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ABSTRACT 

 

Considering the extensive non-linearities in the switched reluctance motor (SRM) 

drive, variation in the DC bus voltage and specific requirements of the hybrid electric 

vehicles (HEVs) traction application, a feed-forward back propagation neural network 

(BPNN) based torque controller is proposed. By using proposed controller, the torque 

ripple has been effectively reduced at low speeds while the power efficiency has been 

optimized at high speeds range. The problem of multi-valuedness related with the neural 

network based direct inverse control has been targeted by designing a bank of two-

hidden-layer neural network controllers. And the problem of torque oscillation due to the 

change of control mode and step change of firing angle has been solved by using dead-

band filtering and nearly continuous changing of firing angle and phase currents. 

Computed results are presented to demonstrate the effectiveness of the proposed control 

scheme. 
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1 INTRODUCTION 

1.1 Background 

With constraints on energy resources and concerns over emissions, fuel economy 

and global warming, hybrid electric vehicles (HEVs) have attracted considerable 

attention from more and more automakers and customers in which hybrid propulsion 

helps to improve fuel economy, reduce emissions and enhance the performance of 

conventional internal combustion engine (ICE). Wells-to-wheels energy analysis shows 

that the process of delivering 100 units of gasoline energy to the vehicle’s fuel tank is 

88% efficient for both conventional and hybrid technologies. Conventional gasoline ICEs 

are approximately 25% efficient with the overall driveline efficiency of 65% which 

leaves 14 units of energy delivered to the wheels for propulsion. However, [1] states that 

for a gasoline hybrid drivetrain, 26.4 units of energy are delivered to the wheels, which is 

88% more efficient than a conventional vehicle driveline. 

Moreover, in the last several decades, the problem of emissions and pollution due 

to transport is getting worse. With a worldwide trend of increase in population, economic 

growth, rapid urbanization and industrial development, the demand for transportation is 

on the rise. Due to the dependency of the transport sector on fossil fuels, the consequent 

consumption of petroleum is increasing exponentially. Fossil fuel dependency of the 

rapidly growing transport sector, particularly on-road transportation, and massive 

increase in petroleum consumption are the main concerns as fuel reserves continue to 

deplete at an alarming rate. This calls for the research for an alternative fuel vehicle 

technology to gradually displace gasoline driven vehicles by those powered by more 

sustainable and environment-friendly fuel options. 

A yet more grave consequence of the combustion of petroleum, particularly by 

on-road transportation is the emission of toxic pollutants including oxides of nitrogen, 

carbon monoxide, and unburned hydrocarbon particles. These pollutants not only degrade 

the air quality with a long lasting damaging effect on the environment but also pose risk 

to public health. Vehicular emissions are also a source of carbon dioxide, the principal 
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greenhouse gas which is responsible for the global warming that is continuing to cause 

ecological changes and natural disasters.  

Realization of the aforementioned severe effects of extensive fuel combustion has 

motivated researchers to improve the efficiency of today’s on-road transportation. 

Conventional vehicles powered by ICEs have been used extensively for over 100 years 

and although efforts continue to improve their fuel efficiency, the long term solution to 

vehicular emissions and dependence on petroleum products is still relying on the 

development of renewable energy sources and alternative fuel vehicle technologies. 

Alternative vehicles refer to the kind of vehicles that are partially or solely powered by 

sources of energy other than fossil fuels such as bio-fuels, electricity or hydrogen. The 

target of all such vehicles is to minimize vehicle emission, increase sustainability and 

reduce strain on the environment. 

The way of the electric vehicles to the market is blocked by the development of 

battery whose limited energy storage capability restricts electric vehicle only to some 

specific applications such as at airports, railroad stations, on golf courses, etc. In fact, 

basic study in [2] shows that electric vehicles are hard to challenge the liquid-fueled 

vehicles even with the optimistic value of battery energy capacity. Thus, in recent years, 

advanced vehicle technology research has turned to hybrid electric vehicles as well as 

fuel cell vehicles [3]. As the challenges on the hydrogen production, storage, and 

distribution are still difficult to overcome, fuel cell-powered vehicles still have long way 

to go before they can be introduced in the market. Right now, hybrid electric vehicles are 

the only applicable and affordable solution to the world’s demands for lower polluting 

and more fuel efficient personal transportation. 

1.2 Motor Selections for Hybrid Electric Vehicle 

1.2.1 Requirements of the HEV Drive Motor 

The distinguished difference of operational features between HEVs and 

conventional automobiles is the electric propulsion system, which consists of an electric 

motor, power electronic drive for the motor and electronic controllers. With increasing 

consumer expectation for improved vehicle performance, auto manufacturers are 

recognizing that design of next generation hybrid propulsion systems will heavily rely on 
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the development of high performance motors for HEV specific application. This will 

particularly hold true as motors become the primary traction component to extend the 

whole electric range of HEV. Although electric motor drive and its control are mature 

technology, further improvement in efficiency, robustness, weight, cost, noise, vibration 

and harshness (NVH) of electric motors for HEV traction application can be achieved 

through modifications in the motor design and control strategies.  

Figure 1.1 shows characteristics of electric motors required for the HEV traction 

application. In the constant torque region, the electric motor delivers constant torque from 

zero to base speed. Past the base speed, the torque decreases with the speed, maintaining 

a constant rated power output [4]. Selection of an appropriate traction motor is based on 

the motor characteristics, such as flexible drive control, high efficiency, power density 

(power output/volume), reliability, low acoustic, noise and cost, which is a crucial stage 

in the design of the electric drivetrain that requires special attention. The three main 

factors that need to be taken into consideration during the selection and design process of 

motors are a) driver expectation for the driving profile in terms of acceleration demand, 

climbing and braking performance, maximum speed and range, b) vehicle constraints of 

weight and volume based on vehicle type and c) the type and specifications of the energy 

storage unit. An electric motor for hybrid vehicle traction is typically expected to fulfill 

the following requirements [5]: 

 

 

Speed 

Torque 

Power 

Constant torque region Constant power region 

Base 
speed 

Maximum 
speed 

Power or Torque 

Fig. 1.1 Desired characteristics of electric traction in HEV. 



 

4 
 

• High instant power and high power density 

• Fast torque response 

• High torque at low speeds for starting and climbing 

• High power at high speed for cruising 

• Wide speed range in constant-torque and constant-power regions 

• High efficiency over the wide speed and torque ranges 

• High efficiency for regenerative braking 

• High reliability and robustness for various vehicle operation conditions 

• Low acoustic noise and electromagnetic interference (EMI)  

• Low maintenance and initial cost 

Under these criteria, several electric machines are being investigated for HEV 

traction application. Although DC motors were the initial choice, induction motors (IMs), 

permanent magnet synchronous motors (PMSMs) and switched reluctance motors 

(SRMs) have now gained more attention as the favoured candidates for HEV propulsion. 

Special designed motors for HEV traction application have also emerged. Nowadays, 

although PMSMs are gaining popularity due to their high power density and packaging 

flexibility, fail-safe field weakening with a conventional drive has yet to be demonstrated. 

As each topology has unique integration advantages, due to the requirements of traction 

motors, which must combine high torque density with high power density, choice of 

motor type is still not resolved [6]. 

1.2.2 Motor Characteristics 

1.2.2.1 Permanent Magnet Synchronous Motors 

Permanent magnet synchronous motors (PMSMs) use a rotor made of earth 

magnetic materials to generate magnetic flux. Depending on the arrangement of the 

magnet, they can be classified as surface-magnet mounted or buried-magnet mounted. 

Absence of rotor windings gives PMSMs an edge over induction motors in terms of 

efficiency [7]. Comparing with IMs and SRMs, they have higher power density, higher 

efficiency and simpler control method, which make them the primary choice of leading 

automakers such as Toyota Prius and Honda Insight. Most hybrid cars available 

commercially today are equipped with PMSMs.  
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However, the absence of field windings makes the flux weakening capability of 

PMSMs highly constrained which limit their speed ranges in the constant power region 

[8] and fail-safe field weakening with a conventional drive has yet to be demonstrated. 

One method to overcome this limitation is to control the conduction angle of the power 

converter. An alternative solution is by using PM hybrid configuration where the air-gap 

magnetic field is obtained through a combination of the magnet and additional field 

winding. The direction and magnitude of the DC field current can be controlled so as to 

weaken the flux of the magnet. However, this may result in demagnetization which will 

decrease the motor efficiency at the very high-speed range. 

The negative aspect of using permanent magnet is its sensitivity to temperature. 

This drawback limits the motor’s power/size ratio, requires a complex cooling system 

and the demagnetization with age can affect long term performance of the machine. 

Another drawback of PMSM is the high costs and limited resources of permanent 

magnets. Nevertheless, PMSMs are still a strong contender for HEV and plug-in hybrid 

electric vehicle (PHEV) drives. 

1.2.2.2 Induction Motors 

Induction motors, particularly squirrel cage IMs have been widely regarded as one 

of the most suitable options for HEVs due to their rugged construction, mature control 

and drive technology, and low cost which make them suitable for operations in the harsh 

environment of traction drives. Accurate speed control of induction machines is made 

possible by vector control techniques, and wide speed ranges, generally over two to three 

time the synchronous speed, can be obtained through flux weakening. Their control and 

drive technology have well matured and prominent automakers have used IMs in their 

HEVs and electric vehicles (EVs) including Tesla Roadster, Daimler/Chrysler Durango, 

Chevrolet Silverado and BMW X5.  

However, the IM drives are still facing a number of drawbacks that put them 

behind the race of HEVs electric propulsion. The breakdown torque creates a limitation 

on the constant power operation of the motor. If IM runs at speeds higher than the critical 

value where break down torque is reached, the motor begins to stall [4]. Moreover, the 

most crucial factor that has diverted auto manufacturers away from IMs is their 

inherently lower efficiency than PMSMs particularly due to copper losses in the rotor. 
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Rotor resistance variation due to temperature is also a problem that can detune the field 

controller during its operation [5]. 

Research is now focused on addressing these issues through design modification 

and more effective control methods. A new generation of control strategies are being 

tested to improve the overall efficiency of induction motors [9] and a multiphase pole-

changing IM drive has been developed to extend the constant-power region without over-

sizing the motor [10], [11]. By using digital motor controller with a 150 MHz DSP and 

applying stator flux-oriented vector control, the induction motor in Tesla Roadster is 

managed to produce a maximum net power of 185 kW at 5,000-8,000 rpm. The 

maximum speed of this motor is 14,000 rpm and the efficiency can be 92% average with 

85% at peak power, and torque output can reach 375 Nm at 0-4,500 rpm [12]. 

