University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

2001

Execution-based retrieval of object-oriented classes:
An improved method.

Shaochun. Xu
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation

Xu, Shaochun., "Execution-based retrieval of object-oriented classes: An improved method." (2001). Electronic Theses and Dissertations.
Paper 2009.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at $19-253-3000ext. 3208.


http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F2009&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2009&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2009&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/2009?utm_source=scholar.uwindsor.ca%2Fetd%2F2009&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Execution-Based Retrieval of Object-Oriented Classes:
An Improved Method

By

Shaochun Xu

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2001

©2001 Shaochun Xu



i+l

National Library
of Canada du Canada
Acquisitions and

Bibliographic Services

335 Waellington Street
Ottawa ON K1A ON4
Canada

Acquisitions et

Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence

Our file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-80516-6

Canada



Abstract

Software reuse has become a topic of much interest in the software community due to its
potential benefits, which include increased product quality and productivity and
decreased product cost and time. The software reusability can be enhanced by the Object-
Oriented approach. The potential problem in software reuse is to find an effective and

efficient way to retrieve the candidate components from the library.

An improved methodology of retrieval by execution on object-oriented (OO) classes is
proposed in this thesis. The system allows users to enter the data on the constructor,
observer and modifier in order. The system then organizes them into a test program and
executes the classes from the selected library. Finally, the system returns to the user a list
of candidates according to the matching number of methods and constructors. The user
does not need to take care of the argument order, and the system handles each case. This
proposed method is the first retrieval by execution that works on OO classes and
discloses the complete class behavior. Characteristics of OO components such as
information hiding, inheritance, overloading and overriding are fully considered.
Compared with the previous execution-based retrieval method, this method greatly

improves the retrieval precision, recall and efficiency.

A prototype system, called EBCRS, is developed using HTML, JavaScript, Applet and
Servlets. This system could be used to retrieve, browse and save the Java classes from the
class library. It also allows the administrator to manage the class library such as adding to
and deleting from the class library. This system is Internet and Intranet ready.

ii



Dedication

This thesis is dedicated to my wife, Lan Li, and my daughter, Ying Xu, for their love,
understanding and support.

iii



Acknowledgements

First of all, I would like to thank Dr. Y. Park for dedicated instruction and advice on both
the courses and the thesis. Many valuable discussions with him and his excellent
suggestions have not only significantly contributed to the quality of this thesis, but have
also benefited my future endeavors. Dr. Park’s excellent teaching and supervising ability
on research impressed me very much. Without his supervision, this thesis would not be so

valuable.

Special thanks to Dr. L. Li, my internal reader, for providing many suggestions and

comments to improve the quality of this thesis.
I also would like to thank Dr. S. Suh, my external reader, who showed immense interest
in my work, offered many comments on my work, which contributed to many

improvements.

Finally, I acknowledge the prompt responses from Sun Microsystems Inc. with my

questions about the Java language.

iv



Table of Contents

Abstract
Dedication
Acknowledgements
List of Figures

List of Tables

Chapter 1 Introduction

1.1 Concept of Software Reuse
1.2 Object-Oriented Programming and Software Reuse
1.3 Component Retrieval Approaches
1.4 Overview of the Thesis
1.4.1 Motivation
1.4.2 Objective of the Thesis
1.4.3 Organization of the Thesis

Chapter 2 An Improved Execution-Based Retrieval

2.1 Concept of Execution-Based Retrieval

2.2 Review of the Previous Execution-Based Retrieval Methodologies

2.3 Organizing the Input Program
2.3.1 Class, Object and Class Behavior
2.3.2 Messages and Test Program
2.3.3 State Inspection
2.4 Executing the Test Program
2.4.1 Type Checking and Run-Time Storage

2.4.2 Class Retrieval Regardless of Argument Order

2.4.3 Matching Process and Candidate Classes
2.4.4 Inheritance, Overloading and Overriding
2.5 Browsing the Candidate Classes

1

111
v
vil

vili

—— D D BN e



2.6 An Example Class Library

Chapter 3 A Prototype System

3.1 Introduction
3.2 Analysis and Design
3.2.1 General Requirements
3.2.2 The Distributed Chient/Server Application Architecture
3.2.3 General GUI of the EBCRS system
3.3 Organizing a Class Library
3.4 The Retrieval Process
3.4.1 Inputting Data
3.4.2 Executing the Program
3.4.3 Browsing the Library
3.44 Saving the Candidates
3.5 System Security
3.6 A Scenario

Chapter 4 Evaluation, Conclusion and Future Work

4.1 Evaluation
4.2 Comparison
4.3 Conclusion
4.4 Future Work

References
Vita Auctoris

Appendix - A Part of Java Source Codes

vi

36

40

40
41
41
43
49
56
59
59
63
65
66
68
70

73

73
76
77
78

79
83
84



List of Figures

Figure 1.1: A simple class in Niu and Park’s library

Figure 2.1: Execution-based retrieval

Figure 2.2: Class diagram of the class Person

Figure 2.3: The class ObjectEquals from Niu and Park’s class library
Figure 2.4: The states and methods of an object

Figure 2.5: Class diagrams of the class Product and the class Computer

Figure 2.6: The Java widening conversion rules

Figure 2.7: Class diagram of the class library 1

Figure 2.8: Class diagram of the class MyExpectedClass
Figure 3.1: The three-tier architecture of the prototype system
Figure 3.2: The communication between the client and the server
Figure 3.3: Use case diagram of the prototype system

Figure 3.4: Detailed architecture of each use case

Figure 3.5: The screen capture of the Tomcat server

Figure 3.6: Class diagram of the server-side main classes
Figure 3.7: System function flow diagram in the client side
Figure 3.8: The main interface of the EBCRS system

Figure 3.9: The delete interface of the EBCRS system

Figure 3.10; The add Interface of the EBCRS system

Figure 3.11: The input interface for constructor

Figure 3.12: The input interface for observer

Figure 3.13: The input interface for modifier

Figure 3.14: The candidate interface of the EBCRS system
Figure 3.15: The browse interface of the EBCRS system
Figure 3.16: The save file interface of the EBCRS system
Figure 3.17: The user login interface of the EBCRS system
Figure 3.18: The administrator login interface of the EBCRS system
Figure 3.19: Class diagram of the expected class Cylinder

vii

10
14
18

23
25
30
37
38
44
45
47
47,48
49
52
55
56
58
58
60
61
62
64
65
66
68
69
70



List of Tables

Table 2.1: The comparison among constructor, observer and modifier
Table 2.2: Number of matching methods of each class in the class library 1
Table 3.1: System functions of the prototype system

Table 3.2: System attributes (non-functional) of the prototype system

Table 3.3: Number of matching methods of each class in the class library 1
on the test program 2

viii

20
39
42
42

71



Chapter 1 Introduction

1.1 Concept of Software Reuse

Software reuse, broadly defined, is the practice of using existing software components in
more than one system. In other words, it is the process of creating software systems from
predefined software components (Standish, 1984). Software reuse has two sides: (1) the
systematic development of reusable components and (2) the systematic reuse of these
components as building blocks to create new systems (Prieto-Diaz, 1993). Software
specifications, designs, test cases, data, prototypes, plans, documentation, frameworks,
code and templates are all candidates for reuse (Prieto-Diaz, 1993; Zaremski and Wing,
1995; Lee et al., 1999).

Reuse makes sense because the similarity found across software systems is enormous and
undeniable. When we compare software systems, we usually find 60-70% commonality
from one application to another (Jones, 1984; Mili et al., 1995; McClure, 1995). This
includes code, design, functional and architectural similarities. At all levels of
development from requirement specifications to code, there are components that by the
nature of implementing tasks and representing information on a computer must appear
over and over again in software applications. New technologies such as object-
orientation, software automation and client-server application do not change this;
however, they do make it easier to take advantage of software similarities (Krueger,
1992; Cheng, 1993; Lee et al., 1999). Some software similarities can be predefined and
built into software tools (such as reusable code patterns in generators), others can be
created as reusable components that are stored in software reuse libraries. The potential
for reuse is enormous since the majority of each new application could be assembled
from reusable components if the appropriate components could be predetermined and

built prior to system development.

The main advantages of software reuse are listed as follows (Mili et al., 1995; Aranow,
1997):



e Increase software productivity and shorten software development time: Because
software reuse uses existing, tested and documented software components to develop
the new system, programmers need less work and the productivity is highly
improved. It is no question that the time of software development is also shortened.

» Improve software system interoperability: The tested components are high quality;
thus the new system built with those components should have better interoperability.

e Reduce software development and maintenance costs: As we reuse the existing
components, no coding (or less coding) is needed. A few testing cases are required.
Therefore, the cost will be largely reduced.

* Produce more standardized, better quality and reliability software: Because the
reusable components have been tested and proved in the real-world system, the
accumulated defect fixes result in higher quality components. These components are
more reliable than new components (Lim, 1994). Each time the reusable components

are reused, they are debugged and tested.

1.2  Object-Oriented Programming and Software Reuse

In the procedural programming environment, the common modules of software
components are procedures and functions. They are difficult to be reused, because they

are less likely matched with the requirements of a new application (Cheng, 1993).

Object-Oriented Programming (OOP) has often been promoted on the basis of its
reusability merits (Prieto-Diaz, 1993; Liao and Wang, 1993; Chou et al., 1996). Meyer
(1988) used “Open-closed principle” to explain the OOP and reuse. According to this
principle, a module should be available for further extension; once a module is tested and
accepted into a library, it should be able to be used without being “open up”. In the
procedural programming environment, there are no components, which are both open and
closed. However, classes in OOP are such modules being open and closed. Encapsulation

makes classes closed and inheritance makes classes open.



Cheng (1993) discussed in detail about the relationship between OOP and reuse. In OOP,
encapsulation and inheritance play an important role in software reuse. Encapsulation or
information hiding defines a data structure and a group of methods to access (Booch,
1994). It makes a class as black box, which can easily be shipped to other applications.
Inheritance is a mechanism for representing similarity among classes. It has been widely
recognized as an important mechanism for constructing new reusable software
components from existing components. In real world, a software component is rarely
exactly suitable for a new application. So, it is necessary to adapt the component in other
way. With inheritance, this adaptation can be done easily by extension/specialization.

Otherwise, the adaptation can be done only by modification.

Composition is also one of the characteristics of OOP. The most common way that two
different entities can be statically structured together is by composition, where one object
is used as a component part of the other. This facility thus makes further use of the
reusability of objects and classes (Biddle and Tempero, 1995).

Overloading and polymorphism can allow us to create a generic code and use in different
cases with different types. It enables users to design and implement components or

system that are easily re-implemented and extended (Nelson and Poulis, 1995).

There are many different ways for QOP reuse: A helper class for a class library was built
to let the user specify keywords to search the library for a match (McManis, 1996).

Damiani et al. (1997) described a descriptor-based approach to OO code reuse. In their
approach, an application engineer maintains the system for an audience of users or
application developers. COOR provides tools for the classification and search for reuse
candidates. The experience with COOR suggests that descriptors can provide several
advantages over class interfaces. COOR descriptors support different levels of
component classification granularity (like application frameworks rather than single

class).



Etzkorn and Davis (1997) introduced the Patricia (Program Analysis Tool for Reuse)
system, developed at the University of Alabama, which is used to automatically identify
reusable components in OO code. To understand a program, Patricia uses a unique
heuristic approach deriving information from the linguistic aspects of comments and

identifiers and from other nonlinguistic aspects of OO code such as class hierarchy.

Although OOP was considered with its great potentiality in software reuse (Cheng,
1993), Honiden thought that OO analysis is not fully mature because its specification
process has never been described in detail (Honiden, 1993). By the way, OOP also has
some side effects in software reuse. The use of polymorphism and inheritance introduces
a large number of dependencies between components. Dynamic binding increases the
number of implementations to be examined, and the dispersion of functionality into
different components makes global understanding difficult (Gonzalez and Fernandez,
1997).

1.3  Component Retrieval Approaches

The growth of reuse and the advent of software repository have led to the design of
mechanisms to retrieve reusable components. The purpose of component retrieval is

concerned with finding component behaviors that solve a problem described by a query.

There are many ways to retrieve components from the reuse library such as browsers,
semantics-based, keyword-based, type-based, specification based, composition-based,
and execution-based retrieval (Steigerwald, 1992; Mili et al., 1995). Many classification
schemes also exist in the literature. As retrieval methods largely depend on the library
organization and also depend on the matching a candidate component against a user
query, so it is often and reasonable to classify the retrieval methods according to the

query representation/ and or the library structure.



An elegant classification on the existing library organization/retrieval methods has been
proposed recently (Mili et al., 1998). Mili et al. (1998) classified all the retrieval methods
into 6 categories:

o Information retrieval method

s Descriptive method

e Operational semantics method

e Denotational semantics method

¢ Topological method

¢ Structural method

Information retrieval method

The executable software components can be seen as documents containing information as
the same way as the books or hypertext documents. The information retrieval methods act
as the natural library and the stored information focuses on textual information
represented in natural language (Maarek et al., 1991). The difficulty of this method is
how to formulate the information of each component in order to get most of the relevant

documents for each query.

One of the examples is the GURU project conducted by Maarek et al. (1991) and Helm
and Maarek (1991). GURU automatically assembles large components by using
information retrieval techniques. The construction of their library consists of two steps:
first, attributes are automatically extracted from natural language documentation by using
an indexing scheme based on the notions of lexical affinities and quantity of information;
then a hierarchy for browsing is automatically generated using a clustering technique
which draws only on the information provided by the attributes. Three phases, query
specification, linear retricval and browsing make the retrieval process. First, the user
formulates a query based on the authorized vocabulary, then the system identifies all the
components that match the query, and finally, the user can browse the library to search

for the relevant components.



Descriptive method

Descriptive methods are characterized by matching a keyword-based query against assets
that are represented by structured lists of descriptive keywords. A component is selected
whenever the keywords that form its representation match all (or most) of the keywords
that form the query. Because it is easy to understand, it has been widely used at present.
The library for this method is usually organized by manual indexing. The administrator
defines the abstraction of the component that adequately and concisely describes the
component and provides the descriptors. A conceptual separation between the library
components and its representation is present. Due to the difficulty of maintaining
consistency and accuracy, pure keyword based approaches are scarcely used and only

limited to a small size of library (Mili et al., 1995).

The faceted approach could see an improvement over keyword method, which is widely
discussed in the literature. Prieto-Diaz first introduced this approach by defining a multi-
dimensional search space with each dimension referred to as facet made up of a set of
predefined keywords (Prieto-Diaz, 1991, 1992). For example, function, object type and
system-type can be treated as facets. For each facet, a set of keywords is given for

function such as add, append and close.

Operational semantic method

Operational semantic methods use the executability of software components to select the
candidate components from the library. The principle of behavioral retrieval was first
suggested by Podgurski and Pierce (1992): a retrieval technique that generalizes the
simple idea of executing each component and test input, reporting those that compute
correct output. The execution-based retrieval method can generally offer accurate
components and is easy to implement. It also guarantees that the retrieval components
behave the same or close to the user’s expectation. Their method was improved and
extended by Hall (1993).



The idea of using a lattice structure as the basis of behavioral retrieval has been suggested
by Mili et al. (1994). The lattice idea of Mili et al. (1994) and the behavior-sampling
ideal of Podgurski and Pierce were combined by Atkinson and Duke (1995), who
provided a methodology of behavior retrieval on OO classes, but they did not provide an
implementation. According to Atkinson and Duke (1995), the behavior of class is
represented by an input/output pair where the input is a sequence of incoming messages

and the output is the corresponding sequence of responses.

Niu and Park (1999) extended the methodology of Atkinson and Duke (1995) and
proposed a relatively effective and accurate method for class retrieval. They also

implemented a prototype.

Denotational semantics method

The components in the library of these methods can be represented at various levels of
abstraction including functional signatures, functional abstractions and requirements
frameworks. Specification-based retrieval and signature-based retrieval are included in
this category. Signature-based retrieval can be seen as a specific case of specification-

based retrieval.

Signature matching is the process of determining which library component matches a
query signature. Signature matching takes advantage of information about program

modules that is essentially free. The signature of a function is simply its type.

One of the examples is a method proposed by Rittri (1990) for software component
storage and retrieval based on signature matching in a function language. The matching
criterion is using polymorphic type systems and provides independence of the order of

components in a type.

Zaremski and Wing (1995) described various applications of signature matching as a tool
for using software library such as in Standard ML. They gave definitions for a variety of



matches at both the function and the module levels. A signature is used as a key to find a
set of reusable components in their retrieval methods. A hierarchy of matching criteria is
defined and discussed. The basic matching condition provides for equality between the

two signatures, module variable renaming and parameter ordering.

Specification matching goes beyond signature matching. It is not only based on the
function type, but also on the behavior. In other words, signature describes a component’s
type information and specification describes the component’s dynamic behavior. For
example, Jeng and Cheng (1992) discussed an organization of a software library that is
based on formal specification of components and queries. They organized the library into
a two-layered hierarchy by means of a clustering algorithm, where the top layer stores
related software components. They applied two steps retrieval processes: first performing
a coarse-grained search to identify a cluster and then performing a fine-grained search on
the selected cluster. They extended this method by defining matching criteria between
components and between methods (Jeng and Cheng, 1992, 1995). The matching criteria

make provisions for sub-typing, variable renaming and parameter permutation.

The advantages of using formal specification for component retrieval are that they are
free from ambiguity and they are subject to stronger forms of transformation than other
specification methods (Wing, 1990). Based on the performance, query by formal
specification can offer increased precision over keyword and multi-attribute approaches.
However, it is difficult to implement and processing times for the search algorithms may

be excessive depending on the approach taken (Steigerwald, 1992).

It is worthy to point out that any of above classifications could not draw clear boundary
between two methods. Some retrieval methods could be put in either of categories.

Moreover, a combination of two methods is now being used.

Helm and Maarek (1991) used formal specification as a medium to describe the
components in class and used information retrieval method to browse the reusable

components in their work.



