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Abstract

In this work, ultrasound is used as a non-destructive method of monitoring the welding

process in real-time to detect expulsion events. During spot welding, a single element

ultrasound transducer placed behind one of the welding electrodes operates in pulse-

echo mode and probes the axial center of the welded zone. Acoustic reflections from

the electrodes, plate interfaces and liquid metal weld nugget are recorded as A-scans.

During welding, the A-Scan reflections change with time, since the material properties

of steel (e.g. density and elasticity) change with temperature. Imaging successive A-

scans in time forms an M-Scan image of the welding process from which the dynamic

formation of the spot weld can be depicted and analyzed.

This thesis focuses on taking a brand new approach to the problem of expulsion de-

tection by identifying and characterizing expulsion events in M-scan data. Expulsion

occurs when molten material is ejected from the welded zone as a result of overheat-

ing due to: poor electrical/thermal contact, coating thickness and/or excessive weld

current. An expulsion can have a significant impact on the final yield strength of the

weld, and thus the detection and characterization of expulsion events is significant to

the quality assurance of resulting spot welds.
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ABSTRACT

The main contribution of this work was the discovery of M-scan features that

provide a means of detecting, predicting and classifying the event. These include:

1) Detection by sudden phase delay change of the workpiece surface reflection.

2) Prediction by ultrasonically measuring the heating rate prior to expulsion.

3) Classification of the weld quality by ultrasonically measuring indentation in the

heated workpiece.

In addition, new methods for automatically detecting and measuring these features

were developed that utilize a new efficient Hough transform variant proposed in this

work.

It was shown using both lab experiments and industrial data that not only does the

automatic detection of these features provide a new and robust means of identifying

expulsions in a wide range of welding setups, but this research can also be used in

the future to provide real-time feedback to dynamic weld controllers and eliminate

expulsions from occurring altogether.
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Chapter 1

Background Theory

1.1 Introduction

Resistance spot welding is still one of the most widely used methods of joining metal

parts, particularly for the automotive industry that relies heavily on spot welding.

A typical car frame has around 3000 to 4000 welds and this number is not expected

to change in the near future[1]. In other areas of industry, new applications for spot

welding are continuing to emerge. For instance, the construction of structural H-

beams from stamped sheet metal is turning to spot welding over rivets, since spot

welds can reduce the fabrication cost and improve the strength over the lifetime

of these parts. Although spot welding is traditionally used for joining steel plates,

research into welding high strength alloys, magnesium alloys, aluminum, and even

stacks of mixed materials is ongoing as these materials are being introduced into

vehicles and other structures [2, 3]. Of particular interest is the reliable welding of
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aluminum for aerospace applications and in particular the joining of aluminum to

high strength steels for automotive, aerospace and military applications. Despite its

long history, resistance spot welding is still an active area of research, particularly in

the area of real-time quality control and feedback of the process.

To date, the general method of resistance spot welding remains the same, however

faster electronics, intelligent feedback systems and robotic automation of the process

has provided a vast palette of tools to improve the quality and reliability of spot

welds, especially in the new areas for welding listed above. On the forefront of welding

research are methods for monitoring and evaluating the welding process to provide

necessary feed-back that ensures high quality welds are made. This is especially

true for welding scenarios typically seen as difficult. The two main areas that assure

welding quality involve:

1. Development of a suitable welding setup and schedule.

2. Destructive or non-destructive evaluation of the resulting welds.

The primary goal of each area is to assure that each weld has a sufficiently high

yield strength with no defects. In a good welding setup, good welds can be reliably

produced with minimal degradation over time, as welding repeatedly tends to degrade

weld quality due to wear on the equipment. In this case, periodic destructive or non-

destructive testing is sufficient to ensure the process is stable and good welds are

being produced. With newer materials being welded in shorter times and in harsher

manufacturing environments, the consistency between welds is dramatically reduced

resulting in an increased uncertainty of each weld’s quality. Thus, the periodic testing

of welds can no longer ensure each welds quality and so complete real-time inspection

of every weld is a topic of high interest.

One particular indicator of a problem in a welding setup is the occurrence of an

expulsion during welding. In brief, an expulsion is an undesired event in which a
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portion of molten metal is ejected from the weld. In most industries expulsions are

highly undesired as they affect both the quality and aesthetics of a weld. An expulsion

can also have potentially damaging effects on the welding equipment. The detection

of expulsions, and especially a means of preventing them, is a highly desirable feature

of state-of-the-art welding equipment from major welding equipment providers such

as Bosch and Kuka. Yet there is still much room for improvement in these devices,

especially for the many, diverse applications for spot welding.

The topic of this dissertation has a role in both the development of welding sched-

ules and quality monitoring of the process, however, the focus is on the later. Using

a novel inline ultrasound device (referred to as Inline), quality monitoring of welding

takes place in-process and performs direct measurements inside the welded zone for

every weld. The information collected during welding provides a wealth of knowledge

regarding heat generation and material interaction unattainable by any other meth-

ods to date. For the purpose of this research, the extracted information is specifically

used to predict and detect expulsion events. Expulsion is generally undesired; it is

a strong indicator of a problem in the welding setup and can result in weak or un-

dersized welds. Expulsion events may also cause the ultrasonic information gathered

from good welds, to appear as bad ones. Although a number of methods of expulsion

detection exist to date, it will be shown that the unique data gathered ultrasonically

can provide not only a greater understanding of the mechanisms and root causes

of expulsion, but a more reliable way to detect and classify the type of expulsion

event. In future work, this can aid in the development of welding schedules, pro-

vide a method for in-process non-destructive quality monitoring and even be used for

real-time dynamic control during welding.
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1.2 Overview

In this chapter the basic principals of welding and the relevance of expulsion detection

in the welding process are discussed. Using this understanding, the next chapters will

outline how knowledge of the welding process combined with real-time ultrasonic

monitoring, can provide a suitable solution to the problem of expulsion prediction,

detection and classification. The remainder of this work is divided as follows:

In Chapter 2, the Inline ultrasound setup is explained, particularly the acoustic

properties of the various interfaces and the expected properties of the reflected signal

during the various stages of welding.

Chapter 3 presents the details of expulsion detection using the Inline system.

This chapter presents four novel methods unique only to ultrasound inspection. The

general algorithms and real-time requirements are presented.

Chapter 4 covers the details of both novel and existing ultrasound image and

signal processing techniques used in the algorithms of Chapter 3. This includes:

Noise reduction and filtering, spare decomposition of ultrasound echoes, a novel real-

time hough transform technique for interface tracking and a unique approach to the

detection of weak interfaces.

Finally, Chapter 5 presents the experimental testing and verification of the meth-

ods presented in this work, focusing on the various algorithms of Chapter 3. This

chapter also summarizes the contributions of this work and more importantly dis-

cusses the new future research that is now possible as a result of this dissertation.

1.3 The Resistance Spot Welding Process

In resistance spot welding, heat is generated by passing high electrical current through

a stack of metal plates called a stack-up or workpiece. The workpiece is squeezed to-
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gether between two copper electrodes at a force of (500-7500) kN and welding current

is passed through the plates on the order of (5-50) kA, depending on the materials

being welded. The applied current is AC, DC or a train of impulses depending on the

setup and desired weld properties, and typical welding time for steel is (0.1-0.63) s.

Figure 1.1 shows a schematic cross section of a welding setup for two plates: a)

before current is applied, b) during the formation of the weld nugget and c) after the

weld has cooled.

Copper Electrode

Steel Plate

a) b)

Steel Plate

Molten Weld Nugget

Iweld

Copper Electrode

c)

Solid Weld Nugget

Faying Interface

Contact Interface

qloss

TmeltRweld

qloss

Figure 1.1: a) Initial welding stack when welding current Iweld is applied to the work-
piece with resistance Rweld shown in light gray. b) The workpiece with a molten
nugget when welding current is removed at tweld s. Heat flux qloss cools the work-
piece. c) The workpiece after solidification of the molten nugget. The outline of the
previously molten zone is shown in light gray.

During welding, Joule heating occurs in the workpiece according to Equation

(1.1) due to the higher resistivity of the material and the high current density that is

generated by a limited contact area between the electrodes and workpiece.

Qweld = I2weldRweldtweld (1.1)

Qweld in J is the heat energy in the weld region, Iweld in A is the welding current,

Rweld in Ω is the total resistance of the workpiece in the weld zone and tweld in s

is welding time in which current is applied. Equation (1.1) is a highly simplified

expression for a very complex electro-thermal process that is elaborated on in Section
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1.3.2, however, this simple equation suffices to describe the basic process.

Heat is removed through the welding electrodes by a cooling water stream flow-

ing through them, thus localizing the accumulation of heat to the workpiece. When

enough localized heat is generated, the workpiece begins to melt. The surfaces in

contact with the electrodes remain cooled by thermal conduction through the elec-

trode/workpiece interface with an outward heat flux qloss in W·m−2, thus, creating a

strong temperature gradient in the workpiece. With sustained heat generation, the

melting of the material forms a liquid pool of metal contained within the workpiece

called the weld nugget. When electrical current is removed, the molten nugget begins

to solidify as heat is continuously removed through the electrodes by qloss. The region

between the plates encompassed by the liquid weld nugget completely solidifies to

form a continuous region that joins the various sheets of the workpiece.

1.3.1 Welding Setup

The typical welding setup consists of a: controller, weld gun, and electrodes. The

welding controller is responsible for supplying the appropriate welding schedule to

the weld gun. A welding schedule is a series of operations performed by the weld gun,

but most importantly describes how the welding current is applied to the workpiece.

Current is applied in cycles referring to the equivalent period of AC current. The

time scale of a cycle is regional, 60 Hz in the Americas and 50 Hz in Europe and other

parts of the world, which corresponds to 15 ms and 20 ms per cycle respectively. Thus,

welding 10 cycles at 8.5 kA DC on an American weld control means 8.5 kA of DC

current is applied to the weld for 150 ms. For impulse welding, AC or DC current is

pulsed on a 50% duty cycle, such that current is on for half a cycle and off for half a

cycle. More advanced timings for impulse welding exist but are not used enough to

further elaborate upon.
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The weld gun is made up of a power supply and welding transformer, water

cooling, pneumatic or DC servo controlled clamping jaws, shanks that position and

align the point for welding, and the electrodes that conduct electrical current through

the workpiece. The welding transformer with an energy storage component (typically

a capacitor) provides the necessary current through the electrodes according to the

welding schedule. The voltage between the electrodes during welding is normally very

small, varying between (1 to 1.5) V. However, the open circuit voltage of the welding

transformer is usually higher, between (5 to 22) V, providing (30 to 150) kVA of

power [4].

The clamping jaws squeeze the workpiece with two primary functions:

1. Ensure good electrical contact at the welding point.

2. Oppose an outward force that results from volumetric thermal expansion of the

liquid weld nugget during welding.

Pneumatic valves are traditionally used as an affordable method of generating the

required squeeze force, however, DC servo motors are being increasingly used as they

provide greater control over pressure during welding.

The weld gun shanks simply position the electrodes at an appropriate distance

and angle away from the jaws for welding. The shanks also provide cooling water to

the electrodes and act as large conductors to carry the welding current.

Finally, the electrodes are a critical component to producing the spot weld. Elec-

trode size and shape varies depending on the desired application. In general, a large

electrode is used for large workpieces so that they can remove a greater quantity of

heat from the workpiece. The most important feature of the electrode is the tip sur-

face, which determines the contact area Ae with the workpiece. This is responsible for

increasing the current density at the desired weld location, which in turn generates

the required heat for welding. In addition, the contact area is also responsible for
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cooling the surface of the workpiece and can affect the aesthetics of the final weld by

the size and depth of the footprint it leaves after welding.

Since there are a large number of welding setups for a wide range of applications,

this thesis focuses on setups common to welding mild and high-strength steel (HSS)

sheets between 0.6 mm and 2 mm in thickness, for stacks of 2 plates (2T) with

plate coatings that include Galvanized Iron (GI), Galvaneeled (GA) and Hot Dipped

Galvanized (HDG). Stacks of three plates (3T) are reserved for future research as the

ability of ultrasound to penetrate the stack is substantially weaker. Welding was done

on both DC and AC impulse weld guns for applications in the automotive industry

including roof panel assembly, and front end body-in-white frame assembly.

1.3.2 The Welding Electrothermal Process

The primary mechanism responsible for melting the workpiece and forming the weld

nugget is joule heating according to Equation (1.1) in Section 1.3. This is heat energy

resulting from resistively dissipated power over time. The easiest way to control the

total heat generated is by changing the welding current and welding time. This is the

function of the weld gun controller and current transformer.

Heat generation in the weld is a little more complex. First, the total resistance

is a combination of bulk resistance of the material, and contact resistance between

electrodes and plates. At the start of welding, contact resistance is very high as the

imperfect surfaces have limited contact area due to roughness, dirt, oil, oxide and

damage from wear. After just a few welding cycles, heat generated at these highly

resistive interfaces softens the material and burns away contamination. The softer

cleaner interfaces under high pressure from the squeeze force of the weld gun quickly

reduce the resistance, resulting in continuous interfaces [5]. Thereafter, the total

resistance responsible for melting is predominately that of the bulk material.
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Expressing the resistance of the workpiece Rweld of Equation (1.1) as:

Rweld =
dwp

Aeσwp

(1.2)

where dwp is the workpiece thickness in m, Ae is the electrode contact area in m2 and

σwp is the workpiece material conductivity in Ω·m−1, it is clear that for a fixed con-

ductivity and workpiece thickness, the resistance can be varied by changing contact

area. This is one function of the electrodes, particularly in cases for welding dissimilar

metals.

There is also a secondary mechanism affecting the melting of the workpiece. This

is heat removal through the electrode face. The purpose of heat removal is to:

1. Ensure generated heat remains centralized in the workpiece.

2. Prevent melting of the electrodes

3. Direct grain growth during solidification.

4. Promote proper formation of inter-metallic phases.

Heat loss through the electrodes can be expressed as:

qloss = ∆ThcAe (1.3)

where, ∆T in K is the temperature difference between the workpiece and electrode

and Ae in m2 is the electrode contact area from a tip face diameter de. The thermal

contact conductance co-efficient hc in W·m−2·K−1 determines how well heat can pass

through the contact interface and is a function of a number of surface characteristics as

will be discussed in Chapter 3. To complicate matters, material properties including

conductivity, density and specific heat capacity change with temperature, and thus

theoretically determining a perfect welding setup and schedule becomes a very difficult

task.
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Q1

Weld Nugget

Metal Plate 1

Metal Plate 2

Q2

Q3

Q4

Q5

Q6

dwp

de

Figure 1.2: Q1 and Q6 are the heat energy in the indented regions, Q2 and Q5 are the
heat energy in the solid regions and Q3 and Q4 are the heat energy in the nugget.

There are a number of models used for determining the required welding current,

tip face diameters and squeeze forces for producing good welds. A simplified model

widely used in the Japanese automotive industry is the Law of Thermal Similarity

(LOTS) [6]. LOTS is based on heat flow analysis in which the temperature distri-

butions from known specimens are used to predict the required welding parameters

for different plate thicknesses [5]. The simplified law states that to obtain the same

temperature distribution in thicker plates, the welding time must be increased in

proportion to the square of the plate thickness [7], as in:

tweld ∝ d2wp (1.4)

Similarly, other setup parameters can be derived. In general, an increase in plate

thickness and tip area by an arbitrary factor of N requires an N2 increase in weld

time, and the current density decreased to N times the original, in order to have a

temperature distribution equivalent to the reference specimen [6, 8].

Although LOTS has proven successful in many applications with similar plate

thickness’ in a workpiece, applying LOTS to workpieces with plates of varying thick-

ness and material properties is not always successful. Thus, a modified heat balance

model can be used in which the various zones of the weld are separated and the

required heat for each zone is derived. Figure 1.2 shows the division of the weld area.
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The total heat required to attain an appropriate temperature distribution is then

the sum of the heat desired in each region, where the desired heat in each region can

be calculated by:

Qi = micpi∆Ti (1.5)

where Qi in J is the total heat energy of region i, mi in kg is the mass of region i

(assumed to be a flat cylinder with cap area Ae and height equal to that of the desired

region), cpi in J·kg−1·K−1 is the specific heat capacity of the region i and ∆Ti in K is

the change in temperature in region i as a result of heating.

This model does not account for heat loss through the plates and electrodes, and

thus does not represent the total heat generated during welding, but the remaining

heat required to create the desired temperature distribution and weld size. This model

was verified extensively in [9] and shows that welding schedules can be theoretically

determined with some degree of accuracy.

More complex weld schedules may contain a number of different stages in welding,

for instance, some aluminum welding schedules pre-heat the workpiece with a few

cycles for low current before applying high current to complete the weld. Some

high strength steels require short pauses after a number of heating cycles to regulate

heating and cooling rates to ensure the proper formation of grains and inter-metallic

phases within the weld. Welding schedules vary vastly from application to application

and must consider the material properties, plate thicknesses and coatings, in order to

produce a weld with a desired size and strength.

1.4 Weld Properties and Quality Factors

The quality of a weld is ultimately determined by its yield strength. This is mea-

sured by stressing the weld in the direction in which it was designed to resist. The
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welded plates of the workpiece are pulled either axially (pull stress) or laterally (shear

stress) and the force required to break the weld is measured, however, this destructive

form of evaluation is not suitable for in-process testing of large volumes. Thus, the

weld features contributing to yield strength have been identified and are measured

destructively and non-destructively to ascertain the quality of the weld indirectly [10].

The main factors affecting the strength of the weld are:

1. Nugget geometry.

2. Indentation.

3. Defects (e.g. voids, cracks and inclusions.)

4. Material phases in the heat affected zone (HAZ).

Fig. 1.3 shows a schematic representation of a spot weld between two plates as

well as the geometric factors that affect quality. A cross section of an actual weld is

shown in Fig. 1.4, where the dimensions and features depicted in Fig. 1.3 are visible.

For this work, quality inspection focuses on nugget geometry, indentation and

defects only. The material phases that form during welding, although important, are

beyond the scope of this work and thus not covered. Although, it will be shown in

the conclusion that information gathered relevant to this dissertation could be used

to additionally monitor material phases in future work.

d1

Metal Plate 1

Metal Plate 2

d2

d3 dind2

d4

HAZ

dind1

Figure 1.3: Schematic of a spot weld cross-section with nugget diameter d1, nugget
thickness d2, nugget penetration depth d3 and d4 and indentation depths dind1 and
dind2. The heat affected zone is shown in light gray.
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1 mm

Figure 1.4: Actual cross-section of a spot weld. The metal plates have been peeled
apart to highlight the true nugget diameter d1 as it is shown in Fig. 1.3. The nugget
appears as a peppered gray where the columnar grain structure is visible. The heat
affected zone is also visible as a lighter shade of gray surrounding the weld nugget.1

1.4.1 Weld Geometry

One of the most significant factors that affects weld strength is the diameter of the

weld nugget, d1 in Fig. 1.3. In many repeated studies, larger nugget diameters have

been correlated to higher yield strengths and longer fatigue life [11]. The height of

the nugget d2, or equivalently the penetration depth of the liquid nugget towards

the outer surfaces d3 and d4 of the workpiece is also used by European automakers

who rely on tensile test as an additional quality parameter, but a sufficient nugget

diameter d1 is still required in these cases. Nonetheless, for large data sets, obtaining

d1 by physical measurement if far easier where currently the only way to determine

d2 is by a labour and cost intesive process of cross sectioning, polishing and etching

each weld to obtain images similar to Fig. 1.4.

