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ABSTRACT

Bayesian networks are widely used for knowledge representation and uncertain reasoning. 

One of the most important services which Bayesian networks provide is (probabilistic) 

inference. Effective inference algorithms have been developed for probabilistic inference 

in Bayesian networks for many years. However, the effectiveness of the inference 

algorithms depends on the sizes of Bayesian networks. As the sizes of Bayesian networks 

become larger and larger in real applications, the inference algorithms become less 

effective and sometimes are even unable to carry out inference.

In this thesis, a new inference algorithm specifically designed for large and complex 

Bayesian networks, called path propagation, is proposed. Path propagation takes full 

advantage of one of the most popular inference algorithms, i.e., global propagation. It 

improves over global propagation by carrying out inference only in certain paths in a 

junction tree that are relevant to queries. Compared with global propagation, path 

propagation takes less computational resources and can effectively improve the 

computational efficiency for inference in large and complex Bayesian networks.
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CHAPTER I

INTRODUCTION

Over the past decade, Bayesian networks have been widely exploited in knowledge 

representation and reasoning in uncertainty management [27]. A Bayesian network is a 

directed acyclic graph augmented with conditional probability tables. It can be viewed as 

a graphical representation of a domain with uncertainty. Probabilistic inference simply 

means computing posterior probability distribution P(X\Y=y) for variable(s) X  of interest 

given the evidence that some other variable(s) Y is taking the value y. Computing P{X\Y=y) 

is also called a query in the thesis. Probabilistic inference algorithms can be categorized 

into two kinds, exact inference and approximate inference. In this thesis, we focus on 

algorithms for exact inference. Henceforth, the term inference in this thesis refers to exact 

inference unless otherwise specified. Although the problem of probabilistic inference is 

NP-hard in general [17] [18], many practically effective inference algorithms have been 

developed and implemented [5], for example, variable elimination [12], the Sum-Product 

algorithm [11], the arc reversal algorithm [15][16]. Among all inference algorithms that 

have so far been proposed, the most popular and successful algorithms are based on the 

idea in [27]. It converts a Bayesian network first into a secondary structure which is a 

junction tree, and then carries out inference on the junction tree. There are three 

architectures based on this idea, namely, the Lauritzen-Spiegelhalter (LS) architecture 

[14], the Hugin architecture [28][29], and the Shenoy-Shafer (SS) architecture [30][31]. 

Among these three different architectures, the Hugin architecture is not only technically 

superior but also commercially successful. The Hugin Tool [3 7] [3 8], based on Hugin 

architecture by the Hugin Ltd., is popularly applied in various domains. It implements the 

renowned global propagation method which carries out inference on the junction tree.

However, for global propagation, it has several shortcomings. It only performs quite well 

on Bayesian networks within 1000 nodes. For large and complex Bayesian networks, the 

response speed of performing global propagation is quite slow. Also, it wastes lots of

l
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computational resources. In the thesis, path propagation, based on the Hugin architecture, 

is proposed. It carries out inference only in certain paths in a junction tree that are 

relevant to queries. It is based on the query imposed by users and it answers the query 

only. From this point of view, path propagation takes less computational resources than 

global propagation and can effectively improve the computational efficiency for inference 

in large and complex Bayesian networks.

The following explains the motivation of this thesis. Furthermore, the contributions of 

this thesis are highlighted and the structure of the remaining chapters is outlined.

1.1 MOTIVATION

Recently, researchers notice that the Bayesian network model has inherent deficiencies in 

its modeling capacity for large and complex domains [26]. Many extensions of the 

Bayesian network model have been proposed, such as the multiply sectioned Bayesian 

network (MSBN) model [21][22] and the object-oriented Bayesian network (OOBN) 

model [19] [20]. The MSBN model and the OOBN model are not focusing on developing 

completely new methods for inference but focusing more on providing methodologies for 

modeling large and complex Bayesian networks. In fact, in order to conduct inference on 

these two models, one transforms them into Bayesian networks first, and then apply the 

regular inference algorithm on the transformed Bayesian network [2]. However, a single 

Bayesian network converted from either an OOBN or a MSBN could be very large and 

complex that the existing inference algorithms could not be effectively and efficiently 

applied. This presents challenge and opportunity to develop new inference algorithms that 

are specifically tailored to large and complex Bayesian networks.

Our experiments have shown that global propagation performs quite well on many 

Bayesian networks in practice within 1000 nodes, however, when dealing with large and 

complex Bayesian networks with more than 1000 nodes, problems occur and global 

propagation crashes. There are three possible reasons. First of all, performing global 

propagation may not be possible due to large and complex Bayesian networks. One of the

2
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experiments conducted on a Bayesian network with about 1300 nodes returns an out of 

memory error message on a P4 machine with 512 MB memory and normal load [25]. 

Secondly, the response speed of performing global propagation is slow on large and 

complex Bayesian networks, which means that the response time will be much longer. 

Thirdly, applying global propagation on large and complex Bayesian networks wastes 

many computation resources. For global propagation, it carries out inference over the 

whole junction tree and then the probability distribution of any variable of interest in a 

Bayesian network can be known thereinafter [44]. However, it is unreasonable to presume 

that users interest in the probability distributions of all variables in many real applications. 

In practice, users often interest in the probability distributions of a few variables in a 

Bayesian network, so performing global propagation on the whole junction tree only for a 

few variables of interest will surely waste lots of computational resources from this point 

of view.

1.2 CONTRIBUTION

Path propagation can well solve the shortcomings presented in Section 1.1, such as the 

waste of computational resources, the slow response speed for inference in large and 

complex Bayesian networks.

The first contribution for path propagation is that performing path propagation takes 

much shorter time than performing global propagation. Because the former only involves 

certain paths in a junction tree while the latter carries out inference in the whole junction 

tree. Obviously, computations caused by the former will be fewer than computations 

caused by the latter, which indicates that performing path propagation is more 

computational efficient than performing global propagation specifically in large and 

complex Bayesian networks.

Secondly, performing path propagation on large and complex Bayesian networks takes 

less computational resources than global propagation. After performing global 

propagation on the whole junction tree, the probability distribution of any variable of

3
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interest in a Bayesian network can be known thereinafter. As a matter of fact, users often 

interest in the probability distributions of a few variables in a Bayesian network, so 

performing global propagation on the whole junction tree only for a few variables of 

interest will surely waste lots of computational resources. However, for path propagation, 

if  users interest a variable, a path will be determined in a junction tree and inference is 

carried out only on this path. So path propagation is based on a query which is imposed 

by users and it only answers the query. It takes less computational resources than global 

propagation.

1.3 ORGANIZATION

The rest of this thesis is organized as follows:

•  Chapter 2 reviews the background knowledge of Bayesian networks. At the end of 

this chapter, the LS architecture, the Hugin architecture, and the SS architecture are 

introduced.

•  Chapter 3 proposes path propagation with two fundamental theorems and scenarios. 

Then the prototype of path propagation is presented. At last, the analysis of these two 

scenarios is provided.

•  Chapter 4 describes the general implementation information and provides the 

experimental results. These experimental results are compared in this chapter and 

evaluations are obtained.

•  Chapter 5 concludes the thesis and discusses the directions of future work.

4
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CHAPTER II

BACKGROUND KNOWLEDGE

This chapter briefly reviews the fundamentals of probability theory and Bayesian 

networks, such as the definition of Bayesian networks, the notations related to Bayesian 

networks, and the general inference procedure in Bayesian networks. At the end of this 

chapter, three existing architectures for inference in Bayesian networks are discussed.

2.1 PROBABILITY THEORY

Probability theory is used as the mathematical research of phenomena which is uncertain. 

More specifically, when an experiment which is conducted under the same circumstances 

produces different outcomes, probability is used to model these outcomes. In probability 

theory, the outcome of an experiment may not certain and all of its possible outcomes are 

expectable in advance. Therefore, the set of all these possible outcomes of an experiment 

is called the sample space of the experiment and is often denoted as S. All these possible 

outcomes of S  should be mutually exclusive and exhaustive. The term mutually exclusive 

means that all these possible outcomes of S  can not overlap, while the term exhaustive 

means that S  must include all possible outcomes. For example, from the coin-tossing 

experiment, S  is composed of two outcomes which are “heads” and “tails”, written as 

S= {heads, tails}. In the language of probability, events are use to represent certain subsets 

of S. In that case, consider a set of events X, a probability is a numerically valued function 

that assigns a real number denoted as P(X) to X  and P(X) should be between 0 and 1. 

Therefore, P(X) is called the probability of X. If there is another set of events F, the 

probability of A  given the occurrence of Y is called the conditional probability of AT given 

Y, written as P(X\Y). Suppose an event happens whenever X  and Y happen at the same 

time, it is called the intersection of X  and F, denoted as XY  or X nY. Therefore, the

conditional probability of X  given F is defined as P (X  \ Y) = » provided P(Y)>0

5
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[45] [46]. In probability theory, probabilities are usually very sensitive given some 

conditioning information. However, sometimes a probability remains unchanged when 

given the conditioning information. To make the discussion more concrete and 

manageable, given two sets of events X  and T, if the probability of X  remains unchanged 

with knowing the occurrence of Y, written as P(X\Y)=P(X), X  and Y are said to be 

independent to each other. Suppose there is another set of events Z, if  X  and Y are said to 

be conditionally independent given Z, then the probability of X  given Z remains 

unchanged with knowing the occurrence of Y, written as P(X\Y, Z)=P(X\Z). In this 

equation, the comma represents logic conjunction “and” which is denoted as the 

symbol “u ”.

In probability theory, most experiments that we encounter produce outcomes that can be 

interpreted in terms of real numbers, so these numerical outcomes whose values can vary 

from experiment to experiment are so called random variables, that is, a random variable 

is a real-valued function on S  [46]. In general, random variables may be discrete and 

continuous. However, we only consider discrete random variables here. Henceforth, the 

term random variables in this thesis refer to discrete random variables unless otherwise 

specified. In the thesis, random variables are denoted with boldface italic uppercase 

letters, e.g., X, Y, Z, and their actual values are represented as bold lowercase letters, e.g., 

x, y, z. The values of a random variable should be mutually exclusive and collectively 

exhaustive. For example, there is a random variable X  only containing two values x j  and 

X2 . If x j  and X2  are mutually exclusive, they can not both happen simultaneously. If x j  and 

X2  are collectively exhaustive of X, they should encompass the whole range of possible 

values of X. Therefore, a probability distribution of a random variable, also called a 

probability distribution function of a random variable, maps each possible values of a 

random variable into real numbers and all these numbers should be between 0 and 1. 

Furthermore, all these numbers must add to 1. Two distributions in probability theory, 

called conditional probability distribution (CPD) and joint probability distribution (JPD), 

are two of the most important notations in Bayesian network. They will be discussed in 

Section 2.2.2.

6
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2.2 BAYESIAN NETWORKS

This section briefly reviews the background knowledge of Bayesian networks and 

discusses inference in Bayesian networks.

