (4.4)

f ^ ( - £ i  -  £2 +  £3 +  £4 ^ 4 5  (4.5)

*^(—£i — £2 — £3 — £4)^123 (4.6)

* ^ ( —£1 +  £2 +  £3 — £4)^345) (4.7)

because it gives the following m atrix  representation

£3 0 0 0 0 0 0 0

0 £4 0 0 0 0 0 0

0 0 -£ 4 0 0 0 0 0

0 0 0 -£ 3 0 0 0 0

0 0 0 0 £1 0 0 0

0 0 0 0 0 £2 0 0

0 0 0 0 0 0 -£ 2 0

0 0 0 0 0 0 0 —£1

The primitive projector P  can be explicitly defined as

P  =  g ( l  +  e i2345)(l -  *ei23)(l — ie  12), (4.9)

which takes the following form in term s of the Pauli matrices

P  =  ^ ( 1  +  0-3 <81 cr0 <g> cr0) ( l  +  <70 <g) <73 ® (70 ) (1 +  C70 0  (70 <8> (73 ) .  (4.10)

As occurs w ith the two-qubit case, it is convenient to  relabel the primitive 

projector as Qi  =  P,  so th a t the complete set of projectors th a t resolve the
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identity is

Qi = - ( 1  +  ei2345)(l -  iei23)(l _  *e 12) (4.11)

<?2 = - ( 1  +  ei2345)(l _  iei23)(l +  ie  12) (4.12)

Qz - - ( 1  +  ei234s) (1 +  *ei23)(l — ie i2) (4.13)

Qi = - (1  +  612345) (1 +  *e 123)(l +  *e 12) (4.14)

<?5 = - ( 1  -  ei2345)(l -  iei23)(l -  fe i2) (4.15)

Qe = - ( 1  -  612345)(1 -  iei23)(l +  *ei2) (4.16)

Q i  = ^ (1  -  612345) (1 +  *6123) (1 -  ie i2) (4.17)

Qs = - ( 1  -  612345) (1 +  *ei23)(l +  iei2). (4.18)

with
8

The eight orthogonal states can be identified as

TTT) =  P

TTI) — e,re 13/2 p

TIT) — g-7rei24/2 p

T U )
_ g7re24/2p

ITT) =  g - ’re56/2 p

IT 1)
_  gire246/2 p

ITT) — g - ’I'ei23456/2 p

I I I ) — e~nei6/2p

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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4.2 Entanglem ent of Pure States

The primitive projector transform s to  the following form whenever no en­

tanglem ent is present

where each of the polarization vectors p j  is a unit vector such th a t P jp j  = 

<To. This form of the projector could be obtained, for example by involv­

ing the unitary  operators constructed w ith the six polarization generators 

specified in Table 4.1.

The generators th a t induce entanglement in Table 4.1 can be classified 

in four pairs: three of those pairs induce bipartite  entanglement and a single 

pair induces trip artite  entanglement.

A measurement of entropy of pure states can be defined in term s of the 

partia l scalar parts of the density m atrix  as

P3 =  4 { p ) i ® s ® s  

P i  =  4 ( p ) s ® i ® s  

P i  =  M p ) s ® s ® i ,

(4.29)

(4.30)

(4.31)

or in term s of the partial traces

P3 =  [1 ® T r  <g) Tr]{p)

P2  =  [Tr <g> 1 <g> Tr}(p)

pi =  [Tr (£> T r  <g> !](/>).

(4.32)

(4.33)

(4.34)

The measure of the entanglement is proposed as

Epure — - 2 ( p i ln p i  + p 2 ln p 2 +  P3lnp3>s, (4.35)
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because each term  is a measure of the loss of the polarization of the respective 

qubit. The greater the loss of polarization, the higher is the measurement 

of the entanglement.

The reduced density matrices calculated from the pure separable state  

(4.28) are

P3 -  ^ ( l  +  Ps) (4.36)

Pi =  ^ ( 1 + P 2 )  (4.37)

Pi =  ^ ( 1 + P i ) ,  (4-38)

and as there is no loss of polarization, the measure of the entanglement 

(4.35) gives 0.

At the opposite limit of maximum entanglement, the reduced density 

matrices have no polarization a t all

P3 =  i ( l )  (4.39)

Pi =  § (1 ) (4-40)

Pi =  | ( 1 ) ,  (4-41)

and the measure of the entanglement (4.35) gives 31n(2).

The unitary  operator th a t induces trip artite  entanglement is

UE{ m  =  e“ei6/ V e’6/ 2, (4.42)

which produces the following spinor state

4i(u ,v )  = (cos(n/2)cos(u/2) +  isin(it/2 )cos(t)/2 ))j I t t ) —
(4-43)

(cos(u /2)sin(u /2) +  zcos(it/2 )cos(u /2))| | | | ) .

The plot of the measure of the three-qubit entanglement for this s ta te  is

shown in figure (4.1), where the maximum value is

Em ax ~  31n(2) (4.44)
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The measurement of a three-qubit entanglement induced by a bipartite 

entanglement may reach a maximum value of 31n(2). The plot of the three- 

qubit entanglement for the following state, made from a b ipartite  tanglor 

m ultiplied by a trip artite  tanglor is shown in figure (4.2)

_ g®16 e i 6 /2 g 0 l2 3 4 5 6  ^ 1 2 3 4 5 6 /2  ^  4 5 ^

The application of two b ipartite  tanglors is still able to  produce some 

isolated states w ith the maximum three-qubit entanglement as shown in 

figure (4.3) for the tanglor

U —  g # 1 2 3 4 5 6  e i 2 3 4 5 6 / 2 g 0 1 4 6 e i 4 6 / 2  ^  ^ g ^
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*  2
1

Figure 4.1. Entropy of entanglement of three qubits for the pure state p =  

UEil23)(u,v)PUl;{123)(u,v).
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2

F igure 4.2. Entropy of entanglement of three qubits for the pure state p =

g#16 ©16/2^^123456 © 123456/2p g ~ #123456 ©123456/ 2 g  —#16 © ie /2
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e 1 4 6  2

F igure  4.3. Entropy of entanglement of three qubits for the pure state p  =

g$123456 e  123456/2^^146 e i 4 6 / 2 — 6 i4 6 /2 g  — #123456 ^123456/2
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C hapter 5

Average Fidelity

This chapter trea ts the problem of the calculation of the average fidelity 

of n-qubit systems [27], which is difficult to  evaluate in its original integral

form. The fidelity measures the correlation between two states represented

by their density matrices with a maximum value for two identical states. A 

well known measure of the fidelity is given by

F(p,p' )  =  ( T r y / p V * f / p V ^  (5.1)

which is the square of the original formula given by Uhlmann [28]. This 

formula is simplified if one of the density matrices represents a  pure state. 