The nugget geometry is best determined by metallurgical cross-sectioning shown

in Fig. 1.4, where the weld is cut, polished and etched though the center cross-section.

This allows physical measurement of the solidified nugget and shows the presence of

inter-metallic phases and grain directions. For quality evaluation, this method is

extremely slow and labor intensive, so an alternative destructive method is the peel

1Photo modified from its original source: http://upload.wikimedia.org/wikipedia/en/e/e6/Spot-
weld-cross-section.DP590.meb.jpg. The original work is licensed under the Creative Commons
Attribution-ShareAlike 3.0 License. This licensing tag was added to this file as part of the GFDL
licensing update.
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test.

The peel test involves bending back one plate from the workpiece until the plate

peels around the weld, leaving a button on the workpiece where the nugget was

formed. Measuring the diameter of the nugget by peel test is a common method

of determining the nugget size, although only a limited amount of information is

obtained. A detailed study of the effects of abnormal welding conditions by Li et.

al. [12] showed a very close correlation between peel test diameters and the results

obtained from Tensile-shear and Impact testing. A summary of the results show that

on average, a peel test measurement results in a 0.14 mm smaller diameter than

that determined by a tensile-shear test, 0.07 mm larger than the results of an impact

test and overall a peel test generates a measurement with the lowest variation over

the other tests. Additional measures taken in this work to ensure accurate physical

measurement included B-scan imaging of the weld in a scanning acoustic microscope

to image and measure the fused region between the plates.

1.4.2 Indentation

Indentation results when pressure exerted on the workpiece by the electrodes during

welding, deforms the plates leaving a dimple or creator at the welding site. Indenta-

tion can be seen on the surface of the welded plates in Fig. 1.4 and is schematically

shown in Fig. 1.3. Depending on the materials, welding schedule and electrodes, in-

dentation can vary greatly and different setups have different specifications regarding

indentation. An acceptable amount of indentation can typically lay between 10% -

30% of the total workpiece thickness and is calculated by:

%ind =
dind1 + dind2

dwp

(1.6)

A number of studies have shown a relationship between indentation and the yield
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strength of a weld where welds with significant and/or excessive indentation have a

much lower yield strength than welds with minimal indentation. Xiaoyun et al. in

[13] showed a number of such measurements summarized in Fig 1.5.

Figure 1.5: [13] Experiment from [13] showing indentation with the corresponding
yield strength of the weld. Both excessive and insufficient indentation can result in
poor yield strength due to over/under welding.

Indentation can be measured post process using calipers, or during welding by

monitoring electrode displacement via DC stepper motor feedback. Physically mounted

devices on pneumatic weld guns have also been used to measure indentation during

welding [14], however, the extra physical hardware is often undesired in industrial

setups due to issues with failure and reliability.

1.4.3 Cracks and Voids

A final contributing factor to weld quality (relevant to this work) is the presence of

nugget defects such as surface or internal cracks due to thermal stress and shrinkage

during cooling, and the presence of air bubbles or voids in the nugget as a result of

material contraction. Fig. 1.6 shows examples of both voids and cracks found in spot
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welds.

(a) (b) (c)

Figure 1.6: Defects found in peel tests. a) Small void with surface crack. b) Large
void. c) Large void with interior cracking.

Under stress, cracks tend to grow and act as failure points in the weld, reducing

the overall yield strength of the joint. Voids or inclusions alone may or may not have

a substantial effect on the overall yield strength, however, the presence of shrinkage

voids are generally accompanied by cracks. The large voids shown in Fig. 1.6 resulted

in two plate workpieces (2T) consisting of 2 mm HSS GA plates, which exhibited a

substantial surface expulsion. It has been documented that the primary mechanism

of formation of these voids is the hold time after welding [15]. It is also believed

from observations in this work that when a substantial portion of the molten weld

nugget is lost during expulsion, the squeezing force during the cooling of the weld

can no longer apply sufficient force to the molten nugget as it cools. This is because

the resulting smaller molten region no longer occupies a substantial region below the

electrode tip face and pressure from the electrodes is thus exerted on the non-molten

region surrounding the nugget. Without squeeze force applied directly to the molten

nugget, shrinkage during cooling opens cavities within the nugget which otherwise

would have been held closed by a compressive force that displaces the surface of the

weld instead.
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1.5 Welding Expulsions

Occasionally during welding, a large spark may emit from the weld region. This

occurs when the liquid nugget has managed to breach the weld region between the

electrodes and is violently ejected from the weld. This event is called an expulsion.

Expulsions are often a sign of improper welding parameters or problems with the

physical welding setup such as damaged electrodes, poor contact conditions, or miss-

aligned contact with the workpiece. Some industries weld to the point of expulsion to

ensure they have indeed melted the metal, but this practice has many disadvantages

including a potential compromise of the joints strength. In general, good welds can

and should be formed in the absence of expulsion, preserving the life of the electrodes

and ensuring excessive material is not lost from the weld zone.

It has been shown in a number of different papers [5, 16, 17] that expulsions sig-

nificantly reduce the peak load and energy absorption of spot welds, thus, despite

individual welding philosophies, expulsions should be reduced, if not eliminated com-

pletely from the welding process.

The focus of this dissertation is on expulsion events and how they can be identified,

classified and predicted by real-time monitoring of the welding process. In order to

monitor the welding process for expulsions, the nature of expulsion events must first

be understood. The following sections examine the causes and types of expulsion that

can occur and reviews current methods for expulsion detection and prevention.

1.5.1 Types of Expulsion

Expulsions can be categorized into two types:

1. Surface expulsions.

2. Faying interface expulsions.
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Surface expulsions result when the liquid nugget manages to melt through the

surface of the workpiece, usually near the edge of the electrode. Once the surface

melts, the pressure of the growing liquid nugget is released. This often results in a

significant loss of material, which is often found as a splash emitting from the site

of expulsion as shown in Fig. 1.7 a). The main problem with surface expulsions is

the resulting indentation is typically significant. This has two effects on the quality

of the weld. Firstly, excessive indentation is prone to surface cracking and correlates

to reduced yield strength as was discussed in Section 1.4.2. Secondly, the significant

loss of material creates a depressed region under the center of the electrode in which

the squeeze force cannot exert sufficient pressure on the molten nugget to prevent

shrinkage voids from forming. Such voids were discussed and shown in Section 1.4.3.

(a) (b)

Figure 1.7: Expulsions occurring a) on the plate surface and b) at the faying interface
between plates.

Faying interface expulsions result when the liquid nugget grows significantly in

the lateral direction and melts to a point where the interface between two plates is

no longer under enough pressure to contain the nugget. At this point, the pressure

from the liquid nugget squeezes in between two plates. Faying interface expulsions

are less violent and do not result in as much material loss as surface expulsion since
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the metal between the plate interface quickly solidifies, preventing further removal of

material. This is shown in measurements presented in Chapter 5. Faying interface

expulsions can also be seen as a similar splash (shown in Fig. 1.7 b) but only after

separating the plates of the workpiece.

1.5.2 Root Causes of Expulsion and Prevention

Expulsion occurs when then molten nugget breaches an interface in the welding setup.

This happens when pressure from the growing nugget exceeds the pressure exerted on

an interface due to either overheating or insufficient cooling. Circumstances that al-

low this to arise include: electrode misalignment or damaged electrodes that increase

current density, or poor thermal contact that reduces heat transfer through the elec-

trode workpiece boundary (reduced hc.). Simply increasing the weld gun squeeze

force can have the undesired effect of creating excessive indentation on good welds

and so increasing weld pressure is not necessarily a suitable solution. Alternatively,

controlling the pressure of the weld nugget by controlling the heating rate of the weld

is a much better way of preventing an expulsion and even ensuring consistently good

welds are made.

The best method of preventing expulsion is to have a proper welding setup (sched-

ule and electrode sizes) and maintain constant welding conditions. Unfortunately,

each weld has some affect on the condition of the electrodes and the surface con-

ditions from plate to plate vary. Because of this, constant welding conditions are

impossible to ensure and the inevitability of such a random and degrading process is

undersized welds and expulsions that must be detected.

As presented in Section 1.3.2, the size of the weld nugget is a function of heat

generation, which results from joule heating. Thus, controlling the welding current

is a suitable method of preventing expulsion. In fact, dynamic weld controllers are
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currently in use that vary the welding current by measuring the changing resistance

of the weld region and are quite effective. The main drawback is that correlation

between resistance and the necessary welding current does not consider heat transfer

through the electrode, which is the next cause of expulsion to discuss.

Heat generated from the welding current is partly dissipated through the bulk

material and mostly dissipated through the contact interface with the copper elec-

trodes. When these electrodes become contaminated with welding residue, oxides,

dirt and oil from repeated welds, the thermal transfer through this interface changes

drastically. When insufficient heat is removed from the weld zone, the effect is sim-

ilar to that of excessive current and an expulsion can result. In addition, variable

thicknesses in the zinc layers on galvannealed and hot dipped galvanized plates has

shown to have a surprising large effect on this thermal transfer between the plates

and electrodes; “A discontinuity in temperature exists across the electrode interface.

The heat transfer characteristics across this interface significantly affects the nugget

development mechanism in zinc coated low carbon steel” [18]. In fact, a one microm-

eter change in the zinc layer thickness can have up to a 10% change in the thermal

transfer coefficient between the workpiece and electrodes [18]. Thus, prevention of

expulsions in modern dynamic weld controllers is currently limited and detection of

expulsions is widely desired for quality evaluation.

This work will show that the application of ultrasound can both detect and prevent

expulsion since measurement of the root causes of expulsion (excessive heating from

localized high current densities, poor thermal transfer or insufficient squeeze force) is

possible.
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1.5.3 Existing Methods of Expulsion Detection

To date, there are number of existing methods for detecting expulsion in resistance

spot welding. These methods focus on monitoring three main features during welding,

including:

1. Electrode Force/Displacement

2. Acoustic Emission

3. Changes in workpiece resistance

Methods that focus on Electrode Force/Displacement include [19, 20] and rely

heavily on signal filtering and processing to distinguish expulsion from regular welding

phenomenon. Electrode displacement alone requires additional hardware that may

interfere with the workpiece during welding is not desired in production environments.

Acoustic sensors utilized in [21] were shown to be ineffective in production envi-

ronments due to background noise and again, require additional external hardware.

Electrical signal, such as voltage and resistance used in [22] show promise for

median frequency DC welding machines, however, is not applicable to AC welding

machines and in both cases in not effective when expulsion occurs near the end of

welding since the dynamic resistance can only be calculated reliably at one point per

AC cycle [20].

Finally, recent trends have been to combine these signals with additional filtering

and fuzzy logic [23, 24] to produce highly reliable detection where single detection

methods fail, but these methods still rely heavily on unreliable sources of data, addi-

tional mechanisms for collecting this data and most importantly are not suitable for

every welding setup (e.g. a pneumatic weldgun without force or displacement data.)

Thus, there is still a significant interest in developing a robust, reliable, non-evasive

to production and versatile method for detecting expulsions in resistance spot weld-

ing. This work takes a brand new approach by utilizing an Inline ultrasound device
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embedded in the welding electrode. To date, there has been no ultrasonic investiga-

tion on the detection of expulsion. Chapter 2 describes the ultrasound setup used in

this work and outlines the advantages of an ultrasonic approach to the problem.

1.6 Finite Element Modeling

To fully understand the mechanisms at work during welding and expulsion, a detailed

Finite Element Method (FEM) electro-thermal model of the resistance spot welding

process was constructed. This model was completed in two parts:

1. An electrical model to determine the current density distribution within the

electrode and workpiece.

2. An electro-thermal model within the weld stack to determine heating and nugget

growth.

This simulation was created specifically for this research using Comsol Multi-

physics with partial contributions towards object meshing which was completed in

collaboration with J. Kocimski and P. Kustron in [25].

First, a DC conductive media model was created to determine how current flows

through the stack up. The welding setup for 3/4” B-nose electrodes on 2T 0.7 mm

mild steel plates was modeled as this was a common setup in lab testing. The ge-

ometry of the model was easily adjustable, and simulation results were obtained for

varying stack-ups. The results for the 2T 0.7 mm stack-up is presented in Fig. 1.8 a,

b), which shows half of a cross section of the welding setup. To simplify computational

time, the welding setup was modeled with axial symmetry.

In this model, a current source was created at the outer ring of the upper electrode

and grounded at the outer ring of the lower electrode; these correspond to the contact

points of the electrode with the shank. The current density within the setup, and
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Figure 1.8: Finite Element Analysis (FEA) simulation of the electrical current be-
havior for 3/4” B-nose electrodes and two 0.7 mm plates welded at 9 kA. The axial
symmetric model in a) and b) shows current flow (gray streamlines) with current
density and joule heating respectively.

particularly the current density profile along the tip of the electrodes was determined

at room temperature. Although heat propagating into the weld during welding would

alter the profile of this distribution, this mild heating does not substantially change

the current density distribution along the electrode tip. From this model, the initial

resistive heating of the setup could be extracted as shown in Fig. 1.8b.

The current density distribution was determined using this model for a number of

welding currents. This distribution is critical to understanding heat generation in the

weld and the sources of expulsion. Since the geometry of the electrode grows narrow

at the point of contact with the workpiece, extremely high current density arises at
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the corner of the B-nose cap where it contacts the workpiece. The current density

decreases towards the center of the contact area. This distribution was modeled in

this work as a radially dependent source according to:

J(r) = AeBr + CeDr (1.7)

where J(r) is the current density function in A·m−2, r is the radial distance from the

center of the electrode in m and A, B, C and D are parameters determined by a best

fit to the simulated distributions. A and C scale proportional to the welding current

amplitude while B and D scale with the maximum electrode radius.

Next, a transient electro-thermal interaction model of the welding process was

created using the same axial symmetric geometry shown in Fig. 1.8, where a con-

ductive media DC model was used to simulate current density in only the stack up

using temperature dependent material properties of the stack up from [26] and MPDB

v7.11 software. The source of electrical current for this model was the contact surface

between the electrode and workpiece, using the current density distribution deter-

mined by the electrical model of Fig. 1.8. The compact electrical model within the

workpiece was coupled to a thermal conductive heat model of the complete setup,

where the electrical simulation of the workpiece acted as a heat source for the ther-

mal model and the ends of the electrodes acted as a heat sink modeled by a constant

temperature.

Fig. 1.9 shows the simulated temperature distribution at a number of different

stages during welding. For each time step in the simulation, the current density and

temperature dependent material conductivity within the workpiece acted as a joule

heat source for the heat transfer by conduction model. This heat transfer model then

updated the temperature distribution in the workpiece and electrodes which was then

used to update the temperature dependent material properties for the subsequent
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Figure 1.9: Simulated temperature distributions during resistance spot welding of
two 0.7 mm steel plates at 8.5 kA. The liquid nugget is shown in white.

iteration of the electrical simulation. This was repeated for a duration corresponding

to an appropriate weld time, or weld schedule.

One consideration was the simulation time step for the time dependent thermal

model. A parametric simulation with different step sizes resulted in consistent and

stable simulation results at 1 ms time step intervals. The maximum change in tem-

perature in the workpiece occurs during the heating stage of the plates. The average

temperature change in the workpiece for a 1 ms time step was approximately 10 K,

equivalently 10000 K·s−1 for 9500 A welding current. This information was critical

to knowing the timing requirements for sampling the system, which is discussed in

further detail in Chapter 2.

To verify the model, a comparison of the simulated nugget diameter with actual

welds was performed for different welding currents and plate thicknesses. Due to the

number of variables and complexity of simulating a given setup, the model was verified

by determining the degree of agreement between the simulated and measured results.
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Fig. 1.10 shows the simulated nugget diameter vs. the measured nugget diameter for

thirty permutations of welds using three workpieces with varying welding currents.

The solid line (linear fit) shows the agreement between the FEM simulation results

and the physical measurements and the dashed line shows a perfect fit.
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Figure 1.10: Simulated nugget diameters compared to measured diameters for welds
conducted on 2T workpieces using 0.7 mm, 1.2 mm and 1.5 mm plates welded at
(7-9) kA in 500 A increments.

The actual weld diameter was measured by a Scanning Acoustic Microscope

(SAM) with accuracy of ±0.25 mm compared to peel testing as reported in [27].

Due to the elliptical shape of most spot welds, the actual diameter values shown

in Fig. 1.10 are the average of six nugget diameter measurements over two welds

performed for each workpiece-weld current combination and the error bars show the

sum of the standard deviation of the diameter measurements with the measurement

accuracy of the SAM.

Using the FEM model of the spot welding process, the main contributers to over-

heating (and expulsion) were verified. The degree of overheating as a result of in-

creased current density, and/or decreased heat transfer through the electrode could be

simulated and observed. These results are important to Chapter 3 where monitoring

the heating rate of the weld is presented. From this model, temperature distribu-
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tions in the workpiece at key moments in welding (melting and solidification) were

estimated and these estimates are used in the methods presented in Chapter 3 and

Chapter 4. Finally, the model provided the maximum expected change in tempera-

ture at any given momet for different setups, providing the timing requirements for

scanning nescessary to distinguis expulsions from normal welds.
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Chapter 2

Inline Ultrasound System

2.1 NDE in Resistance Spot Welding

There are currently a wide range of Non-Destructive Evaluation (NDE) methods

used for assessing the quality of a spot weld, usually performed post process. Some

of these include: ultrasonic, x-ray and optical inspection. There are, however, very

few methods that can accurately monitor the quality of the welding process in real-

time (in-process) by actually probing the workpiece. Since heat generation in the

weld stack is responsible for the formation of the weld, monitoring heat generation

is considered the best means of assessing the welding process [1]. Aside from plac-

ing thermal couples in the weld region, which destroys the thermal couple and can

compromise weld strength, there are currently no practical solutions to directly mon-

itor the internal heat generation for repeated cycles. Since the internal temperature

of the workpiece is not physically accessible for measurement (e.g. via thermocou-
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ples), indirect approaches to real-time quality assessment have been implemented for

adaptive control which include: voltage/current measurement [2], plate distortion

(indentation) measurement [3], and correlated ultrasonic time of flight for pulse echo

and through transmission modes [4, 5, 6].

Deficiencies with indirect methods of monitoring weld quality (used in the methods

listed above) result from the large variability in welding conditions, even with a

constant setup. For instance, monitoring voltage and current effectively measures

the total joule energy responsible for heat generation, but fails to account for current

density distributions in the weld zone resulting from variable contact area of the

electrodes. Resistive contributions from poor contact must also be accounted for and

this changes from weld to weld. The electrode contact condition also governs heat

conduction to the electrodes and is a major factor in the formation of the weld that is

unaccounted for. Unlike previous in-line devices and methods, the ultrasonic device

utilized in this work directly measures: weld heating, indentation and liquid nugget

penetration. Using this information, the weld nugget diameter can additionally be

estimated through correlations as described in this chapter.

2.2 Inline System Equipment and Setup

The Inline Ultrasound system, henceforth called the Inline system or simply Inline,

was developed explicitly for real-time monitoring of the resistance spot welding pro-

cess [7]. The existing Inline system utilizes a single element ultrasound transducer

placed in the cooling water stream within the welding shank, and probes the weld

through the copper electrode. The cooling water both protects the transducer from

high temperatures conducted through the welding electrode and provides a means of

coupling acoustic pressure from the transducer to the solid electrode.