2.2.1 A Brief Introduction of Bayesian Networks

A Bayesian network is an effective and powerful framework widely used in knowledge 

representation and reasoning under uncertainty [8]. It is a kind of graphical model. 

Graphical models include undirected graphical models and directed graphical models, 

where nodes are used to represent random variables while arcs are used to represent the 

probabilistic dependence between a node and its parents. Undirected graphical models, 

also named Markov Random Fields, have a straightforward definition of independence: 

two (sets of) nodes called X  and Y are conditionally independent when given a third set 

called Z, if  all paths between the nodes in X  and Y are separated by a node in Z [3] [4]. For 

directed graphical modes, also called Bayesian networks, they can not have directed 

cycles. Therefore, the definition of independence for directed graphical models has a 

more complicated concept than undirected graphical models because of adding the 

directionality of the arcs. More details about independence in Bayesian networks are 

discussed in Section 2.2.2.

A Bayesian network contains two components called the graphical component and the 

numerical component. The graphical component is a directed acyclic graph (DAG) used 

to indicate direct influences among variables. Nodes are used to indicate random 

variables and directed arrows or links are used to connect two nodes. In this thesis, we 

will use the terms “nodes” and “variables” interchangeably hereafter. The numerical 

component is a set of conditional probability tables (CPTs). Each node in a Bayesian 

network is attached with the conditional probability of the node given its parents. Figure 1 

illustrates a small example of a Bayesian network [5]. The left side of Figure 1 illustrates 

the graphical component of the Bayesian network which is a DAG, while the right side of 

Figure 1 illustrates a set of CPTs of the Bayesian network.

7
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Figure 1: An example of a Bayesian network.

2.2.2 Basic Notations of Bayesian Networks

In Bayesian networks, possible outcomes of a variable can be also called states. These 

states for a random variable are mutually exclusive and collectively exhaustive. For 

example, consider a variable X  associated with three values x\, xz and *3, if a value *2 is 

assigned to X, this operation is called that xz is an instantiation of X  and the value xz to X  

is called evidence which means an observed instantiation of some random variables. 

Evidence is denoted as e in the thesis. In the thesis, sets of variables are represented by 

italic uppercase letters, e.g., X, Y, Z, and their instantiations are denoted by italic 

lowercase letters, e.g. x, y, z. Thus, more precisely, a set of variables Y are instantiated 

through assigning a value to each variable in Y and this assignment is denoted by y. So y  

is called an instantiation of Y and y  to Y is called evidence. Consider two pieces of 

evidence ei and If there exists a variable X  which is included in both pieces of 

evidence and X  is taking same value in ej and ez, then these two pieces of evidence are 

called compatible, otherwise, called contradicting [25].

A potential is defined as a function over Y that maps each instantiation y  into a 

nonnegative real number. It can be viewed as matrices and implemented as tables. The 

symbol “<])” is used to represent potential here. In Bayesian networks, there are two basic 

and important operations on potentials, called multiplication and marginalization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Suppose there are two sets of variables called X  and 7. Their corresponding potentials 

are0(X) and 0(7) .The multiplication of <j)(X) and 0(7) is a potential 0(Z) where Z=XU 7,

defined as 0(Z) = <p(X) ■ 0 (7 ). If X  c  7  , the marginalization of 0(7) onto X  is a

potential <j)(X), defined as 0(A) = ^ 0 ( 7 ) ,  where the operator denotes set difference.

Given two sets of variables X  and 7, conditional probability distribution (CPD) of X  

given an evidence of Y=y is the probability distribution of X  conditioned on the assumed 

value y  of 7. Prior probability means the probability of a variable X  without given any 

evidence. It can be written as P(X). Posterior probability means the probability of a 

variable X  given evidence e. It can be written as P(X\e). Joint probability distribution 

(JPD) maps each of the combinations of all possible values of all variables to nonnegative 

real number and all these numbers should be between 0 and 1. Furthermore, the sum of 

these numbers must add to 1. In Bayesian networks, JPD can be calculated as:

P (X n X 2,...,X n) = f [ P ( X i | parents(X ,))
;=i

WhereX i, X 2 ,..., X n represent all nodes as well as all variables in Bayesian networks and 

parents(Xi) means the parents of Xi.

In Bayesian networks, a very important concept is independence assertions which are 

encoded in the DAG. The construction of Bayesian networks is based on independence 

assertions. If X  and 7  are conditionally independent given Z, for all combinations of 

values x, y, and z, an independence assertion is a statement of the form which holds 

P(x\z)=P(x\y, z), denoted as I(X, Z, Y) where Z is not empty. More concretely, even though 

z is assigned to Z, the probability of jc given z is not affected by knowing y. If Z is empty, 

then X  and 7  are said to be independent to each other, denoted as I(X, 0 ,  7) where the 

symbol “0  ” denotes empty set. In Bayesian networks, independence assertions indicate 

every variable is conditionally independent of its non-descendants given its parents. Thus, 

through a graphical criterion called d-separation [6], a DAG can encode all these 

independence assertions. Independence assertions are very important in Bayesian 

networks because the renowned Probability Propagation in Trees o f  Clusters (PPTC)

9
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method, introduced in the next section, uses them to reduce the complexity for inference 

in Bayesian networks [5].

2.3 INFERENCE IN BAYESIAN NETWORKS

Probabilistic inference simply means computing posterior probability distribution 

P(X\Y=y) for variable(s) X  of interest given the evidence that some other variable(s) Y is 

taking the value y. Generally speaking, there are two kinds of inference. One is about 

inference with no evidence observed (e.g. P(X)) and another is about inference with 

evidence observed (e.g. P(X  | e)), where X  denotes a set of variables and e denotes 

evidence. Both of them will be briefly introduced in this section. A very popular 

probabilistic inference method called the Probability Propagation in Trees o f  Clusters 

(PPTC) can be applied on these two kinds of inference. It contains synthesized 

approaches which are scattered throughout the literature and changes these approaches to 

algorithmic form [5]. PPTC includes two steps for inference in Bayesian networks. First 

of all, a Bayesian network is converted into a secondary structure which is a junction tree. 

Secondly, inference is carried out on the junction tree by performing some popular 

algorithms, such as the renowned method called global propagation. Based on this idea, 

the LS architecture, the Hugin architecture and the SS architecture have been proposed 

over the past decade. Among these three architectures, the Hugin architecture is not only 

technically superior but also commercially successful. The Hugin Tool, based on Hugin 

architecture by the Hugin Ltd., is popularly applied in various domains for inference in 

Bayesian networks and other tasks. Thus, we introduce these three architectures with a 

focus on the Hugin architecture in this chapter.

2.3.1 The Conversion of a Bayesian Network into a Junction Tree

A junction tree includes two components, the graphical component and the numerical 

component. For the graphical component, it is an undirected tree. Each node in the tree 

represents a clique containing a set of variables, while each edge in the tree represents an 

intersection of two adjacent cliques which is called a separator. Consider two adjacent 

cliques C, and Cy. So their separator Sy equals C,n Cj. The size of a clique or separator

10
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means the product of all states of all variables contained in a clique or separator. Cliques 

in a junction tree should satisfy the junction tree property that all cliques on the path 

between any clique X  and any clique Y have to contain the intersection of X  and Y, 

e .g . ,In f [5 ] [9 ] .  For the numerical part, each clique is associated with a potential. 

However, these potentials in a junction tree are not arbitrarily defined. They have to 

satisfy a constraint to make the junction tree locally consistent, which means for each 

clique X  associated with 0(A) and its neighboring separator S  associated with 0(5), this

equation 0(5) = ^ 0 ( X )  should be satisfied. Also, these potentials have to satisfy another
x -s

constraint that the joint probability distribution P(U) can be denoted by these potentials

TT.0(X,.)through the equation P(C/) = 4 ^ i-—, where U includes all random variables in a11,
Bayesian network and 0(X() and 0(5y) represents the clique and separator potentials

respectively. If the potentials in a junction tree satisfy these two constraints, for each 

clique (or separator) X, it holds this equation: </>(X) = P(X)  [29]. Hence, if  a user interests 

in any variable in the junction tree and a clique (or separator) is identified that it contains 

this variable, the probability distribution of this variable can be obtained from 

marginalization of the clique (or separator) potential onto this variable. Figure 2 illustrates 

an example of a junction tree. The top half of Figure 2 illustrates the undirected tree while 

the bottom half of Figure 2 gives two examples of potentials associated with a clique and 

a separator in the undirected tree.

ABD ADE ACE CEG

Clique DEF
Separator EGDEF EGH

AEAD

EG

CE

DE

a b d M l
on CO CO .225
on cn off .025
on o f f CO .125 a d ♦«o(Ad)

on o f f o f f .125 CO on .35

o f f CO on .ia o ♦ad = * o f f .15

o f f CO o f f .020 o f f on . 33
o f f o f f CO .150 o f f o f f .17

o f f o f f o f f .ISO ate

Figure 2: An example of a junction tree.

li

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Generally speaking, there are four steps to convert a Bayesian network into a junction tree, 

called moralization, triangulation, identification o f  maximal cliques, and building an 

optimal junction tree. In order to make these four steps clearly and concretely, we take 

Figure 1 as an example to show how to convert Figure 1 into a junction tree through the 

four steps.

Step 1: Moralization

First of all, delete the directions of all arcs in Figure 1 to convert it into an undirected 

graph. The undirected graph is illustrated in Figure3.

Figure 3: The undirected graph after deleting the directions of the arcs in Figure 1.

Secondly, for each node in Figure 3, identify its parents through Figure 1, and then 

connect each pair of its parents by adding an undirected arc. After that, the undirected 

graph becomes the moralized graph. Figure 4 is the moralized graph of Figure 3. Dashed 

lines in Figure 4 represent the undirected arcs added to Figure 3.

Figure 4: The moralized graph of Figure 3.

12
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Step 2: Triangulation

If the moralized graph is triangulated, then every cycle of length four or greater in this 

graph should contain an undirected edge which connects two nonadjacent nodes in the 

cycle [9]. If not, undirected arcs are added to make the graph satisfy the criteria. The 

elimination ordering [5] algorithm is used to selectively add undirected arcs to make the 

moralized graph triangulated, so cliques can be identified from the triangulated graph. 

Generally speaking, many existing algorithms can be used to triangulate a moralized 

graph. Elimination ordering algorithm is one of the optimal triangulation methods which 

minimize the sum of the sizes of the cliques obtained from the triangulated graph. Figure 

5 illustrates the triangulated graph of Figure 4. Red lines in Figure 5 represent the 

undirected arcs added to Figure4.

Figure 5: The triangulated graph of Figure 4.

Step 3: Identification o f Maximal Cliques

From the triangulated graph, complete and maximal cliques have to be identified. 

Generally speaking, a clique is a sub-graph of an undirected graph. Since the triangulated 

graph is an undirected graph, cliques can be identified from the triangulated graph. In 

order to make cliques complete and maximal, make sure that each pair of different nodes 

in a clique must be linked by an edge and the clique is not enclosed in a larger complete 

sub-graph. Therefore, six complete and maximal cliques are obtained from Figure 5, 

clique EGH, clique CEG, clique DEF, clique ACE, clique ABD, and clique ADE.