1.2.2.3 Switched Reluctance Motors  

SRMs are beginning to gain interest as a potential candidate for HEV propulsion 

due to their simple and rugged construction, fault tolerant operation, insensitivity to high 

temperatures, an extremely long constant-power range and high speed operation [13]-

[15]. The motor speed-torque characteristics are also excellently matching with the road 

load characteristics [5], and the performance of SRM for HEVs applications has been 

found to be excellent.  

However, there are several barriers that need to be resolved before they can be 

applied in mass produced vehicles [16]. Since SRM involves successive excitation of 

poles to produce continuous motoring or generating torque by aligning the rotor, the 

motor drive needs a position sensor for high-grade control. Torque ripple, vibration and 

associated acoustic noise are also the main concerns in SRM operation [17]. These issues 

are critical in vehicle application and research is targeted towards analysis, design 

improvement and development of excitation schemes and control strategies to reduce 

these effects.  

Recently, there have been several key technologies that offer solutions for the 

above issues [13]. One technology is the bipolar excitation which improves efficiency by 

ensuring short flux path excitation during which the excited phase has a higher 

inductance as compared with long flux path excitation; the second key technology is the 

freewheeling control strategy to boost productivity while operating as a generator and the 
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third one is the four-quadrant sensorless control over entire speed range to eliminate the 

position sensor. 

1.2.2.4 HEV Specific Motor Designs 

The auto industry is also looking for more drastic modifications in terms of 

material selection, innovative component shapes and designs, and control strategies for 

electric motors to improve efficiency, cost and NVH while maintaining compact size and 

light weight.  

For PMSMs, the major HEV producers such as Honda and Toyota are making 

progress in the design of motor and drive. Honda, for example, has developed an 

exceptionally thin (70 mm) PMSM for their Civic Hybrid, shown in Fig. 1.2(a), which 

claims to have achieved a peak efficiency of 97%. Figure 1.2(b) shows a 3D motor 

developed by Nissan for HEVs with a modified deign for maximum utilization of 

magnetic flux [18]. 

Toyota has made historical progress in the power density of the PMSM for 

Toyota Hybrid System (THS) II as shown in Fig. 1.3(a) without increasing the motor size 

by (1) increasing the motor maximum speed by using DC-DC boost-up converter to 

increase DC-link voltage, (2) installing the superior cooling system using Automatic 

Transmission Fluid (ATF), and (3) applying series winding in stators [19]. Another 

hybrid excitation motor using less rare-earth magnet to obtain high power density, as 

shown in Fig. 1.3(b), has been presented in [20] which reduces the volume of permanent 

magnet by approximately half of that used in  an  existing  IPMSM for  LEXUS  RX400h  

 

 
 

(a) (b) 

S 

N 

N 

S 

N 

S 

Electromagnetic 
coil 

Usable magnetic flux 

Permanent 
magnet 

Fig. 1.2 Special motor designs for HEVs. 
(a) PMSM in Honda Civic Hybrid. (b) Nissan's 3D PM motor. 
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while keeping the power density intact. Major Differences between the conventional PM 

machines and the proposed machine are (1) the rotor with the permanent magnet is 

sandwiched by N- and S-pole rotor core and is magnetized in the axial direction similar 

to the conventional hybrid stepper machine (2) the field pole core, made of Soft Magnetic 

Composites (SMC) with toroidal field coil, is jointed at each end of the machine in the 

axial direction.  

Researchers are also developing “hub” style induction motors of much smaller 

dimensions for the same power output as shown in Fig. 1.4(a). New designs of SRM have 

also been proposed in [21] for HEV applications. By applying five-phase 15/12 and 

pancake shape shown in Fig. 1.4(b), the motor exhibits lower torque ripple and higher 

power density comparing with the conventional rotary SRMs. All these efforts are 

directed towards improving the power efficiency, power density and torque outputs of 

motors while maintaining smooth operation, light weight and compact structure, and 

within a reasonable cost. 

(a) (b) 

Fig. 1.3 Special motor designs for HEVs. (a) Traction motor for THS II. (b) New 
motor design with half of permanent magnet. 
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1.3 Literature Review 

Currently, HEVs typically employ PMSMs due to their high power density and 

packaging flexibility; however, due to the unique requirements of traction motors, which 

must combine high torque density with high power density, choice of motor type is still 

not resolved. Recently, switched reluctance motors (SRMs) have attracted interest for 

HEV propulsion for their robust construction, fault tolerant operation, high starting 

torque without the problem of excessive inrush current, and ability to extremely high-

speed operation. However, SRM suffers from some drawbacks such as high torque ripple 

and acoustic noise which are quite critical for HEV applications. The development of an 

optimal control scheme is difficult for SRM to reduce torque ripple and optimize the 

power efficiency in the whole speed range due to the high non-linearity existed in the 

torque-current-position characteristics for its saturation region of operation. 

1.3.1 Torque Control with Torque Ripple Reduction 

Extensive work has been done to minimize torque ripple in SRM for general 

applications [22]-[28]. In [24], a Cerebellar Model Articulation Controller (CMAC) 

based torque control was presented. A close-loop torque controller based on B-spline 

neural network (BSNN) with online training was presented in [25]. But both CMAC and 

BSNN suffer from higher memory demand [29].  

Back-propagation (BP) based neural network controllers have been proposed in 

[26]-[28], but both [26] and [27] used one-hidden-layer neural network which is not 

(a) (b) 

Fig. 1.4 Special motor designs for HEVs. 
(a)Hub Hub style induction motor, (b) New SRM design 
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sufficient for stabilization and [28] did not consider the effect of multi-valuedness on the 

neural network mapping which could not produce high accuracy mapping [30].  

Due to considerable non-linearity in the torque characteristics of SRM, the 

extensive requirement for lower torque ripple, good dynamic performance and cost 

sensitivity of the HEV traction application, most of the techniques discussed in the 

literature for this specific application are based on look-up table [31], [32]. In [31], look-

up tables were generated off-line by building an SRM model to profile the current for the 

flat torque waveform and stored in the controller. During on-line running, the controller 

searched the look-up tables for the current command. Another comprehensive controller 

to maximize efficiency and peak overload capability of SRM by using look-up tables for 

electric vehicle drives has been designed in [32]. This controller has several look-up 

tables for different voltages. To calculate the control parameters for a certain torque-

command/rotor-speed (operating point) and bus voltage, three interpolations have to be 

performed. As these interpolations are linear, they are subject to errors depending on the 

resolution of each table and the number of tables stored for different voltages. To 

overcome the above problem and also to reduce the table access time for interpolation, 

square tables are generated for each bus voltage. But still, there is a trade-off between the 

memory needed, execution time and the error rate. If the discretion steps of the rotor 

position and torque output are very small, the ideal current for minimizing the torque 

ripple will be found, but the amount of data will be enormous which needs a large 

memory and very long search time. On the other hand, if the discretion steps are big, the 

ideal current needed for reducing torque ripple may not be found. Unfortunately, at low 

speed, the torque ripple is sensitive to the current profile, and a slight deviation from the 

required profile may produce high torque ripple.  

1.3.2 Torque Control with Efficiency Optimization 

The electric motor drivetrain includes battery, motor, converter and control 

algorithm. Due to the variable DC bus voltage caused by the variation in the state-of-

charge (SOC) of the battery and the nonlinearities found both in the motor and the 

switching converter [33], the torque control for switched reluctance motor while 

optimizing the motor efficiency for traction application becomes very complex.  
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As the motor losses are proportional to the motor speed, they have to be reduced 

at the high speed range to improve the motor efficiency. Extensive works have been done 

to optimize the efficiency of SRM at high speeds [32]-[36]. In [34], a general theory to 

find the optimal turn-off and turn-on angles in order to maximize efficiency is developed 

based on the energy conversion loops for both voltage control and current control without 

considering the variation in the battery voltage. A general method to find the optimal 

turn-off angle is also defined in [35] based on the critical rotor position that the flux 

linkages of two neighboring phases (outgoing and incoming phases) are equal to half of 

the flux linkage peak value. But both [34] and [35] did not take the nonlinearity of the 

switching loss in the converter into consideration.  

Look-up tables have also been studied to maximize efficiency in [36]. In [36], 

turn-on angles searching strategy for optimizing the drive efficiency of SRM is proposed 

based on the mathematical model of the motor drive including the power losses from the 

SRM and converter. After the searching ended, a synthesized look-up table to map the 

torque, speed, and DC-bus voltage with a set of duty ratio, turn-on and turn-off angles is 

obtained and used in real time controlling. However, there is a trade-off between the 

memory needed, execution time and the error. Significant errors may be introduced due 

to the linear nature of these interpolations, especially if inadequate data are stored due to 

the lack of available memory. 

Contributing to the ability to learn, recall and generalize from training patterns or 

data, neural network has become an effective control method. A Cerebellar Model 

Articulation Controller (CMAC) based torque control was presented in [24]. The 

approach allows the generation of optimal current profiles in terms of minimizing torque 

ripple, copper loss and rate of change of current as the motor runs at high speeds that 

ensures the minimization of torque ripple while having high power efficiency. But 

CMAC suffers from higher memory demand as demonstrated in [29]. 

1.4 Research Objectives 

The ultimate goal for this research is to design a neural network strategy based 

torque controller of the SRM drive for HEV traction application over the whole speed 

range, simulate the proposed torque control system by using MATLAB/SIMULINK, 
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investigate the performance and analyze the results. In this research, a novel SRM torque 

control method based on a bank of feed-forward back propagation neural networks 

(BPNNs) is developed to track the torque command from the energy management system 

of HEV. Direct inverse control is applied for its simple, easy to implement and fast 

dynamics. Special data pre-processing technique has also been used to handle the 

problem of multi-valuedness. 

As there are two different objectives for the whole speed range: to reduce the 

torque ripple at low speeds and to optimize the energy efficiency at high speeds, two 

controllers have been designed to deal with the situation. At low speeds, two-phase 

excitation and torque sharing function have been used to reduce the torque ripple. After 

torque sharing function has been used to distribute the torque command into two phases, 

a set of BPNNs are then trained to learn the current profiles based on the static torque 

characteristics. During real-time operation, the phase currents will be calculated through 

the BPNNs and applied to the hysteresis current controller. Gate signals generated from 

the current controller will be applied to the asymmetric bridge converter to excite the 

SRM. 

At high speeds, considering the extensive non-linearities in the converter and 

torque characteristics of SRM, variation in the DC bus voltage, the extensive requirement 

for high efficiency, good dynamic performance and cost sensitivity of the HEVs traction 

application, a BPNN based direct inverse control is proposed to track the torque 

command while optimizing the motor efficiency. A set of switching angles corresponding 

to the specified operating points with maximum efficiency have been used to train the 

neural networks. After training, the NN controller occupies the ability to calculate the 

switching angles in real-time operation. Based on the switching angles calculated, the 

commutation logic decides the phases to be excited to track the torque and speed 

command from the energy management system of the HEV. 