Fig. 2.1 shows a schematic of the Inline setup. The transducer is driven by a
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Figure 2.1: Inline transducer placement.

custom electronic controller with a pulser and receiver. The pulser is capable of

producing 10 MHz pulses at (100-150) V amplitude in (2-10) ms intervals. This pulse

interval is called the pulse repetition rate (PRR) or denoted as tp. The pulse interval

can also be expressed as a pulse repetition frequency (PRF) denoted as fp = 1/tp.

The receiver samples incoming acoustic pressure from the transducer at a sampling

frequency fs = 66 MHz with 12 bits per sample. The data is transfered via a serial

or USB interface and stored on a computer, where post processing takes place.

2.3 Ultrasound Imaging

Ultrasound data can be recorded and displayed in a number of different ways to convey

different information. The main data modes used in this work include: A-scan and

single element M-scan modes. For both, the ultrasound transducer was operated

in pulse-echo mode where a single element transducer performs both pulsing and

receiving of acoustic echoes through the axial center of the electrode and workpiece.

Pulsing and receiving are typically called transmission and reception, notated as Tx

and Rx on most devices.
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In transmission, the ultrasound transducer generates an acoustic pulse.To generate

an acoustic pulse, the transducer (a piezoelectric element) is excited by a voltage

waveform with an approximate center frequency and pulse length equal to the desired

ultrasound pulse. Of course, the response of the transducer shapes the actual emitted

pulse. Thus, the emitted acoustic wave in time y(t) from an ultrasound transducer

is a function of both the driving voltage vo(t) and the transfer characteristics of the

transducer hem(t).

Similarly, any pressure exerted on the transducer y(t), generates a corresponding

voltage vi(t) by the same transducer transfer characteristic hem(t). The received

voltage waveform is bandpass filtered with an upper stop band frequency defined by

half Niquist (fs/2), which is then sampled by a low noise A/D converter and stored

digitally. The voltage to pressure and pressure to voltage response of the transducer

can be modeled in the time domain by:

x(t) = hem(t) ∗ vo(t) (2.1)

vi(t) = hem(t) ∗ y(t) (2.2)

Assuming that the system produces a reflected signal composed of a series of M

linear, planar reflections of our input pulse, then the system h(t) can be described

by:

h(t) =
M∑
i=1

aiδ(t− ti) (2.3)

where ai is the relative amplitude of the ith reflection and ti is the time delay of ith

reflection in s.

Given the input ultrasound pulse x(t) and the measured reflected output of the

system is y(t), then y(t) resulting from the unknown system h(t) can be expressed as
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a convolution with additive noise:

y(t) = x(t) ∗ h(t) + e(t) (2.4)

where e(t) is system noise.

The amplitude and delay of the reflected ultrasound signals is a function of the

propagation of sound through the medium and characteristics of the reflectors of

sound. Understanding these mechanistic can provide the information required to

determine the nature of the physical system h(t), in this case, the spot weld.

2.3.1 Ultrasound Wave Propagation

In general, the propagation of an acoustic wave in a media is modeled by the wave

equation:
δ2u

δt2
= c252 u (2.5)

where u in m models the displacement of particles as the wave traverses with wave

velocity c in m·s−1. Sound pressure p in Pa is often used instead of displacement

and represents the local instantaneous deviation in pressure. Pressure is related to

displacement by the specific acoustic impedance of a material, defined as:

z =
p

v
(2.6)

where z is the specific acoustic impedance in Rayleigh and v is the particle velocity

in m·s−1. The pressure of an acoustic wave is related to the displacement of particles

by the wave frequency f in Hz such that:

u =
v

2πf
=

p

2πfZ
(2.7)
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The specific acoustic impedance normalized over surface area S in m2 gives rise

to the characteristic acoustic impedance Z such that:

Z = z/S = ρmc (2.8)

In the Inline setup, only longitudinal waves are utilized, where displacement u is

parallel to the direction of wave propagation. The general wave velocity, c in Equation

(2.5), can be expressed as in Equation (2.9a). The longitudinal wave velocity can be

expressed specifically for liquids, such as the cooling water and molten nugget, and

isotropic solids like copper and steel, by Equations (2.9b) and (2.9c) respectively.

c =

√
ME

ρm
(2.9a)

c0 =

√
γKT

ρm0

(2.9b)

cl =

√
K + 4

3
G

ρm
(2.9c)

For Equation (2.9b) γ is the adiabatic index of the liquid, KT is the isothermal bulk

modulus and ρm0 is the density at standard temperature and pressure. For Equation

(2.9c) K and G are the bulk and shear modulus of the material in Pa and ρm is

the material density in kg·m−3. Equation (2.9c) exemplifies how the longitudinal

(compressive) waves depend on both the compressive and shear properties of the

material.

2.3.2 Acoustic Reflection at Continuous Boundaries

When an acoustic pulse reaches a continuous boundary, part of the acoustic pressure

is transmitted through the boundary and part of the acoustic pressure is reflected
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reflected back. Acoustic transmission and reflection at a boundary depends on the

characteristic acoustic impedance of the materials on either side of the boundary

and are represented by the coefficients of transmission and reflection. If the acous-

tical impedance on the incident side of the acoustic wave is Z1 and the acoustical

impedance is Z2 on the other side of the continuous boundary, then the transmission

and reflection coefficients for acoustic pressure T12 and R12 can be written as:

T12 =
2Z2

Z2 + Z1

(2.10)

R12 =
Z2 − Z1

Z2 + Z1

(2.11)

This is only the case for perpendicular incidence of the acoustic wave on the

boundary. Since a single element transducer is utilized, perpendicular incidence can

be assumed for the ideal condition. Also, since the ultrasound transducer is sensi-

tive to acoustic pressure, Equations (2.10) and (2.11) will be used when analyzing

ultrasound data as opposed to alternative expression for particle displacement and

velocity.

2.3.3 A-scan construction

Each pulse and subsequent reception of reflected acoustic pressure forms an A-scan.

The typical recording time for an A-scan in the Inline setup is 200 samples at a

sampling frequency of 66 MHz, or equivalently 3.9 µs, in which time probing the

weld can be considered a quasi-stationary process since the thermal properties do not

vary significantly in this time. This was verified by the thermal FEM model presented

in Chapter 1 where the maximum acceptable heating rates for thin workpieces was

determined to be 10000 K·s−1 resulting in a 0.4 K change in a 4 µs sampling period.

37



2. INLINE ULTRASOUND SYSTEM

Acoustic reflections are expected from various material interface, which may be

present at different stages of welding. The source of these reflections are shown in

Fig. 2.2 and the corresponding A-scans are shown in Fig. 2.3, where xi is the ith

reflection due to x(t) interacting with aiδ(t− ti) in h(t). For simplicity in this work,

let xi = xi(t− ti) = aix(t− ti).
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Figure 2.2: Sources of A-scan reflection in the welding setup.
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Figure 2.3: Resulting A-scans for the reflectors shown in Fig. 2.2 a) - d) respectively.

The stages of the resistance spot welding process shown in Fig. 2.2 and Fig. 2.3

can be divided into four stages as follows:

1. Weld jaws close and clamp the workpiece to be welded in place. Ultrasonically,

reflections from each interface of Fig. 2.2 a) are visible as a pulse train. Ini-

tially the setup is at room temperature and the distance between reflection can

38



2. INLINE ULTRASOUND SYSTEM

be determined by TOF measurement between reflections with a known wave

velocity.

2. Welding current is applied to the workpiece to heat the plates. Shortly after

melting, the boundaries of the liquid nugget becomes visible as in Fig. 2.2 b).

As the nugget grows vertically and continues to heat up, the reflections shown

in Fig. 2.3 b) move further apart as the geometric size of the weld increases.

3. After a fixed welding duration, current is removed and the nugget begins to

solidify as the plates cool. Interfaces from the front and back of the nugget

move towards one another as the vertical size of the liquid region shrinks, shown

in Fig. 2.2 c) and Fig. 2.3 c). Eventually the reflections from the liquid nugget

join at the moment of complete nugget solidification.

4. After the liquid nugget has completely solidified, there is finally a continuous

region between the front wall and back wall reflections without additional re-

flections between the two plates, shown in Fig. 2.2 d) and Fig. 2.3 d).

The transducer frequency was selected as 10 MHz with 80% bandwidth to provide

an axial resolution in steel such that a reflections between 0.7 mm plates could be

separated by one wave length. Further increasing the frequency with the current

setup resulted in greater attenuation when imaging through the copper electrode and

dry rough contact between the electrode and the plates. In addition, the current

sampling rate of 66 MHz is very close to the Niquist limit and further increasing the

transducer frequency can result in A-scan artifacts.

The transducer used in the work is unfocused, but with a 3 mm aperture the

far field sound waves are collimated with a beam width of approximately 2 mm.

Nonetheless scattering at the various reflection boundaries between water and copper,

and copper and steel result in reverberations and interference that can obscure the

weak reflections from the weld zone. Part of this problem is discussed in Chapter 4
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when filtering the undesired interference from scattering and subsequent reverberation

is handled.

Finally, reverberation in the workpiece can pose an interesting problem, however,

reflection intensity is typically so low that multiple reverberations are generally below

the noise level and do not pose a substantial problem. Problems can arise in work-

piece with drastically different plate thicknesses where the thin plate is nearest the

transducer, but this only occurs up to the point of melting, where the only required

information is between x1 and x3 and thus reverberations between the plates due to

the faying interface are not considered.

2.3.4 Sound Speed and Temperature

In the welding processes, strong temperature gradients are present in the weld zone.

Temperature can range from 700 K at the surface of the electrodes to 2500 K in the

center of the molten nugget [1].

Since the modulus of elasticity and density of a material are dependent on temper-

ature, it follows that the speed of sound in a material also changes with temperature.

For this reason, interfaces within the weld that produce ultrasound reflections may

appear to be moving, when in fact the temperature is simply changing.

The speed of sound in steel (as well as other isotropic solids) changes approx-

imately lineally with temperature and can be expressed in terms of the a linear

coefficient kv, such that:

cl(T ) = cl(T0) + kv · (T − T0) (2.12)

where T is temperature in K, and T0 is room temperature (295 K), such that

cl(T0) is the speed of sound of the material at room temperature.

For most isotropic solids, kv is negative, indicating that the speed of sound de-

40



2. INLINE ULTRASOUND SYSTEM

creases with an increase in temperature. For this reason, the interfaces of Fig. 2.2

a) will actually appear to move further apart as heat is generated in the weld prior

to melting. Similarly, the effect of cooling reduces the TOF in the weld making it

difficult to tell the true thickness of the heated sheets after welding. This issue was

uniquely addressed in this research as is described in Chapter 3.

A graph of the temperature dependence of the longitudinal speed of sound for

steel (as measured by [8]) is shown in Fig. 2.4, where kv is the slope of the linear fit

through the data points. Similar graphs can be extracted for the variety of metals

being welded using the Inline device, since the TOF is measured to the point of

melting and sheet thickness can be monitored by DC motor feedback and the nature

of the temperature distribution in the weld can be estimated from FEM simulations.
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Figure 2.4: The speed of sound in mild steel.[8]

2.3.5 Single Element M-Scans During Welding

When A-scan amplitude is plotted in gray scale with sequential A-scans in time placed

next to one another, an M-Scan image of the welding process if formed. Schematically,

we would expect the reflections from A-scan to appear as in Fig. 2.5 a). The actual
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M-scans acquired during welding follow this expected form as shown in Fig. 2.5 b).

The formation of the M-scan of Fig. 2.5 can be divided as follows:

1. Prior to time t0 the weld gun jaws are closed to hold the workpiece in place and

no weld current is applied. The reflections x1, x2 and x3 appear as presented in

Fig. 2.3 a).

2. At time t0 the welding current is applied and the workpiece begins to heat up.

The reflections appear to move apart due to the change in the longitudinal

speed of sound, which increases TOF with temperature.

3. At time t1 enough heat has been generated to melt the steel. Melting generally

occurs at the faying interface, so ideally the faying interface reflection x3 will

split and become the upper and lower interface of the molten nugget x4 and

x5 respectively. In reality, the geometry of the early nugget does not produce

an observable reflection since it may form off axis from the ultrasound and/or

is irregular in shape. When the nugget forms from the faying interface, the

first stages of melting fuse the plates together eliminating reflection x2. If the

welding current were turned off at this point, before the molten nugget formed,

a stick weld would result.

4. When welding current is maintained the molten nugget grows, however, the

x1

x2

x3

Welding Time (ms)

Ti
m

e 
o

f F
lig

h
t 

(u
s)

x4

x5

t0 t1 t2 t3 t4

Welding Time (ms)

x1

x2

x3

x4

x5

t0 t1 t2 t3

Ti
m

e 
o

f F
lig

h
t 

(u
s)

Figure 2.5: The M-scan acquired by successive A-scans during welding: a) Schematic
expectation of reflections. b) Actucal M-scan acquired in real-time during welding.
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nugget does not always begin to grow in the axial center of the electrodes.

In this case, the nugget may not appear in the M-scan until it encompasses

the region being probed by the transducer, at which time it may already have a

measurable thickness. In addition, the irregular, or curved surface of the nugget

can often scatter or reflect sound away from the transducer in its early stages

of growth.

In Fig. 2.5 b) both mechanisms of 3) and 4) above are present and can be seen by

observing reflection x3. Immediately after melting time t1, the reflection from x3

increases in intensity as x2 disappears. In this case, more sound is transmitted

through the faying interface x2 and reflected from the lower interface x3 since

the plates have begun to fuse, but no molten nugget has formed. Shortly after,

there is a sudden shift in time of flight for interface x3 accompanied by a drastic

decrease in amplitude. This due to the presence of a small and irregular shaped

molten nugget that both increase the time of flight (due to the abrupt decrease

in speed in sound between solid and liquid steel) as well as the last of reflection

from either the nugget or lower interface since sound is being scattered and

reflected away from the transducer instead of transmitted through and reflected

back.

5. At time t2 the welding current is turned off. The weld then begins to cool by

conducting heat through the cooled electrodes, causing the molten nugget to

begin solidifying. During this colling process the upper and lower boundaries of

the nugget grow closer together. Unlike the irregular or off center nugget that

may be present when the nugget forms, the cooling process generally maintains

and flat nugget surface. This is likely because heat is removed axially through

the electrodes so that the nugget cools faster axially than laterally. This is

particularly convenient for imaging. At time t3 the liquid nugget has completely

solidified and the two steel plates are now joined by a continuous region, thus
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reflection x2 is no longer present.

2.4 Quality Evaluation Using the Inline Setup

The Inline system is currently being used to estimate the size of the weld nugget.

This is accomplished by establishing a correlation between the maximum time of

flight through the weld with a physically measured nugget diameter [9]. This is

possible because the maximum time of flight when welding current is turned off is

results from the maximum temperature reached in the workpiece. Since the speed of

sound decreases substantially in liquid steel, the time of flight is closely related to the

thickness of the weld nugget. The diameter of the weld nugget can only be inferred

from the thickness of the nugget, and so using time of flight alone is not a reliable

indicator for weld quality.

2.4.1 Why Detect Expulsion using Inline?

A specific case where time of flight measurements alone do not correlate well to a

nugget diameter is the case of expulsion. When an expulsion occurs, estimating the

nugget diameter using the maximum TOF alone may give a false indicator of weld

quality in one of two ways:

1. The expulsion removes some heat from the center of the weld zone (decreasing

time of flight) making the weld appear undersized when it fact it is not.

2. The expulsion removes some material from the peripheral of the weld while

maintaining heat in the probed region making the weld appear to be good,

when it is not.

For these reasons, the detection and classification of expulsion is essential to im-

proving the reliability of the current method for quality evaluation. In the process
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of investigating expulsion using the Inline setup, a number of other methods have

been discovered that can help improve the estimation of the weld diameter, even in

the presence of expulsion. In the next chapters, the new methods for detecting and

classifying expulsions will be describe. In addition, it will be shown how these meth-

ods can also help estimate the nugget diameter to improve upon the current Inline

system.

2.5 Summary

In this chapter, the Inline ultrasound system and setup was introduced with a brief

review of existing in-process and post-process methods of performing NDE on spot

welds. The general specifications of the Inline system were defined and the basics of

ultrasound wave propagation were covered. The principals of acoustic transmission

and reflection, as well as the temperature dependence of the speed of sound (linearly

approximated using kv) were applied to A-scan and M-scan data acquired using the

Inline setup to describe the dynamics of ultrasound reflections during welding. The

ultrasound A-scans were described during key moments in welding, including: heating

the workpiece, melting the bulk material, cooling the bulk material and solidification

of the weld nugget. This is important in the following Chapters where the properties

of reflected ultrasound pulses and the temperature dependence of sound speed are

exploited to predict and detect expulsion events. The sampling and pulsing rates

of the Inline system defined in this chapter provided the constraints for real-time

processing covered in Chapters 3 and 4. Finally, the current use of the Inline system

for quality estimation was described and the importance of expulsion detection to

improving the Inline system’s quality estimation was added to the growing reasons

why expulsion is such a critical event to detect.
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stahl,” Berg- und Hüttenmännische Monatshefte, vol. 5, 1969.

[9] A. Chertov and R. Maev, “A one-dimensional numerical model of acoustic wave
propagation in a multilayered structure of a resistance spot weld,” IEEE UFFC,
vol. 52, no. 10, pp. 1783–1790, October 2005.

46



Chapter 3

Expulsion Detection in Ultrasound

M-Scans

Through the research conducted in this work, three identifiable signs of expulsion

were discovered in ultrasound M-scans of the resistance spot welding process. These

include:

1. Sudden changes in time of flight (measurable by phase delay) of certain reflectors

due to geometric contraction, heat loss and changes in the non-linear reflection

co-efficient.

2. Excessive heating due to poor electrical and/or thermal contact between plates

and electrodes.

3. Excessive indentation after welding, measurable in the M-scan.

Prior to this work, the only observable indicator of expulsion was found by tracking

the TOF position of the envelope of x1 (group delay) for sudden changes. Attempts to
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rely solely on changes in this TOF measurement proved to be only somewhat reliable.

In this work, additional indications of expulsion were identified in M-scan data and

methods for detecting these indicators were developed. These methods are outlined in

this chapter including the necessary theory, models and measurements used to verify

them.

3.1 Detection Requirements

Before attempting to detect an expulsion, the physical nature of an expulsion must

first be examined in terms of an ultrasound M-scan. Since expulsion can range from

very weak surface sputtering to multiple expulsion events that remove a substantial

portion of heat and material from the weld, the identifiable signs of expulsion should

be sensitive only to events that compromise the overall weld strength without falsely

detecting acceptable welds, weak expulsions, and sometimes unavoidable welding phe-

nomenon like surface sputtering. In addition, not every expulsion produces a bad a

weld and not every minor expulsion leaves a good weld, and so the classification of

the severity of the expulsion must also be considered.

