Examining the effect of PIk4/Sak levels on the transcript profiles of other genes

Alan James Morettin
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Morettin, Alan James, "Examining the effect of Plk4/Sak levels on the transcript profiles of other genes" (2008). Electronic Theses and Dissertations. 2000.
https://scholar.uwindsor.ca/etd/2000

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Examining the Effect of Plk4/Sak Levels on the Transcript Profiles of other Genes

by

Alan James Morettin

A Thesis
Submitted to the Faculty of Graduate Studies Through Biological Sciences in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor

Windsor, Ontario, Canada

2008
©2008 Alan James Morettin

Library and
Archives Canada
Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada

Bibliothèque et
Archives Canada
Direction du
Patrimoine de l'édition
395, rue Wellington Ottawa ON K1Ă 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-42251-9
Our file Notre référence
ISBN: 978-0-494-42251-9

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University of Institution.

Abstract

The aberrant regulation of cell cycle checkpoints can potentially initiate cellular transformation to an oncogenic state that leads to tumor formation. Many families of cell cycle regulators are present to ensure that normal cellular growth and replication occurs, including the polo-like kinases (Plk). Plk4 (Sak), the newest and most structurally divergent member of the Plks has been implicated to play crucial roles in centrosome dynamics and mitotic progression. Plk4 heterozygous mouse embryonic fibroblasts (MEFs) present a number of phenotypic differences, in comparison to their wild type counterparts that may contribute to the increased incidence of tumor formation observed in heterozygous Plk4 mice. Microarray technology was employed to investigate transcriptional differences between the wild type and heterozygous Plk4 MEFs. Furthermore, transcriptional and protein differences were examined in the Plk4 MEFs in response to DNA damaging agents, to explore a possible role for Plk4 in the DNA damage pathways.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. John Hudson for giving me the opportunity to pursue a Master's thesis in his laboratory. His guidance was invaluable in my pursuing my Master's thesis.

I am also grateful to my committee members, Dr. William Crosby and Dr. Siyaram Pandey, as well as Dr. Huiming Zhang, my committee chair for taking the time to read my thesis, as well as for their valuable input in my Master's career.

I would like to thank my family and friends for all of their help and support throughout this process.

I would also like to thank Hudson lab member's past and present for all of the good times we had together. It would have been very difficult to get through this process without your help and support. A special thanks to Anna Kozarova for her assistance during my master's project.

TABLE OF CONTENTS

AUTHOR'S DECLARATION OF ORIGINALITY iii
ABSTRACT iv
ACKNOWLEDGEMENTS v
LIST OF TABLES ix
LIST OF FIGURES x
CHAPTER
I. REVIEW OF LITERATURE
General Introduction 1
Polo-like Kinase Family 1
Plk Structure 2
Plk Expression and Localization Profiles 4
Plks and Mitotic Entry. 7
Plks and their Role in Mitotic Exit and Cytokinesis 8
Plks and their Role in DNA Damage Pathways 11
Plks and the Centrosomes 15
Plks and Oncogenesis and Tumor Development 18
Polo-like kinase 4 (Plk4)/Sak 21
Plk4 Expression Profile and Localization. 24
Plk4 and the Centrosomes 25
Plk4's Role in Mitosis 27
Plk4's Role in DNA Damage Pathways 28
Plk4 Null Mice 28
Plk4 Mouse Embryonic Fibroblasts (MEFs) 30
Cancer Development in Plk4 Heterozygous Mice 31
Plk4's Role in Oncogenesis. 32
Experimental Approach 33
II. OBJECTIVES OF THE STUDY 37
III. MATERIALS AND METHODS
Establishment of Primary Mouse Embryonic Fibroblasts 38
MEF Genotyping 39
RNA Isolation 40
Microarray 40
Synthesis of Complementary DNA (cDNA) 41
Polymerase Chain Reaction
i) Plk4 42
ii) GAPDH 42
iii) Prohibitin 43
iv) SAP30 Binding Protein 43
v) Wisp 1 44
Densitometry 44
TdT-Mediated dUTP Nick-End Labeling (TUNEL) Assay 45
Exposure of MEFs to DNA Damaging Agents. 46
SDS-PAGE 46
Western Blot Analysis 46
Stripping of Western Blots for Reprobing 47
IV. RESULTS
Comparison between Transcript Profiles in Wild Type and Heterozygous Plk4 MEFs using Microarray 48
Confirmation of Microarray Results using RT-PCR 52
Wisp1 Expression in Heterozygous Plk4 MEFs 52
SAP30BP Expression in Heterozygous Plk4 MEFs 58
Prohibitin Expression in Heterozygous Plk4 MEFs 62
The Effect of Ionizing and Ultraviolet Radiation on the Plk4
Transcript Profile in MEFs 67
The Effect of Ionizing and Ultraviolet Radiation on Plk4 Protein Levels in MEFs 73
The Effect of Plk4 Gene Dosage on Protein Levels of DNA Damage Proteins 78
Apoptotic Rate in Plk4 MEFs in Response to UV 84
Comparison between Transcript Profiles in Wild Type and Heterozygous Plk4 MEFs in Response to UV using Microarray 89
Comparison between Transcript Profile in Wild Type vs. Wild Type UV Exposure and Heterozygous vs. Heterozygous UV Exposure Using Microarray 94
V. DISCUSSION
Transcript Analysis in Wild Type and Heterozygous Plk4 MEFs 104
i) Wisp1 Expression in Heterozygous MEFs 105
ii) SAP30BP Expression in Heterozygous MEFs 108
iii) Prohibitin Expression in Heterozygous MEFs 110
Plk4 Expression in MEFs: Response to DNA Damaging Agents 112
i) Plk4 Transcript Abundance in Response to Ionizing Radiation 113
ii) Plk4 Transcript Abundance in Response to Ultraviolet Radiation 113
iii) Plk4 Protein Levels in Response to DNA Damage 114
iv) DNA Damage Protein Levels 114
Apoptotic Susceptibility in Plk4 MEFs 119
Transcript Differences in Plk4 MEFs: Response to Ultraviolet Radiation 120
Transcriptional Differences between Normal \& UV Wild Type and Normal \& UV Heterozygous MEFS 125
Future Directions 126
APPENDICES
A: Antibodies used for Western Blotting Analysis 127
B: Densitometry Values Measuring the Difference between Wisp1 in Wild Type and Heterozygous MEFs 128
C: Densitometry Values Measuring the Difference between SAP30BP in Wild Type and Heterozygous MEF. 130
D: Densitometry Values Measuring the Difference between Prohibitin in Wild Type and Heterozygous MEFs 132
E: Densitometry Values for Wild Type MEFs Exposed to Ionizing Radiation 134
F: Densitometry Values for Heterozygous MEFs Exposed to Ionizing Radiation 138
G: Densitometry Values for Wild Type MEFs Exposed to Ultraviolet Radiation 142
H: Densitometry Values for Heterozygous MEFs Exposed to Ultraviolet Radiation. 146
I: Apotosis Values for TUNEL Assay 150
J: Expression Levels of Down-Regulated Genes in Heterozygous MEFs 151
K: Expression Levels of Up-Regulated Genes in Heterozygous MEFs. 152
L: Expression Levels of Down-Regulated Genes in Heterozygous MEFs upon UV Exposure 154
M: Expression Levels of Up-Regulated Genes in Heterozygous MEFs upon UV Exposur 155
LITERATURE CITED 157
VITA AUCTORIS 175

LIST OF TABLES

Table 1 54
Table 2. 55
Table 3 91
Table 4 92
Table 5. 97
Table 6 98
Table 7 100
Table 8 103

LIST OF FIGURES

Figure 1 3
Figure 2 14
Figure 3 23
Figure 4 36
Figure 5 50
Figure 6 60
Figure 7 64
Figure 8 66
Figure 9 70
Figure 10 75
Figure 11 79
Figure 12 82
Figure 13 87

Chapter 1

Review of Literature

General Introduction

The progression of the cell cycle is tightly regulated to ensure proper integrity of the DNA information and to provide that the genetic material is passed on to viable, normal daughter cells. The integrity of the genetic material is protected by cell cycle checkpoints (Elledge, 1996). These checkpoints halt the cell cycle if the DNA has been damaged or mutated in response to genotoxic stress. Aberrant regulation or loss of one of these checkpoints can results in errors in DNA replication or in chromosomal segregation, leading to aneuploidy or polyploidy, predisposing cells to genetic instability (Xie et al., 2005). This genetic instability can lead to uncontrollable, rapid cellular proliferation which can eventually form cancerous tumors. The cell cycle is tightly controlled, with built-in redundancies that are designed to ensure fidelity. The focus of my research is on Plk4, a member of the polo like kinase (Plk) family of serine/threonine kinases, which have been shown to control a multitude events throughout the cell cycle (Xie et al., 2005).

Polo like Kinase Family

The polo like kinases (Plks) are an evolutionary conserved family of cell cycle regulators (Dai, 2005). The founding member of the Plk family, Polo was first discovered in Drosophila melanogaster (Sunkel et al, 1988) and was shown to be serine/threonine kinase crucial for mitosis (Glover et al, 1993). Mutations in the Polo gene lead to abnomalities in spindle pole formation leading to abnormal mitotic division (Glover et al,
1998). Subsequently homologues have been characterized in simple single celled organisms such as yeast to more complex organisms such as mammals. The family, as a whole, plays key roles in the regulation of the cell cycle and DNA damage pathways. The budding yeast, Saccharomyces cerevisae, and the fission yeast, Schizosaccharomyces pombe (Ohkura et al., 1995), contain one Plk homologue, Cdc5 (Golsteyn et al., 1996), and Plo1 (Ohkura et al., 1995) respectively. Drosophila contains two Plk homologues, Polo (Fenton and Glover, 1993) and Plk4 (Lowery et al., 2005), while the nematode, Caenohabditis elegans contains three Plk homologues, Plc1, Plc2 (Ouyang et al., 1999), and Plc3 (Chase et al., 2000). Both Xenopus laevis and mammals contain four Plk homologues. In Xenopus, Plx 1 (Kumagai and Dunphy, 1996), Plx2 (Duncan et al., 2001), Plx3 (Duncan et al., 2001), and Plx4 (unpublished data) have all been identified while in mammals, Plk1 (Golsteyn et al., 1994), Snk/Plk2 (Donohue et al., 1994), Prk/Fnk/Plk3 (Donohue et al., 1995) and Sak/Plk4 (Fode et al., 1994) have been characterized. The increase in number of Plk members in more complex organisms is likely a reflection of the need for tighter controls for cell cycle regulation inherent with multicellularity. Plks possess many unique functions throughout the cell cycle including events critical for cell division, centrosome duplication and maturation, DNA damage checkpoint activation, mitotic onset, bipolar spindle formation, Golgi fragmentation and assembly, chromosome segregation, and cytokinesis (Dai, 2005).

Plk Structure

The Plk family consists of catalytic domain at the N-terminus and a one or two polo box domains at the C-terminus of the protein (Dai, 2005) (Figure 1). The catalytic

Figure 1: Structural Comparison between PIk4 and of other Plk Family Members
Members of the Plk family all contain a highly homologous kinase domain at the N terminus and one or two polo box domains at the C-terminus of the protein. Plk4 differs from the other Plks as it contains only one polo box domain. Upstream of Plk4s polo box domain is also a region depicted as the cryptic polo box domain. In addition, Plk 4 as contains three PEST sequences associated with reduced protein stability.
domain of the Plks contains their kinase activity and is highly homologous in all Plks. The polo box domain located at the C-terminus of the protein has been shown to regulate cellular functions (Seung et al., 2002), subcellular localization (Elia et al., 2003), and provide a docking site for protein-protein interaction (Reynolds et al., 2003). Plk4 differs from the other Plks in respect to the polo box domain as it contains only one domain. Upstream of the polo box domain, Plk4 contains a cryptic polo box domain, which along with the polo box domain serves as self association domains (Leung et al., 2002). In addition, Plk4 contains 3 PEST sequences which are commonly associated with reduced protein stability and this is the case with Plk4 as it displays a short half life of only two to three hours in non-synchronized cells (Fode et al., 1996) (Figure 1). Though Plk4 contains significant sequence homology to the other Plks in its kinase domain, Plk4 appears to have diverged from a primordial polo-like kinase early in the radiation of metazoans in respect to the rest of its structure (Hudson et al., 2001).

Plk Expression and Localization Profiles

a) Unicellular organisms and invertebrates: The mRNA and protein levels of the Plk family are regulated in a cell-cycle dependent manner. The yeast Plks, Cdc5 and Plo1, in Saccharomyces cerevisiae and Schizosaccharomyces pombe respectively, both localize to the spindle pole bodies, although the timing of localization differs within the cell cycle. Cdc5 localization to the spindle pole bodies occurs in G_{1} and persists until late mitosis (Song et al., 2000). Conversely, Plo1 localizes to the spindle pole bodies at the $\mathrm{G}_{2} / \mathrm{M}$ transition when Cdc2 is active and subsequently dissociates from the spindle pole bodies during anaphase upon Cdc2 inactivation (Mulvihill et al., 1999). Both yeast Plk
homologues also localize to the cytokinetic ring structures, and play a role in cytokinesis. Cdc 5 localizes to the septin ring during G_{2} and remains activated until late mitosis (Sakchaisri et al., 2004), whereas Plol localizes to the medial ring structures when they are formed (Bahler et al., 1998).

The Drosophila Plk homologue, polo localizes to the centrosomes during the $\mathrm{G}_{2} / \mathrm{M}$ transition and then associates with the nuclear membrane until its breakdown. During prometaphase, polo localizes to the kinetochores and prior to cytokinesis at the mid-part of the central spindle, a structure essential for cytokinesis (Moutinho-Santos et al., 1999).

In all organisms within the Animal kingdom, Plk homologues follow similar patterns of subcellular localization (Glover, 2005) with localization of the protein a reflection of the different role the respective protein plays throughout the cell cycle. In the following sections I will discuss this for Plks1-3. Plk4 will be discussed in detail individually.
b) Mammalian Plks: In humans Plk1 expression increases from late S phase onward and peaks in mid mitosis at which point Plk1 activity is greatest. Plk1 is then targeted for degradation by the anaphase promoting complex in late mitosis. Plk1 expression levels are high in proliferating tissue such as the testis, spleen and thymus (Golsteyn et al., 1994). Plk1 localizes to many cellular structures throughout the cell cycle, in accordance with the many functions Plk1 performs. Plk1 localizes to the nucleus and cytoplasm during G_{2}, though its localization is specifically targeted to the centrosomes. In early mitosis, Plk 1 is present at the centrosome and kinetochores, while in late mitosis Plk1 localizes to the spindle midbody (Golsteyn et al., 1995). The polo box domain is essential
for targeting Plk1 to these subcellular structures as well as to interacting partners throughout the cell cycle (Elia et al., 2003).

Whereas Plk2 displays significant homology to Plk1, its function and tissue distribution differ greatly. Plk2 has been identified as an early response gene with mRNA levels peaking in response to mitogens. Plk2 primarily functions as a regulator of cell proliferation in G_{1} (Simmons et al., 1992). Upon its activation at the $\mathrm{G}_{1} / \mathrm{S}$ transition, Plk2 localizes to the centrosomes, indicating a role for Plk2 in centriole duplication (Warnke et al., 2004). A role for Plk2 later in the cell cycle may also be plausible. In response to genotoxic stress causing mitotic spindle damage, Plk2 expression was able to prevent mitotic catastrophe (Burns et al., 2003). Whereas no Plk1 activity was detected in the brain, Plk2 is constitutively expressed in the post-mitotic neurons of the brain indicating Plk2 mediates phosphorylation of proteins within the neurons (Kauselmann et al., 1999).

Similarly to Plk2, Plk3 was identified as an immediate early response gene with mRNA levels peaking after the addition of mitogens (Donohue et al., 1995). Like Plk2, Plk3 also displays a broad distribution of tissue specificity (Holtrich et al., 2000). Plk3 expression is relatively low during mitosis, G_{1}, the $\mathrm{G}_{1} / \mathrm{S}$ transition, and peaks during late S phase and G_{2} (Ouyang et al., 1997). Discrepancies have emerged over the localization pattern of Plk3 throughout the cell cycle. Previous work has shown that Plk3 localization is polo-box mediated and that Plk 3 localizes to the centrosomes, spindle poles, and the spindle midbody (Jiang et al, 2006). In contrast, Zimmerman and Erikson, 2006 found that Plk3 localized exclusively to the nucleolus and suggested a role for Plk3 in the $\mathrm{G}_{1} / \mathrm{S}$ transition. In this study, Plk3 expression was undetectable during mitosis. Similar to Plk2, Plk3 is also expressed in post-mitotic neurons with a possible role in synaptic plasticity
(Kauselmann et al., 1999). Interestingly, Plk3 has also been implicated to have a role in cellular adhesion (Holtrich et al., 2000).

Plks and Mitotic Entry

The transition from G_{2} to mitosis is a crucial junction in the cell cycle. Aberrant regulation of this cellular checkpoint can lead to genomic instability and promote oncogenesis. Members of the Plk family play crucial roles at the $\mathrm{G}_{2} / \mathrm{M}$ cellular checkpoint to promote entry into mitosis. Plk1 has been implicated to perform numerous functions to promote mitotic entry within the cell. For mitotic entry to occur, the Cyclin B/Cyclin Dependent Kinase 1(Cdk1) complex must become activated. Plk1 promotes mitotic entry by activating cyclin B/Cdk1 at three levels. Firstly, Plk1 is able to phosphorylate Cdc25C in its nuclear export signal sequence promoting its nuclear translocation and activation (Roshak et al., 2000, Toyoshima et al., 2002). Therefore, Cdc 25 C is able to dephosphorylate Cdk 1 promoting the activation of the cyclin $\mathrm{B} / \mathrm{Cdk} 1$ and mitotic entry (Gauthier et al., 1991). Secondly, Plk1 phosphorylates both Wee1 and Myt1, both CyclinB/Cdk1-inhibiting kinases. In the fission yeast, Saccharomyces pombe, Wee1 is known to phosphorylate Thr14 and Tyr15 on Cdc2, the fission yeast homologue of Cdk1. Though in mammals, Wee1 phosphoryation only occurs on Tyr15 (McGowan et al., 1993). Phosphorylation of Wee1 by Plk1 leads to Wee1 enhanced association with the SCF/beta-TrCp E3 ubiquitin ligase, inducing its degradation (Watanabe et al., 2004). Phosphorylation of Thr14 by Myt1 is the additional phosphorylation that serves to inhibit the activity of Cdk1 (Lui et al., 1997). Thirdly, Plk1 phosphorylates cyclin B at the centrosomes in prophase, this being the first site where cyclin $\mathrm{B} / \mathrm{Cdk} 1$ is actually
phosphorylated. Though discrepancy remains whether this phosphorylation by Plk1 of cyclin B triggers its nuclear import or whether the cyclin $B / C d k 1$ complex is activated in a different manner.

Plx 1, the Xenopus laevis homologue of Plk1 is shown to stimulate activation of cyclin B/Cdc2 complex and regulate mitotic entry through a positive feedback loop. Plx1 phosphorylates and activates Xenopus polo-like kinase-kinase 1 (xPlkk1). Subsequently, xPlkk1 phosphorylates and activates Plx1 (Qian et al., 1998). Activated Plx1 can subsequently phosphorylate and activate Cdc25C which dephosphorylates Thr14 and Try15 on cdc 2 promoting mitotic entry (Qian et al., 2001).

Whereas the role of Plk1 in mitotic entry has been well described, the role of the other Plks at the $\mathrm{G}_{2} / \mathrm{M}$ checkpoint remains to be elucidated. As Plk2 primarily regulates $\mathrm{G}_{1} / \mathrm{S}$ progression, it doesn't appear to play a role in mitotic entry (Simmons et al., 1992). Although Plk3 does not appear to play a role in mitotic entry, in response to DNA damage Plk3 positively regulates p53 activity to halt progression of the cell from G_{2} to mitosis (Xie et al., 2001).

Plks and their Role in Mitotic Exit and Cytokinesis

Plks have been shown to play roles in both exit from mitosis and cytokinesis. For mitotic exit to occur, the inactivation of Cdk 1 is required. In budding yeast, inactivation of Cdk1 occurs after the metaphase/anaphase transition, which differs from mammalian cells, where downregulation of Cdk1 occurs at the metaphase/anaphase transition (Clute and Pines, 1999). The downregulation of Cdk1 promotes exit from mitosis, and in budding yeast requires the cooperation of the FEAR (Cdc Fourteen Early Anaphase

Release) (Stegmeier et al., 2002) and MEN (Mitotic Exit Network) pathways (Bardin and Amon, 2001) and Cdc5 plays an important role in regulating both of these pathways. Although the role which Cdc5 plays in regulating has yet to be described, it is assumed that Cdc5 coordinates between the FEAR and MEN pathways via phosphorylating regulatory components in each pathway (Lee et al., 2005). Cdc5 and additional components of the MEN pathway are also required for proper actin ring formation at the mother-bud-neck, the site of cytokinesis (Jimenez et al., 1998).

In fission yeast, Plo1 has been implicated in two events regulating cytokinesis. First, Plo1 localizes to the site of cytokinesis, and this localization is important for the placement and organization of the actin-based medial ring (Bahler et al., 1998). Secondly, Plol activity correlates with the initiation of septin formation which regulated by the septin initiation network (SIN) (Gruneberg and Nigg, 2003). The SIN and MEN networks contain structurally related proteins that perform similar functions in each pathway. Like Cdc5, the functional significance of Plo1 role in the SIN pathway has yet to be determined.

In Drosophila, polo has also been implicated as having a role in cytokinesis as it directs the function of the Pavarotti-KLP (Pav-KLP) family of motor proteins. This family of proteins plays a role in organizing the central spindle in anticipation of cytokinesis (Glover, 2005). Polo and Pav-KLP interact and both co-localize to the central part of the spindle (Liu et al., 2004). Interestingly, studies have revealed that proteins including Polo, Asp (Wakefield et al., 2001), and γ-TuRC (Sampaio et al., 2001) are involved in the organization of the centrosomes and the early mitotic spindles also
perform roles in cytokinesis. It is hypothesized that Polo may phosphorylate these substrates at both the beginning and conclusion of mitosis (Glover, 2005).

In Xenopus, the transition from metaphase to anaphase and therefore exit from mitosis requires the activity of Plx1 since inhibition of Plx1 prevents the metaphase to anaphase transition (Qian et al., 1999). The requirement for Plx 1 activity suggests that Plx 1 may control the anaphase-promoting complex/cyclosome (APC/C). Three possible mechanisms have been hypothesized; first, Plx1 may activate the APC/C through direct phosphorylation of several APC/C subunits (Kotani et al., 1998). Secondly, Plx 1 may regulate the activators or inhibitors of the APC/C (Reimann et al., 2001), or thirdly, Plx 1 could activate the APC/C and prevent premature inactivation of the APC/C (Brassac et al., 2000). Additionally, the inactivation of Plx1 may be required for the completion of cytokinesis to occur (Qian et al., 1999).

Like Plx 1, Plk1 may be involved both directly and indirectly in the activation of the APC/C. Activation of the APC/C may occur through direct phosphoryation of APC/C subunits along with the phosphorylation of the cyclin B/Cdk1 complex (Golan et al., 2002). Indirectly, Plk 1 is responsible for activating the APC/C by inducing the destruction of APC/C inhibitor "Early mitotic inhibitor 1" (Emi1) (Moshe et al., 2004). Similar to other Plk homologues, Plk1 has also been implicated to play a role in cytokinesis. Although the exact role that Plk1 plays in cytokinesis is unknown, Plk1 has been shown to interact with and phosphorylate cytokinetic proteins. Plk1 phosphorylates the kinesin-like motor protein CHO1/MKLP-1 (Lee et al., 1995), NudC (a component of the dynaction complex Zhou et al., 2003), the mitotic kinesin-like protein 2 (MKlp2) (Neef et al., 2003), and the Rho exchange factor ECT2 (Niiya et al., 2005). Though the
functional significance of some of these interactions remains to be elucidated, phosphorylation of NudC and MKlp2 by Plk1 are indispensible for the execution of cytokinesis. To date, Plk2 and Plk3 have not been implicated in mitotic exit or cytokinesis.

PIks and their Role in DNA Damage Pathways

The cellular response to DNA damage by genotoxic stress is crucial, as failure to repair any damage in the genetic material can produce aneuploidy leading to uncontrolled cellular growth and oncogenesis. In response to genotoxic stress, cell cycle checkpoints are employed to repair damage that has occurred to the DNA or to initiate apoptosis if the damage is irreparable. Plks have been implicated to play crucial roles in the DNA damage pathways.

In response to DNA damage, the DNA damage sensor proteins, ataxiatelangiectasia mutated (ATM) or ataxia-telangiectasia and Rad3-related (ATR) become activated (Bakkenist et al., 2003). Activation of ATM or ATR in response to DNA damage inhibits the function of Plk1 (van Vugt et al., 2001). The inhibition of Plk1 by ATM or ATR is mediated by the ATM/ATR downstream effector kinase checkpoint kinase 1 (Chk1). Experimentally it has been observed that the inhibition of Plk1 is rescued in Chk1-depleted cells exposed to UV radiation (Tang et al., 2006). Inhibition of Plk1 in response to DNA damage prevents it from promoting mitotic entry in the presence of genomic instability. Subsequently, Plk1 also binds to and phosphorylates the tumor suppressor p53 inhibiting its function, thus preventing p53 mediated pro-apoptotic pathways. Expression of ATM is able to attenuate Plk1 interaction with p53 (Ando et al.,
2004). Whereas Plk1 is able to negatively regulate p 53 function, Plk3 positively regulates the transcriptional function of p53. In response to DNA damage, ATM phosphorylates Plk3 activating its kinase ability and Plk3 then phosphorylates p53 on a different residue from Plk1, promoting p53 mediated $\mathrm{G}_{2} / \mathrm{M}$ cell cycle arrest and apoptosis (Xie et al., 2001).

In addition, Plk3 has been implicated to play a role in DNA damage repair. Plk3 is able to regulate the activity of DNA polymerase δ (pol $\boldsymbol{\delta}$), a major enzyme in DNA damage repair (Hubscher et al., 2002). Plk3 phosphorylates pol δ on p125, the major pol δ subunit on Ser60. Though the functional significance of this interaction remains to be elucidated, it is speculated that since Plk3 phosphorylates p125 in its nuclear localization signal, this phosphorylation controls the subcellular localization of pol δ (Xie et al., 2005).

Plk2 may also play a role in DNA damage pathways. In response to ionizing radiation, mRNA transcript levels of Plk2 were shown to increase. This response was deemed to be p53 dependent as based on luciferase assay data; a candidate site for a radiation response element was mapped to the Plk2 promoter containing a p53 binding motif (Shimizu-Yoshida et al., 2001). A subsequent study showed that p53 indeed regulates Plk2 in response to genotoxic stress. In response to mitotic spindle damage, Plk2 is activated in a p53 dependent manner and this activation prevents mitotic catastrophe (Burns et al., 2003) (Figure 2).

Figure 2: Role of Plks in the DNA damage Pathways

In response to either ultraviolet radiation (UV) or ionizing radiation (IR), the DNA damage sensor proteins ataxia telangiectesia and Rad3 related (ATR) and ataxia telangiectesia mutated (ATM) become activated, respectively. In response to either UV or IR damage, Plk1 is either inhibited by ATR or ATM. Subsequently, ATR activates checkpoint kinase 1 (Chk1), or ATM activates checkpoint kinase 2 (Chk2). Normally, Plk1 activates cell division cycle $25 \mathrm{c}(\mathrm{Cdc} 25 \mathrm{c})$ promoting $\mathrm{G}_{2} / \mathrm{M}$ transition. Since Plkl is inhibited by either ATR or ATM, Cdc25c activity is inhibited by Chk1 or Chk2 in response to UV or IR, respectively. In response to $I R$, ATM also activates Plk3, which activates DNA polymerase δ, promoting DNA repair. In addition, Plk3 can activate Chk2 and p 53 , while Chk2 can also activate p 53 . The activation of p 53 inhibits progression of the cell cycle from G_{2} to mitosis. Plk2 activity is also initiated by p 53 in response to DNA damage. The role that Plk4 may play in the DNA damage pathways remains to be elucidated. Plk4 interacts with ATM, ATR, Chk1, Chk2, p53, and Cdc 25 c , though the functional significance of these interactions remains to be described. Black arrows denote activation, red bars denote inhibition.