Due to the two different control methods used at low speeds and high speeds, 

specific considerations will be taken to ensure smooth torque output when the demanded 

motor speed is jumped from lower speeds (< base speed) to higher speeds (>base speed). 
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1.5 Thesis Outline 

This thesis is organized as follows: 

Chapter 2: Switched reluctance motors are discussed in detail as a highly suitable 

candidate for HEV propulsion. This chapter discusses their construction, 

statistic characteristics and torque production mechanism in detail. Analysis 

of the power losses is also presented in this chapter. The control principles of 

torque control such as voltage control and current control are also presented. 

Chapter 3: This chapter describes the history of the neural network. The knowledge 

about the back propagation neural network such as architecture, algorithm, 

training method, types of activation function, problems related with the 

decision of number of hidden layers and application procedure are going to 

be presented in detail. 

Chapter 4: A neural network based torque controller to minimize the torque ripple at low 

speeds will be described in this chapter. Simulation results are presented to 

demonstrate that the proposed controller provides good dynamic performance 

with respect to changes in torque commands. The controller also satisfies the 

HEV propulsion requirements during starting. 

Chapter 5: In this chapter, a neural network based torque controller to optimize the 

power efficiency at high speeds will be described. Simulation results are 

presented to demonstrate that the proposed controller provides good dynamic 

performance with respect to changes in operation points while optimizing the 

motor efficiency. 

Chapter 6: A neural network based torque controller for the whole speed range will be 

described in this chapter. Special considerations on the torque/speed 

oscillation related with the change of the control mode are discussed. 

Simulation results are presented to demonstrate that the proposed controller 

provides good dynamic performance. 

Chapter 7: This chapter summarizes the work done and future research in this area. 
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2 MODELLING AND ANALYSING OF SRM 

2.1 Introduction 

The switched reluctance motor (SRM) is a doubly salient machine where both 

stator and rotor have salient poles. It is a singly exited reluctance machine with 

independent phase windings on the stator and no windings on the rotor, and it is also a 

type of synchronous machine which has wound field coils of a DC motor for its stator 

windings and has no coils or magnets on its rotor. Its torque is produced by the tendency 

of the moveable part to move to a position where the inductance of the excited winding is 

maximized. A cross-sectional diagram of a four-phase 8/6 SRM is shown in Fig. 2.1. The 

performance index can be cost, efficiency, weight, volume, torque, output, or a 

combination of these for the switched reluctance motor and converter combination. 

2.2 Physical Construction of SRM 

The rotor has no permanent magnet on it. Stator windings on diametrically 

opposite poles are connected in series or parallel to form one phase of the motor. Several 

combinations of stator and rotor poles are possible, such as 6/4 (6 stator poles and 4 rotor 

poles), 8/4, 10/6 and 12/6. The configurations with higher number of stator/rotor pole 

combinations have less torque ripple.  

By the nature of the motion, the SRM can be rotary or linear as shown in Fig. 2.2. 

If the motor is running in rotating mode, it is called a rotary SRM, or else called linear 

SRM. The rotary machine-based SRM is further differentiated to radial field SRM and 

axial field SRM by the direction of the magnetic field path with respect to the axial length 

 

 
Fig. 2.1 Four-phase 8/6 SRM configuration. 
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of the machine, when the magnetic field path is perpendicular to the shaft, it is classified 

as a radial field SRM, otherwise, it is an axial field SRM [37].  

Radial field SRMs can be classified as short and long flux path SRMs. When the 

coils are placed in the diametrically opposite slots, it is called a long flux path SRM. The 

other kind of radial field SRMs is called a short flux path SRM whose phase coils are 

placed in the slots adjacent to each other to obtain a pair of poles. The comparison of 

characteristics of these two kinds of SRMs is presented in Table 2-1. 

Axial field SRM can be further differentiated into single-stack and multi-stack 

SRMs. A pair of one rotor and one stator stacks or one rotor and two stator stacks or two 

rotor and one stator stacks constitutes a single-stack axial field SRM. Multiples of such 

single stacks can be arranged on the same shaft to augment the power rating, which is 

called a multiple-stack axial field SRM, invented in the early 1970s for electric vehicle 

propulsion [38]. The axial field SRMs are ideal for applications where the total length 

maybe limited such as the vehicle propulsion application. The disadvantage of this 

configuration is that the stator laminations have to be folded one on top of the other 

unlike the simple stacking of laminations in the radial field configuration.  

 

 

 

 

 

SRMs 

Rotary SRMs Linear SRMs 

Radial Field 

Long flux path SRM: Doubly 
salient with concentric 
windings, diametrically 
opposite windings in series to 
form a phase 

Short flux path SRM: 
Adjacent pole windings 
are in series to form a 
phase winding 

Single-stack Multi-stack  

Axial Field 

Fig. 2.2 Classification of SRMs. 
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Table 2-1 Comparison of characteristics of short and long flux path SRMs 

 Core losses Mutual inductance Radial force 

Short flux path SRM lower higher higher 

Long flux path SRM higher lower lower 

 

2.3 Equivalent Circuit 

An elementary equivalent circuit of an SRM can be derived neglecting the mutual 

inductance between the phases as following [37]: 
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where Rs is the phase resistance,  

           L is the inductance dependent on the rotor position and phase current,  

            i is the phase current, and 

           ωm is the rotor angular speed. 

 

In Equation (2.1), the three terms on the right-hand side represent the resistive 

voltage drop, inductive voltage drop, and induced emf, respectively. 

From the voltage equation, the equivalent circuit for one phase of the SRM is 

derived and shown in Fig. 2.3. 
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Fig. 2.3 Single-phase equivalent circuit of the SRM. 
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2.4 Analysis of torque production 

2.4.1 Linear Analysis of Torque Production 

Linear analysis assumes that there is no magnetic saturation and mutual 

inductance, and that all the flux cross the air-gap is in the radial direction. Based on 

Equation (2.1), the instantaneous electrical power is: 
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The energy stored in the magnetic field of an inductor in a linear medium is given 

by 
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According to the law of conservation of energy, in the electromechanical systems 

whose predominant energy-storage mechanism is in magnetic fields, the energy transfer 

is as: 
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Hence, the mechanical power output Pphase is as following: 
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The general expression for the torque produced by one phase at any rotor position 

can be expressed as 
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Total instantaneous torque is given by the sum of the individual phase torques: 

 ( ) ( )ph
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2.4.2 Nonlinear Analysis of Torque Production 

In an SRM, the magnetic saturation cannot be neglected; a nonlinear analysis is 

needed to take account of the saturation of the magnetic circuit [39]. The nonlinear 

analysis of the torque production is based on the magnetization curves shown in Fig. 2.4, 

which are a group of curves of flux-linkage ϕ as a function of excitation current i at a 

particular rotor position. It can be seen from Fig. 2.4 that the flux-current characteristics 

in the unaligned position are approximately linear because the magnetic path is 

dominated by large air-gap and flux densities are small. However, in the aligned position, 

the air-gap reluctance is small and flux density is high which cause high saturation at 

higher excitation currents. 

 

 
Fig. 2.4 Flux linkage, current and rotor position relationship. 
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Based on the electromechanical energy conversion theory, when a constant-

current is supplied, the produced torque is equal to the mechanical work done W’ during a 

rotor displacement ∆θ divided by ∆θ, and this torque can be expressed as: 
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During a typical motoring stroke, the locus of the operating point follows a curve 

similar to the one in Fig. 2.5, which is drawn together with the aligned and unaligned 

magnetization curves and the magnetization curve at the commutation position C. At 

point C, the supply voltage is reversed and the current freewheels through the diode. The 

mechanical work Wm is done between turn-on and commutation (suppose the phase was 

turned on at unaligned position), Wf is the work done after commutation. For the whole 

stroke, the power efficiency of SRMs can be defined as [5]: 
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where Wr is the energy returned to the source by using a regenerative converter. 
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Fig. 2.5 Energy partitioning during one complete working stroke. 
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2.5 Four-quadrant Operation 

According to [39], we assume that the positive rotation is in the counter-

clockwise direction and the coil carries a constant current. At unaligned position, the 

leading edge of the rotor pole is aligned with the first edge of a stator pole; at aligned 

position, the rotor and stator poles are fully aligned. 

When the rotor approaches the aligned position from unaligned position while the 

inductance is increasing, as shown in Fig. 2.6, positive torque is produced which means 

that the motor is in motoring mode. The torque changes direction at the aligned position. 

If the rotor continues past the aligned position with constant current in the stator, the 

attractive force between the poles produces a braking torque, which means that the motor 

is running in generating mode. 

To keep the motor running in motoring mode, the phase current must be switched 

off while the stator and rotor poles are separating as shown in Fig. 2.7. The ideal current 

waveform is therefore a series of pulses synchronized with the rising inductance 

intervals. The ideal torque waveform has the same waveform as the current. 
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Fig. 2.6 Variation of inductance and torque with rotor position under constant phase current. 
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2.6 Torque-speed Characteristics 

The torque-speed plane of an SRM drive can be divided into three regions [5], as 

shown in Fig. 2.8. The characteristics in these three regions are as following: 

Region1: The constant torque limit region is the region below the base speed ωb, 

which is the lowest possible speed for the motor to operate at its rated power. For the 

small back-emf in this region, the current can be set at any desired level by means of 

regulators such as hysteresis controller or voltage PWM controller. 

Region2: The constant power limit region is the region where the controller 

maintains the torque inversely proportional to the speed. In this region, the phase 

excitation time falls off inversely with speed. Because torque is roughly proportional to 

the square of the current, the rapid decrease in torque with speed can be countered by 

adjusting the conduction angle θdwell. By advancing the turn-on angle to increase the 

conduction angle until it reaches its upper limit at speed ωp, the phase current can be 

increased effectively to maintain the torque production at a high level. 

Region 3: In this region, the θdwell upper limit is reached when it occupies half the 

electrical cycle. The torque in this region is governed by natural characteristics, falling 

off as 1/ω2. 
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seperation 

Aligned 
position 

Rotor position 

Inductance 

Torque 
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Fig. 2.7 Variation of inductance and torque with rotor position under ideal pulsed 
unidirectional current. 
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2.7 Loss Analysis of SRM 

2.7.1 Stator Copper Loss 

The stator copper loss at any time is the sum of the copper losses contributed by 

the instantaneous phase currents, which can be evaluated as follows [37]: 
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where i is the peak value of phase current,  

Tr and Tf are the current rise and fall time,  

Ns and Nr are the number of stator poles and rotor poles, and  

The copper loss is dependent on speed. Therefore, it has to be considered only at 

the highest machine speed [40]. 