3.1.1 Pulse Repetiton Rate (PRR) Requirements

The first requirement for expulsion detection is the sampling rate of the M-scan. The

A-scan pulse repetition rate must be fast enough to capture the expulsion event and

distinguish it from natural welding phenomenon such as periodic heating and cooling

when welding with AC or impulse current. Scanning with an ultra-high speed PRF of

12000 kHz was performed to determine the duration of an expulsion event. Fig. 3.1

shows one example of the data acquired with the high speed device where the primary

reflections of the front surface were recorded with a PRF of 12 kHz and the through
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Figure 3.1: High speed M-scan images capturing the duration of an expulsion event.
a) Front wall reflection during a faying interface reflection. b) Front wall reflection of
a surface expulsion. c) and d) through transmission scans of a) and b) respectively.

transmitted signal was recorded at a PRF of 1.5 kHz to confirm the expulsion event.

A 5/8” electrode with a small tip face (de = 4 mm) was used to ensure expulsions

would occur for a range of welding currents and also ensure that acoustic contact

was not lost during the expulsion event. The average duration of an expulsion was

approximately 3 ms with a minimum recorded expulsion time of approximately 1.5

ms and a maximum expulsion time of approximately 4.5 ms for this setup. This

data was obtained for a series of 38 welds (30 expulsions) using 2T 1.5 mm bare

mild steel plates and AC welding current that ranged from (8 to 12) kA. This setup

was selected as a typical welding case not likely to generate substantial expulsions

so that the weakest expulsions could be used to determine the minimum detection

requirements. From this, the minimum required PRR for expulsion detection was

obtained, showing ideally a PRR < 1.5 ms is required to detect the most mild cases

of expulsion. Unfortunately, as described in Chapter 2, the current Inline hardware
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is capable of a stable PRR of 2 ms, which is used whenever possible throughout the

remainder of this work, with an exception noted in Chapter 5. Generally, expulsions

of shorter duration, such as those shown in Fig. 3.1 do not have a substantial impact

on weld quality and can be ignored, while more sever instances of expulsion shown in

the following sections are still detectable using a PRR of 2 ms.

3.1.2 Signal Integrity Requirements

Next, setup dependent issues with ultrasound signal integrity, such as lack of acoustic

transmission during welding (due to electrode degradation) as well as physical and

electrical noise, must be considered. Detection of expulsion must be robust against

both the possibility that the internal weld structure may not be visible as well as

cases where noise may obstruct the reflected ultrasound pulse or produce false signs

of expulsion. The requirements for different levels of detection and classification are

outlined as follows:

1. In order to fully detect and classify all cases of expulsion, all interfaces shown

in Fig. 2.5 must be present and detectable.

2. For maximum detectability of expulsion phenomenon with uncertain classifica-

tion, both the front wall and back wall reflections (x1 and x3 shown in Fig. 2.5)

must be present and detectable in the M-scan prior to expulsion.

3. The minimum requirement for detection of expulsions is that the front wall (x1

of Fig. 2.5) be present and detectable.

4. Finally, severe noise or hardware data errors cannot corrupt A-scans relevant

to the moment of expulsion or obstruct the detection of reflected pulses.
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Figure 3.2: An example of an expulsion event captured in an M-scan image.

3.1.3 Classification Requirements

Finally, detected expulsions should be classified depending on their severity and the

extent to which the expulsion may affect the yield strength of the weld determined

by:

1. An undersized weld nugget.

2. The presence of large pits or voids.

3. Excessive indentation.

4. Substantial surface cracking.

Expulsions resulting in any or all of these signs must be fully detected in M-scans

and classified as significant where possible.

3.2 Method 1: Expulsion Detection by Changes in

Time Of Flight

The most prominent sign of an expulsion event during welding is a sudden change in

the total time of flight through the weld zone. A good example of this observation is

shown in Fig. 3.2.
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The decrease in TOF between x1 and x3 at the time of expulsion te results from

the sudden shift in interface x3, which is measured by comparing the arrival time of

x3a with x3b in Fig. 3.2. Corresponding to this, is a change in the reflection of the

upper interface x1, which is measured by comparing x1a with x1b in Fig. 3.2.

Theses changes in time of flight generally appear together, however, the cause of

each has been identified as separate mechanisms. As such, these may appear alone

or together, depending on the exact nature and cause of an expulsion. A surface

expulsion can produce excessive indentation and create a pocket between the steel

plate and electrode. This increase the current density at the contacting regions and

increases heat generated at the tip of the electrode. When the upper interface x1

exhibits a large shift, it is most likely due to a surface expulsion. A faying interface

expulsion, on the other hand, does not always produce substantial indentation and

good contact between the electrode and plates remain. In this case, there is little

change in the upper interface reflection x1.

The shift in interface x3 is the result of two effects:

1. Physical indentation as material between the two electrodes is ejected from the

weld resulting in a closer distance between electrodes (and hence a shorter TOF

between x1 and x3.

2. A decrease reduction in the average temperature in the weld region between

x1 and x3 as a result of molten material being removed from the weld zone,

where the average speed of sound in this region increases with a decrease in

temperature.

Both causes for this change in TOF are indicators of an expulsion that may have

adverse effect on the final strength and quality of the weld.

The shift in interface x1 results from a more complex interaction between the

surface of the plate and electrode. Although this shift tends to appear with every
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expulsion event, it may be absent in M-scans where a weak expulsion has occurred.

Before work in this thesis was conducted, it was believed that this shift in interface x1

was the best indicator of an expulsion, since the interface x1 appears most consistently

between M-scans and tracking this interface for changes is quite simple. At that

time the reason for this shift appearing was still unknown. Most peculiarly, the

direction of the shift showed an increase in TOF from x1a to x1b which implies either

a sudden expansion of the electrode or increase in temperature in the electrode. It

was originally thought that this perturbation was more of a result of the mechanical

energy exchanged and released as molten material was forcefully squeezed from the

weld, however, further research into this event has revealed a more predictable nature

and provides a plausible explanation, which can in turn be used to further classify

the nature, severity and type of expulsion. This is explained in detail in the following

section. Nonetheless, identifying this event is also crucial to reliably detecting and

classifying expulsion.

Thus, the first form of expulsion detection is performed by measuring sudden

changes in TOF in the upper and lower interfaces x1 and x3 which may occur only

when welding current is on and after melting has occurred. Perturbations in these

interfaces prior to melting and after current has been turned off result from changing

contact conditions and loss of acoustic transmission into the workpiece, but not from

expulsion.

3.2.1 Detecting Upper Interface Shifts

Prior to this work, expulsion detection in M-scans was performed by tracking the

changes in group delay of adjacent A-scans. The group delay was found by the

peak cross-correlation of adjacent A-scans. This proved to be quite ineffective as the

resolution of the group delay is limited to one sample, or approximately 15 nS. Since
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the upper interface is continuously shifting due to heating and cooling of the system,

single sample shifts occur quite frequently and non-periodically, and so only severe

expulsions resulting in a shift larger than 30 nS (such as that shown in Fig. 3.2) could

be detected by group delay alone.

In this work, shifts in the upper interface x1 are detected by examining the phase

delay of adjacent A-scans. It was observed that the phase delay of the center frequency

component of the reflected pulse shows a more distinguishable shift at the moment of

expulsion. The results in lab experiments show that even minor expulsions exhibiting

a phase delay of less than 3 ns can be detected providing an order of ten improvement

in the resolution for expulsion detection over group delay alone.

By comparing adjacent reflection x1a with x1b, significant phase delays should be

present during expulsions but not during normal heating. For this to be true, the

pulse repetition interval tp should be set according to the requirements in Section

3.1.1. In this case, we can express adjacent A-scans as:

x1a(t) = x1(t) (3.1)

x1b(t) = x1(t+ tp) (3.2)

where tp is the pulse repetition interval (time between A-scans.) For a real valued

signal x(t) the analytic signal xa(t) can be formed such that:

xa(t) = x(t) + jx̂(t) (3.3)

where x̂(t) can be computed by the Hilbert Transform of x(t).

In the frequency domain, this can be expressed as:

X(f) = Xa(f − fc)/2 +X∗a (−f − fc)/2; (3.4)
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where X∗ denotes the complex conjugate.

Assuming xa(t) is the analytic signal of x1a(t) and assuming y(t) = x1b(t) is a

real valued signal derived from x1a(t) with attenuation A, time delay td and center

frequency shift θc, this transform can be expressed in the frequency domain as G(f)

with real-valued for H(f):

G(f) = Ae−j(2πftd+θc) (3.5)

H(f) = G(f − fc) +G∗(−f − fc) (3.6)

In Equation (3.6), H(f) is the equivalent transform applicable to real valued

signals such that:

Y (f) = H(f)X(f)

=
1

2
G(f − fc)Xa(f − fc) +

1

2
G∗(−f − fc)X∗a (−f − fc) (3.7)

y(t) = Ax(t− td) cos(2πfc[t− td] + θc)− jAx̂(t− td) sin(2πfc[t− td] + θc) (3.8)

For an arbitrary transform H(f) = A(f)ejθ(f), the group delay tg and phase delay

tθ were found in [1, 2] as;

tg = − 1

2π

dθ(f)

df

∣∣∣∣
f=fc

= −θ
′(fc)

2π
(3.9)

tθ = − 1

2π

θ(f)

f

∣∣∣∣
f=fc

= −θ(fc)
2πfc

(3.10)

For example, taking θ(f) = −2π[f − fc]td + θc from (3.6) and substituting into

Equations (3.9) and (3.10), the result is tg = td and tθ = θc/(2πfc).

The method applied to determine td and θc above was the analytic cross-correlation

[3] as it has an efficient FFT based implementation with low computational complex-
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ity. In this method, the analytic cross-correlation between real valued signals x(t)

and y(t) is defined by [2] in the frequency domain as:

Ca
yx(f) =


2Y (f)X∗(f), for f > 0

Y (0)X∗(0), for f = 0

0, for f < 0

(3.11)

It is shown in [3] that the equivalent time domain signal cayx(t) yields:

tg = max
t

{
|cayx(t)|

}
(3.12)

tθ = arg{cayx(tg)} (3.13)

This was implemented using discrete time signals by [3] with x[n] = x(nts) and

y[n] = y(nts) and X[k] = F{x[n]} and Y [k] = F{y[k]}, where F denotes the Fast

Fourier Transform.

The B-scan is first segmented to isolate the upper interface from the rest of the

scan. A Hamming window is applied to the segmented data for reduce spectral leakage

when performing spectral analysis on the interface data. The windowed data is zero

padded to form the 2N-point FFT

Finally, the discrete-time 2N-point analytic cross-correlation transform is com-

puted:

Ca
yx[k] =



Y [0]X∗[0], k = 0

2Y [k]X∗[k], 1 ≤ k ≤ N − 1

Y [N ]X∗[n], k = N

0, N + 1 ≤ k ≤ 2N − 1

(3.14)

Zero padding Ca
yx by a factor of M in Equation (3.14) allows interpolation of the
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M-scan with Weak Expulsions
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Figure 3.3: Group delay tg and phase delay tθ plotted for the upper interface x1 with:
a) weak expulsions and b) a strong expulsion. The peaks in tθ are circled at the
moment of expulsion.

time domain cross-correlation cayx[n] to yield a (2NM − 1)-point cross-correlation in

which the time resolution increases from ts to ts/M . Similar to Equations (3.12) and

(3.13), the group delay and phase delay are determined by:

n′ = max
n

{
|cayx[n]|

}
(3.15)

tg = n′ts (3.16)

tθ =
arg{cayx[n′]}

2πfc
(3.17)

where fc is take as the frequency location of the maximum in |X[k]|. Although X[k]

may not be exactly symmetric about it’s peak, the discrepancy is negligible for the

added simplicity of finding the peak value over the spectrum band edges.

Fig. 3.3 shows two example M-scan images with expulsions. Welding current was
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3. EXPULSION DETECTION IN ULTRASOUND M-SCANS

on between the two dashed lines, and in this region only is the phase delay data

relevant. The widowed upper interface and the result of phase delay and group delay

are shown for M = 8.

It is clear that even the very weak expulsions of Fig. 3.3a exhibited a significant

change in phase delay, where as the interpolated group delay exhibits little to no

distinguishable change over the regular interface shifts. The phase delay exhibits a

positive peak because of an increase in TOF and so negative peaks can be ignored

when searching for an expulsion.

3.2.2 Detecting Lower Interface Shifts

The best confirmation of an expulsion event in an ultrasound M-scan is when a sudden

shift in the lower interface (x3 in Fig. 3.2) can be observed. The same approach as

above can be performed, only interpolation is not necessary since the expected shift

in the interface is very large. The large shifts also makes it possible to detect the

expulsion by simply considering the group delay as the peak of the cross-correlation

of the real valued signals x3a and x3b where similar to Equations (3.1) and (3.2),

x3a(t) = x3(t) and x3b(t) = x3(t+ tp). The problem with detecting shifts in the lower

interface is that changing contact condition can results in loss of acoustic transmission

through the workpiece and thus an absence (or very weak) reflection of the back wall.

Fig. 3.4 shows two examples of the the group delay and phase delay for the

lower interface with and without expulsion. Again, welding current is only during

the welding time between the dashed lines and only the group delay in this region

is valid. In both cases the lower interface amplitude is strong enough to produce a

reliable result. In cases where amplitude of the lower interface is too weak, the upper

interface alone must be used. In both examples, a negative peak in the group delay

occurs at the moment of expulsion since there is a decrease in TOF. Positive peaks
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M-scan with No Expulsion

TO
F 

(s
)

0 0.1 0.2 0.3 0.4 0.5

0

5

10

x 10−7

0 0.1 0.2 0.3 0.4 0.5
−5

0

5
x 10−8

t p (s
)

0 0.1 0.2 0.3 0.4 0.5
−2

0

2
x 10−7

t g (s
)

Welding Time (s)

Phase Delay

Group Delay

(a)

M-scan with Expulsion

TO
F 

(s
)

0 0.1 0.2 0.3 0.4 0.5

0

5

10

x 10−7

0 0.1 0.2 0.3 0.4 0.5
−5

0

5
x 10−8

t p (s
)

0 0.1 0.2 0.3 0.4 0.5

−4
−2

0
2

x 10−7

t g (s
)

Welding Time (s)

Phase Delay

Group Delay

(b)

Figure 3.4: Group delay tg and phase delay tθ plotted for the lower interface x3 with:
a) no expulsion and b) a normal expulsion. The peak in tg is circled at the moment
of expulsion.

can be ignored when detecting expulsion.

The condition used to determine whether or not the lower interface refection is

strong enough to detect expulsion was the amplitude of the analytical cross-correlation

|cayx|. When the amplitude falls below a certain threshold, the group delay data for

this interface can be ignored. In almost all industrial setups, the lower interface is

weak at times when welding current is applied and thus not reliable enough for the

outright detection of expulsions. In addition, the disappearance of the interface in

the duration of the expulsion event makes tracking this interface non-trivial and so

group delay shifts of x3 are not considered further in this work.
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3.3 Method 2: Measuring Heating Rates by Ul-

trasound

In this section, a novel method of measuring the heating rate of the workpiece in

ultrasound M-scans has been employed and used as both an indicator and predictor

of an expulsion. Direct observation of heating rates via high-speed cinematography

of an edge weld was performed in [4] and effects of heating rates was extensively

investigated in recent works [5].This new Inline ultrasonic work is likely one of the

most significant contributions to the field of expulsion detection since direct and non-

invasive monitoring of internal temperatures of the weld zone was not possible to this

point in time.

The premise behind this method is that for a good welding schedule, an expulsion

will result when excessive heat is generated due to:

1. Increased current density (electrode damage and misalignment.)

2. Decreased thermal conduction through the electrode-workpiece interface (as a

result of cumulated oxide and debris on the tip face.)

One, or both cases will result in heat accumulating in the workpiece faster than

expected. Detecting this with ultrasound is possible in real-time because the time of

flight through the workpiece changes with temperature.

Thus, a simple model of heat generation and the relationship between TOF and the

change in the average workpiece temperature was established considering the effects of

both contact area and the electrode-workpiece thermal conduction co-efficient. This

model was verified experimentally and used to establish threshold conditions in which

expulsion, and even undersized welds, could be identified before they occur.
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3.3.1 Heat Generation in Resistance Spot Welding

Fig. 3.5 shows the various interfaces and temperatures of interest when monitoring

the spot welding process. When weld current is applied, T0 remains constant at

room temperature while temperatures T1 and T2 increase until T2 reaches melting.

At melting, temperature T1 continues to increase as the molten nugget grows and

the temperature Tmelt at the solid steel to liquid nugget interface remains constant.

Tracking the initial temperature increase at T2 prior to melting ensures adequate heat

generation while tracking the position of the interface at Tmelt after melting occurs is

necessary to measure the nugget penetration depth d1. Both are critical to ensure a

proper sized nugget is formed during the welding process. [6]

The focus in this work is on monitoring the temperature in the workpiece between

interfaces T1, T2 and T3 up to the melting point of interface T2. This is accomplished

by ultrasonically monitoring the average temperature in this region (between T1 and

T3). Melting of interface T2 occurs when the average temperature is sufficiently high

enough to sustain a peak temperature equal to the melting temperature of the mate-

rial. This average temperature at melting can be determined empirically, or via finite

element simulations using the model in Chapter 1.

Copper Electrode

Steel Plate

a) b)

T0

T1

T2

T3

Steel Plate

dwp T1

Tmelt

de

Figure 3.5: a) Initial welding stack prior to melting of two plates with workpiece
thickness dwp. b) Welding stack with a molten nugget interface temperature Tmelt.
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When welding current is applied to the workpiece, melting of the metal between

the electrodes is achieved by joule heating according to 1.1, from which the instanta-

neous heat energy is:

qheat = I2weldRweld (3.18)

where qheat is heat generation in W, Iweld is electrical current in A, and Rweld is the

total electrical resistance of the work-piece between the electrodes in Ω. Additionally,

heat loss through the electrodes, described in equation 1.3 must be considered, and

can be expressed in terms of the the interfaces T1 and T0 as:

qloss = (T1 − T0)hcπ
(
de
2

)2

(3.19)

where qloss is in W, T1 is the temperature on the steel side of the work-piece in K

while T0 is the cooled copper electrode temperature in kelvin. For simplicity, T0

is assumed to be constant in the electrode despite a temperature gradient present

between T0 and T1 interfaces. Also, hc is the thermal contact conductance coefficient

of the interface express in W·K−1·m−2. This coefficient differs depending on contact

condition, pressure, and surface coatings and is primarily responsible to variations in

heating for constant weld setups. For general copper steel welding, hc can vary by an

order of magnitude of 10, ranging from 25 kW·K−1m−2 to 250 kW·K−1m−2 [7, 8].

During the first few cycles of welding, the interface T1 softens and deforms giving

rise to a large change in hc, however, during this time the temperature difference

across the interface T1 is very low and so the effects of hc on qloss are low. By the time

the temperature difference across T1 becomes significant, hc remains constant for the

duration of the heating process. Thus, the value of hc can be considered constant for

the duration of welding.

Finally, the total heat energy in J generated over elapsed time t in s can be
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expressed as:

Qtotal(t) = (qheat − qloss) t (3.20)

This heat energy is responsible for heating the steel workpiece from equation 1.5,

which can be expressed as a function of time:

Qweld(t) = mcp∆T (t) (3.21)

where m is the mass of the heat affected zone in kg, cp is the specific heat capacity

of the material in J−1·kg−1·K−1 and ∆T (t) is the change in temperature in K, also

expressed as function of current temperature T (t)− T (0).