Isakowitz and Kauffman (1996) proposed an approach to automatically classify
components using faceted and but retrieve by hypertext. ORCA utilizes a faceted
classification approach that can be implemented using hypertext. AMHYRST can
automatically create hypertext networks that represents and link objects in term of a

number of distinguishing features.

Signature matching could be used for first stage of retrieval, which returns a subset of
components from the library against a particular query, 1 .e. it is a filter for another tool.
Thus, signature matching can be seen as a complementary approach to other retrieval

techniques.

Fischer and Struckmann (1995) combined the signature matching and specification
method together to implement a VCR VDM-based component retrieval tool. A
preprocessing phase utilizes signature matching to filter promising candidates out of
component library. A specification matching phase builds proof obligations from the
specifications of keys and candidates and feeds them into a theorem prover. Validated

obligations denote matching components.

1.4 Overview of the Thesis

1.4.1 Motivation

As discussed above, Niu and Park (1999) proposed a new method of behavior retrieval,
which is an extension of Atkinson and Duke’s (1995) methodology. Although the
behavior retrieval method has been proposed since 1992 (Podgurski and Pierce, 1992),
this was the first time that this methodology has been applied to the Object-Oriented
Environment with a full implementation. Their method generally improves the precision
of retrieval in terms of the behavior of classes. One of the most important improvements
is considering the hierarchy of classes. This method also allows repeated retrieval and

provides two matching algorithms. However, some shortcomings still exist.



public class ObjectEquals {
public boolean equals (Object argl, Object arg2)

{

return argl .equals (arg2),

}
public boolean notEquals (Object argl, Object arg2)
{

return largl.equals(arg2),
}
public boolean identical (Object argl, Object arg2)
{

return argl==arg2;

public boolean notldentical (Object argl, Object arg2)
{

}

return Kargl==arg2);

Figure 1.1: A simple class in Niu and Park’s library

1. Real “class”: Although their methodology is used on the Java class library, in fact,
their class component library does not differ from the function component library. All the
classes in the library only perform mathematical calculations, string manipulations or
object comparisons (Figure 1.1). They are different from “real-world” classes that should
perform some operations on one or more attributes rather than only perform calculation

on the passed arguments.

2. Uncaptureable behavior: An OO class consists of attributes, constructors, modifier
methods and observer methods within its scope. Their retrieval method only executes on
those methods whose functionality is the same as the functions in a procedural language
(those methods with return value); it will not perform actions on those methods whose
functionality is similar to that of procedures (i. €. constructor and observer methods in
OO languages). Thus, their retrieval method does not capture the complete behavior of
the classes. To test a class, all the member functions including constructors, observer

methods and modifier methods declared for a “class” should be tested.

10



3. Default constructor: Their method exclusively uses the default constructor of a class
to dynamically create the instance of each class and then perform the execution based on
the test program. However, classes usually have user-defined constructors and the
compiler may not be allowed to provide the default. In this case, even if a class matches
the query, its methods may not be called because no instance exists. Thus, this class will

be skipped and the recall will be reduced.

4. The order of arguments: Their methodology requires the user to supply the correct
order of arguments when performing the retrieval. Even if there is a class whose behavior
is similar to or the same as the user’s expected one; it may not be retrieved because the
order of arguments of one or several methods is different from the user’s input. Thus, the

retrieval recall could be low.

5. Time complexity and cost: Their retrieval method loads each class from the library
every time even when the class has been tested (loaded) for the previous message. Thus,
the system takes a lot of time to unnecessarily reload classes from the library each time,
thus the cost 1s high. If a method of a class does not match the input data type, this

method or even this class may not need to be reloaded and tested.
1.4.2 Objective of the Thesis

The objective of this thesis is to develop an improved execution-based retrieval

methodology. The most critical improvements are summarized as follows:

1. The proposed methodology fully considers the characteristics of OO classes. An
entity of a class encapsulates all the data and method implementation and provides all
the necessary interfaces. All the methods are used to update or inspect the attributes
in the object (the states of the object). The components of our retrieval methodology
are “real-world” Java classes.

2. The interface of a class includes constructors, modifier methods and observer

methods. The complete behavior of a class should include all the responses from all

11



the class methods when a test program is sent to the class and executed on these class
methods. In our method, the user is allowed to input a test program including the
messages on constructors, observers and modifiers. The user may input several test
programs that will improve the retrieval precision.

. The user does not need to consider the order of arguments for each test message. The
system will evaluate each case of different orders and then perform testing and
executing on the corresponding classes. This technique will greatly increase the
retrieval recall.

. The signature (return type and parameter list) of each method is very important
during execution. If this signature does not match, then no further loading and testing
on the class is necessary. When the class is loaded into system from the class library
for the first time, the return type and parameter list of each method is stored into a
dynamic data structure. Before executing the testing messages, the type match
checking is performed by comparing those of the test messages and those of methods
in the class stored in the system. If the types match, then the system will load the
class and execute them. Otherwise, this method or the class will be skipped. This
improvement will reduce the time complexity, and thus increase the retrieval
efficiency.

. The user will have the choices to define his/her own expected constructors to create
the object using these constructors and to send the messages using this object. The
user does not solely depend on the default constructor to create object and then
perform retrieval. If the class in the library does not have a default constructor, it can
still be executed and compared. This also greatly improves the retrieval recall.

. An Internet-ready and HTML (JavaScript-Applet)-Serviets client/server web
application is implemented. HTML-JavaScript-Applet can provide a user-friendly
interface and servlets are taking the place of CGI in the server side. Such application
will increase the communication speed between the client and the server and also the
security of transformation. It is easy to put the whole system on the Internet. Servlets
can establish network connections without the sandbox problems. Servlets can write

to files by accessing the client machine. Since servlets can handle multiple requests

12



concurrently, the requests can be synchronized with each other to support multi-user

application.

1.4.3 Organization of the Thesis

This thesis is organized into four chapters. The brief description of each chapter is as

follows:

Chapter 1 gives a brief introduction of software reuse, advantages, the objects of software

reuse, the component retrieval techniques and the overview of this thesis.

Chapter 2 discusses the general idea of execution-based retrieval. An improved

methodology is proposed and discussed in detail.

Chapter 3 describes a prototype of execution-based retrieval based on the improved
methodology and implemented using HTML/JavaScript/Applet and Java Serviets. The
distributed servlets client/server application is discussed. UML is used to describe the
functionality of the system. All the components of a prototype system are systematically
described in detail. Screen shots of important GUIs of both client and server sides are

provided. The system security is also discussed.

Chapter 4 compares the proposed methodology with the previous methods. It also covers

the remaining problems and possible future work in this area.

13



Chapter 2 An Improved Execution-Based Retrieval

2.1  Concept of Execution-Based Retrieval

Execution-based retrieval executes each component on the test data and compares the
results with desired output. The other terms such as Operational Method (Mili et al.,
1998); Behavior Retrieval (Podgurski and Pierce, 1992, 1993) and General-Behavior-
Based Retrieval (Hall, 1993) are used. Obviously, these methods use the executability of
software components as a basis for the selection of candidate components from a

software library.

Test program

user

Behavior
Set

Output

Candidate Classes

Figure 2.1: Execution-based retrieval

The general algorithm of class retrieval by execution is shown in Figure 2.1 (Atkinson
and Duke, 1996; Niu and Park, 1999). Programs are executed using components and the
responses are recorded. Retrieval is achieved by selecting those components whose
responses are closest to a predetermined set of desired responses. In detail, the user first
inputs some data about the desired components. The system organizes the test data into a
test program and then executes each message of the test program on each class in the
library to find the match information. The system returns all the related components. It
then compares the retrieval components behavior with the user’s desired one and chooses

the closest components and then returns the result to the user.

14



Execution-based retrieval has the following characteristics (Mili et al., 1998):

e Component: These methods only apply to segment of code such as functions in a
procedural language and classes in the OO language, because they need the
executability of the software component to determine if it matches the query.

e Scope of Library and Storage Structure: All the proposed libraries for execution-
based retrieval are on relatively small scale because of limitation of execution time.
The previous methods usually do not pay attention to the library organization. The
components are stored in the flat file without any structure.

» Query Representation: The query is composed of a sample of input data.

e Retrieval Goal and Matching Criterion: Some proposals aim to retrieve all the
components exactly matching the requirements (Podgurski and Pierce, 1992; Hall,
1993). New versions also try to retrieve approximate matching (Atkinson and Duke,
1995; Niu and Park, 1999). All the methods compare the behavior of candidate
components with the expected behavior as described by the user.

2.2  Review of the Previous Execution-Based Retrieval Methodologies

Behavior retrieval was first proposed by Podgurski and Pierce (1992) for function
components. They observed that a software component could be uniquely identified
within a large software library on the basis of its behavior on a few selected sample
inputs. Basic behavior sampling identifies relevant components by executing candidates
on a user-supplied sample of operational inputs and by comparing their output to the
output provided by the searcher. Extensions to basic behavior sampling were also
proposed to improve its recall and to make it applicable to the retrieval of abstract data
type and object classes. But their behavioral sampling methodology may not collect all
the possible execution responses but rather than randomly select the responses over a
number of executions and exercised the most commonly used operations based on a
probability distribution. Their method was improved and extended by Hall (1993). Hall

overwhelmed the shortcomings of behavior sampling by making the provision in the

15



matching condition, letting the user to select the sample input and controlling the
executing time and the termination of the component invoked. Hall’s methodology also

works only on functional components.

The idea of using a lattice structure as the basis of behavioral retrieval for the function
components has been suggested by Mili et al. (1994). In their retrieval system the nodes
of the lattice were relations serving as surrogates for specifications. The lattice idea of
Mili et al. (1994) and the behavior-sampling ideal of Podgurski and Pierce were
combined by Atkinson and Duke (1995). They provided a methodology of behavior
retrieval on OO classes, but did not provide an implementation. According to Atkinson
and Duke (1995), the behavior of a class is represented by an input/output pair, where the
input is a sequence of incoming messages and the output is the corresponding sequence
of responses. From this formal method they derived a partial ordering on class behaviors

and discussed the lattice properties that join only under compatibility condition.

Niu and Park (1999) extended the methodology of Atkinson and Duke (1995) and
proposed a relatively effective, practical and accurate method for class retrieval. Their
main methodology is as follows: the user first inputs some data about the desired
components. The system organizes the test data into a test program and then executes
each message of the test program on each class in the library to find the match
information. It then compares the retrieved components behavior with the user’s desired
one and chooses the closest components and then returns the result to the user. The most
important improvement over Atkinson and Duke’s methodology is that they considered
the hierarchy of class. Their method supports repeatable retrieval and provides two
different matching algorithms. They also implemented a prototype to prove their
methodology that is open to Internet and allows user to update the class library. However,

their methodology has some problems as described in the chapter 1.

16



2.3  Organizing the Input Program

2.3.1 Class, Object and Class behavior

We assume that the Object-Oriented classes (Java classes) are the components in our
library. We also assume the classical definition of classes and objects from the OO

literature.

Class: A class is a blueprint that defines the variables and the methods common to all

objects of a certain kind.

A class definition specifies (a) the name of the class; (b) the kind of the class; (c)
inheritance for the class; (d) fields that each object of the class will contain; (¢) methods
that will provide services for objects in the class and (f) constructors for objects of the

class.

A class is either a concrete class or an abstract class. Abstract class cannot be
instantialized and it may have some abstract methods that are not implemented. As its
behavior cannot be fully defined, abstract class will not be considered as a candidate class

although it could be stored in the library for its subclass’s extension.

Fields, methods and constructors can appear in any order within a class definition.

Field: A field in a class defines a data item that exists in each instance of the class. In
Java, there are two types of attributes: instance variable and class variable. Class variable
is defined by keyword static and shared by all the instances. Class variable acts as global
variable. In our method, we will not consider the static variables, as it is difficult for the

user to control the state of static variables.

17



Constructor: A constructor defines actions that are performed when an object is created.

A constructor returns a new object of the class when it is called.

A class definition can contain zero or more constructors. A constructor can have zero or
more parameters. A predefined constructor called default constructor is offered by the

compiler when no constructor is implemented by the programmer.

Method: A method is a procedure or a function that provides a service (or operation) for

the objects of a class. A method is activated for a specific object of the class.

Methods are declared within the definition of a class and are marked with access

modifiers such as public, protected, default and private.

Person
&age : String
Eysalary : int
Byaddress : String
&vname : String

“Person ()

“Person (String, String)
“@setAge (String) : void
“getAge () : String
“%calculateSal (int) : int

Figure 2.2: Class diagram of the class Person

A method may have input parameters and return type. A typical signature of a Java
method might look like Figure 2.2.

Among methods, there are two types: observer method and modifier method. A modifier
method changes the state of the object and modifies the existing class instance (i. e. the
value of one or more of the data attributes in the object). An observer method inspects the
object and returns a value characterizing one or more of its state attributes. It does not
accept any parameter. The main difference between observer method and modifier

method is that observer method does not cause side effects on the object states.

18



Among the Person class, Person (), Person (String) are two constructors, setAge (String)

and calculateSal (int) are modifier methods and getAge () is an observer method.

In general, class definition contains two parts: an interface including a list of operations
(methods) that can be performed by the instances of the class and a body consisting of the
implementation of the operations and the data attributes of the class for an instance. In
other words, a class is composed of a set of variables (instance or class), one or more
constructors (including default one), zero or more observer methods and zero or more
modifier methods. In general, a class can be expressed as follows:

Class N = ({F}, {C}, {O}, {M}) where F: fields in the class N; C: constructors in the

class N; O: observers in the class N and M; modifiers in the class N.

public class ObjectEquals {
public boolean equals (Object argl, Object arg2)

{
return argl.equals (arg2),

¥
public boolean notEquals (Object argl, Object arg2)

{
return !argl.equals(arg2);

}
public boolean identical (Object argl, Object arg?)
{

return argl==4arg2;

public boolean notldentical (Object argl, Object arg2)
{

}

return !(argl==arg2);

Figure 2.3: The class ObjectEquals from Niu and Park’s class library

Although Niu and Park’s methodology is used on the class library, in fact, their class
component library is not different from a function component library. All their classes in
the library only perform mathematical calculation, string manipulation or object
comparison (Figure 2.3). No attributes, constructors and observer methods are defined in

the classes. Therefore, they are different from “real-world” classes that should perform

19



some operations on one or more attributes. The retrieval methods on OO classes should

also perform actions on those “real world” classes.

Types Return Parameters
Type value Type value
Constructors none none any any
Observers Any (except void) Any (except none) none none
Modifiers Any (include none) | Any (include none) any any

Table 2.1: The comparison among constructor, observer and modifier

The differences among constructors, observer methods and modifier methods can be
listed as follows (Table 2.1):

e Constructors have no return type (even void type), but may have 0 or more
parameters.

¢ Observer methods have return type (void excluded), but without parameters.

¢ Modifier methods may have return type (void included), and usually have 1 or more

parameters.

Object: An object is a combination of instance variables for the object's state and
methods that implement the object's behavior. In other words, an object is a software
bundle of variables and related methods.

Software objects are modeled after real world objects in that they also have states and
behavior. A software object maintains its state in one or more variables and implements
its behavior with methods. The object can maintain private information and methods that
can be changed at any time without affecting the other objects that depend on it. An
object has a public interface that other objects can use to communicate with it.

20




Class behavior: The behavior of a class is represented by an input/output pair. The input
is a sequence of incoming messages and the output is the corresponding sequence of

responses.

If a retrieval technique cannot access whole the public interface of a class, that method
will not handle a complete coverage of the class’s behavior. For example, in the class
Person shown in Figure 2.2, there are two constructors and three methods. If we only
execute the test program on the method calculateSal (), the complete behavior of this

class will not be disclosed.

Niu and Park’s retrieval method only executes on those methods whose functionality is
the same as the functions in a procedural language (those modifier methods with return
value), it will not perform actions on those methods whose functionality is similar to that
of procedures (i. e. constructor and observer methods in QO languages). Thus, their
retrieval method does not capture the complete behavior of a class. To test a class, all the
member functions including constructors, observer methods and modifier methods
declared for the class should be tested.

In order to disclose the class behavior, at least one object of class needs to be created and
then the message can be sent through this object. The previous method exclusively
depends on the default constructor of the class to create the instance of each class and
then performs execution based on the test program. However, classes usually have user-
defined constructors and the compiler may not be allowed to provide the default one. In
this case, even this class matches the query, its methods may not be called because no
instance exists. Thus this class will be skipped and the recall will be reduced. In an QO
class retrieval method, the user should be allowed to construct his/her own expected

instance of the class and then use this instance to pass the messages for execution.

21



2.3.2 Messages and Test Program

Message: In OOP, the message refers to communication between objects. Software
objects interact and communicate with each other by sending messages to each other.
When object A wants object B to perform one of B's methods, object A sends a message
to object B.

We employ the message definition of Niu (1999) for our retrieval methodology. Message
is the name of the operation and a set of possible input (including type and value), the
output (type and value) associated with this operation and the user expected output (value
and type).

The message always includes two parts. The first part may consist of one to many pairs
of input type and value and the second part, which is the last pair in the set, is the user
desired return type and value.

For example, consider the following messages:

e Message 1 {(int, 5), (none, none)}: is a message on the constructor which consists of
one argument (type =int, value=5) and without return type and return value.

e Message 2 {(int, 2), (boolean, true), (void, none)}: is a message on the void-returned
modifier method. It is composed of two pairs of arguments (type=int, value =2;
type=boolean, value=true).

* Message 3 {(none, none), (int, 2)}: is a message on the observer method that only
consists of the user-desired return type (int) and return value (2).

® Message 4 {(String, “Jerry”), (int, 10), (char, ‘p’), (String, “done”)}: is a message on
the non-void returned modifier method. It is composed of three pairs of arguments
(type=String, value="Jerry”; type=int, value=10; type=char, value =’p’) and the user-
desired return type (String) and value (“done™).

22



It is obvious that the type of methods (constructor, observer and modifier) can be
recognized by the messages input by the user. Based on these, the system can select

corresponding constructors and methods in the class to execute.