Defining p as a pure s ta te  density m atrix, the expression of the fidelity is 

simplified

f (p , p') = (T ry/p f7p)  = Tr(pp')  (5.2)

This formula can be used to calculate the fidelity of two output states 

coming from an initially pure state  po =  |'h)('I/|. The density m atrix  p as 

ou tput state  could come from a unitary  transform ation th a t preserves the 

purity  of the state  and the p' ou tput s ta te  could come from a more general

71

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



completely positive trace-preserving linear transform ation

p = U\V)(V\Ui  (5.3)

p' =  A4(|tf}<*|) (5.4)

The average square fidelity is defined over all the possible pure initial states 

(F) =  (F{p,p') )AUpo =  {Tr{pp')) Aii po (5.5)

Taking the case of the single qubit, one way to  proceed was presented

by [29], who performs an integration over the complete Bloch sphere

(F)  =  J  7Y(pip2)df2, (5.6)

where the initial pure s ta te  could be param etrized as

po =  ^ (1  +  <JX sin(0) cos(0) +  cfy sin(0) sin(0) +  az cos(0)), (5.7)

bu t the integration becomes intractable for the general n-qubit case. A 

possible approach is possible by defining the average over a discrete set 

of orthogonal density matrices as done by Evan M. Fortunato et al. [30]. 

However, the continuous average fidelity (5.5) was faithfully expressed as a 

discrete sum by Bagan, et al. [31] for the “qudit” case (N levels) by using 

an expansion of po in term s of the generators of SU (N ) .  The following lines 

develop a simpler approach suitable to  n-qubits by performing an expansion 

in term s of tensor product of Pauli matrices.

The density m atrix  of a single qubit can be written in term s of the 

polarization vector P  w ith components along the Pauli matrices

P  =  P j Oj = P l a  i +  P 2a2 + P Z<J 3, (5.8)

so th a t a  general single-qubit density m atrix can be w ritten as

p = ^ ( l + P ) ,  (5.9)
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where, P , for a pure states lies on the surface of a sphere

(pl)2 +  (p2)2 +  (p3)2 =  : (5>10)

and a general mixed sta te  lies inside the sphere w ith zero polarization cor­

responding to the purely mixed state.

In th is way, the output states can be w ritten as

p =  ^ (1  +  t /P t / t )  (5.11)

p> =  I (A 4 ( l)  +  A *(P)). (5.12)

The fidelity then  becomes

F  = ^ T r  [ ( l  +  C /PI/t ) (A f( l)  +  A f(P )] (5.13)

=  ^ T r ( l  + U P U ^ M ( l )  + M ( P )  + U P U ^ M ( P ) )  (5.14)

=  \ T r ( l  + Y / P l p kUcj U ' M ( a k)), (5.15)
jk

from which the average fidelity is

(F)  =  ±7Y(1 +  Y , ( P j P k) U ° j t f M { o k)). (5.16)
jk

The following argument can be m ade from the sym m etry of the geometry 

involved
pjpk) = hjk  

o

The P J elements are understood as the components of a  unit radius vector 

so th a t for the contribution of a given pair of different indexes j k  there is

another pair w ith opposite contribution th a t cancels the initial pair. On the

other hand, the following average is evident

( (P 1)2 +  (P 2)2 +  (P 3)2) =  1, (5.18)
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b u t the contribution of each component must be same

((P 1)2) =  <(P2)2) =  ( (P 3)2) =  1 (5.19)

In the more general case of an N-dimensional unit vector, the result reads

(.p i p * ) =  ^ 6 j k . (5.20)

Returning to  5.16, the average fidelity is simplified to

(F) = i T r  +  (5.21)

= \ Y . Tr(^ + \ u°iu'M^ )  (5-22)

= l ' E Tr( \ +uj uiM^))>  (5-23)
j

but the Pauli matrices can be w ritten in term s of pure states as

cr,- 1 +  <7, 1 ,

i  =  V r  f t - ' *  (5-24>

?  7 ^ ^  + 1 “ v w  + A (5-25>

where p is the purely mixed state, so th a t the average fidelity is

iF ) = I  E T r  ( |  +  UPjU ' M { Pj) -  UPjU ' M ( p ) ^  (5.26)

or

(F)  =  I  Q  +  U p ^ M ( p - j )  -  U p - j U t M i p ? )  . (5.27)
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The average of the last two expressions gives finally

<F > =  ^ E Tt-(1 +
3

U pjU ^M (p j)  -  UpjU^M (p)  + 

U p - j U ^ M ( p - j )  -  Up- jU *M (p ))

=
j

U p jU ^M (p j )  +  U p - j U ^ M ( p - j )  +  

- U ( Pj + p - j ) U ' M ( p ) )

= l J 2 T r (u p ju f M ^ )  +
j

U p - j U ^ M ( p - j ) )  

or in a more compact form

=  £  E T r ( u PjU i M ( Pj) ) .  (5.28)
j= ± l ,± 2 ,± 3

This result can be extended to  n-qubits by defining the proper basis in 

which to  expand the density m atrix. For two qubits the density m atrix  can 

be expanded in term s of a linear combination of a basis set f) as

1 15
p = - ( l  +  £ V  fj), (5.29)

j
where the basis set is defined in term s of the Kronecker product of the Pauli 

matrices

fj =  a-ft <2> gv, p, v =  0 ,1 ,2 ,3  (5.30)

where gq is the 2 x 2  identity m atrix and the pair gq <8> gq is not included. 