Additionally, m can be expressed as a function of the volume of material between

the electrodes:

m = π

(
de
2

)2

ρmdwp (3.22)

where ρm in kg m−3 is the density of the material in the region being heated, with

thickness dwp in m under the tip contact area with diameter de in m. It is important

to note that both Rweld, ρm and cp are temperature dependent material properties

that change over time with T during the welding process. Also, thermal expansion

of the workpiece increases the value of dwp with temperature, and thus dwp must also

be considered using the co-efficient of linear thermal expansion dL/L. In addition,

the material properties change between the interfaces in the presence of strong tem-

perature gradients. To simplify the heat transfer problem, the average temperature

in the heat affected zone at a specific point in time t is considered:

T̄ (t) =
1

dwp

∫ dwp

0

T (t, z)dz (3.23)

where z is the distance from interface T1.
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Since material properties also vary with temperature, the temperature dependent

material properties R(T ), ρ(T ) and cp(T ), as well as the workpiece thickness dwp(t),

are simplified by writing:

R̄(t) = R(T̄ (t)) (3.24)

ρ̄(t) = ρ(T̄ (t)) (3.25)

c̄p(t) = cp(T̄ (t)) (3.26)

dwp(t) = dwp(0)(1 + dL/L(T (t))) (3.27)

Equating equation 3.21 to 3.20 for a short duration of time δt, and substituting

equations 3.24 - 3.26, we can express the corresponding increase in average tempera-

ture δT̄ (t) = T̄ (t)− T̄ (t− δt) as:

δT̄ (t) =
I2weldR̄weld(t)− π

(
de
2

)2
hc
(
T̄ (t)− T0

)
π
(
de
2

)2
dwp(t)ρ̄(t)c̄p(t)

δt (3.28)

Since the change of temperature with time δT̄ (t)/δt is a function of T̄ (t) as well as

non-linear temperature dependent functions R̄(t), ρ̄(t) and c̄p(t), solving T̄ (t) must be

done numerically for small time increments δt ≈ ∆t. This is accomplished by solving

the temperature at a discrete time step n, and using this temperature to determine

the material properties and resulting increase in temperature δT̄ [n] ≈ ∆T̄ [n], where

n = t/∆t:

1) Starting with n=0, set the temperature for the current iteration:

T̄ [n] =

T0, for n = 0

T̄ [n− 1] + ∆T̄ [n− 1], otherwise
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2) Set the material properties for the current temperature.

R̄[n] = R(T̄ [n])

ρ̄[n] = ρ(T̄ [n])

c̄p[n] = cp(T̄ [n])

dwp[n] = dwp[0](1 + dL/L(T̄ [n]) (3.29)

3) Solve for the change in temperature:

∆T̄ [n] =

(
I2weldR̄weld[n]− (T̄ [n]− T0)hcπ

(
de
2

)2)
∆t

π
(
de
2

)2
dwp[n]ρ̄[n]c̄p[n]

(3.30)

4) Repeat from 1) using n = n+ 1.

It should be re-enforced that unlike other methods where the temperature distri-

bution between two interfaces is approximated by ultrasound measurement [9] [10],

the proposed method for thermal process monitoring operates on the average tem-

perature in a region and how it changes over time as a result of joule heating.

During monitoring, the estimated heat generation model above can be used to

predict expected heating given a specific setup and know variability, and determine

the real-time changes in the coefficient of thermal conduction at the copper steel

interface. The first point can act as a basis of comparison when evaluating the quality

of the weld/welding process, while the second point can be used in real-time feedback

systems, where control over welding current Iweld can counteract overheating and

under heating that result in variation of the thermal contact conductivity co-efficient

hc.

Fig. 3.6 shows the simulated heating rate using the simple heating model above
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Figure 3.6: Melting time as a result of changing welding current and thermal conduc-
tion coefficient hc.

for cases of varying current in Fig. 3.6a and for varying thermal conduction coefficient

hc in Fig. 3.6b. The model considered the temperature dependent properties of 1080

steel from MPDB v7.11 welded with 3/4” electrodes with 5 mm tip face diameter

and 2T 1.5 mm thick, uncoated, polished plates. A threshold for the heating rate

(melting time) that results in an expulsion is experimentally determined, after which

the modeled heating rates above can be used to ensure welding remains within an

acceptable range. From previous experiments it is generally accepted that for the

setup modeled in Fig. 3.6 that melting time < 0.06 s results in expulsion, melting

time between (0.07-0.1) s produces good welds and melting time > 0.1 s results in

undersized welds or stick welds. These melting times correspond to 12 cycle DC

welding of 2T (1.5-1.5) mm GI HSS and Mild steel plates.
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3.3.2 Ultrasound Monitoring

The primary mechanism for monitoring the dynamic thermal process is observing

changes in TOF of reflected ultrasound pulses from the upper and lower interfaces

T1 and T3 of Fig. 3.5 with corresponding ultrasonic reflection x1 and x3, since the

longitudinal speed of sound in isotropic solids changes with temperature T . Fig. 2.4

of Chapter 2 showed the longitudinal speed of sound for a mild steel.

At this point, the measured TOF of a reflected pulse xi(t) for an A-scan taken at

time t = ntp is the offset time ti(t). In Chapter 2, ti was defined as the TOF delay

from the i’th reflector in h(t). Since h(t) changes from A-scan to A-scan, the position

of a reflector ti also changes with time, hence ti(t). So, for simplicity, we can consider

that the delay ti for a given reflector at A-scan time t can simply be expressed as:

tof(xi(t)) = ti(t) (3.31)

Thus, the TOF difference between x1 and x3 for a given A-scan is:

tof31(t) = tof(x3(t))− tof(x1(t)) (3.32)

The change in time of flight between A-scan is thus:

∆tof31(t) = tof31(t)− tof31(t− tp) (3.33)

In order to know the average temperature in the workpiece at a given A-scan,

the rise in temperature between each A-scans ∆T̄ (t) must be known, and can be

determined from the change in TOF ∆tof31(t).

Substituting ∆T̄ (t) = T̄ (t)−T̄ (t−tp) in Equation (2.12), the change in longitudinal
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velocity ∆cl(∆T̄ (t)) resulting from the change in temperature is:

∆cl(∆T̄ (t)) = cl(T̄ (t− tp)) + kv∆T̄ (t) (3.34)

which is simplified to:

∆c̄l(t) = c̄l(t− tp) + kv∆T̄ (t) (3.35)

The resulting change in TOF for a pulse echo traveling through the workpiece and

back can then be expressed as:

∆tof31(t) = 2

[
dwp(t)

c̄l(t− tp) + kv∆T̄ (t)
− dwp(t− tp)

c̄l(t− tp)

]
(3.36)

Since dwp(t) changes by less than once percent for a temperature change of 1000

K for most steels, the difference between dwp(t) and dwp(t − tp) can be considered

negligible and so Equation (3.36) can be written as:

∆tof31(t) = 2dwp(t− tp)
[

1

c̄l(t− tp) + kv∆T̄ (t)
− 1

c̄l(t− tp)

]
(3.37)

Equation 3.37 can then be solved for the increase in temperature between two

A-scans, which in turn can determine dwp(t) and c̄l(t) for the next A-scan. The total

average temperate of the workpiece is simply:

T̄ (t) =

∫ t

0

∆T̄ (t′)dt′ + T̄ (0) (3.38)

Equation (3.37) can also be used to prediction the next ultrasound pulse location

from the backwall x3, but more importantly, provides a means of tracking temperature

for real-time feedback control. If T̄ (t) determined by Equations (3.38) and (3.37)
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using measured ∆tof31(t) is lower than a modeled ∆T̄ from Equation (3.28) for a

good weld, then the present heating rate is insufficient and the welding current must

be increased. On the other hand, if the measured ∆T̄ (t) exceeds a modeled threshold,

then excessive heating is occurring and an undesired expulsion event is likely to occur.

In this case, the welding current must be decreased.

Since small changes in TOF result from relatively large changes in temperature,

the accuracy of monitoring the temperature in thin plates depends highly on the

accuracy of ∆tof measurements. Thus, a robust method for accurately determining

TOF must be employed that is suitable for real-time operation. The most difficult

part of Inline temperature monitoring is accurately identifying the precise change in

TOF between the physical interfaces x1 and x3. The method of pulse detection used

for real-time interface tracking is presented in full in Chapter 4.

3.3.3 Verifying the Heating Model

The heating model and relationship to TOF determined in this section was verified

using real welding setups in the lab setting. In these experiments, hc was controlled by

polishing both the steel plates and electrodes after each weld. This ‘perfect’ interface

was used to determine the initial hc value of 2.25×105 W·K−1·m−2. Stacks of dissim-

ilar thickness were welded to assure that the model which considered a continuous

workpiece thickness and disregarded contact resistance could still be applied.

Fig. 3.7 shows a comparison of the modeled heating rate vs. the Inline heating rate

in terms of measured vs. modeled TOF. The time of melting is plotted to compare

the accuracy of both the model and real results, including the estimated time at

which melting began. All parameters were kept constant between models with the

exception of the welding current which was used to control the heating rate. Similar

comparisons were performed on varying plate thicknesses, materials and coatings and
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Figure 3.7: 2T workpiece (1.15 mm - 1.35 mm) HDG HSS plates welded: a) 10 kA
without expulsion and b) 10.5 kA with faying interface expulsion.

are presented in Chapter 5. An interesting thing to note is the initial overheating in

both Fig. 3.7a and Fig. 3.7b, which is likely due to the imperfect contact and the

presence of finite contact resistance. By about 0.02 s, the interfaces soften and the

interface resistance no longer plays a significant role, as per the modeled assumptions,

and both TOF curves continue as expected.

Although the model seems in close agreement, the most important feature to ex-

tract for the prediction and detection of expulsions is the melting time. The modeled

melting time in Fig. 3.6 was taken as the mean of a Gaussian distribution with peak

at the melting temperature of mild steel taken as 1700 K and interfaces T1 and T3

taken at 725 K from [11]. The actual melting time in Fig.3.7 was empirically de-

termined by manually inspecting a number of M-scans and measuring tof31(tmelt) by

observing the disappearance of the faying interface x2. The average TOF determined

temperature value for the workpieces of Fig.3.7 was 1284.10 K with a corresponding
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wave velocity c̄l(tmelt) = 5030 m·s−1, showing good agreement.

3.3.4 Heating Rate Thresholds

Monitoring the heating rate of the workpiece can be used to detect the time it takes

for melting to take place. This is the welding time from when the welding current is

turned on, until the first onset of melting in the workpiece. This time can be used to

estimate the heating rate of the plates and can proved a threshold for the detection

of expulsion.

Since the melting time is determined by monitoring the TOF between the upper

and lower interfaces of the workpiece x1 and x3 in a given A-scan, the accuracy of

determining the melting time is a function of:

1. The M-scan PRR.

2. Variation in TOF at melting.

As outlined in Section 3.1, the maximum required PRR for accurate detection of

expulsion is 2 ms. The variation in TOF was determined experimentally using 165

welds over three different setups. The results of this data for establishing a heating

rate threshold with error considerations are presented in Chapter 5.

3.4 Method 3: Excessive Indentation

One major cause of excessive indentation is an expulsion, where molten material is

ejected from the heat affected zone during welding; although not every instance of

an expulsion results in a bad weld. This section discusses how the measurement of

indentation can be used to detect expulsions and even assess the severity of the expul-

sion and the resulting quality of the weld joint. The relationship between indentation
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and weld quality was first shown by Wu [12] and subsequently used to assess quality

in real-time [13, 14, 15, 16]. Particularly, the distinction between indentation result-

ing from expulsions, good welds and stick welds was reported on in [16]. Thus, it

seemed to remain in line and competitive with current methods of expulsion detec-

tion and quality evaluation, indentation also needed to be monitored using the Inline

system. This is another significant contribution to ultrasound NDE of spot welds

since real-time in-process measurement of indentation using ultrasound has not been

accomplished, until now.

The amount of indentation depends on a number of various welding factors in-

cludeing: material hardness, squeeze force, duration of welding and the geometry of

the caps. Thus, the acceptable amount of indentation depends on the specifiec setup,

workpiece and quality requirements of the industry. For this reason, classifying a

weld based on the ultrasonic measure of indentation is only possible to the accuracy

in which indentation can be measured.

3.4.1 Determining Indentation in a Heated Plate

The primary challenges that arise when performing accurate ultrasonic measurements

during the welding process results from strong temperature gradients and the depen-

dence of ultrasound velocity on temperature. The temperature dependence of the

speed of sound in steel was outlined in Chapter 2 and was shown to be inversely pro-

portional to temperature, characterized by kv. Thus, the effects of heating increases

TOF through the weld and the thickness of the plates due to thermal expansion. Con-

trary to this, indentation decreases the distance between copper electrodes, resulting

in a decreased TOF.

Prior to this research, it was thought that separating these effects in an M-scan

image was impossible and thus the only way to measure indentation was to wait
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for the weld to cool to room temperature where the speed of sound was known and

only the final plate thickness affected the total TOF. One major contribution in this

work was the idea that the effects of heat on TOF could be separated from the

geometric contraction and thermal expansion of the plates. In order to accurately

measure geometric dimensions in real-time M-scans, the temperature profile, or a

suitable average temperature, at the point in time of measurement must be known.

The proposed method for measuring indentation is based on the premise that the

temperature distribution in the weld stack is constant and known at one specific time

in the M-scan; the point of nugget solidification. The conditions for which the liquid

nugget solidifies does not vary greatly from weld to weld, and at this precise point

during the cooling process tind, the average speed of sound through the workpiece is

known.

With a measured TOF through the workpiece, expressed in terms of Equation

(3.32) at the moment of solidification, is given by:

tof31(tind) = tof(x3(tind))− tof(x1(tind)) (3.39)

where again tof(x3(tind)) is the TOF position of the reflection x3 at the moment

of solidification tind (and the same applies to x1), then the total thickness of the

workpiece at this point in time can be calculated as:

dind =
(
kv(T̄ind − T0) + cl(T0)

)
tof31(tind) (3.40)

where,

T̄ind =
1

dind

∫ dind/2

−dind/2
Tind(x)dx (3.41)

Given that the temperature distribution during cooling can be approximated by a
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quadratic, determined from the FEM simulations of Chapter 1 to have the following

form:

T (d) = −Ad2 +B (3.42)

where the average temperature in the workpiece at the moment of solidification has

a peak temperature Tmelt and temperature at the contact interface T1. Thus, the

temperature through the workpiece at time tind can be expressed as:

Tind(d) = −4
(Tmelt − T1)

d2ind
d2 + Tmelt (3.43)

Substituting Equation (3.43) into Equation (3.41) yields:

T̄ind = Tmelt −
1

3
(Tmelt − T1) (3.44)

which can be substituted into Equation (3.40) to determine the plate thickness.

Finally, thermal expansion of the plates must be considered. For most low car-

bon steel, the linear expansion co-efficient at the mean temperature at solidification

(T̄ind ≈1500 K) is approximately dL/L = 0.01 (from MPDB v7.11). Thus dind from

Equation (3.40) should be corrected by this factor, in a similar manner in which the

thermal expansion of dwp was considered in Equation (3.27).

3.4.2 Identifying the Solidification Point

The main objective behind the proposed algorithm is to locate and trace reflections

in the B-scan data during the welding process in order to identify the point in time

when the liquid nugget completely solidifies. The details of finding the boundaries of

the liquid nugget during it’s solidification and tracing these boundaries to the point
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Figure 3.8: The solidification of the nugget boundaries x4 and x5 join at the point
tind at which indentation can be determined.

of complete nugget solidification is outlined in greater detail in Chapter 4.

The interfaces of interest are the two that result from the upper and lower bound-

aries of the nugget during solidification, shown as x4 and x5 in Fig. 2.5.

Fig. 3.8 shows an example of two M-scans, highlighting the region where the liquid

nugget solidifies. In order to measure indentation in the M-scan, all four interfaces

(x1, x3, x4 and x5) must be accurately identified. For most good welds, the interfaces

are clear, however, in cases of expulsion, it is common for the interfaces to appear

weak as a result of poor acoustic contact. Tracing x4 and x5 is only possible after

processing the M-scan as discussed in Chapter 4.

3.4.3 Indentation in Real Welds

A series of welds with varying welding currents were made using 2T 1.5 mm GI

HSS plates, where indentation and the TOF from the corresponding M-scan at the

point of solidification were both measured. The measurements were compared to

the theoretically determined plate thickness using Equations (3.40) and (3.44) with
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Figure 3.9: Measured weld thickness vs Ultrasound TOF in a 2T 1.5 mm workpiece.

Tmelt = 1700◦K and T1 = 850◦K determined by the FEM model of Chapter 1 and

measurements performed in [11]. The results were plotted in Fig. 3.9. The thickness

of the workpiece was physically measured using a digital caliper at three points and

averaged with accuracy of ±0.01 mm and TOF at solidification was determined from

the M-scans at the point where x4 and x5 merged with accuracy of ±7.6 ns. Fig. 3.9

shows the very strong correlation between TOF at the point of solidification and the

final weld thickness, indicative that even for varying weld currents and nugget sizes,

the assumption of a constant temperature distribution from weld to weld remains

true. The results also show that the theoretical model for measuring indentation is

quite accurate.

The lack of data points in Fig. 3.9 between TOF of 1.08 µs and 1.13 µs is

naturally occurring and represents the significant increase in indentation when an

expulsion occurs. The four welds with TOF less than 1.08 µs where all expulsions

where as all welds with TOF greater than 1.13 µs were all good welds.

Since there is a strong linear relationship between TOF and weld thickness, the

proposed method can still be used in the absence of accurate material data and tem-

perature information at solidification simply by empirically determining the equiv-
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alent average velocity through the workpiece at the moment of solidification for a

specific setup. For the data acquired in Fig. 3.9, a linear fit through the data points

yields an R-squared value of 0.9919 and by considering the expansion of the workpiece

to simply decrease the equivalent average wave velocity, indentation can be measured

simply by:

dind = tof(tind)cleq (3.45)

where, cleq is one over the slope of the linear fit through the data points of Fig. 3.9.

3.4.4 Indentation and Expulsion Detection

To validate the assumption that the temperature distribution through similar plate

stacks remains constant from weld to weld, an additional series of 1.5 mm and 2

mm GA HSS plates were welded and evaluated using the proposed method. The

results are shown in Fig. 3.10a and Fig. 3.10. The shaded region shows the range of

indentation acceptable for producing good welds as outlined in [15] and [17].

To validate successful expulsion detection, each weld was visually monitored dur-

ing welding and the observed results compared with the ability of the proposed algo-

rithm to detect the event. The minimum indentation resulting from welds that ex-

hibited expulsion was averaged with the maximum indentation resulting from welds

that did not exhibit expulsion to determine an expulsion limit (Fig. 3.10a and Fig.

3.10b). Welds with expulsion identified in M-scan data were marked with a star. The

results indicate that each case of expulsion was successfully identified by the proposed

method.

Finally, the mean squared error (MSE) of M-scan measurements was evaluated

for both 1.5 mm and 2 mm plate stacks to ensure the empirically derived average

velocity from a 2T 1.5 mm workpiece can be applied to similar setups (e.g. 2 mm
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Figure 3.10: Physically measured vs. Inline Ultrasound determined percentage in-
dentation in 2T HSS plates.

plates.) Standard error was computed as the root of the MSE and was calculated to

be 0.0084mm and 0.0126mm for 1.5mm and 2mm plates respectively.