Plks and the Centrosomes

The centrosome plays a major role in organizing the microtubule cytoskeleton of the cell and is the organizational centre of an astral array of microtubules that participate in cellular functions including intracellular trafficking, cell motility, cell adhesion, and cell polarity. In proliferating cells, the centrosomes participate in the assembly and organization of the mitotic spindle, their spatial orientation, and cytokinesis (Azimzadeh and Bornens, 2007).

The centrosome consists of two centrioles with an orthogonal arrangement linked together at their proximal regions by a matrix consisting of proteins of the pericentrin family (Nigg, 2007; Dawe et al., 2007). The centrosomes replicate once during the cell cycle with each centrosome consisting of a mother/daughter centriole. During G_{1}, centriolar disengagement occurs through the actions of separase (Tsou and Stearns, 2006). Though the orthogonal arrangement is lost, the centrioles are still connected by a tether of microfilaments (Bahe et al., 2005). In S phase, a procentriole grows from the existing centriole at an orthogonal angle through the activity of several centriolar proteins. The procentriole continues to grow till G_{2} until it reaches full maturity. Subsequently, the tether of filaments connecting the two mother centrioles together is severed to allow the centrosomes to enable spindle formation and chromosome segregation during mitosis (Mayor et al., 2000).

The centrosome has also been implicated in playing a role in DNA damage checkpoint control (Fletcher and Muschel, 2006). Centrosome inactivation has been observed to be part of the DNA damage control system seen in Drosophila. In response to DNA damage, centrosome function was abrogated causing spindle defects and
subsequent failure in chromosomal segregation. These results indicated that centrosome inactivation is a checkpoint independent and mitosis-specific response to genotoxic stresses (Sibon et al., 2000). Additionally, in mammalian cell lines, centrosomal segregation is inhibited in G_{2} in response to DNA damage Centrosomal segregation is controlled by the protein kinase Nek2 whose activity is inhibited by DNA damage (Fletcher et al., 2004). Interestingly, Plk1 can interact with and phosphorylate Nek2 promoting centrosomal segregation. However, in response to DNA damage the activity of Plk1 is inhibited, therefore preventing Nek2 from promoting centrosomal segregation. The inhibition of centrosome segregation occurs in an ATM/ATR dependent manner (Zhang et al., 2005).

Members of the Plk family have been implicated to play additional crucial roles in the centrosome cycle. In fission yeast, loss of function of Plk1 homologue, Plo1 leads to mitotic arrest where the chromosomes are condensed with only a monopolar spindle present (Ohkura et al., 1995). In contrast, in budding yeast, Cdc5 may be required for microtubule nucleation, though Cdc5 activity is not essential for the establishment of bipolar spindles (Lee et al., 2005). In Drosophila, Plk homologue polo is required for the recruitment of two crucial centrosomal components: CP190 and γ-tubulin. In polo mutants, CP190 and γ-tubulin are unable to localize specifically to the centrosomes, instead they scatter throughout the mitotic spindles (Dai and Cogswell, 2003). A similar inability to recruit γ-tubulin to the centrosomes has also been observed in mammalian cell lines (Lane and Nigg, 1996). In addition, polo is required to phosphorylate and activate centrosomal protein Asp which is required for microtubule nucleation (Avides et al., 2001). Asp mutants present mitotic spindles with highly unfocused poles and a high
mitotic index. In polo mutants, Asp is still able to localize to the centrosomes, though its activity is negligible. In polo and asp double mutants, there is a substantial increase in mitotic index (Gonzalez et al., 1998). Polo is also required for the nucleation of microtubules by centrosomes. The chaperone protein heat shock protein $90(\mathrm{Hsp} 90)$ is required to ensure the stability of polo. Inhibition of $\mathrm{Hsp90}$ results in inactivation of polo kinase activity, thereby abolishing the nucleation of the microtubules (de Carcer et al., 2001). In Xenopus it is also assumed that Plx 1 regulates centrosome separation and maturation by recruiting proteins to the centrosomes. This assumption is supported by the finding that inhibition of Plx1 results in monopolar spindles with α-tubulin not localizing to the centrosomes (Qian et al., 1998).

In mammalian cells, centrosome maturation is also dependent on Plk1, which phosphorylates Nlp, a centrosome protein. This allows Nlp to be removed from the centrosomes and for the recruitment of microtubule nucleation scaffolding (Casenghi et al., 2003). In addition, Plk1 plays a role in centrosome separation as depletion of Plk1 leads to monopolar spindles and eventually mitotic arrest (Lane and Nigg, 1996). Plk1 may also regulate spindle formation as it has been shown to phosphorylate $\alpha-, \beta-, \gamma-$ tubulins and the tubulin stabilizing protein TCTP (Feng et al., 1999) (Yarm, 2002). Interestingly, it has been shown that Plk1 does not need to be bound to the centrosomes to perform its centrosomal functions. Hanisch et al., 2006 showed that delocalized Plk1 can still contribute to centrosome maturation, separation and spindle formation but not chromosome segregation.

Plk2 kinase activity is required for initiation of centriole duplication at the $\mathrm{G}_{1} / \mathrm{S}$ transition. Previous work has shown that overexpression of a catalytically inactive form
of Plk2 blocks centriole duplication (Warnke et al., 2004). Subsequently, inhibition of Plk2 through siRNA also blocked centriole duplication. Alternatively, overexpression of Plk2 causes an increase in centrosome number. Plk1 has also been described to be required for centriole duplication (Liu and Erikson, 2002). Though in contrast to Plk2, kinase activity of Plk 1 is not required for initition of centriole duplication at the $\mathrm{G}_{1} / \mathrm{S}$ transition (Warnke et al., 2004). Whereas Plk2 initiates centrosome duplication, Plk1 ensures centrosome maturation (van de Weerdt and Medema, 2006). To date, no evidence has been presented implicating Plk3 with a role in centriole duplication or centrosome function.

Plks and Oncogenesis and Tumor Development

Since Plks are crucial cell cycle regulators, aberrant regulation of their function may contribute to oncogenesis, designed as a shift to cellular proliferation stimulating signals to encourage uncontrollable cellular growth. This uncontrolled cell growth will eventually lead to tumor formation and cancer (Eckerdt et al., 2005). Plk1 expression and activity are tightly controlled throughout the cell cycle, though Plk1 mRNA and protein levels have been found to be significantly increased in proliferating cells (Wolf et al., 2000). Plk1 is over expressed in tumor cell lines, indicating that Plk1 could lead to enhanced cellular proliferation and eventually cell transformation (Simizu and Osada, 2000). Elevated Plk1 levels are also found in a number of cancers including non-smallcell lung cancer, head/neck squamous cell carcinomas, esophageal carcinoma, oropharyngeal carcinomas, melanomas, breast cancer, ovarian cancer, pancreatic cancer, prostate carcinomas and papillary carcinomas (Eckerdt et al., 2005). Increased levels of

Plk1 have also been correlated with severity of diagnosis and patient prognosis (Kneisel et al., 2002).

The ability of Plk1 to induce oncogenesis may be due to its capacity to interact with several tumor suppressor genes. Plk1 is able to to bind to the DNA binding domain of p53 (Ando et al., 2004) and phosphorylate a residue which blocks p53's transcriptional activity inhibiting its proapoptotic function (Xie et al., 2001). In contrast, p53 activity is significantly stabilized in Plk1-depleted cells (Liu and Erikson, 2003).

Checkpoint kinase 2 (Chk2), another tumor suppressor protein also interacts with Plk1. A Chk2 mutant lacking catalytic activity has been shown to contribute to increased risk of breast cancer (Meijers-Heijboer et al., 2002). Chk2 and Plk1 both colocalize at the centrosomes in early mitosis, and to the mid-body in late mitosis (Tsvetkov et al., 2003). In response to ionizing radiation, Plk1 can phosphorylate Chk2 at Thr-68, a site normally phosphorylated by ATM. The phosphorylation of Chk2 by ATM usually activates Chk2 which then phosphorylates BRCA1 which inhibits the activity of Plk1 (Ree et al., 2003). Though the physiological significance of Plk1's phosphorylation of Chk2 remains to be elucidated, it is believed the Plk1 phosphorylation of Chk2 may contribute to a crosstalk between the DNA damage pathways and mitotic regulation (Matsuoka et al., 2000). A network of tumor suppressor proteins is in place to suppress the oncogenic functions of Plk1, inhibiting its ability to promote mitosis and cell growth. Therefore, in response to DNA damage, it requires the loss of function of numerous tumor suppressor proteins to promote oncogenesis. It is believed that Plk 1 function is inhibited in two ways in response to DNA damage. If damage occurs within interphase, Plk1 activity is inhibited in an ATM/ATR dependent manner through the activity of either Chk1 or BRCA1. In
response to DNA damage occurring within mitosis, Plk1 is inhibited through an ATM/ATR independent manner, through the activation of retinoblastoma protein (RB) by p53 (Eckerdt et al., 2005) (Figure 3).

While Plk2 expression has yet to be correlated with the progression or suppression of tumor formation in any cancer, through its actions in the cell cycle, Plk2 may play a crucial tumor suppressor role. In response to DNA damage, the activity of Plk2 is transcriptionally up-regulated in a p53 dependent manner. This activation is able to prevent mitotic catastrophe following mitotic spindle damage by activating the spindle checkpoint (Burns et al., 2003). The activation of the spindle checkpoint prevents the completion of mitosis which can contribute to genomic instability and the promotion of oncogenesis.

In contrast to Plk1, Plk3 expression is negatively correlated with the development of cancer. Plk3 mRNA levels are either undetectable or down-regulated in lung carcinomas (Li et al., 1996), head/neck squamous cell carcinomas (Dai et al., 2000), and in carcinogen-induced rat colon tumors (Dai et al., 2002). Furthermore, ectopic expression of Plk3 decreases cellular proliferation in fibroblasts (Dai et al., 2000), while over expression of a catalytically active form of Plk3 induces chromatin condensation, rapid cell cycle arrest and eventual apoptosis (Conn et al., 2000; Wang et al., 2002). These observations indicate a tumor suppressor role for Plk3 though, to the contrary, Plk3 along with Plk1 were both found to be over expressed in malignant epithelial ovarian tumors, with over-expression correlating with an enhanced mitotic index and decreased patient survival (Weichert et al., 2004).

In contrast to Plk 1 during the cell cycle, which mediates oncogenic cellular transformation, Plk3 inhibits mitosis in the presence of damage to the genome. Plk3 activation in response to DNA damage is mediated in an ATM-dependent fashion. Plk3 can in turn activate tumor suppressor proteins like Chk2, which subsequently inhibit the mitotic-promoting functions of Plk1, or p53 which initiates apoptotic pathways (Xie et al., 2001). Therefore, Plk3 function maybe crucial to inhibiting the progression of cells to an oncogenic state.

Polo-like Kinase 4 (Plk4)/Sak

Plk4 or Sak (Snk/Plk-akin kinase), was first identified in a screen of a murine lymphoid cDNA library for wheat germ agglutinin (WGA) resistant clones and was found to be a putative protein-serine/threonine kinase. Due to its expression pattern and sequence similarity with Drosophila polo, it was suggested that Plk4 played a role in cell cycle regulation (Fode et al., 1994). Murine Plk4 is located on chromosome 3 while the human homologue is found on chromosome 4q28 (Swallow et al., 2005). In mice, two isoforms have been identified while only a single isoform of the product protein found in humans. The Plk4-a and Plk4-b variants differ in respect to the C-terminus end. Plk4-a encodes a 925 amino acid (aa) protein while Plk4-b encodes a 464 aa protein. The first 416 aa of Plk4-a and Plk4-b are identical while at the C-terminus end Plk-a region encodes 509 aa and Plk-b encodes 48 aa . Murine Plk4 has 15 coding exons and both the Plk-a and Plk-b variant are encoded for by a single gene. Human Plk4 differs from the murine Plk4-a in that contains a 34 aa insertion adjacent to exon 5 that is found in the murine Plk4-b variant (Hudson et al., 2000).

Figure 3: Interactions between Plks and Tumor Suppressor Proteins
Members of the Plk family interact with tumor suppressor proteins and have been implicated in the progression or inhibition of oncogenesis. Plk1 activity is either inhibited directly or indirectly by ataxia telangiectesia and Rad3 related (ATR), ataxia telangiectesia mutated (ATM), checkpoint kinase 1 (Chk1), checkpoint kinase 2 (Chk2), Breast cancer 1 gene (BRCA1), Retinoblastoma protein (pRb) and p 53 . The inhibition of Plk1 activity is in response to activation of the DNA damage or mitotic spindle checkpoints. Whereas Plk1 promotes progression through the cell cycle, Plk2 and Plk3 suppress the cell cycle in response to damage. Loss of function of one or more of these tumor suppressor proteins, can lead to aberrant regulation of the cell cycle and the progression of oncogenesis. Though the exact function of Plk4 as a tumor suppressor or oncogene has yet to be determined, the fact that heterozygous Plk4 mice develop tumors at a rate higher than wild type litters, supporting the notion that Plk4 plays a significant role in these oncogenic pathways. Black arrows denote activation; red bars denote inhibition.

Plk4 Expression Profile and Localization

Like Plk1, Plk4 mRNA and protein levels are regulated in a cell cycle dependent manner with Plk4 expression low in G1, increasing during DNA replication and G2 and peaking during cytokinesis. Plk4 is targeted for ubiquitination by the anaphase promoting complex (Fode et al., 1996). Plk4 expression is also highest in rapidly proliferating tissues, such as the testis, spleen, and thymus (Fode et al., 1994). Differing views have emerged concerning the localization of Plk4 during the cell cycle. Previous work has shown that Plk4 localized to the nucleolus and perinuclearly in G2, and to the centrosomes in early mitosis. During anaphase, Plk4 localized throughout the cell and in telophase to the cleavage furrow (Hudson et al, 2001). This pattern of localization was supported by (Martindill et al, 2007) where Plk4 showed a similar localization pattern and was shown to phosphorylate the developmental protein Hand1, controlling its nucleolar release. In contrast, Habedanck et al, 2005 showed Plk4 localized exclusively to the centrosomes throughout the cell cycle. In support of this finding, Bettencourt-Dias et al, 2005 working with Drosophila melangastor cells showed Plk4 localization to the centrosomes throughout the cell cycle. Among the other Plk family members, both of the polo box domains are necessary for subcellular localization (Jang et al., 2002), but in Plk4 there is debate whether the polo box domain itself is sufficient for localization. Previous work has shown that the polo box itself is sufficient for localization of Plk4, though a truncated mutant lacking both the polo box and cryptic polo box region reduced the efficiency of Plk4 for localization (Leung et al., 2002). In contrast, an additional study has shown that the polo box region itself is not sufficient for localization (Habedanck et al, 2005).

Plk4 and the Centrosomes

Plk4 has been identified as a key regulator of centriole duplication. Overexpression of Plk4 leads to centrosome amplification through the generation of numerous progeny centrioles from a parental centriole (Habedanck et al., 2005; Kleylein-Sohn et al., 2007). Conversely, inhibition of Plk4 activity leads to inhibition of centriole formation in Drosophila cells and subsequently the formation of basal bodies and flagella (Habedanck et al., 2005; Bettencourt-Dias et al., 2005). In the initial studies, both kinase activity and presence of the cryptic polo box domain of Plk4, which is necessary for localization to the centrosome were required to induce amplification. The necessity of the kinase domain indicates that Plk4 may be required to target key substrates that are involved in the centrosome cycle. It was also observed that over expression of a catalytically inactive form of Plk4 could induce some centrosome amplification, albeit through a different mechanism that likely involves cell division failure through a dominant-negative method of action (Habedanck et al., 2005). Over expression of Plk4 produces a phenotype reminiscent of a flower, with progeny centrioles arranged around the parental centriole like petals. Plk4 appears to localize to the parental centriole at the $\mathrm{G}_{1} / \mathrm{S}$ transition, and this localization initiates multiple centriole duplication sites around the parental centriole. In addition, the localization of Plk4 to the parental centriole initiates that rapid recruitment of centriole proteins hSas6, CPAP, Cep135 and γ-tubulin to the parental centriole (Kleylein-Sohn et al., 2007). Whether Plk4 interacts with or phosporylates any of these proteins to recruit them to the parental centriole remains to be elucidated. These proteins along with CP110 provide the foundation for procentriole formation. Plk4 appears to be the upstream regulator required for initiation of centriole
duplication and the recruitment of other proteins. Inhibition of hSas-6, CPAP, Cep135, CP110 or γ-tubulin via siRNA suppresses Plk4's ability to induce centriole formation (Kleylein-Sohn et al., 2007). Therefore, the activity of Plk4 is likely tightly regulated within the cell cycle since aberrant activity would produce centriole over duplication. The kinase responsible for activating Plk4 function or the counteracting phosphatase responsible for suppressing Plk4 activity remains to be identified.

It is noted that cyclin-dependent kinase 2 (Cdk2) has been implicated as having a role in centrosome duplication and that inhibition of Cdk2 activity suppresses centrosome duplication (Matsumoto et al., 1999). Interestingly, over-expression of Plk4 requires the activity of Cdk2 to produce centrosome amplification, while a catalytically inactive Cdk2, or the presence of the Cdk2 inhibitor p27 suppresses Plk4-induced centrosome amplification. Conversely, Cdk2 requires Plk4 activity to perform its role in centrosome duplication, indicating Cdk2 and Plk4 in their respective functions cooperate (Habendanck et al., 2005).

Interestingly, the over-expression phenotype of Plk4 is similar to the phenotype observed in heterozygous Plk4 MEFs. The heterozygous MEFs present a phenotype of increased centrosomal amplification, multipolar spindle formation and subsequent mitotic failure (Ko et al., 2005). It is plausible that reduced Plk4 activity in the heterozygous MEFs can cause cellular division failure from aberrant centrosome segregation or abnormal mitotic spindle formation (Habendanck et al., 2005). The findings within heterozygous MEFs are likely due a reduced gene dose of Plk4.

In contrast, depletion of Plk4 in human cells by siRNA causes a step by step reduction in centriole number resulting in the presence of monopolar spindles during
mitosis (Habedanck et al., 2005). Additionally, inhibition of Plk4 via siRNA leads to an increased mitotic index and an increase in apoptotic cells (Bettencourt-Dias et al., 2005). In Drosophila cells, inhibition of Plk4 leads to the failure of several centrosomal proteins, γ-tubulin, CP190 and Cnn to localize to the centrosomes. Additionally, cells lacking γ tubulin at the spindle poles also had no detectable pericentrin-like protein (D-PLP). In contrast, inhibition of polo did not affect D-PLP presence at the spindle poles. Although inhibition of Plk4 leads to a reduction and failure in centrosome number and centriole formation, in contrast inhibition of polo doesn't reduce centrosome number or affect centriole formation. Interestingly, inhibition of Plk4 and a reduction in centrosome number did not effect cell cycle progression. However, Plk4 null Drosophila adults were uncoordinated and eventually died as a result of a failure to produce basal bodies, a centriolar derived structure in the sensory neurons (Bettencourt-Dias et al., 2005).

Plk4 Role in Mitosis

Plk4 plays a crucial role in regulating centrosome dynamics, although whether Plk4 plays any additional roles in the cell cycle remains to be elucidated. Experimental evidence suggests a role for Plk4 in promoting mitotic entry since Plk4 interacts with two key genes in the $\mathrm{G}_{2} / \mathrm{M}$ transition. Plk4 interacts with and phosphorylates Cdc25C (Bonni et al., 2008) and interacts with cyclin B (Hudson et al., unpublished data), though the functional significance of these interactions remains to be described. Plk4 may also play a role in promoting mitotic exit. In Plk4 null mice where embryonic lethality is observed, high levels of cyclin B are observed in anaphase and telophase cells (Hudson et al.,
2001). This is indicative of cells arresting late in mitosis. Therefore, Plk4 may play a crucial role in the APC/C dependent destruction of cyclin B.

Plk4 Role in DNA Damage Pathways

As with the other Plk family members, Plk4 may also play a role in the DNA damage pathways since Plk4 has been shown to interact with p53 (Swallow et al., 2005) and Plk4 expression is repressed in a p 53 dependent manner in response to DNA damaging agents (Li et al., 2005). It was determined that p53 repression of Plk4 activity occurred through the recruitment of a histone deacetylase (HDAC) transcription repressor. In addition, Plk4 repression through RNA interference allowed p53-induced apoptosis to occur, while Plk4 overexpression attenuated p53-mediated apoptosis. Though a direct role for Plk4 in DNA damage pathways has yet to be described, Plk4 has been shown to interact with various sensor, transducer and effector proteins including ATM, ATR, Chk1, Chk2, and members of the Cdc25 phosphatase family (Hudson et al., unpublished data). Therefore, it is plausible that Plk4 may play a substantive role in the cellular response to genotoxic stresses.

Plk4 Null Mice

To study the role of Plk4 in embryogenesis and to determine the effect of loss of Plk4 function in mice, a Plk4 null allele was generated by replacing exons 1 and 2 with a Neo gene deleting the start of translation (Hudson et al., 2001). It was discovered that Plk4 null mice arrested at approximately 7.5 days post coitum after gastrulation had occurred. Formation of the neural plate was evident but somite development and neural
tube formation failed to occur (Hudson et al., 2001; Swallow et al., 2005). An examination at 8.5 days found that Plk4 null embryos were smaller than both wild type and heterozygous embryos with the embryonic and extra embryonic structures that were reduced in size. Null embryos showed an increased number of cells present in mitosis indicating a block or delay in mitosis which was confirmed by phosphorylated histone H3 detected six times more frequent in null embryos. Outgrowths from E2.5 blastocysts were compared, and Plk4 null outgrowths were smaller and DNA synthesis was reduced in comparison to the wild type. As seen with embryos at E8.5, 68% of Plk4 null outgrowths were positive for phosphorylated histone H 3 compared to only 17% of wild type outgrowths indicating an anaphase block had occurred in the nulls (Hudson et al., 2001). Plk4 null blastocysts also displayed an increased number of cells present with a dumbbell morphology indicating a block in telophase (Hudson et al., 2001; Swallow et al., 2005). Plk4 null embryos also presented a high number of cells with a late mitotic delay leading to a high apoptotic rate.

Plk4 was the first member of the polo like kinase family to be studied by germline mutation; whereas experimental data indicates that Plk4 is required for embryonic development, a study by Ma et al., 2003 showed that in contrast Plk2 null mice were not embryonic lethal. Plk2 null mice were smaller than their littermates and show a slight delay in skeletal development. In addition, Plk2 null mice were all fertile and show comparable survival rates to their heterozygous and wild type littermates (Ma et al., 2003). These results indicated that although Plk2 may play an essential role in cell cycle progression, it is not essential for embryonic development. To date, no germline
mutations of Plk1 or Plk3 have been devised to assess the functional significance of these genes in an animal system.

Plk4 Mouse Embryonic Fibroblasts (MEFs)

Consistent with the embryonic lethality observed with Plk4 null embryos, the establishment of Plk4 null MEFs was unsuccessful indicating the Plk4 is not only necessary for embryonic development but also for cell viability (Hudson et al 2001; Ko et al., 2005). In contrast, Plk2 null MEFs are viable though they are delayed in entering S phase (Ma et al., 2003).

Plk4 heterozygous MEFs are viable though they exhibit a slower growth rate compared to wild type MEFs (Ko et al., 2005). Plk4 heterozygous MEFs presented a number of mitotic defects including abnormal spindle number as well as abnormal chromosomal number and segregation. The percentage of MEFs with greater than three centrosomes was significantly increased in heterozygous Plk4 MEFs, while the presence of more than one microtubule organizing centres (MTOC) was observed in approximately one-third of Plk4 heterozygous MEFs in interphase (Ko et al., 2005; Swallow et al., 2005). A similar phenotype is observed in MEFs deficient in p53 or p21 with an incidence of centrosome amplification similar to that of Plk4 heterozygous MEFs (Carroll et al., 1999). Tatapore et al. showed that in p53 null MEFs there was an increase in centrosome and MTOC number. Plk4 heterozygous MEFs contain mRNA and protein levels at about 50\% the level found in wild type MEFs (Swallow et al., 2005).

Cancer Development in Plk4 Heterozygous Mice

Plk4 heterozygous mice are healthy and fertile and show no abnormal defects early in development (Hudson et al., 2001; Ko et al., 2005). On the other hand, aged Plk4 heterozygous mice (18-24 months) developed primary hepatocellular (HCC) liver tumors at a frequency of 50% in comparison with only 3% in wild type mice. These liver tumors were typically multifocal indicating a predisposition to tumor development throughout the liver. Further examination showed that the hepatocytes presented a high mitotic index and nuclear atypia. Tumor development in heterozygous mice was also observed in the lung with papillary adenocarcinomas discovered in the periphery of the lung parenchyma. In addition, a few heterozygous mice developed large soft tissue tumors of the axilla and upper chest wall (Ko et al., 2005).

A two-thirds partial hepatectomy was employed to study the molecular basis why Plk4 heterozygous mice were predisposed to mitotic errors. This method was employed to induce dormant hepatocytes back into the cell cycle. It was shown that 44 hours after partial hepatectomy, Plk4 heterozygous hepatocytes had a significantly higher incidence of tri- or tetrapolar spindles leading to abnormal mitosis. Introduction of hepatocytes in S phase was delayed by four hours in heterozygotes as seem by the persistence of Cdk2 activity and the delay of phosphorylation of Rb. Subsequently, entry into mitosis was delayed in heterozygous Plk4 livers as observed by the persistence of cyclin B1, and phosphorylated Cdk1. Seven days post hepatectomy, heterozygous hepatocytes were poorly organized, though normal liver mass was restored and no difference in the survival rate was observed in both wild type and heterozygotes,. Six months post partial hepatectomy, 70% of heterozygous mice displayed hepatocellular dysplasia with nuclear
atypia as well as disorganization in the normal liver architecture, while wild type livers were normal. Twelve months post partial hepatectomy, all heterozygous Plk4 mice presented abnormal liver histology with 37% developing HCC tumors that were multifocal in nature with a high degree of aberrant mitotic errors. The majority of the wild type Plk4 mice had normal liver architecture. These studies reasoned that some hepatocytes in heterozygote livers with abnormal spindle morphology escaped programmed cell death and passed this phenotype to subsequent generations of hepatocytes leading to the increased development of liver tumors in the Plk4 mice (Ko et al., 2005).

The results observed in heterozygous mice are consistent with the observation that the Plk4 gene is present on human chromosome 4 q 28 , a syntenic region that frequently undergoes rearrangement in hepatocellular carcinomas. It was determined that the increased incidence of hepatomas in Plk4 heterozygous mice resulted from haploinsufficiency and that the Plk4 gene dosage is crucial for suppression of carcinogenesis (Ko et al.,2005).

Plk4 Role in Oncogenesis

In contrast to heterozygous Plk4 mice where a reduced gene dose of Plk4 was correlated with tumor development, Plk4 was found to be over expressed in colorectal cancers. Similar over expression in colorectal cancers is observed with Plk1. Expression of both Plk1 and Plk4 increased with the age of the patient, and interestingly, the expression profiles of Plk1 and Plk4 correlated with each other (Macmillan et al., 2001).

Few interacting partners of PIk4 have been identified therefore it has been difficult to determine the function that Plk4 may play in the progression or suppression of oncogenesis. Like Plk1, Plk4 expression is transcriptionally repressed by a p53 mediated pathway (Li et al., 2005). Although the characterization of this repression has yet to be characterized in response to DNA damage, it provides evidence that the functions of Plk4 may impact upon oncogenic properties. In contrast, heterozygous Plk4 MEFs display a phenotype typified by multiple centrosomes, multipolar spindles and mitotic failure (Ko et al., 2005). This phenotype was similar to that observed following over expression of a catalytically inactive Plk4 mutant. The results suggest that reduced Plk4 activity can cause occasional cellular division failure as a result of aberrant centrosome duplication and subsequent mitotic spindle malformation. This cell division failure can lead to either aneuploidy or polyploidy, which could in turn contribute to the incidence of tumors in heterozygous mice (Habendanck et al., 2005).

Experimental Approach

The use of microarrays is an established technique in the field of molecular biology which allows for the large-scale examining of the expression profiles of thousands of genes within a genome. Microarrays allow for the characterization of global expression patterns between a reference and one or multiple experimental conditions. The advent of microarray technology has provided researchers with an invaluable tool to elucidate the function of genes in cellular processes. For the purpose of my experimentation, microarray technology was employed to examine cellular variations of transcript levels based of Plk4 gene dosage in mouse embryonic fibroblasts.