Test Program: Test program is a set of messages to be sent to the system. A class is
composed of constructors, observer methods and modifier methods. Therefore, in order to
have a complete behavior of the class, a wide range of test messages are needed to

compose a test program.

In our retrieval method, we can let users to input various messages on all the interfaces of
a class including constructors, modifier methods and observer methods. The system then
executes them according to the order of the input and employs the corresponding instance

to modify or inspect the states of objects.

2.3.3 State Inspection

Variables

Methods / (state)

(behavion

Figure 2.4: The states and methods of an object

An instance or object invokes an operation and sends a message to the object. Every
object has a state that can be characterized either by its history of method invocation or
the current values of its attributes (Figure 2.4). In other words, the instance variables for
an object directly represent the state of the object and an object of class changes states
when one or more of methods are called on one or more attributes. However, an instance

must be created before it can be updated or deleted.

23



The previous retrieval methods only perform an incomplete execution on the class: only
methods whose functionality is similar to that of functions (i. €., modifier methods with
return type in OOE) are called, and those methods whose functionality is similar to that

of procedures (observer methods and constructors in OOE) are not executed.

In order to disclose the complete behavior of a class, we need to create an instance and
then call the methods to update the states of the instance and inspect each state to find
whether it is in the state as expected. Therefore, the following order should be followed:

1. Execute one or more constructors to produce some instances with initial states; if no,
a default constructor method is executed.

2. Execute zero or more modifier methods to modify the states of the instances.

3. Apply observer methods to the instance. Each observer should return a result
characterizing some state attributes.

4. The results returned by the observer methods are compared with user-expected result.

If the modifier method has return type rather than void type, then a modified order is

described below:

1. Execute one or more constructors to produce some instances with initial states; if no,
a default constructor method is executed.
2. Execute 1 or more modifier methods to modify the states of the instance.

3. The results returned by the modifier method whose return type is not void are

compared with user-expected result.

Let C be a constructor, M be a modifier method and O be an observer method. Then, the

retrieval algorithm should be formulated by the following regular expression: CM*O+ or
CM+

24



Product

& 1d : String

& .name : String
& price : float

& location : String

““Product ()

“Product (String, String, float, String)
“+setiD (String) : void
“~setName (String) : void
“-setPrice (float) : void
“~getLocation (String) : void
“getlD () : String
“:getName () : String
“*getPrice () : float
“-getLocation () : String
“:calPrice (int) : float
“toString () : String

Computer

B -cpu :int
£\ speed : int

“+Computer ()

“:Computer (String, float, String)
“rsetCpu (int) : void

“:5etSpeed (int) : void

<igetCpu () : int

‘. getSpeed () : int

“:calPrice (int) : float

“.calPrice (int, String, float) : float
“«toString () : String

Figure 2.5: Class diagrams of the class Product and the class Computer

For example, the class Product has four attributes (Figure 2.5), two constructors and 10
methods, including 5 observer methods (getID(), getName(), getPrice(), getLocation()
and toString()) and 5 modifier methods (setID(String), setName(String), setPrice(float),
setLocation(String) and calPrice(int)).

25



If we want to retrieve a class whose behavior is the same as or close to the class Product,

then an ideal test program should be at least as follows:

e Message 1 {(void, null), (none, none)} - create an instance of class Product using
non-argument constructors

e Message 2 {(String, “Table”), (void, null)} - modify the state of the instance using
modifiers

e Message 3 {(void, null), (String, “Table”)} - observe the state of the instance using
observers

e Message 4 {(String, “123”), (String, “Chair”), (float, 13.5), (String, “Windsor™),
(none, none)}- use a new constructor to create another instance of the class Product

e Message 5 {(int, 1.5), (float, 20.25)}- get a value during changing the state of

instance

After execution of the above test program, the class behavior can be obtained as
Behavior ={(none, none), (void, null), (String, “Table”), (none, none), (float, 20.25)}.

It should be noted that the user might create different objects (instances) of one class and
pass different messages to these objects. In this case, it is important for the system to
maintain the order of messages, execute them in that order and inspect various states of

the objects. Otherwise, the result will not be presented as the user’s expectation.
For example, users may enter the following messages in order:

e Message 1 {(void, null), (none, none)} - create an instance of class Product using

non-argument constructors

e Message 2 {(String, “Table”), (void, null)} - modify the state of the instance using
modifiers

* Message 3 {(void, null), (String, “Table”)}- observe the state of the instance using
observers

26



e Message 4 {(String, “Chair”), (String, “125”), (double, “Chair”), (String, “Windsor”)
(none, none)} - create a new instance of the class Product using argument
constructors

e Message 5 {(void, null), (String, “Chair”)}- observe the state of the instance using

observers

The expected behavior is {none, null, “Table”, none, “Chair”} rather than {none, null,
“Table”, none, “Table”}. Of course, such methodology may allow many test programs to

be entered in the form of the following regular expression: {CM*O+|CM+} *
2.4  Executing the Test Program

After the system organizes the input messages into a test program, it begins to execute the

test program against all the classes from a class library.
2.4.1 Type Checking and Run-Time Storage

The previous execution-based retrieval method loads the class from the library every time
even when the class has been loaded and tested for the previous messages. Thus, it wastes
a lot of time to reload classes and the cost is high. If a method of a class does not match
the input data type, then this method or even this class may not need to be reloaded.

The signature of each method is very important during execution. If this signature (return
type and parameter list) does not match the user input, then no further loading and testing
is necessary. When the class is loaded into system from a class library for the first time,
this information for each method can be stored into a dynamic data structure such as
vector or array. Before executing test messages, the type match checking is performed
against that information of methods in class stored in the system. If types match, then the
system will load the class and execute them. Otherwise, this method or this class will be

skipped. This improvement will reduce the execution time and increase the system

efficiency.

27



Suppose f(t) =({constructors_test data (arglist)}, {methods_test_data (arglist, rt, rv)})

where

e f{t): a test program composed of a list of test messages (constructors and methods)

» constructors_test data (arglist): an order of test messages on constructors (arglist: list
of arguments for each constructor)

e methods test data (arglist, rt, rv): a list of test messages on methods (arglist:
argument list, rt: return type, rv: return value, if the return type is void, then the return
value is empty “7).

Given a class in the library, the interfaces could be represented as follows:

F(c) = ({constructors_in_class (paramlist)}, {methods in_class (paramlist, ret)}) where

¢ F(c): The interfaces of the class from the library

e constructors_in _class (paramlist). constructor list in the class (paramlist: list of
parameters for each constructor)

e methods in_class (paramlist, rt): method list in the class (paramlist: parameter list,

ret: return type).

The type-matching algorithm is as follows:

For each constructor test _data (arglist) in the f{t)
If (this is the first constructors_test data)
Load constructors_in_class (paramlist) for each class from the
library, store the paramlist in a vector
If (arglist==paramlist in the vector)
Execution on the constructor

Else skip

For each methods_test data (arglist, rt, rv) in the f{t)
If (this is the first methods test data)

Load methods_in_class (paramlist, ret) for each class from the

library, stored the paramlist and ret in an array

28



If (arglist==paramlist in the vector && rt==rei)
If (there is no instance of the class)
Call the default constructor
Execution on the method
Store the value

Else skip

If the method information is not stored, the class needs to be reloaded from the library
during executing each message. Thus the system will be wasted for reloading the classes.
On the other hand, the type checking is necessary for execution-based retrieval.

Otherwise, a run-time exception will be thrown.

2.4.2 Class Retrieval Regardless of Argument Order

Some retrieval methodologies require the user to supply the correct order of arguments
during performing class retrieval. Even if there is a class whose behavior is similar to or
the same as the user’s expected one, this class may not be retrieved as a candidate
because of the order of arguments of one or more methods different from the user’s input.
Thus, the retrieval recall could be low. In fact, the user usually does not know the
argument order of a method ahead or he does not even care about it. The most important

criterion for the component retrieval is the whole behavior of a component (class).
Once the user inputs each test message, the system stores it into a test program. Each case
of different orders for every test message will be evaluated, The system then performs
testing and executing on each method of the corresponding class.
The algorithm of the execution part is as follows:

For each composition of arglist

If (arglist==paramlist in the vector)

execution on the constructor or method

29



Else skip

This technique will obviously increase the retrieval recall.

For the class Computer in Figure 2.3, if the test program contains one message:

Message 1 {(String, “Pantium”), (int, 1), (float, 1.5), (float, 1358.7)}, the system can
determine that this is a message for the modifier method by checking all the pairs. The
system also counts out 3 arguments and stores them in a vector. The system then finds
that there are 6 compositions of the argument orders:

(String, int, float)

(String, float, int)

(int, String, float)

(int, float, String)

(float, String, int)

(float, int, String)

The system will evaluate all the cases recursively.
2.4.3 Matching Process and Candidate Classes

A matching between a message and a class method is established when executing the

message on the class method, the same output or similar output compared with the
desired output of the message is obtained.

Figure 2.6: The Java widening conversion rules

30



The primitive type conversion rules of the Java language is as follows (Figure 2.6):

e A boolean may not be converted to any other type.

e A non-boolean type may be converted to another non-boolean type if it is widening
conversion.

» A non-boolean may not be converted to another non-boolean type if it is narrowing

conversion.

After executing a message, a match is found if the following conditions are met:

e The test message and the method are the same type (constructor, observer or
modifier).

e The test message and the method have the same number of arguments and the same
or convertible types.

o The test message and the method have the same or convertible return types and the

same return value.
The matching algorithm is as follows:

For each test message
If (the test message is a constructor)
If (check each case of argument lists with the parameter list of each
constructor)
Construct the instance
Return true
Else  return false
Else
If (check the return type with that of method)

If (check each case of argument lists with the parameter list of

each method)
If (there is no instance)

Call default constructor

31



Execute on the method using the instance
If (the result is the same as the expected)
Return true
Else
Return false
Else
Return false

Return false

A candidate class is the class that has the maximum matches (at least one match) to a test

program after the test program is executed on this class.

The system will store the matching information on a data structure associated with the
class name after finishing execution on all the test messages on all the classes from the
library. The system then returns the first 10 class names (if there are more than 10) to the
user and each of them must have at least one match. If there is no method or constructor

that matches those in all the classes, then no class name will be returned.

The algorithm for this matching process is as follows:

1. Let f(c) be the list of the classes returned by the retrieval process, each of which has
at least one match.

2. Sort the list according to the matching number associated with each candidate class.

3. Display the first 10 candidates from the list according to the sorted list.

2.4.4 Inheritance, Overloading and Overriding

Object-Oriented Programming (OOP) has often been promoted on the basis of its

reusability merits as discussed before. The retrieval method dealing with OO classes

should consider these OO characteristics.

32



Inheritance: Inheritance is a means of defining a class that is an extension or refinement
of another class (super-class). A class definition that contains a class-inheritance-list
specifies a class that inherits from each of the class names specified in the class
inheritance list. As an implicit part of its definition, a descendant class (subclass) contains
the definitions of all fields, methods and constructors of each of its ancestor classes
(super-classes). In Java, a class cannot have itself as an ancestor, inherit two or more

times from the same class or inherit from two classes at the same time.

A class that is a descendant of another class can add definitions for new fields, methods
and constructors to those it inherits. It can also override inherited methods and
constructors and thereby associates new bodies with these entities. However, it cannot
remove the definition of an entity defined in an ancestor class, nor can it modify the

signature of any method, constructor or the type of any field.

The retrieval methodology on OO components should consider their inherited methods as
a part of its methods and count the matching info as well on those methods defined as
public or protected. Private methods are not inherited, and therefore they should not be
counted. In Java, the default access modifier is package, which means only the class in
the same package could access the methods in its super-class. Because we could modify
the accessor (changing from package to public or protected) during adaptation stage after

selecting the candidate class, such methods may be considered as inherited.

For example, in Figure 2.3, the class Computer is a subclass of the class Product. The
class Computer inherits all the methods defined in the class Product such as setld(),
getID() etc. When executing the test program on the class Computer, the inherited
methods should also be tested and the matches should be counted for the class Computer

except those overridden methods that is discussed later.
Overloading: Overloading occurs when two (or more) methods have the same name but

different parameter lists. All the methods are called overloaded methods. For an

overloaded method, selection of the actual method to be invoked is based on matching of

33



the types of the actual arguments against the types of the formal parameters. Therefore,
overloading will not need to be treated specially during execution-based retrieval. The
system will execute all the test messages against each method whether the method is
overloaded or not. In the class Computer, the method calPrice () is overloaded (calPrice
(int) and calPrice (int, String, float)). During execution, these two methods are checked

and tested separately.

Overriding: Overriding is the redefinition of the implementation of a visible inherited
method. Overriding method is the method in the subclass. Overridden method is the
method in the super-class. The signature of an overriding method must be the same as the
signature of the overridden method. Overriding method does not cause any side-affect
for the execution-based retrieval, but the overridden method should be taken care of.
Therefore, when performing execution on the inherited methods from the super-class, the
overridden method should not be executed whether its type is matching or not, because

the overridden method is hidden from the subclass.

The vector used to store the signature (return type and parameter list) of the methods of
each class also saves the method names during the first loading stage. When executing on
its inherited methods, a comparison between the names, parameter lists and return types
1s performed to ensure that the overridden methods are not executed and counted in the

matches.

For example, the method toString () of the class Computer is overriding the method
toString () in the class Product. When executing on the class Computer, if there is no
match, and then the inherited methods begin to be executed. However, because the
method toString () in the class Product is hidden from the object of the class Computer,
this method should not be reloaded and tested.

34



2.5  Browsing the Candidate Classes

In most cases of software reuse, the problem is how a user can know whether there is a
required component or not and how to use this component. That is why a searching
mechanism is definitely required. This is also the purpose of this thesis looking for a

more effective and efficient retrieval method.

Of course, a good library or retrieval mechanism should not only provide an effective
way to retrieve the components that perfectly or partially match the query, but also allow
a user to browse the components. The difference between browsing and retrieving is that
while the latter aims to identify and extract components that satisfy a predefined
matching criterion, the former consists of inspecting components for possible extraction
without predefined matching criterion (Mili et al., 1998). On the other hand, the browsing
functionality allows users to familiarize themselves with the classes and to allow

administrators to maintain the class library.

Because the execution-based retrieval typically works on a small-scale library, it could
allow users to directly browse the implementation of each class in the library. Even after
retrieval, the system could return a list of candidates that satisfy exactly or closely the
requirements of the user. All the candidates should be arranged according to the number

of matches among which the candidate components with most matches appear first.

Because of the limitation of keyword browsing such as unfamiliar and ambiguous
keywords, it is not regarded as a preferred method for browsing. The system should
rather offer the ability for users to see the implementation in order to choose what they
want. Users could select the first several candidate classes to browse their codes in order
to see if the classes satisfies their requirement and design structure to determine the
usability. Because of the ordered arrangement of the candidates, this approach is practical
and useful.

35



2.6  An Example Class Library

A simple class library is used to demonstrate the hierarchical structure of the library and
the retrieval methodology achieved above. All the classes are standard Java classes and
they can be compiled and executed by Java compilers. They are described in UML

notations.

36



(abstract) Shape
& name : String

“Shape ()

-Shape (String)
“{abstract} area () : double
“lessThan (Shape) : boolear

“toString () : String

e \\
: Rectangle
Circle Triangle & length : double
& radius : double & side1 : double & width : double
- & side2 : double
~Circle () £ side3 : double “Equilateral ()
*Circle (String, double) - “Equilateral (double, double, String
“-area () : double ~Triangle () “-area () : double
“getRadius () : double “Triangle (double, double, double, String) | “setLength (double) : void
_'setRadius (double) : void | “.area () : double “.setWidth (double) : void
*toString () : String “-getSideCount () : int “.getLength () : double
- -getSide1 () : double “-getWidth () : double
*-getSide2 () : double “toString () : String
“-getSide3 () : double
- ~toString () : String A

5/ I
/

/
isosceles
- Square
“{sosceles (double, double, String) Equilateral ;
~-setSide (double) : void . . . “-Square (double, String}
- “.setBase (double) : void . Equilateral (double, String - “setSide (double) : void
‘;"getSide () : double _:-setSn_de (double) : void ~-getSide () : double
“getBase () : double ' getSide (double) : double “toString () : String
. “toString () : String ~toString () : String

Figure 2.7: Class diagram of the class library 1

37



Consider a small library called Geometry Library that is composed of 7 classes related to
geometry diagrams such as Shape, Circle, Triangle, Rectangle, Equilateral, Isosceles and
Square. Class Shape is an abstract class. Other classes are concrete subclasses of the class
Shape. The detailed inheritance relationship and all the members (including fields,

constructors and methods) are shown in Figure 2.7.

Note that all the classes inherit the method lessThan () from the class Shape and override
the method toString(). Classes Isosceles and Equilateral extend the class Triangle and
then have the method area(). The constructors of the subclass normally call super () in the

first line if there is no distinct call in the first line of the constructor.

MyExpectedClass

*MyExpectedClass (double, double, String)
“method1 () : double

“method2 (double) : void

“method3 () : double

Figure 2.8: Class diagram of the class MyExpectedClass

Suppose the user is looking for a class with the following interfaces (Figure 2.8):
MyExpectedClass (double, double, String) is a constructor with an argument list.
Method1 performs area calculation. Method2 modifies one of the attributes by passing a

value. Method3 observes one of the attributes in the object.

The user can enter the test data as follows:

{(double, 5), (double, 8), (String, “name”), (none, none)}
{(none, none), (double, 40)}

{(double, 7), (void, none)}

{(none, none), (double, 7)}

The system organizes the above input into a test program:

38



{[(double, 5), (double, 8), (String, “name”)], [(none, none)], [(double, 7)], [(none,
none)]} with the expected behavior {none, 40, none, 7}.

Class Name Number of matching methods
Isosceles 4
Rectangle 3
Triangle 1

Table 2.2: Number of matching methods of each class in the class library 1

After execution on each class in the library, a match list is shown in Table 2.2. The

system returns the list of candidates in the order of matching method number: Isosceles,

Rectangle and Triangle. The user then can browse the three classes to see if they satisfy

the requirements. Finally, the system should allow the user to save the retrieved

candidates into his/her hard-drive if the user would like to.