3.4.5 Expulsion Classification by Indentation

This method demonstrated how expulsions can be detected by measuring indentation

ultrasonically in-process. It has been confirmed that expulsions generally result in

excessive indentation, but not always to the point of generating what is considered

a bad weld by various industrial standards. The indentation measured via Inline

ultrasound was able to distinguish expulsion events that resulted in good and bad

welds. Thus the proposed method provides not only an adequate method for detecting

expulsion, but for using indentation to additionally assess the quality of the welded

joint.
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3.5 Summary

In this Chapter, three methods for expulsion detection were presented. Method 1

demonstrated a very reliable way to detect expulsions by observing the effects of

changing TOF due to cooling and sudden plate deformation. Of particular significance

are methods 2 and 3, which present not only means of reliably detecting expulsion

events, but in the case of Method 2, predicting events and in the case of Method 3,

classifying events.
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Chapter 4

Ultrasound M-scan Processing

4.1 A-scan Noise Reduction and Filtering

Noise in the Ultrasound M-scans is problematic, especially in a noisy industrial en-

vironment. The following sources of noise were identified from an analysis that was

part of this work and include:

1. Strong electromagnetic (EM) fields induced from the large welding currents.

2. Thermal excitation of the workpiece in strong temperature gradients.

3. Mechanical vibration of the workpiece and equipment.

4. Capacitive and resistive coupling of the welding voltage to the embedded trans-

ducer.

5. Conducted and radiated EM interference from industrial electric motors and

robot servos and DC stepper motors that are nearby or contacting the welding

equipment.
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4. ULTRASOUND M-SCAN PROCESSING

6. Noisy supply voltage and ground loops.

Previous experience with a number of welding environments has shown that the

nature of the noise in an M-scan is highly setup and location dependent. Of the many

sources of noise present in an Inline M-scan, the most difficult to deal with is noise

induced from DC stepper motors, as this noise is broadband and overlaps with the

spectrum of the ultrasound used in the system. DC stepper noise is non-periodic in

the intervals in which it appears and can be strong enough to saturate the acquired

data.

To combat random noise, a number of A-scans are averages after A/D conversion.

The number of A-scan that can be averaged is limited due to the maximum PRR of

the system and the fact that the system being probed is only quasi-stationary in a

short windows of time. For this reason, 4x A-scan averaging is permitted with 250

µs delays between averaged A-scans. Faster scanning results in overlapping signals

where multiple reflections from the previous acoustic pulse are still present during

subsequent A-scans. Fig. 4.1 shows some results of A-scan averaging. The averaged

A-scans are then transmitted to a PC where they must be further filtered to remove

deterministic noise, electronic noise and noise signal overlapping the signal band.

The primary method of filtering noise in A-scans is by Band-pass filtering. The

frequency spectrum of the desired ultrasonic radio frequency (RF) data was first de-

termined. It was determined that the desired passband of the filter should encompass

frequencies in the range of 5 MHz to 22 MHz and to reduce the order of the filter, the

transition bands were permitted to be 4 MHz. The resulting Type-I FIR bandpass

filter is used extensively to filter the A-scan data prior to any further processing and

is effective at removing sources of noise 1-4 and 6 above.

The remaining coherent noise and noise within the bandwidth of the ultrasound

signal is quite difficult to deal with. The most troublesome noise resulted from stepper
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(a) (b)

Figure 4.1: Examples of noise reduction by averaging. a) No averaging. b) 8x A-scan
averaging.

motors, which exhibited a varying spectrum in the range of 5 MHz to 15 MHz. This

noise would appear at random intervals and for random durations in an M-scan.

When stepper motor noise interferes with reflections from the desired interfaces, the

result is detrimental to further processing of the M-scan. Examples of the levels of

noise potentially present in an industrial M-scan are shown in Fig. 4.2.

One of the primary discoveries by the author regarding noise in the setup was

that the main source of noise found in M-scans resulted from conduction through

the water channel. It was observed that the strength of the servo noise present

in M-scan data was inversely proportional to the resistance between the welding

electrode (where servo noise was physically measured) and the isolated terminals of

the transducer. It was postulated that repeated heating and cooling of the electrodes

in the welding environment degraded the insulation around the electrical contacts to

the transducer and that ionization of water surrounding these failure points resulted

in a finite resistance between the welding electrode and transducer terminals. It

was observed that dry or new transducers had extremely high resistance between
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(a) (b)

Figure 4.2: Examples of Servo motor noise in industrial M-scans without A-scan
averaging: a) R > 250kΩ before filtering (top) and after bandpass filtering (bottom)
b) R < 10kΩ before filtering (top) and after bandpass filtering (bottom)

the electrode and transducer and thus exhibited very little stepper motor noise while

frequently used transducers had a decreasing resistance over time when left in the

cooling water stream and a corresponding increase in the appearance and strength of

stepper motor noise in M-scans. A suitable solution to protecting the transducer is

outside of the scope of this dissertation, but this discovery is essential to evaluating

the performance of the expulsion detection algorithms fairly.

4.2 Sparse Signal Decomposition

Measuring group delay showed promising results for tracing the dominate reflection

from the upper and lower interfaces x1 and x3 in most M-scan data, however, weak,

overlapping and attenuated interfaces pose a very difficult problem when utilizing
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cross-correlation as a means tracking interfaces. The problem of sparse signal decom-

position has been dealt with extensively in ultrasound over the last two decades and

a variety of methods exist for finding the sparse location of an ultrasound reflection,

particularly when reflections are weak and overlapping. In many of these cases, high

speed performance is seldom a concern and precision tends to dominate performance.

For this reason, the method of model based signal decomposition was applied to the

M-scan data, but simplified to ensure real-time performance was possible in the 2 ms

window available for processing an A-scan during the acquisition of an M-scan. This

section shows that accuracy is not lost for this specific application when reduced to

a simplified problem.

4.2.1 Methods

Hayward and Lewis performed an early comparison on a number of deconvolution

techniques [1], concluding that Wiener filters are best suited for on-line applications.

Other studies have since been conducted on improving the resolution of Wiener filters

by combining them L1-Norm deconvolution [2] and autoregressive spectral extrapola-

tion [3] [4]. Such methods have actively been applied to the deconvolution of seismic

waves [5], adhesive bonded joints [6] and various other NDE applications with rea-

sonable complexity.

Problems arise in the presence of dispersive and attenuative material, where se-

lective attenuation of certain frequencies results in distortion of reflected pulses. In

such cases, more complex methods such higher order spectrum deconvolution and

bispectrum analysis [7] and minimum entropy deconvolution with sparse [8] [9] and

semi-sparse [10] solutions can be powerful tools at the expense of complexity, pro-

cessing time and the ability to estimate certain attenuation parameters.

Matching Pursuit (MP) based methods [11] have also been used but focus primar-
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ily on feature extraction by best modeling the reflector given an excitation. Certain

applications focus on pulse detection [12], which is the focus of this work.

Thus, a sparse deconvolution method based on simplifying current iterative search

approaches [9] was implemented which exhibits a general robustness to minor pulse

distortion, improved sparsity over Wiener filtering methods, an extremely low com-

plexity/cost and fully parallel structure suitable for hardware implementation.

4.2.2 Estimates and Residuals

One of the simplest methods for pulse detection is by peak envelope detection. In poor

signal to noise ratio (SNR) measurements, the envelope peak of overlapping pulses

is difficult to distinguish from noise. In addition, the precise location of a pulse is

difficult to determine in distorted pulses, where the envelope peak position is often

shifted from the envelope peak of a reference pulse. A more reliable method is detec-

tion of the peak cross correlation between a measured signal and reference pulse.In

this case, overlapping pulses become indistinguishable where only the dominate pulse

in amplitude is detectable.

The approach taken in this work sequentially determines the impulse response of

the specimen h(t) though a “closest match” approach. In early iterative search meth-

ods, pulses were detected using maximum likelihood detectors [13] and recently im-

proved for computational complexity by exploiting signal sparsity and pre-computing

the response from scatters in [9]. Although these methods provide a very elegant

solution to the deconvolution problem, particularly by modeling discrepancies in the

reflector response as part of the signal noise, limitations in the real-time spot-welding

environment make the computational simplifications either ill-suited or insufficient

for meeting the timing requirements. Model-based estimation pursuit for sparse de-

composition [14] presents a well suited approach except that estimating the pulse for
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every reflector can be slow and in some cases the proposed maximum a-priori (MAP)

parameter estimation failed to model the reflection.

Thus, the search criteria for pulse locations was simplified to a sequential search for

M maximum cross correlations on residues formed by subtracting the last detected

pulse, using a single modeled pulse (similar to [14] only without estimation after

partitioning.) This was tested against other real-time candidates in literature using

data specific to the M-scans acquired using the Inline device, where the number of

reflectors are know and a reference pulse exist for generating a suitable pulse model.

4.2.3 Modeling the Reflected Pulse

The reflected ultrasound pulses in the dispersive multi-layered workpiece were mod-

eled using a Gaussian Chirplet (GC) as this model was used in similar applications

in [15, 16]. The following model was used similar to [14]:

g[θ;n] = βe−α(n−τ)
2

cos
(
2πfc(n− τ) + ψ(tk − τ)2 + φ

)
(4.1)

where θ = [α τ fc ψ φ β]

At the start of the M-scan, before welding begins, a number of A-scans are aver-

aged and segmented to perform pulse estimation. The estimated pulse is segmented

using a fixed width window starting from the first zero crossing prior to the first A-

scan envelope peak. This simple approach is possible because the front wall reflection

is always the first reflection in an M-scan and minor overlap or distortion of the pulse

due changes in the rough contacting boundary from weld to weld are ignored by the

optimization approach.

The Maximum Likelihood Estimate (MLE) Gauss-Newton (GN) iteration ap-

proach [17] was taken to best estimate the pulse x(n) by the following.

For iteration k:
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1. Guess θ(0), set k = 0.

2. Compute the gradients H(θ(k))

3. Compute s(θ(k))

4. Solve θ(k + 1) = θ(k) + (HT (θ(k))H(θ(k)))1HT (θ(k))(x− s(θ(k))).

5. Check for convergence

If θ(k + 1) θ(k) < tolerance, stop.

6. Set k = k + 1 and repeat from 2).

4.2.4 Forming Residuals

First, the true measured signal y[n] must be re-expressed in terms of the modeled

reflections uniquely characterized by g[θ] from x1 such that:

y[n] =
M∑
i

g[θi] + e[n] (4.2)

where M is the number of reflectors and θi determines the modeled pulse properties

including scale β = ai and position τ = ni.

The dominate pulse in this representation can be found by the cross-correlation

< y, g[θ] > [n], which will have a maximum at n = ni. In this case, model parameter

τ takes on the value ni. Once the dominate pulse location is determined, a new pulse

estimate must be performed at that location to solve θi. For fast performance, only

the amplitude parameter β is considered and is determined by the envelope magnitude

at pulse location ni. A residual signal Riy[n] is then formed by subtracting the scaled

pulse from the current residual:

Ri+1y[n] = Riy[n]− g(θi) (4.3)

where R0y[n] = y[n] and g(θi) is a scaled version of the modeled pulse g(θ). If
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greater precision for pulse estimation is required, optimization of additional model

parameters fc and φ via MAP or MLE done in the initial modeling of the pulse

can be added to the scaling β, but at the expense of computation time. For a

perfect estimation, the residual signal no longer correlates with the reference pulse at

ni, however, for weak estimations based on only the scaling parameter, the residual

can contain remnants of a weakly correlated signal. This is often the case in this

simplification, however, the next detected pulse location is the subsequent maximum

cross correlation and so the weakly correlated residual is generally insignificant. Since

decomposition stops after M reflections are found, weakly correlated positions are

ignored.

The number of iterations for real-time weld evaluation is fixed by the number of

expected reflections, but stopping criteria can also be based on a convergence criteria,

for instance, with error defined as:

error =

√√√√ 1

N

N∑
n=0

(Ri+1y[n]−Riy[n])2 (4.4)

4.2.5 Biased Position Tracking

Due to the predictable nature of the thermal process responsible for generating and

changing the acoustic reflectors of the system, the cross correlation approach can be

improved by biasing the correlation at a prior estimated position for a reflection. This

has the benefit of reducing false detections for a semi-stationary reflector. The im-

posed biased can be implemented as a simple window in the estimated region of time

where a pulse reflection is likely to exist. The window width can be sized based on

a known maximum displacement between ultrasound A-scans governed, in this case,

by the nature of the thermal process.
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4.2.6 Real-time Hardware Considerations

For real-time hardware processing, the constraints of an algorithms are principally

governed by the ability to perform parallel computations and minimize sequential op-

erations. Performance is also gained and cost reduced by avoiding complex operations

and significant data storage. The proposed implementation is only one of many, have

the general focus is on emphasizing the suitability of the proposed pulse detection

algorithm for critical timing applications.

First, consider the measured data as a vector y = [y1...yN ]′ resulting from a system

of M reflectors h = [h1...hM ]′ with finite length pulse x = [x1...xP ]′, where x = g[θ]

. This work now proposes an iterative hardware based method for estimating h that

can be divided into the following steps:

Step 1: For the first iteration, it is necessary to determine the amplitude envelope

A = [A1...AN ]′ of y. The most effective real-time approach is to low-pass filter the

absolute value of the incoming signal. The amplitude envelope is later used to scale

the estimated pulse when forming the next residual iteration. When a dominate pulse

is identified and a new residual formed, only the envelope on the window of identified

pulse must be recomputed eliminating the need to recompute a new envelope for the

entire residual.

Step 2: The cross correlation vector c between the current residual and estimated

pulse must be calculated to determine the position of the maximum ni. A number of

fast algorithms have been proposed for time domain cross correlation [18], however,

are slower than transform domain approaches at moderate sizes [19]. For optimized

speed and to exploit efficiency of modern DSPs, cross correlation can be computed
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as a convolution with a time reversed feature, in this case:

c[n] =< y, x > [n] =
P∑
i=1

y[n]x[n− i] (4.5)

= F−1 {F {y}F ∗ {x}} (4.6)

It should be noted that the time domain approach of 4.5 can be implemented in

parallel with Step 1, while the transform domain approach of 4.6 requires fewer re-

sources. Since cross correlation of relatively short signals was required and the current

application of the fast tracking algorithm required speed optimization, a time domain

cross correlation was performed in parallel with the amplitude envelope calculation

of Step 1. Additionally, the maximum of the cross correlation must be determined

for each residual. With the time domain approach, the maximum can be found while

computing the cross correlation by comparing the actively calculated value to a pre-

vious maximum, where as for the transform domain cross correlation, the maximum

must be found as part of a separate process.

Step 3: Once the position of a dominate pulse ni is determined, the i’th residual

signal is calculated according to 4.3. First, the estimated pulse x is scaled by the

amplitude envelope value at ni and then subtracted from y such that:

ri+1[n] =

 ri[n]− A[ni]x[n− ni] ni < n ≤ ni + P

ri[n] otherwise
(4.7)

The simplifed complexity of the residual method is clear as only P multiplications

and additions are required for calculating the residual of signal length N , where pulse

length P is much smaller.
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Step 4: The process is repeated from Step 1 on the new residual until a specified

stopping criteria is satisfied. In the most simple case, the process is repeated for the

number of desired pulses to be identified, however, in very poor SNR scans, or when

the estimated pulse does not sufficiently remove dominate pulses from the residual, a

greater number of iterations may need to be performed to better estimate the location

of all desired reflection.

4.2.7 Simulation Results

The performance of the simplified method (called Fast Tracking in the sections to fol-

low) was evaluated for three scenarios: a) several overlapping echoes, b) noisy signals,

c) echoes exhibiting frequency attenuation. The results were compared with meth-

ods producing semi-sparse to sparse results including: Wiener filtering, Frequency

Extrapolation [4] and Minimum Entropy Deconvolution [9]. These methods were se-

lected because of their low computational complexity and real-time suitability, where

other algorithms such as Expectation Maximization require specific initial conditions

and significant iterations for solving the system.

4.2.7.1 Overlapping Echoes

A test sample with closely overlapping echoes was first considered, since most sparse

deconvolution approaches are very successful at estimating the correct phase and

amplitude of these pulses where cross correlation alone fails. Constructive and de-

structive interference of Gaussian pulse echoes were considered for center frequency

pulses of 10 MHz and 80% bandwidth. Fig. 4.3a shows the simulated signal and the

results of each method, where the stopping criteria for the proposed algorithm was

set to M = 5.
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Figure 4.3: a) Sample impulse response and Gaussian pulse. b) Convolved signal
with additive white Gaussian noise. c) Result of fast tracking with M=5, d) Weiner
filtering, e) Frequency Extrapolation on Wiener filtered signal with auto regressive
order=20, f) Minimum Entropy deconvolution with 8 iterations and σr = 0.1298 and
σr = 0.1568..

4.2.7.2 Low SNR Signals

Another, more critical, aspect to examine is the performance in noisy measurements.

Fig. 4.3b shows a simulated scan corrupted with significant noise (SNR=6db) and

the results processed with the same algorithms shown in Fig., 4.3a. Even when the

signal amplitude is near the noise amplitude, the fast tracking algorithm can still

resolve the pulse locations, amplitude and phase.

4.2.7.3 Frequency Attenuation

for a final comparison, the reflector sequence of Fig. 4.3b was modified using the

discrete-time attenuation model found in [8], where the attenuation impulse response
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assumes the simple form:

p(n) =



0 n = 0

1− a n = 1

a n = 2

0 otherwise

(4.8)

where 0 < a << 1. A reflection at depth n = l then has the cumulative attenuation

impulse response pl(n) = p(n)∗...∗p(n), or l convolution of equation 4.8. The reflector

sequence is then expressed as:

h = Pr (4.9)

where for reflector sequence r of length N , P is N ×N with An, l = pl(n) and h

is the new attenuated system impulse response of the system.

Fig. 4.4 shows the results for a modified system impulse with a = 0.01. The

primary drawback of the fast tracking method becomes evident since the first atten-

uated pulse is resolved as two unattenuated reflectors. In this case, the number of

iterations for fast tracking was increased to allow for detection of true pulses below

the maximum cross correlation of false detections.

Of the methods compared in Fig. 4.4, only Maximum Entropy Deconvolution

inherently accounts for prorogation in an attenuative media and hence performs well

when the exact attenuation parameter a used to generate the signal is also used to

process the signal. In practice, determining a for a real system is more involved and

not suitable for the dynamic welding environment where attenuation not only changes

from weld to weld, but during the welding process as well.
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Figure 4.4: a) Sample impulse response with attenuation model a=0.01. b) Convolved
signal with additive white Gaussian noise. c) Result of fast tracking with M=7,
d) Weiner filtering, e) Frequency Extrapolation on Wiener filtered signal with auto
regressive order=20, f) Minimum Entropy deconvolution with 8 iterations and σr =
0.1253 and attenuation factor a=0.01.