2.7.2 Core Loss 

The core loss is difficult to predict in the SRM due to the variation of flux 

densities with time in stator segments. The core loss in an SRM consists of hysteresis and 

eddy current losses. Hysteresis loss is a heat loss caused by the magnetic properties of the 

armature. When an armature core is in a magnetic field, the magnetic particles of the core 

tend to line up with the magnetic field. When the armature core is rotating, its magnetic 

field keeps changing direction. The continuous movement of the magnetic particles, as 
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Fig. 2.8 Torque-speed characteristic of an SRM drive. 
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they try to align themselves with the magnetic field, produces molecular friction. This, in 

turn, produces heat. 

Since iron is a conductor, a changing flux induces voltage and hence current, 

called eddy current, which circulates within the iron mass. These eddy currents produce 

losses, heat and demagnetization. To reduce the eddy current losses, the stator and rotor 

cores are laminated (built up from thin sheets electrically insulated from one another). 

The core losses can be calculated by using the Steinmetz equation [40]: 
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where Ch and Ce are the coefficients of hysteresis and eddy-current loss,  

Bpk is the maximum flux-density, 

f is the frequency, and  

a and b are constants.  

Manufacturers’ loss data are usually presented in the form of graphs showing the 

total core loss as a function of frequency and flux density. In very high-speed 

applications, the core losses grow rapidly and may become the dominant component of 

losses. 

2.8 Torque Control of SRM 

Torque in the SRM is produced by pulses of phase currents synchronized with 

rotor position. The timing and regulation of these current pulses are controlled by the 

drive circuit and the torque control scheme. Usually there is no torque sensor and 

therefore the torque control loop is not a closed loop. Consequently, if smooth torque is 

required, any variation in the torque/current or torque/position relationships must be 

compensated in the feed-forward torque control algorithm, which implies that the torque 

control algorithm must be specifically programmed for a particular motor and possibly 

also for a particular application. 

Generally, SRM can be operated from a voltage source or current source, which 

implies that the torque control of SRM can be either current control or voltage control. 

When operating from a voltage source, the controlled parameters can be the terminal 

voltage of the motor and the switching angles, and the voltage control can be achieved by 
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using a variable dc supply or modulating the bus voltage by using the switching devices. 

On the other hand, when operating from a current source, the controlled parameters can 

be the winding current of the motor and the switching angles, and the current control can 

be achieved by chopping. 

2.8.1 Current Based Torque Control 

Current controller takes the phase torque commands and generates the phase 

winding current commands as a function of rotor position. The principle of a current 

control method is shown in Fig. 2.9, in which phase inductance La, phase current 

command ia
*, phase current ia, terminal voltage Va, and flux density Ba are displayed. 

Basically, the current controller starts to increase the phase current at  the  moment  when 

the phase inductance increases, then maintains the current value within hysteresis value 

and cuts the current just before the inductance reaches its peak value. The positive and 

reverse voltage modes shown as Va are used to make the winding current in square 

waveform.  

 

 
Fig. 2.9 Principles of current control method [41]. 
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The diagram of a current-controlled SRM drive is shown in Fig. 2.10. The torque 

command is executed by regulating the current in the inner loop. The reference current ia
* 

of a given operating point is determined from the load characteristics, the speed and the 

control strategy. A wide-bandwidth current transducer provides the current feedback 

information to the controller from each of the motor phases. The electronic commutator 

selects the appropriate phase for current regulation based on the instantaneous rotor 

position. The current controller generates the gating signal for the phases based on the 

information coming from the electronic commutator and the reference current command. 

The current in the commutated phase is quickly brought down to zero by applying 

negative Va while incoming phase assumes the responsibility of torque production based 

on the commanded current. 

Current controlled SRM drive can generate higher output power and higher output 

torque at low speeds [41]. When the drive is running at low speeds, by adjusting the 

current profile, it is possible to generate constant torque. And also by phase overlap 

excitation, the drive can produce higher torque and minimum torque ripple. Current 

controlled SRM drive also provides fast motor response [5]. 

However, when the flux density is high in the current controlled SRM drive, the 

efficiency is relatively low and iron loss is higher at low speeds. As the torque ripple is 

very sensitive to the current profiles [42], a slight deviation from the required profile, 

especially near the commutation region, produces high torque ripple. To get the current 

profile which can generate constant torque, this kind of drive requires high resolution 

position sensor and each phase current needs to be sensed. 
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Fig. 2.10 Block diagram of current controlled SRM drive. 
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2.8.2 Voltage-based Torque Control 

The voltage control method regulates terminal voltage of switched reluctance 

motors instead of winding current. The principle of voltage control is shown in Fig. 2.11, 

in which the phase inductance La, voltage command Va*, terminal voltage Va, winding 

current ia, and flux density Ba are displayed. Basically, the voltage controller starts to 

apply the terminal voltage at the moment when the flux density increases, then maintain 

the terminal voltage value within hysteresis value and cut the voltage just before the flux 

density reaches its peak value. By adjusting the pulse width θw of PWM controller, the 

terminal voltage waveform can be kept in square shape. The advanced angle θm can be 

adjusted to give the best efficiency when the motor runs at different speeds. The reverse 

voltage is used to quickly bring down the flux density to zero. Unlike the current-

controlled mode, the phase current here is not in square waveform. 

The diagram of a voltage-controlled SRM drive is shown in Fig. 2.12. The torque 

command is executed by regulating the terminal voltage in the inner loop. The voltage 

command Va
* of a given operating point is determined from the load characteristics, the 

speed and the control strategy, which is then compared with triangular PWM signals to 

generate the PWM pulses. The duty cycle of the PWM controller is adjusted according to 

the voltage command signal. The angle calculator is used to generate the turn-on and 

turn-off angles for a phase, depending on the rotor speed. The electronic commutator then 

generates the gating signals based on the control inputs, the instantaneous rotor position, 

turn-on and turn-off angles. The converter is driven by these pulses using positive or free-

wheel mode.  
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Fig. 2.11 Voltage control method [41]. 

 

 

Compared with current-controlled SRM drive, the voltage controlled SRM drive 

has following advantages: 

1. When using constant-frequency pulse width modulation (PWM), 

computational and memory requirements of this voltage-based control 

strategy are low. 

2. SRMs also generate significantly lower noise when operating under voltage 

control rather than current control [43]. 

3. The voltage control is better in efficiency at high speed operations [41].  
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Fig. 2.12 Block diagram of voltage controlled SRM drive. 
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4. Voltage controlled SRM drive is generally less expensive, for it normally only 

uses one current-sensor in the DC-link for over-current protection and enables 

the use of a low resolution rotor position sensing system and reduces the 

signal processing requirement [44]. 

A voltage controlled SRM drive, however, is more sensitive to voltage ripple on 

the power bus and has a lower control bandwidth. Due to the skipping cycles during 

voltage PWM regulation, the SRM drive exhibits the abnormal periodic behavior, in 

which the distributions of both current and torque are severely uneven [45]. 

2.8.3 Comparison 

Based on the previous analysis, four factors emphasized in most applications are 

summarized in Table 2.2. 

Voltage control is attractive for low-power/low-cost SRM drives due to the 

reduced number of current sensors and signal processing requirement. When minimum 

torque ripple and fast response required from the drive, current control should be applied. 

In high speed range, voltage control should be considered when high efficiency is the 

main concern. 

For the HEV application, when the vehicle is running at low or medium speeds, 

the torque ripple should be taken into consideration, so the current control is more 

suitable. But when the motor is running at high speeds, the large inertia of the vehicle can 

effectively smooth out the torque ripple of the SRM and the motor efficiency becomes 

the most important performance criterion of the vehicle drive-train, the torque control 

method should be changed to voltage-based control, which can be applied by advancing 

the turn-on angle and adjusting the conduction angle. 
 

Table 2-2 Comparison of torque control methods 

Control method Cost Simplicity Percentage of 
torque ripple 

efficiency 

Current-based torque control high complex low low 

Voltage-based torque control low simple high high 
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3 BACK-PROPAGATION ARTIFICAIL NEURAL NETWORK 

3.1 History of Artificial Neural Network 

Artificial neural networks (ANNs) or just neural networks (NNs) are information 

processing systems that roughly mimic the behaviour of a human brain by emulating the 

operations and connectivity of biological neurons [46]. NNs consist of a large number of 

simple processing elements called neuron, which has an internal state called activation 

function. Each neuron is connected to other neurons with an associated weight. Hence, 

the NN can be characterized by (1) architecture which is the pattern of connections 

between neurons, (2) training algorithm which is used to determine the weights on the 

connections, and (3) activation functions of the neurons. NNs can be trained directly from 

data, sometimes complicated or imprecise data, which means that NNs are applicable to 

patterns extracting and trends detecting, nonlinear functional mapping and controlling, 

pattern recognition and data classification, image processing and signal processing. 

The development of the NNs stemmed from the 1940s, and motivated by a desire 

to try to understand the brain and to emulate some of its strengths. An important step 

toward artificial neural networks occurred in 1943 when Warren McCulloch and Walter 

Pitts wrote a paper on the working mechanism of the neurons and modeled a simple 

neural network with logic circuits [47]. However, the first significant application only 

took place in 1958 when Rosenblatt introduced a large class of ANNs called perceptrons 

which typically consisted of an input layer connected by paths with fixed weights to 

associate neurons [48]. In 1960, Bernard Widrow and Marcian Hoff developed models 

called ADALINE in electrical engineering for single-layer network and MADALINE for 

multilayer network [49].  

Due to the limitation of single-layer perceptrons and the lack of a general training 

method for multilayer net, 1970s became the quiet years for the development of NNs. 

The renewed enthusiasm started in 1980s after Rummelhart and Mclelland introduced a 

general back-propagation algorithm for a multilayered perceptron (MLP) network in 

1986 [50], [51]. The basic MLP-network is constructed by ordering the units in layers, 

letting each unit in a layer take an input only from the outputs of units in the previous 
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layer or eternal inputs. Hence, the MLP network is usually called a feed-forward network. 

If the MLP-network architecture is augmented with feedback loops, the network is 

usually referred to as a recurrent network. Another suitable network for modelling and 

control of dynamic system is the Radial Basis Function (RBF) network developed in 

1992 by Sanner and Tzirkel-Hancock [52]. 

3.2 Back-propagation ANN  

A back-propagation neural network is a multilayer feed-forward network trained 

by back-propagation algorithm. As is the case with most neural networks, the aim is to 

train the network to achieve a balance between the ability to respond correctly to the 

input patterns that are used for training (memorization) and give reasonable response to 

input that is similar to that used in training (generalization).  