39




Chapter 3 A Prototype System

3.1 Introduction

Based on the improved execution-based retrieval methodology, we have developed a
prototype system named EBCRS that stands for Execution-Based Class Retrieval System.
EBCRS is designed by UML and implemented using Java Servlets, HTML, JavaScript
and Applet. Four class libraries of Java classes are constructed to test the effectiveness of
the system. EBCRS is a completely distributed system and is Internet ready. A part of
source codes of the EBCRS system is given in the appendix.

Java applets and servlets can be used together in the design of today's multi-tiered web
applications. Applets combined with HTML and JavaScript provide a convenient
mechanism for building powerful and dynamic interfaces to applications, while servlets

give us a highly efficient means to handle requests on a web or application server.

Servlets are protocol- and platform-independent server side components written in Java
that dynamically extend web servers running on Java-enabled hosts. Servlets are
analogous in many ways to CGI programs. They handle web requests, returning data or
HTML programmatically rather than from a static file. They can access databases,
perform calculations and communicate with other components. Unlike CGI programs,
however, servlets are persistent — they are instantiated once and continually handle
requests (usually many simultaneous requests) for the life of the web server. They are
therefore operating at a much higher level of efficiency than CGI programs. Servlets run
within a servlet engine usually on a web or application server. Servlets can be used to
create an easily accessible interface between clients such as applets and web browsers
and the core enterprise applications behind them. Servlets may be loaded from remote

http://directories, and thus provides true distribution of services in a network.

40



3.2  Analysis and Design

3.2.1 General Requirements

QOverview Statement;

The purpose of this work is to design and to implement a prototype system called EBCRS

for retrieving Java classes from the library by execution.

Goals:

Having a convenient and user friendly interface for the user and administrator
Retrieving candidates from the library efficiently and effectively

Having low time and space complexity

Svstem Functions:

Accept primary data type as arguments

Accept any Java classes in the library (except abstract class and interface)
Support execution-based retrieval

Support multithread

Internet and Intranet ready

41



Ref. No. | Functions Category
R1.1 Input data by the user Evident
R1.2 Retrieve the class candidates Evident
R1.3 Open the class file Evident
R1.4 Browse the class structure Evident
R1.5 Browse the class implementation Evident
R1.6 Save the Java file into the local drive Evident
R1.7 Display the class list Evident
R1.8 Display error messages Evident
R1.8 Add classes into the class library Evident
R1.9 Delete classes from the class library Evident
R1.10 Accept constructor, modifier and observer input Evident
R1.11 Allow user to exit the program Evident
R1.12 Perform recursive on arguments Hidden
R1.13 Perform recursive retrieval Hidden
R1.14 Login by the user and administrator Evident
Table 3.1: System functions of the prototype system
Attributes Details and boundary Constraints
Interface metaphor GUI with input, execute, browse and exit

Response time

(boundary constraint) when inputting a test

program, the result should appear within 30

seconds

Fault tolerance If the power is off, the storage should not
be affected

OS platform Window 95/98/NT, Unix

Table 3.2: System attributes (non-functional) of the prototype system

42




The detailed system requirements are listed in Table 3.1 and Table 3.2.

User Case Analysis

o User authentication: Authorized users would first log into the Web site to access the
system. Only authorized users should be able to browse class components and
perform retrieval from the class library.

e Library Browsing: The users should be able to browse the complete class list on the
Web and view detailed description and implementation of each class.

e (lass Retrieval: The users can input the test program, execute it on the class library
and retrieve the candidates. They should then be able to browse the retrieved
candidates.

o Library Management. The administrator can add and delete classes from/to the
library.

¢ Administrator authentication: Only the administrator can modify the class library

o FEXxit system: The users log out from the system.

3.2.2 The Distributed Client/Server Application Architecture

The above system requirements can be mapped into a matched application model.

43



Weh Browser Wrh Serer Datahase Server

Figure 3.1: The three-tier architecture of the prototype system

The application can be partitioned into three tiers: the user interface layer, the business
rule layer and the data store layer that is a 3-tier HTML-Servlets-Database application
that used HTML, Applet, Java servlets, MS Access and the Java Database Connection
(JDBC) (Figure 3.1).

The first tier is a web browser that serves as our remote client. In the first phase of the
application, an HTML (JavaScript-Applet) front-end is used for user-input and displaying
the database query results. The HTML (JavaScript and Applet) approach is taken because
it offers a user-friendly interface.

44



Client 1 Java Server
PUT
Q o Call Serviet
" 4
Applet
Client 2 smm Savlae!
PR POST
o
HTML
Foura

Figure 3.2: The communication between the client and the server

The second tier of the application is implemented with a Web server being capable of
executing Java servlets. The Java servlet harnesses the power of JDBC to access the
database and to access files in the server and then to store/retrieve information as needed.
The server sends the results to the client through the HTTP protocol or socket protocol
(Figure 3.2). In some cases, a dynamic HTML page is generated by the servlet based on
the database results.

The third tier is composed of our back-end database server. The database server stores the
information that is used by the application including MS access files, text files and Java
class files. Through the JDBC API, servlets can access database in a portable fashion by
using the SQL call-level interface.

We employ three methods for the Applet-Servlets communication (Figure 3.2). The

simplest way for an applet to exchange information with a servlet is through an HTTP

45



text stream, which is used in the User Login Use Case, the Administrator Login Use
Case, the Exit System Use Case and the Save File Use Case. Java's URL and
URLConnection classes make it easy to read data from a URL without having to worry
about sockets and other normally complex issues of network programming. All we need
is a server-side component that can deliver information via a URL. We use the
URLConnection in the Browse Use Case. However, only one communication path is
available for this method. One big benefit of using raw sockets is that the connection is
persistent and bi-directional. With a raw socket approach, we can establish a connection
with the server and continually receive updates as they occur which is needed in the

Retrieve Use Case and the Manage Library Use Case.

46



Browse Library )
_QI_ (__ Retrieve Classes
T \_M/ N %
.............. T . i
Administrator, ™| Manage Library
Admin Login

Figure 3.3: Use case diagram of the prototype system

EBCRS User

The general use case diagram is shown in Figure 3.3.

User Login Browse Library

Request HTTP response Request URL connection
response

Tomcat Server/servlet Tomcat Server/servlet

JDBC

MS Access database File (class library)

A) User Login Use Case B) Browse Library Use Case

Figure 3.4: Detailed architecture of each use case

47



Retrieve Classes

Manage Library

Request Socket response Request Socket response
Tomcat Server/serviet Tomcat Server/servlet
File (class library) File (class library)
C) Retrieve Classes Use Case D) Manage Library Use Case
Admin Login Exit System
Request HTTP response Request HTTP response
Tomcat Server/serviet Tomcat Server/serviet
MS Access
E) Administrator Login Use Case F) Exit System Use Case

Figure 3.4: Detailed architecture of each use case (cont.)

The architecture of different use cases is shown in Figure 3.4.

48



3.2.3 General GUI of the EBCRS system

This system is a full functional multi-tiered client/server application. The client side is a
Java applet-based application with user interfaces implemented with Java AWT. The
applet is embedded in an HTML web page with JavaScript so that the applet can be
executed anytime and anywhere through a web browser. The web server is the Tomcat
from the Jakarta project. We have extended the functionality of the web server with

several Java servlets. Each servlet serves a specific request from the client.

Figure 3.5: The screen capture of the Tomcat server

The web server uses JDBC to make connection to the database or directly read from files
and execute the query and update requests from the client. Each request will be sent by a

browser to a web server and processed by a Java servlet (Figure 3.5).

This system supports two types of users: administrator and authorized users. The
admunistrator has the privilege to add or delete classes and maintain the class library. The
users can browse the class library, check the implementation of class and execute the

program. However, the users cannot make any change to the class library in the database.

49



The server side

The server side has many components working together to offer the services requested by
the client side. These components are stored in Ebcrs\Web-Inficlasses. The functionality

of each component is listed below.

DaemonHttpServlet and Daemon: Daemon is a class that extends Thread.
DaemonHttpServlet is an abstract class extending HttpServlet and performing low-level
socket management. The init() method creates and starts a new Daemon thread which is
in charge of listening for incoming connections. The destroy() method stops the thread.
The Daemon thread begins by establishing a ServletSocket to listen on some specific
socket port. The socket port is determined by a call to the serviet’s getSocketPort()
method. After establishing the ServerSocket, the Daemon thread waits for incoming
requests with a call to serverSocket.accept().

MainServlet: This is the most important servlet, which extends DaemonHttpServlet and
implements a handleClient(Socket) method that spawns a new MainConnection thread. It
accepts the client message and lets the handleClient () method to perform action based on
the request given. This servlet will be loaded at startup time of the server so that it can be
accessed directly.

MainConnection: MainConnection extends Thread performing all the action according
to request type sent by the client when MainServiet orders. When it is created, it saves a
reference to the MainServlet and a reference to the Socket so that it can communicate
with the client. When the MainConnection instance is created, its run() method is called.
In this method, MainConnection uses some protocol to communicate with the client.
Retrieve: This class handles all the retrieval requests. It executes the test program
according to the order of messages and type of messages (constructor, observer and
modifier). It stores the method’s signature in a vector during the first time loading from
the server. Each time it compares the argument list and return type between the test
message and loaded classes before execution. It then compares the returned value and the

expected result.

50



ClassLiblInfo: It is a class that stores the class library information. It handles adding and
deleting classes from/to the class library. It also provides a method to access the class lib
path.

InputProg: InputProg is class to organize the input data from the user. It stores each
message into a vector and provides access methods.

AccessServlet: The servlet handles the user login. It stores the userid and password
entered by the user, accesses MS Access database through JDBC, compares the userid
and password with those stored in the database and dynamically creates a HTML page or
redirect to the MainInterface.

SaveFileServlet: This servlet handles the save file action. Once a client sends a message
to save a selected file from the selected folder and then the servlet will send this file to
the client folder.

ExitServlet: The servlet handles the user logout. It allows user to enter the system again

by redirect to the login page or dynamically creates an HTML page.

51



DaemontttpSeniet
& Default_Port : int Daemon
& & senerSocket ; SenerSocket
daemonhread ; Thread < _|B:sendet : DaemonHttpServiet
LDaemon (DasmontittpServet)
“7un () : void

“init (ServetConfig) : void

JgetSocketPort ():int
“{abstract) handClient (Socket) : woid

“-destroy () : void

MainConnection

MainSerdet
&-.sendet MainSenet
“init (ServietConfig) : woid &.client : Socket
*doGet (HttpServetRequest, HitpSendetResponse) : wid <&<---—----"
“doPost (HttpServetRequest, HitpSerdetRespanse) : void “:MainConnection (MainConnection, Socket)
““destroy () : void “run () : void
“~handClient (Socket) : void i, , |
/////,// /// l‘i
- / !
= InputP 5
MainRetrive npulrog J
&-message : vector |
. /
execute (InputProg) : boolean L -addMessage (String) : void I'
“:getMassage (int) : String ]

“'check (String[], Class) : boolean

ClassLibinfo

" & classLibName : String
& .classLibPath : String
& classList : vector

“*setClassLib (String) : void
*—getClassL:bName () : String
“sgetClassLibPath () : String
*addCIass (String) : void
“deleteClass (String) : void

Figure 3.6: Class diagram of the server-side main classes

52



The main class diagrams in the server side are as Figure 3.6. Some servlets such as
AccessServlet, ExitServlet and SaveFileServlet are omitted here because of similarity

with general servlet structure.

The client side

The client side includes HTML, JavaScript and Applet. The applets allow users to access
the system friendly by providing good-looking interfaces such as browsing the library,
executing the classes, managing the library and exiting the system.

LoginInterface: The user needs to enter his/her user name and password. A servlet
(AcessServlet) on the web server host will search the user name and password in the MS
Access database on the host. If the user has been found, the user will be redirected to the
MainInterface. If the user id or password is invalid, the user will be prompted to login
again dynamically.

MainlInterface: It controls whole the system functionality by connecting other interfaces
for different operations. It displays a list of class libraries for the user to select and has
four buttons: “Browse Library”- go to the browse library interface, “Retrieve Classes™-
allows users to go to the execution interface to input his/her test program and perform
retrieval on the library. “Manage Library”- allows the administrator to go to the
administrator interface in order to add or delete classes from the selected library. “Exit
System”- let the user to go to the exit interface and logout from the system.
Browselnterface: It will allow the user to check all the classes in the libraries by
browsing directly the implementation or the class structure such as methods, constructors,
fields and super-classes.

ExecutionInterface: It provides the user with different input interfaces such as
constructor, observer method and modifier method in order to enter the test program. The
user can check the list of arguments and input the value of arguments.
Candidatelnterface: It lists all the retrieved candidates and allows the user to browse the
implementation of classes, save the class file into the local disk or return to the main

interface.

53



Managelnterface: It allows the administrator to login for managing the class library.
“Add Class” — go to the add class interface, “Delete Class” — go to the delete class
interface, “Back to Main” — let the user go back to the main interface.

AddInterface: It allows the administrator to select a Java class file and add into the

selected library. The user can also return to the main interface.

54



Login Failed

t

Login Page || AccessServiet >
[ '
Login OK Browse Page
* —>
Main
Servlet
‘.._..
Exit Page MainPage [P Execution Page
8¢ e g g
A A A A
SaveFile
Serviet
Candidate Page |
o3| Manage Page
- Admm —
Enter Failed |4 Servlet
€
Enter OK
Add Page
Main >
Servlet
»  Delete Page *—

Figure 3.7. System function flow diagram in the client side

55




' Edit - Wiews Qo \:oq Help ' - : -
- % Bookmaks i Losation: [Ftm. /7127 0,0.1:8080/Ebors/Client/Manintertace. himl ] & what's Rlated ﬂ

 EBCRS Main Interface

The main page of the Execution-Basad Class Retrisval Syster offers you the following options:

1. Browse Classes fom Library: You could browse whole the libranies to see the design and source code of sach clags,
2. Retrieve Classes from Liboary: You can input 2 test program on 3 clags fibrary to find the candidate classes,

3. Manage Library: You can add or delete the class into/from existed clags library,

4. Exit from the System: You want to go to another page after finishing your refrieval

k Please choose a Class Library:

e " Appiet Mainintefscs unning - o ' Sk AY (W Z

Figure 3.8: The main interface of the EBCRS system

Deletelnterface: It allows the administrator to delete a selected Java class file from the

selected library. The user can also return to the Main Interface.
ExitInterface: It allows the user to exit the EBCRS system or return to the system.

The system function flow diagram for the client side is shown in Figure 3.7. The main

interface is shown in Figure 3.8.

3.3  Organizing a Class Library

Because the class library is constructed for testing this proposed methodology, no much

time has been spent on the organization of the class library. However, classes are stored

56



into different sub-libraries according to their functionality. For example, the Geometry
diagrams related classes are in one sub-library ClassLib1; String related operation classes
are stored into another sub-library ClassLib2; Person related classes, such as Employee,
Student, Customer, Person, Company etc are classified into one sub-library ClassLib3

and AWT event related classes are put into the sub-library ClassLib (Figure 3.8).

e All the classes are standard Java classes that are allowed to inherit from the class in
the same folder or from the Java API classes.

o All the classes are allowed to have fields, constructors and methods with various
access modifiers.

e Although the input variable types are limited to primitive and String, the methods in
classes could accept different user-defined data types.

e Classes are permitted to have static methods or fields.

o Although some abstract classes are stored in the library, they are not listed as entry
for retrieval because abstract class or interface cannot be instantialized. They are put

there because other classes may extend them.

Each sub-library is a folder where all the class files are stored. A class list file that lists all

the class names in the sub-library is stored as a standard text file in each folder.

57



%wwmn S
file  Edit - View ,ﬁn “Lommmunicatos - Help

e e ‘% w grs h_g!q Sl . 3 ,'g* ﬁ
Back 7" Reoad. " 'Mome . Seawch Netscaps - Pint. . Secudy  Shop
" & Bookmarks . Locatior:[ht://127.0.0.1:60B0/Ebors/Clent/Deletelntece. himi 7| W Whals Relatad

,ﬁslmwmssage -w WabMal 5 Padis B Pespls - S8 Yellow Pages - & Download 5 Calenda __;Ehanmk

Delete classes from Library B

The Exetution-Based Class Retrieval Szgtem allows you to delete some useless classes from the Sbrarins if you have the
permission.- You should select ane clasa you want to delete, and then press the button Delete Class. You could retarn to Main
Interface anytime!

Select a Class Library to delete class:

Choose a class to delete:

ropisne Py
rfiner
Best _
BinaryNode
Clrcle Back to Main
- {Customer ] } o
o ‘ % Bt LA N

Eﬂa idi Viaw lﬁa Qnmmmcatoc I:{dp

i o y o o . G v .
- e & Sl ) - e 25 foagze
Back. Relosd . Homs ~~ Sesch Nelscape Pt Seculy . Shop
# " Bookmarks . Looation: oty 77127 0.0 1:8080/E biera/ Chent/Addintestacs Ftmi ] 7 what Related

- Rinstant Mossage X WebMail S Rodo ¥ Peopls S YelowPages 4 Dowrlosd @ Calerdar - Channels

Add classes into Library -

The Execution:Based Class Retrieval System al!uws youto add tested classes into hbtanes You first sho'uld type in the full
path and class name or use button Open File to open a clags, and then select one library which you want to add i, and finally
press button Add Class. The system also allows you to add java source e {java) into the library. You can retwrn to Main
Interface anytime if you want.

Open {ile or input the class name:;

Open Flle

Select a Class Library to aild rlass;

Classlfh

ClassLibl
. {ClassLib2
ClassL.b3

Figure 3.10: The add interface of the EBCRS system

58



The administrator can login to reorganize the library by adding and deleting classes
to/from the class library. He/she should first select one library and then choose a class to
perform action. The two interfaces (Add Interface and Delete Interface) will help
administrator to maintain the class library (Figure 3.9 and Figure 3.10).