4.2.8 Real Welding Results

M-scans of the resistance welding process were taken for a series of resistance spot

welds using 0.7 mm thick high strength steel plates, using a 10 MHz single element

transducer with a sampling frequency of 66 MHz and a pulse repetition rate of 400

Hz or equivalently 2.5 ms between A-scans. Copper electrodes with a contact face

diameter of 5.7 mm were used and welding current was varied from 5 kA to 11 kA in

order to control the heating rate and resulting nugget size. M-scans for an undersized

weld, good weld and expulsion event were processed using Fast Tracking, Frequency

Extrapolation and Minimum Entropy Deconvolution to detect the interfaces outlined

in Fig. 2.5. A-scans were truncated to 128 samples and up sampled 2 times to improve

the time resolution of the pulse locations, since a 1 sample shift at 66 MHz sampling
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could mean a error of up to 100 K in temperature calculations. In the future, faster

data acquisition will permit faster sampling without the need to up sample a-scan

measurements.

Fig. 4.5 shows an example of a processed M-scan using Fast tracking, Minimum

Entropy Deconvolution and Frequency Extrapolation. It is cleat that the fast tracking

approach is still able to detect the major reflectors x1, x2 and x3 and even resolve

the location of the weak reflectors x4 and x5 with minimal noise. Minimum Entropy

Deconvolution, at it’s best, detected multiple relfections at a given reflector position

and had difficulty resolving x5 while Frequency Extrapolation, although successfully

highlighted all major and minor reflections, was unable to resolve the location to a

finite point.
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Figure 4.5: a) using cross correlation on residules with N=5 and predictive biasing
for the phase of the lower nugget reflection, b) using minimum entropy deconvolution
[8] with 8 iterations, S0 = 0.008, σnoise = 0.4 and no attenuation, c) using frequency
extrapolation [3] with Q = 0.1, dB1 = 3, dB2 = 15 and an auto regressive order of
40.

97



4. ULTRASOUND M-SCAN PROCESSING

4.2.9 Performance and Implementation

The current implementation of sparse signal decomposition was implemented in MAT-

LAB and is capable of identifying four reflectors in a 128 sample A-scan in 1.5 ms.

This permits 500 µ s for tracing the interfaces for their final position, which in the

next Section, is shown to be more than sufficient. Optimized C++ implementation

was not considered at this point in time as timing constraints have been met. Fi-

nal implementation is far better suited for an FPGA so that real-time feedback in

hardware can be considered in the future.

4.3 An Efficient Hough Transform Variant

Tracing segments of curves in M-Scan images is critical to real-time analysis of the

image. Real-time, in this instance, refers to the processing of data during it’s acqui-

sition with minimal latency (defined in this case as the number of A-scans required

to produce an output.) In the previous section, it was shown how noisy, non-linear

ultrasound reflections were detected and reduced to a sparse representation of the

reflector sequence. This spares data held the binary locations of detected pulses at

specific TOF indices and can be presented as a binary image. Of course, the presence

of false detections and missed detections adds gaps and noise along the interfaces

in this image. These broken, noisy interfaces must still be traced to determine the

precise TOF from the reflectors as they change over time. To be useful for real-time

prediction and detection of expulsions, these interfaces must be tracked as data is

acquired (2-3 ms delay between A-scans), thus a very fast method must be employed.

When divided into small segments, a curve can be approximated as a series of

straight lines. The slope of these straight lines is useful for predicting the location

of the next partial line segment along the curve. Although a number of methods
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exist for detecting straight line segments in an image, the Hough transform [20] is

one of the most widely used and is especially useful for discriminating ‘meaningful’

segments, even in the presence of stray points and noisy pixels. The main drawback

of the Hough transform is that it can be very time consuming to compute, especially

for large images.

The Hough transform exploits the point-line duality by mapping (x, y) points of

an image to a 2D parameter space using (ρ, θ) parameterization. For each pixel of an

image the normal equation of a line is computed for a range of theta values by:

ρ = xcos(θ) + ysin(θ) (4.10)

where ρ is the distance from the origin perpendicular to the line passing through (x, y)

at angle θ. To represent all possible lines uniquely, Hough space can be restricted to:

θ ∈ [0, π) (4.11)

ρ ∈ [−R,R], R =
√
w2 + h2 (4.12)

where w and h are the width and height of the image respectively.

In Hough space, ρ and θ are quantized such that H(ρ, θ) acts as a set of accumu-

lator bins for:

ρ =n∆ρ, n ∈ I (4.13)

θ =n∆θ, n ∈ I (4.14)

In this way, every active pixel I(x, y) in a binary image maps to a series of H(ρ, θ)

bins, adding 1 to each Hough space index that satisfies (4.10). The next stage of

the Hough transform involves searching the 2D hough space for peaks in H(ρ, θ). A
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peak is essentially a (ρ, θ) pair that was common to the most number of pixels on

the image. In order to obtain any further information regarding the number of line

segments or the length of the lines that may have contributed to a peak in Hough

space, the image must be traced pixel by pixel along the (ρ, θ) line in the image space.

This can also be a slow operation, especially for large images with a great number of

lines.

The main drawback of the standard Hough transform for line finding is that

for certain quantization levels ∆ρ and ∆θ, approximately collinear points may not

intersect at the appropriate H(ρ, θ) accumulator bins. Optimal quantization of ρ

and θ have been reported on in [21]. In addition, there has been a great number

of implementation and architectures for the Hough transform proposed in literature

to both reduce the computational intensity and improve upon the brute force voting

scheme described above. Many of these methods are designed for medium sized images

with maximum images sizes of 512×512 pixels. Very few methods are suitable for

larger images. The fastest of these algorithms rely on heavy parallelization in ASIC

designs and CPU based methods lack comparable performance [22, 23, 24].

At very low resolution images, the complexity of the transform is dominated by the

density of the 2D Hough space required to detect lines accurately. Since such a small

number of pixels are used, the chances of collinear lines intersecting at the same (ρ, θ)

index decreases substantially. Thus, motivation for a new Hough transform approach

comes from the need to determine straight lines in very low resolution, noisy images

for a small number of lines (mostly for the dominate line). To the best of this authors

knowledge, little work has been done for optimizing the Hough transform for image

sizes on the order of 5×5 to 15×15 pixels, and the method proposed in this section

could not be found in literature of recent papers [25, 26].

The main premise behind the Hough transform technique used in this work is that

finding the maximums in the the 2D H(ρ, θ) accumulator space is reduced to finding
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the minimum difference in ρ values between pixels in a ρ(I, θ) space, where I is an

active pixel in the image. The complexity is immediately reduced from: Nf×Nρ×Nθ

to Nf × Nθ, where Nf is the number of feature pixels (active pixels in the binary

image).

Unlike the accumulator space of the standard Hough transform that consist of an

Nρ ×Nθ array of integers, the new Hough space consist of Nf ×Nθ values of ρ. The

typical value of Nf is generally accepted as Nf = 0.1wh [26] and so for small images

is always quite low compared to the optimal value of ∆ρ. The minimum difference

between ρ values for pairs of pixels is used to determine intersecting curves on the

standard H(ρ, θ) space instead of peaks in the accumulator bins. This has a number

of added advantages as will be discussed.

4.3.1 The Method

Fig. 4.6 shows the complete Efficient Hough transform Variant algorithm that was

implemented in this work.

The fist step in the proposed method is to remove singular pixels from the image.

This optional step reduces clutter in the final Hough space and reduces the number

of feature pixels, but does not have an effect on the detection of dominate lines.

Binary Image 
(input)

Build ρ(I,θ) From Active Pixels (I)

Compute 
ρ(I,θ)

Remove 
singular 
Pixels

Sort ρ(I,θ), 
ascending ρ 
values for 

each θ

Detected 
Lines

Compute Minima of ρ

 Calculate: 
ρ’=dρ/dI Threshold

Identify Lines

Filter 
clusters in ρ’

Get pixels 
from ρ’ 
clusters

Figure 4.6: Flow diagram for the Hough transform Variant.
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For discrete variable representation, let I represent the binary image as a H ×W

matrix. A single pixel Ik = [xk yk] has co-ordinates defined by:

xk = bk/Hc

yk = k −Hxk (4.15)

Let the active pixels of I be represented as a list of indexes A such that Ai denotes

the ith active pixel with coordinates determined by IAi
. Since we focus only on active

pixels, let us consider a mapping I(Ai)→ [xi yi] such that k = Ai in (4.15).

Given N active pixels in I, the corresponding co-ordinate matrix is:

Pi = I(Ai) = [xi yi], i < N, i ∈ N (4.16)

and the following parameter transform from (4.10) for M values of θ:

Tj =

cos(θj)
sin(θj)

 , j < M, j ∈ N (4.17)

the new Hough parameter space ρ (an N ×M matrix) can be formed by apply T to

each active pixel coordinate in P by:

ρij = PiTj =


P0T0 P0T1 · · · P0TM

P1T0 P1T1
...

...
. . .

...

PNT0 PNT1 · · · PNTM

 (4.18)

The columns of ρ are the same as the quantized θ of the standard Hough space

while the rows of ρ hold the non-quantized ρ value of each active pixel.

Fig. 4.7a shows the ρ space after applying the above procedure to a 15 x 15 binary
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image with a 135 degree diagonal from corner to corner. In order to easily obtain

the minimum difference between pairs of pixels, the rows of ρ are sorted in ascending

order for each θ column to form ρS. In this way, the pixels with the closest ρ values

along a given column will be neighbored and their difference when taken across rows

may produce a minimum for each θ column.

The un-sorted ρ space of Fig. 4.7a is shown after sorting in Fig. 4.7b. It is also

shown in Fig. 4.7b that the corresponding active pixel index is preserved in ρS as this

index is the map back to the active pixels location in I. Line detection in ρS involves

identifying the regions (groups of pixels) with the closest ρ value. To evaluate this,

the difference is taken down a column of ρS such that:

ρ′Sk,j = ρSk+1,j − ρSk,j, k < N − 1, k ∈ N (4.19)

A threshold is then applied to ρ′S so that neighboring pixels that are ‘close enough’

are considered to have the same ρ value. This produces a binary mask of pixel pairs

that make up lines in the image. A series of pixel pairs in this mask make up a line

segment and so the number of lines, and the number of pixels that make up a line, can

be immediately identified by counting the number of continuous regions (or clusters)

on this mask and the number of pixel pairs in each cluster.

To eliminate lines with too few pixel pairs, a filter is applied to the binary mask

of ρ′S so that only clusters of at least N pixels pairs are retained. The final stage is

to extract the pixel indexes from each cluster and retain the minimum and maximum

pixel index to use as the end points of a line in the image.

Fig. 4.9 shows another example where two lines at different angles (0 and 135

degrees) are present.
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Figure 4.7: a) Unsorted and b) sorted ρ(I, θ) space with active pixel indexes shown
in red.
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Figure 4.8: Hough transform Variant showing: a) Sorted ρ space, b) difference of
neighboring pixels in sorted ρ space, c) mask of pixel pairs with a difference ≤ thresh-
old, d) filtered pixel difference map eliminating lines made up of only 2 pixels.

4.3.2 Optimization of the Hough Transform Variant

Reducing the parameter space as well as eliminating the need to detect pixels on a line

by back tracing through the image already improved the speed of the Hough transform

to exceed the standard implementation in PCs as reported in [26] and compared to

the compiled MATLAB functions. The final performance is presented in the following

section. Still, the arduous task of sorting the active pixel list poses a significant bottle

neck in this method. Thus, further optimization was performed to further accelerate

the Hough Transform. The main optimization comes from a suitable trade-off of

memory for computational efficiency. In the optimized method, the ρ(I, θ) space is

pre-computed for every possible active pixel for the desired image size. For small

images, this is not a significant trade-off, however, the memory demands do increase

significantly with increased image size.
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Figure 4.9: Real-time Hough showing: a) Sorted ρ space, b) difference of neighboring
pixels in sorted ρ space, c) mask of pixel pairs with a difference ≤ threshold, d) filtered
pixel difference map eliminating lines made up of only 2 pixels.

The comprehensive, pre-computed ρ space was then pre-sorted and a pixel map

I → I ′ was created so that the appropriate ρ values could still be extracted for

active pixels while retaining the order of the ρ values for each θ. This improves the

performance of the proposed method significantly since the computation and sorting

problem is replaced with a memory access problem of substantially lower complexity.

Once ρ space is calculated and sorted with a corresponding I ′ map, there is never

a need to re-calculate this and the same space can be used for multiple images at

different times. Fig. 4.10 shows the proposed optimized method.

A second optimization was made by reducing the storage size of the comprehensive

pre-computed ρ space. Instead of storing floating point values of ρ, quantized values

of ρ were used instead. In this way, the large ρ space required fewer bits to represent
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Figure 4.10: Flow diagram for the Optimized Hough transform Variant.

the values. In fact, using 8-bit positive integers permits 256 quantized values of

ρ which far exceeds the minimum required quantization levels as reported in [27].

This additionally reduced the complexity of calculating ρ′ as the difference is now

performed on small integers instead of floating point values.

4.3.3 Filtering and Finding Clusters

After the optimizations of Fig. 4.10, the next bottleneck falls on filtering and finding

clusters in ρ′S. This is actually quite a simple operation because of the nature of the

ρ′S space. In ρ′S, a near zero value results when two pixels have a similar ρ value

after being sorted. The next closest pixel will have a ’zero’ difference if it also has a

similar ρ value, and so a series of n ’zeros’ for a given θ value in ρ′S space represents

a line with n+ 1 pixels that share a similar (ρ, θ) representation in parameter space.

This would be similar to an accumulation of n + 1 points in the standard Hough

transform at H(ρ, θ). The idea of a series of zeros representing the number of pixels

on a line can be exploited to filter out ‘lines’ that are not considered significant, or

in simpler terms, ‘lines’ that are not made up of enough pixels.

The filtering process is simply retaining pixels in the difference map that are apart

of a group of n or more zeros. This was done with a series of linear convolutions
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according to Algorithm 1.

Algorithm 1 Filtering ρ′S space.

Pn ← n× 1 unit matrix
for each column vector θ in ρ′S do

θ ← θ ⊗ Pn , counts number of pixels in n× 1 window
θ ← θ ≥ n , thresholds pixels with counts of n or greater
θ ← θ ⊗ Pn , restores the window of 1’s around pixels above

end for

The result of Algorithm 1 is shown in Fig. 4.8 for n = 2 and in Fig. 4.9 for n = 3.

Once ρ′S is filtered, finding lines is a matter of finding the largest groups of pixels.

This can be accomplished any number of ways, but in this work, the focus was finding

the dominate line and so the following method was applied to distinguish the most

meaningful line.

First, ρ′′S = dρ′S/dI was computed, where the sum of each column of ρ′′S indicates

the number of lines found for a given θ value. The θ value with the most meaningful

lines was determined by:

θmax = max
θ

(∑
dI

ρ′S(dI, θ)−
∑
d2I

ρ′′S(d2I, θ)

)
(4.20)

from which the corresponding ρ value is taken as the mean ρ value of each pixel in

the dominate line by:

ρmax =
∑
i∈dI

ρS (i, θmax) /
∑
i∈dI

ρ′′S (i, θmax) (4.21)
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4.3.4 Performance and Implementation

The optimized Hough transform Variant was implemented in both MATLAB and

C++ to ensure that performance was gained over compiled MATLAB execution of

the Hough transform and methods reported in [26]. Table 4.1 shows the timing results

for computing the Hough transform on various size windows, including the retrieval

of the finite line segment.

Proposed
Window Size θ step MATLAB MATLAB C++
16×16 5 1.1 ms 2 ms 0.165 ms

1 2.4 ms 2.4 0.726 ms
32×32 5 1.3 ms 2 ms 0.242 ms

1 3.5 ms 2.8 1.755 ms
32×32 5 1.8 ms 1.9 ms 1.242 ms

1 6 ms 3.9 ms 7.246 ms

Table 4.1: Processing time for the standard Hough transform versus the Hough trans-
form Variant implemented in MATLAB and C++.

The performance of the Non-optimized Hough Variant ‘m’ file already showed

faster performance with theta resolution of 1 degree than the pre-compiled MAT-

LAB Hough function even when excluding the houghlines call required to locate line

segments in the image. To evaluate the true performance of the optimized Hough

transform Variant, the method was coded in C++ and the timing requirements for

processing various window sizes and space resolutions was determined and shown in

Table 4.1. Note, the optimized Hough transform Variant was not coded in MATLAB

and implemented directly in C++. The reason the C++ method performs slower for

larger windows is because MATLAB processes on multiple cores whereas the imple-

mented method only operates on a single core. The true speed improvement of the

optimized C++ implemented algorithm is present in the small windows sizes used in

this work.
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The accuracy of the Hough transform and the Hough transform Variant was de-

termined for small window sizes and shown in Fig. 4.11.
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Figure 4.11: Detected line angles for 50 lines at each angle from -90 degrees to
90 degrees in 10 degree increments with 5 pixel noise in a 15×15 window where ρ
resolution was 0.25 and θ resolution was 1 degree. Mean processing time in MATLAB
was 0.0023 s for the Non-optimized Hough Variant ‘m’ file and 0.0033 s for the
execution of MATLAB functions ‘hough’ and ’houghpeaks’ under these conditions.

Thus, the performance and accuracy of the Hough transform Variant and it’s

current single core C++ implementation is more than sufficient to be integrated as

part of the real-time processing of an M-scan.

4.3.5 Spares M-scan Data Interface Tracing using the Hough

Transform Variant

The primary purpose of developing this efficient variant of the Hough transform was

to reliably trace the sparse interface of the M-scan image after signal decomposition

was performed. Once the M-scan data has been reduced to a sparse form, shown in

Fig. 4.12 a), the individual interfaces need to be traced. Of specific interest for the

purpose of determining the melting time and precise TOF measurements required for
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indentation measurement and expulsion prediction of Chapter 3, are the reflection

from the upper, lower and faying interface (x1, x2 and x3 respectively.) The Hough

transform provides a very robust way of detecting a line through sparse and noisy data,

and so, a disjoint interface, or interface contaminated with false reflector locations

can still be accurately traced. This is often the case for the lower interface, especially

at the melting point.

The starting point of each interface is determined in the time prior to welding. The

positions of the reflection are accumulated over the first A-scans and the thee peak of

N summed sparse A-scans provides the starting point for each interface. The sparse

M-scan data is then segmented by a fixed window size determined by the distance

between reflections, such that the end of each window is an offset of the start of the

next window. For the range of 2T plate thickness used in practical industry (2 - 6)

mm workpieces, the front reflection will never increase in TOF past the start of the

faying interface and the same applies for the faying interface with respect to the lower

interface.

The segmented windows are each assigned a tracking window. Depending on

the size of the segmented windows, the tracking window can range from (5-7) pixels

wide by (10-20) samples tall. A common size used in (3-5) mm workpieces is 5×15.

This acts as a sliding window that advances through the welding time of the M-scan

with each new A-scan (after being decomposed in Section 3.2.) Within this sliding

window, the interfaces are approximated by the dominate straight line determined

by the Hough Transform above. The actual point on the curve for a given window

position is the midpoint of the dominate line in the window.

The window position is then updated for the next A-can by adjusting the vertical

position to be centered around the next point on the current detected line. If there is

no line present, the window continues to move in the last direction for a set number

of steps. If no data is found within a set number of steps, the interface is considered
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a)

b)

Figure 4.12: a) Sparse M-scan with lower interface segment outlined in a gray dashed
box. b) Lower interface traced in the segmented window of a) shown in a thin solid
line.

lost and tracing stops. This is often the case for the faying interface as the interface

disappears after melting occurs. Occasionally, the lower interface may disappear due

to poor contact conditions and can alternatively be used to diagnose a problem with

the setup.