Microarray employs the principle that a given cDNA molecule will bind to its complement on a DNA template from which it has originated (Southern et al., 1999). Two types of microarrays technologies are being employed: oligonucleotides and spotted cDNA arrays. Oligonucleotides are short synthetic sequences of DNA often between twenty to sixty base pairs in length which are representative of a single gene or a family of gene splice variants (Lipshutz et al., 1999). Spotted arrays or complementary DNA (cDNA) arrays contain expressed sequence tags (ESTs) which are small pieces of a DNA sequence generally between 200 to 500 nucleotides long in length that are generated by sequencing either one or both ends of an expressed gene (Duggan et al., 1999). Oligo arrays differ from spotted arrays in the way they are manufactured. Oligonucleotide arrays are produced by printing short oligonucleotide sequences directly onto the array surface. Oligo arrays can be synthesized by photolithographic synthesis, where light and light-sensitive masking agents are used to build one nucleotide sequence at a time across an array surface. Spotted arrays probes are synthesized prior to deposition on the array surface and are then "spotted" onto glass. Spotted arrays are usually synthesized by means of a robotic arm, which contains an array of pins or needles which deposits DNA probes on the designated location on the array surface. For the purpose of the present study, cDNA microarrays were employed.

Spotted arrays are scanned via a microarray scanner at two wavelengths to produce images for data analysis: 532 nm which causes excitation of the Cy 3 fluor which emits a wavelength of 570 nm in the green part of the visual spectrum and 635 nm which causes the excitation of Cy5 which emits a wavelength of 670 nm in the red part of the visual spectrum. Differences in gene expression between the reference and experimental
states are measured based on the visual intensities emitted by the Cy 3 and Cy 5 dyes which represent the amount of mRNA transcript per a specific gene that hybridized to the array. A visual representation of yellow represents equal hybridization of a gene for both the reference and experimental cDNA and therefore equal mRNA expression. While a predominantly red visualization represent that for a gene in the experimental condition, there were more mRNA transcripts present and therefore it was upregulated. A predominantly green visualization represents that the gene in the reference condition presented more mRNA transcripts present and is downregulated (Figure 4).

Figure 4: Composite View of Cy3 and Cy5 Labeled Microarray

The wild type Cy3 labeled cDNA is scanned at 532 nm causing the Cy 3 fluor to emit at 570 nm , while the heterozygous Cy5 cDNA is scanned at 635 nm causing an emission at 670 nm . A composite image is produced by the Scanarray software using the Cy 3 and Cy5 scanned images. A predominately green spot indicates increased transcript expression in wild type Plk4 MEFs, while a predominately red spot indicates increased transcript expression in heterozygous Plk4 MEFs. A yellow spot indicates equal transcript expression between wild type and heterozygous Plk4 MEFs.

Chapter 2

Objectives of the Study

Significant phenotypic differences are observed between wild type and heterozygous Plk4 mice and mouse embryonic fibroblasts (MEFs), although the exact mechanisms by which these phenotypic differences occurs has yet to be fully elucidated. The aim of this study was firstly, to provide a general survey of differences in the transcript profile between wild type and heterozygous MEFs using microarray technology. Secondly, Plk1, Plk2, and Plk3 have been implicated to play substantive roles in the cell cycle response to DNA damage. Hence, it is plausible that Plk4 also plays a significant role in the DNA damage pathways. Therefore, transcriptional and protein difference were examined in wild type and heterozygous MEFs in response to both ionizing and ultraviolet radiation.

Chapter 3

Materials and Methods

Establishment of Primary Mouse Embryonic Fibroblasts (MEFs)

Mouse embryonic fibroblast cell lines were established by sacrificing a pregnant female mouse 12.5 days post coitum by carbon dioxide $\left(\mathrm{CO}_{2}\right)$ asphyxiation. The uterine horns were removed and washed with 70% ethanol. Each embryo was separated from the placenta and placed in 1 ml of Hanks Balanced Salt Solution (HBSS) (Sigma). The embryos were minced with a razor blade until they were pipettable. The resulting cell/tissue solution was suspended in 1ml 10X Trypsin (Sigma) and placed in an incubator at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ for 15 minutes. 10 ml of MEF media (Dulbecco's Modified Eagles Medium (DMEM; Sigma) containing 20\% Fetal Bovine Serum (FBS; Sigma), 1% penicillin-streptomycin (Gibco) and $250 \mathrm{ug} / \mathrm{ml}$ gentamicin (Gibco)) were added to the MEF suspension and transferred to a 50 ml falcon tube. Tissue was allowed to settle to the bottom of the tube and the supernatant was transferred to a 15 ml falcon tube and subjected to centrifugation at 100 xg for five minutes. The supernatant was removed and the resulting pellet was suspended in 10 ml of MEF media and plated on a 10 cm tissue culture dish and placed in an incubator at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$.

When the MEFs reached confluency, they were washed once with HBSS, trypsinized with 1 ml 10X Trypsin (Sigma) for 5 min at room temperature, resuspended in fresh MEF media, pelleted by centrifugation at 100 xg for five minutes and split at a ratio of 1 to 10 , with 200 ul kept for genotyping. MEFs were allowed to reach 80% confluency, and then were frozen down. Briefly, MEFs were washed once with HBSS, trypsinized with 1ml 10X Trypsin (Sigma) for 5 min at room temperature, resuspended in
fresh MEF media, pelleted by centrifugation at 100 xg for five minutes and resuspended in 1 ml of cold MEF freezing media (MEF media containing 10% dimethyl sulfoxide (DMSO) (Sigma)). MEFs were kept at $-80^{\circ} \mathrm{C}$ for 3 days and then transferred to liquid nitrogen for long term storage.

MEF Genotyping

Isolation of DNA from MEFs was performed by adding 620 ul Proteinase K buffer (50 mM Tris, 100 mM EDTA, $100 \mathrm{mM} \mathrm{NaCl}, 1 \%$ SDS) and 30 ul of $20 \mathrm{mg} / \mathrm{ml}$ Proteinase K (Roche). The solution was placed in a $55^{\circ} \mathrm{C}$ water bath overnight. A 1:1 ratio of water saturated phenol (Sigma) and chloroform (Sigma) was added and the solution was placed on a Nutator Mixer (Becton-Dickinson) for 1 hr . The solution was centrifuged in a table top microcentrifuge (Jouan) at 4000 xg for 10 min . The aqueous phase of the resulting mixture was transferred to an eppendorf tube containing 650 ul of isopropanol and centrifuged at 4000 xg to pellet the DNA. The DNA was washed with 70% ethanol and resuspended in 100 ul of deionized water.

PCR genotyping established whether the MEFs were Plk4 wild type or heterozygous. Primers F25 (5'-GCCCCCACTAAGACGAC-3') and VEC523 (5'-AGCTGGGGCTCGACTAG-3') amplified a wild type band at 316bp while primers F25 and PR436 (5'-TGCTAGTAAATAATCCGACAGG-3') amplified a mutant band at 403bp (Hudson et al., 2001).

RNA Isolation

RNA isolation was performed using the RNeasy Mini Kit (Qiagen). Briefly, MEF cells were grown asynchronously to a confluency of 80% and washed twice with HBSS (Sigma) before trypsinization with 10X Trypsin (Sigma). Cells were then pelleted at 100 xg for 5 min in a 15 ml falcon tube and washed twice with HBSS in the falcon tube and spun at 100 x g for 3 min . After the second HBSS wash, cells were lysed with the addition of 600 ul lysis buffer and the lysates were homogenized with a Qiashredder (Qiagen) spin column and spun in a microcentrifuge (Juoan) at 4000 xg for $2 \mathrm{mins} .75 \%$ ethanol was added to the homogenized lysate to precipitate the total RNA. The solution was placed in an RNeasy Mini Column where the RNA was bound to the column. The RNA was washed three times in the column to get rid of any contaminants and then eluted with Diethyl Pyrocarbonate (DEPC) water. A spectrophotometer reading at A_{260} was performed to estimate the concentration of the RNA. To confirm the integrity and quality of the RNA, a sample was run on the 2100 Bioanalyzer (Agilent) using the RNA 6000 Nano Assay Kit. The RNA was flash frozen in liquid nitrogen and placed in the $-80^{\circ} \mathrm{C}$ freezer until ready for use.

Microarray

Three plates of either wild type or heterozygous MEFs were pooled for RNA isolation as described. RNA was sent to the University Health Network (UHN) Microarray Centre in Toronto were the microarray experiments were performed. The samples were labeled using the UHN's standard indirect labeling protocol. Briefly, 10
micrograms of total RNA sample was used and following reverse transcription to cDNA labeled with Cyanine dyes Cy3 and Cy5 (Amersham Bioscience). Wild type Plk4 cDNA was labeled with Cy3 while heterozygous Plk4 cDNA labeled with Cy5. The labeled samples were hybridized to a Mouse 22.4 K microarray chip containing 22400 features. Hybridization was performed on an Advalytix Slidebooster (Advalytix) using DIG easy hybridization solution. The arrays were scanned using an Agilent G2565BA scanner and quantified using ArrayVision v.8.0 (Imaging Research Inc.).

Synthesis of Complementary DNA (cDNA)

RNA isolation was performed by the method stated previously. The quality of the RNA was examined using the bioanalyzer with the RNA used for reverse transcription if the RNA integrity number was greater than 8.0. Reverse transcription (RT) was performed to convert the total RNA isolated from the MEFs into cDNA. Complementary DNA was synthesized using 5 ug of total RNA, $1 \mathrm{ul} 0.5 \mathrm{ug} / \mathrm{ul}$ oligo (dT) 12-18 primer (Invitrogen), 1 ul 10 mM dNTPs (Invitrogen) to a value of 12 ul with DEPC water. The mixture was incubated at $65^{\circ} \mathrm{C}$ for five minutes in a heating block and then placed on ice for 2 minute. 4ul of 5X First-Strand Reaction Mix (Invitrogen) and 2ul 0.1M dithiothreitol (DTT) of were added to the mixture and incubated in a heating block at $42^{\circ} \mathrm{C}$ for 2 minutes. 1 ul of Superscript II Reverse Transcriptase was added and the reaction was incubated at $42^{\circ} \mathrm{C}$ for 50 minutes for first strand synthesis. The reaction was terminated by incubating the mixture in a heating block at 70° for 15 minutes. The cDNA was stored at $-20^{\circ} \mathrm{C}$ until use.

Polymerase Chain Reaction (PCR)

i) Plk4

All forward and reverse primers for PCR were designed to span intron/exon boundaries to prevent amplification of contaminating genomic DNA in the cDNA mixture. The primers for Plk4 (5- AGGGAAGCTAGGCACTTCATG-3'; 5-

GGAAGACCACCTTTTGAC-3') yielded a PCR product of 310 bp . PCR was performed in a 20 ul reaction mixture containing 2 ul of cDNA template, 2.5 ul of 10X PCR buffer, $4.625 \mathrm{mM} \mathrm{MgCl} 2, .5 \mathrm{mM}$ of dNTPs, 1 ul each of forward and reverse primers and 2.5 U of Hot Star Taq DNA Polymerase (Qiagen). PCR was performed using a Tpersonal (Biometra) programmable thermal cycler as follows: denaturation at $95^{\circ} \mathrm{C}$ for 15 minutes, then 38 to 42 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 seconds, annealing at $48^{\circ} \mathrm{C}$ for 30 seconds and extension at $72^{\circ} \mathrm{C}$ for 60 seconds. Completed PCR reactions were cooled to $4^{\circ} \mathrm{C}$ and aliquots resolved by electrophoresis on a 2% tris-acetate-EDTA (TAE) agarose gel at 85 V for 85 minutes and visualized by ethidium bromide staining. Gels were imaged using a Chemi Genius Bio Imaging System (Perkin Elmer) using the Gene Snap software. All PCR products were run and imaged using the same methodology and equipment.
ii) Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

Oligonucleotide primers for GAPDH (5'-GCTGAGTATGTCGTGGAGTCT-3'; 5'-CAGAGCTGAACGGGAAGCTC-3') yielded a product of 410 bp . PCR was performed in a 20 ul reaction mixture containing 1 ul of cDNA template, 2.5 ul of 10X PCR buffer, $4.625 \mathrm{mM} \mathrm{MgCl}_{2}, .5 \mathrm{mM}$ of dNTPs, .5 ul each of forward and reverse primers
and 1 U of Hot Star Taq DNA Polymerase (Qiagen). PCR was performed using a programmable thermal cycler as follows: denaturation at $95^{\circ} \mathrm{C}$ for 15 minutes, then 28 to 32 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 seconds, annealing at $57^{\circ} \mathrm{C}$ for 40 seconds and extension at $72^{\circ} \mathrm{C}$ for 40 seconds. PCR reactions were cooled to $4^{\circ} \mathrm{C}$ and aliquots resolved on a 2% agarose gel.
iii) Prohibitin

The primers for prohibitin (5^{\prime}-CGTATCTACACCAGCATTGGC-3'; 5'TGTGGTGGAAAAGGCTGAGC - 3^{\prime}) yielded a product of 301 bp . PCR was performed in a 20 ul reaction mixture containing 2 ul of cDNA template, 2.5 ul of 10X PCR buffer, $2.0 \mathrm{mM} \mathrm{MgCl} 2, .5 \mathrm{mM}$ of dNTPs, .75 ul each of forward and reverse primers and 2.5 U of Hot Star Taq DNA Polymersae (Qiagen). PCR was performed using a programmable thermal cycler as follows: denaturation at $95^{\circ} \mathrm{C}$ for 15 minutes, then 32 to 36 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 seconds, annealing at $55^{\circ} \mathrm{C}$ for 30 seconds and extension at 72° for 30 seconds. PCR reactions were cooled to $4^{\circ} \mathrm{C}$ and aliquots resolved on a 2% agarose gel.
iv) SAP30 Binding Protein (SAP30BP)

The primers for SAP30BP (5'-CCAGAAGCTCTACGAGCGGAA-3'; 5'-TGGTCTGAAGACTCCTACTATGAG-3') yielded a product of 190 bp . PCR was performed in a 20 ul reaction mixture containing 2 ul of cDNA template, 2.5 ul of 10X PCR buffer, $2.75 \mathrm{mM} \mathrm{MgCl}_{2}, .5 \mathrm{mM}$ of dNTPs, 1 ul each of forward and reverse primers and 2.5 U of Hot Star Taq DNA Polymerase (Qiagen). PCR was performed using a
programmable thermal cycler as follows: denaturation at $95^{\circ} \mathrm{C}$ for 15 minutes, then 38 to 42 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 seconds, annealing at $57^{\circ} \mathrm{C}$ for 30 seconds and extension at $72^{\circ} \mathrm{C}$ for 30 seconds. PCR reactions were cooled to $4^{\circ} \mathrm{C}$ and aliquots resolved on a 2% agarose gel. .
v) WNT-Inducible Signaling Pathway Protein 1 (Wisp1)

The primers for Wispl (5'-GCCTAATCACAGATGGCTGTG-3'; 5'-CAATAGGAGTGTGTGCACAGGTG-3') yielded a product of 150 bp . PCR was performed in a 20 ul reaction mixture containing 2 ul of cDNA template, 2.5 ul of 10X PCR buffer, $1.5 \mathrm{mM} \mathrm{MgCl} 2, .5 \mathrm{mM}$ of dNTPs, 1 ul each of forward and reverse primers and 2.5U of Hot Star Taq DNA Polymerase (Qiagen). PCR was performed using a programmable thermal cycler as follows: denaturation at $95^{\circ} \mathrm{C}$ for 15 minutes, then 36 to 40 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 60 seconds, annealing at $54^{\circ} \mathrm{C}$ for 60 seconds and extension at $72^{\circ} \mathrm{C}$ for 60 seconds. PCR reactions were cooled to $4^{\circ} \mathrm{C}$ and aliquots resolved on a 2% agarose gel.

Densitometry

Densitometry was performed using the Gene Tools software from Perkin Elmer.
Briefly, the program identified the correct gel lanes associated with the samples run using an algorithm. Subsequently, any unwanted lanes were deleted. Next, using a predetermined algorithm, the computer identified bands on the gel and was allowed to assign intensity values for the bands to eliminate any bias. Unwanted bands not necessary for analysis were removed.

TdT-Mediated dUTP Nick-End Labeling (TUNEL) Assay

Wild type and heterozygous MEFs were plated on glass coverslips at 70\% confluency in six well plates. MEFs were exposed to $40 \mathrm{~mJ} / \mathrm{cm}^{2}$ ultraviolet radiation. MEF media was removed and the cells were washed twice with 1X phosphate buffer saline (PBS). Cells were fixed in 4% paraformaldehyde in PBS at $4^{\circ} \mathrm{C}, 0 \mathrm{hr}, 1 \mathrm{hr}, 2 \mathrm{hr}, 4 \mathrm{hr}$, 6 hr , and 8 hr post radiation. Cells were permeabilized in 0.2% Triton X-100 (Sigma) in PBS and washed twice in 1X PBS. Cells were equilibrated in Equilibration buffer for 10 minutes at room temperature. Equilibration buffer was removed and the cells were incubated with rTdT incubation buffer (88% equilibration buffer, 10% nucleotide mix, $2 \% \mathrm{rTdT}$ enzyme) for 60 minutes at $37^{\circ} \mathrm{C}$ in the dark to label apoptotic cells with fluorescien-12-dUTP. Cells were washed with 2X Sodium Salt Citrate (SCC) (20X SCC in deionized water) 15 minutes at room temperature to terminate the labeling reaction. Cells were washed three times with 1X PBS at room temperature for 5 minutes. Cells were stained with $5 \mathrm{ug} / \mathrm{ml}$ of propidium iodide (PI) in 1X PBS to stain the nuclei of the cells. Subsequently, cells were washed three times with deionized water. Excess water was removed from the cover slips, one drop of Anti-Fade solution (Molecular Probes) was added and the cover slips were mounted on glass slides. Cells were viewed at high magnification at red fluorescence at 620 nm for propidium iodide and green fluorescence at 520 nm for fluorescien-12-dUTP. 200 cells per slide were counted to analyze the number of apoptotic cells and three trials were performed. DNase I was used as a positive control to induce DNA fragmentation indicative of apoptosis.

Exposure of MEFs to DNA Damaging Agents

Wild type and heterozygous MEFs were exposed to ultraviolet light (UV) at 40 $\mathrm{mJ} / \mathrm{cm}^{2}$ using a GS Gene Linker UV Chamber (Biorad) or ionizing radiation (IR) of 25 Gy using a RX-650 Cabinet X-ray System (Faxitron) and RNA was isolated from the MEFs at desired time points.

SDS-PAGE

MEFs were exposed to either ultraviolet or ionizing radiation and then lysed 6 hours post radiation. Cells were lysed with 1 ml lysis buffer (50 mM Tris-Cl, 100 mM Nacl, 500 mM EDTA, 1% Triton-X) on ice for 20 min . Lysates were spun in a microcentrifuge at 4000 xg for 20 min at $4^{\circ} \mathrm{C}$ to remove cellular debris. A Bradford assay was performed to find out protein concentration. 2 X loading dye containing 5\% β mercaptoethanol was added to 30 ug of lysates, and the samples were boiled for 5 min . The lystates were loaded onto either an 8% or 15% protein gel and subjected to SDSPAGE for 48 minutes at 200 V .

Western Blot Analysis

After SDS-PAGE, the proteins were transferred onto a PVDF membrane (Millipore) using a semi-dry transfer apparatus (Biorad) at 12 V for 45 minutes. The membrane was then blocked with Tris-buffer saline and Tween (TBST) buffer with 1% blotto to block non-specific protein binding for 1hour at room temperature with gentle agitation. The membrane was washed three times with TBST for 5 minutes at room temperature. The membrane was then incubated with the desired primary antibody
(Appendix A) in TBST with 1% blotto for 1 hour at room temperature; then washed three times with TBST for 5 minutes. The membrane was incubated with the appropriate horseradish peroxidase secondary antibody (Appendix A) in TBST with 1% blotto for 45 minutes at room temperature; then again washed three times with TBST for 5 minutes. 1 ml of Supersignal West Femto Maximun Sensitivity Substrate (Pierce) was added to the membrane and the reaction between the horseradish peroxidase and its substrate was allowed to occur for 5 minutes. The proteins were then visualized by chemiluminescence.

Stripping of Western Blots for Re-probing

Stripping of Western blots was used to remove any bound primary and secondary from the blot so that other primary antibodies could be tested. Stripping buffer (100 mM β-mercaptoethanol, 2% SDS, 62.5 mM Tris- Cl at pH 6.7) was prewarmed to $50^{\circ} \mathrm{C}$ and added to the blot for 25 minutes at $50^{\circ} \mathrm{C}$ with gentle agitation. The stripping buffer was removed and the blot was incubated with prewarmed TBST for 25 minutes at $50^{\circ} \mathrm{C}$. The blot was washed with water and then incubated with the desired primary antibody.

Chapter 4

Results

Comparison between Transcript Profiles in Wild Type and Heterozygous Plk4

MEFs using Microarray.

A number of phenotypic differences have been observed between wild type and heterozygous Plk4 MEFs including that heterozygous MEFs exhibit a growth rate approaching $1 / 2$ that of their wild type counterparts (Ko et al., 2005). In addition, heterozygous MEFs present an increase in the number of cells with multiple centrosomes which have the potential to lead to abnormal chromosome alignment and segregation (Ko et al., 2005). These abnormalities have been proposed as a mechanism that leads to genomic instability and the observed increase incidence of tumor development in aged heterozygous Plk4 mice in comparison to the wild types. Therefore, it was of interest to study the effect of lower Plk4 levels on the expression pattern of other genes. We measured the global transcriptional differences between wild type and heterozygous MEFs using microarray technology using RNA samples isolated from both Plk4 wild type and heterozygous MEFs using three microarray replicates were performed. The experiments were performed at the University Health Network (UHN) Microarray facility using Mouse 22.4 k cDNA arrays using an indirect labeling methodology. Scanned TIFF images of both the Cy3-labeled and Cy5-labeled were received from UHN and analysis was performed.

Quantification of results was performed using ScanArray Express v.3.0 (Perkin Elmer). Cy3-labeled and Cy-5 labeled images were loaded on the ScanArray Express Software producing a composite image of the array (Figure 5). A QuantArray microarray
gene annotation file was obtained from the University Health Network (UHN) Microarray Centre website indicating the identification of each spot on the array (http://www.microarrays.ca/products/glists.html). Using the template obtained from the gene list, a grid overlay was designed of the microarray spots and was aligned with the scanned image. Quantification was performed by the ScanArray Express software to measure the intensity of the hybridization of both the Cy 3 and Cy 5 labeled samples to its complement on the chip. Locally Weighted Scatter Plot Smoother (LOWESS)
normalization was performed to account for any intensity dependent effects that may occur when differences in log ratio values are observed (Quackenbush, 2001). The resulting quantification and normalization of the data produced a data file that allowed transfer to "The Institute for Genomic Research" (TIGR) TM4 microarray data analysis suite for further analysis. Further normalization and filtering of the data was performed using the TIGR Microarray Data Analysis System (MIDAS) application. Analysis of all microarray data sets for the different microarray experiments (ex. Wild type Plk4 MEFs vs Heterozygous Plk4 MEFs) were performed independently. Initial filtering of the data was performed. Spots were removed from downstream analysis if an intensity value for either the Cy3-labeled or Cy5-labeled spot were invalid (an intensity less than 1). Next, flag filtering was performed to remove invalid spots from further analysis. For example, if the $\mathrm{Cy}-3$ or Cy 5 samples had an intensity of 0 non-saturated pixels within a spot, the spot was removed. Subsequently, background filtering was employed. If the backgroundcorrected intensity of a spot was greater than or equal to the background intensity for both the Cy3 and Cy5 labeled samples than the spot was kept in the data set for further downstream analysis.

Figure 5: Composite View of Cy3 and Cy5 Labeled Microarray

The wild type Cy3 labeled cDNA was scanned at 532 nm causing the Cy3 fluor to emit at 570 nm , while the heterozygous Cy5 cDNA was scanned at 635 nm causing an emission at 670nm. A composite image was produced by the Scanarray software using the Cy 3 and Cy5 scanned images. 1) A predominately green spot indicated increased transcript abundance in wild type Plk4 MEFs, 2) while a predominately red spot indicated increased transcript abundance in heterozygous Plk4 MEFs. 3) A yellow spot indicated equal transcript levels between wild type and heterozygous Plk4 MEFs

Locfit (LOWESS) normalization was performed with specific parameters set. Block LOWESS normalization was applied to the data set meaning that only spots within a certain block or grid on the microarray chip contribute to the bias of the spots intensity. A smoothing parameter was established at 33 percent to compute the normalization of each spot using the LOWESS algorithm. These computations were performed by MIDAS with the input that the Cy3 labeled sample (wild type MEFs) was the reference or the control and the Cy5 labeled sample (heterozygous MEFs) was the experimental value. Next, standard deviation regularization parameters were established ensuring that all spots within each block or grid of the microarray chip have the same standard deviation with the Cy3 labeled sample being the reference. Spots were then filtered from the further analysis based on the raw intensity of the hybridization. The cutoff raw intensity was set at 10000 with any spots with intensity lower than this threshold removed from any further analysis.

The normalized and filtered data set was loaded into TIGR Multiexperiment Viewer (MEV) for clustering analysis. For clustering, the filtered data from all three chips was loaded into MEV simultaneously for clustering to occur. The data set was clustered using K-Means clustering. K-means clustering divides the filtered data into clusters based on the principle that genes within a cluster are closely related. Genes were divided into ten different clusters. Within each cluster, genes having a log ratio value greater than 1 or less than -1 on each microarray chip were identified. Genes having a log ratio greater than 1 represented genes in the heterozygous MEFs that have at least a two fold increase in gene expression. As the wild type MEFs was used as the control, genes with a log ratio greater than 1 were classified as up-regulated in the heterozygous MEFs.

While, a \log ratio less than -1 represented genes in the wild type MEFs that have at least a two fold increase in gene expression or are down-regulated in the heterozygous MEFs.

From the microarray data, 9 genes were identified as having at least a two fold decrease in transcript profile in the heterozygous MEFs or were down-regulated in the heterozygous MEFs when compared to the wild-type control (Table 1) (Appendix J), while 146 genes were identified as having at least a two fold increase in transcript profile in the heterozygous MEFs (Table 2) (Appendix K). Cellular function for each gene was identified using annotation data from the Pubmed database or the Online Mendelian Inheritance in Man (OMIM) database.

Confirmation of Microarray Results Using RT-PCR

To confirm the validity of the microarray results, qualitative RT-PCR was employed. Three genes classified as having increased transcript profiles in the heterozygous MEFs were examined: Wnt1 inducible signaling pathway protein 1 (Wisp1), Sap30 Binding Protein (SAP30BP), Prohibitin (PHB).

a) Wisp1 Expression in Heterozygous Plk4 MEFs

Wisp1 over expression has been implicated in cellular morphological transformation (Xu et al., 2000) as well as and tumor formation in hepatocellular carcinomas (Cervello et al., 2004). In addition, over expression of other Wnt pathway proteins have also been implicated in tumor formation. I speculate that over expression of Wisp1 and other Wnt pathway proteins could contribute to tumor formation in heterozygous Plk4 mice. To confirm the validity of the microarray results, RT-PCR was
performed to compare Wisp1 expression rates in wild type and heterozygous Plk4 MEFs, and subsequently densitometry was performed to measure the quantitative differences. RNA was isolated from both wild type and heterozygous MEFs and a reverse transcription reaction was performed to produce first strand cDNA. PCR primers for Wispl were designed to amplify a product of 150 base pair, while PCR primers for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), amplified a product 410 base pairs in length and was used as an internal loading control. PCR products amplified from cDNA taken at three times points for both Wisp1 and GAPDH, were performed and terminated the PCR in the linear part of the PCR amplification curve. The PCR products were resolved on a 2% agarose gel to view their difference in relative abundance in the wild type and heterozygous MEFs (Figure 6a).