34 The Retrieval Process

After the class library is organized and all the classes are assembled, we could perform
the retrieval process to find the candidate classes exactly or appropriately match the

user’s requirements.

3.4.1 Inputting Data

Because the class behavior is composed of all the responses from the interfaces
(including constructor, observer method and modifier method) and all the three types can
be easily distinguished by their return type and parameter list, there are three input
interfaces to accept individual type of input. Another reason to have three input interfaces
is that the input order decides which instance of the class is used to send a message. Each
time when the user input a message, he or she should push the button “Done One”. When
all the input data are accepted by the system, the user then pushes button “Execute” to

retrieve. The system will execute each message in order of inputting.

59



O L vmrslaa

:j" o o~ o _

Edt Yiew Go Gommuricelor Help ;
S T T TS B A R 1
Back Relpad. - Home = Seaich  Netscape  Print Secuty - Shop v
© ¥ Bookmarks % Location: [htg:/7127.0.0.1:8080/E bors/Clent Anputintetlace. htsol ] 4" What's Related
. Alnstant Message . 5. WebMal Z Rado i People ! YelbwFages X Downboad 5 Calendsr _*{ Charmels
Please 1npixt the data for the First Constructor )
Construrtor l Ohserver ] Modifier I Done One ’
Type Value
Argament 1; [integer ~ s
Argoment 2: {integer -] 14
,A'mnts: ' ’Nana :J I
Argoment 4: |None -
Argument 5: ~ [none :_] |
Argmment 6: INone —_'_' {
Constructor: [None :] [-'Nome
Execute | Reset |  Back to Main
; , ; Ra
i | W Ry AP TR g

Figure 3.11: The input interface for constructor

The constructor-input interface only allows the user to select argument type and input the
value. No return type and value are needed to enter (Figure 3.11).




"Mm«musmm, R
e R A
F!e Edit \-'»ew Eo Lommunicater | Help
I e - B e S ﬁ
Back Reload . Home . Seach  Netscape = Pimt Secuity . Shop
- o .
@ﬁ Bookmaxks a; Locatlon }hnw’f?Z? 00133801'Ebcrse‘tﬁan!z1npudrueslace il _J v .o What's Related
g%lnstthessage S webMail % Radio. ' Pebple S Yellow Pages B Download 22 Calonder 5 Channels
Input the return data for the First Observer 2]
Constructor i Observer ! Madifter ! Done One ,
Type Value
No Pargmeters ~ [None =} [ 'none
‘None :J [ None
[None j I Nong
[None >] [ Nons
[Nene ~]  ['none
INone ﬂ [ Tione
Retum: ]lmeger _v] K]
Bwewe | Resst | BacktoMam o
P Appiet Inputinteitace ninving ‘ B Ry wre (E o2

Figure 3.12: The input interface for observer

The observer-input interface does not allow the user to input any argument (Figure 3.12).
The user only needs to select the return type and value because the observer does not
cause side effect of an object. The message for the observer methods will use the existing

instance of the class to execute. If no instance exists, then a default constructor is called
to create an instance.

61



L EveinboreBosed Liars Relieval S vslonr - Maletapt. o oo
Fiie  Edit - Yiew " Go . Communicator . Help-
o7 Back " Reload Home - Seatch - Netstape = Prirt - Secuity - Shop ‘
% & Bookmaiks 4 Lacation: [hip:/7127.0.0.1:8080/Ebcrs/ChentAnputintertace, hir ] T &7 What's Related
Tg( &%lnstant Message | %5 WebMail ’[—?, Radio. S Feople 5l Yellow Pages ’-El Download 5 Calenday __j' Channete

Please input the data for the First Modifier Y

Constructor | Observer | Modfior | Done One |

Type Value

Argument1: llniager ‘ _'_l |'s

Argoment 2: [integer ~ I8

Argument 3: [None =

Argument 4: [None o

Argmment §: IyNone _vJ f

Argument 6: [None ~

Return; ‘ !mtager :_[ K

Execute ! Reset i Back to Main .|

Pl ' o o e i e

Figure 3.13: The input interface for modifier

The modifier-input interface asks the user to input all the information about a test

message such as argument list and return type and value (Figure 3.13). The return type
may include void with empty value (**).

In this system, only primitive types and String are allowed such as char, short, int, long,
float, double and boolean. After the user’s input, the system will check the matching
problem between the type selected by the user and the value inputted. If the type selected
by the user and the value entered are not matched, then an error message is displayed.
The Java widening rule is adopted in the system as discussed in chapter 2. After the input

is done, the user pushes the “Execute” button and sends all test messages to the server.

62



3.4.2 Executing the Program

The system will organize the test messages into a test program according to the input
order after receiving the test messages. This is very important. The user may have created
various instances and use them to perform different actions on various objects. If the

order is not kept, then the result may be out of control.

During execution of the first message of each type (constructor, observer and modifier),
the system loads each class and store the parameter list and the number of the parameters
in a vector and also the method name and return type if it is an observer or modifier. And
then comparison between the argument list of the test message and the parameter list of
the method is performed and is followed by the comparison of return types. If any

mismatching happens, the argument order is switched and a new test message is created
until all the orders have been tested.

63



E“B E View ' Go - Communicator’ Help

4 w4 e o
Back Reload - = Home * Search | Netscaps

% Bookmarks . Locationt [nttp:/7127.0.0.1:8080/E bcrs/Chent/Cancidateint htmd
5 RinstanMessage 5 WebMal % Rado 5 People % YelowPages 5 Download & Calendwr ] Channels

Pnt.. - Security .~ Shop

v 47 What's Related

This interface of the Execution-Based Clags Retrieval System provides you all the candidate classes after executing the 2l
testing program. Yoou can browse the fields, the description of constructors and methods of each class, in order to decide which
| one fit your requirements: You can see the whole iraplerenattion. You are also permitted to save the source code ofthe
selected class into your harddisic First, please selact one of the classes, then press the buttons. You can retwm to the Man
Interface anylime.
Retrieved Candidate Classes:
Implemeﬂation of the selected class:
public class Circle extends Shape ﬂ
h -
public Circle( double r)
{
super(“circle”" );
radivs =r; - |
‘ x|
i P wm LE 2

Figure 3.14: The candidate interface of the EBCRS system

If all match, then the system loads the class from the database and performs execution
with the test message. The return value is stored and compared with the expected result.
If they are the same, then a match is returned and recorded. Finally, after all the match
information has been obtained, the candidate class names are sent back to the client

according to the order of match’s number (Figure 3.14).

64




3.4.3 Browsing the Library

After retrieval, a list of maximum ten class names is sent by the server and listed in the
browser. The user can browse the class implementation (code) to determine if they match
his/her requirement. Because the number of candidates is not very large, browsing the
implementation of each class is useful and practical.

Fle Edé View Go Commuicstor Help '

T " dookmsks % Location:[tlpc/7127.0.0.1:8080/Ebors/Chent/Browseinterface eml ] & 57 Woat's Relsted ﬂ
Ry A T . N ;
Browse Classes in Library =l
This interface of the Wm allows you to browse each class i the bibrary. You can

check the fields, the description of constructors and methods of each class, in arder to decide which ene §it your requirements.
You can see the whele code of the classes. You are slso permitted 1o save the source code of the selected class into your
harddislc Ficst, please select one of the classes, then press the below buttons. You can return 1o Main Interface anytime.

Choose a class from library:

Information of the Selected Class:

}
public String getStreetQ
{ retum streef, }

public String getCityQ
{ return city}

pubiic String getPostalCoda( l
¥ ratisrn nnataiCada-l .

i L
g il

Figure 3.15: The browse interface of the EBCRS system

After entering the system, the user can also directly enter the Browse Interface to check

all the information about each class such as the implementation code (Figure 3.15).

65



3.4.4 Saving the Candidates

Applet code is served from a host web server and executed in the client's browser on the
end user's machine. To prevent the proliferation of viral applets that could wreak havoc
on unsuspecting surfers, applets are bound by security constraints that allow them to
communicate only with their host server and prevent them from interacting with the end
user's machine. They cannot read or write from its file systems, execute programs or

examine certain sensitive environmental properties.

-
- 8] o [E 3

{ ~4 course
&t assighment-1 {Jlecture-ﬁ | @Iecture-d-src tecture-7

: X assignment-2 lecture-2 < lecture-5 Mecture-8
. &'ﬂ.“‘"‘ Message - 5 webMai T BYE acsionment-3 B fecture-2-sic lecture-5-src lecture-9-5
teshng program. You can browse g »ceinnmant-4 < ecture-3 <1 Jlecture-5 < iecture-3
ane Bt your requirements. Youea [ o
selected class into your harddisk. ) | g lecture-3-stc lecture-6-stc _s_] teadme
Interface anytime, : - A lecture-4 lecture-6-src-addl
| il

kﬁleﬂam&k o s , . o

B Saveasbpe: [AllFies (1) 4! Cancel
Implementation of the selected class: ,
public Square{ doubie sidey 3
{
super( side, side ),
}
}
. il
gl Reload the curtent page WL o 3 &

Figure 3.16: The save file interface of the EBCRS system

Because of these restrictions, we must employ special strategies to communicate
information to the client through the applet. We take the advantage of servlet: it can use

66




HTTP OutputStream send all the data to the client without restriction (Figure 3.16). The

code of SaveFileServlet is as below.

public void doPost(HtipServietRequest request, HttpServietResponse response)
throws Servietlxception, IOException

String path = "c:\\Ebcrs\\"+request.getParameter("folder")

+"\"+request.getParameter("file");

File file = new File(path);
response.setContentType("application/octet-stream");
response.setContentLength((int) file.length());
response.setHeader("Content-Disposition”,

“attachment; filename=\"" + file.getName() + "\"");
InputStream in = new BufferedinputStream(new F. ilelnputStream(file));
OutputStream out = response.getOutputStream();
bytef] buffer = new byte[4096];
while (true)

{

int bytesRead = in.read(buffer, 0, buffer.length);
if (bytesRead < 0)
break;
out.write(buffer, 0, bytesRead);
/
out.flush();
out.close();

in.close();

67



3.5  System Security

An ideal system should maintain different levels of privileges depending on various
users. Two levels are employed in the EBCRS system. The user login interface allows
the user to input the userid and password and then send them to the server for checking.
The AccessServlet loaded in the server handles this matter by retrieving the registered
user name and password from the MS Access database. If the user enters a wrong

message, then the system will dynamically allow the user to try again.

: s =2
fite Edt View Go Commuricator Help

i Y ¥ <4 ) > 5 &4 Jog S
E RS - ER | SR
Back i Reload Home Sosrch Netscap Prink Seeinity Shop
& Bookmarks & Locatior: http:/7127.0.0.7:8080/E bers/Chent/Login. i ] F57 What's Related

o BinstantMessage 3 webMal S fladio 1 Peopis & YelowPages i Downlond 4 Calendsr _Y Ohannels

Execution-Based Class Retrieval System (EBCRS) =

Welecome to the Execution-Based Class Retrieval System (EBCRS) . This prototype system allows yOu to execute a
user-input teat program on the JAVA class fibrary to remeve your expected classes. If you have a designed class and know the
behaviour of the class, you could find-one matching your requirements exactly or approamately. After retrisval, you can ckech
the structure of the candidate classes and the source codes of the class. Of course, you may save the source file directly into
your hardisk: You can extend or slightly modify the classes in ordey to adapt mbo your system. On the other hand, the system
provides you a way to browse the class lbrary to directly choose one. You can aiso manage the class library such as adding or
deleting a class from class library, if you have the permission.

Please Login hy typing your user id and password

Enter your user id I —
» Enter your password I

e : e e s TE &

Figure 3.17: The user login interface of the EBCRS system

68



VHY" g R TR T v e RS

Fie Edt Vew Go Help

& w0 A TR & ) B
Back Fielosd *. Home . Seatth. Nelscape ~ Print .. Secuity = Shop
%o ¥ " Bookmarks & Location: [ilex/#127.0.0.1:8080/E bers/ChentdmLogin himd v} 475" What's Related

" AinvatMessage S WebMal 5 Rado 5 Paople 5 YolowPages %3 Dowrload 5 Calendar % Channels

Administrator Login Interface

You are trying to madify the Euéuﬁnn—Based Class Retrieval System class libraties.
You should contact the «diddsivior Far the permission

Please login by typing your id and password

Enter your user id b

Enter your password [

AddClass | DeleteClass | Resst | BacktoMain

*J‘ e | e . s By Ly ’m'_' .

Figure 3.18: The administrator login interface of the EBCRS system

The user login interface is shown in Figure 3.17. The same is for the administrator login
page (Figure 3.18). If the user has no authorization to enter the management page, then
the system will direct him/her to the main interface. Once authorization is finalized, the
administration page will direct to the adding class page or the deleting class page
respectively. This is handled by the AdminServlet in the server, which connects the MS
Access database through JDBC-ODBC bridge.

The system should also handle long running time or non-terminating problems. A certain

time quota (30 seconds) is assigned to the retrieval process. Once the time is out the

system will terminate the process and return to the main page.

69



3.6 A Scenario

In this section, we try to use the class library described in the chapter 2 to show in detail
how the EBCRS system works and how the client gets the retrieval result.

Suppose that the user wants to build up a Java class with 2 constructors and 3 methods
that have the following functionality:

e Constructor 1 accepts one double and one String arguments.
o Constructor 2 accepts two double and one String arguments.
e Method 1 accepts a double as an argument, to update one of the attributes.

e Method 2 accepts no argument, but get a circle area with the radius input with method
1

e Method 3 accepts no argument, but get a stereo volume of a cylinder.

Cylinder
Ebheight : double
&radius : double

~Cylinder (double, String)
~Cylinder (double, double, String)
“setHeight (doubel) : void
“setRadius (double) : double
~getHeight () : double
~getRadius () : double

“getArea () : double

~“getVolume () : double

Figure 3.19: Class diagram of the expected class Cylinder

Obviously the user wants a class that is similar to the class Cylinder in Figure 3.19.

However, the user does not want to implement it by himself/herself and then comes to the

70



EBCRS system to login into the system. The user pushes the “Retrieve Class” button to

enter the Execution Interface.

The user can enter the test data as follows:

e Message 1 {(double, 10), (String, “cylinder”), (none, none)}

o Message 2 {(double, 10), (double, 20), (String, “cylinder”), (none, none)}

e Message 3 {(double, 5), (void, none)} - set the radius

o Message4 {(none, none), (double, 78.54)} - expect an area with radius 5

o Message 5 {(none, none), (double, 785.38)} - expect a volume with radius 5, height
20

The system organizes the above input into a test program 2: {[(double, 10), (String,
“cylinder”)], [(double, 10), (double, 20), (String, “cylinder”)], [(double, 5)], [(none,

none)], [(none, none)]} with the expected behavior {none, none, none, 78.54, 785.38}.

Class Name Number of matching methods
Circle 4
Isosceles 3
Rectangle 3
Equilateral 3
Square 3

Table 3.3: Number of matching methods of each class
in the class library 1 on the test program 2

After execution on each class in the library, a match list is shown in Table 3.3. The
system returns a list of candidates in the order of matching method number: Circle,
Isosceles, Rectangle, Equilateral, and Square. The user then browses all the five classes

to see their implementation and finds that other classes have no close relation with the

71




expected one and only class Circle satisfies his/her requirements. The class Circle can be

simply extended to include several more methods.

72



Chapter 4 Evaluation, Conclusion and Future Work

4.1 Evaluation

The complete criteria for evaluation of the retrieval methodology have been defined and

summarized by Mili et al. (1998). They include technical, managerial and human criteria.

1. Technique Criteria:

e Precision and Recall: The retrieval method should have high precision and
high recall, otherwise, the user may need to spend time to understand those
not reusable components, or some components may be available for reuse but
are not recognized.

o Coverage ratio: It refers to the average number of components that are visited
over total size of the library. This ratio should be ensured so that there is no
excluded portion of library containing relevant components.

o Efficiency (time complexity and logical complexity): The retrieval method
should take a short time, i .e., high efficiency, otherwise the user should wait
for a long time to see the result.

» Automation potential: The retrieval method should be possible for automation.
This will save a lot of human input errors.

2. Managerial criteria:

e Investment and operating cost: The cost to setup this software library should
be low, otherwise the library may not be useful and it is better to build the
component from scratch.

» Pervasiveness: The retrieval method should be available for many platforms
and many situations.

3. Human criteria:

* Difficulty of use: The retrieval method should be easily used even for

untrained users.

» Transparency: Users prefer to understand how the method works.

73



We evaluate our methodology according to above criteria.

Precision: Precision is defined as the proportion of retrieved material that is relevant; it
measures how well the system retrieves only the relevant components (Mili et al., 1995).
Analytical evidence (Podgurski and Pierce, 1992) and experimental evidence (Podgurski
and Pierce, 1992; Hall, 1993) show that the behavior retrieval provides a high precision
because it actually compares the behavior of class with the expected behavior. Although
the behavior of some classes may not exactly match the expected, recursively retrieval
allows improve the precision. The present method allows the user to input data on
constructor, modifier and observer, and thus improves the precision. The precision could

become 100% theoretically.

Recall: Recall is defined as the proportion of relevant material and it measures how well
the system retrieves all the relevant components. As the matching criterion of execution-
based retrieval is a necessary condition to the relevance criterion, it causes no loss of

recall under certain circumstance.

The previous execution-based retrieval method does not offer the facility to let users
define their constructors, but only allow the system to call the default constructor of each
class in order to create object for invoking the methods. For those classes that do not have
the default constructor, it will not be retrieved although they may satisfy the query. The
previous method requires users to give the correct order of arguments, and thus some
relevant candidate classes may be excluded from the retrieved list. The proposed method
does allow the system to use different constructors, and does not require the specific

order of arguments, and thus largely improves the retrieval recall.
Coverage ratio: The execution-based retrieval method in fact invokes an execution on

whole class library or sub-library, thus has a coverage ratio 100%. Further retrieval may
select those with most matching and thus reduces the coverage ratio.