The elements of this basis obey the following orthogonality condition

f j f j  = 1 (5.31)

F r (
4
i r r ( f i f j )  =  Sij (5.32)
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so th a t in general

T r { p i p 2) = — T r
j =i \  k=i j

15

-  ( 1 +  ] T  w[w.
j =1

2 I >

bu t for a pure sta te  such as po th is is

T r  (p§) =  tr  (po) =  1 =  J  ^1 +  Y y  (« ^ )  j

so th a t the following equation holds

£  («4)2 =  3 .
j= i

More generally, for a s ta te  th a t may be mixed,

(w j ) 2 ^ 3
i= i

(5.33)

(5.34)

(5.35)

w ith the equality holding only when the sta te  is pure. The average of (5.34) 

can be reduced to  the average of any term  in the sum arguing the evident 

sym m etry

3 =  E ( wo) ) (5-36)
j= i

3 =  1 5 ( K ) 2) 

so th a t the average square of any given component is the same

< K ) 2> =

(5.37)

(5.38)

This result is im portant for calculating the average including the  cross term s 

as

w > = <h k )2> =
i (5.39)
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where the cross term s are zero because they are not correlated w ith each 

other a t all, once the average over all the states is taken.

For the general n-qubit case the basis fj contains N 2 — 1 elements such 

th a t

(5.40)

with N  = 2n . For some applications it is useful to  notice th a t any given 

basis element fj anticommutes w ith elements of the basis and commutes 

with the rest ^  — 1 elements, including itself.

The general density m atrix  for n-qubits can be w ritten as

1 iv2- 1

P =  m ( 1 +  wJf j )  (5 -4 1 )
j =i

The trace square of a pure density m atrix  is one Tr(pp) =  1 so th a t 

1 AT2 - 1  \  /  W2 - 1

1 +  w3ii  ) 1 +  ^ 2  wkfk
j=i J v k=i

+  j j '5 2 v jw k8jk = ^  ( l  + Y ,  (^ ')21.
jk \  j - 1 j

1 1 
N

which gives
W2- l

(wj ) = N - 1
j =i

Taking the average of this result gives

( K ) 2) =
N -  1 1

(5.42)

(5.43)
N 2 — 1 1 + N ’

which finally allows to  write the general average including the cross term s

as

(wluP) —
1 + N

5ij (5.44)
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The expression 5.16 is then  generalized and calculated as

m  =  J p T r 1 +  ^ 2 { w j wk) U f jU ^ M { fk)
jk

_1_
J P

1

T r 1 + r h T lU{iu]M(v
3

N 2 - 1

(5.45)

(5.46)

+ £  T r  fj)] (5.47)N  ( N  +
J

The remaining step is to  express the basis elements f j  in term s of a set of 

pure density matrices. In the 2-qubit case, this is possible by using the 

following identities

(7j ® CTfc =  (P j k Pk j  ~  P jk Pk j  T  P j k Pk j  ~  P j k P k j )  (5.48)

cTj <g> ct0 =  - ( P j O P o j  -  PjOPOj +  PjoPoj  -  PjOPoj)  (5.49)

00 ®  a k =  - { P o k P k O  -  POkPkO +  POkPkO -  Pokpko) ,  (5.50)

where j  and k  are different from zero and

Pjk = ® <*k) (5.51)

Pjk = ~<7j ® ° k )  (5.52)

A similar procedure is possible for the  general n-qubit case.

If the application of general linear m ap M.  is restricted to  the following 

form

M {p )  = M p M \  (5.53)

the fidelity can be formated as

F(p,p ' )  — T r ( U  pol/'t M  poM^)  =  Tr(poU^ M  poM^U) (5.54)
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or by expressing the pure sta te  as po =  |’I'o)('I'o|, the fidelity becomes

F ( p ,  p' ) = ( * 0\ U t M \ * 0) ( * 0\ M l U \ * 0) = (5.55)

so th a t the average fidelity is calculated by integrating over the pure states 

lying on a unit hypersphere of dimension 2 N  — 1.

( F)  =  f  d S K tfo l^ M ltfo )!2, (5.56)
J S 2 N - 1

where dS  is the normalized measure on the hypersphere. A closed expression 

of the average fidelity from this formula was given by Pedersen et al. [32], as 

a quadratic invariant form constructed from U t M ,  equivalent to  the  formula 

given by Emerson et al. [33], According to  them  [32], the average fidelity 

could be expressed in following form

( F)  — a T r ( U ^ M M ^ U )  +  b \Tr(U^M)\2, (5.57)

where a and b are constants to  be fit and depend on N.

Taking the cases U^M  =  1 and U^M  =  o \® o \ ,  and applying the formula 

(5.47), the invariant form gives the following respective equations

f7fM = 1 l  = a N  + b N 2 (5.58)

U ^ M  =  <ti <8) o\  -* jy  =  aN,  (5.59)

which allows us to  fit the values of a and b as

a = b = m TTy  < 5 - 6 0 >

in complete agreement w ith [32], so th a t the average fidelity is expressed as

(p ) = N { x  + l ) { T r ( t f M M ' U )  +  \Tr(U*M)\2). (5.61)
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C hapter 6

N-Fermion Algebras

It has been shown th a t the Lie algebras of groups locally isomorphic to 

special orthogonal groups S O (2 N )  can be w ritten  in term s of all the  possible 

biproducts of the creation and annihilation operators of N different fermions 

[34, 35, 36] ( bilinear space of N fermions), where the s u (N )  Lie algebra 

appears as a subgroup of so(2N)  when the number of particles is conserved. 

In this chapter we show how to formulate complete Clifford algebras in term s 

of the fermion creation-annihilation operators [5, 37].