Densitometry was performed using the Gene Tools software. Intensity values were assigned to the bands for Wisp1 and GAPDH by the software to eliminate any bias. To determine the relative expression of Wisp1 in the heterozygous MEFs compared to wild type, first the ratio of the value for Wisp1 to GAPDH was taken for each individual time point. Next, the ratio of GAPDH to Wisp1 was determined for the wild type time points. The ratio of Wisp1 to GAPDH for the heterozygous time points was multiplied by the ratio of GAPDH to Wisp1 to determine the relative expression of Wisp1 in the heterozygous MEFs to the Wisp1 in the wild type MEFs (Appendix B). Densitometry was performed for three individual trials of RT-PCR for Wisp1. The relative expression for Wispl over the three trials was calculated along with the standard error of the mean. For the three trials of Wisp1, the average change in expression of Wisp1 over the three PCR time points was between 1.36 and 1.48 times greater level of transcriptional
Developmental
Procollagen, type III, alpha 1
Procollagen, type V, alpha 2
Oral-facial-digital syndrome 1 gene homolog
Procollagen, type I, alpha 2
Metabolism
Stearoyl-Coenzyme A desaturase 2
Mus musculus mVL30-1 retroelement mRNA sequence Transmembrane protein 34
Mus musculus 0 day neonate cerebellum cDNA
Hypothetical protein LOC639390
Table 1: Down-regulated Genes in Heterozygous Plk4 MEFs
Unknown Function
Stearoy-Coenzyme A desaturase 2

Cell Cycle
Casein kinase II
Protein phosphatase 1F (PP2C domain containing) Squamous cell carcinoma antigen recognized by T-cells 1 Origin recognition complex, subunit 4-like Inhibitor of DNA binding 2 Protein phosphatase 5

Prohibitin
Cyclin dependent kinase 8
Phosphatidylinositol 3-kinase
Pituitary tumor-transforming 1
Heterogeneous nuclear ribonucleoprotein C
heme binding protein 2
TVMSFG fibroblast growth factor receptor 1 precursor Neuropilin

DNA Methylation
SET domain ERG-associated histone methyltransferase
SAP30 binding protein
Table 2: Up-regulated Genes in the Heterozygous Plk4 MEFs
Developmental
Developmental
Sal-like 3
Transducin-like enhancer of split 1
T-cell factor 4
Inositol 1,4,5-triphosphate receptor 5
Procollagen, type VI, alpha 3
Fetal Alzheimer antigen
WNT1 inducible signaling pathway protein 1
T-box transcription factor Tbx 15
Nuclear factor $1 / X$
Thrombospondin 2
Osteopontin
Fukuyama type congenital muscular dystrophy homolog Nuclear receptor co-repressor 1 DNA Repair
Thymine DNA glycosylase
Uracil-DNA glycosylase
MutS homolog 6

Metabolism

N -acylsphingosine amidohydrolase (acid ceramidase) like Leucyl/cystinyl aminopeptidase Galactose-4-epimerase

L-2-hydroxyglutarate dehydrogenase Fatty acid desaturase 3

Carbohydrate sulfotransferase 2
Stearoyl-Coenzyme A desaturase 1
CCR4 carbon catabolite repression like 4
protein kinase, cAMP dependent regulatory, type I beta
Transcriptional/Translational Regulation Transcription factor A

Transmembrane and tetratricopeptide repeat containing 2 GLIS family zinc finger 3

Phenylalanine-tRNA synthetase 2 Phenylalanine-tRNA synthetase 2
Glutamyl-prolyl-tRNA synthetase

Protein kinase, cAMP dependent regulatory, type I beta
Protein kinase, cAMP dependent regulatory, type I beta
Highly similar to CBP_MOUSE CREB-binding protein Tetratricopeptide repeat domain 1

Cysteinyl -tRNA synthetase
Negative elongation factor B
Zinc finger protein 689
GLIS family zinc finger 3

Table 2: Up-regulated Genes in the Heterozygous MEFs

Cellular/Ion Transport

 Protein kinase, cAMP dependent regulatory, type I beta PleckstrinCalcium binding and coiled coil domain 1 Aquaporin-1
Solute carrier family 6
Exocyst complex component 3
Protein-coupled receptor 19
Solute carrier family 39
Serine Hydrolase like
Translocator of ine
ATPase, Ca++ transporting, plasma membrane 2
Transient receptor potential cation channel, subfamily M member 7
Miscellaneous Cellular Functions

Spetex-2E protein

Zinc Finger Protein 451
aarF domain containing kinase 1(Adck1)
AHNAK nucleoprotein
AHNAK nucleoprotein
Arginine/serine-rich coiled-coil 1
HD domain containing 3 (Hdcc3)
Myotubularin related protein 7
NICE-5 protein
46 additional genes came up as being down-regulated th there present cellular function is unknown or there are classified as hypothetical proteins
Table 2: Up-regulated Genes in the Heterozygous MEFs Thyroid hormone receptor interactor 11 Smg-6 homolog Talin 2
Tomoregulin1
Syntaxin 18
Channel-interacting PDZ domain protein Inositol hexaphosphate kinase 1 Multiple PDZ domain protein
Myosin heavy chain 10
CDC42 effector protein (Rho GTPase binding) 2 Zinc finger protein 507 Zinc finger protein 689 GC-rich sequence DNA-binding factor homolog candidate isoform 1 quence DNA binding factor homolog candide isoform 1
3-phosphoglycerate dehydrogenase Olfactory receptor 202 Discs, large homolog 5
2'-phosphodiesterase
ked neck protein
Oxysterol binding protein like protein 9
Mitochondrial ribosomal protein L50
Proteasome (prosome, macropain) 26S subunit, non-ATPase Coiled Coil domain containing 131
WD repeat domain 50
expression in the heterozygous Plk4 MEFs than in the wild type (Figure 6b). The average \log ratio from the three microarray chips for Wisp1 was 1.64 corresponding to an average 3.28 change increase in expression for Wisp1 in the heterozygous MEFs. Though the change in expression appears to differ substantially from the microarray data to the RTPCR data, differences are most likely attributed to the fact that the MEFs used for the microarray experiments were different MEFs than the MEFs used for the RT-PCR experiments.

b) SAP30-Binding Protein Expression in Heterozygous Plk4 MEFs

Preliminary data shows that methylation of the Plk4 gene in heterozygous mice occurs at a substantially higher rate than in wild type mice. Therefore, it is hypothesized that the transcriptional repression of Plk4 in heterozygous mice contributes to the increased incidence of tumorigenesis within these mice. Since SAP30BP binds SAP30 (Li et al., 2004), a component of the SIN3 histone deactylase complex, it is plausible that the increased methylation status of Plk4 heterozygous mice could be contributed to a complex that includes SAP30BP.

RNA was isolated from both wild type and heterozygous Plk4 MEFs and a reverse transcription reaction was performed to produce cDNA. PCR primers for SAP30BP amplified a product of 190 base pairs, while GAPDH, used as an internal loading control amplified a product of 410 base pairs. PCR products were run at three time points for both SAP30BP and GAPDH, while amplification was in the linear part of the PCR amplification curve except for cycle 42 for SAP30BP which became saturated. PCR products were run on a 2% agarose gel to view the differences in the transcript

Figure 6: Wisp1 Transcript Expression in Heterozygous Plk4 MEFs

a) RT-PCR was performed over three PCR time points to measure the relative quantitative difference in the transcript expression of Wisp1 in wild type and heterozygous Plk4 MEFs. GAPDH was used as an internal loading control. b) Densitometry was performed to measure the raw intensity of each band. Values for Wisp1 were normalized to GAPDH and the relative mean expression over three PCR trials was graphed. The average increase in transcript expression for Wisp1 in heterozygous Plk4 MEFs was between 1.36 to 1.48 greater than in wild type Plk4 MEFs. (NB WT: Wild Type; HET: Heterozygous)

A

GAPDH 410 bp

Wisp1 150 bp

8	8	8	8	8	8
$\frac{8}{8}$	$\frac{8}{6}$	$\frac{8}{2}$	$\frac{8}{0}$	$\frac{8}{2}$	$\frac{8}{8}$
8	0	0	0	0	6
8	8	8	8	8	8

B

Wisp1 Transcript Profile in Wild Type \& Heterozygous MEFs over Three PCR cycles
profiles of SAP30BP in wild type and heterozygous Plk4 MEFs (Figure 7a).
Densitometry was used to quantify the differences in transcript expression of SAP30BP. The same rationale was used to determine the relative expression of SAP30BP in the heterozygous MEFs compared to the wild type MEFs as with Wispl. The ratio of SAP30BP to GAPDH was determined for both wild type and heterozygous SAP30 at the three different PCR time points. Next, in the wild types, the ratio of GAPDH to SAP30BP was determined. This value was multiplied with the SAP30BP to GAPDH value for heterozygous SAP30 to get the relative expression in relation to wild type SAP30BP (Appendix C). Densitometry was performed on three individual RT-PCR trials for SAP30BP. The average relative expression and standard average of the mean was calculated for the three RT-PCR trials. For the three trials of SAP30BP, the average change in expression of SAP30BP over the three PCR time points was between 1.36 and 1.81 times greater level of transcriptional expression in the heterozygous Plk4 MEFs than in the wild type (Figure 7b). The average log ratio for the three microarray chips was 1.49 corresponding to an average increase in expression of 2.98 in the heterozygous Plk4 MEFs. Similar to Wisp1, MEFs from different embryos were used for both the microarray and the RT-PCR experiments. These differences possibly could contribute to the variation in change of expression between the microarray and the RT-PCR. Also, the relative expression of SAP30BP decreases in the heterozygous MEFs over the three PCR time points due to a result that the PCR product was becoming saturated, and therefore not in the linear part of the PCR product amplification curve.

c) Prohibitin Expression in Heterozygous Plk4 MEFs

Prohibitin (PHB) has been implicated to play a role in cellular senescence (Rastogi et al., 2006). Since mouse embryonic fibroblasts are primary cell lines, they eventually stop dividing and take a senescent phenotype of flattened morphology and increased granularity. In heterozygous Plk4 MEFs, the senescent phenotype is observed at an earlier passage than in the wild types. Therefore, it is plausible that increased prohibitin expression in heterozygous Plk4 MEFs contributes to this observed earlier senescent phenotype.

RNA was isolated from both wild type and heterozygous Plk4 MEFs and a reverse transcription reaction was performed to produce cDNA. PCR primers for PHB multiplied by the ratio of PHB to GAPDH for the heterozygous time points to determine the relative expression of PHB in the heterozygous Plk4 MEFs to the wild type MEFs (Appendix D). Densitometry was performed for three individual PCR experiments and the average of the relative expression and standard error of the mean were calculated.

Over three PCR trials, the average mean transcript expression of prohibitin in heterozygous MEFs was between 1.83 and 2.37 times greater than in the wild type Plk4 MEFs (Figure 8b). The average log ratio for the three microarray experiments for prohibitin was 1.52 corresponding to an increase in transcript expression of 3.04 times greater in the heterozygous MEFs. Similar to Wisp1 and Sap30BP, MEFs from different mice were used for the RT-PCR experiments than for the microarray, possibly explaining a reason for the variance in the results.

A

B

Comparison between Transcript Profiles of SAP30BP in Wild Type \& Heterozygous PIk4 MEFs

A

B

Comparison between Transcript Profiles of Prohibitin in Wild Type \& Heterozygous Plk4 MEFs

[^0]
The Effect of Ionizing and Ultraviolet Radiation on the Plk4 Transcript Profile in

 MEFsThough it is not yet known whether Plk4 plays a crucial role in response to DNA damaging agents, Plk4 has shown to interact with crucial DNA damage proteins including p53 (Swallow et al., 2005), Cdc25c (Bonni et al., 2008), ATM, ATR, Chk1 and Chk2 (Hudson et al, unpublished data). Subsequently, it was of interest to analyzeis the effect of DNA damaging agents on the transcript profile of Plk4, and whether there exist a difference in transcript expression between wild type and heterozygous MEFs.

Wild type and heterozygous MEFs were exposed to 25 Gy IR or $40 \mathrm{~mJ} / \mathrm{cm}^{2} \mathrm{UV}$. RNA was isolated at various time points and RT-PCR was performed to visualize if there were differences in transcript expression. PCR primers for Plk4 amplified a PCR product of 310 base pairs, while GAPDH, used as an internal loading control amplified a product 410 base pairs. PCR products were amplified at three time points in the linear range of the PCR amplification curve. PCR products were run on a 2% agarose gel to visualize differences between the wild type and heterozygous Plk4 MEFs in response, first to IR then to UV.

Densitometry was performed to quantitate the transcriptional difference between wild type and heterozygous Plk4 MEFs. The control with no exposure was used as a base line with the subsequent time points normalized back to it. Densitometry for both wild type and heterozygous samples was done separately and differences were visualized using a graph. Briefly, for each time point post exposure to DNA damage, and each PCR cycle time point, a ratio of Plk4 to GAPDH was determined. Then for the control with no exposure, a ratio of GAPDH to Plk4 was determined. The relative expression was
determined by multiplying the Plk4 to GAPDH ratio for time points post exposure to the ratio of GAPDH to Plk4. Densitometry was performed for three individual PCR reactions. The average relative expression was determined along with the standard error of the mean. Subsequently, the values for the heterozygous MEFs were normalized back to the wild type MEFs as RNA levels in the wild type MEFs are expressed twice as much as in heterozygous MEFs (Swallow et al., 2005).

In response to IR, the Plk4 transcript profile of the wild type MEFs stays constant until one hour post exposure when levels declined to between $60-70 \%$ relative to the control. These levels continue to remain at this decreased level 24 hours post irradiation (Figure 9a) (Appendix E). Similarly, for the heterozygous MEFs in response to IR, the Plk4 transcript profile remains constant till one hour post exposure, until a similar decline in transcript expression is observed. Between 2 and 24 hours post irradiation, the Plk4 transcript levels were between 60-70\% relative to the control (Figure 9b) (Appendix F). When a comparison between wild type and heterozygous MEFs at the first PCR time point is observed, there is no comparable difference between Plk4 transcript profiles (Figure 9c). When a comparison of the Plk4 transcript profile at the second PCR time point is examined, the differences in transcript profile 2 hours post exposure for both the wild type and heterozygous MEFs is $70-90 \%$ relative to the control (Figure 9d). At the third PCR time point, observable differences between wild type and heterozygous transcript profile appear (Figure 9e). The difference for the heterozygous MEFs for all time points is within the standard error relative to the control. This is most likely due to the PCR amplification being in the non-linear part of the amplification curve. Subsequent differences are noticed between wild type and heterozygous transcript profile. At one

Figure 9: Effect of Ionizing Radiation on the Transcript Profile of Plk4 in Wild

Type and Heterozygous MEFs

Wild type and heterozygous MEFs were exposed to 25 Gy ionizing radiation (IR), and RNA was isolated at various time points post exposure. RT-PCR was performed to measure the relative quantitative difference in Plk4 expression after exposure in both wild type and heterozygous MEFs. GAPDH was used as an internal loading control. PCR cycles for GAPDH were 28, 30, 32 cycles while for Plk4 38, 40, 42 cycles. Within each time post IR exposure, PCR products over three PCR cycles is shown corresponding to the number of cycles for GAPDH and Plk4 a) For wild type MEFs, in response to IR, Plk4 transcript levels remain constant until 1 hr post radiation when a reduction in levels is observed to between $60-70 \%$ relative to the control. b) Similarly, for heterozygous MEFs, Plk4 transcript levels remained constant until 1hr post radiation when a decrease to $60-70 \%$ relative to the control was observed. c) Densitometry was performed to measure the raw intensity for each band. Values for Plk4 were normalized to GAPDH, and subsequently values for the heterozygous MEFs were normalized to the wild type to determine the mean relative expression over the three PCR time points. For the first PCR time point, there is no comparable difference between the wild type and heterozygous Plk4 transcript levels. d) At the second PCR time point, the difference in transcript levels between wild type and heterozygous is minimal. e) At the third PCR time point, differences are apparent between the transcript profiles of Plk4 in wild type and heterozygous MEFs. (NB WT: Wild Type; HET: Heterozygous)

A

B

GAPDH 410 bp Plik4 310 bp

C

Comparison of Plk4 Transcript Levels in Wild Type \& Heterozygous MEFs after Exposure to 25 Gy lonizing Radiation: First PCR Time Point

D

Comparison of Plk4 Transcript Levels in Wild Type \& Heterozygous MEFs after Exposure to 25 Gy lonizing Radiation: Second PCR Time Point

Time Point after Exposure to lonizing Radiation

Comparison of Plk4 Transcript Levels in Wild Type \& Heterozygous MEFs after Exposure to 25 Gy lonizing Radiation: Third PCR Time Point

Time Point after Exposure to Ionizing Radiation
hour to 24 hours post exposure to IR, the transcript profile is $70-90 \%$ relative to the control. Most likely, in correlation with the first PCR time point, levels of Plk4 for both the wild type and heterozygous MEFs drop to around 70% relative to the control.

Upon exposure to UV, there is a striking difference in transcript profile levels of Plk4 between wild type and heterozygous MEFs. In the wild types, upon exposure to UV, levels of Plk4 are undetectable. At 2 hours post UV exposure levels reappear to the level of the control, then increase to 40% greater expression than is observed in the control (Figure 10a) (Appendix G). Unfortunately, at a dosage of $40 \mathrm{~mJ} / \mathrm{cm}^{2}$, the majority of cells undergo apoptosis, so levels of Plk4 at 24 hours were unable to be determined. In contrast, upon exposure to UV, no levels of Plk4 were detected in the heterozygous MEFs at any time (Figure 10b) (Appendix H). Similarly, to the wild type MEFs, the heterozygous MEFs undergo apoptosis prior to 24 hours post exposure. The results for the wild type and heterozygous Plk4 transcript profiles are consistent across all three PCR time points (Figure 10c,d,e). In the heterozygous MEFs in response to UV, the levels of Plk4 are undetectable. Therefore, it is plausible that since there is only one dose of the Plk4 gene in heterozygous MEFs, that Plk4 is transcribed at such low levels that it is undetectable by the conditions of PCR that were run. Since levels of wild type Plk4 increased relative to the control 4 to 8 hours post UV exposure, it could be hypothesized that Plk4 plays a dispensable role in apoptosis.

The Effect of Ionizing and Ultraviolet Radiation on Plk4 Protein Levels in MEFs

As RNA transcript levels do not necessarily correlate with protein levels, Plk4 protein levels in wild type and heterozygous MEFs were examined to determine if there

Figure 10: Effect of Ultraviolet Radiation on the Transcript Profile of Plk4 in Wild Type and Heterozygous MEFs

Wild type and heterozygous MEFs were exposed to $40 \mathrm{~mJ} / \mathrm{cm}^{2}$ ultraviolet radiation (UV), and RNA was isolated at various time points post exposure. RT-PCR was performed to measure the relative quantitative difference in Plk4 expression after exposure in both wild type and heterozygous MEFs. GAPDH was used as an internal loading control. PCR time points for GAPDH were $28,30,32$ cycles while time points for Plk4 were 38, 40, 42 cycles. Within each time post UV exposure, PCR products over three PCR cycles is shown corresponding to the number of cycles for GAPDH and Plk4a) In response to UV, Plk4 transcript levels in wild type MEFs decrease to undetectable levels immediately after exposure. At 2 hrs post exposure, Plk4 levels start to continually increase to levels greater than observed in the control. b) In contrast, levels of Plk4 are completely undetectable in heterozygous MEFs upon exposure to UV through to 8hrs post exposure.
c) Densitometry was performed to measure the raw intensity for each band. Values for Plk4 were normalized to GAPDH, and subsequently values for the heterozygous MEFs were normalized to the wild type to determine the mean relative expression over three PCR time points and the results were graphed. For all three PCR time points (c, d, e), both wild type and heterozygous Plk4 levels decrease after exposure to UV. But at two hours, levels of Plk4 in wild type MEFs increase and continue to increase to levels greater than control, while heterozygous Plk4 levels remain undetectable. (NB WT: Wild Type; HET: Heterozygous)

A

GAPDH 410 bp
Pik4 310 bp

GAPDH 410 bp
Plk4 310 bp

B

GAPDH 410 bp
Plk4 310 bp

C

Time after Exposure to Ultraviolet Radiation
D

E
Comparison Between Wild Type and Heterozygous PLK4 MEFs exposed to $40 \mathrm{~mJ} / \mathrm{cm} 2$ Ultraviolet Radiation: Third Time Point

Time after Exposure to Ultraviolet Radiation
is a difference in response to both ionizing and ultraviolet radiation. Wild type and heterozygous Plk4 MEFs were exposed to 25 Gy IR and $40 \mathrm{~mJ} / \mathrm{cm}^{2} \mathrm{UV}$, lysed 6 hr post exposure, and the cell extracts were subjected to Western Blot analysis. For both wild type and heterozygous MEFs, levels of protein expression do not change when the MEFs were exposed to either IR or UV; 6 hours post exposure (Figure 11). GAPDH was used as a loading control to ensure equal protein loading. Though, it is apparent that protein levels in heterozygous MEFs are half the level present in wild type MEFs. This finding supports previous evidence presented by Swallow et al, 2005.

The Effect of Plk4 Gene Dosage on Protein Levels of DNA Damage Proteins

Plk4 is able to interact with a number of DNA damage and DNA repair proteins including Cdc25c, Chk1, Chk2, Cyclin B1, p53 and Gadd45 α, and in the case of Cdc25c (Bonni et al., 2008), Chk2 (Hudson, unpublished data) and p53 (Swallow et al., 2005) is able to phosphorylate these proteins. It was interesting to determine whether there is a difference in protein levels in wild type and heterozygous Plk4 MEFs in response to DNA damage. Wild type and heterozygous Plk4 MEFs were exposed to 25 Gy IR or $40 \mathrm{~mJ} / \mathrm{cm}^{2} \mathrm{UV}$, lysed 6 hr post exposure, and the cell extracts were subjected to Western Blot analysis. Results displayed are the representative data from three experiments. Cdc 25 c is the phosphatase responsible for removing the inhibitory phosphates from the cyclin $\mathrm{B} 1 / \mathrm{Cdk} 1$ complex, promoting its activation and initiating the $\mathrm{G}_{2} / \mathrm{M}$ transition. When protein levels of Cdc25c were observed in wild type and heterozygous Plk4 MEFs, in general there is no difference in levels of Cdc 25 c (Figure 12a). Interestingly, the levels of Cdc 25 c do not change in response to IR or UV relative to the control. Also, there is no

37 kDa GAPDH

Figure 11: Plk4 Protein Levels do not Change in Response to IR or UV

Wild type and heterozygous Plk4 MEFs were exposed to either 25 Gy ionizing radiation (IR) or $40 \mathrm{~mJ} / \mathrm{cm}^{2}$ ultraviolet radiation (UV) and lysed 6 hr post exposure to obtain whole cell lysates. The lysates were run on SDS Page gel and then subjected to Western blot. The blots were probed with an anti-Plk4 antibody and with an anti-GAPDH antibody, as a control to ensure equal protein loading. No difference in Plk4 protein levels were observed for either wild type or heterozygous MEFs in response to IR or UV. Plk4 protein levels in heterozygous MEFs were approximately half the observable level than in wild type MEFs. (NB WT: Wild Type; HET: Heterozygous)
observable change in Cdc 25 c levels in response to DNA damage between wild type and heterozygous MEFs. GAPDH was used as a loading control to ensure equal protein loading and it is used in all subsequently experiments with additional proteins. Chk 1 is a signal transducer protein activated in response to DNA damage (Abraham, 2001). When Chk1 levels were examined, there is no detectable difference between wild type and heterozygous Chk 1 protein levels (Figure 12b). Strikingly, there was no increase in protein level in either the wild type or heterozygous MEFs in response to IR. Similarly, there was no change in protein level in cells exposed to UV.

Chk2 is another signal transducer protein activated in response to DNA damage (Matsuoka et al., 2000). In general, Chk2 levels in heterozygous MEFs appear to be greater than in the wild type (Figure 12c). While in response to UV, levels of Chk2 are elevated in both the wild type and heterozygous MEFs. Interestingly, levels of Chk2 are also elevated in response to IR, indicating that there is some degree of cross talk between the IR and UV DNA damage pathways.

Activation of the cyclin $\mathrm{B} 1 / \mathrm{Cdk} 1$ complex is necessary for the $\mathrm{G}_{2} / \mathrm{M}$ transition to occur (Bassermann et al., 2005). In general, cyclin B1 levels in heterozygous MEFs are significantly lower than those observed in the wild types (Figure 12d). While in response to UV, both wild type and heterozygous levels of cyclin B1 are decreased proportionately to the levels observed in the controls. In contrast, levels observed with IR exposure are similar to levels of cyclin B1 seen with their respective controls.

The tumor suppressor protein, p 53 is considered the "guardian of the genome for the numerous cellular functions it performs (Efeyan and Serrano, 2007). p53 plays a crucial role in the cells response to genotoxic stress by initiating DNA damage pathways. In

Figure 12: Differences in Protein Levels of DNA Damage Proteins in PIk4 MEFs Wild type and heterozygous Plk4 MEFs were exposed to either 25 Gy ionizing radiation (IR) or $40 \mathrm{~mJ} / \mathrm{cm}^{2}$ ultraviolet radiation (UV) and lysed 6 hr post exposure to obtain whole cell lysates. The lysates were run on SDS Page gel and then subjected to Western blot analysis. GAPDH was used to ensure equal protein loading. a) No change in Cdc 25 c levels were observed in response to IR or UV. b) In response to IR or UV, no observable differences in Chk1 protein levels were observed. c) Chk2 levels are elevated in heterozygous MEFs in comparison to the wild types, while in response to both \mathbb{R} and UV in both type of MEFs Chk2 levels increase. d) In general, cyclin B1 levels are lower in heterozygous MEFs than wild types. In addition, for both wild type and heterozygous MEFs, cyclin B1 levels decrease in response to UV. e) Levels of p53 are increased in heterozygous MEFs in general and in response to UV, while levels are constant in both wild type and heterozygous MEFs in response to IR. f) Gadd45 α levels are increased in heterozygous MEFs and in response to IR, while no induction of Gadd 45α is observed in wild type MEFs. (NB: WT: Wild Type; HET: Heterozygous)

A

C

D

$$
\begin{aligned}
& \text { セーセ出飞出 } \\
& \text { " ¥ッェェ }
\end{aligned}
$$

61 KDa Chk2

B

3KKDAGPDH

response to DNA damage, p53 expression is crucial to blocking cell cycle progression until the DNA is repaired or apoptotic pathways are initiated (Bunz et al., 1999). In Plk4 MEFs, there is a sharp contrast between wild type and heterozygous MEFs, with levels of p53 protein expression substantially higher in the heterozygotes. A similar finding is observed in response to UV. In contrast, levels of p53 are similar for both wild type and heterozygous samples when exposed to IR (Figure 12e).

The growth arrest and DNA damage-inducible gene (Gadd45 α) expression is induced by DNA damage and growth arrest signals (Zhan, 2005). In Plk4 MEFs, Gadd 45α expression is significantly higher in heterozygous than wild type MEFs. No Gadd 45α induction is observed in wild type MEFs in response to either IR or UV. Levels of Gadd 45α are similar to the wild type control. Interestingly, Gadd 45α expression is elevated in heterozygous control and IR exposed MEFs. In comparison to the heterozygous control MEFs, no increase in Gadd45 α expression levels occurred in the UV exposed MEFs (Figure 12f).

Apoptotic Rate for Plk4 MEFs in Response to UV

In response to $40 \mathrm{~mJ} / \mathrm{cm}^{2}$ of ultraviolet radiation, a significantly high percentage of both wild type and heterozygous MEFs undergo apoptosis before 24 hours. Therefore, to determine whether there was a difference between susceptibility, a TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed. Wild type and heterozygous MEFs were grown on glass cover slips, exposed to $40 \mathrm{~mJ} / \mathrm{cm}^{2}$ of UV and a TUNEL assay performed $0,1,2,4,6,8$ hours post exposure. DNase I treatment was used as a positive control as the enzyme induces fragmentation of DNA similar to what is observed in
apoptotic cells. The cells were stained red with propidium iodide (PI) to locate the nuclei, while staining green with fluorescein-12-dUTP was indicative of apoptotic cells (Figure 13a) 200 cells were counted per slide and the percentage of apoptotic cells per slide was determined. Three trials at each time point were performed and the average percentage of apoptotic cells and the standard error of the mean was determined (Figure 13b) (Appendix I).

In response to UV, there was a no significant difference in susceptibility to apoptosis between wild type and heterozygous MEFs. At 0 and 1 hour post exposure, no apoptotic cells were observed; similar to what was seen in MEFs exposed to no UV. At 2 hours post exposure, between 5 to 10% of the cells were apoptotic, though there was no statistical difference between wild type and heterozygous MEFs. The percentage of apoptotic cells at 4 hours increased to 20%, again with no statistical difference. At 6 hours post exposure, there appears to be a difference in susceptibility with 28% of wild type MEFs with 37% of heterozygotes apoptotic. At 8 hours, 65% of both wild type and heterozygous cells were apoptotic. The only statistical difference in apoptotic rate between the wild type and heterozygous MEFs was observed at 6 hours.

Figure 13: No Difference in Apoptotic Susceptibility between Wild Type and Heterozygous MEFs

Wild type and heterozygous MEFs were exposed to $40 \mathrm{~mJ} / \mathrm{cm}^{2}$ of ultraviolet radiation (UV) and a TUNEL assay was performed at various time points post exposure a) Cells were stained red with propidium iodide (PI) to identify the nucleus, while green staining with TUNEL was indicative of apoptotic cells. DNase I treatment was used as a positive indicator of apoptotic cells. b) As time post exposure increased, there was a greater percentage of both wild type and heterozygous MEFs susceptible to apoptosis. Though, no statistical differences between susceptibility rates of apoptosis were observed.