74



Efficiency: Although this method executes the test program on each class of the library,
we try to classify classes into several sub-libraries in order to increase the retrieval
efficiency. Moreover, before actually performing execution, the system performs type
checking against the input data and thus reduces the time-complexity. When the class is
loaded into the system from a class library for the first time, the signature of each method
is stored into a dynamic data structure. Before executing the test messages, the type
match checking is performed against those stored in the system. If types match, then the
system will load the class and execute on it. Otherwise, this method or this class will be
skipped. This improvement will reduce the time complexity and execution time and thus

increase the system efficiency.

Automation potential: The execution-based retrieval generally involves an automated
organization of the test program and execution. In our system, users only need to select
the argument types and to input the values and the system will organize those input data

into a test program. Therefore, it is simple and eminently automatable.

Investment and operating cost: This method does not require the classification of the
class library and no complex mechanism is required. This method offers Internet facility
and thus reduces the cost of installation.

Pervasiveness: The EBCRS system is designed and implemented using a distributed
HTML-Servlet Client/Server architecture. Java makes an application portable, platform
independent and local/remote transparent. This implementation is Internet ready.
Although this implementation is tested on the Java class library it could be easily
modified to accept other OO class libraries such as C++ library using the Java JNI

package and considering the multi-inheritance.

User friendliness: In order to retrieve the candidate classes from a library, the user only
needs to input the corresponding argument type and value and the return type and value.
It is very easy to use. Moreover, the interface is implemented using HTML and Applet
and thus even a new user can still know how to use this system in a short time.

75



Transparency: The retrieval mechanism in this method is totally performed by the
system once the user inputs his/her expected test program and the return data. The user

does not need to understand the inner structure of the system.

4.2  Comparison

In chapter 1, we have discussed different retrieval approaches. Obviously, the proposed
method is an improvement over the Niu and Park’s execution-based retrieval, which
belongs to the operational semantics category. The comparison with Niu and Park’s

methodology is as follows:

Similarities

e Both methods execute the test program on all the components in the library and
compare the returned result and the expected result.

¢ Both component libraries store Java classes.

¢ Both methods support the class hierarchy.

¢ Both methods allow exact matching and appropriate matching.

Differences

e Our class libraries are “real world classes” rather than those only providing function
such as calculation. Our classes can have user-built-in attributes and parameters.

¢ Our method can capture the complete behavior of the class by providing the
constructor, modifier and observer with different input interfaces, and by organizing
the input messages into a test program according to the input order. The precision is
higher.

e Our method allows users to call different constructors to create various instances and
test different messages rather than use the default constructor as Niu and Park’s
method. The recall is improved.

* Our method does not need users to consider the argument order during the input. This
is handled by the system and the recall is higher.

76



o Our method stores the information of the class from the library during the first time
loading and compares the test message with the stored information before execution.

It saves loading and executing time and increases the efficiency.

4.3 Conclusion

In this thesis, an improved execution-based retrieval methodology is proposed for
retrieving reusable class components from the Java class library. This method based on
the user’s expectation selects some of the sub-libraries, and executes the user’s input data
on the classes to retrieve the class candidates whose behaviors closely match the query.
The mechanics of this method are described and the comparison with previous methods is
made. Based on this method, a prototype called the EBCRS system is developed using
HTML-JavaScript-Applet and Java Serviets. This system could be used to retrieve,
browse and save the Java classes from the class library. It also allows the administrator to

manage the class library such as adding and deleting classes into/from the class library.

Although some previous retrieval methods are designed for object-oriented classes, they
do not actually refer to the OO classes or provide no implementation. The proposed
methodology is the first one to retrieve the complete behavior of a class from the class
library. It also largely improves the retrieval efficiency and effectiveness. The follows are

the main achievements:

e A true OO component retrieval methodology is provided on the “real world” class
library and a useful tool is implemented.

e Not only the default constructor but also the user-selected constructors are allowed to
create instances of a class with which the test messages are sent for execution. The
retrieval precision and recall have been greatly improved.

e Any order of arguments and an organization of the class library into several sub-
libraries could largely improve the retrieval recall.

* Runtime storage of the method return type and parameter list could reduce the time

complexity during retrieval execution.

77



e Characteristics of OO classes such as inheritance, overloading and overriding are
fully considered.

e An HTML (Applet)-Java servlet implementation allows the system to be Internet
ready.

4.4 Future Work

A number of ways are possible for further extension of the proposed methodology and
implementation. The class library could be organized using the type (functionality) based
method, which could largely improve the system efficiency. Although the non-primitive
type variables are allowed in the class definition as attributes or as parameters, no such
types are allowed during input. A simple extension of the class library including those
objects in the library could overcome this shortcoming. An access modifier matching
may be added to before execution in order to achieve more accurate retrieval. An auto-
generated test program could be added to for some users who may not want to input the
data by themselves.

78



10.

11.

References

Aranow, E., 1997. Software reuse: because the waters are nsing.
http://www.reuse.com/waterris.html.
Atkinson, S. and Duke, R., 1995. Behavioral retrieval from class libraries. Australian

Computer Science Communication, 17 (1): 13-20.

. Biddle, R. and Tempero, E., 1995. Understanding OOP language support for

reusability. In Proceedings of the 7" Annual Workshops on Institutionalizing
Software Reuse, St. Charles, IL, USA, pp. 1-7.

Booch, G., 1994. Object-oriented analysis and design with application. Menlo Park,
CA: Benjamin/Cummings, 2™ ed.

Cheng, J., 1993. Improving the software reusability in object-oriented programming.
ACM SIGSOFT Software Engineering Notes, 18(4): 70-74.

Chou, S. H., Chen, J. Y. and Chung, C. G., 1996. A behavior-based classification and
retrieval technique for object-oriented specification reuse. Software - Practice and
Experience, 26(7): 815-832.

Damiani, E., Fugini, M. G. and Fusaschi, E., 1997. A descriptor-based approach to
OO code reuse. Computer, 30(10): 73-80.

Etzkorn, L. H. and Davis, C. G., 1997. Automatically identifying reusable OO.
Computer, 30(10): 66-71.

Fischer, M. K. and Struckmann, W., 1995. VCR: A VDM-based software component
retrieval tool. http://www.cs.tu-bs.de/softech/papers/icse17-fmws.html, pp. 30-38.
Gonzalez, P. and Fernandez, C., 1997. A knowledge-based approach to support
software reuse in object-oriented libraries. In Proceedings of the 9® International
Conference on Software Engineering and Knowledge Engineering, SEKE’97
Knowledge System Institute, Skokie IL, pp. 520-527.

Hall, R. I., 1993. Generalized behavior-based retrieval. In Proceedings of the 15th
International Conference on Software Engineering, Baltimore, MD, USA, pp. 371-
380.

79



12. Helm, R. and Maarek, Y. S., 1991. Integrating information retrieval and domain
specific approaches for browsing and retrieval in object-oriented class libraries. In
Proceedings of OOPSLA'91, pp. 47-61.

13. Honiden, S., 1993. Formal specification modeling in OOA. IEEE Software, 10(1):
54-66.

14, Isakowitz, T. and Kauffman, R. J., 1996. Supporting search for reusable software
object. IEEE Transaction on Software Engineering, 22(6): 407-423.

15. Jeng, J. J. and Cheng, B. H. C., 1992. Using automated reasoning techniques to
determine software reuse. International Journal of Software Engineering and
Knowledge Engineering, 2(4): 523-546.

16. Jeng, J. J. and Cheng, B. H. C., 1995. Specification matching for software reuse: A
foundation. In Proceedings of the ACM SIGSOFT Symposium on Software Reuse,
Seattle, Washington, USA, pp. 97-105.

17. Jones, T. C., 1984. Reusability in programming: A survey of the state of the art. IEEE
Transactions on Software Engineering, 10(5) 488-494

18. Krueger, C. W., 1992. Software reuse. ACM Coinputingfurvey's, 24(2): 131-183.

19. Lee, S., Choi, H., Yang, Y. and Lee, S., 1999. Storage and management of object-
oriented frameworks. IEEE Transactions on Software Engineering, 25(4): 762-767.

20. Liao, H. and Wang, F., 1993. Software reuse based on a large object-oriented library.
Software Engineering Notes, 18(1): 74-80.

21.Lim, W. C., 1994. Effects of reuse on quality, productivity, and economics. IEEE
Software, 11(5): 23-30.

22. Maarek, Y. S., Berry, D. M. and Kaiser, G. E., 1991. An information retrieval
approach for automatic constructing software libraries. IEEE Transactions on
Software Engineering, 17(8): 800- 813.

23. McClure, C., 1995. Model-driven software reuse: Practicing reuse information
engineering style. http://www reusability com/papers2. himl.

24. McManis, C., 1996. Code reuse and object-oriented systems: Using a helper class to
enforce  dynamic  behavior. http://www javaworld.com/jw-12-1996/jw-12-
indepth. html

80



25. Meyer, B., 1988. Reusability: The case for object-oriented design. IEEE Software,
5(1): 50-64.

26. Mili, A, Mili, R. and Mittermeir, R, 1994. Storing and retrieving software
components: A refinement-based system. In Proceedings of the 16" International
Conference on Software Engineering, Sarrento, Italy, pp. 91-100.

27.Mili, H,, Mili, F. and Mili, A, 1995. Reusing software: Issues and research
directions. IEEE Transactions on Software Engineering, 21(6): 528-562.

28 Mili, A, Mili, R. and Mittermeir, R., 1998. A survey of software reuse libraries.
Annals of Software Engineering, 5: 349-414.

29. Nelson, M. and Poulis, T., 1995. The class storage and retrieval system: Enhancing
reusability in object-oriented systems. OOPS Messenger, 6(2): 28-36.

30. Ny, H., 1999. Execution-based retrieval of object-oriented components for reuse, M.
Sc. Thesis, School of Computer Science, University of Windsor.

31.Niu, H. and Park, Y., 1999. An execution-based retrieval of object-oriented
component. In Proceedings of the ACM Southeast Conference (ACMSC), pp. 160-
167.

32. Podgurski, A. and Pierce, L., 1992. Behavior sampling: A technique for automatic
retrieval of reusable components. In Proceedings of the 14™ International Conference
on Software Engineering, ACM Press, New York, USA, pp. 300-304.

33. Podgurski, A. and Pierce, L., 1993. Retrieval reusable software by sampling behavior.
IEEE, ACM Transaction on Software Engineering and Methodology, 2(3): 286-303.

34. Pricto-Diaz, R., 1991. Implementing faceted classification for software reuse.
Communication of ACM, 34(5): 88-97.

35. Prietro-Diaz, R., 1992. A domain analysis process model. SPC-92032, Software
Productivity Consortium, Herndon, VA.

36. Prieto-Diaz, R., 1993. Status report: Software reusability. IEEE Software, 10(3): 61-
66.

37. Rittri, M., 1990. Retrieving library identifications via equation matching of types. In
Proceedings of the 10th International Conference on Automated Deduction,
Kaiserslautern, Germany, pp. 603-617.

81



38. Standish, T. A., 1984. An essay on software reuse. IEEE Transactions on Software
Engineering, 10(5): 494-497.

39. Steigerwald, R. A., 1992. Reusable component retrieval with formal specification. In
Proceedings of the 5% Annual Workshop on Software Reuse, Victoria, British
Columbia, Canada, pp. 21-27.

40. Wing, J. M., 1990. A specifier's introduction to formal methods. Computer, 23(9): 8-
24.

41. Zaremski, A. M. and Wing, J. M., 1995. Signature matching: A tool for using
software libraries, ACM Transactions on Software Engineering and Methodology
(TOSEM), 20(4): 6-17.

82



Vita Auctoris

Name: Shaochun Xu
Place of Birth: Hubei, P. R. China

Date of Birth: February 5, 1965
Education:
1999-2001 M. Sc., School of Computer Science, University of Windsor, Windsor,

Ontario, Canada

1997-1999 Post-doctorate Research Fellow, Department of Geological Sciences,
University of Manitoba, Winnipeg, Manitoba, Canada

1991-1996 Ph. D., Department of Geological Sciences, University of Liege, Liege,
Belgium

1984-1987 M. Sc., Chinese Academy of Geological Sciences, Beijing, China

1980-1984 B. Sc., Department of Geology, Peking University, Beijing, China

83



Appendix - A Part of Java Source Codes

[EFERREA SRR AERERREA AR EEF SRR IR SRR TR SRR AR R R IR RS R Rk S/

/* Class AccessServlet handles the user login. It stores the userid and password entered */
/* by the user, accesses MS access database through JDBC, compares the userid and*/
/*password with those stored in database and dynamically creates a HTML page or ~ */

/* redirect to MainInterface. */
/##*********#*********##*#*#****##***#**#********#*******#***#***#********#***/

import java.io.*;

import java.util. *;

import java.net.*;

import java.sql.*;

import javax.serviet.*;
import javax.serviet.http.¥;

public class AccessServlet extends HitpServlet
{

// modify this constants
final static String DB NAME = "Records";
final static String DB USER ="";

final static String DB PASSWORD ="";
/I end modify

String dbUrl = "jdbc:odbe:" + DB_NAME;
Connection con = null;

public void doPost (HttpServietRequest req, HitpServletResponse res)
throws ServletException, IOException

{

Statement stmt = null;
// get the servlet output stream
ServletOutputStream out = res.getOutputStream();

// set the content type
res.setContent Type("text/html");

// get the query parameter from the html form or from the direct call
String userid = req.getParameter("userid");

String password=req.getParameter("password");

try

// Load the sun jdbc-odbc bridge driver
Class.forName ("sun.jdbc.odbe.JdbcOdbeDriver");

// connect to the jdbc-odbc bridge driver

84



con = DriverManager.getConnection(dbUrl, DB_USER, DB_PASSWORD),

// Create a Statement so we can submit statements to the driver
stmt = con.createStatement();

// Submit the query, creating a ResultSet object

ResultSet rs = stmt.executeQuery ("select * from myTable where name
= "+userid+"' and pass = "'+ password+"");

if (rs.next())
res.sendRedirect("http://127.0.0.1:8080/Ebcrs/Client/MainInterface. html");
else

display (out, userid);

}

rs.close();

// Close the statement

stmt.close();

// Close the connection

con.close();
}
catch (SQLException ex)
{

System.out.println("SQL exception");
catch (Exception ex)
{

System.out.printin("Exception: ");
out.close();

}

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServietException, JOException

{
}

doPost (req, res);

private void display (ServietOutputStream out, String userid)
throws SQLException, IOException
{

//Display first the column headings
out.printin("<HTML><HEAD>");
url=\"http://127.0.0.1:8080/Ebcrs/UserLogin.html\"");
out.printin("<TITLE><Acess Denied></TITLE></HEAD>");

85



}

out.printin("<BODY><center><B><h2>" + userid + ", You login and password are
invalid. </h2></B><BR><BR>");

out.println("<b><i><hI>Please <a
href=\"http://127.0.0.1:8080/Ebcrs/Client/UserLogin.htmI\">try again
</h1></i></b></a>");

out.println("</center></BODY></HTML>");

} // end of serviet

/***************#***************#**************#*****/

/* Class Daemon accepts the requests from client side, */

/* and performs different operations according the the requests */
/*********#*#***********##*****#***#********#***#*#**/

import java.io.*;

import java.net.*;

import java.util. ¥;

import javax.servlet.*;
import javax.servlet.http.*;

class Daemon extends Thread {

private ServerSocket servletSocket;
private DaemonHttpServlet servlet;

public Daemon (DaemonHttpServlet servlet) {
this.servlet = servlet;

public void run () {
try{

/lcreate a server socket to accept connection
servletSocket=new ServerSocket (servlet.getSocketPort());

catch (Exception e) {
servlet.getServletContext().log(e, "Problem establishing server socket");

k4

return;
}
try{
while (true)
try{
serviet.handleClient(servletSocket.accept());
}
catch (IOException ¢)

86



serviet.getServietContext().log(e, "Problem establishing server

socket");

}

}
} catch (ThreadDeath ¢) {

/iwhen thread is killed, close the server socket
try{

servietSocket.close();

}

catch(IOException io¢)
{

servlet.getServletContext().log(e, "Problem closing server socket");
}

JrEFRREkk kR kR Rk kdokkkkokkkRokdkkgdkkkokkdokkkkkkdokkkokkkRdokkkkkkk ok Rk khkkdok ok khkkk/

/* Class DacmonHittpServlet is an abstract class extending HttpServlet, performing low-
level socket management. The init() method creates and starts a new Daemon thread
which is in charge of listening for incoming connections. The destroy() method stops the
thread. The Daemon thread begins by establishing a ServietSocket to listen on some
specific socket port. The socket port is determined by a call to the servlet’s
getSocketPort() method. After establishing the ServerSocket, the Daemon thread waits

for incoming requests with a call to serverSocket.accept() */
/**************************************************************#**************/

import java.io.*;

import java.net.*;

import java.util. ¥;

import javax.serviet.*;
import javax.serviet.http.*;

public abstract class DaemonHttpServlet extends HttpServlet {

protected int DEFAULT_PORT =1313; // not static or final
private Thread daemonThread,

public void init (ServletConfig config) throws ServletException
{
super.init(config);
//start a daemon thread
try {
daemonThread = new Daemon (this);
daemonThread.start ();

87



)
catch (Exception ¢) {
System.out. printin("Problem starting socket server daemon thread");
}

}

protected int getSocketPort() {

try {

return Integer.parselnt(getInitParameter("socketPort"));

catch (NumberFormatException e) {
return DEFAULT PORT;

H
}
abstract public void handleClient(Socket client);
public void destroy () {
try {
daemonThread=nuil;
}
catch (Exception e) {
System.out.println("Problem stopping socket server daemon thread");
}
}

L L T e T T L Y

/* Class MainServlet class is the most important servlet which extends DaemonHttpServiet
and implements a handleClient(Socket) method that spawns a new MainConnection
thread. It accepts the client message and lets the handleClient method to perform action
based on the request given. This servlet will be loaded at startup time of the server so that

it can be accessed directly. */
JEERERRERREREFERRER LRI RERERRREFRFLRARRAKERRRERRERERFRRTRRRERRA R AR RSk Rk ok

import javaio.*;

import java.net.*;

import java.util *;

import javax.servlet.*;
import javax.serviet.http.*;

public class MainServlet extends DaemonHttpServlet {

88



public void init (ServletConfig config) throws ServletException

{
super.init{config);
}
public void doGet(HttpServietRequest req, HttpServietResponse res) throws
ServletException, IOException
{
}

public void doPost (HttpServletRequest req, HttpServletResponse res) throws
ServletException, IOException