6.1 Single Fermion Algebra

The properties th a t define the fermion algebra of creation and annihilation 

operators are

| a ,  a ^ |  =  aa^ +  a^a =  1 (6-1)

a a =  0 (6-2)

The fermion algebra w ith the complex numbers is enough to  define the

CI 3  algebra. This can be done by constructing two herm itian linear combi-
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nations of the creation-annihilation operators and identifying the complex 

num ber w ith the volume element as

t > « ] ,

e i =  + a (6-3)

e2 =  —i(a* — a) (6.4)

e i23 =  e ie 2e 3 =  i. (6.5)

All basis elements of the linear space of the C£3 algebra can be generated 

from these. For example, the bivectors can be found directly as

(6 .6 )

(6.7)

(6 .8 )

(6.9)

(6 .10)

(6 .11)

(6 .12)

(6.13)

(6.14)

(6.15)

(6.16) 

(6.17)

eiei23 =  e23 = i{a) +  a)

e2ei23 =  e3i = (af -- a )

e ie 2 =  e i2 = iala — iaat =

and the remaining vector element e3 is calculated

ei2ei23 =  --e3 = — [a+, a],

so th a t the complete basis can be w ritten as

1 =  1

e i =  o' + a

e 2 = i(a - a f)

e3 =  [af , a]

ei2 =  i[o) ,a]

ei3 =  ( a - - flt)

e23 =  i(a) +  a)

ei23 =  i,
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satisfying the usual Clifford-algebra relations

GjCfc “1“ QfcQj - ‘ZSjfc .

The fact th a t the Ci3 can be generated from the single particle fermion

algebra is highly suggestive, and it is natural to  ask whether this is simply

a m athem atical curiosity or there is a more fundam ental tru th  lying behind 

it.

From a com putational perspective, these relations could be used to  per­

form calculations in CSf?3 w ith a computer program  based on fermion algebras.

Conversely, the single-fermion algebra can be obtained from the CS?3 al­

gebra w ith the annihilation and creation operators represented by null flags

a t =  ^ ( l  +  e3) e i  (6.18)

a =  i e i  (1 +  e 3) . (6.19)

Alternatively, the equivalent relations

af =  ^ ( e 3 + i e 2) (6.20)

a =  ^ ( e i - i e 2) (6.21)

can be understood as a representation w ithin the complexified Clifford alge­

bra  CC.2 - These approaches could be useful if we want to  perform calculations 

involving the  fermion algebra within a com puter program  based on Clifford 

algebras.

82

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6.2 Bi-Fermion Algebra

The properties of a multiple fermion algebra are defined as

| af> al }  —

{CLj , CLk} =  0 .

(6 .22)

(6.23)

The bi-fermion algebra is enough to  define the CS?4 algebra. The or­

thonorm al vector basis can be expressed in term s of the bi-fermion algebra 

as

The complete the CLj algebra is obtained taking the respective multiple 

products.

There are three Lie subalgebras of interest:

• The anti-Herm itian Cl4 algebra made w ith both  bi and triproducts of 

the creation-annihilation operators as shown in table 6.1. This algebra 

is isomorphic to  sp(4).

•  The bivector algebra th a t corresponds to  the spin(4) Lie algebra can 

be w ritten only using the biproducts of the creation-annihilation oper­

ators. W ithin the bivector algebra, it is possible to  construct a  su(2) 

Lie algebra considering the term s th a t m aintain the number of parti­

cles invariant.

(6.24)

(6.25)

(6.26) 

(6.27)
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• Finally, it is possible to construct an independent su(2) Lie algebra 

with the rest of the generators that do not maintain the number of 

particles invariant.

Anti-Hermitian Ct\ Bi-fermion algebra

to i[a\,ai]

e i3 ( 4  + a i ) ( 4  +  02)

e 44 i ( 4  +  a i ) ( 4  -  a2)

e23 i(ai — 4 ) ( 4  +  a2)

e24 - ( 4  -  a i ) ( 4  -  a2)

e34 i[a\,a2)

ei23 i [ 4 ,a i ] ( 4  +  ^2)

^124 - [ 4 ,a i ] ( a 2 -  4 )

ei34 f ( 4  +  a i ) [ 4 , 0 *2 }

e234 -(01  -  4 ) [ 4 ,a 2]

Table 6.1. The anti-Hermitian C£4 algebra in terms of the bi-fermion algebra. 

This set of generators forms a closed Lie algebra isomorphic to sp(4)

The number operator th a t counts the num ber of particles is

N  = a\ai  +  a\a2 =  1 -  | e i 2 -  | e 34 (6.28)

and the biproducts th a t commute with this operator can be w ritten  in term s 

of the bivectors as

1 1 ^
T0 = a[ai -  a \a 2  = - ( e 34 -  e 12) (6.29)

T+ — a\a2 =  j ( e i 3 +  e 24 +  ie 23 -  zei4) (6.30)

T -  = a^ai = ^ ( - e i 3 -  e24 +  ie23 -  ie i4) (6.31)

84

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



so th a t they form the canonical representation for the su(2) Lie algebra. 

The anti-Herm itian generators of the S U (2) group are

zTo = - ( e i 2 -  634) (6.32)

i(T+ +  T - )  = — (e i4 -  e23) (6.33)

(T + -  T_) = - ( e i 3 -  e24). (6.34)

A more symmetric form can be obtained by relabeling some of the basis

vectors as

fi =  e3 (6.35)

f2 =  e4 (6.36)

to obtain the following form of the anti-H erm itian generators

iTo =  ~ (e i2 —fi2) (6.37)

i ( T + + T - )  =  - ( e i f 2 - e 2fi) (6.38)

( T + - T - )  =  - ( e i f i  +  e 2f2). (6.39)

There is another set of generators th a t commutes with the generators 

th a t conserve the number of particles. One such generator is N ,  bu t it is 

convenient to define an offset operator as So =  N  — 1, in order to  be part 

of this set. This new set of generators does not m aintain the number of 

particles invariant, bu t remarkably it forms another independent su(2) Lie 

algebra. The canonical representation of this Lie algebra is

 ̂ i i ^
So =  ^ (a i a i “  ai a\) = — 2 (e34 +  e i2) (6-40)

S+ = a\a\  =  ^ ( e i3 — e 24 +  «e2 3 +  *ei4) (6-41)

S -  =  a2ai =  —(—e i3 +  e 24 +  ie 23 +  ie i4). (6-42)
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The corresponding anti-Herm itian generators in term s of the relabeled basis 

vectors are

iSo = 2 ( ei2  +  ^12) (6.43)

i (5+ +  5_ )  =  - I ( e 2fi +  e i f2) (6.44)

( S + - S L )  =  i ( e i f i - e 2f2). (6.45)

Thus, the spin(4) made w ith all the possible biproducts of the creation 

annihilation operators, which are six, can be divided into two independent 

su(2) groups. This allows us to  write the familiar isomorphism

spin(4) ~  su(2) <g> su(2). (6.46)

6.3 Tri-Fermion Algebra

The tri-fermion algebra is richer because it can be used to  define the CI7  

algebra and therefore all the lower dimensional Clifford algebras as well. 