Step 4: Building an Optimal Junction Tree

13
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After obtaining these six cliques in step 3, a junction tree can be built. In order to satisfy 

the junction tree property, different ways can be used to link these six cliques to produce 

different junction trees. In General, given a set of k  cliques, first create an empty separator 

set S. For each distinct two cliques X  and Y, create a separator Sxy that Sxy equals the 

intersection of X  and Y. Then Sxy is inserted into S. At last, separators in S are iteratively 

inserted between pairs of cliques until all k  cliques are connected by k-1 separators. A 

general algorithm called Building an Optimal Junction Tree [5] can select k-1 separators 

in S  to obtain an optimal junction tree. An optimal junction tree can minimize the 

computational time needed for probabilistic inference. Figure 6 illustrates an optimal 

junction tree constructed by the six cliques obtained from Figure 5.

Figure 6: An optimal junction tree constructed by the six cliques obtained from Figure 5.

After obtaining the optimal junction tree, the potential of each clique in the junction tree 

is initialized to 1 in the first place. Then for each clique in the junction tree, a set of CPTs 

are assigned to obtain its potential. The way to assign the CPTs into cliques is described 

as follows. For each variable and its parents in the original Bayesian network, if  they are 

all contained in a clique in the junction tree, then this variable’s CPT is assigned to the 

clique. After assigning every variable’s CPT into a corresponding clique, for each clique, 

we multiply these CPTs to obtain the potential of the clique. However, these potentials 

can not satisfy the constraint that the junction tree must be locally consistent. Therefore, 

some algorithm (e.g., global propagation) needs to be applied on these potentials to make 

the junction tree locally consistent. More details will be discussed in the next section.

2.3.2 Global Propagation on a Junction Tree

For PPTC, an algorithm called global propagation performs a series of ordered message

14
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passes on the junction tree to make it locally consistent. A message pass which is also 

called a local manipulation happens between a clique X  and a neighboring clique Y 

though their separator S. Thus, after completing global propagation, the junction tree is 

locally consistent. So probabilities can be calculated on the locally consistent junction 

tree.

First of all, a massage can be calculated between two adjacent cliques through their 

separator. Consider two adjacent cliques C, and Cywith their separator Sy  =C, n  Cj. Their 

associate potentials are <J)(C,j, <j)(C,), <)>(*%). The message pass from clique C,to clique C, 

through their separator Sy can be calculated in two steps called projection and absorption.

Save the old potential table <(>(.%) to <t>oW(5,y) first, denoted as<j>old(Sy) tp iSy) . Then 

calculate a new potential table to Sy from clique C, and store it to ()>(*%), defined

Absorption:

Assign a new potential table to clique C y, using both old and new potential tables of Sy,

Combining projection and absorption, the following formula is generated for calculating a 

message pass between two adjacent cliques.

Secondly, calculated messages can be passed by global propagation. It contains three 

steps. Choose an arbitrary clique X  in a junction tree at first. Then unmark all cliques and 

call an algorithm named Collect-Evidence(X) [10]. At last, unmark all cliques and call an

Projection:

5 > (Q .

defined a s <— <j>(Cj)

* s ¥)
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algorithm named Distribute-Evidence(X) [10].

For Collect-Evidence(X), X  is marked first and then Colleci-Evidence is called recursively 

on X s  unmarked neighboring cliques, if any. At last, a message is passed from X  to the 

clique invoked Collect-Evidence(X). For Distribute-Evidence(X), X  is marked first and 

then a message is passed from X  to each of its unmarked neighboring cliques, if  any. At 

last, Distribute-Evidence is called recursively o n T s  unmarked neighboring cliques, if any. 

Thus, global propagation passes messages within the whole junction tree and calculates 

messages between every two adjacent cliques. Figure 7 illustrates how to pass messages 

using global propagation in Figure 6 [5]. Arrows in Figure 7 represent the procedure of 

message passes in Figure 6. The root clique in Figure 7 is clique ACE. Solid arrows 

represent Collect-Evidence while dashed arrows represent Distribute-Evidence. Numbers 

denote the message passing sequence.

ACEABD CEOAPE

EGHDEF

DE

AE

EG

CEAD

 COLLECT-EVIDENCE  HP*- DISTRIBUTE-EV1DENC E

Figure 7: How to pass messages using global propagation in Figure 6.

After performing global propagation on the junction tree, it becomes locally consistent. 

P(Ci) and P(Sj) can be obtained for every clique and separator potential in the junction 

tree, which means these cliques and separator are marginalized. Hence, they can be called 

marginals. Therefore, probability distributions can be calculated through these marginals. 

As we have mentioned before, there are two kinds of inference. One is about inference 

with no evidence observed (e.g. P(X)) and another is about inference with evidence 

observed (e.g. P (X  \ e)). More details about these two inference procedures are introduced 

in the following two sections.
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2.3.3 Inference with No Evidence Observed

Suppose a variable X  is interested in a Bayesian network. If there is no evidence observed, 

four steps are performed to obtain the prior probability distribution of X  of interest. They 

are listed as follows and Figure 8 illustrates the process of inference with no evidence 

observed.

i. Convert a Bayesian network into an optimal junction tree, described in Section

2.3.1.

ii. Initialize all potentials in the junction tree, introduced in Section 2.3.1.

iii. Perform global propagation on the whole junction tree, discussed in Section 2.3.2

iv. Find a marginalized separator that contains X, say P(Si). Then perform 

marginalization (introduced in Section 2.2.2) on this separator to return the prior 

probability distribution of X  of interest, say P(X). If no separator in the junction 

tree contains X, then find a marginalized clique that contains X, say P(Q) and 

apply marginalization on this clique to return P(X).

1. G raphical tr a n sfo r m a tio n

2 . P o ten tia ls  in itia liza tio n

G lobal P ropagation

M arginalization

A Bayesian network

Consistent junction tree

Inconsistent junction tree

f W
Figure 8: Inference with no evidence observed.

2.3.4 Inference with Evidence Observed

Suppose the posterior probability distribution of a variable X  given evidence e is 

interested in a Bayesian network. In order to return the posterior probability distribution
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of X  given e, a new notation called the likelihood is introduced. The likelihood of a 

variable is a potential that encodes each value of this variable into a real number, denoted 

as A . The real number can only be 0 or 1. For example, consider a variable F  containing

0 J  = y t
three values yi, y2, and yj, if  y2 is observed to F  as evidence, thenA(F) = <l,F = y 2 .

o ,Y = y 3

However, if  no values of Y is observed which means F  is not the evidence, 

\ Y  = y,
thenA(F) = < 1,F = y 2 . Figure 9 illustrates the example of the likelihood of all variables 

h Y  = y 3

in Figure 1 given the evidence including B=off, 2i=on, and H= off.

A

r  a .(a ) i

MB),

A(C) i 

A (D), 

A(E),  

A (F), 

MG),

V A (H)

|1 ,A  = on 
[1 ,A = o ff

[0 ,B  = on 
[ IB  = o ff 

fl,C = on 
[l, C = o ff

[l ,D  = on 

[ ID  = o ff 

|\,E  = on 
[0 ,E  = o ff 

\\,F  = on 

[ IF  = off 

fl,G = on 
[l, G = off

[0 , H  = on 
|l ,H  = off

Figure 9: The example of the likelihood of all variables in Figure 1 given the evidence

including 2?=off, E=on, and H= off.

In order to return the posterior probability distribution of X  given evidence e, there are six
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steps described as follows and Figure 10 illustrates the process of inference with evidence 

observed:

i. Convert a Bayesian network into an optimal junction tree, described in Section

2.3.1.

ii. Initialize all potentials in the junction tree, introduced in Section 2.3.1. Also, 

initialize the likelihood of each variable according to evidence e.

iii. Incorporate the likelihood into the junction tree, that is, for each variable, if  it is 

included in e, its likelihood will be multiplied to the potentials that contain this 

variable.

iv. Perform global propagation on the whole junction tree, discussed in Section 2.3.2

v. Find a marginalized separator that contains X,  say P(St, e). Then perform 

marginalization (introduced in Section 2.2.2) on this separator to return the prior 

probability distribution of X  of interest, say P(X, e). If no separator in the 

junction tree contains X, then find a marginalized clique that contains X, say P(Q, 

e) and apply marginalization on this clique to return P(X, e).

vi. Apply normalization (introduced in Section 2.2.2) on P(X, e) to return the 

posterior probability distribution of X  of interest given e followed by the

P{X,e) P(X,e)formula: P (X  \e) = -
P(e) £ /> (* ,«>)'

1. G raphical tr a n sfo r m a tio n

2 . P o te n tia ls  in itia liza tio n

3. T h e  likelihood in itia liza tio n

1. T h e  likelihood in corp oration

2 . Global Propagation

1. M arginalization

2. N orm aliza tion

A Bayesian network

Consistent junction tree

Inconsistent junction tree

RX/e)
Figure 10: Inference with evidence observed.
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2.4 THE HUGIN ARCHITECTURE

The Hugin architecture introduces a separator which is the intersection of two adjacent 

cliques. It saves lots of computations by using separators [23]. The procedure for 

inference in the Hugin architecture includes two passes called Inward Pass and Outward 

Pass. It can be described as follows.

i. In order to save more computations, a clique with maximal size is picked as a 

root in the junction tree.

ii. After that, direct all arcs in the junction tree toward the root clique.

iii. For each node, send a message to its inward neighbor in the root clique’s

direction, starting from the cliques which are furthest from the root clique. This

is called Inward Pass.

iv. For each node, send a message to its outward neighbors away from the root

clique’s direction, starting from the root clique itself. This is called Outward 

Pass.

For Inward Pass, it is followed by six rules cited from [1].

Inward Pass:

Rule 1: When each non-root node has received messages from all its other neighbors, 

then it will send its message to a given neighbor.

Rule 2: When the root has received messages from all its neighbors, it will send 

messages to them.

Rule 3: A node computes the message by marginalizing its current potential to its 

intersection with this neighbor when it is ready to send its message to a particular 

neighbor, and then it sends this message to the separator between it and the neighbor. 

Rule 4: A separator will divide the message by its current potential when it receives 

a message containing the new potential from one of its two nodes, send the quotient 

(new potential)/(current potential) on to the other node, and then replace current 

potential with new potential.

Rule 5: A node replaces its current potential with the product of the potential and the 

message when it receives a message.
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Rule 6: When the root has received a message from all its outward neighbours, 

Inward Pass is end.

For Outward Pass, it is followed by four rules cited from [1],

Outward Pass:

Rule 1: When each node receives a message from its inward neighbor, then it can 

send its messages to its outward neighbors. However, the root can send a message to 

its outward neighbors immediately if it does not have inward neighbors.

Rule 2: A node computes the message by marginalizing its current potential to its 

intersection with the outward neighbor when it is ready to send a message to its 

outward neighbor. It sends this message to its outward neighbor. Moreover, this new 

message will replace the old potential as the new potential in its separator.