{
doGet(req, res);
}
public void destroy () {
super.destroy();
}

//handle a client's socket connection by spawning
public void handleClient(Socket client) {

new MainConnection (this, client).start();
}

3
class MainConnection extends Thread {

MainServlet serviet;
Socket client;
BufferedReader in = null;
PrintWriter out = null;

MainConnection (MainServlet servlet, Socket client) {
this.servlet=servlet;
this.client=client;
setPriority (NORM_PRIORITY-1);

try {
in = new BufferedReader(new InputStreamReader(client. getlnputStream()));
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter

(client.getOutputStream())), true);
3 catch (IOException ¢) {

System.out.printin("IOException: " + ¢);
}

89



public void run () {
String flag = new String();

/* Read the interface flag from client */

try {
flag = in.readLine();
} catch (I0Exception e) {
System.out.println("IOException: " + ¢);
}

if (flag.equals("MAIN INTERFACE")) {
System.out.println("Begin Processing Request from Main Interface...");

String ClassLibString = null,

/* The class list to be executed comes from class library */
ClassLib.setFromClassLib(true);
MatchInfo.initialize();

/* Send the class lib name list to the client */
try {
RandomAccessFile ClassLibListFile = new
RandomAccessFile("C:/Ebcrs/Server/ClassLibList.txt", "r");
while ((ClassLibString = ClassLibListFile.readLine()) != null) {
out.println(ClassLibString);
}

ClassLibListFile.close();
3 catch (Exception ¢) {

System.out.println("Error opening and reading class lib list: " + e);
}

out.println("END CLASS LIB LIST");

/* Send the current class lib name to the client */
out.printin(ClassLib.getFullClassLibName());

/* Read the current class lib name from the client */
try {

ClassLibString = in.readLine();

in.readLine(); /* String "END MAIN INTERFACE" ¥/
} catch (Exception e) {

System.out.println("Error getting info from client: " + ¢);
}

/* Set up the current class library */

if (ClassLibString == null || ClassLibString.compareTo("") = 0)
ClassLibString = new String("C:/Ebcrs/ClassLib/ClassLib.txt");
ClassLib.setClassLib(ClassLibString);

System.out.println("End Processing Request from Main Interface...");

2

90



if (flag.equals("BROWSE INTERFACE")) {
System.out.println("Begin Processing Request from Browse Interface...");

Vector classList = ClassLib.getClassList();
String className = new String();

/* Send the current class lib path to the client */
out.printin(ClassLib.getClassLibPath());

/* Send the class list in the class library to client */

for (int i = 0; i < classList.size(); i++)
out.println(((String)classList.elementAt(i)).trim());

out.printin("END CLASS LIST");

/* Send class info of a specific class to client */
try {
while ((className = in.readLine()).compareTo("END BROWSE
INTERFACE")!=0) {
Class myClass = Class.forName(className);

System.out.println("This class name

" +className);

ClasslInfo classInfo = new ClassInfo(myClass, out);
classInfo.generallnfo();

classInfo.fieldInfo();

classiInfo.constructorInfo();
classInfo.methodInfo();

out.printin("END CLASS INFO");

}
} catch (Exception ¢) {
System.out.printin("Exception: " + e);
}

System.out.println("End Processing Request from Browse Interface...");

else if (flag.equals("INPUT INTERFACE")) {
System.out.println("Begin Processing Request from Input Interface...");

TestPrg testPrg = new TestPrg();

String message = new String(); /* One line from client */

Vector wholeMessage = new Vector(); /* Hold a whole test program */
Vector methodMessage = new Vector(); /* Hold a whole test message */
Vector classList =new Vector();

try {

while ((message = in.readLine()).compareTo(
“END INPUT INTERFACE") |= 0)

{

91



if (message.compareTo("END TEST PROGRAM") I=0)

wholeMessage.addElement(message);

}
else
{
for (int i = 0; 1 < wholeMessage.size(); i++) {

if (((String)wholeMessage.elementAt(i)).

compareTo("END MESSAGE INFO")==0) {
/* Build a test message info */

/* Add the test message into test program */
testPrg.addMessagelnfo(new
Messagelnfo(methodMessage));
methodMessage.removeAllElements();
/* For next message */

}

else

{
methodMessage.addElement(
(String)wholeMessage.elementAt(i));

}

}
}

/* If the classes to be executed are from class library */
if (ClassLib.getFromClassLib())
classList = ClassLib.getClassList();

/* If the classes to be executed are from candidate classes */
else

{

classList = MatchInfo.getCandidateClasses();

int i=0;

while (i<classL.ist.size())

{
System.out.printin("Class=="+classList.elementAt(i));
i++;

3

}
/* Begin the execution-based retrieval */
Matchinfo.initialize();

Retrieve retrieve = new Retrieve(testPrg, classList);

/* The execution is Successful */
if (retrieve.execute()) {
/* Call the MatchInfo to get the candidate classes */
MatchInfo.execute();
out.println("END EXECUTION-BASED RETRIEVAL —

92



SUCCESS");
}

/* The execution is fail */

else
out.printin("END EXECUTION-BASED

RETRIEVAL -- FAIL");

wholeMessage.removeAllElements(); /* for next test program */

} catch (Exception €) {
System.out.printin("Exception: " + e);

}
System.out.println("End Processing Request from Input Interface...");

else if (flag.equals("ADD INTERFACE")) {
System.out.printin("Begin Processing Request from Add Interface...");

String className = new String();

try {
while ((className = in.readLine()).compareTo

("END ADD INTERFACE")!=0) {
ClassLib.addClass(className);
out.printin("END ADD CLASS -- SUCCESS");

+ catch (Exception e) {
System. out.println("Exception: " + ¢);
out.printin("END ADD CLASS -- FAIL");

System.out.println("End Processing Request from Browse Interface...");

else if (flag.equals("DELETE INTERFACE")) {
System.out.printin("Begin Processing Request from Delete Interface...");

String className = new String();
String classLibName=new String();
String line=new String();

try {
System.out.printin("before read line");

line=in.readLine(); // get the first library name
System.out.println("the class lib 1=="+line);

classLibName= "c:/Ebcrs/"+line+"/"+line+".txt";
ClassLib.setClassLib (classLibName);

93



while ((className = in.readLine()).compareTo
("END DELETE INTERFACE")!=0) {
ClassLib.deleteClass(className);
out.println("END DELETE CLASS -- SUCCESS");

line=(in.readLine(}).trim();
System.out.printin("the class lib 2=="+line);
classLibName= "c:/Ebcrs/"+line+"/"+line+" txt";
ClassLib.setClassLib (classLibName);

}

} catch (Exception ¢) {
System.out.println("Exception: " + ¢);
out.printin("END DELETE CLASS -- FAIL");

}
System.out.printin("End Processing Request from Delete Interface...");

else if (flag.equals("CANDIDATE INTERFACE")) {
System.out.println ("Begin Processing Request from Candidate Interface...");

/* Send the current class lib path to the client */
out.println(ClassLib.getClassLibPath());

/* Send the candidate classes to client */

Vector CandidateClasses = MatchInfo.getCandidateClasses();

for (int i = 0; i < CandidateClasses.size(); i++)
out.println((String)CandidateClasses.element At(i));

out.printin("END CANDIDATE CLASSES");

try {
String message = null;

/* If client requests class info */

while ((message=in readLine()).compareTo(

"END CANDIDATE INTERFACE") =0 &&
message.compareTo("FILTER CANDIDATE CLASSES
BUTTON") 1=0) {

Class myClass = Class.forName(message);
ClassInfo classinfo = new ClassInfo(myClass, out);
classInfo.generalInfo();

classInfo. fieldInfo();

classInfo.constructorinfo();

classinfo.methodInfo();

out.printin("END CLASS INFO"),

}

/* If the client wants to filter the candidate classes */



if (message.compareTo("FILTER CANDIDATE CLASSES BUTTON")
==0) {
ClassLib.setFromClassLib(false);
message = in.readLine();
/* "END CANDIDATE INTERFACE" */
}
} catch (Exception €) {
System.out.println("Exception: " + ¢);

System.out.printin
("End Processing Request from Candidate Interface...");
}

try {
in.close();
out.close();
client.close();
} catch (IOException e) {
System.out.printin("IOException: " + e);
}

/*******#******#*#***#*********t*****************************#**#**##****t****/

/* Class Retrieve handles all the retrieval requests. It executes the test program according
to the order of messages and type of messages (constructor, observer and modifier). It
stores the method’s signature in a vector during the first time loading from the server.
Each time it compares the argument list and return type between the test message and
loaded classes before execution. It then compares the returned value and the expected

result */
/*******#*******************#******#**#*#**********************##*************/

import java.io.¥;
import java.lang.reflect.*;
import java.util. *;

public class Retrieve {
TestPrg testPrg = new TestPrg();
Vector classList = new Vector();
int totalMethods; /* total methods in a class and/or its superclass(es) */

int totalConstructors;
final int RUNTIME = 60; /* the whole execution time allowed in second */

/* Constructor -- accepts a test prgram and a class list */

95



public Retrieve (TestPrg testPrg, Vector classList) {
this.testPrg = testPrg;
totalMethods =0;
totalConstructors=0;

}

/* Execute the test program on the class list */

public boolean execute () {
Class myClass = null;

/* Use a timer to handle endless execution */
GregorianCalendar total Time = new GregorianCalendar();
total Time.add(Calendar SECOND, RUNTIME);

for (int i = 0; i < classList.size(); i++) {

/* If time expired, stop the process */
GregorianCalendar currentTime = new GregorianCalendar();
if (currentTime.after(total Time)) return false;

String className = (String)classList.elementAt(i);

try {
myClass = Class.forName(className);

} catch (Exception e) {
System.out.println(className + " Exception: " + ¢);

try{
executeTestPrg(myClass);

catch (Exception e) {
System.out.println(" One Exception: " + ¢);
}
}

return true;
}

/* Method executeTestPrg executes the test program on one class by
executing the test program on each method in the class (and/or its
superclasses), and stores the match information into MatchInfo class */

private void executeTestPrg (Class myClass) {
boolean match = false;
int matchMethods =0;
int nonMatchMethods = 0;
int maxTotalMethods = 0,
String matchedMethodDesc = new String();
Object instanceOfClass =null; //
String storedClass =new String (myClass.getName()) ;
// because myClass may change to superclass

96



/* Matched methods in a class and/or its superclass(es) */
Vector matchedMethodList = new Vector();

for (int i = 0; i < testPrg.getNumOfMessages(); i++) {
/* Execute a test message on a class */

matchedMethodDesc = executeMessageOnClass(
testPrg.getMessagelnfo(i), myClass, matchedMethodList, instanceOfClass);

if (matchedMethodDesc.compareTo("NO MATCH FOUND") = 0) {
matchedMethodList.addElement(matchedMethodDesc);
matchMethods++;
}
}

maxTotalMethods=totalMethods+totalConstructors;

/* save match info, exclude the classes without match methods */

if (matchMethods > 0) {
Matchinfo.addMatchinfo(storedClass,
matchMethods);
System.out.println("Send to MatchInfo: " + storedClass + " " +
matchMethods);
}
}

/* Method executeMessageOnClass executes a test message on a class to
find a match. If a match is not found, the program will search to its
superclass(es) to find a match. The matched method name is returned. */

public String executeMessageOnClass (Messagelnfo message, Class myClass,
Vector matchedMethodList, Object instanceOf) {

Class thisClass = null;

try{
thisClass=Class.forName(myClass.getName());

catch (Exception e) {
System.out.println("exceptttt");
}

boolean match = false;
Vector methodsInSubclass = new Vector();
Object instanceOfClass = instanceOf:

totalMethods = 0; // total methods in this class and/or its superclass(es)
totalConstructors =0;

97



/lexecute the message on constructor if it is constructor
if (nessage.getReturnType().equals("None")) {

Constructor constructors[]=thisClass.getDeclaredConstructors();
totalConstructors +=constructors.length;

for (int i = 0; i < constructors.length; i++) {

match = executeMessageOnConstructor(message, constructorsfi],
thisClass, instanceOfClass);
if (match) return constructorsfi}.toString();

}

else { //execute on methods
while ((thisClass.getName()).compareTo("java.lang. Object") 1= 0) {
Method methods[] = thisClass.getDeclaredMethods();

totalMethods += methods.length;
if (instanceOfClass==null) //if no constructor is called
{
try {
mstanceOfClass = thisClass.newInstance();
} catch (Exception exception) {
System.out.printin(thisClass.getName() + " Exception: " +
exception);
return "NO MATCH FOUND";
}
}

for (int i = 0; i < methods.length; i++) {
/* If a method is overridden in the subclass, skip it */
if (methodsInSubclass. contains(methods[i].getName())) continue;

/* If a method is already matched before, skip it*/

/* use toString() rather getName() to catch the exact method if there
are several methods in a class with same name */

if (matchedMethodList.contains{methods{i].toString())) continue;

match = executeMessageOnMethod(message, methods[i], thisClass,
instanceOfClass),

if (match) return methods]i].toString();
}

/* Otherwise, executes its superclass to find a match */
thisClass = thisClass.getSuperclass();

//because instanceOfClass now is for superclass
instanceOfClass=null;

methodsInSubclass = addMethods(methodsInSubclass, methods); //this may not right

98



} //end of while
} /fend of else
return "NO MATCH FOUND",

}

/* Method executeMessageOnConstructor executes a test message on a class constructor to find a
match */

public boolean executeMessageOnConstructor (Messagelnfo message, Constructor constructor,
Class thisClass, Object instanceOfClass) {

boolean match = false;

int numOfMessageParameters = message.getNumOfParameters();

String[] messageParameterTypes = new String[numOfMessageParameters];

Object{] messageParameterValues = new ObjectinumOfMessageParameters];

String[] messageParameterTypes! = new String[numOfMessageParameters]; //for sorting use

message.getParameter Types().copylnto(messageParameter Types);
message.getParameterTypes().copyInto(messageParameterTypesl); //inorder to sort

message. getParameter Values().copyInto(messageParameter Values);

/* Compare numbers of parameters */

Class parameterTypes([] = constructor.getParameterTypes();
System.out.printin("constructor=="+constructor.toString());

// if this is no-arg constructor

System.out.println("no aragume= "+ numOfMessageParameters+" no parameter= "+

parameter Types.length);

if (numOfMessageParameters==0&&parameter Types.length==0)

{
try {
instanceOfClass = thisClass.newInstance();
// instanceOfClass = constructor.newlnstance();
} catch (Exception exception) {
System. out. printin(thisClass. getName() + " Exception: " + exception);
return false;
¥
return true;
H

if (numOfMessageParameters != parameterTypes.length) return false;

/* Compare each parameter types in order*/



int parameterLength =parameter Types.length;
int j;
for (j = 0; j < parameterTypes.length; j++) {
match = matchType(messageParameterTypes[j].toString(),
parameterTypes{j].toString());
if (! match) break;

}
if (j==parameterLength)
{
try {
instanceOfClass = constructor.newInstance(messageParameter Values);
} catch (Exception exception) {
System.out.println(thisClass.getName() + " Exception: " + exception);
return false;
}
return true; //if it matches
}

/* Compare each parameter types in reverse order*/
for (j = 0; j < parameterLength; j++) {

match = matchType(messageParameter Types][j].toString(),
parameter Types[parameterLength-j-1].toString());
if (! match) break;

}
if (j==parameterLength)
{
messageParameter Values=reverse (messageParameterValues);
//change the order of value
try {
instanceOfClass = constructor.newInstance(messageParameterValues);
} catch (Exception exception) {
System.out.printin(thisClass.getName() + " Exception: " + exception);
retumn false;
}
return true; //if it matches
}
/* if there is less than 3 parameters then no match */
if(parameterLength<3)
return false;

/* if there are more than three parameters, we increase more chances
order=1, second-first-..... last

order=2 third--second-first....

order =3 first~third-second....

order=4 third--first-second-...

order=5 second-third--first--fourth-...

order=6 fourth-second-third--first---. ..