Fig. 4.12b) shows the lower interface of a noisy M-scan after the sparse signal
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decomposition was performed. The interface was tracked with a 5×15 window con-

strained to the segmented region shown in Fig.4.12a). Even in the disconnected region

around the melting point of the workpiece, the interface tracking plots a reasonable

estimate of the pulse location with little to no variation from stray pixels.

4.4 Detection of Weak Dynamic Interfaces

One of the more difficult issues to deal with when processing M-scan data is iden-

tifying the weak interfaces resulting from the solid steel to liquid nugget interfaces

x4 and x5. These interfaces are often below the level of noise and overpowered by

multiple reflections from the other interfaces. A method to enhance these interfaces

was developed to permit tracking the cooling process as was required to measure

indentation in Chapter 3.

4.4.1 Removing Undesired Reflection

A strong source of error in the detection of x4 and x5 is due to long, overlapping tails

from the first interface reflection. An example is shown in Fig. 4.13 a). To counter

this effect, Wiener filtering is applied to the A-scan data to remove the tails from the

overlapping pulses that obscure the weaker reflections, resulting in Fig. 4.13 b).

4.4.2 Line Detection

After filtering, a directional filter is applied to enhance vertical edges in the B-scan,

enhancing the reflections from the low intensity solid steel to liquid nugget interfaces

during the cooling process. For simplicity, the Sobel gradient approximation was

applied in the horizontal direction. The result is often multiple lines for each interface,

corresponding to pulse zero crossings. The effects of both inverse filtering and Sobel
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Figure 4.13: Results of Inverse Filtering and M-scan to remove undesired pulse tails
and interference before filtering (left) and after filtering (right).

edge enhancement are shown in Fig. 4.14.
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Figure 4.14: The weak solid-liquid nugget reflections after an expulsion are enhanced
via inverse filtering and Sobel edge detect. a) M-scan before filtering. b) Result of
Wiener filtering. c) Result after horizontal Sobel gradient is applied.

A threshold is then applied to the image at half max, retaining the white and

light gray regions of the image. The Hough transform Variant is then applied to the

region between the upper and lower interfaces, finding straight lines at the cooling

liquid interface reflections. Lines are sorted by angle to correspond with the upper

and lower interfaces of the nugget. Multiple lines for a given interface are averaged

and extended to identify a point of intersection between both, representing the point

in time the weld nugget solidified. Fig. 4.15 shows the result of averaged Hough lines

and the ability to locate the solidification time tind.
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a) b) tind

Figure 4.15: a) The interface highlighted by the Sobel gradient and b) the line from
the Hough transform Variant. Hough lines are averaged and the intersection point
gives the welding time in which indentation can be measured tind.

The main problem with relying heavily on these interfaces for expulsion detection

is that poor acoustic contact with the workpiece due to strong expulsions eliminates

the appearance of the interfaces. The main purpose of detecting these interfaces is

not to detect expulsion as much as classify the effects of a potentially minor expulsion

as explained in Chapter 3, and thus interfaces too weak to detect can be ignored as

this is a strong indicator of a move severe event.

4.5 Summary

In this Chapter, four methods of image and signal processing used in the process-

ing of M-scan data were described. The necessity to average and filter A-scan data

was demonstrated in Section 4.1. In Section 4.2, a fast method of identifying the

interfaces of an M-scan presented. This method used principals of more sophisticated

techniques, only optimized the task to be suitable for real-time implementation with-

out loss of performance. Section 4.3 presented a new, fast method of detecting lines

in a modified, sorted, hough space. This was developed since the Hough transform

was used in multiple parts of this work including interface tracing of Section 4.2 and
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weak interface detection of Section 4.4. Finally, Section 4.4 demonstrated how very

weak, and often hidden, reflections from the liquid nugget could be enhanced by a

combination of image and signal processing. Inverse filtering via. a Wiener filter

removed the parasitic echoes that overlapped the desired reflection. Edge gradients

were then enhanced with a Sobel edge detect, revealing the otherwise invisible reflec-

tion. Another application of the Hough transform Variant is used to find lines in these

weak reflection, where the intersection point between the average line through x4 and

the average line through x5 yields the time of solidification in which indentation can

be measured using Method 3 of Chapter 3.
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Chapter 5

Expulsion Testing and Results

The current methods of expulsion detection (outlined in Chapter 1) provided at best

a vague metric on which expulsion detection was achieved. Many setups biased weld-

ing setups towards expulsion where severe expulsions could easily be detected and

many works fail to mention the workpiece, weldgun or welding schedules used. Since

this work is the first to investigate the problem of expulsion detection using real-time

ultrasound evaluation, it is very difficult to compare it directly to current methods,

thus, the raw data regarding expulsion detection and classification using Inline ultra-

sound is presented and the performance with respect to weld quality is discussed. To

validate expulsion detection, prediction and classification using ultrasound, results

are presented with threshold values for particular setups. These thresholds show

that detection, prediction and classification using one or more of the three proposed

methods (detailed in Chapter 3) is successful in a wide variety of materials, coatings,

workpieces and weld guns.
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5. EXPULSION TESTING AND RESULTS

5.1 Detection by Phase Delay

To assess the effectiveness of expulsion detection by phase delay more than 200 welds

were made in the lab using mixed workpieces of 1.2 mm, 1.5 mm and 2.0 mm 2T GA

HSS and mild steel plates. All welds were performed with 5/8 inch electrodes each

with de = 2 mm tip face. M-scan data for each weld was recorded at fs = 66 MHz and

tp = 2 ms. In each case a transducer with fc = 10 MHz was used. To avoid biasing

the results towards severe expulsions, the welding current was varied to produce good

welds and welds on the threshold of expulsion, generally a range of (9-11) kA with 12-

14 cycles DC current. the electrode was allowed to degrade throughout the process of

welding producing both expulsions at lower welding currents and good welds at higher

welding currents. Measurements for different workpieces were taken throughout the

electrode life. To assess the quality of the welds, the following was performed for each

weld completed in the lab.

1. Average diameter measurement via SAM C-scan.

2. Average indentation measurement via. B-Scan.

3. SAM C-scan inspection for voids.

4. Weld thickness measurement via micrometer

5. Nugget diameter measurement via peel test.

6. Expulsion verification via peel test.

The purpose of the redundant physical and SAM measurements was to minimize

measurement error. Weld quality was assessed using the industry standards for ac-

ceptable nugget diameter given by:

dnugget > 5
√
dworkpiece (5.1)

121



5. EXPULSION TESTING AND RESULTS

Expulsion events that appeared in M-scans as minor interface shifts but did not have

a reduced nugget diameter where labeled “weak” expulsions. The detection of “weak”

expulsions is not relevant as these can result from sputtering of the coating layer, or

of very short duration events that have no adverse affect on weld quality with regards

to nugget diameter or indentation. The effectiveness of phase delay detection of the

upper interface is best displayed as a histogram with the phase delay separated into

bins of 0.5× 10−9 s. This data is shown in Fig. 5.1.
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Figure 5.1: Phase delay for expulsions, weak expulsions and no expulsions plotted for
200 welds done in the lab. Results are displayed as a percentage of total welds.

In Fig. 5.1 there is a clear threshold in phase delay between expulsions and no

expulsion at 8× 10−9 s. At the upper limit of phase delay, in the range > 1.9× 10−8

s, there are a small cluster of weld events that have all been classified and verified

as severe expulsions. Thus, another clear threshold at 1.8 × 10−8 exists, suitable for

classifying the expulsion event as severe. These welds with severe expulsions not only

had a drastically reduced nugget diameter, but also had voids present in the interior

of the nugget detectable by the SAM and in some cases visible after peel testing
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5. EXPULSION TESTING AND RESULTS

(shown in Chapter 1.) The phase delay technique was then implemented in both

Mini-Cooper and Chrysler installations where the M-scans were analyzed in the same

manner as the labs scans. The results of this industrial trial are listed in Table 5.1

and compared to the lab results.

Installation Lab Mini Cooper Chrysler CNH
Expulsions 68 135 9
Detected 68 132 9
Missed 0 3 0
False Detected 0 39 1
# of Welds 200 9250 258

Table 5.1: Phase Delay Expulsion Results

The main reason for the false detections present at Mini Cooper is that the current

hardware was limited to a PRR of 3.6 ms. As determined in Chapter 3, the maximum

PRR should be 2 ms, otherwise the natural heating of the plates could appear as a

discontinuity similar to the over heating of the interface detected by phase delay in

x1. In these cases the measured phase delay between two A-scans can be larger than

the expulsion threshold but this would likely not be the case at a lower PRR. This is

especially evident where Mini Cooper welds with AC current, meaning that this kind

of brief overheating not resulting from expulsion is frequently occurring.

The M-scans for missed detections at both Mini Copper and Chrysler WAP showed

a phase delay less than the threshold determined by lab scans. This only indicates that

either the threshold need to be adjusted for a specific installation due to additional

noise or setup parameters, or more likely, the expulsions in these missed detections

were weak and the final quality of the weld was not compromised. in this case, these

missed detections should not actually be considered as such. Since there was no

means of physically assessing the welds, the exact condition remains indeterminate

and an area for future investigation.
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5. EXPULSION TESTING AND RESULTS

5.2 Detection by Heating Rate Thresholds

Expulsion detection by heating rate was applied to a series of lab scans to determine

if expulsion thresholds could be established for this method, much like phase delay.

Unlike phase delay, heating rate thresholds differed for each setup.

A series of welds was made and the heating rate of each was tracked by Method 2

of Chapter 3. Fig. 5.2 shows a few examples of the heating rate curves for 2T 1 mm

and 1.8 mm GA HSS plates welded with 3/4” electrodes with tip face de = 6mm, with

welding current varied from (9 - 12) kA. The surface of the electrode was polished

after every weld to assure a constant thermal contact conductance coefficient between

the electrode and plates. In both Fig. 5.2a and Fig. 5.2b, welds that exhibited an

expulsion showed a faster heating rate (shorter melting time) than normal welds, and

stick welds showed a slower heating rate (longer melting time) than normal welds.

The minimum and maximum welding time for good welds is indicated on the figures.
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Figure 5.2: Heating rates for 1 mm and 1.8 mm 2T workpieces showing expulsions,
normal welds and stick welds.

To investigate if similar thresholds were present in other setups, additional mate-
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5. EXPULSION TESTING AND RESULTS

rials used by Chrysler and Mini Cooper were also obtained and welded with a similar

setup to the welds of Fig. 5.2. The melting time for each, as determined by Method

2, are shown in Fig. 5.3. In all cases, the welding current was controlled to induce

expulsions and in all cases, melting time was lower for expulsions than good welds and

stick welds (not plotted). This linear separation provides the thresholds for expulsion

for each case.

In Fig. 5.3 the melting time was plotted against welding current as the amount

of heat generated is a function if Iweld squared. The unknown value in all cases is

the precises co-efficient of thermal conductivity hc, which is responsible for differing

heating rates at fixed welding currents. The error in melting time for all cases is given

by the A-scan PRR of 2 ms, as discussed in Chapter 3.

5.3 Detection by Indentation

An additional investigation was performed to see if severe expulsions (likely result-

ing from surface expulsions as discussed in Chapter 1), normal expulsions and weak

expulsions could be reliably classified by measuring indentation. An additional sixty

welds were performed using 1.5 mm and 2 mm GA HSS plates with the same setup

as the previous lab scans. The ultrasonically measured indentation was plotted in

Fig.5.4a and Fig. 5.4b, and shows a clear distinction in the amount of indentation

between good welds and welds with expulsion. Surface expulsions exhibited the great-

est amount of indentation over both, but were not always distinguishable from faying

interface expulsions.

In all cases, expulsions generated more indentation than normal welds, but classi-

fying weak expulsions from severe expulsions shows no distinct separation and only an

industry determined standard regarding an acceptable amount of indentation (such

as that presented in Chapter 3), can classify the quality of a weld based on the inden-
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Figure 5.3: Heating rates for various materials and thicknesses.
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Indentation vs. Current (2mm)
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(a) Indentation for 2T 1.5 mm GA HSS plates
at different welding currents.
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Figure 5.4: Percentage indentation as determined by Inline ultrasound for different
expulsion types in 2T HSS plates. Points are plotted by the type of expulsions that
was physically observed.

tation measurement from expulsion. Applying the thresholds of 10% to 2 mm plates

and 20% to 1.5 mm plates can indeed separate the weak expulsions from the normal
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expulsion in terms of indentation. Sill, the best classification for severe expulsions is

still given by the change in phase delay generated by the event.

5.4 Conclusion and Future Work

In this work, a very unique approach to expulsion detection of resistance spot welds

was investigated. To date, this is the first ultrasonic look at the expulsion event and

significant insight into the event and its detection was gained. Three methods for

evaluating the ultrasound M-scan of a resistance spot weld were proposed for the

detection, prediction and classification of expulsion events based on their effect on

weld quality (indentation and nugget diameter.)

The first method relied on phase delay changes of the reflection from the contact

between the welding electrode and plate. This phase delay was speculated to result

from momentary overheating of the electrode for surface expulsion, but is more likely

a result of changes in the non-linear reflection characteristics of the rough contacting

surfaces under pressure. The abrupt and instantaneous change in phase delay at

the moment of expulsion was found to be a strong indicator that an expulsion event

had occurred, however, the detection of weak expulsions by phase delay alone cannot

separate weak expulsions from good welds. This is not a concern for NDE since weak

expulsions do not have a significant effect on the nugget diameter and weld quality. It

was shown in lab scans that even for varying workpiece thicknesses and plate coatings,

a threshold was determined that distinguishes expulsions affecting the weld nugget

size. In addition, a number of severe expulsions were detected in lab scans that had

a detrimental effect on the weld quality, resulting in highly undersized welds and

welds that contained large voids and cracks. All of these severe welds showed a phase

delay significantly greater than normal expulsion, such that expulsion events could

be further classified as normal or severe.
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The same phase delay method was applied to M-scans acquired from installations

at Chrysler WAP and Mini Cooper and the detection of expulsions via. phase delay

showed very promising results. Mini Cooper, however, was unable to acquire M-

scan at the required 2 ms PRR and so it appears a number of false detections were

made where natural heating fluctuations as a result of AC welding were mistaken as

expulsions. This was not observed in DC welding setups or setups operating at the 2

ms PRR such as the impulse welding performed at Chrysler WAP.

The second method predicted the occurrence of expulsion events by ultrasonically

monitoring the heating rate of the workpiece. It was reported in literature that

overheating is a cause of expulsion and results from high welding currents and/or

insufficient heat removal from the workpiece. Cooling of the workpiece is a function

of the contact area and more importantly, the thermal contact conductance coefficient

hc, which is likely to vary from weld to weld. This explains how welding with the

same setup and same welding current can produce such a variety of different welds,

including expulsion events. A simple heating model of the workpiece was derived to

work with ultrasonic TOF measurements through the workpiece in order to track the

heating of the plates. This model was verified both by plotting the modeled heating

curve over the measured heating curve in Chapter 3, and again by matching the

predicted and measured time it took to melt a variety of plates. As per theoretical

projections, tracking the heating rate of the workpiece to determine the melting time

was successful at predicting expulsions since, even for a variety of different plate

thicknesses and coatings, an expulsion event resulted when melting time was below a

particular threshold. Although this method shows promise for predicting expulsions,

it has much greater applications in preventing expulsions and stick welds. Even if

the threshold between good welds and expulsions is very narrow for certain setups,

tracking the heating rate of the plates and providing feedback to the weld controller

has potential to ensure every weld is good. Table 5.2 shows the heating rate thresholds
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in terms of the melting time for the variety of workpieces and coatings tested in this

work that was able to predict 100% of expulsions in each case.

Workpiece Threshold
(1.8-1.8) mm GA HSS 0.085 s
(1.15-1.35) mm HDG HSS 0.095 s
(1 - 1) mm GI Mild Steel 0.04 s
(0.7-0.7) mm GA MS6000 0.021 s
(1.15-1.15) mm GA HSS 0.06 s
(0.85-0.85) mm GI HSS 0.095 s
(1.7-0.82) mm HDG HSS 0.062 s
(1.4-0.82) mm GA HSS 0.090 s

Table 5.2: The threshold for the time to melting for a variety of workpieces.

In order to ensure that future work using real-time feedback was possible, the

ultrasound analysis required to measure heating was performed in an efficient manner

such that data could be processed at the desired PRR of 2 ms. A highly efficient

sparse signal decomposition technique combined with line tracking via an efficient

Hough transform Variant was implemented. The processing time of these methods

for a 128 sample A-scan and 5×15 Hough transform Variant window is shown in Table

4.1 of Chapter 4.

Finally, to classify any potential expulsions that are in the weak to normal range

by indentation, a method for determining the indentation of the heated workpiece was

used. This third method provided a means of detection and classification of expulsion

since it was well reported that the amount of indentation has a direct effect of the

yield strength of the weld

citexiaoyun1,stocco04. This method was performed after the welding current was

removed and traces the weak reflections from the top and bottom of the molten steel

nugget to the point where they converge, which indicates the complete solidification of

the molten steel. This point was determined in this work to provide precise and highly

130



5. EXPULSION TESTING AND RESULTS

stable results for the measurement of indentation since the temperature distribution in

the workpiece is mostly constant from weld to weld and variation in the temperature

distribution does not introduce significant error in the measurement of indentation

(reported in Chapter 3.) The TOF through the workpiece was first correlated to

the final thickness of the workpiece for a range of indentation resulting from stick

welds to expulsions. Finally, a model was proposed for determining the temperature

distribution with consideration to thermal expansion and was verified. The results for

classifying an expulsion as weak or normal by indentation were presented in Chapter

3 and the indentation results that separate expulsions from normal welds were shown

in Fig 5.4.

Overall, the effects the phase delay of ultrasonic reflection can not only be ob-

served, but used to quantify the severity of the event. More significantly, the effects

of heat on the speed of sound has allowed the heating rate of the material to be mon-

itored directly by probing the interior of the workpiece during the welding process.

This work has now shown that the heating rate is indeed a very strong indicator of

the future welds quality. Monitoring this heating rate during welding, especially for

the prediction of expulsion, is a novel application for ultrasonic NDE. Finally, inden-

tation resulting from expulsion events can be measured ultrasonically in the heated

workpiece despite the effects of thermal expansion, decreased sound speed and inden-

tation on the TOF through the workpiece This provides yet another quality control

variable for assessing the effects of expulsion on weld quality.

Although the detection of expulsion in ultrasound M-scans is of substantial value

to the existing Inine system’s purpose of performing real-time quality control of spot

welds, the most significant contributions to future work are: ultrasound monitoring of

spot weld heating rates using a suitable heating model and supporting evidence that

excessive heating is a primary factor in generating expulsions. Since it was shown that

the heating rate can be accurately monitored using the Inline device in a real-time
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manner, the next natural step is to use the device as a means of providing real-

time feedback to the weld controller. The implication is that 100% of expulsions can

be eliminated using this kind of feed-back system. The distinction in heating curves

between expulsions and stick welds, demonstrated in this dissertation, is evidence that

real-time feedback based on ultrasound monitoring of the internal heat generation in

the workpiece is indeed possible and should definitely be an avenue explored in future

research.
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