Rule 3: A node replaces its current potential with the product of that potential and the 

message when it receives a message from its inward neighbor.

Rule 4: When all leaves have received messages from their inward neighbors, 

Outward Pass is end.

At the end of Inward Pass, the root clique is marginalized, while at the end of Outward 

Pass, every clique and separator in the junction tree are marginalized, e.g., P(C,j and P(Si). 

Thus, the probability distribution for a variable of interest with no evidence observed can 

be calculated from a smallest size separator that contains the variable through 

marginalization. Also, the posterior probability distribution for a variable of interest with 

evidence observed can be also calculated from a smallest size separator that contains the 

variable through marginalization and normalization. If there is no separator that contains 

the variable of interest, it can be computed from a smallest size clique that contains the 

variable of interest.

2.5 THE LS ARCHITECTURE AND SS ARCHITECTURE

The LS architecture is basically simpler than the Hugin architecture. The difference 

between these two architectures is that the LS architecture does not contain separators.
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Figure 11 illustrates an example of the LS architecture based on Figure 1. In Figure 11, 

there are only six cliques and no separators. All computations with potentials are only 

calculated within cliques.

Figure 11: An example of the LS architecture based on Figure 1.

The procedure for inference in the LS architecture is almost the same as the Hugin 

architecture. It also includes two passes called Inward Pass and Outward Pass. Since the 

LS architecture does not contain separators, for Inward Pass of the LS architecture, a node 

calculates the message through marginalizing its current potential to its intersection with 

its inward neighbor when it is ready to send a message to the neighbor [1]. After that, this 

node sends this calculated message to the neighbor. Meanwhile, it divides its own current 

potential by this calculated message. At the end of Inward Pass, the root is marginalized, 

while each clique is marginalized at the end of Outward Pass, e.g., P(Ci). Thus, the 

probability distribution for a variable of interest with no evidence observed can be 

calculated from a smallest size clique that contains the variable through marginalization. 

Also, the posterior probability distribution for a variable of interest with evidence 

observed can be also calculated from a smallest size clique that contains the variable 

through marginalization and normalization.

Unlike the LS and Hugin architecture, the number of neighbours of each node in the SS 

architecture is the focused point for this architecture. It uses a new data structure called a 

binary junction tree used for efficiently calculating multiple marginals. A binary junction 

tree is a junction tree that no node has more than three neighbours and all combinations 

are exploited in a binary junction tree on a binary basis [24]. In that case, the SS 

architecture caches computation to decrease the computation cost caused by combination 

and marginalization.
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The procedure for inference in SS architecture also includes two passes called Inward 

Pass and Outward Pass. The procedure is cited from [1]:

i. In [35][36], a binary junction tree can be constructed by fusion algorithm 

[32][33]. It contains all singleton subsets.

ii. Associate each potential with one of the subsets in the binary junction tree 

according to its domain.

iii. Computing messages included both Inward Pass and Outward Pass: each node 

that needs to calculate the marginal requires a message from each of its 

neighbors in the tree.

iv. Computing marginals: if a node that needs to calculate the marginal has required 

and received messages from all its neighbors, then it can calculate the required 

marginal.

From the procedure of inference in SS architecture, it has no division operations. 

Furthermore, the original potentials remain unchanged in the SS architecture during the 

propagation procedure and the probability distribution of a variable of interest is 

calculated from the corresponding singleton variable node of the binary junction tree [34].
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CHAPTER III

THEORETICAL ANALYSIS OF PATH 

PROPAGATION

For PPTC, a Bayesian network is converted into a junction tree and then inference is 

carried out on the whole junction tree by performing the renowned global propagation. In 

the thesis, path propagation is proposed for inference instead of global propagation.

3.1 SHORTCOMINGS OF GLOBAL PROPAGATION

The first shortcoming of global propagation is that global propagation can only be well 

performed in small or mid sized Bayesian networks within 1000 nodes in practice. 

According to our experiments on different Bayesian networks conducted by the Hugin 

Tool, inference in a large Bayesian network (the Munin network) with about 1300 nodes 

returns an out of memory error message on a P4 machine with 512 MB memory and 

normal load [25]. Since the effectiveness and efficiency of global propagation are 

strongly related to the size of a Bayesian network in reality, it is foresee that inference 

using global propagation takes much longer time on larger Bayesian networks. According 

to our experiments conducted by the Hugin Tool, the larger the size of a Bayesian 

network, the longer it will take to do the inference using global propagation.

The second shortcoming is that performing global propagation wastes many computation 

resources. According to the previous review of global propagation, the probability 

distribution (or posterior probability distribution when evidence is observed) for every 

variable of interest in a Bayesian network is readily available after a full scale global 

propagation. However, it is unreasonable to presume that users interest in the probability 

distribution (or posterior probability distribution when evidence is observed) for each 

variable in many real applications. To make it clear and concrete, take the Munin2
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Bayesian network as an example. In Munin2, clinical tests are considered as the evidence 

and diseases are considered as random variables. Given these clinical tests, a doctor is 

able to make a diagnosis on the probabilities of a few interested variables (diseases). 

Since Munin2 has 1003 variables (diseases), after a full scale global propagation on this 

network given the evidence (some clinical tests), the posterior probability distributions for 

each of the 1003 variables can be known. It is not a reasonable assumption that every 

variable in the network is interested whenever new evidence is observed. In practice, 

users often interest in the posterior probability distributions of a few variables in a 

Bayesian network, so many calculations caused by a full scale global propagation are 

totally wasted. Hence, it is not an economic way for inference especially in large and 

complex Bayesian networks.

Furthermore, recent researchers’ trend is to extend Bayesian networks into large and 

complex Bayesian networks [25]. Many extensions of the Bayesian network model have 

been proposed, such as the multiply sectioned Bayesian network (MSBN) model and the 

object-oriented Bayesian network (OOBN) model. The MSBN model and the OOBN 

model are not focusing on developing completely new methods for inference but focusing 

more on providing methodologies for modeling large and complex Bayesian networks. In 

order to conduct inference on these two models, it was suggested to transform them into 

Bayesian networks first and then apply inference on the transformed Bayesian network 

[2]. However, since OOBN and MSBN models are originally exploited to model large 

and complex Bayesian networks, a single Bayesian network converted from either an 

OOBN or a MSBN model could be much larger and more complex than any existing 

Bayesian network. Hence, the existing inference algorithms could not be effectively and 

efficiently applied on them. Challenge and opportunity are presented to develop new 

inference algorithms which are specifically tailored to large and complex Bayesian 

networks.

In the thesis, path propagation is proposed to address the shortcomings of global 

propagation. It carries out inference only in certain paths in a junction tree that are 

relevant to queries. It is based on a query imposed by users and answers the query only.
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From this point of view, it takes less computational resources than global propagation and 

improves the computational efficiency for inference in large and complex Bayesian 

networks. More details are introduced in the next three sections.

3.2 PATH PROPAGATION

Path propagation is developed specifically for inference in large and complex Bayesian 

networks. It inherits all novel features of global propagation. It is based on a query 

imposed by users and it only answers the query, so it takes less computational resources 

than global propagation. Furthermore, it only involves a path in a junction tree and carries 

calculations only in the path. Hence, it takes less time to answer queries than global 

propagation. The proposed propagation method is based on the assumption that a full 

scale global propagation is performed once on a junction tree with no evidence observed 

and thus the marginal for each clique or separator in the junction tree is obtained 

thereinafter. This assumption is justified by how to inference a Bayesian network in real 

applications. Because in practice, users first run inference with no evidence observed on 

the whole junction tree once to check the prior probability distribution for any variable of 

interest in a Bayesian network, say P(Xi). After that, when a piece of evidence e is 

observed, the posterior probability distribution of any variable of interest given e is 

obtained through inference on the Bayesian network, say P(X,\e). At last, users compare 

P(X,\e) and P(Xi) in order to drawn a conclusion according to the difference between these 

two probability distributions.

We first propose two important theorems which lay the foundation of path propagation. 

Suppose there are two adjacent cliques Q  with its marginal P(Q) and C, with its marginal 

P(Cj). Their separator is Sy (5j,=C,-n Cj) with its marginal P(Sij). When evidence e is 

observed such that v(e)cz C,-, where v(e) denotes all variables in e, then P(C,j will be 

updated to P(Q, e). Theorem 1 is proposed to pass e from C, to Cj.

Theorem 1:

' Z m . e )
P(Cj,e) =P(C,yP(e | Sf)=JXCj)^ '
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Proof o f  Theorem 1:

First of all, according to P(X,Y) = P(X)P(Y \ X )  = P(Y)P(X \ Y) [5][7], the following 

equation is obtained:

P(CJ,e) = P(CJ)P(e\CJ). (1)

Since C; = Sjj u  (Cy. -  S9), equation (1) can be rewritten as:

P(CJ,e) = P(CJ)P(e\CJ) = P(Cj )P(e \S ij,CJ- S ij). (2)

Due to the structure of the junction tree, since v(e)c C„ e is conditional independent of 

( C j - S y ) given Sy [9], that is, P(e\Sy,C j -S ij) = P(e\Si/) . Thus, equation (2) can be 

converted to the following equation:

P(CJ,e) = P(Cj )P(e\Cj ) = P(CJ)P(e \S iJ,Cj - S iJ) = P(CJ)-P(e\SiJ). (3)

Secondly, according to P(X,Y) = P(X)P(Y  | X) = .P(7)P(X | F) [5][7], the following

equation can be obtained:

P ( e \ S )  = P(SiJ,e\  (4)
" PiSy)

Since C, = Sjj u  (C; -  Sv), then

Similarly,

P(S,pe)= jF (q ,e \ (5)
CrM&f,

Combine equation (4) with equation (5), then

P ( e \ S , ) = ^ ^ - = ^ ^ -------. (6)
PiStj) Ffy)

After combining equation (6) with equation (3), Theorem 1 is finally obtained:

HCJ,e)=P(C,yiXe\Sll)=P(.Ci y CiMe)-Sjj

m f f
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Suppose there are two adjacent cliques Q  with its marginal P(C„e,) and Cj with its 

marginal P(Cj,ej). Assume e, and ej are two different pieces of compatible evidence 

associated to C, and Cj. When new evidence e ’ is observed and v(e *)c C,„ P(C„e,) will be 

updated to P(Ci5e/,e ’). After that, C, with its updated marginal P(Ci,et,e ’) passes evidence 

e ’ to clique Cj.

Theorem 2:

The Clique C, with its updated marginal i3(C„e„e ’) passing evidence e ’ to clique Q  

correctly results in the updated marginal P(Cj,ej,e ’).

Proof o f  Theorem 2:

Actually, Theorem 2 can be similarly proved as Theorem 1. First of all, when e ’ is 

observed, the updated marginalized table P(C„e,) of C, absorbs e ’ to the updated table 

P(Ci,ei,e ’). Secondly, e ’ can be passed from P(Cj,ei,e )  to Cj associated with P{Cj,ej) to 

return P(Cj,ej,e )  according to Theorem 1. Therefore, e ’ can be successfully passed 

between two adjacent cliques associated with two different pieces of compatible 

evidence.