The training of a network by back-propagation involves three stages: the feed-

forward of the input training pattern, the calculation and back-propagation of the 

associated error, and the adjustment of the weights. After training, application of the net 

involves only the computations of the feed-forward phase. Even if training is slow, a 

trained net can produce its output very rapidly. A multilayer net (with one or more hidden 

layers) can learn any continuous mapping to an arbitrary accuracy. For control 

application, single-hidden-layer networks are not sufficient for stabilization, especially in 

discontinuous mapping, two-hidden-layer networks are enough assuming that bias units 

are used. 

3.2.1 Architecture 

A back-propagation neural network with two hidden layers is shown in Fig. 3.1. 

Both the output units and the hidden units have biases. The bias on a typical output unit 

Yk is denoted by W0k; the bias on a typical hidden unit Zj is denoted by U0h, and the bias 

on a typical hidden unit ZZj is denoted by V0j. These biases act like weights on 

connections from units whose output is always 1. 

The weight linking a typical input unit Xi with the typical unit Zh in the first 

hidden layer is denoted by Uih; The weights linking a unit Zh in the first hidden layer with 

a unit ZZj in the second hidden layer is denoted by Vhj; The weights linking a unit ZZj in 

the second hidden layer with a typical output unit Yk is denoted by Wjk. 
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Each neuron has an activation function which can be sigmoid, bipolar sigmoid, 

log-sigmoid function, etc. The weights on connections can be determined by the back-

propagation algorithm during training process, and then used for calculating the outputs. 

For some applications, these weights can be used to initialize the neural network and then 

updated by using online training algorithm. 

3.2.2 Training with Levenberg–Marquardt Algorithm 

The process of changing weights is called training, which minimizes the error 

caused by the difference between desired output and actual output. There are several 

commonly used training methods for BPNN such as gradient descent, Gauss-Newton 

algorithm (GNA) and Levenberg-Marquardt algorithm (LMA). The LMA has been a 

compromise between the GNA and the method of gradient descent, which is more robust 

but slower than the GNA, and faster but less stable than the gradient descent. 

To train the BPNN, generally, the performance index F(w) to be minimized is 

defined as the sum of squared errors between the target outputs and the network’s 

response outputs, namely 

 eeWF T=)(  (3.1) 
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Fig. 3.1 Architectural graph of a BPNN with two hidden layers. 



 

32 
 

where W=[U01,…, Unp, V01,…,Vqp, W01, …, Wpm]T consists of all weights of the network, e 

is the error vector comprising the errors between the responses and the targets. 

The training using LMA is an iterative procedure to find the suitable weights 

vector to minimize the performance index. The standard LMA training process can be 

illustrated as following: 

3.2.2.1 Feed-forward 

During feed-forward, each input unit receives an input signal and broadcasts it to 

each of the hidden units in the first layer. Each of these hidden units then computes its 

activation and sends its output to the hidden units in the second layer. Next, each hidden 

unit in the second layer computes its activation and sends its output to the output units. 

Finally, each output unit computes its activation to form the response of the net for the 

given input pattern and calculate the error between the response and the actual output. 

The detailed description is like the following [46]: 

Each input unit (Xi, i=1, …, n) 

1) broadcasts the input signals to hidden units in the first hidden 

layer. 

Each hidden unit (Zh, h=1, …, q) in the first hidden layer 

1) computes the input signal 

 ∑+=
=

n

i
ihihh UXUinz

1
0_  (3.2) 

2) applies activation function to compute the output signal 

 )_( hh inzfZ =  (3.3) 

3) and sends its output signal to the units in the second hidden layer. 

Each hidden unit (ZZj, j=1, …, p ) in the second hidden layer 

1) computes the input signal 

 ∑+=
=

p

h
hjhjj VZVinzz

1
0_  (3.4) 

2) applies activation function to compute the output signal 

 )_( jj inzzfZZ =  (3.5) 

3) and sends its output to the output layer. 
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Each output unit (Yk, k=1, …, m) 

1) sums weighted input signal 

 jk

p

j
jkk WZZWiny ∑+=

=1
0_  (3.6) 

2) applies activation function to compute the output signal 

 )_( kk inyfY =  (3.7) 

3) and calculates the error 

 kkk YTe −=  (3.8) 

    where e={ek} k=1,…,m,  

    Tk is the target, and  

    Yk is the corresponding response output. 

3.2.2.2 Backpropagation of Error 

The difference between different training algorithms is the way to get the 

increment of the weights vector W which includes all the weights between the neurons. 

When training with the LMA, the increment of weights ∆W can be obtained as follows 

 [ ] eJJJdiagJJW TTT 1
)(

−
λ+=∆  (3.9) 

where J is the Jacobian matrix whose ith row equals to 

 W
WXFJ i

i ∂
∂= ),(

 (3.10)
 

which is the gradient of the performance index F(W) with respect to the weight and bias 

variables, 

λ is the training parameter which is to be updated using the decay rate β 

depending on the outcome. In particular, λ is multiplied by the decay rate β ( 0< β < 1,  

β=0.1 by default in MATLAB ) whenever F(W) decreases, while λ is divided by β 

whenever F(W) increases in a new step. 
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3.2.2.3 Update Weights and Biases 

The weights for all layers are adjusting simultaneously to speed up the training 

process [46]: 

For each output unit (j = 0, …, p; k = 1, …, m): 

 ( ) ( ) jkjkjk woldwneww ∆+=  (3.11) 

For each hidden unit ZZj (h = 0, …, q; j = 1, …, p): 

 ( ) ( ) hjhjhj voldvnewv ∆+=  (3.12) 

For each hidden unit Zh (i = 0, …, n; h = 1, …, q): 

 ( ) ( ) ihihih uoldunewu ∆+=  (3.13) 

Finally, test the stopping condition. If the performance index is less than the 

desired value, training is stopped and the weights are fixed for application, or else do 

steps described from 3.2.2.1 to 3.2.2.3. 

3.2.3 Activation Function 

An activation function for a back-propagation network should have several 

important characteristics such as: continuous, differentiable, and monotonically non-

decreasing. Furthermore, for computational efficiency, it is desirable that its derivative 

should be easy to compute. Usually, the function is expected to saturate, i.e., approach 

finite maximum and minimum values asymptotically. The three functions used in this 

research are: tansig(), logsig(), and purelin(), which are shown in Figs. 3.2 to Fig. 3.4. 

  (3.14) 1
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Fig. 3.2 Bipolar sigmoid, range (-1, 1). 

  (3.15)
 

 
Fig. 3.3 Binary sigmoid, range (0, 1). 

 nnpurelin =)(  (3.16) 

 
Fig. 3.4 Linear transfer function. 
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3.2.4 Number of Hidden Layers 

A multilayer net (with one or more hidden layers) can learn any continuous 

mapping to an arbitrary accuracy. However, for control application, single-hidden-layer 

networks are not sufficient for stabilization, especially in discontinuous mapping, two-

hidden-layer networks are enough assuming that bias units are used [53]. 

3.2.5 Application Procedure 

After training, for a fixed weight BPNN, it is applied by using only the feed-

forward phase of the training algorithm. The application procedure is as following: 

(1) Initialize weights obtained from the training algorithm 

(2) For each input vector,  

Each input unit (Xi, i=1, …, n),  

 broadcasts input signal to hidden units. 

Each hidden unit (Zh, h=1, …, q) 

 ∑+=
=

n
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0_  (3.17) 

 )_( hh inzfZ =  (3.18) 

Each hidden unit (ZZj, j=1, …, p) 

 ∑+=
=

p

h
hjhjj VZVinzz

1
0_  (3.19) 

 )_( jj inzzfZZ =  (3.20) 

 Each output unit (Yk, k=1, …, m) 
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 )_( kk inyfY =  (3.22) 

3.2.6 Direct Inverse Neural Network Based Control 

For nonlinear systems, since it cannot be described in terms of transfer functions, 

it is often seen that neural networks are proposed as a tool for adaptive control of 

nonlinear systems with time-varying dynamics due to its high learning and generalization 

ability [54]. There are different models for neural-network based control such as direct 
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inverse control, internal model control and nonlinear predictive control, however, due to 

requisite for good dynamic performance and cost sensitivity of the HEVs traction 

application, in this research, direct inverse control is selected for it is simple to implement 

and fast response ability. For direct inverse control, the controller is inferred directly 

from a set of data without requiring an actual mathematical model of the system.  

Direct inverse control utilises an inverse system model [55]. Fig. 3.5 shows the 

principle of training the inverse system model. With the input signal S, the plant output Y 

is used as input to the neural network. The network calculated the output Y’ and then 

compared it with the training signal (the system input S) and this error is used to train the 

network to update the weights. With extensive training, this structure will clearly tend to 

force the network to represent the inverse of the plant. 

Then, the inverse system model is connected with the plant to implement control 

function as shown in Fig. 3.6. During real-time control, for a certain output command, the 

NN inverse model can produce the input for the plant which will drive the plant tracking 

the output command.  
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Fig. 3.5 Training of direct inverse model. 

Fig. 3.6 Principle of direct inverse control. 
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The drawback of this approach is that if the nonlinear system mapping is not one-

one then an incorrect inverse model can be obtained. To address this problem, in this 

research, the training data have been divided into several contiguous data sets to train 

several neural networks to increase the accuracy of the inverse system mode. 
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4 TORQUE RIPPLE MINIMIZED TORQUE CONTROL OF SRM 

4.1 Introduction 

In an HEV, the on-board electric motor serves as a device to optimize the 

efficiency of the internal combustion engine (ICE). HEVs typically employ permanent-

magnet synchronous motor. Recently, switched reluctance motor (SRM) has attracted 

interest for HEV propulsion for its robust construction, fault tolerant operation, high 

starting torque without the problem of excessive inrush current, and ability to extremely 

high-speed operation. However, SRM suffers from some drawbacks such as high torque 

ripple and acoustic noise which are quite critical for HEV applications [5]. 

Due to considerable non-linearity in the torque characteristics of SRM, and the 

extensive requirement for lower torque ripple, good dynamic performance and cost 

sensitivity of the HEVs traction application, in this research, a feed-forward back 

propagation neural network (BPNN) based direct inverse control is proposed to minimize 

the torque ripple at low speeds for its simple, easy to implement and fast dynamics. 

Special data pre-processing technique has been used to handle the problem of multi-

valuedness. By splitting the training data into several contiguous sets and designing a 

bank of two-hidden-layer neural network controllers for the whole torque range, the 

appropriate current profile to reduce the torque ripple is obtained. Computed results show 

that the proposed scheme can reduce the torque ripple and provide good dynamic 

performance with respect to changes in the torque commands. 

4.2 Design of Neural Network Based Controller 

4.2.1 Diagram of the Controller 

The diagram of the proposed BPNN-based torque controller is shown in Fig. 4.1. 