The connection of the tri-fermion algebra w ith the Ci7 algebra is given by 

the following definition of six orthonorm al vectors and the volume element 

in term s of the fermion algebra w ith complex numbers

ei =  a* +  a\ (6.47)

e2 =  i{a\  — a j) (6.48)

e3 =  0*2 +  a2 (6.49)

e4 =  i(a 2 -  02) (6.50)

e5 — a3 +  a3 (6.51)

e6 =  i(a,3 ~  03) (6.52)

ei234567 =  i (6.53)
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These unit basis vectors generate Cl6 w ith a volume element e 123456 th a t 

squares to  —1. If we identify e 7 =  —ie i23456, we get Cl 7  w ith a  volume 

element identified with i. The CI 7  algebra allows in this way to  express the 

spin(7) Lie algebra along w ith its subgroups in term s of the three particle 

fermion algebra. This list includes for example the spin{6) and su(3) Lie 

algebras th a t are studied in the following lines.

The Lie algebra m ade w ith all the possible biproducts of the tri-fermion 

algebra forms the spin(6) Lie algebra. The operators th a t conserve the 

num ber of particles form a representation of the su(3) Lie algebra.

The operator th a t counts the number of particles is

N  =  a\ai  + a\a 2  + a\a 2  =  - ^ ( * e 42 +  *e34 +  i e$6 -  3) (6.54)

The operators th a t commute w ith N  are

Ti = a\a2 (6 .5 5 )

t 2 — (22̂ 1 (6 .5 6 )

n =  a l a 3 (6 .5 7 )

t 4 =  o ^ a i (6 .5 8 )

t 5 =  a |a 3 (6 .5 9 )

n =  a\a2 (6 .6 0 )

t 7 =  ^ ( c 4 a i - 4 a 2) (6 .6 1 )

Ts =  ^ [ a \ a x +  a\a2 -  2< 4 a3), (6 .6 2 )

so, the anti-Herm itian generators th a t can be constructed in term s of the
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bivectors of CIq are

i(Ti + T2) = 2 (®14 -  e23)

m  -  T2) = 2 (®13 +  e24)

m + T 4) = 2 (®16 -  e25)

(T3 -  T4) = 2 (e 15 +  e26)

i(T$ + T6) = 2 (e36 -  e45)

(Ts -  T6) = 2 (®35 +  e46)

iT7 = - ( e i2 -  e 34)

iTs = 1 ,- ( e i 2 -1- e 34 -

As was done in the bi-fermion algebra, it is

unit vectors as

fi =  e3

f2 =  e4

gi =  e5

g2 =  e6.

(6.63)

(6.64)

(6.65)

(6 .66)

(6.67)

(6 .68)

(6.69)

(6.70)

(6.71)

(6.72)

(6.73)

(6.74)

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The anti-Herm itian generators are w ritten as

i(Ti + T2) = ^ (e if2 - e 2fi) (6.75)

1 II i ( e i f i  +  e 2f2) (6.76)

f(T3 +  T4) = 2 (e iS 2 -  e2g i) (6.77)

( T 3 - T 4 )  = i ( e i g i  + e 2g2) (6.78)

i (T5 + T 6) = ^(flg2  - f 2 g l ) (6.79)

£ 1 £ II ^ ( f lg l  +f2g2) (6.80)

iT7 = - ( f i 2 -  e i2) (6.81)

iTs = — ̂ ( e i2 +  fi2 -  2gi2). (6.82)

In general it is always possible to  express higher-dimensional Clifford 

algebras by using a certain number of fermions. Given a num ber of m  

Fermions it is always possible to  construct a C?2m Clifford algebra. Another 

possibility appears if the number of fermions is odd, m  — 2k + 1 (k > 0). 

In this case it is possible to  construct a Cl4^+3 algebra by representing the 

volume element w ith the complex number i. For example, the  Cl% algebra 

could be obtained by using the 4-Fermion algebra and the  Cl\\  algebra could 

be obtained by using the 5-Fermion algebra.

The equivalence between the Clifford and fermion algebras has the po­

tential to  identity new algebraic properties th a t may be hidden when ex­

pressed in only one of them. For example, we were able to construct a Lie 

algebra isomorphic to  sp(4) by using the bilinear plus trilinear elements of 

the bi-fermion algebra. There are general m ethods to  extract Lie algebras 

within Clifford algebras as done by Doran et al. [5] (using the non-Euclidean 

Clifford algebras Cln<n as well). The association between the fermion and
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Clifford algebras can be used ultim ately to  identify more Lie groups of mul­

tilinear fermion creation-annihilation operators.
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C hapter 7

Conclusions and Further Work

This thesis has shown how appropriate Clifford algebras can be applied in 

order to  represent n-qubit systems.

The Lie algebras of interest, su(4), su(8), sp(4), sp(8) appeared naturally  

in the context of some Clifford algebras and they were used in chapters 3 and 

4 to  control and access the Hilbert space of two and three-qubit systems.

The fifth chapter trea ted  the problem of calculating the average fidelity of 

n-qubits in term s of a finite sum, which is easier to evaluate th an  the  original 

integral form. This implies th a t only a finite number of measurements is 

necessary in order to  establish the fidelity of a quantum  operation.

The sixth chapter showed the deep connection between fermion and Clif­

ford algebras and how they are equivalent to  each other. This reveals hidden 

algebraic properties of the fermion algebra th a t may have potential applica­

tions in particle models or second-quantized schemes.