After introducing Theorem 1 and 2 of path propagation, we begin to discuss some 

important scenarios for queries in path propagation. In practice, queries have some query 

scenarios. In order to make them clear and concrete, take a query scenario in medical 

diagnosis as an example. If a doctor is diagnosing a patient with the help of a Bayesian 

network, the doctor will ask the patient to take a couple of clinical tests. Then the 

posterior probability distribution of a disease of interest given these clinical tests is 

obtained. However, the result shows that its posterior probability distribution does not 

vary too much to its prior probability distribution, which means that it is not justifiable for 

the doctor to conclude the diagnosis of this disease based on these clinical tests. Then the 

doctor switches to the posterior probability distribution of another disease given these 

clinical tests. This query scenario is formalized to scenario 1 of path propagation.

Scenario 1 (multiple variables): Given the evidence e, the posterior probability 

distributions for X lfX 2,...,Xn given the fixed evidence e can be calculated,

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e.g. ,P{XI \e) ,P(X2 \e). . . ,P(XM\e).

Take another query scenario in medical diagnosis as an example. When a doctor 

diagnoses a patient with the help of a Bayesian network, the patient is required to take a 

couple of clinical tests. Then the posterior probability distribution of a disease of interest 

given these clinical tests is obtained. However, the result shows that its posterior 

probability distribution can not warrant the doctor to conclude the diagnosis of the disease 

based on these clinical tests until other clinical tests are taken to double confirm the 

conclusion. Then the doctor has to ask the patient to do some other clinical tests to return 

the posterior probability distribution of this disease of interest given all the clinical tests. 

This query scenario is formalized to scenario 2 of path propagation.

Scenario 2 (multiple evidences): Compute the posterior probability distributions for a 

fixed variable X  o f  interest given these incremental pieces o f  evidence ex,e2,...,en ,

e.g., P (X 1 \el) ,P (X j \e l,e2)...,P(XI \el,...,en) , where these pieces o f  evidence

e{,e2,...,en should be compatible.

However, in many real applications, there may contain more complex query scenarios. 

But they can be considered as the combination of scenario 1 and scenario 2. More details 

are introduced in the next section. In section 3.3, the prototype of path propagation based 

on Theorem 1 and 2 is proposed for computing queries.

3.3 THE PROTOTYPE OF PATH PROPAGATION

Consider a variable X  and evidence e in a Bayesian network, where we assume that 

variables in e are all contained in a clique called C. According to the prototype of path 

propagation shown as follows, the posterior probability distribution of X  given e, P(X\e), 

can be obtained.

PROCEDURE Calculate(X, e)

Input: X  and e such that variables in e are contained by a clique C.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Output: P(X\e)

{

1. Identify a clique C ’ such that X  e C '.

2. Find out a path ( C0 —> C, Cm) in the junction tree such that C0 =C,Cm = C ' ,

andCk_x —> Ckrepresents an edge in the junction tree, where The symbol

means the directionality of a path.

3. For k=l to m, clique Ck_{ passes e to Ck based on Theorem 1 and 2, which results in

the updated marginal of each clique with e in the path, e.g., P{ Ct_,, e).

4. Calculate P(X\e) from P( Cm, e).

5. Mark each clique C,, /=0,... ,m, with e, denoted as C?.

6. Return P(X\e).

}

Take an example of how to calculate the posterior probability distribution of variable G 

given evidence A=on according to the prototype of path propagation in Figure 12. A 

clique containing evidence A  is identified as the head node which is clique ABD  and a 

clique containing variable G of interest as the tail node which is clique CEG. Then a path 

between clique ABD  and clique CEG is determined by the Depth-first search (DFS) 

algorithm [39]. Even though there are many existing algorithms for finding a path in an 

undirected tree, DFS searches deeper in the graph whenever possible. It starts at some 

node as the root in a tree and then explores as far as possible along each branch of the 

root before backtracking to the most recent node that it has not finished exploring [39]. 

Therefore, DFS is implemented in the thesis to identify a path in a junction tree. In this 

example, the path (clique ABD—» clique ADE—̂ clique /fCE—>clique CEG) is identified. 

So evidence A=on can be passed along the path, starting at the head node and ending at 

the tail node. Arrows in Figure 12 illustrate the procedure of passing evidence A=on. 

After clique CEG receives the evidence, the posterior probability distribution of variable 

G given the evidence can be calculated from clique CEG immediately. Simultaneously, 

every clique in the path is marked with evidence A=on in order to demonstrate that 

marginal on each clique is conjoint with the evidence. Conjoint means the updated
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marginal of each clique with evidence A=on in the path is obtained after passing the 

evidence along the path.

Figure 12: Applying the procedure of path propagation to return the posterior probability 

distribution of variable G given evidence A=on.

According to the prototype of path propagation, it is based on a query imposed by users 

and it only answers the query. It only carries out inference in the cliques included in a 

path. Other cliques which are not included in the path are not considered. Also, as a side 

effect of the prototype of path propagation, since the updated marginals of all cliques with 

the observed evidence in a path are calculated in step 3, if  some variable contained in one 

of these cliques is interested, then the posterior probability distribution of this variable 

given the observed evidence is also readily obtained.

3.4 QUERY SCENARIOS OF PATH PROPAGATION

In this section, the analysis of scenario 1 and 2 is discussed at first and then how to solve 

more complex query scenarios is proposed.

3.4.1 Analysis of Scenario 1

In scenario 1, if a fixed evidence e is observed and a variable X i is interested, P(Xj\e) can 

be successfully obtained through the procedure of path propagation, Calculate(Xi, e). 

After that, if  another variable X 2  is interested given e, through Calculate(X2 , e), -P(26|e) 

can be also successfully obtained. Similarly, for more variables of interest (e.g., X3, X4, ..., 

X n) given e, the posterior probability distributions of these variables given e can be 

returned by calling Calculate(X/, e), where i=3 to n. There is an example that shows how
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the procedure of path propagation works for scenario 1.

Example 1:

Consider a simple Bayesian network. Suppose evidence D=yes is observed. How to 

return the posterior probability distribution of variable X  of interest given evidence D=yes 

and later the posterior probability distribution of variable T  of interest given evidence 

D=yesl The solution is to call Calculate(X, D=yes) first and Calculate(T, D=yes) 

thereinafter.

Calculate(X, D=yes):

i. Two cliques are identified. One is clique 0 containing evidence D-yes. Another 

is clique 3 containing variable X.

ii. In the junction tree, a path form clique 0 to clique 3 is identified by Depth-first 

Search algorithm. Thus, the path (clique 0—>clique 4—>clique 3) is determined.

iii. Evidence D=yes is passed along the path according to Theorem 1, starting from 

clique 0 and ending to clique 3.

iv. P(X\D=yes) is computed from clique 3.

v. Every clique in the path is marked with evidence D=yes in order to demonstrate 

that the updated marginal on the clique is conjoint with evidence D=yes.

Figure 13 illustrates the procedure of Calculate(X, D=yes). Arrows in Figure 13 indicate 

the path (clique 0—>clique 4->clique 3) and evidence D=yes is marked on the cliques 

included in the path.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



clique 5: 
SLE

D=yes

clique 4: 
BSE

clique 2: 
TEL

D=yes D=yes

clique 1: 
A Tclique 0: 

DBE
clique 3: 

XE

Figure 13: Calculate(X, D=yes) in scenario 1.

Calculate(T, D=yes):

i. We only identify clique 2 containing variable T  of interest, since clique 0 

containing evidence D-yes has already been identified during Calculate(X, 

D-yes).

ii. In the junction tree, the path form clique 0 to clique 2 is identified through 

Depth-first Search algorithm. Thus, the path (clique 0—>clique 4—>clique 

5-»clique 2) is determined.

iii. Evidence D=yes is passed along the path according to Theorem 1, starting from 

clique 0 and ending to clique 2.

iv. P(T\D=yes) is computed from clique 2.

v. Every clique in the path is marked with evidence D=yes in order to demonstrate 

that the updated marginal on the clique is conjoint with evidence D=yes.

However, from Figure 13, the updated marginals on clique 0 and clique 4 are already 

conjoint with evidence D=yes from Calculate(X, D=yes). Thus, evidence D=yes does not 

need to be passed again from clique 0 to clique 4 in Calculate(T, D=yes). In other words, 

evidence D=yes only needs to be passed from clique 4 to clique 2 through clique 5. In that 

case, the path (clique 0—>clique 4—>clique 5—>clique 2) can be shortened to the path

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(clique 4-»clique 5—̂clique 2). Figure 14 illustrates the procedure of Calculate(T, D=yes). 

Arrows in Figure 14 indicate the path (clique 0—>clique 4—̂clique 5—>clique 2) and 

evidence D-yes is marked on the cliques which are conjoint with evidence D=yes.

D=ves (  clique 5: 
I SLE

D=yes D=yes

clique 4: 
BSE

clique 2: 
TEL

D=yes

clique 1: 
A Tclique 0: 

DBE
clique 3: 

XE

Figure 14: Calculate(T, D=yes) in scenario 1.

Regarding Example 1, a path between clique Co containing a variable X  of interest and 

clique Cm where evidence e is originally residing can be possibly shortened. In other 

words, e may have been already updated by some cliques in the path during previous 

calculations. Thus, e only needs to be passed to the cliques that have not incorporated it. 

In step 2 of the procedure of path propagation, a path ( C0 -> C, -»... -» Cm) is examined 

orderly from Co to Cm to find the last clique Q  (0<i<m) whose marginal has been updated 

with e. So the original path ( C0 - » Cx —»... —> Cm ) can be shortened to path 

(C,. —> Ci+1 Cm). In that case, more computations can be saved for calculating the

posterior probability distribution of X  given e. According to previous discussion, path 

propagation only involves a path in the junction tree to compute a query, so only a few 

cliques in the path participate in calculating the query.
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3.4.2 Analysis of Scenario 2

In scenario 2, if evidence e/ is observed and a fixed variable X  is interested, P(X\ ef) can 

be successfully obtained through the procedure of path propagation, Calculate(X, ex) 

where e[-ei. After that, if  another compatible piece of evidence ej is observed based on 

the same variable of interest, through Calculate(X, e2) where e2 =ei+e2 , P(X\ ei, ei) can be 

also successfully obtained. Similarly, for more compatible pieces of evidence observed 

(e.g., ei, e4 , ..., e»), the posterior probability distributions of X  given them can be returned 

by calling Calculate(X, e]), wheree] = ei+e2+...+ e,- and i=3 to n. Solving scenario 2 is

based on Theorem 1 & 2 and the prototype of path propagation. There is an example that 

shows how path propagation works for scenario 2.

Example 2:

Consider a simple Bayesian network. Suppose variable D is interested. How to return the 

posterior probability distribution of D  given evidence X-yes, P(D\X=yes)), and then the 

posterior probability distribution of D given evidence X=yes and T=yes, P(D\X=yes, 

T=no))2 The solution is to call Calculate(D, X=yes) first and Calculate(D,( X=yes, 

T=no)) thereinafter.