A

Wild Type 1hr post UV

Wild Type 8hr post UV

Heterozygous Negative Control

Heterozygous 1hr post UV

Heterozygous 8 hr post UV

[^1]
Comparison between Transcript Profiles in Wild Type and Heterozygous Plk4

MEFs in Response to UV using Microarray.

In response to ultraviolet radiation (UV), the transcript profiles for Plk4 differ significantly between wild type and heterozygous. After exposure to UV, transcript profiles in heterozygous MEFs decline significantly in comparison to control levels. In contrast, in wild type MEFs after an initial decline in Plk4 transcript levels, levels increase after 2 hours exposure and continue to increase. Therefore, it was of interest to investigate transcript profiles of other genes in response to UV.

Both wild type and heterozygous MEFs were exposed to $40 \mathrm{~mJ} / \mathrm{cm}^{2}$ and RNA was isolated 4 hours post exposure to UV. The RNA was sent to the UHN Microarray Centre where three microarray replicates were performed using an indirect labeling methodology. A face to face hybridization using a Mouse 7.4 k and Mouse 15 k microarray chips was performed. A QuantArray microarray gene list was obtaining from the University Health Network (UHN) Microarray Centre website indicating the identification of each spot on the Mouse 7.4 K and Mouse 15 k array (http://www.microarrays.ca/products/glists.html). Quantification and analysis of the microarray chips was done in a similar method as previously stated. To obtain differences in transcript profiles between the wild type and heterozygous MEFs, the analysis of the Mouse 7.4k and Mouse 15k array were performed separately. Similarly to the previous microarray, genes were identified with a log ratio equal or greater than 1 , corresponding to genes within the heterozygous MEFs that have at least a 2 fold or greater rate of transcript expression than in the wild type MEFs. These genes were up-regulated in the heterozygous MEFs. Genes identified with a \log ratio equal of less than -1 , corresponded
to genes having at least a 2 fold or greater rate of transcript expression or were downregulated in the heterozygous MEFs.

From the microarray data, 27 genes were identified as having at least a two fold increase in transcript profile or were down-regulated in the heterozygous MEFs 4 hours post exposure to UV (Table 3) (Appendix L), while 84 genes were identified as having at least a two fold increase in transcript profile in the heterozygous MEFs 4 hours post exposure to UV, or were up-regulated in the heterozygous MEFs (Table 4) (Appendix J). Cellular function for each gene was identified using either Pubmed database or the Online Mendelian Inheritance in Man (OMIM) database.
Table 3: Down-regulated Genes in the Heterozygous MEFs 4 hours Post UV Exposure
Developmental
Developing brain homeobox 1 (Dbx1)
DNA Binding
Thymocyte selection-associated HMG box (TOX)

Epigenetics

Ring finger protein 20
Metabolism
Atpase, class VI, type 11C isoform a (Atp11c)
Phosphodiesterase 3B, cGMP-inhibited (Pde3b)
DnaJ (Hsp40) homolog, subfamily C, member 1 (Dnajc1)
Testis-specific LRR protein (Leucine rich repeat containing 18 (Lrrc18))
Hypothetical protein LOC236312
C21orf19-like protein
Hypothetical protein LOC66132
Zinc finger protein 655 isoform a (Zfp655)

Cell crice

Cell division cell 25B; Cdc25B SCY1-like 1 Protein phos (PPP2R2A)

Transcription factor ELYS; AT hook containing transcription factor 1 (Ahctf1)

Apoptosis

WW domain-containing oxidoreductase (Wwox) (Wox1) CASP2 and RIPK1 domain containing adaptor with death domain (Cradd) (RAIDD)

Transducin-like enhancer of split 1; Groucho-Related Gene 1 Tumor necrosis factor, alpha-induced protein 3 (A20) Notch gene homolog 2 (Notch2)
bromodomain PHD finger transcription factor (Bptf); FETAL ALZHEIMER ANTIGEN Forehead box O3a (Foxo3a)

DNA Damage

Mitogen activated protein kinase kinase 5 (MAP2K5) Fanconi anemia, complementation group M (Fancm)

Tumorigenesis

Deleted in bladder cancer chromosome region candidate 1 (DBC1) Cadherin 6

Rho-related BTB domain containing 1 (Rhobtb1)
Table 4: Up-regulated Genes in the Heterozygous MEFs 4 hours Post UV Exposure
Metabolism
Gamma-aminobutyric acid (GABA-A) receptor, subunit gamma 2 isoform 1
Glutathione reductase 1 (Gsr)
Leucyl/cystinyl aminopeptidase (Lnpep) (IRAP)
Fatty acid desaturase 3 (Fads)
Mannosidase alpha class 2B member 2 (Man2b2)
Phosphatidylinositol glycan, class A (Piga)
ADP-ribosylation factor related protein 2 (Arl15)
SH3-domain GRB2-like (endophilin) interacting protein 1 (SGIP1)
Dipeptidylpeptidase 8 (Dpp8)
Dual specificity phosphatase 27 (Dusp27)
Xylosyltransferase I (Xylt1)
Protein phosphatase 1F (PP2C domain containing) (Ppm1f) Frequenin homolog (Freq)
Myotubularin related protein 10 (Mtmr10)
Oxysterol binding protein (Osbp)
Epigenetics
Sal-like protein 3
TOX high mobility group box family member 3 (Tox3) Cat eye syndrome critical region protein 2 isoform 9 (Cecr2) Synovial sarcoma translocation, Chromosome 18 (Ss18)
Table 4: Up-regulated Genes in the Heterozygous MEFs 4 hours Post UV Exposure Cont.

Developmental Thrombospondin 2

Frizzled 5 precursor (FZD5) T-cell factor 4 (Tcf4)

Stathmin-like 2
Frizzled 5 precursor (FZD5)
Odd Oz/ten-m homolog 3 (Odz3)
Chemokine-like factor super family
Transducin-like enhancer protein 3 isoform 1 (Tle3) ADAMTS-like 3 (Adamts13)

Angiopoietin-like 2
SWI/SNF-related, matrix associated actin dependent regulator of chromatin, subfamily a, containing DEAD/H box 1 (Smarcad1)

CDC42 effector protein (Rho GTPase binding) 4 (CDC42EP4)
Pleckstrin homolog dom in containing family F (with FYVE
Pleckstrin homology domain containing, family F (with FYVE domain) member 1 (Plekhf1) Similar to high-mobility group box 3 CD96 antigen (CD96) FERM, RhoGEF and pleckstrin domain protein 2 (FGD2) FERM, RhoGEF and pleckstrin domain protein 2 (FGD2)
Ubiquitin specific protease 31 (Usp31) Kalirin, RhoGEF kinase (Kalrn)

DCN1, defective in cullin neddylation 1, domain containing 2 isoform a (Dcun1d2) Villin 1 (Vil)

Comparison between Transcript Profile in Wild Type vs. Wild Type UV Exposure and Heterozygous vs. Heterozygous UV Exposure Using Microarray

The data from the two microarray experiments was analyzed to determine differences in transcript profile, firstly in the wild type vs. wild type MEFs 4 hours post UV exposure; and secondly for the heterozygous vs. heterozygous MEFs 4 hours post UV exposure. Since a substantial percentage of the MEFs exposed to UV were destined for apoptosis, the analysis would provide a general survey of differences in cellular mechanics between normal and apoptotic MEFs.

Since the two different microarray experiments were performed using chips with different formats, similar analysis to the previous two microarray experiments couldn't be performed. Instead, data for each cyanine labeled sample was quantified individually, unlike the previous two experiments where a composite of the Cy 3 and Cy 5 image were quantified together. Quantification was performed using LOWESS normalization within the ScanArray Express Software. From this normalization, data was removed from analysis if the raw intensity was not at least two standard deviations above the background. Secondly, data was removed if the minimum signal to noise ratio was not greater than 200. The parameter of signal to noise ratio uses the ratio of the spot intensity to the standard deviation of the local background of all spots on the microarray. The data was transferred to MEV where a low intensity cutoff of 100000 was used to further streamline the data. In order to determine differences in transcript profile, the raw intensity values for the three non UV exposure chips were compared to the raw intensity values of the UV exposure chips. To eliminate possible error in selecting candidate genes
due to variance between raw intensity values between the three chips of one treatment, genes with at least a three fold increase in raw intensity were selected.

For the comparison of normal wild type MEFs versus wild type MEFs exposed to UV, 171 genes were identified with at least a three fold greater raw intensity, or being upregulated in the normal wild type MEFs (Table 5). Conversely, 83 genes were identified as having at least a three fold greater expression in the wild type MEFs 4 hours post UV exposure, or being down-regulated in the normal wild type MEFs (Table 6). Comparing the normal heterozygous MEFs to heterozygous MEFs 4 hours post UV exposure, 151 genes were observed with at least a three fold increase in raw intensity, or being upregulated in the normal heterozygous MEFs (Table 7). While 24 genes were identified as having at least a three fold increase in expression in the heterozygous MEFs 4 hours post UV exposure, or being down-regulated in the normal heterozygous MEFs (Table 8). Cellular function for each gene was identified using either Pubmed database or the Online Mendelian Inheritance in Man (OMIM) database.

The analysis from this microarray experiment was compared to the other two microarray experiments (wild type vs. heterozygous MEFs; UV wild type vs. UV heterozygous MEFs) and there was no overlap between the genes that were up- or downregulated in the experiments. Though, from the comparisons in this experiment (wild type MEFs vs. UV wild type MEFs; heterozygous MEFs vs. UV heterozygous MEFs), there were 56 genes that were up-regulated in both the wild type and heterozygous MEFs, while 115 genes in just the wild type MEFs and 95 genes in just the heterozygous MEFs were up-regulated. Similarly, 19 genes were up-regulated in both the wild and
heterozygous MEFs exposed to UV, while 64 genes were up-regulated in just the UV wild type MEFs and 5 genes were up-regulated in just the UV heterozygous MEFs.
Table 5: Up-regulated Genes in Normal Wild Type MEFs Cont.

Cell Signaling	Solute carrier family 22 member 5
Growth factor receptor bound protein 7	Solute carrier family 6 (neurotransmitter transporter, taurine),
Sequestosome 1	member 6
Protease (prosome, macropain) 26S subunit, ATPase 5	Endoplasmic reticulum chaperone SIL1 homolog
Calmodulin 2	Receptor-activity modifying protein 1
Ral-interacting protein 1	Solute carrier family 25 (mitochondrial carrier oxoglutarate
Protein O-fucosyltransferase 1 isoform 1	carrier), member 11
Tnf receptor-associated factor 7	Transmembrane protein 38a
NTF2-related export protein 1	ADP-ribosylation factor-like 4
Ly6/neurotoxin 1	
Rho GDP dissociation inhibitor (GDI) alpha transglutaminase $2, \mathrm{C}$ polypeptide	NB: An additional 54 genes with miscellaneous or unknown function were upregulated in the normal wild type MEFs
GRIP1 associated protein 1	
Rab11-family interacting protein 2	
Neurexophilin 1	
Guanine nucleotide-binding protein, beta- 5 subunit isoform 1	
Cellular Transport	
Sorting nexin 3	
Annexin All	
Golgi transport 1 homolog B	
ATP-binding cassette, sub-family F (GCN20), member 1	
UPF3 regulator of nonsense transcripts homolog B	
DnaJ (Hsp40) homolog, subfamily B, member 6 isoform a	
Golgi apparatus protein 1	
Transient receptor potential cation channel, subfamily C, member 2	
Sorting nexin 4	

Table 6: Down-regulated Genes in Normal Wild Type MEFs DNA/RNA Synthesis
Zinc finger protein 9
Smg-6 homolog, nonsense mediated mRNA decay factor
Small nuclear ribonucleoprotein N DNA/RNA Synthesis
Zinc finger protein 9
Smg-6 homolog, nonsense mediated mRNA decay factor
Small nuclear ribonucleoprotein N DNA/RNA Synthesis
Zinc finger protein 9
Smg-6 homolog, nonsense mediated mRNA decay factor
Small nuclear ribonucleoprotein N

$$
\begin{array}{ll}
\text { Cell Cycle } & \begin{array}{l}
\text { Epigenetics } \\
\text { Apoptosis antagonizing transcription factor } \\
\text { Large tumor supressor, homolog 1 }
\end{array} \\
\text { Budding uninhibited by benzimidazoles 1 homolog, beta } & \\
\text { Protein phosphatase 2a, catalytic subunit, beta isoform } & \text { Cellular Stress } \\
\text { Nuclear mitotic apparatus protein 1 } & \text { AKT1 substrate 1 (proline-rich) } \\
\text { Tousled-like kinase 2 isoform A } & \text { Docking protein 4 } \\
\text { Dual specificity phosphatase 12 } & \text { IK cytokine } \\
\text { SMC6 protein } & \text { Oxidative stress responsive 1 } \\
\text { Retinoblastoma binding protein 6 isoform 1 } & \text { Thymosin beta-4 } \\
\text { Nuclease sensitive element binding protein 1 } & \text { NudC domain containing 2 } \\
\text { Enabled homolog isoform 1 } & \text { TAP binding protein-like } \\
\text { Presenilin 1 } & \text { Interferon (alpha and beta) receptor 1 } \\
\text { Interleukin-1 receptor-associated kinase 1 } & \text { Fanconi anemia, complementation group E } \\
& \text { Thrombospondin type 1 motif } \\
\text { Developmental } & \\
\text { Glutamate receptor, ionotropic, N-methyl D-aspartate-like 1A } & \text { Cell Signaling } \\
\text { Ganglioside-induced differentiation-associated-protein 1 } & \text { Catenin, delta 1 isoform 1 } \\
\text { Armadillo repeat gene deleted in velo-cardio-facial syndrome } & \text { IQ motif containing GTPase activating protein 1 } \\
& \text { Epidermal growth factor receptor pathway substrate 8-like } \\
\text { Metabolism } & \text { protein 2 } \\
\text { Lactotransferrin } & \text { SH3-domain GRB2-like (endophilin) interacting protein 1 } \\
\text { Solute carrier family } 25 \text { (mitochondrial carrier, glutamate), } & \text { Guanine nucleotide-binding protein, beta-5 subunit isoform 1 } \\
\text { member 22 } & \text { Hematopoietic SH2 domain containing } \\
\text { UDP-GlcNAc:betaGal beta-1,3-N- } & \text { Alsin } \\
\text { acetylglucosaminyltransferase 7 } & \\
\text { Uridine monophosphate synthetase } & \text { DNA/RNA Synthesis } \\
& \text { Zinc finger protein 9 }
\end{array}
$$

Table 6: Down-regulated Genes in Normal Wild Type MEFs Cont. Cellular Transport
Solute carrier family 25 member 10 SAR1a gene homolog
ADP-ribosylation factor 6
Ferritin light chain 1
Ankyrin repeat and FYVE domain containing 1 Clathrin, light polypeptide (Lcb)
Solute carrier family 39 member 1
Transmembrane protein 16F
Solute carrier family 39 (metal ion transporter), member 6
Phospholipase A2, group IVA
Intraflagellar transport 140
Transcriptional/Translational Regulation
Transcriptional/Translational Regulation
Guanine nucleotide binding protein (G protein), beta polypeptide 2 like 1
The The calcineurin-
Ets family transcription factor ELF2A2
Nuclear factor of activated T-cells, cytoplasmic, calcineurin dependent 2
Zinc finger protein of the cerebellum 5
RRN3 RNA polymerase I transcription factor homolog
Table 7: Up-regulated Genes in Normal Heterozygous MEFs
Developmental
Actin, beta, cytoplasmic
Semaphorin 3E
Parathyroid hormone-like peptide precursor Hbs1-like isoform 1
Ankyrin repeat domain 6
Neural regeneration protein
Delta-like 1 homolog
Delta-like 1 homolog
RAB23, member RAS oncogene family
Semaphorin
Developmental pluripotency associated 4
Alport syndrome, mental retardation, midface hypoplasia and
Alport syndrome, mental retardation, midface hypoplasia and
elliptocytosis chromosomal region gene 1 homolog Growth differentiation factor 10
Skeletrophin

Table 7: Up-regulated Genes in Normal Heterozygous MEFs Cont.
 Ral-interacting protein 1 RAB11a, member RAS oncogene family Ly6/neurotoxin 1
GRIP associated protein 1
NADH dehydrogenase (ubiquinone) Fe-S protein 3 Intersectin (SH3 domain protein 1A) Intercellular adhesion molecule 2 Tumor protein D52
Neurexophilin 1 DNA/RNA Synthesis
Ribosomal protein L41
Ribosomal protein S8 SH2 domain binding protein 1 (tetratricopeptide repeat containing)
Ribosomal protein S20 Ribosomal protein L27a
Ribosomal protein L36a-like Polymerase (RNA) III (DNA directed) polypeptide F
Ribosomal protein L23 Ribosomal protein S15a High mobility group box 3 Eukaryotic translation elongation factor 1 alpha 1 Tripartite motif protein 27
Transcriptional/Translational Regulation Splicing factor 3 a, subunit 2
Heterogeneous nuclear ribonucleoprotein C Kruppel-like factor 6
Thyroid hormone receptor interactor 13
Myeloid differentiation primary response gene 116
Eukaryotic translation initiation factor 2B
Myeloid differentiation primary response gene 116
Eukaryotic translation initiation factor 2B
Polymerase (RNA) II (DNA directed) polypeptide E Myeloblastosis oncogene-like 1
Aryl hydrocarbon receptor nuclear translocator isoform a Cytoplasmic nuclear factor of activated T-cells 3 Nuclear transcription factor, X-box binding 1
Chromobox homolog 4 , factor
Chromobox homolog 4

[^2]Cellular Transport
Table 7: Up-regulated Genes in Normal Heterozygous MEFs Cont.
ATPase, Ca++ transporting, cardiac muscle, slow twitch 2
isoform a
Solute carrier family 35 , member E1
$\mathrm{Na}+/ \mathrm{K}+$-ATPase beta 1 subunit
Solute carrier family 22 (organic cation transporter), member 5
RAB2, member RAS oncogene family-like
Calumenin
Phospholipid transfer protein
ADP-ribosylation factor-like 4
Solute carrier family 2 (facilitated glucose transporter),
member 2
NB: An additional 46 genes with miscellaneous or unknown function were upregulated in the normal heterozygous MEFs
Table 8: Down-regulated Genes in Normal Heterozygous MEFs

Cell Cycle	DNA/RNA Synthesis
Apoptosis antagonizing transcription factor	Uridine monophosphate synthetase
Budding uninhibited by benzimidazoles 1 homolog, beta	
	Miscellaneous
Cellular Stress	ring finger protein 2
Docking protein 4	DEAD (Asp-Glu-Ala-Asp) box polypeptide 52
Interleukin-1 receptor-associated kinase 1	short coiled-coil protein
Oxidative stress responsive 1	DEAH (Asp-Glu-Ala-His) box polypeptide 37
NudC domain containing 2	proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) ubiquitin specific protease 3
Cellular Transport	dual-specificity tyrosine-(Y)-phosphorylation regulated kinase
Solute carrier family 25 (mitochondrial carrier, dicarboxylate	
transporter), member 10	ubiquitin specific protease 13 (isopeptidase T-3)
ADP-ribosylation factor 6	peptidylprolyl isomerase-like 2
Ferritin light chain 1	leucine rich repeat and coiled-coil domain containing 1
Ankyrin repeat and FYVE domain containing 1	
Transcriptional/Translational Regulation	
Zinc finger protein of the cerebellum 5	
Developmental	
Neurofascin	
Cell Signaling	
SH3-domain GRB2-like (endophilin) interacting protein 1	

Chapter 5

Discussion

Transcript Analysis in Wild Type and Heterozygous Plk4 MEFs

Wild type and heterozygous Plk4 MEFs exhibit a number of phenotypic differences including a slower proliferation rate and increased centrosomal number leading to chromosomal misalignment and improper segregation in heterozygotes (Ko et al., 2005). It can be hypothesized that these cell cycle abnormalities lead to the increased incidence of tumor formation observed in the heterozygous mice. In this study, murine embryonic fibroblasts (MEFs) derived from approximately 12.5 day old embryos were used as a model to examine the effect of lower Plk4 levels on the expression pattern of other genes. Both wild-type and heterozygous Plk4 MEFs were used as they are both viable. Since Plk4 nulls spontaneously abort at E7.5, the use of MEFs from this genotype was not an option. In order to examine the nature of these global differences a microarray based approach was utilized. MEFs were used to do the microarray and subsequent confirmation via RT-PCR because they are easier to manipulate and provide a strong reference point to compare differences between the wild type and heterozygous Plk4 phenotype. Analysis done within the MEFs would provide clues to possible differences that may exist within adult cells.

It was determined that 9 genes contained at least a two fold decrease in transcriptional expression in the heterozygous MEFs (Table 1), while 146 genes were identified that had at least a two fold increase in transcriptional expression in the heterozygous MEFs (Table 2). Three candidate genes were picked for further analysis that may potentially contribute to the malignant phenotype seen in adults. This is
discussed in more detail below. Specifically, a RT-PCR densitometry based approach was used to re-examine that the relative expressions of Wisp1 (Figure 6), SAP30 Binding Protein (Figure 7), and Prohibitin (Figure 8) were greater in heterozygous than wild type MEFs. The results obtained through RT-PCR analysis parallel the microarray data observed.
i) Wisp1 Expression in Heterozygous MEFs

Wnt1-inducible signaling pathway protein 1 (Wisp1) is a member of the connective tissue growth factor family (CCN). It was first identified as being upregulated in Wnt1-transformed mouse mammary epithelial cells and elevated levels were present in colon cancer (Pennica et al., 1998). Additionaly, aberrant Wnt signaling has been implicated in the development of hepatocellular carcinomas (HCC) (Lee et al., 2006), and Wispl (Cervello et al., 2004) over expression has been characterized in HCC. It is plausible to believe that aberrant Wnt regulation and Wisp1 over expression could contribute to the increased incidence of HCC observed in heterozygous mice.

Wisp1 activity is transcriptionally regulated by both Wnt1 and β-catenin. In addition, Wnt 1 and β-catenin regulated over expression of Wisp1 contributes to increased morphological transformation and accelerated cell growth. Also, over expression of Wisp1 in nude mice contributed to tumor formation, therefore promoting Wisp1 as an oncogene (Xu et al., 2000). Wisp1 over expression has been implicated in additional malignancies including scirrhous gastric carcinoma (Tanaka et al., 2001), breast cancer (Xie et al., 2001), and cholangiocarcinoma (Tanaka et al., 2003). Interestingly, Wisp1
also attenuates p 53 -mediated apoptosis through the $\mathrm{Akt} / \mathrm{PKB}$ signaling pathway (Su et al., 2002).

Members of the CCN family contain four conserved modules present in other unrelated extracellular proteins. One of the modules is a thrombospondin domain (Lau and Lam, 1999). Interestingly, thrombospondin was one of the genes that also contained increased transcript expression in heterozygous MEFs. Thrombospondin is a potent inhibitor of angiogenesis, which is crucial for the growth and metastasis of tumors. Thrombospondin expression is positively regulated by p53 (Dameron et al., 1994). Loss of wild type p53 leads to a loss of thrombospondin expression and the development of an angiogenic phenotype (Volpert et al., 1997). Though no direct interaction has been shown between Wisp1 and thrombospondin, it could be interesting to speculate that Wisp1 could bind to thrombospondin, inhibiting its function, promoting angiogenesis and tumor formation.

In addition, in response to DNA damage, data shows that Wisp 1 can attenuate p53 mediated apoptosis through the activation of the Akt pathway (Su et al., 2002). Wispl activation of Akt allows Akt to block the release of cytochrome c from the mitochondria (Kennedy et al., 1999), preventing cytochrome c activation of the caspases which would lead to apoptosis (Gottlob et al., 2001). Also, expression of Wisp1 upregulates $\mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}$ activity. Bcl- X_{L} has been shown to interact with caspase-9 (Pan et al., 1998) and Apaf-1 (Hu et al., 1998) resulting in inhibition of caspase activity. In addition, $\mathrm{Bcl}-\mathrm{X}_{\mathrm{L}}$ also can block cytochrome c release from the mitochondria, preventing apoptosis (Kharbanda et al., 1997).

Interestingly, in the microarray data, phosphatidylinositol 3-kinase (PI3K) was also over expressed in the heterozygous MEFs. PI3K has shown to be an upstream regulator of Akt (Nicholson and Anderson, 2002). Wisp1 activation of Akt and Bcl- X_{L} pathways along with PI3K activation of Akt provides a mechanism within the heterozygous MEFs to overcome apoptotic pathways in response to DNA damage. Therefore, it is likely that genetic instability becomes prevalent leading to possible tumorigenesis and the increased incidence of tumors observed in heterozygous mice.

Wisp1 was first identified as a Wnt1 and β-catenin induced oncogene (Xu et al., 2000). Though the exact method of Wisp1 activation has yet to be elucidated, it is known that activation of Wnt target genes occurs through β-catenin. β-catenin forms a complex with the T-cell factor/lymphocyte enhancing factor (TCF/LEF) family of transcription factors to activate the expression of target genes (Polakis, 1999). Interestingly, TCF4 also came up as being over expressed in heterozygous MEFs. Though the transcription factor responsible for the activation of Wisp1 is yet to be known, it is interesting to speculate that TCF4 may be responsible as both were observed as being over expressed in heterozygous MEFs.

Along with Wisp1 (Cervello et al., 2004), TCF4 (Zhao et al., 2004) over expression has also been implicated in the development of HCC. It is plausible to believe that aberrant Wnt regulation could contribute to the increased incidence of HCC observed in heterozygous mice. It has been established that Wisp1 expression blocks p53 mediated apoptosis (Su et al., 2002). Heterozygous Plk4 MEFs present a number of abnormal phenotypes including abnormal centrosome number leading to improper chromosome segregation (Ko et al., 2005). Therefore, it seems plausible that heterozygous MEFs may
be unable to undergo p53 mediated apoptosis due to over-expression of Wisp1. It is possible that a similar phenotype as seen in the heterozygous MEFs may occur in adult cells. Without apoptosis occurring, these cells continue to go through the cell cycle leading to a greater number of cells with abnormalities and greater genomic instability which eventually will contribute to tumor formation.

ii) SAP30 Binding Protein Expression in Heterozygous MEFs

Epigenetic modification to genes has been well documented as a method to promote oncogenesis within the cell. Since heterozygous mice develop cancer at a rate significantly higher than there wild type littermates, it has been hypothesized that epigenetic silencing of Plk4 could be a possible mechanism for the increased incidence of tumorigenesis observed. Plk2 has been implicated in mediating apoptosis as a target gene of p 53 , though epigenetic silencing of Plk2 transcriptional expression via methylation is a common occurrence in B cell lymphomas (Smith et al., 2006). While epigenetic silencing of Plk1 or Plk3 has not been characterized, preliminary evidence suggests that Plk4 in heterozygous mice livers undergoes methylation in the CpG island region of its promoter at a significantly higher rate than wild types. Methylation of Plk4 has also been observed in the liver tumors of heterozygous mice. Methylation of the Plk4 promoter increases with age and is more frequent in male mice. Additionally, chronic alcohol exposure has been implicated to promote methylation (Kim and Shukla, 2006). Heterozygous MEFs become methylated upon exposure to a lower concentration of ethanol than wild types (Ward, Hudson unpublished data).

Though little is known about the function of SAP30 binding protein (SAP30BP), it has been determined that SAP30BP binds to SAP30, a component of the Sin3 histone deactylase complex (Sin3-HDAC) (Li et al., 2004). The Sin3-HDAC complex is primarily responsible for deacetylating nucleosomes in Sin3 regulated promoters, resulting in repressed chromatin structure and transcriptional silencing (Kuzmichev et al., 2002). In addition, through the enzymatic function of $\operatorname{Sin} 3$, the $\operatorname{Sin} 3-H D A C$ complex can also participate in DNA methylation, N -acetylglucoseamine transferase activity, and histone methylation. The Sin3-HDAC lacks DNA-binding capacity, so therefore it must be targeted to gene promoters by DNA-binding proteins (Silverstein and Ekwall, 2005). In yeast, SAP30 has the ability to recruit the complex to the gene promoters, but as yet this function hasn't been established in mammals (Zhang et al., 1998). Therefore, though the structure of SAP30BP has yet to be elucidated, it is interesting to speculate that SAP30BP could contain a DNA-binding domain to target the Sin3-HDAC complex to the promoter region.