The commutation logic selects the appropriate phases that can be conducted 

simultaneously to reduce the torque ripple based on the instantaneous rotor position. The 

torque distribution is used to calculate the phase torque commands by using torque 

distribution function discussed in [56]. Torque command, rotor position and outputs from 

the commutation logic are then used to generate phase torque command.  
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Neural network controller is then used to track the torque command. By taking 

reliability, speed and cost into consideration, BP neural network is applied to learn the 

phase current profile for the calculated phase torque command and to produce the phase 

current command. The hysteresis current controller has been chosen for its simplicity and 

robustness and an asymmetric H-bridge converter is applied to follow the current 

command for its simplicity and high stability. 
 

4.2.2 Torque Distribution Function 

At any time, the resultant output torque of SRM is the summation of the output 

torques in all phases: 

 ∑=
=

N

j
jTT

1
 (4.1) 

where N is the number of phases, and Tj is the torque generated in phase j which is a 

nonlinear function of phase current i and rotor position θ. Assuming that the rotor 

position is 0° or 60° (Mechanical degree) when fully aligned with the stator, for an 8/6 

SRM, the position of the rotor when fully unaligned with the stator is 30°. Neglecting the 

influence of saturation, if the phase current i is fixed, the torque (of an 8/6 SRM) will 

have a profile as shown in Fig. 4.2. 
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Fig. 4.1 Diagram of the proposed controller. 
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Fig. 4.2 Phase torque profile under fixed current. 

It is clear that high torque is not available near fully aligned/unaligned position 

even when high phase current is presented. To generate a ripple-free output torque, there 

must be overlapping between phases.  

During phase overlapping, the current is decreasing in one phase and increasing in 

the other phase. To obtain a constant torque, the sum of the torque generated by these two 

phases must be equal to the torque generated by one phase in non-overlapping period. To 

determine the desired torque produced by each phase, torque-factors have to be 

introduced, which are defined as 

 ∑ θ=
=

N

i
comi TfT

1
)(  (4.2) 

where fi(θ) is the torque factor for phase i at rotor position θ, and T
com 

is the torque 

command.  

The motor used in this research is an 8/6 SRM, the inductance 

increasing/decreasing period for each phase is π/6, the angle between the two adjacent stator 

phases is π/4. To generate desired torque (T = T
com

), a conduction angle of π/8 is chosen in 

this research. This means, 
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 8/π=θ−θ onoff  (4.3) 

So the phase overlapping for the two adjacent phases is π /8 - π /12 = π /24. During phase 

overlapping, the torque factor for phase j is expressed as follows [56], 
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and the torque command Tref for the to-be-excited phase can be calculated as follows: 

 comref TfT *)(θ=  (4.5) 

4.2.3 Neural Network Controller 

The static torque characteristic for a single conducting motor phase of SRM is 

shown in Fig. 4.3 which shows a highly non-linear characteristic. SRM will produce 

different torque when the rotor is at different positions under a certain phase current 

excitation. Obviously, in an inverse model of SRM, there are many different input data 

pairs (torque, rotor position) that will be mapped to one output current which is called a 

multi-valued inverse mapping. 
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Fig. 4.3 Static torque characteristic for one phase. 
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Generally, for this kind of model, during training, the feed-forward network tends 

to average the weights corresponding to various inputs, thereby cannot produce a high 

accuracy mapping. After training, for a certain input pairs (torque, rotor position), an 

accurate current cannot be calculated from the inverse mapping. To make the inverse 

model learning the current profile properly, the training data have to be split into several 

data sets, and each data set is used to approximate one branch of the inverse model by 

using one neural network. Considering the complexity of a set of neural networks and the 

accuracy needed for torque tracking, the original data are analyzed and the redundant data 

are removed to get the final training data. The training data for the whole torque range are 

then divided into three data sets and used to train three neural networks. 

As single-hidden-layer networks are not sufficient for stabilization, especially in 

discontinuous mapping, two-hidden-layer networks are enough assuming that bias units 

are used. In this work, for each neural network, a four-layer neural network comprising of 

an input layer, an output layer and two hidden layers is used. Levenberg-Marquard 

algorithm described in previous chapter has been chosen to train the feed-forward neural 

networks due to its fast training speed. The training data have been divided into 

validation set and test set to get good generalization. 

One of the neural networks is shown in Fig. 4.4. The input layer has bias and two 

input units which are rotor position and phase torque command, the output layer has one 

output unit which is the phase current command. The activation functions for the hidden 

layers 1 and 2 are either hyperbolic tangent sigmoid function or log-sigmoid function, the 

output layer activation function is linear transfer function, and the learning function is 

gradient descent with momentum weight and bias learning function. 
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4.2.4 Hysteresis Current Control  

From previous section, the reference phase current for each phase is determined by 

the desired torque and current rotor position through the neural network controller. Then 

hysteresis current control technique will be applied to maintain the phase current within an 

acceptable range around the reference phase current. The principle of the hysteresis current 

control is shown in Fig. 4.5. 

As shown in Fig. 4.5, when the phase is excited, the output of PWM is 1, the 

power converter applies voltage to the phase. If the current reaches the upper limit, the 

output of PWM is changed to 0 which cuts off the supply voltage until the current reaches 

the lower limit. If the current reaches the lower limit, the output of PWM is changed to 1 

which lets the power converter supply the voltage until the current reaches the upper 

limit. If the current is within the band ∆h, the PWM output remains unchanged. 

4.3 Simulation Results and Analysis 

The proposed SRM torque controller has been simulated by using the motor 

described in Appendix A1 in Matlab/Simulink as shown in Fig. 4.6. Corresponding to 

different conditions in the propulsion, the performances of the SRM are calculated and 

analyzed when it is running at different conditions such as steady-state, dynamic state and 

starting from stand-still. 
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Fig. 4.5 Hysteresis current control and PWM output. 
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4.3.1 Steady-State Performance 

During most of the time, vehicle runs at steady-state under constant load. The 

vehicle control unit expects a precise and stationary average torque of the electric drive 

which can track precisely the reference torque. 

To analyze the controller performance under steady-state, the torque command 

(Tcom) was set to 350 N.m, the motor speed was 525 rpm, and the rotor inertia was set to a 

very high value to keep the vehicle speed constant. The 4-phase currents and torque 

output under this operating condition are shown in Figs. 4.7(a) and (b). Fig. 4.7(b) shows 

that the torque output (Tout) reaches 350.1 N.m in 0.0014 s and, after that, the output 

torque varies between a maximum torque (Tmax) of 364.3 N.m and a minimum torque 

(Tmin) of 336.5 N.m. The  average torque output (Tavg) has been found to be 350.8 N.m. 

Using this information, the torque ripple in percentage can be calculated by employing 

(4.6) [57] 

 [ ] %100/)( minmax ×−= avgripple TTTT  (4.6) 

which is 7.9%. This torque ripple is produced due to the discrepancy between the output 

current command of the neural network controller and the ideal current profile for the 

torque command. The second reason is due to the output current of the hysteresis current 

controller which is not exactly equal to the current command. It is also found that, during 
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the commutation period, the torque ripple is higher than that when only one phase is 

excited. The reason for this is that the total torque in the commutation period is the sum 

of the two individual phase torques, and the total torque ripple is therefore the sum of the 

two phase torque ripples which results in a higher torque ripple. 

 

 

(a) 

 

 

(b) 

Fig. 4.7 Calculated waveforms at low speed (477.5 rpm) with a torque command of 350 N.m. 
(a) 4-phase currents. (b) Output torque. 
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4.3.2 Dynamic Performance  

While the vehicle is running at constant speed like under cruise control, the load 

torque can vary abruptly due to the change of the road condition. When the vehicle is 

running at this kind of state, the control unit also expects a precise average torque and 

fast response from the electric drive. 

In the dynamic performance simulations, the speed was also kept constant by 

using a high motor inertia. Two cases were considered: in the first case, as shown in Fig. 

4.8, the command torque, Tcom, was changed from 100 N.m to 300 N.m at 0.03 s and, in 

the second case, Tcom was changed from 350 N.m to 300 N.m at 0.03 s as presented in 

Fig. 4.9. Fig. 4.8 (b) shows that the dynamic performance of the controller is very good; 

Tout increases to 300.2 N.m at 0.0304 s. Fig. 4.9 shows the calculated 4-phase currents 

and output torque of the SRM when Tcom was reduced from 350 N.m to 300 N.m at 0.03 

s. The motor drive responds almost instantaneously as shown in this figure, Tout  reaches 

300 N.m at 0.0301 s. Tavg, Tmin and Tmax are 301.4 N.m, 284.4 N.m, and 317.8 N.m 

respectively. By using (4.6), the average torque ripple has been found to be 11%. The 

reason for this is similar to that for the steady state. 
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(a) 

 

 (b) 

Fig. 4.8 Calculated waveforms at speed of 477.5 rpm with an initial torque command of 100 N.m 
changed to 300 N.m at 0.03 s. 

(a) 4-phase currents. (b) Output torque. 
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(a) 

 

  

(b) 

Fig. 4.9 Calculated waveforms at speed of 477.5 rpm with an initial torque command of 350 N.m 
changed to 300 N.m at 0.03 s. 

(a) 4-phase currents. (b) Output torque. 
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4.3.3 Starting Performance with Load 

It is also important to analyze the starting performance of a vehicle. During this 

starting period, the electric drive needs to produce a very high torque in a very short time. 

Fig. 4.10 shows the calculated results when the motor was started from standstill with 

load torque of 348 N.m. Fig. 4.10 (a) shows that the motor reaches the steady-state speed 

1,380 rpm at 0.0541 s. It can be seen from Fig. 4.10 (b) that the average output torque is 

349 N.m, which corresponds to the load torque of 348 N.m. However, during the starting, 

the torque ripple is higher compared with those in the steady-state and dynamic 

conditions. The reason is that training data for the BPNN controller are calculated from 

the static characteristic for unloaded condition. 

Fig. 4.10 (c) shows that there is an overshoot in the phase current during starting. 

At this condition, the phase current is calculated to be 550 A, which is higher than the 

rated current 450 A. This is due to the fact that the motor requires larger power to 

accelerate during starting, the current drawn and the torque developed during starting are 

large which will reduce to values corresponding to the steady-state ones. The high 

starting output torque and current demonstrate that the motor should have short duration 

overload ability. 
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 (a) 

 

 (b) 

 

 (c) 

Fig. 4.10 Calculated waveforms for starting performance with a load torque of 348 N.m. 
(a) Motor speed. (b) Output torque. (c) 4-phase currents. 
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5 EFFICIENCY OPTIMIZED TORQUE CONTROL OF SRM 

5.1 Introduction 

Although the torque ripple is the obvious drawback of the SRM which has been 

studied extensively, during high-speed operation, the large inertia of the vehicle can 

effectively smooth out the torque ripple of the SRM and the motor efficiency becomes 

the most important performance criterion of the vehicle drivetrain [58]. 