Calculate(D, X-yes):

i. Two cliques are identified. One is clique 3 containing evidence X=yes. Another is 

clique 0 containing variable D.

ii. In the junction tree, a path starting form clique 3 to clique 0 is identified by 

Depth-first Search Algorithm. Thus, the path (clique 3—>clique 4—̂clique 0) is 

determined.

iii. Evidence X=yes is passed along the path according to Theorem 1, starting from 

clique 3 and ending to clique 0.

iv. P(D\X-yes) is computed from clique 0.

v. Every clique in the path is marked with evidence X=yes in order to demonstrate 

that the updated marginal on the clique is conjoint with evidence X-yes.
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Figure 15 illustrates the procedure of Calculate(D, X=yes). Arrows in Figure 15 indicate 

the path (clique 3—»clique 4—>clique 0) and evidence X=yes is marked on the cliques 

included in the path.

clique 5: 
SLE

clique 2: 
TEL

clique 4: 
BSE

X=yes X=ves

clique 1: 
A Tclique 0: 

DBE
clique 3: 

XE

Figure 15: Calculate(D, X=yes) in scenario 2.

Calculate(D, (X=yes, T=no)):

i. We only identify clique 2 containing evidence T=no, since clique 0 including D  

of interest has already been identified during Calculate(D, X-yes).

ii. In the junction tree, the path starting form clique 2 to clique 0 is identified

through Depth-first Search Algorithm. Thus, the path (clique 2—>clique 

5->clique 4—>clique 0) is determined.

iii. Evidence T-no is passed along the path according to Theorem 1 and 2, starting

from clique 2 and ending to clique 0.

iv. P(Z)|A=yes, r=no) is computed from clique 0.

v. Evidence T=no is marked to every clique in the path.

Arrows in Figure 16 indicate the path (clique 2->clique 5->clique 4—̂ clique 0) and
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evidence T-no is marked on the cliques which are conjoint with evidence X=yes.

clique 5: 
SLE T=no

T=no

clique 4: 
BSE

clique 2: 
TEL

X=yes

clique 1: 
A Tclique 0: 

DBE
clique 3: 

XE

Figure 16: Calculate(D, (X=yes, T=no)) in scenario 2.

Regarding Example 2, a clique containing the variable of interest is considered as the root 

clique. Whenever a piece of new evidence is observed, we pass it from a clique 

containing the new evidence to the root clique through a path identified in the junction 

tree. And mark the cliques with the new evidence in the path so that the updated marginal 

of the root clique is always conjoint with all pieces of new evidence which are observed 

so far. According to previous discussion, path propagation only involves a path in the 

junction tree to compute the posterior probability distribution of a fixed variable of 

interest given one piece of evidence. Whenever a piece of new evidence is observed, a 

new path will be identified by path propagation and inference will be carried out in the 

new path. However, for global propagation, a full scale global propagation is carried out 

on the whole junction tree for the posterior probability distribution of a fixed variable of 

interest given one piece of evidence. Whenever a piece of new evidence is observed, 

another full scale global propagation is carried out on the whole junction tree.
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3.4.3 Analysis of Complex Query Scenarios

Actually, in many real applications, there may exhibit more complex query scenarios. 

However, they can be considered as the combination of scenario 1 and scenario 2. Take a 

query scenario in medical diagnosis as an example. If a doctor is diagnosing a patient 

with the help of a Bayesian network, the doctor will ask the patient to take a couple of 

clinical tests ej. Then the posterior probability distribution of a disease X  of interest given 

these clinical tests is obtained, P{X\ ei). However, the result shows that P(X\ ei) does not 

vary too much to its prior probability distribution P(X), which means that it is not 

justifiable for the doctor to conclude the diagnosis of this disease based on these clinical 

tests. Then the doctor switches to the posterior probability distribution of another disease 

Y  of interest given e;. Unfortunately, the result shows that P(Y\ ei) can not warrant the 

doctor to conclude the diagnosis of Y  given ej until other clinical tests are taken to double 

confirm the conclusion. Then the doctor has to ask the patient to do some other clinical 

tests e2 to see the posterior probability distribution of Y  given e; and e ,̂ P(Y\ euei)- This 

query scenario can not be formalized to scenario 1 or scenario 2 but it is actually the 

combination of scenario 1 and 2. During the procedure of calculating P(X\ ei) and P(Y\ ei), 

it can be considered as scenario 1. Then the remaining procedure of calculating P(Y\ ei,ej) 

from P(Y\ ei) can be regarded as scenario 2. Hence, for complex query scenarios, the 

posterior probability distributions can be easily obtained according to scenario 1 and 2, 

that is, they can be actually regarded as interweaving cases of scenario 1 and 2. Therefore, 

scenario 1 and 2 are two basic query scenarios for path propagation. Hence, if the 

computational efficiency of path propagation for scenario 1 and 2 is better than that of 

global propagation, then it will be also better than that of global propagation in more 

complex query scenarios. So in the next chapter, experiments of path propagation and 

global propagation are carried out for scenario 1 and 2.
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CHAPTER IV

IMPLEMENTATION AND 

EXPERIMENTAL RESULTS

In this chapter, experiments are carried out for both path propagation and global 

propagation. First of all, the basic implementation information is provided, such as the 

implementation environment, and the implementation procedure for path propagation and 

global propagation. Secondly, the experimental results for these two propagation methods 

are presented. Finally, some conclusions are drawn based on these experimental results.

4.1 THE INFORMATION OF IMPLEMENTATION

In the thesis, we choose the C programming language under Unix to implement path 

propagation and global propagation. The main reason is that the Hugin Tool is developed 

by the C programming language under Unix [47]. There are more reasons listed as 

follows:

i. The C programming language is a relatively minimalistic, general-purpose, 

imperative, procedural programming language under Unix. It could be compiled 

in a straightforward manner using a relatively simple compiler, provide low-level 

access to memory, generate only a few machine language instructions for each of 

its core language elements, and not require extensive run-time support [40].

ii. As far as the C programming language is concerned, sine it was originally 

developed under Unix, it remains very popular in Unix world.

In order to compare the computational efficiency of path propagation and global 

propagation, they should be implemented based on the same comparison condition. 

First of all, the data structure used in path propagation is identical as the data structure 

used in global propagation. Secondly, methods of computations (e.g., multiplication of
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two probabilities or potentials, marginalization of a probability or potential into the 

marginalized table, normalization of two probabilities or potentials, division of two 

probabilities or potentials, absorption of pieces of evidence into a probability or potential), 

are all exactly the same. According to Chapter 3, the only difference between path 

propagation and global propagation is that path propagation carries out inference only in 

certain paths in a junction tree. The following steps briefly introduce the implementation 

procedure.

Step 1: Convert a Bayesian network into the data structure o f a DAG 

Since a Bayesian network contains two components, a DAG and the CPTs, we use a .net 

file  [47] to completely store these two components of a Bayesian network. As a 

representation of Bayesian networks, a .net file contains the whole information of every 

variable (e.g., its label, its position, and its states) in a Bayesian network and its CPT. In 

this thesis, a .net file is parsed into the data structure of a DAG In this data structure, 

every variable with its associated CPT is stored. In this step, the implementation methods 

for path propagation and global propagation are identical.

Step 2: Triangulate a Bayesian network into a junction tree

The data structure of a DAG is converted into the data structure of a junction tree. The 

way for triangulation into a junction tree introduced in Section 2.3.1 is implemented for 

both path propagation and global propagation. Hence, in this step, the implementation 

methods for path propagation and global propagation are exactly the same.

Step 3: Initialize a potential for each clique in the junction tree

After triangulation, the CPTs are assigned into corresponding cliques by following the 

standard criteria mentioned in Section 2.3.1. Then for each clique in the junction tree, the 

CPTs assigned to it are multiplied to be a potential for this clique. The implementation 

methods for path propagation and global propagation are identical in this step.

Step 4: Inference

In this step, the implementation methods for path propagation and global propagation are
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different. According to Chapter 3, path propagation has two basic query scenarios which 

are scenario 1 and 2. Other complex query scenarios can be solved by the combination of 

scenario 1 and 2. Hence, if  the computational efficiency of path propagation for scenario 

1 and 2 is better than that of global propagation, then it will be also better than that of 

global propagation in more complex query scenarios. In that case, scenario 1 and 2 are 

implemented by these two propagation methods in the thesis.

Scenario 1 (multiple variables):

For global propagation, a full scale global propagation with evidence observed on the 

whole junction tree is applied according to Section 2.3.4. Then all cliques and separators 

in the junction tree are marginalized. In order to return the posterior probability 

distributions of multiple variables given the fixed evidence, some separators or cliques 

containing the variables of interest are identified and normalization is applied on them. 

For path propagation, a path between a clique containing the variable of interest and 

another clique containing the evidence is identified. Path propagation is applied on this 

path. Regarding Section 3.3.1, different paths on the junction tree are identified to return 

the posterior probability distributions of multiple variables given the fixed evidence.

Scenario 2 (multiple evidences):

For global propagation, according to Section 2.3.4, when a piece of evidence is observed, 

a full scale global propagation on the whole junction tree is applied. If another new piece 

of evidence is observed, another full scale global propagation on the whole junction tree 

is applied. However, for path propagation, regarding Section 3.3.2, different paths on the 

whole junction tree are identified to obtain the posterior probability distributions of the 

fixed variable of interest given multiple evidences.

In summary, Table 1 illustrates the implementation procedure for path propagation and 

global propagation. In Table 1, SAME represents identical methods while DIFFERENT 

represents different methods used in the implementation of these two propagation 

methods.
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Implementation Procedure Path propagation Global propagation

Step 1: Convert a Bayesian network into 

the data structure of a DAG
SAME SAME

Step 2: Triangulate a Bayesian network 

into a junction tree
SAME SAME

Step 3: Initialize a potential for each 

clique in the junction tree
SAME SAME

Step 4: Inference
Scenario 1 DIFFERENT DIFFERENT

Scenario 2 DIFFERENT DIFFERENT

Table 1: The implementation procedure for path propagation and global propagation.

4.2 EXPERIMENTAL RESULTS

After a brief introduction of the implementation procedure, experiments are carried out to 

compare the computational efficiency between path propagation and global propagation. 

In the thesis, several Bayesian networks are randomly chosen for the comparison between 

path propagation and global propagation. All these Bayesian networks can be downloaded 

from http://oldwww.cs.aau.dk/research/MI/Misc/networks.html.

http://www.cs.huii.ac.il/labs/compbio/Repositorv/networks.html. and

http://www.hugin.com/Products Services/Products/Demo/. The experimental results of 

five Bayesian networks are described in this section. The sizes and nodes of these five 

Bayesian networks are gradually increasing. The first Bayesian network is called Asia.net 

with 8 nodes. After converting it to the junction tree, the total number of cliques for 

Asia.net is 6. The second Bayesian network is called Car_ts.net with 12 nodes. The 

junction tree for Car_ts.net includes 6 cliques. The third Bayesian network is called 

4sp.net with 58 nodes. 40 cliques are obtained from the junction tree for 4sp.net. The 

fourth Bayesian network is called Pigs.net with 441 nodes and the number of total cliques 

in its resulted junction tree is 368. The fifth Bayesian network is called Munin2.net with 

1003 nodes. The junction tree converted from Munin2.net includes 866 cliques.
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From the traditional perspective, in order to compare computational efficiencies between 

two algorithms, the worst case complexities of these two methods have to be compared. 