In addition, p 53 is able interact with TATA box binding-protein (TBP) to facilitate the recruitment of Sin3-HDAC complex to the gene promoter for transcriptional repression (Farmer et al., 1996). Li et al, 2005 found that in response to DNA damaging agents, p53-mediated transcriptional repression of Plk4 occurs through the activity of HDAC. p53 regulates not only DNA damage pathways but also the mitotic spindle checkpoint. Previous work showed that in heterozygous Plk4 hepatocytes there was a significant increase in multipolar spindle complexes with aberrant mitosis (Ko et al., 2005). The mitotic spindle checkpoint is necessary to ensure proper mitotic spindle formation, so that inaccurate chromosomal segregation does not occur (Xie et al., 2005).

Therefore, it could be hypothesized that methylation of Plk4 occurs in a p53-mediated manner and consequently could inhibit oncogenesis.

Methylation and other epigenetic modifications are responsible for altering chromatin structure. Preliminary evidence shows that Plk4 is methylated, though the functional cascade responsible for this methylation is unknown. Li et al., 2005 showed that Plk4 undergoes repression in a p53-mediated manner through HDAC. Plk4 is able to interact and phosphorylate p53 on Ser-293 (Swallow et al., 2005), though the functional significance of this interaction is unknown. Observed results within the heterozygous MEFs show that p53 levels are significantly greater than in the wild types (Figure 13e). Therefore, it can be hypothesized that with lower levels of Plk4 in heterozygous MEFs, Plk4 is unable to phosphorylate p53 to the extent that wild type Plk4 can; thus p53 function is not inhibited in the heterozygous MEFs. This could explain the increase in methylation observed in heterozygous mice livers, as p 53 which is not inhibited by Plk4 is able to inhibit Plk4 function through methylation.
iii) Prohibitin Expression in Heterozygous MEFs

Cellular senescence occurs when normal cells lose their ability to divide and is indicative of cells with a flattened morphology and an increased granularity phenotype (Campisi, 2001). These phenotypes are observed at a greater frequency and at an earlier passage in heterozygous Plk4 MEFs than in wild types.

The cellular senescent phenotype is observed when shortening of the telomeres is recognized by the cell as a DNA double strand break, and DNA damage pathways are initiated. ATM/ATR mediate the activation of cell-cycle checkpoints associated with
cellular senescence, mainly via p 53 , CHK1 and CHK2, with the participation of p21, p16 and retinoblastoma protein (RB) (Schmitt et al., 2007). RB function has been deemed necessary for inducing senescence (Lowe and Sheer, 2003). RB has been shown to interact with various transcriptional co repressors including heterochromatin protein 1 (HP1) (Narita et al., 2003), histone deacetyase 1 (HDAC1) (Brehm et al., 1998), DNA methyltransferase (Vandel et al., 2001), Polycomb proteins (Ross et al., 1999), and chromatin-remodeling complexes Brg and Brm (Strober et al., 1996) to repress E2F transcription factor (E2F) transcriptional activity. E2F activity is essential for cell proliferation and its reduction immediately provokes cellular senescence (Maehara et al., 2005).

Prohibitin has been implicated to play a crucial role in cellular senescence though the mechanism has yet to be elucidated (Dell'Orco et al., 1996). It is believed that prohibitin's role in senescence acts through its ability to repress E2F transcription factor 1 (E2F1) mediated transcriptional activity (Wang et al., 1999). In response to senescenceinducing DNA damage agents, prohibitin localizes to specific heterochromatic foci, where it binds with members of the heterochromatin protein $1(\mathrm{HP} 1)$ family of proteins. Prohibitin and HP1 bind to the E2F1-responsive proliferative promoter, leading to repression of E2F1 transcriptional activity (Rastogi et al., 2006). Prohibitin is able to bind p53 to enhance its transcriptional abilities (Fusaro et al., 2003), though it is not clear whether p53 functions in a positive feedback loop to activate prohibitin or an upstream protein is responsible. Also, p53 levels are elevated within heterozygous MEFs (Figure 12e), indicative of senescence occurring at an earlier passage in the heterozygous MEFs.

Additionally, with both prohibitin and RB binding HP1 to inactivate E2F1, this suggests redundancy within the signaling cascade.

Testing for the senescent phenotype in Plk4 MEFs was attempted through a β galactosidase staining assay. Though efforts to get the assay to work failed, as no blue colour indicate of senescence was observed, even though characteristics such as flattened morphology and increased granularity were observed in the heterozygous MEFs at an earlier passage than wild types.

It is plausible that heterozygous Plk4 MEFs are senescent at an earlier passage than wild types, as a mechanism to prevent oncogenesis. Though no DNA replicative differences have been characterized between wild type and heterozygous MEFs, aberrant DNA replication may cause the telomeres in heterozygous MEFs to shorten at an accelerated rate. Therefore, the shortening of the telomeres could give cause to genetic instability which would lead to oncogenesis.

Plk4 Expression in MEFs: Response to DNA Damaging Agents

Other members of the Plk family are implicated to play crucial roles in response to DNA damage. In response to both ionizing radiation (IR) and ultraviolet radiation (UV), Plk1 activity is repressed by the DNA damage sensor protein ATM and ATR, respectively, to inhibit Plk1 from pushing cells through the cell cycle (van Vugt et al., 2001). In contrast, Plk3 is activated by ATM in response to IR to prevent cell cycle progression (Xie et al., 2001), while Plk2 is activated by p53 (Shimizu-Yoshida et al., 2001). Subsequently, Plk4 has been hypothesized to play a role in the DNA damage pathways, therefore Plk4 MEFs were examined in response to IR or UV.
i) Plk4 Transcript Abundance in Response in Ionizing Radiation

In response to $I \mathrm{R}$, for both wild type and heterozygous MEFs, the levels of Plk4 decreased to 60 to 80% relative to the control, with no difference between the two (Figure 9). Both wild type and heterozygous MEFs were resistant to this dose of IR, as 24 hours post exposure, the cells were viable. As Plk4's prominent identified role within the cell is centrosome duplication and dynamics (Habendanck et al., 2005), it is likely that cell cycle checkpoints were enabled to ensure that any damage to the genome was repaired before cell growth and division ensued, coinciding with a decrease in Plk4 levels. At 8 and 24 hours post exposure, Plk4 levels in both wild type and heterozygous MEFs started to increase to levels relative to the control, indicating that any DNA damage was repaired and the normal cellular dynamics were resuming.
ii) Plk4 Transcript Abundance in Response to Ultraviolet Radiation

In response to UV exposure, there was a sharp contrast observed between Plk4 levels in the wild type and heterozygous MEFs. After UV exposure, both wild type and heterozygous levels decrease immediately, until 2 hours when wild type levels increased and continued to increase to levels greater relative to the control, 8 hours post exposure. In contrast, no detectable levels of Plk4 were observed in the heterozygous MEFs (Figure 10). p53 transcriptionally represses Plk4 function (Li et al, 2005), so it is possible that with lower levels of Plk4 as observed in the heterozygous MEFs, the repression of Plk4 by p53 is stronger. Furthermore, p53 protein levels are also increased in heterozygous MEFs in comparison to wild types in response to UV (Figure 12e).

Twenty-four hours post exposure to UV, both wild type and heterozygous MEFs were not viable, as greater than 95% of the cells were floating. It can be assumed that the heterozygous MEFs undergo apoptosis through a p53-mediated pathway, but for wild type MEFs it is difficult to make this assumption. Over-expression of Plk4 attenuates p53-mediated apoptosis (Li et al., 2005) and p53 protein levels were not elevated in wild type MEFs in response to UV (Figure 12e), so it can be hypothesized that wild type MEFs undergo apoptosis through another pathway.
iii) Plk4 Protein Levels in Response to DNA Damage

As differences were observed in mRNA levels, it was of interest to see whether changes in protein levels actually corresponding to the mRNA levels. In response to both IR and UV, no changes were observed in Plk4 protein levels for both wild type and heterozygous MEFs, 6 hours post exposure. Consistent with previous studies Plk4 protein levels in the heterozygous MEFs were half the level observed in the wild type MEFs (Figure 11) (Swallow et al., 2005).
iv) DNA Damage Protein Levels

Proteins with known roles in the DNA damage pathways were examined in the MEFs to see if a difference in Plk4 gene dose would have an effect on their response to either IR or UV. Cdc25c is the phosphatase responsible for removing the inhibitory phosphates from the cyclin B1/Cdk1 complex, promoting its activation and initiating the $\mathrm{G}_{2} / \mathrm{M}$ transition. In response to ionizing radiation and ultraviolet radiation, Cdc 25 c activity is inhibited by Chk2 (Matsuoka et al., 1998) and Chk1 (Lam and Rosen, 2004),
respectively. Levels of Cdc 25 c did not change in either wild type or heterozygous MEFs in response to either IR or UV (Figure 12a).

Activation of the cyclin B1/Cdk1 complex is necessary for the $\mathrm{G}_{2} / \mathrm{M}$ transition to occur (Bassermann et al., 2005). In response to DNA damage, a cell cycle block occurs at the $\mathrm{G}_{2} / \mathrm{M}$ transition and either the damage to the genome is repaired or the cell enters programmed cell death. In response to UV, levels are minimal in comparison to the control, indicative of a cell cycle block that would occur as the cells prepare to undergo apoptosis. In contrast, levels of cyclin B1 in \mathbb{R} exposed cells were identical to control levels, indicating that any DNA damage done was repaired and the cells are normally going through the cell cycle. Though, control and IR levels of cyclin B1 in heterozygous MEFs were about half of what was observed in the wild types (Figure 12d). Since no flow cytometry was performed to assure a normal cell cycle profile amongst the MEFs, it is impossible to state that there was an equal percentage of wild type and heterozygous MEFs at the $\mathrm{G}_{2} / \mathrm{M}$ transition. Though, the observed data is supported by previous findings, which showed that heterozygous MEFs have a slower growth rate which would be consistent with a delay entry into mitosis (Ko et al., 2005). Additionally, when examining hepatocytes, the appearance of cyclin B1 protein levels was delayed and persisted longer in heterozygous Plk4 hepatocytes than in wild types (Ko et al., 2005).

The checkpoint kinase members Chk1 and Chk2 protein levels were examined to observe the response elicited by DNA damage. Chk1 is a signal transducer protein activated in response to DNA damage. In response to ultraviolet radiation, Chk1 is activated by ATR (Abraham, 2001), allowing it to phosphorylate members of the Cdc25 phosphatase family inhibiting there ability to promote cellular progression (Lam and

Rosen, 2004). Interestingly, no differences in Chk 1 protein levels were observed in response to either \mathbb{R} or UV (Figure 12b). Assuming a normal cell cycle profile, the majority of MEFs would have been present within either G_{1} or S phases of the cell cycle. Cann and Hicks, 2006 found that in response to IR, primary MEFs lack an immediate $\mathrm{G}_{1 /} \mathrm{S}$ checkpoint and that any response to DNA damage occurs at the level of individual replication origins, instead of inducing a complete shutdown of S-phase entry. This rationale explains why no Chk1 response was elicited in the MEFs.

Chk2 is another signal transducer protein activated in response to DNA damage. In response to ionizing radiation, Chk2 is activated by ATM (Matsuoka et al., 2000). Chk2 phosphorylates members of the Cdc25 phosphatase family inhibiting there function and delaying the cell cycle (Lam and Rosen, 2004). In addition, Chk2 is able to activate p53, allowing p53 to initiate a halt to cell cycle progression (Hirao et al., 1998). Chk2 protein levels increased for both wild type and heterozygous MEFs in response to both \mathbb{R} and UV (Figure 12c). Elevated levels in response to UV suggest that there may be some cross talk in the DNA damage pathways. Previous work confirms the notion of cross talk between the DNA damage pathways. Cisplatin, an anticancer drug functions by inducing DNA cross linking in base pairs which is a similar phenotype observed in response to UV. Interestingly, in response to cisplatin treatment ATR and not ATM was activated (Pabla et al., 2007). Downstream, both Chk1 and Chk2 are phosphorylated in an ATRdependent manner, though Chk 1 degradation occurs by the proteosome shortly after phosphorylation. Chk2 activation of p53 leads to a p53-dependent cell cycle checkpoint activation. In terms of the MEFs, the induction of Chk2 in response to IR probably
activated cell cycle checkpoints while DNA damage was repaired, while in response to UV, Chk2 activated p53-dependent apoptotic pathways.
p53 is widely considered the guardian of the genome, and its expression is activated in response to genotoxic stresses (Efeyan and Serrano, 2007) .). p53 plays a crucial role in the cells response to genotoxic stress by initiating DNA damage pathways. In response to DNA damage, p53 expression is crucial to blocking cell cycle progression until the DNA is repaired or apoptotic pathways are initiated (Bunz et al., 1999). In heterozygous Plk4 MEFs, protein levels of p53 are substantially higher than in wild types, with a similar scenario observed in response to UV. In response to IR, an induction of p 53 expression is observed in wild type MEFs, while levels of p 53 are constant with control levels for the heterozygotes (Figure 12e). There are a multitude of possible reasons to explain these variances. Firstly, Plk4 has been shown to phosphorylate p53 on serine 293 (Swallow et al., 2005). Though the significance of this interaction has yet to be characterized, it could be possible that the phosphorylation of p53 on this residue is inhibitory or that it may affect p53 stability. Based on the fact that there is only one dose of Plk4 present in the heterozygous MEFs, there may not be enough Plk4 present to inhibit p53 transcriptional activity, explaining the higher degree of p53 expression observed in the heterozygotes. It is also possible that the interaction between Plk4 and p53 maybe part of a negative feedback mechanism as p53 inhibits Plk4 through HDAC (Li et al., 2005) and Plk4 inhibits p53 through direct phosphorylation. The second reason for increased p53 levels in heterozygous MEFs may be due to the fact that aberrant mitotic spindle formation and chromosome mis-segregation is exhibited in heterozygous MEFs (Ko et al., 2005). In response to these defects, p53 is activated by the mitotic
spindle checkpoint causing a delay in mitotic progression (Xie et al., 2005). In addition, the lack of p53 induction in wild type MEFs in response to UV, suggests that apoptosis occurs in these cells in a p53-independent manner, while in response to IR, cell cycle checkpoints are established in a p53-dependent manner.

The growth arrest and DNA damage-inducible gene (Gadd45 α) expression is induced by DNA damage and growth arrest signals (Zhan, 2005). In response to ionizing radiation, Gadd45 α is transcriptionally activated by p53 (Zhan et al., 1994), while disruption of p53 transcriptional ability inhibits Gadd45 α induction (Zhan et al., 1996). In contrast, the induction of Gadd 45α via UV is p53 independent. The induction is dependent on transcription factors Oct-1 and NF-YA (Jin et al., 2001). In response to genotoxic stress, Gadd45 α is able to initiate $\mathrm{G}_{2} / \mathrm{M}$ block on the cell cycle but is not necessary for the block to occur (Wang et al., 1999). Induction of Gadd45 α was only observed in the control heterozygous MEFs and the heterozygous MEFs exposed to IR. In the heterozygous MEFs where p53 expression was induced, this corresponded to an increase in Gadd45 α, except in the MEFs exposed to UV (Figure 12f). As these cells would eventually undergo apoptosis, as would the wild type MEFs, it is unclear whether Gadd 45α expression is necessary. Gadd 45α has been implicated to play a role in apoptosis (Takekawa and Saito, 1998), though it is unclear whether Gadd45 α activates apoptosis or whether Gadd 45α up-regulation occurs as a consequence of apoptotic response to genotoxic stress (Zhan, 2005). No induction of Gadd45 α expression was observed in the control wild type or IR exposed wild type MEFs. As p53 expression was observed in the wild type MEFs exposed to IR and no Gadd45 α induction was observed,
it is possible that p 53 mechanism of inducing cell cycle checkpoints and DNA repair was independent of Gadd 45α expression.

Apoptotic Susceptibility in MEFs

Wild type and heterozygous Plk4 MEFs were exposed to $40 \mathrm{~mJ} / \mathrm{cm}^{2}$ UV and subjected to a TUNEL assay to determine if there was a difference in susceptibility to undergo apoptosis. At each of the time points examined, there was no statistical difference between the percentages of MEFs that stained positive for DNA fragmentation characteristic of apoptotic cells (Figure 13). As this experiment was performed using 40 $\mathrm{mJ} / \mathrm{cm}^{2} \mathrm{UV}$, it is unknown whether there would be a difference in percentages at a lower exposure rate. Subsequently, it is not known the dose of UV where the majority of MEFs start undergoing apoptosis. At a lower dose it could be hypothesized that there would be statistical differences observed with a higher percentage of heterozygous cells escaping apoptosis and promoting oncogenesis. This assumption is made as a microarray experiment comparing wild type and heterozygous MEFs exposed to $40 \mathrm{~mJ} / \mathrm{cm}^{2} \mathrm{UV}, 4$ hours post exposure showed Cdc 25 b as being over expressed in the heterozygous MEFs. Cdc 25 b is essential for mitotic entry when cells recover from a DNA damage checkpointinduced arrest (van Vugt et al., 2004). Cdc25b's requirement for mitotic entry after DNA damage and its involvement in tumorigenesis will be explained in further detail in the next section.

Transcript Differences in Plk4 MEFs: Response to Ultraviolet Radiation

Transcriptional differences were observed in Plk4 mRNA transcript profiles between wild type and heterozygous MEFs upon exposure to UV. Therefore, it was of interest to gain a further understanding of differences in the transcript profiles of additional genes within the Plk4 MEFs. Microarray analysis was performed comparing wild type and heterozygous MEFs 4 hours post UV exposure. It was discovered that 27 genes presented at least a two fold decrease in transcript profile in the heterozygous MEFs (Table 3), while 84 genes had a least a two fold increase in transcript profile in the heterozygous MEFs (Table 4). As stated above, by far the most unique finding from the microarray data was Cdc 25 b being over expressed in the heterozygous MEFs.

Cell division cycle 25 b (Cdc 25 b) is a member of the Cdc 25 phosphatase family that plays a major role in the cell cycle control by dephosphorylating and activating cyclin-dependent kinases at stages during the cell cycle (Burgler et al., 2006). Cdc25b plays a role in mitotic entry though its function is dispensible (van Vugt et al., 2004). Ferguson et al., 2005 showed that mice lacking Cdc25b were normal for development, cell cycle and DNA damage response and that Cdc25a or additional phosphatases could compensate for its loss. In contrast, Cdc25b function is essential for resuming the cell cycle after DNA-damage cell cycle arrest (van Vugt et al., 2004). Re-entry of the cell cycle is also reliant on Plk1-dependent degradation of Wee1 (Watanabe et al., 2004), which phosphorylates and inhibits the CDKs. Removal of Wee1 allows Cdc25b to more efficiently dephosphorylate and activate cyclin B1/CDK1 (van Vugt et al., 2004). Additionally, over expression of Cdc25b can lead to the accelerated exit of cells from the $\mathrm{G}_{2} / \mathrm{M}$ transition after the checkpoint has been activated. Though, this acceleration can be
reversed by inhibiting the catalytic activity of Cdc 25 b using pharmalogical inhibitors against Cdc25 (Bugler et al., 2006).

Cdc 25 b has been identified as being over expressed in a number of human cancers including head and neck cancer (Gasparotto et al., 1997), non-small cell lung cancer (Wu et al., 1998) gastic cancer (Kudo et al., 1997), non-Hodgkins lymphoma (Hernandez et al., 1998), colon cancer (Takemasa et al., 2000), esophagus cancer (Nishioka et al., 2000), breast cancer (Cangi et al., 2000), and ovarian cancer (Broggini et al., 2000). In these types of cancers, over expression of Cdc 25 b correlated with a higher degree of malignancy and a poorer prognosis for the patient (Kristjansdottir and Rudolph, 2004).

In addition, in an examination of hepatocellular carcinomas (HCC), Cdc25b was one of the most significantly over expressed genes in comparison to non-tumor liver tissue (Chen et al., 2002); while silencing of Cdc25b expression in HCC cell lines has been shown to prevent cell proliferation, migration and invasion and delay xenograft growth (Yan et al., 2008).

It can be hypothesized that over expression of Cdc 25 b in heterozygous Plk4 mice could contribute to the increased tumorigenesis observed. In response to DNA damage, cell cycle checkpoints are employed to repair any damage to the genome. Loss of an upstream tumor suppressor which targets Cdc25b and Plk1 for repression would contribute to Cdc 25 b and Plk 1 initiating re-entry to the cell cycle without errors in the genome being repaired. Combined with the heterozygous Plk4 MEFs and hepatocytes displaying aberrant spindle formation and abnormal chromosome segregation during mitosis (Ko et al., 2005), it is plausible that these factors could contribute to cellular
transformation leading to an oncogenic state. It will be interesting to examine Cdc25b mRNA and protein levels within heterozygous liver tumors in comparison to normal tissue within both wild type and heterozygous liver samples to see if there is an observable difference in Cdc 25 b levels. If Cdc 25 b levels are elevated within heterozygous liver tumors, it provides a possible explanation for increased liver tumor incidence within heterozygous Plk4 mice.

In comparison of the microarray data between normal wild type and heterozygous MEFs and Plk4 MEFs exposed to UV, six genes were over expressed in heterozygous MEFs within both data sets. This indicates that these genes are over expressed in heterozygous MEFs in normal pathways and in response to DNA damage. These genes include T-cell factor 4, villin 1, fetal alzheimer antigen, thromospondin, transducin-like enhancer of split 1 and sal-like 3.

The T-cell factor/ lymphocyte enhancing factor (TCF/LEF) are a family of transcription factors involved in the Wnt signaling pathway (Polakis, 1999). B-catenin binds TCF4 to activate its transcriptional activity in Wnt signaling and TCF4 has been implicated in neural and limb development (Cho and Dressler, 1998). TCF4 has been shown to transcriptionally activate cell cycle regulating genes such as cyclin D1 and cmyc. As stated above, TCF4 over expression has been implicated in the development of hepatocellular carcinoma (Zhao et al., 2004). As numerous Wnt genes and their targets over expression has been characterized in hepatocellular carcinoma, it is possible that aberrant Wnt regulation could be a contributing factor in the development of liver tumors in heterozygous mice.

Villin 1 has been characterized as an actin-binding protein associated with the striated border of simple columnar epithelium in the body. Villin is believed to function in the bundling, nucleation, capping, and severing of actin filaments, though its exact function is unknown (Friederich et al., 1999). Since the exact cellular function of villin has yet to be fully characterized, it is difficult to speculate as to the exact implications over expression of villin may have in heterozygous MEFs.

Fetal alzheimer antigen (FAC1) was first characterized as being developmentally regulated in the cortex of the brain (Bowser et al., 1995). Subsequent results show FAC1 as a DNA binding protein capable of functioning as a transcription factor (Jordan-Sciutto et al., 1999), and capable of inducing apoptosis by activating caspase 3 (Strachan et al., 2005). Over expression of FAC1 in heterozygous MEFs exposed to UV is rational as these MEFs undergo apoptosis due to UV exposure. Given FAC1's role to activate caspase 3 and initiate apoptotic pathway in normal heterozygous MEFs, it possible to speculate that there is genomic instability within these cells that would mediate the initiation of these pathways. Since the heterozygous MEFs continue to divide, it is also possible that some downstream effector inhibits these apoptotic pathways, continuing the presence of genomic instability leading to cellular transformation.

Thrombospondin is a crucial inhibitor of angiogenesis (Volpert et al., 1997) whose expression is positively regulated by p53 (Dameron et al., 1994). p53 mutations have been extensively characterized in hepatocellular carcinomas (Aguilar et al., 1994). Therefore it is possible that loss of or a mutation in p53 would inhibit thrombospondin from prevent angiogenesis and allowing tumor formation to occur. It would be interesting
to examine levels of both p53 and thrombospondin in hepatocellular carcinomas in heterozygous mice to see if this hypothesis is true.

Transducin-like enhancer of split 1 (TLE1) or Groucho-related gene 1 (GRE1) is a member of the Notch signaling pathway that is a transcriptional repressors of Wnt signaling and other cell fate determination signals (Liu et al., 1996). In a study examining dedifferentiation from a well-differentiated tumor to a moderately-differentiated tumor in hepatocellular carcinomas (HCC), TLE1 was discovered as being over expressed (Midorikawa et al., 2002). TLE1 over expression in HCC may provide for an additional mechanism for tumor formation within heterozygous Plk4 mice. In addition, Allen et al., 2006 used a mouse model to examine TLE1 over expression. TLE1 over expression induced lung adenocarcinoma formation with reduced levels of p53 and increased levels of the receptor tyrosines kinases ErbB1 and ErbB2. Interestingly, in Plk4 heterozygous mice, the second most common site of tumor formation was the lung, with the tumors characterized as adenocarcinomas (Ko et al., 2005). TLE1 over expression and p53 down regulation may provide a mechanism for lung tumor formation in heterozygous Plk4 mice.

Sal-like 3 (SALL3) is a homologue of the Drosophila splat gene which is required for development of the head and tail segments in an organism (Kohlhase et al., 1999). Loss of SALL3 expression leads to embryonic lethality from failure of cranial nerve formation from the hindbrain (Parrish et al., 2004). Beyond this information, little is known about SALL3 and its functional role within the cell. Therefore it is difficult to make an assumption to the exact role that SALL3 over expression plays within heterozygous MEFs.

Transcriptional Difference between Normal \& UV Wild Type and Normal \& UV

 Heterozygous MEFsTo gain an understanding of the transcriptional differences between normal and UV exposed MEFs, the two previous microarray data sets were compared. It was discovered that 171 genes were up-regulated in normal wild type MEFs (Table 5), while 83 genes were down-regulated in the normal wild type MEFs (Table 6). 151 genes were observed to be up-regulated in normal heterozygous MEFs (Table 7), while 24 genes were down-regulated in the normal heterozygous MEFs (Table 8). In addition, there were a number of common genes that were up-regulated in both the normal wild type and normal heterozygous MEFs. Similarly, there were common genes within the UV wild type MEFs and the UV heterozygous MEFs. The differences in the genes that were upregulated in both the wild type and heterozygous MEFs provide additional clues to possible mechanistic differences, explaining the phenotypic differences observed between wild type and heterozygous MEFs. Likewise, differences observed between the UV wild type MEFs and UV heterozygous MEFs could provide mechanistic pathways to explain possible differences in the MEFs response to ultraviolet radiation.

While this analysis may provide a general survey of the differences between normal and UV exposed MEFs, without secondary validation using northern analysis, RT-PCR or real-time PCR, the validity of the results remains debatable. Proper statistical microarray analysis was unable to be performed due to software limitations with the TIGR software suite. The microarray analysis was performed manually using comparing raw intensity, so it is possible that errors could have been made.

Future Directions

It is necessary to determine the function significance of the interaction between Plk4 and p53. Plk4 is able to phosphorylate p53 on Ser-293 (Swallow et al., 2005). Ser293 is within the DNA-binding domain of p53 (Bell et al., 2002). It is hypothesized that Plk4 and p53 interact through a feedback mechanism and p53 is able to repress Plk4 function through HDAC. It is assumed that over-expressing Plk4 causing phosphorylation of Ser-293 will inhibit p53's ability to bind the TATA box binding protein to facilitate the recruitment of HDAC to repress Plk4. Additionally, it is of interest to determine how the phosphorylation of Ser-293 affects the conformational structure of p53 and how this affects its function. Furthermore, it is of interest to investigate how the phosphorylation of Ser-293 affect protein levels of known downstream p53 targets and that this phosphorylation could affect p53 function in multiple signaling cascades. Elucidating the functional interaction between p53 and Plk4 will provide a more thorough incite to the observed phenotypic differences between wild type and heterozygous MEFs. This interaction may provide a clue as to why heterozygous Plk4 mice develop cancer at a rate twenty times greater than wild types.