100



please note each change will infect later change */

/* order=1 second-first-......1ast */
messageParameterTypesl=changeTypeOrder (messageParameterTypesl, 1);
for (j = 0; j <parameterLength; j++) {
match = matchType(messageParameter Types1{j].toString(),
parameter Types{j].toString());
if (! match) break;

if (j==parameterLength)
{
messageParameterValues=changeValueOrder (messageParameterValues, 1);
try { |
mstanceOfClass = constructor.newInstance(messageParameterValues);
} catch (Exception exception) {
System.out.printIn(thisClass.getName() + " Exception: " + exception);
return false;
}
return true; //if it matches

}

/lorder =2 third-second-first..., the different messageParameterTypes
messageParameterTypes1=changeTypeOrder (messageParameterTypesl, 2);
for (j = 0; j <parameterLength; j++) {

match = matchType(messageParameter Types1[j].toString(),

parameter Types{j].toString());

if (! match) break;
}
if (j==parameterLength)
{

messageParameterValues=changeValueOrder (messageParameterValues, 2
try {
instanceOfClass = constructor.newInstance(messageParameterValues);
} catch (Exception exception) {
System. out. println(thisClass.getName() + " Exception: " + exception);
return false;
}
return true; //if it matches

}

/lorder =3, first-third-second-..., the different messageParameterTypes
messageParameter Types1=changeTypeOrder (messageParameterTypesl, 3);
for (j =0; j < parameterLength; j++) {

match = matchType(messageParameterTypes! [j].toString(),

parameter Types][j].toString());

if (! match) break;
}
if (j==parameterLength)
{

messageParameterValues=changeValueOrder (messageParameterValues, 3);
try {

101



instanceOfClass = constructor.newInstance(messageParameterValues);
} catch (Exception exception) {

System.out.printin(thisClass.getName() + " Exception: " + exception);

return false;

return true; //if it matches

}

//order =4, third--first--second-..., the different messageParameterTypes
messageParameterTypesl=changeTypeOrder (messageParameterTypesl, 4);
for (j =0; j < parameterLength; j++) {

match = matchType(messageParameterTypes1[j}].toString(),
parameter Typesj].toString());
if (! match) break;
}
if (j==parameterLength)

messageParameterValues=changeValueOrder (messageParameterValues, 4);
try {

instanceOfClass = constructor.newInstance(messageParameterValues),
3 catch (Exception exception) {

System.out.println(thisClass.getName() + " Exception: " + exception);

return false;

return true;, //if it matches

}

/lorder =5, second--third--first---..., the different messageParameterTypes
messageParameter Types 1=changeTypeOrder (messageParameterTypesl, 5);
for (j = 0; j < parameterLength; j++) {

match = matchType(messageParameter Types1[j].toString(),
parameter Types{j].toString());
if (! match) break;

if (j==parameterLength)
{
messageParameter Values=changeValueOrder (messageParameter Values, 5
try {
instanceOfClass = constructor.newInstance(messageParameterValues);
} catch (Exception exception) {
System.out.printin(thisClass.getName() + " Exception: " + exception);

return false;
}
return true; //if it matches
}
if(parameterLength<4)

return false;

/*fourth-second--third--first--... */
messageParameter Typesl=changeTypeOrder (messageParameterTypes1, 6);

102



for (j = 0; j < parameterLength; j++) {
match = matchType(messageParameterTypes1 [j].toString(),
parameter Types[j].toString());
if (! match) break;

}
if (j==parameterLength)
{
messageParameterValues=changeValueOrder (messageParameterValues, 6);
try {
instanceOfClass = constructor.newlInstance(messageParameter Values);
} catch (Exception exception) {
System.out.printin(thisClass.getName() + " Exception: " + exception);
return false;
return true; //if it matches
}
return false;
}

/* Method executeMessageOnMethod executes a test message on a class method to find a match
*/

public boolean executeMessageOnMethod (MessageInfo message, Method method,
Class thisClass, Object instanceOfClass) {

boolean match = false;
Class methodReturnType = null;
Object methodReturnValue = new Object();

String methodReturnString = new String();

/* Test message info */

int  numOfMessageParameters = message.getNumOfParameters();

String[] messageParameterTypes = new String[numQOfMessageParameters});
Object[] messageParameter Values = new ObjectinumOfMessageParameters];
message.getParameter Types().copylnto(messageParameter Types);
message.getParameterValues().copyInto(messageParameter Values);

String messageReturnType = message.getReturnType();

String messageReturnValue = message.getReturnValue();

/* Compare numbers of parameters */
Class parameterTypes[] = method.getParameterTypes();
if (numOfMessageParameters != parameterTypes.length) return false;

/* Compare the return types */

methodReturnType = method.getReturnType();

match = matchType(messageReturnType, methodRetumnType.toString());
if (! match) return false;

/* Compare each parameter types in order*/
int parameterLength =parameterTypes.length;

103



nt j;
for (j = 0; j < parameterTypes.length; j++) {
match = matchType(messageParameter Typeslj].toString(),

parameterTypes[j].toString());
if (! match) break;
3
if (j==parameterLength)
{
y { .
methodReturnValue = method.invoke(instanceOfClass,
messageParameter Values);
catch (Exception exception) {
System.out.println("From invoke Method " + method.toString()
+ " in Class " + thisClass.toString() + ": " + exception);
}
/* Compare the return values */
if (methodReturnValue == null) methodReturnString = new String("NULL");
else methodR eturnString = methodReturnValue.toString();
match = matchValue(messageReturnValue, methodReturnString);
if (match) return true; /* One match is found */
}

/* Compare each parameter types in reverse order*/
for (j = 0; j <parameterLength; j++) {

match = matchType(messageParameterTypes|j].toString(),

parameter Types[parameterLength-j-1].toString());
if (! match) break;

}
if j==parameterLength)
{
messageParameterValues=reverse (messageParameterValues);
try {
methodReturnValue = method.invoke(instanceOfClass,
messageParameterValues);

}

catch (Exception exception) {
System.out. println("From invoke Method " + method.toString()
+ " in Class " + thisClass.toString() + ": " + exception);
H
/* Compare the return values */
if (methodReturnValue == null) methodReturnString = new String("NULL");
else methodReturnString = methodReturnValue.toString();

match = matchValue(messageReturnValue, methodReturnString);
if (match) return true; /* One match is found */

104



}

/* if there is less than 3 parameters, then no match */
if(parameterLength<3)
return false;

/* if there are more than three parameters, we increase more chances
order=1, second-first-......last

order=2 third--second-first....

order =3 first-third-second....

order =4 third-first-second...

order=5 second-third--first--fourth-...

order=6 fourth-second-third--first---...

please note each change will infect later change */

/* order=1 second-first-......last ¥/
messageParameterTypes=changeTypeOrder (messageParameterTypes, 1);
for (j = 0; j < parameterLength; j++) {

match = matchType(messageParameter Types[j].toString(),

parameterTypes{j].toString());

if (! match) break;
}
if (j==parameterLength)
{

messageParameterValues=changeValueOrder (messageParameterValues, 1);
try {
methodReturnValue = method.invoke(instanceOfClass,
messageParameterValues);
}
catch (Exception exception) {
System.out.printin("From invoke Method " + method.toString()
+ " in Class " + thisClass.toString() + ": " + exception);

}

/* Compare the return values */
if (methodReturnValue = null) methodReturnString = new String("NULL");
else methodReturnString = methodReturnValue.toString();

match = matchValue(messageReturnValue, methodReturnString);
if (match) return true; /* One match is found */

}

//order =2 third-second-first..., the different messageParameterTypes
messageParameter Types=changeTypeOrder (messageParameterTypes, 2);
for (j = 0; j < parameterLength; j++) {
match = matchType(messageParameterTypes{j].toString(),
parameter Types[j].toString());
if (! match) break;

105



if (j==parameterLength)
{
messageParameter Values=changeValueOrder (messageParameter Values, 2);
//change the order of value

try {
methodReturn Value = method.invoke(instanceOfClass,

messageParameter Values);

catch (Exception exception) {
System.out.printin("From invoke Method " + method.toString()
+ " in Class " + thisClass.toString() + ": " + exception);

}

/* Compare the return values */
if (methodRetumn Value == null) methodReturnString = new String("NULL");
else methodReturnString = methodReturnValue. toString();

match = matchValue(messageReturnValue, methodReturnString);
if (match) return true; /* One match is found */

}

/lorder =3, first-third-second-..., the different messageParameterTypes
messageParameterTypes=changeTypeOrder (nessageParameterTypes, 3);
for (j =0, j < parameterLength; j++) {

match = matchType(messageParameter Types{j].toString(),
parameter Types{j].toString());
if (! match) break;

if (j==parameterLength)
{
messageParameterValues=changeValueOrder (messageParameterValues, 3);
//change the order of value

try {
methodReturn Value = method.invoke(instanceOfClass,

messageParameterValues);

catch (Exception exception) {
System.out.println("From invoke Method " + method.toString()
+ " in Class " + thisClass.toString() + ": " + exception);

}
/* Compare the return values */

if (methodReturn Value == null) methodReturnString = new String("NULL");
else methodReturnString = methodReturn Value.toString();

match = matchValue(messageReturnValve, methodReturnString);
if (match) return true; /* One match is found */

}

//order =4, third first-second-..., the different messageParameterTypes

106



messageParameterTypes=changeTypeOrder (messageParameterTypes, 4);
for (j =0; j <parameterLength; j++) {
match = matchType(messageParameter Types[j].toString(),
parameter Types][j}.toString());
if (! match) break;

if (j==parameterLength)

messageParameterValues=changeValueOrder (messageParameterValues, 4);
//change the order of value
try {
methodReturnValue = method.invoke(instanceOfClass,
messageParameterValues);
}
catch (Exception exception) {
System.out.println("From invoke Method " + method.toString()
+ "in Class " + thisClass.toString() + ": " + exception);

}

/* Compare the return values */
if (methodRetum Value == null) methodR eturnString = new String("NULL");
else methodReturnString = methodReturn Value.toString();

match = matchValue(messageReturnValue, methodReturnString);
if (match) return true; /* One match is found */

}

//order =5, second--third--first--..., the different messageParameterTypes
messageParameterTypes=changeTypeOrder (messageParameterTypes, 5);
for (j = 0; j < parameterLength; j++) {

match = matchType(messageParameter Types[j].toString(),
parameter Types|j].toString());
if (! match) break;

}
if (j==parameterLength)
{
messageParameter Values=changeValueOrder (messageParameter Values, 5);
try {
methodReturnValue = method.invoke(instanceOfClass,
messageParameterValues);
}

catch (Exception exception) {
System.out. printin("From invoke Method " + method.toString()
+ " in Class " + thisClass.toString() + ": " + exception);

}

/* Compare the return values */
if (methodReturn Value == null) methodReturnString = new String("NULL");
else methodReturnString = methodReturnValue. toString();

match = matchValue(messageReturnValue, methodReturnString);

107



if (match) return true; /* One match is found */

}

if(parameterLength<4)
return false;

/*fourth-third--first--second... */
messageParameterTypes=changeTypeOrder (messageParameterTypes, 6);
for (j = 0; j < parameterLength; j++) {
match = matchType(messageParameter Types[j].toString(),
parameterTypes{j].toString());
if (! match) break;

}
if (j==parameterLength)
{
messageParameterValues=changeValueOrder (messageParameterValues, 6);
methodReturnValue = method.invoke(instanceOfClass,
messageParameter Values);
catch (Exception exception) {
System.out. println("From invoke Method " + method.toString()
+ " in Class " + thisClass.toString() + ": " + exception);
return false;
}
/* Compare the return values */
if (methodReturnValue == null) methodReturnString = new String("NULL");
else methodReturnString = methodReturnValue.toString();
match = matchValue(messageReturnValue, methodReturnString);
if (match) return true; /* One match is found */
}
return false; /* no match is found */

}

/* Function matchType tests if two types are same or can be converted */
private boolean matchType (String typel, String type2) {

/* Check if type2 is a primitive type */

if (type2.equals("boolean")) type2 = new String("Boolean");
if (type2.equals("byte")) type2 = new String("Byte");

if (type2.equals("short")) type2 = new String("Short");

if (type2.equals("int"))  type2 = new String("Integer");

if (type2.equals(“long"))  type2 = new String("Long");

if (type2.equals("float")) type2 = new String("Float");

if (type2.equals("double")) type2 = new String("Double");
if (type2.equals("char")) type2 = new String("Character");

108



if (type2.equals("void")) type2 = new String("Void");

/* Get the type2 name without prefix description */
int location = type2.lastindexOf{".");
if (location !=-1)
type2 = type2.substring(location + 1, type2.length());

/* Compare the two types */
if (type2.equals("Object")) return true;

if (typel.eqnals("Boolean")) {
if (type2.equals("Boolean")) return true;

}
else if (typel.equals("Byte™)) {
if (type2.equals("Byte") || type2.equals("Short") ||
type2.equals("Integer”) || type2.equals("Long") ||
type2.equals("Float") || type2.equals("Double"))
return true;

}
else if (typel.equals("Short")) {
if (type2.equals("Short") || type2.equals("Integer") ||
type2.equals("Long") || type2.equals("Float") ||
type2.equals("Double™))
return true;
}
else if (typel.equals("Integer")) {
if (type2.equals("Integer") || type2.equals("Long") ||
type2.equals("Float") || type2.equals("Double"))
return true;

h
else if (typel.equals("Long")) {
if (type2.equals("Long") || type2.equals("Float") ||
type2.equals("Double™))

retum true;

3
else if (typel.equals("Float")) {
if (type2.equals("Float") || type2.equals("Double")) return true;

}
else if (typel.equals("Double™)) {
if (type2.equals("Double™)) return true;

else if (typel.equals("Character™)) {
if (type2.equals("Character")) return true;

else if (typel.equals("String")) {
if (type2.equals("String")) return true;

else if (typel.equals("Void")} {
if (type2.equals("Void")) return true;

109



return false;
}

/* Function matchValue tests if two values are same or within the tolerance */

private boolean matchValue (String valuel, String value2) {
Double doubleValuel = null;
Double doubleValue2 = null;

/* If the two vales are same */
if (valuel.equals(value2)) retum true;

if (value2 == null) {
if (valuel.compareTo("NULL") == 0||valuel.equals("")) return true;
else return false;

}

try {
doubleValuel = new Double(valuel);

doubleValue2 = new Double(value2);
} catch (Exception €) {
retorn false;

}

if (doubleValuel != null && doubleValue2 1= null)
if (Math.abs(doubleValuel.doubleValue() -
doubleValue2.doubleValue()) <= 10E-5) return true;
}

return false;

}

/* Method addMethods adds the methods into a vector */

public Vector addMethods (Vector methodInSubclass, Method[] methods) {
for (int i = 0; i < methods.length; i++) {
methodInSubclass.addElement(methods[i].getName());
}
return methodInSubclass;

}

/fchange the order of value for constructor use

private Object[] reverse (Obiject {] messageParameter Values) {
int length=messageParameterValues.length;
Object temp[]=new Object|length];

for (int i=0; i<length; i++)

{

110



temp|i]=messageParameterValues{length-i-1];

}
return temp;

}

/*change the parameter type order in different way
order=1, second-first-......1ast
order=2 third--second-first....
order =3 first-third-second....
order=4 third-first--second-...
order=5 second-third--first--fourth-...
order=6 fourth-second-third--first---...
¥/
private String[] changeTypeOrder (String [] messageParameterTypes, int order) {
int length = messageParameter Types.length;
String [} temp = new String [length];
int i=0;

switch (order) {
case 1:
temp[0]=messageParameterTypes[1];
temp{ 1]=messageParameter Types[0];
for (i=2; i<length; i++)
templi]=messageParameterTypesli];

break;
case 2: case 3: case 5:
temp[0]=messageParameter Types|21;
temp| 1 J=messageParameter Types[0];
temp[2]=messageParameterTypes[1];
for (i=3; i<length; i++)
templ[i}=messageParameterTypes[il;

break;

case 4:
temp[0]=messageParameterTypes[1];
temp|1]=messageParameterTypes[0];

for (i=2; i<length; i++)
temp(i]=messageParameterTypesli];

break;

case 6:
temp[0]=messageParameter Types[3];
temp| 1 ]=messageParameter Types[0];
temp[2]=messageParameter Types[1];
temp|3]=messageParameterTypes[2];
for (i=4; i<length; i++)
templi]=messageParameterTypesli];

111



break;
}

return temp;
}

/*change the parameter value order in different way
order=1, second-first-......1ast
order=2 third--second-first....
order =3 first-third-second....
order=4 third-first-second...
order=5 second--third-first-fourth--...
order=6 fourth--second--third-first-«~...
*/
private Object(] changeValueOrder (Object [] messageParameterValues, int order) {
int length = messageParameterValues.length;
Object [] temp = new Object [length];
int #=0;

switch (order) {
case 1:
temp[0]=messageParameterValues[1}];
temp| 1]=messageParameterValues[0];
for (i=2; i<length; i++)
templi]=messageParameterValues[i];

break;
case 2:
temp[0]=messageParameterValues[2];
temp| 1]=messageParameterValues[1];
temp[2]=messageParameterValues[0];
for (i=3; i<length; i++)
templ[i]=messageParameterValues][i];

break;

case 3;
temp[0]=messageParameterValues[0];
temp| 1]=messageParameterValues[2];
temp[2]=messageParameterValues[1];
for (i=3; i<length; i++)
temp[i]=messageParameterValues]i];

break;

case 4:
temp[0]=messageParameterValues[2];
temp[1]=messageParameterValues[0];
temp[2]=messageParameterValues[1];

for (i=3; i<length; i++)

112



temp|i]=messageParameterValuesi);
break;

case 5:
temp[0]=messageParameter Values[1];
temp]| 1 |=messageParameterValues[2];
temp[2]=messageParameterValues[0];

for (i=3; i<length; i++)
temp[il=messageParameterValues[i];

break;

case 6:
temp[0]=messageParameterValues[3];
temp{ 1 }=messageParameterValues[1];
temp[2}=messageParameter Values[2];
temp|[3]=messageParameterValues[0];

for (i=4; i<length; i++)
temp[i}=messageParameterValues{i];

break;

return temp,

/*********#***********************##*********************#********#*#*********/

/* Class SaveFileServiet handles the save file action. Once client sends a message to save a
selected file from the selected folder and then the servlet will send the file to client folder.
*/

/*************#*#*******************#************#*****#*****#****t#**********/

import javax.servlet.*;
import javax.serviet.hitp.*;
import java.io.*;

public class SaveFileServlet extends HitpServiet {

public void doPost(HttpServietRequest request, HttpServletResponse response)
throws ServletException, IOException
{

String path = "c:\Ebcrs\\"+request.getParameter
("folder")y+"\\"+request.getParameter("file");

113



}

// ServletContext.getRealPath(request.getParameter("file"));

File file = new File(path);
response.setContentType("application/octet-stream”);
response.setContentLength((int) file.length());
response.setHeader("Content-Disposition”,

"attachment; filename=\"" + file.getName() + "\"");
InputStream in = new BufferedInputStream(new FileInputStream(file));
OutputStream out = response.getOutputStream();
byte[] buffer = new byte[4096];
while (true)

{
int bytesRead = in.read(buffer, 0, buffer.length);
if (bytesRead < 0)
break;
out.write(buffer, 0, bytesRead);

}
out.flush();
out.close();
in.close();

}

public void doGet (HttpServietRequest req, HitpServietResponse res)
throws ServletException, IOException

{
}

doPost (req, res);

114



	University of Windsor
	Scholarship at UWindsor
	2001

	Execution-based retrieval of object-oriented classes: An improved method.
	Shaochun. Xu
	Recommended Citation


	tmp.1363872243.pdf.QUkh1