In this chapter, considering the extensive non-linearities in the losses of the power 

converter and torque characteristics of SRM, variation in the DC bus voltage, the 

extensive requirement for high efficiency at high speed, good dynamic performance and 

cost sensitivity of the HEVs traction application, a feed-forward back propagation neural 

network (BPNN) based direct inverse control is proposed to track the torque command 

while optimizing the motor efficiency at high speed for its simple structure, easy to 

implement and fast dynamics. A set of switching angles corresponding to specified 

operating points with maximum efficiency have been used to train the neural network. 

The problem of multi-valuedness related with the direct inverse control has been 

addressed by splitting the training data into several contiguous sets and designing a bank 

of two-hidden-layer neural network controllers for the high speeds. During real-time 

operation, the appropriate switching angles to optimize the motor efficiency are obtained 

by using the trained neural network controller. Computed results are presented to 

demonstrate the effectiveness of the proposed control scheme.  

5.2 Design of Neural Network Based Controller 

5.2.1 Diagram of the Controller 

The diagram of the proposed BPNN-based torque controller is shown in Fig. 5.1. 

Neural network controller is used to track the torque and speed commands under certain 

DC voltage while optimizing the motor efficiency. By taking reliability, speed and cost 

into consideration, BP neural network is applied to calculate the appropriate turn-on and 

turn-off angles for the specified operation point. The commutation logic then selects the 

appropriate phases that will be conducted based on the instantaneous rotor position and 
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the switching angles. An asymmetric H-bridge converter is used to regulate the phase 

current for its simplicity and high stability. 

5.2.2 Neural Network Controller 

5.2.2.1 Training Data Acquisition 

To build a neural network controller, the first step is to train the network. An 

offline dynamic simulation of SRM provides the training data for the neural network. The 

simulation is fulfilled in the following steps as shown in Fig. 5.2: 

 

 

 

Transmission Phase 
current 

Gate signal Power 
converte

r 

Encoder 
Rotor position 

SRM 

Battery 

 A 
B 
C 

Commutation logic 

 
 Σ Torque command 
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  V

Fig. 5.1 Diagram of the proposed torque controller. 
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 (1)  For a certain DC voltage and torque command, adjust all possible 

combinations of turn-on and turn-off angles to excite the SRM, calculate the motor 

efficiencies when the SRM is running at steady state by using (5.1) 

 











×ω=

×=η

%100

%100

in

out

in

out

P

T

P

P

  (5.1) 

where Tout is the output torque, ω is the motor steady speed and Pin is the output power of 

the battery. All parameters used in (5.1) are RMS values.  

Vmin<Vdc<Vrate 

Tmin<Tload<Trate 

θon_min<θon<θon_max 

θoff_min<θoff<θoff_max 

Calculate the efficiency 

Save the current operation point 

θoff =θoff+1 

θon=θon+1 

Tload=Tload+5 

Vdc=Vdc+20 

Y 

N 
Y 

Y 
N 

Y 

Find the maximum efficiency and switching angles 

N 

Initialize Vdc,Tload,θon, θoff 

Fig. 5.2 Flow chart of training data acquisition. 
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(2) For a certain operation point (voltage, torque and motor speed), find the 

maximum efficiency and corresponding turn-on and turn-off angles. 

(3) Find all possible pairs of turn-on and turn-off angles corresponding to all 

possible operation points with maximum efficiencies. 

5.2.2.2 Neural Network Training 

SRM will produce different torques when the rotor is running at different speeds 

and DC bus voltage under certain turn-on and turn-off angles. Obviously, in an inverse 

model of SRM, there are many different input data pairs (torque, speed and voltage) that 

will be mapped to one turn-on or turn-off angle which is called a multi-valued inverse 

mapping. 

Generally, for this kind of model, during training, the feed-forward network tends 

to average the weights corresponding to various inputs, thereby cannot produce a high 

accuracy mapping [13]. After training, for a certain input data set (torque, speed and 

voltage), accurate turn-on and turn-off angles cannot be calculated from the inverse 

mapping. To make the inverse model learning the mapping properly, the training data 

have to be split into several data sets, and each data set is used to approximate one branch 

of the inverse model by using one neural network. Considering the complexity of a set of 

neural networks and the accuracy needed for torque tracking, the training data for the 

whole speed range up the base speed are divided into two data sets and used to train four 

neural networks, two neural networks are used to calculate the turn-on angle and the 

other two are used to calculate the turn-off angle. 

As single-hidden-layer networks are not sufficient for stabilization, especially in 

discontinuous mapping, two-hidden-layer networks are enough assuming that bias units 

are used. In this work, for each neural network, a four-layer neural network comprising of 

an input layer, an output layer and two hidden layers is used. Levenberg-Marquard 

algorithm has been chosen to train the feed-forward neural networks due to its fast 

training speed. The training data have been divided into validation set and test set to get 

good generalization. 
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One of the neural networks is shown in Fig. 5.3. The input layer has bias and 

three input units which are DC voltage, speed and torque command, and the output layer 

has one output unit which is either turn-on angle or turn-off angle. The activation 

functions for the hidden layer 1 are hyperbolic tangent sigmoid function and log-sigmoid 

functions are for hidden layer 2, the output layer activation function is linear transfer 

function, and the learning function is gradient descent with momentum weight and bias 

learning function. 

5.3 Simulation Results and Analysis 

The proposed SRM torque controller has been simulated by using the motor 

described in Appendix A1 in Matlab/Simulink as shown in Fig. 5.4. Corresponding to 

different conditions in the propulsion, the performances of the SRM drive are calculated 

and analyzed when it is running at different conditions such as steady-state and dynamic 

state. 

Output 

 
Input Weight 

Bias 

+ 
+ 

Weight 

Bias 

+ 
+ 

Weight 

Bias 

+ 
+  

Hidden layer 1 Hidden layer Output layer Input layer 

Fig. 5.3 Structure of one of the neural networks. 
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5.3.1 Drive Performance at Different DC Voltages 

Drive performance at different DC voltage levels under steady-state condition has 

been investigated. Figs. 5.5 and 5.6 present the speed and efficiency maps under load 

torque of 150 N.m with DC voltage of 240 V and 220 V, respectively. Both Fig. 5.5 (a) 

and Fig. 5.6 (a) show that the turn-on angle should be advanced to provide additional 

time for currents to build up in order to produce enough torque when the motor is running 

at high speeds. This advance creates more negative torque, but the additional negative 

torque is more than off-set by the increase in position torque. As to the turn-off angle, it 

has to be chosen to ensure that the current in the off-going phase has enough time to 

vanish. If not, the off-going phase will produce negative torque and the efficiency of the 

motor will be very low as shown in Fig. 5.5 (b) and Fig. 5.6 (b). When excited under the 

same turn-on and turn-off angles with same load torque, motor runs at lower speed under 

lower voltage with similar efficiency which shows that the drive efficiency is not 

sensitive to the changes of the supply voltage. 
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Fig. 5.4 Simulation model of NN torque controller. 
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Fig. 5.5 Efficiency and speed maps for V=240 V, T=150 N.m. 
(a) Speed map. (b) Efficiency map. 
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(b) 

Fig. 5.6 Efficiency and speed maps for V=220 V, T=150 N.m. 
(a) Speed map. (b) Efficiency map. 

 

5.3.2 Steady-State Performance  

During most of the time, vehicle runs at steady-state under constant load. The 

vehicle control unit expects a precise and stationary average torque of the electric drive 

which can track precisely the reference torque with high efficiency.  
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To analyze the controller performance under steady-state, the torque command 

was set to 160 N.m, the motor speed was 3,630 rpm with load torque of 156.2 N.m. 

Motor efficiency, torque output under this operating condition are shown in Fig. 5.7. Fig. 

5.7(b) shows that the average torque output reaches 160.6 N.m with efficiency around 

0.91 when the turn-on angle is 19.49o and turn-off angle is 47.16o. 

 

 

(a) 

 

 (b) 

 Fig. 5.7 Calculated waveforms at speed (3,630 rpm) with a torque command of 160 N.m. 
(a) Motor efficiency. (b) Torque output. 
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5.3.3 Dynamic Performance  

While the vehicle is running at constant speed like under cruise control, the load 

torque can vary abruptly due to the change of the road condition. When the vehicle is 

running at this kind of state, the control unit also expects a precise average torque and 

fast system response from the electric drive. 

In the dynamic performance simulation, the motor speed is set to be 3,630 rpm 

while the output torque changes from 140 N.m to 185 N.m at 0.2 s. One phase current is 

shown in Fig. 5.8(a) which cannot reach rated current; the higher torque the motor 

produces, the higher phase current the motor needed which can be reached by advancing 

the turn-on angle and postponing the turn-off angle as shown in Fig. 5.8(b). It is shown in 

Fig. 5.8(c) that Tout increases to 185.0 N.m at 0.2007 s, which means that the dynamic 

performance of the controller is very good. The torque ripple of the drive is high around 

30% as presented in Fig. 5.8(c) due to the switching control. But under high speed, this 

kind of ripple is acceptable considering the high vehicle inertia. 
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( a ) 

 

( b ) 

 

(c) 

 Fig. 5.8 Calculated waveforms for motor speed of 3,630 rpm with torque command changed from 
140 N.m to 185 N.m at 0. 2 s. 

(a) One phase current. (b) Switching angles. (c) Torque output. 
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6 TORQUE CONTROL OF SRM FOR THE WHOLE SPEED 

RANGE 

6.1 Introduction 

A comprehensive torque controller is in extremely high demand for SRM which 

can offer low torque ripple at low speed, high efficiency at high speed, good dynamic 

performance and low cost. The vehicle control unit always expects a precise and 

stationary average torque of the electric drive which tracks precisely the reference torque 

to perform dynamic assistance regulating tasks, such as anti-slip traction and braking 

control. Average torque is the torque averaged over one stroke (2*π/m*Nr, m is the 

number of motor phases, Nr is the number of the motor rotors) which requires a lower 

control-loop bandwidth than instantaneous torque control. Average torque can be 

controlled by varying many control variables such as phase currents, switching angles or 

both, but the configuration depends on the performance requirements, the acceptable 

level of complexity, and the cost. Since there are many possible combinations of control 

variables which produce the same torque, a secondary control objective is needed to 

select and define the variation of control variables for optimum performance such as 

efficiency and torque ripple.  

For the HEV traction application, at low speeds range, the torque ripple is the 

obvious drawback of the SRM which has been studied extensively. During high-speed 

operation, the large inertia of the vehicle can effectively smooth out the torque ripple of 

the SRM and the motor efficiency becomes the most important performance criterion of 

the vehicle drive-train [58]. The criteria for the whole speed range torque control of SRM 

should be low torque ripple at low speeds and high power efficiency at high speeds. 