Appendix A

Antibodies used for Western Blotting

Primary Antibody	Species of Origin	Company
Anti-Plk4	Rabbit	Cell Signaling
Anti-Chk1	Mouse	Sigma
Anti-Chk2	Mouse	Sigma
Anti-Cdc25c	Rabbit	Santa Cruz
Anti-Cyclin B1	Rabbit	Sigma
Anti-Gadd45a	Mouse	Santa Cruz
Anti-p53	Rabbit	Sigma
Anti-GAPDH		Santa Cruz

Appendix B: Densitometry Values Measuring the Difference between Wisp1 in Wild Type and Heterozygous Plk4 MEFs
Relative Expression 2.376345974
1.811757612
1.591634725
1.419773342
1.941015307
1.737439026 1.737439026
Expression
1
1
1 1.255735202 1.187250071 1.397406611
Appendix B: Densitometry Values Measuring the Difference between Wisp1 in Wild Type and Heterozygous Plk4 MEFs

Appendix C: Densitometry Values Measuring the Difference between SAP30BP in Wild Type and Heterozygous Plk4 MEFs

Appendix D：Densitometry Values Measuring the Difference between Prohibitin in Wild Type and Heterozygous Plk4 MEFs
Prohibitin：GAPDH ratio

0.093499176

0.117779731
0.129183177
0.25336474

0.257723458

0.272387883
Prohibitin：GAPDH ratio
0.268635479
0.265195271
0.270344872
0.592161105
0.490350846
0.467749339
3.722516482
3.77080631
3.698978983
こんナ6てもャ0でて
ع908L06t8 1
ヤL6ヵ6LOEL＇レ
Appendix E: Densitometry Values for Wild Type MEFs Exposed to Ionizing Radiation
\qquad 0.76629135 0.742247818 1.025824669
0.849439775
0.644743799
 $\begin{array}{cc}M & M \\ \dot{\sim} & \bar{M} \\ 0 & 0 \\ N & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & N \\ 0 & 0 \\ & 0\end{array}$
 0
0
0
0
0
0
∞
∞
\vdots
\vdots
0
0 N
N
N
N
0
\vdots
0
0
1
0
0.832770496 $\begin{array}{ll}\Gamma & 0 \\ 0 & \square \\ \dot{J} & 0 \\ \dot{j} & 0 \\ 0 & 0 \\ \square & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

N
N
+
+
0
0
N
N

0
0
0
0
M
N
0
0
0
0
0
0
0
0

0
0
0
0
0
0

N
N
N
0
\sim
\sim
N
N
N
\dot{N}
0 0
0
0
0
0
0
0
0
0
0
0

Appendix E: Densitometry Values for Wild Type MEFs Exposed to Ionizing Radiation Cont.
Relative Expression 0.761764893
1.025801062 0.713392636 0.692668093 0
0
0
0
\vdots
\vdots
N
Γ
0
0 0.751724602 0.748370949 0.702295554 0.800170608 0
0
0
0
0
0
0
0
0
0
0

 H
∞
0
0
0
0
0
0
0
0 N
N
0
0
0
0
0
0
0
0
0
0 N
0
0
0
N
N
0
0
0
0
0 zLL869915 O
0
0
0
0
0
0
0
0
0
0 ∞
0
0
0
\vdots
0
0
0
0
0
0 0.926226226 0.781653935
Appendix E: Densitometry Values for Wild Type MEFs Exposed to Ionizing Radiation Cont.

Appendix F: Densitometry Values for Heterozygous MEFs Exposed to Ionizing Radiation Raw vol.
2018.098

M
0
0
0
0
0
「
i
0
0
0
0
0
0
\qquad
0.430865061
0.29271119
0.688258886
0.423298271
0.717632927
0.363818197
0.313056122
0.822697493 0.528313986
0.296088597
0.243731795 0.50552717
0.364368003 0.364368003 0.511538232 0.393473792 0.281989731

0.517973175 0.37819284 0.262461131

[^3]Appendix F: Densitometry Values for Heterozygous MEFs Exposed to Ionizing Radiation Cont. 0.304734265 Relative Expression 0.739627564
0.652036971
0.964833296
0.713711367
0.646388968
0.960189159
0.929795179 0.761181184
1.055047379

0.583647535 $\begin{array}{ll}\infty & \hat{} \\ 0 & \hat{0} \\ 0 & 0 \\ 0 & N \\ 0 & N \\ 0 & \hat{0} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ 0.361353789 0.66914039 $\dot{0}$
0
0
0
0
0
0
0
0
 0.359910524
0.674650197
0.616677585 0.331468832
0.630239431
0.352572114 0.635001157
0.355235945

0.656963386 0.972123019
0.719103758
 $\begin{array}{ll}0 & 0 \\ \stackrel{n}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0 & 0\end{array}$ 0.76693223
1.063018708
0.884562988 0.76693223
1.063018708
0.884562988 $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ N & 0 \\ N & 0 \\ 0 & ~ \\ 0 & N \\ 0 & N \\ 0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}$
 0.36408397
0.674196029
0.701747783
0.340125403
0.636438217
0.738864368 0.36408397
0.674196029
0.701747783
0.340125403
0.636438217
0.738864368 0.36408397
0.674196029
0.701747783
0.340125403
0.636438217
0.738864368 0.36408397
0.674196029
0.701747783
0.340125403
0.636438217
0.738864368 0.3626298
0.679747464 0.679747464
0.621336345 0.333973219

Normalized to Wild Type
1.007555423
1.007555423
1.007555423 0.65696338 0.738864368

$$
\begin{aligned}
& \text { a } \\
& 8 \\
& 8 \\
& 8 \\
& 8 \\
& 8
\end{aligned}
$$

Appendix F: Densitometry for Values Heterozygous MEFs Exposed to Ionizing Radiation Cont.

ackground	Sak:GAPDH ratio	GAPDH:Sak ratio	Relative Expressi
400032.8438	1.095350999	0.912949366	
618859.6875	0.783753688	1.275911061	

485033.5625	
1186412563	
521725.4063	0.439750406

0.631955276
0.71580416
0.660233068 0.626803572
0.488018036
1.056593185 1.045162525
1.097852805
0.75431259
0.686009218
 ∞
∞
∞
∞
∞
∞
∞
0
0 0.971378883 1.153101563
1.055747481 0.87319656
1.129046858 0.851535362

1.068379146 1.018341272 1.337296094 0.581302218 0.920202831 0.607313463 1.118146252 0.971904161 1.05305917
1.106147547 0.76001174
0.691192308 .691192308
0.7214023

Γ	
0	
0	
0	1
-	0

1.026035271
1.347399932

$-$

Appendix F: Densitometry for Values Heterozygous MEFs Exposed to Ionizing Radiation Cont. Wild Type
1.007555423 Standard Error or Mean
$9.06493 \mathrm{E}-17$ 1.007555423 1.007555423 0.772381225 0.959185737 0.823023101 0.794503143 0.873340886 1.009484427
1.115244822 0.151016007
0.049208063
0.041101306 0.066854498 0.066854498
0.139970972 0.204810418 0.129446538 0.07267483 0.08434955 0.106643695
0.093258
0.126660953 0.133147998
0.059332809
0.086059205 0.124761467
0.086373481
0.158762054
Appendix G: Densitometry Values for Wild Type MEFs Exposed to Ultraviolet Radiation
Relative Expression 1.116971685
1.032378587 1.471062387
1.952425957 1.882585233 1.343193542 1.98886966 1.281746592 1.659467715 1.902077457
Appendix G: Densitometry Values for Wild Type MEFs Exposed to Ultraviolet Radiation Cont.
Relative Expression 2.991324397
2.81059795
4.806668206 0.355796175
0.208044316 0.262911085 0.307049017 0.175267108 0.493297396 0.247885553 0.196156945 0.350826949 0.302264681 540208.4492
180591.7305 180591.7305 387355.3555
2344934.793
 178589.6523 702353.6055 305111.418 980844.168 2162287.793 647028.4805
1857515.043
0
2423573.543
0 735911.918 1353540.543

 $8 \varepsilon \varepsilon 166298^{\circ} 0$
เยと与t98 0
0
0
0
0
0
0
0
0
0
0 1.475612535 0
N
0
0
0
0
0
0
0
0
0 10
0
0
0
0
+
0
0 1.049437213 N
N
0
7
N
N
0
0
0

0 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 | Raw vol. Raw vol. - background Sak:GAPDH ratio GAPDH:Sak ratio

523.457
540731.9
181115.2
1089224
387878.8
2345458

GAPDH control 28 cycles
Sak control 38 cycles
background
GAPDH contral 30 cycles
Sak control 40 cycles
GAPDH control 32 cycies
Sak control 42 cycles
GAPDH Ohr 28 cycles
Sak Ohr 38 cycles
GAPDH Ohr 30 cycles
Sak Ohr 40 cycles
GAPDH Ohr 32 cycles Sa

GAPDH $1 / 2 \mathrm{hr} 28$ cycles
Sak $1 / 238$ cycles
GADPH $1 / 2 \mathrm{hr} 30$ cycles
GADPH $1 / 2 h r$ cyoles GAPDH $1 / 2 \mathrm{hr} 32$ cycle
Sak $1 / 2 \mathrm{hr} 42$ cycles

GAPDH 1 hr 28 cycles
Sak 1 hr 38 cycles Sak 1 hr 38 cycles
GAPDH 1 hr 30 cycles
Sak 1 hr 40 cycles Sak 1 hr 40 cycles
GAPDH 1 hr 32 cycles

Sak 1 hr 42 cycles GAPDH 2hr 28 cycles Sak 2hr 38 cycles
GAPDH $2 h r 30$ cycles SAk 2hr 40 cycles Sak 2hr 42 cycles GAPDH 4hr 28 cycles Sak 4hr 38 cycles
GAPDH 4 hr 30 cycles Sak 4hr 40 cycles
GAPDH 4 hr 32 cycles GAPDH 4hr 32 cy
Sak 4 hr 42 oycles

GAPDH 6hr 28 cycles Sak 6 hr 38 cycles
GAPDH 6 hr 30 cycles Sak 6hr 40 cycles GAPDH 6hr 32 cyol
Sak Ghr 42 gycles

GAPDH Bhr 28 cycles Sak Bhr 38 cycles
GAPDH 8 hr 30 cycles Sak Bhr 40 cycles
GAPDH 8hr 32 cycles
Appendix G: Densitometry Values for Wild Type MEFs Exposed to Ultraviolet Radiation Cont.
 3.631076261
4.083899688
0.277450372
0.22804951 0.22804951
0.232873158 0.333448738
0.335856013 0.288379611
0.394329918 0.368868863
0.419091372 0.274434249
0.256160133 802334.4219
208380.8906
980200.0156
269947.5156
1560558.828
382124.6719 248476.9375 1429901.578 539217.8906 1494234.703 2107333.453 1598971.578 15989
2368505.703
2482143.203
0 1082774.328
300416.1406
2320752.703
529246.5156 2320752.703
529246.5156
2773683.578
645916.4531 911014.5156
303776.6406
1022614.703 1022614.703
343451.2969
1628078.703 522028.8906
205851.6094
 808420.3281
338801.9844 338801.9844
1644311.953
451255.5156
2243594.453
574719.4531

Appendix G: Densitometry Values for Wild Type MEFs Exposed to Ultraviolet Radiation Cont. or of Mean
$6.40988 E-17$
0
$9.06493 E-17$
o 0
$0-\quad 0$ $0-0$ 0 0 00
 1.068274464 0.972518422 0.991704601 1.180467058 1.344978697
1.300916491 1.445701642 1.341655753 1.314940778
1.188237974 1.467031925 0.052714525 0.373017056 0.287580015 0.163714356
0.236972258 0.247191298
Appendix H: Densitometry Values for Heterozygous MEFs Exposed to Ultraviolet Radiation
Appendix H: Densitometry Values for Heterozygous MEFs Exposed to Ultraviolet Radiation Cont. 5339.945 471356
278900.3 466016.0547
273560.3672
880985.8047
374401.9922
1262349.555
486102.9297 390631.0234
601736.7422
972602.4297
479287.6797 867840.4922 1405817.555 653098.1797 653098.1797
1099732.18
0
1515008.055
0 577964.6797 577964.6790
822305.9297 1106702.555 88807.625 228029.7422 649876.4922 71900.47656
280531.3672 626829.5547 117279.5703 234616.8828 558956.4297
Appendix H: Densitometry Values for Heterozygous MEFs Exposed to Ultraviolet Radiation Cont.
GAPDH ratio GAPDH:Sak ratio Relative Expression
$0.142538868 \quad 7.015630296$ 5.613540504
6.243056902 0.178140694
0.160177941 467645.4863
66657.6582
930858.6113
165823.7988
14858881.111
238005.377 354102.6738
716339.7363
0
1040897.486
0 749026.6738
1412683.736 1695425.361° 855231.4238 1376033.236
1667356.361 1667356.36 605066.2363 000
M
0
0
0
0

\vdots
0
0 1523669.986 682062.0488 716079.7988 1058373.111 482886.9238 482886.9238
825856.7988 1059220.861
0 492133.7988 713179.2363 881580.7988

Appendix H: Densitometry Values for Heterozygous MEFs Exposed to Ultraviolet Radiation Cont.

Appendix J: Expression Levels of Down-Regulated Genes in Heterozygous MEFs

-2.4729

-2.5566
-2.5241
-2.3000
-2.2121
Appendix K: Expression Levels of Up-Regulated Genes in Heterozygous MEFs
Change in Expression

Metabolism

N -acylsphingosine amidohydrolase (acid ceramidase) likı Leucyl/cystinyl aminopeptidase
Galactose-4-epimerase
L-2-hydroxyglutarate dehydrogenase
Fatty acid desaturase 3
Carbohydrate sulfotransferase 2
n like 4
protein kinase, cAMP dependent regulatory, type I beta
DNA Repair
Thymine DNA glycosylase
Uracil-DNA glycosylase
MutS homolog 6
Transcriptional/Translational Regulation
Transcription factor A

Appendix K: Expression Levels of Up-Regulated Genes in Heterozygous MEFs Cont.
ssion

2.0889
2.9834

5.8691
5.3375
5.2780
5.1116
5.0970
4.9504
4.8086
4.0596
Cellular/lon Transport
Calcium binding and coiled coil domain 1
Aquaporin-1
Solute carrier family 6
Exocyst complex component 3
Protein-coupled receptor 19
Solute carrier family 39
Frequenin homolog
Solute carrier family 14
Translocator of inner mitochondrial membrane

∞
$\stackrel{N}{N}$
$\stackrel{\circ}{\sigma}$

$\stackrel{7}{8}$
$\stackrel{3}{\sigma}$

∞
∞
∞
ल
ल

$\stackrel{\stackrel{\rightharpoonup}{\sigma}}{\stackrel{\rightharpoonup}{\sigma}}$
Appendix L: Expression Levels of Down-Regulated Genes in Heterozygous MEFs upon UV Exposure
Change in Expression

	N
	ลิ
	\bigcirc

Change in Expression
Developmental

DNA Binding Thymocyte sel
 (XOL) XOq פWH рәңe!

> Unknown Function
-2.4551529 Hypothetical protein LOC66132
-3.3053385 Zinc finger protein 655 isoform a (Ztp655)
-2.197512433
-3.3053385 Zinc finger protein 655 isoform a (Ztp655)
-2.197512433

相
-

Appendix M: Expression Levels of Up-Regulated Genes in Heterozygous MEFs upon UV Exposure Cont.

Change in Expression	
Metabolism	Developmental
Gamma-aminobutyic acid (GABAAA) receptor, subunit gamma 2 isotom 1	2.5693 Thrombospondin 2
Glutathione reductase 1 (Gss)	2.6765 Frizled 5 preaursor (FZD5)
Leucyl/cystiny aminopepitase (Lnpep) (IRAP)	2.4543 T -cell factor 4 (TCi4)
Fatty acid desaturase 3 (Fads)	2.4122 Stathmin -like 2
Mannosidase apha dass 2B member2 (Man2b2)	2.2077 Odd Ozten-m homolog 3 (Odz3)
Phosphatidylinositol glycan, class A (Piga)	2.0879 Chemokine-like factor super family (CKLFSF3);
ADP-ribosylation factor related protein2 (Ar115)	2.0393 Transducin-like enhancerp rotein 3 istom 1 (Tle3)
SH3-domain GRB2-Ike (endophilin) interacting protein 1 (SGIP1)	3.1163 ADAMTS-like 3 (Adamisl3)
Dipepitidypeptidase 8 (Dpp8)	3.4002 Angiopoieiti-like 2
Dual specificity phosphatase 27 (Dusp27)	3.0121 SWISNF-related, matrix associated actin dependent regulato of chromatin,
Xylosytransferasel (Xyyti)	4.7743 subfamily a, contiaing DEADH box 1 (Smarcad1)
	Miscellaneous Function
Cellular Transport	CDC42 effector protein (Rho GTPase binding) 4 (CDC42EP4) (binder of Rho GTPases)
Protein phosphatase iF (PP2C domain contiaining) (Ppmif)	2.3188 Pleckstrin homology domain containing, family F (with FYVE domain) member 1 (Plekhit)
Frequenin homolog (Frea)	2.0461 Simiar to high-mobility group box 3
Myotubularin related protein 10 (Mhmri0)	2.1037 CD96 antigen (CD96)
Oxysterol binding protein (Osbp)	3.0331 FERM, AhoGEF and pleckstrin domain protein 2 (FGD2)
Ring finger protein 17(Pnif1)	5.3912 Ubiquutin specific protease 31 (Usp31)
	Kalirin, RhoGEF kinase (Kalm)
	DCN1, defective in cullin neddylation 1 , domain containing 2 isoform a (Dcun1d2) Vilin 1 (vil)

LITERATURE CITED

Abraham RT. (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15: 2177-2196.

Aguilar, F., Harris, C.C., Sun, T., Hollstein, M. and Cerutti, P. (1994) Geographic variation of p53 mutational profile in nonmalignant human liver. Science 264: 13171319.

Allen T, van Tuyl M, Iyengar P, Jothy S, Post M, Tsao MS, Lobe CG. (2006). Grg1 acts as a lung-specific oncogene in a transgenic mouse model. Cancer Res. 66: 12941301.

Ando K, Ozaki T, Yamamoto H, Furuya K, Hosoda M, Hayashi S, Fukuzawa M, Nakagawara A. (2004). Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J. Biol. Chem. 279: 25549-25561.

Azimzadeh J, Bornens M. (2007). Structure and duplication of the centrosome. J. Cell Sci. 120: 2139-2142.

Avides MC, Tavares AA, Glover DM. (2001). Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nat. Cell. Biol. 3: 421-424.

Bakkenist CJ, Kastan MB. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimmer dissociation. Nature. 421: 499-506.

Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA. (2005). Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J. Cell Biol. 171: 27-33.

Bahler J, Steever AB, Wheatly S, Wang YI, Pringle JR, Gould KL, McCollum D. (1998). Role of polo kinase and Mid1p in determining the site of cell division in fission yeast. J. Cell Biol. 143: 1603-1616.

Bardin AJ, Amon A. (2001). Men and sin: what's the difference? Nat. Rev. Mol. Cell Biol. 2: 815-826.

Bassermann F, Peschel C, Duyster J. (2005). Mitotic entry: a matter of oscillating destruction. Cell Cycle 11: 1515-1517.

Bell S, Klein C, Muller L, Hansen S, Buchner J. (2002). p53 contains large unstructured regions in its native state. J. Mol. Biol. 322: 917-927.

Berger KH, Yaffe MP. (1998). Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Mol. Cell Biol. 18: 4043-4052.

Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, Riparbelli M, Lehmann L, Gatt MK, Carmo N, Balloux F, Callaini G, Glover DM. (2005). Sak/Plk4 is required for centriole duplication and flagella development. Curr. Biol. 15: 2199-2207.

Bonni S, Ganuelas M, Petrinac S, Hudson JW. (2008). Human Plk4 phosphorylates Cdc25c. Cell Cycle 7.

Bowser R, Giambrone A, Davies P. (1995). FAC1, a novel gene identified with the monoclonal antibody Alz50, is developmentally regulated in human brain. Dev. Neurosci. 17: 20-37.

Brassac T, Castro A, Lorca T, Le Peuch C, Doree M, Labbe JC, Galas S. (2000). The polo-like kinase Plx1 prevents premature inactivation of the APC(Fizzy)-dependent pathway in the early Xenopus cell cycle. Oncogene 19: 3782-3790.

Broggini M, Buraggi G, Brenna A, Riva L, Codegoni AM, Torri V, Lissoni
AA,Mangioni C, D'Incalci M. (2000). Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients. Anticancer Res. 20: 48354840.

Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. (1998).
Retinoblastoma protein recruits histone deactylase to repress transcription. Nature. 391: 597-601.

Brigstock DR. (2003). The CCN family: a new stimulus package. J. Endocrinol. 178: 169-175.

Bugler B, Quaranta M, Aressy B, Brezak MC, Prevost G, Ducommun B. (2006). Genotoxic-activated G2-M checkpoint exit is dependent on CDC25B phosphatase expression. Mol. Cancer Ther. 5: 1446-1451.

Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 282: 1497-1501.

Burns TF, Fei P, Scata KA, Dicker DT, El-Diery WS. (2003). Silencing of the nole p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol. Cell. Biol. 23: 5556-5571.

Campisi J. (2001). Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11: 27-31.

Cangi MG, Cukor B, Soung P, Signoretti S, Moreira G Jr, Ranashinge M, Cady B,Pagano M, Loda M. (2000). Role of the Cdc25A phosphatase in human breast cancer. J. Clin. Invest. 106: 753-761.

Cann KL, Hicks GG. (2006). Absence of an immediate G1/S checkpoint in primary MEFs following γ-irradiation identifies a novel checkpoint switch. Cell Cycle 5: 18231830.

Casenghi M, Meraldi P, Weinhart U, Duncan PI, Korner R, Nigg EA. (2003). Pololike kinase 1 regulates Nlp , a centrosome protein involved in microtubule nucleation. Dev. Cell 5: 113-125.

Cervello M, Giannitrapani L, Labbozzetta M, Notarbartolo M, D'Alessandro N, Lampiasi N, Azzolina A, Montalto G. (2004). Expression of WISPs and of their novel alternative variants in human hepatocellular carcinoma cells. Ann N Y Acad Sci. 1028: 432-439.

Chase D, Golden A, Heidecker G, Ferris DK. (2000). Caenorhabditis elegans contains a third polo-like kinase gene. DNA Seq. 11: 327-334.

Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai KM, Ji J, Dudoit S, Ng IO, Van De Rijn M, Botstein D, Brown PO. (2002). Gene expression patterns in human liver cancers. Mol. Biol. Cell 13: 1929-1939.

Cho EA, Dressler GR. (1998). TCF-4 binds beta-catenin and is expressed in distinct regions of the embryonic brain and limbs. Mech. Dev. 77: 9-18.

Clute P, Pines J. (1999). Temporal and spatial control of cyclin B1 destruction in metaphase. Nat. Cell Biol. 1: 82-87.

Conn CW, Hennigan RF, Dai W, Sanchez Y, Stambrook PJ. (2000). Incomplete cytokinesis and induction of apoptosis by overexpression of the mammalian polo-like kinase, Plk3. Cancer Res. 60: 6826-6831.

Dai W, Li Y, Ouyang B, Pan H, Reissmann P, Li J, Wiest J, Stambrook P, Gluckman JL, Noffsinger A, Bejarano P. (2000). PRK, a cell cycle gene localized to 8 p 21 , is downregulated in head and neck cancer. Genes Chromosome Cancer 27: 332336.

Dai W, Liu T, Wang Q, Rao CV, Reddy BS. (2002). Down-regulation of PLK3 gene expression by types and amount of dietary fat in rat colon tumors. Int. J. Oncol. 20: 121126.

Dai W, Cogswell JP. (2003). Polo-like kinases and the microtubule organizing centre: targets for cancer therapies. Prog. Cell Cycle Res. 5: 327-334.

Dameron KM, Volpert OV, Tainsky MA, Bouck N. (1994). Control of angiogenesis in fibroblasts by p 53 regulation of thrombospondin-1. Science. 265: 1582-1584.

Dawe HR, Farr H, Gull K. (2007). Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J. Cell Sci. 120: 7-15.
de Carcer G, Avides MDC, Lallena MJ, Glover DM, Gonzalez C. (2001). Requirement of Hsp90 for centrosomal function reflects its regulation of polo kinase stability. EMBO 11: 2878-2884.

Dell'Orco RT, McClung JK, Jupe ER, Liu XT. (1996). Prohibitin and the senescent phenotype. Exp. Gerontol. 31: 245-252.

Donohue PJ, Alberts GF, Guo Y, Winkles JA. (1994). A delayed-early gene activated by fibroblast growth factor-1 encodes a protein related to aldose reductase. J. Biol. Chem. 269: 8604-8609.

Donohue PJ, Alberts GF, Guo Y, Winkles JA. (1995). Identification of targeted differential display of an immediate early gene encoding a putative serine/threonine kinase. J. Biol. Chem. 270: 10351-7.

Duncan PI, Pollet N, Niehrs C, Nigg EA. (2001). Cloning and characterization of Plx2 and Plx3, two additional Polo-like kinases from Xenopus laevis. Exp. Cell Res. 270: 7887.

Duggan DJ. Bittner M, Chen Y, Meltzer P, Trent JM. (1999). Expression profiling using cDNA microarrays. Nat. Genet. 21: 10-14.

Eckerdt F, Yuan J, Strebhardt K. (2005). Polo-like kinases and oncogenesis. Oncogene 24: 267-276.

Efeyan A, Serrano M. (2007). p53: guardian of the genome and policeman of the oncogenes. Cell Cycle. 9: 1006-1010.

Elia AE, Cantley LC, Yaffe MB. (2003). Proteomic screen finds pSer/pThr-binding domain localizing Plk 1 to mitotic substrates. Science 299:1228-31.

Elledge SJ. (1996). Cell cycle checkpoints: preventing an identity crisis. Science 274: 1664-1672.

Farmer G, Friedlander P, Colgan J, Manley JL, Prives C. (1996). Transcriptional repression by p53 involves molecular interactions distinct from those with the TATA box binding protein. Nucleic Acids Res.24: 4281-4288.

Feng Y, Hodge DR, Palmieri G, Chase DL, Longo DL, Ferris DK. Association of polo-like kinase with alpha-, beta-, and gamma-tubulins in a stable complex. J. Biochem. 339: 435-442.

Fenton B, Glover DM. (1993). A conserved mitotic kinase active at late anaphasetelophase in syncytial Drosophila embryos. Nature 363: 637-640.

Ferguson AM, White LS, Donovan PJ, Piwnica-Worms H. (2005). Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. Mol. Cell Biol. 7: 2853-2860.

Fletcher L, Cerneglia GJ, Nigg EA, Yen TJ, Muschel RJ. (2004). Inhibition of centrosome segregation after DNA damage: a role for NEK2. Radiat. Res. 162: 128-135.

Fletcher L, Muschel R. (2006). The centrosome and the DNA damage induced checkpoint. Cancer Lett. 243: 1-8.

Fode C, Motro B, Yousefi S, Heffernan M, Dennis JW. (1994). Sak, a murine proteinserine/threonine kinase that is related to the Drosophila polo kinase and involved in cell proliferation. Proc. Natl. Acad. Sci. 91:6388-6392.

Fode C, Binkert C, Dennis JW. (1996). Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation. Mol. Cell. Biol. 16: 4665-4672.

Freiderich E, Vancompernolle K, Louvard D, Vandekerchkove J. (1999). Villin function in the organization of the actin cytoskeleton. Correlation of in vivo effects to its biochemical activities in vitro. J. Biol. Chem. 274: 26751-26760.

Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S. (2003). Prohibitin induces the transcriptional activity of p 53 and is exported from the nucleus upon apoptotic signaling. J. Biol. Chem. 278: 47853-47861.

Gasparotto D, Maestro R, Piccinin S, Vukosavljevic T, Barzan L, Sulfaro S, Boiocchi M. (1997). Overexpression of CDC25A and CDC25B in head and neck cancers. Cancer Res.57:2366-2368.

Gautier J, Solomon MJ, Booher RN, Bazan JF, Kirschner MW. (1991). Cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67: 197-211.

Glover DM. (2005). Polo kinase and preogression through M phase in Drosophila: a perspective from the spindle poles. Oncogene 24: 230-237.

Golan A, Yudkovsky Y, Hershko A. (2002). The cyclin-ubiquitin ligas activity of cyclosome/APC is jointly activated by protein kinases Cdk1-cyclin B and Plk1. J. Biol. Chem. 277: 15552-15557.

Golsteyn RM, Schultz SJ, Bartek J, Ziemiecki A, Reid T, Nigg EA. (1994). Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5. J. Cell Sci. 107: 1509-1517.

Golsteyn RM, Mundt KE, Fry AM, Nigg EA. (1995). Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J. Biol. Chem. 129: 1617-28.

Golsteyn RM, Lane HA, Mundt KE, Arnaud L, Nigg EA. (1996). The family of pololike kinases Prog Cell Cycle Res. 2: 107-114.

Gonzalez C, Sunkel CE, Glover DM. (1998). Interactions between mgr, asp, and polo: asp function modulated by polo and needed to maintain the poles of monopolar and bipolar spindles. Chromosoma. 107: 452-460.

Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes \& Dev. 15: 1406-1418.

Gruneberg U, Nigg EA. (2003). Regulation of cell division: stop the SIN! Trends Cell Biol. 13: 159-162.

Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA. (2005). The polo kinase Plk4 functions in centriole duplication. Nat. Cell. Biol. 11: 1140-46.