However, there is no difference between path propagation and global propagation since 

their worst case complexities are both NP-hard as we mentioned before. In l.[l], the 

number of binary arithmetic operations (denoted as # binary arithmetic operations) is used 

to measure the computational efficiency. It contains the number of additions, 

multiplications, and divisions. In the thesis, we also use # binary arithmetic operations to 

measure the computational efficiency. Since path propagation and global propagation are 

both based on the same comparison condition introduced in Section 4.1, if  one 

propagation method causes more # binary arithmetic operations than the other one, then it 

is less computationally efficient than the other one. In the thesis, # binary arithmetic 

operations are only recorded during the different step which is step 4. The experimental 

results for scenario 1 and 2 are shown in the next two sections. For each of the five 

Bayesian networks, some query experiments of scenario 1 (or 2) are designed. A query 

experiment of scenario 1 (or 2) means a sequence of queries which exactly satisfies the 

definition of scenario 1 (or 2) in the thesis. These query experiments are independent of 

each other. All variables of interest and pieces of evidence are generated randomly in 

these query experiments.

4.2.1 Experimental Results for Scenario 1

The experimental results of the five Bayesian networks for scenario 1 are shown as 

follows. Tables shown in this section record the number of additions, multiplications, 

divisions, which are caused by path propagation and global propagation in each query 

experiment. Figures shown in this section demonstrate the comparison of the total number 

of calculations needed by these two propagation methods in each query experiment. 

X-axis in each figure represents the number of variables of interest in each query 

experiment while the numbers in Y-axis represent the total number of calculations caused 

by both two propagation methods.

Asia.net:

Three different query experiments are designed. The first query experiment only queries
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one variable of interest given e. The second query experiment incrementally queries three 

different variables of interest given e. The third query experiment incrementally queries 

five different variables of interest given e. Table 2 and Figure 17 illustrate the comparison 

of these three query experiments.

#
Additions

#
Multiplications

#
Divisions

# total 

calculations

Query

experiment

1

GLOBAL

PROPAGATION
22 21 21 64

PATH

PROPAGATION
16 15 15 46

Query

experiment

2

GLOBAL

PROPAGATION
26 21 23 70

PATH

PROPAGATION
20 15 17 52

Query

experiment

3

GLOBAL

PROPAGATION
30 21 25 76

PATH

PROPAGATION
25 16 20 61

Table 2: The comparison of # binary arithmetic operations of Asia.net for scenario 1.

Asia, net

Global propagatioi 
Path p ropagation

1 3 5
Number o f v a r ia b le s  o f in te r e s t

Figure 17: The comparison of # total calculations of Asia.net for scenario 1. 

Car_ts.net:

Four different query experiments are designed. The first query experiment only queries 

one variable of interest given e. The second query experiment incrementally queries three 

different variables o f interest given e. The third query experiment incrementally queries

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



five different variables of interest given e. The forth query experiment incrementally 

queries seven different variables of interest given e. Table 3 and Figure 18 illustrate the 

comparison of these four query experiments.

#
Additions

#
Multiplications

#
Divisions

# total 

calculations

Query

experiment

1

GLOBAL

PROPAGATION
22 21 21 64

PATH

PROPAGATION
15 14 14 43

Query

experiment

2

GLOBAL

PROPAGATION
25 21 22 68

PATH

PROPAGATION
19 14 16 49

Query

experiment

3

GLOBAL

PROPAGATION
30 21 25 76

PATH

PROPAGATION
23 14 18 55

Query

experiment

4

GLOBAL

PROPAGATION
34 21 27 82

PATH

PROPAGATION
28 15 21 64

Table 3: The comparison of # binary arithmetic operations o Car ts.net for scenario 1.

Global propagation 
Path propagation

Number of variables of interest

Figure 18: The comparison of # total calculations of Car_ts.net for scenario 1. 

4sp.net:
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Four different query experiments are designed. The first query experiment only queries 

one variable of interest given e. The second query experiment incrementally queries four 

different variables o f interest given e. The third query experiment incrementally queries 

seven different variables of interest given e. The forth query experiment incrementally 

queries ten different variables of interest given e. Table 4 and Figure 19 illustrate the 

comparison of these four query experiments.

#
Additions

#
Multiplications

#
Divisions

# total 

calculations

Query

experiment

1

GLOBAL

PROPAGATION
162 164 161 487

PATH

PROPAGATION
87 86 86 259

Query

experiment

2

GLOBAL

PROPAGATION
168 164 164 496

PATH

PROPAGATION
104 97 100 301

Query

experiment

3

GLOBAL

PROPAGATION
174 164 167 505

PATH

PROPAGATION
117 104 110 331

Query

experiment

4

GLOBAL

PROPAGATION
180 164 170 514

PATH

PROPAGATION
129 110 119 358

Table 4: The comparison of # binary arithmetic operations of 4sp.net for scenario
4sp. net

c / )GO
600
500

+J
c G 400
3O 300
C OO 200
c d 100o

0

i
I  ■ • ' P --------

Mf m
'Global Propagation 
'Path Propagation__

1 4 7 10
Number of variables of interest

Figure 19: The comparison of # total calculations of 4sp.net for scenario 1.
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Pigs.net:

Five different query experiments are designed. The first query experiment only queries 

one variable of interest given e. The second query experiment incrementally queries two 

different variables of interest given e. The third query experiment incrementally queries 

three different variables of interest given e. The forth query experiment incrementally 

queries four different variables of interest given e. The fifth query experiment 

incrementally queries five different variables of interest given e. The experimental results

are illustrated in Table 5 and Figure 20.

#

Additions
# Multiplications

#

Divisions

# total 

calculations

Query

experiment

1

GLOBAL

PROPAGATION
1470 1469 1469 4408

PATH

PROPAGATION
754 753 753 2260

Query

experiment

2

GLOBAL

PROPAGATION
1472 1469 1470 4411

PATH

PROPAGATION
761 758 759 2278

Query

experiment

3

GLOBAL

PROPAGATION
1474 1469 1471 4414

PATH

PROPAGATION
763 758 760 2281

Query

experiment

4

GLOBAL

PROPAGATION
1476 1469 1472 4417

PATH

PROPAGATION
773 766 769 2308

Query

experiment

5

GLOBAL

PROPAGATION
1478 1469 1473 4420

PATH

PROPAGATION
781 772 776 2329

Table 5: The comparison of # binary arithmetic operations of Pigs.net for scenario 1.
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Pigs, net

il propagation 
propagation..

Figure 20: The comparison of # total calculations of Pigs.net for scenario 1. 

Munin2.net:

Three different query experiments are designed. The first query experiment only queries 

one variable of interest given e. The second query experiment incrementally queries two 

different variables of interest given e. The third query experiment incrementally queries 

three different variables of interest given e. The experimental results are illustrated in

Table 6 and Figure 21.

#
Additions

# Multiplications
#

Divisions

# total 

calculations

Query

experiment

1

GLOBAL

PROPAGATION
3462 3463 3461 10386

PATH

PROPAGATION
1744 1743 1743 5230

Query

experiment

2

GLOBAL

PROPAGATION
3464 3463 3462 10389

PATH

PROPAGATION
1753 1750 1751 5254

Query

experiment

3

GLOBAL

PROPAGATION
3466 3463 3463 10392

PATH

PROPAGATION
1767 1762 1764 5293

Table 6: The comparison of # binary arithmetic operations of Munin2.net for scenario 1.
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Munin2.net

11000 
e 10500 
2 10000 
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® 9000 
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~  6000 
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Global propagation 
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Figure 21: The comparison of # total calculations of Munin2.net for scenario 1.

4.2.3 Experimental Results for Scenario 2

The experimental results of the five Bayesian networks for scenario 2 are shown as 

follows. Tables shown in this section record the number of additions, multiplications, 

divisions, which are caused by path propagation and global propagation in each query 

experiment. Figures shown in this section demonstrate the comparison of the total number 

of calculations needed by these two propagation methods in each query experiment. 

X-axis in each figure represents the number of variables in all pieces of evidence in each 

query experiment while the numbers in Y-axis represent the total number of calculations 

caused by both two propagation methods.

Asia.net:

Four different query experiments are designed. The first query experiment only queries 

the fixed variable of interest given one piece of evidence containing one variable. The 

second query experiment queries the fixed variable of interest given two incremental 

pieces of evidence and each of these two pieces of evidence contains one variable. The 

third query experiment queries the fixed variable of interest given three incremental 

pieces of evidence and each of these three pieces of evidence contains one variable. The 

fourth query experiment queries the fixed variable of interest also given three incremental 

pieces of evidence. But the first two pieces of evidence both contain two variables and the 

last piece of evidence contains one variable. Table 7 and Figure 22 illustrate the 

comparison of these four query experiments.
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#
Additions

#
Multiplications

#
Divisions

# total 

calculations

Query

experiment

1

GLOBAL

PROPAGATION
22 22 21 65

PATH

PROPAGATION
16 15 15 46

Query

experiment

2

GLOBAL

PROPAGATION
34 39 32 105

PATH

PROPAGATION
20 18 18 56

Query

experiment

3

GLOBAL

PROPAGATION
46 58 43 147

PATH

PROPAGATION
25 22 22 69

Query

experiment
4

GLOBAL

PROPAGATION
46 49 43 138

PATH

PROPAGATION
22 21 19 62

Table 7: The comparison of # binary arithmetic operations of Asia.net for scenario 2.

Asia, net

M 160

.2 140 
« 120 
1  100

3 80 
-  60 
cGt  40 

20
1 2  3 5

The to ta l number of variab les in a l l  
p ieces of evidence

Figure 22: The comparison of # total calculations of Asia.net for scenario 2.

Car_ts.net:

Four different query experiments are designed. The first query experiment only queries 

the fixed variable of interest given one piece of evidence containing one variable. The 

second query experiment queries the fixed variable of interest given two incremental 

pieces of evidence and each of these two pieces of evidence contains one variable. The
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Global Propagation 
Path Propagation
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third query experiment queries the fixed variable of interest given three incremental 

pieces of evidence. The first piece of evidence contains one variable and the last two 

pieces of evidence contain two variables. The fourth query experiment queries the fixed 

variable of interest given four incremental pieces of evidence. The first piece of evidence 

contains one variable and the last three pieces of evidence all contain two variables. Table 

8 and Figure 23 illustrate the comparison of these four query experiments.