At lower speeds, the torque is limited only by the current, which is regulated 

either by voltage-PWM, or instantaneous current regulation. As the speed increases, the 

back-EMF increases to a level at which there is insufficient voltage available to regulate 

the current; only the timing of the current pulses or switching angles can then be used to 

control the torque. However, a change of control strategy or stepwise change of the 

switching angles may result in a sudden change of the average machine torque which will 
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generate oscillations in the drive-train where smooth transition between the SRM 

operations is highly required. 

In this research, a torque controller of SRM for the whole speed range to satisfy 

the requirement of HEV traction application has been investigated; methods to reduce the 

torque/speed oscillation have been considered. Extensive simulations have been done to 

evaluate the performance of the proposed controller. 

6.2 Design of the BPNN-based Whole Speed Range Torque Controller 

6.2.1 Diagram of the Controller 

The diagram of the proposed BPNN-based torque controller is shown in Fig. 6.1. 

An asymmetric H-bridge converter is used to excite the phases of SRM by following the 

gate signal for its simplicity and high stability. Two BPNN controllers are used to track 

the torque and speed commands under certain DC bus voltage: one described in Chapter 

4 is applied to calculate the phase currents at low speeds to minimize the torque ripple, 

while the other one described in Chapter 5 is used to acquire the appropriate turn-on and 

turn-off angles for the specified operation point to ensure optimized motor efficiency at 

high speeds. To ensure seamless transition between the two operation modes, two blocks 

have been applied: speed dead-band filter and firing angle adjusting block. 
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6.2.2 Dead-band Filter 

A dead-band is an area of a signal range or band where no action occurs. The 

purpose is to prevent oscillation or repeated activation-deactivation cycles. Fig. 6.2 shows 

the principle of dead-band filter. When the commanded speed is transient around the base 

speed within a selected range, the control mode will not change. If it is changed from 

less-than-base-speed to over-base-speed, the control mode will change to high-speed 

control mode; afterwards, if it is not lower than the low-bound, the control will continue 

to be high-speed mode. Vice versa, if the commanded speed is changed from over-base-

speed to less-than-base-speed, the control mode will change to low-speed control mode, 

afterwards, if it is not higher than the up-bound speed, the control will stay with low-

speed mode. 

Transmission Phase 
current 

Gate signal 

Power 
converter 

Encoder 

SRM 

Battery 

 
 V 

Current controller 

Firing angle and 
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Speed command 
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Torque command 

Dead-band 
Filter Low Speed NN Controller 

High Speed NN Controller 

Fig. 6.1 Diagram of the proposed controller. 
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6.2.3 Firing Angles and Phase Current Adjusting 

As the speed increases, the back-EMF increases to a level at which there is 

insufficient voltage available to regulate the current, only the timing of the current pulses 

or firing angle can then be used to control the torque. However, the change of firing angle 

will break the rhythm of switching on the phases; big oscillations of shaft torque output 

can be observed when the turn-on angle is changed in increments of more than one 

mechanical degree. To avoid this kind of oscillations, a continuous change of the firing 

angles and phase currents has to be applied, which will slow down the response of the 

controller when big change of turn-on angle is required. However, for HEV traction 

application which always has an acceleration time, this can be endurable. 

6.3 Performance Evaluation through Simulation 

The proposed SRM torque controller has been simulated by using the motor 

described in Appendix A1 in Matlab/Simulink. As the controller performance such as 

starting, steady-state at low speeds and high speeds, dynamic response in the low speed 

range and high speed range have been simulated and analyzed in previous chapters, the 

following simulation will be done to validate the performance when the motor speed is 

changing from low speed to high speed with and without firing angle adjusting, and the 

performance when the bus-voltage is changed. 

Speed 

Base Speed 

Time 

Up-bound 

Low-bound 

Fig. 6.2 Principle of dead-band filter. 
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6.3.1 Performance with Changing of Control Mode 

At lower speeds, the torque is limited by the switching angles and phase currents 

regulated by the hysteresis current controller. However, at high speeds, the SRM turns 

into single-pulse mode because the motor’s back EMF is larger than the dc-link voltage, 

and the torque is controlled by properly adjusting the firing angles of a single-current 

pulse. 

In the dynamic performance simulations shown in Fig. 6.3, the command torque, 

Tcom, was changed from 250 N.m to 85 N.m at 0.2 s and, the command speed, ωcom, was 

changed from 1,310 rpm to 7,600 rpm at the same time. After the controller received the 

command and adjusted the control parameter for the final command to export more 

power, the phase current has been adjusted to the rated current as shown in Fig. 6.3(a), 

and switching angles have been adjusted to export more power to meet the requirements. 

However, due to the inertia of the motor, the motor can only speed up gradually as shown 

in Fig. 6.3(b) which results in a big spike of about 550 N.m in the shaft torque shown in 

Fig. 6.3(c). Fig. 6.3(d) shows that the firing angle has been advanced to 17.5° which is 

beyond the point where the dwell angle becomes equal to about half the rotor pole-pitch, 

continuous conduction begins at this point and the phase current never falls to zero as 

shown in Fig. 6.3(a). By running at continuous conduction mode, the phase currents can 

go up to rated current and the motor will increase the power density. The penalty is an 

increase in copper loss, which is acceptable if there is a greater gain in converted power 

and the machine can withstand the temperature rise. 

By gradually adjusting the turn-on angle and the phase current as shown in Figs. 

6.4(a) and (b), the torque output decreases gradually from 230 N.m to around 100 N.m 

with the steadily increasing speed as shown in Figs. 6.4(c) and (d). The maximum torque 

reduces from 550 N.m to 230 N.m. However, due to the adjustment, the response time of 

the motor drive is getting longer which is acceptable for HEV traction application 

considering the response time of the driver and the vehicle. 
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(c) 

 

 

(d) 

Fig. 6.3 Calculated waveforms when torque command changed from 230 N.m to 85 N.m and speed 
command changed from 1,310rpm to 7,600rpm at 0.2 s without the firing angle adjusting. 

(a) One phase current. (b) Motor speed. (c) Torque output (d) Switching angles 
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 (c) 

 

(d) 

Fig. 6.4 Calculated waveforms when torque command changed from 230 N.m to 85 N.m and speed 
command changed from 1,310rpm to 7,600rpm at 0.2 s with the firing angle adjusting. 

(a) One phase current. (b) Motor speed. (c) Torque output (d) Switching angles 

 

6.3.2 Performance under Changing of DC Bus Voltage 

While the vehicle is running at constant speed like under cruise control, the DC 
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control unit always expects a precise average torque and also fast response from the 

electric drive, the control parameter of the motor drive have to be adjusted to meet the 

command. 

In the simulation, in order to validate the performance related with the change of 

the DC bus voltage, the speed and torque were kept constant respectively of 5,064 rpm 

and 165 N.m while the DC bus voltage was changed from 240 V to 220 V. The simulated 

waveforms are shown in Fig. 6.5. When the DC bus voltage changed, based on the 

calculation of the BPNN controller, the switching angles, which are shown in Fig. 6.5(d), 

were adjusted corresponding to the change. Due to the big change of the firing angles, 

firing angle adjusting was applied. 

It is clear as shown in the simulation that when the DC bus voltage is decreasing, 

the firing angles have to be advanced to give the phase current enough time to increase to 

meet the power demand. Also, the turn-off angles are not sensitive to the change of the 

DC bus voltage which is reasonable as the turn-off angles usually affect the decaying 

time of the phase current. 
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(c) 

 

(d) 

Fig. 6.5 Calculated waveforms when DC bus voltage changed from 240 V to 220 V. 
(a) One phase current. (b) Motor speed. (c) Torque output (d) Switching angles 
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7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

Motivated by a desire to find an alternative vehicle which is independent on the 

petroleum, environment friendly and affordable, HEVs have been successfully launched 

commercially by major automakers. The performance of HEVs heavily relies on the 

development of drive train, specifically, the traction motor. Hence, this research is 

focused on the torque control of SRM, one of the suitable traction motors for HEV 

application, to reduce the torque ripple at low speeds and improve the power efficiency at 

high speeds. 

Based on the analysis of the nonlinearity torque-current-position characteristics of 

the SRM and the high generalization ability of the BPNN based control algorithm, a bank 

of BPNNs based torque controller has been proposed. The methodology to acquire the 

training data and to train the neural network has been presented. A set of neural networks 

is applied to get an accurate inverse model of SRM. To generate smooth torque output 

responding to the torque/speed command from energy management system of the HEVs, 

speed dead-band filter and gradually varied phase currents and firing angle have been 

applied to the controller. It has been demonstrated that the proposed controller has the 

following advantages: 

(1) Offer the ability of torque control in the motor’s whole speed range. 

(2) Exhibit good steady-state and dynamic performances responding to the 

changes of the torque command, speed command and DC-bus voltage.  

(3) Produce maximum torque quickly during starting while requiring short 

duration overload ability.  

(4) Generate smooth torque output while tracking the command changes with 

high accuracy at low speeds. 

(5) Demonstrate high ability to follow the high efficiency track of the motor at 

high speeds. 

(6) Reduce torque oscillation when the control mode is changed. 
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7.2 Future Work 

This research clearly demonstrates the potential of neural network based torque 

control of SRM for HEV traction application. However, there are certain areas which 

would require further research. 

The neural network used in this research is back-propagation neural network, 

whose weights are fixed during real-time operation. Other kind of intelligent control 

method such as neural fuzzy system can be investigated to improve the flexibility and 

adaptability of the controller. 

Generally, open-loop torque control proposed in this research is acceptable for 

HEV traction application. However, close-loop torque control can also be investigated to 

improve the drive performance for high-end vehicle. Neural networks which can update 

the weights on-line can be used in this kind of neural network controller. 

Another problem area for SRM is the acoustic noise. Appropriate commutation 

control can help to reduce the noise level. A successful control algorithm, which can 

reduce the torque ripple and noise and improve the power efficiency, will improve the 

performance of the SRM drive train for the HEV traction application. 
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APPENDIX A  MOTOR PARAMETERS 

The parameters of an 8/6 SRM from the library of MATLAB/SIMULINK is 

shown in the following table: 

 

Nominal power 75 kW 

No. of stator poles 8 

No. of rotor poles 6 

No. of phases 4 

Stator resistance 0.01 Ω 

Friction constant 0.01 N.m.s 

Unaligned inductance 0.67x10-3 H 

Aligned inductance 23.6x10-3 H 

Saturated aligned inductance 0.15x10-3 H 

Inertia constant 0.0082 kg-m
2
 

Maximum current 450 A 

Maximum flux linkage 0.486 V.s 
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