Hanisch A, Wehner A, Nigg EA, Sillje HH. (2006). Different Plk1 functions show distinct dependencies on Polo-Box domain-mediated targeting. Mol. Biol. Cell 17: 448451.

Hernandez S, Hernandez L, Bea S, Cazorla M, Fernandez PL, Nadal A, Muntané J, Mallofré C, Montserrat E, Cardesa A, Campo E. (1998). Cdc25 cell cycleactivating phosphatases and c-myc expression in human non-hodgkin's lymphomas. Cancer Res. 58: 1762-1767.

Hirao A, Kong Y, Matsuoka S, Wakeham S, Ruland J. (2000). DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 287: 1824-1827.

Holtrich U, Wolf G, Yuan J, Beretier-Hahn J, Karn T, Weiler M, Kauselmann G, Rehli M, Andreesen R, Kaufmann M, Kuhl D, Stebhardt K. (2000). Adhesion induced expression of the serine/threonine kinase Fnk in human macrophages. Oncogene. 19: 4832-9.

Hu Y, Benedict MA, Wu D, Inohara N, Nunex G. (1998). Bcl-XL interacts with Apaf1 and inhibits Apaf-1 dependent caspase-9 activation. Proc. Natl. Acad. Sci. 95: 43864391.

Hubscher U, Maga G, Spadari S. (2002). Eukaryotic DNA polymerases. Annu. Rev. Biochem. 71: 133-63.

Hudson JW, Chen LY, Fode C, Binkert C, Dennis JW. (2000). Sak kinase gene structure and transcriptional regulation. Gene 241: 65-73.

Hudson JW, Kozarova A, Cheung P, Macmillan JC, Swallow CJ, Cross JC, Dennis JW. (2001). Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr. Biol. 11: 441-446.

Jang YL, Lin CY, Ma S, Erikson RL. (2002). Functional studies on the role of the Cterminal domain of mammalian polo-like kinase. Proc. Natl. Acad. Sci. 99: 1984-1989.

Jiang N, Wang X, Jhanwar-Uniyal M, Darzynkiewicz Z, Dai W. (2006). Polo box domain of Plk3 functions as a centrosome localization signal, overexpression of which causes mitotic arrest, cytokinesis defects, and apoptosis. J. Biol. Chem. 281: 1057710582.

Jimenez J, Cid VJ, Cenamor R, Yuste M, Molero G, Nombela C, Sanchez M. (1998). Morphogenesis beyond cytokinetic arrest in Saccharomyces cerevisiae. J. Cell Biol. 143: 1617-1634.

Jin S, Fan F, Fan W, Zhao H, Tong T, Blanck P, Alomo I, Rajasekaran B, Zhan Q. (2001). Transcription factors Oct-1 and NF-YA regulate the p53-independent induction of the GADD45 following DNA damage. Oncogene 20: 2683-2690.

Jordan-Sciutto KL, Dragich JM, Rhodes JL, Bowser R. (1999). Fetal Alz-50 clone 1, a novel zinc finger protein, binds a specific DNA sequence and acts as a transcriptional regulator. J. Biol. Chem. 274: 35262-35268.

Kauselmann G, Weiler M, Wulff P, Jessberger S, Konietzko U, Scafidi J, Staubli U, Bereiter-Hahn J, Strebhardt K, Kuhl D. (1999). The polo-like kinases Fnk and Snk associate with a $\mathrm{Ca}(2+)$ - and integrin-binding protein and are regulated dynamically with synaptic plasticity. Embo J. 18: 5528-39.

Kharbanda S, Pandey P, Schofield L, Israels S, Roncinske R, Yoshia K, Bharti A, Yuan ZM, Saxena S, Weichselbaum R. (1997). Role of Bcl-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis. Proc. Natl. Acad. Sci. 94: 6939-6942.

Kennedy SG, Kandel ES, Cross TK, Hay N. (1999). Akt/protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondira. Mol. Cell. Biol. 19: 5800-5810.

Kim JS, Shukla SD. (2006). Acute in vivo effect of ethanol (binge drinking) on histone H3 modifications in rat tissues. Alcohol Alcohol. 41: 126-132.

Kleylein-Sohn J, Westendorf J, Le Clech, M Habedanck R, Stierhof YD, Nigg EA. (2007). Plk4-induced centriole biogenesis in human cells. Dev. Cell. 13: 190-202.

Kneisel L, Strebhardt K, Bernd A, Wolter M, Binder A, Kaufmann R. (2002). Expression of polo-like kinase (PLK1) in thin melanomas: a novel marker of metastatic disease. J. Cutan. Pathol. 29: 354-358.

Ko MA, Rosario CO, Hudson JW, Kulkarni S, Pollett A, Dennis JW, Swallow CJ. (2005). Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat. Genetics. 37: 883-888.

Kohlhase J, Hausmann S, Stojmenovic G, Dixhens C, Bink K, Schulz-Schaeffer W, Altmann M, Engel W. (1999). SALL3, a new member of the human spalt-like gene family, maps to 18q23. Genomics 62: 216-222.

Kotani S, Tugendreich S, Fujii M, Jorgenson PM, Watanabe N, Hoog C, Hieter P, Todokoro K. (1998). PKA and MPF-activated polo-like kinase regulate anaphasepromoting complex activity and mitosis progression. Mol. Cell 1: 371-380.

Kristjansdottir K, Rudolph J. (2004). Cdc25 phosphatases and cancer. Chem. Biol. 11: 1043-1051.

Kudo Y, Yasui W, Ue T, Yamamoto S, Yokozaki H, Nikai H, Tahara E. (1997). Overexpression of cyclin-dependent kinase-activating CDC25B phosphatase in human gastric carcinomas. Jpn. J. Cancer Res. 88: 947-952.

Kumagai A, Dunphy WG. (1996). Purification and molecular cloning of Plx 1, a Cdc25regulatory kinase from Xenopus egg extracts. Science 273: 1377-1380.

Kuzmichev A, Zhang Y, Erdjument-Bromage H, Tempst P, Reinberg D. (2002). Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). Mol. Cell Biol. 22: 835-848.

Lam MH, Rosen JM. (2004). Chk1 versus Cdc25: chking one's levels of cellular proliferation. Cell Cycle. 11: 1355-1357.

Lane H, Nigg EA. (1996). Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. 135: 17011713.

Lau LF, Lam SC. (1999). The CCN family of angiogenic regulators: the integrin connection. Exp. Cell. Res. 248: 44-57.

Lee HC, Kim M, Wands JR. (2006). Wnt/Frizzled signaling in hepatocellular carcinoma. Front Biosci. 11: 1901-1915.

Lee KS, Park JE, Asano S, Park CJ. (2005). Yeast polo-like kinases: functionally conserved multitask mitotic regulators. Oncogene. 24: 217-229.

Lee KS, Yuan YL, Kuriyama R, Erikson RL. (1995). Plk is a M-phase-specific protein kinase and interactswith a kinesin-like protein, CHO1/MKLP-1. Mol. Cell Biol. 15: 71437151.

Leung GC, Hudson JW, Kozarova A, Davidson A, Dennis JW, Sicheri F. (2002). The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. Nat. Struct. Biol. 9: 719-24.

Leung GC, Hudson JW, Kozarova A, Davidson A, Dennis JW, Sicheri F. (2002). The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. Nature Structural Biology. 9: 719-724.

Li B, Ouyang B, Pan H, Reissmann PT, Slamon DJ, Arceci R, Lu L, Dai W. (1996). Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J. Biol. Chem. 271: 19402-19408.

Li J, Tan M, Li L, Pamarthy D, Lawrence TS, Sun Y. (2005). Sak, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing. Neoplasia. 7: 312-323.

Li JF, Liu LD, Ma SH, Che YC, Wang LC, Dong CH, Zhao HL, Liao Y, Li QH. (2004). HTRP--an immediate-early gene product induced by HSV1 infection in human embryo fibroblasts, is involved in cellular co-repressors. J. Biochem. 136: 169-176.

Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart D. (1999). High density synthetic oligonucleotide arrays. Nat. Genet. 21: 20-24.

Liu Y, Dehni J, Purcell KJ, Sokolow J, Carcangiu ML, Artavanis-Tsakonas A, Stifani S. (1996). Epithelial expression and chromosomal location of human TLE genes: implications for notch signaling and neoplasia. 31: 58-64.

Lowe SW, Sheer CJ. (2003). Tumor suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev. 13:77-83.

Lui F, Stanton JJ, Wu Z, Piwnica-Worms H. (1997). The human Myt1 kinase preferentially phosphorylates Cdc 2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol. Cell Bio. 17: 571-83.

Liu X, Erikson RL. (2002). Activation of Cdc2/cyclin B and inhibition of centrosome amplification in cells depleted of Plk1 by siRNA. Proc. Natl. Acad. Sci. 99: 8672-8676.

Liu X, Erikson RL. (2003). Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc. Natl. Acad. Sci. 100: 5789-5794.

Liu X, Zhou T, Kuriyama R, Erikson RL. (2004). Molecular interactions of Polo-likekinase 1 with the mitotic kinesin-like protein CHO1/MKLP-1. J. Cell Sci. 117: 32333246.

Lowery DM, Lim D, Yaffe MB. (2005). Structure and function of polo-like kinases. Oncogene 24: 248-259.

Macmillan, JC, Hudson, JW, Bull S, Dennis JW, Swallow CJ. (2001). Comparative expression of the mitotic regulators Sak and Plk in colorectal cancer. Ann. Surg. Oncol. 8: 729-740.

Ma S, Charron J, Erikson RL. (2003). Role of Plk2 (Snk) in mouse development and cell proliferation. Mol. Cell Biol. 23: 6936-6943.

Maehara K, Yamakoshi K, Ohtani N, Kubo Y, Takahashi A, Arase S, Jones N, Hara E. (2005). Reduction of total E2F/DP activity induces senescence-like cell cycle arrest in cancer cells lacking functional pRB and p53. J. Cell Biol. 168: 553-560.

Matsuoka S, Huang M, and Elledge SJ. (1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893-1897.

Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ. (2000). Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. 97: 10389-10394.

Mayor T, Stierhof YD, Tanaka K, Fry AM, Nigg EA. (2000). The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J. Cell Biol. 147: 13711378.

Martindell DM, Risebro CA, Smart N, Franco-Viseras M, Rosario CO, Swallow CJ, Dennis JW, Riley PR. (2007). Nucleolar release of Hand1 acts as a molecular switch to determine cell fate. Nat. Cell. Biol. 10: 1131-41.

Matsumoto Y, Hayashi K, Nishida E. (1999). Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9: 429-432.

Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ. (2000). Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. 97: 10389-10394.

McGowan CH, Russell P. (1993). Human Weel kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J. 12: 75-85.

Abstract

Meijers-Heijboer H, Van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R, Hollestelle A, Houben A, Crepin E, van Veghel-Plandsoen M, Elstrodt F, van Duijn C, Bartels C, Meijers C, Schutte M, McGuffog L, Thompson D, Easton DF, Sodha N, Seal S, Barfoot R, Mangion J, Chang-Claude J, Eccles D, Eeles R, Evans DG, Houlston R, Murday V, Narod S, Peretz T, Peto J, Phelan C, Zhang HX, Szabo C, Devilee P, Goldgar D, Futreal PA, Nathanson KL, Weber BL, Rahman N \& Stratton MR. (2002). Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat. Genet. 31: 5559.

Midorikawa Y, Tsutsumi S, Taniguchi H, Ishii M, Kobune Y, Kodama T, Makuuchi M, Aburatani H. (2002). Identification of genes associated with dedifferentiation of hepatocellular carcinoma with expression profiling analysis. Jpn. J. Cancer Res. 93: 636643.

Moshe Y, Boulaire J, Pagano M, Hershko A. (2004). Role of polo-like kinase in the degradation of early mitotic inhibitor 1 , a regulator of the anaphase promoting complex/cyclosome. Proc. Natl. Acad. Sci. 101: 7937-7942.

Moutinho-Santos T, Sampaio P, Amorim I, Costa M, Sunkel CE. (1999). In vivo localization of the mitotic polo kinase shows a highly dynamic association with the mitotic apparatus during early embryogenesis in Drosophila. Biol. Cell 91: 585-596.

Mulvihill DP, Peterson J, Ohkura H, Glover DM Hagan IM. (1999). Plo1 kinase recruitment to the spindle pole body and its role in cell division in Schizosaccharomyces pombe. Mol. Biol. Cell 10: 2771-2785.

Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703-716.

Nicholson KM, Anderson NG. (2002). The protein kinase B/Akt signaling pathway in human malignancy. Cell. Signal. 14: 381-395.

Neef R, Preisinger C, Sutcliffe J, Kopajtich R, Nigg EA, Mayer TU, Barr FA. (2003). Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J. Cell Biol. 162: 863-875.

Nigg EA. (2007). Centrsome duplication: of rules and licenses. Trends Cell. Biol. 17: 215-221.

Niiya F, Tatsumoto T, Lee KS, Miki T. (2005). Phosphorylation of the cytokinesis regulator ECT2 at G2/M phase stimulates association of the mitotic kinase Plk1 and accumulation of GTP-bound RhoA. Oncogene 25: 827-837.

Nishioka K, Doki Y, Shiozaki H, Yamamoto H, Tamura S, Yasuda T, Fujiwara Y, Yano M, Miyata H, Kishi K, Nakagawa H, Shamma A, Monden M. (2001). Clinical significance of CDC25A and CDC25B expression in squamous cell carcinomas of the oesophagus. Br. J. Cancer 85: 412-421.

Ohkura H, Hagan IM, Glover DM. (1995). The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G_{1} and G_{2} cells. Genes Dev. 9: 1059-1073.

Ouyang B, Pan H, Lu L, Li J, Stanbrook P, Li B, Dai W. (1997). Human Prk is a conserved protein serine/threonine kinase involved in regulating M phase functions. J. Biol. Chem. 272: 28646-28651.

Ouyany B Wang Y Dai W. (1999). Caenorhabditis elegans contains structural homologs of human prk and plk. DNA Seq. 2: 109-113.

Pabla N, Huang S, Mi QS, Daniel R, Dong Z. (2007). ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J. Biol. Chem. Manuscript in Press.

Pan G, O'Rourke K, Dixit VM. (1998). Caspase-9, Bcl-Xl, and Apaf-1 form a ternary complex. J. Biol. Chem. 273: 5841-5845.

Parrish M, Ott L, Lance-Jones C, Schuetz G, Schwaeger-Nickolenko A, Monaghan AP. (2004). Loss of the Sall3 gene leads to palate deficiency, abnormalities in cranial nerves, and perinatal lethality. Mol. Cell Biol. 24: 7102-7112.

Pennica D, Swanson TA, Welsh JW, Roy MA, Lawrence DA, Lee J, Brush J, Taneyhill LA, Deuel B, Lew M, Watanabe C, Cohen RL, Melhem MF, Finley GG, Quirke P, Goddard AD, Hillan KJ, Gurney AL, Botstein D, Levine AJ. (1998). WISP genes are members of the connective tissue growth factor family that are upregulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci. 95: 14717-14722.

Polakis P. (1999). The oncogenic activation of beta-catenin. Curr. Opin. Genet. Dev. 9: 15-21.

Qian YW, Erikson E, Li C, Maller JL. (1998). Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol. Cell Biol. 18: 4262-71.

Qian YW, Erikson E, Maller JL. (1999). Mitotic effects of a constitutively active mutant of the Xenopus polo-like kinase Plx 1. Mol. Cell Biol. 19: 8625-8632.

Qian YW, Erikson E, Taieb FE, Maller JL. (2001). The polo-like kinase Plx1 is required for activation of the phosphatase Cdc 25 C and cyclin B-Cdc2 in Xenopus oocytes. Mol. Biol. Cell. 12: 1791-99

Rastogi S, Bharat J, Dasgupta P, Morris M, Wright K, Chellappan S. (2006). Prohibitin facilitates cellular senescence by recruiting specific corepressors to inhibit E2F target genes. Mol. Cell Biol. 26: 4161-4171.

Ree AH, Bratland A, Nome RV, StokkeT, Fodstad O. (2003). Repression of mRNA for the PLK cell cycle gene after DNA damage requires BRCA1. Oncogene 22: 89528955.

Reimann JD, Freed E, Hsu JY, Kramer ER, Peters JM, Jackson PK. (2001). Emi1 is a mitotic regulator that interacts with Cdc 20 and inhibits the anaphase promoting complex. Cell 105: 645-655.

Reynolds N, Ohkura H. (2003) Polo boxes form a single functional domain that mediates interactions with multiple proteins in fission yeast polo kinase. J. Cell Sci. 116:1377-87.

Roshak AK, Capper EA, Imburgia C, Fornwald J, Scott G, Marshall LA. (2000).The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cell Signal 12:405-11.

Ross JF, Liu X, Dynlacht BD. (1999). Mechanism of transcriptional repression of E2F by the retinoblastoma tumor suppressor protein. Mol. Cell 3: 195-205.

Sakchaisri K, Asano S, Yu LR, Shulewitz MJ, Park CJ, Park JE, Cho YW, Veenstra TD, Thorner J, Lee KS. (2004). Coupling morphogenesis to mitotic entry. Proc. Natl. Acad. Sci. 101: 4124-4129.

Sampaio P, Rebollo E, Varmark H, Sunkel CE, Gonzalez C. (2001). Organized microtubule arrays in gamma-tubulin-depleted Drosophila spermatocytes. Curr. Biol. 11: 1788-1793.

Schmitt E, Paquet C, Beauchemin M, Bertrand R. (2007). DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J. Zhejiang Univ. Sci. B. 8: 377-397.

Seong YS, Kamijo K, Lee JS, Fernandez E, Kuriyama R, Miki T, Lee KS. (2002). A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U2OS cells. J. Biol. Chem. 277: 32282-93.

Shalon D, Smith SJ, Brown PO. (1996). A DNA microarray system for analyzing complex DNA samples using two-colour fluorescent probe hybridization. Genome Res. 7: 639-645.

Shimizu-Yoshida Y, Sugiyama K, Rogounovitch T, Ohtsuru A, Namba H, Saenko V, Yamashita S. (2001). Radiation-inducible hSNK gene is transcriptionally regulated by p53 binding homology element in human thyroid cells. Biochem. Biophys. Res. Commun. 289: 491-98.

Sibon OCM, Kelkar A, Lemstra W, Theurkauf WE. (2000). DNA replication/DNA damage-dependent centrosome inactivation in Drosophila embryos. Nat. Cell Biol. 2: 9095.

Silverstein RA, Ekwall K. (2005). Sin3: a flexible regulator of global gene expression and genome stability. Curr. Genet. 47: 1-17.

Simizu S, Osada H. (2000). Mutations in the plk gene lead to instability of Plk protein in human tumour cell lines. Nat. Cell Biol. 2: 852-854.

Simmons DL, Neel BG, Stevens R, Evett G, Erikson RL. (1992). Identification of an early-growth-response gene encoding a novel putative protein kinase. Mol. Cell Biol. 12: 4164-9.

Smith P, Syed N, Crook T. (2006). Epigenetic inactivation implies a tumor suppressor function in hematologic malignancies for Polo-like kinase 2 but not Polo-like kinase 3. Cell Cycle 5: 1262-1264.

Song S, Grenfell TZ, Garfield S, Erikson RL, Lee KS. (2000). Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Mol. Cell Biol. 20: 286-298.

Southern E, Mir K, Shchepinov M. (1999). Molecular interactions on microarray. Nat. Genet. 21: 5-9.

Stegmeier F, Visintin R, Amon A. (2002). Separase, polo kinase, the kinetochore protein Slk 19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108: 207-220.

Strachan GD, Ostrow LA, Jordan-Sciutto KL. (2005). Expression of the fetal Alz-50 clone 1 protein induces apoptotic cell death. Biochem. Biophys. Res. Commun. 336: 490495.

Strober BE, Dunaief JL, Goff SP. (1996). Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol. Cell Biol. 16: 1576-1583.

Swallow CJ, Ko MA, Siddiqui NU, Hudson JW, Dennis JW. (2005). Sak/Plk4 and mitotic fidelity. Oncogene. 24: 306-312.

Su F, Overholtzer M, Besser D, Levine AJ. (2002). WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. Genes Dev. 16: 46-57.

Sunkel, CE, Glover DM. (1988). Polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J. Cell Sci. 89: 25-38.

Takemasa I, Yamamoto H, Sekimoto M, Ohue M, Noura S, Miyake Y, Matsumoto T,Aihara T, Tomita N, Tamaki Y, Sakita I, Kikkawa N, Matsuura N, Shiozaki H, Monden. (2000). Overexpression of CDC25B phosphatase as a novel marker of poor prognosis of human colorectal carcinoma. Cancer Res. 60: 3043-3050.

Takekawa M, Saito H. (1998). A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95: 521-530.

Tanaka S, Sugimachi K, Saeki H, Kinoshita J, Ohga T, Shimada M, Maehara Y, Sugimachi K. (2001). A novel variant of WISP1 lacking a Von Willebrand type C module overexpressed in scirrhous gastric carcinoma. Oncogene. 20: 5525-5532.

Tanaka S, Sugimachi K, Kameyama T, Maehara S, Shirabe K, Shimada M, Wands JR, Maehara Y. (2003). Human WISP1v, a member of the CCN family, is associated with invasive cholangiocarcinoma. Hepatology 37: 1122-1129.

Tang J, Erikson RL, Liu X. (2006). Checkpoint kinase1 (Chk1) is required for mitotic progression through negative regulation of polo-like kinase 1. Proc. Natl. Acad. Sci. 103: 11964-69.

Toyoshima-Morimoto F, Taniguchi E, Nishida E. (2002). Plk1 promotes nuclear translocation of human Cdc 25 C during prophase. EMBO Rep. 3: 341-8.

Tsou M-FB, Stearns T. Mechanism limiting centrosome duplication to once per cell cycle. Nature 442: 947-957.

Tsvetkov L, Xu X, Li J, Stern DF. (2003). Polo-like kinase 1 and Chk2 interact and colocalize to centrosomes and the midbody. J. Biol. Chem. 278: 8468-8475.

Vandel L, Nicolas E, Vaute O, Ferreira R, Ait-Si-Ali S, Trouche D. (2001).
Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell Biol. 21: 6484-6494.

Van de Weerdt BCM, Medema, RH. (2005). Polo-Like Kinases: A team in control of the division. Cell Cycle. 8: 853-864.

Van Vugt MA, Smits VA, Klompmaker R, Medema RH. (2001). Inhibition of Pololike kinase 1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol. Chem. 276: 41650-60.

Van Vugt MA, Bras A, Medema RH. (2004) Polo-like kinase-1 controls recovery from a G2 DNA-damage-induced arrest in mammalian cells. Mol. Cell 15: 799-811.

Volpert OV, Dameron KM, Bouck N. (1997) Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 14: 1495-1502.

Wakefield JG, Bonaccorsi S, Gatti M. (2001). The drosophila protein asp is involved in microtubule organization during spindle formation and cytokinesis. J. Cell Biol. 153: 637-648.

Wang Q, Xie S, Chen J, Fukasawa K, Naik U, Traganos F, Darzynkiewicz Z, Jhanwar-Uniyal M, Dai W. (2002). Cell cycle arrest and apoptosis induced by human Polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol. Cell. Biol. 22: 3450-3459.

Wang S, Nath N, Adlam M, Chellappan S. (1999). Prohibitin, a potential tumor suppressor, interacts with Rb and regulates E2F function: Oncogene. 18: 3501-3510.

Wang S, Fusaro G, Padmanabhan J, Chellappan SP. (2002). Prohibitin co-localizes with Rb in the nucleus and recruits $\mathrm{N}-\mathrm{CoR}$ and HDAC1 for transcriptional repression. Oncogene. 21: 8388-8396.

Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, Hollander MC, O'Conner PM, Fornace Jr AJ, Harris CC. (1999). GADD45 induction of G2/M cell cycle checkpoint. Proc. Natl. Acad. Sci. 96: 3706-3711.

Warnke S, Kemmler S, Hames RS, Tsai, HL, Hoffmann-Rohrer U, Fry AM, Hoffmann I. (2004). Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr. Biol. 14: 1200-1207.

Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H. (2004). M-phase kinases induce phospho-dependent ubiquitination of somatic Weel by SCFbeta-TrCP. Proc. Natl. Acad. Sci. 101:4419-24.

Weichert W, Schmidt M, Gekeler V, Denkert C, Stephan C, Jung K, Loening S, Dietel M, Kristiansen G. (2004). Polo-like kinase 1 is overexpressed in prostate cancer and linked to higher tumor grades. Prostate 60: 240-245.

Wolf G, Hildenbrand R, Schwar C, Grobholz R, Kaufmann M, Stutte HJ, Strebhardt K, Bleyl U. (2000). Polo-like kinase: a novel marker of proliferation: correlation with estrogen-receptor expression in human breast cancer. Pathol. Res. Pract. 196: 753-759.

Wu W, Fan YH, Kemp BL, Walsh G, Mao L. (1998). Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res. 58: 4082-4085.

Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP. (2001). Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res. 61: 8917-8923.

Xie S, Wu H, Wang Q, Cogswell JP, Husain I, Conn C, Stambrook P, JhanwarUniyal M, Dai W. (2001). Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J. Biol. Chem. 276: 43305-43312.

Xie S, Xie B, Lee MY, Dai W. (2005). Regulation of cell cycle checkpoints by polo-like kinases. Oncogene. 24: 277-86.

Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ. (2000). Wisp1 is a Wnt1 and β-catenin responsive oncogene. Genes Dev. 14: 585-595.

Yan X, Chua M, He J, So SK. (2008). Small interfering RNA targeting CDC25B inhibits liver tumor growth in vitro and in vivo. Mol. Cancer 7: Manuscript in Press.

Yarm FR. (2002). Plk phosphorlylation regulates the microtubule stabilizing protein TCTP. Mol. Cell Biol. 22: 6209-6221.

Zhan Q, Bae I, Kastan MB, Fornace Jr AJ. (1994). The p53- dependent gamma-ray response to GADD45. Cancer Res. 54: 2755-2760.

Zhan Q, Fan S, Smith ML, Bae I, Yu K, Alamo Jr I, O’Conner PM, Fornace Jr AJ. (1996). Abrogation of p53 function affect gadd gene responses to DNA base-damaging agents and starvation. DNA Cell Biol. 15: 805-815.

Zhan Q. (2005). Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat Res. 569: 133-143.

Zhang W, Fletcher L, Muschel RJ. (2005). The role of polo-like kinase in the inhibition of centrosome separation after ionizing radiation. J. Biol. Chem. 280: 42994-42999.

Zhang Y, LeRoy G, Seelig HP, Lane WS, Reinberg D. (1998) The dermatomyositisspecific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95: 279-289.

Zhang Y, Sun Z, Iratni R, Erdjument-Bromage H, Tempst P, Hampsey M, Reinberg D. (1998). SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol. Cell. 1: 1021-1031.

Zhao DH, Hong JJ, Guo SY, Yang RL, Yuan J, Wen CY, Zhou KY, Li CJ. (2004). Aberrant expression and function of TCF4 in the proliferation of hepatocellular carcinoma cell line BEL-7402. Cell Res. 14: 74-80.

Zhou T, Aumais JP, Liu X, Yu-Lee LY, Erikson RL. (2003). A role for Plk1 phosphorylation of NudC in cytokinesis. Dev. Cell 5: 127-138.

Zimmerman WC, Erikson RL. (2006). Polo-like kinase 3 is required for entry into S phase. Proc. Natl. Acad. Sci. 104: 1847-1852.

VITA AUCTORIS

NAME: Alan James Morettin
PLACE OF BIRTH: Sault Ste. Marie, ON
YEAR OF BIRTH: 1980
EDUCATION: St. Mary's College, Sault Ste. Marie, Ontario
1994-1999
Lake Superior State University, Sault Ste. Marie, MI
1999-2003 B.Sc.
University of Windsor, Windsor, Ontario
2005-2008 M.Sc.

[^0]: Prohibitin Transcript Profiles in Wild Type \& Heterozygous MEFs over Three PCR Time Points

[^1]: Time After Exposure to Ultraviolet Radiation

[^2]: Metabolism Lysophosphatidic acid acyltransferase zeta Alpha 1,4-galactosyltransferase

 Solute carrier family 27 (fatty acid transporter), member 4 Methylcrotonoyl-Coenzyme A carboxylase 2 (beta) Solute carrier family 33 (acetyl-CoA transporter), member 1 Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2

 Ribosomal protein S6 kinase, polypeptide 2
 Cell Signaling
 Paternally expressed 10 isoform RF1
 Growth factor receptor bound protein 7 Syndecan 1

[^3]: 0.452788035 0.394584279
 0.239903606