A natura l extension of this work could be done in non-coherent control 

and decoherence in general. The measurement of the entanglement of mixed 

systems is still an open problem and more work could be done, perhaps by 

doubling the system and finding its equivalent pure state. This complete
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thesis could be generalized by introducing the spatial dependence of the 

wave function and relativistic effects.
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A p p en d ix  A

Clifford Conjugation

Clifford conjugation [12], also known as spatial reversal conjugation or in­
formally as bar conjugation, is an anti-autom orphism  th a t changes the sign 
of vectors. This means th a t if v  is a  vector, its Clifford conjugation is

v  =  - v  (A .l)

Moreover, as an anti-autom orphism , the Clifford conjugation is distributed 
on a product as

A B  = B A  (A.2)

The application of the spatial reversal on the elements of the CC.j, basis is 
given in table (A)

Basis element Clifford conjugation
1 1

ei —ei
e2 —e 2
e 3 —e3
ei2 - e i2
^23 — 623
ei3 - e i3
ei23 ei23

Table A .I. Clifford conjugation of the elements of the the C£3 basis
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A p p en d ix  B

Classical Semisimple Lie Algebras

The classical Lie algebras are the fundam ental semisimple Lie algebras [36, 
38]. The list of the classical Lie algebras w ith their C artan  m atrices follows 
below, w ith their Dynkin diagrams in figure (B .l)

•  A n — su(n  — 1) generators of the S U (n  — 1) group. (Upper case is 
used for groups and lower case for algebras).

Cn

{  2 - 1  0
-1 2 - 1
0 - 1  .

V

- 1  0 
- 1  2 - 1  
0 - 1 . 2 /

( B . l )

Cn =  sp(2n) generators of the Sp(2n) group.

(  2 - 1 0  
- 1  2 - 1
0 - 1  .

V •

- 1  0 
- 1  2 - 1  
0 - 2 2 /

( B . 2 )

D n = so(2n) (isomorphic to  spin(2n)) generators of the 50(271) group.
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0 — 0 - 0 0 —  0 — 0kn

O —O —0 " g n" 0 —o o )

0 0 0 - 0 - 0 0
t - n

0 - 0 - 0 - - -
U n

F igure B .l. The Dynkin diagrams of the classical Lie algebras.

/  2 - 1  0 
- 1  2 - 1  
°  - 1

Cnxn =

I—I1 0 0
2 -1 -1
-1 2 0
-1 0 2 J

(B.3)

V I

• B n = so (2 n + l)  (isomorphic to  sp in (2 n + l))  generators of the 5 0 (2 n +  
1) group.

Cnxn —

/  2 - 1  0 . \  
- 1 2 - 1 .
0 - 1

- 1  0 
- 1  2 - 2  

\ .  - . 0 - 1 2 /

(B.4)
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A pp en d ix  C

Anti-Herm itian Cl4 Cartan M atrix

The purpose of this appendix is to  characterize the Lie algebra of the anti- 
H erm itian space of the CI4  Clifford algebra by calculating the roots and the 
C artan  m atrix  [38], It is convenient to relabel the generators as shown in 
Table C .l th a t correspond to  the matrices given in Table 3.4. This basis is

Fi =  e i 2 <53 II CO

F2 =  e i 3 F7 =  e i 2 3

F3 =  e i 4 F& =  e i 2 4

F4 =  e 2 3 F q =  e i 3 4

F 5 =  e 2 4 T ’lO =  e 2 3 4

Table C .l. Relabeling of the CX4 Lie algebra

orthogonal according to  the trace when the m atrix  representation is used

T r(F jF k) =  - 4  5jk . (C .l)

The basis of the C artan  subalgebra can be taken as

S  = {F U F7}, (C.2)

where each generator of the C artan  subalgebra is usually called a weight
generator whereas the remaining eight generators are called root generators.
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Their m atrix  adjoint representations are

Adi =

A d 7 =

U = UXU7

/o 0 0 0 0 0 0 0 0 0 N
0 0 0 - 2 0 0 0 0 0 0
0 0 0 0 - 2 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 - 2

\o 0 0 0 0 0 0 0 2 o !

0 0 0 0 0 0 0 0 ° \
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 - 2 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 - 2 0 0 0 0
0 0 0 0 2 0 0 0 0 0

Vo 0 - 2 0 0 0 0 0 0 0 /

agonalizes both  m atrices is

/ ° 0 0 0 0 0 1 0 0 ° \
0 0 0 0 0 0 0 0 —i i
0 — i 0 —i i 0 0 0 0
0 0 0 0 0 0 0 0 1 1
0 1 1 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
i 0 0 —i 0 0 0 0 0 0
0 —1 —i 0 i i 0 0 0 0

\o 1 - 1 0 - 1 1 0 0 0 0 /

(C.3)

(C.4)

(C.5)

where U\ diagonalizes Adi only and U7 diagonalizes Ux 1 Ad7U\. The gen­
erators of the C artan  subalgebra are diagonalized as

U - 'A d iU
U ~1A d 7U

diag{ 0, 2 , - 2 ,  0, 2 , - 2 ,  0, 0, 2 , - 2 )  (C.6)
d ia g ( -2 , - 2 , - 2 ,  2, 2, 2, 0, 0, 0, 0). (C.7)
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The positive roots are

Otl =  {2 , 2 } (C.8 )

a 2 =  {2 , 0} (C.9)

C*3 =  {2 , - 2} (C .10)
a 4 =  {0 , 2}, (C .ll)

where the simple roots are 0:3 and <*4 .
The next step is to  calculate the canonical representation of the root 

generators {G j}. This is done by solving for four eigen-equations, where the 
eigenvalues are given by the components of the four positive root vectors

{ [tF i.G ] , [iF7,G ]} =  a fcG, k  =  1 , 2 ,3 ,4 , 

and G  is given by a linear superposition over the root generators

G — aJFj j  = 2 ,3 ,4 ,5 ,6 ,8 ,9 ,1 0 .