#
Additions

#
Multiplications

#
Divisions

# total 

calculations

Query

experiment
1

GLOBAL

PROPAGATION
22 22 21 65

PATH

PROPAGATION
13 12 12 37

Query

experiment

2

GLOBAL

PROPAGATION
34 34 32 100

PATH

PROPAGATION
15 13 13 41

Query

experiment

3

GLOBAL

PROPAGATION
46 48 43 137

PATH

PROPAGATION
18 17 15 50

Query

experiment

4

GLOBAL

PROPAGATION
58 62 54 174

PATH

PROPAGATION
23 22 19 64

Table 8: The comparison of # binary arithmetic operations of Car_ts.net for scenario 2.

Car_ts. net

Global Propagation 
Path Propagation

1 2  5 7
The to ta l number of variables in a ll  

pieces of evidence

Figure 23: The comparison of # total calculations of Car_ts.net for scenario 2.
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Five different query experiments are designed. The first query experiment only queries 

the fixed variable of interest given one piece of evidence containing one variable. The 

second query experiment queries the fixed variable of interest given two incremental 

pieces of evidence and each of these two pieces of evidence contains one variable. The 

third query experiment queries the fixed variable of interest given three incremental 

pieces of evidence and each of these three pieces of evidence contains two variables. The 

forth query experiment queries the fixed variable of interest given four incremental pieces 

of evidence and each of these four pieces of evidence contains two variables. The fifth 

query experiment queries the fixed variable of interest given five incremental pieces of 

evidence and each of these five pieces of evidence contains two variables. Table 9 and 

Figure 24 illustrate the comparison of these five query experiments.
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#

Additions

#

Multiplications

#

Divisions

# total 

calculations

Query

experiment

1

GLOBAL

PROPAGATION
162 164 161 487

PATH

PROPAGATION
87 86 86 259

Query

experiment

2

GLOBAL

PROPAGATION
244 247 242 733

PATH

PROPAGATION
95 93 93 281

Query

experiment

3

GLOBAL

PROPAGATION
326 331 323 980

PATH

PROPAGATION
109 109 106 324

Query

experiment

4

GLOBAL

PROPAGATION
408 413 404 1255

PATH

PROPAGATION
119 119 115 353

Query

experiment

5

GLOBAL

PROPAGATION
490 498 485 1473

PATH

PROPAGATION
121 . 121 116 358

Table 9: The comparison of # binary arithmetic operations of 4 sp .n et 'or scenario 2

4sp.net

Global Propagation 
Path Propagation

1 2 6 8 10

The to ta l  number of variables in a l l  
pieces of evidence

Figure 24: The comparison of # total calculations of 4 sp .n et for scenario 2.
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Pigs.net:

Three different query experiments are designed. The first query experiment only queries 

the fixed variable o f interest given one piece o f evidence containing one variable. The 

second query experiment queries the fixed variable o f interest given two incremental 

pieces o f evidence. The first piece of evidence contains one variable and the second piece 

of evidence contains two variables. The third query experiment queries the fixed variable 

of interest given three incremental pieces o f evidence. The first piece o f evidence contains 

one variable and the second piece o f evidence contains two variables. The last piece o f  

evidence contains three variables. The experimental results are illustrated in Table 10 and

Figure 25.

#

Additions
# Multiplications

#

Divisions

# total 

calculations

Query

experiment

1

GLOBAL

PROPAGATION
1470 1469 1469 4408

PATH

PROPAGATION
754 753 753 2260

Query

experiment

2

GLOBAL

PROPAGATION
2206 2230 2204 6640

PATH

PROPAGATION
772 771 770 2313

Query

experiment

3

GLOBAL

PROPAGATION
2942 2981 2939 8862

PATH

PROPAGATION
787 787 784 2358

Table 10: The comparison of # binary arithmetic operations o f Pigs.net for scenario 2

Pigs, net

«, ioooo n r
o 9000 £
5  sooo m 
•3 7000 §
"  6000 ^  
8 5000 ^

73 4000 r  
o 3000 “  

^  2000

Global Propagation 
Path Propagation

The to ta l  number o f v a riab les  in a l l  
p ieces o f evidence

Figure 25: The comparison of # total calculations of Pigs.net for scenario 2.
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Munin2.net:

Three different query experiments are designed. The first query experiment only queries 

the fixed variable of interest given one piece of evidence containing one variable. The 

second query experiment queries the fixed variable of interest given two incremental 

pieces of evidence. The first piece of evidence contains one variable and the second piece 

of evidence contains two variables. The third query experiment queries the fixed variable 

of interest given three incremental pieces of evidence. The first piece of evidence contains 

one variable and the second piece of evidence contains two variables. The last piece of 

evidence contains three variables. The experimental results are illustrated in Table 11 and 

Figure 26.

#
Additions

# Multiplications
#

Divisions

# total 

calculations

Query

experiment

1

GLOBAL

PROPAGATION
3462 3463 3461 10386

PATH

PROPAGATION
1744 1743 1743 5230

Query

experiment

2

GLOBAL

PROPAGATION
5194 5226 5192 15612

PATH

PROPAGATION
1767 1766 1765 5298

Query

experiment

3

GLOBAL

PROPAGATION
6926 6989 6923 20838

PATH

PROPAGATION
1788 1788 1785 5361

Table 11: The comparison of # binary arithmetic operations o Munin2.net for scenario 2.

Munin2. net

24000

tj 19000

Global Propagation 
Path Propagation

1 3 6
The to ta l number of variables in a l l  

pieces of evidence

Figure 26: The comparison of # total calculations of Munin2.net for scenario 2.
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4.3 EXPERIMENTAL EVALUATIONS

From the tables and figures presented in Section 4.2, several conclusions are drawn as 

follows.

Evaluations o f the experimental results for scenario 1:

According to the figures and tables shown in Section 4.2.2, the number of calculations for 

path propagation is smaller than that of global propagation, while the former increases 

faster than the latter. The reason is that after a full scale global propagation on a junction 

tree with evidence observed once, the posterior probability distribution of any variable of 

interest given the fixed evidence can be obtained for global propagation. However, for 

path propagation, multiple paths are identified for the posterior probability distributions 

of multiple variables given the fixed evidence, which means more calculations are 

required by these paths for path propagation than global propagation. When users interest 

in more variables, the number of calculations for path propagation may become bigger 

than that of global propagation. In that case, the number of calculations for global 

propagation is only marginally bigger than that of global propagation. Hence, the curves 

of these two propagation methods in the figures may have an intersection. However, the 

x-axis value at the intersection representing the number of variables of interest will be 

very large due to the increasing sizes and nodes of Bayesian networks from the figures in 

Section 4.2.2. Moreover, since users often interest in the posterior probability 

distributions of a few variables in practice as we have mentioned before, the intersection 

does not concern to us. As the results shows, when Bayesian networks become large and 

complex, path propagation is more computationally efficient than global propagation for a 

few queries.

Furthermore, the objective for global propagation is that the posterior probability 

distribution of any variable of interest given the evidence in Bayesian networks can be 

obtained after a full scale global propagation. However, since users often interest a few 

variables in real applications, global propagation certainly wastes lots of computational 

resources especially in large and complex Bayesian networks. For path propagation, it is 

based on the query imposed by users and it answers the query only, so it takes less
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computational resources than global propagation.

Evaluations o f the experimental results for scenario 2:

According to the tables and figures in Section 4.2.3, the number of calculations for path 

propagation is much smaller than that of global propagation. As the figures show, for 

global propagation, the number of calculations increases to approximately two times the 

number of previous calculations whenever new evidence is observed. Because when a 

piece of evidence is observed, a full scale global propagation will be performed on a 

junction tree; when another new piece of evidence is observed, another full scale global 

propagation will be performed on the whole junction tree; so on and so forth. However, 

for path propagation, the number of calculations increases much slowly whenever new 

evidence is observed. Because when a piece of evidence is observed, calculations will be 

incurred by a path in the junction tree; when another new piece of evidence is observed, 

calculations will only be incurred by another new path for the new evidence; so on and so 

forth. Hence, path propagation is more computationally efficient than global propagation.

Furthermore, for global propagation, after a full scale global propagation, the posterior 

probability distribution of any variable of interest given the evidence in Bayesian 

networks can be obtained. However, path propagation is based on a query imposed by 

users and it answers the query only, so it takes less computational resources than global 

propagation.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

The recent trend is to extend Bayesian networks into large and complex Bayesian 

networks [25]. Since the effectiveness and efficiency of global propagation are strongly 

related to the size of a Bayesian network in reality, when it become large and complex, 

global propagation is no longer suitable for inference. According to a failed experiment 

with the Hugin tool introduced in Section 3.1, so global propagation needs to be revised 

and improved. Path propagation is proposed for inference in large and complex Bayesian 

networks. It carries out inference only in certain paths in a junction tree. Also, it is based 

on a query imposed by users and answers the query only. It takes less time and 

computational resources to answer queries than global propagation especially in large and 

complex Bayesian networks.

Path propagation can be also improved in the following ways for future work.

i. In this thesis, all variables contained in any piece of evidence are assumed to be 

included in one clique. However, if there is a piece of evidence that all variables 

contained in the evidence are not included in any clique in a junction tree, then it 

will be decomposed into several smaller pieces of the evidence. All variables 

included in each of these smaller pieces of the evidence should be contained in a 

clique. For example, consider a piece of evidence e that includes two variables X  

and Y, where X=l and F=0. If X  and Y  are not included in any clique in the 

junction tree, then e has to be decomposed into two smaller pieces of evidence e ’ 

and e ”, where e ’ denotes X=1 and e ” denotes Y=0. Thus, v(e") and v(e ”) can be 

contained in a clique because e ’ and e ” have become singleton sets after the 

decomposition.

ii. According to the assumption of path propagation, a full scale global propagation 

should be performed once on the whole junction tree with no evidence observed 

to make every clique and separator marginalized. Since global propagation may
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fail to operate in large and complex Bayesian networks as the failed experiment 

shown in Section 3.1. A recent developed method implements global propagation 

as a database application. Since this method is combined with relational database, 

so it is determined only by the capacity of the database management system 

(DBMS) [11] not the capacity of internal memory [41][42][43]. Thus, this 

method can be applied to path propagation to solve the problem caused by the 

capacity of internal memory,

iii. Recently, an algorithm called lazy propagation is proposed. Lazy propagation, 

based on lazy evaluation, is quite useful in message passing. The time and space 

costs for performing lazy propagation on the Hugin architecture are smaller than 

that of global propagation [13]. Path propagation can be combined with lazy 

propagation. According to the assumption of path propagation, lazy propagation 

can be performed instead of global propagation on the whole junction tree once 

to get each clique and separator marginalized. Lazy propagation does not 

calculate the final marginalized potential for each clique and separator but just 

keeps the list of these potentials for them. It maintains a multiplicative 

decomposition of clique and separator potentials and postpones combination of 

potentials [13]. When a piece of evidence is observed and users interest in a 

variable, path propagation can be applied on the junction tree to identify a path 

and pass the evidence along the path to return the posterior probability 

distribution of the variable of interest given the evidence.
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