The the solutions of G, associated w ith the positive roots are

G\

G2 =

G3 =

G4 =

/  0 0 0 ON
0 0 0 0
0 0 0 0

V -4 0 0 0 /

( 0 0 0 ON
- 2 0 0 0
0 0 0 0

\ o 0 - 2 0 /
/o  0 0 ON

0 0 - 4 0
0 0 0 0

\0  0 0 (V
/  0 0 0 °N

0 0 0 0
- 2 0 0 0

\ 0 2 0 0 )

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

The solutions associated w ith the negative roots are calculated by apply­
ing H erm itian conjugation to  the  solutions associated w ith the  respective
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g 5 =  g \ 

g 6 = g \  

g 7 = g \ 

G l

positive roots

(C.18) 

(C.19) 

(C.20)

Gg =  G \.  (C.21)

It is convenient to  redefine the weight generators as

H i =  iF i (C.22)
H 2 =  iF 7. (C.23)

The dual roots hi are defined as members of the C artan  subalgebra

b? =  V kH k (C.24)

such th a t the following expression is satisfied

{ T r i t iH x ) , T r(h j H 2) } = a , .  (C.25)

The dual roots associate with the positive roots are explicitly shown below

h A =  ±

h2 = -

h 3 =

h i =

f  0 0 - 1  - i 0 \
1 0 0 0 1 +  i
2 — 1 + i 0 0 0

V 0 1 - i 0 0 /
/  0 0 - 1 (T

1 0 0 0 1
2 - 1  0 0 0

\ Q  1 0 0/
(  ° 0 - 1  +  * 0 \

1 0 0 0 1 - i
2 — 1 —i 0 0 0

V 0 1 + i 0 0 /
/0 0 —i o \

1 0 0 0 i
2 i 0 0 0

V) - i 0 0 /

(C.26)

(C.27)

(C.28)

(C.29)

The simple roots are associated with the generators {G3 , G4}. These gener­
ators have lengths defined in term s of their traces as

T r (h 3h3) =  2 (C.30)
T r{h AhA) =  1 . (C.31)
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Finally, the C artan  m atrix  is calculated as

7 )

which corresponds either to  the sp(4) or sp in (5) Lie algebra.
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A pp en d ix  D

Paravectors

A paravector is a Clifford number th a t extends the space of real vectors to 
include real scalars as well [12]. For example, the following expression is a 
general paravector in a given C£^ basis

p  =  p° + p 1e i + p 2e 2 + p 3e 3, (D .l)

where pi £  R. The square length of a paravectors is defined in term s of the 
product by its Clifford conjugation

pp (D.2)

The projector P 3 , defined as

-P3 =  2 (1 +  e 3)> (D-3)

is an example of null paravector, because its square length is zero

P 3P 3 = 0. (D.4)

In « 3, the following elements form a  null basis of paravectors

{P3,e1P3,P3,eiP3} (D-5)

so th a t any Clifford number 4/ in C£3 can be expressed as

’F =  V1-P3 +  t/>2eiP3 +  ^3P 3 +  ^ e i P ,  (D.6)

where belongs to  the combined real-scalar and pseudo-scalar space, which 
is isomorphic to  the standard  complex algebra.
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A p p en d ix  E

Pacwoman Property

The application of a projector on a given Clifford algebra Cin produces an 
ideal w ith a  num ber of independent elements. For example, the following 
pacwoman identity can be established by direct calculation [12]

6 3 P3  =  P 3  =  (E . l)

In general, the eight different basis elements of Ctz are reduced to  four, 
namely

{ T >3 , e i P 3 , e 2 P 3 , e i 2 3 T >3 } ,  ( E . 2 )

as seen explicitly in the following identities:

1P 3 =  p 3 (E.3)

eiP3 =  e iP 3 (E.4)
e2P3 =  e2P3 (E.5)

63 P 3 =  P 3 (E.6)

ei2P3 =  ei23P3 (E.7)

e23P3 =  e2P3 (E.8)

ei3P3 =  eiP3 (E.9)

ei23-P3 =  ei23P3- (E.10)

The pacwoman property is also applied in higher dimensions, where there 
are multiple commuting projectors. The primitive projector is defined as the 
projector m ade from the product of all the possible commuting independent 
projectors for a given dimension. In Ci4 , there is only one independent 
projector, so the prim itive projector can be defined as

P  =  i ( l  +  e 3). (E .l l)
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The complete CI4  basis is reduced to  eight different elements as shown in 
Table (E .l)

ei2 P  =  ei2-P 
ei3 P  =  ei P  
e 44P  =  e u P  
e23 P  — 6 2  P  
e24 P  =  e24 P  
e34P  =  - e 4P  
G fflP  =  ei24P

e3P  =  P

6l23P  =  ei2P
e 4P  =  e iP  

e m P  =  - e ^ P  
e2 P  =  e2 P  

e234P =  ~^2aP  
e4P  =  e4P  

®1234 P  =  —ei24P
1 p  =  p

Table E .l.  The C3?4 algebra projected into the eight independent elements.

In C t\ x C, there are two independent commuting projectors and a prim ­
itive projector can be defined as

P  =  ^ ( l - t e i 2) ( l - i e 123). (E.12)

In this case, the complete Cl 4  x C algebra w ith 32 basis multivectors is 
reduced to  eight.

As the product among vectors is well defined, it is possible to  define 
functions of vectors w ith the help of their series expansions, whenever th a t 
is possible. Let / ( n) to  be an analytic function a t 0 and n  a unit vector in a 
space of any dimension. Expanding this function in a Taylor series we have 
the following expression

/ ( n) =  /(0 )  +  n /(« (0 )  +  n 2i / < 2)(0) +  n 3i / ( 3)(0) +  ... (E.13)

Evaluating the powers of the unit vector n , the series becomes

/ ( n) =  /(0 )  +  n / « ( 0 )  +  ^ / (2)(0) +  n ^ / (3)(0) +  ... (E.14)

By using the  identity resolution we have 

/ ( n) =  /(0)(Pn +  Pn) + (Pn -  Pn) / « ( 0) + | / (2)(0)(Pn + Pn) +  ... (E.15) 

and collecting term s we get

/ ( n) = (/(0) + /W (0) + ...) Pn +  (7(0) -  /(D (0) + ^ / (2>(0) -  ...) Pn-

(E.16)
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Finally, identifying the Taylor series, the following compact result is found

/ ( n )  =  / ( l ) P n +  / ( - l ) P n (E.17)

By using the com plem entarity of the projectors

PnPn =  0, (E.18)

the following identities are also found

/(n )P „  =  / ( l ) P n (E.19)

/(n )P „  =  / ( - l ) P n  (E.20)
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A p p en d ix  F

Scalar Part

There are certain Clifford algebras where the volume element squares to  
— 1 and commutes w ith every other Clifford number in the given Clifford 
algebra. These Clifford algebras are Cl3, Cl7, C l\\ and so on as long as the 
dimension n  obeys (n  + 1) mod 4 =  0. In these algebras it is possible to 
combine the real scalars and the pseudoscalars (scalars times the  volume 
element) to  obtain an algebra isomorphic to  the standard  complex algebra. 
In th is thesis the  term  scalar is applied to  the scalar plus pseudo-scalar 
space.

In CI3  the scalar p art [12] can be extracted from a general Clifford num­
ber simply by applying the Clifford conjugation as

(x )s  = )^{x + x), (F .l)

which is evidently invariant under the reversion conjugation. In CI3 , the 
complementary space is called the vector space, which contains bo th  vectors 
and bivectors. As complementary space to  the scalar space, the vector part 
can be extracted as

ix )v  = \ { x - x )  (F.2)

The scalar part is invariant under cyclic perm utations such as

(abc)s = (bca)s, (F.3)

which implies an invariance under transform ations of the form

{ R x R - ^ s  = {x ) s  (F.4)
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A pp en d ix  G

Partial Scalar Part

The scalar p art is obtained as an operation th a t can be expressed in term  
of the trace when the m atrix  representation is used. In the case of Cl 3  and 
a representation in term s of 2 0  2 matrices, the scalar part is equivalent to

(A )s  =  \ t t \A]. (G .l)

A Clifford num ber and its m atrix  representation are usually denoted with 
the same variable, and to  avoid cumbersome notation they are identified by 
the context.

The scalar part has a special significance in Clifford algebras where the 
volume element is anti-Herm itian and commutes w ith all the algebra. This
happens when the grade of the volume element is 3,7,11,... or 1 mod 4. In
these cases the scalar part is a complex number.

For an expression made w ith the  direct product of two Clifford num bers 
a and b, the partial trace on the left slot is defined as

(a 0  b)s ® 1 =  (a)s b (G.2)

On the other hand, the partial trace on the right slot is defined as

{a 0  6)i®s =  a(b)s (G.3)

The partial scalar part is equivalent to  the partia l trace so th a t if the 
the slots are filled w ith CI3  numbers, the reduced trace is respectively

(a 0  b)s®i =  [^ T r 0  1] (a 0  b) (G.4)

(a 0  b)igi5 =  [ l 0 ^ T r ] ( a 0  6) (G.5)

The partia l scalar part is easily generalized to  multiple direct products.
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A p p en d ix  H

Single-Qubit Entropy

The density m atrix  of a single qubit in algebraic form is

p =  i ( l  +  a p ) ,  (H .l)

w ith q  =  1 for pure states and 0 <  a  < 1 for mixed states, where the  0
value corresponds to  the purely mixed state.

The Von Neumann entropy for a single qubit in term s of the Cl3 algebra
is

S  = -2 (p \n (p ))s  (H.2)

The first step to  calculate the entropy is to  take the unit vector p along an 
arb itrary  direction, say e3, and then use the resolution of the identity to  get

p = ± ( l + a e 3)(P3 + P 3), (H.3)

and by using the pacwoman property we obtain

p =  i ( l  +  a )P 3 +  i ( l - a ) P 3. (H.4)

Assuming th a t a  <  1, the logarithm  is easily calculated taking into account
th a t projectors are idem potent

ln(p) =  In ^~y ^P 3 +  In — ^ ~ p 3 (H.5)

By using this expression, the Von Neumann entropy is finally calculated as 

r./ s / l  +  a i l + a r. l - a , 1 ~•SM  =  I " — «  +  — I n — P 3

1 +  d .  .1 +  0!. 1 -  a  , , 1 - Q .
o M - r - )  +  - 5-  M - 5 - )
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A p p en d ix  I

Computer Programs

T he following are some useful Mathematica programs 
E n t r y  E le m e n ts  o f  S p (N ):

SymmetricInitialLieBasis::usage =
"SymmetricInitialLieBasis[n] gives n elements of the 

sp(n) Lie. The remaining elements could be calculated with 
all the possible commutators";

SymmetricInitialLieBasis[n_] := Joint 
Table [

Table[

KroneckerDeltati, k]KroneckerDeltatj, k + 1] - 
KroneckerDelta[i - 1, k]KroneckerDeltatj, k]+ 
KroneckerDelta[i, n - k]KroneckerDelta[j, n - k + 1]-
KroneckerDeltati - 1, n - k]KroneckerDelta[j, n - k]

, {i, 1, n>, {j, 1, n>]
, {k, 1, n/2>]

t

Tablet 
Table t

I*KroneckerDeltati, k]KroneckerDeltatj, k + 1] + 
I*KroneckerDeltati - 1, k]KroneckerDeltatj, k] + 

I*KroneckerDeltati, n - k]KroneckerDeltatj, n - k + 1]+
I*KroneckerDeltati - 1, n - k]KroneckerDeltatj, n - k]

, -Ci, 1, n>, -Cj, 1, n>]
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, {k, 1, n/2>]
] / .  {2  ->  1 , -2  -> - 1 , 2*1 -> 1}
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Calculating the Complete Lie Algebra:
This routine requires the following standard package

««DiscreteMath ‘ Combinator ica ‘

LinearlylndependentMatrixQ::usage =
"LinearlyDependentQ[u_List] establishes the status of 

linear dependence of matrices u. Every number involved must 
be in exact representation (No float decimal point).";

LinearlylndependentMatrixQ[u_List] := Module[{v}, 
v = Flatten /@ u;
If[MatrixRank[v] == Length[v], True, False]
];

AppendNewIndependentGenerator[u_List, w_] := Module[{newu}, 
newu = Append[u, w];
If[LinearlylndependentMatrixQ[newu], newu, u]
];

NewIndependentCommutator::usage =
"NewIndependentCommutator[w_List], From the list of 

matrices w, this function calculates the commutators made 
from all the possible pairs and appends the Independent 
generators found in this way. Many recursive applications 
may be needed to find the complete set of all the possible 
commutators";

NewIndependentGenerators[w_List] :=
Module[{pairs, NewComm},

pairs = KSubsets[Range[LengthQw], 2 ] ;
NewComm =

pairs /. {i_, j_> :> MCommutator[w[[i]], w[[j]]]; 
Fold[AppendNewIndependentGenerator, w, NewComm]]
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